blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
7f8e92de14db9bad2e1cad5ac7d8a09da0fb4d12
8bd1ae9c1681ee8c1214a4e9cda29a503676c36d
/v1/gps.py
418181c1a61dd0bdc1470bc0d6bc9a7e10955a77
[]
no_license
zleffke/balloon
c15ef7e5614018022ca1f19ed2e4c82009352165
2943d303692b299e6d0866299d83a94d0839bf5b
refs/heads/master
2021-07-06T02:28:17.304024
2021-05-22T20:25:18
2021-05-22T20:25:18
57,078,951
0
1
null
null
null
null
UTF-8
Python
false
false
5,637
py
#!/usr/bin/env python ################################################## # GPS Interface # Author: Zach Leffke # Description: Initial GPS testing ################################################## from optparse import OptionParser import threading from datetime import datetime as date import os import serial import math import sys import string import time def utc_ts(self): return str(date.utcnow()) + " UTC | " class gpgga_object(object): def __init__(self): self.latitude = 0.0 #degrees self.longitude = 0.0 #degrees self.altitude = 0.0 #meters self.utc_time = '' #string self.fix_quality = 0 #0=invalid, 1=gps fix, 2 = dgps fix self.num_sats = 0 #number of locked satellites self.hdop = 0.0 #Horizontal Dilution of preceision, meters self.wgs84 = 0.0 #Height of Geoid above WGS84 Ellipsoid, meters class gprmc_object(object): def __init__(self): self.utc_time = '' self.nav_warn = '' self.latitude = 0.0 self.longitude = 0.0 self.speed = 0.0 self.track = 0.0 self.utc_date = '' class GPS_Thread(threading.Thread): def __init__ (self, port, baud, log_flag): threading.Thread.__init__(self) self._stop = threading.Event() self.gps_ser = serial.Serial(port, baud) self.log_flag = log_flag self.gpgga = gpgga_object() self.gprmc = gprmc_object() self.raw_log = None self.csv_log = None if self.log_flag==1: self.raw_log = 'gps_raw.txt' elif self.log_flag==2: self.csv_log = 'gps_csv.txt' elif self.log_flag==3: self.raw_log = 'gps_raw.txt' self.csv_log = 'gps_csv.txt' def run(self): while (not self._stop.isSet()): data = self.gps_ser.readline() if self.raw_log != None: rl = open(self.raw_log,'a') rl.write(data) rl.close() line = ((data).strip()).split(',') #print line if line[0] == '$GPGGA': self.GPGGA_Parse(line) elif line[0] == '$GPRMC': self.GPRMC_Parse(line) sys.exit() def get_lat_lon_alt(self): return self.gpgga.latitude, self.gpgga.longitude, self.gpgga.altitude def get_spd_cse(self): return self.gprmc.speed, self.gprmc.track def get_date_time(self): return self.gprmc.utc_date, self.gpgga.utc_time def GPGGA_Parse(self, line): self.gpgga.utc_time = line[1] lat_str = line[2] self.gpgga.latitude = float(line[2][:2]) + float(line[2][2:]) / 60 if line[3] == 'S': self.gpgga.latitude = -1 * self.gpgga.latitude self.gpgga.longitude = float(line[4][:3]) + float(line[4][3:]) / 60 if line[5] == 'W': self.gpgga.longitude = -1 * self.gpgga.longitude self.gpgga.fix_quality = int(line[6]) self.gpgga.num_sats = int(line[7]) self.gpgga.hdop = float(line[8]) self.gpgga.altitude = float(line[9])*3.28084 self.gpgga.wgs84 = float(line[11]) #Height of geoid above WGS84 ellipsoid #print self.gpgga.utc_time, self.gpgga.latitude, self.gpgga.longitude def GPRMC_Parse(self, line): self.gprmc.utc_time = line[1] self.gprmc.nav_warn = line[2] self.gprmc.latitude = float(line[3][:2]) + float(line[3][2:]) / 60 if line[4] == 'S': self.gprmc.latitude = -1 * self.gprmc.latitude self.gprmc.longitude = float(line[5][:3]) + float(line[5][3:]) / 60 if line[6] == 'W': self.gprmc.longitude = -1 * self.gprmc.longitude #speed in knots, need to convert to m/s or mph #1 knot = 1.15078 mph #1 knot = 0.514444 meters/second if line[7] != '': self.gprmc.speed = float(line[7])*1.15078 else: self.gprmc.speed = 0.0 if line[8] != '': self.gprmc.track = float(line[8]) else: self.gprmc.track = 0.0 self.gprmc.utc_date = float(line[9]) def stop(self): self.gps_ser.close() self._stop.set() sys.quit() def stopped(self): return self._stop.isSet() if __name__ == '__main__': #--------START Command Line option parser------------------------------------------------------ usage = "usage: %prog " parser = OptionParser(usage = usage) p_help = "GPS Serial Port, default = /dev/ttyACM0" b_help = "GPS Serial Port Baud, default = 4800" f_help = "GPS logfile, 0-none, 1-nmea only, 2-parsed, 3-parsed+nmea, default = none" parser.add_option("-p", dest = "port" , action = "store", type = "string", default="/dev/ttyACM0", help = p_help) parser.add_option("-b", dest = "baud" , action = "store", type = "int" , default="4800" , help = b_help) parser.add_option("-f", dest = "log_file", action = "store", type = "string", default=None , help = f_help) (options, args) = parser.parse_args() #--------END Command Line option parser------------------------------------------------------ gps_serial = GPS_Thread(options.port, options.baud, options.log_file) try: gps_serial.start() while 1: x = 1 lat, lon, alt = gps_serial.get_lat_lon_alt() spd, cse = gps_serial.get_spd_cse() print lat, lon, alt, spd, cse time.sleep(0.250) sys.exit() except Exception as e: gps_serial.stop() print "Exception Thrown, Terminating..." print e sys.exit()
[ "zleffke@vt.edu" ]
zleffke@vt.edu
48c20b5c2aa2b919066addf3f2316a64f8c38b3c
de2c61ae61ce873a9b622d410c8a2b2c2579ef3a
/google_health/tests/test_map_values.py
fbd90e753446de9ffe7b3927acfa88a1d5f6120f
[ "MIT" ]
permissive
JedGrabman/covidcast-indicators
cbd00e1530dc43f802b5ffdf199e8f59acf98c5c
d2a5a232431c8392c54bfc301dcb9beecc541b97
refs/heads/main
2023-01-20T23:29:17.577825
2020-10-28T14:18:02
2020-10-28T14:18:02
308,045,275
0
0
MIT
2020-10-28T14:38:51
2020-10-28T14:38:50
null
UTF-8
Python
false
false
3,868
py
import pytest from os.path import join import pandas as pd import numpy as np from delphi_google_health.map_values import derived_counts_from_dma, _dma_df_to_matrix class TestMapValues: def test_dummy_hrr(self): # Create a dummy dataset static_dir = join("..", "static") dma_list = np.loadtxt(join(static_dir, "Canonical_DMA.txt"), dtype=int) val = np.zeros(len(dma_list) * 2) val[0] = 2 val[2] = 10 df_dma = pd.DataFrame( { "geo_id": np.tile(dma_list, 2), "timestamp": np.repeat(["2020-02-03", "2020-02-04"], len(dma_list)), "val": val, } ) df_hrr, _ = derived_counts_from_dma(df_dma, static_dir) hrr_list = np.loadtxt(join(static_dir, "Canonical_HRR.txt"), dtype=int) assert set(np.argwhere(df_hrr["val"].values > 0).flatten()) == set( [254, 256, 348, 350, 368, 370, 382, 384, 470] ) assert set(df_hrr["geo_id"].unique()) == set(hrr_list) assert (df_hrr["timestamp"].unique() == ["2020-02-03", "2020-02-04"]).all() def test_dummy_msa(self): # Create a dummy dataset static_dir = join("..", "static") dma_list = np.loadtxt(join(static_dir, "Canonical_DMA.txt"), dtype=int) val = np.zeros(len(dma_list) * 2) val[0] = 2 val[2] = 10 df_dma = pd.DataFrame( { "geo_id": np.tile(dma_list, 2), "timestamp": np.repeat(["2020-02-03", "2020-02-04"], len(dma_list)), "val": val, } ) _, df_msa = derived_counts_from_dma(df_dma, static_dir) msa_list = np.loadtxt(join(static_dir, "Canonical_MSA.txt"), dtype=int) assert set(np.argwhere(df_msa["val"].values > 0).flatten()) == set( [68, 400, 546, 674] ) assert set(df_msa["geo_id"].unique()) == set(msa_list) assert (df_msa["timestamp"].unique() == ["2020-02-03", "2020-02-04"]).all() class TestDataToMatrix: def test_matrix_format(self): # Create a dummy dataset static_dir = join("..", "static") dma_list = np.loadtxt(join(static_dir, "Canonical_DMA.txt"), dtype=int) val = np.zeros(len(dma_list) * 2) val[0] = 2 val[2] = 10 df_dma = pd.DataFrame( { "geo_id": np.tile(dma_list, 2), "timestamp": np.repeat(["2020-02-03", "2020-02-04"], len(dma_list)), "val": val, } ) #  create matrix mat, day_list = _dma_df_to_matrix(df_dma, static_dir) #  check out assert mat.shape == (len(dma_list), 2) assert (day_list == ["2020-02-03", "2020-02-04"]).all() assert mat[0, 0] == 2 assert mat[2, 0] == 10 assert mat.sum() == 12 assert mat.min() == 0 def test_multiple_values(self): # Create a dummy dataset static_dir = join("..", "static") dma_list = np.loadtxt(join(static_dir, "Canonical_DMA.txt"), dtype=int) val = np.zeros(len(dma_list) * 2) val[0] = 2 val[2] = 10 df_dma = pd.DataFrame( { "geo_id": np.tile(dma_list, 2), "timestamp": np.repeat(["2020-02-03", "2020-02-03"], len(dma_list)), "val": val, } ) with pytest.raises(ValueError) as e_info: mat, day_list = _dma_df_to_matrix(df_dma, static_dir) def test_missing_values(self): # Create a dummy dataset static_dir = join("..", "static") df_dma = pd.DataFrame( {"geo_id": [500], "timestamp": ["2020-02-03"], "val": [0]} ) with pytest.raises(ValueError) as e_info: mat, day_list = _dma_df_to_matrix(df_dma, static_dir)
[ "tbarnold@protonmail.ch" ]
tbarnold@protonmail.ch
2efdc583ed742bce6daede58f08e6d65b7d392eb
8e26bbe97e96212a8bebcbed415018c23ba4fd1a
/ds/binary-trees/CheckBalanced.py
4ebde8a96acb7f86e063fd98bc7158b6b628b80d
[]
no_license
yashjaiswal1/CTCI-DSA
ba04d00f33d14de128bddafc29a823f5c7be1fdb
f392c4f86dea8bf29a42325c4d5004355a3b82f5
refs/heads/master
2023-05-29T00:47:49.387875
2021-06-13T07:31:23
2021-06-13T07:31:23
351,172,799
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
class Node: def __init__(self, key=None): self.key = key self.leftChild = None self.rightChild = None def isBalanced(localRoot): if localRoot == None: return True else: difference = abs(getHeight(localRoot.leftChild) - getHeight(localRoot.rightChild)) if difference > 1: return False elif isBalanced(localRoot.leftChild) and isBalanced(localRoot.rightChild): return True def getHeight(node): if node == None: return -1 else: return max(getHeight(node.leftChild), getHeight(node.rightChild)) + 1 tree_root = Node(20) tree_root.leftChild = Node(10) tree_root.rightChild = Node(30) tree_root.leftChild.leftChild = Node(5) tree_root.leftChild.rightChild = Node(15) tree_root.leftChild.rightChild.rightChild = Node(16) tree_root.leftChild.rightChild.rightChild.rightChild = Node(17) tree_root.rightChild.leftChild = Node(25) tree_root.rightChild.rightChild = Node(35) print(isBalanced(tree_root))
[ "yashjaiswal1@outlook.com" ]
yashjaiswal1@outlook.com
cafefe10c03e39adab28f4ab55ac8cd1d46afa94
afb2d6491ac801778500bb5424488355828c3f08
/construction_execution.py
5b9f8f1ae4dc90d5997119db94b48235ed476605
[ "MIT" ]
permissive
dsnaveen/meucci-python
31bac8cd1a3c76ee082c40e7d47b1815fbc3096b
1519f5076b3fb3e0e575200dd3a41d7a36547300
refs/heads/master
2021-06-01T04:23:40.584878
2016-07-05T07:22:04
2016-07-05T07:22:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,322
py
""" Python code for blog post "mini-Meucci : Applying The Checklist - Steps 8-9" http://www.returnandrisk.com/2016/06/mini-meucci-applying-checklist-steps-8-9.html Copyright (c) 2016 Peter Chan (peter-at-return-and-risk-dot-com) """ #%matplotlib inline from pandas_datareader import data import numpy as np import pandas as pd import datetime import math import matplotlib.pyplot as plt import seaborn # Get Yahoo data on 30 DJIA stocks and a few ETFs tickers = ['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DD','XOM','GE','GS', 'HD','INTC','IBM','JNJ','JPM','MCD','MRK','MSFT','NKE','PFE','PG', 'TRV','UNH','UTX','VZ','V','WMT','DIS','SPY','DIA','TLT','SHY'] start = datetime.datetime(2008, 4, 1) end = datetime.datetime(2016, 5, 31) rawdata = data.DataReader(tickers, 'yahoo', start, end) prices = rawdata.to_frame().unstack(level=1)['Adj Close'] # Setup tau = 21 # investment horizon in days n_scenarios = len(prices) - tau n_asset = 30 asset_tickers = tickers[0:30] ############################################################################### # Construction - 2 step mean-variance optimization ############################################################################### # Take shortcut and bypass some of the checklist steps in this toy example since # returns are invariants, estimation interval = horizon ie can use linear return # distribution directly as input into mean-variance optimizer # Projected linear returns to the horizon - historical simulation asset_rets = np.array(prices.pct_change(tau).ix[tau:, asset_tickers]) # Mean-variance inputs # Distribution of asset returns at horizon with flexible probabilities # Time-conditioned flexible probs with exponential decay half_life = 252 * 2 # half life of 2 years es_lambda = math.log(2) / half_life exp_probs = np.exp(-es_lambda * (np.arange(0, n_scenarios)[::-1])) exp_probs = exp_probs / sum(exp_probs) # Apply flexible probabilities to asset return scenarios import rnr_meucci_functions as rnr mu_pc, sigma2_pc = rnr.fp_mean_cov(asset_rets.T, exp_probs) # Perform shrinkage to mitigate estimation risk mu_shrk, cov_shrk = rnr.simple_shrinkage(mu_pc, sigma2_pc) # Step 1: m-v quadratic optimization for efficient frontier n_portfolio = 40 weights_pc, rets_pc, vols_pc = rnr.efficient_frontier_qp_rets(n_portfolio, cov_shrk, mu_shrk) # Step 2: evaluate satisfaction for all allocations on the frontier satisfaction_pc = -vols_pc # Choose the allocation that maximises satisfaction max_sat_idx = np.asscalar(np.argmax(satisfaction_pc)) max_sat = satisfaction_pc[max_sat_idx] max_sat_weights = weights_pc[max_sat_idx, :] print('Optimal portfolio is minimum volatility portfolio with satisfaction\ index = {:.2}'.format(max_sat)) # Plot charts import matplotlib.gridspec as gridspec fig = plt.figure(figsize=(9, 8)) fig.hold(True) gs = gridspec.GridSpec(2, 1) ax = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[1, 0]) ax.plot(vols_pc, rets_pc) ax.set_xlim(vols_pc[0]*0.95, vols_pc[-1]*1.02) ax.set_ylim(min(rets_pc)*0.9, max(rets_pc)*1.05) ax.set_xlabel('Standard Deviation') ax.set_ylabel('Expected Return') ax.set_title("Efficient Frontier") ax.plot(vols_pc[0], rets_pc[0], 'g.', markersize=10.0) ax.text(vols_pc[0]*1.02, rets_pc[0], 'minimum volatility portfolio', fontsize=10) ax2.plot(vols_pc, satisfaction_pc) ax2.set_xlim(vols_pc[0]*0.95, vols_pc[-1]*1.02) ax2.set_ylim(min(satisfaction_pc)*1.05, max(satisfaction_pc)*0.9) ax2.set_xlabel('Standard Deviation') ax2.set_ylabel('Satisfaction') ax2.set_title("Satisfaction") ax2.plot(vols_pc[max_sat_idx], max(satisfaction_pc), 'g.', markersize=10.0) ax2.text(vols_pc[max_sat_idx]*1.02, max(satisfaction_pc), 'maximum satisfaction', fontsize=10) plt.tight_layout() plt.show() # Plot minimum volatility portfolio weights pd.DataFrame(weights_pc[0,:], index=asset_tickers, columns=['w']).sort_values('w', \ ascending=False).plot(kind='bar', title='Minimum Volatility Portfolio Weights', \ legend=None, figsize=(10, 8)) plt.show() ############################################################################### # Execution ############################################################################### # See zipline simulation in dynamic allocation code file
[ "returnandrisk@users.noreply.github.com" ]
returnandrisk@users.noreply.github.com
35c2c078c3d6ff1d63ce2b376b5387b4eb97f1e7
b5aa43c8db450c3bcacc8f28897eab684a8032a1
/data/games/missiles/ui.py
431fd970d43ec82007a75566bf14a29e0ec60f3b
[]
no_license
iminurnamez/Python_Arcade_Collab
29a74cf2a6264969de9bae3c4a6ed23d6282e793
67702414ed30addd1bf46339bb458df34ed88f2a
refs/heads/master
2021-04-15T07:32:18.573004
2018-05-13T14:29:19
2018-05-13T14:29:19
126,644,972
2
0
null
null
null
null
UTF-8
Python
false
false
1,767
py
import pygame as pg from data.core import constants as prog_constants from data.components.labels import Label from . import constants class UI(object): def __init__(self, player, level): font = prog_constants.FONTS["Fixedsys500c"] self.level_label = Label(font, 16, "Level {}".format(level.level_num), constants.LOW_LIGHT_GREEN, {"topleft": (0, 0)}) self.cash_label = Label(font, 16, "${}".format(player.cash), constants.LOW_LIGHT_GREEN, {"topleft": (0, 20)}) self.ammo_label = Label(font, 16, "Ammo: {}".format(player.ammo), constants.LOW_LIGHT_GREEN, {"topleft": (0, 40)}) def update(self, player, level): self.cash_label.set_text("${}".format(player.cash)) self.ammo_label.set_text("Ammo: {}".format(player.ammo)) def draw(self, surface): self.level_label.draw(surface) self.cash_label.draw(surface) self.ammo_label.draw(surface) class CityIcon(object): def __init__(self, midbottom, points, image, current_points=0): self.current_points = current_points self.points = points self.image = image self.rect = self.image.get_rect(midbottom=midbottom) self.points_label = Label(prog_constants.FONTS["Fixedsys500c"], 24, "{}".format(self.current_points), constants.LOW_LIGHT_GREEN, {"midtop": (midbottom[0], midbottom[1] + 4)}) def update(self): text = "{}".format(self.current_points) if self.points_label.text != text: self.points_label.set_text(text) def draw(self, surface): surface.blit(self.image, self.rect) self.points_label.draw(surface)
[ "easinerf@gmail.com" ]
easinerf@gmail.com
69c34a6ee0995ab5c5ac58ef95ce650d85b3cfb3
b7098b8a2c673cec6d4bfb9eab47bd9df2944292
/7_문자열/5622.py
379f4de148c422f45392fc7fadf89d21275a487a
[]
no_license
limgeonho/BOJ_stages
0bc9e53aec129a34c6114d4b39c9a09de4e93bbb
c579124823df510b5ad84f95fb9ebdff5c9b762c
refs/heads/master
2023-07-17T03:48:33.161536
2021-08-29T14:48:55
2021-08-29T14:48:55
389,390,588
0
0
null
null
null
null
UTF-8
Python
false
false
460
py
# 다이얼 s = input() phone = {2: 'ABC', 3: 'DEF', 4: 'GHI', 5: 'JKL', 6: 'MNO', 7: 'PQRS', 8: 'TUV', 9: 'WXYZ'} cnt = 0 for char in s: for k, v in phone.items(): if char in v: cnt += k+1 print(cnt) # li = ['ABC', 'DEF', 'GHI', 'JKL', 'MNO', 'PQRS', 'TUV', 'WXYZ'] # word = input() # cnt = 0 # for char in word: # for letter in li: # if char in letter: # cnt += li.index(letter) + 3 # print(cnt)
[ "ghlim909@gmail.com" ]
ghlim909@gmail.com
abeb393fe7e77610063af908b694f73c67e31c8f
776fb2aecea006e14e39fb8a71ff9a9f447b6105
/metarho/localsettings-dist.py
deae4e87021eece9b42c2a156011da7419128e3e
[]
no_license
TheProjecter/metarho
1615c1e2f838e0676f9a3d6e4243906aa8bb9eb9
36654f34fbdaffb7146f2f8f4dc87b48ad39cc75
refs/heads/master
2021-01-10T15:13:31.244164
2010-05-28T21:50:25
2010-05-28T21:50:25
43,166,467
0
0
null
null
null
null
UTF-8
Python
false
false
1,370
py
# file localsettings-dist.py # # Copyright 2010 Scott Turnbull # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copy to localsettings.py and set vars as needed. DEBUG = False TEMPLATE_DEBUG = DEBUG DEV_ENV = False ADMINS = ( # ('Your Name', 'your_email@domain.com'), ) MANAGERS = ADMINS DATABASE_ENGINE = '' # 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'. DATABASE_NAME = '' # Or path to database file if using sqlite3. DATABASE_USER = '' # Not used with sqlite3. DATABASE_PASSWORD = '' # Not used with sqlite3. DATABASE_HOST = '' # Set to empty string for localhost. Not used with sqlite3. DATABASE_PORT = '' # Set to empty string for default. Not used with sqlite3. # Make this unique, and don't share it with anybody. SECRET_KEY = ''
[ "streamweaver@mindspring.com" ]
streamweaver@mindspring.com
d15e3bb52395ec126ac48230b4f647c49dd77d27
d6beff28c32310a8835c3d34a882ff6d6dee89ab
/setup.py
926353d559c620954512666519f611dddb494ccc
[]
no_license
mattvonrocketstein/goulash
ae0dfc87a8d8c44f924800bc7a0257bb756ac810
cff9cb1e279a31394af7357f3f515a0b51cf5f62
refs/heads/master
2020-05-17T17:25:55.403433
2016-01-15T20:35:01
2016-01-15T20:35:01
7,263,061
0
0
null
null
null
null
UTF-8
Python
false
false
1,764
py
#!/usr/bin/env python """ setup.py for goulash """ import os, sys from setuptools import setup, find_packages # make sure that finding packages works, even # when setup.py is invoked from outside this dir this_dir = os.path.dirname(os.path.abspath(__file__)) if not os.getcwd()==this_dir: os.chdir(this_dir) # make sure we can import the version number so that it doesn't have # to be changed in two places. goulash/__init__.py is also free # to import various requirements that haven't been installed yet sys.path.append(os.path.join(this_dir, 'goulash')) from version import __version__ sys.path.pop() base_url = 'https://github.com/mattvonrocketstein/goulash/' packages = [x for x in find_packages() if x not in ['tests']] setup( name = 'goulash', version = __version__, description = 'toolbox, random shared stuff from my other projects', author = 'mattvonrocketstein', author_email = '$author@gmail', url = base_url, download_url = base_url + '/tarball/master', packages = packages, keywords = ['goulash'], install_requires = [ 'addict', # dictionary utility 'ansi2html', # required for goulash.ansi 'werkzeug', # used for caching helpers 'fabric', # misc. automation 'argparse', # command line option-parsing 'configparser', # .ini configurations 'mkdocs', # static docs generation 'epydoc', # static docs generation 'Importing' # lazy module ], entry_points = dict( console_scripts=[ 'goulash = goulash.bin._goulash:entry', ]), package_data={'': ['*.*', 'goulash/data/*.*']}, include_package_data=True, )
[ "matthewvonrocketstein@gmail-dot-com" ]
matthewvonrocketstein@gmail-dot-com
106a0d9c89e4949c8b9f5af082852301f80aad4f
72d7c721df1bfe8274ea17194498e869c4247d95
/espn_api/baseball/__init__.py
898b3e849003e8bfa622941b824501074687a039
[ "MIT" ]
permissive
AdrianForsythe/ff-espn-api
f344287e6f74a057910ab0b140393ca3e4d5580f
ac82048e3f0397361c54dc5497df72bf9f29586f
refs/heads/master
2022-09-21T03:47:18.813600
2022-07-31T21:49:06
2022-07-31T21:49:06
206,588,624
1
0
MIT
2019-09-05T14:49:49
2019-09-05T14:49:49
null
UTF-8
Python
false
false
211
py
__all__ = ['League', 'Team', 'Player', 'Matchup', ] from .league import League from .team import Team from .player import Player from .matchup import Matchup
[ "cwendt94@vt.edu" ]
cwendt94@vt.edu
395ed5ce63deb82814dea454d7b5964dd380116c
f5b46d7a9f5583b5156ef03797ca2651b8c3e145
/tubers/tubers/settings.py
1f8101ef697b7a3bec9fbff550d2b25061de0cfc
[]
no_license
Ipshita30/lco-tubers
96283240925a4ce9076ee29c2691698c2e83871d
8a6f467ca7026222af7b56853614a000c723e609
refs/heads/main
2023-03-19T08:13:46.875529
2021-03-19T10:03:11
2021-03-19T10:03:11
349,349,308
0
0
null
null
null
null
UTF-8
Python
false
false
3,341
py
""" Django settings for tubers project. Generated by 'django-admin startproject' using Django 3.1.7. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '$q2=spekw$kg!im(ti(&^-)*ge-7(uukmq#s1b*f6g@cdd%%2$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'webpages.apps.WebpagesConfig', 'djangocms_admin_style', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'tubers.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ['templates'], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'tubers.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'lcotubers', 'USER': 'postgres', 'PASSWORD': 'ipshita30', 'HOST': 'localhost' } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'tubers/static') ]
[ "Ipshitam.soni@gmail.com" ]
Ipshitam.soni@gmail.com
92001a2b21623b944fec416bba71f5a2a3afe83f
e0029bbfe3158b1d590a102965ed0b11bdfa7ab8
/pydicom/tests/test_pylibjpeg.py
e025cd854390112b259c3962b9f5839b98671ed1
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
ARteapartedelarte/pydicom
1302eb969661c27cda908b56ebc3d6c572027a95
389b1ad97c1b3616851b37749e4bd2520755f0d1
refs/heads/master
2023-04-24T08:43:04.902001
2021-04-29T23:33:51
2021-04-29T23:33:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,695
py
# Copyright 2020 pydicom authors. See LICENSE file for details. """Tests for the pixel_data_handlers.pylibjpeg_handler module.""" import pytest import pydicom from pydicom.data import get_testdata_file from pydicom.encaps import defragment_data from pydicom.filereader import dcmread from pydicom.pixel_data_handlers.util import ( convert_color_space, get_j2k_parameters ) from pydicom.uid import ( ImplicitVRLittleEndian, JPEGBaseline8Bit, JPEGExtended12Bit, JPEGLosslessP14, JPEGLosslessSV1, JPEGLSLossless, JPEGLSNearLossless, JPEG2000Lossless, JPEG2000, RLELossless, AllTransferSyntaxes ) try: import numpy as np from pydicom.pixel_data_handlers import numpy_handler as NP_HANDLER HAVE_NP = True except ImportError: NP_HANDLER = None HAVE_NP = False try: from pydicom.pixel_data_handlers import pylibjpeg_handler as LJ_HANDLER from pydicom.pixel_data_handlers.pylibjpeg_handler import ( get_pixeldata, as_array, generate_frames ) HAVE_PYLIBJPEG = LJ_HANDLER.HAVE_PYLIBJPEG HAVE_LJ = LJ_HANDLER.HAVE_LIBJPEG HAVE_OJ = LJ_HANDLER.HAVE_OPENJPEG HAVE_RLE = LJ_HANDLER.HAVE_RLE except ImportError: LJ_HANDLER = None HAVE_PYLIBJPEG = False HAVE_LJ = False HAVE_OJ = False HAVE_RLE = False TEST_HANDLER = HAVE_NP and HAVE_PYLIBJPEG # Run handler tests TEST_JPEG = TEST_HANDLER and HAVE_LJ # Run 10918 JPEG tests TEST_JPEGLS = TEST_HANDLER and HAVE_LJ # Run 14495 JPEG-LS tests TEST_JPEG2K = TEST_HANDLER and HAVE_OJ # Run 15444 JPEG 2000 tests TEST_RLE = TEST_HANDLER and HAVE_RLE # Run RLE Lossless tests SUPPORTED_SYNTAXES = [ JPEGBaseline8Bit, JPEGExtended12Bit, JPEGLosslessP14, JPEGLosslessSV1, JPEGLSLossless, JPEGLSNearLossless, JPEG2000Lossless, JPEG2000, RLELossless, ] UNSUPPORTED_SYNTAXES = list( set(AllTransferSyntaxes) ^ set(SUPPORTED_SYNTAXES) ) # Transfer syntaxes supported by other handlers IMPL = get_testdata_file("MR_small_implicit.dcm") EXPL = get_testdata_file("OBXXXX1A.dcm") EXPB = get_testdata_file("OBXXXX1A_expb.dcm") DEFL = get_testdata_file("image_dfl.dcm") REFERENCE_DATA_UNSUPPORTED = [ (IMPL, ('1.2.840.10008.1.2', 'CompressedSamples^MR1')), (EXPL, ('1.2.840.10008.1.2.1', 'OB^^^^')), (EXPB, ('1.2.840.10008.1.2.2', 'OB^^^^')), (DEFL, ('1.2.840.10008.1.2.1.99', '^^^^')), ] # RLE Lossless - PackBits algorithm RLE_8_1_1F = get_testdata_file("OBXXXX1A_rle.dcm") RLE_8_1_2F = get_testdata_file("OBXXXX1A_rle_2frame.dcm") RLE_8_3_1F = get_testdata_file("SC_rgb_rle.dcm") RLE_8_3_2F = get_testdata_file("SC_rgb_rle_2frame.dcm") RLE_16_1_1F = get_testdata_file("MR_small_RLE.dcm") RLE_16_1_10F = get_testdata_file("emri_small_RLE.dcm") RLE_16_3_1F = get_testdata_file("SC_rgb_rle_16bit.dcm") RLE_16_3_2F = get_testdata_file("SC_rgb_rle_16bit_2frame.dcm") RLE_32_1_1F = get_testdata_file("rtdose_rle_1frame.dcm") RLE_32_1_15F = get_testdata_file("rtdose_rle.dcm") RLE_32_3_1F = get_testdata_file("SC_rgb_rle_32bit.dcm") RLE_32_3_2F = get_testdata_file("SC_rgb_rle_32bit_2frame.dcm") # JPEG - ISO/IEC 10918 Standard # FMT_BA_BV_SPX_PR_FRAMESF_PI # JPGB: 1.2.840.10008.1.2.4.50 - JPEG Baseline (8-bit only) JPGB_08_08_3_0_1F_YBR_FULL = get_testdata_file("SC_rgb_small_odd_jpeg.dcm") JPGB_08_08_3_0_120F_YBR_FULL_422 = get_testdata_file("color3d_jpeg_baseline.dcm") # noqa # Different subsampling 411, 422, 444 JPGB_08_08_3_0_1F_YBR_FULL_422_411 = get_testdata_file("SC_rgb_dcmtk_+eb+cy+np.dcm") # noqa JPGB_08_08_3_0_1F_YBR_FULL_422_422 = get_testdata_file("SC_rgb_dcmtk_+eb+cy+s2.dcm") # noqa JPGB_08_08_3_0_1F_YBR_FULL_411 = get_testdata_file("SC_rgb_dcmtk_+eb+cy+n1.dcm") # noqa JPGB_08_08_3_0_1F_YBR_FULL_422 = get_testdata_file("SC_rgb_dcmtk_+eb+cy+n2.dcm") # noqa JPGB_08_08_3_0_1F_YBR_FULL_444 = get_testdata_file("SC_rgb_dcmtk_+eb+cy+s4.dcm") # noqa JPGB_08_08_3_0_1F_RGB = get_testdata_file("SC_rgb_dcmtk_+eb+cr.dcm") # JPGE: 1.2.840.1.2.4.51 - JPEG Extended JPGE_BAD = get_testdata_file("JPEG-lossy.dcm") # Bad JPEG file JPGE_16_12_1_0_1F_M2 = get_testdata_file("JPGExtended.dcm") # Fixed version # JPGL: 1.2.840.10008.1.2.4.70 - JPEG Lossless, Non-hierarchical, 1st Order JPGL_08_08_1_0_1F = get_testdata_file("JPGLosslessP14SV1_1s_1f_8b.dcm") JPGL_16_16_1_1_1F_M2 = get_testdata_file("JPEG-LL.dcm") JPGB = JPEGBaseline8Bit JPGE = JPEGExtended12Bit JPGL = JPEGLosslessSV1 JPG_REFERENCE_DATA = [ # fpath, (syntax, bits, nr samples, pixel repr, nr frames, shape, dtype) (JPGB_08_08_3_0_120F_YBR_FULL_422, (JPGB, 8, 3, 0, 120, (120, 480, 640, 3), 'uint8')), # noqa (JPGB_08_08_3_0_1F_YBR_FULL_422_411, (JPGB, 8, 3, 0, 1, (100, 100, 3), 'uint8')), # noqa (JPGB_08_08_3_0_1F_YBR_FULL_422_422, (JPGB, 8, 3, 0, 1, (100, 100, 3), 'uint8')), # noqa (JPGB_08_08_3_0_1F_YBR_FULL_411, (JPGB, 8, 3, 0, 1, (100, 100, 3), 'uint8')), # noqa (JPGB_08_08_3_0_1F_YBR_FULL_422, (JPGB, 8, 3, 0, 1, (100, 100, 3), 'uint8')), # noqa (JPGB_08_08_3_0_1F_YBR_FULL_444, (JPGB, 8, 3, 0, 1, (100, 100, 3), 'uint8')), # noqa (JPGB_08_08_3_0_1F_RGB, (JPGB, 8, 3, 0, 1, (100, 100, 3), 'uint8')), (JPGE_16_12_1_0_1F_M2, (JPGE, 16, 1, 0, 1, (1024, 256), 'uint16')), (JPGL_08_08_1_0_1F, (JPGL, 8, 1, 0, 1, (768, 1024), 'uint8')), (JPGL_16_16_1_1_1F_M2, (JPGL, 16, 1, 1, 1, (1024, 256), 'int16')), ] JPG_MATCHING_DATASETS = [ # (compressed, reference, hard coded check values), px tolerance pytest.param( JPGB_08_08_3_0_1F_YBR_FULL_422_411, get_testdata_file("SC_rgb_dcmtk_ebcynp_dcmd.dcm"), [ (253, 1, 0), (253, 129, 131), (0, 255, 5), (127, 255, 129), (0, 0, 254), (127, 128, 255), (0, 0, 0), (64, 64, 64), (192, 192, 192), (255, 255, 255), ], 2 ), pytest.param( JPGB_08_08_3_0_1F_YBR_FULL_422_422, get_testdata_file("SC_rgb_dcmtk_ebcys2_dcmd.dcm"), [ (254, 0, 0), (255, 127, 127), (0, 255, 5), (129, 255, 129), (0, 0, 254), (128, 127, 255), (0, 0, 0), (64, 64, 64), (192, 192, 192), (255, 255, 255), ], 0 ), pytest.param( JPGB_08_08_3_0_1F_YBR_FULL_411, get_testdata_file("SC_rgb_dcmtk_ebcyn1_dcmd.dcm"), [ (253, 1, 0), (253, 129, 131), (0, 255, 5), (127, 255, 129), (0, 0, 254), (127, 128, 255), (0, 0, 0), (64, 64, 64), (192, 192, 192), (255, 255, 255), ], 2 ), pytest.param( JPGB_08_08_3_0_1F_YBR_FULL_422, get_testdata_file("SC_rgb_dcmtk_ebcyn2_dcmd.dcm"), [ (254, 0, 0), (255, 127, 127), (0, 255, 5), (129, 255, 129), (0, 0, 254), (128, 127, 255), (0, 0, 0), (64, 64, 64), (192, 192, 192), (255, 255, 255), ], 0 ), pytest.param( JPGB_08_08_3_0_1F_YBR_FULL_444, get_testdata_file("SC_rgb_dcmtk_ebcys4_dcmd.dcm"), [ (254, 0, 0), (255, 127, 127), (0, 255, 5), (129, 255, 129), (0, 0, 254), (128, 127, 255), (0, 0, 0), (64, 64, 64), (192, 192, 192), (255, 255, 255), ], 0 ), pytest.param( JPGB_08_08_3_0_1F_RGB, get_testdata_file("SC_rgb_dcmtk_ebcr_dcmd.dcm"), [ (255, 0, 0), (255, 128, 128), (0, 255, 0), (128, 255, 128), (0, 0, 255), (128, 128, 255), (0, 0, 0), (64, 64, 64), (192, 192, 192), (255, 255, 255), ], 1 ), ] # JPEG-LS - ISO/IEC 14495 Standard JLSL = JPEGLSNearLossless JLSN = JPEGLSLossless JPEG_LS_LOSSLESS = get_testdata_file("MR_small_jpeg_ls_lossless.dcm") JLS_REFERENCE_DATA = [ # fpath, (syntax, bits, nr samples, pixel repr, nr frames, shape, dtype) (JPEG_LS_LOSSLESS, (JLSN, 16, 1, 1, 1, (64, 64), 'int16')), ] # JPEG 2000 - ISO/IEC 15444 Standard J2KR = JPEG2000Lossless J2KI = JPEG2000 # J2KR: 1.2.840.100008.1.2.4.90 - JPEG 2000 Lossless J2KR_08_08_3_0_1F_YBR_ICT = get_testdata_file("US1_J2KR.dcm") J2KR_16_10_1_0_1F_M1 = get_testdata_file("RG3_J2KR.dcm") J2KR_16_12_1_0_1F_M2 = get_testdata_file("MR2_J2KR.dcm") J2KR_16_15_1_0_1F_M1 = get_testdata_file("RG1_J2KR.dcm") J2KR_16_16_1_0_10F_M2 = get_testdata_file("emri_small_jpeg_2k_lossless.dcm") J2KR_16_14_1_1_1F_M2 = get_testdata_file("693_J2KR.dcm") J2KR_16_16_1_1_1F_M2 = get_testdata_file("MR_small_jp2klossless.dcm") J2KR_16_13_1_1_1F_M2_MISMATCH = get_testdata_file("J2K_pixelrep_mismatch.dcm") # Non-conformant pixel data -> JP2 header present J2KR_08_08_3_0_1F_YBR_RCT = get_testdata_file("GDCMJ2K_TextGBR.dcm") # J2KI: 1.2.840.10008.1.2.4.91 - JPEG 2000 J2KI_08_08_3_0_1F_RGB = get_testdata_file("SC_rgb_gdcm_KY.dcm") J2KI_08_08_3_0_1F_YBR_ICT = get_testdata_file("US1_J2KI.dcm") J2KI_16_10_1_0_1F_M1 = get_testdata_file("RG3_J2KI.dcm") J2KI_16_12_1_0_1F_M2 = get_testdata_file("MR2_J2KI.dcm") J2KI_16_15_1_0_1F_M1 = get_testdata_file("RG1_J2KI.dcm") J2KI_16_14_1_1_1F_M2 = get_testdata_file("693_J2KI.dcm") J2KI_16_16_1_1_1F_M2 = get_testdata_file("JPEG2000.dcm") J2K_REFERENCE_DATA = [ # fpath, (syntax, bits, nr samples, pixel repr, nr frames, shape, dtype) (J2KR_08_08_3_0_1F_YBR_ICT, (J2KR, 8, 3, 0, 1, (480, 640, 3), 'uint8')), (J2KR_16_10_1_0_1F_M1, (J2KR, 16, 1, 0, 1, (1760, 1760), 'uint16')), (J2KR_16_12_1_0_1F_M2, (J2KR, 16, 1, 0, 1, (1024, 1024), 'uint16')), (J2KR_16_15_1_0_1F_M1, (J2KR, 16, 1, 0, 1, (1955, 1841), 'uint16')), # should be Bits Stored = 12 (J2KR_16_16_1_0_10F_M2, (J2KR, 16, 1, 0, 10, (10, 64, 64), 'uint16')), # should be Bits Stored = 16 (J2KR_16_14_1_1_1F_M2, (J2KR, 16, 1, 1, 1, (512, 512), 'int16')), (J2KR_16_16_1_1_1F_M2, (J2KR, 16, 1, 1, 1, (64, 64), 'int16')), (J2KI_08_08_3_0_1F_RGB, (J2KI, 8, 3, 0, 1, (100, 100, 3), 'uint8')), (J2KI_08_08_3_0_1F_YBR_ICT, (J2KI, 8, 3, 0, 1, (480, 640, 3), 'uint8')), (J2KI_16_10_1_0_1F_M1, (J2KI, 16, 1, 0, 1, (1760, 1760), 'uint16')), (J2KI_16_12_1_0_1F_M2, (J2KI, 16, 1, 0, 1, (1024, 1024), 'uint16')), (J2KI_16_15_1_0_1F_M1, (J2KI, 16, 1, 0, 1, (1955, 1841), 'uint16')), # should be Bits Stored = 16 (J2KI_16_14_1_1_1F_M2, (J2KI, 16, 1, 1, 1, (512, 512), 'int16')), (J2KI_16_16_1_1_1F_M2, (J2KI, 16, 1, 1, 1, (1024, 256), 'int16')), ] J2K_MATCHING_DATASETS = [ # (compressed, reference, fixes) pytest.param( J2KR_08_08_3_0_1F_YBR_ICT, get_testdata_file("US1_UNCR.dcm"), {}, ), pytest.param( J2KR_16_10_1_0_1F_M1, get_testdata_file("RG3_UNCR.dcm"), {}, ), pytest.param( J2KR_16_12_1_0_1F_M2, get_testdata_file("MR2_UNCR.dcm"), {}, ), pytest.param( J2KR_16_15_1_0_1F_M1, get_testdata_file("RG1_UNCR.dcm"), {}, ), pytest.param( J2KR_16_16_1_0_10F_M2, get_testdata_file("emri_small.dcm"), {'BitsStored': 16}, ), pytest.param( J2KR_16_14_1_1_1F_M2, get_testdata_file("693_UNCR.dcm"), {'BitsStored': 14}, ), pytest.param( J2KR_16_16_1_1_1F_M2, get_testdata_file("MR_small.dcm"), {}, ), pytest.param( J2KI_08_08_3_0_1F_RGB, get_testdata_file("SC_rgb_gdcm2k_uncompressed.dcm"), {}, ), pytest.param( J2KI_08_08_3_0_1F_YBR_ICT, get_testdata_file("US1_UNCI.dcm"), {}, ), pytest.param( J2KI_16_10_1_0_1F_M1, get_testdata_file("RG3_UNCI.dcm"), {}, ), pytest.param( J2KI_16_12_1_0_1F_M2, get_testdata_file("MR2_UNCI.dcm"), {}, ), pytest.param( J2KI_16_15_1_0_1F_M1, get_testdata_file("RG1_UNCI.dcm"), {}, ), pytest.param( J2KI_16_14_1_1_1F_M2, get_testdata_file("693_UNCI.dcm"), {'BitsStored': 16}, ), pytest.param( J2KI_16_16_1_1_1F_M2, get_testdata_file("JPEG2000_UNC.dcm"), {}, ), ] def test_unsupported_syntaxes(): """Test that UNSUPPORTED_SYNTAXES is as expected.""" for syntax in SUPPORTED_SYNTAXES: assert syntax not in UNSUPPORTED_SYNTAXES @pytest.mark.skipif(not HAVE_PYLIBJPEG, reason='pylibjpeg not available') class TestHandler: """Tests for handling Pixel Data with the handler.""" def setup(self): """Setup the test datasets and the environment.""" self.original_handlers = pydicom.config.pixel_data_handlers pydicom.config.pixel_data_handlers = [NP_HANDLER, LJ_HANDLER] def teardown(self): """Restore the environment.""" pydicom.config.pixel_data_handlers = self.original_handlers def test_environment(self): """Check that the testing environment is as expected.""" assert HAVE_NP assert HAVE_PYLIBJPEG assert LJ_HANDLER is not None def test_unsupported_syntax_raises(self): """Test pixel_array raises exception for unsupported syntaxes.""" pydicom.config.pixel_data_handlers = [LJ_HANDLER] ds = dcmread(EXPL) for uid in UNSUPPORTED_SYNTAXES: ds.file_meta.TransferSyntaxUID = uid with pytest.raises((NotImplementedError, RuntimeError)): ds.pixel_array @pytest.mark.skipif( HAVE_LJ and HAVE_OJ and HAVE_RLE, reason="plugins available" ) def test_no_plugins_raises(self): """Test exception raised if required plugin missing.""" ds = dcmread(JPGB_08_08_3_0_1F_YBR_FULL) msg = ( r"Unable to convert the Pixel Data as the 'pylibjpeg-libjpeg' " r"plugin is not installed" ) with pytest.raises(RuntimeError, match=msg): ds.pixel_array ds = dcmread(J2KI_08_08_3_0_1F_RGB) msg = ( r"Unable to convert the Pixel Data as the 'pylibjpeg-openjpeg' " r"plugin is not installed" ) with pytest.raises(RuntimeError, match=msg): ds.pixel_array ds = dcmread(RLE_8_1_1F) msg = ( r"Unable to convert the Pixel Data as the 'pylibjpeg-rle' " r"plugin is not installed" ) with pytest.raises(RuntimeError, match=msg): ds.pixel_array def test_change_photometric_interpretation(self): """Test returned value.""" ds = dcmread(J2KR_16_12_1_0_1F_M2) func = LJ_HANDLER.should_change_PhotometricInterpretation_to_RGB assert func(ds) is False @pytest.mark.skipif(not TEST_JPEG, reason="no -libjpeg plugin") class TestJPEG: def setup(self): """Setup the test datasets and the environment.""" self.original_handlers = pydicom.config.pixel_data_handlers pydicom.config.pixel_data_handlers = [NP_HANDLER, LJ_HANDLER] def teardown(self): """Restore the environment.""" pydicom.config.pixel_data_handlers = self.original_handlers @pytest.mark.parametrize('fpath, data', JPG_REFERENCE_DATA) def test_properties(self, fpath, data): """Test dataset and pixel array properties are as expected.""" ds = dcmread(fpath) assert ds.file_meta.TransferSyntaxUID == data[0] assert ds.BitsAllocated == data[1] assert ds.SamplesPerPixel == data[2] assert ds.PixelRepresentation == data[3] assert getattr(ds, 'NumberOfFrames', 1) == data[4] arr = ds.pixel_array assert arr.flags.writeable assert data[5] == arr.shape assert arr.dtype == data[6] @pytest.mark.parametrize('fpath, rpath, val, tol', JPG_MATCHING_DATASETS) def test_array(self, fpath, rpath, val, tol): """Test pixel_array returns correct values.""" ds = dcmread(fpath) arr = ds.pixel_array if 'YBR' in ds.PhotometricInterpretation: arr = convert_color_space(arr, ds.PhotometricInterpretation, 'RGB') ref = dcmread(rpath).pixel_array if val: assert tuple(arr[5, 50, :]) == val[0] assert tuple(arr[15, 50, :]) == val[1] assert tuple(arr[25, 50, :]) == val[2] assert tuple(arr[35, 50, :]) == val[3] assert tuple(arr[45, 50, :]) == val[4] assert tuple(arr[55, 50, :]) == val[5] assert tuple(arr[65, 50, :]) == val[6] assert tuple(arr[75, 50, :]) == val[7] assert tuple(arr[85, 50, :]) == val[8] assert tuple(arr[95, 50, :]) == val[9] # All results within `tol` intensity units of the reference assert np.allclose(arr, ref, atol=tol) @pytest.mark.parametrize('fpath, rpath, val, tol', JPG_MATCHING_DATASETS) def test_generate_frames(self, fpath, rpath, val, tol): """Test pixel_array returns correct values.""" ds = dcmread(fpath) frame_generator = generate_frames(ds) ref = dcmread(rpath).pixel_array nr_frames = getattr(ds, 'NumberOfFrames', 1) for ii in range(nr_frames): arr = next(frame_generator) if 'YBR' in ds.PhotometricInterpretation: arr = convert_color_space( arr, ds.PhotometricInterpretation, 'RGB' ) if nr_frames > 1: assert np.allclose(arr, ref[ii, ...], atol=tol) else: assert np.allclose(arr, ref, atol=tol) with pytest.raises(StopIteration): next(frame_generator) def test_bad_file_raises(self): """Test a bad JPEG file raises an exception.""" ds = dcmread(JPGE_BAD) msg = ( r"libjpeg error code '-1038' returned from Decode\(\): A " r"misplaced marker segment was found - scan start must be zero " r"and scan stop must be 63 for the sequential operating modes" ) with pytest.raises(RuntimeError, match=msg): ds.pixel_array def test_missing_element_raises(self): """Test that missing required element raises exception.""" ds = dcmread(JPGB_08_08_3_0_1F_YBR_FULL) del ds.PixelData msg = ( r"Unable to convert the pixel data as the following required " r"elements are missing from the dataset: PixelData" ) with pytest.raises(AttributeError, match=msg): ds.pixel_array @pytest.mark.skipif(not TEST_JPEGLS, reason="no -libjpeg plugin") class TestJPEGLS: def setup(self): """Setup the test datasets and the environment.""" self.original_handlers = pydicom.config.pixel_data_handlers pydicom.config.pixel_data_handlers = [NP_HANDLER, LJ_HANDLER] def teardown(self): """Restore the environment.""" pydicom.config.pixel_data_handlers = self.original_handlers @pytest.mark.parametrize('fpath, data', JLS_REFERENCE_DATA) def test_properties(self, fpath, data): """Test dataset and pixel array properties are as expected.""" ds = dcmread(fpath) assert ds.file_meta.TransferSyntaxUID == data[0] assert ds.BitsAllocated == data[1] assert ds.SamplesPerPixel == data[2] assert ds.PixelRepresentation == data[3] assert getattr(ds, 'NumberOfFrames', 1) == data[4] arr = ds.pixel_array assert arr.flags.writeable assert data[5] == arr.shape assert arr.dtype == data[6] def test_arrary(self): """Test returned array values are OK.""" ds = dcmread(JPEG_LS_LOSSLESS) arr = ds.pixel_array # Checked against GDCM assert ( [170, 193, 191, 373, 1293, 2053, 1879, 1683, 1711] == arr[55:65, 35].tolist() ) @pytest.mark.skipif(not TEST_JPEG2K, reason="no -openjpeg plugin") class TestJPEG2K: def setup(self): """Setup the test datasets and the environment.""" self.original_handlers = pydicom.config.pixel_data_handlers pydicom.config.pixel_data_handlers = [NP_HANDLER, LJ_HANDLER] def teardown(self): """Restore the environment.""" pydicom.config.pixel_data_handlers = self.original_handlers @pytest.mark.parametrize('fpath, data', J2K_REFERENCE_DATA) def test_properties_as_array(self, fpath, data): """Test dataset, pixel_array and as_array() are as expected.""" req_fixes = [ J2KR_16_16_1_0_10F_M2, J2KR_16_14_1_1_1F_M2, J2KI_16_14_1_1_1F_M2 ] ds = dcmread(fpath) assert ds.file_meta.TransferSyntaxUID == data[0] assert ds.BitsAllocated == data[1] assert ds.SamplesPerPixel == data[2] assert ds.PixelRepresentation == data[3] assert getattr(ds, 'NumberOfFrames', 1) == data[4] # Check Dataset.pixel_array if fpath in req_fixes: with pytest.warns(UserWarning): arr = ds.pixel_array else: arr = ds.pixel_array assert arr.flags.writeable assert data[5] == arr.shape assert arr.dtype == data[6] # Check handlers as_array() function if fpath in req_fixes: with pytest.warns(UserWarning): arr = as_array(ds) else: arr = as_array(ds) assert arr.flags.writeable assert data[5] == arr.shape assert arr.dtype == data[6] @pytest.mark.parametrize('fpath, rpath, fixes', J2K_MATCHING_DATASETS) def test_array(self, fpath, rpath, fixes): """Test pixel_array returns correct values.""" ds = dcmread(fpath) if fixes: with pytest.warns(UserWarning): arr = ds.pixel_array else: arr = ds.pixel_array ref = dcmread(rpath).pixel_array assert np.array_equal(arr, ref) @pytest.mark.parametrize('fpath, rpath, fixes', J2K_MATCHING_DATASETS) def test_generate_frames(self, fpath, rpath, fixes): """Test pixel_array returns correct values.""" ds = dcmread(fpath) frame_generator = generate_frames(ds) ref = dcmread(rpath).pixel_array nr_frames = getattr(ds, 'NumberOfFrames', 1) for ii in range(nr_frames): if fixes: with pytest.warns(UserWarning): arr = next(frame_generator) else: arr = next(frame_generator) if nr_frames > 1: assert np.array_equal(arr, ref[ii, ...]) else: assert np.array_equal(arr, ref) with pytest.raises(StopIteration): next(frame_generator) def test_warnings(self): """Test the plugin warnings work.""" # Bits Stored ds = dcmread(J2KR_16_14_1_1_1F_M2) msg = ( r"The \(0028,0101\) Bits Stored value '16' in the dataset does " r"not match the component precision value '14' found in the JPEG " r"2000 data. It's recommended that you change the Bits Stored " r"value to produce the correct output" ) with pytest.warns(UserWarning, match=msg): ds.pixel_array # Pixel Representation ds.BitsStored = 14 ds.PixelRepresentation = 0 msg = ( r"The \(0028,0103\) Pixel Representation value '0' \(unsigned\) " r"in the dataset does not match the format of the values found in " r"the JPEG 2000 data 'signed'" ) with pytest.warns(UserWarning, match=msg): ds.pixel_array # Samples per Pixel ds.PixelRepresentation = 0 ds.SamplesPerPixel = 3 msg = ( r"The \(0028,0002\) Samples per Pixel value '3' in the dataset " r"does not match the number of components '1' found in the JPEG " r"2000 data. It's recommended that you change the Samples per " r"Pixel value to produce the correct output" ) with pytest.warns(UserWarning, match=msg): with pytest.raises(ValueError): ds.pixel_array # JP2 header ds = dcmread(J2KR_08_08_3_0_1F_YBR_RCT) msg = ( r"The \(7FE0,0010\) Pixel Data contains a JPEG 2000 codestream " r"with the optional JP2 file format header, which is " r"non-conformant to the DICOM Standard \(Part 5, Annex A.4.4\)" ) with pytest.warns(UserWarning, match=msg): ds.pixel_array def test_decompress_using_pylibjpeg(self): """Test decompressing JPEG2K with pylibjpeg handler succeeds.""" ds = dcmread(J2KR_16_12_1_0_1F_M2) ds.decompress(handler_name='pylibjpeg') arr = ds.pixel_array ds = dcmread(get_testdata_file("MR2_J2KR.dcm")) ref = ds.pixel_array assert np.array_equal(arr, ref) def test_pixel_rep_mismatch(self): """Test mismatched j2k sign and Pixel Representation.""" ds = dcmread(J2KR_16_13_1_1_1F_M2_MISMATCH) assert 1 == ds.PixelRepresentation assert 13 == ds.BitsStored bs = defragment_data(ds.PixelData) params = get_j2k_parameters(bs) assert 13 == params["precision"] assert not params["is_signed"] msg = r"value '1' \(signed\)" with pytest.warns(UserWarning, match=msg): arr = ds.pixel_array assert 'int16' == arr.dtype assert (512, 512) == arr.shape assert arr.flags.writeable assert -2000 == arr[0, 0] assert [621, 412, 138, -193, -520, -767, -907, -966, -988, -995] == ( arr[47:57, 279].tolist() ) assert [-377, -121, 141, 383, 633, 910, 1198, 1455, 1638, 1732] == ( arr[328:338, 106].tolist() ) RLE_REFERENCE_DATA = [ # fpath, (bits, nr samples, pixel repr, nr frames, shape, dtype) (RLE_8_1_1F, (8, 1, 0, 1, (600, 800), 'uint8')), (RLE_8_1_2F, (8, 1, 0, 2, (2, 600, 800), 'uint8')), (RLE_8_3_1F, (8, 3, 0, 1, (100, 100, 3), 'uint8')), (RLE_8_3_2F, (8, 3, 0, 2, (2, 100, 100, 3), 'uint8')), (RLE_16_1_1F, (16, 1, 1, 1, (64, 64), 'int16')), (RLE_16_1_10F, (16, 1, 0, 10, (10, 64, 64), 'uint16')), (RLE_16_3_1F, (16, 3, 0, 1, (100, 100, 3), 'uint16')), (RLE_16_3_2F, (16, 3, 0, 2, (2, 100, 100, 3), 'uint16')), (RLE_32_1_1F, (32, 1, 0, 1, (10, 10), 'uint32')), (RLE_32_1_15F, (32, 1, 0, 15, (15, 10, 10), 'uint32')), (RLE_32_3_1F, (32, 3, 0, 1, (100, 100, 3), 'uint32')), (RLE_32_3_2F, (32, 3, 0, 2, (2, 100, 100, 3), 'uint32')), ] RLE_MATCHING_DATASETS = [ # (compressed, reference) pytest.param(RLE_8_1_1F, get_testdata_file("OBXXXX1A.dcm")), pytest.param(RLE_8_1_2F, get_testdata_file("OBXXXX1A_2frame.dcm")), pytest.param(RLE_8_3_1F, get_testdata_file("SC_rgb.dcm")), pytest.param(RLE_8_3_2F, get_testdata_file("SC_rgb_2frame.dcm")), pytest.param(RLE_16_1_1F, get_testdata_file("MR_small.dcm")), pytest.param(RLE_16_1_10F, get_testdata_file("emri_small.dcm")), pytest.param(RLE_16_3_1F, get_testdata_file("SC_rgb_16bit.dcm")), pytest.param(RLE_16_3_2F, get_testdata_file("SC_rgb_16bit_2frame.dcm")), pytest.param(RLE_32_1_1F, get_testdata_file("rtdose_1frame.dcm")), pytest.param(RLE_32_1_15F, get_testdata_file("rtdose.dcm")), pytest.param(RLE_32_3_1F, get_testdata_file("SC_rgb_32bit.dcm")), pytest.param(RLE_32_3_2F, get_testdata_file("SC_rgb_32bit_2frame.dcm")), ] @pytest.mark.skipif(not TEST_RLE, reason="no -rle plugin") class TestRLE: def test_decompress_using_pylibjpeg(self): """Test decompressing RLE with pylibjpeg handler succeeds.""" ds = dcmread(RLE_8_3_1F) ds.decompress(handler_name='pylibjpeg') arr = ds.pixel_array ds = dcmread(get_testdata_file("SC_rgb.dcm")) ref = ds.pixel_array assert np.array_equal(arr, ref) @pytest.mark.parametrize('fpath, data', RLE_REFERENCE_DATA) def test_properties_as_array(self, fpath, data): """Test dataset, pixel_array and as_array() are as expected.""" ds = dcmread(fpath) assert RLELossless == ds.file_meta.TransferSyntaxUID assert ds.BitsAllocated == data[0] assert ds.SamplesPerPixel == data[1] assert ds.PixelRepresentation == data[2] assert getattr(ds, 'NumberOfFrames', 1) == data[3] # Note: decompress modifies the dataset inplace ds.decompress("pylibjpeg") # Check Dataset.pixel_array arr = ds.pixel_array assert arr.flags.writeable assert data[4] == arr.shape assert arr.dtype == data[5] # Check handler's as_array() function ds = dcmread(fpath) arr = as_array(ds) assert arr.flags.writeable assert data[4] == arr.shape assert arr.dtype == data[5] @pytest.mark.parametrize('fpath, rpath', RLE_MATCHING_DATASETS) def test_array(self, fpath, rpath): """Test pixel_array returns correct values.""" ds = dcmread(fpath) ds.decompress("pylibjpeg") arr = ds.pixel_array ref = dcmread(rpath).pixel_array assert np.array_equal(arr, ref) @pytest.mark.parametrize('fpath, rpath', RLE_MATCHING_DATASETS) def test_generate_frames(self, fpath, rpath): """Test pixel_array returns correct values.""" ds = dcmread(fpath) frame_generator = generate_frames(ds) ref = dcmread(rpath).pixel_array nr_frames = getattr(ds, 'NumberOfFrames', 1) for ii in range(nr_frames): arr = next(frame_generator) if nr_frames > 1: assert np.array_equal(arr, ref[ii, ...]) else: assert np.array_equal(arr, ref) with pytest.raises(StopIteration): next(frame_generator)
[ "noreply@github.com" ]
ARteapartedelarte.noreply@github.com
e40704c97d19358dd5216ad35e1b047a08393b37
6f0b9856f3c46557af1c58d86b16f1f93d0fe95f
/mcdonald/Python-dsstore-master/stdin.py
c8eea1e732e1fd55fc6faccdd2a8399f2b689436
[ "MIT" ]
permissive
vito-lbs/35c3ctf-junior
1acae908cbd16a6867ffc694de8d9d720319723f
39f956714fd61f571a9de07078d062298b89936e
refs/heads/master
2020-04-13T20:09:00.270495
2018-12-30T12:49:52
2018-12-30T12:49:52
163,422,441
0
0
null
null
null
null
UTF-8
Python
false
false
221
py
import dsstore import os import sys if __name__ == "__main__": d = dsstore.DS_Store(sys.stdin.read(), debug=False) files = d.traverse_root() print("Count: ", len(files)) for f in files: print(f)
[ "vito@legitbs.net" ]
vito@legitbs.net
91ca1eae352c62b73172ecfd062b21b351e121ca
dbc2cd83ba5440262ce4ed20081e6d0ee995f243
/problem/problem/urls.py
1654a2a2258cdabccf0d91bfca7097b32ffd27df
[]
no_license
templargin/datepicker
64ef313d0a20543c251c1b909dcb7584aaf0bbd4
335662bc283880a5a96023b82d0298f9ecae636e
refs/heads/master
2022-12-05T10:36:19.850909
2020-08-30T05:19:09
2020-08-30T05:19:09
291,404,556
0
0
null
null
null
null
UTF-8
Python
false
false
800
py
"""problem URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('datepicker.urls')), ]
[ "templargin@gmail.com" ]
templargin@gmail.com
97e0d5144b9a6ae3c4194a613b241057f387c463
d97b7d689c39f73d38e35ad4431262a4b988c61f
/Python/python_new/sec07.py
64a6973dd5602fcaef05eec74cd7d9609325ea07
[]
no_license
jiye-stingray/Python
58fefe46b100cbb3e8212f7de36a14cf4c27ee71
51c81230cedc64f6d63e43b1b7888db36a37c7db
refs/heads/main
2023-07-01T05:07:35.821903
2021-07-30T00:29:19
2021-07-30T00:29:19
389,515,256
0
0
null
null
null
null
UTF-8
Python
false
false
1,231
py
# 클래스 # 선언 # class 클래스 명: (클래스명 첫 글자: 대문자, ex)Stu, StuInfo # 함수~~ # class UserInfo: # def __init__(self, name, hp, add): # self.name = name # print('Name:',self.name) # user1 = UserInfo('Kim') # user2 = UserInfo('Park') # print(id(user1)) # print(id(user2)) # print('user1:',user1.__dict__) # print('user2:',user2.__dict__) class Student: name = 'student' age = 0 def __init__(self,name, age) -> None: print('객체 초기화') self.name = name self.age = age def __del__(self): print('객체 삭제') def info(self): print('My name is', self.name) print('I am ',self.age,'years old' ) s = Student('JaeHyun',22) s.info() del s print(type(s)) class Student1: def __init__(self, name, age) -> None: self.university = 'SNU' self.name = name self.age = age self.isStudying = True self.studyHour = 0 def study(self): if self.isStudying: self.studyHour += 1 def hourofstudy(self): print('{}현재 공부 시간: {}시간'.format(self.name, self.studyHour))
[ "noreply@github.com" ]
jiye-stingray.noreply@github.com
fb92ee596bbf8cf147d7b2a163c82507d79b8efa
a8dd2eba427c91945a15511dfb507efc5ef204b3
/odin/utils/scipy_interface.py
d61579b99df1ec941c4a5fd22cff09e1ad09f155
[ "MIT" ]
permissive
sdi1100041/SLEIPNIR
3ace6e15731b357148710fb40b02ce9a2121d0f0
02dd3eca8574899fd3f0e287b1a050e76e5ba0de
refs/heads/master
2021-02-10T10:12:32.481825
2020-03-06T15:54:00
2020-03-06T15:54:00
244,372,898
3
1
null
null
null
null
UTF-8
Python
false
false
18,088
py
#Some minor adjustments to the original TensorFlow code #for better logging # # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow interface for third-party optimizers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.core.protobuf.config_pb2 import * from tensorflow.python.profiler.model_analyzer import Profiler from tensorflow.python.platform import gfile from tensorflow.python.util import compat logging.set_verbosity(logging.DEBUG) __all__ = ['ExternalOptimizerInterface', 'ScipyOptimizerInterface'] class ExternalOptimizerInterface(object): """Base class for interfaces with external optimization algorithms. Subclass this and implement `_minimize` in order to wrap a new optimization algorithm. `ExternalOptimizerInterface` should not be instantiated directly; instead use e.g. `ScipyOptimizerInterface`. @@__init__ @@minimize """ def __init__(self, loss, var_list=None, equalities=None, inequalities=None, var_to_bounds=None, file_writer=None, dir_prof_name=None, **optimizer_kwargs): """Initialize a new interface instance. Args: loss: A scalar `Tensor` to be minimized. var_list: Optional `list` of `Variable` objects to update to minimize `loss`. Defaults to the list of variables collected in the graph under the key `GraphKeys.TRAINABLE_VARIABLES`. equalities: Optional `list` of equality constraint scalar `Tensor`s to be held equal to zero. inequalities: Optional `list` of inequality constraint scalar `Tensor`s to be held nonnegative. var_to_bounds: Optional `dict` where each key is an optimization `Variable` and each corresponding value is a length-2 tuple of `(low, high)` bounds. Although enforcing this kind of simple constraint could be accomplished with the `inequalities` arg, not all optimization algorithms support general inequality constraints, e.g. L-BFGS-B. Both `low` and `high` can either be numbers or anything convertible to a NumPy array that can be broadcast to the shape of `var` (using `np.broadcast_to`). To indicate that there is no bound, use `None` (or `+/- np.infty`). For example, if `var` is a 2x3 matrix, then any of the following corresponding `bounds` could be supplied: * `(0, np.infty)`: Each element of `var` held positive. * `(-np.infty, [1, 2])`: First column less than 1, second column less than 2. * `(-np.infty, [[1], [2], [3]])`: First row less than 1, second row less than 2, etc. * `(-np.infty, [[1, 2, 3], [4, 5, 6]])`: Entry `var[0, 0]` less than 1, `var[0, 1]` less than 2, etc. **optimizer_kwargs: Other subclass-specific keyword arguments. """ self._file_writer=file_writer self.dir_name=dir_prof_name self._loss = loss self._equalities = equalities or [] self._inequalities = inequalities or [] if var_list is None: self._vars = variables.trainable_variables() else: self._vars = list(var_list) packed_bounds = None if var_to_bounds is not None: left_packed_bounds = [] right_packed_bounds = [] for var in self._vars: shape = var.get_shape().as_list() bounds = (-np.infty, np.infty) if var in var_to_bounds: bounds = var_to_bounds[var] left_packed_bounds.extend(list(np.broadcast_to(bounds[0], shape).flat)) right_packed_bounds.extend(list(np.broadcast_to(bounds[1], shape).flat)) packed_bounds = list(zip(left_packed_bounds, right_packed_bounds)) self._packed_bounds = packed_bounds self._update_placeholders = [ array_ops.placeholder(var.dtype) for var in self._vars ] self._var_updates = [ var.assign(array_ops.reshape(placeholder, _get_shape_tuple(var))) for var, placeholder in zip(self._vars, self._update_placeholders) ] loss_grads = _compute_gradients(loss, self._vars) equalities_grads = [ _compute_gradients(equality, self._vars) for equality in self._equalities ] inequalities_grads = [ _compute_gradients(inequality, self._vars) for inequality in self._inequalities ] self.optimizer_kwargs = optimizer_kwargs self._packed_var = self._pack(self._vars) self._packed_loss_grad = self._pack(loss_grads) self._packed_equality_grads = [ self._pack(equality_grads) for equality_grads in equalities_grads ] self._packed_inequality_grads = [ self._pack(inequality_grads) for inequality_grads in inequalities_grads ] dims = [_prod(_get_shape_tuple(var)) for var in self._vars] accumulated_dims = list(_accumulate(dims)) self._packing_slices = [ slice(start, end) for start, end in zip(accumulated_dims[:-1], accumulated_dims[1:]) ] def minimize(self, session=None, feed_dict=None, fetches=None, step_callback=None, loss_callback=None, **run_kwargs): """Minimize a scalar `Tensor`. Variables subject to optimization are updated in-place at the end of optimization. Note that this method does *not* just return a minimization `Op`, unlike `Optimizer.minimize()`; instead it actually performs minimization by executing commands to control a `Session`. Args: session: A `Session` instance. feed_dict: A feed dict to be passed to calls to `session.run`. fetches: A list of `Tensor`s to fetch and supply to `loss_callback` as positional arguments. step_callback: A function to be called at each optimization step; arguments are the current values of all optimization variables flattened into a single vector. loss_callback: A function to be called every time the loss and gradients are computed, with evaluated fetches supplied as positional arguments. **run_kwargs: kwargs to pass to `session.run`. """ session = session or ops.get_default_session() feed_dict = feed_dict or {} fetches = fetches or [] loss_callback = loss_callback or (lambda *fetches: None) step_callback = step_callback or (lambda xk: None) # Construct loss function and associated gradient. loss_grad_func = self._make_eval_func([self._loss, self._packed_loss_grad], session, feed_dict, fetches, loss_callback) # Construct equality constraint functions and associated gradients. equality_funcs = self._make_eval_funcs(self._equalities, session, feed_dict, fetches) equality_grad_funcs = self._make_eval_funcs(self._packed_equality_grads, session, feed_dict, fetches) # Construct inequality constraint functions and associated gradients. inequality_funcs = self._make_eval_funcs(self._inequalities, session, feed_dict, fetches) inequality_grad_funcs = self._make_eval_funcs(self._packed_inequality_grads, session, feed_dict, fetches) # Get initial value from TF session. initial_packed_var_val = session.run(self._packed_var) # Perform minimization. packed_var_val = self._minimize( initial_val=initial_packed_var_val, loss_grad_func=loss_grad_func, equality_funcs=equality_funcs, equality_grad_funcs=equality_grad_funcs, inequality_funcs=inequality_funcs, inequality_grad_funcs=inequality_grad_funcs, packed_bounds=self._packed_bounds, step_callback=step_callback, optimizer_kwargs=self.optimizer_kwargs) res=packed_var_val[1:3] packed_var_val=packed_var_val[0] var_vals = [ packed_var_val[packing_slice] for packing_slice in self._packing_slices ] # Set optimization variables to their new values. session.run( self._var_updates, feed_dict=dict(zip(self._update_placeholders, var_vals)), **run_kwargs) return res def _minimize(self, initial_val, loss_grad_func, equality_funcs, equality_grad_funcs, inequality_funcs, inequality_grad_funcs, packed_bounds, step_callback, optimizer_kwargs): """Wrapper for a particular optimization algorithm implementation. It would be appropriate for a subclass implementation of this method to raise `NotImplementedError` if unsupported arguments are passed: e.g. if an algorithm does not support constraints but `len(equality_funcs) > 0`. Args: initial_val: A NumPy vector of initial values. loss_grad_func: A function accepting a NumPy packed variable vector and returning two outputs, a loss value and the gradient of that loss with respect to the packed variable vector. equality_funcs: A list of functions each of which specifies a scalar quantity that an optimizer should hold exactly zero. equality_grad_funcs: A list of gradients of equality_funcs. inequality_funcs: A list of functions each of which specifies a scalar quantity that an optimizer should hold >= 0. inequality_grad_funcs: A list of gradients of inequality_funcs. packed_bounds: A list of bounds for each index, or `None`. step_callback: A callback function to execute at each optimization step, supplied with the current value of the packed variable vector. optimizer_kwargs: Other key-value arguments available to the optimizer. Returns: The optimal variable vector as a NumPy vector. """ raise NotImplementedError( 'To use ExternalOptimizerInterface, subclass from it and implement ' 'the _minimize() method.') @classmethod def _pack(cls, tensors): """Pack a list of `Tensor`s into a single, flattened, rank-1 `Tensor`.""" if not tensors: return None elif len(tensors) == 1: return array_ops.reshape(tensors[0], [-1]) else: flattened = [array_ops.reshape(tensor, [-1]) for tensor in tensors] return array_ops.concat(flattened, 0) def _make_eval_func(self, tensors, session, feed_dict, fetches, callback=None): """Construct a function that evaluates a `Tensor` or list of `Tensor`s.""" if not isinstance(tensors, list): tensors = [tensors] num_tensors = len(tensors) run_options = RunOptions(trace_level=RunOptions.FULL_TRACE) run_metadata = RunMetadata() if self.dir_name: if not gfile.Exists(self.dir_name): gfile.MakeDirs(self.dir_name) def eval_func(x): """Function to evaluate a `Tensor`.""" eval_func.step+=1 augmented_feed_dict = { var: x[packing_slice].reshape(_get_shape_tuple(var)) for var, packing_slice in zip(self._vars, self._packing_slices) } augmented_feed_dict.update(feed_dict) augmented_fetches = tensors + fetches if (eval_func.step % 10 == 0) and (self._file_writer or self.dir_name): augmented_fetch_vals = session.run(augmented_fetches, feed_dict=augmented_feed_dict,options=run_options, run_metadata=run_metadata) if self.dir_name: profiler = Profiler() profiler.add_step(0, run_metadata) filename = os.path.join(compat.as_bytes(self.dir_name), compat.as_bytes('profile_%d' % eval_func.step)) with gfile.Open(filename, 'wb') as f: f.write(profiler.serialize_to_string()) if self._file_writer: self._file_writer.add_run_metadata(run_metadata, 'step%05d' % eval_func.step) else: augmented_fetch_vals = session.run(augmented_fetches, feed_dict=augmented_feed_dict) if callable(callback): callback(*augmented_fetch_vals[num_tensors:]) return augmented_fetch_vals[:num_tensors] eval_func.step=-1 return eval_func def _make_eval_funcs(self, tensors, session, feed_dict, fetches, callback=None): return [ self._make_eval_func(tensor, session, feed_dict, fetches, callback) for tensor in tensors ] class ScipyOptimizerInterface(ExternalOptimizerInterface): """Wrapper allowing `scipy.optimize.minimize` to operate a `tf.Session`. Example: ```python vector = tf.Variable([7., 7.], 'vector') # Make vector norm as small as possible. loss = tf.reduce_sum(tf.square(vector)) optimizer = ScipyOptimizerInterface(loss, options={'maxiter': 100}) with tf.Session() as session: optimizer.minimize(session) # The value of vector should now be [0., 0.]. ``` Example with simple bound constraints: ```python vector = tf.Variable([7., 7.], 'vector') # Make vector norm as small as possible. loss = tf.reduce_sum(tf.square(vector)) optimizer = ScipyOptimizerInterface( loss, var_to_bounds={vector: ([1, 2], np.infty)}) with tf.Session() as session: optimizer.minimize(session) # The value of vector should now be [1., 2.]. ``` Example with more complicated constraints: ```python vector = tf.Variable([7., 7.], 'vector') # Make vector norm as small as possible. loss = tf.reduce_sum(tf.square(vector)) # Ensure the vector's y component is = 1. equalities = [vector[1] - 1.] # Ensure the vector's x component is >= 1. inequalities = [vector[0] - 1.] # Our default SciPy optimization algorithm, L-BFGS-B, does not support # general constraints. Thus we use SLSQP instead. optimizer = ScipyOptimizerInterface( loss, equalities=equalities, inequalities=inequalities, method='SLSQP') with tf.Session() as session: optimizer.minimize(session) # The value of vector should now be [1., 1.]. ``` """ _DEFAULT_METHOD = 'L-BFGS-B' def _minimize(self, initial_val, loss_grad_func, equality_funcs, equality_grad_funcs, inequality_funcs, inequality_grad_funcs, packed_bounds, step_callback, optimizer_kwargs): def loss_grad_func_wrapper(x): # SciPy's L-BFGS-B Fortran implementation requires gradients as doubles. loss, gradient = loss_grad_func(x) return loss, gradient.astype('float64') optimizer_kwargs = dict(optimizer_kwargs.items()) method = optimizer_kwargs.pop('method', self._DEFAULT_METHOD) constraints = [] for func, grad_func in zip(equality_funcs, equality_grad_funcs): constraints.append({'type': 'eq', 'fun': func, 'jac': grad_func}) for func, grad_func in zip(inequality_funcs, inequality_grad_funcs): constraints.append({'type': 'ineq', 'fun': func, 'jac': grad_func}) minimize_args = [loss_grad_func_wrapper, initial_val] minimize_kwargs = { 'jac': True, 'callback': step_callback, 'method': method, 'constraints': constraints, 'bounds': packed_bounds, } for kwarg in minimize_kwargs: if kwarg in optimizer_kwargs: if kwarg == 'bounds': # Special handling for 'bounds' kwarg since ability to specify bounds # was added after this module was already publicly released. raise ValueError( 'Bounds must be set using the var_to_bounds argument') raise ValueError( 'Optimizer keyword arg \'{}\' is set ' 'automatically and cannot be injected manually'.format(kwarg)) minimize_kwargs.update(optimizer_kwargs) import scipy.optimize # pylint: disable=g-import-not-at-top result = scipy.optimize.minimize(*minimize_args, **minimize_kwargs) message_lines = [ 'Optimization terminated with:', ' Message: %s', ' Objective function value: %f', ] message_args = [result.message, result.fun] if hasattr(result, 'nit'): # Some optimization methods might not provide information such as nit and # nfev in the return. Logs only available information. message_lines.append(' Number of iterations: %d') message_args.append(result.nit) if hasattr(result, 'nfev'): message_lines.append(' Number of functions evaluations: %d') message_args.append(result.nfev) logging.info('\n'.join(message_lines), *message_args) return [result['x'],result.success,result.nit] def _accumulate(list_): total = 0 yield total for x in list_: total += x yield total def _get_shape_tuple(tensor): return tuple(dim.value for dim in tensor.get_shape()) def _prod(array): prod = 1 for value in array: prod *= value return prod def _compute_gradients(tensor, var_list): grads = gradients.gradients(tensor, var_list) # tf.gradients sometimes returns `None` when it should return 0. return [ grad if grad is not None else array_ops.zeros_like(var) for var, grad in zip(var_list, grads) ]
