blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
8a27d5cf919c43df37bcb664422415fc60bd850b
56f968ff8f215f0a64eb822916acf9e6039a036e
/env/bin/rst2html5.py
a506af6914bc457993707d54eb799cc534b808ef
[]
no_license
AntObr/credit-to-customer
754d9d144d1f9f49ce9aefd6e0500d76e1cde1e1
36b2a100dc65b109b72527a36556a37418b1fcda
refs/heads/master
2022-01-25T17:34:10.820544
2018-04-17T16:48:06
2018-04-17T16:48:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,189
py
#!/Users/aobrie/Documents/Projects/credit-to-customer/env/bin/python # -*- coding: utf8 -*- # :Copyright: © 2015 Günter Milde. # :License: Released under the terms of the `2-Clause BSD license`_, in short: # # Copying and distribution of this file, with or without modification, # are permitted in any medium without royalty provided the copyright # notice and this notice are preserved. # This file is offered as-is, without any warranty. # # .. _2-Clause BSD license: http://www.spdx.org/licenses/BSD-2-Clause # # Revision: $Revision: 7847 $ # Date: $Date: 2015-03-17 18:30:47 +0100 (Di, 17 Mär 2015) $ """ A minimal front end to the Docutils Publisher, producing HTML 5 documents. The output also conforms to XHTML 1.0 transitional (except for the doctype declaration). """ try: import locale # module missing in Jython locale.setlocale(locale.LC_ALL, '') except locale.Error: pass from docutils.core import publish_cmdline, default_description description = (u'Generates HTML 5 documents from standalone ' u'reStructuredText sources ' + default_description) publish_cmdline(writer_name='html5', description=description)
[ "obrien.r.anthony@gmail.com" ]
obrien.r.anthony@gmail.com
f699cd13d0a44f84e958ae8ed9a94e8acfffe352
2e2a8df64f0d07fcea33cadb1cb9731a68fec2e3
/HyHelper/ONI_webscript.py
5be70d00624ce3937c5fd8ba6c8fa41f289b6ea6
[ "MIT" ]
permissive
aherrera1721/hyhelper
e4f7a73facd33d067766289a8fc6c2809954848e
73fccda145bcf1a979e646156343f56c40df0b61
refs/heads/master
2020-07-26T16:27:10.198397
2019-12-13T06:24:24
2019-12-13T06:24:24
208,703,410
2
0
null
null
null
null
UTF-8
Python
false
false
2,478
py
from mechanize import Browser from bs4 import BeautifulSoup def get_data(): """ Gets the Running 3-Month Mean ONI values table from: https://ggweather.com/enso/oni.htm """ br = Browser() url = 'https://ggweather.com/enso/oni.htm' webpage = br.open(url) html = webpage.read() bs = BeautifulSoup(html, features="html5lib") table = bs.find(lambda tag: tag.name=='table' and tag.has_attr('width') and tag['width']=='930') rows = table.findAll('tr') data_table = [] for row in rows: cols = row.findAll('td') cols = [ele.text.strip() for ele in cols] data_table.append([ele for ele in cols]) return data_table class ONI_Season(): """ Class to represent a season of 3-month mean ONI values. An ONI season starts in July and ends in June. """ def __init__(self, data): """ Initializes a new instance of `ONI_Season` to have the following key attributes: * `enso_type` * `season` * `oni_vals` Parameters: * data (list): a row from the Running 3-Month Mean ONI values table from: https://ggweather.com/enso/oni.htm """ self.enso_type = data[0] if data[0] else "N" self.season = (float(data[1]), float(data[3])) self.oni_vals = { "JJA": float(data[4]) if data[4] else None, "JAS": float(data[5]) if data[5] else None, "ASO": float(data[6]) if data[6] else None, "SON": float(data[7]) if data[7] else None, "OND": float(data[8]) if data[8] else None, "NDJ": float(data[9]) if data[9] else None, "DJF": float(data[10]) if data[10] else None, "JFM": float(data[11]) if data[11] else None, "FMA": float(data[12]) if data[12] else None, "MAM": float(data[13]) if data[13] else None, "AMJ": float(data[14]) if data[14] else None, "MJJ": float(data[15]) if data[15] else None, } def get_oni_seasons(): """ Gets the Running 3-Month Mean ONI values from: https://ggweather.com/enso/oni.htm as instances of ONI_Season. Returns a dictionary mapping season years (e.g., (1950, 1951)) to its respective ONI_Season instance. """ data_table = get_data() oni_seasons = dict() for data in data_table[2::]: oni_season = ONI_Season(data) oni_seasons[oni_season.season] = oni_season return oni_seasons
[ "noreply@github.com" ]
aherrera1721.noreply@github.com
15c3df7f9087494205581ad7a8a4f49a4af05841
1e56141b7d5a738a74966c5e447249b895d6bfa9
/feeds/views.py
123efd22be6571c2127cd568f41f30bd9b73f3f1
[]
no_license
Dexter009/BloggIt
685737e546739faa4450a294e2f6ff44f7ee8ddd
56a5515128d6ab34a55de248c96de0b344d3c160
refs/heads/master
2021-04-30T04:15:39.936828
2018-02-14T16:17:34
2018-02-14T16:17:34
121,531,908
0
0
null
null
null
null
UTF-8
Python
false
false
5,529
py
import os from PIL import Image from django.contrib.auth.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from django.db.models import Count from django.http import Http404 from django.shortcuts import render, redirect from django.contrib.auth import login, authenticate, logout from django.contrib.auth.models import User from feeds.forms import AuthenticateForm, UserCreateForm, FeedsForm,UserEditForm, \ ProfileEditForm from feeds.models import Feeds, UserProfile def index(request, auth_form=None, user_form=None): # User is logged in if request.user.is_authenticated(): feeds_form = FeedsForm() user = request.user feedss_self = Feeds.objects.filter(user=user.id) feedss_buddies = Feeds.objects.filter(user__userprofile__in=user.profile.follows.all) feedss = feedss_self | feedss_buddies return render(request, 'buddies.html', {'feeds_form': feeds_form, 'user': user, 'feedss': feedss, 'next_url': '/', }) else: # User is not logged in auth_form = auth_form or AuthenticateForm() user_form = user_form or UserCreateForm() return render(request, 'home.html', {'auth_form': auth_form, 'user_form': user_form, }) def login_view(request): if request.method == 'POST': form = AuthenticateForm(data=request.POST) if form.is_valid(): login(request, form.get_user()) # Success return redirect('/') else: # Failure return index(request, auth_form=form) return redirect('/') def logout_view(request): logout(request) return redirect('/') def signup(request): user_form = UserCreateForm(data=request.POST) if request.method == 'POST': if user_form.is_valid(): username = user_form.cleaned_data.get('username') password = user_form.cleaned_data.get('password2') user_form.save() profile = UserProfile.objects.create(user=user_form) user = authenticate(username=username, password=password) login(request, user) return redirect('/') else: return index(request, user_form=user_form) return redirect('/edit.html') @login_required def submit(request): if request.method == "POST": feeds_form = FeedsForm(data=request.POST) next_url = request.POST.get("next_url", "/") if feeds_form.is_valid(): feeds = feeds_form.save(commit=False) feeds.user = request.user feeds.save() return redirect(next_url) else: return public(request, feeds_form) return redirect('/') @login_required def public(request, feeds_form=None): feeds_form = feeds_form or FeedsForm() feedss = Feeds.objects.reverse()[:10] return render(request, 'public.html', {'feeds_form': feeds_form, 'next_url': '/feedss', 'feedss': feedss, 'username': request.user.username}) def get_latest(user): try: return user.feeds_set.order_by('-id')[0] except IndexError: return "" @login_required def users(request, username="", feeds_form=None): if username: try: user = User.objects.get(username=username) except User.DoesNotExist: raise Http404 feedss = Feeds.objects.filter(user=user.id) if username == request.user.username or request.user.profile.follows.filter(user__username=username): return render(request, 'user.html', {'user': user, 'feedss': feedss, }) return render(request, 'user.html', {'user': user, 'feedss': feedss, 'follow': True, }) users = User.objects.all().annotate(feeds_count=Count('feeds')) feedss = map(get_latest, users) obj = zip(users, feedss) feeds_form = feeds_form or FeedsForm() return render(request, 'profiles.html', {'obj': obj, 'next_url': '/users/', 'users':users, 'feeds_form': feeds_form, 'username': request.user.username, 'fname': request.user.first_name}) @login_required def follow(request): if request.method == "POST": follow_id = request.POST.get('follow', False) if follow_id: try: user = User.objects.get(id=follow_id) request.user.profile.follows.add(user.profile) except ObjectDoesNotExist: return redirect('/users/') return redirect('/users/') @login_required def edit(request): if request.method == 'POST': user_form = UserEditForm(instance=request.user, data=request.POST) profile_form = ProfileEditForm( instance=request.user.profile, data=request.POST, files=request.FILES) if user_form.is_valid() and profile_form.is_valid(): user_form.save() profile_form.save() return render(request,'profiles.html') else: user_form = UserEditForm(instance=request.user) profile_form = ProfileEditForm( instance=request.user.profile) return render(request, 'edit.html', {'user_form': user_form, 'profile_form': profile_form})
[ "noreply@github.com" ]
Dexter009.noreply@github.com
239cf91ef9a1aff1f0c3fc3aaef72f1bf10325d7
caf8ca1b140d84076d81a35b97e8995979830787
/selenium_demo/testcases/pytest/test_11.py
9d2bfc8b9e49c214fd6724c0f220d40f4c5fb07a
[]
no_license
ganmanlin/pytest-selenium-demo
2f2dd79ba6ed9af64237dde8e60670d245b88709
cfced05f28db614dc4739e5d8e1c878bd56e5932
refs/heads/main
2023-05-31T13:33:20.646475
2021-06-27T14:55:36
2021-06-27T14:55:36
380,766,595
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
import pytest import allure @pytest.fixture(scope="session") def login(): print("用例先登陆") @allure.step("步骤1:点xxx") def step_1(): print("111") @allure.step("步骤2:点xxx") def step_2(): print("222") @allure.feature("编辑页面") class TestEditPage(): '''编辑页面''' @allure.story('这是一个xxx的用例') def test_1(self,login): '''用力描述:先登录,再去执行xxx''' step_1() step_2() print('test_1') @allure.story('这是一个yyy的用力') def test_2(self,login): '''用力描述:先登录,再去执行yyy''' print('test_2') # if __name__ == '__main__':
[ "chenjing@chenjings-MacBook-Pro.local" ]
chenjing@chenjings-MacBook-Pro.local
f737a98c385e73d1190a7e43abef05f282d07481
0ae54acc15ec017797594e0deefc695ba0ff36b9
/apps/pedido/migrations/0004_pedido_totalpagar.py
7baeaebb01e4a5d06a9a3cea2c46d720de58effa
[]
no_license
yasmani0/soptec
32d0677281f5847d63ef057439caa46fa8d323e8
650ad2b3b5f5cffa6e098a9bfbc48e407a513c48
refs/heads/main
2023-06-15T18:44:51.499412
2021-07-16T20:08:26
2021-07-16T20:08:26
382,013,816
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
# Generated by Django 2.2.5 on 2021-06-05 05:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pedido', '0003_pedido_disponibilidad'), ] operations = [ migrations.AddField( model_name='pedido', name='totalPagar', field=models.FloatField(blank=True, max_length=10, null=True), ), ]
[ "74805175+yasmani0@users.noreply.github.com" ]
74805175+yasmani0@users.noreply.github.com
3bb6cc883f0b5afe906b06fa38c40a07d3f89e99
b00881def4d59f20d06e56d3fa786547385fa725
/Project/weerstation.py
33fe0df42f5820429181e9e305c11dd2db65491e
[]
no_license
BaertMatthias/Weerstation
1b913c2f4b1e16c05c25fa2a3f170b6b28f4d41c
50cbf6b9cace536d632de0d420e88355f2ff7c83
refs/heads/master
2021-06-19T00:40:33.456435
2017-06-06T09:10:46
2017-06-06T09:10:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,242
py
from LCD import LCD from DbClass import DbClass import Adafruit_DHT import RPi.GPIO as GPIO import datetime humidity, temperature = Adafruit_DHT.read_retry(Adafruit_DHT.DHT22, 4) humidity = round(humidity, 2) temperature = round(temperature, 2) import spidev import time spi = spidev.SpiDev() spi.open(0,0) def readChannel(channel): adc = spi.xfer2([1,(8+channel)<<4,0]) data = ((adc[1]&3) << 8 | adc[2]) return data def berekenLichtsterkte(): data_licht = readChannel(0) lichtsterkte = -(data_licht - 850) lichtsterkte = lichtsterkte / (850 - 180) * 100 lichtsterkte = round(lichtsterkte,2) return lichtsterkte import Adafruit_BMP2.BMP280 as BMP280 sensor = BMP280.BMP280() luchtdruk = sensor.read_pressure() luchtdruk = round(luchtdruk,2) lcd = LCD(26,19,12,16,20,21) lcd.main() lcd.init() lcd.message('Aangesloten') db = DbClass() try: while True: tijdstip = datetime.now().strftime('%Y-%m-%d %H:%M:%S') setTempToDatabase(temperature,tijdstip) setLightToDatabase(berekenLichtsterkte(),tijdstip) setPressureToDatabase(luchtdruk,tijdstip) setHumidityToDatabase(humidity,tijdstip) time.sleep(1) except KeyboardInterrupt: pass GPIO.cleanup()
[ "matthias.baert@student.howest.be" ]
matthias.baert@student.howest.be
9891a6cf044318b3237050b1335b181959c80ed8
0c9080f172d77032305cdeef26d32b332d8e7952
/comodit_client/control/exceptions.py
9dd6b28861aaec8c59489644df76fe77c23e300c
[ "MIT" ]
permissive
comodit/comodit-client
73b498a16b9a794caeed2d424d677e624c69c2d4
dac2011d0d31e740445d5877d28d5cd12b4be730
refs/heads/master
2023-07-17T06:01:37.227155
2023-04-03T09:37:57
2023-04-03T09:37:57
1,128,114
0
26
NOASSERTION
2023-04-03T09:37:58
2010-12-01T08:22:08
Python
UTF-8
Python
false
false
600
py
# control.exceptions - Exceptions for the application controllers. # coding: utf-8 # # Copyright 2010 Guardis SPRL, Liège, Belgium. # Authors: Laurent Eschenauer <laurent.eschenauer@guardis.com> # # This software cannot be used and/or distributed without prior # authorization from Guardis. class ControllerException(Exception): def __init__(self, message): self.msg = message class ArgumentException(Exception): def __init__(self, message): self.msg = message class NotFoundException(ArgumentException): pass class MissingException(ArgumentException): pass
[ "laurent@eschenauer.be" ]
laurent@eschenauer.be
681915dcd5064146e70e08a4c14e6b9cf5ca866c
b9d594ebfd463e33c82f9e3180bdeb76a5618c1c
/node_sync_protect.py
add160be1e7ea928e7081cfc7814b95ba93439a0
[]
no_license
wschxida/node_sync_protect
945abda073eb0a13d62bdc61ec0bf07f87b41f54
5930146ed33d320c2bc9bb1e06c30e2d9d59a348
refs/heads/master
2021-05-27T08:11:58.282435
2020-04-09T01:44:16
2020-04-09T01:44:16
254,243,630
0
0
null
null
null
null
UTF-8
Python
false
false
7,262
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : node_sync_protect.py # @Author: Cedar # @Date : 2020/4/2 # @Desc : import pymysql def query_mysql(config_params, query_sql): """ 执行SQL :param config_params: :param query_sql: :return: """ # 连接mysql config = { 'host': config_params["host"], 'port': config_params["port"], 'user': config_params["user"], 'passwd': config_params["passwd"], 'db': config_params["db"], 'charset': 'utf8mb4', 'cursorclass': pymysql.cursors.DictCursor } conn = pymysql.connect(**config) conn.autocommit(1) # 使用cursor()方法获取操作游标 cur = conn.cursor() cur.execute(query_sql) # 执行sql语句 results = cur.fetchall() # 获取查询的所有记录 conn.close() # 关闭连接 return results def sync_heart_beat_from_extractor_to_center(config_extractor, config_center): """ 只要采集节点的心跳10分钟内没同步到中心库,就执行更新 """ try: # 查询采集库node心跳,最近一小时有心跳的节点 sql_extractor = "select Node_ID,Last_Heart_Beat_Time from node " \ "where node_role='E' and Is_Enabled=1 and Sub_System_Name='KWM' " \ "and Last_Heart_Beat_Time>DATE_SUB(CURRENT_TIME(),INTERVAL 1 hour);" query_result_extractor = query_mysql(config_extractor, sql_extractor) # 把数据库查询结果改成字典Node_ID:Last_Heart_Beat_Time的形式,便于后面操作 node_heart_beat_extractor = {} for item in query_result_extractor: node_heart_beat_extractor[item["Node_ID"]] = item["Last_Heart_Beat_Time"] # 查询中心库node表心跳 sql_center = "select Node_ID,Last_Heart_Beat_Time from node " \ "where node_role='E' and Is_Enabled=1 and Sub_System_Name='KWM';" query_result_center = query_mysql(config_center, sql_center) # 把数据库查询结果改成字典Node_ID:Last_Heart_Beat_Time的形式,便于后面操作 node_heart_beat_center = {} for item in query_result_center: node_heart_beat_center[item["Node_ID"]] = item["Last_Heart_Beat_Time"] # 更新中心库的采集服务器心跳 for i in node_heart_beat_extractor.keys(): time_diff = node_heart_beat_extractor[i] - node_heart_beat_center[i] # print(node_heart_beat_extractor[i]) # print(node_heart_beat_center[i]) second_diff = time_diff.days*24*3600 + time_diff.seconds # print(i, second_diff) # 如果采集库的心跳比中心库大10分钟以上,就更新回去 if second_diff > 600: print("sync_heart_beat_from_extractor_to_center node_id:", i, " second_diff:", second_diff) update_heart_beat_sql = f"update node set Last_Heart_Beat_Time='{node_heart_beat_extractor[i]}' where Node_ID={i}" query_mysql(config_center, update_heart_beat_sql) except Exception as e: raise e def sync_node_from_center_to_extractor(config_center, config_extractor): """ 如果中心库和采集库node表的Is_Enabled和Is_Working查询结果不一致,就执行同步 把中心库node表的Is_Enabled及Is_Working同步到采集库 """ try: sql = "select Node_ID,Is_Enabled,Is_Working from node;" # 查询中心库 query_result_center = query_mysql(config_center, sql) # 查询采集库 query_result_extractor = query_mysql(config_extractor, sql) # print(query_result_center) # print(query_result_extractor) # 如果中心库与采集库不一致,就执行更新 if query_result_center != query_result_extractor: print("sync_node_from_center_to_extractor") for item in query_result_center: sql_text = f"update node set Is_Enabled={item['Is_Enabled']},Is_Working={item['Is_Working']} where Node_ID={item['Node_ID']};" sql_text = sql_text.replace('None', 'Null') query_mysql(config_extractor, sql_text) except Exception as e: raise e def sync_node_in_node_group_from_center_to_extractor(config_center, config_extractor): """ 如果中心库和采集库node_in_node_group查询结果不一致,就执行同步 把中心库node_in_node_group同步到采集库 """ try: sql = "select * from node_in_node_group;" # 查询中心库node_in_node_group query_result_center = query_mysql(config_center, sql) # 查询采集库node_in_node_group query_result_extractor = query_mysql(config_extractor, sql) # 如果中心库与采集库不一致,就执行更新 if query_result_center != query_result_extractor: print("sync_node_in_node_group_from_center_to_extractor") for item in query_result_center: sql_text = f"replace into node_in_node_group(Node_In_Node_Group_ID, Node_Group_Code, Node_ID, Part_No, Part_Amount) values({item['Node_In_Node_Group_ID']}, '{item['Node_Group_Code']}', {item['Node_ID']}, {item['Part_No']}, {item['Part_Amount']});" sql_text = sql_text.replace('None', 'Null') # print(sql_text) query_mysql(config_extractor, sql_text) except Exception as e: raise e if __name__ == '__main__': # extractor = {'host': '192.168.1.166', 'port': 3306, 'user': 'root', 'passwd': 'poms@db', 'db': 'test_extractor'} # center = {'host': '192.168.1.166', 'port': 3306, 'user': 'root', 'passwd': 'poms@db', 'db': 'test_center'} center = {'host': '192.168.1.116', 'port': 3306, 'user': 'root', 'passwd': 'poms@db', 'db': 'mymonitor'} extractor_117 = {'host': '192.168.1.117', 'port': 3306, 'user': 'root', 'passwd': 'poms@db', 'db': 'mymonitor'} print("---117 start---") # 只要采集节点的心跳10分钟内没同步到中心库,就执行更新:采集->中心 sync_heart_beat_from_extractor_to_center(extractor_117, center) # 只要中心库和采集库node表的Is_Enabled和Is_Working查询结果不一致,就执行同步:中心->采集 sync_node_from_center_to_extractor(center, extractor_117) # 只要中心库和采集库node_in_node_group查询结果不一致,就执行同步:中心->采集 sync_node_in_node_group_from_center_to_extractor(center, extractor_117) print("---117 end---") extractor_118 = {'host': '192.168.1.118', 'port': 3306, 'user': 'root', 'passwd': 'poms@db', 'db': 'mymonitor'} print("---118 start---") # 只要采集节点的心跳10分钟内没同步到中心库,就执行更新:采集->中心 sync_heart_beat_from_extractor_to_center(extractor_118, center) # 只要中心库和采集库node表的Is_Enabled和Is_Working查询结果不一致,就执行同步:中心->采集 sync_node_from_center_to_extractor(center, extractor_118) # 只要中心库和采集库node_in_node_group查询结果不一致,就执行同步:中心->采集 sync_node_in_node_group_from_center_to_extractor(center, extractor_118) print("---118 end---")
[ "wschxida@gmail.com" ]
wschxida@gmail.com
5b90c09f7c40e941ed2b77199bd4001e8310cd30
7f839902b841766cc46a53bfdeca5f34233d4168
/Ensemble_method_project/code.py
de120f906a881e8c8847fe2733953940c787f9f4
[ "MIT" ]
permissive
Deepthi-AJ/Best-Projects-ga-learner-dsmp-repo
bb7fcc95296dee9b0585b09a6a27713f0800541f
b9d52a29eff734696ae269cafc8407d2121b40b0
refs/heads/master
2023-03-15T18:36:48.401630
2020-05-21T14:14:22
2020-05-21T14:14:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,186
py
# -------------- from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import pandas as pd # Code starts here df=pd.read_csv(path) df.head(5) X=df.drop('attr1089',1) y=df.attr1089 X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.3 , random_state =4) scaler=MinMaxScaler() scaler.fit(X_train) X_train=scaler.transform(X_train) X_test=scaler.transform(X_test) # -------------- from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score lr=LogisticRegression() lr.fit(X_train,y_train) y_pred=lr.predict(X_test) roc_score = lr.score(X_test,y_test) print("roc_score",roc_score) # -------------- from sklearn.tree import DecisionTreeClassifier dt=DecisionTreeClassifier(random_state=4) dt.fit(X_train,y_train) y_pred=dt.predict(X_test) roc_score=dt.score(X_test,y_test) print("roc_score",roc_score) # -------------- from sklearn.ensemble import RandomForestClassifier # Code strats here rfc=RandomForestClassifier(random_state=4) rfc.fit(X_train,y_train) y_pred=rfc.predict(X_test) roc_score=rfc.score(X_test,y_test) print("roc_score",roc_score) # Code ends here # -------------- # Import Bagging Classifier from sklearn.ensemble import BaggingClassifier # Code starts here bagging_clf=BaggingClassifier(base_estimator= DecisionTreeClassifier(), n_estimators=100 , max_samples=100 , random_state=0) bagging_clf.fit(X_train,y_train) y_pred=bagging_clf.predict(X_test) score_bagging=bagging_clf.score(X_test,y_test) print("score_bagging",score_bagging) # Code ends here # -------------- # Import libraries from sklearn.ensemble import VotingClassifier # Various models clf_1 = LogisticRegression() clf_2 = DecisionTreeClassifier(random_state=4) clf_3 = RandomForestClassifier(random_state=4) model_list = [('lr',clf_1),('DT',clf_2),('RF',clf_3)] # Code starts here voting_clf_hard=VotingClassifier(estimators= model_list,voting='hard') voting_clf_hard.fit(X_train,y_train) hard_voting_score= voting_clf_hard.score(X_test,y_test) print("hard_voting_score:",hard_voting_score) # Code ends here
[ "rkkirpane@users.noreply.github.com" ]
rkkirpane@users.noreply.github.com
7dc496901fd7ae4c97c641e93d8d18edcfaf26db
f660229f0c7e0bc2f5390334cc87dbba9be45b61
/affinity.py
93abd632cda5988a96bf46b4c0ebdd05a1843fb9
[]
no_license
Francosinus/DBS
37af03358c302931e8d4724ff2dc36bf477d54bf
23ebcf069a0e68a54c3743587a685984e5fd54fc
refs/heads/master
2021-01-25T08:18:59.535456
2017-07-27T10:06:28
2017-07-27T10:06:28
93,748,875
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
import numpy as np import sklearn.cluster import distance import csv inpute = open("/home/franko/DBS Projekt/noduplicates.csv","r") reader=csv.reader(inpute, delimiter=";") output=open("/home/franko/DBS Projekt/cluster.csv", "w") writer= csv.writer(output) column= [] for row in reader: column.append(row[0]) words = np.asarray(column) #zum indizieren der Liste lev = -1*np.array([[distance.levenshtein(w1,w2) for w1 in words] for w2 in words])#levenshtein distanz vergleich mit allen woertern ap = sklearn.cluster.AffinityPropagation(affinity="precomputed", damping=0.5)#aehnlich wie kmeans ap.fit(lev) for cluster_id in np.unique(ap.labels_): exemplar = words[ap.cluster_centers_indices_[cluster_id]] cluster = np.unique(words[np.nonzero(ap.labels_==cluster_id)]) cluster_str = ", ".join(cluster) writer.writerow([" - *%s:* %s" % (exemplar, cluster_str)]) print(" - *%s:* %s" % (exemplar, cluster_str))
[ "noreply@github.com" ]
Francosinus.noreply@github.com
7ef0094e3da7d99e42f732c70bd9ff9e23ee8a44
ab5c23fb0c9cb2520d7cd7929d38009ca7060442
/user/migrations/0004_remove_customuser_phone.py
53fc11838962d9aa0a9e3efcbb880b06f5f2485a
[]
no_license
cliffaust/revolvemart-backend
5acc777e09cf05ff1222eea9a22c6d1376ef26fd
e0ad9dac511c5630913b062ba4e90a42e26d3855
refs/heads/master
2023-08-11T21:21:09.810339
2021-09-15T19:36:58
2021-09-15T19:36:58
406,183,740
0
0
null
null
null
null
UTF-8
Python
false
false
319
py
# Generated by Django 3.2.3 on 2021-09-10 17:44 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('user', '0003_bookviews'), ] operations = [ migrations.RemoveField( model_name='customuser', name='phone', ), ]
[ "kingsleyclifford2016@gmail.com" ]
kingsleyclifford2016@gmail.com
c6d2960e80a9008022afb81663105b0662db75b1
4ccb6c096ac6ba68fa91a5c257331b20ecabf16e
/testing/marionette/client/marionette/runner/mixins/browsermob-proxy-py/browsermobproxy/__init__.py
5c6d63004fbc1c652de41ad40e092b8bddc0efba
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
classilla/tenfourfox
ad7856e9e2309e8d0da2d3eed3090cadf493a413
17b23692fe309927badba0617b7679ed50d46acb
refs/heads/master
2023-07-08T23:59:21.137323
2023-04-20T05:34:54
2023-04-20T05:34:54
40,451,619
247
41
NOASSERTION
2023-06-25T08:42:34
2015-08-09T21:46:01
null
UTF-8
Python
false
false
128
py
__version__ = '0.5.0' from .server import Server from .client import Client __all__ = ['Server', 'Client', 'browsermobproxy']
[ "classilla@floodgap.com" ]
classilla@floodgap.com
090d80f2807c7f63dfe8141e4a1167570ff9c51e
cf973acca8a9f1bb6e015eeb60c9dfb620ba81f5
/management/urls.py
7f6058d83089685154623c0171f9b1c9a0295296
[]
no_license
rgegriff/menomnom
db0c341a555c1a2e057edc310a6e44160ae15bd0
0390d4767bea4bda1a3a961bebd5de6eb640dccf
refs/heads/master
2021-01-18T01:42:33.735904
2013-04-03T13:18:42
2013-04-03T13:18:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
from django.conf.urls import patterns, url import views urlpatterns = patterns("", url(r'^$', views.GeneralManagementPage.as_view()), url(r"^hours/$", views.HoursManagementPage.as_view()), url(r'^specials/$', views.SpecialsManagementPage.as_view()), url(r'^highlights/$', views.HighlightsManagementPage.as_view()), url(r'^bulletin/$', views.BulletinPost.as_view()), )
[ "root@menomnom.(none)" ]
root@menomnom.(none)
a238fa5894d968b9152395c95fae875d670d632c
b773f9c1ea92373d0d2976e08aa66a563d4fa3b7
/venv/bin/pip
ce24341335d59fc7217cbea5c4a0b101ffd35911
[]
no_license
yDeepak1889/Electronic-Medical-Record-management-using-Blockchain
35276dafcd35e95d7230b3c1ff12a6bdbf97dddb
7d525afe5a328b3fca723a7c658a8e28ee92499d
refs/heads/master
2021-04-06T08:27:21.885255
2018-05-04T07:53:06
2018-05-04T07:53:06
124,678,427
4
1
null
null
null
null
UTF-8
Python
false
false
401
#!/home/deepak/PycharmProjects/Blockchain/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==9.0.1','console_scripts','pip' __requires__ = 'pip==9.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==9.0.1', 'console_scripts', 'pip')() )
[ "iit2015124@iiita.ac.in" ]
iit2015124@iiita.ac.in
5f7cb71869fd9e4fd8007b8011ddd41599050f29
a4f6244e5ed787d972135efc456af6b00084653d
/K-NN/UTM.py
c7a99c54493843433a794b64bd8d63ce64bb4f80
[]
no_license
coco11563/machineLearning
18e349102332ad07b21f8c20e468de3017824e21
6fe35ec2f945d5d6ba601a05b3f6e0060dab890b
refs/heads/master
2021-01-19T06:39:44.017514
2016-08-19T15:27:08
2016-08-19T15:27:08
60,177,604
0
0
null
null
null
null
UTF-8
Python
false
false
2,303
py
''' Created on 2016年6月6日 @author: coco1 ''' import math def LL2UTM_USGS(a, f, lat, lon, lonOrigin, FN): ''' a = 6378136.49m b = 6356755.00m lonOrigin = 114.17 FN = 0 ** Input:(a, f, lat, lon, lonOrigin, FN) ** a 椭球体长半轴 ** f 椭球体扁率 f=(a-b)/a 其中b代表椭球体的短半轴 ** lat 经过UTM投影之前的纬度 ** lon 经过UTM投影之前的经度 ** lonOrigin 中央经度线 ** FN 纬度起始点,北半球为0,南半球为10000000.0m --------------------------------------------- ** Output:(UTMNorthing, UTMEasting) ** UTMNorthing 经过UTM投影后的纬度方向的坐标 ** UTMEasting 经过UTM投影后的经度方向的坐标 --------------------------------------------- ** 功能描述:UTM投影 ** 作者: Ace Strong ** 单位: CCA NUAA ** 创建日期:2008年7月19日 ** 版本:1.0 ** 本程序实现的公式请参考 ** "Coordinate Conversions and Transformations including Formulas" p35. ** & http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.htm ''' # e表示WGS84第一偏心率,eSquare表示e的平方 eSquare = 2*f - f*f k0 = 0.9996 # 确保longtitude位于-180.00----179.9之间 lonTemp = (lon+180)-int((lon+180)/360)*360-180 latRad = math.radians(lat) lonRad = math.radians(lonTemp) lonOriginRad = math.radians(lonOrigin) e2Square = (eSquare)/(1-eSquare) V = a/math.sqrt(1-eSquare*math.sin(latRad)**2) T = math.tan(latRad)**2 C = e2Square*math.cos(latRad)**2 A = math.cos(latRad)*(lonRad-lonOriginRad) M = a*((1-eSquare/4-3*eSquare**2/64-5*eSquare**3/256)*latRad -(3*eSquare/8+3*eSquare**2/32+45*eSquare**3/1024)*math.sin(2*latRad) +(15*eSquare**2/256+45*eSquare**3/1024)*math.sin(4*latRad) -(35*eSquare**3/3072)*math.sin(6*latRad)) # x UTMEasting = k0*V*(A+(1-T+C)*A**3/6 + (5-18*T+T**2+72*C-58*e2Square)*A**5/120)+ 500000.0 # y UTMNorthing = k0*(M+V*math.tan(latRad)*(A**2/2+(5-T+9*C+4*C**2)*A**4/24 +(61-58*T+T**2+600*C-330*e2Square)*A**6/720)) # 南半球纬度起点为10000000.0m UTMNorthing += FN return (UTMEasting,UTMNorthing) e , n = LL2UTM_USGS(6378136.49,6356755.00,30.45821,114.272369,114.17,0) print(e , n)
[ "coco11563@yeah.net" ]
coco11563@yeah.net
982871d8e7bf9e4dc1a68ec9e2c52cf445beee93
cec03b50138885a2a3082f4cca1aa2b6714861aa
/Internet Speed Test/log_speedtest.py
6510fcf824fd908aa09a393a0fb4d4015abf4955
[]
no_license
dassowmd/UsefulTools
92fa4d86b7cdac5c3839f89ce0d435a5ab27f728
cb9875017c99d36ba4a4c1088cb2b3679335320c
refs/heads/master
2022-03-15T15:07:24.789451
2022-03-05T22:17:29
2022-03-05T22:17:29
79,920,969
1
0
null
2017-01-24T22:58:54
2017-01-24T14:52:55
Python
UTF-8
Python
false
false
4,246
py
# C:\Users\dasso\Google # Drive\Python # Library\Internet # Speed # Test # #!/usr/bin/env python import os import subprocess import logging import sys import re import time import datetime SPEEDTEST_CMD = "C:\Python37\Lib\site-packages\speedtest.py" sleepTime = 1500 if len(sys.argv) < 2: logFolder = input( "Please enter the folder that you would like to save the speedtest.log file in\n" ) sleepTime = int( input( "How many seconds would you like the program to wait befor running again?\n" ) ) else: logFolder = sys.argv[1] LOG_FILE = str(logFolder) + "\Log Files\speedtest.log" if not os.path.exists(logFolder + "\Log Files"): os.makedirs(logFolder + "\Log Files") def main(): while True: setup_logging() computerName = os.environ["COMPUTERNAME"] try: ISP, ping, download, upload = get_speedtest_results() except ValueError as err: logging.info("%s %s", computerName, err) next else: logging.info("%s %s %s %s %s", ISP, computerName, ping, download, upload) time.sleep(sleepTime) def setup_logging(): logging.basicConfig( filename=LOG_FILE, level=logging.INFO, format="%(asctime)s %(message)s", datefmt="%Y-%m-%d %H:%M", ) def get_speedtest_results(): ISP = ping = download = upload = None speedtest_output = subprocess.check_output("python " + SPEEDTEST_CMD) # with subprocess.check_output('python ' + SPEEDTEST_CMD + ' --simple') as speedtest_output: # print speedtest_output # print len(speedtest_output) speedtest_output_clean = speedtest_output.decode("utf-8").split("\n") # print(speedtest_output_clean) for line in speedtest_output_clean: lineSplit = line.split() # print lineSplit try: if "Hosted" in lineSplit: for i in lineSplit[0:]: if ping == None: if find_Ping_Regex(i) == None: next else: ping = find_Ping_Regex(i) elif "Download:" in lineSplit: label, value, unit = line.split() download = str(value) elif "Upload:" in lineSplit: label, value, unit = line.split() upload = str(value) elif "from" in lineSplit: for i in lineSplit[0:]: if ISP == None: if find_IP_Regex(i) == None: next else: ISP = find_IP_Regex(i) except: next # print(ISP, ping, download, upload) if all((ISP, ping, download, upload)): # if all values were parsed print(str(datetime.datetime.now()), ISP, ping, download, upload) return ISP, ping, download, upload else: raise ValueError("TEST FAILED") def find_IP_Regex(txt): re1 = "(\\d+)" # Integer Number 1 re2 = "(.)" # Any Single Character 1 re3 = "(\\d+)" # Integer Number 2 re4 = "(.)" # Any Single Character 2 re5 = "(\\d+)" # Integer Number 3 re6 = "(.)" # Any Single Character 3 re7 = "(\\d+)" # Integer Number 4 rg = re.compile(re1 + re2 + re3 + re4 + re5 + re6 + re7, re.IGNORECASE | re.DOTALL) m = rg.search(txt) if m: int1 = m.group(1) c1 = m.group(2) int2 = m.group(3) c2 = m.group(4) int3 = m.group(5) c3 = m.group(6) int4 = m.group(7) return ( str(int1) + str(c1) + str(int2) + str(c2) + str(int3) + str(c3) + str(int4) ) else: return None def find_Ping_Regex(txt): re1 = "(\\d{2})" # Integer Number 1 re2 = "(.)" # Any Single Character 1 re3 = "(\\d{3})" # Integer Number 2 rg = re.compile(re1 + re2 + re3, re.IGNORECASE | re.DOTALL) m = rg.search(txt) if m: int1 = m.group(1) c1 = m.group(2) int2 = m.group(3) return str(int1) + str(c1) + str(int2) else: return None if __name__ == "__main__": try: main() except Exception as e: next
[ "dassowmd@gmail.com" ]
dassowmd@gmail.com
574690fff47ed7a9e81713f6a703b4f571cfd74a
c047518e0bc0be1d1a46b734fbf53610cb8a407f
/Codeforces/1241/A.py
862b24fd35e729d307cd9822e35d720a824f4148
[]
no_license
fernandozanutto/competitive_programming
c3e006544ddba1702a37eeb437cb015713e8c2d1
cf721a7bcce6c5d5fc9f739ad729079c939fc421
refs/heads/master
2020-06-19T06:57:32.288602
2020-04-04T14:58:45
2020-04-04T14:58:45
196,607,123
2
0
null
null
null
null
UTF-8
Python
false
false
153
py
for _ in range(int(input())): a = int(input()) if a == 2: print(2) elif a % 2 == 0: print(0) else: print(1)
[ "ferzanutto1999@gmail.com" ]
ferzanutto1999@gmail.com
6f3e85c584f6c0602334be4ce82542e984e36fb9
d161be36a888fe131425c99248793cad0ce73a3e
/data_loader.py
8933f72802e6cf74eb4d61f354d694578c359540
[ "Apache-2.0" ]
permissive
nlp-kg/medknow
c7332f68571ce29d7e0fd6fc6c3c6d3d4db0ed1c
46c99d692b9099bc39ef88a5f47e4749584f7f9c
refs/heads/master
2023-03-28T00:09:24.946615
2020-01-23T12:58:17
2020-01-23T12:58:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,113
py
#!/usr/bin/python !/usr/bin/env python # -*- coding: utf-8 -* # Functions to extract knowledge from medical text. Everything related to # reading and parsing. import json import py2neo import pymongo import langid import pandas as pd from config import settings from utilities import time_log from multiprocessing import cpu_count import ijson.backends.yajl2_cffi as ijson2 def load_mongo(key): """ Parse collection from mongo Input: - key: str, the type of input to read Output: - json_ : dic, json-style dictionary with a field containing documents """ # input mongo variables from settings.yaml uri = settings['load']['mongo']['uri'] db_name = settings['load']['mongo']['db'] collection_name = settings['load']['mongo']['collection'] client = pymongo.MongoClient(uri) db = client[db_name] collection = db[collection_name] # itemfield containing list of elements out_outfield = settings['out']['json']['itemfield'] json_ = {out_outfield: []} cur = collection.find({}) for item in cur: del item['_id'] json_[out_outfield].append(item) return json_ def load_mongo_batches(key, N_collection, ind_=0): """ Parse collection from mongo to be processed in streaming/parallel fashion. Fetches step = (N X numb_cores) of documents starting from ind_ and delivers it to the rest of the pipeline. Input: - key: str, the type of input to read - N_collection: int, total collection length - ind: int, the starting point of the batch (or stream) to be read Output: - json_ : dic, json-style dictionary with a field containing items """ # input file path from settings.yaml uri = settings['load']['mongo']['uri'] db_name = settings['load']['mongo']['db'] collection_name = settings['load']['mongo']['collection'] client = pymongo.MongoClient(uri) db = client[db_name] collection = db[collection_name] # itemfield containing list of elements out_outfield = settings['out']['json']['itemfield'] json_ = {out_outfield: []} stream_flag = str(settings['pipeline']['in']['stream']) == 'True' # batch size in case of streaming enviroment is just one if stream_flag: step = 1 # else N_THREADS* else: try: N_THREADS = int(settings['num_cores']) except: N_THREADS = cpu_count() try: batch_per_core = int(settings['batch_per_core']) except: batch_per_core = 100 step = N_THREADS * batch_per_core time_log("Will start from %d/%d and read %d items" % (ind_, N_collection, step)) if step > N_collection: step = N_collection else: cur = collection.find({}, skip=ind_, limit=step) c = 0 for item in cur: del item['_id'] c += 1 json_[out_outfield].append(item) return json_, ind_ + step def load_file(key): """ Parse file containing items. Input: - key: str, the type of input to read Output: - json_ : dic, json-style dictionary with items """ # input file path from settings.yamml if key == 'med_rec': json_ = parse_medical_rec() else: inp_path = settings['load']['path']['file_path'] with open(inp_path, 'r') as f: json_ = json.load(f, encoding='utf-8') return json_ def load_file_batches(key, N_collection, ind_=0): """ Parse collection from file to be processed in streaming/parallel fashion. Fetches step = (N X numb_cores) of documents starting from ind_ and delivers it to the rest of the pipeline. Input: - key: str, the type of input to read - N_collection: int, total collection length - ind: int, the starting point of the batch (or stream) to be read Output: - json_ : dic, json-style dictionary with a field containing items """ # Filepath to item collection inp_path = settings['load']['path']['file_path'] # Document iterator field in the collection infield = settings['load'][key]['itemfield'] # itemfield containing list of elements out_outfield = settings['out']['json']['itemfield'] # The generated json_ json_ = {out_outfield: []} # Check if streaming stream_flag = str(settings['pipeline']['in']['stream']) == 'True' # batch size in case of streaming enviroment is just one if stream_flag: step = 1 # else N_THREADS* Batches_per_core else: try: N_THREADS = int(settings['num_cores']) except: N_THREADS = cpu_count() try: batch_per_core = int(settings['batch_per_core']) except: batch_per_core = 100 step = N_THREADS * batch_per_core if step > N_collection: step = N_collection # Collection counter col_counter = 0 #print infield time_log("Will start from %d/%d and read %d items" % (ind_, N_collection, step)) with open(inp_path, 'r') as f: docs = ijson2.items(f, '%s.item' % infield) for c, item in enumerate(docs): if c < ind_: continue json_[out_outfield].append(item) #print json_ col_counter += 1 if col_counter >= step: break if col_counter == 0: #print 'Col_counter' #print col_counter return None, None else: #print json_ return json_, ind_ + step def parse_medical_rec(): """ Parse file containing medical records. Output: - json_ : dic, json-style dictionary with documents containing a list of dicts, containing the medical record and the corresponding attributes """ # path to file to read from inp_path = settings['load']['path']['file_path'] # csv seperator from settings.yaml sep = settings['load']['med_rec']['sep'] # textfield to read text from textfield = settings['load']['med_rec']['textfield'] # idfield where id of document is stored idfield = settings['load']['med_rec']['idfield'] with open(inp_path, 'r') as f: diag = pd.DataFrame.from_csv(f, sep='\t') # Get texts texts = diag[textfield].values # outerfield for the documents in json itemfield = settings['out']['json']['itemfield'] # textfield to read text from out_textfield = settings['out']['json']['json_text_field'] # labelfield where title of the document is stored out_labelfield = settings['out']['json']['json_label_field'] diag[out_labelfield] = ['Medical Record' + str(i) for i in diag.index.values.tolist()] if not('journal' in diag.columns.tolist()): diag['journal'] = ['None' for i in diag.index.values.tolist()] # Replace textfiled with out_textfield diag[out_textfield] = diag[textfield] del diag[textfield] # Replace id with default out_idfield diag['id'] = diag[idfield] del diag[idfield] json_ = {itemfield: diag.to_dict(orient='records')} return json_ def parse_text(json_): """ Helper function to parse the loaded documents. Specifically, we ignore documents with no assigned text field. We also provide an empty string for label if non-existent. Other than that, norma- lizing the id,text and label fields as indicated in the settings. Input: - json_: dicm json-style dictionary with a field containing items Output: - json_ : dic, json-style dictionary with a field containing normalized and cleaned items """ ## Values to read from # itemfield containing list of elements containing text outfield = settings['load']['text']['itemfield'] # textfield to read text from textfield = settings['load']['text']['textfield'] # idfield where id of document is stored idfield = settings['load']['text']['idfield'] # labelfield where title of the document is stored labelfield = settings['load']['text']['labelfield'] ## Values to replace them with ## # itemfield containing list of elements out_outfield = settings['out']['json']['itemfield'] # textfield to read text from out_textfield = settings['out']['json']['json_text_field'] # idfield where id of document is stored out_idfield = settings['out']['json']['json_id_field'] # labelfield where title of the document is stored out_labelfield = settings['out']['json']['json_label_field'] json_[outfield] = [art for art in json_[outfield] if textfield in art.keys()] json_[outfield] = [art for art in json_[outfield] if langid.classify(art[textfield])[0] == 'en'] for article in json_[outfield]: article[out_textfield] = article.pop(textfield) article[out_idfield] = article.pop(idfield) if labelfield != 'None': article[out_labelfield] = article.pop(labelfield) else: article[out_labelfield] = ' ' if not('journal' in article.keys()): article['journal'] = 'None' json_[out_outfield] = json_.pop(outfield) # N = len(json_[out_outfield]) # json_[out_outfield] = json_[out_outfield][(2*N/5):(3*N/5)] json_[out_outfield] = json_[out_outfield][:] return json_ def parse_remove_edges(key=None): """ Dummy function to conform with the pipeline when we just want to delete edges instead of inserting them. Output: - an empty dic to be passed around, as to conform to the pipeline schema """ # Read neo4j essentials before host = settings['neo4j']['host'] port = settings['neo4j']['port'] user = settings['neo4j']['user'] password = settings['neo4j']['password'] try: graph = py2neo.Graph(host=host, port=port, user=user, password=password) except Exception, e: #time_log(e) #time_log("Couldn't connect to db! Check settings!") exit(2) quer1 = """ MATCH ()-[r]->() WHERE r.resource = "%s" DELETE r;""" % (settings['neo4j']['resource']) f = graph.run(quer1) rem = f.stats()['relationships_deleted'] quer2 = """ MATCH ()-[r]->() WHERE "%s" in r.resource SET r.resource = FILTER(x IN r.resource WHERE x <> "%s");""" % (settings['neo4j']['resource'], settings['neo4j']['resource']) f = graph.run(quer2) alt = f.stats()['properties_set'] time_log('Removed %d edges that were found only in %s' % (rem, settings['neo4j']['resource'])) time_log("Altered %s edges' resource attribute associated with %s" % (alt, settings['neo4j']['resource'])) exit(1) return {} def get_collection_count(source, type): """ Helper function to get total collection length. Input: - source: str, value denoting where we will read from (e.g 'mongo') - type: str, value denoting what we will read (e.g. text, edges) Output: - N_collection: int, number of items in the collection """ if source == 'file': inp_path = settings['load']['path']['file_path'] # Document iterator field in the collection infield = settings['load'][type]['itemfield'] with open(inp_path, 'r') as f: docs = ijson2.items(f, '%s.item' % infield) N_collection = 0 for item in docs: N_collection += 1 elif source == 'mongo': # input mongo variables from settings.yaml uri = settings['load']['mongo']['uri'] db_name = settings['load']['mongo']['db'] collection_name = settings['load']['mongo']['collection'] client = pymongo.MongoClient(uri) db = client[db_name] collection = db[collection_name] N_collection = collection.count() else: time_log("Can't calculate total collection count for source type %s" % settings['in']['source']) raise NotImplementedError return N_collection
[ "bogas.ko@gmail.com" ]
bogas.ko@gmail.com
84ac418dd2d52f34fa1e8225a71e7e31f49eead7
ef243d91a1826b490e935fa3f3e6c29c3cc547d0
/typed_ast/_ast3/Await.py
607a263ba1aa6de55d353a12e584ae4d62546a47
[]
no_license
VentiFang/Python_local_module
6b3d0b22399e817057dfd15d647a14bb1e41980e
c44f55379eca2818b29732c2815480ee755ae3fb
refs/heads/master
2020-11-29T11:24:54.932967
2019-12-25T12:57:14
2019-12-25T12:57:14
230,101,875
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
# encoding: utf-8 # module typed_ast._ast3 # from C:\Users\84788\AppData\Roaming\Python\Python36\site-packages\typed_ast\_ast3.cp36-win_amd64.pyd # by generator 1.147 # no doc # no imports from .expr import expr class Await(expr): # no doc def __init__(self, *args, **kwargs): # real signature unknown pass _fields = ( 'value', )
[ "5149528+ventifang@user.noreply.gitee.com" ]
5149528+ventifang@user.noreply.gitee.com
ba87365da898457af4031b0b36b298bc772ebe8b
5f55ab13627ca048b3e5877ea31ea3e020035c66
/fab_support/heroku_utils.py
f8c23849bad5f5d0f6e1853ed602de3efeabc44a
[ "MIT" ]
permissive
drummonds/fab_support
6872e0f9c2523abe80bfce1c45def3f2755280cc
de2c9595e8cf499848f0cc5661e7f1d6465609a2
refs/heads/master
2023-08-17T03:01:26.241905
2019-12-08T18:21:12
2019-12-08T18:21:12
120,188,534
4
0
MIT
2023-09-11T15:15:24
2018-02-04T13:45:13
Python
UTF-8
Python
false
false
1,668
py