[ "manosangelis@gmail.com" ]
manosangelis@gmail.com
6ee2d4096e128491473231d9eeb153b9099cd13b
95b747c2ae2f95b5696c287db2d14087669fa3ca
/billie_pr/billie_pr/asgi.py
2f772846f4ef8afbdb2e43f808d1b6df9fc1d213
[]
no_license
victorsierraram/bille_vsr
3bf6c43da2b260d3da382ed98bde5c9dc27d7599
0216ad43fbce489ae1ae72f2cd4f7ac5f0d8fd08
refs/heads/master
2022-12-28T23:56:57.486747
2020-09-25T15:53:41
2020-09-25T15:53:41
298,615,547
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" ASGI config for billie_pr project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'billie_pr.settings') application = get_asgi_application()
[ "v.sierra@i2tic.com" ]
v.sierra@i2tic.com
57dd010b386b4608b2bd455946413d12040e1b8f
ae4b91e269df7c80a0fa75ccc054d2241de82461
/adder/adder.py
d685505a984ce254d2335f905e4bb083879dbb1d
[]
no_license
ydnatag/sifive-bsas-hdl-python
be48b32d1080f5b77fec7429b4f8ef86c8e02d41
3763300510eaa496b5d24fff4846494d3446a901
refs/heads/master
2023-02-24T14:51:19.310738
2019-11-21T17:05:16
2019-11-21T17:05:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,755
py
from nmigen import * from nmigen.cli import main from nmigen.hdl.rec import Direction class AxiStream(Record): def __init__(self, width, direction=None, name=None, fields=None): self.width = width self.DATA_FIELDS = [('TDATA', width)] if direction == 'sink': layout = [('TDATA', width, Direction.FANIN), ('TVALID', 1, Direction.FANIN), ('TREADY', 1, Direction.FANOUT), ('TLAST', 1, Direction.FANIN)] elif direction == 'source': layout = [('TDATA', width, Direction.FANOUT), ('TVALID', 1, Direction.FANOUT), ('TREADY', 1, Direction.FANIN), ('TLAST', 1, Direction.FANOUT)] Record.__init__(self, layout, name=name, fields=fields) self.data = self.TDATA self.valid = self.TVALID self.ready = self.TREADY self.last = self.TLAST def accepted(self): return (self.TVALID == 1) & (self.TREADY == 1) class Adder(Elaboratable): def __init__(self, width, domain='comb', interface=None): self.width = width self.interface = interface if self.interface == None: self.a = Signal(width) self.b = Signal(width) self.r = Signal(width + 1) self.d = domain else: self.a = self.interface(width, 'sink', name='a') self.b = self.interface(width, 'sink', name='b') self.r = self.interface(width + 1, 'source', name='r') def elaborate(self, platform): m = Module() if self.interface == None: m.domain[self.d] += self.r.eq(self.a + self.b) else: comb = m.domain.comb sync = m.domain.sync comb += self.a.ready.eq(0) comb += self.b.ready.eq(0) output_available = (self.r.valid == 0) | self.r.accepted() input_ready = (self.a.valid == 1) & (self.b.valid == 1) & output_available comb += self.a.ready.eq(input_ready) comb += self.b.ready.eq(input_ready) with m.If(self.a.accepted() | self.b.accepted()): sync += self.r.data.eq(self.a.data + self.b.data) sync += self.r.valid.eq(1) sync += self.r.last.eq(self.a.last | self.b.last) with m.Elif(self.r.accepted()): sync += self.r.data.eq(0) sync += self.r.valid.eq(0) sync += self.r.last.eq(0) return m if __name__ == '__main__': m = Adder(10, 'sync', AxiStream) ports = [] for i in [m.a, m.b, m.r]: ports += [i[f] for f in i.fields] main(m, platform=None, ports=ports)
[ "andresdemski@gmail.com" ]
andresdemski@gmail.com
7e40dfecbe5369523eaad88b5eb6aa6a9cc5f77a
42bb1d9bcd38f30a37e3adb52da68dc0ec868535
/clients/python_client/scikitlearn_iris_client.py
d77f1c361d48e059d4b62a453fb365528246cedd
[ "Apache-2.0" ]
permissive
zhaoyingjun/simple_tensorflow_serving
828a7b76dd3ab39ca1dedbf1c5a4d8d7c4de1a86
8e6a2ac22a323905b2d3e05b6207ce43c6806470
refs/heads/master
2020-08-21T17:29:38.702132
2019-09-24T08:12:59
2019-09-24T08:12:59
216,208,646
0
1
Apache-2.0
2019-10-19T13:12:23
2019-10-19T13:12:23
null
UTF-8
Python
false
false
503
py
#!/usr/bin/env python import requests def main(): endpoint = "http://127.0.0.1:8500" input_data = { "model_name": "default", "model_version": 1, "data": [[1.0, 2.0, 3.0, 4.0]] } result = requests.post(endpoint, json=input_data) print(result.text) input_data = { "preprocess": True, "postprocess": True, "data": [[1.0, 2.0, 3.0, 4.0]] } result = requests.post(endpoint, json=input_data) print(result.text) if __name__ == "__main__": main()
[ "tobeg3oogle@gmail.com" ]
tobeg3oogle@gmail.com
5cae62a723fc75db2acb2a368ef8e647d0ff7cda
8a92ed71ab5efc18c7221e7aef1b306a6d2657c8
/General/List_data_type.py
2a01ce6502e40c0d26d344bb6973cc07d6f9159e
[]
no_license
ksreddy1980/test
a163cff96ec535f0da46d6cd7d751b08ccb37a07
0ef300ec830e0eee9f68149d178b4ce25a6766ee
refs/heads/master
2021-03-24T09:43:59.006443
2018-01-10T16:23:18
2018-01-10T16:23:18
116,905,860
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
# Define a list task= ['brush','bath','office','drinks'] print(task) # Update a list task[1]='Dryclean' print(task) #Print the length of the list print(len(task)) #print an element of the list print(task[2]) #print a part of the list print(task[0:2]) #Concatination of list list1=['computers','maths','Python','Hadoop'] print(task+list1) #Print the list multiple times print(task*3 +list1)
[ "kskoteru@gmail.com" ]
kskoteru@gmail.com
d87a4bf8c96e7786d39a38cdb4b518ff441e65a9
1528e85557dff16ea148d97c40c7667e1c3ec574
/hackinstring.py
47e9e42e0d387ed1d1562d02437a8eb40fe3d149
[]
no_license
aashishksingh/HackerRankSoln
6c2871e84046a900c36ab45f84ddef1a22af4c23
924381d02e9d62ea970d7f7e39f97f5834df600a
refs/heads/master
2021-01-21T14:28:54.473289
2017-09-28T13:42:01
2017-09-28T13:42:01
95,291,343
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
#!/bin/python3 import sys q = int(input().strip()) for a0 in range(q): s = input().strip() lst=list(s) # your code goes here word='hackerrank' d=[] flag=False for c in word: d.append([c,-1]) # print(d) #print(s.index('a')) j=-1 for i in range(len(d)): if d[i][0] in lst[j+1:]: d[i][1]=lst[j+1:].index(d[i][0])+j+1 j=d[i][1] print(d) for i in range(len(d)-1): if (d[i][1]>=d[i+1][1]) and (d[i][1]>0): flag=True if not (flag): print("YES") else: print("NO")
[ "noreply@github.com" ]
aashishksingh.noreply@github.com
2f94c0237d53466948e828695d5b8374dbf238b1
182979d15a51397b1e0967b6be9271f4db9b9d18
/Week 2/Searching and Sorting/Square Root.py
037ffd7cd9014c8a59315b1708bf495154097664
[]
no_license
Harini-Pavithra/GFG-11-Week-DSA-Workshop
1d85115ad3985834456bcf5dc2e424ab65bc8e01
f305a3a23fd37080e68d0f4d4eeedbcedf399fc9
refs/heads/main
2023-06-24T01:19:32.410996
2021-07-22T16:36:19
2021-07-22T16:36:19
317,279,085
18
10
null
null
null
null
UTF-8
Python
false
false
1,065
py
Square root Given an integer x, find the square root of x. If x is not a perfect square, then return floor(√x). Example 1: Input: x = 5 Output: 2 Explanation: Since, 5 is not a perfect square, floor of square_root of 5 is 2. Example 2: Input: x = 4 Output: 2 Explanation: Since, 4 is a perfect square, so its square root is 2. Your Task: You don't need to read input or print anything. The task is to complete the function floorSqrt() which takes x as the input parameter and return its square root. Expected Time Complexity: O(log N) Expected Auxiliary Space: O(1) Constraints: 1 ≤ x ≤ 107 Solution: #User function Template for python3 #Complete this function def floorSqrt(x): #Your code here return int(math.sqrt(x)) #{ # Driver Code Starts #Initial Template for Python 3 import math def main(): T=int(input()) while(T>0): x=int(input()) print(floorSqrt(x)) T-=1 if __name__ == "__main__": main() # } Driver Code Ends
[ "noreply@github.com" ]
Harini-Pavithra.noreply@github.com
71df3b3b8eb6a2a73b6bcb40342bd58bc13029c7
0dcb8d16ca9a71197c5770b734699b0d6d063d25
/app/views/main.py
2f2803bd3a4ec4fb26e2d5d01c0e4e56e4fbda12
[]
no_license
jingmeiliu/flask_restful_autodoc
ded6e87cc491cc483447ee0d31d913792995a6e1
4c6c140990697743a29a48dc7f8a881397647c14
refs/heads/master
2020-04-28T09:44:39.116124
2019-03-12T09:38:22
2019-03-12T09:38:22
175,178,457
0
0
null
null
null
null
UTF-8
Python
false
false
1,662
py
# 自动生成文档路由 from flask import Blueprint, redirect, url_for, render_template from .. import get_app main = Blueprint('main', __name__) @main.route('/', methods=['GET']) def index(): """Redirect home page to docs page.""" return redirect(url_for('api.index')) @main.route('/docs/<endpoint>', methods=['GET']) def docs(endpoint): """Document page for an endpoint.""" api = { 'endpoint': endpoint, 'methods': '', 'doc': '', 'url': '', 'name': '' } try: func = get_app().view_functions[endpoint] api=_get_api_doc_split(func) api['name'] = _get_api_name(func) for rule in get_app().url_map.iter_rules(): if rule.endpoint == endpoint: api['url'] = str(rule) except: api['doc'] = 'Invalid api endpoint: "{}"!'.format(endpoint) return render_template('api_docs.html', api=api) def _get_api_name(func): """e.g. Convert 'do_work' to 'Do Work'""" words = func.__name__.split('_') words = [w.capitalize() for w in words] return ' '.join(words) def _get_api_doc(func): if func.__doc__: return func.__doc__ else: return 'No doc found for this API!' def _get_api_doc_split(func): api_docs = {'description': '', 'methods':'','parameter': '', 'response': ''} description,methods, parameter, response = _get_api_doc(func).split(';') api_docs['description'] = description.split('===')[1] api_docs['methods'] = methods.split('===')[1] api_docs['parameter'] = parameter.split('===')[1] api_docs['response'] = response.split('===')[1] return api_docs
[ "m17610062085@163.com" ]
m17610062085@163.com
aa48328ecabf25584e364dac5f0684067c919c3f
4de615cb622b3f3b344aec0ad2f562e37534bda3
/reading_code/01_if_else/02_if_else.py
03dbb8a5b68974f44dd7512189c779b684249525
[]
no_license
igin/academy_exercises
9679c561f5ddec2b9a04ecfa5ffaff1f3d3ff7b6
6697f94f0a3a8525b15829e4354af8ddc3374f73
refs/heads/main
2023-03-03T21:42:26.049593
2021-02-21T10:04:54
2021-02-21T10:04:54
340,292,286
0
1
null
null
null
null
UTF-8
Python
false
false
269
py
x = 0.3 y = -10 if x > 5: print("A1") elif y > -30: print("A2") elif x < 10: print("A3") else: print("A4") if x * 4 < 1: print("B1") elif y * x > 0: print("B2") elif x == 0.3: print("B3") elif y < 0: print("B4") else: print("B5")
[ "n.pleschko@gmail.com" ]
n.pleschko@gmail.com
123953571e2bab1ee932089a36b99f7da38c9c69
4db571a07884c56ad46fbb69a76018231d2a9d3b
/cogs/admin.py
cbd2a925d60c6762e8190725565be8913f58a32e
[]
no_license
noahgarrett/ThiccBot
fe89f4146df799d9fe347e909ac2c2c06f09e557
753a2e671e0ec674b2b09e3ae0118ac9d021b597
refs/heads/main
2023-08-10T15:57:56.086336
2021-09-21T15:33:18
2021-09-21T15:33:18
319,788,252
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
import discord from discord.ext import commands, tasks from discord.utils import get import asyncio import youtube_dl from random import choice import os, json, random import main class Admin(commands.Cog): def __init__(self, client): self.client = client def setup(client): client.add_cog(Admin(client))
[ "67662284+xsychgames@users.noreply.github.com" ]
67662284+xsychgames@users.noreply.github.com
726a7f16647c3a127386899bc01e7866d9b1e643
2740f4dfc5bde90663cb5c022751ff0b0620609d
/migrations/lifeline/add_column_issuetype.py
9d040a8b7830fd60179d1f5001511363a2eeb22d
[ "MIT" ]
permissive
danielseetoh/twilio185
951a5883d99f1b40b09d4c18c9160840d75e0e80
b9b60e230e7a10f00fe8a1fc0bc67ad7ad8db0d8
refs/heads/master
2021-01-10T12:51:41.648818
2016-05-01T20:48:09
2016-05-01T20:48:09
54,152,463
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
import psycopg2 as db import sys # try: # con = db.connect(database="lifeline", user="postgres", password="seetoh", host="localhost") con = db.connect(database="lifeline", user="postgres", password="seetoh", host="localhost") print 'Success!' cur = con.cursor() cur.execute("ALTER TABLE requests ADD COLUMN issuetype varchar") con.commit() con.close() # except: # print 'Failed to connect to database.'
[ "danielseetoh92@gmail.com" ]
danielseetoh92@gmail.com
6523dca574371c5e6210bf67e62f3d1285e7cfb2
c32d3849f6273a08c646ea54fb1e717743620389
/example-1.py
7faefbd992be07984b1a75c586e102b591a4940e
[]
no_license
aron-castle/python_learing_test
838c60648b4291b8aef4ca2167a52a4b9a23f26e
72c54b4be1a9d41e2f9970cc6bb76c7678c6d1aa
refs/heads/master
2020-07-11T03:42:26.832168
2019-08-27T02:47:01
2019-08-27T02:47:01
204,437,361
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
print("Type integers,each followed by Enter;or just Enter to finish") total = 0 count = 0 while True: line = input("integer:") if line: try: number = int(line) except ValueError as err: print(err) continue total += number count += 1 else: break if count: print("count =",count,"total =",total,"mean =",total / count)
[ "noreply@github.com" ]
aron-castle.noreply@github.com
3ebcd7bdfa9db76a19a1a1858d267eb560ba1e32
4adecd7aafb73c3b01a3b6eb488d1232443dac35
/manage.py
17d3a8e8c04dadbc9d180f23c9d99df785f59f1b
[]
no_license
koleror/model-history
17736c49e442ed35d941f6f91001f937e70d79d4
44cfe386486ba1e84bc142c12e962f3bbf6f43a7
refs/heads/master
2021-01-02T23:07:26.674177
2015-08-20T19:54:26
2015-08-20T19:54:26
41,084,768
0
0
null
null
null
null
UTF-8
Python
false
false
256
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "model_history.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "defrance.hugo@gmail.com" ]
defrance.hugo@gmail.com
26ca04971196860ed518734f0badf8c96387e75f
64a919d43541b0114c3158afdb7b2f7fc98bd766
/demo/countries/models.py
8b8b46312e7c0e242f425f8239f7218f42c3cedf
[]
no_license
finebrush/takeatripsDA
377c02330f0c29497d51e1e59c81a99606537e4f
1b0a92ccbab25427d0274f1f812c91dfb3cc1dfb
refs/heads/master
2022-12-25T07:22:24.645429
2019-12-02T06:44:56
2019-12-02T06:44:56
220,358,879
0
0
null
2022-12-08T06:50:42
2019-11-08T01:08:51
JavaScript
UTF-8
Python
false
false
1,980
py
from django.conf import settings from django.db import models from django.utils.translation import gettext_lazy as _ from demo.countries.choices import COUNTRY_TYPES import uuid class Country(models.Model): name = models.CharField(_('Name'), max_length=64) picture = models.ImageField(_('Picture'), null=True, blank=True) population = models.IntegerField(_('Population'), null=True) type = models.CharField(_('Type'), choices=COUNTRY_TYPES, max_length=2) is_safe = models.BooleanField(_('Is safe'), default=True) created = models.DateField(_('Created')) modified = models.DateTimeField(_('Modified')) time = models.TimeField(_('Time')) class Meta: verbose_name = _('Country') verbose_name_plural = _('Countries') db_table = 'country' ordering = ('name',) def __str__(self): return self.name class Person(models.Model): uuid = models.UUIDField(verbose_name=_('UUID number'), default=uuid.uuid4, editable=False) nationality = models.ForeignKey( 'countries.Country', verbose_name=_('Nationality'), on_delete=models.CASCADE, null=True, blank=True ) user = models.ForeignKey( settings.AUTH_USER_MODEL, verbose_name=_('User'), on_delete=models.CASCADE, null=True, blank=True ) date = models.DateField(_('Birth Date')) description = models.TextField(_('description'), null=True, blank=True) google_play = models.URLField(_('Google Play Link'), blank=True, null=True) spotify = models.URLField(_('Spotify Link'), blank=True, null=True) itunes = models.URLField(_('Itunes Link'), blank=True, null=True) video = models.FileField(_('Video'), null=True, blank=True) class Meta: verbose_name = _('Person') verbose_name_plural = _('Persons') db_table = 'persons' class ProxyPerson(Person): class Meta: proxy = True verbose_name = _('Proxy Person') verbose_name_plural = _('Proxy Persons')
[ "finebrush.mlab@gmail.com" ]
finebrush.mlab@gmail.com
15f50699320bda493f34379b9861414c24e815ce
5f983115d507b2d6dc453e66bcb6d9f36c2b67f3
/lambdaScripts/jobIssuer/lambda_function_v2.py
20358b11647084966909af45153cb623e3b22fd8
[]
no_license
TheMatrix97/CCBDA-Project
d51df1e17ad9cd5c72e5310f30dc35df227d5f39
3214ce9f149a70cd3f05f1a961dea6fb3f709452
refs/heads/main
2023-05-25T08:33:28.927858
2021-05-29T15:13:31
2021-05-29T15:13:31
364,298,823
0
0
null
null
null
null
UTF-8
Python
false
false
1,961
py
import json import boto3 client = boto3.client('ecs') def lambda_handler(event, context): input_data = json.loads(event["body"]) res = { 'statusCode': 404, 'body': json.dumps("Method not implemented") } if input_data['command'] == "run": if not exists_running_task(): id = run_job_issuer_task() res['statusCode'] = 200 res['body'] = json.dumps({'id': id}) else: res['statusCode'] = 500 res['body'] = json.dumps("Job issuer is already running") elif input_data['command'] == "stop": id = input_data['id'] stop_job_issuer_task(id) res['statusCode'] = 200 res['body'] = json.dumps("Job issuer stop command issued") return res def exists_running_task(): response = client.list_tasks( desiredStatus='RUNNING', launchType='FARGATE' ) response2 = client.list_tasks( desiredStatus='PENDING', launchType='FARGATE' ) return len(response['taskArns']) != 0 or len(response2['taskArns']) def run_job_issuer_task(): response = client.run_task(taskDefinition='first-run-task-definition', networkConfiguration={ 'awsvpcConfiguration': { 'subnets': [ 'subnet-0c8da3a737e8c2f57', ], 'securityGroups': [ 'sg-0474b93c000f411f7', ], 'assignPublicIp': 'ENABLED' } }, launchType='FARGATE') return response['tasks'][0]['attachments'][0]['id'] def stop_job_issuer_task(id): print(id) response = client.stop_task(task=id) print(response)
[ "marc.catrisse@upc.edu" ]
marc.catrisse@upc.edu
c688e3c586687d77aeb0923ad881816739ef16ac
d8dfb0a9c6bc69aa814a39339aebe774376f61ba
/dyndnsc/updater/noip.py
d5cca6a3c6a7bf8e00eda70923dec2bb1ec1269e
[ "MIT" ]
permissive
uservidya/python-dyndnsc
c2508202ad622ea2d77b3e485392d3a99f8ec2db
e73b45a7c3e4b7fa6a755ab7f3b9f2c3797978f8
refs/heads/master
2020-12-27T02:00:48.301037
2013-12-17T08:22:20
2013-12-17T08:22:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
# -*- coding: utf-8 -*- from .base import UpdateProtocol class UpdateProtocolNoip(UpdateProtocol): """Protocol handler for www.noip.com""" _updateurl = "https://dynupdate.no-ip.com/nic/update" def __init__(self, options): self.theip = None self.hostname = options['hostname'] self.userid = options['userid'] self.password = options['password'] super(UpdateProtocolNoip, self).__init__() @staticmethod def configuration_key(): return "noip" def update(self, ip): self.theip = ip return self.protocol()
[ "pkremer@spurious.biz" ]
pkremer@spurious.biz
11e8bfaa30fade9e2e8cbdb08801527898eb909f
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2467/60707/313825.py
9e7d486b1e47bb4e4c41e21933bd802f525f3d33
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
421
py
if __name__ == "__main__": n = int(input()) for i in range(n): inp1 = input().split() idx = int(inp1[2]) list1 = input().split(" ") for j in range(len(list1)): list1[j] = int(list1[j]) list2 = input().split(" ") for k in range(len(list2)): list2[k] = int(list2[k]) list1.extend(list2) list1.sort() print(list1[idx-1])
[ "1069583789@qq.com" ]
1069583789@qq.com
46fea0501fd3da99228b02967ae565548670757e
fc81cbe8e184205b4c38c6f945927cb9b5a763a1
/20210715_Nadocording.py
35fd236cc6879f650a4cd0868785f4db9ac0d9d2
[]
no_license
leeyw9804/1day_1commit
9107d7ac19b5e565008c810148996209bce75968
b3a092767924eebfb878a77b077aaff13bf691cb
refs/heads/master
2023-06-20T07:48:42.017758
2021-07-22T09:15:52
2021-07-22T09:15:52
385,814,495
0
0
null
null
null
null
UTF-8
Python
false
false
661
py
import requests from bs4 import BeautifulSoup url = "https://comic.naver.com/webtoon/list?titleId=675554" res = requests.get(url) soup = BeautifulSoup(res.text,"lxml") cartoons = soup.find_all("div", attrs={"class":"rating_type"}) # title = cartoons[0].a.get_text() # link = cartoons[0].a["href"] # print(title, link) # for cartoon in cartoons: # title = cartoon.a.get_text() # link = cartoon.a["href"] # print(title, link) # for cartoon in cartoons: # print(cartoon.get_text()) total = 0 for cartoon in cartoons: rate = cartoon.find("strong").get_text() total += float(rate) total_rate = total/ len(cartoons) print(total_rate)
[ "leeyw9804@naver.com" ]
leeyw9804@naver.com
a4d1968b323bced963b0652a503afe708cd1172a
bf5850321813743c28e30e2c57cd172c7db2b549
/point_grouper.py
033109e2691255e785fb43eefde5029eb5406e70
[]
no_license
rasake/CLiFFpy
17bbc18bb5ac62843b514824bb9bea1248a3da11
f763b6ec93428e269250a3e77422be0b14af1197
refs/heads/master
2022-07-09T03:17:34.851304
2020-05-14T09:48:30
2020-05-14T09:48:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,443
py
import sys import numpy as np import cl_arithmetic as cla GROUP_DISTANCE_TOLERANCE = .1 class PointGrouper(object): def __init__(self, distance=cla.distance_wrap_2d_vec): self.distance = distance def group_points(self, points): group_assignment = [] groups = [] group_index = 0 for point in points: nearest_group_index = self._determine_nearest_group(point, groups) if nearest_group_index is None: # create new group groups.append([point]) group_assignment.append(group_index) group_index += 1 else: group_assignment.append(nearest_group_index) groups[nearest_group_index].append(point) return np.array(group_assignment) def _determine_nearest_group(self, point, groups): nearest_group_index = None index = 0 for group in groups: distance_to_group = self._distance_to_group(point, group) if distance_to_group < GROUP_DISTANCE_TOLERANCE: nearest_group_index = index index += 1 return nearest_group_index def _distance_to_group(self, point, group): min_distance = sys.float_info.max for pt in group: dist = self.distance(point, pt) if dist < min_distance: min_distance = dist return min_distance
[ "tomasz.kucner@oru.se" ]
tomasz.kucner@oru.se
35fdf253b0ebed1d4eb6a119aec0214ec76c5669
21701849de6a4284f05712e1a16fbaf731b317fb
/Eurosat data set creation.py
3c6e49ccf0b362b5f0e1eea223a3ab13a42020ee
[]
no_license
leslie-toone/EuroSat
69a914c8de3810af3251d77ddcc0184b08f96d20
d6893978f71a52745aaa09b5383195c193be926f
refs/heads/main
2023-05-18T21:16:43.574929
2021-06-08T13:04:45
2021-06-08T13:04:45
375,010,828
0
0
null
null
null
null
UTF-8
Python
false
false
3,472
py
# needed to download a subset of Eurosat data to run on Coursera Project #found this code at # https://colab.research.google.com/github/e-chong/Remote-Sensing/blob/master/EuroSAT%20Land%20Cover%20Classification/EuroSAT%20Land%20Use%20and%20Land%20Cover%20Classification%20using%20Deep%20Learning.ipynb # processing and reading images import zipfile import requests import io from PIL import Image from numpy import asarray from numpy import save # tensor processing import numpy as np from sklearn.utils import shuffle # plotting import matplotlib.pyplot as plt # modeling from sklearn.model_selection import train_test_split import keras # RGB file URL url = "http://madm.dfki.de/files/sentinel/EuroSAT.zip" # download zip r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) # get file names txtfiles = [] for file in z.namelist(): txtfiles.append(file) # keep only those containing ".jpg" txtfiles = [x for x in txtfiles if ".jpg" in x] # read images to numpy array XImages = np.zeros([len(txtfiles), 64, 64, 3]) i = 0 for pic in txtfiles: XImages[i] = np.asarray(Image.open(z.open(pic))).astype('uint8')/255 i += 1 del r # clear memory del z # Get labels in numpy array as strings labs = np.empty(len(txtfiles), dtype = 'S20') i = 0 for label in txtfiles: labs[i] = label.split('/')[1] i += 1 # change them to integers in alphabetical order label_names, yLabels = np.unique(labs, return_inverse=True) label_Dict = dict(zip(np.unique(yLabels), label_names)) print(label_Dict) np.array(np.unique(yLabels, return_counts=True)).T # test that the labels and images read in properly tmp = 18000 img = XImages[tmp] print(yLabels[tmp]) print(label_names[yLabels[tmp]]) plt.imshow(img) plt.show() # find the smallest class smallest_class = np.argmin(np.bincount(yLabels)) smallest_class # number of classes num_classes = len(np.array(np.unique(yLabels))) # observations in smallest class smallest_class_obs = np.where(yLabels == smallest_class)[0] # Get 2000 observations from each class indBal = np.empty(0, dtype=int) for i in range(num_classes): indTemp = shuffle(np.where(yLabels == i)[0], random_state=42)[0:smallest_class_obs.shape[0]] indBal = np.concatenate([indBal, indTemp]) # shuffle the balanced index indBal = shuffle(indBal, random_state = 42) yBal = yLabels[indBal] XBal = XImages[indBal] print(yBal.shape) print(XBal.shape) # first line uses balanced labels # second line uses original imbalanced labels x_train, x_test, y_train, y_test = train_test_split(XBal, yBal, stratify = yBal, test_size = 0.2, random_state=42) #x_train, x_test, y_train, y_test = train_test_split(XImages, yLabels, stratify = yLabels, test_size = 0.2, random_state=42) # test that the labels and images are still matched up properly tmp = 7000 img = x_train[tmp] print(label_names[y_train[tmp]]) plt.imshow(img) plt.show() # class distribution for yTrain print(np.array(np.unique(y_train, return_counts=True)).T) # class distribution for yTest print(np.array(np.unique(y_test, return_counts=True)).T) # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # save to npy file save('data/y_train.npy', y_train) save('data/y_test.npy', y_test) save('data/x_train.npy', x_train) save('data/x_test.npy', x_test)
[ "noreply@github.com" ]
leslie-toone.noreply@github.com
18c82fe5ded0fea0644f6620c0943a1364176281
5087b67363fb86005ffbdd6153baa257c15e6c4f
/src/ui/templates/home_map_template.py
ea5ead0b7e46c80ed445431d1c2290d0c895b98c
[]
no_license
juanchitot/domo
8d015243da88269bd6d1e81896788e800f5e0c5c
82dc543f342a8c50cd59680f3b570c7fa72037ff
refs/heads/master
2021-01-22T08:32:54.036451
2014-06-22T01:05:59
2014-06-22T01:05:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,874
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file './templates/home_map_template.ui' # # Created: Sun Jul 17 16:46:45 2011 # by: PyQt4 UI code generator 4.7.3 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(1138, 835) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(Form.sizePolicy().hasHeightForWidth()) Form.setSizePolicy(sizePolicy) Form.setAutoFillBackground(False) Form.setStyleSheet("background-color:transparent") self.gridLayout = QtGui.QGridLayout(Form) self.gridLayout.setObjectName("gridLayout") self.lcdNumber = QtGui.QLCDNumber(Form) self.lcdNumber.setStyleSheet("border-width:thin;\n" "border-color:grey;\n" "border-style:dotted;") self.lcdNumber.setFrameShape(QtGui.QFrame.StyledPanel) self.lcdNumber.setFrameShadow(QtGui.QFrame.Raised) self.lcdNumber.setLineWidth(0) self.lcdNumber.setSegmentStyle(QtGui.QLCDNumber.Flat) self.lcdNumber.setObjectName("lcdNumber") self.gridLayout.addWidget(self.lcdNumber, 2, 9, 1, 1) self.pushButton = QtGui.QPushButton(Form) self.pushButton.setObjectName("pushButton") self.gridLayout.addWidget(self.pushButton, 0, 4, 1, 1) self.pushButton_5 = QtGui.QPushButton(Form) self.pushButton_5.setObjectName("pushButton_5") self.gridLayout.addWidget(self.pushButton_5, 0, 5, 1, 1) self.frame_5 = QtGui.QFrame(Form) self.frame_5.setStyleSheet("None") self.frame_5.setFrameShape(QtGui.QFrame.NoFrame) self.frame_5.setFrameShadow(QtGui.QFrame.Raised) self.frame_5.setObjectName("frame_5") self.gridLayout_2 = QtGui.QGridLayout(self.frame_5) self.gridLayout_2.setObjectName("gridLayout_2") self.pushButton_6 = QtGui.QPushButton(self.frame_5) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton_6.sizePolicy().hasHeightForWidth()) self.pushButton_6.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setUnderline(False) self.pushButton_6.setFont(font) self.pushButton_6.setMouseTracking(False) self.pushButton_6.setFocusPolicy(QtCore.Qt.NoFocus) self.pushButton_6.setContextMenuPolicy(QtCore.Qt.NoContextMenu) self.pushButton_6.setToolTip("None") self.pushButton_6.setStatusTip("None") self.pushButton_6.setWhatsThis("None") self.pushButton_6.setAccessibleName("None") self.pushButton_6.setAccessibleDescription("None") self.pushButton_6.setText("None") icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(":/ui/images/but_up_domotica.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_6.setIcon(icon) self.pushButton_6.setIconSize(QtCore.QSize(100, 70)) self.pushButton_6.setShortcut("None") self.pushButton_6.setCheckable(False) self.pushButton_6.setDefault(False) self.pushButton_6.setFlat(True) self.pushButton_6.setObjectName("pushButton_6") self.gridLayout_2.addWidget(self.pushButton_6, 0, 0, 1, 1) self.gridLayout.addWidget(self.frame_5, 1, 9, 1, 1) self.frame_6 = QtGui.QFrame(Form) self.frame_6.setFrameShape(QtGui.QFrame.NoFrame) self.frame_6.setFrameShadow(QtGui.QFrame.Raised) self.frame_6.setObjectName("frame_6") self.horizontalLayout_2 = QtGui.QHBoxLayout(self.frame_6) self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.pushButton_7 = QtGui.QPushButton(self.frame_6) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.pushButton_7.sizePolicy().hasHeightForWidth()) self.pushButton_7.setSizePolicy(sizePolicy) self.pushButton_7.setText("") icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(":/ui/images/but_down_domotica.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_7.setIcon(icon1) self.pushButton_7.setIconSize(QtCore.QSize(100, 70)) self.pushButton_7.setFlat(True) self.pushButton_7.setObjectName("pushButton_7") self.horizontalLayout_2.addWidget(self.pushButton_7) self.gridLayout.addWidget(self.frame_6, 3, 9, 1, 1) self.pushButton_8 = QtGui.QPushButton(Form) self.pushButton_8.setObjectName("pushButton_8") self.gridLayout.addWidget(self.pushButton_8, 5, 4, 1, 1) self.pushButton_9 = QtGui.QPushButton(Form) self.pushButton_9.setObjectName("pushButton_9") self.gridLayout.addWidget(self.pushButton_9, 5, 5, 1, 1) self.pushButton_10 = QtGui.QPushButton(Form) self.pushButton_10.setObjectName("pushButton_10") self.gridLayout.addWidget(self.pushButton_10, 5, 6, 1, 1) self.pushButton_11 = QtGui.QPushButton(Form) self.pushButton_11.setObjectName("pushButton_11") self.gridLayout.addWidget(self.pushButton_11, 5, 7, 1, 1) self.pushButton_12 = QtGui.QPushButton(Form) self.pushButton_12.setObjectName("pushButton_12") self.gridLayout.addWidget(self.pushButton_12, 5, 8, 1, 1) self.time_lcd = QtGui.QLCDNumber(Form) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.time_lcd.sizePolicy().hasHeightForWidth()) self.time_lcd.setSizePolicy(sizePolicy) self.time_lcd.setFrameShape(QtGui.QFrame.StyledPanel) self.time_lcd.setFrameShadow(QtGui.QFrame.Raised) self.time_lcd.setLineWidth(1) self.time_lcd.setMidLineWidth(1) self.time_lcd.setNumDigits(10) self.time_lcd.setSegmentStyle(QtGui.QLCDNumber.Flat) self.time_lcd.setObjectName("time_lcd") self.gridLayout.addWidget(self.time_lcd, 5, 9, 1, 1) self.graphicsView = QtGui.QGraphicsView(Form) self.graphicsView.setMinimumSize(QtCore.QSize(800, 600)) self.graphicsView.setObjectName("graphicsView") self.gridLayout.addWidget(self.graphicsView, 1, 4, 4, 5) self.label_2 = QtGui.QLabel(Form) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_2.sizePolicy().hasHeightForWidth()) self.label_2.setSizePolicy(sizePolicy) self.label_2.setObjectName("label_2") self.gridLayout.addWidget(self.label_2, 5, 1, 1, 1) self.map_zoom = QtGui.QSlider(Form) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.map_zoom.sizePolicy().hasHeightForWidth()) self.map_zoom.setSizePolicy(sizePolicy) self.map_zoom.setMinimum(50) self.map_zoom.setMaximum(150) self.map_zoom.setProperty("value", 100) self.map_zoom.setOrientation(QtCore.Qt.Horizontal) self.map_zoom.setInvertedAppearance(False) self.map_zoom.setInvertedControls(False) self.map_zoom.setObjectName("map_zoom") self.gridLayout.addWidget(self.map_zoom, 5, 2, 1, 1) self.level_combo = QtGui.QComboBox(Form) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.level_combo.sizePolicy().hasHeightForWidth()) self.level_combo.setSizePolicy(sizePolicy) self.level_combo.setObjectName("level_combo") self.gridLayout.addWidget(self.level_combo, 0, 2, 1, 2) self.label = QtGui.QLabel(Form) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label.sizePolicy().hasHeightForWidth()) self.label.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setWeight(50) font.setBold(False) self.label.setFont(font) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 0, 1, 1, 1) self.zoom_lab = QtGui.QLabel(Form) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.zoom_lab.sizePolicy().hasHeightForWidth()) self.zoom_lab.setSizePolicy(sizePolicy) self.zoom_lab.setObjectName("zoom_lab") self.gridLayout.addWidget(self.zoom_lab, 5, 3, 1, 1) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): Form.setWindowTitle(QtGui.QApplication.translate("Form", "Form", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton.setStyleSheet(QtGui.QApplication.translate("Form", "font: 75 9pt \"Sans Serif\";\n" "background-color:transparent;\n" "color: rgb(0, 0, 255);", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton.setText(QtGui.QApplication.translate("Form", "Luces", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_5.setStyleSheet(QtGui.QApplication.translate("Form", "font: 75 9pt \"Sans Serif\";\n" "background-color:transparent;\n" "color: rgb(0, 0, 255);", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_5.setText(QtGui.QApplication.translate("Form", "Temperatura", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_6.setStyleSheet(QtGui.QApplication.translate("Form", "background-color: transparent;", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_7.setStyleSheet(QtGui.QApplication.translate("Form", "background-color:transparent;", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_8.setText(QtGui.QApplication.translate("Form", "PushButton", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_9.setText(QtGui.QApplication.translate("Form", "PushButton", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_10.setText(QtGui.QApplication.translate("Form", "PushButton", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_11.setText(QtGui.QApplication.translate("Form", "PushButton", None, QtGui.QApplication.UnicodeUTF8)) self.pushButton_12.setText(QtGui.QApplication.translate("Form", "PushButton", None, QtGui.QApplication.UnicodeUTF8)) self.time_lcd.setStyleSheet(QtGui.QApplication.translate("Form", "border-width:thin;\n" "color: rgb(0, 0, 0);\n" "border-color:grey;\n" "border-style:dotted", None, QtGui.QApplication.UnicodeUTF8)) self.label_2.setText(QtGui.QApplication.translate("Form", "Zoom", None, QtGui.QApplication.UnicodeUTF8)) self.label.setText(QtGui.QApplication.translate("Form", "Nivel", None, QtGui.QApplication.UnicodeUTF8)) self.zoom_lab.setText(QtGui.QApplication.translate("Form", "100%", None, QtGui.QApplication.UnicodeUTF8)) import resources_rc
[ "juanchitot@gmail.com" ]
juanchitot@gmail.com
4791043d856e97b2b100ec57dea56971d0aeed70
d88b70150c2b4f840b5d240fc52cf5fdc320fbba
/snewpdag/plugins/renderers/TimeProfile.py
2d61277fd121152be0696c77272baa6bd1bf53af
[ "BSD-3-Clause" ]
permissive
woonsinglau/snewpdag
b091fd3a1139f3d36e2a7306b7cdf58f6bdc4c02
6ea4795828b03d83b7756e37c789c0997b46b17a
refs/heads/master
2023-07-10T16:41:32.043099
2021-08-23T19:20:13
2021-08-23T19:20:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,848
py
""" Time profile renderer. Configuration options: in_field: optional, name of dictionary of input data (otherwise look in payload dictionary itself) in_xfield: name of data field for x values in_yfield: name of data field for y values title: profile title (top of plot) xlabel: x axis label ylabel: y axis label filename: output filename, with fields {0} renderer name {1} count index, starting from 0 {2} burst_id from update data (default 0 if no such field) {3} source name (which this renderer observes) Plots y vs x. """ import matplotlib.pyplot as plt import numpy as np from snewpdag.dag import Node class TimeProfile(Node): def __init__(self, in_xfield, in_yfield, title, xlabel, ylabel, filename, **kwargs): self.xfield = in_xfield self.yfield = in_yfield self.title = title self.xlabel = xlabel self.ylabel = ylabel self.filename = filename # include pattern to include index self.in_field = kwargs.pop('in_field', None) self.count = 0 # number of histograms made super().__init__(**kwargs) def render(self, burst_id, source, x, y, subtitle): fig, ax = plt.subplots() ax.plot(x, y) ax.set_xlabel(self.xlabel) ax.set_ylabel(self.ylabel) ax.set_title(self.title + '(' + subtitle + ')') fig.tight_layout() fname = self.filename.format(self.name, self.count, burst_id, source) plt.savefig(fname) self.count += 1 def alert(self, data): burst_id = data.get('burst_id', 0) d = data[self.in_field] if self.in_field else data nm = d['name'] if 'comment' in d: nm += ": " + d['comment'] self.render(burst_id, self.last_source, d[self.xfield], d[self.yfield], nm) return True def report(self, data): return self.alert(data)
[ "jeff.tseng@physics.ox.ac.uk" ]
jeff.tseng@physics.ox.ac.uk
8b94756c525f05c760d71a62298896c0205a615d
973f552142a150f24d8602cf91e45d5c764e1ddc
/wallpaper.py
302b3f786853b369845406938a8a274679511cc4
[]
no_license
fjcarnevale/redditwalls
534d5f7267b8f37f34b97089f3ef1849a69c619f
791eeb817fbb22123d0f121f631a3cc8d41954b5
refs/heads/master
2021-05-15T01:47:52.724836
2017-02-22T02:27:39
2017-02-22T02:27:39
19,913,350
0
0
null
null
null
null
UTF-8
Python
false
false
2,245
py
from google.appengine.ext import ndb from google.appengine.api import images import logging import urllib import urllib2 from reddit import RedditPost from Imgur import Imgur class Wallpaper(ndb.Model): name = ndb.StringProperty() height = ndb.IntegerProperty() width = ndb.IntegerProperty() reddit_link = ndb.StringProperty() image_link = ndb.StringProperty() @staticmethod def get_by_id(wall_id): return wallpaper_key(wall_id).get() @staticmethod def from_post(post): url = post.link_url if Imgur.is_imgur_link(url): if Imgur.is_image(url): # If the URL already has the image extension, just use the URL # Otherwise, look it up link = url if not any(ext in url for ext in Imgur.extensions): info = Imgur.Image.from_url(url) if not info: return None link = info.link w = Wallpaper(key=wallpaper_key(post.name)) w.name = post.name w.reddit_link = post.post_url w.image_link = link w.put() return w else: # TODO handle albums # probably just grap the cover photo, maybe add class for albums # or convert wallpaper class to Post class as a catch-all for reddit image posts pass else: pass # don't upload new stuff for now # Try and upload from the url #info = Imgur.upload_image_from_url(url) #if info is not None: # logging.info('Uploaded image id:%s\tdeletehash:%s' % (info.img_id, info.deletehash)) # w = Wallpaper(key=wallpaper_key(post.name)) # w.name = post.name # w.reddit_link = post.post_url # w.image_link = info.link # w.put() # return w return None def wallpaper_key(name): """Generates datastore key for name""" return ndb.Key('Wallpaper',name) def create_wallpapers(posts): """Creates and commits wallpapers from the given reddit posts""" wallpapers = [] for post in posts: # see if this wallpaper exists wallpaper = Wallpaper.get_by_id(post.name) if not wallpaper: wallpaper = Wallpaper.from_post(post) if wallpaper is not None: wallpapers.append(wallpaper) return wallpapers
[ "fjcarnevale@gmail.com" ]
fjcarnevale@gmail.com
ba30ef35957bc511059b6499e195315c68c62807
9d12082ad67b4f7d8088ea845a4266a3b3a85313
/7OOP/useslots.py
86108bc0548bfd0158dbb975a80d6ba8441121b5
[]
no_license
bberzhou/LearningPython
e6f7ee9d44dae3547008aae33874639970a269a3
aee82c60696a0ef93a351c7a9cf899387eeb9ce0
refs/heads/master
2023-05-14T03:38:44.251665
2021-06-06T13:49:59
2021-06-06T13:49:59
319,500,148
0
0
null
null
null
null
UTF-8
Python
false
false
2,473
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from types import MethodType """ 正常情况下,当我们定义了一个class,创建了一个class的实例后, 我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class s.set_age = MethodType(set_age, s) # 给实例绑定一个方法 但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加name和age属性。 为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性 """ class Student(object): __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称 # 尝试给实例绑定一个属性 s = Student() s.name = 'Michael' # 动态给实例绑定一个属性 print(s.name) # Michael # 还可以尝试给实例绑定一个方法 def set_age(self, age): # 定义一个函数作为实例方法 self.age = age s.set_age = MethodType(set_age, s) # 给实例绑定一个方法 s.set_age(25) print(s.age) # 25 # 但是,给一个实例绑定的方法,对另一个实例是不起作用的 s2 = Student() # 创建新的实例 # s2.set_age(25) # AttributeError: 'Student' object has no attribute 'set_age' # 如果要给所有实例都绑定方法,可以给class绑定方法 def set_score(self, score): self.score = score Student.set_score = set_score # 给class绑定方法后,所有实例均可调用 s.set_score(100) print(s.score) # 100 s2.set_score(80) print(s2.score) # 80 # 通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。 # __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称 s3 = Student() # 创建新的实例 s3.name = 'Michael' s3.age = 18 # 绑定属性'age' # s3.score = 99 # AttributeError: 'Student' object has no attribute 'set_age' # 由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误 # 使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的 class GraduateStudent(Student): pass g = GraduateStudent() g.score = 100 # 除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__
[ "bberzhou@gmail.com" ]
bberzhou@gmail.com
5a0cd00525e3c3cb0b52c1675cad1f2f129425d9
8bd69d678c49a2c8948238c5d40b6926e74d1b85
/ijosephproject/ijosephproject/wsgi.py
1ddbe7a7b2778fe66fc4800b6e6377702ef7e0c4
[]
no_license
CarolineMadison/I_Joseph_Capstone_API
925a84340d7627ff5b0fd14da3105b9310e13d65
4dff9410768d4af001b63987c8a87da4b1f46bef
refs/heads/master
2023-08-28T23:23:40.783938
2020-04-03T03:09:48
2020-04-03T03:09:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for ijosephproject project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ijosephproject.settings') application = get_wsgi_application()
[ "brownleecaroline@gmail.com" ]
brownleecaroline@gmail.com
271feb2b84b4112e4bd627459950a98dc3607a91
7ebde4e79f33057df38f22b14cf1932da45884b5
/Python/Container With Most Water.py
2d17e89d9630eaae4ef79c0404c53e2b7e08d24f
[]
no_license
xiaochenai/leetCode
1400fae8c3033fee71ba0f7ea36acf6555323403
acca8ed2e9628787468eb15b27f4bd552ee2bffd
refs/heads/master
2021-01-20T00:58:55.956367
2014-10-29T02:44:31
2014-10-29T02:44:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
# Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water. # Note: You may not slant the container class Solution: # @return an integer def maxArea(self, height): lenH = len(height) contain = 0 if lenH < 2: return 0 end = lenH-1 maxV=0 i=0 while i<end: contain = min(height[i],height[end])*(end - i) maxV = max(maxV,contain) if height[i] <= height[end]: i = i + 1 else: end = end -1 return maxV
[ "xzl0036@auburn.edu" ]
xzl0036@auburn.edu
42b8973417a853d323cb5d8ef0b0f89525ed9a6d
f8981c67954828e4a1a0249fbdcb36d099090cd9
/Module6/running_system_commands.py
04cf75695cfd3473026925398e6b279ed502b06d
[]
no_license
shreyakapadia10/Using-Python-to-Interact-with-the-Operating-System
fc67a82bc0950c0d9b2faa39f33c25459f72b505
57aef8af9137f6df5bdff76f4d138e527b5b6cbf
refs/heads/master
2022-12-27T18:39:37.837440
2020-10-03T07:04:54
2020-10-03T07:04:54
300,818,093
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
import subprocess subprocess.run(["date"]) print("subprocess.run(['sleep', '2']) will wait for 2 seconds") subprocess.run(["sleep", "2"]) print("Trying to list a file that doesn't exist using ls") result = subprocess.run(["ls", "no_such_file.txt"]) print(result.returncode)
[ "shreyakapadia8@gmail.com" ]
shreyakapadia8@gmail.com
295d9752bf723b60685cdbca89a38e56b90d8dc3
e59fe240f0359aa32c59b5e9f581db0bfdb315b8
/galaxy-dist/lib/galaxy/jobs/runners/cli_shell/rsh.py
b0f8f686cedc4a0ec40089a03c1d706686c805a4
[ "CC-BY-2.5", "AFL-2.1", "AFL-3.0", "CC-BY-3.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
subway/Galaxy-Distribution
dc269a0258471597d483687a0f1dd9e10bd47448
d16d6f9b6a8b7f41a218c06539863c8ce4d5a73c
refs/heads/master
2021-06-30T06:26:55.237251
2015-07-04T23:55:51
2015-07-04T23:55:51
15,899,275
1
2
null
2020-10-07T06:17:26
2014-01-14T10:47:28
Groff
UTF-8
Python
false
false
2,376
py
""" Interface for remote shell commands (rsh, rcp) and derivatives that use the same syntax (ssh, scp) """ import logging import os import subprocess import tempfile import time from galaxy.util.bunch import Bunch from galaxy.jobs.runners.cli_shell import BaseShellExec log = logging.getLogger( __name__ ) __all__ = ('RemoteShell', 'SecureShell', 'GlobusSecureShell') class RemoteShell(BaseShellExec): def __init__(self, rsh='rsh', rcp='rcp', hostname=None, username=None, **kwargs): self.rsh = rsh self.rcp = rcp self.hostname = hostname self.username = username self.sessions = {} def copy(self, rcp_cmd, files, dest): pass def execute(self, cmd, persist=False, timeout=60): # TODO: implement persistence if self.username is None: fullcmd = '%s %s %s' % (self.rsh, self.hostname, cmd) else: fullcmd = '%s -l %s %s %s' % (self.rsh, self.username, self.hostname, cmd) # Read stdout to a tempfile in case it's large (>65K) outf = tempfile.TemporaryFile() p = subprocess.Popen(fullcmd, shell=True, stdin=None, stdout=outf, stderr=subprocess.PIPE) # poll until timeout for i in range(timeout/3): r = p.poll() if r is not None: break time.sleep(3) else: pid = int(p.pid) for sig in (15, 9): try: os.kill(pid, sig) time.sleep(3) except: log.warning('Killing pid %s (cmd: "%s") with signal %s failed' % (p.pid, fullcmd, sig)) return Bunch(stdout='', stderr='Execution timed out', returncode=-1) outf.seek(0) return Bunch(stdout=outf.read(), stderr=p.stderr.read(), returncode=p.returncode) class SecureShell(RemoteShell): SSH_NEW_KEY_STRING = 'Are you sure you want to continue connecting' def __init__(self, rsh='ssh', rcp='scp', **kwargs): rsh += ' -oStrictHostKeyChecking=yes -oConnectTimeout=60' rcp += ' -oStrictHostKeyChecking=yes -oConnectTimeout=60' super(SecureShell, self).__init__(rsh=rsh, rcp=rcp, **kwargs) class GlobusSecureShell(SecureShell): def __init__(self, rsh='gsissh', rcp='gsiscp', **kwargs): super(SecureShell, self).__init__(rsh=rsh, rcp=rcp, **kwargs)
[ "sabba_88@hotmail.com" ]
sabba_88@hotmail.com
6cb46e4ef46fcf6d1ad70681126112b9aa1a7a2f
96c7d259859593efa2db89f7434603f941dcc1d1
/main/admin.py
23fd591572d9c84f6055b46656185584e2051029
[]
no_license
nishadprinja/squawker-django
b688387bf466d942f4914c251c0f2f2d20683a40
b493223651b9f31f497831bbddaee0b16e356f51
refs/heads/master
2021-01-11T11:27:45.074632
2016-12-07T05:13:57
2016-12-07T05:13:57
72,485,860
0
0
null
2016-10-31T23:12:55
2016-10-31T23:12:55
null
UTF-8
Python
false
false
209
py
from django.contrib import admin from .models import Squawk class SquawkAdmin(admin.ModelAdmin): list_display = ('message', 'time') # Register your models here. admin.site.register(Squawk, SquawkAdmin)
[ "np327@cornell.edu" ]
np327@cornell.edu
8036f2a754eff7c3f8a0f966552344286da13109
fb76a350867ce54c238eb308072863ba30ca963f
/blogweb/templatetags/__init__.py
164a81f67d0807fd8adf841b37d12d59c7ea29a8
[]
no_license
Mayankmansha61/blogproject
3b241889794e644fc6a57dc20a717742d2c10a39
a9582a1bec3f0220197dd83e1e5c7c0d301e9b98
refs/heads/master
2020-06-23T23:34:38.523475
2019-07-25T08:07:06
2019-07-25T08:07:06
198,785,397
0
0
null
null
null
null
UTF-8
Python
false
false
24
py
from .query_data import*
[ "mayankbhargav1919@gmail.com" ]
mayankbhargav1919@gmail.com
c9c25fcb8aae1505003866b2b770810e6a17a3dc
5f0c43ee76bf8465aa66c51183b2d4aae83c8294
/cml/models.py
dff17ebe32ba20f2470998a9021c33949d085fc5
[ "BSD-2-Clause" ]
permissive
mikamiel/django-cml
9769012956f34ea6cea5e1aef275ed680d0853a3
2f7bd597db937365e2d642f81063cf891e312b0d
refs/heads/master
2020-08-07T10:22:40.515044
2019-10-02T07:42:43
2019-10-02T07:42:43
213,410,148
0
0
null
2019-10-07T14:46:49
2019-10-07T14:46:49
null
UTF-8
Python
false
false
757
py
from __future__ import absolute_import from django.db import models from django.conf import settings class Exchange(models.Model): class Meta: verbose_name = 'Exchange log entry' verbose_name_plural = 'Exchange logs' exchange_type_choices = { ('import', 'import'), ('export', 'export') } exchange_type = models.CharField(max_length=50, choices=exchange_type_choices) timestamp = models.DateTimeField(auto_now_add=True) user = models.ForeignKey(settings.AUTH_USER_MODEL) filename = models.CharField(max_length=200) @classmethod def log(cls, exchange_type, user, filename=u''): ex_log = Exchange(exchange_type=exchange_type, user=user, filename=filename) ex_log.save()
[ "artem.merkulov@gmail.com" ]
artem.merkulov@gmail.com
9e883ec19a4d9b1f4eb852f53c30ab1e8894bf01
83303b3d43e4f2090e42f337f4aeb535dd1fbc7a
/a_power_N.py
af0ebf0c6a6a2d97ca502367ee0ed5e3b33018b0
[]
no_license
chen2319/python_knight_dialer
00630bce7027db7d4ed77924b2895185d9a9f5d0
71dc96d4abb5224cc73f41fa49db18e6af88256e
refs/heads/master
2020-04-02T20:14:14.760950
2018-11-20T03:55:10
2018-11-20T03:55:10
154,762,120
0
0
null
null
null
null
UTF-8
Python
false
false
1,519
py
# 算法问题描述: 计算a的N次方, N为整数 import time # 算法1:直接暴力计算,不解释 # O(n) (3的400000次方,6秒左右 (Mac Pro)) def a_power_n_1(a, n): res = 1 i = 0 while i < n: res = res * a i = i + 1 return res # 算法2:分治法,考虑N是奇数还是偶数。偶数 f(n) = f(n/2)*f(n/2), 奇数 f(n) = f(n-1/2)*f(n-1/2) # O(logN) (3的400000次方,0.3秒左右 (Mac Pro)) def a_power_n_2(a, n): if n == 0: return 1 if n == 1: return a if n%2 == 0: return a_power_n_2(a,n/2) * a_power_n_2(a,n/2) else: return a_power_n_2(a,(n-1)/2) * a_power_n_2(a,(n-1)/2) * a # 算法3:a的二进制,遇1相乘。比如 3^9 = 3^1*3^8 (9 = 1001) # O(logN) (3的400000次方,0.07秒左右 (Mac Pro)) def a_power_n_3(a, n): res = 1 square = a # a 的1次方 while n != 0: if n&1 == 1: res = square * res square = square * square n = n >> 1 return res if __name__ == '__main__': start1 = time.clock() res1 = a_power_n_1(3, 400000) end1 = time.clock() print('1: Running time: %s Seconds %d' % (end1-start1, res1)) start2 = time.clock() res2 = a_power_n_2(3, 400000) end2 = time.clock() print('2: Running time: %s Seconds %d' % (end2-start2, res2)) start3 = time.clock() res3 = a_power_n_3(3, 400000) end3 = time.clock() print('2: Running time: %s Seconds %d' % (end3-start3, res3))
[ "yangch3@cisco.com" ]
yangch3@cisco.com
5f417589e0415b83f561b35af56742aa54ca7b5a
aa6e885d78fd68f9132bfe373eb58c42117cb11e
/MitsuiSumitomo/A.py
e0648ad9006215dfc0a3e9d24e0c4eb3301c86eb
[]
no_license
Arcprm4/HelloGit
a7beb3ab6a3d0b82e7aa23147e86ce2c0eadb5bd
84ec5c8ebee2e9d7fe676445775e566bae694e1c
refs/heads/master
2020-11-30T06:27:05.243440
2020-02-01T23:10:42
2020-02-01T23:10:42
230,331,818
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
import math import collections import itertools import sys import bisect from heapq import heappop,heappush,heapify sys.setrecursionlimit(10**6) def MAP(): return list(map(int,input().split())) def INT(): return int(input()) def FLOAT(): return float(input()) MOD = 10**9+7 m1,d1 = MAP() m2,d2 = MAP() if m1!=m2: print(1) else: print(0)
[ "te2dshin@gmail.com" ]
te2dshin@gmail.com
e7cba753f66de4c18380a281e36285c32cab048c
35235f241d8626db8dc9a8acb47942bfc6130782
/main/middlewares.py
f2ac9fb94c8d06986d46cb17b799d0f408c593b9
[]
no_license
shbviews/RESTOCK-MONITOR
b771bddfe9c7d0240296ecb1272f35ccbe1b3db6
d02fbdef60e8db0f7cdd8317d2322523675db4a3
refs/heads/master
2021-04-24T20:54:17.780167
2017-11-03T06:54:02
2017-11-03T06:54:02
117,135,194
6
0
null
null
null
null
UTF-8
Python
false
false
2,094
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Sneaker Notify # author - Yu Lin # https://github.com/yulin12345 # admin@yulin12345.site # Define here the models for your spider middleware # # See documentation in: # http://doc.scrapy.org/en/latest/topics/spider-middleware.html from colorama import Fore, Style from scrapy import signals class CrawlerSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info(Fore.RED + 'Spider opened: %s' % spider.name + Style.RESET_ALL)
[ "admin@yulin12345.site" ]
admin@yulin12345.site
e6fc96486cceb79968c2bdc05c4bca8b68bd2196
d5e7d991dc853612e74869d81059ab5f162d7f59
/gen2-human-pose/main.py
638c123245a6b3888ac020ed31d8532b2fe04219
[ "MIT" ]
permissive
AMB-technology-playground/depthai-experiments
b0ca1d3e7f531db7d51b4edac95d8d5aa5fd5fa3
b3f72a2a1dfc27f3c55d987482141db6815c0f0c
refs/heads/master
2023-09-05T23:00:21.804683
2021-10-15T09:42:17
2021-10-15T09:42:17
415,680,320
0
0
MIT
2021-10-10T19:25:12
2021-10-10T19:25:11
null
UTF-8
Python
false
false
6,923
py
import argparse import threading from pathlib import Path from depthai_sdk.managers import PipelineManager, NNetManager, BlobManager, PreviewManager from depthai_sdk import FPSHandler, Previews, getDeviceInfo, downloadYTVideo from pose import getKeypoints, getValidPairs, getPersonwiseKeypoints import cv2 import depthai as dai import numpy as np parser = argparse.ArgumentParser() parser.add_argument('-nd', '--no-debug', action="store_true", help="Prevent debug output") parser.add_argument('-cam', '--camera', action="store_true", help="Use DepthAI 4K RGB camera for inference (conflicts with -vid)") parser.add_argument('-vid', '--video', type=str, help="Path to video file to be used for inference (conflicts with -cam)") args = parser.parse_args() if not args.camera and not args.video: raise RuntimeError("No source selected. Please use either \"-cam\" to use RGB camera as a source or \"-vid <path>\" to run on video") debug = not args.no_debug device_info = getDeviceInfo() if args.camera: blob_path = "models/human-pose-estimation-0001_openvino_2021.2_6shave.blob" else: blob_path = "models/human-pose-estimation-0001_openvino_2021.2_8shave.blob" if str(args.video).startswith('https'): args.video = downloadYTVideo(str(args.video)) print("Youtube video downloaded.") if not Path(args.video).exists(): raise ValueError("Path {} does not exists!".format(args.video)) colors = [[0, 100, 255], [0, 100, 255], [0, 255, 255], [0, 100, 255], [0, 255, 255], [0, 100, 255], [0, 255, 0], [255, 200, 100], [255, 0, 255], [0, 255, 0], [255, 200, 100], [255, 0, 255], [0, 0, 255], [255, 0, 0], [200, 200, 0], [255, 0, 0], [200, 200, 0], [0, 0, 0]] POSE_PAIRS = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], [9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], [0, 15], [15, 17], [2, 17], [5, 16]] running = True pose = None keypoints_list = None detected_keypoints = None personwiseKeypoints = None nm = NNetManager(inputSize=(456, 256)) pm = PipelineManager() pm.setNnManager(nm) if args.camera: fps = FPSHandler() pm.createColorCam(previewSize=(456, 256), xout=True) else: cap = cv2.VideoCapture(str(Path(args.video).resolve().absolute())) fps = FPSHandler(cap) nn = nm.createNN(pm.pipeline, pm.nodes, source=Previews.color.name if args.camera else "host", blobPath=Path(blob_path), fullFov=True) pm.addNn(nn=nn) def decode_thread(in_queue): global keypoints_list, detected_keypoints, personwiseKeypoints while running: try: raw_in = in_queue.get() except RuntimeError: return fps.tick('nn') heatmaps = np.array(raw_in.getLayerFp16('Mconv7_stage2_L2')).reshape((1, 19, 32, 57)) pafs = np.array(raw_in.getLayerFp16('Mconv7_stage2_L1')).reshape((1, 38, 32, 57)) heatmaps = heatmaps.astype('float32') pafs = pafs.astype('float32') outputs = np.concatenate((heatmaps, pafs), axis=1) new_keypoints = [] new_keypoints_list = np.zeros((0, 3)) keypoint_id = 0 for row in range(18): probMap = outputs[0, row, :, :] probMap = cv2.resize(probMap, nm.inputSize) # (456, 256) keypoints = getKeypoints(probMap, 0.3) new_keypoints_list = np.vstack([new_keypoints_list, *keypoints]) keypoints_with_id = [] for i in range(len(keypoints)): keypoints_with_id.append(keypoints[i] + (keypoint_id,)) keypoint_id += 1 new_keypoints.append(keypoints_with_id) valid_pairs, invalid_pairs = getValidPairs(outputs, w=nm.inputSize[0], h=nm.inputSize[1], detected_keypoints=new_keypoints) newPersonwiseKeypoints = getPersonwiseKeypoints(valid_pairs, invalid_pairs, new_keypoints_list) detected_keypoints, keypoints_list, personwiseKeypoints = (new_keypoints, new_keypoints_list, newPersonwiseKeypoints) def show(frame): global keypoints_list, detected_keypoints, personwiseKeypoints, nm if keypoints_list is not None and detected_keypoints is not None and personwiseKeypoints is not None: scale_factor = frame.shape[0] / nm.inputSize[1] offset_w = int(frame.shape[1] - nm.inputSize[0] * scale_factor) // 2 def scale(point): return int(point[0] * scale_factor) + offset_w, int(point[1] * scale_factor) for i in range(18): for j in range(len(detected_keypoints[i])): cv2.circle(frame, scale(detected_keypoints[i][j][0:2]), 5, colors[i], -1, cv2.LINE_AA) for i in range(17): for n in range(len(personwiseKeypoints)): index = personwiseKeypoints[n][np.array(POSE_PAIRS[i])] if -1 in index: continue B = np.int32(keypoints_list[index.astype(int), 0]) A = np.int32(keypoints_list[index.astype(int), 1]) cv2.line(frame, scale((B[0], A[0])), scale((B[1], A[1])), colors[i], 3, cv2.LINE_AA) print("Starting pipeline...") with dai.Device(pm.pipeline, device_info) as device: if args.camera: pv = PreviewManager(display=[Previews.color.name], nnSource=Previews.color.name, scale={"color": 0.37}, fpsHandler=fps) pv.createQueues(device) nm.createQueues(device) seq_num = 1 t = threading.Thread(target=decode_thread, args=(nm.outputQueue, )) t.start() def should_run(): return cap.isOpened() if args.video else True try: while should_run(): fps.nextIter() if args.camera: pv.prepareFrames() frame = pv.get(Previews.color.name) if debug: show(frame) cv2.putText(frame, f"RGB FPS: {round(fps.tickFps(Previews.color.name), 1)}", (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) cv2.putText(frame, f"NN FPS: {round(fps.tickFps('nn'), 1)}", (5, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) pv.showFrames() if not args.camera: read_correctly, frame = cap.read() if not read_correctly: break nm.sendInputFrame(frame) fps.tick('host') if debug: show(frame) cv2.putText(frame, f"RGB FPS: {round(fps.tickFps('host'), 1)}", (5, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) cv2.putText(frame, f"NN FPS: {round(fps.tickFps('nn'), 1)}", (5, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) cv2.imshow("rgb", frame) key = cv2.waitKey(1) if key == ord('q'): break except KeyboardInterrupt: pass running = False t.join() fps.printStatus() if not args.camera: cap.release()
[ "noreply@github.com" ]
AMB-technology-playground.noreply@github.com
3386aa1a676bffd3f77461d5c78939e3d8d3b997
74b97e20b06a58ada94278f82ce511403fcddf21
/test/scenarios/kusto/output/ext_default_folder/src/kusto/azext_kusto/generated/action.py
cd132ab68ad34d41cac5d438142449e4f78d287f
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Azure/autorest.az
b171eb495efdb815dc051dface3800c3e5e35b8e
64f403a5fe74be28e46a90b6b77f8d2bc9a12baf
refs/heads/master