""" Utilities that work with Heroku """ from fabric.api import local import json import re import sys from time import sleep def list_databases(app=""): """ List :param app: Name of app to use if default '' will return current list :return: list of database names """ result = [] for i in range(5): try: if app: fab_result = json.loads( local(f"heroku info --json --app={app}", capture=True) ) else: fab_result = json.loads(local("heroku info --json", capture=True)) for addon in fab_result["addons"]: if addon["addon_service"]["name"] == "heroku-postgresql": name = addon["config_vars"][0] if name == "DATABASE_URL": colour = "" else: # Extract colour from name like 'HEROKU_POSTGRESQL_PURPLE_URL' found = re.search("HEROKU_POSTGRESQL_(.*)_URL", name) colour = found.group(1) result.append([name, colour]) break except IndexError: # Returned if database config_var are not yet setup print(f"Trying to list databases attempt {i} as not yet setup") print(f"Returned: {fab_result}") sleep(15) if result: return result else: sys.exit("Failed to get database list") def first_colour_database(app=""): db_list = list_databases(app) for name, colour in db_list: if colour: return [name, colour] return ["", ""] # Not found
[ "hum3@drummond.info" ]
hum3@drummond.info
3a159715b882957fef0a068235fd680ac5fe57bd
41e4e2ba911a3cd5d32890014ec564cd312202ec
/class.py
7a43ff255505abf47f143f585a3a7510b7465730
[]
no_license
PythonStudy20161/ptyhon-study-2016-loooooooooong
1c6e4337d533172978dc17a113681de3070c9567
0df7ca586c1936f08f21f2549edbd35323d1d1b4
refs/heads/master
2021-01-10T16:10:35.944363
2016-02-15T09:27:23
2016-02-15T09:27:23
49,255,290
0
0
null
null
null
null
UTF-8
Python
false
false
1,388
py
#_*_coding:utf-8_*_ #类定义 class people: name = '' age = 0 __weight = 0 def __init__(self,n,a,w): self.name = n self.age = a self.__weight = w def speak(self): print("%s is speaking: I am %d years old:%d" %(self.name,self.age,self.__weight)) #工程师继承人 class engerneer(people): C_language='' def __init__(self,n,a,w,c): people.__init__(self,n,a,w) self.C_language=c def speak(self): print("%s is speaking: I am %d years old,and I am use C program language %d"%(self.name,self.age,self.C_language)) #默认不继承的管理职位 class manager(): manager_year='' def __init__(self,mey): self.manager_year=mey def speak(self): print("%s is speaking: I am manager for %d years. "%(self.name,self.manager_year)) #多重继承职位 class VP(manager,engerneer): count='' def __init__(self,n,a,w,c,mey,count): engerneer.__init__(self,n,a,w,c) manager.__init__(self,mey) self.count=count def speak(self): print("%s is speaking: I am %d years old,use C %d year,manager %d people."%(self.name,self.age,self.C_language,self.manager_year)) p = people('tom',10,30) p.speak() print "\n**************\n" e=engerneer('gerry',22,100,2) e.speak() print "\n**************\n" v=VP('boss',30,80,10,100,5) v.speak()
[ "wangcy1202@qq.com" ]
wangcy1202@qq.com
77b72cfff8d656608f7071e4b9eab19128ccfa70
c5ba5f13a09eaa39d011aef6115eba82b6ea1a2d
/blockchain.py
384f36ddcbbf3042d16550930628e83b59683a95
[]
no_license
Bram0202/SimpleBlockchain
637d4ad99caf24a26fa16e4cdcb7bca56dedfb00
c1c656574eef33b075502fafee40befd2e00c4f1
refs/heads/master
2021-10-07T23:47:54.449303
2018-12-05T19:58:25
2018-12-05T19:58:25
160,570,845
0
0
null
null
null
null
UTF-8
Python
false
false
2,482
py
# A really simple blockchain # Based on https://www.youtube.com/watch?v=b81Ib_oYbFk # Coded by Bram Bakx # Made on MacOs and Python 3.7 import datetime import hashlib # Every block in the blockchain is an instance of Block. class Block: blockNumber = 0 # The number of the block data = None # The data you want to store in the block next = None # The pointer to te next block in the blockchain hash = None nonce = 0 # The number of hashes needed to mine the block previousHash = 0x0 # The hash of the previous block in the blockchain timestamp = datetime.datetime.now() # Store the blocks data def __init__(self, data): self.data = data # Create the block's hash. Merge all the data together in one big string and run that through sha256 # It is very import to add previousHash to the new hash, because if previousHash changes all the hashes change def hash(self): h = hashlib.sha256() h.update( str(self.nonce).encode('utf-8') + str(self.data).encode('utf-8') + str(self.previousHash).encode('utf-8') + str(self.timestamp).encode('utf-8') + str(self.blockNumber).encode('utf-8') ) return h.hexdigest() # The block as printed to the console def __str__(self): return "Block Hash: " + str(self.hash()) + "\nBlockNo: " + str(self.blockNumber) + "\nBlock Data: " + str(self.data) + "\nHashes: " + str(self.nonce) + "\n--------------" class Blockchain: # determine the mining difficulty diff = 20 maxNonce = 2**32 target = 2 ** (256-diff) block = Block("Genesis") dummy = head = block def add(self, block): block.previousHash = self.block.hash() block.blockNumber = self.block.blockNumber + 1 self.block.next = block self.block = self.block.next # The hash has to be lower than the target to be accepted in the blockchain def mine(self, block): for n in range(self.maxNonce): if int(block.hash(), 16) <= self.target: self.add(block) print(block) break else: block.nonce += 1 blockchain = Blockchain() # Generate 10 random blocks for n in range(10): blockchain.mine(Block("Block " + str(n+1))) # Print each block to the blockchain while blockchain.head != None: print(blockchain.head) blockchain.head = blockchain.head.next
[ "35409298+Bram0202@users.noreply.github.com" ]
35409298+Bram0202@users.noreply.github.com
bb144c7ce9f5bd86b79ab81a75c8c30a0600ef9e
c1fe97208afe479b7ae1ee67d69866a6911564ca
/RESTapi/RESTapi/urls.py
2263238e921b2dab6b9cc25d7b275620ac985147
[]
no_license
jaindhairyahere/Python_Django
a0a46c57b6ca60d0942ae181fe28ea56bb1ee948
f170a2e38b78df698a02821a454a3baea0c358a6
refs/heads/master
2020-06-18T09:17:56.364928
2019-11-02T18:34:12
2019-11-02T18:34:12
196,249,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,022
py
"""RESTapi URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from rest_framework import routers import quantify_capital_assignment # Wire up our API using automatic URL routing. # Additionally, we include login URLs for the browsable API. urlpatterns = [ path('admin/', admin.site.urls), path('api/movies/',include('quantify_capital_assignment.urls'),name='api-movies') ]
[ "jaindhairya2001@gmail.com" ]
jaindhairya2001@gmail.com
14f35829f8f135139c0aa2e99b2d60b13539859b
7970f2d6680136e4632ee9a8dd12604ddd3da296
/app/auth/forms.py
413fbc0d73217fcd07e68ef37e2e60b30a98de39
[]
no_license
wsl3/flask-dog
7f2c4db3bd29484cb4ce13ba644278b6c94d6a6e
f43da7a2ee927ddef3d3d7a271a4b56401e2d051
refs/heads/master
2020-03-29T11:15:36.673537
2018-09-22T04:06:03
2018-09-22T04:06:03
149,843,493
0
0
null
null
null
null
UTF-8
Python
false
false
1,645
py
# encoding:utf8 from ..model import User from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired, Length, Email, Regexp, EqualTo from wtforms import ValidationError class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField("keep me logged in") submit = SubmitField('Log In') class RegisterForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) username = StringField('Username', validators=[DataRequired(), Length(1, 64), Regexp('^[a-zA-Z][0-9a-zA-Z._]*$', 0, "用户名只包含字母,数字,.和_,并且以字母开头!")]) password = PasswordField('Password', validators=[DataRequired(), EqualTo('password2', message="password must match")]) password2 = PasswordField('Confirm Password', validators=[DataRequired()]) submit = SubmitField('Register') # 自定义验证函数 def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError("邮箱已经注册!") def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError("该用户名正在使用!")
[ "2350622075@qq.com" ]
2350622075@qq.com
f44958f0b88a495a911e5fa382f84413c57818bf
7ec18f8ec146ea5a82394052066ea9986ce59d88
/AES_CTR-256key.py
9b8475843d1c0fa5de5c31cd5032db3dbcbefd21
[]
no_license
snehamuppala/ComputerSecurity
b260f94f34e0ea42ddb6f6e0761413aea601b379
cf84a36c2fec03c23201d9c0f0c11ee1b1a61e44
refs/heads/master
2020-04-14T04:30:04.698368
2019-08-22T05:58:04
2019-08-22T05:58:04
163,637,461
1
0
null
null
null
null
UTF-8
Python
false
false
4,223
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Sep 30 15:15:58 2018 @author: snehamuppala """ #import following libraries import binascii import os from Crypto.Cipher import AES from Crypto.Util import Counter import time print("AES in the CTR mode -256 bit key") def int_of_string(s): return int(binascii.hexlify(iv), 16) def encrypt_message(key, plaintext): #initialization Vector iv = Random.get_random_bytes(16) ctr = Counter.new(128, initial_value=int_of_string(iv)) aes = AES.new(key, AES.MODE_CTR, counter=ctr) return iv + aes.encrypt(plaintext) def decrypt_message(key, ciphertext): iv = ciphertext[:16] ctr = Counter.new(128, initial_value=int_of_string(iv)) aes = AES.new(key, AES.MODE_CTR, counter=ctr) return aes.decrypt(ciphertext[16:]) #Function to check for correctness def compare(plaintext, decrypt): if(plaintext==decrypt): print("Success:original data is equal to decrypted data ") else: print("Failure: original data is not equal to decrypted data ") #Files of 1kb and 1mb File_1kb="/Users/snehamuppala/Desktop/computer_security/hw3/1kb.txt" File_1mb="/Users/snehamuppala/Desktop/computer_security/hw3/1mb.txt" #Files of 1kb and 1mb- to store encrypted data File_1kb_Encrypted="/Users/snehamuppala/Desktop/computer_security/hw3/1kb_Encrypted_ctr.txt" File_1mb_Encrypted="/Users/snehamuppala/Desktop/computer_security/hw3/1mb_Encrypted_ctr.txt" #Files of 1kb and 1mb- to store Decrypted data File_1kb_Decrypted="/Users/snehamuppala/Desktop/computer_security/hw3/1kb_Decrypted_ctr.txt" File_1mb_Decrypted="/Users/snehamuppala/Desktop/computer_security/hw3/1mb_Decrypted_ctr.txt" print(" ") #key generating 256 bit start_time = time.time() key = Random.get_random_bytes(32) print "Time taken to generate key 256 bit: %s seconds" % (time.time() - start_time) #reading files-plaintext infile_1kb= open(File_1kb) infile_1mb= open(File_1mb) plaintext_1kb=infile_1kb.read() plaintext_1mb=infile_1mb.read() #encrypting and Decrypting 1kb and 1mb file print(" ") print("***********Encrption of 1kb File***********") start_time = time.time() ciphertext_1kb=encrypt_message(key,plaintext_1kb) print "Time taken to Encrypt File 1KB= %s seconds " % (time.time() - start_time) total_time=(time.time() - start_time) bytes_speed=(total_time)/len(plaintext_1kb) print ("Speed per byte to Encrypt File 1KB :"+str(bytes_speed)) print(" ") print("***********Encrption of 1mb File***********") start_time = time.time() ciphertext_1mb=encrypt_message(key,plaintext_1mb) print "Time taken to Encrypt File 1KB= %s seconds " % (time.time() - start_time) total_time=(time.time() - start_time) bytes_speed=(total_time)/len(plaintext_1mb) print ("Speed per byte to Encrypt File 1KB :"+str(bytes_speed)) outfile_1kb = open(File_1kb_Encrypted, 'wb') outfile_1mb = open(File_1mb_Encrypted, 'wb') #writing into files outfile_1kb.write(ciphertext_1kb) outfile_1mb.write(ciphertext_1mb) cipher_1kb= open(File_1kb_Encrypted) cipher_1mb= open(File_1mb_Encrypted) cipher_1KB=cipher_1kb.read() cipher_1MB=cipher_1mb.read() print(" ") print("***********Decrption of 1kb File***********") start_time = time.time() Decrypted_1kb=decrypt_message(key,ciphertext_1kb) print "Time taken to Decrypt File 1KB= %s seconds" % (time.time() - start_time) total_time=(time.time() - start_time) bytes_speed=(total_time)/len(cipher_1KB) print ("Speed per byte to Decrypt File 1KB :"+str(bytes_speed)) print(" ") print("***********Decrption of 1mb File***********") start_time = time.time() Decrypted_1mb=decrypt_message(key,ciphertext_1mb) print "Time taken to Decrypt File 1MB= %s seconds " % (time.time() - start_time) total_time=(time.time() - start_time) bytes_speed=(total_time)/len(cipher_1MB) print ("Speed per byte to Decrypt File 1MB :"+str(bytes_speed)) #writing into files outfile_1kb_DEC = open(File_1kb_Decrypted, 'wb') outfile_1mb_DEC = open(File_1mb_Decrypted, 'wb') outfile_1kb_DEC.write(Decrypted_1kb) outfile_1mb_DEC.write(Decrypted_1mb) print(" ") print("checking for correctness:") print("File-1kb:") compare(plaintext_1kb, Decrypted_1kb) print("File-1mb:") compare(plaintext_1mb, Decrypted_1mb)
[ "snehamuppala@snehas-MBP.lan1" ]
snehamuppala@snehas-MBP.lan1
3782d6d2f7c29ca9075bf5626f3544a4b4345a54
96bd02743d3727c7e12824fcb472e4d4fe2a49bf
/globalvars.py
8c2e741803846893b7f327f0bad49e14dd5e7ce1
[]
no_license
barthess/ECLGenerator
1f13d11f0d350c93fb4980be5495da4e23fe1ec0
c746e5c5929425037d5668dbc4ee7cfef2153e1d
refs/heads/master
2016-09-05T20:34:59.184202
2012-05-18T12:03:50
2012-05-18T12:03:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,297
py
#!/usr/bin/python # -*- coding: utf8 -*- # log file logfile = open('error.log','w') # Некоторые константы # ширина фейковых полей для поддержания ширины колонок column_strut = 'x' * 1024 # дефолтный список колонок # данный список содержит правильные названия колонок, как их генерит CAD # они должны идти в том порядке, как должны появляться перечне # Колонки с таким названием останутся в базе после очистки column_names = ['Part', 'PartN', 'Part Num', 'Value', 'VID', 'Vendor Part Num', 'Mfg Name', 'Package', 'Country of Origin', 'Unit Price'] column_num = len(column_names) # словарь для поиска по готовому массиву # # Тут хранятся все известные нам элементы. Если попадется неизвестный - # скрипт прервет выполнение и предложит пользователю добавить сюда # неизвестный элемент # # Как заполнять: # 'key' : ['ед. число','мн. число','смещение','количество'] # # Смещение и количество по умолчанию равны -1, они будут заполняться # скриптом во время анализа главной таблицы. component_des = { 'C' : ['Конденсатор','Конденсаторы',-1,-1], \ 'E' : ['Перемычка','Перемычки',-1,-1], \ 'R' : ['Резистор','Резисторы',-1,-1], \ 'D' : ['Микросхема','Микросхемы',-1,-1], \ 'DA': ['Микросхема','Микросхемы',-1,-1], \ 'DD': ['Микросхема','Микросхемы',-1,-1], \ 'L' : ['Дроссель','Дроссели',-1,-1], \ 'RK': ['Терморезистор','Терморезисторы',-1,-1], \ 'RP': ['Резистор подстроечный','Резисторы подстроечные',-1,-1], \ 'S' : ['Переключатель','Переключатели',-1,-1], \ 'SB': ['Выключатель кнопочный','Выключатели кнопочные',-1,-1], \ 'VD': ['Диод','Диоды',-1,-1], \ 'VT': ['Транзистор','Транзисторы',-1,-1], \ 'XP': ['Вилка','Вилки',-1,-1], \ 'XS': ['Розетка','Розетки',-1,-1], \ 'Z' : ['Фильтр радиочастотный','Фильтры радиочастотные',-1,-1], \ 'ZQ': ['Резонатор кварцевый','Резонаторы кварцевые',-1,-1], \ } # Отдельно посортируем, потому что питоновый словарь выбирает # элементы в случайном порядке pos_names = sorted(component_des.keys())
[ "barthess@yandex.ru" ]
barthess@yandex.ru
fc9374a5c687930f7f70c24aa1fa404c87ed40b5
a2b598d8e89c1755f683d6b6fe35c3f1ef3e2cf6
/search/[boj]1600_말이되고픈원숭이_bfs.py
9adea0a931916597dac7a119b2bacf6cfbd9340c
[ "MIT" ]
permissive
DongHyunByun/algorithm_practice
cbe82606eaa7f372d9c0b54679bdae863aab0099
dcd595e6962c86f90f29e1d68f3ccc9bc673d837
refs/heads/master
2022-09-24T22:47:01.556157
2022-09-11T07:36:42
2022-09-11T07:36:42
231,518,518
0
0
null
null
null
null
UTF-8
Python
false
false
1,176
py
from collections import deque K=int(input()) W,H=map(int,input().split()) L=[] for i in range(H): L.append(list(map(int,input().split()))) dR=[0,0,-1,1] dC=[1,-1,0,0] dhR=[-1,-2,-2,-1,1,2,2,1] dhC=[-2,-1,1,2,2,1,-1,-2] cL=[[[0 for k in range(K+1)] for j in range(W)] for i in range(H)] for i in range(K+1): cL[0][0][i]=1 ans=0 q=deque([[0,0,0]]) while(q): temp=q.popleft() r=temp[0] c=temp[1] h=temp[2] if r==H-1 and c==W-1: ans=cL[r][c][h] break # 인접칸이동 for d in range(4): tempR=r+dR[d] tempC=c+dC[d] if 0<=tempR<H and 0<=tempC<W and L[tempR][tempC]==0 and cL[tempR][tempC][h]==0: cL[tempR][tempC][h]=cL[r][c][h]+1 q.append([tempR,tempC,h]) # 말뛰기 if h!=K: for k in range(8): tempR=r+dhR[k] tempC=c+dhC[k] if 0<=tempR<H and 0<=tempC<W and L[tempR][tempC]==0 and cL[tempR][tempC][h+1]==0: cL[tempR][tempC][h+1]=cL[r][c][h]+1 q.append([tempR,tempC,h+1]) ''' #값확인 for i in range(H): print(cL[i]) ''' print(ans-1)
[ "noreply@github.com" ]
DongHyunByun.noreply@github.com
e32438c91eb86f5c0c18828a86ac1fe03c58447e
21049c34adbb283c7f5e74dcdd52ea20d82b6342
/tests/confprol/test_quantic_booleans.py
9296834839b7499d7abd8c502c0a01cc1ae05138
[]
no_license
DanielBV/Confprol
79a2a03ea42bbd09a189f5c52632c20a0028360d
f9590bc2fa54ef729f47ba1c98854e6220c5c0ad
refs/heads/master
2020-06-02T04:54:41.419171
2019-09-08T08:53:04
2019-09-08T08:53:04
191,042,905
0
0
null
null
null
null
UTF-8
Python
false
false
8,938
py
import unittest from expressions.booleans.quantic_axis import QuanticAxis from main import execute from antlr4 import InputStream from expressions.booleans.quantic_boolean import QuanticBoolean from unittest.mock import patch class TestQuanticBooleans(unittest.TestCase): @patch('builtins.print') def test_evaluate_quantic_boolean_in_condition(self,mocked_print): program = """ if not xTrue{ run away with 6; }""" execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") @patch('builtins.print') def test_multiply_quantic_boolean(self, mocked_print): program = """ run away with 3 * xFalse; """ execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") @patch('builtins.print') def test_sum_quantic_boolean(self, mocked_print): program = """ run away with 3 + xFalse; """ execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") @patch('builtins.print') def test_divide_quantic_boolean(self, mocked_print): program = """ run away with 3 / xFalse; """ execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") @patch('builtins.print') def test_minus_quantic_boolean(self, mocked_print): program = """ run away with 3 - xFalse; """ execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") @patch('builtins.print') def test_equals_quantic_boolean(self, mocked_print): program = """ run away with xTrue := xFalse; """ execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") @patch('builtins.print') def test_quantic_boolean_to_int(self, mocked_print): program = """ int(yTrue);""" execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") @patch('builtins.print') def test_quantic_boolean_to_float(self, mocked_print): program = """ float(yTrue);""" execute(InputStream(program), False) mocked_print.assert_called_once_with( "EvaluateQuanticBooleanException line 2: Quantic booleans can't be evaluated or operated as regular booleans. Use evalX() or evalY() to evaluate them first.") def test_quantic_boolean_to_string(self): program = """ run away with string(yFalse);""" string = execute(InputStream(program), True) self.assertIn("[Quantic Boolean",string) @patch('builtins.print') def test_evaluate_x_not_quantic_boolean(self,mocked_print): program = """ evalX(True);""" execute(InputStream(program), False) mocked_print.assert_called_once_with( "ValueException line 2: Cannot evaluate a non quantic value.") @patch('builtins.print') def test_evaluate_x_none(self, mocked_print): program = """ evalX(None);""" execute(InputStream(program), False) mocked_print.assert_called_once_with( "ValueException line 2: Cannot evaluate a non quantic value.") @patch('builtins.print') def test_evaluate_y(self,mocked_print): program = """ evalY(True);""" execute(InputStream(program), False) mocked_print.assert_called_once_with( "ValueException line 2: Cannot evaluate a non quantic value.") @patch('builtins.print') def test_evaluate_y_none(self, mocked_print): program = """ evalY(None);""" execute(InputStream(program), False) mocked_print.assert_called_once_with( "ValueException line 2: Cannot evaluate a non quantic value.") def test_evaluate_same_axis(self): program = """ run away with [evalX(xTrue), evalX(xFalse), evalY(yTrue), evalY(yFalse)]; """ result = execute(InputStream(program), False) self.assertEqual([True,False,True,False],result) @patch('random.randint') def test_evaluate_x_different_axis_true(self, mocked_random): mocked_random.return_value = 6 program = """ run away with evalX(yTrue); """ result = execute(InputStream(program), False) mocked_random.assert_called_once() self.assertTrue(result) @patch('random.randint') def test_evaluate_x_different_axis_false(self, mocked_random): mocked_random.return_value = 1 program = """ run away with evalX(yTrue); """ result = execute(InputStream(program), False) mocked_random.assert_called_once() self.assertFalse(result) @patch('random.randint') def test_evaluate_y_different_axis_true(self, mocked_random): mocked_random.return_value = 6 program = """ run away with evalY(xTrue); """ result = execute(InputStream(program), False) mocked_random.assert_called_once() self.assertEqual(True, result) @patch('random.randint') def test_evaluate_y_different_axis_false(self, mocked_random): mocked_random.return_value = 1 program = """ run away with evalY(xTrue); """ result = execute(InputStream(program), False) mocked_random.assert_called_once() self.assertFalse(result) def test_evaluate_in_other_axis_changes_the_axis_x_axis(self): boolean = QuanticBoolean(QuanticAxis.X,True) value = boolean.evaluate(QuanticAxis.Y).value self.assertEqual(QuanticAxis.Y, boolean.object.axis) self.assertEqual(value, boolean.evaluate(QuanticAxis.Y).value) def test_evaluate_in_other_axis_changes_the_axis_y_axis(self): boolean = QuanticBoolean(QuanticAxis.Y, True) value = boolean.evaluate(QuanticAxis.X).value self.assertEqual(QuanticAxis.X, boolean.object.axis) self.assertEqual(value, boolean.evaluate(QuanticAxis.X).value) def test_return_quantic_boolean(self): program = """ run away with xTrue; """ result = execute(InputStream(program), False) self.assertIsNotNone(result) self.assertTrue(result.value) def test_quantic_boolean_attributes_x_axis(self): program = """ a == xTrue; a.a == 3; b == xTrue; c == xFalse; c.c == 6; d == xFalse; run away with [a.a,has_attribute(b,"a"),c.c,has_attribute(d,"c")]; """ result = execute(InputStream(program), False) self.assertEqual([3, False,6,False], result) def test_quantic_boolean_attributes_y_axis(self): program = """ a == yTrue; a.a == 3; b == yTrue; c == yFalse; c.c == 6; d == yFalse; run away with [a.a,has_attribute(b,"a"),c.c,has_attribute(d,"c")]; """ result = execute(InputStream(program), False) self.assertEqual([3, False, 6, False], result)
[ "23432294+DanielBV@users.noreply.github.com" ]
23432294+DanielBV@users.noreply.github.com
55031643697f159cc378ffde4db5cf2f28880521
875757cad2e865dbffed813ed6c0e9e3a0c064d0
/kalmantracker.py
6b46e42a445bef05a1fadc1b6ed973ea5db29024
[]
no_license
domagalasebastian/pose-estimation-and-skeleton-tracking
f0981b2e869e16c6dddd24069a0b2f8af59ae404
e33a08e60e527ae2f9458ab0e4663f242977e33f
refs/heads/master
2022-04-22T18:39:43.487781
2020-04-24T12:53:06
2020-04-24T12:53:06
258,511,580
3
0
null
null
null
null
UTF-8
Python
false
false
2,194
py
from scipy.linalg import inv import numpy as np class Tracker: def __init__(self, x, bounding_box, key_points, person_id): """ Init single tracker for detected person. """ self.person_id = person_id self.key_points = key_points self.bounding_box = bounding_box self.matched_detection = False self.unmatched_tracks = 0 # Kalman filter parameters self.x = x self.dT = 1 self.F = np.array([[1, 0, 0, 0, self.dT, 0, 0, 0], [0, 1, 0, 0, 0, self.dT, 0, 0], [0, 0, 1, 0, 0, 0, self.dT, 0], [0, 0, 0, 1, 0, 0, 0, self.dT], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]]) self.G = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) self.H = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0]]) self.P = np.diag(10.0 * np.ones(8)) self.Q = np.diag(0.01 * np.ones(4)) self.R = np.identity(4) self.R[2, 2] = 10.0 self.R[3, 3] = 10.0 def predict(self): """ Predict phase of Kalman filter. """ self.x = self.F.dot(self.x) self.P = self.F.dot(self.P).dot(self.F.T) + self.G.dot(self.Q).dot(self.G.T) def update(self, z): """ Update phase of Kalman filter. :param z: measurement - bounding box from detection """ S = self.H.dot(self.P).dot(self.H.T) + self.R K = self.P.dot(self.H.T).dot(inv(S)) e = z - self.H.dot(self.x) self.x += K.dot(e) self.P -= K.dot(self.H).dot(self.P)
[ "noreply@github.com" ]
domagalasebastian.noreply@github.com
dec3a8f2aa7e5c7a87875dbd1e1a8c5e8f5f43ad
13800b7827598e76428a335559b7bf11867ec2f0
/python/ccxt/delta.py
17de2a8e8ab8283f9b968529f38b5cef16b161a6
[ "MIT" ]
permissive
ccxt/ccxt
b40a0466f5c430a3c0c6026552ae697aa80ba6c6
e4065f6a490e6fc4dd7a72b375428b2faa570668
refs/heads/master
2023-09-04T03:41:29.787733
2023-09-03T19:25:57
2023-09-03T19:25:57
91,253,698
30,798
8,190
MIT
2023-09-14T21:59:09
2017-05-14T15:41:56
Python
UTF-8
Python
false
false
131,990
py
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange from ccxt.abstract.delta import ImplicitAPI import hashlib from ccxt.base.types import OrderSide from ccxt.base.types import OrderType from typing import Optional from typing import List from ccxt.base.errors import ExchangeError from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.errors import AuthenticationError from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class delta(Exchange, ImplicitAPI): def describe(self): return self.deep_extend(super(delta, self).describe(), { 'id': 'delta', 'name': 'Delta Exchange', 'countries': ['VC'], # Saint Vincent and the Grenadines 'rateLimit': 300, 'version': 'v2', # new metainfo interface 'has': { 'CORS': None, 'spot': True, 'margin': False, 'swap': True, 'future': False, 'option': True, 'addMargin': True, 'cancelAllOrders': True, 'cancelOrder': True, 'createOrder': True, 'createReduceOnlyOrder': True, 'editOrder': True, 'fetchBalance': True, 'fetchClosedOrders': True, 'fetchCurrencies': True, 'fetchDeposit': None, 'fetchDepositAddress': True, 'fetchDeposits': None, 'fetchFundingHistory': False, 'fetchFundingRate': True, 'fetchFundingRateHistory': False, 'fetchFundingRates': True, 'fetchIndexOHLCV': True, 'fetchLedger': True, 'fetchLeverage': True, 'fetchLeverageTiers': False, # An infinite number of tiers, see examples/js/delta-maintenance-margin-rate-max-leverage.js 'fetchMarginMode': False, 'fetchMarketLeverageTiers': False, 'fetchMarkets': True, 'fetchMarkOHLCV': True, 'fetchMySettlementHistory': False, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenInterest': True, 'fetchOpenOrders': True, 'fetchOrderBook': True, 'fetchPosition': True, 'fetchPositionMode': False, 'fetchPositions': True, 'fetchPremiumIndexOHLCV': False, 'fetchSettlementHistory': True, 'fetchStatus': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTime': True, 'fetchTrades': True, 'fetchTransfer': None, 'fetchTransfers': None, 'fetchVolatilityHistory': False, 'fetchWithdrawal': None, 'fetchWithdrawals': None, 'reduceMargin': True, 'setLeverage': True, 'setMargin': False, 'setMarginMode': False, 'setPositionMode': False, 'transfer': False, 'withdraw': False, }, 'timeframes': { '1m': '1m', '3m': '3m', '5m': '5m', '15m': '15m', '30m': '30m', '1h': '1h', '2h': '2h', '4h': '4h', '6h': '6h', '1d': '1d', '7d': '7d', '1w': '1w', '2w': '2w', '1M': '30d', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/99450025-3be60a00-2931-11eb-9302-f4fd8d8589aa.jpg', 'test': { 'public': 'https://testnet-api.delta.exchange', 'private': 'https://testnet-api.delta.exchange', }, 'api': { 'public': 'https://api.delta.exchange', 'private': 'https://api.delta.exchange', }, 'www': 'https://www.delta.exchange', 'doc': [ 'https://docs.delta.exchange', ], 'fees': 'https://www.delta.exchange/fees', 'referral': 'https://www.delta.exchange/app/signup/?code=IULYNB', }, 'api': { 'public': { 'get': [ 'assets', 'indices', 'products', 'products/{symbol}', 'tickers', 'tickers/{symbol}', 'l2orderbook/{symbol}', 'trades/{symbol}', 'stats', 'history/candles', 'history/sparklines', 'settings', ], }, 'private': { 'get': [ 'orders', 'products/{product_id}/orders/leverage', 'positions/margined', 'positions', 'orders/history', 'fills', 'fills/history/download/csv', 'wallet/balances', 'wallet/transactions', 'wallet/transactions/download', 'wallets/sub_accounts_transfer_history', 'users/trading_preferences', 'sub_accounts', 'profile', 'deposits/address', 'orders/leverage', ], 'post': [ 'orders', 'orders/bracket', 'orders/batch', 'products/{product_id}/orders/leverage', 'positions/change_margin', 'positions/close_all', 'wallets/sub_account_balance_transfer', 'orders/cancel_after', 'orders/leverage', ], 'put': [ 'orders', 'orders/bracket', 'orders/batch', 'positions/auto_topup', 'users/update_mmp', 'users/reset_mmp', ], 'delete': [ 'orders', 'orders/all', 'orders/batch', ], }, }, 'fees': { 'trading': { 'tierBased': True, 'percentage': True, 'taker': self.parse_number('0.0015'), 'maker': self.parse_number('0.0010'), 'tiers': { 'taker': [ [self.parse_number('0'), self.parse_number('0.0015')], [self.parse_number('100'), self.parse_number('0.0013')], [self.parse_number('250'), self.parse_number('0.0013')], [self.parse_number('1000'), self.parse_number('0.001')], [self.parse_number('5000'), self.parse_number('0.0009')], [self.parse_number('10000'), self.parse_number('0.00075')], [self.parse_number('20000'), self.parse_number('0.00065')], ], 'maker': [ [self.parse_number('0'), self.parse_number('0.001')], [self.parse_number('100'), self.parse_number('0.001')], [self.parse_number('250'), self.parse_number('0.0009')], [self.parse_number('1000'), self.parse_number('0.00075')], [self.parse_number('5000'), self.parse_number('0.0006')], [self.parse_number('10000'), self.parse_number('0.0005')], [self.parse_number('20000'), self.parse_number('0.0005')], ], }, }, }, 'options': { 'networks': { 'TRC20': 'TRC20(TRON)', 'BEP20': 'BEP20(BSC)', }, }, 'precisionMode': TICK_SIZE, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'exceptions': { 'exact': { # Margin required to place order with selected leverage and quantity is insufficient. 'insufficient_margin': InsufficientFunds, # {"error":{"code":"insufficient_margin","context":{"available_balance":"0.000000000000000000","required_additional_balance":"1.618626000000000000000000000"}},"success":false} 'order_size_exceed_available': InvalidOrder, # The order book doesn't have sufficient liquidity, hence the order couldnt be filled, for example, ioc orders 'risk_limits_breached': BadRequest, # orders couldn't be placed will breach allowed risk limits. 'invalid_contract': BadSymbol, # The contract/product is either doesn't exist or has already expired. 'immediate_liquidation': InvalidOrder, # Order will cause immediate liquidation. 'out_of_bankruptcy': InvalidOrder, # Order prices are out of position bankruptcy limits. 'self_matching_disrupted_post_only': InvalidOrder, # Self matching is not allowed during auction. 'immediate_execution_post_only': InvalidOrder, # orders couldn't be placed includes post only orders which will be immediately executed 'bad_schema': BadRequest, # {"error":{"code":"bad_schema","context":{"schema_errors":[{"code":"validation_error","message":"id is required","param":""}]}},"success":false} 'invalid_api_key': AuthenticationError, # {"success":false,"error":{"code":"invalid_api_key"}} 'invalid_signature': AuthenticationError, # {"success":false,"error":{"code":"invalid_signature"}} 'open_order_not_found': OrderNotFound, # {"error":{"code":"open_order_not_found"},"success":false} 'unavailable': ExchangeNotAvailable, # {"error":{"code":"unavailable"},"success":false} }, 'broad': { }, }, }) def convert_expire_date(self, date): # parse YYMMDD to timestamp year = date[0:2] month = date[2:4] day = date[4:6] reconstructedDate = '20' + year + '-' + month + '-' + day + 'T00:00:00Z' return reconstructedDate def create_expired_option_market(self, symbol): # support expired option contracts quote = 'USDT' optionParts = symbol.split('-') symbolBase = symbol.split('/') base = None expiry = None optionType = None if symbol.find('/') > -1: base = self.safe_string(symbolBase, 0) expiry = self.safe_string(optionParts, 1) optionType = self.safe_string(optionParts, 3) else: base = self.safe_string(optionParts, 1) expiry = self.safe_string(optionParts, 3) optionType = self.safe_string(optionParts, 0) settle = quote strike = self.safe_string(optionParts, 2) datetime = self.convert_expire_date(expiry) timestamp = self.parse8601(datetime) return { 'id': optionType + '-' + base + '-' + strike + '-' + expiry, 'symbol': base + '/' + quote + ':' + settle + '-' + expiry + '-' + strike + '-' + optionType, 'base': base, 'quote': quote, 'settle': settle, 'baseId': base, 'quoteId': quote, 'settleId': settle, 'active': False, 'type': 'option', 'linear': None, 'inverse': None, 'spot': False, 'swap': False, 'future': False, 'option': True, 'margin': False, 'contract': True, 'contractSize': self.parse_number('1'), 'expiry': timestamp, 'expiryDatetime': datetime, 'optionType': 'call' if (optionType == 'C') else 'put', 'strike': self.parse_number(strike), 'precision': { 'amount': None, 'price': None, }, 'limits': { 'amount': { 'min': None, 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': None, 'max': None, }, }, 'info': None, } def market(self, symbol): if self.markets is None: raise ExchangeError(self.id + ' markets not loaded') if isinstance(symbol, str): if symbol in self.markets: return self.markets[symbol] elif symbol in self.markets_by_id: markets = self.markets_by_id[symbol] return markets[0] elif (symbol.find('-C') > -1) or (symbol.find('-P') > -1) or (symbol.find('C')) or (symbol.find('P')): return self.create_expired_option_market(symbol) raise BadSymbol(self.id + ' does not have market symbol ' + symbol) def safe_market(self, marketId=None, market=None, delimiter=None, marketType=None): isOption = (marketId is not None) and ((marketId.find('-C') > -1) or (marketId.find('-P') > -1) or (marketId.find('C')) or (marketId.find('P'))) if isOption and not (marketId in self.markets_by_id): # handle expired option contracts return self.create_expired_option_market(marketId) return super(delta, self).safe_market(marketId, market, delimiter, marketType) def fetch_time(self, params={}): """ fetches the current integer timestamp in milliseconds from the exchange server :param dict [params]: extra parameters specific to the delta api endpoint :returns int: the current integer timestamp in milliseconds from the exchange server """ response = self.publicGetSettings(params) # full response sample under `fetchStatus` result = self.safe_value(response, 'result', {}) return self.safe_integer_product(result, 'server_time', 0.001) def fetch_status(self, params={}): """ the latest known information on the availability of the exchange API :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `status structure <https://github.com/ccxt/ccxt/wiki/Manual#exchange-status-structure>` """ response = self.publicGetSettings(params) # # { # "result": { # "deto_liquidity_mining_daily_reward": "40775", # "deto_msp": "1.0", # "deto_staking_daily_reward": "23764.08", # "enabled_wallets": [ # "BTC", # ... # ], # "portfolio_margin_params": { # "enabled_portfolios": { # ".DEAVAXUSDT": { # "asset_id": 5, # "futures_contingency_margin_percent": "1", # "interest_rate": "0", # "maintenance_margin_multiplier": "0.8", # "max_price_shock": "20", # "max_short_notional_limit": "2000", # "options_contingency_margin_percent": "1", # "options_discount_range": "10", # "options_liq_band_range_percentage": "25", # "settling_asset": "USDT", # "sort_priority": 5, # "underlying_asset": "AVAX", # "volatility_down_shock": "30", # "volatility_up_shock": "45" # }, # ... # }, # "portfolio_enabled_contracts": [ # "futures", # "perpetual_futures", # "call_options", # "put_options" # ] # }, # "server_time": 1650640673500273, # "trade_farming_daily_reward": "100000", # "circulating_supply": "140000000", # "circulating_supply_update_time": "1636752800", # "deto_referral_mining_daily_reward": "0", # "deto_total_reward_pool": "100000000", # "deto_trade_mining_daily_reward": "0", # "kyc_deposit_limit": "20", # "kyc_withdrawal_limit": "10000", # "maintenance_start_time": "1650387600000000", # "msp_deto_commission_percent": "25", # "under_maintenance": "false" # }, # "success": True # } # result = self.safe_value(response, 'result', {}) underMaintenance = self.safe_string(result, 'under_maintenance') status = 'maintenance' if (underMaintenance == 'true') else 'ok' updated = self.safe_integer_product(result, 'server_time', 0.001, self.milliseconds()) return { 'status': status, 'updated': updated, 'eta': None, 'url': None, 'info': response, } def fetch_currencies(self, params={}): """ fetches all available currencies on an exchange see https://docs.delta.exchange/#get-list-of-all-assets :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: an associative dictionary of currencies """ response = self.publicGetAssets(params) # # { # "result":[ # { # "base_withdrawal_fee":"0.0005", # "deposit_status":"enabled", # "id":2, # "interest_credit":true, # "interest_slabs":[ # {"limit":"0.1","rate":"0"}, # {"limit":"1","rate":"0.05"}, # {"limit":"5","rate":"0.075"}, # {"limit":"10","rate":"0.1"}, # {"limit":"9999999999999999","rate":"0"} # ], # "kyc_deposit_limit":"10", # "kyc_withdrawal_limit":"2", # "min_withdrawal_amount":"0.001", # "minimum_precision":4, # "name":"Bitcoin", # "precision":8, # "sort_priority":1, # "symbol":"BTC", # "variable_withdrawal_fee":"0", # "withdrawal_status":"enabled" # }, # ], # "success":true # } # currencies = self.safe_value(response, 'result', []) result = {} for i in range(0, len(currencies)): currency = currencies[i] id = self.safe_string(currency, 'symbol') numericId = self.safe_integer(currency, 'id') code = self.safe_currency_code(id) depositStatus = self.safe_string(currency, 'deposit_status') withdrawalStatus = self.safe_string(currency, 'withdrawal_status') depositsEnabled = (depositStatus == 'enabled') withdrawalsEnabled = (withdrawalStatus == 'enabled') active = depositsEnabled and withdrawalsEnabled result[code] = { 'id': id, 'numericId': numericId, 'code': code, 'name': self.safe_string(currency, 'name'), 'info': currency, # the original payload 'active': active, 'deposit': depositsEnabled, 'withdraw': withdrawalsEnabled, 'fee': self.safe_number(currency, 'base_withdrawal_fee'), 'precision': self.parse_number(self.parse_precision(self.safe_string(currency, 'precision'))), 'limits': { 'amount': {'min': None, 'max': None}, 'withdraw': { 'min': self.safe_number(currency, 'min_withdrawal_amount'), 'max': None, }, }, 'networks': {}, } return result def load_markets(self, reload=False, params={}): markets = super(delta, self).load_markets(reload, params) currenciesByNumericId = self.safe_value(self.options, 'currenciesByNumericId') if (currenciesByNumericId is None) or reload: self.options['currenciesByNumericId'] = self.index_by(self.currencies, 'numericId') marketsByNumericId = self.safe_value(self.options, 'marketsByNumericId') if (marketsByNumericId is None) or reload: self.options['marketsByNumericId'] = self.index_by(self.markets, 'numericId') return markets def fetch_markets(self, params={}): """ retrieves data on all markets for delta see https://docs.delta.exchange/#get-list-of-products :param dict [params]: extra parameters specific to the exchange api endpoint :returns dict[]: an array of objects representing market data """ response = self.publicGetProducts(params) # # { # "meta":{"after":null, "before":null, "limit":100, "total_count":81}, # "result":[ # # the below response represents item from perpetual market # { # "annualized_funding":"5.475000000000000000", # "is_quanto":false, # "ui_config":{ # "default_trading_view_candle":"15", # "leverage_slider_values":[1,3,5,10,25,50], # "price_clubbing_values":[0.001,0.005,0.05,0.1,0.5,1,5], # "show_bracket_orders":false, # "sort_priority":29, # "tags":[] # }, # "basis_factor_max_limit":"0.15", # "symbol":"P-LINK-D-151120", # "id":1584, # "default_leverage":"5.000000000000000000", # "maker_commission_rate":"0.0005", # "contract_unit_currency":"LINK", # "strike_price":"12.507948", # "settling_asset":{ # # asset structure # }, # "auction_start_time":null, # "auction_finish_time":null, # "settlement_time":"2020-11-15T12:00:00Z", # "launch_time":"2020-11-14T11:55:05Z", # "spot_index":{ # # index structure # }, # "trading_status":"operational", # "tick_size":"0.001", # "position_size_limit":100000, # "notional_type":"vanilla", # vanilla, inverse # "price_band":"0.4", # "barrier_price":null, # "description":"Daily LINK PUT options quoted in USDT and settled in USDT", # "insurance_fund_margin_contribution":"1", # "quoting_asset":{ # # asset structure # }, # "liquidation_penalty_factor":"0.2", # "product_specs":{"max_volatility":3,"min_volatility":0.3,"spot_price_band":"0.40"}, # "initial_margin_scaling_factor":"0.0001", # "underlying_asset":{ # # asset structure # }, # "state":"live", # "contract_value":"1", # "initial_margin":"2", # "impact_size":5000, # "settlement_price":null, # "contract_type":"put_options", # put_options, call_options, move_options, perpetual_futures, interest_rate_swaps, futures, spreads # "taker_commission_rate":"0.0005", # "maintenance_margin":"1", # "short_description":"LINK Daily PUT Options", # "maintenance_margin_scaling_factor":"0.00005", # "funding_method":"mark_price", # "max_leverage_notional":"20000" # }, # # the below response represents item from spot market # { # "position_size_limit": 10000000, # "settlement_price": null, # "funding_method": "mark_price", # "settling_asset": null, # "impact_size": 10, # "id": 32258, # "auction_finish_time": null, # "description": "Solana tether spot market", # "trading_status": "operational", # "tick_size": "0.01", # "liquidation_penalty_factor": "1", # "spot_index": { # "config": {"quoting_asset": "USDT", "service_id": 8, "underlying_asset": "SOL"}, # "constituent_exchanges": [ # {"exchange": "binance", "health_interval": 60, "health_priority": 1, "weight": 1}, # {"exchange": "huobi", "health_interval": 60, "health_priority": 2, "weight": 1} # ], # "constituent_indices": null, # "description": "Solana index from binance and huobi", # "health_interval": 300, # "id": 105, # "impact_size": "40.000000000000000000", # "index_type": "spot_pair", # "is_composite": False, # "price_method": "ltp", # "quoting_asset_id": 5, # "symbol": ".DESOLUSDT", # "tick_size": "0.000100000000000000", # "underlying_asset_id": 66 # }, # "contract_type": "spot", # "launch_time": "2022-02-03T10:18:11Z", # "symbol": "SOL_USDT", # "disruption_reason": null, # "settlement_time": null, # "insurance_fund_margin_contribution": "1", # "is_quanto": False, # "maintenance_margin": "5", # "taker_commission_rate": "0.0005", # "auction_start_time": null, # "max_leverage_notional": "10000000", # "state": "live", # "annualized_funding": "0", # "notional_type": "vanilla", # "price_band": "100", # "product_specs": {"kyc_required": False, "max_order_size": 2000, "min_order_size": 0.01, "quoting_precision": 4, "underlying_precision": 2}, # "default_leverage": "1.000000000000000000", # "initial_margin": "10", # "maintenance_margin_scaling_factor": "1", # "ui_config": { # "default_trading_view_candle": "1d", # "leverage_slider_values": [], # "price_clubbing_values": [0.01, 0.05, 0.1, 0.5, 1, 2.5, 5], # "show_bracket_orders": False, # "sort_priority": 2, # "tags": [] # }, # "basis_factor_max_limit": "10000", # "contract_unit_currency": "SOL", # "strike_price": null, # "quoting_asset": { # "base_withdrawal_fee": "10.000000000000000000", # "deposit_status": "enabled", # "id": 5, # "interest_credit": False, # "interest_slabs": null, # "kyc_deposit_limit": "100000.000000000000000000", # "kyc_withdrawal_limit": "10000.000000000000000000", # "min_withdrawal_amount": "30.000000000000000000", # "minimum_precision": 2, # "name": "Tether", # "networks": [ # {"base_withdrawal_fee": "25", "deposit_status": "enabled", "memo_required": False, "network": "ERC20", "variable_withdrawal_fee": "0", "withdrawal_status": "enabled"}, # {"base_withdrawal_fee": "1", "deposit_status": "enabled", "memo_required": False, "network": "BEP20(BSC)", "variable_withdrawal_fee": "0", "withdrawal_status": "enabled"}, # {"base_withdrawal_fee": "1", "deposit_status": "disabled", "memo_required": False, "network": "TRC20(TRON)", "variable_withdrawal_fee": "0", "withdrawal_status": "disabled"} # ], # "precision": 8, # "sort_priority": 1, # "symbol": "USDT", # "variable_withdrawal_fee": "0.000000000000000000", # "withdrawal_status": "enabled" # }, # "maker_commission_rate": "0.0005", # "initial_margin_scaling_factor": "2", # "underlying_asset": { # "base_withdrawal_fee": "0.000000000000000000", # "deposit_status": "enabled", # "id": 66, # "interest_credit": False, # "interest_slabs": null, # "kyc_deposit_limit": "0.000000000000000000", # "kyc_withdrawal_limit": "0.000000000000000000", # "min_withdrawal_amount": "0.020000000000000000", # "minimum_precision": 4, # "name": "Solana", # "networks": [ # {"base_withdrawal_fee": "0.01", "deposit_status": "enabled", "memo_required": False, "network": "SOLANA", "variable_withdrawal_fee": "0", "withdrawal_status": "enabled"}, # {"base_withdrawal_fee": "0.01", "deposit_status": "enabled", "memo_required": False, "network": "BEP20(BSC)", "variable_withdrawal_fee": "0", "withdrawal_status": "enabled"} # ], # "precision": 8, # "sort_priority": 