2023-09-01T13:22:21.784354
2022-11-01T02:34:12
2022-11-01T02:34:12
226,059,721
24
17
MIT
2023-02-08T00:46:07
2019-12-05T09:04:00
Python
UTF-8
Python
false
false
10,230
py
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=protected-access # pylint: disable=no-self-use import argparse from collections import defaultdict from knack.util import CLIError class AddTrustedExternalTenants(argparse._AppendAction): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) super(AddTrustedExternalTenants, self).__call__(parser, namespace, action, option_string) def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'value': d['value'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter trusted-external-tenants. All possible keys are:' ' value'.format(k) ) return d class AddOptimizedAutoscale(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) namespace.optimized_autoscale = action def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'version': d['version'] = v[0] elif kl == 'is-enabled': d['is_enabled'] = v[0] elif kl == 'minimum': d['minimum'] = v[0] elif kl == 'maximum': d['maximum'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter optimized-autoscale. All possible keys are: version,' ' is-enabled, minimum, maximum'.format(k) ) return d class AddVirtualNetworkConfiguration(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) namespace.virtual_network_configuration = action def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'subnet-id': d['subnet_id'] = v[0] elif kl == 'engine-public-ip-id': d['engine_public_ip_id'] = v[0] elif kl == 'data-management-public-ip-id': d['data_management_public_ip_id'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter virtual-network-configuration. All possible keys are:' ' subnet-id, engine-public-ip-id, data-management-public-ip-id'.format(k) ) return d class AddKeyVaultProperties(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) namespace.key_vault_properties = action def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'key-name': d['key_name'] = v[0] elif kl == 'key-version': d['key_version'] = v[0] elif kl == 'key-vault-uri': d['key_vault_uri'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter key-vault-properties. All possible keys are:' ' key-name, key-version, key-vault-uri'.format(k) ) return d class AddClustersValue(argparse._AppendAction): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) super(AddClustersValue, self).__call__(parser, namespace, action, option_string) def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'language-extension-name': d['language_extension_name'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter value. All possible keys are: language-extension-name' .format(k) ) return d class AddReadWriteDatabase(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) namespace.read_write_database = action def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'soft-delete-period': d['soft_delete_period'] = v[0] elif kl == 'hot-cache-period': d['hot_cache_period'] = v[0] elif kl == 'location': d['location'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter read-write-database. All possible keys are:' ' soft-delete-period, hot-cache-period, location'.format(k) ) d['kind'] = 'ReadWrite' return d class AddReadOnlyFollowingDatabase(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) namespace.read_only_following_database = action def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'hot-cache-period': d['hot_cache_period'] = v[0] elif kl == 'location': d['location'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter read-only-following-database. All possible keys are:' ' hot-cache-period, location'.format(k) ) d['kind'] = 'ReadOnlyFollowing' return d class AddDatabasesValue(argparse._AppendAction): def __call__(self, parser, namespace, values, option_string=None): action = self.get_action(values, option_string) super(AddDatabasesValue, self).__call__(parser, namespace, action, option_string) def get_action(self, values, option_string): try: properties = defaultdict(list) for (k, v) in (x.split('=', 1) for x in values): properties[k].append(v) properties = dict(properties) except ValueError: raise CLIError('usage error: {} [KEY=VALUE ...]'.format(option_string)) d = {} for k in properties: kl = k.lower() v = properties[k] if kl == 'role': d['role'] = v[0] elif kl == 'name': d['name'] = v[0] elif kl == 'type': d['type'] = v[0] elif kl == 'fqn': d['fqn'] = v[0] elif kl == 'email': d['email'] = v[0] elif kl == 'app-id': d['app_id'] = v[0] else: raise CLIError( 'Unsupported Key {} is provided for parameter value. All possible keys are: role, name, type, fqn,' ' email, app-id'.format(k) ) return d
[ "noreply@github.com" ]
Azure.noreply@github.com
85de6259bd21760c8e6bdb9417861277e6c5a064
bdf7bc061652e3683d0fc9d021ff30357bf2aeb5
/spinoffs/oryx/oryx/core/interpreters/inverse/core.py
b624cc2f4853479ef46f16d61e7c1851cc3389f8
[ "Apache-2.0" ]
permissive
danbaker76/probability
1843e8f81d93579ceca25080ff7ac5ce3024482d
64203e2668703220168abeae82c3ac1e9b50424c
refs/heads/master
2022-11-29T06:29:17.878450
2020-08-05T05:23:10
2020-08-05T05:24:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,316
py
# Copyright 2020 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Core logic for the inverse transformation.""" from typing import Iterable import jax from jax import abstract_arrays from jax import core as jax_core from jax import linear_util as lu from jax import tree_util from jax import util as jax_util from jax.interpreters import partial_eval as pe from jax.interpreters import pxla from jax.interpreters import xla import jax.numpy as np from oryx.core import primitive from oryx.core import trace_util from oryx.core.interpreters import harvest from oryx.core.interpreters import propagate from oryx.core.interpreters.inverse import slice as slc safe_map = jax_core.safe_map safe_zip = jax_core.safe_zip Cell = propagate.Cell NDSlice = slc.NDSlice Slice = slc.Slice class InverseAndILDJ(Cell): """Propagates inverse value slices and their ILDJs. An InverseAndILDJ instance keeps track of a set of slices of a value. In the simplest case, the slice's indices capture the entire value, in which case the cell is "top". Partial information is represented with slices that do not capture the entire value. No information, i.e. "bottom', is represented with a cell that has no slices. Joining two cells creates set of slices, and if we detect that the slices can be concatenated, we combine them into a single slice. As propagation progresses, we hope to accumulate enough slices to concatenate them all into this cell's `val`. ILDJs are also kept track of in the same way, except we keep track of the diagonal of the Jacobian since split operations may also split up the Jacobian. """ def __init__(self, aval: jax_core.AbstractValue, slices: Iterable[NDSlice]): super().__init__(aval) self.slices = frozenset(slices) def top(self) -> bool: """Returns if this cell represents the top of the slice lattice. An InverseAndILDJ is at the top if its slice represents the entire array. """ if len(self.slices) != 1: return False if self.aval == jax_core.abstract_unit: return True return list(self.slices)[0].value.shape == self.aval.shape def bottom(self) -> bool: """Returns if this cell represents the bottom of the slice lattice. An InverseAndILDJ is at the bottom if we have no slices. """ return len(self.slices) == 0 # pylint: disable=g-explicit-length-test def __lt__(self, other: 'InverseAndILDJ') -> bool: if self.top() or other.bottom(): return False return all(any(s1 < s2 for s2 in other.slices) for s1 in self.slices) def __eq__(self, other: 'InverseAndILDJ') -> bool: if self.aval != other.aval: return False return self.slices == other.slices def join(self, other: 'InverseAndILDJ') -> 'InverseAndILDJ': if other.top(): return other if other.bottom(): return self if self == other: return self if other < self: return self if self < other: return other all_slices = sorted(self.slices | other.slices, key=lambda slc: tuple(s.start for s in slc.slices)) new_slices = set() active = all_slices.pop(0) while all_slices: for dim in range(len(self.aval.shape)): if active.can_concatenate(all_slices[0], dim): active = active.concatenate(all_slices.pop(0), dim) break else: new_slices.add(active) active = all_slices.pop(0) new_slices.add(active) return InverseAndILDJ(self.aval, new_slices) @property def val(self): if not self.top(): raise AssertionError('Cannot get value from non-top lattice value: ', f'{self.aval}, {self.slices}') return list(self.slices)[0].value @property def ildj(self): if not self.top(): raise AssertionError('Cannot get ildj from non-top lattice value: ', f'{self.aval}, {self.slices}') return list(self.slices)[0].ildj @classmethod def unknown(cls, aval): return InverseAndILDJ(aval, []) @classmethod def new(cls, val): val = np.array(val) aval = jax_core.get_aval(val) if aval is jax_core.abstract_unit: return InverseAndILDJ.unknown(aval) aval = abstract_arrays.raise_to_shaped(aval) ndslice = NDSlice.new(val, np.zeros_like(val)) return InverseAndILDJ(aval, frozenset([ndslice])) def flatten(self): slices = list(sorted(self.slices)) return slices, (self.aval,) @classmethod def unflatten(cls, data, slices): return InverseAndILDJ(data[0], frozenset(slices)) def inverse_and_ildj(f, *trace_args): """Inverse and ILDJ function transformation.""" def wrapped(*args, **kwargs): """Function wrapper that takes in inverse arguments.""" forward_args = trace_args if len(trace_args) else args jaxpr, (in_tree, _) = trace_util.stage(f)(*forward_args, **kwargs) flat_forward_args, _ = tree_util.tree_flatten(forward_args) flat_args, _ = tree_util.tree_flatten(args) flat_constcells = safe_map(InverseAndILDJ.new, jaxpr.literals) flat_forward_avals = [ trace_util.get_shaped_aval(arg) for arg in flat_forward_args] flat_incells = [InverseAndILDJ.unknown(aval) for aval in flat_forward_avals] flat_outcells = safe_map(InverseAndILDJ.new, flat_args) env = propagate.propagate(InverseAndILDJ, ildj_registry, jaxpr.jaxpr, flat_constcells, flat_incells, flat_outcells) flat_incells = [env.read(invar) for invar in jaxpr.jaxpr.invars] if any(flat_incell.is_unknown() for flat_incell in flat_incells): raise ValueError('Cannot invert function.') flat_cells, flat_ildjs = jax_util.unzip2([ (flat_incell.val, flat_incell.ildj) for flat_incell in flat_incells ]) vals = tree_util.tree_unflatten(in_tree, flat_cells) ildjs = tree_util.tree_unflatten(in_tree, flat_ildjs) ildj_ = sum(np.sum(i) for i in ildjs) if len(forward_args) == 1: vals = vals[0] return vals, ildj_ return wrapped def inverse(f, *trace_args): def wrapped(*args, **kwargs): return inverse_and_ildj(f, *trace_args)(*args, **kwargs)[0] return wrapped def ildj(f, *trace_args): def wrapped(*args, **kwargs): return inverse_and_ildj(f, *trace_args)(*args, **kwargs)[1] return wrapped def default_rule(prim, invals, outvals, **params): """Default inversion rule that only does forward eval.""" if all(outval.bottom() for outval in outvals): if all(inval.top() for inval in invals): vals = [inval.val for inval in invals] ans = prim.bind(*vals, **params) if not prim.multiple_results: ans = [ans] # Propagate can only invert functions that are constructed # autoregressively, and therefore the Jacobians of propagate-invertible # functions are lower-triangular. We are therefore safe assign outvals an # ILDJ value of 0 as they are part of forward propagation that will fill # in an off-diagonal entry of the Jacobian and will not contribute to the # log-det Jacobian. outvals = safe_map(InverseAndILDJ.new, ans) return invals, outvals, None if any(outval.bottom() for outval in outvals): return invals, outvals, None raise NotImplementedError(f'No registered inverse for `{prim}`.') class InverseDict(object): """Default rules dictionary that uses a default rule for inverse.""" def __init__(self): self.rules = {} def __getitem__(self, prim): if prim not in self.rules: self[prim] = jax_util.partial(default_rule, prim) return self.rules[prim] def __setitem__(self, prim, val): self.rules[prim] = val def register_elementwise(prim): """Registers an elementwise primitive with ILDJ.""" def make_rule(f): """Accepts an inverse function for a primitive.""" def ildj_rule(incells, outcells, **params): """General InverseAndILDJ rule for elementwise functions.""" outcell, = outcells incell, = incells if incell.is_unknown() and not outcell.is_unknown(): val = outcell.val f_sum = lambda x: f(x).sum() ildj_ = outcell.ildj + np.log(jax.grad(f_sum)(val)) ndslice = NDSlice.new(f(val), ildj_) incells = [InverseAndILDJ(outcell.aval, [ndslice])] elif outcell.is_unknown() and not incell.is_unknown(): outcells = [InverseAndILDJ.new(prim.bind(incell.val, **params))] return incells, outcells, None ildj_registry[prim] = ildj_rule return make_rule def register_binary(prim): """Registers an binary primitive with ILDJ.""" def make_rule(f_left, f_right): def ildj_rule(incells, outcells, **params): outcell, = outcells left, right = incells if not outcell.bottom(): val, ildj_ = outcell.val, outcell.ildj if not left.bottom(): right_val, right_ildj = f_left(left.val, val, ildj_) ndslice = NDSlice.new(right_val, right_ildj) incells = [left, InverseAndILDJ(right.aval, [ndslice])] elif not right.bottom(): left_val, left_ildj = f_right(right.val, val, ildj_) ndslice = NDSlice.new(left_val, left_ildj) incells = [InverseAndILDJ(left.aval, [ndslice]), right] elif (outcell.bottom() and not left.bottom() and not right.bottom()): out_val = prim.bind(left.val, right.val, **params) outcells = [InverseAndILDJ.new(out_val)] return incells, outcells, None ildj_registry[prim] = ildj_rule return make_rule ildj_registry = InverseDict() @lu.transformation_with_aux def flat_propagate(tree, *flat_invals): invals, outvals = tree_util.tree_unflatten(tree, flat_invals) subenv = yield ((invals, outvals), {}) subenv_vals, subenv_tree = tree_util.tree_flatten(subenv) yield subenv_vals, subenv_tree def call_ildj(prim, incells, outcells, **params): """InverseAndILDJ rule for call primitives.""" f, incells = incells[0], incells[1:] flat_vals, in_tree = tree_util.tree_flatten((incells, outcells)) new_params = dict(params) if 'donated_invars' in params: new_params['donated_invars'] = (False,) * len(flat_vals) f, aux = flat_propagate(f, in_tree) subenv_vals = prim.bind(f, *flat_vals, **new_params) subenv_tree = aux() subenv = tree_util.tree_unflatten(subenv_tree, subenv_vals) new_incells = [subenv.read(var) for var in subenv.jaxpr.invars] new_outcells = [subenv.read(var) for var in subenv.jaxpr.outvars] return new_incells, new_outcells, subenv ildj_registry[xla.xla_call_p] = jax_util.partial(call_ildj, xla.xla_call_p) ildj_registry[jax_core.call_p] = jax_util.partial(call_ildj, jax_core.call_p) ildj_registry[pe.remat_call_p] = jax_util.partial(call_ildj, pe.remat_call_p) ildj_registry[harvest.nest_p] = jax_util.partial(call_ildj, harvest.nest_p) def hop_inverse_rule(prim): ildj_registry[prim] = jax_util.partial(call_ildj, prim) primitive.register_hop_transformation_rule('inverse', hop_inverse_rule) def map_ildj(prim, incells, outcells, **params): """InverseAndILDJ rule for the map primitives.""" f, incells = incells[0], incells[1:] def slice_aval(aval): return abstract_arrays.ShapedArray(aval.shape[1:], aval.dtype, aval.weak_type) def add_slice(cell, old_cell): new_slices = [ NDSlice(ndslice.value, ndslice.ildj, Slice(0, old_cell.aval.shape[0]), *ndslice.slices) for ndslice in cell.slices ] return InverseAndILDJ(old_cell.aval, new_slices) def remove_slice(cell): new_slices = [ NDSlice(ndslice.value, ndslice.ildj, *ndslice.slices[1:]) for ndslice in cell.slices ] aval = slice_aval(cell.aval) return InverseAndILDJ(aval, new_slices) mapped_incells = safe_map(remove_slice, incells) mapped_outcells = safe_map(remove_slice, outcells) flat_vals, in_tree = tree_util.tree_flatten((mapped_incells, mapped_outcells)) f, aux = flat_propagate(f, in_tree) # Assume all invars as mapped new_mapped_invars = (True,) * len(flat_vals) new_params = dict(params, mapped_invars=new_mapped_invars) subenv_vals = prim.bind(f, *flat_vals, **new_params) subenv_tree = aux() subenv = tree_util.tree_unflatten(subenv_tree, subenv_vals) new_incells = [subenv.read(var) for var in subenv.jaxpr.invars] new_outcells = [subenv.read(var) for var in subenv.jaxpr.outvars] new_incells = [add_slice(v, old_v) for old_v, v in safe_zip(incells, new_incells)] new_outcells = [add_slice(v, old_v) for old_v, v in safe_zip(outcells, new_outcells)] return new_incells, new_outcells, subenv ildj_registry[pxla.xla_pmap_p] = jax_util.partial(map_ildj, pxla.xla_pmap_p)
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
fe7aaf443019bb4a2a55ba525bbd0e0e5ae91a3f
3965ebf2125cfe1ee375f9ed6c4be393e780f482
/process/CubeConstants.py
61b613bc8bcf6a5c97876680c977a4dee4cf1ced
[]
no_license
treephones/RubikMosaic
37a909b0e50685635d8d6800e735b994c99adf8b
989830b97ed4dd77cb9765b789a084f763914675
refs/heads/master
2023-07-05T16:48:18.270905
2021-08-14T21:15:50
2021-08-14T21:15:50
373,982,965
1
1
null
null
null
null
UTF-8
Python
false
false
434
py
VERTICES = ( (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, -1), (1, -1, 1), (1, 1, 1), (-1, -1, 1), (-1, 1, 1), ) EDGES = ( (0,1), (0,3), (0,4), (2,1), (2,3), (2,7), (6,3), (6,4), (6,7), (5,1), (5,4), (5,7) ) FACES = ( (0,1,2,3), #RED (3,2,7,6), #YELLOW (6,7,5,4), #ORANGE (4,5,1,0), #WHITE (1,5,7,2), #BLUE (4,0,3,6) #GREEN )
[ "moezbajwa@hotmail.com" ]
moezbajwa@hotmail.com
f6710cab1e177e9f9db7f1ca51161835ab62137c
bf4b911f97aa4796508bddc1331d0ac8c0ae9dd5
/quickreport/gui_utils.py
59c7ebd0010bb66861efc54d6b83c159bc09d8c2
[ "ISC" ]
permissive
ricpol/quickreport
d8b42944c2c3d25c552fbb8d105d8b7fb838718c
d59c860f128a723b4b024242bb0bc49c62f8a688
refs/heads/master
2021-03-13T00:01:57.530891
2012-12-04T14:23:34
2012-12-04T14:23:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
# -*- coding: utf8 -*- """Quickreport Utilita' per la gui di Quickreport. ========================================== :version: vedi quickreport.__version.py__ :copyright: Riccardo Polignieri 2012 :license: ISC """ import wx import wx.lib.newevent def ask_path(parent_window): dlg = wx.FileDialog(parent_window, message='Save report', style=wx.SAVE) if dlg.ShowModal() == wx.ID_OK: return dlg.GetPath() else: return None ParamChangedEvt, EVT_PARAM_CHANGED = wx.lib.newevent.NewCommandEvent() def post_evt_param_changed(event): widget = event.GetEventObject() e = ParamChangedEvt(widget.GetId(), param_name=widget.GetName()) wx.PostEvent(widget, e) # event.Skip() # TODO e' il caso? in realta' non mi serve mai...
[ "ric.pol@libero.it" ]
ric.pol@libero.it
a58977ab0eab755a78944597ba8efe93299a9cc7
cb47dc98d6789b17398ec12b9c27905a9ab2ff1f
/scanner.py
77d6df1fc028a71f4246f380187f1b3ee3a28358
[]
no_license
nebstarmalala/network_scanner
5b0ca1b517d3bab6d0ec097e38b9387e2e6e8dd8
cac91d397e0182ec427bec811fd1d1651050e740
refs/heads/master
2022-12-18T16:10:47.778524
2020-08-30T18:57:28
2020-08-30T18:57:28
291,532,833
0
0
null
null
null
null
UTF-8
Python
false
false
1,168
py
#!/usr/bin/env python import subprocess def bash(command): return subprocess.check_output(['bash', '-c', command]) def nmap_scan(ip): print("Scanning TCP ports on " + ip) print("------------------------------------\n") res = bash('nmap -T4 -p1-65535 %s | grep"open"' % ip).splitlines() ports = [] for port in res: print(port) ports.append(port.split("/")[0]) port_list = ",".join(ports) print("Running Intense scan on open ports...\n") bash("nmap -T4 -A -sV -p%s -oN output.txt %s" % (port_list, ip)) print("Nmap Intense scan result logged in output.txt") exit() ip_string = bash('ifconfig wlan0 | grep "inet "') ip = ip_string.strip().split(" ")[1] octets = ".".join(ip.split(".")[:-1]) subnet = octets + ".0/24" print("\nRunning netdiscover on local subnet: %s " % subnet) print("----------------------------------------------------\n") ips = bash('netdiscover -P -r %s | grep "1" | cut -d " " -f2' % subnet).splitlines() for i in range(0, len(ips)): ip = ips[i] print("%s. %s" %(i + 1, ip)) choice = input("Enter an option 1 - %s or 0 to exit: " % len(ips)) nmap_scan(ips[choice - 1])
[ "nebstartrizzle@gmail.com" ]
nebstartrizzle@gmail.com
da01e6382b6d4724c849c3608ea60a9335ad79bf
49d904eda93c11c4563d6d9b257246d5907b562c
/food_platform/migrations/0001_initial.py
9a0735fdee6e77b18b1d2428ed5c8f1278c79a48
[]
no_license
abrusebas1997/realreal
b182586e31051b5a1e8e8f8e7010c98f0b4033d1
3f3771e44cd0c6e7150bc986e2b38eff404bff11
refs/heads/master
2022-11-18T04:49:53.218561
2020-07-20T07:50:40
2020-07-20T07:50:40
278,265,723
0
0
null
null
null
null
UTF-8
Python
false
false
6,804
py
# Generated by Django 2.2.7 on 2020-07-20 06:56 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('is_foodriver', models.BooleanField(default=False)), ('is_foodonator', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Interested_area', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ('color', models.CharField(default='#007bff', max_length=7)), ], ), migrations.CreateModel( name='Pickup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('interested_area', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pickups', to='food_platform.Interested_area')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pickups', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Foodriver', fields=[ ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to=settings.AUTH_USER_MODEL)), ('area', models.ManyToManyField(related_name='interested_foodrivers', to='food_platform.Interested_area')), ], ), migrations.CreateModel( name='PickupTime', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=255, verbose_name='PickupTime')), ('pickup', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pickup_times', to='food_platform.Pickup')), ], ), migrations.CreateModel( name='Answer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('text', models.CharField(max_length=255, verbose_name='Answer')), ('is_correct', models.BooleanField(default=False, verbose_name='Correct answer')), ('pickup_time', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='answers', to='food_platform.PickupTime')), ], ), migrations.CreateModel( name='TakenPickup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('score', models.FloatField()), ('date', models.DateTimeField(auto_now_add=True)), ('pickup', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='taken_pickups', to='food_platform.Pickup')), ('foodriver', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='taken_pickups', to='food_platform.Foodriver')), ], ), migrations.CreateModel( name='FoodriverAnswer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('answer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='food_platform.Answer')), ('foodriver', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='pickup_answers', to='food_platform.Foodriver')), ], ), migrations.AddField( model_name='foodriver', name='pickups', field=models.ManyToManyField(through='food_platform.TakenPickup', to='food_platform.Pickup'), ), ]
[ "sebastianabarca@Sebastians-MacBook-Pro.local" ]
sebastianabarca@Sebastians-MacBook-Pro.local
f0843180bc9b65d61f04683f3da57a11775d3631
f0b8a36f343ff94b04a8dda3cf1629f9faf11c83
/Simple Text classifiers/20Newsgroup dataset based basic DNN Classifiers/20ng_classifier - RNN.py
53b9868ad73dbbab96cf2cd30f4990068370fa41
[ "MIT" ]
permissive
tejasurya/Text_Classification_using_Neural_Networks
0731c82c867b59fb4682a1482b104f1b0f61215c
d4852780e6c86843aee768d306d19428c8cb9c7f
refs/heads/master
2022-04-25T11:01:54.775855
2020-04-28T10:09:06
2020-04-28T10:09:06
259,592,758
1
0
null
null
null
null
UTF-8
Python
false
false
4,693
py
# -*- coding: utf-8 -*- """ Created on Tue Feb 6 15:55:01 2018 @author: HP """ # -*- coding: utf-8 -*- """ Created on Mon Feb 5 14:31:43 2018 @author: HP """ import os import pandas as pd import nltk import gensim from gensim import corpora, models, similarities from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from gensim.models.keyedvectors import KeyedVectors as KV from numpy import asarray from numpy import zeros import numpy as np from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten, LSTM ,Dropout,GRU, Bidirectional, SimpleRNN from keras.layers import Embedding from collections import defaultdict from keras.layers import Conv1D, MaxPooling1D import random from sklearn.datasets import fetch_20newsgroups batch_size=32 embedding_size=128 nclass=20 # Convolution kernel_size = 5 filters1 = 64 filters2 =128 filters3=256 filters4=512 filters5=1024 pool_size = 4 # GRU gru_output_size = 70 #LSTM lstm_output_size = 70 trim_len=200 sample_cnt=500 trainer = fetch_20newsgroups(subset='train') tester = fetch_20newsgroups(subset='test') #input - output train_ip=trainer.data train_op=list(trainer.target) test_ip=tester.data test_op=list(tester.target) ip=train_ip+test_ip op=train_op+test_op ip=ip[0:sample_cnt] for ty in range(len(ip)): ip[ty]=ip[ty][0:trim_len] op=op[0:sample_cnt] len_finder=[] for dat in ip: len_finder.append(len(dat)) #Splitting train and test input_train=[] input_test=[] input_valid=[] j=0; for zz in ip: j=j+1 if (j%5 is 0): input_test.append(zz) elif(j%5 is 1): input_valid.append(zz) else: input_train.append(zz) label_train=[] label_test=[] label_valid=[] j=0; for zz in op: j=j+1 if (j%5 is 0): label_test.append(zz) elif(j%5 is 1): label_valid.append(zz) else: label_train.append(zz) #one hot encoding i=0 y_train=np.zeros((len(label_train),max(label_train)+1)) for x in label_train: y_train[i][x]=1 i=i+1 i=0 y_test=np.zeros((len(label_test),max(label_test)+1)) for x in label_test: y_test[i][x]=1 i=i+1 i=0 y_valid=np.zeros((len(label_valid),max(label_valid)+1)) for x in label_valid: y_valid[i][x]=1 i=i+1 t = Tokenizer() t.fit_on_texts(input_train) vocab_size = len(t.word_index) + 1 # integer encode the documents encoded_docs = t.texts_to_sequences(input_train) #print(encoded_docs) # pad documents to a max length of 4 words max_length = max(len_finder) padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') #print(padded_docs) # load the whole embedding into memory embeddings_index = dict() f = open("G:\\NLP\\Dataset\\GloVe\\glove.6B.100d.txt", encoding="utf8") for line in f: values = line.split() word = values[0] coefs = asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() #print('Loaded %s word vectors.' % len(embeddings_index)) # create a weight matrix for words in training docs embedding_matrix = zeros((vocab_size, 100)) for word, i in t.word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector #Validating the model vt = Tokenizer() vt.fit_on_texts(input_valid) vvocab_size = len(vt.word_index) + 1 # integer encode the documents vencoded_docs = vt.texts_to_sequences(input_valid) #print(encoded_docs) # pad documents to a max length of 4 words vpadded_docs = pad_sequences(vencoded_docs, maxlen=max_length, padding='post') #print(padded_docs) #Testing the model tt = Tokenizer() tt.fit_on_texts(input_test) tvocab_size = len(tt.word_index) + 1 # integer encode the documents tencoded_docs = tt.texts_to_sequences(input_test) #print(encoded_docs) # pad documents to a max length of 4 words tpadded_docs = pad_sequences(tencoded_docs, maxlen=max_length, padding='post') #print(padded_docs) # define model model = Sequential() e = Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=max_length, trainable=False) model.add(e) model.add(SimpleRNN(lstm_output_size,dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(nclass, activation='softmax')) # compile the model model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # summarize the model print(model.summary()) # fit the model model.fit(padded_docs,y_train, epochs=1, verbose=0, validation_data=(vpadded_docs, y_valid)) # evaluate the model loss, accuracy = model.evaluate(tpadded_docs, y_test, verbose=0) print('Accuracy: %f' % (accuracy*100))
[ "hltejasurya@hotmail.com" ]
hltejasurya@hotmail.com
cd2cb50e8b49ee90f5cbf9eeb526f2f1166169e7
ce083128fa87ca86c65059893aa8882d088461f5
/python/pytest-labs/.venv/lib/python3.6/site-packages/facebook_business/adobjects/adruleevaluationspec.py
4480f554fadb01249a0b941d34d8e43f3d4e8247
[]
no_license
marcosptf/fedora
581a446e7f81d8ae9a260eafb92814bc486ee077
359db63ff1fa79696b7bc803bcfa0042bff8ab44
refs/heads/master
2023-04-06T14:53:40.378260
2023-03-26T00:47:52
2023-03-26T00:47:52
26,059,824
6
5
null
2022-12-08T00:43:21
2014-11-01T18:48:56
null
UTF-8
Python
false
false
2,133
py
# Copyright 2014 Facebook, Inc. # You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.abstractobject import AbstractObject """ This class is auto-generated. For any issues or feature requests related to this class, please let us know on github and we'll fix in our codegen framework. We'll not be able to accept pull request for this class. """ class AdRuleEvaluationSpec( AbstractObject, ): def __init__(self, api=None): super(AdRuleEvaluationSpec, self).__init__() self._isAdRuleEvaluationSpec = True self._api = api class Field(AbstractObject.Field): evaluation_type = 'evaluation_type' filters = 'filters' trigger = 'trigger' class EvaluationType: schedule = 'SCHEDULE' trigger = 'TRIGGER' _field_types = { 'evaluation_type': 'EvaluationType', 'filters': 'list<AdRuleFilters>', 'trigger': 'AdRuleTrigger', } @classmethod def _get_field_enum_info(cls): field_enum_info = {} field_enum_info['EvaluationType'] = AdRuleEvaluationSpec.EvaluationType.__dict__.values() return field_enum_info
[ "marcosptf@yahoo.com.br" ]
marcosptf@yahoo.com.br
b5de1597546ebf95d936671f6c05e9fd990fff3f
e49edb54a747c33b95108872de2536cce9ee3ec1
/src/evaluate/non_rg_metrics.py
1216e61dd116063b993a0f848f2ea8345b284651
[]
no_license
anusha66/TextGen-Deep-Learning
74714f4bd2f0728664863f1f5acc1b8cb5c68856
a1cfad2d40d3bd5067508696acffddb74b0d5421
refs/heads/master
2021-04-05T23:59:33.562388
2018-05-27T00:03:53
2018-05-27T00:03:53
124,617,587
0
0
null
null
null
null
UTF-8
Python
false
false
4,331
py