7, # "symbol": "SOL", # "variable_withdrawal_fee": "0.000000000000000000", # "withdrawal_status": "enabled" # }, # "barrier_price": null, # "contract_value": "1", # "short_description": "SOL-USDT spot market" # }, # ], # "success":true # } # markets = self.safe_value(response, 'result', []) result = [] for i in range(0, len(markets)): market = markets[i] type = self.safe_string(market, 'contract_type') if type == 'options_combos': continue # settlingAsset = self.safe_value(market, 'settling_asset', {}) quotingAsset = self.safe_value(market, 'quoting_asset', {}) underlyingAsset = self.safe_value(market, 'underlying_asset', {}) settlingAsset = self.safe_value(market, 'settling_asset') productSpecs = self.safe_value(market, 'product_specs', {}) baseId = self.safe_string(underlyingAsset, 'symbol') quoteId = self.safe_string(quotingAsset, 'symbol') settleId = self.safe_string(settlingAsset, 'symbol') id = self.safe_string(market, 'symbol') numericId = self.safe_integer(market, 'id') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) settle = self.safe_currency_code(settleId) callOptions = (type == 'call_options') putOptions = (type == 'put_options') moveOptions = (type == 'move_options') spot = (type == 'spot') swap = (type == 'perpetual_futures') future = (type == 'futures') option = (callOptions or putOptions or moveOptions) strike = self.safe_string(market, 'strike_price') expiryDatetime = self.safe_string(market, 'settlement_time') expiry = self.parse8601(expiryDatetime) contractSize = self.safe_number(market, 'contract_value') amountPrecision = None if spot: amountPrecision = self.parse_number(self.parse_precision(self.safe_string(productSpecs, 'underlying_precision'))) # seems inverse of 'impact_size' else: # other markets(swap, futures, move, spread, irs) seem to use the step of '1' contract amountPrecision = self.parse_number('1') linear = (settle == base) optionType = None symbol = base + '/' + quote if swap or future or option: symbol = symbol + ':' + settle if future or option: symbol = symbol + '-' + self.yymmdd(expiry) if option: type = 'option' letter = 'C' optionType = 'call' if putOptions: letter = 'P' optionType = 'put' elif moveOptions: letter = 'M' optionType = 'move' symbol = symbol + '-' + strike + '-' + letter else: type = 'future' else: type = 'swap' state = self.safe_string(market, 'state') result.append({ 'id': id, 'numericId': numericId, 'symbol': symbol, 'base': base, 'quote': quote, 'settle': settle, 'baseId': baseId, 'quoteId': quoteId, 'settleId': settleId, 'type': type, 'spot': spot, 'margin': None if spot else False, 'swap': swap, 'future': future, 'option': option, 'active': (state == 'live'), 'contract': not spot, 'linear': None if spot else linear, 'inverse': None if spot else not linear, 'taker': self.safe_number(market, 'taker_commission_rate'), 'maker': self.safe_number(market, 'maker_commission_rate'), 'contractSize': contractSize, 'expiry': expiry, 'expiryDatetime': expiryDatetime, 'strike': self.parse_number(strike), 'optionType': optionType, 'precision': { 'amount': amountPrecision, 'price': self.safe_number(market, 'tick_size'), }, 'limits': { 'leverage': { 'min': None, 'max': None, }, 'amount': { 'min': self.parse_number('1'), 'max': self.safe_number(market, 'position_size_limit'), }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number(market, 'min_size'), 'max': None, }, }, 'info': market, }) return result def parse_ticker(self, ticker, market=None): # # spot: fetchTicker, fetchTickers # # { # "close": 30634.0, # "contract_type": "spot", # "greeks": null, # "high": 30780.0, # "low": 30340.5, # "mark_price": "48000", # "oi": "0.0000", # "oi_change_usd_6h": "0.0000", # "oi_contracts": "0", # "oi_value": "0.0000", # "oi_value_symbol": "BTC", # "oi_value_usd": "0.0000", # "open": 30464.0, # "price_band": null, # "product_id": 8320, # "quotes": {}, # "size": 2.6816639999999996, # "spot_price": "30637.91465121", # "symbol": "BTC_USDT", # "timestamp": 1689139767621299, # "turnover": 2.6816639999999996, # "turnover_symbol": "BTC", # "turnover_usd": 81896.45613400004, # "volume": 2.6816639999999996 # } # # swap: fetchTicker, fetchTickers # # { # "close": 30600.5, # "contract_type": "perpetual_futures", # "funding_rate": "0.00602961", # "greeks": null, # "high": 30803.0, # "low": 30265.5, # "mark_basis": "-0.45601594", # "mark_price": "30600.10481568", # "oi": "469.9190", # "oi_change_usd_6h": "2226314.9900", # "oi_contracts": "469919", # "oi_value": "469.9190", # "oi_value_symbol": "BTC", # "oi_value_usd": "14385640.6802", # "open": 30458.5, # "price_band": { # "lower_limit": "29067.08312627", # "upper_limit": "32126.77608693" # }, # "product_id": 139, # "quotes": { # "ask_iv": null, # "ask_size": "965", # "best_ask": "30600.5", # "best_bid": "30599.5", # "bid_iv": null, # "bid_size": "196", # "impact_mid_price": null, # "mark_iv": "-0.44931641" # }, # "size": 1226303, # "spot_price": "30612.85362773", # "symbol": "BTCUSDT", # "timestamp": 1689136597460456, # "turnover": 37392218.45999999, # "turnover_symbol": "USDT", # "turnover_usd": 37392218.45999999, # "volume": 1226.3029999999485 # } # # option: fetchTicker, fetchTickers # # { # "contract_type": "call_options", # "greeks": { # "delta": "0.60873994", # "gamma": "0.00014854", # "rho": "7.71808010", # "spot": "30598.49040622", # "theta": "-30.44743017", # "vega": "24.83508248" # }, # "mark_price": "1347.74819696", # "mark_vol": "0.39966303", # "oi": "2.7810", # "oi_change_usd_6h": "0.0000", # "oi_contracts": "2781", # "oi_value": "2.7810", # "oi_value_symbol": "BTC", # "oi_value_usd": "85127.4337", # "price_band": { # "lower_limit": "91.27423497", # "upper_limit": "7846.19454697" # }, # "product_id": 107150, # "quotes": { # "ask_iv": "0.41023239", # "ask_size": "2397", # "best_ask": "1374", # "best_bid": "1322", # "bid_iv": "0.38929375", # "bid_size": "3995", # "impact_mid_price": null, # "mark_iv": "0.39965618" # }, # "spot_price": "30598.43379314", # "strike_price": "30000", # "symbol": "C-BTC-30000-280723", # "timestamp": 1689136932893181, # "turnover_symbol": "USDT" # } # timestamp = self.safe_integer_product(ticker, 'timestamp', 0.001) marketId = self.safe_string(ticker, 'symbol') symbol = self.safe_symbol(marketId, market) last = self.safe_string(ticker, 'close') quotes = self.safe_value(ticker, 'quotes', {}) return self.safe_ticker({ 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'high'), 'low': self.safe_number(ticker, 'low'), 'bid': self.safe_number(quotes, 'best_bid'), 'bidVolume': self.safe_number(quotes, 'bid_size'), 'ask': self.safe_number(quotes, 'best_ask'), 'askVolume': self.safe_number(quotes, 'ask_size'), 'vwap': None, 'open': self.safe_string(ticker, 'open'), 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_number(ticker, 'volume'), 'quoteVolume': self.safe_number(ticker, 'turnover'), 'info': ticker, }, market) def fetch_ticker(self, symbol: str, params={}): """ fetches a price ticker, a statistical calculation with the information calculated over the past 24 hours for a specific market see https://docs.delta.exchange/#get-ticker-for-a-product-by-symbol :param str symbol: unified symbol of the market to fetch the ticker for :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `ticker structure <https://github.com/ccxt/ccxt/wiki/Manual#ticker-structure>` """ self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } response = self.publicGetTickersSymbol(self.extend(request, params)) # # spot # # { # "result": { # "close": 30634.0, # "contract_type": "spot", # "greeks": null, # "high": 30780.0, # "low": 30340.5, # "mark_price": "48000", # "oi": "0.0000", # "oi_change_usd_6h": "0.0000", # "oi_contracts": "0", # "oi_value": "0.0000", # "oi_value_symbol": "BTC", # "oi_value_usd": "0.0000", # "open": 30464.0, # "price_band": null, # "product_id": 8320, # "quotes": {}, # "size": 2.6816639999999996, # "spot_price": "30637.91465121", # "symbol": "BTC_USDT", # "timestamp": 1689139767621299, # "turnover": 2.6816639999999996, # "turnover_symbol": "BTC", # "turnover_usd": 81896.45613400004, # "volume": 2.6816639999999996 # }, # "success": True # } # # swap # # { # "result": { # "close": 30600.5, # "contract_type": "perpetual_futures", # "funding_rate": "0.00602961", # "greeks": null, # "high": 30803.0, # "low": 30265.5, # "mark_basis": "-0.45601594", # "mark_price": "30600.10481568", # "oi": "469.9190", # "oi_change_usd_6h": "2226314.9900", # "oi_contracts": "469919", # "oi_value": "469.9190", # "oi_value_symbol": "BTC", # "oi_value_usd": "14385640.6802", # "open": 30458.5, # "price_band": { # "lower_limit": "29067.08312627", # "upper_limit": "32126.77608693" # }, # "product_id": 139, # "quotes": { # "ask_iv": null, # "ask_size": "965", # "best_ask": "30600.5", # "best_bid": "30599.5", # "bid_iv": null, # "bid_size": "196", # "impact_mid_price": null, # "mark_iv": "-0.44931641" # }, # "size": 1226303, # "spot_price": "30612.85362773", # "symbol": "BTCUSDT", # "timestamp": 1689136597460456, # "turnover": 37392218.45999999, # "turnover_symbol": "USDT", # "turnover_usd": 37392218.45999999, # "volume": 1226.3029999999485 # }, # "success": True # } # # option # # { # "result": { # "contract_type": "call_options", # "greeks": { # "delta": "0.60873994", # "gamma": "0.00014854", # "rho": "7.71808010", # "spot": "30598.49040622", # "theta": "-30.44743017", # "vega": "24.83508248" # }, # "mark_price": "1347.74819696", # "mark_vol": "0.39966303", # "oi": "2.7810", # "oi_change_usd_6h": "0.0000", # "oi_contracts": "2781", # "oi_value": "2.7810", # "oi_value_symbol": "BTC", # "oi_value_usd": "85127.4337", # "price_band": { # "lower_limit": "91.27423497", # "upper_limit": "7846.19454697" # }, # "product_id": 107150, # "quotes": { # "ask_iv": "0.41023239", # "ask_size": "2397", # "best_ask": "1374", # "best_bid": "1322", # "bid_iv": "0.38929375", # "bid_size": "3995", # "impact_mid_price": null, # "mark_iv": "0.39965618" # }, # "spot_price": "30598.43379314", # "strike_price": "30000", # "symbol": "C-BTC-30000-280723", # "timestamp": 1689136932893181, # "turnover_symbol": "USDT" # }, # "success": True # } # result = self.safe_value(response, 'result', {}) return self.parse_ticker(result, market) def fetch_tickers(self, symbols: Optional[List[str]] = None, params={}): """ fetches price tickers for multiple markets, statistical calculations with the information calculated over the past 24 hours each market see https://docs.delta.exchange/#get-tickers-for-products :param str[]|None symbols: unified symbols of the markets to fetch the ticker for, all market tickers are returned if not assigned :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a dictionary of `ticker structures <https://github.com/ccxt/ccxt/wiki/Manual#ticker-structure>` """ self.load_markets() symbols = self.market_symbols(symbols) response = self.publicGetTickers(params) # # spot # # { # "result": [ # { # "close": 30634.0, # "contract_type": "spot", # "greeks": null, # "high": 30780.0, # "low": 30340.5, # "mark_price": "48000", # "oi": "0.0000", # "oi_change_usd_6h": "0.0000", # "oi_contracts": "0", # "oi_value": "0.0000", # "oi_value_symbol": "BTC", # "oi_value_usd": "0.0000", # "open": 30464.0, # "price_band": null, # "product_id": 8320, # "quotes": {}, # "size": 2.6816639999999996, # "spot_price": "30637.91465121", # "symbol": "BTC_USDT", # "timestamp": 1689139767621299, # "turnover": 2.6816639999999996, # "turnover_symbol": "BTC", # "turnover_usd": 81896.45613400004, # "volume": 2.6816639999999996 # }, # ], # "success":true # } # # swap # # { # "result": [ # { # "close": 30600.5, # "contract_type": "perpetual_futures", # "funding_rate": "0.00602961", # "greeks": null, # "high": 30803.0, # "low": 30265.5, # "mark_basis": "-0.45601594", # "mark_price": "30600.10481568", # "oi": "469.9190", # "oi_change_usd_6h": "2226314.9900", # "oi_contracts": "469919", # "oi_value": "469.9190", # "oi_value_symbol": "BTC", # "oi_value_usd": "14385640.6802", # "open": 30458.5, # "price_band": { # "lower_limit": "29067.08312627", # "upper_limit": "32126.77608693" # }, # "product_id": 139, # "quotes": { # "ask_iv": null, # "ask_size": "965", # "best_ask": "30600.5", # "best_bid": "30599.5", # "bid_iv": null, # "bid_size": "196", # "impact_mid_price": null, # "mark_iv": "-0.44931641" # }, # "size": 1226303, # "spot_price": "30612.85362773", # "symbol": "BTCUSDT", # "timestamp": 1689136597460456, # "turnover": 37392218.45999999, # "turnover_symbol": "USDT", # "turnover_usd": 37392218.45999999, # "volume": 1226.3029999999485 # }, # ], # "success":true # } # # option # # { # "result": [ # { # "contract_type": "call_options", # "greeks": { # "delta": "0.60873994", # "gamma": "0.00014854", # "rho": "7.71808010", # "spot": "30598.49040622", # "theta": "-30.44743017", # "vega": "24.83508248" # }, # "mark_price": "1347.74819696", # "mark_vol": "0.39966303", # "oi": "2.7810", # "oi_change_usd_6h": "0.0000", # "oi_contracts": "2781", # "oi_value": "2.7810", # "oi_value_symbol": "BTC", # "oi_value_usd": "85127.4337", # "price_band": { # "lower_limit": "91.27423497", # "upper_limit": "7846.19454697" # }, # "product_id": 107150, # "quotes": { # "ask_iv": "0.41023239", # "ask_size": "2397", # "best_ask": "1374", # "best_bid": "1322", # "bid_iv": "0.38929375", # "bid_size": "3995", # "impact_mid_price": null, # "mark_iv": "0.39965618" # }, # "spot_price": "30598.43379314", # "strike_price": "30000", # "symbol": "C-BTC-30000-280723", # "timestamp": 1689136932893181, # "turnover_symbol": "USDT" # }, # ], # "success":true # } # tickers = self.safe_value(response, 'result', []) result = {} for i in range(0, len(tickers)): ticker = self.parse_ticker(tickers[i]) symbol = ticker['symbol'] result[symbol] = ticker return self.filter_by_array(result, 'symbol', symbols) def fetch_order_book(self, symbol: str, limit: Optional[int] = None, params={}): """ fetches information on open orders with bid(buy) and ask(sell) prices, volumes and other data see https://docs.delta.exchange/#get-l2-orderbook :param str symbol: unified symbol of the market to fetch the order book for :param int [limit]: the maximum amount of order book entries to return :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: A dictionary of `order book structures <https://github.com/ccxt/ccxt/wiki/Manual#order-book-structure>` indexed by market symbols """ self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } if limit is not None: request['depth'] = limit response = self.publicGetL2orderbookSymbol(self.extend(request, params)) # # { # "result":{ # "buy":[ # {"price":"15814.0","size":912}, # {"price":"15813.5","size":1279}, # {"price":"15813.0","size":1634}, # ], # "sell":[ # {"price":"15814.5","size":625}, # {"price":"15815.0","size":982}, # {"price":"15815.5","size":1328}, # ], # "symbol":"BTCUSDT" # }, # "success":true # } # result = self.safe_value(response, 'result', {}) return self.parse_order_book(result, market['symbol'], None, 'buy', 'sell', 'price', 'size') def parse_trade(self, trade, market=None): # # public fetchTrades # # { # "buyer_role":"maker", # "price":"15896.5", # "seller_role":"taker", # "size":241, # "symbol":"BTCUSDT", # "timestamp":1605376684714595 # } # # private fetchMyTrades # # { # "commission":"0.008335000000000000", # "created_at":"2020-11-16T19:07:19Z", # "fill_type":"normal", # "id":"e7ff05c233a74245b72381f8dd91d1ce", # "meta_data":{ # "effective_commission_rate":"0.0005", # "order_price":"16249", # "order_size":1, # "order_type":"market_order", # "order_unfilled_size":0, # "trading_fee_credits_used":"0" # }, # "order_id":"152999629", # "price":"16669", # "product":{ # "contract_type":"perpetual_futures", # "contract_unit_currency":"BTC", # "contract_value":"0.001", # "id":139, # "notional_type":"vanilla", # "quoting_asset":{"minimum_precision":2,"precision":6,"symbol":"USDT"}, # "settling_asset":{"minimum_precision":2,"precision":6,"symbol":"USDT"}, # "symbol":"BTCUSDT", # "tick_size":"0.5", # "underlying_asset":{"minimum_precision":4,"precision":8,"symbol":"BTC"} # }, # "product_id":139, # "role":"taker", # "side":"sell", # "size":1 # } # id = self.safe_string(trade, 'id') orderId = self.safe_string(trade, 'order_id') timestamp = self.parse8601(self.safe_string(trade, 'created_at')) timestamp = self.safe_integer_product(trade, 'timestamp', 0.001, timestamp) priceString = self.safe_string(trade, 'price') amountString = self.safe_string(trade, 'size') product = self.safe_value(trade, 'product', {}) marketId = self.safe_string(product, 'symbol') symbol = self.safe_symbol(marketId, market) sellerRole = self.safe_string(trade, 'seller_role') side = self.safe_string(trade, 'side') if side is None: if sellerRole == 'taker': side = 'sell' elif sellerRole == 'maker': side = 'buy' takerOrMaker = self.safe_string(trade, 'role') metaData = self.safe_value(trade, 'meta_data', {}) type = self.safe_string(metaData, 'order_type') if type is not None: type = type.replace('_order', '') feeCostString = self.safe_string(trade, 'commission') fee = None if feeCostString is not None: settlingAsset = self.safe_value(product, 'settling_asset', {}) feeCurrencyId = self.safe_string(settlingAsset, 'symbol') feeCurrencyCode = self.safe_currency_code(feeCurrencyId) fee = { 'cost': feeCostString, 'currency': feeCurrencyCode, } return self.safe_trade({ 'id': id, 'order': orderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': type, 'side': side, 'price': priceString, 'amount': amountString, 'cost': None, 'takerOrMaker': takerOrMaker, 'fee': fee, 'info': trade, }, market) def fetch_trades(self, symbol: str, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ get the list of most recent trades for a particular symbol see https://docs.delta.exchange/#get-public-trades :param str symbol: unified symbol of the market to fetch trades for :param int [since]: timestamp in ms of the earliest trade to fetch :param int [limit]: the maximum amount of trades to fetch :param dict [params]: extra parameters specific to the delta api endpoint :returns Trade[]: a list of `trade structures <https://github.com/ccxt/ccxt/wiki/Manual#public-trades>` """ self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } response = self.publicGetTradesSymbol(self.extend(request, params)) # # { # "result":[ # { # "buyer_role":"maker", # "price":"15896.5", # "seller_role":"taker", # "size":241, # "symbol":"BTCUSDT", # "timestamp":1605376684714595 # } # ], # "success":true # } # result = self.safe_value(response, 'result', []) return self.parse_trades(result, market, since, limit) def parse_ohlcv(self, ohlcv, market=None): # # { # "time":1605393120, # "open":15989, # "high":15989, # "low":15987.5, # "close":15987.5, # "volume":565 # } # return [ self.safe_timestamp(ohlcv, 'time'), self.safe_number(ohlcv, 'open'), self.safe_number(ohlcv, 'high'), self.safe_number(ohlcv, 'low'), self.safe_number(ohlcv, 'close'), self.safe_number(ohlcv, 'volume'), ] def fetch_ohlcv(self, symbol: str, timeframe='1m', since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetches historical candlestick data containing the open, high, low, and close price, and the volume of a market see https://docs.delta.exchange/#get-ohlc-candles :param str symbol: unified symbol of the market to fetch OHLCV data for :param str timeframe: the length of time each candle represents :param int [since]: timestamp in ms of the earliest candle to fetch :param int [limit]: the maximum amount of candles to fetch :param dict [params]: extra parameters specific to the delta api endpoint :returns int[][]: A list of candles ordered, open, high, low, close, volume """ self.load_markets() market = self.market(symbol) request = { 'resolution': self.safe_string(self.timeframes, timeframe, timeframe), } duration = self.parse_timeframe(timeframe) limit = limit if limit else 2000 # max 2000 if since is None: end = self.seconds() request['end'] = end request['start'] = end - limit * duration else: start = self.parse_to_int(since / 1000) request['start'] = start request['end'] = self.sum(start, limit * duration) price = self.safe_string(params, 'price') if price == 'mark': request['symbol'] = 'MARK:' + market['id'] elif price == 'index': request['symbol'] = market['info']['spot_index']['symbol'] else: request['symbol'] = market['id'] params = self.omit(params, 'price') response = self.publicGetHistoryCandles(self.extend(request, params)) # # { # "success":true, # "result":[ # {"time":1605393120,"open":15989,"high":15989,"low":15987.5,"close":15987.5,"volume":565}, # {"time":1605393180,"open":15966,"high":15966,"low":15959,"close":15959,"volume":24}, # {"time":1605393300,"open":15973,"high":15973,"low":15973,"close":15973,"volume":1288}, # ] # } # result = self.safe_value(response, 'result', []) return self.parse_ohlcvs(result, market, timeframe, since, limit) def parse_balance(self, response): balances = self.safe_value(response, 'result', []) result = {'info': response} currenciesByNumericId = self.safe_value(self.options, 'currenciesByNumericId', {}) for i in range(0, len(balances)): balance = balances[i] currencyId = self.safe_string(balance, 'asset_id') currency = self.safe_value(currenciesByNumericId, currencyId) code = currencyId if (currency is None) else currency['code'] account = self.account() account['total'] = self.safe_string(balance, 'balance') account['free'] = self.safe_string(balance, 'available_balance') result[code] = account return self.safe_balance(result) def fetch_balance(self, params={}): """ query for balance and get the amount of funds available for trading or funds locked in orders see https://docs.delta.exchange/#get-wallet-balances :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `balance structure <https://github.com/ccxt/ccxt/wiki/Manual#balance-structure>` """ self.load_markets() response = self.privateGetWalletBalances(params) # # { # "result":[ # { # "asset_id":1, # "available_balance":"0", # "balance":"0", # "commission":"0", # "id":154883, # "interest_credit":"0", # "order_margin":"0", # "pending_referral_bonus":"0", # "pending_trading_fee_credit":"0", # "position_margin":"0", # "trading_fee_credit":"0", # "user_id":22142 # }, # ], # "success":true # } # return self.parse_balance(response) def fetch_position(self, symbol: str, params={}): """ fetch data on a single open contract trade position see https://docs.delta.exchange/#get-position :param str symbol: unified market symbol of the market the position is held in, default is None :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `position structure <https://github.com/ccxt/ccxt/wiki/Manual#position-structure>` """ self.load_markets() market = self.market(symbol) request = { 'product_id': market['numericId'], } response = self.privateGetPositions(self.extend(request, params)) # # { # "result":{ # "entry_price":null, # "size":0, # "timestamp":1605454074268079 # }, # "success":true # } # result = self.safe_value(response, 'result', {}) return self.parse_position(result, market) def fetch_positions(self, symbols: Optional[List[str]] = None, params={}): """ fetch all open positions see https://docs.delta.exchange/#get-margined-positions :param str[]|None symbols: list of unified market symbols :param dict [params]: extra parameters specific to the delta api endpoint :returns dict[]: a list of `position structure <https://github.com/ccxt/ccxt/wiki/Manual#position-structure>` """ self.load_markets() response = self.privateGetPositionsMargined(params) # # { # "success": True, # "result": [ # { # "user_id": 0, # "size": 0, # "entry_price": "string", # "margin": "string", # "liquidation_price": "string", # "bankruptcy_price": "string", # "adl_level": 0, # "product_id": 0, # "product_symbol": "string", # "commission": "string", # "realized_pnl": "string", # "realized_funding": "string" # } # ] # } # result = self.safe_value(response, 'result', []) return self.parse_positions(result, symbols) def parse_position(self, position, market=None): # # fetchPosition # # { # "entry_price":null, # "size":0, # "timestamp":1605454074268079 # } # # # fetchPositions # # { # "user_id": 0, # "size": 0, # "entry_price": "string", # "margin": "string", # "liquidation_price": "string", # "bankruptcy_price": "string", # "adl_level": 0, # "product_id": 0, # "product_symbol": "string", # "commission": "string", # "realized_pnl": "string", # "realized_funding": "string" # } # marketId = self.safe_string(position, 'product_symbol') market = self.safe_market(marketId, market) symbol = market['symbol'] timestamp = self.safe_integer_product(position, 'timestamp', 0.001) sizeString = self.safe_string(position, 'size') side = None if sizeString is not None: if Precise.string_gt(sizeString, '0'): side = 'buy' elif Precise.string_lt(sizeString, '0'): side = 'sell' return { 'info': position, 'id': None, 'symbol': symbol, 'notional': None, 'marginMode': None, 'liquidationPrice': self.safe_number(position, 'liquidation_price'), 'entryPrice': self.safe_number(position, 'entry_price'), 'unrealizedPnl': None, # todo - realized_pnl ? 'percentage': None, 'contracts': self.parse_number(sizeString), 'contractSize': self.safe_number(market, 'contractSize'), 'markPrice': None, 'side': side, 'hedged': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'maintenanceMargin': None, 'maintenanceMarginPercentage': None, 'collateral': None, 'initialMargin': None, 'initialMarginPercentage': None, 'leverage': None, 'marginRatio': None, 'stopLossPrice': None, 'takeProfitPrice': None, } def parse_order_status(self, status): statuses = { 'open': 'open', 'pending': 'open', 'closed': 'closed', 'cancelled': 'canceled', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # createOrder, cancelOrder, editOrder, fetchOpenOrders, fetchClosedOrders # # { # "average_fill_price":null, # "bracket_order":null, # "bracket_stop_loss_limit_price":null, # "bracket_stop_loss_price":null, # "bracket_take_profit_limit_price":null, # "bracket_take_profit_price":null, # "bracket_trail_amount":null, # "cancellation_reason":null, # "client_order_id":null, # "close_on_trigger":"false", # "commission":"0", # "created_at":"2020-11-16T02:38:26Z", # "id":152870626, # "limit_price":"10000", # "meta_data":{"source":"api"}, # "order_type":"limit_order", # "paid_commission":"0", # "product_id":139, # "reduce_only":false, # "side":"buy", # "size":0, # "state":"open", # "stop_order_type":null, # "stop_price":null, # "stop_trigger_method":"mark_price", # "time_in_force":"gtc", # "trail_amount":null, # "unfilled_size":0, # "user_id":22142 # } # id = self.safe_string(order, 'id') clientOrderId = self.safe_string(order, 'client_order_id') timestamp = self.parse8601(self.safe_string(order, 'created_at')) marketId = self.safe_string(order, 'product_id') marketsByNumericId = self.safe_value(self.options, 'marketsByNumericId', {}) market = self.safe_value(marketsByNumericId, marketId, market) symbol = marketId if (market is None) else market['symbol'] status = self.parse_order_status(self.safe_string(order, 'state')) side = self.safe_string(order, 'side') type = self.safe_string(order, 'order_type') type = type.replace('_order', '') price = self.safe_string(order, 'limit_price') amount = self.safe_string(order, 'size') remaining = self.safe_string(order, 'unfilled_size') average = self.safe_string(order, 'average_fill_price') fee = None feeCostString = self.safe_string(order, 'paid_commission') if feeCostString is not None: feeCurrencyCode = None if market is not None: settlingAsset = self.safe_value(market['info'], 'settling_asset', {}) feeCurrencyId = self.safe_string(settlingAsset, 'symbol') feeCurrencyCode = self.safe_currency_code(feeCurrencyId) fee = { 'cost': feeCostString, 'currency': feeCurrencyCode, } return self.safe_order({ 'info': order, 'id': id, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': None, 'average': average, 'filled': None, 'remaining': remaining, 'status': status, 'fee': fee, 'trades': None, }, market) def create_order(self, symbol: str, type: OrderType, side: OrderSide, amount, price=None, params={}): """ create a trade order see https://docs.delta.exchange/#place-order :param str symbol: unified symbol of the market to create an order in :param str type: 'market' or 'limit' :param str side: 'buy' or 'sell' :param float amount: how much of currency you want to trade in units of base currency :param float [price]: the price at which the order is to be fullfilled, in units of the quote currency, ignored in market orders :param dict [params]: extra parameters specific to the delta api endpoint :param bool [params.reduceOnly]: *contract only* indicates if self order is to reduce the size of a position :returns dict: an `order structure <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ self.load_markets() orderType = type + '_order' market = self.market(symbol) request = { 'product_id': market['numericId'], # 'limit_price': self.price_to_precision(market['symbol'], price), 'size': self.amount_to_precision(market['symbol'], amount), 'side': side, 'order_type': orderType, # 'client_order_id': 'string', # 'time_in_force': 'gtc', # gtc, ioc, fok # 'post_only': 'false', # 'true', # 'reduce_only': 'false', # 'true', } if type == 'limit': request['limit_price'] = self.price_to_precision(market['symbol'], price) clientOrderId = self.safe_string_2(params, 'clientOrderId', 'client_order_id') params = self.omit(params, ['clientOrderId', 'client_order_id']) if clientOrderId is not None: request['client_order_id'] = clientOrderId reduceOnly = self.safe_value(params, 'reduceOnly') if reduceOnly: request['reduce_only'] = reduceOnly params = self.omit(params, 'reduceOnly') response = self.privatePostOrders(self.extend(request, params)) # # { # "result":{ # "average_fill_price":null, # "bracket_order":null, # "bracket_stop_loss_limit_price":null, # "bracket_stop_loss_price":null, # "bracket_take_profit_limit_price":null, # "bracket_take_profit_price":null, # "bracket_trail_amount":null, # "cancellation_reason":null, # "client_order_id":null, # "close_on_trigger":"false", # "commission":"0", # "created_at":"2020-11-16T02:38:26Z", # "id":152870626, # "limit_price":"10000", # "meta_data":{"source":"api"}, # "order_type":"limit_order", # "paid_commission":"0", # "product_id":139, # "reduce_only":false, # "side":"buy", # "size":0, # "state":"open", # "stop_order_type":null, # "stop_price":null, # "stop_trigger_method":"mark_price", # "time_in_force":"gtc", # "trail_amount":null, # "unfilled_size":0, # "user_id":22142 # }, # "success":true # } # result = self.safe_value(response, 'result', {}) return self.parse_order(result, market) def edit_order(self, id: str, symbol, type, side, amount=None, price=None, params={}): """ edit a trade order see https://docs.delta.exchange/#edit-order :param str id: order id :param str symbol: unified symbol of the market to create an order in :param str type: 'market' or 'limit' :param str side: 'buy' or 'sell' :param float amount: how much of the currency you want to trade in units of the base currency :param float [price]: the price at which the order is to be fullfilled, in units of the quote currency :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: an `order structure <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ self.load_markets() market = self.market(symbol) request = { 'id': int(id), 'product_id': market['numericId'], # 'limit_price': self.price_to_precision(symbol, price), # 'size': self.amount_to_precision(symbol, amount), } if amount is not None: request['size'] = int(self.amount_to_precision(symbol, amount)) if price is not None: request['limit_price'] = self.price_to_precision(symbol, price) response = self.privatePutOrders(self.extend(request, params)) # # { # "success": True, # "result": { # "id": "ashb1212", # "product_id": 27, # "limit_price": "9200", # "side": "buy", # "size": 100, # "unfilled_size": 50, # "user_id": 1, # "order_type": "limit_order", # "state": "open", # "created_at": "..." # } # } # result = self.safe_value(response, 'result') return self.parse_order(result, market) def cancel_order(self, id: str, symbol: Optional[str] = None, params={}): """ cancels an open order see https://docs.delta.exchange/#cancel-order :param str id: order id :param str symbol: unified symbol of the market the order was made in :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: An `order structure <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ self.check_required_symbol('cancelOrder', symbol) self.load_markets() market = self.market(symbol) request = { 'id': int(id), 'product_id': market['numericId'], } response = self.privateDeleteOrders(self.extend(request, params)) # # { # "result":{ # "average_fill_price":null, # "bracket_order":null, # "bracket_stop_loss_limit_price":null, # "bracket_stop_loss_price":null, # "bracket_take_profit_limit_price":null, # "bracket_take_profit_price":null, # "bracket_trail_amount":null, # "cancellation_reason":"cancelled_by_user", # "client_order_id":null, # "close_on_trigger":"false", # "commission":"0", # "created_at":"2020-11-16T02:38:26Z", # "id":152870626, # "limit_price":"10000", # "meta_data":{"source":"api"}, # "order_type":"limit_order", # "paid_commission":"0", # "product_id":139, # "reduce_only":false, # "side":"buy", # "size":0, # "state":"cancelled", # "stop_order_type":null, # "stop_price":null, # "stop_trigger_method":"mark_price", # "time_in_force":"gtc", # "trail_amount":null, # "unfilled_size":0, # "user_id":22142 # }, # "success":true # } # result = self.safe_value(response, 'result') return self.parse_order(result, market) def cancel_all_orders(self, symbol: Optional[str] = None, params={}): """ cancel all open orders in a market see https://docs.delta.exchange/#cancel-all-open-orders :param str symbol: unified market symbol of the market to cancel orders in :param dict [params]: extra parameters specific to the delta api endpoint :returns dict[]: a list of `order structures <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ self.check_required_symbol('cancelAllOrders', symbol) self.load_markets() market = self.market(symbol) request = { 'product_id': market['numericId'], # 'cancel_limit_orders': 'true', # 'cancel_stop_orders': 'true', } response = self.privateDeleteOrdersAll(self.extend(request, params)) # # { # "result":{}, # "success":true # } # return response def fetch_open_orders(self, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetch all unfilled currently open orders see https://docs.delta.exchange/#get-active-orders :param str symbol: unified market symbol :param int [since]: the earliest time in ms to fetch open orders for :param int [limit]: the maximum number of open order structures to retrieve :param dict [params]: extra parameters specific to the delta api endpoint :returns Order[]: a list of `order structures <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ return self.fetch_orders_with_method('privateGetOrders', symbol, since, limit, params) def fetch_closed_orders(self, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetches information on multiple closed orders made by the user see https://docs.delta.exchange/#get-order-history-cancelled-and-closed :param str symbol: unified market symbol of the market orders were made in :param int [since]: the earliest time in ms to fetch orders for :param int [limit]: the maximum number of order structures to retrieve :param dict [params]: extra parameters specific to the delta api endpoint :returns Order[]: a list of `order structures <https://github.com/ccxt/ccxt/wiki/Manual#order-structure>` """ return self.fetch_orders_with_method('privateGetOrdersHistory', symbol, since, limit, params) def fetch_orders_with_method(self, method, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): self.load_markets() request = { # 'product_ids': market['id'], # comma-separated # 'contract_types': types, # comma-separated, futures, perpetual_futures, call_options, put_options, interest_rate_swaps, move_options, spreads # 'order_types': types, # comma-separated, market, limit, stop_market, stop_limit, all_stop # 'start_time': since * 1000, # 'end_time': self.microseconds(), # 'after', # after cursor for pagination # 'before', # before cursor for pagination # 'page_size': limit, # number of records per page } market = None if symbol is not None: market = self.market(symbol) request['product_ids'] = market['numericId'] # accepts a comma-separated list of ids if since is not None: request['start_time'] = str(since) + '000' if limit is not None: request['page_size'] = limit response = getattr(self, method)(self.extend(request, params)) # # { # "success": True, # "result": [ # { # "id": "ashb1212", # "product_id": 27, # "limit_price": "9200", # "side": "buy", # "size": 100, # "unfilled_size": 50, # "user_id": 1, # "order_type": "limit_order", # "state": "open", # "created_at": "..." # } # ], # "meta": { # "after": "string", # "before": "string" # } # } # result = self.safe_value(response, 'result', []) return self.parse_orders(result, market, since, limit) def fetch_my_trades(self, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetch all trades made by the user see https://docs.delta.exchange/#get-user-fills-by-filters :param str symbol: unified market symbol :param int [since]: the earliest time in ms to fetch trades for :param int [limit]: the maximum number of trades structures to retrieve :param dict [params]: extra parameters specific to the delta api endpoint :returns Trade[]: a list of `trade structures <https://github.com/ccxt/ccxt/wiki/Manual#trade-structure>` """ self.load_markets() request = { # 'product_ids': market['id'], # comma-separated # 'contract_types': types, # comma-separated, futures, perpetual_futures, call_options, put_options, interest_rate_swaps, move_options, spreads # 'start_time': since * 1000, # 'end_time': self.microseconds(), # 'after', # after cursor for pagination # 'before', # before cursor for pagination # 'page_size': limit, # number of records per page } market = None if symbol is not None: market = self.market(symbol) request['product_ids'] = market['numericId'] # accepts a comma-separated list of ids if since is not None: request['start_time'] = str(since) + '000' if limit is not None: request['page_size'] = limit response = self.privateGetFills(self.extend(request, params)) # # { # "meta":{ # "after":null, # "before":null, # "limit":10, # "total_count":2 # }, # "result":[ # { # "commission":"0.008335000000000000", # "created_at":"2020-11-16T19:07:19Z", # "fill_type":"normal", # "id":"e7ff05c233a74245b72381f8dd91d1ce", # "meta_data":{ # "effective_commission_rate":"0.0005", # "order_price":"16249", # "order_size":1, # "order_type":"market_order", # "order_unfilled_size":0, # "trading_fee_credits_used":"0" # }, # "order_id":"152999629", # "price":"16669", # "product":{ # "contract_type":"perpetual_futures", # "contract_unit_currency":"BTC", # "contract_value":"0.001", # "id":139, # "notional_type":"vanilla", # "quoting_asset":{"minimum_precision":2,"precision":6,"symbol":"USDT"}, # "settling_asset":{"minimum_precision":2,"precision":6,"symbol":"USDT"}, # "symbol":"BTCUSDT", # "tick_size":"0.5", # "underlying_asset":{"minimum_precision":4,"precision":8,"symbol":"BTC"} # }, # "product_id":139, # "role":"taker", # "side":"sell", # "size":1 # } # ], # "success":true # } # result = self.safe_value(response, 'result', []) return self.parse_trades(result, market, since, limit) def fetch_ledger(self, code: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetch the history of changes, actions done by the user or operations that altered balance of the user see https://docs.delta.exchange/#get-wallet-transactions :param str code: unified currency code, default is None :param int [since]: timestamp in ms of the earliest ledger entry, default is None :param int [limit]: max number of ledger entrys to return, default is None :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `ledger structure <https://github.com/ccxt/ccxt/wiki/Manual#ledger-structure>` """ self.load_markets() request = { # 'asset_id': currency['numericId'], # 'end_time': self.seconds(), # 'after': 'string', # after cursor for pagination # 'before': 'string', # before cursor for pagination # 'page_size': limit, } currency = None if code is not None: currency = self.currency(code) request['asset_id'] = currency['numericId'] if limit is not None: request['page_size'] = limit response = self.privateGetWalletTransactions(self.extend(request, params)) # # { # "meta":{"after":null,"before":null,"limit":10,"total_count":1}, # "result":[ # { # "amount":"29.889184", # "asset_id":5, # "balance":"29.889184", # "created_at":"2020-11-15T21:25:01Z", # "meta_data":{ # "deposit_id":3884, # "transaction_id":"0x41a60174849828530abb5008e98fc63c9b598288743ec4ba9620bcce900a3b8d" # }, # "transaction_type":"deposit", # "user_id":22142, # "uuid":"70bb5679da3c4637884e2dc63efaa846" # } # ], # "success":true # } # result = self.safe_value(response, 'result', []) return self.parse_ledger(result, currency, since, limit) def parse_ledger_entry_type(self, type): types = { 'pnl': 'pnl', 'deposit': 'transaction', 'withdrawal': 'transaction', 'commission': 'fee', 'conversion': 'trade', # 'perpetual_futures_funding': 'perpetual_futures_funding', # 'withdrawal_cancellation': 'withdrawal_cancellation', 'referral_bonus': 'referral', 'commission_rebate': 'rebate', # 'promo_credit': 'promo_credit', } return self.safe_string(types, type, type) def parse_ledger_entry(self, item, currency=None): # # { # "amount":"29.889184", # "asset_id":5, # "balance":"29.889184", # "created_at":"2020-11-15T21:25:01Z", # "meta_data":{ # "deposit_id":3884, # "transaction_id":"0x41a60174849828530abb5008e98fc63c9b598288743ec4ba9620bcce900a3b8d" # }, # "transaction_type":"deposit", # "user_id":22142, # "uuid":"70bb5679da3c4637884e2dc63efaa846" # } # id = self.safe_string(item, 'uuid') direction = None account = None metaData = self.safe_value(item, 'meta_data', {}) referenceId = self.safe_string(metaData, 'transaction_id') referenceAccount = None type = self.safe_string(item, 'transaction_type') if (type == 'deposit') or (type == 'commission_rebate') or (type == 'referral_bonus') or (type == 'pnl') or (type == 'withdrawal_cancellation') or (type == 'promo_credit'): direction = 'in' elif (type == 'withdrawal') or (type == 'commission') or (type == 'conversion') or (type == 'perpetual_futures_funding'): direction = 'out' type = self.parse_ledger_entry_type(type) currencyId = self.safe_integer(item, 'asset_id') currenciesByNumericId = self.safe_value(self.options, 'currenciesByNumericId') currency = self.safe_value(currenciesByNumericId, currencyId, currency) code = None if (currency is None) else currency['code'] amount = self.safe_string(item, 'amount') timestamp = self.parse8601(self.safe_string(item, 'created_at')) after = self.safe_string(item, 'balance') before = Precise.string_max('0', Precise.string_sub(after, amount)) status = 'ok' return { 'info': item, 'id': id, 'direction': direction, 'account': account, 'referenceId': referenceId, 'referenceAccount': referenceAccount, 'type': type, 'currency': code, 'amount': self.parse_number(amount), 'before': self.parse_number(before), 'after': self.parse_number(after), 'status': status, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': None, } def fetch_deposit_address(self, code: str, params={}): """ fetch the deposit address for a currency associated with self account :param str code: unified currency code :param dict [params]: extra parameters specific to the delta api endpoint :param str [params.network]: unified network code :returns dict: an `address structure <https://github.com/ccxt/ccxt/wiki/Manual#address-structure>` """ self.load_markets() currency = self.currency(code) request = { 'asset_symbol': currency['id'], } networkCode = self.safe_string_upper(params, 'network') if networkCode is not None: request['network'] = self.network_code_to_id(networkCode, code) params = self.omit(params, 'network') response = self.privateGetDepositsAddress(self.extend(request, params)) # # { # "success": True, # "result": { # "id": 1915615, # "user_id": 27854758, # "address": "TXYB4GdKsXKEWbeSNPsmGZu4ZVCkhVh1Zz", # "memo": "", # "status": "active", # "updated_at": "2023-01-12T06:03:46.000Z", # "created_at": "2023-01-12T06:03:46.000Z", # "asset_symbol": "USDT", # "network": "TRC20(TRON)", # "custodian": "fireblocks" # } # } # result = self.safe_value(response, 'result', {}) return self.parse_deposit_address(result, currency) def parse_deposit_address(self, depositAddress, currency=None): # # { # "id": 1915615, # "user_id": 27854758, # "address": "TXYB4GdKsXKEWbeSNPsmGZu4ZVCkhVh1Zz", # "memo": "", # "status": "active", # "updated_at": "2023-01-12T06:03:46.000Z", # "created_at": "2023-01-12T06:03:46.000Z", # "asset_symbol": "USDT", # "network": "TRC20(TRON)", # "custodian": "fireblocks" # } # address = self.safe_string(depositAddress, 'address') marketId = self.safe_string(depositAddress, 'asset_symbol') networkId = self.safe_string(depositAddress, 'network') self.check_address(address) return { 'currency': self.safe_currency_code(marketId, currency), 'address': address, 