import sys from pyxdameraulevenshtein import normalized_damerau_levenshtein_distance full_names = ['Atlanta Hawks', 'Boston Celtics', 'Brooklyn Nets', 'Charlotte Hornets', 'Chicago Bulls', 'Cleveland Cavaliers', 'Detroit Pistons', 'Indiana Pacers', 'Miami Heat', 'Milwaukee Bucks', 'New York Knicks', 'Orlando Magic', 'Philadelphia 76ers', 'Toronto Raptors', 'Washington Wizards', 'Dallas Mavericks', 'Denver Nuggets', 'Golden State Warriors', 'Houston Rockets', 'Los Angeles Clippers', 'Los Angeles Lakers', 'Memphis Grizzlies', 'Minnesota Timberwolves', 'New Orleans Pelicans', 'Oklahoma City Thunder', 'Phoenix Suns', 'Portland Trail Blazers', 'Sacramento Kings', 'San Antonio Spurs', 'Utah Jazz'] cities, teams = set(), set() ec = {} # equivalence classes for team in full_names: pieces = team.split() if len(pieces) == 2: ec[team] = [pieces[0], pieces[1]] cities.add(pieces[0]) teams.add(pieces[1]) elif pieces[0] == "Portland": # only 2-word team ec[team] = [pieces[0], " ".join(pieces[1:])] cities.add(pieces[0]) teams.add(" ".join(pieces[1:])) else: # must be a 2-word City ec[team] = [" ".join(pieces[:2]), pieces[2]] cities.add(" ".join(pieces[:2])) teams.add(pieces[2]) def same_ent(e1, e2): if e1 in cities or e1 in teams: return e1 == e2 or any((e1 in fullname and e2 in fullname for fullname in full_names)) else: return e1 in e2 or e2 in e1 def trip_match(t1, t2): return t1[1] == t2[1] and t1[2] == t2[2] and same_ent(t1[0], t2[0]) def dedup_triples(triplist): """ this will be inefficient but who cares """ dups = set() for i in xrange(1, len(triplist)): for j in xrange(i): if trip_match(triplist[i], triplist[j]): dups.add(i) break return [thing for i, thing in enumerate(triplist) if i not in dups] def get_triples(fi): all_triples = [] curr = [] with open(fi) as f: for line in f: if line.isspace(): all_triples.append(dedup_triples(curr)) curr = [] else: pieces = line.strip().split('|') curr.append(tuple(pieces)) if len(curr) > 0: all_triples.append(dedup_triples(curr)) return all_triples def trip_match(t1, t2): return t1[1] == t2[1] and t1[2] == t2[2] and same_ent(t1[0], t2[0]) def calc_precrec(goldfi, predfi): gold_triples = get_triples(goldfi) pred_triples = get_triples(predfi) total_tp, total_predicted, total_gold = 0, 0, 0 assert len(gold_triples) == len(pred_triples) for i, triplist in enumerate(pred_triples): tp = sum((1 for j in xrange(len(triplist)) if any(trip_match(triplist[j], gold_triples[i][k]) for k in xrange(len(gold_triples[i]))))) total_tp += tp total_predicted += len(triplist) total_gold += len(gold_triples[i]) avg_prec = float(total_tp)/total_predicted avg_rec = float(total_tp)/total_gold print("totals:", total_tp, total_predicted, total_gold) print("prec:", avg_prec, "rec:", avg_rec) return avg_prec, avg_rec def norm_dld(l1, l2): ascii_start = 0 assert len(l1) + len(l2) <= 128 # make a string for l1 # all triples are unique... s1 = ''.join((chr(ascii_start+i) for i in xrange(len(l1)))) s2 = '' for j in xrange(len(l2)): next_char = chr(ascii_start+len(s1)+j) for k in xrange(len(l1)): if trip_match(l2[j], l1[k]): next_char = s1[k] break s2 += next_char # return 1- , since this thing gives 0 to perfect matches etc return 1.0-normalized_damerau_levenshtein_distance(s1, s2) def calc_dld(goldfi, predfi): gold_triples = get_triples(goldfi) pred_triples = get_triples(predfi) assert len(gold_triples) == len(pred_triples) total_score = 0 for i, triplist in enumerate(pred_triples): total_score += norm_dld(triplist, gold_triples[i]) avg_score = float(total_score)/len(pred_triples) print("avg score:", avg_score) return avg_score calc_precrec(sys.argv[1], sys.argv[2]) calc_dld(sys.argv[1], sys.argv[2]) # usage python non_rg_metrics.py gold_tuple_fi pred_tuple_fi
[ "ubuntu@ip-172-31-10-194.us-west-2.compute.internal" ]
ubuntu@ip-172-31-10-194.us-west-2.compute.internal
5a0258d2f04e9677afeaca8f0973b94b89eac1e4
1063018a00e9aef63402a4e76102c6ab0dce9302
/my3_1.py
88bd705027147a51c80df1166aef959b71aa5988
[]
no_license
seoeugenee/algorithmStudy
8b48864633b322786c8346730e29b8bc00127457
00e2d8c84097155eb4bd4c236e3afa3e3ac53977
refs/heads/main
2023-07-17T23:55:37.826323
2021-08-31T16:31:48
2021-08-31T16:31:48
400,388,241
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
n = 1260 count = 0 money = [500, 100, 50, 10] for m in money: count += n // m n %= m print(count)
[ "noreply@github.com" ]
seoeugenee.noreply@github.com
56d35a738ab699c2cc0e2d1cfdf90e576b4a8f65
7507795830d4113bfd63c73fb764bb967edec266
/desafio_032.py
32431ab67f9b2487c5e3c036d834d184290b1113
[]
no_license
OtherU/Python_Cursos_online
e631ed99ddb04d0e69465d1c7be3147fa8678209
796c044a33a227cdc368c27f8fc984413f075a18
refs/heads/master
2020-05-18T12:52:32.543779
2019-05-01T13:39:48
2019-05-01T13:39:48
184,421,457
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
# ------ Modules ------ # from datetime import date # ------ Header & Footers ------ # header = str(' Desafio 032 ') subfooter = ('-'*68) footer = ('='*68) # ------ Header ------ # print('{:=^68}'.format(header)) # ------ Body ------ # ano = int(input('Digite 0 para analisar o ano atual ou digite um ano: ')) print() if ano == 0: ano = date.today().year if ano % 4 == 0 and ano % 100 != 0 or ano % 400 == 0: print('O ano {} e um ano bixesto!'.format(ano)) else: print('O ano {} NAO e um ano bixesto!'.format(ano)) # ------ Footers ------ # print(subfooter) print(footer)
[ "annuit-coeptis@hotmail.co.jp" ]
annuit-coeptis@hotmail.co.jp
204abf2e1db41b95502b3d8ec44918d588887b80
6721542d3cc44c50a5d40e3f3a6ac49b266069d6
/Python_algorithms_and_functions/sync_v1.py
5ad281b0d568940d4c02c3988a396f0613d1fb4a
[]
no_license
LuizaM21/Learn_python
c943245b5c2101bf93bb4704dc56c72213b99098
e9c6f1213de287b671fd6eff20453843cfcd2786
refs/heads/master
2021-07-11T19:21:38.613300
2020-07-10T19:54:31
2020-07-10T19:54:31
151,253,553
0
0
null
null
null
null
UTF-8
Python
false
false
4,094
py
"""Modul de sincronizare a doua fisere.""" from __future__ import print_function import sys import os import time import shutil if len(sys.argv) < 3: print("Nu am primit 2 parametri") sys.exit(1) parametru_1 = sys.argv[1] parametru_2 = sys.argv[2] # verifcia daca primul parametru este director if not os.path.isdir(parametru_1): print("Primul parametru nu este director ") sys.exit(1) if not os.path.isdir(parametru_2): print("Al doilea parametru nu este director ") sys.exit(1) if parametru_1 == parametru_2: print("Nu pot sincroniza acelasi director cu el insusi") sys.exit(1) print("Incepem sincronizarea ...") def get_file(director): fisiere_director = [] for item_name in os.listdir(director): full_path = os.path.join(os.path.abspath(director), item_name) if os.path.isfile(full_path): fisiere_director.append(item_name) return fisiere_director def get_dir(director): dirs = [] for item_name in os.listdir(director): full_path = os.path.join(os.path.abspath(director), item_name) if os.path.isdir(full_path): dirs.append(item_name) return dirs def sincronizeaza_fisiere(sursa, destinatie, prefix=""): """Sincronizam directorul sursa cu directorul destinatie.""" print(prefix, "++ ", sursa, " ... ", destinatie) fisiere_sursa = get_file(sursa) fisiere_destinatie = get_file(destinatie) dirs_sursa = get_dir(sursa) dirs_destinatie = get_dir(destinatie) print(prefix, "Sursa : ") for item in fisiere_sursa: print(prefix, " - {}".format(item)) print(prefix, "Destinatie: ") for item in fisiere_destinatie: print(prefix, " - {}".format(item)) print("\n") # sincronizare I - daca un fisier exista in sursa # - dar nu exista in destinatie # -> # * copie fisierul din sursa in destinatie for item in fisiere_sursa: item_to_copy = os.path.join(os.path.join(sursa, item)) dest_item = os.path.join(os.path.join(destinatie, item)) if item not in fisiere_destinatie: print(prefix, item_to_copy, " - copy - > ", dest_item) shutil.copy(item_to_copy, dest_item) else: # verific daca continutul difera continut_sursa = open(item_to_copy, "r").read() continut_destinatie = open(dest_item, "r").read() if continut_sursa != continut_destinatie: print(prefix, item_to_copy, " - modify - > ", dest_item) shutil.copy(item_to_copy, dest_item) # sincronizare II - daca un fisier exista in destinatie # - dar nu exista in sursa # -> # * sterge fisierul din destinatie for item in fisiere_destinatie: if item not in fisiere_sursa: item_to_remove = os.path.abspath(os.path.join(destinatie, item)) print(prefix, item_to_remove, " - remove - > ") os.remove(item_to_remove) # ----- dirs logic print(prefix, "Dirs Sursa : ") for item in dirs_sursa: print(prefix, " - {}".format(item)) print(prefix, "Dirs Destinatie: ") for item in dirs_destinatie: print(prefix, " - {}".format(item)) print("\n") for dir_name in dirs_destinatie: if dir_name not in dirs_sursa: item_to_remove = os.path.join( os.path.abspath(destinatie), dir_name) print(prefix, item_to_remove, " - remove dir - >") shutil.rmtree(item_to_remove) for item in dirs_sursa: dir_sursa = os.path.join(os.path.join(sursa, item)) dir_to_create = os.path.join(os.path.join(destinatie, item)) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) sincronizeaza_fisiere(dir_sursa, dir_to_create, prefix=prefix + " ") while True: time.sleep(1) os.system("clear") print("Start sincronizare ...") sincronizeaza_fisiere(parametru_1, parametru_2)
[ "luiza.mihaiuc@gmail.com" ]
luiza.mihaiuc@gmail.com
35114d1d0d2e97b10c9a8423a1abe59454670407
6e331f2713952958669aaeaf95bf653582390b54
/.idea/3.py
1f4bfb51c3bf243f125498dacd6b23fb69e836e5
[]
no_license
XQ96/huawei_online_programming
be1576abde9624588a64f382cc8f1fde12d842d5
3e0070fc8bfeaa66fcefb5dcb6dab83b0cf6abc2
refs/heads/master
2020-04-27T20:38:57.382389
2019-03-20T11:24:18
2019-03-20T11:24:18
174,665,543
0
0
null
null
null
null
UTF-8
Python
false
false
1,179
py
# -*- coding:utf-8 -*- # @Author:xuqi # @time:2019/3/7 10:39 # @File:3.py ''' 题目描述 明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤1000),对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。然后再把这些数从小到大排序,按照排好的顺序去找同学做调查。请你协助明明完成“去重”与“排序”的工作(同一个测试用例里可能会有多组数据,希望大家能正确处理)。 Input Param n 输入随机数的个数 inputArray n个随机整数组成的数组 Return Value OutputArray 输出处理后的随机整数 ''' import sys while True: try: n=int(sys.stdin.readline().strip('\n')) L=[] for i in range(n): num=int(sys.stdin.readline().strip('\n')) L.append(num) a=list(set(L)) b=sorted(a) for i in b:#注意py遍历数组list特别方便直接遍历,range针对一个的、范围 print(i) except: break
[ "mf1832199@smail.nju.edu.cn" ]
mf1832199@smail.nju.edu.cn
d981be4bb28ee793707e5fb9eda4573c006d75af
8d0b4e03c605f517bd92615975806588d4770034
/tracking/twodim/matutil.py
0dbfb3e2063ace1e3d159b7e94f1644f14e8252d
[]
no_license
ezhou7/CS563
0c2b4c4db94de44a50e2444744c175f39019a0ea
223cfb5be34d8a8dbf652bb9c9462c34079760a8
refs/heads/master
2021-08-23T14:06:04.140224
2017-12-05T05:35:56
2017-12-05T05:35:56
107,323,625
0
0
null
2017-10-18T22:37:22
2017-10-17T21:03:03
Python
UTF-8
Python
false
false
541
py
import numpy as np from tracking.twodim import bcell def many_to_many_dists(group1: np.array, group2: np.array) -> np.array: p1 = group1[:, bcell.BEG_POS_INDEX:bcell.END_POS_INDEX] p2 = group2[:, bcell.BEG_POS_INDEX:bcell.END_POS_INDEX] p1 = p1.reshape((p1.shape[0], p1.shape[1], 1)) p2 = p2.reshape((p2.shape[0], p2.shape[1], 1)) p1_repmat = np.tile(p1, (1, 1, p2.shape[0])) p2_repmat = np.tile(p2, (1, 1, p1.shape[0])).swapaxes(0, 2) return np.linalg.norm(p1_repmat - p2_repmat, axis=1).astype("float32")
[ "noreply@github.com" ]
ezhou7.noreply@github.com
8be61fd1d4a1401aa590c93db9ba7735e637b88c
b09359f45057a91a4f532c5cb5b1cc44bc86a8e1
/app.py
2746a449b48ced0a42534f949fddc1c895208806
[]
no_license
AnitaVaish/cosmosTracker
374f081e116aa9e2896b16d7fde23f76c24bcf89
109acd614991de801fdf6c21a76d8a391f4f729e
refs/heads/main
2023-04-22T00:46:19.601138
2021-05-15T10:13:34
2021-05-15T10:13:34
367,356,946
0
1
null
null
null
null
UTF-8
Python
false
false
1,805
py
from config import application, scheduler from schedule_message import schedule_message from schedule_report import schedule_report from schedule_users_reset import schedule_users_reset import tracker_application from utils.constant_variables import INITIAL_MESSAGE_HOUR, INITIAL_MESSAGE_MINUTES, REPORT_HOUR, REPORT_MINUTES, \ DAY_OF_WEEKS, USER_RESET_HOUR, USER_RESET_MINUTES if __name__ == "__main__": """ Scheduler to reset all users states """ scheduler.add_job(id='schedule_users_reset', func=schedule_users_reset, trigger='cron', day_of_week=DAY_OF_WEEKS, hour=int(USER_RESET_HOUR), minute=int(USER_RESET_MINUTES)) """ Scheduler for the initial (default) message Method arguments: id = unique id (string) the scheduler func = which method should be executed trigger = how should the scheduler be repeated - "cron" (24 hours) day_of_week = on which days should the scheduler be executed hour, minute = exact time of the scheduler """ scheduler.add_job(id='schedule_message', func=schedule_message, trigger='cron', day_of_week=DAY_OF_WEEKS, hour=int(INITIAL_MESSAGE_HOUR), minute=int(INITIAL_MESSAGE_MINUTES)) """ Scheduler for the final report message """ scheduler.add_job(id='schedule_report', func=schedule_report, trigger='cron', day_of_week=DAY_OF_WEEKS, hour=int(REPORT_HOUR), minute=int(REPORT_MINUTES)) application.run(host='0.0.0.0', port=6000, debug=False)
[ "anita.vaish@cosmosthrace.com" ]
anita.vaish@cosmosthrace.com
d3593d8c300ad70e69bb82d3d61b0b2704d1da09
6b687ec14f44d5724f5f58696291dcf8f98d8c55
/lesson2/exmpl_for_3.py
8ba2987194fa5c769a28a4f857e1ebbde4cd8e9b
[]
no_license
SvyatZanozdra/LP_projects
b215305199b454d74aa070f0586744b4c124a02c
2e648c700d275e77bc7652ed5690c7699d9db837
refs/heads/master
2020-09-21T10:20:24.526915
2019-12-08T09:56:16
2019-12-08T09:56:16
224,763,333
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
from exmpl_if_3 import discounted stock = [ {'name': 'iPhone Xs Plus', 'stock': 24, 'price': 65432.1, 'discount': 25}, {'name': 'Samsung Galaxy S10', 'stock': 8, 'price': 50000.0, 'discount': 10}, {'name': '', 'stock': 18, 'price': 10000.0, 'discount': 10} ] for phone in stock: phone['final_price'] = discounted(phone['price'], phone['discount'], name=phone['name']) print(stock)
[ "ZanozdraSV@yandex.ru" ]
ZanozdraSV@yandex.ru
1eafb2a7ad82c3c27f689f825cced52edcbf1a0c
46b432cd3557038c454601367b878f889c9b6a8f
/naomi/tutorial13/test_hmm_beam.py
627af3b1bcdc7893c2fcc0165fd28222731d08bd
[]
no_license
tmu-nlp/NLPtutorial2019
84ceec06568fd9d899a686658fb8851466133375
d77d199c50cd37d70e462209a7bfcd4dee9140a1
refs/heads/master
2020-05-14T13:34:05.336594
2019-09-25T02:25:41
2019-09-25T02:25:41
181,814,723
1
0
null
2019-08-01T18:53:54
2019-04-17T04:04:06
Python
UTF-8
Python
false
false
5,641
py
from collections import defaultdict import numpy as np # 入力 # train-input.txt # a_X b_Y a_Z # train-answer.txt # T <s> X 1.000000 # E X a 0.666667 def train_hmm(): in_path = '../../test/05-train-input.txt' in_path = '../../data/wiki-en-train.norm_pos' out_path = 'trained_model.txt' emission = defaultdict(lambda: 0) transition = defaultdict(lambda: 0) context = defaultdict(lambda: 0) for line in open(in_path, 'r', encoding='utf-8'): word_tag_list = line.rstrip().split() # 文頭記号 previous = '<s>' # 単語_タグずつ for word_tag in word_tag_list: # 出力(今の単語 → 今のtag) emission[word_tag] += 1 word, tag = word_tag.split('_') # 遷移(前のtag → 今のtag) transition[f'{previous} {tag}'] += 1 # 前のtag context[previous] += 1 # 次のステップのために保存 previous = tag # 文末記号 context[previous] += 1 transition[f'{tag} </s>'] += 1 with open(out_path, 'w+', encoding='utf-8') as f: # 遷移(前の品詞から今の品詞)確率の計算 for (key, value) in transition.items(): [previous, current] = key.split() print('T {0} {1:.5f}'.format(key, value/context[previous]), file=f) # 生成(その品詞からその単語)確率の計算 for (key, value) in emission.items(): [word, tag] = key.split('_') print('E {0} {1} {2:.5f}'.format(tag, word, value/context[tag]), file=f) def test_hmm_beam(): modelpath = 'trained_model.txt' prob_e = defaultdict(lambda: 0) prob_t = defaultdict(lambda: 0) possible_tags = defaultdict(lambda: 0) for line in open(modelpath, 'r', encoding='utf-8'): TE, key1, key2, prob = line.split() possible_tags[key1] += 1 if TE == 'T': prob_t[f'{key1} {key2}'] = float(prob) else: prob_e[f'{key1} {key2}'] = float(prob) l1 = 0.9 # 未知語を含んだ語彙数 V = 1e6 tags_list = [] testpath = '../../test/05-test-input.txt' testpath = '../../data/wiki-en-test.norm' # 前向きステップ for line in open(testpath, 'r', encoding='utf-8'): best_score = defaultdict(lambda: 0) best_edge = defaultdict(lambda: 0) active_tags = defaultdict(lambda: 0) best_score['0 <s>'] = 0 # <s> で開始 best_edge['0 <s>'] = None active_tags[0] = ['<s>'] words = line.rstrip().split() for i, word in enumerate(words): my_best = {} for prev in active_tags[i]: for nxt in possible_tags: if f'{i} {prev}' not in best_score or\ f'{prev} {nxt}' not in prob_t: continue # 遷移確率 Pt = prob_t[f'{prev} {nxt}'] # 未知語を含むときの生成確率 Pe = l1 * prob_e[f'{nxt} {word}'] + (1-l1)/V score = (best_score[f'{i} {prev}'] - np.log2(Pt) - np.log2(Pe)) if f'{i+1} {nxt}' in best_score and\ best_score[f'{i+1} {nxt}'] <= score: continue best_score[f'{i+1} {nxt}'] = score best_edge[f'{i+1} {nxt}'] = f'{i} {prev}' my_best[nxt] = score sorted_tags = [k for k in sorted(my_best, key=my_best.get, reverse=False)] active_tags[i+1] = sorted_tags[:3] # 文末記号への遷移を考える for tag in possible_tags: if '{0} {1}'.format((i+1), tag) not in best_score \ or tag + ' </s>' not in prob_t: continue # 遷移確率 Pt = prob_t[tag + ' </s>'] # 未知語を含むときの生成確率 Pe = l1 * prob_e[tag + ' </s>'] + (1-l1)/V # スコアの計算 score = (best_score['{0} {1}'.format(i+1, tag)] - np.log2(Pt) - np.log2(Pe)) # ベストスコアのチェック(小さいほどよい) if f'{i+1+1} </s>' in best_score \ and best_score[f'{i+1+1} </s>'] <= score: continue # ベストスコアの更新 best_score[str(i+1+1)+' </s>'] = score best_edge[str(i+1+1)+' </s>'] = '{0} {1}'.format(i+1, tag) # 後ろ向きステップ tags = [] next_edge = best_edge[str(i+1+1)+' </s>'] while next_edge != '0 <s>': # このエッジの品詞を出力に追加 position, tag = next_edge.split() tags.append(tag) next_edge = best_edge[next_edge] # 順番を入れ替える tags = tags[::-1] tags_list.append(' '.join(tags)) return tags_list if __name__ == "__main__": train_hmm() tags_list = test_hmm_beam() with open('tutorial13.txt', 'w+', encoding='utf-8') as fout: for tags in tags_list: print(tags, file=fout) # Accuracy: 90.51% (4130/4563) # Most common mistakes: # NNS --> NN 55 # NN --> JJ 29 # NNP --> NN 25 # JJ --> DT 24 # JJ --> NN 15 # VBN --> NN 12 # JJ --> VBN 11 # NN --> IN 10 # NN --> DT 10 # VBG --> NN 9
[ "naomi@komachi.live" ]
naomi@komachi.live
d37a223d39efa8a3b2a59efcd47746197fd813f0
59754dd50b71346da2b26d77eb5ad33d55ec4cbc
/models.py
5d529df7f1d044a98f66dcdf3b6b01eec45383d6
[]
no_license
AllenCall/ICBC
4380d431d40b45b13ef4d5494a4302d7fa9df12f
d1ac3037dd352d7cd0b399f0bb868a48d470177e
refs/heads/master
2020-09-21T09:54:01.795286
2019-12-04T01:34:30
2019-12-04T01:34:30
224,552,485
0
0
null
null
null
null
UTF-8
Python
false
false
1,072
py
from exts import db class User(db.Model): __tablename__ = 'user' id = db.Column(db.Integer,autoincrement=True,primary_key=True) email = db.Column(db.String(50)) userName = db.Column(db.String(50)) passWord = db.Column(db.String(10)) balance = db.Column(db.Float,default=0) article_tag_table = db.Table( 'article_tag', db.Column('article_id',db.Integer,db.ForeignKey('article.id'),primary_key=True), db.Column('tag_id',db.Integer,db.ForeignKey('tag.id'),primary_key=True) ) class Article(db.Model): __tablename__ = 'article' id = db.Column(db.Integer,autoincrement=True,primary_key=True) articleName = db.Column(db.String(50)) author_id = db.Column(db.Integer,db.ForeignKey('user.id')) author = db.relationship('User',backref = 'articles') tags = db.relationship('Tag',secondary = article_tag_table,backref = 'articles') class Tag(db.Model): __tablename__ = 'tag' id = db.Column(db.Integer, autoincrement=True,primary_key=True) tag = db.Column(db.String(12)) if __name__ == '__main__': pass
[ "310315734@qq.com" ]
310315734@qq.com
2f095febfca64956c65edf32419e1d73c16ff423
88928147ef247c4112caa08cc4a20d262d614066
/src/reportgen/reportgen.py
67c891f410ebd1b961b7ca2b9822700dc2b1a116
[]
no_license
HSIYJND/TreeCrownDelineation
0d5671f7be846b9a7af32b84b03617f921e57335
0d628a80fe055556488ac7b119d79c22297782f2
refs/heads/master
2021-06-22T04:54:44.792478
2017-08-27T21:49:51
2017-08-27T21:49:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,076
py
''' Created on May 1, 2017 @author: arvind ''' from jinja2 import Environment, FileSystemLoader import datetime import numpy as np from weasyprint import HTML import cv2 import georasters as gr from matplotlib import pyplot as plt import gdal import shapefile from osgeo import osr import pylab as py from os import listdir from os.path import isfile, join from eval_itcd_task import DelineationMetric from eval_align_task import AlignMetric from eval_classify_task import ClassifyMetric class ReportGenerator(object): ''' classdocs ''' def __init__(self, config): ''' Constructor ''' params = config.template_vars date = datetime.datetime.now() params['time_submitted'] = str(date) self.template_vars = params pwd = config.datadir sf = shapefile.Reader(pwd + 'vector/Final Untagged Trees.shp') shapes = sf.shapes() sf = shapefile.Reader(pwd + 'vector/Final Tagged Trees.shp') self.shapes = shapes + sf.shapes() self.number_of_plots = 42 self.config = config self.is_debug = False self.resolution_of_graphs = 100 def generate(self): report_template = self.config.template_dir env = Environment(loader=FileSystemLoader(report_template)) template = env.get_template('DSEReportTemplate.html') self.generate_task_1() self.generate_task_2() self.generate_task_3() date = datetime.datetime.now() self.template_vars['time_evaluated'] = str(date) html_out = template.render(self.template_vars) HTML(string=html_out, base_url=report_template).write_pdf(self.config.outdir + 'report.pdf', zoom=1.0, stylesheets=["/home/arvind/Desktop/style.css"]) def generate_task_3(self): task3_evaluator = ClassifyMetric(self.config) self.template_vars['t3_score'] = '%.3f' % (task3_evaluator.evaluate()* 100) self.template_vars['t3_r1_score'] = '%.3f' % (task3_evaluator.rank_1_acc * 100) precision_map = task3_evaluator.get_precision_map() self.plot_and_save(precision_map, #map 'Species', #xlabel 'Precision', #ylabel 'Species Classification Precision', #title 'species_classification_precision.png'); #filename recall_map = task3_evaluator.get_recall_map() self.plot_and_save(recall_map, #map 'Species', #xlabel 'Recall', #ylabel 'Species Classification Recall', #title 'species_classification_recall.png'); #filename self.draw_confusion_matrix_table(task3_evaluator.confusion_matrix, task3_evaluator.species_list) self.template_vars['confusion_matrix_table'] = task3_evaluator.confusion_matrix self.template_vars['species_list'] = task3_evaluator.species_list def intersects(self, r1, r2): return (r1[0] < r2[2] and r1[2] > r2[0] and r1[1] < r2[3] and r1[3] > r2[1] ) def generate_task_1(self): pwd = self.config.indir bpwd = self.config.datadir task1_evaluator = DelineationMetric() files = [f for f in listdir(pwd) if isfile(join(pwd, f)) and f.endswith('shp')] self.number_of_plots = len(files) for f in files: sf_pred = shapefile.Reader(pwd+f) plotno = f.split('_')[1].split('.')[0] filepath = bpwd + 'raster/chm/OSBS_' + plotno + '_chm.tif' chmimg = gr.from_file(filepath) #loading image filepath = bpwd + 'raster/camera/OSBS_' + plotno + '_camera.tif' camera_file = gdal.Open(filepath) b = np.flipud(camera_file.GetRasterBand(1).ReadAsArray(0, 0, camera_file.RasterXSize, camera_file.RasterYSize).astype(np.uint8)) g = np.flipud(camera_file.GetRasterBand(2).ReadAsArray(0, 0, camera_file.RasterXSize, camera_file.RasterYSize).astype(np.uint8)) r = np.flipud(camera_file.GetRasterBand(3).ReadAsArray(0, 0, camera_file.RasterXSize, camera_file.RasterYSize).astype(np.uint8)) img = cv2.merge([r,g,b]) sf = shapefile.Reader(bpwd+'/vector/Final Tagged Trees.shp') #reading projection extent from chmimg plot_extent = [chmimg.xmin,chmimg.ymin,chmimg.xmax,chmimg.ymax] dataset = gdal.Open(filepath) sr = dataset.GetProjectionRef() osrobj = osr.SpatialReference() osrobj.ImportFromWkt(sr) srs = osr.SpatialReference() srs.ImportFromWkt('GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137,298.257223563]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]') ct = osr.CoordinateTransformation( osrobj, srs ) ct1 = osr.CoordinateTransformation( srs, osrobj ) _plot = ct.TransformPoint(plot_extent[0], plot_extent[1]) _plot = _plot[0:2] + ct.TransformPoint(plot_extent[2], plot_extent[3]) _plot = _plot[:-1] _plot = np.array(_plot) shp_cont = [] # checks for polygons which intersect with the current region of interest(plot) # also converts world coordinates to pixel coordinates to have a standard form # which enables jaccard computation. Since the transform is affine it shouldnt matter! for shape in sf.shapes(): if self.intersects(_plot, shape.bbox): points = [] for p in shape.points: l = ct1.TransformPoint(p[0], p[1])[:-1] - np.array(plot_extent[:2]) l[0] = (l[0] * img.shape[0])/(plot_extent[2] - plot_extent[0]) l[1] = (l[1] * img.shape[1])/(plot_extent[3] - plot_extent[1]) points.append(np.int32(np.ceil(l))) shp_cont.append(np.array([points])) sf = shapefile.Reader(bpwd+'/vector/Final Untagged Trees.shp') for shape in sf.shapes(): if self.intersects(_plot, shape.bbox): points = [] for p in shape.points: l = ct1.TransformPoint(p[0], p[1])[:-1] - np.array(plot_extent[:2]) l[0] = (l[0] * img.shape[0])/(plot_extent[2] - plot_extent[0]) l[1] = (l[1] * img.shape[1])/(plot_extent[3] - plot_extent[1]) points.append(np.int32(np.ceil(l))) shp_cont.append(np.array([points])) shp_pred = [] for shape in sf_pred.shapes(): points = [] for p in shape.points: points.append(np.int32(p)) shp_pred.append(np.array([points])) _, base, pred = task1_evaluator.calculateHungarianAssignment(plotno, shp_cont, shp_pred) if self.is_debug and plotno=='006': img1 = img.copy() for pair in task1_evaluator.assigmentMap: cv2.drawContours(img1, [base[pair[0]]], -1, thickness=1, color=[0,255,0]) cv2.drawContours(img1, [pred[pair[1]]], -1, thickness=1, color=[255,0,0]) plt.imshow(img1) plt.show() i = 0 bottom5, top5 = task1_evaluator.getTopPolygons() for entry in top5: plotno = entry[0][0] contour = entry[1][1] self.draw_contour_and_save(plotno, contour, 'top5', i) i+=1 i = 0 for entry in bottom5: plotno = entry[0][0] contour = entry[1][1] self.draw_contour_and_save(plotno, contour, 'bottom5', i) i+=1 ind = np.arange(self.number_of_plots) width = 0.2 p1 = plt.bar(ind, task1_evaluator.plotLevelTruePositives, width, color='g') p2 = plt.bar(ind, task1_evaluator.plotLevelFalsePositives, width, color='r', bottom=task1_evaluator.plotLevelTruePositives) p3 = plt.bar(ind, task1_evaluator.plotLevelFalseNegatives, width, color='b', bottom=task1_evaluator.plotLevelFalsePositives) plt.ylabel('Scores') plt.title('Plot Level Confusion Matrix') plt.ylim(1,np.max([np.max(task1_evaluator.plotLevelTruePositives), np.max(task1_evaluator.plotLevelFalsePositives), np.max(task1_evaluator.plotLevelFalseNegatives)])) plt.legend((p1[0], p2[0], p3[0]), ('TruePositive', 'FalsePositive','FalseNegative')) py.savefig(self.config.outdir + 'confusionMatrix.png', bbox_inches='tight', dpi=self.resolution_of_graphs) self.template_vars['t1_score'] = '%.3f' % (task1_evaluator.getFinalJaccardScore()) plt.clf() task1_evaluator.getHistogramForRecall() py.savefig(self.config.outdir + 'histogramMatrix.png', bbox_inches='tight', dpi=self.resolution_of_graphs) tp, fp, fn = task1_evaluator.getConfusionMatrix() self.template_vars['true_positive'] = tp self.template_vars['false_positive'] = fp self.template_vars['true_negative'] = '-' self.template_vars['false_negative'] = fn def generate_task_2(self): task2_evaluator = AlignMetric(self.config) self.template_vars['t2_score'] = '%.3f' % (task2_evaluator.evaluate()* 100) count_correct_pred = task2_evaluator.plotwise_accuracy self.plot_and_save(count_correct_pred, #map 'Plot No.', #xlabel 'Count of Correct Alignment', #ylabel 'Crown Alignment Accuracy', #title 'crown_alignment.jpg'); #filename def plot_and_save(self, val_map, xlab, ylab, title, filename): plt.clf() plt.bar(range(len(val_map)), val_map.values(), align='center') _, labels = plt.xticks(range(len(val_map)), val_map.keys()) plt.setp(labels, rotation=90) plt.xlabel(xlab) plt.ylabel(ylab) plt.title(title) py.savefig(self.config.outdir + filename, bbox_inches='tight', dpi=self.resolution_of_graphs) def draw_contour_and_save(self, plotno, contour, filepfx, count): filepath = self.config.datadir + 'raster/camera/OSBS_' + plotno + '_camera.tif' camera_file = gdal.Open(filepath) col = [0,0,255] if filepfx.find('top')!=-1: col = [0, 255, 0] b = np.flipud(camera_file.GetRasterBand(1).ReadAsArray(0, 0, camera_file.RasterXSize, camera_file.RasterYSize).astype(np.uint8)) g = np.flipud(camera_file.GetRasterBand(2).ReadAsArray(0, 0, camera_file.RasterXSize, camera_file.RasterYSize).astype(np.uint8)) r = np.flipud(camera_file.GetRasterBand(3).ReadAsArray(0, 0, camera_file.RasterXSize, camera_file.RasterYSize).astype(np.uint8)) img = cv2.merge([r,g,b]) cv2.drawContours(img, [contour], -1, color=col, thickness=2) cv2.imwrite(self.config.outdir + filepfx + '_'+str(count)+'.jpg', img) def draw_confusion_matrix_table(self, confusion_matrix, species_list): plt.clf() _, axs =plt.subplots(1,1) col_width=.070 axs.axis('tight') axs.axis('off') tab = axs.table(cellText=np.int32(confusion_matrix),loc='center') tab.auto_set_font_size(False) tab.set_fontsize(10) tab.scale(1.2, 1.5) hoffset=-0.07 voffset=1.12 count=0 for s in species_list: axs.annotate(' '+s , xy=(hoffset+count*col_width,voffset), xycoords='axes fraction', ha='left', va='bottom', rotation=90, size=10) count+=1 py.savefig(self.config.outdir + 'confusion_matrix_table.jpg', bbox_inches='tight', dpi=self.resolution_of_graphs)
[ "Nishant Agarwal" ]
Nishant Agarwal
21f0e590ada159ab80fccd55fd6750e45b800aad
d75c1f9645c8c80ca33c0c461e3c39ea3ec30b9b
/app/recipe/tests/test_tags_api.py
d48d403914c6f5977bd13278c1c83f52672fca68
[ "MIT" ]
permissive
ahrav/recipe-app-api
f47af2c99ced8cf6e9e193744b56557a81922379
31c0ff9bda5b12113c78eb314549c2cb0243db25
refs/heads/master
2020-05-27T05:50:21.674371
2019-06-22T13:12:50
2019-06-22T13:12:50
188,508,173
0
0
null
null
null
null
UTF-8
Python
false
false
4,018
py
from django.contrib.auth import get_user_model from django.urls import reverse from django.test import TestCase from rest_framework import status from rest_framework.test import APIClient from core.models import Tag, Recipe from recipe.serializers import TagSerializer TAGS_URL = reverse('recipe:tag-list') class PublicTagsApiTests(TestCase): """Test the public available tags API""" def setUp(self): self.client = APIClient() def test_login_required(self): """Test that login is required for retrieving tags""" res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_403_FORBIDDEN) class PrivateTagsApiTests(TestCase): """Test the authorized user tags API""" def setUp(self): self.user = get_user_model().objects.create_user( 'test@tes.com', 'password' ) self.client = APIClient() self.client.force_authenticate(self.user) def test_retrieve_tags(self): """Test retrieving tags""" Tag.objects.create(user=self.user, name='Carnivore') Tag.objects.create(user=self.user, name='Dessert') res = self.client.get(TAGS_URL) tags = Tag.objects.all().order_by('name') serializer = TagSerializer(tags, many=True) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data, serializer.data) def test_tags_limited_to_user(self): """Test that tags returned are for authenticated users""" user2 = get_user_model().objects.create_user( 'other@go.com', 'password22' ) Tag.objects.create(user=user2, name='Savory') tag = Tag.objects.create(user=self.user, name='Fried Food') res = self.client.get(TAGS_URL) self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data), 1) self.assertEqual(res.data[0]['name'], tag.name) def test_create_tag_success(self): """Test creating a new tag""" payload = {"name": "Mexican Food"} res = self.client.post(TAGS_URL, payload) exists = Tag.objects.filter( user=self.user, name=payload['name'] ).exists() self.assertTrue(exists) self.assertEqual(res.status_code, status.HTTP_201_CREATED) def test_create_tag_invalid(self): """Test creating tag with invalid payload""" payload = {'name': ''} res = self.client.post(TAGS_URL, payload) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) def test_retrieve_tags_assigned_to_recipes(self): """Test filtering tags by those assigned to recipes""" tag1 = Tag.objects.create(user=self.user, name='Breakfast') tag2 = Tag.objects.create(user=self.user, name='Dinner') recipe = Recipe.objects.create( title='Breakfast jam', time_minutes=4, price=5, user=self.user ) recipe.tags.add(tag1) res = self.client.get(TAGS_URL, {'assigned_only': 1}) serializer1 = TagSerializer(tag1) serializer2 = TagSerializer(tag2) self.assertIn(serializer1.data, res.data) self.assertNotIn(serializer2.data, res.data) def test_retrieve_tags_assigned_unique(self): """Test filtering tags by assigned return unique items""" tag = Tag.objects.create(user=self.user, name='Breakfast') Tag.objects.create(user=self.user, name='Dinner') recipe1 = Recipe.objects.create( title='Waffles', time_minutes=2, price=.50, user=self.user ) recipe1.tags.add(tag) recipe2 = Recipe.objects.create( title='Oatmeal', time_minutes=2, price=.75, user=self.user ) recipe2.tags.add(tag) res = self.client.get(TAGS_URL, {'assigned_only': 1}) self.assertEqual(len(res.data), 1)