'tag': self.safe_string(depositAddress, 'memo'), 'network': self.network_id_to_code(networkId), 'info': depositAddress, } def fetch_funding_rate(self, symbol: str, params={}): """ fetch the current funding rate see https://docs.delta.exchange/#get-ticker-for-a-product-by-symbol :param str symbol: unified market symbol :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `funding rate structure <https://github.com/ccxt/ccxt/wiki/Manual#funding-rate-structure>` """ self.load_markets() market = self.market(symbol) if not market['swap']: raise BadSymbol(self.id + ' fetchFundingRate() supports swap contracts only') request = { 'symbol': market['id'], } response = self.publicGetTickersSymbol(self.extend(request, params)) # # { # "result": { # "close": 30600.5, # "contract_type": "perpetual_futures", # "funding_rate": "0.00602961", # "greeks": null, # "high": 30803.0, # "low": 30265.5, # "mark_basis": "-0.45601594", # "mark_price": "30600.10481568", # "oi": "469.9190", # "oi_change_usd_6h": "2226314.9900", # "oi_contracts": "469919", # "oi_value": "469.9190", # "oi_value_symbol": "BTC", # "oi_value_usd": "14385640.6802", # "open": 30458.5, # "price_band": { # "lower_limit": "29067.08312627", # "upper_limit": "32126.77608693" # }, # "product_id": 139, # "quotes": { # "ask_iv": null, # "ask_size": "965", # "best_ask": "30600.5", # "best_bid": "30599.5", # "bid_iv": null, # "bid_size": "196", # "impact_mid_price": null, # "mark_iv": "-0.44931641" # }, # "size": 1226303, # "spot_price": "30612.85362773", # "symbol": "BTCUSDT", # "timestamp": 1689136597460456, # "turnover": 37392218.45999999, # "turnover_symbol": "USDT", # "turnover_usd": 37392218.45999999, # "volume": 1226.3029999999485 # }, # "success": True # } # result = self.safe_value(response, 'result', {}) return self.parse_funding_rate(result, market) def fetch_funding_rates(self, symbols: Optional[List[str]] = None, params={}): """ fetch the funding rate for multiple markets see https://docs.delta.exchange/#get-tickers-for-products :param str[]|None symbols: list of unified market symbols :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a dictionary of `funding rates structures <https://github.com/ccxt/ccxt/wiki/Manual#funding-rates-structure>`, indexe by market symbols """ self.load_markets() symbols = self.market_symbols(symbols) request = { 'contract_types': 'perpetual_futures', } response = self.publicGetTickers(self.extend(request, params)) # # { # "result": [ # { # "close": 30600.5, # "contract_type": "perpetual_futures", # "funding_rate": "0.00602961", # "greeks": null, # "high": 30803.0, # "low": 30265.5, # "mark_basis": "-0.45601594", # "mark_price": "30600.10481568", # "oi": "469.9190", # "oi_change_usd_6h": "2226314.9900", # "oi_contracts": "469919", # "oi_value": "469.9190", # "oi_value_symbol": "BTC", # "oi_value_usd": "14385640.6802", # "open": 30458.5, # "price_band": { # "lower_limit": "29067.08312627", # "upper_limit": "32126.77608693" # }, # "product_id": 139, # "quotes": { # "ask_iv": null, # "ask_size": "965", # "best_ask": "30600.5", # "best_bid": "30599.5", # "bid_iv": null, # "bid_size": "196", # "impact_mid_price": null, # "mark_iv": "-0.44931641" # }, # "size": 1226303, # "spot_price": "30612.85362773", # "symbol": "BTCUSDT", # "timestamp": 1689136597460456, # "turnover": 37392218.45999999, # "turnover_symbol": "USDT", # "turnover_usd": 37392218.45999999, # "volume": 1226.3029999999485 # }, # ], # "success":true # } # rates = self.safe_value(response, 'result', []) result = self.parse_funding_rates(rates) return self.filter_by_array(result, 'symbol', symbols) def parse_funding_rate(self, contract, market=None): # # { # "close": 30600.5, # "contract_type": "perpetual_futures", # "funding_rate": "0.00602961", # "greeks": null, # "high": 30803.0, # "low": 30265.5, # "mark_basis": "-0.45601594", # "mark_price": "30600.10481568", # "oi": "469.9190", # "oi_change_usd_6h": "2226314.9900", # "oi_contracts": "469919", # "oi_value": "469.9190", # "oi_value_symbol": "BTC", # "oi_value_usd": "14385640.6802", # "open": 30458.5, # "price_band": { # "lower_limit": "29067.08312627", # "upper_limit": "32126.77608693" # }, # "product_id": 139, # "quotes": { # "ask_iv": null, # "ask_size": "965", # "best_ask": "30600.5", # "best_bid": "30599.5", # "bid_iv": null, # "bid_size": "196", # "impact_mid_price": null, # "mark_iv": "-0.44931641" # }, # "size": 1226303, # "spot_price": "30612.85362773", # "symbol": "BTCUSDT", # "timestamp": 1689136597460456, # "turnover": 37392218.45999999, # "turnover_symbol": "USDT", # "turnover_usd": 37392218.45999999, # "volume": 1226.3029999999485 # } # timestamp = self.safe_integer_product(contract, 'timestamp', 0.001) marketId = self.safe_string(contract, 'symbol') fundingRateString = self.safe_string(contract, 'funding_rate') fundingRate = Precise.string_div(fundingRateString, '100') return { 'info': contract, 'symbol': self.safe_symbol(marketId, market), 'markPrice': self.safe_number(contract, 'mark_price'), 'indexPrice': self.safe_number(contract, 'spot_price'), 'interestRate': None, 'estimatedSettlePrice': None, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fundingRate': self.parse_number(fundingRate), 'fundingTimestamp': None, 'fundingDatetime': None, 'nextFundingRate': None, 'nextFundingTimestamp': None, 'nextFundingDatetime': None, 'previousFundingRate': None, 'previousFundingTimestamp': None, 'previousFundingDatetime': None, } def add_margin(self, symbol: str, amount, params={}): """ add margin see https://docs.delta.exchange/#add-remove-position-margin :param str symbol: unified market symbol :param float amount: amount of margin to add :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `margin structure <https://github.com/ccxt/ccxt/wiki/Manual#add-margin-structure>` """ return self.modify_margin_helper(symbol, amount, 'add', params) def reduce_margin(self, symbol: str, amount, params={}): """ remove margin from a position see https://docs.delta.exchange/#add-remove-position-margin :param str symbol: unified market symbol :param float amount: the amount of margin to remove :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `margin structure <https://github.com/ccxt/ccxt/wiki/Manual#reduce-margin-structure>` """ return self.modify_margin_helper(symbol, amount, 'reduce', params) def modify_margin_helper(self, symbol: str, amount, type, params={}): self.load_markets() market = self.market(symbol) amount = str(amount) if type == 'reduce': amount = Precise.string_mul(amount, '-1') request = { 'product_id': market['numericId'], 'delta_margin': amount, } response = self.privatePostPositionsChangeMargin(self.extend(request, params)) # # { # "result": { # "auto_topup": False, # "bankruptcy_price": "24934.12", # "commission": "0.01197072", # "created_at": "2023-07-20T03:49:09.159401Z", # "entry_price": "29926.8", # "liquidation_price": "25083.754", # "margin": "4.99268", # "margin_mode": "isolated", # "product_id": 84, # "product_symbol": "BTCUSDT", # "realized_cashflow": "0", # "realized_funding": "0", # "realized_pnl": "0", # "size": 1, # "updated_at": "2023-07-20T03:49:09.159401Z", # "user_id": 30084879 # }, # "success": True # } # result = self.safe_value(response, 'result', {}) return self.parse_margin_modification(result, market) def parse_margin_modification(self, data, market=None): # # { # "auto_topup": False, # "bankruptcy_price": "24934.12", # "commission": "0.01197072", # "created_at": "2023-07-20T03:49:09.159401Z", # "entry_price": "29926.8", # "liquidation_price": "25083.754", # "margin": "4.99268", # "margin_mode": "isolated", # "product_id": 84, # "product_symbol": "BTCUSDT", # "realized_cashflow": "0", # "realized_funding": "0", # "realized_pnl": "0", # "size": 1, # "updated_at": "2023-07-20T03:49:09.159401Z", # "user_id": 30084879 # } # marketId = self.safe_string(data, 'product_symbol') market = self.safe_market(marketId, market) return { 'info': data, 'type': None, 'amount': None, 'total': self.safe_number(data, 'margin'), 'code': None, 'symbol': market['symbol'], 'status': None, } def fetch_open_interest(self, symbol: str, params={}): """ retrieves the open interest of a derivative market see https://docs.delta.exchange/#get-ticker-for-a-product-by-symbol :param str symbol: unified market symbol :param dict [params]: exchange specific parameters :returns dict} an open interest structure{@link https://github.com/ccxt/ccxt/wiki/Manual#interest-history-structure: """ self.load_markets() market = self.market(symbol) if not market['contract']: raise BadRequest(self.id + ' fetchOpenInterest() supports contract markets only') request = { 'symbol': market['id'], } response = self.publicGetTickersSymbol(self.extend(request, params)) # # { # "result": { # "close": 894.0, # "contract_type": "call_options", # "greeks": { # "delta": "0.67324861", # "gamma": "0.00022178", # "rho": "4.34638266", # "spot": "30178.53195697", # "theta": "-35.64972577", # "vega": "16.34381277" # }, # "high": 946.0, # "low": 893.0, # "mark_price": "1037.07582681", # "mark_vol": "0.35899491", # "oi": "0.0910", # "oi_change_usd_6h": "-90.5500", # "oi_contracts": "91", # "oi_value": "0.0910", # "oi_value_symbol": "BTC", # "oi_value_usd": "2746.3549", # "open": 946.0, # "price_band": { # "lower_limit": "133.37794509", # "upper_limit": "5663.66930164" # }, # "product_id": 116171, # "quotes": { # "ask_iv": "0.36932389", # "ask_size": "1321", # "best_ask": "1054", # "best_bid": "1020", # "bid_iv": "0.34851914", # "bid_size": "2202", # "impact_mid_price": null, # "mark_iv": "0.35896335" # }, # "size": 152, # "spot_price": "30178.53195697", # "strike_price": "29500", # "symbol": "C-BTC-29500-280723", # "timestamp": 1689834695286094, # "turnover": 4546.601744940001, # "turnover_symbol": "USDT", # "turnover_usd": 4546.601744940001, # "volume": 0.15200000000000002 # }, # "success": True # } # result = self.safe_value(response, 'result', {}) return self.parse_open_interest(result, market) def parse_open_interest(self, interest, market=None): # # { # "close": 894.0, # "contract_type": "call_options", # "greeks": { # "delta": "0.67324861", # "gamma": "0.00022178", # "rho": "4.34638266", # "spot": "30178.53195697", # "theta": "-35.64972577", # "vega": "16.34381277" # }, # "high": 946.0, # "low": 893.0, # "mark_price": "1037.07582681", # "mark_vol": "0.35899491", # "oi": "0.0910", # "oi_change_usd_6h": "-90.5500", # "oi_contracts": "91", # "oi_value": "0.0910", # "oi_value_symbol": "BTC", # "oi_value_usd": "2746.3549", # "open": 946.0, # "price_band": { # "lower_limit": "133.37794509", # "upper_limit": "5663.66930164" # }, # "product_id": 116171, # "quotes": { # "ask_iv": "0.36932389", # "ask_size": "1321", # "best_ask": "1054", # "best_bid": "1020", # "bid_iv": "0.34851914", # "bid_size": "2202", # "impact_mid_price": null, # "mark_iv": "0.35896335" # }, # "size": 152, # "spot_price": "30178.53195697", # "strike_price": "29500", # "symbol": "C-BTC-29500-280723", # "timestamp": 1689834695286094, # "turnover": 4546.601744940001, # "turnover_symbol": "USDT", # "turnover_usd": 4546.601744940001, # "volume": 0.15200000000000002 # } # timestamp = self.safe_integer_product(interest, 'timestamp', 0.001) marketId = self.safe_string(interest, 'symbol') return { 'symbol': self.safe_symbol(marketId, market), 'baseVolume': self.safe_number(interest, 'oi_value'), 'quoteVolume': self.safe_number(interest, 'oi_value_usd'), 'openInterestAmount': self.safe_number(interest, 'oi_contracts'), 'openInterestValue': self.safe_number(interest, 'oi'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'info': interest, } def fetch_leverage(self, symbol: str, params={}): """ fetch the set leverage for a market see https://docs.delta.exchange/#get-order-leverage :param str symbol: unified market symbol :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: a `leverage structure <https://github.com/ccxt/ccxt/wiki/Manual#leverage-structure>` """ self.load_markets() market = self.market(symbol) request = { 'product_id': market['numericId'], } # # { # "result": { # "index_symbol": null, # "leverage": "10", # "margin_mode": "isolated", # "order_margin": "0", # "product_id": 84, # "user_id": 30084879 # }, # "success": True # } # return self.privateGetProductsProductIdOrdersLeverage(self.extend(request, params)) def set_leverage(self, leverage, symbol: Optional[str] = None, params={}): """ set the level of leverage for a market see https://docs.delta.exchange/#change-order-leverage :param float leverage: the rate of leverage :param str symbol: unified market symbol :param dict [params]: extra parameters specific to the delta api endpoint :returns dict: response from the exchange """ self.check_required_symbol('setLeverage', symbol) self.load_markets() market = self.market(symbol) request = { 'product_id': market['numericId'], 'leverage': leverage, } # # { # "result": { # "leverage": "20", # "margin_mode": "isolated", # "order_margin": "0", # "product_id": 84 # }, # "success": True # } # return self.privatePostProductsProductIdOrdersLeverage(self.extend(request, params)) def fetch_settlement_history(self, symbol: Optional[str] = None, since: Optional[int] = None, limit: Optional[int] = None, params={}): """ fetches historical settlement records see https://docs.delta.exchange/#get-product-settlement-prices :param str symbol: unified market symbol of the settlement history :param int [since]: timestamp in ms :param int [limit]: number of records :param dict [params]: exchange specific params :returns dict[]: a list of [settlement history objects] """ self.load_markets() market = None if symbol is not None: market = self.market(symbol) request = { 'states': 'expired', } if limit is not None: request['page_size'] = limit response = self.publicGetProducts(self.extend(request, params)) # # { # "result": [ # { # "contract_value": "0.001", # "basis_factor_max_limit": "10.95", # "maker_commission_rate": "0.0003", # "launch_time": "2023-07-19T04:30:03Z", # "trading_status": "operational", # "product_specs": { # "backup_vol_expiry_time": 31536000, # "max_deviation_from_external_vol": 0.75, # "max_lower_deviation_from_external_vol": 0.75, # "max_upper_deviation_from_external_vol": 0.5, # "max_volatility": 3, # "min_volatility": 0.1, # "premium_commission_rate": 0.1, # "settlement_index_price": "29993.536675710806", # "vol_calculation_method": "orderbook", # "vol_expiry_time": 31536000 # }, # "description": "BTC call option expiring on 19-7-2023", # "settlement_price": "0", # "disruption_reason": null, # "settling_asset": {}, # "initial_margin": "1", # "tick_size": "0.1", # "maintenance_margin": "0.5", # "id": 117542, # "notional_type": "vanilla", # "ui_config": {}, # "contract_unit_currency": "BTC", # "symbol": "C-BTC-30900-190723", # "insurance_fund_margin_contribution": "1", # "price_band": "2", # "annualized_funding": "10.95", # "impact_size": 200, # "contract_type": "call_options", # "position_size_limit": 255633, # "max_leverage_notional": "200000", # "initial_margin_scaling_factor": "0.000002", # "strike_price": "30900", # "is_quanto": False, # "settlement_time": "2023-07-19T12:00:00Z", # "liquidation_penalty_factor": "0.5", # "funding_method": "mark_price", # "taker_commission_rate": "0.0003", # "default_leverage": "100.000000000000000000", # "state": "expired", # "auction_start_time": null, # "short_description": "BTC Call", # "quoting_asset": {}, # "maintenance_margin_scaling_factor":"0.000002" # } # ], # "success": True # } # result = self.safe_value(response, 'result', []) settlements = self.parse_settlements(result, market) sorted = self.sort_by(settlements, 'timestamp') return self.filter_by_symbol_since_limit(sorted, market['symbol'], since, limit) def parse_settlement(self, settlement, market): # # { # "contract_value": "0.001", # "basis_factor_max_limit": "10.95", # "maker_commission_rate": "0.0003", # "launch_time": "2023-07-19T04:30:03Z", # "trading_status": "operational", # "product_specs": { # "backup_vol_expiry_time": 31536000, # "max_deviation_from_external_vol": 0.75, # "max_lower_deviation_from_external_vol": 0.75, # "max_upper_deviation_from_external_vol": 0.5, # "max_volatility": 3, # "min_volatility": 0.1, # "premium_commission_rate": 0.1, # "settlement_index_price": "29993.536675710806", # "vol_calculation_method": "orderbook", # "vol_expiry_time": 31536000 # }, # "description": "BTC call option expiring on 19-7-2023", # "settlement_price": "0", # "disruption_reason": null, # "settling_asset": {}, # "initial_margin": "1", # "tick_size": "0.1", # "maintenance_margin": "0.5", # "id": 117542, # "notional_type": "vanilla", # "ui_config": {}, # "contract_unit_currency": "BTC", # "symbol": "C-BTC-30900-190723", # "insurance_fund_margin_contribution": "1", # "price_band": "2", # "annualized_funding": "10.95", # "impact_size": 200, # "contract_type": "call_options", # "position_size_limit": 255633, # "max_leverage_notional": "200000", # "initial_margin_scaling_factor": "0.000002", # "strike_price": "30900", # "is_quanto": False, # "settlement_time": "2023-07-19T12:00:00Z", # "liquidation_penalty_factor": "0.5", # "funding_method": "mark_price", # "taker_commission_rate": "0.0003", # "default_leverage": "100.000000000000000000", # "state": "expired", # "auction_start_time": null, # "short_description": "BTC Call", # "quoting_asset": {}, # "maintenance_margin_scaling_factor":"0.000002" # } # datetime = self.safe_string(settlement, 'settlement_time') marketId = self.safe_string(settlement, 'symbol') return { 'info': settlement, 'symbol': self.safe_symbol(marketId, market), 'price': self.safe_number(settlement, 'settlement_price'), 'timestamp': self.parse8601(datetime), 'datetime': datetime, } def parse_settlements(self, settlements, market): result = [] for i in range(0, len(settlements)): result.append(self.parse_settlement(settlements[i], market)) return result def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): requestPath = '/' + self.version + '/' + self.implode_params(path, params) url = self.urls['api'][api] + requestPath query = self.omit(params, self.extract_params(path)) if api == 'public': if query: url += '?' + self.urlencode(query) elif api == 'private': self.check_required_credentials() timestamp = str(self.seconds()) headers = { 'api-key': self.apiKey, 'timestamp': timestamp, } auth = method + timestamp + requestPath if (method == 'GET') or (method == 'DELETE'): if query: queryString = '?' + self.urlencode(query) auth += queryString url += queryString else: body = self.json(query) auth += body headers['Content-Type'] = 'application/json' signature = self.hmac(self.encode(auth), self.encode(self.secret), hashlib.sha256) headers['signature'] = signature return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return None # # {"error":{"code":"insufficient_margin","context":{"available_balance":"0.000000000000000000","required_additional_balance":"1.618626000000000000000000000"}},"success":false} # error = self.safe_value(response, 'error', {}) errorCode = self.safe_string(error, 'code') if errorCode is not None: feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], errorCode, feedback) raise ExchangeError(feedback) # unknown message return None
[ "travis@travis-ci.org" ]
travis@travis-ci.org
ee7d397f558b64e5cab17da27e5b007f42f76fc8
f0681b8c129e8afce21e340697502230f45ce930
/venv/Lib/site-packages/com/vmware/vcenter/topology_client.py
e0bbdca3236e92ef0addbe7a6c829e7cfec9bad2
[]
no_license
dungla2011/python_pyvmomi_working_sample_vmware_easy
8852b6fdcd0f7d0f648f6f7b6c6e4f70c7213746
a3b6d86a802f28c7ee249fc03523d5e5f0a2e3bd
refs/heads/main
2023-07-05T14:56:46.551091
2021-08-20T12:19:39
2021-08-20T12:19:39
395,496,219
1
0
null
null
null
null
UTF-8
Python
false
false
30,734
py
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2021 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.vcenter.topology. #--------------------------------------------------------------------------- """ The ``com.vmware.vcenter.topology_client`` module provides classes to retrieve all vCenter and Platform Services Controller nodes and replication status in the topology. """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class Nodes(VapiInterface): """ The ``Nodes`` interface provides methods to retrieve vCenter and Platform Services Controller nodes information in the topology. This class was added in vSphere API 6.7.2. """ _VAPI_SERVICE_ID = 'com.vmware.vcenter.topology.nodes' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _NodesStub) self._VAPI_OPERATION_IDS = {} class ApplianceType(Enum): """ The ``Nodes.ApplianceType`` class defines values for valid appliance types for the vCenter and Platform Services Controller node. See :class:`Nodes.Info`. This enumeration was added in vSphere API 6.7.2. .. note:: This class represents an enumerated type in the interface language definition. The class contains class attributes which represent the values in the current version of the enumerated type. Newer versions of the enumerated type may contain new values. To use new values of the enumerated type in communication with a server that supports the newer version of the API, you instantiate this class. See :ref:`enumerated type description page <enumeration_description>`. """ VCSA_EMBEDDED = None """ vCenter Server Appliance with an embedded Platform Services Controller. This class attribute was added in vSphere API 6.7.2. """ VCSA_EXTERNAL = None """ vCenter Server Appliance with an external Platform Services Controller. This class attribute was added in vSphere API 6.7.2. """ PSC_EXTERNAL = None """ An external Platform Services Controller. This class attribute was added in vSphere API 6.7.2. """ def __init__(self, string): """ :type string: :class:`str` :param string: String value for the :class:`ApplianceType` instance. """ Enum.__init__(string) ApplianceType._set_values([ ApplianceType('VCSA_EMBEDDED'), ApplianceType('VCSA_EXTERNAL'), ApplianceType('PSC_EXTERNAL'), ]) ApplianceType._set_binding_type(type.EnumType( 'com.vmware.vcenter.topology.nodes.appliance_type', ApplianceType)) class Info(VapiStruct): """ The ``Nodes.Info`` class contains vCenter or Platform Services Controller node details. This class was added in vSphere API 6.7.2. .. tip:: The arguments are used to initialize data attributes with the same names. """ _validator_list = [ UnionValidator( 'type', { 'VCSA_EMBEDDED' : [('replication_partners', True)], 'PSC_EXTERNAL' : [('replication_partners', True)], 'VCSA_EXTERNAL' : [('client_affinity', True)], } ), ] def __init__(self, domain=None, type=None, replication_partners=None, client_affinity=None, ): """ :type domain: :class:`str` :param domain: Domain name of the node. This attribute was added in vSphere API 6.7.2. :type type: :class:`Nodes.ApplianceType` :param type: Appliance type of the node. This attribute was added in vSphere API 6.7.2. :type replication_partners: :class:`list` of :class:`str` :param replication_partners: List of replication partners' node identifiers. Identifiers can be either IP address or DNS resolvable name of the partner node. This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must contain identifiers for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will contain identifiers for the resource type: ``com.vmware.vcenter.VCenter.name``. This attribute is optional and it is only relevant when the value of ``type`` is one of :attr:`Nodes.ApplianceType.VCSA_EMBEDDED` or :attr:`Nodes.ApplianceType.PSC_EXTERNAL`. :type client_affinity: :class:`str` :param client_affinity: Identifier of the affinitized Platform Services Controller node. Identifier can be either IP address or DNS resolvable name of the affinitized node. This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. This attribute is optional and it is only relevant when the value of ``type`` is :attr:`Nodes.ApplianceType.VCSA_EXTERNAL`. """ self.domain = domain self.type = type self.replication_partners = replication_partners self.client_affinity = client_affinity VapiStruct.__init__(self) Info._set_binding_type(type.StructType( 'com.vmware.vcenter.topology.nodes.info', { 'domain': type.StringType(), 'type': type.ReferenceType(__name__, 'Nodes.ApplianceType'), 'replication_partners': type.OptionalType(type.ListType(type.IdType())), 'client_affinity': type.OptionalType(type.IdType()), }, Info, False, None)) class Summary(VapiStruct): """ The ``Nodes.Summary`` class contains commonly used information of vCenter or Platform Services Controller node. This class was added in vSphere API 6.7.2. .. tip:: The arguments are used to initialize data attributes with the same names. """ _validator_list = [ UnionValidator( 'type', { 'VCSA_EMBEDDED' : [('replication_partners', True)], 'PSC_EXTERNAL' : [('replication_partners', True)], 'VCSA_EXTERNAL' : [('client_affinity', True)], } ), ] def __init__(self, node=None, type=None, replication_partners=None, client_affinity=None, ): """ :type node: :class:`str` :param node: Identifier for the vCenter or Platform Services Controller node. Identifier can be either IP address or DNS resolvable name of the node. This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. :type type: :class:`Nodes.ApplianceType` :param type: Appliance type of the node. This attribute was added in vSphere API 6.7.2. :type replication_partners: :class:`list` of :class:`str` :param replication_partners: List of replication partners' node identifiers. Identifiers can be either IP address or DNS resolvable name of the partner node. This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must contain identifiers for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will contain identifiers for the resource type: ``com.vmware.vcenter.VCenter.name``. This attribute is optional and it is only relevant when the value of ``type`` is one of :attr:`Nodes.ApplianceType.VCSA_EMBEDDED` or :attr:`Nodes.ApplianceType.PSC_EXTERNAL`. :type client_affinity: :class:`str` :param client_affinity: Identifier of the affinitized Platform Services Controller node. Identifier can be either IP address or DNS resolvable name of the affinitized node. This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. This attribute is optional and it is only relevant when the value of ``type`` is :attr:`Nodes.ApplianceType.VCSA_EXTERNAL`. """ self.node = node self.type = type self.replication_partners = replication_partners self.client_affinity = client_affinity VapiStruct.__init__(self) Summary._set_binding_type(type.StructType( 'com.vmware.vcenter.topology.nodes.summary', { 'node': type.IdType(resource_types='com.vmware.vcenter.VCenter.name'), 'type': type.ReferenceType(__name__, 'Nodes.ApplianceType'), 'replication_partners': type.OptionalType(type.ListType(type.IdType())), 'client_affinity': type.OptionalType(type.IdType()), }, Summary, False, None)) class FilterSpec(VapiStruct): """ The ``Nodes.FilterSpec`` class contains attribute used to filter the results when listing vCenter and Platform Services Controller nodes (see :func:`Nodes.list`). This class was added in vSphere API 6.7.2. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, types=None, ): """ :type types: :class:`set` of :class:`Nodes.ApplianceType` or ``None`` :param types: Types of the appliance that a vCenter and Platform Services Controller node must be to match the filter (see :class:`Nodes.ApplianceType`. This attribute was added in vSphere API 6.7.2. If None or empty, node of any ApplianceType match the filter. """ self.types = types VapiStruct.__init__(self) FilterSpec._set_binding_type(type.StructType( 'com.vmware.vcenter.topology.nodes.filter_spec', { 'types': type.OptionalType(type.SetType(type.ReferenceType(__name__, 'Nodes.ApplianceType'))), }, FilterSpec, False, None)) def list(self, filter=None, ): """ Returns information about all vCenter and Platform Services Controller nodes matching the :class:`Nodes.FilterSpec`. This method was added in vSphere API 6.7.2. :type filter: :class:`Nodes.FilterSpec` or ``None`` :param filter: Specification of matching vCenter and Platform Services Controller nodes for which information should be returned. If None, the behavior is equivalent to a :class:`Nodes.FilterSpec` with all attributes None which means all nodes match the filter. :rtype: :class:`list` of :class:`Nodes.Summary` :return: commonly used information for all vCenter and Platform Services Controller nodes matching the :class:`Nodes.FilterSpec`. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthenticated` if the user can not be authenticated. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` if the user doesn't have the required privileges. :raise: :class:`com.vmware.vapi.std.errors_client.InvalidArgument` if the :attr:`Nodes.FilterSpec.types` attribute contains a value that is not supported. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` if you do not have all of the privileges described as follows: * Method execution requires ``System.Read``. """ return self._invoke('list', { 'filter': filter, }) def get(self, node, ): """ Retrieve details for a given identifier of the vCenter or Platform Services Controller node. This method was added in vSphere API 6.7.2. :type node: :class:`str` :param node: Identifier of the vCenter or Platform Services Controller node. Identifier can be either IP address or DNS resolvable name of the node. The parameter must be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. :rtype: :class:`Nodes.Info` :return: vCenter or Platform Services Controller node details with replication partners and client affinity information as applicable. See :class:`Nodes.Info`. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthenticated` if the user can not be authenticated. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` if the user doesn't have the required privileges. :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` if a node doesn't exist for given node identifier. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` if you do not have all of the privileges described as follows: * Method execution requires ``System.Read``. """ return self._invoke('get', { 'node': node, }) class ReplicationStatus(VapiInterface): """ The ``ReplicationStatus`` interface provides methods to retrieve replication status information of vCenter and Platform Services Controller nodes of type VCSA_EMBEDDED/PSC_EXTERNAL (see :attr:`Nodes.Info.type`). This class was added in vSphere API 6.7.2. """ _VAPI_SERVICE_ID = 'com.vmware.vcenter.topology.replication_status' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _ReplicationStatusStub) self._VAPI_OPERATION_IDS = {} class Summary(VapiStruct): """ The ``ReplicationStatus.Summary`` class contains replication information of partner vCenter or Platform Services Controller node of type VCSA_EMBEDDED/PSC_EXTERNAL (see :attr:`Nodes.Info.type`). This class was added in vSphere API 6.7.2. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, node=None, replication_partner=None, partner_available=None, status_available=None, replicating=None, change_lag=None, ): """ :type node: :class:`str` :param node: Identifier for the vCenter or Platform Services Controller node. Identifier can be either IP address or DNS resolvable name of the node. This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. :type replication_partner: :class:`str` :param replication_partner: Identifier for the vCenter or Platform Services Controller replication partner. Identifier can be either IP address or DNS resolvable name of the replication partner. This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will be an identifier for the resource type: ``com.vmware.vcenter.VCenter.name``. :type partner_available: :class:`bool` :param partner_available: Indicates if the VMware Directory Service on partner is reachable or not. This attribute was added in vSphere API 6.7.2. :type status_available: :class:`bool` :param status_available: Indicates if the replication status for the node with respect to replication partner can be retrieved or not. This attribute was added in vSphere API 6.7.2. :type replicating: :class:`bool` or ``None`` :param replicating: Indicates if node is processing replication changes from the replication partner. This attribute was added in vSphere API 6.7.2. This attribute will be None if the partner host or replication status is not available, i.e, if :attr:`ReplicationStatus.Summary.partner_available` or :attr:`ReplicationStatus.Summary.status_available` is false. :type change_lag: :class:`long` or ``None`` :param change_lag: Number of replication changes node is behind the replication partner. This attribute was added in vSphere API 6.7.2. This attribute will be None if the partner host or replication status is not available, i.e, if :attr:`ReplicationStatus.Summary.partner_available` or :attr:`ReplicationStatus.Summary.status_available` is false. """ self.node = node self.replication_partner = replication_partner self.partner_available = partner_available self.status_available = status_available self.replicating = replicating self.change_lag = change_lag VapiStruct.__init__(self) Summary._set_binding_type(type.StructType( 'com.vmware.vcenter.topology.replication_status.summary', { 'node': type.IdType(resource_types='com.vmware.vcenter.VCenter.name'), 'replication_partner': type.IdType(resource_types='com.vmware.vcenter.VCenter.name'), 'partner_available': type.BooleanType(), 'status_available': type.BooleanType(), 'replicating': type.OptionalType(type.BooleanType()), 'change_lag': type.OptionalType(type.IntegerType()), }, Summary, False, None)) class FilterSpec(VapiStruct): """ The ``ReplicationStatus.FilterSpec`` class contains attribute used to filter the results when listing replication status for the vCenter and Platform Services Controller nodes (see :func:`ReplicationStatus.list`) of type VCSA_EMBEDDED/PSC_EXTERNAL (see :attr:`Nodes.Info.type`). This class was added in vSphere API 6.7.2. .. tip:: The arguments are used to initialize data attributes with the same names. """ def __init__(self, nodes=None, ): """ :type nodes: :class:`set` of :class:`str` or ``None`` :param nodes: Identifier that a vCenter and Platform Services Controller node must have to match the filter. (see :attr:`ReplicationStatus.Summary.node`). This attribute was added in vSphere API 6.7.2. When clients pass a value of this class as a parameter, the attribute must contain identifiers for the resource type: ``com.vmware.vcenter.VCenter.name``. When methods return a value of this class as a return value, the attribute will contain identifiers for the resource type: ``com.vmware.vcenter.VCenter.name``. If None or empty, all vCenter and Platform Services Controller nodes of type VCSA_EMBEDDED/PSC_EXTERNAL match the filter. """ self.nodes = nodes VapiStruct.__init__(self) FilterSpec._set_binding_type(type.StructType( 'com.vmware.vcenter.topology.replication_status.filter_spec', { 'nodes': type.OptionalType(type.SetType(type.IdType())), }, FilterSpec, False, None)) def list(self, filter=None, ): """ Returns the replication information of vCenter and Platform Services Controller nodes of type VCSA_EMBEDDED/PSC_EXTERNAL (see :attr:`Nodes.Info.type`) matching the :class:`ReplicationStatus.FilterSpec`. This method was added in vSphere API 6.7.2. :type filter: :class:`ReplicationStatus.FilterSpec` or ``None`` :param filter: Specification of matching vCenter and Platform Services Controller nodes for which information should be returned. If None, the behavior is equivalent to a :class:`ReplicationStatus.FilterSpec` with all attributes None which means all vCenter and Platform Services Controller nodes of type VCSA_EMBEDDED/PSC_EXTERNAL match the filter. :rtype: :class:`list` of :class:`ReplicationStatus.Summary` :return: Commonly used replication information about vCenter and Platform Services Controller nodes matching the :class:`ReplicationStatus.FilterSpec`. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthenticated` if the user can not be authenticated. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` if the user doesn't have the required privileges. :raise: :class:`com.vmware.vapi.std.errors_client.InvalidArgument` if the :attr:`ReplicationStatus.FilterSpec.nodes` attribute contains a invalid value. :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` if you do not have all of the privileges described as follows: * Method execution requires ``System.Read``. """ return self._invoke('list', { 'filter': filter, }) class _NodesStub(ApiInterfaceStub): def __init__(self, config): # properties for list operation list_input_type = type.StructType('operation-input', { 'filter': type.OptionalType(type.ReferenceType(__name__, 'Nodes.FilterSpec')), }) list_error_dict = { 'com.vmware.vapi.std.errors.unauthenticated': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthenticated'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.invalid_argument': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidArgument'), } list_input_value_validator_list = [ ] list_output_validator_list = [ ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/vcenter/topology/nodes', path_variables={ }, query_parameters={ } ) # properties for get operation get_input_type = type.StructType('operation-input', { 'node': type.IdType(resource_types='com.vmware.vcenter.VCenter.name'), }) get_error_dict = { 'com.vmware.vapi.std.errors.unauthenticated': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthenticated'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/vcenter/topology/nodes/{node}', path_variables={ 'node': 'node', }, query_parameters={ } ) operations = { 'list': { 'input_type': list_input_type, 'output_type': type.ListType(type.ReferenceType(__name__, 'Nodes.Summary')), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType(__name__, 'Nodes.Info'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'list': list_rest_metadata, 'get': get_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.vcenter.topology.nodes', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=True) class _ReplicationStatusStub(ApiInterfaceStub): def __init__(self, config): # properties for list operation list_input_type = type.StructType('operation-input', { 'filter': type.OptionalType(type.ReferenceType(__name__, 'ReplicationStatus.FilterSpec')), }) list_error_dict = { 'com.vmware.vapi.std.errors.unauthenticated': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthenticated'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.invalid_argument': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidArgument'), } list_input_value_validator_list = [ ] list_output_validator_list = [ ] list_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/vcenter/topology/replication-status', path_variables={ }, query_parameters={ } ) operations = { 'list': { 'input_type': list_input_type, 'output_type': type.ListType(type.ReferenceType(__name__, 'ReplicationStatus.Summary')), 'errors': list_error_dict, 'input_value_validator_list': list_input_value_validator_list, 'output_validator_list': list_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'list': list_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.vcenter.topology.replication_status', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=True) class StubFactory(StubFactoryBase): _attrs = { 'Nodes': Nodes, 'ReplicationStatus': ReplicationStatus, }
[ "dungla2011@gmail.com" ]
dungla2011@gmail.com
69cf7c3a5c1ab63a7ae7dcb61ca8cd54486815ce
12d7a7cdce5f180c831373a873ff4a5e96d331e8
/pykeops/examples/pytorch/test_float16_2.py
697c0d50182ca764933ee47be89b07d354f7c848
[ "MIT" ]
permissive
MrHuff/keops
db9b8c4dd18941cd3fe33af27a2493d7d9d6af05
a7f44609ba444af8d9fcb11bc3a75f2024841dfa
refs/heads/master
2020-12-23T18:43:47.441141
2020-02-21T20:50:48
2020-02-21T20:50:48
237,236,633
0
0
MIT
2020-01-30T14:57:35
2020-01-30T14:57:35
null
UTF-8
Python
false
false
2,787
py
# Test for half precision support in KeOps # We perform a gaussian convolution with half, single and double precision # and compare timings and accuracy import GPUtil from threading import Thread import time class Monitor(Thread): def __init__(self, delay): super(Monitor, self).__init__() self.stopped = False self.delay = delay # Time between calls to GPUtil self.start() def run(self): while not self.stopped: GPUtil.showUtilization() time.sleep(self.delay) def stop(self): self.stopped = True backend = "torch" # "torch" or "numpy", but only "torch" works for now device_id = 0 if backend == "torch": import torch from pykeops.torch import LazyTensor else: import numpy as np from pykeops.numpy import LazyTensor import timeit def K(x,y,b,p,**kwargs): x_i = LazyTensor( x[:,None,:] ) y_j = LazyTensor( y[None,:,:] ) b_j = LazyTensor( b[None,:,:] ) p = LazyTensor( p ) D_ij = ((x_i - y_j)**2).sum(axis=2) K_ij = ((- p*D_ij).exp() * b_j) K_ij = K_ij.min(axis=1,call=False,**kwargs) return K_ij M, N, D = 1000000, 1000000, 3 if backend == "torch": torch.manual_seed(1) x = torch.randn(M, D, dtype=torch.float64).cuda(device_id) y = torch.randn(N, D, dtype=torch.float64).cuda(device_id) b = torch.randn(N, 1, dtype=torch.float64).cuda(device_id) p = torch.randn(1, dtype=torch.float64).cuda(device_id) xf = x.float() yf = y.float() bf = b.float() pf = p.float() xh = x.half() yh = y.half() bh = b.half() ph = p.half() else: x = np.random.randn(M, D) y = np.random.randn(N, D) b = np.random.randn(N, 1) xf = x.astype(np.float32) yf = y.astype(np.float32) bf = b.astype(np.float32) xh = x.astype(np.float16) yh = y.astype(np.float16) bh = b.astype(np.float16) Ntest_half, Ntest_float = 1, 1 # monitor = Monitor(1e-6) # computation using float32 K_keops32 = K(xf,yf,bf,pf) res_float = K_keops32() res_float = res_float[:100,:]; print("comp float, time : ",timeit.timeit("K_keops32()",number=Ntest_float,setup="from __main__ import K_keops32")) # monitor.stop() #print(res_float) # computation using float16 # monitor = Monitor(1e-6) K_keops16 = K(xh[:100,:],yh,bh,ph,sum_scheme="direct_sum") K_ij = K_keops16() res_half = K_ij print("comp half, time : ",timeit.timeit("K_keops16()",number=Ntest_half,setup="from __main__ import K_keops16")) # monitor.stop() #print(res_half) if backend == "torch": print("relative mean error half vs float : ",((res_half.float()-res_float).abs().mean()/res_float.abs().mean()).item()) print("relative max error half vs float : ",((res_half.float()-res_float).abs().max()/res_float.abs().mean()).item())
[ "joan.glaunes@gmail.com" ]
joan.glaunes@gmail.com
adbb9a7a1e4db3deb6ad8946b7d5de3c7945fb7a
5490c06e109468a05dbaa9c5863c948bf1b37dd6
/volume.py
ded0b1157fd67d5133cff24699049a7b1d8e88b9
[]
no_license
openwireless/raspi_samples
08e79da7bd3110a7d66de548090ecf7d5a9b5cb8
1d7809d7d9dcc182bd4ff25e5916a994f7649da0
refs/heads/master
2020-08-24T13:18:48.580282
2020-02-29T06:59:40
2020-02-29T06:59:40
216,833,162
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
# volume.py import sys import time import mcp3008 CH = 0 try: while True: data = mcp3008.readAdcValue(CH) print("adc: {:4} ".format(data)) mV = mcp3008. convertVoltage(data) print("mV: {:4}".format(mV)) time.sleep(0.2) except KeyboardInterrupt: sys.exit(0)
[ "dai@owalliance.org" ]
dai@owalliance.org
6dfc1af33d012cf4d8a6305b2aa3c0c59006672d
ac14d024ccf1816cd4232769c4ff47ab673e8102
/07-ObjectOrientedProgramming/communication.py
8077375f2c8e97b166e394118e51a665a150259b
[]
no_license
jan-podolanko/pp1
173de537d751a2451b9af9ccba06fc3ca74f1473
aaa57ce6588037ba85bc41787359328c491dbbb8
refs/heads/master
2020-08-07T08:31:59.608327
2020-01-27T10:59:35
2020-01-27T10:59:35
213,373,271
0
0
null
2020-01-13T12:28:41
2019-10-07T12:08:11
Python
UTF-8
Python
false
false
102
py
from message import Message import sms import email x = sms.Sms() y = email.Email() x.send() y.send()
[ "jan.podolanko11@gmail.com" ]
jan.podolanko11@gmail.com
6fdf1d75a2e50ba01d5d50b38ab45d7c0428a68d
ab79ca83f97aff1f5e00d46781e0355b8e26b4c7
/LogTranslation/main.py
87925cdd8e34bfc8c58ce7150355ef3775e8d46a
[]
no_license
AngusGLChen/LearningTransfer
d966ece2b94b3287f7cf0468ae7afd9591c64d99
956c9a9e557deb959b26ae42fb46eba38fb417dd
refs/heads/master
2021-01-19T06:42:47.967713
2016-06-20T19:18:09
2016-06-20T19:18:09
61,573,656
0
1
null
null
null
null
UTF-8
Python
false
false
867
py
''' Created on Jul 24, 2015 @author: Angus ''' import os import LogTranslation.UserMode import LogTranslation.CollaborationMode import LogTranslation.SubmissionMode import LogTranslation.ObservationMode import LogTranslation.SurveyMode course_path = "/Volumes/NETAC/EdX/Clear-out/FP101x/" ''' # User mode if os.path.isdir(course_path): LogTranslation.UserMode.user_mode(course_path) # Collaboration mode if os.path.isdir(course_path): LogTranslation.CollaborationMode.collaboration_mode(course_path) # Submission mode if os.path.isdir(course_path): LogTranslation.submission_mode(course_path) # Observation mode if os.path.isdir(course_path): LogTranslation.ObservationMode.observation_mode(course_path) ''' # Survey mode if os.path.isdir(course_path): LogTranslation.SurveyMode.survey_mode(course_path) print "All finished."
[ "angus.glchen@gmail.com" ]
angus.glchen@gmail.com
f6e0063275462f1892e450d8ea8dbd68d671ac0d
030508decb1b6c95e7c87e95c34815543b2dbdfb
/py/py_sparkling/ml/models.py
96aa8a9c8b54bb3801530e344b66066445a332d8
[ "Apache-2.0" ]
permissive
rkamath3/sparkling-water
b80b59cd526593dabb2af50e887e931f06664df4
af9d6470dfcffbc8bf3b7086c2404130ed215f72
refs/heads/master
2021-07-22T18:10:30.337464
2019-01-04T16:50:44
2019-01-04T16:50:44
164,205,445
0
0
Apache-2.0
2020-05-11T19:43:23
2019-01-05T10:39:54
Scala
UTF-8
Python
false
false
3,222
py
from pyspark.ml.util import JavaMLReadable, JavaMLWritable from pyspark.ml.wrapper import JavaModel from pysparkling.initializer import * from pyspark.sql import SparkSession from pyspark.sql.functions import udf from pyspark.sql.types import DoubleType class H2OGBMModel(JavaModel, JavaMLWritable, JavaMLReadable): pass class H2ODeepLearningModel(JavaModel, JavaMLWritable, JavaMLReadable): pass class H2OAutoMLModel(JavaModel, JavaMLWritable, JavaMLReadable): pass class H2OXGBoostModel(JavaModel, JavaMLWritable, JavaMLReadable): pass class H2OMOJOModel(JavaModel, JavaMLWritable, JavaMLReadable): @staticmethod def create_from_mojo(path_to_mojo): spark_session = SparkSession.builder.getOrCreate() # We need to make sure that Sparkling Water classes are available on the Spark driver and executor paths Initializer.load_sparkling_jar(spark_session._sc) return H2OMOJOModel(spark_session._jvm.org.apache.spark.ml.h2o.models.JavaH2OMOJOModelHelper.createFromMojo(path_to_mojo)) def predict(self, dataframe): return self.transform(dataframe) def getConvertUnknownCategoricalLevelsToNa(self): return self._java_obj.getConvertUnknownCategoricalLevelsToNa() def setConvertUnknownCategoricalLevelsToNa(self, value): self._java_obj.setConvertUnknownCategoricalLevelsToNa(value) return self class H2OMOJOPipelineModel(JavaModel, JavaMLWritable, JavaMLReadable): @staticmethod def create_from_mojo(path_to_mojo): spark_session = SparkSession.builder.getOrCreate() # We need to make sure that Sparkling Water classes are available on the Spark driver and executor paths Initializer.load_sparkling_jar(spark_session._sc) return H2OMOJOPipelineModel(spark_session._jvm.org.apache.spark.ml.h2o.models.JavaH2OMOJOPipelineModelHelper.createFromMojo(path_to_mojo)) def predict(self, dataframe): return self.transform(dataframe) def get_input_names(self): return list(self._java_obj.getInputNames()) def get_input_types(self): enum_list = list(self._java_obj.getInputTypes()) return [enum.name() for enum in enum_list] def get_output_names(self): return list(self._java_obj.getOutputNames()) def get_output_types(self): enum_list = list(self._java_obj.getOutputTypes()) return [enum.name() for enum in enum_list] def get_named_mojo_output_columns(self): return self._java_obj.getNamedMojoOutputColumns() def set_named_mojo_output_columns(self, value): self._java_obj.setNamedMojoOutputColumns(value) return self def select_prediction_udf(self, column): if column not in self.get_output_names(): raise ValueError("Column '" + column + "' is not defined as the output column in MOJO Pipeline.") if self.get_named_mojo_output_columns(): func = udf(lambda d: d, DoubleType()) return func("prediction." + column).alias(column) else: idx = self.get_output_names().index(column) func = udf(lambda arr: arr[idx], DoubleType()) return func("prediction.preds").alias(column)
[ "noreply@github.com" ]
rkamath3.noreply@github.com
df58f5e1ec17bbe279003f0d458ca5494bef6045
08ccab3c704bf8f7b783d44831c399552f6aa284
/simulation/code/data/interpret/rsi.py
42ad6b980443e332becba399f2b2d3320222ed3d
[]
no_license
artainmo/trading_bot
88dfa234f3cc21ee1d2b9271725ea14fa816a0e5
31ef810dc9ae98fb065b163ff14bb8bb4b2a9514
refs/heads/main
2023-07-19T21:21:11.925428
2023-07-07T22:25:10
2023-07-07T22:25:10
322,807,598
0
0
null
null
null
null
UTF-8
Python
false
false
1,767
py
import utils.global_variables as g from utils.classes import * from utils.file_handler import * from utils.time_handler import * def set_rsi_signal(coin, sell, buy, price=None): coin.opp["rsi"]["sell_signal_amplifier"] = sell coin.opp["rsi"]["buy_signal_amplifier"] = buy coin.opp["rsi"]["proposed_buy_price"] = price return coin def rsi_sell_signal(coin, last_line): if float(last_line["rsi"]) > g.SELL_RSI["level1"]["value"]: if float(last_line["rsi"]) > g.SELL_RSI["level2"]["value"]: coin = set_rsi_signal(coin, g.SELL_RSI["level2"]["amplifier"], None) else: coin = set_rsi_signal(coin, g.SELL_RSI["level1"]["amplifier"], None) return coin def rsi_buy_signal(coin, last_line): if float(last_line["rsi"]) < g.BUY_RSI["level1"]["value"]: if float(last_line["rsi"]) < g.BUY_RSI["level2"]["value"]: coin = set_rsi_signal(coin, 1/g.SELL_RSI["level2"]["amplifier"], g.BUY_RSI["level2"]["amplifier"]) else: coin = set_rsi_signal(coin, 1/g.SELL_RSI["level1"]["amplifier"], g.BUY_RSI["level1"]["amplifier"]) return coin def get_rsi_signal(coin, account): last_line = coin.last_line(g.BUY_RSI["type"]) coin = set_rsi_signal(coin, 1, None) if account.euros["balance"] > 10: coin = rsi_buy_signal(coin, last_line) if account.coins[coin.market_name]["balance"]: coin = rsi_sell_signal(coin, last_line) if coin.opp["rsi"]["buy_signal_amplifier"] != None and g.BUY_RSI["buy"] == "trailing": last_line = coin.last_line("_min") coin.opp["rsi"]["proposed_buy_price"] = float(last_line["low"]) + (float(last_line["low"]) * (g.BUY_RSI["trailing"] / float(coin.opp["rsi"]["buy_signal_amplifier"]))) return coin
[ "tainmontarthur@icloud.com" ]
tainmontarthur@icloud.com
890d57a5bfff1ebccd7bc8621e3064881da5e0ec
e2b67927b1b7113917d17c62dacedde3e9457ce9
/Assignment3/trainModel.py
c8627233580dd8e41dec95d45caab1036b4fc01a
[]
no_license
SumanSudhir/Computer_Vision
d0440b5d461437ada52ecfe71abb8b7d08bbaca1
5da6a05390c1039c26bea67bddb548d654e47fad
refs/heads/master
2020-04-22T11:48:22.184688
2019-03-26T15:24:22
2019-03-26T15:24:22
170,353,365
0
0
null
null
null
null
UTF-8
Python
false
false
1,367
py
import argparse import os from shutil import copy2 import torchfile import Model from Linear import LinearLayer from ReLu import ReLu from Convolution import ConvolutionLayer,FlattenLayer from Criterion import Criterion import torch import final # suffix='.py' parser = argparse.ArgumentParser() parser.add_argument("-modelName", "--model_name") parser.add_argument("-data", "--data_path") parser.add_argument("-target", "--target_path") args = parser.parse_args() model_name = args.model_name data_path = args.data_path labels_path = args.target_path # dir_name = modelName.rsplit(suffix,1)[0] try: os.mkdir(model_name) print("Directory created") except: print("Directory already exists") model_one = torch.load(model_name) Train_Data = torchfile.load(data_path) Train_Label = torchfile.load(labels_path) # model_one=Model.Model() # model_one.addLayer(ConvolutionLayer( (1,108,108) , 12 , 15, 6)) # model_one.addLayer(ReLu()) # model_one.addLayer(ConvolutionLayer( (15,17,17) , 5 , 9, 3)) #9,5,5 # model_one.addLayer(FlattenLayer()) # model_one.addLayer(ReLu()) # model_one.addLayer(LinearLayer(225,90)) # model_one.addLayer(ReLu()) # model_one.addLayer(LinearLayer(90,18)) # model_one.addLayer(ReLu()) # model_one.addLayer(LinearLayer(18,6)) model_one=final.train(model_one,Train_Data,Train_Label) torch.save(model_one,'./'+model_name+'/'+model_name)
[ "noreply@github.com" ]
SumanSudhir.noreply@github.com
0c77f08757363fad861f315fc7ecea7e4c7196ef
4a59e35a12af911f588224f07aab52d24fd6b044
/venv/lib/python2.7/site-packages/mbed_host_tests/host_tests_plugins/module_reset_stlink.py
8e38f6fe715b7912581f3a624a1c828f5eae39d6
[]
no_license
ryankurte/mbed-node
95caba48404e06c4f21f48a850152c08d911bbc8
3584d391fca00fc3cda138c26ae28fdbe5527d83
refs/heads/master
2021-01-22T13:23:08.506740
2017-11-02T17:40:26
2017-11-02T17:40:26
100,665,570
0
0
null
null
null
null
UTF-8
Python
false
false
2,674
py
""" mbed SDK Copyright (c) 2011-2015 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: Przemyslaw Wirkus <Przemyslaw.Wirkus@arm.com> """ from host_test_plugins import HostTestPluginBase class HostTestPluginResetMethod_Stlink(HostTestPluginBase): # Plugin interface name = 'HostTestPluginResetMethod_Stlink' type = 'ResetMethod' capabilities = ['stlink'] required_parameters = [] stable = False def __init__(self): """ ctor """ HostTestPluginBase.__init__(self) def is_os_supported(self, os_name=None): """! In this implementation this plugin only is supporeted under Windows machines """ # If no OS name provided use host OS name if not os_name: os_name = self.mbed_os_support() # This plugin only works on Windows if os_name and os_name.startswith('Windows'): return True return False def setup(self, *args, **kwargs): """! Configure plugin, this function should be called before plugin execute() method is used. """ # Note you need to have eACommander.exe on your system path! self.ST_LINK_CLI = 'ST-LINK_CLI.exe' return True def execute(self, capability, *args, **kwargs): """! Executes capability by name @param capability Capability name @param args Additional arguments @param kwargs Additional arguments @details Each capability e.g. may directly just call some command line program or execute building pythonic function @return Capability call return value """ result = False if self.check_parameters(capability, *args, **kwargs) is True: if capability == 'stlink': # Example: # ST-LINK_CLI.exe -Rst -Run cmd = [self.ST_LINK_CLI, '-Rst', '-Run'] result = self.run_command(cmd) return result def load_plugin(): """ Returns plugin available in this module """ return HostTestPluginResetMethod_Stlink()
[ "ryan.kurte@trutest.co.nz" ]
ryan.kurte@trutest.co.nz
d9b0791b9147a2aa58c6341fd0be6328e8c8a3c8
ed069d7f1a4f6f8c448594f0188711782e12dc7a
/clusterpost/bigchaindb/tests/web/test_block_tendermint.py
2f789c55477a4ac65069455a2e32d792f2dc439c
[ "Apache-2.0", "CC-BY-4.0", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-free-unknown", "MIT" ]
permissive
Lonero-Team/Decentralized-Internet
d1bfb5aa53ce6dc193eefed4842f251ce4ef0035
5b55be855c0f096204911e21487b4dae54392672
refs/heads/master
2023-08-31T01:54:46.643100
2023-08-30T03:18:55
2023-08-30T03:18:55
218,808,524
516
185
MIT
2023-09-14T19:41:21
2019-10-31T16:18:59
Python
UTF-8
Python
false
false
2,425
py
# Copyright BigchainDB GmbH and BigchainDB contributors # SPDX-License-Identifier: (Apache-2.0 AND CC-BY-4.0) # Code is Apache-2.0 and docs are CC-BY-4.0 import pytest from bigchaindb.models import Transaction from bigchaindb.lib import Block BLOCKS_ENDPOINT = '/api/v1/blocks/' @pytest.mark.bdb @pytest.mark.usefixtures('inputs') def test_get_block_endpoint(b, client, alice): import copy tx = Transaction.create([alice.public_key], [([alice.public_key], 1)], asset={'cycle': 'hero'}) tx = tx.sign([alice.private_key]) # with store_bulk_transactions we use `insert_many` where PyMongo # automatically adds an `_id` field to the tx, therefore we need the # deepcopy, for more info see: # https://api.mongodb.com/python/current/faq.html#writes-and-ids tx_dict = copy.deepcopy(tx.to_dict()) b.store_bulk_transactions([tx]) block = Block(app_hash='random_utxo', height=31, transactions=[tx.id]) b.store_block(block._asdict()) res = client.get(BLOCKS_ENDPOINT + str(block.height)) expected_response = {'height': block.height, 'transactions': [tx_dict]} assert res.json == expected_response assert res.status_code == 200 @pytest.mark.bdb @pytest.mark.usefixtures('inputs') def test_get_block_returns_404_if_not_found(client): res = client.get(BLOCKS_ENDPOINT + '123') assert res.status_code == 404 res = client.get(BLOCKS_ENDPOINT + '123/') assert res.status_code == 404 @pytest.mark.bdb def test_get_block_containing_transaction(b, client, alice): tx = Transaction.create([alice.public_key], [([alice.public_key], 1)], asset={'cycle': 'hero'}) tx = tx.sign([alice.private_key]) b.store_bulk_transactions([tx]) block = Block(app_hash='random_utxo', height=13, transactions=[tx.id]) b.store_block(block._asdict()) res = client.get('{}?transaction_id={}'.format(BLOCKS_ENDPOINT, tx.id)) expected_response = [block.height] assert res.json == expected_response assert res.status_code == 200 @pytest.mark.bdb def test_get_blocks_by_txid_endpoint_returns_empty_list_not_found(client): res = client.get(BLOCKS_ENDPOINT + '?transaction_id=') assert res.status_code == 200 assert len(res.json) == 0 res = client.get(BLOCKS_ENDPOINT + '?transaction_id=123') assert res.status_code == 200 assert len(res.json) == 0
[ "kamalandrew55@gmail.com" ]
kamalandrew55@gmail.com
8401d66cae8ef1c647fa233b5dbd596708a9903e
193bde1a9ab7c5fffbd76cfe165c47afac82e6de
/data/coco.py
f5f8e877eead61446e2e75f19d992c73d1d4ad17
[ "MIT" ]
permissive
ZTao-z/multiflow-resnet-ssd
12e1900a3ecaa8e4013fb868e15870df1f6a42d9
51f8dbbb70ce00f5b5e03e774e7f4f962523602f
refs/heads/master
2020-12-27T01:34:00.132522
2020-02-07T08:56:22
2020-02-07T08:56:22
237,720,533
0
1
null
null
null
null
UTF-8
Python
false
false
12,276
py
"""VOC Dataset Classes Original author: Francisco Massa https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py Updated by: Ellis Brown, Max deGroot """ import os import pickle import os.path import sys import torch import torch.utils.data as data import torchvision.transforms as transforms import cv2 import numpy as np import json import uuid from utils.pycocotools.coco import COCO from utils.pycocotools.cocoeval import COCOeval from utils.pycocotools import mask as COCOmask class COCODetection(data.Dataset): """VOC Detection Dataset Object input is image, target is annotation Arguments: root (string): filepath to VOCdevkit folder. image_set (string): imageset to use (eg. 'train', 'val', 'test') transform (callable, optional): transformation to perform on the input image target_transform (callable, optional): transformation to perform on the target `annotation` (eg: take in caption string, return tensor of word indices) dataset_name (string, optional): which dataset to load (default: 'VOC2007') """ def __init__(self, root, image_sets, preproc=None, target_transform=None, dataset_name='COCO'): self.root = root self.cache_path = os.path.join(self.root, 'cache') self.image_set = image_sets self.preproc = preproc self.target_transform = target_transform self.name = dataset_name self.ids = list() self.annotations = list() self._view_map = { 'minival2014' : 'val2014', # 5k val2014 subset 'valminusminival2014' : 'val2014', # val2014 \setminus minival2014 'test-dev2015' : 'test2015', 'test-dev2017': 'test2017', 'val2017': 'val2017', } for (year, image_set) in image_sets: coco_name = image_set+year data_name = (self._view_map[coco_name] if coco_name in self._view_map else coco_name) annofile = self._get_ann_file(coco_name) _COCO = COCO(annofile) self._COCO = _COCO self.coco_name = coco_name cats = _COCO.loadCats(_COCO.getCatIds()) self._classes = tuple(['__background__'] + [c['name'] for c in cats]) self.num_classes = len(self._classes) self._class_to_ind = dict(zip(self._classes, range(self.num_classes))) self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats], _COCO.getCatIds())) indexes = _COCO.getImgIds() self.image_indexes = indexes self.ids.extend([self.image_path_from_index(data_name, index) for index in indexes ]) if image_set.find('test') != -1: print('test set will not load annotations!') else: self.annotations.extend(self._load_coco_annotations(coco_name, indexes,_COCO)) def image_path_from_index(self, name, index): """ Construct an image path from the image's "index" identifier. """ # Example image path for index=119993: # images/train2014/COCO_train2014_000000119993.jpg if(name=='test2017' or name=='val2017'): file_name = ( str(index).zfill(12) + '.jpg') image_path = os.path.join(self.root, 'images', name, file_name) else: file_name = ('COCO_' + name + '_' + str(index).zfill(12) + '.jpg') image_path = os.path.join(self.root, 'images', name, file_name) assert os.path.exists(image_path), \ 'Path does not exist: {}'.format(image_path) return image_path def _get_ann_file(self, name): prefix = 'instances' if name.find('test') == -1 \ else 'image_info' return os.path.join(self.root, 'annotations', prefix + '_' + name + '.json') def _load_coco_annotations(self, coco_name, indexes, _COCO): cache_file=os.path.join(self.cache_path,coco_name+'_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = pickle.load(fid) print('{} gt roidb loaded from {}'.format(coco_name,cache_file)) return roidb gt_roidb = [self._annotation_from_index(index, _COCO) for index in indexes] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb,fid,pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb def _annotation_from_index(self, index, _COCO): """ Loads COCO bounding-box instance annotations. Crowd instances are handled by marking their overlaps (with all categories) to -1. This overlap value means that crowd "instances" are excluded from training. """ im_ann = _COCO.loadImgs(index)[0] width = im_ann['width'] height = im_ann['height'] annIds = _COCO.getAnnIds(imgIds=index, iscrowd=None) objs = _COCO.loadAnns(annIds) # Sanitize bboxes -- some are invalid valid_objs = [] for obj in objs: x1 = np.max((0, obj['bbox'][0])) y1 = np.max((0, obj['bbox'][1])) x2 = np.min((width - 1, x1 + np.max((0, obj['bbox'][2] - 1)))) y2 = np.min((height - 1, y1 + np.max((0, obj['bbox'][3] - 1)))) if obj['area'] > 0 and x2 >= x1 and y2 >= y1: obj['clean_bbox'] = [x1, y1, x2, y2] valid_objs.append(obj) objs = valid_objs num_objs = len(objs) res = np.zeros((num_objs, 5)) # Lookup table to map from COCO category ids to our internal class # indices coco_cat_id_to_class_ind = dict([(self._class_to_coco_cat_id[cls], self._class_to_ind[cls]) for cls in self._classes[1:]]) for ix, obj in enumerate(objs): cls = coco_cat_id_to_class_ind[obj['category_id']] res[ix, 0:4] = obj['clean_bbox'] res[ix, 4] = cls return res def __getitem__(self, index): img_id = self.ids[index] target = self.annotations[index] img = cv2.imread(img_id, cv2.IMREAD_COLOR) height, width, _ = img.shape if self.target_transform is not None: target = self.target_transform(target) if self.preproc is not None: img, target = self.preproc(img, target) # target = self.target_transform(target, width, height) #print(target.shape) return img, target def __len__(self): return len(self.ids) def pull_image(self, index): '''Returns the original image object at index in PIL form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: PIL img ''' img_id = self.ids[index] return cv2.imread(img_id, cv2.IMREAD_COLOR) def pull_tensor(self, index): '''Returns the original image at an index in tensor form Note: not using self.__getitem__(), as any transformations passed in could mess up this functionality. Argument: index (int): index of img to show Return: tensorized version of img, squeezed ''' to_tensor = transforms.ToTensor() return torch.Tensor(self.pull_image(index)).unsqueeze_(0) def _print_detection_eval_metrics(self, coco_eval): IoU_lo_thresh = 0.5 IoU_hi_thresh = 0.95 def _get_thr_ind(coco_eval, thr): ind = np.where((coco_eval.params.iouThrs > thr - 1e-5) & (coco_eval.params.iouThrs < thr + 1e-5))[0][0] iou_thr = coco_eval.params.iouThrs[ind] assert np.isclose(iou_thr, thr) return ind ind_lo = _get_thr_ind(coco_eval, IoU_lo_thresh) ind_hi = _get_thr_ind(coco_eval, IoU_hi_thresh) # precision has dims (iou, recall, cls, area range, max dets) # area range index 0: all area ranges # max dets index 2: 100 per image precision = \ coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, :, 0, 2] ap_default = np.mean(precision[precision > -1]) print('~~~~ Mean and per-category AP @ IoU=[{:.2f},{:.2f}] ' '~~~~'.format(IoU_lo_thresh, IoU_hi_thresh)) print('{:.1f}'.format(100 * ap_default)) for cls_ind, cls in enumerate(self._classes): if cls == '__background__': continue # minus 1 because of __background__ precision = coco_eval.eval['precision'][ind_lo:(ind_hi + 1), :, cls_ind - 1, 0, 2] ap = np.mean(precision[precision > -1]) print('{:.1f}'.format(100 * ap)) print('~~~~ Summary metrics ~~~~') coco_eval.summarize() def _do_detection_eval(self, res_file, output_dir): ann_type = 'bbox' coco_dt = self._COCO.loadRes(res_file) coco_eval = COCOeval(self._COCO, coco_dt) coco_eval.params.useSegm = (ann_type == 'segm') coco_eval.evaluate() coco_eval.accumulate() self._print_detection_eval_metrics(coco_eval) eval_file = os.path.join(output_dir, 'detection_results.pkl') with open(eval_file, 'wb') as fid: pickle.dump(coco_eval, fid, pickle.HIGHEST_PROTOCOL) print('Wrote COCO eval results to: {}'.format(eval_file)) def _coco_results_one_category(self, boxes, cat_id): results = [] for im_ind, index in enumerate(self.image_indexes): dets = boxes[im_ind].astype(np.float) if dets == []: continue scores = dets[:, -1] xs = dets[:, 0] ys = dets[:, 1] ws = dets[:, 2] - xs + 1 hs = dets[:, 3] - ys + 1 results.extend( [{'image_id' : index, 'category_id' : cat_id, 'bbox' : [xs[k], ys[k], ws[k], hs[k]], 'score' : scores[k]} for k in range(dets.shape[0])]) return results def _write_coco_results_file(self, all_boxes, res_file): # [{"image_id": 42, # "category_id": 18, # "bbox": [258.15,41.29,348.26,243.78], # "score": 0.236}, ...] results = [] for cls_ind, cls in enumerate(self._classes): if cls == '__background__': continue print('Collecting {} results ({:d}/{:d})'.format(cls, cls_ind, self.num_classes )) coco_cat_id = self._class_to_coco_cat_id[cls] results.extend(self._coco_results_one_category(all_boxes[cls_ind], coco_cat_id)) ''' if cls_ind ==30: res_f = res_file+ '_1.json' print('Writing results json to {}'.format(res_f)) with open(res_f, 'w') as fid: json.dump(results, fid) results = [] ''' #res_f2 = res_file+'_2.json' print('Writing results json to {}'.format(res_file)) with open(res_file, 'w') as fid: json.dump(results, fid) def evaluate_detections(self, all_boxes, output_dir): res_file = os.path.join(output_dir, ('detections_' + self.coco_name + '_results')) res_file += '.json' self._write_coco_results_file(all_boxes, res_file) # Only do evaluation on non-test sets if self.coco_name.find('test') == -1: self._do_detection_eval(res_file, output_dir) # Optionally cleanup results json file
[ "1124693098@qq.com" ]
1124693098@qq.com
788f072e1d52deec996ceaf82ad64905a7504fb8
029eb1b7f66c7746f5982876eeb7c04b063768c6
/preppy/util.py
927b6542d4ab15a1e6eb40b223b1f99d5b8931f5
[]
no_license
phueb/Preppy
2910c5aeddb4fe68936255aaead35da241ddea09
0ab8b24f05cc7f17bef1ecee61bade6368bca8ff
refs/heads/master
2021-12-18T18:49:01.344945
2021-12-07T22:45:02
2021-12-07T22:45:02
216,908,086
2
0
null
null
null
null
UTF-8
Python
false
false
1,941
py
from typing import List import numpy as np import random from functools import reduce from operator import iconcat def shuffle_at_sentence_level(tokens: List[str], shuffle_seed: int = 20, ) -> List[str]: """ shuffle at sentence-level (as opposed to document-level) this remove clustering of same-age utterances within documents """ # TODO sentences are detected with punctuation, but periods can occur in numbers, not just at boundaries # TODO: use a more sophisticated sentence boundary detector random.seed(shuffle_seed) print('WARNING: Shuffling sentences') sentences: List[List[str]] = split_into_sentences(tokens) random.shuffle(sentences) res = reduce(iconcat, sentences, []) # flatten list of lists return res def split_into_sentences(tokens: List[str], ) -> List[List[str]]: res = [[]] for n, w in enumerate(tokens): res[-1].append(w) if w.endswith('.') or w.endswith('?') or w.endswith('!') and n < len(tokens) - 1: # prevent empty list at end res.append([]) return res def chunk_sentences(sentences: List[List[str]], split_size: int, ): for i in range(0, len(sentences), split_size): yield sentences[i:i + split_size] def make_windows_mat( part: List[int], num_windows: int, num_tokens_in_window: int, ) -> np.ndarray: """ return a matrix, where rows are windows. each window is an ordered array of word IDs. windows are created by sliding a moving window across tokens, moving one token at a time. """ result = np.zeros((num_windows, num_tokens_in_window), dtype=np.int) for window_id in range(num_windows): window = part[window_id:window_id + num_tokens_in_window] result[window_id, :] = window return result
[ "info@philhuebner.com" ]
info@philhuebner.com
a6ad23dae35f0032fdacdcd9fe3ce3b3685cadea
a518141ca3ba2b6fa63a7961b51936d9438ff022
/374 - Big Mod.py
2f05d44da61847985307d73265b4c4dc5537fdcd
[]
no_license
jlhung/UVA-Python
ec93b2c98e04c753e8356f3e4825584fae4a8663
7a0db4fecffd7ac4f377f93da41291a8e998ee9b
refs/heads/master
2022-11-28T04:47:49.270187
2020-08-10T13:19:58
2020-08-10T13:19:58
116,969,745
19
9
null
null
null
null
UTF-8
Python
false
false
516
py
''' 20180108 jlhung v1.0 ''' def mod(b, p, m): if p == 0: return 1 elif p == 1: return b % m else: result = mod(b, p//2, m) if p % 2: return result * result * b % m else: return result * result % m while True: try: b = input() if b == "": b = int(input()) else: b = int(b) p = int(input()) m = int(input()) except EOFError: break print(mod(b, p, m))
[ "35291112+jlhung@users.noreply.github.com" ]
35291112+jlhung@users.noreply.github.com
5fece1f998efd4af893e3696457085c23ad76158
e4da549a973dfb987fe101f66affabd04e2d69ea
/lib/dev_kits/py/sample_random_bot.py
8faa13bfd617b0b4e37caaae88d782e52580db4b
[]
no_license
dbe/blobwars
736cb3eba2a5fd9876e28e5da601f272ce4bc502
b13e0babaa4f003bf24874289ec80d05ac9f563f
refs/heads/master
2021-01-01T18:47:54.367799
2011-11-02T01:42:01
2011-11-02T01:42:01
2,654,235
2
0
null
null
null
null
UTF-8
Python
false
false
479
py
from sample_toolkit import SampleBotBase, GameStateSample, INVALID_COORDINATE from random import randint class RandomBot(SampleBotBase): def get_move(self,game_state): possible_moves = self.get_all_possible_moves(game_state) if possible_moves: return possible_moves[randint(0, len(possible_moves) - 1)] bot = RandomBot() for game_state in GameStateSample.get(): coord = bot.get_move(game_state) or INVALID_COORDINATE game_state.send_move(coord.x, coord.y)
[ "michel.tricot@gmail.com" ]
michel.tricot@gmail.com
2b4b1a60eec4c471dfa51f0a70d2e808fdf2e929
8247d5f604407d40335d8315fe79ea38f0d7f43a
/Intro to XLRD.py
d6a468ee10fdd87aeab41fbae4e0039b07b023a4
[]
no_license
jtsulliv/Data-Wrangling
450d95b531697cf02989b691a53444838856577c
09d441e0435ffba67dcd567c4189d706cdccf5f5
refs/heads/master
2021-01-01T05:18:49.641027
2017-09-21T14:28:01
2017-09-21T14:28:01
56,181,298
1
0
null
null
null
null
UTF-8
Python
false
false
1,890
py
# -*- coding: utf-8 -*- """ Created on Thu Feb 04 14:11:43 2016 @author: jsullivan """ '''Reading Excel files''' import xlrd datafile = "2013_ERCOT_Hourly_Load_Data.xls" def parse_file(datafile): workbook = xlrd.open_workbook(datafile) # reading into workbook sheet = workbook.sheet_by_index(0) # specify which sheet ''' here we're looping through all rows and columns and reading it into a python list called 'data' ''' data = [[sheet.cell_value(r, col) # pulling in the value from the excel file for col in range(sheet.ncols)] # looping through columns for r in range(sheet.nrows)] # looping through rows print "\nList Comprehension" print "data[3][2]:", print data[3][2] # printing value from row 3, column 2 '''printing all of the values from row 50 ''' print "\nCells in a nested loop:" for row in range(sheet.nrows): for col in range(sheet.ncols): if row == 50: print sheet.cell_value(row, col), ### other useful methods: print "\nROWS, COLUMNS, and CELLS:" print "Number of rows in the sheet:", print sheet.nrows print "Type of data in cell (row 3, col 2):", print sheet.cell_type(3, 2) # type is 2, which indicates floating point number print "Value in cell (row 3, col 2):", print sheet.cell_value(3, 2) print "Get a slice of values in column 3, from rows 1-3:" print sheet.col_values(3, start_rowx=1, end_rowx=4) print "\nDATES:" print "Type of data in cell (row 1, col 0):", print sheet.cell_type(1, 0) exceltime = sheet.cell_value(1, 0) print "Time in Excel format:", print exceltime print "Convert time to a Python datetime tuple, from the Excel float:", print xlrd.xldate_as_tuple(exceltime, 0) return data data = parse_file(datafile)
[ "jtsulliv@gmail.com" ]
jtsulliv@gmail.com
e4a87ad830f53458b6245a581a732946af00a667
1af9baf72b56cbae13fc45f016c079fed47e5378
/config.py
71d491639f8afc72158efb23742fc6efb7aea97d
[ "MIT" ]
permissive
mumblepins-docker/dev-images
77b823d9818045063ba3f6bc9a8640e1e3fa542c
83bb77a96181a484ed9efcc27ca4c49391940f92
refs/heads/master
2021-01-20T10:53:48.820828
2018-03-13T17:13:51
2018-03-13T17:13:51
101,654,904
0
0
null
null
null
null
UTF-8
Python
false
false
741
py
class DockerConfig: include_dirs = ['root-fs'] DOCKER_IMAGE = "mumblepins/circleci-dev" fill_in_data = { 'Dockerfile.meta': '### Build-time metadata ###' } save_dir = 'workspace' special_tags = { 'latest': 'stretch', 'ubuntu': 'bionic', 'ubuntu-LTS': 'xenial', 'debian': 'stretch', 'ubuntu-debuild': 'bionic-debuild', 'ubuntu-LTS-debuild': 'xenial-debuild' } latest = 'stretch' ignore_lines = [ 'Selecting previously unselected ', 'Preparing to unpack', 'update-alternatives' ] @classmethod def values(cls): return {k:v for k, v in cls.__dict__.items() if (not k.startswith('__')) and (not k=='values')}
[ "dansull@gmail.com" ]
dansull@gmail.com
596aff5f32520950917bc78082f4e3f8ba81229b
a2bc197977491ca26b0662e3b76ee45e20b72bae
/100 exercise/no52.py
a9c2d1c3cabbbeba50bebd5dd877956676ad808c
[]
no_license
phucduongBKDN/100exercies
50cbe168d69cf6cbf17d6877a1c1fdb7efeb0308
82e59cc0ff7cbf6c9a69acaaee3a9524b0aec365
refs/heads/master
2020-05-25T10:12:16.470912
2019-05-24T13:32:10
2019-05-24T13:32:10
187,754,937
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
# Excel Sheet Column Number thisdict = { "A": 1, "B": 2, "C": 3 } j = input("Enter char: ") print(thisdict[j])
[ "phucduong2397@gmail.com" ]
phucduong2397@gmail.com
12d466c02636611357c4637d713cb7d391492899
874cb7592221cf7fa86f7d752c3a698696f7412d
/firstPass.py
0302ecca5f46333dec872fa794e8e3bab6ed4eef
[]
no_license
53apnil/Assembler_Assignment
bc48f8ed3739509d11115d7c8e969c10b9ac4e0f
bcb805be954c38a66ff2316304d8714b65a925c0
refs/heads/master
2020-09-03T07:39:41.468319
2019-11-04T04:45:36
2019-11-04T04:45:36
219,418,541
0
0
null
null
null
null
UTF-8
Python
false
false
1,890
py
import error as ERR def check(operand,symTab): for i in range(0,len(symTab)): if operand==symTab[i][1]: return i return 0 def checkLit(lit,litTab): for h in range(0 ,len(litTab)): if lit==litTab[h][1]: return 0 return 1 def checkAdd(tempStr,regTab,symTab,litTab,errorTab,size,litNo,lineNo): operSplit=tempStr[1].split(',') if operSplit[0] in regTab and operSplit[1] in regTab: size+=2 return litNo elif operSplit[0] in regTab and operSplit[1].isdecimal(): size+=3 if checkLit(operSplit[1],litTab): litNo+=1 litList=[litNo,operSplit[1],(hex(int(operSplit[1])))[2:].upper()] litTab.append(litList) return litNo return litNo elif operSplit[0] in regTab and check(operSplit[1],symTab): size+=6 return litNo else: ERR.putError(errorTab,'',lineNo,4) return litNo def checkMov(tempStr,regTab,symTab,litTab,errorTab,size,litNo,lineNo): operSplit=tempStr[1].split(',') if operSplit[0] in regTab and operSplit[1] in regTab: size+=2 return litNo elif operSplit[0] in regTab and operSplit[1].isdecimal(): size+=5 if checkLit(operSplit[1],litTab): litNo+=1 litList=[litNo,operSplit[1],(hex(int(operSplit[1])))[2:].upper()] litTab.append(litList) return litNo return litNo elif operSplit[0] in regTab and check(operSplit[1],symTab): size+=5 return litNo else: ERR.putError(errorTab,'',lineNo,4) return litNo def checkInc(tempStr,regTab,symTab,errorTab,size,lineNo): if tempStr[1] in regTab: size+=2 elif "dword" in tempStr[1]: size+=6 else: ERR.putError(errorTab,'',lineNo,4) def checkJmp(tempStr,regTab,symTab,errorTab,size,lineNo,keyWords,i): if tempStr[1] in keyWords: ERR.putError(errorTab,tempStr[1],line,4) return i elif (check(tempStr[1],symTab))==0: i=i+1 emptyList=[i,tempStr[1],0,'t','','','','U',lineNo] symTab.append(emptyList) size+=2 return i else: size+=2 return i
[ "noreply@github.com" ]
53apnil.noreply@github.com
93851e6871cc6d70e6c8e9d14a812fcd7e0acead
2884e44c7c8b5f1dd7405fba24549e8135605ad8
/plastiqpublicapi/http/requests_client.py
ae679af90406697881039f9d58679f4a7e954e1d
[ "MIT" ]
permissive
jeffkynaston/sdk-spike-python-apimatic
d44d2464ba43c12dabe3ae3ba01ef268f73c16f3
e1ca52116aabfcdb2f36c24ebd866cf00bb5c6c9
refs/heads/main
2023-07-01T15:17:50.623155
2021-08-05T22:45:12
2021-08-05T22:45:12
393,186,601
0
0
null
null
null
null
UTF-8
Python
false
false
3,882
py
# -*- coding: utf-8 -*- """ plastiqpublicapi This file was automatically generated by APIMATIC v3.0 ( https://www.apimatic.io ). """ from cachecontrol import CacheControl from requests import session from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry from plastiqpublicapi.http.http_client import HttpClient from plastiqpublicapi.http.http_method_enum import HttpMethodEnum from plastiqpublicapi.http.http_response import HttpResponse class RequestsClient(HttpClient): """An implementation of HttpClient that uses Requests as its HTTP Client Attributes: timeout (int): The default timeout for all API requests. """ def __init__(self, timeout=60, cache=False, max_retries=None, backoff_factor=None, retry_statuses=None, retry_methods=None, verify=True): """The constructor. Args: timeout (float): The default global timeout(seconds). """ self.timeout = timeout self.session = session() retries = Retry(total=max_retries, backoff_factor=backoff_factor, status_forcelist=retry_statuses, allowed_methods=retry_methods) self.session.mount('http://', HTTPAdapter(max_retries=retries)) self.session.mount('https://', HTTPAdapter(max_retries=retries)) if cache: self.session = CacheControl(self.session) self.session.verify = verify def execute_as_string(self, request): """Execute a given HttpRequest to get a string response back Args: request (HttpRequest): The given HttpRequest to execute. Returns: HttpResponse: The response of the HttpRequest. """ response = self.session.request( HttpMethodEnum.to_string(request.http_method), request.query_url, headers=request.headers, params=request.query_parameters, data=request.parameters, files=request.files, timeout=self.timeout ) return self.convert_response(response, False, request) def execute_as_binary(self, request): """Execute a given HttpRequest to get a binary response back Args: request (HttpRequest): The given HttpRequest to execute. Returns: HttpResponse: The response of the HttpRequest. """ response = self.session.request( HttpMethodEnum.to_string(request.http_method), request.query_url, headers=request.headers, params=request.query_parameters, data=request.parameters, files=request.files, timeout=self.timeout ) return self.convert_response(response, True, request) def convert_response(self, response, binary, http_request): """Converts the Response object of the HttpClient into an HttpResponse object. Args: response (dynamic): The original response object. http_request (HttpRequest): The original HttpRequest object. Returns: HttpResponse: The converted HttpResponse object. """ if binary: return HttpResponse( response.status_code, response.reason, response.headers, response.content, http_request ) else: return HttpResponse( response.status_code, response.reason, response.headers, response.text, http_request )
[ "jeff.kynaston@plastiq.com" ]
jeff.kynaston@plastiq.com
1f68d063652856af257f1df8c6243c1690e0fe35
04a7b23a14722f213309a0a8cb1c146d8da3f1f9
/test/test_nestedtensor.py
ba70fbf9c7c97dd2b2e892cb7a56a0f9141cb26b
[ "BSD-2-Clause", "LicenseRef-scancode-secret-labs-2011", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
mingfeima/pytorch
017e79723d3510d011ad46e8b63bc900f7468b4e
a2f44d82f837500c9921ecf86b90fab0dbc27084
refs/heads/master
2023-02-20T04:30:34.439394
2023-02-16T21:16:03
2023-02-17T00:25:05
138,236,721
1
0
NOASSERTION
2021-05-17T01:51:42
2018-06-22T00:49:24
C++
UTF-8
Python
false
false
109,751
py