[ "ahravdutta02@gmail.com" ]
ahravdutta02@gmail.com
efae90dda347c3f09c8f1505cdd2780152074765
7a5ddd25569adc8d48fb5abdb5786dafd760e0e2
/env/bin/pyrcc5
8bb2f6faec39aa12284c097f045778c77c4134d6
[]
no_license
roblivesinottawa/MoviesDatabasePyQt
07c064be7a0cb187a4e287a61b9e426b81856edb
cf10721cee7075b12afe2b77520830382f389dba
refs/heads/main
2023-05-01T18:39:54.426668
2021-05-12T18:31:50
2021-05-12T18:31:50
366,515,885
0
0
null
null
null
null
UTF-8
Python
false
false
300
#!/Users/macbookpro/Desktop/programming/may(2021)/MovieDatabasePyQt/movies_database_gui/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from PyQt5.pyrcc_main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "tech.rob@icloud.com" ]
tech.rob@icloud.com
81fee8688ffc59c38c493d59ce1bb7103d87c201
fc7023a9c35ca34e682e9fb1b4d97f4a0a7064d4
/demo/classes.py
1806e9ffd858257725ec6c748f7d8a8b442c52db
[]
no_license
fredcollman/sublime-config
22472551806f7f9b9e3cd009cfdced49930878c5
bcee840b95e05e37b445724c2e576bae6b6b16e9
refs/heads/master
2021-01-19T09:02:36.379880
2017-08-11T14:12:20
2017-08-11T14:12:20
87,714,232
0
1
null
null
null
null
UTF-8
Python
false
false
616
py
class Hello: """Remember to include docs""" def __init__(self, arg): self.arg = arg class Goodbye: some_attr = False def scope(self): return "this is a method" def nest_scope(self): for thing in range(10): for another in "string": yield another, thing print(thing) yield thing + 1 for another in "string": print("hello") yield "char is: {}".format(another) def flip(func): def wrapped(*args, **kwargs): return func(reversed(args), **kwargs) return wrapped
[ "fredcollman@gmail.com" ]
fredcollman@gmail.com
fff80535ba22ef4b7f28c7d8d2d614570d6ad082
52c35b0715b216a3bf901d4a468fa74b104953b6
/3-绘图函数/ellipse.py
a63676e249413ca982a16ca5706a334edcdb2a95
[]
no_license
McFlyWYF/opencv-for-python
3d05886b4eb02352f9d1c3dd6cf58d18570c9e6c
478c103bb422e25547fe0683dfb4b4043cdbbc20
refs/heads/master
2020-03-27T15:01:21.736794
2018-09-29T13:55:18
2018-09-29T13:55:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
351
py
import cv2 import numpy as np ''' 矩形 ''' img = np.zeros((512,512,3),np.uint8) #中心点坐标,长轴和短轴长度,沿逆时针方向旋转的角度 cv2.ellipse(img, center=(256, 256), axes=(100, 50), angle=0, startAngle=0, endAngle=180, color=255, thickness=-1) cv2.imshow('image',img) cv2.waitKey(0) cv2.destroyAllWindows()
[ "1650043869@qq.com" ]
1650043869@qq.com
94dedfc1b2dffc2c11e82f14a5410aa0e7d7c4f1
2b033667a8b0b97d7080f55575169179e48c8cd8
/D01.py
c33083251fb32bce8f1d026235ad79e758e3582e
[]
no_license
aa033793336/python
277c4413b7d0f396a87495464bd6fb1c9f6b50f6
30776659c12354de75c02daa6a1db4ebde98eea9
refs/heads/main
2023-03-07T17:51:23.188021
2021-02-19T01:53:04
2021-02-19T01:53:04
330,838,673
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
import numpy as np #D01#1 a = np.arange(0,21,1) print(a) #D01#2 b=a[::2] print(b) #D01#3 c=a[::3] print(c)
[ "75462113+aa033793336@users.noreply.github.com" ]
75462113+aa033793336@users.noreply.github.com
dd04c8572915ba1c43e29a3fe90bfbfb03645720
144565da9ebb7dc07e781fc09dbb7d83fc434eb4
/lintcode algo ladder/608. Two Sum II - Input array is sorted.py
e5fe6c00e94890a42634716e88b0943978dbbf39
[]
no_license
liulehui/LintcodeSolution
853ed81667dfa5aabbb20fd6e677285f90716ef6
b9bf9b4192bd2130824193a0088c4f2ab396310f
refs/heads/master
2020-04-14T00:06:40.704674
2019-08-23T06:03:39
2019-08-23T06:03:39
163,524,911
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
# coding:utf-8 def twoSum(self, nums, target): # write your code here left,right = 0,len(nums) - 1 while left<right: if nums[left] + nums[right] < target: left += 1 if nums[left] + nums[right] > target: right -= 1 if nums[left] + nums[right] == target: return left+1,right+1 return -1
[ "imliulehui@gmail.com" ]
imliulehui@gmail.com
f057ed39140d159384543a563041daf49702ac65
eeacfabfb918c9b0f922a4f6a96e50e63f029fad
/search_engine.py
419fe701ec44fda3b35011c0be75a83a1e1fdee9
[]
no_license
lch743/Python
f36af505f24cd88ab9900354d14f6a62f71f108c
c5bf64def9703842eefab2423347d16a9ae4478d
refs/heads/master
2021-01-20T15:44:20.024352
2012-12-11T08:07:16
2012-12-11T08:07:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,291
py
#Feeling Lucky #In Unit 6, we implemented a page ranking algorithm, but didn't finish the final #step of using it to improve our search results. For this question, you will use #the page rankings to produce the best output for a given query. #Define a procedure, lucky_search, that takes as input an index, a ranks #dictionary (the result of compute_ranks), and a keyword, and returns the one #URL most likely to be the best site for that keyword. If the keyword does not #appear in the index, lucky_search should return None. def lucky_search(index, ranks, keyword): tmp=0 result="" if keyword in index: for e in index[keyword]: if ranks[e]>tmp: tmp=ranks[e] result=e return result return None cache = { 'http://udacity.com/cs101x/urank/index.html': """<html> <body> <h1>Dave's Cooking Algorithms</h1> <p> Here are my favorite recipies: <ul> <li> <a href="http://udacity.com/cs101x/urank/hummus.html">Hummus Recipe</a> <li> <a href="http://udacity.com/cs101x/urank/arsenic.html">World's Best Hummus</a> <li> <a href="http://udacity.com/cs101x/urank/kathleen.html">Kathleen's Hummus Recipe</a> </ul> For more expert opinions, check out the <a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a> and <a href="http://udacity.com/cs101x/urank/zinc.html">Zinc Chef</a>. </body> </html> """, 'http://udacity.com/cs101x/urank/zinc.html': """<html> <body> <h1>The Zinc Chef</h1> <p> I learned everything I know from <a href="http://udacity.com/cs101x/urank/nickel.html">the Nickel Chef</a>. </p> <p> For great hummus, try <a href="http://udacity.com/cs101x/urank/arsenic.html">this recipe</a>. </body> </html> """, 'http://udacity.com/cs101x/urank/nickel.html': """<html> <body> <h1>The Nickel Chef</h1> <p> This is the <a href="http://udacity.com/cs101x/urank/kathleen.html"> best Hummus recipe! </a> </body> </html> """, 'http://udacity.com/cs101x/urank/kathleen.html': """<html> <body> <h1> Kathleen's Hummus Recipe </h1> <p> <ol> <li> Open a can of garbonzo beans. <li> Crush them in a blender. <li> Add 3 tablesppons of tahini sauce. <li> Squeeze in one lemon. <li> Add salt, pepper, and buttercream frosting to taste. </ol> </body> </html> """, 'http://udacity.com/cs101x/urank/arsenic.html': """<html> <body> <h1> The Arsenic Chef's World Famous Hummus Recipe </h1> <p> <ol> <li> Kidnap the <a href="http://udacity.com/cs101x/urank/nickel.html">Nickel Chef</a>. <li> Force her to make hummus for you. </ol> </body> </html> """, 'http://udacity.com/cs101x/urank/hummus.html': """<html> <body> <h1> Hummus Recipe </h1> <p> <ol> <li> Go to the store and buy a container of hummus. <li> Open it. </ol> </body> </html> """, } def get_page(url): if url in cache: return cache[url] return "" def get_next_target(page): start_link = page.find('<a href=') if start_link == -1: return None, 0 start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote def get_all_links(page): links = [] while True: url, endpos = get_next_target(page) if url: links.append(url) page = page[endpos:] else: break return links def union(a, b): for e in b: if e not in a: a.append(e) def add_page_to_index(index, url, content): words = content.split() for word in words: add_to_index(index, word, url) def add_to_index(index, keyword, url): if keyword in index: index[keyword].append(url) else: index[keyword] = [url] def lookup(index, keyword): if keyword in index: return index[keyword] else: return None def crawl_web(seed): # returns index, graph of inlinks tocrawl = [seed] crawled = [] graph = {} # <url>, [list of pages it links to] index = {} while tocrawl: page = tocrawl.pop() if page not in crawled: content = get_page(page) add_page_to_index(index, page, content) outlinks = get_all_links(content) graph[page] = outlinks union(tocrawl, outlinks) crawled.append(page) return index, graph def compute_ranks(graph): d = 0.8 # damping factor numloops = 10 ranks = {} npages = len(graph) for page in graph: ranks[page] = 1.0 / npages for i in range(0, numloops): newranks = {} for page in graph: newrank = (1 - d) / npages for node in graph: if page in graph[node]: newrank = newrank + d * (ranks[node] / len(graph[node])) newranks[page] = newrank ranks = newranks return ranks #Here's an example of how your procedure should work on the test site: index, graph = crawl_web('http://udacity.com/cs101x/urank/index.html') ranks = compute_ranks(graph) print index['Hummus'] print ranks print lucky_search(index, ranks, 'Hummus') #>>> http://udacity.com/cs101x/urank/kathleen.html print lucky_search(index, ranks, 'the') #>>> http://udacity.com/cs101x/urank/nickel.html print lucky_search(index, ranks, 'babaganoush') #>>> None
[ "lch743@gmail.com" ]
lch743@gmail.com
749cd9a3101a7cb68ab10d36816e911dddd50b77
3118d4fc5078e96fd71b408f03aa5ed9aecdc2df
/common/common_fun.py
2cb04b34046c85f4bd3d5f575cfef83c919d80cd
[]
no_license
chengming0719/zhanyebao_app002
28bcf651f43a2838d6f3c82f89ca76bb8047edb7
37883e2643c69b9b06192ad31682fdda93fee665
refs/heads/master
2023-01-07T11:41:23.489839
2020-11-09T07:37:49
2020-11-09T07:37:49
311,258,568
0
0
null
null
null
null
UTF-8
Python
false
false
2,606
py
from baseView.baseView import BaseView from common.desired_caps import appium_desired from selenium.common.exceptions import NoSuchElementException import logging, time, csv from selenium.webdriver.common.by import By from os import path class Common(BaseView): cancelBtn=(By.ID,'android:id/button2') skipBtn=(By.ID,'com.tal.kaoyan:id/tv_skip') wemedia_cacel=(By.ID,'com.tal.kaoyan:id/view_wemedia_cacel') def check_cancelBtn(self): logging.info('===========check cancelBtn==========') try: cancelBtn=self.driver.find_element(*self.cancelBtn) except NoSuchElementException: logging.info('no checkBtn') else: cancelBtn.click() def check_skipBtn(self): logging.info('============check skipBtn==========') try: skipBtn=self.driver.find_element(*self.skipBtn) except NoSuchElementException: logging.info('no skipBtn') else: skipBtn.click() def get_size(self): x = self.driver.get_window_size()['width'] y = self.driver.get_window_size()['height'] return x, y def swipeLeft(self): l = self.get_size() x1 = int(l[0]*0.5) y1 = int(l[1]*0.5) x2 = int(l[0]*0.1) self.swipe(x1, y1, x2, y1, 1000) def getTime(self): self.now = time.strftime("%Y-%m-%d %H_%M_%S") return self.now def getScreenShot(self, module): time = self.getTime() image_file = path.dirname(path.dirname(__file__)) + '/screenshots/%s_%s.png' %(module,time) logging.info('get %s screenshot' %module) self.driver.get_screenshot_as_file(image_file) # 判断是否有广告弹框 def check_market_ad(self): logging.info('=====check_market_ad=====') try: element=self.driver.find_element(*self.wemedia_cacel) except NoSuchElementException: pass else: logging.info('=====click_wemedia_cancel=====') element.click() def get_csv_data(self, csv_file, line): with open(csv_file, 'r', encoding='utf-8-sig') as file: reader = csv.reader(file) for index, row in enumerate(reader, 1): if index == line: return row if __name__ == '__main__': driver = appium_desired() com = Common(driver) # com.check_cancelBtn() # # com.check_skipBtn() # com.swipeLeft() # com.getScreenShot('start_APP') csv_file = '../data/account.csv' data = com.get_csv_data(csv_file, 1) print(data)
[ "18296158516@163.com" ]
18296158516@163.com
e03af5270cca1a0058b33f9fa5933d1aee3d2b07
77e78a55375bc515ed6b2c247d8cf4bec05d3bc8
/sloane_amazing_graphs/fly_straight_dammit.py
4f5ac9d6e2cc4e84999405af1872cbbff1fd685f
[]
no_license
GuidoDipietro/python_art
63079df616726fee21ee13cbe501c4b01aa0bd5b
5d9be0f1c697922c111eb3417157fb65516bb68c
refs/heads/master
2022-12-09T03:32:05.037248
2020-09-07T14:27:34
2020-09-07T14:27:34
289,156,751
1
0
null
null
null
null
UTF-8
Python
false
false
567
py
# Fly straight, dammit! # https://oeis.org/A133058 # 31/aug/2020 | Guido Dipietro import matplotlib.pyplot as plt # CONSTS # COLOR = "#b20000" POINTS = 1200 # SEQUENCE DEFINITION # def divs(n): return set([x for x in range(2,n+1) if n%x==0]) def genner(ind, n): div = divs(n) & divs(ind) if ind<2: num = 1 else: num = ind+n+1 if div==set() else n//max(div) return ind+1, num # SEQUENCE GENERATION # y = [] ind, n = 0, 1 for _ in range(POINTS): ind, n = genner(ind, n) y.append(n) # PLOT # plt.scatter(range(POINTS), y, s=1, color=COLOR) plt.show()
[ "dipietroguido@gmail.com" ]
dipietroguido@gmail.com
6576f6ade43f4f4218e63728c5722a9762a7b0f2
86cb696cc44c45ecd9f707d620e9b92f9eebb91f
/main/examples/grid.py
f5f63e5b4e6eb30653cb0201c51e3448bc5b90ed
[]
no_license
etschgi1/GOL
1032c9b9e9f28c3ff6f125f770581a4a77c88670
bdbe5fc31066195cab356f88e1f158193eaa6c62
refs/heads/master
2023-02-09T01:53:30.586337
2021-01-05T21:02:07
2021-01-05T21:02:07
326,028,640
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
from tkinter import * root = Tk() # window initialises test_label = Label(root, text="Hello World!").grid( row=0, column=0) # create a widget, also valid bc obj oriented test_label2 = Label(root, text="Test Text") # create a widget # use grids # same as row = 1 col = 5 only relative position test_label2.grid(row=1, column=5) # or in 2 steps root.mainloop()
[ "elias.wachmann@gmail.com" ]
elias.wachmann@gmail.com
e6d928ad07d679a7f2fe24fcd018ad39e11ec5c1
305567bc6e1f8c771fcf299a743f26e9e90ef268
/character/character_eval.py
7decbf79a3477af57dae5e6d047d26e59df1ba9c
[]
no_license
gugug/tensorflow_demo
ee6a1a5d53dc84fb7f4f359dc6843aa0ee57d763
c027dbf2f85be6f6ada740240db9b5082268e42e
refs/heads/master
2021-04-26T22:21:59.658150
2018-09-05T14:37:56
2018-09-05T14:37:56
124,079,845
1
1
null
null
null
null
UTF-8
Python
false
false
8,440
py
# coding=utf-8 """ 测试过程 """ import character __author__ = 'gu' import time import tensorflow as tf import character_inference import numpy as np import input_data from crawl_textmind_data import input_textmind_data from Emotion_Lexicon import data_helper MOVING_AVERAGE_DECAY = 0.99 # 活动平均衰减率 MODEL_SAVE_PATH = "character_model/tfidf/" MODEL_NAME = "character_model" print(MODEL_SAVE_PATH) # 加载的时间间隔。 EVAL_INTERVAL_SECS = 2 # 加载d2v 和 tfidf的数据 train_list_side, train_list_tag, text_list_side, text_list_tag = input_data.load_data_label('') # train_list_side1, train_list_tag1, text_list_side1, text_list_tag1 = input_data.load_data_label1('') # # 加载textmind的特征 # train_list_side1, train_list_tag1, text_list_side1, text_list_tag1 = \ # input_textmind_data.load_textmind_data_label_with_normalization('../crawl_textmind_data') # # # 加载情感的特征 # train_list_side, train_list_tag, text_list_side, text_list_tag = \ # data_helper.load_emotion_data_label('../Emotion_Lexicon') # # # 整合特征 # train_list_side, text_list_side = input_data. \ # load_data_label_combine(X_train=train_list_side, X_test=text_list_side, X1_train=train_list_side1, # X1_test=text_list_side1) def evaluate(character): with tf.Graph().as_default() as g: x = tf.placeholder(tf.float32, [None, character_inference.INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, name='y-input') y = character_inference.inference(x, None) # 训练时损失函数 cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=y, targets=y_) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) dict_acc = {} dict_precision = {} dict_recall = {} dict_f1 = {} dict_acc_lsit = {} while True: with tf.Session() as sess: validate_feed = {x: text_list_side, y_: text_list_tag} # tf.train.get_checkpoint_state 会根据checkpoint文件自动找到目录中最新模型的文件名 ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] # accuracy_score = sess.run(accuracy, feed_dict=validate_feed) # accuracy_score = get_acc(sess,true_y, pred_y) # print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score)) # print("the input data are \n%s" % test_list_side) # print("the truly answer are \n%s" % test_list_tag) eval_aws = sess.run(y, feed_dict=validate_feed) eval_loss = sess.run(loss, feed_dict=validate_feed) print("========the evaluate eval_loss are %s" % eval_loss) # print("the evaluate answer are \n%s" % eval_aws) accuracy_score, acc_list = get_acc(sess, text_list_tag, eval_aws) print("After %s training step(s), all validation accuracy = %g" % (global_step, accuracy_score)) print("After %s training step(s), 5 validation accuracy = %s" % (global_step, acc_list)) precision_list = get_precision(text_list_tag, eval_aws) print("After %s training step(s), 5 precision = %s" % (global_step, precision_list)) recall_list = get_recall(text_list_tag, eval_aws) print("After %s training step(s), 5 recall = %s" % (global_step, recall_list)) f1_list = get_f1(precision_list, recall_list) print("After %s training step(s), 5 f1 = %s" % (global_step, f1_list)) print("==========================================") if int(global_step) > 1: dict_acc[global_step] = accuracy_score dict_precision[global_step] = precision_list dict_recall[global_step] = recall_list dict_f1[global_step] = f1_list dict_acc_lsit[global_step] = acc_list if int(global_step) == 29001: # print("================全部准确率===================") # sort_dict(dict_acc) print("================5个准确率===================") sort_dict(dict_acc_lsit) print("================5个精准率===================") sort_dict(dict_precision) print("================5个召回率===================") sort_dict(dict_recall) print("================5个f1===================") sort_dict(dict_f1) break else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def get_acc(sess, true_y, pred_y): """ 计算总的准确率和5个标签的准确率 :param sess: :param true_y: :param pred_y: :return: """ pred_y_ = np.where(pred_y > 0, 1, 0) correct_prediction = tf.equal(true_y, pred_y_) accuracy = sess.run(tf.reduce_mean(tf.cast(correct_prediction, tf.float32))) acc_list = [] for clazz in range(5): true_class1 = true_y[:, clazz] pred_class1 = pred_y[:, clazz] pred_class1_ = np.where(pred_class1 > 0, 1, 0) acc = 0 for i in range(len(true_class1)): if true_class1[i] == pred_class1_[i]: acc += 1 acc_list.append(acc * 1.0 / len(true_class1)) return accuracy, acc_list def get_precision(true_y, pred_y): """ 返回五个标签的精确率 :param true_y: :param pred_y: :return: """ precison_list = [] for clazz in range(5): true_class1 = true_y[:, clazz] pred_class1 = pred_y[:, clazz] pred_class1_ = np.where(pred_class1 > 0, 1, 0) precison = 0 for i in range(len(true_class1)): if true_class1[i] == 1 and pred_class1_[i] == 1: precison += 1 precison_list.append(precison * 1.0 / np.sum(pred_class1_)) return precison_list def get_recall(true_y, pred_y): """ 返回5个标签的召回率 :param true_y: :param pred_y: :return: """ recall_list = [] for clazz in range(5): true_class1 = true_y[:, clazz] pred_class1 = pred_y[:, clazz] pred_class1_ = np.where(pred_class1 > 0, 1, 0) precison = 0 for i in range(len(true_class1)): if true_class1[i] == 1 and pred_class1_[i] == 1: precison += 1 recall_list.append(precison * 1.0 / np.sum(true_class1)) return recall_list def get_f1(precison_list, recall_list): """ 返回5个标签的f1值 :param precison: :param recall: :return: """ f1_list = [] for i in range(5): precison = precison_list[i] recall = recall_list[i] f1_list.append((2 * precison * recall) / (precison + recall)) return f1_list def mymean(acc_list): acc_set = set(acc_list[1:]) mean_acc = np.average(list(acc_set)) print('After 20091 training steps mean_acc', mean_acc) def sort_dict(dict): sorted_dict = sorted(dict.items(), key=lambda e: e[0], reverse=False) print(sorted_dict) item0 = 0 item1 = 0 item2 = 0 item3 = 0 item4 = 0 for ke in sorted_dict: k = ke[1] # print(k) item0 = item0 + k[0] item1 = item1 + k[1] item2 = item2 + k[2] item3 = item3 + k[3] item4 = item4 + k[4] le = len(sorted_dict) print([item0 / le, item1 / le, item2 / le, item3 / le, item4 / le]) def main(argv=None): evaluate(character) # mymean([1, 2, 1, 1, 2]) if __name__ == '__main__': tf.app.run()
[ "734093894@qq.com" ]
734093894@qq.com
ade516ca679c9523f360daeceed1aef37c571bbd
6a52627de2f88be818d3517847d84f20827bfa99
/clients/models.py
2eb0aeb32ed5f363e45e26228fbffdb74fb6b2cb
[]
no_license
rizwanmeo/sabzi_mandi
46a8a3c6516a3aa4b234342dbd2328e96ce86a24
cd801fd9ffebceff051791ecee6486468d9cdbf7
refs/heads/master
2023-04-29T05:49:17.670068
2023-02-05T16:02:32
2023-02-05T16:02:32
231,114,753
0
0
null
2023-04-21T22:34:15
2019-12-31T16:04:41
Python
UTF-8
Python
false
false
274
py
from django.db import models from shops.models import Shop from sabzi_mandi.models import BasicInfo class Client(BasicInfo): shop = models.ForeignKey(Shop, on_delete=models.CASCADE) class Meta: unique_together = [('shop', 'name'), ('shop', 'identifier')]
[ "rizwan_meo@rocketmail.com" ]
rizwan_meo@rocketmail.com
3488f61c7f8dbd0d52a96c6bd8d46df6dbcdb89e
b6542f17c21b76aa237fefcfa303105922602ce5
/Tasks/Statistic/81_linear_regression.py
c667538f6e0009b989be1626c6a0c45f82dc1538
[]
no_license
AV272/Python
9b1963c798c491f86e0f73b2b684ec444b761d6f
b66e79bd9c4814cc286e48ecad70591865024baf
refs/heads/master
2023-06-08T14:47:26.292007
2021-07-05T11:28:39
2021-07-05T11:28:39
283,837,397
0
0
null
null
null
null
UTF-8
Python
false
false
271
py
x = [95, 85, 80, 70, 60] y = [85, 95, 70, 65, 70] n = len(x) sumx = sum(x) sumy = sum(y) mx = sumx/n my = sumy/n sumx2 = sum(map(lambda x: x**2, x)) xy = sum([x[i]*y[i] for i in range(n)]) b = (n*xy - sumx*sumy)/(n*sumx2 - sumx**2) a = my - b*mx print(round(a + 80*b,3))
[ "noreply@github.com" ]
AV272.noreply@github.com
0fa68f4a8ee766434f5c0958d2a0b2b6b4571a32
83ef08951ce01c53a3a794bdf0f03a1a2ba195ea
/ml_api.py
5bfee834172a3567e3fbf3f9c63c53c157c7bd44
[]
no_license
chart90/movielens-stream-search
8f4e81dd8b8f56a16a6913cc9e93302e3a99ecaa
442d665627ac7ff0ddd892709aedf85e95c0f059
refs/heads/master
2022-12-10T06:21:46.597721
2018-02-25T23:30:43
2018-02-25T23:30:43
122,883,585
0
0
null
2021-06-01T21:49:57
2018-02-25T22:27:12
Python
UTF-8
Python
false
false
2,788
py
import requests import json import os from urllib.parse import urlencode import pickle as pkl import config from time import time class MovieLens: def __init__(self): self.headers = { 'Accept': 'application/json, text/plain, */*', 'Accept-Encoding': 'gzip, deflate', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', 'Content-Type': 'application/json;charset=utf-8', 'DNT': '1', 'Host': 'movielens.org', 'Pragma': 'no-cache', } self.core_url = 'https://movielens.org' self.auth_cookie = None self.get_auth_cookie() def set_auth_cookie(self, cookie): with open('config/cookies.pkl', 'wb') as f: pkl.dump(cookie, f) self.auth_cookie = cookie def get_auth_cookie(self): if os.path.isfile('config/cookies.pkl'): with open('config/cookies.pkl', 'rb') as f: auth_cookie = pkl.load(f) now = time() cookie_data = [k for k in auth_cookie][0] if cookie_data.expires > now: self.auth_cookie = auth_cookie return username = config.USERNAME password = config.PASSWORD cookie = self.login(username, password) if cookie is None: print('Invalid login! Please check username and password.') else: self.set_auth_cookie(cookie) def login(self, username, password): auth = { 'userName': username, 'password': password } auth = json.dumps(auth) path = '/api/sessions' url = self.core_url + path headers = self.headers headers['Referer'] = 'https://movielens.org/login' r = requests.post(url, data=auth, headers=headers) print(f'Request status: {r.status_code}, {r.text}') if r.json()['status'] == 'success': return r.cookies return None def request_getter(self, path, query_str=''): url = self.core_url + path + '?' + query_str req = requests.get(url, cookies=self.auth_cookie) res = req.json() if res['status'] == 'success': res = res['data'] return res def get_genres(self): return self.request_getter('/api/movies/genres') def get_me(self): return self.request_getter('/api/users/me') def get_mytags(self): return self.request_getter('/api/users/me/tags') def explore(self, params): return self.request_getter('/api/movies/explore', urlencode(params)) def top_picks(self): params = { 'hasRated': 'no', 'sortBy': 'prediction' } return self.explore(params)
[ "chrishart90@gmail.com" ]
chrishart90@gmail.com
503fa6b7abb0cfb33690e14f68ad1975d785840f
b4efe7a85bbde01cd47189bcc0298594baae7a14
/code/89.py
4d92fda40c156d24ca30d75475b4fd4045bc92f6
[]
no_license
HarshaaArunachalam/guvi
c200e05dc0c259bfabfc0ee58c1ab9b6412b89a7
67c87e8fe50d645036333649759b5b1a40369004
refs/heads/master
2020-05-31T06:27:27.104793
2019-06-11T18:31:43
2019-06-11T18:31:43
190,141,812
0
2
null
null
null
null
UTF-8
Python
false
false
80
py
name=input() name=list(name) let=sorted(name) for i in let: print(i,end="")
[ "noreply@github.com" ]
HarshaaArunachalam.noreply@github.com
197073fdfefb60a514635179e44d1d165ed7e417
b5ca937ce81b8a45e35e57b4a1781816889f4705
/FactorInt.py
e64d5311c56aa5b595b0bd920e91a00f296f2a26
[]
no_license
susuk4/Homework2_CholYoon
4fe5c0d2375fcf7c815a23e9304b9f1d98e5ec60
3c3f8f2b7c8c318c101560f213a11aadc07b9b84
refs/heads/master
2020-12-24T13:29:00.690774
2013-04-22T06:00:27
2013-04-22T06:00:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,032
py
class FactorInt: def __Init__(self, integer): #initialize class with initial string, and denominator and check if it is integer if type(integer) == int: self.n = integer if not isAlreadyPrime(): self.denominator = [7,5,3,2] self.string = "" if isNegative(self.n) == True: self.negative = True self.n = -1 * self.n self.lastnumber = str(self.n) elif self.n==0: raise ValueError, "0 cannot be factored" else: #print if given vallue is already a prime number raise ValueError, str(self.n)+" is already a prime number" else: #raise ValueError if it is not an integer raise ValueError, "Arguement is not an integer" #check if the number is divisible by specific number def isDivisible(self,d): return self.n%d==0 #check if the number is divisible by any number def isDivisible(self): return isAlreadyPrime() #if check if integer is already primenumber def isAlreadyPrime(self): for prime in [2,3,5,7,9,11]: if isDivisible(prime): return False return True #check to see if input is negative def isNegative(self,g1): return gi<0 #looping through 2,3,5,7 which are prime numbers between 1 - 10 except 1 #and return resulted string def toString(self): for de in self.denominator: #every new loop start while loop until input number is not divisible by new loop number #and add divisible string at the front. while isDivisible(de): self.lastnumber = self.lastnumber / de self.string = str(de)+"*"+self.string(self.lastnumber) if self.negative: #if negative add negative value self.string = str(-1)+"*"+self.string return str(self.n)+": "+self.string
[ "susuk4@uw.edu" ]
susuk4@uw.edu
5234a4cc2cf0abf2e9f870ed1fb4f98ab451e479
5636cb0c282d03e91a830d30cec3bd54c225bd3b
/Divers/TP_SPE_Supplementaires/TD_euler/TD_euler_implicite_explicite.py
b48efbfc92b6aac69464492e094bfc63101c73d2
[]
no_license
xpessoles/Informatique
24d4d05e871f0ac66b112eee6c51cfa6c78aea05
3cb4183647dc21e3acbcbe0231553a00e41e4e55
refs/heads/master
2023-08-30T21:10:56.788526
2021-01-26T20:57:51
2021-01-26T20:57:51
375,464,331
2
0
null
null
null
null
UTF-8
Python
false
false
6,909
py