# Owner(s): ["module: nestedtensor"] import unittest import numpy as np import torch import torch.nn from torch.testing._internal.common_device_type import ( dtypes, dtypesIfCUDA, instantiate_device_type_tests, onlyCPU, onlyCUDA, skipMeta, ) from torch.testing._internal.common_dtype import floating_types_and_half from torch.testing._internal.common_utils import ( freeze_rng_state, gradcheck, instantiate_parametrized_tests, IS_FBCODE, parametrize, run_tests, subtest, TestCase, ) # Tests are ported from pytorch/nestedtensor. # This makes porting as_nested_tensor easier in the future. def _iter_constructors(): # yield as_nested_tensor yield torch.nested.nested_tensor # Helper function to generate a pair of random nested tensors # one is contiguous, the other is not, but they appear to have same entries # an output nested tensor consists of # * `len(ragged_sizes)` matrices # * matrices[i].shape == (20, ragged_sizes[i]) def random_nt_noncontiguous_pair(ragged_sizes, device="cpu", dtype=torch.float16): xs = [] for size in ragged_sizes: xs.append(torch.randn((size, 20), device=device, dtype=dtype)) # contiguous nested tensor ys = [] for x in xs: ys.append(x.transpose(-1, -2)) nt_contiguous = torch.nested.nested_tensor(ys) # noncontiguous nested tensor n = len(ragged_sizes) nt_noncontiguous = torch.nested.nested_tensor(xs).transpose(-1, -2) return nt_contiguous, nt_noncontiguous # Helper functions to pad a noncontiguous nested tensor # can be replaced once to_padded_tensor supports noncontiguous memory def noncontiguous_to_padded_tensor(input, shape=None): tensors = input.unbind() ntensors = len(tensors) assert ntensors > 0 if shape is None: shape = [] for size in tensors[0].shape: shape.append(size) for i in range(1, ntensors): new_shape = tensors[i].shape for j in range(len(shape)): shape[j] = max(shape[j], new_shape[j]) shape = [ntensors] + shape result = tensors[0].new_zeros(shape) for itensor in range(ntensors): tensor = tensors[itensor] view = result[itensor] for idim in range(tensor.dim()): view = view.narrow(idim, 0, tensor.size(idim)) view.copy_(tensor) return result # Helper function to generate a random nested tensor def random_nt(device, dtype, num_tensors, max_dims, min_dims=None): if min_dims is None: min_dims = tuple([0] * len(max_dims)) ts1 = [] for _ in range(num_tensors): tensor_dims = tuple([torch.randint(low=min_dim, high=max_dim, size=(1,)).item() for (min_dim, max_dim) in zip(min_dims, max_dims)]) t1 = torch.randn(tensor_dims, device=device, dtype=dtype) ts1.append(t1) return torch.nested.nested_tensor(ts1, device=device, dtype=dtype) class TestNestedTensor(TestCase): @parametrize("batch_size", [2, 4]) @parametrize("max_seq_len", [3, 5]) @parametrize("vocab_size", [10, 20]) def test_2d_nested_tensor(self, batch_size, max_seq_len, vocab_size): data = [] nested_tensor_ref_list = [] for _ in range(batch_size): if max_seq_len == 0: length = 0 else: length = np.random.randint(low=1, high=max_seq_len) row = list(np.random.randint(low=0, high=vocab_size, size=(length,))) data.append(row) nested_tensor_ref_list.append(torch.tensor(row)) nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64) nested_tensor_list = nested_tensor.unbind() for id in range(batch_size): self.assertEqual( nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.int64) ) @parametrize("batch_size", [2, 4]) @parametrize("max_seq_len", [3, 5]) @parametrize("vocab_size", [10, 20]) def test_3d_nested_tensor(self, batch_size, max_seq_len, vocab_size): data = [] nested_tensor_ref_list = [] for _ in range(batch_size): if max_seq_len == 0: length = 0 else: length = np.random.randint(low=1, high=max_seq_len) row = list(np.random.randint(low=0, high=vocab_size, size=(length,))) row = [list(item * np.arange(max_seq_len)) for item in row] data.append(row) nested_tensor_ref_list.append(torch.Tensor(row)) nested_tensor = torch.nested.nested_tensor(data, dtype=torch.int64) nested_tensor_list = nested_tensor.unbind() for id in range(batch_size): self.assertEqual( nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.int64) ) @parametrize("batch_size", [2, 4]) @parametrize("max_seq_len", [3, 5]) @parametrize("vocab_size", [10, 20]) def test_3d_nested_tensor_float(self, batch_size, max_seq_len, vocab_size): data = [] nested_tensor_ref_list = [] for _ in range(batch_size): if max_seq_len == 0: length = 0 else: length = np.random.randint(low=1, high=max_seq_len) row = list( np.random.randint(low=0, high=vocab_size, size=(length,)).astype(float) ) row = [list(item * np.arange(max_seq_len)) for item in row] data.append(row) nested_tensor_ref_list.append(torch.Tensor(row)) nested_tensor = torch.nested.nested_tensor(data, dtype=torch.float) nested_tensor_list = nested_tensor.unbind() for id in range(batch_size): self.assertEqual( nested_tensor_list[id], nested_tensor_ref_list[id].type(torch.float) ) @torch.inference_mode() def _test_unbind_case(self, a, b): nt = torch.nested.nested_tensor([a, b]) a1, b1 = nt.unbind() self.assertTrue(a is not a1) self.assertTrue(b is not b1) nt = torch.nested.nested_tensor([a, b], dtype=a.dtype) a1, b1 = nt.unbind(0) self.assertEqual(a, a1) self.assertEqual(b, b1) a = torch.randn((2, 3)).add_(1) nt = torch.nested.nested_tensor([a]) self.assertEqual(a, nt.unbind(0)[0]) @torch.inference_mode() def test_unbind_0(self): self._test_unbind_case( torch.tensor([1, 2]), torch.tensor([7, 8]), ) @torch.inference_mode() def test_unbind_1(self): self._test_unbind_case( torch.tensor([1]), torch.tensor([7]), ) @torch.inference_mode() def test_unbind_3(self): self._test_unbind_case( torch.tensor([1.0]), torch.tensor([]), ) @torch.inference_mode() def test_unbind_4(self): self._test_unbind_case( torch.tensor([]), torch.tensor([]), ) @torch.inference_mode() def test_unbind_dim(self): def _test_fn(unbind_fn): a = torch.rand(3, 2) b = torch.rand(2, 3) nt = torch.nested.nested_tensor([a, b]) self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1)) # Both of these tests are necessary, because we're using # torch_function. _test_fn(lambda x, dim: x.unbind(dim)) # TODO: Re-enable this once using torch_dispatch # _test_fn(lambda x, dim: torch.unbind(x, dim)) @torch.inference_mode() def test_nested_tensor(self): self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(torch.tensor([3.0]))) self.assertRaises(TypeError, lambda: torch.nested.nested_tensor(4.0)) @torch.inference_mode() def test_nested_tensor_matching_dim(self): self.assertRaisesRegex( RuntimeError, "Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.", lambda: torch.nested.nested_tensor([torch.tensor(1.0), torch.tensor([])]), ) self.assertRaisesRegex( RuntimeError, "Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.", lambda: torch.nested.nested_tensor( [torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])] ), ) @torch.inference_mode() def test_default_nested_tensor(self): self.assertRaises(TypeError, lambda: torch.nested.nested_tensor()) default_nested_tensor = torch.nested.nested_tensor([]) default_tensor = torch.tensor([]) # self.assertEqual(default_nested_tensor.nested_dim(), 1) # self.assertEqual(default_nested_tensor.nested_size(), ()) self.assertEqual(default_nested_tensor.dim(), default_tensor.dim()) self.assertEqual(default_nested_tensor.layout, default_tensor.layout) self.assertEqual(default_nested_tensor.device, default_tensor.device) self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype) self.assertEqual( default_nested_tensor.requires_grad, default_tensor.requires_grad ) self.assertIsNone(default_tensor.grad) # TODO: Re-enable once we have a performance driven # use case and implementation. # self.assertEqual(default_nested_tensor.is_pinned(), # default_tensor.is_pinned()) @torch.inference_mode() def test_dim(self): for constructor in _iter_constructors(): a1 = constructor([]) self.assertEqual(a1.dim(), 1) a1 = constructor([torch.tensor(3.0)]) self.assertEqual(a1.dim(), 1) a1 = constructor([torch.tensor([1, 2, 3, 4])]) self.assertEqual(a1.dim(), 2) @unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.") @torch.inference_mode() def test_numel(self): for constructor in _iter_constructors(): a1 = constructor([]) self.assertEqual(a1.numel(), 0) a1 = constructor([torch.tensor(3.0), torch.tensor(4.0)]) self.assertEqual(a1.numel(), 2) a1 = constructor([torch.randn(2, 2, 2)]) self.assertEqual(a1.numel(), 8) a1 = constructor([torch.randn([1, 2, 3]), torch.randn(3, 2, 1)]) self.assertEqual(a1.numel(), 12) a1 = constructor([torch.randn([1, 1, 3]), torch.randn(3, 2, 4)]) self.assertEqual(a1.numel(), 27) a1 = constructor([torch.randn([5, 5, 5]), torch.randn(6, 6, 6)]) self.assertEqual(a1.numel(), 341) # Interesting edge case a1 = constructor([torch.randn([1, 2, 3]), torch.randn(1, 2, 0)]) self.assertEqual(a1.numel(), 6) @torch.inference_mode() def test_size(self): for constructor in _iter_constructors(): a1 = constructor([]) self.assertRaisesRegex( RuntimeError, "NestedTensorImpl doesn't support sizes", lambda: a1.size(), ) def test_size_dim(self): a = torch.nested.nested_tensor([]) self.assertEqual(a.size(0), 0) a = torch.nested.nested_tensor([torch.tensor(1)]) self.assertEqual(a.size(0), 1) a = torch.nested.nested_tensor([torch.tensor(1), torch.tensor(2)]) self.assertEqual(a.size(0), 2) a = torch.nested.nested_tensor([torch.rand(1, 2), torch.rand(1, 8)]) self.assertEqual(a.size(0), 2) self.assertEqual(a.size(1), 1) self.assertRaisesRegex( RuntimeError, "Given dimension 2 is irregular and does not have a size", lambda: a.size(2)) a = torch.nested.nested_tensor([torch.rand(3, 4), torch.rand(5, 4)]) self.assertEqual(a.size(0), 2) self.assertRaisesRegex( RuntimeError, "Given dimension 1 is irregular and does not have a size", lambda: a.size(1)) self.assertEqual(a.size(2), 4) @unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.") @torch.inference_mode() def test_stride(self): for constructor in _iter_constructors(): a1 = constructor([]) self.assertRaisesRegex( RuntimeError, "NestedTensorImpl doesn't support strides", lambda: a1.stride(), ) @unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.") @torch.inference_mode() def test_is_contiguous(self): # Test empty case nt_empty = torch.nested.nested_tensor([]) assert nt_empty.is_contiguous() self.assertEqual(nt_empty, nt_empty.contiguous()) nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7)) # Test contiguous case assert nt_contiguous.is_contiguous() self.assertEqual(nt_contiguous, nt_contiguous.contiguous()) # Test non_contiguous case assert not nt_noncontiguous.is_contiguous() self.assertEqual(nt_contiguous, nt_noncontiguous.contiguous()) @torch.inference_mode() def test_repr_string(self): a = torch.nested.nested_tensor([]) expected = "nested_tensor([" "\n\n])" self.assertEqual(str(a), expected) self.assertEqual(repr(a), expected) a = torch.nested.nested_tensor([torch.tensor(1.0)]) expected = "nested_tensor([" "\n tensor(1.)" "\n])" self.assertEqual(str(a), expected) self.assertEqual(repr(a), expected) a = torch.nested.nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])]) expected = ( "nested_tensor([" "\n tensor([[1, 2]])" "," "\n tensor([[4, 5]])" "\n])" ) self.assertEqual(str(a), expected) self.assertEqual(repr(a), expected) def test_to_padded_tensor_on_empty_tensor(self): nt = torch.nested.nested_tensor([]) empty = torch.nested.to_padded_tensor(nt, 4) self.assertEqual(empty, torch.tensor([])) def test_nested_namespace(self): nt = torch.nested.nested_tensor([torch.randn(2, 3), torch.randn(4, 5)]) result = nt.to_padded_tensor(4) nested_namespace_result = torch.nested.to_padded_tensor(nt, 4) self.assertEqual(result, nested_namespace_result) def test_to(self): ntensors = 4 nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4)) def test_copy_behavior(t, non_blocking=False): self.assertIs(t, t.to(t, non_blocking=non_blocking)) self.assertIs(t, t.to(t.dtype, non_blocking=non_blocking)) self.assertIs(t, t.to(torch.empty_like(t), non_blocking=non_blocking)) self.assertIsNot(t, t.to(t, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(t.dtype, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(torch.empty_like(t), non_blocking=non_blocking, copy=True)) devices = [t.device] if t.device.type == 'cuda': if t.device.index == -1: devices.append('cuda:{}'.format(torch.cuda.current_device())) elif t.device.index == torch.cuda.current_device(): devices.append('cuda') for device in devices: self.assertIs(t, t.to(device, non_blocking=non_blocking)) self.assertIs(t, t.to(device, t.dtype, non_blocking=non_blocking)) self.assertIsNot(t, t.to(device, non_blocking=non_blocking, copy=True)) self.assertIsNot(t, t.to(device, t.dtype, non_blocking=non_blocking, copy=True)) test_copy_behavior(nt) self.assertEqual(nt.device, nt.to('cpu').device) self.assertEqual(nt.device, nt.to('cpu', dtype=torch.float32).device) self.assertIs(torch.float32, nt.to('cpu', dtype=torch.float32).dtype) self.assertEqual(nt.device, nt.to(torch.float32).device) self.assertIs(torch.float32, nt.to(dtype=torch.float32).dtype) def test_data_ptr(getter): self.assertEqual(getter(nt), getter(nt.to('cpu'))) self.assertEqual(getter(nt), getter(nt.to(dtype=nt.dtype, device=nt.device, copy=False))) self.assertEqual(getter(nt), getter(nt.to('cpu', copy=False))) self.assertNotEqual(getter(nt), getter(nt.to('cpu', copy=True))) test_data_ptr(lambda nt: nt.data_ptr()) if torch.cuda.is_available(): for non_blocking in [True, False]: for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: nt2 = random_nt(cuda, torch.float32, ntensors, (4, 4)) test_copy_behavior(nt2, non_blocking) self.assertEqual(nt2.device, nt2.to(cuda, non_blocking=non_blocking).device) self.assertEqual(nt.device, nt2.to('cpu', non_blocking=non_blocking).device) self.assertEqual(nt2.device, nt.to(cuda, non_blocking=non_blocking).device) self.assertIs(torch.int32, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).dtype) self.assertEqual(nt.device, nt2.to('cpu', dtype=torch.int32, non_blocking=non_blocking).device) self.assertIs(torch.int32, nt2.to(dtype=torch.int32).dtype) self.assertEqual(nt2.device, nt2.to(dtype=torch.int32).device) def test_copy_(self): ntensors = 4 nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4)) nt_copy = torch.empty_like(nt) nt_copy.copy_(nt) for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy): self.assertEqual(nt_ub, nt_copy_ub) nt_error = torch.nested.nested_tensor([torch.tensor([0, 0])]) self.assertRaisesRegex( RuntimeError, "copy_ only supports tensors that are the same size for Nested implementations", lambda: nt_error.copy_(nt) ) if torch.cuda.is_available(): nt = random_nt(torch.device('cuda'), torch.float32, ntensors, (4, 4)) nt_copy = torch.empty_like(nt, device=torch.device('cpu')) nt_copy.copy_(nt, non_blocking=True) torch.cuda.current_stream(torch.cuda.current_device()).synchronize() for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy): self.assertEqual(nt_ub, nt_copy_ub) nt_copy = torch.empty_like(nt, device=torch.device('cpu')) nt_copy.copy_(nt, non_blocking=False) for (nt_ub, nt_copy_ub) in zip(nt.unbind(), nt_copy): self.assertEqual(nt_ub, nt_copy_ub) def test_fill_(self): ntensors = 4 nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4)) nt.fill_(10.) for nt_ub in nt.unbind(): t = torch.empty_like(nt_ub) t.fill_(10.) self.assertEqual(nt_ub, t) fill_tensor = torch.tensor([11.]) self.assertRaisesRegex( RuntimeError, "fill_ only supports 0-dimension value tensor", lambda: nt.fill_(fill_tensor) ) nt.fill_(fill_tensor[0]) for nt_ub in nt.unbind(): t = torch.empty_like(nt_ub) t.fill_(11.) self.assertEqual(nt_ub, t) def test_ones_like(self): ntensors = 4 nt = random_nt(torch.device('cpu'), torch.float32, ntensors, (4, 4)) ones_nt = torch.ones_like(nt) for nt_ub in ones_nt.unbind(): t = torch.ones_like(nt_ub) self.assertEqual(nt_ub, t) class TestNestedTensorDeviceType(TestCase): # Helper function to generate a pair of random nested tensors # the 2 nested tensors have same shapes def random_nt_pair(self, device, dtype, num_tensors, max_dims): ts1 = [] ts2 = [] for _ in range(num_tensors): tensor_dims = tuple([torch.randint(low=0, high=max_dim, size=(1,)).item() for max_dim in max_dims]) t1 = torch.randn(tensor_dims, device=device, dtype=dtype) t2 = torch.randn(tensor_dims, device=device, dtype=dtype) ts1.append(t1) ts2.append(t2) return (torch.nested.nested_tensor(ts1, device=device, dtype=dtype), torch.nested.nested_tensor(ts2, device=device, dtype=dtype)) @dtypes(*floating_types_and_half()) def test_detach(self, device, dtype): a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=False) b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=False) x = torch.nested.nested_tensor([a, b], requires_grad=True) x_detach = x.detach() z = x_detach * 4 self.assertFalse(x_detach.requires_grad) self.assertFalse(z.requires_grad) a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=True) b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=True) x = torch.nested.as_nested_tensor([a, b]) y = x * 2 y = y.detach() self.assertFalse(y.requires_grad) self.assertIsNone(y.grad_fn) z = x + y torch.nested.to_padded_tensor(z, 0).sum().backward() # This is an incorrect gradient, but we assume that's what the user # wanted. detach() is an advanced option. self.assertEqual(a.grad, torch.ones(2, 4, device=device, dtype=dtype)) self.assertEqual(b.grad, torch.ones(5, 4, device=device, dtype=dtype)) @dtypes(torch.float, torch.float16, torch.double) def test_unbind_noncontiguous(self, device, dtype): nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) ub_contiguous = nt_contiguous.unbind() ub_noncontiguous = nt_noncontiguous.unbind() self.assertEqual(len(ub_contiguous), len(ub_noncontiguous)) n = len(ub_contiguous) for i in range(n): self.assertEqual(ub_contiguous[i], ub_noncontiguous[i]) @dtypes(torch.float) @skipMeta def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype): t = torch.randn(4, 4, 4, device=device, dtype=dtype) ts = list(torch.unbind(t)) ts[0] = ts[0][:-1] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) padded = torch.nested.to_padded_tensor(nt, 0) nt_to = torch._nested_from_padded_and_nested_example(padded, nt) for (t1, t2) in zip(nt.unbind(), nt_to.unbind()): self.assertEqual(t1, t2) self.assertEqual(nt.device, nt_to.device) @dtypes(torch.float) @dtypesIfCUDA(torch.float, torch.half) @skipMeta @torch.inference_mode() def test_layer_norm(self, device, dtype): def _test(size): # Simple shapes test t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False) t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False) ts = [t0, t1, t0, t1] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype) nt_result = layer_norm(nt) for (nt_subresult, t) in zip(nt_result.unbind(), ts): t_result = layer_norm(t.reshape(1, -1, size).squeeze(0)) self.assertEqual(nt_subresult, t_result) # More complex nt test with different lengths for each tensor t0 = torch.randn(4, size, device=device, dtype=dtype, requires_grad=False) t1 = torch.randn(10, size, device=device, dtype=dtype, requires_grad=False) t2 = torch.randn(7, size, device=device, dtype=dtype, requires_grad=False) ts = [t0, t1, t2, t0, t2] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype) nt_result = layer_norm(nt) for (nt_subresult, t) in zip(nt_result.unbind(), ts): t_result = layer_norm(t.reshape(1, -1, size).squeeze(0)) self.assertEqual(nt_subresult, t_result) if size <= 128: # Test with multidimensional tensors after irregular dim # (run only with smaller dimensions to ensure fast execution) t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False) t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False) t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False) ts = [t0, t1, t2, t0, t2] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) layer_norm = torch.nn.LayerNorm((size, size, 4), device=device, dtype=dtype) nt_result = layer_norm(nt) for (nt_subresult, t) in zip(nt_result.unbind(), ts): t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0)) self.assertEqual(nt_subresult, t_result) # Test where the normalizing dimensions are not all layer_norm = torch.nn.LayerNorm((size, 4), device=device, dtype=dtype) nt_result = layer_norm(nt) for (nt_subresult, t) in zip(nt_result.unbind(), ts): t_result = layer_norm(t.reshape(1, -1, size, size, 4).squeeze(0)) self.assertEqual(nt_subresult, t_result) for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32): _test(size) @dtypes(torch.float) @dtypesIfCUDA(torch.float, torch.half) @skipMeta @torch.inference_mode() def test_layer_norm_breaking(self, device, dtype): size = 128 t0 = torch.randn(4, size, size, 4, device=device, dtype=dtype, requires_grad=False) t1 = torch.randn(10, size, size, 4, device=device, dtype=dtype, requires_grad=False) t2 = torch.randn(7, size, size, 4, device=device, dtype=dtype, requires_grad=False) ts = [t0, t1, t2, t0, t2] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) layer_norm = torch.nn.LayerNorm((4, size, size, 4), device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "normalized_shape extends into irregular dimensions for the nested tensor", lambda: layer_norm(nt), ) layer_norm = torch.nn.LayerNorm((size + 1, size, 4), device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "The shape at dimension 0", lambda: layer_norm(nt), ) @skipMeta @torch.inference_mode() def test_embedding(self, device): inputs = [ torch.randint(100, (L,), device=device, dtype=torch.int64) for L in torch.randint(5, 50, (8,)) ] x = torch.nested.nested_tensor(inputs, device=device, dtype=torch.int64) emb = torch.nn.Embedding(100, 8, device=device) y = emb(x) ys = y.unbind() for i, inp in enumerate(inputs): self.assertEqual(emb(inp), ys[i]) @dtypes(torch.float, torch.float16) def test_to_padded_tensor_simple(self, device, dtype): t = torch.randn(4, 4, 4, device=device, dtype=dtype) ts = list(torch.unbind(t)) ts[0] = ts[0][:-1] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) for padding_value in (0, 1): padded = torch.nested.to_padded_tensor(nt, padding_value) correct_output = t.clone() if padding_value == 0: correct_output[0][-1] = torch.zeros_like(correct_output[0][-1]) else: correct_output[0][-1] = torch.ones_like(correct_output[0][-1]) self.assertEqual(padded, correct_output) self.assertEqual(padded.device, torch.device(device)) self.assertEqual(padded.dtype, dtype) @dtypes(torch.float, torch.float16) def test_to_padded_tensor_output_size(self, device, dtype): t = torch.randn(4, 4, 4, device=device, dtype=dtype) output_size = (4, 6, 5) ts = list(torch.unbind(t)) ts[0] = ts[0][:-1] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) for padding_value in (0, 1): padded = torch.nested.to_padded_tensor(nt, padding_value, output_size=output_size) correct_output = torch.ones(output_size, device=device, dtype=dtype) * padding_value correct_output[:4:, :4, :4] = t.clone() if padding_value == 0: correct_output[0][3] = torch.zeros_like(correct_output[0][3]) else: correct_output[0][3] = torch.ones_like(correct_output[0][3]) self.assertEqual(padded, correct_output) self.assertEqual(padded.device, torch.device(device)) self.assertEqual(padded.dtype, dtype) @dtypes(torch.float, torch.float16, torch.double) def test_to_padded_tensor_dim2(self, device, dtype): ts = [ torch.randn(160, device=device, dtype=dtype), torch.randn(1240, device=device, dtype=dtype), torch.randn(2400, device=device, dtype=dtype), ] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) pad = 42 correct_output = [] for t in ts: next_output = torch.ones_like(ts[2]) * pad correct_output.append(next_output) next_output[:t.size(0)].copy_(t) correct_output = torch.stack(correct_output) padded = torch.nested.to_padded_tensor(nt, pad) self.assertEqual(padded, correct_output) @dtypes(torch.float, torch.float16, torch.double) def test_to_padded_tensor_dim3(self, device, dtype): ts = [ torch.randn(16, 21, device=device, dtype=dtype), torch.randn(24, 32, device=device, dtype=dtype), torch.randn(40, 53, device=device, dtype=dtype), ] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) pad = 42 correct_output = [] for t in ts: next_output = torch.ones_like(ts[2]) * pad correct_output.append(next_output) next_output[:t.size(0), :t.size(1)].copy_(t) correct_output = torch.stack(correct_output) padded = torch.nested.to_padded_tensor(nt, pad) self.assertEqual(padded, correct_output) @dtypes(torch.float, torch.float16, torch.double) def test_to_padded_tensor_dim4(self, device, dtype): ts = [ torch.randn(16, 21, 13, device=device, dtype=dtype), torch.randn(24, 32, 14, device=device, dtype=dtype), torch.randn(40, 53, 16, device=device, dtype=dtype), ] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) pad = 42 correct_output = [] for t in ts: next_output = torch.ones_like(ts[2]) * pad correct_output.append(next_output) next_output[:t.size(0), :t.size(1), :t.size(2)].copy_(t) correct_output = torch.stack(correct_output) padded = torch.nested.to_padded_tensor(nt, pad) self.assertEqual(padded, correct_output) # TODO: test noncontiguous to_padded_tensor # For now this tests the functionality of noncontiguous_to_padded_tensor # and the error message of to_padded_tensor # since to_padded_tensor does not support noncontiguous buffer yet @dtypes(torch.float, torch.float16, torch.double) @torch.inference_mode() def test_to_padded_tensor_noncontiguous(self, device, dtype): nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) # test noncontiguous_to_padded_tensor functionality self.assertEqual( torch.nested.to_padded_tensor(nt_contiguous, 0.0), noncontiguous_to_padded_tensor(nt_noncontiguous)) # test to_padded_tensor error message self.assertRaisesRegex( RuntimeError, r"for now to_padded_tensor only supports contiguous nested tensor", lambda: torch.nested.to_padded_tensor(nt_noncontiguous, 0.0) ) @skipMeta def test_device_checks(self, device): nt = torch.nested.nested_tensor([], device=device) is_cuda = 'cuda' in str(device) self.assertEqual(nt.is_cuda, is_cuda) @dtypes(torch.float, torch.float16, torch.double) def test_nested_tensor_indexing(self, device, dtype): # edge case: empty nested tensor nt0 = torch.nested.nested_tensor([]) self.assertRaises(IndexError, lambda: nt0[0]) # normal case x0 = torch.randn((2, 5), device=device, dtype=dtype) x1 = torch.randn((3, 4), device=device, dtype=dtype) nt = torch.nested.nested_tensor([x0, x1]) # single index: only support integer in the batch dimension self.assertEqual(nt[0], x0) self.assertEqual(nt[-1], x1) self.assertRaises(IndexError, lambda: nt[2]) self.assertRaises(IndexError, lambda: nt[-3]) self.assertRaises(NotImplementedError, lambda: nt[:]) self.assertRaises(NotImplementedError, lambda: nt[...]) # tuple of indices: only support integer in the batch dimension # + all possible indexing in the original tensor dimensions self.assertEqual(nt[0, 0, 0], x0[0, 0]) self.assertEqual(nt[0, 1, :], x0[1, :]) self.assertEqual(nt[1, ...], x1) self.assertRaises(IndexError, lambda: nt[1, 4, 2]) self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1]) # test select on non-batch dimensions self.assertEqual(nt.select(1, 0)[0], x0.select(0, 0)) self.assertEqual(nt.select(1, 0)[1], x1.select(0, 0)) self.assertRaises(IndexError, lambda: nt.select(1, 3)) self.assertEqual(nt.select(2, 0)[0], x0.select(1, 0)) self.assertEqual(nt.select(2, 0)[1], x1.select(1, 0)) self.assertRaises(IndexError, lambda: nt.select(2, 5)) # make sure indexing returns a view nt[0].fill_(100.0) answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5)) self.assertEqual(nt[0], answer) nt[1, 1, :].fill_(200.0) answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4) self.assertEqual(nt[1, 1, :], answer) # Test that indexing works when requires_grad_(True) # previously this was failing because the backward kernel for select.int uses .sizes() nt = torch.nested.nested_tensor([x0, x1]).requires_grad_(True) self.assertEqual(nt[0], x0) self.assertEqual(nt[-1], x1) grad_x0 = torch.randn((2, 5), device=device, dtype=dtype) nt[0].backward(grad_x0) expected_grad = torch.nested.nested_tensor([grad_x0, torch.zeros((3, 4), device=device, dtype=dtype)]) self.assertEqual(nt.grad, expected_grad) @parametrize("func", [subtest(torch.nn.functional.relu, name='relu'), subtest(torch.nn.functional.relu_, name='relu_'), subtest(torch.nn.functional.gelu, name='gelu'), subtest(torch._C._nn.gelu_, name='gelu_'), subtest(torch.tanh, name='tanh'), subtest(torch.tanh_, name='tanh_'), subtest(torch.neg, name='neg')]) def test_activations(self, device, func): nt, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device=device, dtype=torch.float32) nested_result = func(nt) self.assertTrue(nested_result.is_nested) for t, t_res in zip(nt.unbind(), nested_result.unbind()): self.assertEqual(func(t), t_res) self.assertRaisesRegex( RuntimeError, "NestedTensor must be contiguous to get buffer.", lambda: func(nt_noncontiguous)) @dtypes(*floating_types_and_half()) def test_nested_tensor_chunk(self, device, dtype): # Transformer use case a = torch.randn(3, 3 * 4, device=device, dtype=dtype) b = torch.randn(2, 3 * 4, device=device, dtype=dtype) c = torch.randn(1, 3 * 4, device=device, dtype=dtype) a_chunks = a.chunk(3, dim=-1) b_chunks = b.chunk(3, dim=-1) c_chunks = c.chunk(3, dim=-1) a_nt = [a_chunks[0], b_chunks[0], c_chunks[0]] b_nt = [a_chunks[1], b_chunks[1], c_chunks[1]] c_nt = [a_chunks[2], b_chunks[2], c_chunks[2]] nt = torch.nested.nested_tensor([a, b, c]) chunked = nt.chunk(3, dim=-1) self.assertEqual(chunked[0], torch.nested.nested_tensor(a_nt)) self.assertEqual(chunked[1], torch.nested.nested_tensor(b_nt)) self.assertEqual(chunked[2], torch.nested.nested_tensor(c_nt)) for chunk in chunked: self.assertFalse(chunk.is_contiguous()) # Failure chunking on ragged dimensions self.assertRaisesRegex( RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.", lambda: torch.chunk(nt, 5, dim=1)) self.assertRaisesRegex( RuntimeError, "Chunk for nested tensors is currently only supported for the last dimension.", lambda: torch.chunk(nt, 5, dim=0)) # Failure on non-contiguous nt _, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) self.assertRaisesRegex( RuntimeError, "chunk expects `self` to be contiguous.", lambda: torch.chunk(nt_noncontiguous, 5, dim=-1)) # Failure when calling non divisible n_chunks self.assertRaisesRegex( RuntimeError, "Chunk for nested tensors is only supported for " "nested tensors with trailing dimension divisible by chunks.", lambda: torch.chunk(nt, 5, dim=-1)) # Failure when calling backward on a chunk a = torch.randn(3, 3 * 4, device=device, dtype=dtype, requires_grad=True) b = torch.randn(2, 3 * 4, device=device, dtype=dtype, requires_grad=True) nt_grad = torch.nested.as_nested_tensor([a, b]) chunked = torch.chunk(nt_grad, 2, dim=-1) self.assertRaisesRegex(RuntimeError, "derivative for aten::chunk is not implemented", lambda: chunked[0].backward(chunked[0].clone())) @dtypes(torch.float, torch.float16, torch.double) @torch.inference_mode() def test_nested_tensor_indexing_noncontiguous(self, device, dtype): nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) self.assertEqual(nt_contiguous.size(0), nt_noncontiguous.size(0)) n = nt_contiguous.size(0) for i in range(n): self.assertEqual(nt_contiguous[i], nt_noncontiguous[i]) @dtypes(torch.float, torch.float16) @skipMeta @torch.inference_mode() def test_nested_tensor_add(self, device, dtype): (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) ref = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) out = nt1 + nt2 self.assertEqual(ref, out) @onlyCUDA @dtypes(torch.float, torch.float16) @torch.inference_mode() @parametrize("embedding_dim", [8, 128, 256, 384]) def test_nested_tensor_dense_elementwise(self, device, dtype, embedding_dim): batch_size = 32 seq_lens = torch.randint(low=0, high=10, size=(batch_size,)) ts = [torch.randn((seq_len, embedding_dim)) for seq_len in seq_lens] nt = torch.nested.nested_tensor(ts, device=device, dtype=dtype) t = torch.randn((batch_size, 1, embedding_dim), device=device, dtype=dtype) ref_add = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt.unbind(), t.unbind())]) ref_mul = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt.unbind(), t.unbind())]) self.assertEqual(nt.add(t), ref_add) self.assertEqual(nt.mul(t), ref_mul) @dtypes(torch.float, torch.float16) @skipMeta @torch.inference_mode() def test_nested_tensor_mul(self, device, dtype): # nested tensor * nested tensor (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) ref = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) out = nt1 * nt2 self.assertEqual(ref, out) # nested tensor * scalar number = 10.0 scalar = torch.tensor(number).to(dtype).to(device) ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()]) out_number0 = nt1 * number out_number1 = number * nt1 out_scalar0 = nt1 * scalar out_scalar1 = scalar * nt1 self.assertEqual(out_number0, ref) self.assertEqual(out_number1, ref) self.assertEqual(out_scalar0, ref) self.assertEqual(out_scalar1, ref) # error case: numel == 1 but dim > 0 vector = torch.tensor([number]).to(dtype).to(device) self.assertRaisesRegex( RuntimeError, "Expected both self and other to be nested, but got a nested self and non-nested other", lambda: nt1.mul(vector) ) self.assertRaisesRegex( RuntimeError, "Expected both self and other to be nested, but got a non-nested self and nested other", lambda: vector.mul(nt1) ) @dtypes(torch.float, torch.float16) @skipMeta @torch.inference_mode() def test_nested_tensor_div(self, device, dtype): nt, nt2 = self.random_nt_pair(device, dtype, 4, (4, 4)) scale = 4.0 ref = torch.nested.nested_tensor([t / scale for t in nt.unbind()]) out = nt / 4.0 self.assertEqual(ref, out) ref_transposed = ref.transpose(1, 2) out = nt.transpose(1, 2) / 4.0 self.assertEqual(ref_transposed, out) ref = torch.nested.nested_tensor([t / t2 for (t, t2) in zip(nt.unbind(), nt2.unbind())]) out = nt / nt2 self.assertEqual(ref, out) out = nt.transpose(1, 2) / nt2.transpose(1, 2) self.assertEqual(ref.transpose(1, 2), out) nt_transpose_copy = torch.nested.nested_tensor([t.transpose(0, 1) for t in nt.unbind()]) self.assertRaisesRegex( RuntimeError, "div requires strides to match when given NestedTensors", lambda: nt_transpose_copy.transpose(1, 2) / nt2) nt = torch.nested.nested_tensor([torch.randn(i, 4) for i in [3, 4, 5]], device=device, dtype=dtype) nt_chunks = nt.chunk(2, -1) self.assertRaisesRegex( RuntimeError, "div requires offsets to match when given NestedTensors", lambda: nt_chunks[0] / nt_chunks[1]) @dtypes(torch.float, torch.float16) @skipMeta @torch.inference_mode() def test_nested_tensor_add_in_place(self, device, dtype): (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) ref = torch.nested.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) nt1 += nt2 self.assertEqual(ref, nt1) @dtypes(torch.float, torch.float16) @skipMeta @torch.inference_mode() def test_nested_tensor_mul_in_place(self, device, dtype): # nested tensor * nested tensor (nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4)) ref = torch.nested.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())]) nt1 *= nt2 self.assertEqual(ref, nt1) # nested tensor * scalar number = 10.0 scalar = torch.tensor(number).to(dtype).to(device) ref = torch.nested.nested_tensor([t * number for t in nt1.unbind()]) out_number = nt1.clone() out_number *= number out_scalar = nt1.clone() out_scalar *= scalar self.assertEqual(out_number, ref) self.assertEqual(out_scalar, ref) self.assertRaisesRegex( RuntimeError, r"output with shape \[.*\] doesn't match the broadcast shape \[.*\]", lambda: scalar.mul_(nt1) ) # error case: numel == 1 but dim > 0 vector = torch.tensor([number]).to(dtype).to(device) self.assertRaisesRegex( RuntimeError, "Expected both self and other to be nested, but got a nested self and non-nested other", lambda: nt1.mul_(vector) ) self.assertRaisesRegex( RuntimeError, "Expected both self and other to be nested, but got a non-nested self and nested other", lambda: vector.mul_(nt1) ) @onlyCPU @skipMeta @dtypes(torch.float) def test_nested_tensor_sum_dim(self, device, dtype): params = ((2, (1, 1)), ((4), (4, 4)), (10, (3, 5, 7))) def test_sum(device, dtype, ntensors, max_sizes, dim, keepdim=True): nt = random_nt(device, dtype, ntensors, max_sizes) nt2 = nt.clone() ub2 = nt2.unbind() nt.requires_grad_(True) [t.requires_grad_(True) for t in ub2] nt_sum = nt.sum(dim=dim, keepdim=keepdim) ub2_sum = [t.sum(-1, keepdim=keepdim) for t in ub2] self.assertEqual(nt_sum, torch.nested.nested_tensor(ub2_sum)) # test backward # generate gradient tensor that has the same size as the output size = nt_sum._nested_tensor_size() gt2 = [] for i in range(ntensors): gt2.append(torch.randn(size[i].tolist(), device=device, dtype=dtype)) gt = torch.nested.nested_tensor(gt2).clone() nt_sum.backward(gt) for t2, g2 in zip(ub2_sum, gt2): t2.backward(g2) self.assertEqual(nt.grad, torch.nested.nested_tensor([t.grad for t in ub2])) return for ntensors, max_sizes in params: test_sum(device, dtype, ntensors, max_sizes, len(max_sizes)) # Test error inputs with self.assertRaisesRegex(RuntimeError, "NestedTensor can only be reduced across the last"): torch.nested.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(0, keepdim=True) with self.assertRaisesRegex(RuntimeError, "NestedTensor only allows reduction of a single"): torch.nested.nested_tensor([torch.tensor([[3, 4, 5]]), torch.tensor([[1, 2]])]).sum([0, 1], keepdim=True) with self.assertRaisesRegex(RuntimeError, "NestedTensor always requires keepdim=True for now."): torch.nested.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(-1) @dtypes(torch.float, torch.float16) def test_contiguous(self, device, dtype): # Since we don't have access to the buffer in python this is harder to show what # we are testing for. When we call chunk on a consistent dim of a NT # for chunk_size > 1 the resulting tensors are views of the original NT # whose numels is now less than the size of the buffer. Clone was # previously creating a new NT with a buffer that was the same size as the # original. nt_contiguous = torch.nested.nested_tensor([torch.randn(2, 20, device=device, dtype=dtype), torch.randn(4, 20, device=device, dtype=dtype)]) # Split up the last dimension which has a consistent size of 20 into 5 chunks chunks = nt_contiguous.chunk(5, dim=-1) # # Check chunks are contiguous after calling contiguous for chunk in chunks: self.assertFalse(chunk.is_contiguous()) self.assertTrue(chunk.contiguous().is_contiguous()) @dtypes(torch.float, torch.float16) @skipMeta def test_clone(self, device, dtype): nt1 = random_nt(device, dtype, 4, (4, 4), (1, 1)) nt2 = nt1.clone() # Verify the values match self.assertEqual(nt1, nt2) # Verify modifying nt2 doesn't affect nt1 nt2.mul_(nt1) ub1 = nt1.unbind() ub2 = nt2.unbind() for i in range(len(ub1)): self.assertNotEqual(ub1[i], ub2[i]) nt1.clone(memory_format=torch.preserve_format) msg = "Nested tensor clone supports Preserve and Contiguous memory formats, called clone with memory format: ChannelsLast" with self.assertRaisesRegex(RuntimeError, msg): nt1.clone(memory_format=torch.channels_last) # cannot test torch.float16 because: RuntimeError: "bernoulli_scalar_cpu_" not implemented for 'Half' @dtypes(torch.float, torch.double) def test_dropout(self, device, dtype): # edge case: empty nested tensor nt0 = torch.nested.nested_tensor([]) y = torch.nn.functional.dropout(nt0, 0.5) self.assertEqual(nt0, y) # normal nested tensor ntensors = 4 nt = random_nt(device, dtype, ntensors, (4, 4)) # edge case: invalid dropout self.assertRaises(ValueError, lambda: torch.nn.Dropout(-0.1)) self.assertRaises(ValueError, lambda: torch.nn.Dropout(1.1)) self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, -0.1)) self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, 1.1)) # edge case: no dropout dropouter = torch.nn.Dropout(0.0) y0 = dropouter(nt) y1 = torch.nn.functional.dropout(nt, 0.0) self.assertEqual(nt, y0) self.assertEqual(nt, y1) # edge case: all dropout dropouter = torch.nn.Dropout(1.0) y0 = dropouter(nt) y1 = torch.nn.functional.dropout(nt, 1.0) nt0 = nt.clone() for i in range(ntensors): nt0[i].fill_(0.0) self.assertEqual(nt0, y0) self.assertEqual(nt0, y1) # normal case: normal dropout p = 0.2 y = torch.nn.functional.dropout(nt, p) expect = nt.clone() for i in range(ntensors): actual_tensor = y[i].view(-1) expect_tensor = expect[i].view(-1) for j in range(actual_tensor.shape[0]): if actual_tensor[j].item() == 0.0: expect_tensor[j] = 0.0 else: expect_tensor[j] /= 1.0 - p self.assertEqual(y, expect) with freeze_rng_state(): dropouter = torch.nn.Dropout(p) y0 = dropouter(nt) with freeze_rng_state(): y1 = torch.nn.functional.dropout(nt, p) self.assertEqual(y0, y1) @dtypes(torch.float, torch.double) def test_dropout_noncontiguous(self, device, dtype): ntensors = 4 nt0 = random_nt(device, dtype, ntensors, (4, 4)) nt1 = nt0.transpose(-1, -2) p = 0.3 with freeze_rng_state(): dropouter = torch.nn.Dropout(p) y0 = dropouter(nt0) with freeze_rng_state(): y1 = torch.nn.functional.dropout(nt1, p).transpose(-1, -2) self.assertEqual(y0, y1) # cannot test torch.float16 because: RuntimeError: "softmax_kernel_impl" not implemented for 'Half' @dtypes(torch.float, torch.double) def test_softmax(self, device, dtype): # normal nested tensor ntensors = 4 nt = random_nt(device, dtype, ntensors, (4, 4)) # error case: softmax across nested dimension self.assertRaisesRegex( RuntimeError, "Cannot apply softmax across nested dimension 0", lambda: torch.nn.functional.softmax(nt, 0) ) self.assertRaisesRegex( RuntimeError, "Cannot apply softmax across nested dimension 0", lambda: torch.nn.functional.softmax(nt, -3) ) # error case: dimension out of range self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, 3)) self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, -4)) # normal case: should equal to padding -inf softmaxer = torch.nn.Softmax(1) y0 = softmaxer(nt) y1 = torch.nn.functional.softmax(nt, 1) self.assertEqual(y0, y1) pt = torch.nested.to_padded_tensor(nt, float("-inf")) # if an entire slice is padded, then softmax will return 0.0 / 0.0 = nan # however, physically speaking that should be 0.0 expect = torch.nn.functional.softmax(pt, 1).nan_to_num_(0.0) self.assertEqual(torch.nested.to_padded_tensor(y0, 0.0), expect) # edge case: empty nested tensor nt0 = torch.nested.nested_tensor([]) y = torch.nn.functional.softmax(nt0, 1) self.assertEqual(nt0, y) # edge case: nesting scalars nt1 = torch.nested.nested_tensor([torch.tensor(0.0), torch.tensor(1.0)]) self.assertRaises(RuntimeError, lambda: torch.nn.functional.softmax(nt1, 0)) self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt1, 1)) @dtypes(torch.float, torch.double) @torch.inference_mode() def test_softmax_noncontiguous(self, device, dtype): nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) self.assertEqual( torch.nn.functional.softmax(nt_contiguous, -1), torch.nn.functional.softmax(nt_noncontiguous, -1)) def _test_bmm(self, device, dtype): # error case: one is nested but the other is not nt = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) t = torch.randn(4, device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "Expected both to be nested, but got a nested self and non-nested other", lambda: nt.bmm(t) ) self.assertRaisesRegex( RuntimeError, "Expected both to be nested, but got a non-nested self and nested other", lambda: t.bmm(nt) ) # error case: not 3D tensors nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) nt2 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt0) ) self.assertRaisesRegex( RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt1) ) self.assertRaisesRegex( RuntimeError, "batch1 must be a 3D tensor", lambda: nt0.bmm(nt2) ) self.assertRaisesRegex( RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt0) ) self.assertRaisesRegex( RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt1) ) self.assertRaisesRegex( RuntimeError, "batch1 must be a 3D tensor", lambda: nt1.bmm(nt2) ) self.assertRaisesRegex( RuntimeError, "batch2 must be a 3D tensor", lambda: nt2.bmm(nt0) ) self.assertRaisesRegex( RuntimeError, "batch2 must be a 3D tensor", lambda: nt2.bmm(nt1) ) # error case: incompatible batch size nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((4, 5)), torch.randn((4, 7))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "Expected size for the 1st dimension of batch2 tensor to be: 2 but got: 3.", lambda: nt0.bmm(nt1) ) self.assertRaisesRegex( RuntimeError, "Expected size for the 1st dimension of batch2 tensor to be: 3 but got: 2.", lambda: nt1.bmm(nt0) ) # error case: underlying matrices cannot be multiplied nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, r"0-th nested matrices in batch cannot be multiplied \(2x4 and 2x4\)", lambda: nt0.bmm(nt0) ) # normal nested tensor nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype) actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(torch.nested.to_padded_tensor(nt1, 0.0)) if dtype == torch.float16: self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) else: self.assertEqual(actual, expect) # test tensorcore path nt0 = torch.nested.nested_tensor([torch.randn((2, 8)), torch.randn((3, 16))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((8, 8)), torch.randn((16, 8))], device=device, dtype=dtype) actual = torch.nested.to_padded_tensor(nt0.bmm(nt1), 0.0) expect = torch.nested.to_padded_tensor(nt0, 0.0).bmm(torch.nested.to_padded_tensor(nt1, 0.0)) if dtype == torch.float16: self.assertEqual(actual, expect, rtol=1e-3, atol=1e-3) else: self.assertEqual(actual, expect) @onlyCUDA @dtypes(torch.float, torch.double, torch.float16) def test_bmm_cuda(self, device, dtype): self._test_bmm(device, dtype) @onlyCPU # cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' @dtypes(torch.float, torch.double) def test_bmm_cpu(self, device, dtype): self._test_bmm(device, dtype) # cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half' @dtypes(torch.float, torch.double) def test_bmm_noncontiguous(self, device, dtype): nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype) self.assertEqual( nt0_contiguous.transpose(-1, -2).bmm(nt1_contiguous), nt0_noncontiguous.transpose(-1, -2).bmm(nt1_noncontiguous)) @dtypes(torch.float, torch.double) def test_matmul_with_bmm_path(self, device, dtype): def unbind_rebind_matmul(nt1, nt2): t1s = nt1.unbind() t2s = nt2.unbind() out_ts = [t1.matmul(t2) for t1, t2 in zip(t1s, t2s)] return torch.nested.nested_tensor(out_ts) # [N, n_head, *, head_dim], [N, n_head, head_dim, *] N = np.random.randint(2, 5) n_heads = np.random.randint(2, 5) head_dim = 3 t1s = [] t2s = [] for _ in range(N): seq_len1 = np.random.randint(2, 5) seq_len2 = np.random.randint(2, 5) t1s.append(torch.randn(n_heads, seq_len1, head_dim)) t2s.append(torch.randn(n_heads, head_dim, seq_len2)) nt1 = torch.nested.nested_tensor(t1s, device=device, dtype=dtype) nt2 = torch.nested.nested_tensor(t2s, device=device, dtype=dtype) self.assertEqual(torch.matmul(nt1, nt2), unbind_rebind_matmul(nt1, nt2)) # test with noncontiguous t3s = [] t4s = [] for _ in range(N): seq_len = np.random.randint(2, 5) t3s.append(torch.randn(seq_len, n_heads, head_dim)) t4s.append(torch.randn(seq_len, n_heads, head_dim)) nt3 = torch.nested.nested_tensor(t3s, device=device, dtype=dtype).transpose(1, 2) nt4 = torch.nested.nested_tensor(t4s, device=device, dtype=dtype).transpose(1, 2).transpose(2, 3) self.assertEqual(torch.matmul(nt3, nt4), unbind_rebind_matmul(nt3, nt4)) # cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half' @dtypes(torch.float, torch.double) def test_matmul(self, device, dtype): # error case: one is nested but the other is not nt = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) t = torch.randn(4, device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "Expected both to be nested, but got a nested self and non-nested other", lambda: torch.matmul(nt, t) ) self.assertRaisesRegex( RuntimeError, "Expected both to be nested, but got a non-nested self and nested other", lambda: torch.matmul(t, nt) ) # error case: not 3+D tensors nt0 = torch.nested.nested_tensor([], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype) nt2 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", lambda: torch.matmul(nt0, nt0) ) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", lambda: torch.matmul(nt0, nt1) ) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", lambda: torch.matmul(nt0, nt2) ) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", lambda: torch.matmul(nt1, nt0) ) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", lambda: torch.matmul(nt1, nt1) ) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+", lambda: torch.matmul(nt1, nt2) ) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+", lambda: torch.matmul(nt2, nt0) ) self.assertRaisesRegex( RuntimeError, r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+", lambda: torch.matmul(nt2, nt1) ) # error case: incompatible batch size nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((4, 5)), torch.randn((4, 7))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.", lambda: torch.matmul(nt0, nt1) ) self.assertRaisesRegex( RuntimeError, r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.", lambda: torch.matmul(nt1, nt0) ) # error case: incompatible (wrong) batch sizes that shouldn't even broadcast? nt0 = torch.nested.nested_tensor([torch.randn((2, 2, 4)), torch.randn((2, 3, 4))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((3, 4, 6)), torch.randn((3, 4, 5))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "matmul(): For nested tensors, batch dimensions must have the same sizes,", lambda: torch.matmul(nt0, nt1) ) # error case: incompatible batch sizes that should technically broadcast nt0 = torch.nested.nested_tensor([torch.randn((2, 2, 4)), torch.randn((1, 3, 4))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((1, 4, 6)), torch.randn((3, 4, 5))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "matmul(): For nested tensors, batch dimensions must have the same sizes,", lambda: torch.matmul(nt0, nt1) ) # error case: underlying matrices cannot be multiplied nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "matmul(): Nested tensors cannot be matrix multiplied", lambda: torch.matmul(nt0, nt0) ) # normal nested tensor: 3D nt0 = torch.nested.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype) actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0)) self.assertEqual(actual, expect) # normal nested tensor: 4D (with testing for batch_size=1) nt0 = torch.nested.nested_tensor([torch.randn((1, 2, 4)), torch.randn((8, 3, 7))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((1, 4, 6)), torch.randn((8, 7, 5))], device=device, dtype=dtype) actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0)) self.assertEqual(actual, expect) # normal nested tensor: 5D nt0 = torch.nested.nested_tensor([torch.randn((8, 9, 2, 4)), torch.randn((8, 9, 3, 7))], device=device, dtype=dtype) nt1 = torch.nested.nested_tensor([torch.randn((8, 9, 4, 6)), torch.randn((8, 9, 7, 5))], device=device, dtype=dtype) actual = torch.nested.to_padded_tensor(torch.matmul(nt0, nt1), 0.0) expect = torch.matmul(torch.nested.to_padded_tensor(nt0, 0.0), torch.nested.to_padded_tensor(nt1, 0.0)) self.assertEqual(actual, expect) # cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half' @dtypes(torch.float, torch.double) def test_matmul_noncontiguous(self, device, dtype): nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype) nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype) self.assertEqual( torch.matmul(nt0_contiguous.transpose(-1, -2), nt1_contiguous), torch.matmul(nt0_noncontiguous.transpose(-1, -2), nt1_noncontiguous)) @dtypes(torch.float, torch.double) def test_linear(self, device, dtype): a = torch.randn(1, 2, device=device, dtype=dtype) b = torch.randn(2, 2, device=device, dtype=dtype) c = torch.randn(3, 2, device=device, dtype=dtype) nt = torch.nested.nested_tensor([a, b, c]) weight = torch.randn(2, 2, device=device, dtype=dtype) bias = torch.randn(2, device=device, dtype=dtype) # success case torch.functional.F.linear(nt, weight, bias) # invalid nested tensor dimension msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 2. Dense tensor dim: 2' nt1 = torch.nested.nested_tensor([torch.randn(1, device=device, dtype=dtype), torch.randn(2, device=device, dtype=dtype)]) with self.assertRaisesRegex(RuntimeError, msg): torch.functional.F.linear(nt1, weight, bias) # invalid weight shape msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 3. Dense tensor dim: 3' weight1 = torch.randn(2, 2, 3, device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, msg): torch.functional.F.linear(nt, weight1, bias) # inconsistent last dim of nested tensor msg = r"Expected all tensors in nested tensor to have the same trailing dimension, instead last dimension equals:" nt2 = torch.nested.nested_tensor([torch.randn(1, 2, device=device, dtype=dtype), torch.randn(2, 3, device=device, dtype=dtype)]) with self.assertRaisesRegex(RuntimeError, msg): torch.functional.F.linear(nt2, weight, bias) # Mismatch of nested tensor last dim and weight dimension weight2 = torch.randn(2, 4, device=device, dtype=dtype) msg = r"Shape mismatch for NestedTensor Linear: Expected input's \(a nested tensor\) 'last_dim'" \ r" to equal 'weight.size\(1\), but got: last_dim = 2, and weight.size\(1\) = 4" with self.assertRaisesRegex(RuntimeError, msg): torch.functional.F.linear(nt, weight2, bias) # Nested tensor input and nested weight nt_weight = nt.clone() msg = r"Linear does not support nested weight when input is a nested tensor." with self.assertRaisesRegex(RuntimeError, msg): torch.functional.F.linear(nt, nt_weight, bias) # TODO: test noncontiguous linear # For now this tests the error message of linear # since linear does not support noncontiguous buffer yet @dtypes(torch.float, torch.double) def test_linear_noncontiguous(self, device, dtype): nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype) weight = torch.randn((8, 5), device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, r"for now linear only supports contiguous nested tensor", lambda: torch.nn.functional.linear(nt_noncontiguous, weight) ) @dtypes(torch.float, torch.float16, torch.double) def test_transpose(self, device, dtype): nt = random_nt(device, dtype, 4, (4, 4)) # error case: transpose nested dimension self.assertRaisesRegex( RuntimeError, "Nested tensor dimension 0 cannot be transposed", lambda: nt.transpose(0, 1) ) self.assertRaisesRegex( RuntimeError, "Nested tensor dimension 0 cannot be transposed", lambda: nt.transpose(1, -3) ) # error case: dimension out of range self.assertRaises(IndexError, lambda: nt.transpose(1, 3)) self.assertRaises(IndexError, lambda: nt.transpose(-4, -1)) # normal case ntT = nt.transpose(-1, -2) ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) pt = torch.nested.to_padded_tensor(nt, 0.0) ptT = pt.transpose(-1, -2) self.assertEqual(ptT, ptT_from_ntT) @dtypes(torch.float, torch.float16, torch.double) def test_squeeze_unsqueeze(self, device, dtype): a = torch.arange(6).reshape(2, 3) b = torch.arange(15).reshape(5, 3) nt = torch.nested.nested_tensor([a, b], device=device, dtype=dtype) # error case: squeeze no dimension self.assertRaisesRegex( RuntimeError, "For nested tensors, squeeze without the dim argument", lambda: nt.squeeze() ) # error case: squeeze nested dimension self.assertRaisesRegex( RuntimeError, "For nested tensors, squeezing dimension 0", lambda: nt.squeeze(0) ) # error case: dimension out of range self.assertRaises(IndexError, lambda: nt.squeeze(3)) # error case: squeeze nested tensor of singleton tensors c = torch.ones(1) nt_singleton = torch.nested.nested_tensor([c, c], device=device, dtype=dtype) self.assertRaisesRegex( RuntimeError, "For nested tensors, squeezing a nested tensor of singleton", lambda: nt_singleton.squeeze(1) ) # squeezing a dim which does not have size 1 should be a no-op nt2 = nt.squeeze(-1) self.assertEqual(nt, nt2) # test cases that should work nt_sizes = nt._nested_tensor_size() nt_strides = nt._nested_tensor_strides() for i in range(-2, 4): if (i == 0): # cannot unsqueeze batch dim continue nt_unsqueezed = nt.unsqueeze(i) # negative dim will correspond to unsqueeze() applied at dim = dim + nt.dim() + 1 wrapped_i = i + nt.dim() + 1 if i < 0 else i # col_index into nt size tensor is requires subtraction of 1 to ignore batch dim size_idx = wrapped_i - 1 self.assertEqual(nt_unsqueezed._nested_tensor_size()[:, size_idx], torch.ones(2, dtype=torch.long)) unsqueezed_stride = nt_unsqueezed._nested_tensor_strides()[:, size_idx] if (i == nt.ndim or i == -1): self.assertEqual(unsqueezed_stride, torch.ones(2, dtype=torch.long)) else: stride_col_after = nt_strides[:, size_idx] size_col_after = nt_sizes[:, size_idx] self.assertEqual(unsqueezed_stride, stride_col_after * size_col_after) nt_squeezed = nt_unsqueezed.squeeze(i) self.assertEqual(nt_squeezed, nt) self.assertEqual(nt_squeezed._nested_tensor_size(), nt_sizes) self.assertEqual(nt_squeezed._nested_tensor_strides(), nt_strides) @dtypes(torch.float, torch.float16, torch.double) def test_transpose_inference_mode_interaction(self, device, dtype): nt = random_nt(device, dtype, 4, (4, 4)) # Construct in default mode and transpose while in inference mode with torch.inference_mode(): ntT = nt.transpose(-1, -2) ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) pt = torch.nested.to_padded_tensor(nt, 0.0) ptT = pt.transpose(-1, -2) self.assertEqual(ptT, ptT_from_ntT) # Construct and transpose while in inference mode with torch.inference_mode(): nt = random_nt(device, dtype, 4, (4, 4)) ntT = nt.transpose(-1, -2) ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) pt = torch.nested.to_padded_tensor(nt, 0.0) ptT = pt.transpose(-1, -2) self.assertEqual(ptT, ptT_from_ntT) @dtypes(torch.float, torch.float16, torch.double) def test_view(self, device, dtype): nt = random_nt(device, dtype, 4, (4, 4)) # error case: empty shape self.assertRaisesRegex( RuntimeError, r"shape '\[\]' is invalid for a nested tensor", lambda: nt.view(()) ) # error case: empty nested tensor nt_empty = torch.nested.nested_tensor([]) self.assertRaisesRegex( RuntimeError, "empty nested tensor cannot be reshaped", lambda: nt_empty.view(-1) ) # error case: -1 for batch size self.assertRaisesRegex( RuntimeError, r"view: For now nested view cannot change or infer the implicit batch dimension", lambda: nt.view(-1, 2, 3) ) self.assertRaisesRegex( RuntimeError, r"shape '\[.*\]' is invalid for input of size [0-9]+", lambda: nt.view(4, 2, 3) ) # normal case x0 = torch.randn((2, 20), device=device, dtype=dtype) x1 = torch.randn((3, 20), device=device, dtype=dtype) nt = torch.nested.nested_tensor([x0, x1]) pt = torch.nested.to_padded_tensor(nt, 0.0) # error case, trying to reshape batch dim to a legit shape self.assertRaisesRegex( RuntimeError, r"For now nested view cannot change or infer the implicit batch dimension", lambda: nt.transpose(-1, -2).view(40, -1) ) # inherit only the ragged dimension # (2, 20) -> (2, 5, 4) # (3, 20) -> (3, 5, 4) nt1 = nt.view(2, -1, 5, 4) # (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4) pt1 = pt.view(2, -1, 5, 4) self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1) # more than one -1 (even for "old" dims), should fail # this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2) # but we ban "inherit old behavior" for >1 dimension self.assertRaisesRegex( RuntimeError, r"only one dimension can be inferred", lambda: nt1.view(2, -1, -1, 2, 2) ) @dtypes(torch.float, torch.float16, torch.double) def test_view_inference_mode_interaction(self, device, dtype): # Construct in default mode and view while in inference mode nt = torch.nested.nested_tensor([torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype) with torch.inference_mode(): ntT = nt.view(2, -1, 4, 5) ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) pt = torch.nested.to_padded_tensor(nt, 0.0) ptT = pt.view(2, -1, 4, 5) self.assertEqual(ptT, ptT_from_ntT) # Construct and view while in inference mode with torch.inference_mode(): nt = torch.nested.nested_tensor([torch.randn((2, 20)), torch.randn((3, 20))], device=device, dtype=dtype) ntT = nt.view(2, -1, 4, 5) ptT_from_ntT = noncontiguous_to_padded_tensor(ntT) pt = torch.nested.to_padded_tensor(nt, 0.0) ptT = pt.view(2, -1, 4, 5) self.assertEqual(ptT, ptT_from_ntT) @dtypes(torch.float, torch.float16, torch.double) def test_reshape(self, device, dtype): nt = random_nt(device, dtype, 4, (4, 4)) # error case: empty shape self.assertRaisesRegex( RuntimeError, r"shape '\[\]' is invalid for a nested tensor", lambda: nt.reshape(()) ) # error case: empty nested tensor nt_empty = torch.nested.nested_tensor([]) self.assertRaisesRegex( RuntimeError, "empty nested tensor cannot be reshaped", lambda: nt_empty.reshape(-1) ) # error case: -1 for batch size self.assertRaisesRegex( RuntimeError, r"reshape: For now nested reshape cannot change or infer the implicit batch dimension", lambda: nt.reshape(-1, 2, 3) ) self.assertRaisesRegex( RuntimeError, r"shape '\[.*\]' is invalid for input of size [0-9]+", lambda: nt.reshape(4, 2, 3) ) # normal case x0 = torch.randn((2, 20), device=device, dtype=dtype) x1 = torch.randn((3, 20), device=device, dtype=dtype) nt = torch.nested.nested_tensor([x0, x1]) # (2, (2, 3), 20) pt = torch.nested.to_padded_tensor(nt, 0.0) # error case, trying to reshape batch dim to a legit shape self.assertRaisesRegex( RuntimeError, r"reshape: For now nested reshape cannot change or infer the implicit batch dimension", lambda: nt.transpose(-1, -2).reshape(40, -1) ) # inherit only the ragged dimension # (2, 20) -> (2, 5, 4) # (3, 20) -> (3, 5, 4) nt1 = nt.reshape(2, -1, 5, 4) # (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4) pt1 = pt.reshape(2, -1, 5, 4) self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1) # more than one -1 (even for "old" dims), should fail # this attempts to do # (2, (2, 3), 5, 4) -> (2, (2, 3), 5, 2, 2) # but we ban "inherit old behavior" for >1 dimension self.assertRaisesRegex( RuntimeError, r"only one dimension can be inferred", lambda: nt1.reshape(2, -1, -1, 2, 2) ) @parametrize("input_dim", [3, 4]) def test_scaled_dot_product_attention(self, device, input_dim): def rand_tensor(*shape): return torch.randn(shape, device=device) E = 8 if input_dim == 3: # Shape: (N, L, E); ragged L query = torch.nested.nested_tensor([rand_tensor(2, E), rand_tensor(3, E), rand_tensor(4, E)]) # Shape: (N, S, E); ragged S key = torch.nested.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)]) value = torch.nested.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)]) elif input_dim == 4: # In the 4D case the L and S is ragged # Shape: (N, N', L, E); ragged N' and L query = torch.nested.nested_tensor([rand_tensor(2, 2, E), rand_tensor(3, 3, E), rand_tensor(4, 4, E)]) # Shape: (N, N', S, E); ragged N' and S key = torch.nested.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)]) value = torch.nested.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)]) else: self.fail(f"Invalid input_dim {input_dim} encountered in SDP test") def rand_mask(size): return torch.randint(0, 2, size=size, dtype=torch.bool, device=device) # Shape: (N, L, S); ragged L and S matching above attn_mask = torch.nested.nested_tensor([rand_mask((2, 3)), rand_mask((3, 4)), rand_mask((4, 5))]) dropout_p = 0.0 # no dropout for reproducibility # Success case: no attn_mask set and is_causal=False. actual = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=None, is_causal=False, dropout_p=dropout_p) expected_outputs = [] for q, k, v in zip(query.unbind(), key.unbind(), value.unbind()): output = torch.nn.functional.scaled_dot_product_attention( q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attn_mask=None, dropout_p=dropout_p) expected_outputs.append(output.squeeze(0)) expected_output_nested = torch.nested.nested_tensor(expected_outputs) self.assertEqual(actual, expected_output_nested) # Error case: explicit attn_mask set. with self.assertRaisesRegex(RuntimeError, "not supported when an explicit attn_mask is set"): torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=attn_mask, dropout_p=dropout_p) # Error case: is_causal=True. with self.assertRaisesRegex(RuntimeError, "not supported when is_causal=True"): torch.nn.functional.scaled_dot_product_attention( query, key, value, dropout_p=dropout_p, is_causal=True) @dtypes(torch.float, torch.float16, torch.double) def test_empty_like(self, device, dtype): ntensors = 4 nt = random_nt(device, dtype, ntensors, (4, 4)) # Create empty on same device as original nested tensor nt_empty = torch.empty_like(nt) assert nt.is_same_size(nt_empty) self.assertEqual(nt.dtype, nt_empty.dtype) self.assertEqual(nt.device, nt_empty.device) self.assertEqual(nt.layout, nt_empty.layout) if torch.cuda.is_available(): if device == "cpu": nt_cuda = torch.empty_like(nt, device='cuda') self.assertEqual(torch.device("cuda").type, nt_cuda.device.type) else: nt_cpu = torch.empty_like(nt, device='cpu') self.assertEqual(torch.device("cpu").type, nt_cpu.device.type) # Check changing dtype of empty_like nested tensor output dtype_set = {torch.float, torch.float16, torch.double} for other_dtype in dtype_set - {dtype}: nt_empty_other_dtype = torch.empty_like(nt, dtype=other_dtype) self.assertEqual(nt.dtype, dtype) self.assertEqual(nt_empty_other_dtype.dtype, other_dtype) self.assertEqual(nt.device, nt_empty.device) self.assertEqual(nt.layout, nt_empty.layout) # Create tensor for autograd nt_empty_req_grad = torch.empty_like(nt, requires_grad=True) self.assertEqual(nt_empty_req_grad.requires_grad, True) # Test noncontiguous tensor fails to copy nt_cont, nt_noncont = random_nt_noncontiguous_pair((2, 3, 6, 7)) nt_empty = torch.empty_like(nt_cont) assert nt_cont.is_same_size(nt_empty) with self.assertRaisesRegex(RuntimeError, "empty_like only supports contiguous memory format for Nested Tensors"): nt_empty = torch.empty_like(nt_noncont) class TestNestedTensorAutograd(TestCase): # Note [Gradcheck args check_batched_grad=False] the common_utils testing version of gradcheck # includes the default parameters used for testing ops with gradcheck. However nested tensor # does not support the stack op therefore we turn it off for these tests def _create_leaf_nested_tensor_from_list(self, tensor_device, requires_grad=False): return torch.nested.nested_tensor([torch.randn(1, 2,), torch.randn(7, 8)], requires_grad=requires_grad, device=tensor_device) def _create_nested_tensor_from_list(self, tensor_device, requires_grad=False): return torch.nested.as_nested_tensor([torch.randn(1, 2, requires_grad=requires_grad), torch.randn(7, 8, requires_grad=requires_grad)], device=tensor_device) def _create_nested_tensor_from_mask(self, tensor_device, requires_grad=False): data = torch.randn(2, 3, 4, requires_grad=requires_grad, device=tensor_device) mask = torch.ones_like(data[:, :, 0]).bool() return torch._nested_tensor_from_mask(data, mask) def test_as_nested_tensor_propagates_gradients(self, device): a = torch.arange(3, dtype=torch.float, device=device) b = torch.arange(5, dtype=torch.float, device=device) nt = torch.nested.as_nested_tensor([a, b]) # tensors with requires_grad=False are leaves self.assertTrue(nt.is_leaf) self.assertTrue(not nt.requires_grad) a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device) b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device) nt2 = torch.nested.as_nested_tensor([a, b]) fake_grad = torch.nested.nested_tensor([torch.ones_like(a), torch.zeros_like(b)], device=device) nt2.backward(fake_grad) self.assertEqual(a.grad, fake_grad[0]) self.assertEqual(b.grad, fake_grad[1]) def test_nested_tensor_generates_leaf(self, device): a = torch.arange(3, dtype=torch.float, requires_grad=True, device=device) b = torch.arange(5, dtype=torch.float, requires_grad=True, device=device) nt = torch.nested.nested_tensor([a, b], requires_grad=False) self.assertTrue(nt.is_leaf) self.assertTrue(not nt.requires_grad) nt2 = torch.nested.nested_tensor([a, b], requires_grad=True) self.assertTrue(nt2.is_leaf) self.assertTrue(nt2.requires_grad) fake_grad = torch.nested.nested_tensor([torch.ones_like(a), torch.zeros_like(b)], device=device) nt2.backward(fake_grad) self.assertEqual(nt2.grad, fake_grad) self.assertEqual(a.grad, None) self.assertEqual(b.grad, None) def test_set_requires_grad_from_list(self, device): nt = self._create_nested_tensor_from_list(device) nt.requires_grad_() assert nt.requires_grad def test_set_requires_grad_from_mask(self, device): nt = self._create_nested_tensor_from_mask(device) nt.requires_grad_() assert nt.requires_grad def test_backward_for_add_op(self, device): nt_1 = self._create_nested_tensor_from_mask(device) nt_2 = self._create_nested_tensor_from_mask(device) nt_1.requires_grad_() c = nt_1 + nt_2 assert nt_1.requires_grad assert c.requires_grad grad_output = self._create_nested_tensor_from_mask(device) c.backward(grad_output) # Grad check doesn't work with nested yet. # d/dnt_1 (nt + nt_1) = 1*grad_output self.assertEqual(nt_1.grad, grad_output) # Test Factory Functions def test_nested_tensor_to_padded_tensor(self, device): for padding_val in [0, 1]: nt = self._create_leaf_nested_tensor_from_list(tensor_device=device, requires_grad=True) out = torch.nested.to_padded_tensor(nt, padding_val) grad_output = torch.ones(out.shape, device=device) out.backward(grad_output) self.assertEqual(nt.grad, torch.nested.nested_tensor([torch.ones(1, 2), torch.ones(7, 8)], device=device)) def test_nested_tensor_from_mask_and_to_padded(self, device): N, L, D = 2, 4, 4 mask = torch.ones(N, L, device=device) for i in range(1, N): end = torch.randint(1, L - 1, (1,), device=device) mask[i, end:] = 0 mask[0, :] = 1 mask = mask.bool() data = torch.randn(N, L, D, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(inpt): nt = torch._nested_tensor_from_mask(inpt, mask) # This implicitly tests to_padded_tensor grads return torch.nested.to_padded_tensor(nt, 0) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_nested_tensor_from_padded(self, device): nested_size = torch.tensor([[1, 2], [2, 2]]) padded_tensor = torch.randn(2, 2, 2, dtype=torch.float64, device=device) padded_tensor[0, 1, :] = 0 padded_tensor.requires_grad_() def grad_test_func(tensor, nested_size): nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=False) # This implicitly tests to_padded_tensor grads return torch.nested.to_padded_tensor(nt, 0) data = (padded_tensor, nested_size) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_nested_tensor_from_padded_fused(self, device): nested_size = torch.tensor([[1, 8], [2, 8]]) padded_tensor = torch.randn(2, 2, 2, 4, dtype=torch.float64, device=device) padded_tensor[0, 1, :] = 0 padded_tensor.requires_grad_() def grad_test_func(tensor, nested_size): nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=True) # This implicitly tests to_padded_tensor grads return torch.nested.to_padded_tensor(nt, 0) data = (padded_tensor, nested_size) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_nested_tensor_from_list(self, device): a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(10, 2, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): c = torch.nested.as_nested_tensor([a, b, c]) # This implictily tests to_padded_tensor grads return torch.nested.to_padded_tensor(c, 0) data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_dropout_backward(self): nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))], requires_grad=True) p = 0.2 y = torch.nn.functional.dropout(nt, p) y.backward(nt.clone().detach()) self.assertEqual(nt.grad, y) def test_nested_tensor_bmm_gradcheck(self, device): a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device) d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c, d): nt0 = torch.nested.as_nested_tensor([a, b]) nt1 = torch.nested.as_nested_tensor([c, d]) result = nt0.bmm(nt1) return torch.nested.to_padded_tensor(result, 0.0) data = (a, b, c, d) assert torch.autograd.gradcheck(grad_test_func, inputs=data) def test_nested_tensor_bmm_backward(self, device): nt0 = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True, device=device) nt1 = torch.nested.nested_tensor([torch.randn((6, 4)), torch.randn((6, 5))], requires_grad=True, device=device) with torch.no_grad(): pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True) pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True) ynt = nt0.bmm(nt1) ypt = pt0.bmm(pt1) ynt.backward(ynt.clone()) ypt.backward(ypt.clone()) self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad) self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad) def test_nested_tensor_matmul_gradcheck(self, device): a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64, device=device) d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c, d): nt0 = torch.nested.as_nested_tensor([a, b]) nt1 = torch.nested.as_nested_tensor([c, d]) result = torch.matmul(nt0, nt1) return torch.nested.to_padded_tensor(result, 0.0) data = (a, b, c, d) assert torch.autograd.gradcheck(grad_test_func, inputs=data) def test_nested_tensor_matmul_backward(self, device): nt0 = torch.nested.nested_tensor([torch.randn((7, 2, 6)), torch.randn((7, 3, 6))], requires_grad=True, device=device) nt1 = torch.nested.nested_tensor([torch.randn((7, 6, 4)), torch.randn((7, 6, 5))], requires_grad=True, device=device) with torch.no_grad(): pt0 = torch.nested.to_padded_tensor(nt0, 0.0).requires_grad_(True) pt1 = torch.nested.to_padded_tensor(nt1, 0.0).requires_grad_(True) ynt = torch.matmul(nt0, nt1) ypt = torch.matmul(pt0, pt1) ynt.backward(ynt.clone()) ypt.backward(ypt.clone()) self.assertEqual(torch.nested.to_padded_tensor(nt0.grad, 0.0), pt0.grad) self.assertEqual(torch.nested.to_padded_tensor(nt1.grad, 0.0), pt1.grad) def test_nested_tensor_transpose_gradcheck(self, device): a = torch.randn(2, 5, requires_grad=True, device=device) b = torch.randn(3, 4, requires_grad=True, device=device) def grad_test_func(a, b): nt = torch.nested.as_nested_tensor([a, b]) result = nt.transpose(-2, -1).transpose(-2, -1) return torch.nested.to_padded_tensor(result, 0.0) data = (a, b) assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3) def test_nested_tensor_transpose_backward(self, device): nt = torch.nested.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))], requires_grad=True, device=device) with torch.no_grad(): pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) ynt = nt.transpose(-2, -1) ypt = pt.transpose(-2, -1) ynt.backward(ynt.clone()) ypt.backward(ypt.clone()) self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) def test_nested_tensor_reshape_gradcheck(self, device): a = torch.randn(2, 6, requires_grad=True, device=device) b = torch.randn(3, 6, requires_grad=True, device=device) def grad_test_func(a, b): nt = torch.nested.as_nested_tensor([a, b]) result = nt.reshape(2, -1, 2, 3) return torch.nested.to_padded_tensor(result, 0.0) data = (a, b) assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3) def test_nested_tensor_reshape_backward(self): nt = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True) with torch.no_grad(): pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) ynt = nt.reshape(2, -1, 2, 3) ypt = pt.reshape(2, -1, 2, 3) ynt.backward(ynt.clone()) ypt.backward(ypt.clone()) self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) def test_nested_tensor_squeeze_backward(self, device): nt = torch.nested.nested_tensor([torch.randn((2, 6, 1)), torch.randn((3, 6, 1))], requires_grad=True, device=device) with torch.no_grad(): pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) ynt = nt.squeeze(-1) ypt = pt.squeeze(-1) ynt.backward(ynt.clone()) ypt.backward(ypt.clone()) self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) def test_nested_tensor_squeeze_gradcheck(self, device): a = torch.randn((2, 6, 1), dtype=torch.float64, requires_grad=True, device=device) b = torch.randn((3, 6, 1), dtype=torch.float64, requires_grad=True, device=device) def grad_test_func(a, b): nt = torch.nested.as_nested_tensor([a, b]) result = nt.squeeze(-1) return torch.nested.to_padded_tensor(result, 0.0) assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3) def test_nested_tensor_unsqueeze_backward(self, device): nt = torch.nested.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))], requires_grad=True, device=device) with torch.no_grad(): pt = torch.nested.to_padded_tensor(nt, 0.0).requires_grad_(True) ynt = nt.unsqueeze(2) ypt = pt.unsqueeze(2) ynt.backward(ynt.clone()) ypt.backward(ypt.clone()) self.assertEqual(torch.nested.to_padded_tensor(nt.grad, 0.0), pt.grad) def test_nested_tensor_unsqueeze_gradcheck(self, device): a = torch.randn((2, 6), dtype=torch.float64, requires_grad=True, device=device) b = torch.randn((3, 6), dtype=torch.float64, requires_grad=True, device=device) def grad_test_func(a, b): nt = torch.nested.as_nested_tensor([a, b]) result = nt.unsqueeze(-1) return torch.nested.to_padded_tensor(result, 0.0) assert torch.autograd.gradcheck(grad_test_func, inputs=(a, b), eps=1e-3) def test_nested_tensor_linear(self, device): a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device) weight = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c, weight, bias=None): nt = torch.nested.as_nested_tensor([a, b, c]) # This implicitly tests to_padded_tensor grads d = torch.functional.F.linear(nt, weight, bias) return torch.nested.to_padded_tensor(d, 0) data = (a, b, c, weight, bias) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) # Test linear with no bias added data = (a, b, c, weight) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_nested_tensor_linear_plus_transpose(self, device): a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device) weight = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) bias = torch.randn(2, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c, weight, bias=None): nt = torch.nested.as_nested_tensor([a, b, c]) # This implicitly tests to_padded_tensor grads d = torch.functional.F.linear(nt, weight, bias) d = d.transpose(-1, -2).contiguous() return torch.nested.to_padded_tensor(d, 0) data = (a, b, c, weight, bias) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) # Test linear with no bias added data = (a, b, c, weight) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_nested_tensor_softmax(self, device): a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c, dim): nt = torch.nested.as_nested_tensor([a, b, c]) # This implicitly tests to_padded_tensor grads d = torch.functional.F.softmax(nt, dim=dim) return torch.nested.to_padded_tensor(d, 0) # softmax over last dim data = (a, b, c, -1) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_nested_tensor_linear_backward(self, device): a = torch.randn(1, 2, requires_grad=False, device=device) b = torch.randn(2, 2, requires_grad=False, device=device) c = torch.randn(3, 2, requires_grad=False, device=device) weight = torch.randn(2, 2, requires_grad=True, device=device) bias = torch.randn(2, requires_grad=True, device=device) nt = torch.nested.as_nested_tensor([a, b, c], device=device) out = torch.functional.F.linear(nt, weight, bias) out.backward(out.clone()) assert weight.grad is not None assert bias.grad is not None assert a.grad is None assert b.grad is None assert c.grad is None def test_values_grad_with_broadcast(self, device): a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): nt = torch.nested.as_nested_tensor([a, b, c]) buffer = nt.values() return buffer.sum() data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_to_buffer_series_ops_grad_with_broadcast(self, device): a = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(1, 1, 2, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): nt = torch.nested.as_nested_tensor([a, b, c]) buffer = nt.values() buffer = buffer * 2 return buffer.exp() data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_unbind_flow_through(self, device): a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): nt = torch.nested.as_nested_tensor([a, b, c]) ntT = nt.transpose(-1, -2) unbound = ntT.unbind() d = unbound[0] d = torch.pow(d, 2) return d data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_indexing_backward(self, device): x0 = torch.randn((2, 5)) x1 = torch.randn((3, 4)) nt = torch.nested.nested_tensor([x0, x1], device=device, requires_grad=True) self.assertEqual(nt[0], x0) self.assertEqual(nt[-1], x1) grad_x0 = torch.randn((2, 5), device=device) nt[0].backward(grad_x0) expected_grad = torch.nested.nested_tensor([grad_x0, torch.zeros((3, 4), device=device)]) self.assertEqual(nt.grad, expected_grad) def test_gelu_backward(self, device): a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): nt = torch.nested.as_nested_tensor([a, b, c]) nt_gelu = torch.nn.functional.gelu(nt) return torch.nested.to_padded_tensor(nt_gelu, 0) data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) def test_relu_backward(self, device): a = torch.randn(1, 2, 4, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, 4, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, 4, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): nt = torch.nested.as_nested_tensor([a, b, c]) nt_relu = torch.nn.functional.relu(nt) return torch.nested.to_padded_tensor(nt_relu, 0) data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) @parametrize("size", [1024, 1023, 513, 512, 256, 128, 32, 4, 2]) def test_layer_norm_backward(self, device, size): a = torch.randn(1, 2, size, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(2, 2, size, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(3, 2, size, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): nt = torch.nested.as_nested_tensor([a, b, c]) layer_norm = torch.nn.LayerNorm(nt.size(-1), device=device, dtype=torch.float64) nt_layer_norm = layer_norm(nt) return torch.nested.to_padded_tensor(nt_layer_norm, 0) data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) # Could either mark slow or reduce size @parametrize("size", [128, 32, 4, 2]) def test_layer_norm_backward_5d(self, device, size): a = torch.randn(4, size, size, 4, requires_grad=True, dtype=torch.float64, device=device) b = torch.randn(7, size, size, 4, requires_grad=True, dtype=torch.float64, device=device) c = torch.randn(10, size, size, 4, requires_grad=True, dtype=torch.float64, device=device) def grad_test_func(a, b, c): nt = torch.nested.as_nested_tensor([a, b, c]) layer_norm = torch.nn.LayerNorm((size, size, nt.size(-1)), device=device, dtype=torch.float64) nt_layer_norm = layer_norm(nt) return torch.nested.to_padded_tensor(nt_layer_norm, 0) data = (a, b, c) assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False) instantiate_parametrized_tests(TestNestedTensor) instantiate_device_type_tests(TestNestedTensorDeviceType, globals()) instantiate_device_type_tests(TestNestedTensorAutograd, globals()) if __name__ == '__main__': run_tests()
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
5c7688a54ed8add5b8c146f0f4fa3bb0ac3a5514
ce37d136e932a08e82cae57aef67ced6d36f55fc
/elevennote/src/accounts/views.py
a31b8f5ea79b0291e86492dc1cbb146b3e56856d
[]
no_license
vk59/cs102
33f16158c8b2ae117e04e74fc00e41420a8d737f
202536377147d8e92c82c4a1f02a0579044c1ebe
refs/heads/master
2022-12-22T10:29:16.646896
2020-08-23T17:21:10
2020-08-23T17:21:10
211,481,266
1
0
null
2022-12-08T09:53:46
2019-09-28T10:09:04
JavaScript
UTF-8
Python
false
false
1,415
py
import random from decouple import config from django.contrib.auth import authenticate, login from django.views.generic import FormView from django.shortcuts import redirect from .forms import UserCreationForm from django.core.mail import send_mail class RegisterView(FormView): template_name = 'registration/register.html' form_class = UserCreationForm success_url = '/' def form_valid(self, form): form.save() email = self.request.POST['email'] password = self.request.POST['password1'] user = authenticate(email=email, password=password) secret = str(random.random()) secret_key = '' for i in range(2, 17): secret_key += secret[i] user.secret_key = secret_key user.save() login(self.request, user) send_mail( "Confirm your account", f"To confirm your email in Elevennote, click this link:\nhttp://localhost:8000/accounts/confirm/{user.secret_key}", 'snegovivan78@gmail.com', recipient_list=[email], fail_silently=False ) return super(RegisterView, self).form_valid(form) def ConfirmView(request, secret_key): msg = "fail" if request.user.secret_key == secret_key: request.user.is_confirmed = True request.user.save() msg = "success" return redirect(f"/notes/?msg={msg}")