### TD sur les méthodes d'Euler explicite et implicite et étude de la stabilité et rapidité #Importation des modules import matplotlib.pyplot as plt import math import numpy as np import time ### question 1 #relation de récurrence de la méthode d'Euler explicite yk+1=yk+hf(yk,tk) # pour l'équation choisie domega/dt=(Kc*U-omega)/tau # donc omega=omega+h*(Kc*U-omega)/tau #Définition des paramètres T=2 U0=5 omega0=0 ### question 2 def euler1_explicite(T,h,U0,omega0): ''' Renvoie une liste des ordonnées pour un premier ordre soumis à un échelon u de tension ''' s=omega0 sortie=[omega0] for i in range(1,int(T/h)): f=(0.5*U0-s)/0.2 s=s+f*h sortie.append(s) return sortie ### question 3 ### tracé de la solution exacte et des solutions approchées def ordre1(t): return (0.5*5*(1-np.exp(-t/0.2))) #trace des solutions pour différents pas de temps marqueurs = ['^', '+', '*', '.', '', 'o'] #Les marqueurs plt.figure(1) k=0 for i in (0.5,0.2,0.1,0.01,0.005): x=np.linspace(0,T,int(T/i)) y=euler1_explicite(T,i,U0,omega0) plt.plot(x,y,'--',color='b',marker=marqueurs[k],label='euler, pas= '+str(i)) k=k+1 x=np.linspace(0,2,100) y=ordre1(x) plt.plot(x,y,'r',label='exacte') plt.title('Euler explicite ordre 1') plt.legend() plt.show() # La rapidité de la méthode d’Euler explicite ne dépends que des opérations de l’équation de récurrence et du nombre d’itérations souhaitées n. Ainsi, nous aurons un temps de calcul directement proportionnel au facteur n. # En conclusion, le pas de temps d’un schéma explicite doit être choisi suffisamment petit devant les constantes de temps de l’équation différentielle pour éviter des instabilités numériques. #facteur h/tau... qui crée l'instabilité ### question 4 sur un intervalle de temps de 2s T=2 temps=[] for i in (0.1,0.01,0.001,0.0001,0.00001,0.000001): x=np.linspace(0,T,int(T/i)) td=time.clock() y=euler1_explicite(T,i,U0,omega0) tf=time.clock()-td temps.append(tf) # print (temps) # [2.7479030685469386e-05, 0.0001433544612868463, 0.001265690774825897, 0.013448171402936946, 0.08863642759358183, 0.8244762016695993] ### question 5 erreur de consistance # Calcul de de l’erreur locale (ou erreur de consistance) : # ci=h**2/2*deriveesecondefexacte(ti) def consistance(t,h): return (-(h**2)/2*5*0.5/(0.2**2)*np.exp(-t/0.2)) T=2 erreur=[] for h in (0.1,0.01,0.001,0.0001,0.00001,0.000001): erreur.append(consistance(T-h,h)) # print (erreur) # [-2.3391196839906476e-05, -1.4914885605250613e-07, -1.4258593080448336e-09, -1.4194573563532274e-11, -1.4188187442413721e-13, -1.4187548988344106e-15] ### question 6... fichier=open('euler_explicite.csv','w') fichier.write("pas de temps h"+'\;'+"10**(-1)"+'\;'+'10**(-2)'+'\;'+'10**(-3)'+'\;'+'10**(-4)'+'\;'+'10**(-5)'+'\;'+'10**(-6)'+'\n') fichier.write("N pas de temps"+'\;'+str(2//0.1)+'\;'+str(2//0.01)+'\;'+str(2//0.001)+'\;'+str(2//0.0001)+'\;'+str(2//0.00001)+'\;'+str(2//0.000001)+'\;'+'\n') fichier.write("erreur"+'\;'+'\n') fichier.write("temps de calcul"+'\;'+'\n') fichier.close() pas_de_temps=[1e-01, 1e-02, 1e-03,1e-04, 1e-05, 1e-06] fichier=open('euler_explicite2.csv','w') fichier.write("pas de temps h"+';'+"N pas de temps"+';'+"erreur"+';'+"temps de calcul"+'\n') for i in range(len(pas_de_temps)): N=2//pas_de_temps[i] fichier.write(str(pas_de_temps[i])+';'+str(N)+';'+str(erreur[i])+';'+str(temps[i])+';'+'\n') fichier.close() ### euler explicite pour une equation différentielle du second ordre ### question 7 sur feuille ### question 8 #Données J=0.015 mu=0.01 dmg=0.6 theta0=np.pi/4 def euler2_explicite(T,Dt): #intervalle de temps n=int(T/Dt) #initialisation theta=[theta0,theta0] #résolution for i in range(2,n): theta.append((2-Dt*mu/J)*theta[i-1]+(Dt*mu/J-1)*theta[i-2]-(dmg*Dt**2/J)*np.sin(theta[i-2])) return theta ### avec l'exemple de sup 2014 def ordre2_euler(w_0,xi,K,u,temps): ''' Renvoie une liste des ordonnées pour un premier ordre soumis à un échelon u de tension pour une liste abscisse des temps fournie''' v=0 a=0 vitesse=[0] acc=[0] for i in range(1,len(temps)): f1=(K*u-v-2*xi*a/w_0)*((w_0)**2) f2=a a2=a+f1*(temps[i]-temps[i-1]) v2=v+f2*(temps[i]-temps[i-1]) vitesse=vitesse + [v2] acc=acc+[a2] v=v2 a=a2 return vitesse, acc #Question 9 def ordre2_exacte(t): '''pour un theta petit solution de J*(theta..)+mu*(theta.)+dmg*theta=0''' z=0.01/(2*np.sqrt(1.5*10**(-2)*0.6)) om=np.sqrt(0.6*100/1.5) return (np.pi/4*np.exp(-z*om*t)*np.cos((np.sqrt(1-z**2))*om*t)+z/(np.sqrt(1-z**2))*np.sin((np.sqrt(1-z**2))*om*t)) T=15 Dt=0.001 #prendre aussi Dt=0.1 pour une divergence de la fonction plt.figure(2) for i in [0.001,0.01]: temps=np.linspace(0,T,int(T/i)) plt.plot(temps,euler2_explicite(T,i)) les_t=np.linspace(0,T,1000) y=ordre2_exacte(les_t) plt.plot(les_t,y,'r',label='exacte') plt.title('Euler explicite ordre 2') plt.legend() plt.show() ### partie 3 methode d'euler implicite - utilisation de la méthode de newton ### question 10 ### relation de recurrence de la méthode d'euler implicite Yi+1 = Yi + hF(ti+1;Yi+1) ### question 11 # Yi+1 - Yi - hF(ti+1;Yi+1) = 0 #si la fonction n'est pas linéaire il faut approcher le zéro de la fonction par la méthode de Newton # si la fonction est linéaire mais avec des matrices (ou vecteurs) il faut inverser la matrice (coût temporel important) #définition de la fonction dérivée def dP(x): return 3*x**2-8*x+2 def zero_newton(f,df,u0,epsilon): x=float(u0) y=float(u0)-f(u0)/df(u0) i=0 while abs(y-x)>epsilon: x=y y=y-f(y)/df(y) i=i+1 return [y,f(y),i] # Dans les cas linéaires, il faut au moins une inversion, ce qui est aussi très lourd pour les problèmes de grande dimension. Il faut donc retenir qu’une méthode implicite est généralement plus coûteuse qu’une méthode explicite à pas de temps égal. ### question 12 ### euler implicite def euler1_implicite(T,h,U0,omega0): s=omega0 sortie=[omega0] for i in range(1,int(T/h)): s=(s*0.2+h*0.5*U0)/(0.2+h) sortie.append(s) return sortie ### question 13 marqueurs = ['^', '+', '*', '.', '', 'o'] #Les marqueurs plt.figure(3) k=0 T=3 for i in (1,0.5,0.2,0.1,0.01,0.005): x=np.linspace(0,T,int(T/i)) y=euler1_implicite(T,i,U0,omega0) plt.plot(x,y,'--',color='b',marker=marqueurs[k],label='euler, pas= '+str(i)) k=k+1 x=np.linspace(0,T,100) y=ordre1(x) plt.plot(x,y,'r',label='exacte') plt.title('Euler implicite') plt.legend() plt.show() ### question 14 #pas de divergence de courbe et s=(s*0.2+h*0.5*U0)/(0.2+h) on a h+tau au dénominateur
[ "xpessoles.ptsi@free.fr" ]
xpessoles.ptsi@free.fr
de8048db0aac82d89d7511c3c607134e5810c5f8
f82f71fc98c0fb0f26ee05206857be2569140349
/backend/app.py
249f3c8e096ea8b815c652913d11cc676e135e3f
[]
no_license
JasonGilman18/Spotify-Mood-Search
6a43b83b23375d4e71990419f6a98c41a3ba9d9b
e73dd58c37bf12c0cdc839735fcc141abb829c4b
refs/heads/master
2023-01-10T16:52:58.003698
2020-11-17T16:54:11
2020-11-17T16:54:11
303,192,046
0
0
null
null
null
null
UTF-8
Python
false
false
2,574
py
from flask import Flask, jsonify, render_template from flask.helpers import send_file from flask_restful import Resource, Api from flask_cors import CORS import os.path import rank app = Flask(__name__, static_folder="frontend/static", template_folder='frontend') CORS(app) api = Api(app) class frontend(Resource): def get(self): dir = os.path.join(app.template_folder, 'index.html') return send_file(dir) class rank_api(Resource): def get(self, acousticness, danceability, energy, instrumentalness, liveness, speechiness, valence): #USER_PREFS = {"acousticness": 0.051, "danceability": .901, "energy": .4, "instrumentalness": 0.0, "liveness": .0599, "speechiness": .126, "valence": .346} USER_PREFS = {"acousticness": float(acousticness), "danceability": float(danceability), "energy": float(energy), "instrumentalness": float(instrumentalness), "liveness": float(liveness), "speechiness": float(speechiness), "valence": float(valence)} #call loadDataset to load data from excel into a list of dictonaries. Each Dictionary is a row in the excel list_of_songs = rank.loadDataset() #create average vectors for artists centroid_vectors = rank.createCentriods(list_of_songs) artist_centriods = centroid_vectors[0] album_centriods = centroid_vectors[1] #call rankSongs to rank the artists according to the user's prefs ranked_list_of_artists = rank.rankArtists(artist_centriods, USER_PREFS) #call rankSongs to rank the albums according to the user's prefs ranked_list_of_albums = rank.rankAlbums(album_centriods, USER_PREFS) #call rankSongs to rank the songs according to the user's prefs ranked_list_of_songs = rank.rankSongs(list_of_songs, USER_PREFS) ranked_lists = (ranked_list_of_songs[:100], ranked_list_of_artists, ranked_list_of_albums[:100]) return jsonify({"ranked_songs": ranked_lists[0], "ranked_artists": ranked_lists[1], "ranked_albums": ranked_lists[2]}) class img(Resource): def get(self, id): filename = id + ".png" dir = os.path.join(app.static_folder, 'img', filename) return send_file(dir) api.add_resource(frontend, '/') api.add_resource(rank_api, '/rank/<string:acousticness>/<string:danceability>/<string:energy>/<string:instrumentalness>/<string:liveness>/<string:speechiness>/<string:valence>') api.add_resource(img, '/img/<string:id>') if __name__=="__main__": app.run(host='0.0.0.0', debug=False, port=os.environ.get('PORT', 80))
[ "jasongilman18@gmail.com" ]
jasongilman18@gmail.com
c9a5516f0128c5bc1c1d48f74acd33bed59f97fd
537d28fb2142331e27c84ebf2c16bad77aceb24e
/cslee201907/bit0729/test0809_pca.py
c2fd4b09ccd0c675214da1d7269552e87374abb8
[]
no_license
gema0000/bit2019
c27c3cec8d8d3a0907ade41523ce1c5ee86337b6
2f44ad3956b387186935374d9a488ad40a13bcaf
refs/heads/master
2020-07-03T05:19:41.051447
2019-10-26T23:56:25
2019-10-26T23:56:25
201,796,021
4
2
null
null
null
null
UTF-8
Python
false
false
1,930
py
from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split cancer = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=1) print(X_train.shape) print(X_test.shape) from sklearn.svm import SVC svm = SVC(C=100) svm.fit(X_train, y_train) print("테스트 세트 정확도: {:.2f}".format(svm.score(X_test, y_test))) # 0.63 from sklearn.preprocessing import MinMaxScaler, StandardScaler scaler = MinMaxScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # 조정된 데이터로 SVM 학습 svm.fit(X_train_scaled, y_train) # 스케일 조정된 테스트 세트의 정확도 print("스케일 조정된 테스트 세트의 정확도: {:.2f}".format(svm.score(X_test_scaled, y_test))) # 0.97 # 평균 0, 분산 1을 갖도록 스케일 조정 from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # 조정된 데이터로 SVM 학습 svm.fit(X_train_scaled, y_train) # 스케일 조정된 테스트 세트의 정확도 print("SVM test accuracy: {:.2f}".format(svm.score(X_test_scaled, y_test))) # 0.97 from sklearn.datasets import load_breast_cancer cancer = load_breast_cancer() scaler = StandardScaler() scaler.fit(cancer.data) X_scaled = scaler.transform(cancer.data) from sklearn.decomposition import PCA # 데이터의 처음 두 개 주성분만 유지시킵니다 pca = PCA(n_components=2) # 유방암 데이터로 PCA 모델을 만듭니다 pca.fit(X_scaled) # 처음 두 개의 주성분을 사용해 데이터를 변환합니다 X_pca = pca.transform(X_scaled) print("원본 데이터 형태:", str(X_scaled.shape)) print("축소된 데이터 형태:", str(X_pca.shape))
[ "gema0000@naver.com" ]
gema0000@naver.com
dce3ff7ebba6c050682e6e0bac39c91f54dca34f
0054d1400952895b3480bc5c912ee2f19bea122c
/plugin.video.yatp/server.py
f6642f62ea459f46896786f28e354eff2a930047
[]
no_license
Inter95/tutvguia
a143bd2525d218882f6e7431c998eadbd47f229f
49ca0e894a8a28bf79e995221025c96171ea25a0
refs/heads/master
2022-12-25T17:58:54.353580
2017-08-25T08:44:59
2017-08-25T08:44:59
44,966,893
2
1
null
2022-12-14T13:06:23
2015-10-26T12:29:18
Python
UTF-8
Python
false
false
1,430
py
# coding: utf-8 # Module: server # Created on: 01.07.2015 # Author: Roman Miroshnychenko aka Roman V.M. (romanvm@yandex.ua) # License: GPL v.3 https://www.gnu.org/copyleft/gpl.html """ Torrent streamer WSGI server """ import sys import xbmc from libs.server.addon import Addon addon = Addon() if not addon.start_server: addon.log('Torrent Server is disabled in Settings.', xbmc.LOGWARNING) sys.exit() from time import sleep import xbmcgui from libs.server import wsgi_app from libs.server.wsgi_server import create_server sleep(2.0) addon.log('***** Starting Torrent Server... *****') if addon.enable_limits: wsgi_app.limits_timer.start() if addon.persistent: wsgi_app.save_resume_timer.start() wsgi_app.log_torrents_timer.start() httpd = create_server(wsgi_app.app, port=addon.server_port) httpd.timeout = 0.2 start_trigger = True while not xbmc.abortRequested: httpd.handle_request() if start_trigger: addon.log('***** Torrent Server started *****', xbmc.LOGNOTICE) xbmcgui.Dialog().notification('YATP', addon.get_localized_string(32028), addon.icon, 3000, False) start_trigger = False addon.log('***** Torrent Server stopped *****', xbmc.LOGNOTICE) wsgi_app.torrent_client.abort_buffering() if addon.enable_limits: wsgi_app.limits_timer.abort() if addon.persistent: wsgi_app.save_resume_timer.abort() wsgi_app.log_torrents_timer.abort() del wsgi_app.torrent_client
[ "inter95@netzero.com" ]
inter95@netzero.com
7ced65cfc3ef47676dd8e95513ae0b9a0d7fa43f
ffd2ce990cf15efa5705a30ae3a1ebe5b44eaef9
/hoth/base.py
43afa46f6c81a2a7b14b721dba96ff45abddf012
[]
no_license
andre-deregle/hoth_framework
8ad6277f73582bd9fd378a056f3b75f4951a55c5
998ef9a78ee019787e040ae533f2659345c3ccd6
refs/heads/master
2021-01-10T14:30:34.744408
2015-12-15T15:09:49
2015-12-16T10:09:53
47,707,565
0
1
null
null
null
null
UTF-8
Python
false
false
2,078
py
import os import time from bs4 import BeautifulSoup from selenium import webdriver class Base: DRIVER = None PAGE_HTML = None def start_driver(self, driver_type="Firefox", path=None, remote=False): """! Method that starts Selenium webdriver. Args: driver_type: string, browser type - Firefox, Chrome, etc.; path: string, path in your file system to executable driver; remote: boolean, trigger driver on remote machine. Returns: Selenium webdriver instance. """ if remote: pass else: if path: os.environ['webdriver.chrome.driver'] = path else: path = '' global DRIVER DRIVER = eval('webdriver.'+driver_type+'('+path+')') return DRIVER def visit_page(self, page_url): """! Method that visit page with "page_url" URL. Args: page_url: string, http(-s) address. """ DRIVER.get(page_url) self.get_current_page_html() def get_current_page_html(self): """! Method that returns HTML of current page. Returns: PAGE_HTML - html of current page. """ html = DRIVER.page_source global PAGE_HTML PAGE_HTML = BeautifulSoup(html, 'html.parser') return PAGE_HTML def get_page_html(self): return PAGE_HTML def get_driver(self): return DRIVER def close_driver(self): DRIVER.close() def quit_driver(self): DRIVER.quit() def maximize_window(self): DRIVER.maximize_window() def screen(self, location='./tmp/screenshots'): """! Saves screenshot.""" timestamp = time.strftime('%d_%b_%Y_%H_%M') filename = timestamp + '.png' path = os.path.abspath(location) if not os.path.exists(path): os.makedirs(path) full_path = path + '/' + filename DRIVER.get_screenshot_as_file(full_path)
[ "abon.lits@gmail.com" ]
abon.lits@gmail.com
c865ab16fb282ca2fcd60d1db0446fbe307de26c
9b5d06139061f6de33d81d9611495600d2c86df0
/newsfeed_template.py
ca32da9441830095fad3bb168b2db67afe1d03dc
[]
no_license
rakesh82/Flask-Example
28fa0795ce344f2d55f40b87b1cefe0cd6ef5231
ebe1aac105ba32aa5e0e535722ed535efc8bbe44
refs/heads/master
2022-12-18T04:03:59.156295
2020-09-25T11:24:58
2020-09-25T11:24:58
298,550,990
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
### # newsfeed_template.py - multiple news feeds and uses of Jinja templates ### import feedparser from flask import Flask from flask import render_template app = Flask(__name__) # Feeds channel NEWS_FEED = { 'bbc': "http://feeds.bbci.co.uk/news/rss.xml", 'cnn': "http://rss.cnn.com/rss/edition.rss", 'fox': "http://feeds.foxnews.com/foxnews/latest", 'iol': "http://www.iol.co.za/cmlink/1.640" } # routing @app.route("/") @app.route("/<publication>") # functions def get_news(publication='bbc'): feed = feedparser.parse(NEWS_FEED[publication]) #first_article = feed['entries'][0] return render_template("home.html", news=publication.upper(), articles=feed['entries']) if __name__ == '__main__': app.run(port=5000, debug=True)
[ "noreply@github.com" ]
rakesh82.noreply@github.com
e70e33f6e6b8c38ee246fdd13f744f958336a9b2
c50e7b5a9597980f7b659fa4294f065b152ef9cf
/jogo_da_velha_utilizando_arrays_funções_e_estrutura_para_faça.py
f319d511dae456ffad5e8ed63f5958fbd7eeb6ae
[]
no_license
crishonsou/modern_python3_bootcamp
aab60ede8f8bec4cb38dc81e896823795460ea5b
086e0e97dacaf05862fa8d73184b217cf5688114
refs/heads/main
2022-12-24T00:00:03.621358
2020-10-06T15:35:26
2020-10-06T15:35:26
301,769,578
0
0
null
null
null
null
UTF-8
Python
false
false
1,954
py
import sys def menu(): continuar=1 while continuar: continuar = int(input("0. Sair \n"+ "1. Jogar novamente\n")) if continuar: jogador_1 = input('Digite o nome do jogador 1: ') jogador_2 = input('Digite o nome do jogador 2: ') game() else: print("Saindo...") def game(): jogada=0 while ganhou() == 0: print("\nJogador ", jogada%2 + 1) exibe() linha = int(input("\nLinha :")) coluna = int(input("Coluna:")) if board[linha-1][coluna-1] == 0: if(jogada%2+1)==1: board[linha-1][coluna-1]=1 else: board[linha-1][coluna-1]=-1 else: print("Nao esta vazio") jogada -=1 if ganhou(): print("Jogador ",jogada%2 + 1," ganhou apos ", jogada+1," rodadas") jogada +=1 def ganhou(): #checando linhas for i in range(3): soma = board[i][0]+board[i][1]+board[i][2] if soma==3 or soma ==-3: return 1 #checando colunas for i in range(3): soma = board[0][i]+board[1][i]+board[2][i] if soma==3 or soma ==-3: return 1 #checando diagonais diagonal1 = board[0][0]+board[1][1]+board[2][2] diagonal2 = board[0][2]+board[1][1]+board[2][0] if diagonal1==3 or diagonal1==-3 or diagonal2==3 or diagonal2==-3: return 1 return 0 def exibe(): for i in range(3): for j in range(3): if board[i][j] == 0: print(" _ ", end=' ') elif board[i][j] == 1: print(" X ", end=' ') elif board[i][j] == -1: print(" O ", end=' ') print() board = [ [0,0,0], [0,0,0], [0,0,0] ] menu()
[ "noreply@github.com" ]
crishonsou.noreply@github.com
43bacb73308ce17131c7af16d237c8beaddd291b
0c8e23c3bc701cd043edcc99dc61c0a910985406
/main.py
b085f31d1c6def8eecf4ac856e4b7ad6edbdd4ce
[ "MIT" ]
permissive
talisonfc/DevOpsAssistent
55137d8596c286aeb057338bed36c5e12d455ea8
0a9b41c65d3dfbaec5210bdc7794be83042f1b52
refs/heads/master
2021-04-11T21:36:31.683842
2020-03-21T20:45:17
2020-03-21T20:45:17
249,056,981
0
0
null
null
null
null
UTF-8
Python
false
false
1,670
py
# -*- coding: utf-8 -*- import speech_recognition as sr from controllers import DBController dbController = DBController.DBController() mapOfHandlers = { "adicionar banco de dados": dbController.addDB, "meus bancos de dados": dbController.show, "remover banco de dados": dbController.removeDB, "conectar com banco de dados": dbController.connectDB, "criar banco de dados": dbController.createDB, "excluir banco de dados": dbController.dropDB, "carregar banco de dados": dbController.loadDump } def dispatch(command): # if command == "adicionar banco de dados": # dbController.addDB() try: if command.encode("utf-8") in "O que você sabe fazer": print("Eu sei fazer isso:") for action in mapOfHandlers.keys(): print('- '+action) else: mapOfHandlers[command]() except KeyError: print("nenhum handler disponivel") def ouvir_microfone(): microfone = sr.Recognizer() with sr.Microphone() as source: microfone.adjust_for_ambient_noise(source) print('estou lhe ouvindo') audio = microfone.listen(source) try: frase = microfone.recognize_google(audio, language='pt-BR') print('voce disse: ' + frase) if frase != '': dispatch(frase) if frase != 'tchau': ouvir_microfone() else: print("Obrigado Sr.") except sr.UnknownValueError: ouvir_microfone() # mode = 'text' mode = 'voz' if mode == 'text': dispatch("carregar banco de dados") else: ouvir_microfone()
[ "tfccomputation@gmail.com" ]
tfccomputation@gmail.com
94cc4e4ccf09fb0aac8357be15b814d889a2fdba
778607e1cc3636326057b43f90713e683f05621c
/pyUtil/pimon_temp.py
df90a5702f77c3ad3d07850d1699b3ddce964d48
[]
no_license
fgrehl/esxi-raspi
f9ddb2419aed901e324efd4d833bd11b4b6ee674
639d7c2838f4a7c5d615c39164d4586cfdfdadbf
refs/heads/main
2023-01-09T05:29:22.682287
2020-11-15T12:21:10
2020-11-15T12:21:10
311,383,029
4
1
null
null
null
null
UTF-8
Python
false
false
451
py
#!/usr/bin/python import time import sys from pimonLib import * def main(argv): if (argv): SECONDS = int(argv[0]) else: SECONDS = 10 print('Polling CPU temperature every {} seconds...'.format(str(SECONDS))) pimon = PiMon() while True: timestamp = int(time.time()) print('CPU Temperature: {} C'.format(pimon.getTemp())) time.sleep(SECONDS) if __name__ == '__main__': main(sys.argv[1:])
[ "git@virten.net" ]
git@virten.net
54634da9ef0f9cbf589a83574d5307aaa0f2557e
83a1c7251ff2d4d0090760227245856e28edfeac
/10/ascii_knot.py
54b56fdfed56f7e07e21971d65e74f5b4d063a4a
[]
no_license
mkolas/advent2017
db6e6c758247a3d1f153608227ed3ffcf8cd9c23
40706b7e4af6f1e9f08f1a3ce3d28749a3cc661a
refs/heads/master
2021-09-01T05:41:10.714619
2017-12-25T05:44:48
2017-12-25T05:44:48
112,755,382
0
0
null
null
null
null
UTF-8
Python
false
false
1,160
py
list_ = [x for x in range(256)] size = len(list_) lengths = [ord(x) for x in "183,0,31,146,254,240,223,150,2,206,161,1,255,232,199,88"] lengths.extend([17, 31, 73, 47, 23]) position = 0 skip = 0 def wrap_slice(list_, position, size): if position + size > len(list_): return list_[position:] + list_[:(position+size)%len(list_)] return list_[position:position+size] # do this 64 times now for x in range(64): for length in lengths: # first, reverse length sublist = wrap_slice(list_, position, length) sublist.reverse() for i in range(len(sublist)): list_[(position+i)%size] = sublist[i] # move position forward... position = (position+length+skip)%size skip += 1 # generate dense hash hash_array = [] val = 0 for x in range(16): to_hash = list_[:16] val = 0 for y in to_hash: val = val ^ y hash_array.append(val) list_ = list_[16:] # convert to hex string hash_string = "" for x in hash_array: no_pad = hex(x)[2:] if len(no_pad) == 1: no_pad = "0" + no_pad hash_string += no_pad print("hash {}".format(hash_string))
[ "barrelrolled@gmail.com" ]
barrelrolled@gmail.com
a4b85e3f638f3efabd6247858c62d1c3b21e8722
42de376efe849a6c205b56f3f1093aec4742bfc4
/battleship.py
4592ec5aa24b3e3c41df9ac90abcc6694e616962
[]
no_license
Ihsara/battleship
397551d70eedd92be8698eda0b98b702b71a457b
346cbcb20d272bccf311ce1280e558165a485a6b
refs/heads/master
2021-06-21T01:06:13.687996
2019-09-19T02:48:14
2019-09-19T02:48:14
209,442,670
0
0
null
2021-04-20T18:41:25
2019-09-19T02:12:40
Python
UTF-8
Python
false
false
264
py
DEFAULT_SIZE = (10, 10) PVE = 'pve' PVP = 'pvp' MODES = [PVE, PVP] def play_battleship(board_size=DEFAULT_SIZE, playmode=PVE): return 1 if __name__ == '__main__': play_battleship(board_size=DEFAULT_SIZE, playmode=PVE)
[ "longchau21@gmail.com" ]
longchau21@gmail.com
de3cc0898496f0289168f3bbfa565960cb719813
dbe0db719e6d8a8c7e9974c590a3199e5792fde8
/blog/views.py
bf70355cfd8d1ffceadc2eac61be622ae9e9a1db
[]
no_license
PurunStar/Hosting
bbde7f069cf780554ad999e4c811699e04888d06
71f5aea468351b394d1e653d145289b545075a5e
refs/heads/master
2023-04-28T23:58:49.774782
2019-06-28T02:23:05
2019-06-28T02:23:05
194,189,733
0
0
null
2023-04-21T20:33:00
2019-06-28T02:03:03
JavaScript
UTF-8
Python
false
false
3,648
py
from django.shortcuts import render, get_object_or_404, redirect, HttpResponse from .models import Blog , Comment from django.utils import timezone from django.core.paginator import Paginator from django.contrib.auth.decorators import login_required from .forms import BlogForm # Create your views here. def home(request): blogs = Blog.objects blog_list = Blog.objects.all() paginator = Paginator(blog_list, 3) page = request.GET.get('page') posts = paginator.get_page(page) return render(request, 'home.html', {'blogs' :blogs, 'posts':posts}) def details(request, blog_id): details = get_object_or_404(Blog, pk=blog_id) return render(request, 'details.html', {'detail': details}) def new(request): return render(request, 'new.html') def delete(request, blog_id): blog = get_object_or_404(Blog, pk=blog_id) blog.delete() return redirect('/') def create(request): # blog = Blog() # blog.title = request.GET['title'] # blog.body = request.GET['body'] # blog.pub_date = timezone.datetime.now() # blog.save() # return redirect('/blog/' + str(blog.id)) if request.method == 'POST': blog = Blog form = BlogForm(request.POST) if form.is_valid(): BlogForm.pub_date = timezone.datetime.now() bloggroup = form.save(commit=False) bloggroup.save() return redirect('/blog/' + str(blog.id)) else: form = BlogForm() return render(request, 'new.html', {'form' : form}) def edit(request,blog_id): # blog = get_object_or_404(Blog, pk=blog_id) # if request.method == "POST": # blog.title = request.POST['title'] # blog.body = request.POST['body'] # blog.pub_date = timezone.datetime.now() # blog.save() # return redirect('/blog/' + str(blog.id)) # return render(request,'edit.html',{'blog':blog}) blog = get_object_or_404(Blog, pk=blog_id) if request.method == 'POST': form = BlogForm(request.POST, instance=blog) if form.is_valid(): blog.pub_date = timezone.datetime.now() blog = form.save(commit=False) blog.save() return redirect('details', pk=blog.id) else: form = BlogForm(instance=blog) return render(request, 'edit.html', {'form': form, 'blog': blog}) #blog/views.py @login_required def comment_add(request,blog_id): if request.method == "POST": post = Blog.objects.get(pk=blog_id) comment = Comment() comment.user = request.user comment.body = request.POST['body'] comment.post = post comment.save() return redirect('/blog/' + str(blog_id)) else: return HttpResponse('잘못된 접근입니다.') @login_required def comment_edit(request,comment_id): comment = get_object_or_404(Comment,pk=comment_id) if request.user == comment.user: if request.method =="POST": comment.body = request.POST['body'] comment.save() return redirect('/blog/' + str(comment.post.id)) elif request.method=="GET": context ={ 'comment' : comment } return render(request,'comment_edit.html', context) @login_required def comment_delete(request, comment_id): comment = get_object_or_404(Comment,pk=comment_id) if request.user == comment.user: if request.mehtod=="POST": post_id = comment.post.id comment.delete() return redirect('/blog/' + str(post_id)) return HttpResponse('잘못된 접근입니다.')
[ "maxlevel1324@naver.com" ]
maxlevel1324@naver.com
71475e313cdac46415bf31dbe3f90cf158e2b1bb
6b5bbdbc3e6f54b312738103b8c348a05b8f81db
/Code/calibration.py
e606912ded5d664deb0ed1f26928680ea689b3a4
[ "MIT" ]
permissive
irvingliao/CarND-Advanced-Lane-Lines
39ec388828391b19c979bb4cc78eb641b6638dcf
f9d136e0440285efb564d41c05c1346a2cd7c5c5
refs/heads/master
2020-04-12T18:44:07.744844
2018-12-27T08:34:11
2018-12-27T08:34:11
162,688,995
0
0
MIT
2018-12-21T08:39:36
2018-12-21T08:39:36
null
UTF-8
Python
false
false
2,673
py
#%% [markdown] # ## First, I'll compute the camera calibration using chessboard images #%% import numpy as np import cv2 import glob import matplotlib.pyplot as plt import matplotlib.image as mpimg from IPython import get_ipython #%% get_ipython().run_line_magic('matplotlib', 'qt') # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6*9,3), np.float32) objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob('../camera_cal/calibration*.jpg') # Step through the list and search for chessboard corners for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (9,6),None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners img = cv2.drawChessboardCorners(img, (9,6), corners, ret) cv2.imshow('img',img) cv2.waitKey(500) cv2.destroyAllWindows() #%% [markdown] # ## Undistort a test image #%% import pickle get_ipython().run_line_magic('matplotlib', 'inline') # Test undistortion on an image img = cv2.imread('../camera_cal/calibration1.jpg') img_size = (img.shape[1], img.shape[0]) # Do camera calibration given object points and image points ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None) # Save the camera calibration result for later use (we won't worry about rvecs / tvecs) dist_pickle = {} dist_pickle["mtx"] = mtx dist_pickle["dist"] = dist pickle.dump( dist_pickle, open( "../camera_cal/dist_pickle.p", "wb" ) ) dst = cv2.undistort(img, mtx, dist, None, mtx) # Visualize undistortion f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.imshow(img) ax1.set_title('Original Image', fontsize=30) ax2.imshow(dst) ax2.set_title('Undistorted Image', fontsize=30) #%% import pickle import re # Apply Distortion Correction to test images test_imgs = glob.glob('../test_images/*.jpg') pattern = re.compile('/test_images/(.*).jpg') dist_pickle = pickle.load( open( "../camera_cal/dist_pickle.p", "rb" ) ) mtx = dist_pickle["mtx"] dist = dist_pickle["dist"] for fname in test_imgs: image = cv2.imread(fname) name = pattern.search(fname).group(1) path = '../test_images/' + name + '_undist.jpg' test_dst = cv2.undistort(image, mtx, dist, None, mtx) cv2.imwrite(path, test_dst)
[ "irvingliao@gmail.com" ]
irvingliao@gmail.com
1674fe95e66f1a1515e0f9f2041ce6e82087a29a
2537756cb251008eacd247db82a26c43967e1381
/sdk/python/test_data/pipelines/pipeline_with_importer_and_gcpc_types.py
98431d362cbd686875944fc8fdff87db3846f011
[ "Apache-2.0" ]
permissive
TheMichaelHu/pipelines
074edf3b08e2877a996061bacdf4b9563270cc5b
4c6abe5afcc1b0511f0d0ab91b7ec4522da5a1df
refs/heads/master
2022-12-10T18:34:08.540736
2022-11-02T00:31:45
2022-11-02T00:31:45
241,268,119
0
0
Apache-2.0
2020-02-18T04:00:31
2020-02-18T04:00:30
null
UTF-8
Python
false
false
1,626
py
# Copyright 2022 The Kubeflow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pipeline using dsl.importer and GCPC types.""" from kfp import compiler from kfp import components from kfp import dsl from kfp.dsl import importer class VertexDataset(dsl.Artifact): """An artifact representing a GCPC Vertex Dataset.""" schema_title = 'google.VertexDataset' consumer_op = components.load_component_from_text(""" name: consumer_op inputs: - {name: dataset, type: google.VertexDataset} implementation: container: image: dummy command: - cmd args: - {inputPath: dataset} """) @dsl.pipeline( name='pipeline-with-importer-and-gcpc-type', pipeline_root='dummy_root') def my_pipeline(): importer1 = importer( artifact_uri='gs://ml-pipeline-playground/shakespeare1.txt', artifact_class=VertexDataset, reimport=False, metadata={'key': 'value'}) consume1 = consumer_op(dataset=importer1.output) if __name__ == '__main__': compiler.Compiler().compile( pipeline_func=my_pipeline, package_path=__file__.replace('.py', '.yaml'))
[ "noreply@github.com" ]
TheMichaelHu.noreply@github.com
dff6ff1934280c768a14f7a374a59512e2cf35bb
c7f4cc258c3f18a80bd94378bc826b59d0b6bb1d
/python/modules/argparse/test.py
c13d50c6a84db48a0ab3a7719ff84104042c66df
[]
no_license
CoptimT/basic
92799e48e5ac264b4af61bc65041320d9c928489
e98a9bd3efcaf9cccb6514996c0318a833ae7b06
refs/heads/master
2020-03-14T22:56:05.207429
2018-08-01T09:53:02
2018-08-01T09:53:02
131,832,240
0
0
null
null
null
null
UTF-8
Python
false
false
1,499
py
#!/bin/env python # -*- coding: UTF-8 -*- import argparse def test1(): parser = argparse.ArgumentParser() parser.add_argument('echo') args = parser.parse_args() print(args) print(args.echo) # > python test.py ofo # Namespace(echo='ofo') # ofo def test2(): parser = argparse.ArgumentParser(description = 'this is a description') parser.add_argument('--ver', '-v', action = 'store_true', help = 'hahaha') # 将变量以标签-值的字典形式存入args字典 args = parser.parse_args() print(args) if args.ver: print("Ture") else: print("False") # > python test.py -v # > python test.py --ver # Namespace(ver=True) # Ture # > python test.py -h # usage: test.py [-h] [--ver] # this is a description # optional arguments: # -h, --help show this help message and exit # --ver, -v hahaha def test3(): parser = argparse.ArgumentParser(description = 'this is a description') parser.add_argument('--ver', '-v', required = True, type = int) args = parser.parse_args() print(args) if args.ver: print("Ture") else: print("False") # > python test.py -v # usage: test.py [-h] --ver VER # test.py: error: argument --ver/-v: expected one argument # > python test.py --ver 10 # Namespace(ver=10) # Ture if __name__ == "__main__": test3()
[ "zhangxw17@lenovo.com" ]
zhangxw17@lenovo.com
6c9607cf91f8f75cb437f6ebc6042a0b2bc5cbd7
3c124cd9758886b331e6dd1ee146ac3ab0b369a4
/period3/32414845dailyahead/XGB.py
c665eafed23d815ba0acdece459166289b61d755
[]
no_license
WzcTHU/LMP_Forecast
3ff109fb4da402cfd7d093d9ee13586e4082497a
c5794cfef0b3c778e35502aa5ddbaac1446e65b2
refs/heads/master
2020-05-17T01:30:12.789552
2019-04-25T13:00:39
2019-04-25T13:00:39
183,426,832
2
0
null
null
null
null
UTF-8
Python
false
false
1,299
py
from DataStandardScaler import * from DataCut import * from SummaryResults import * from xgboost import XGBRegressor from sklearn.externals import joblib import scipy.io as sio print('Cutting dataset...') data = DataCut('data/x.csv', 'data/y.csv') data.cut() print('Data standardizating...') data_scaler = DataStandardScaler(data.train_xset, data.train_yset, data.validation_xset, data.validation_yset) print('XGB training...') # regressor = XGBRegressor(n_estimators=100) regressor = XGBRegressor() regressor.fit(data_scaler.x_train_standard, data_scaler.y_train_standard.ravel()) joblib.dump(regressor, 'models/xgb_model.m') y_fore_train = regressor.predict(data_scaler.x_train_standard) y_fore_validation = regressor.predict(data_scaler.x_validation_standard) data_scaler.reverse_trans(y_fore_train, y_fore_validation) print('Getting results...') sum_res_train = SummaryResults(data.train_yset, data_scaler.rev_y_train) sum_res_validation = SummaryResults(data.validation_yset, data_scaler.rev_y_validation) sio.savemat('ForecastResult/Validation/XGB.mat', {'XGBfore': data_scaler.rev_y_validation}) sum_res_train.get() sum_res_validation.get() res_list = sum_res_validation.cal_residual() sio.savemat('res/XGBres.mat', {'XGB_res': res_list}) print(sum_res_validation.cal_variance())
[ "zhengche16@mails.tsinghua.edu.cn" ]
zhengche16@mails.tsinghua.edu.cn