[ "jkostylev592@gmail.com" ]
jkostylev592@gmail.com
646fdae2a5d2507b13d577d67ece3bb4d15666a1
711b0851cbfbf1c8aecdb772c921910e0d42e4c1
/app/base/base.py
b1f7e6cf4edb2ecc85fa2ffef706a6119cf59156
[]
no_license
FlashXFork/falcon-example
652dc9780a6919d574cd8388bc7a446bb91e63b3
5c9475c06ae63d57b1142561cffdf703f24efd8b
refs/heads/master
2022-01-09T04:36:25.342467
2018-09-27T18:22:25
2018-09-27T18:22:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
20
py
class BaseAPIClass
[ "connect.anirudh@gmail.com" ]
connect.anirudh@gmail.com
296950f78c5f7d827df946aa9b259ea8dd33b247
3a440f725a95e0963fef518c05d1790034d75ba7
/slipy/spectrum/etc/getitem.py
43a7f43afbd55b524df14efc58fa1acb5eed88e5
[ "BSD-3-Clause" ]
permissive
glentner/slipy-dev
ac6990a710306f31274d12487a421a4479c36e74
db8fa6ada3ce3246879d5aae9b0f150c56c23382
refs/heads/master
2021-01-17T23:38:19.511679
2016-01-14T18:59:08
2016-01-14T18:59:08
49,592,067
0
0
null
null
null
null
UTF-8
Python
false
false
262
py
# Licensed under a 3-clause BSD style license - see LICENSE.rst # Copyright (c) Geoffrey Lentner 2016. All Rights Reserved. # slipy/spectrum/etc/getitem.py # TODO: etc/getitem.py """ """ def _getitem(self, key): """ """ raise NotImplementedError()
[ "glentner@nd.edu" ]
glentner@nd.edu
f43f7781fe91298f8cac39f9eca02476c6049fa9
2bf91522311f2f76ab2383bff6b87ef61b614030
/rango/models.py
f8a99e2864a53f12adbb22d2fa781b6e46ecb25a
[]
no_license
AnnaB0/Tango_with_django_project
42ef5247ec5e43546150686d65a9bcb93d5fbf54
b6509a62a8dea6e512519d8706a760f2c03a8cce
refs/heads/master
2020-12-14T00:44:47.709702
2020-02-14T17:35:20
2020-02-14T17:35:20
234,581,472
0
0
null
null
null
null
UTF-8
Python
false
false
1,342
py
from django.db import models from django.contrib import admin from django.template.defaultfilters import slugify django.contrib.auth.models import User class Category(models.Model): NAME_MAX_LENGTH=128 name=models.CharField(max_length=NAME_MAX_LENGTH, unique=True) views=models.IntegerField(default=0) likes=models.IntegerField(default=0) slug=models.SlugField(unique=True) def save(self,*args,**kwargs): self.slug=slugify(self.name) super(Category,self).save(*args,**kwargs) class Meta: verbose_name_plural = 'Categories' def __str__(self): return self.name class Page (models.Model): TITLE_MAX_LENGTH=128 URL_MAX_LENGTH=200 category=models.ForeignKey(Category, on_delete=models.CASCADE) title=models.CharField(max_length=TITLE_MAX_LENGTH) url=models.URLField() views=models.IntegerField(default=0) def __str__(self): return self.title class PageAdmin (admin.ModelAdmin): list_display=('title','category','url') class UserProfile(models.Model): user=models.OneToOneField(User,on_delete=models.CASCADE) website=models.URLField(blank=True) picture=models.ImageField(upload_to='profile_images',blank=True) def __str__(self): return self.user.username
[ "2373329b@student.gla.ac.uk" ]
2373329b@student.gla.ac.uk
672b680c38cdfd95904425dd31e0b8dd9d43dae0
d9fb2e6c1ae4ccc8901b61d2fae787603f28755e
/twitter_nlp_toolkit/tweet_sentiment_classifier/models/__init__.py
2526ee4027af336b77fdc7c407968b14fc962460
[ "MIT" ]
permissive
markok20/twitter-toolbox
1f59d92aa242a2dbec481b6e1755991d46124ef0
5e4b7881923394392619a5ced22857772cccb08b
refs/heads/master
2022-12-29T20:26:57.405675
2020-10-05T23:22:39
2020-10-05T23:22:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
81
py
from .bow_models import * from .bert_models import * from .lstm_models import *
[ "46228485+eschibli@users.noreply.github.com" ]
46228485+eschibli@users.noreply.github.com
a0a6adbb51fbc0d45b803132e2002d4d8fe25008
28691ec55ebce9ec7045d12ea9675932ce12d671
/py2ecotect-project/branches/sandbox/py2ecotect/application/timer.py
66c9eba970f638ae9c19e2b45578438bed4321b8
[]
no_license
ianclarksmith/design-automation
1e71315193effc0c18b4a8b41300bda6f41a3f09
e27cc028fe582395f4a62f06697137867bb0fc33
refs/heads/master
2020-04-22T22:28:39.385395
2009-10-26T02:48:37
2009-10-26T02:48:37
37,266,915
0
0
null
null
null
null
UTF-8
Python
false
false
5,503
py
import py2ecotect as p2e class Timer(object): #=========================================================================== # Commands #=========================================================================== def restart(self): """ Restarts the internal timer. The count property continues from it's last value. Parameter(s) There are no parameters for this command. """ p2e._app.Exec("timer.restart") def start(self): """ Starts the internal timer, resetting the count property to zero. Parameter(s) There are no parameters for this command. """ p2e._app.Exec("timer.start") def stop(self): """ Stops the internal timer. Parameter(s) There are no parameters for this command. """ p2e._app.Exec("timer.stop") #=========================================================================== # Properties #=========================================================================== @apply def count(): def fget(self): """ Retrieves the number of times the OnTimer(count) event has been triggered since it was first started. Parameter(s) There are no parameters for this property. Return Value(s) Getting this property returns the following value(s). count The number of times the timer has triggered since it was started. """ val = p2e._app.Request("get.timer.count") return p2e._util._convert_str_to_type(val, int) def fset(self, count): """ Sets the counter value for the number of times the OnTimer(count) event has been triggered since it was first started. Parameter(s) This property takes the following parameters. count The number of timer triggers to report. """ arg_str = p2e._util._convert_args_to_string("set.timer.count", count) p2e._app.Exec(arg_str) return property(**locals()) @apply def interval(): def fget(self): """ Retrieves the timer interval in milliseconds. This is basically the time gap between each calling of the OnTimer(count) event. Parameter(s) There are no parameters for this property. Return Value(s) Getting this property returns the following value(s). msec The number of milliseconds (thousandths of a second) between each triggerering of the timer. Thus, a value of 1000 would mean one call every second. """ val = p2e._app.Request("get.timer.interval") return p2e._util._convert_str_to_type(val, int) def fset(self, msec): """ Sets the timer interval in milliseconds between each calling of the OnTimer(count) event. Parameter(s) This property takes the following parameters. msec The number of milliseconds (thousandths of a second) between each triggerering of the timer. Thus, a value of 1000 would mean one call every second. The minimum time gap you can set is 50 milliseconds (20 times per second). """ arg_str = p2e._util._convert_args_to_string("set.timer.interval", msec) p2e._app.Exec(arg_str) return property(**locals()) @apply def running(): def fget(self): """ Retrieves a value that shows whether the timmer is currently running or not. Parameter(s) There are no parameters for this property. Return Value(s) Getting this property returns the following value(s). running This is a boolean value where 1 means running and 0 means stopped. """ val = p2e._app.Request("get.timer.running") return p2e._util._convert_str_to_type(val, int) def fset(self, running): """ Sets the status of the timer to running or not. Sending 0 or false is the same as calling timer.stop whilst 1 or true is the same as calling timer.restart. Parameter(s) This property takes the following parameters. running This is a boolean value where 1 or true sets the timer running and 0 or false stops it. """ arg_str = p2e._util._convert_args_to_string("set.timer.running", running) p2e._app.Exec(arg_str) return property(**locals())
[ "manikewell@d56020b2-6ac5-11de-89a9-0b20f3e2dceb" ]
manikewell@d56020b2-6ac5-11de-89a9-0b20f3e2dceb
04fb4b01c64b77e2d2a2dffc669bf5135d1cad0c
6dbe812830c74ba1ac9d651edb01fd2708c7416a
/renovateproject/cases/migrations/0030_service_type.py
69b181216b595cd5a97631eeb52eb982225e7e78
[]
no_license
zhengjieAdriod/myproject
d60f78422e9b8f2db54e96a9545a7b97ec9bfde9
9a5b418b15e3a7705c15815a61d0e22f9862a427
refs/heads/master
2021-01-01T18:21:14.436932
2017-09-25T10:04:52
2017-09-25T10:04:52
98,318,395
1
0
null
null
null
null
UTF-8
Python
false
false
455
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-08-23 05:51 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cases', '0029_schemeinservice'), ] operations = [ migrations.AddField( model_name='service', name='type', field=models.CharField(blank=True, max_length=70), ), ]
[ "zhangxiaoqi@ichinait.com" ]
zhangxiaoqi@ichinait.com
a8ae10cb9b112f6f3e8db92fe4e479f238c984c2
66b4f2ff918ee9d3bf0e31a6cc8a08f4920fb497
/tool.py
eb25fcb7eb1f4e06e1e7ba9c136bfd2fa59fe1a6
[]
no_license
svonton/Project--Memorization-Tool
dcd7b8a8a5e81fb1f7b0b76f833ae13f48b6cb6e
ccb6628987655d81bd856982c5c6d3a6f0cc0d28
refs/heads/main
2023-04-24T17:25:47.616761
2021-05-17T16:27:38
2021-05-17T16:27:38
368,252,491
0
0
null
null
null
null
UTF-8
Python
false
false
4,269
py
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker invite_message = """ 1. Add flashcards 2. Practice flashcards 3. Exit\n""" sub_menu_message = """ 1. Add a new flashcard 2. Exit\n""" practice_menu_message = """press "y" to see the answer: press "n" to skip: press "u" to update:\n""" practice_submenu_message = """press "d" to delete the flashcard: press "e" to edit the flashcard:\n""" learning_menu_message = """press "y" if your answer is correct: press "n" if your answer is wrong:\n""" possible_variants = [1, 2, 3] engine = create_engine('sqlite:///flashcard.db?check_same_thread=False') Base = declarative_base() class FlashCard(Base): __tablename__ = 'flashcard' id = Column(Integer, primary_key=True) question = Column(String) answer = Column(String) box = Column(Integer, default=0) Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() def add_flashcard(): try: user_choice = input(sub_menu_message) if int(user_choice) in possible_variants[:2]: if int(user_choice) == 1: question = '' answer = '' while question == '': question = input('Question:\n') while answer == '': answer = input('Answer:\n') new_data = FlashCard(question=question, answer=answer) session.add(new_data) session.commit() add_flashcard() else: return else: print(f'\n{user_choice} is not an option') add_flashcard() except ValueError: print(f'\n{user_choice} is not an option') add_flashcard() def leitner_system(cntx): choice = input(learning_menu_message) if choice == 'y': cntx.box += 1 if cntx.box == 3: session.delete(cntx) session.commit() elif choice == 'n': cntx.box = 0 session.commit() else: print(f'\n{choice} is not an option') def practice_flashcards(): result_list = session.query(FlashCard).all() for i in range(len(result_list)): print(f'Question: {result_list[i].question}') choice = input(practice_menu_message) if choice == 'y': print(f'Answer: {result_list[i].answer}') leitner_system(result_list[i]) elif choice == 'n': leitner_system(result_list[i]) elif choice == 'u': sub_choice = input(practice_submenu_message) if sub_choice == 'd': session.delete(result_list[i]) session.commit() elif sub_choice == 'e': new_question = '' new_answer = '' while new_question == '': print(f'current question: {result_list[i].question}') new_question = input('please write a new question:\n') while new_answer == '': print(f'current answer: {result_list[i].answer}') new_answer = input('please write a new answer:\n') result_list[i].question = new_question result_list[i].answer = new_answer session.commit() else: print(f'\n{sub_choice} is not an option') else: print(f'\n{choice} is not an option') return while True: try: user_choice = input(invite_message) if int(user_choice) in possible_variants: if int(user_choice) == 1: add_flashcard() elif int(user_choice) == 2: if len(session.query(FlashCard).all()) > 0: practice_flashcards() else: print('There is no flashcard to practice!') session.query(FlashCard).delete() session.commit else: print('Bye!') break else: print(f'\n{user_choice} is not an option') except ValueError: print(f'\n{user_choice} is not an option')
[ "56838368+svonton@users.noreply.github.com" ]
56838368+svonton@users.noreply.github.com
6a089bb1e07bd373e43a4e28f81cfc6919ec446b
de296bcc3dda26dbaf876711c17d0bbfee342393
/run_configs_lstm.py
0108ab36a722a2f48bdf12022f5e03114f3f398d
[]
no_license
vedhasua/tiny_emotionet
9d55f45256937b406e82c2257ecedc647f10e3ce
228aaf922833217ae2e0f159ebf933a377b07bb4
refs/heads/master
2021-05-21T01:01:46.618630
2020-08-31T09:24:40
2020-08-31T09:24:40
252,478,653
4
0
null
null
null
null
UTF-8
Python
false
false
3,867
py
from deepemotion_keras import main param_given = True #f culture = 'German' #f eval_cross = True #f modality = 'audio' #f get_turn_feature = True #f uncertainty_target = False #f invert_std = False #f loss_unc = 'ccc_2' #f weight_unc = 0.5 #f balance_weight = False #f uncertainty_weight = False #f batch_sizes = [34] #PARAM 1 better for valence, 34 better for arousal learning_rates = [0.001] #[0.00025,0.0005,0.001,0.002] ## PARAM #max_num_epochs = 500 #f 500/100 (for BS 1) first_lstm = True #f num_cells_1 = 200 #f num_cells_2 = 64 #f num_cells_3 = 32 #f num_cells_4 = 32 #f #num_cells_1 = [200,5] #f #num_cells_2 = [64,20] #f #num_cells_3 = [32,30] #f #num_cells_4 = [32,50] #f last_lstm = False #f batch_norm = False #f - requires a high learning rate, but no improvement last_specific = False #f - no multi-task for the beginning comb_smoothing = False #na bidirectional = True #na dropout = 0.0 #f - no big difference final_activation = 'linear' #f - tanh does not work for CNN loss_function = 'ccc_2' #f shift_secs = [0.0,0.4,0.8,1.2,1.6,2.0,2.4,2.8,3.2,3.6,4.0,4.4,4.8,5.2,5.6,6.0] #PARAM - 0.05 opt for window size 0.1, uni-directional LSTM targets_avls = ['A','V'] #f feature_type_a = 'funcegem' #f 'mfcc' & 'funcegem' best, 'egem' works best for fusion, 'mfcccomp' worse, 'funccomp' better for valence, but bad for arousal on devel feature_type_v = 'faus' #f 'faus+lips' have approx. the same performance window_size = 0.5 #f xbow_cs = 1000 #na xbow_na = 10 #na random_seeds = [0] ## PARAM add_noise = False #f # not implemented append_results_file = 'all_results_lstm.txt' for targets_avl in targets_avls: for shift_sec in shift_secs: for batch_size in batch_sizes: ## if batch_size==1: max_num_epochs = 100 elif batch_size<10: max_num_epochs = 250 else: max_num_epochs = 200 ## for learning_rate in learning_rates: for random_seed in random_seeds: main(param_given, culture=culture, eval_cross=eval_cross, modality=modality, get_turn_feature=get_turn_feature, uncertainty_target=uncertainty_target, invert_std=invert_std, loss_unc=loss_unc, weight_unc=weight_unc, balance_weight=balance_weight, uncertainty_weight=uncertainty_weight, batch_size=batch_size, learning_rate=learning_rate, max_num_epochs=max_num_epochs, first_lstm=first_lstm, num_cells_1=num_cells_1, num_cells_2=num_cells_2, num_cells_3=num_cells_3, num_cells_4=num_cells_4, last_lstm=last_lstm, batch_norm=batch_norm, last_specific=last_specific, comb_smoothing=comb_smoothing, bidirectional=bidirectional, dropout=dropout, final_activation=final_activation, loss_function=loss_function, shift_sec=shift_sec, targets_avl=targets_avl, feature_type_a=feature_type_a, feature_type_v=feature_type_v, window_size=window_size, xbow_cs=xbow_cs, xbow_na=xbow_na, random_seed=random_seed, add_noise=add_noise, append_results_file=append_results_file)
[ "megonnashop@gmail.com" ]
megonnashop@gmail.com
2a2073d56153bd0c9fbc7ba6d2c12d2005b41b1f
8e79b76bc1f67291cef9118eff4adf3f529235ba
/210110_졸업작품3.py
00304439eb05e619e5a6ba253136b503de244c13
[]
no_license
hacks0921/2021year
cdac5f8218aa41d3b6fc551f2d72456ff04d5144
b375cf180c4f10f2c7fc41b2d5c06bb0bcb658f3
refs/heads/main
2023-06-06T17:47:20.817199
2021-07-08T23:16:19
2021-07-08T23:16:19
328,184,451
0
0
null
null
null
null
UTF-8
Python
false
false
3,723
py
import sys from PyQt5 import QtWidgets from PyQt5 import uic import os import openpyxl from openpyxl import Workbook from openpyxl.drawing.image import Image from openpyxl import load_workbook import shutil from PIL import Image from PyQt5.QtCore import Qt,QThread,pyqtSignal import time class Form(QtWidgets.QDialog): file_name = pyqtSignal(str) def __init__(self, parent=None): QtWidgets.QDialog.__init__(self, parent) self.ui = uic.loadUi("1012_QT_UI_V0.1.ui") self.ui.pushButton_1.clicked.connect(self.startProgressBar) self.ui.show() def filename(self): a = self.ui.lineEdit_1.text() return a def startProgressBar(self): # 프로그래스바 시작 print("startProgressBar 시작 ") self.thread = MyThread() # MyThread 클레스 선언 # MytThread에서 사용한 change_value라는 pyqtSignal을 받아서 연결해준다 self.thread.change_value.connect(self.setProgressVal) # change_value값이날라오면 연결한다 setProgressvVal 함수에 전달한다 self.thread.start() # 쓰레드 실행, 파일이름을 함수에 전달 global xlsx_dir # 전역변수 지정 xlsx_dir = self.ui.lineEdit_1.text() # 엑셀 파일 이름 변수에 저장 # print(xlsx_dir) print("startProgressBar 실행 ") def setProgressVal(self,Val): # Val값을 받아서 Progressbar를 업데이트 한다 self.ui.progressBar_1.setValue(Val) # setProgressVal 함수 선언 Val를 전달 받아서 progessbar의 Setvalu를 Val로 입력 print("setProgressVal 실행 ") class MyThread(QThread): # Qthread 실제 실행하고자 하는 함수 !!!! change_value = pyqtSignal(int) # 시크널을 change_value 라는 변수에 담아서 보내준다 print("MyThread 실행") def __init__(self): # 폼 구성 super().__init__() def run(self): print("doaction") # xlsx_dir = "test" print(xlsx_dir) try: file_name = load_workbook("./" + xlsx_dir + ".xlsx") worksheet = file_name._sheets[0] # sheet name or sheet number or list of sheet numbers and names count = 0 fail = 0 for row in worksheet.iter_rows(): count += 1 img_path = row[0].value # 파일 경로 설정 if os.path.isfile(img_path): dir_path = './' + str(row[1].value) + '_' + str(row[2].value) # 저장 경로 생성 if not os.path.exists(dir_path): # 저장 경로가 없으면 신규 생성 os.mkdir(dir_path) name = os.path.split(row[0].value) # 파일 경로 분리 name = os.path.splitext(name[1]) # 파일 확장자 분리 save_path = dir_path + '/' + str(name[0]) + str(name[1]) # 저장 경로 설정 shutil.copy2(img_path, save_path) # 파일 경로에 있는 이미지를 해당 폴더로 이동 else: print("FAIL : ", img_path) fail += 1 print(count) max_row = worksheet.max_row percent = round(100 * (count / max_row)) self.change_value.emit(percent) print("total iamges : {:5d}, fail images : {:5d}".format(count, fail)) print("완료") self.ui.pushButton_1.setText('완료') except: print("에러") if __name__ == '__main__': app = QtWidgets.QApplication(sys.argv) w = Form() sys.exit(app.exec())
[ "noreply@github.com" ]
hacks0921.noreply@github.com
c46f8dae7fd09611eb31831a1cfcf7515a1fe8be
0726c911c1976871326aa05315b2c6203a08ca7e
/Part2/data_show/scatter_squares.py
b5d1b6ac57c85f3da9c95a2af2676492352e549d
[]
no_license
chaojimali666/core_python
e40c96f86f5eb102ed0d37aa601110aae5680097
6dd9d070dc69431c2a81f686adb518c603555e14
refs/heads/master
2020-04-27T23:58:14.574105
2019-03-10T09:00:38
2019-03-10T09:00:38
174,798,577
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
import matplotlib.pyplot as plt x_values = list(range(1,1001)) y_values = [x**2 for x in x_values] plt.scatter(x_values,y_values,c=y_values,cmap=plt.cm.Reds,edgecolor='none',s=40) plt.title("Square Numbers",fontsize=24) plt.xlabel("Value",fontsize = 14) plt.ylabel("Square of Value",fontsize = 14) #设置刻度标记大小 plt.tick_params(axis='both',which='major',labelsize=14) plt.axis([0,1100,0,1100000]) plt.savefig('squares_plot.png',bbox_inches='tight') plt.show()
[ "wuyongqi@pku.edu.cn" ]
wuyongqi@pku.edu.cn
d2452f37382def6e2f7783ebe775609f57ee6871
337d17b845f5fdd7f32f6a0607e494eed488a601
/exercism/python/allergies/allergies.py
94996a9f501f4e4cd5f60208ca0a0a5f52f0d875
[]
no_license
karsibali/solutions
e6130abe026a26558434239cde39c6a14a9712ba
4ba5d7ac41fecc87491cae2c88293bd798db31fd
refs/heads/master
2020-04-29T00:13:34.168323
2018-12-27T15:43:26
2018-12-27T15:43:26
175,686,183
1
0
null
2019-03-14T19:27:00
2019-03-14T19:27:00
null
UTF-8
Python
false
false
520
py
class Allergies(object): ALLERGENS = ( 'eggs', 'peanuts', 'shellfish', 'strawberries', 'tomatoes', 'chocolate', 'pollen', 'cats' ) def __init__(self, score): self._allergens = set( a for i, a in enumerate(self.ALLERGENS) if 1 << i & score > 0 ) def is_allergic_to(self, allergen): return allergen in self._allergens @property def lst(self): return list(self._allergens)
[ "ozan.onay@gmail.com" ]
ozan.onay@gmail.com
2df5454fd3d14ee509a6de1f6940893dc8473334
f1ee89e8ae5bcbe40602fd520df44b1ce10cfabc
/check.py
1f00caf8f7121a6d25473202b1021c205430959d
[ "CC0-1.0" ]
permissive
fenajojuk/social-media-hacker-list
30400630510cd11492d335d9a6ba774a4729dac1
c725bead4e12c3b37b506338d4607bc9a4fb82f2
refs/heads/main
2023-06-23T22:53:39.004996
2021-07-27T19:13:12
2021-07-27T19:13:12
390,160,789
1
0
CC0-1.0
2021-07-28T00:04:24
2021-07-28T00:04:23
null
UTF-8
Python
false
false
2,711
py
"""check all urls in readme for ~OK (acceptable) response""" import re import sys from json import loads from requests import request from urllib.parse import urlparse from dateutil.parser import parse from datetime import datetime TOKEN = sys.argv[1] if len(sys.argv) > 1 else None LIMIT = int(sys.argv[2]) if len(sys.argv) > 2 else None PATTERN = r'(https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-z' \ r'A-Z0-9]\.[^\s)\']{2,}|www\.[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-' \ r'Z0-9]\.[^\s]{2,}|https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9]+' \ r'\.[^\s)\']{2,}|www\.[a-zA-Z0-9]+\.[^\s)\']{2,})' def path(url): return urlparse(url).path.split('/') def host(url, domain): return domain in urlparse(url).netloc def ok(status, url): return status in [200, 403, 406] or \ (status == 502 and host(url, 'reddit.com')) def active(latest_change): delta = datetime.now() - latest_change.replace(tzinfo=None) return delta.days <= 365 def check_url(url, method, retry=0): response = request(method, url, headers={'Accept': '*/*'}) success = ok(response.status_code, url) if success or retry > 0: return success, response.status_code return check_url(url, "GET", 1) def active_repo(url): [owner, repo] = path(url)[1:3] api_url = f'https://api.github.com/repos/{owner}/{repo}' headers = {'Accept': 'application/vnd.github.v3+json'} if TOKEN: headers['Authorization'] = f'token {TOKEN}' response = request('GET', api_url, headers=headers) if not ok(response.status_code, url): return False, response.status_code if not active(parse(loads(response.content)['updated_at'])): return False, "INACTIVE" return True, 200 def main(): readme = open("README.md", "r").read() urls = list(set(re.findall(PATTERN, readme)))[0:LIMIT] fails, total, progress = [], len(urls), 0 print(f'Checking {total} entries...') for index, url in enumerate(urls): is_repo = host(url, 'github.com') and len(path(url)) > 2 try: success, code = active_repo(url) if is_repo \ else check_url(url, "HEAD") if not success: fails.append((code, url)) except Exception as e: fails.append((f'error: {e}', url)) percent = (index * 100) // total if percent % 10 == 0 and percent > progress: print(f'...{percent} % ({len(fails)})') progress = percent if fails: output = '\n'.join([f'- {m}: {u}' for m, u in fails]) print(f'{len(fails)} failure(s):\n{output}') sys.exit(1) print(f'no issues') if __name__ == '__main__': main()
[ "neea.rusch@mobilefirst.me" ]
neea.rusch@mobilefirst.me
2dac4e05c6c0a13aed4ccf25c89ee088301f0655
9bd634bcb47955c598f8134e98f3b3c4ec003bad
/Module3/practice/02_task_Fraction.py
3915b28d9802919372f60a22e6c9a8b768739aae
[]
no_license
EgorF1/SpecialistPython2_v2
2ee1e1e9610772bea9d9083fc4d308500c8b91aa
36a7fb16c2fcd9ad0d100ff86c747a32f7fb6562
refs/heads/master
2023-04-02T08:27:44.483856
2021-04-05T12:02:27
2021-04-05T12:02:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
748
py
# Задание "Простые дроби" # Сюда отправляем задание с классом дроби class Fraction: def __init__(self, fract_str): # Дробь в конструктор передается в виде строки # А мы храним дробь в виде self.numerator = ... # числителя self.denominator = ... # знаменатель # целую часть перебрасываем в числитель # минус, если он есть, тоже храним в числителе # Примеры создания дробей: fract1 = Fraction("3 12/15") fract2 = Fraction("-1 2/6") fract3 = Fraction("2/4") fract4 = Fraction("-2/4")
[ "t89236238012@gmail.com" ]
t89236238012@gmail.com
cee5d8fad0b945c2ff08e6e8fc785439dfb414ca
35f0ca560a2815561a5a69d6b5435437a5386d82
/카펫.py
f26bfeded6ac1d5ddb336bb501cf5b0a77357d10
[]
no_license
celeist666/ProgrammersAlgo
bb4a6363682a754b3a488c4355e3fe1a46e47e40
675dd27a02b9b50e6250125f33b18692a8b065b9
refs/heads/master
2022-12-11T15:42:13.858190
2020-09-11T01:21:43
2020-09-11T01:21:43
283,899,230
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
# red부분의 제곱근값 이하이므로 이를 완전 탐색해서 red의 가로세로를 알아낸다. def solution(brown, red): for i in range(1, int(red**(1/2))+1): if red % i == 0: if 2*(i + red//i) == brown-4: return [red//i+2, i+2]
[ "athebate@gmail.com" ]
athebate@gmail.com
6e7c08a6e30b14024e358e4c72154aa2fda938c6
d273f5b023f7d6e7e2a1050571ebd47f661f8200
/general_operations/geometry_shapes/circle.py
aead7db6a138197648d0388cfddea8693a68d174
[]
no_license
TiphaineL/magnet_position
1d756e2b9d26776116a86e1d4ec559d096300e51
2133828ec34cb73dda18c8bc176ab1ac2a15b6b3
refs/heads/master
2020-09-01T05:14:27.660266
2020-05-01T04:28:35
2020-05-01T04:28:35
218,887,872
0
0
null
null
null
null
UTF-8
Python
false
false
920
py
import numpy as np import matplotlib.pyplot as plt class circle: def __init__(self, center,radius,orientation): self.center = center self.radius = radius self.orientation = orientation def calculate_circle_all_coordinates(self): self.x_coordinates = np.arange(self.center[0] - self.radius, self.center[0] + self.radius, self.radius / 100000) self.y_coordinates_negative = -np.sqrt(np.abs(self.radius ** 2 - (self.x_coordinates - self.center[0]) ** 2)) + self.center[1] self.y_coordinates_positive = np.sqrt(np.abs(self.radius ** 2 - (self.x_coordinates - self.center[0]) ** 2)) + self.center[1] def draw_circle(self,colour): circle.calculate_circle_all_coordinates(self) plt.plot(self.x_coordinates, self.y_coordinates_negative,colour) plt.plot(self.x_coordinates, self.y_coordinates_positive,colour) plt.axis('scaled')
[ "lagadec.tiphaine@gmail.com" ]
lagadec.tiphaine@gmail.com
3a1bed5164417b2da92caffdfc92db2b84c1a9ac
1b8d162160f5ab6d6a6b8940b8ab83b482abb409
/tests/query/test_bool.py
6dea261aa5c66f2089120c8aa168e698734ae55f
[ "Apache-2.0" ]
permissive
jlinn/pylastica
f81e438a109dfe06adc7e9b70fdf794c5d01a53f
0fbf68ed3e17d665e3cdf1913444ebf1f72693dd
refs/heads/master
2020-05-19T14:07:38.794717
2014-07-23T23:43:00
2014-07-23T23:43:00
10,442,284
5
1
null
null
null
null
UTF-8
Python
false
false
1,654
py
__author__ = 'Joe Linn' import unittest import pylastica from tests.base import Base class BoolTest(unittest.TestCase, Base): def test_search(self): client = self._get_client() index = client.get_index('test') index.create(options=True) doc_type = index.get_doc_type('helloworld') doc_type.add_document(pylastica.Document(1, {'id': 1, 'email': 'joe@test.com', 'username': 'joe', 'test': ['2', '3', '5']})) doc_type.add_document(pylastica.Document(2, {'id': 2, 'email': 'bob@test.com', 'username': 'bob', 'test': ['1', '3', '6']})) doc_type.add_document(pylastica.Document(3, {'id': 3, 'email': 'bill@test.com', 'username': 'bill', 'test': ['2', '3', '7']})) index.refresh() bool_query = pylastica.query.Bool() term_query1 = pylastica.query.Term({'test': '2'}) bool_query.add_must(term_query1) result_set = doc_type.search(bool_query) self.assertEqual(2, len(result_set)) term_query2 = pylastica.query.Term({'test': '5'}) bool_query.add_must(term_query2) result_set = doc_type.search(bool_query) self.assertEqual(1, len(result_set)) term_query3 = pylastica.query.Term({'username': 'joe'}) bool_query.add_must(term_query3) result_set = doc_type.search(bool_query) self.assertEqual(1, len(result_set)) term_query4 = pylastica.query.Term({'username': 'bob'}) bool_query.add_must(term_query4) result_set = doc_type.search(bool_query) self.assertEqual(0, len(result_set)) index.delete() if __name__ == '__main__': unittest.main()
[ "joe@venturocket.com" ]
joe@venturocket.com
4bd7b939b951f4344a99f0ce9271f9b5aca3f91f
573fa4524ea8be37d0bcc2e3195d9529235f577b
/uvicore/auth/authenticators/base.py
00e0788e542e4087320aad0db3122c3e0b19a2d4
[ "MIT" ]
permissive
webclinic017/framework
72753f541f3c7f2cb13ae314785f23fb56ae5908
9c21b85e9e470c6d789899340332a9abd0b26ab1
refs/heads/master
2023-09-04T07:37:57.966539
2021-10-15T19:36:42
2021-10-15T19:36:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,734
py
import uvicore from uvicore.support import module from uvicore.support.dumper import dump, dd from uvicore.http.request import HTTPConnection from uvicore.contracts import UserInfo, UserProvider from uvicore.typing import Dict, Optional, List, Tuple from uvicore.contracts import Authenticator as AuthenticatorInterface @uvicore.service() class Authenticator(AuthenticatorInterface): """Base authenticator class""" def __init__(self, config: Dict): self.config = config @property def log(self): return uvicore.log.name('uvicore.auth') async def retrieve_user(self, username: str, password: str, provider: Dict, request: HTTPConnection, **kwargs) -> Optional[UserInfo]: """Retrieve user from User Provider backend""" # Import user provider defined in auth config user_provider: UserProvider = module.load(provider.module).object() # Get user from user provider and validate password. User will be Anonymous # if user not found, disabled or validation failed user = await user_provider.retrieve_by_credentials( # Require parameters username=username, password=password, request=request, # Pass in options from auth config **provider.options, # Pass in options from the calling authenticator **kwargs, ) # Do not throw error if no user or not validated here. We let the middleware handle that return user async def create_user(self, provider: Dict, request: HTTPConnection, **kwargs): # Import user provider defined in auth config user_provider: UserProvider = module.load(provider.module).object() # Create user from user provider # Returned user is actual backend user, NOT Auth User object user = await user_provider.create_user(request, **kwargs) return user async def sync_user(self, provider: Dict, request: HTTPConnection, **kwargs): # Import user provider defined in auth config user_provider: UserProvider = module.load(provider.module).object() # Create user from user provider # Returned user is actual backend user, NOT Auth User object user = await user_provider.sync_user(request, **kwargs) return user def auth_header(self, request) -> Tuple[str, str, str]: """Extract authorization header parts""" authorization = request.headers.get('Authorization') if not authorization: return (authorization, '', '') # Partition is a bit more performant that split scheme, _, param = authorization.partition(' ') return authorization, scheme.lower(), param
[ "mail@mreschke.com" ]
mail@mreschke.com
1654d27a923d58b9d627a5fe61e68b0b1a04d947
c065ff2a6a377aea2303b7b8482558049958a7ec
/toydrill/1562239654/tactile.tac
23ebffe0c957aeec513c0a3051c9be9817663a24
[]
no_license
waedbara/vision2tactile
7bc9861eecb4247fd254ea58dc508ed18a03b1af
edbc9dfee61b4a4b1f0caebb2f16faef090dff32
refs/heads/master
2022-04-02T20:43:16.621687
2019-12-11T08:07:39
2019-12-11T08:07:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
290
tac
,3595,3733,3650,3703,3508,3644,3718,3552,3572,3502,3583,3725,3510,3461,3386,3379,3285,3455,2995,2841,3738,3710,3697,3568,2008,2012,1859,2110,2628,3230,3458,3318,3390,3200,3240,3268,3288,3261,2972,3211,3470,3255,3348,3351,3302,3361,3304,2866,2734,3482,3468,3470,3374,1997,1996,2863,2093,2468
[ "brayan.inf@gmail.com" ]
brayan.inf@gmail.com
b770a1573629fd73844895566f2af2b7f90b59b2
5db507026cf745767195c2134b3291f17abd7a1d
/수업/5주차 수업내용/ball.py
dc6a71bae978c2b1db56e560dd51e41e1e9f171f
[]
no_license
LEEMIREUK/2DGP
1430ee01a1fad4e9ea568782d2b06092a036ef05
7112606622377e7f5e75db753102ed70a6820325
refs/heads/master
2023-01-29T08:04:43.458759
2020-12-04T09:00:21
2020-12-04T09:00:21
294,226,158
0
0
null
null
null
null
UTF-8
Python
false
false
938
py
from pico2d import * from gobj import * import gfw_image class Ball: balls = [] def __init__(self, pos, delta, big=False): imageName = '/ball41x41.png' if big else '/ball21x21.png' self.image = gfw_image.load(RES_DIR + imageName) self.pos = pos self.delta = delta self.radius = self.image.h // 2 print('Radius = %d' % self.radius) def draw(self): self.image.draw(*self.pos) def update(self): x, y = self.pos dx, dy = self.delta x += dx y += dy gravity = 0.1 dy -= gravity bottom = y - self.radius if bottom < 50 and dy < 0: dy *= rand(-0.8) if dy <= 1: dy = 0 if x < -100 or x > get_canvas_width() + 100: Ball.balls.remove(self) print("Ball count - %d" % len(Ball.balls)) self.pos = x, y self.delta = dx, dy
[ "sslejds@naver.com" ]
sslejds@naver.com
d1710bafd9de4a1e82dbe146ab0812f32a4d79fd
a2d36e471988e0fae32e9a9d559204ebb065ab7f
/huaweicloud-sdk-vod/huaweicloudsdkvod/v1/model/confirm_asset_upload_req.py
abcc2de26b8e169ce1f8a8e0688358f836ba95d3
[ "Apache-2.0" ]
permissive
zhouxy666/huaweicloud-sdk-python-v3
4d878a90b8e003875fc803a61414788e5e4c2c34
cc6f10a53205be4cb111d3ecfef8135ea804fa15
refs/heads/master
2023-09-02T07:41:12.605394
2021-11-12T03:20:11
2021-11-12T03:20:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,796
py
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ConfirmAssetUploadReq: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'asset_id': 'str', 'status': 'str' } attribute_map = { 'asset_id': 'asset_id', 'status': 'status' } def __init__(self, asset_id=None, status=None): """ConfirmAssetUploadReq - a model defined in huaweicloud sdk""" self._asset_id = None self._status = None self.discriminator = None self.asset_id = asset_id self.status = status @property def asset_id(self): """Gets the asset_id of this ConfirmAssetUploadReq. 媒资ID。 :return: The asset_id of this ConfirmAssetUploadReq. :rtype: str """ return self._asset_id @asset_id.setter def asset_id(self, asset_id): """Sets the asset_id of this ConfirmAssetUploadReq. 媒资ID。 :param asset_id: The asset_id of this ConfirmAssetUploadReq. :type: str """ self._asset_id = asset_id @property def status(self): """Gets the status of this ConfirmAssetUploadReq. 上传状态。 取值如下: - CREATED:创建成功。 - FAILED:创建失败。 - CANCELLED:创建取消。 :return: The status of this ConfirmAssetUploadReq. :rtype: str """ return self._status @status.setter def status(self, status): """Sets the status of this ConfirmAssetUploadReq. 上传状态。 取值如下: - CREATED:创建成功。 - FAILED:创建失败。 - CANCELLED:创建取消。 :param status: The status of this ConfirmAssetUploadReq. :type: str """ self._status = status def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ConfirmAssetUploadReq): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
5d3d54ab106ea1896ca64c8ccc21053587f74482
7bd2e8be5f7c85814b65ea89c8010579177c9bd7
/view.py
3fa5d0224688faacaa25e7026136572d30b66f49
[]
no_license
13580769346/bj18
e7f9f339185302d3812c40808a69acc0564fe217
ada9e50d9f7cff44427da9d27e59539c0b520136
refs/heads/master
2020-08-23T07:53:58.937629
2019-10-21T14:49:01
2019-10-21T14:49:01
216,574,966
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
from django.http import HttpResponse import time def index(request): return HttpResponse('ok')
[ "495431861@qq.com" ]
495431861@qq.com
209ab1d35b27d2962dc6d5a2f093da0fd655bb9a
3a80dc963659b662d289231f544f0ac60075e83c
/exercises/05_basic_scripts/task_5_3a.py
e8517344b7f10185db427c3223b8ba08d47a8fb6
[]
no_license
notwhale/pyneng-examples-exercises
c1c6ee2d2fc935b63a7cd609900317d1ede574e7
8c3c997132096180f2e835e55c840a80fb513c58
refs/heads/master
2023-05-23T04:00:43.318285
2021-06-15T04:21:52
2021-06-15T04:21:52
287,457,974
0
0
null
null
null
null
UTF-8
Python
false
false
1,593
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Задание 5.3a Дополнить скрипт из задания 5.3 таким образом, чтобы, в зависимости от выбранного режима, задавались разные вопросы в запросе о номере VLANа или списка VLANов: * для access: 'Введите номер VLAN:' * для trunk: 'Введите разрешенные VLANы:' Ограничение: Все задания надо выполнять используя только пройденные темы. То есть эту задачу можно решить без использования условия if и циклов for/while. """ access_template = [ "switchport mode access", "switchport access vlan {}", "switchport nonegotiate", "spanning-tree portfast", "spanning-tree bpduguard enable", ] trunk_template = [ "switchport trunk encapsulation dot1q", "switchport mode trunk", "switchport trunk allowed vlan {}", ] # Решение mode = input('Введите режим работы интерфейса (access/trunk): ') intf = input('Введите тип и номер интерфейса: ') vlan_q = { "trunk": 'Введите разрешенные VLANы: ', "access": 'Введите номер VLAN: ' } vlan = input(vlan_q[mode]) result = { "trunk": trunk_template, "access" : access_template } print('interface {}'.format(intf)) print('\n'.join(result[mode]).format(vlan))
[ "notwhale@gmail.com" ]
notwhale@gmail.com
5f603c43da8418866b1c607b364dd64f03f63bf2
06a76cc0c398240c04acee0d8514f5f047c9ab9b
/tests/test_cleaning.py
da0ff654d7c513e600ee46d6c692dcff3439e6bc
[]
no_license
1eg1on/cs_go_parsing
aec5ce31eb50a2b51b939bb29f4bdc1717c4577e
d3e3176fe615d4947cb4ca5e250358a4acb508c9
refs/heads/main
2023-08-17T11:13:00.969395
2021-09-24T12:14:03
2021-09-24T12:14:03
409,950,917
0
0
null
null
null
null
UTF-8
Python
false
false
2,794
py
import pytest import pandas as pd from csgo.parser.cleaning import associate_entities, replace_entities, remove_dupes class TestCleaning: """Class to test CSGO data cleaning functions""" def test_association(self): """Test entity association""" a = ["misutaaa-", "ZyW0o//", "peeter"] b = ["misuta", "Zywoo", "peter"] c = associate_entities(a, b) assert c["misutaaa-"] == "misuta" def test_lcss_metric(self): """Test LCSS metric""" a = ["misutaaa-", "ZyW0o//", "peeter"] b = ["misuta", "Zywoo", "peter"] c = associate_entities(a, b, metric="lcss") assert c["misutaaa-"] == "misuta" def test_hamming_metric(self): """Test Hamming metric""" a = ["misutaaa-", "ZyW0o//", "peeter"] b = ["misuta", "Zywoo", "peter"] c = associate_entities(a, b, metric="hamming") assert c["misutaaa-"] == "misuta" def test_levenshtein_metric(self): """Test Levenshtein metric""" a = ["misutaaa-", "ZyW0o//", "peeter"] b = ["misuta", "Zywoo", "peter"] c = associate_entities(a, b, metric="levenshtein") assert c["misutaaa-"] == "misuta" def test_jaro_metric(self): """Test Jaro-Winkler metric""" a = ["misutaaa-", "ZyW0o//", "peeter"] b = ["misuta", "Zywoo", "peter"] c = associate_entities(a, b, metric="jaro") assert c["misutaaa-"] == "misuta" def test_wrong_metric(self): """Tests if submitting a wrong metric raises an error.""" a = ["misutaaa-", "ZyW0o//"] b = ["misuta", "Zywoo", "peter"] with pytest.raises(ValueError): associate_entities(a, b, metric="bad_metric") def test_entity_replace(self): """Tests if entity replacement works for a dataframe.""" df = pd.DataFrame( {"Person": ["sid", "peter", "joao"], "Country": ["DE", "US", "BR"]} ) entities = {"DE": "Germany", "US": "USA", "BR": "Brazil"} new_df = replace_entities(df, "Country", entities) assert new_df.Country.tolist() == ["Germany", "USA", "Brazil"] def test_entity_replace_no_col(self): """Tests if entity replacement fails on a non-contained column.""" df = pd.DataFrame( {"Person": ["sid", "peter", "joao"], "Country": ["DE", "US", "BR"]} ) entities = {"DE": "Germany", "US": "USA", "BR": "Brazil"} with pytest.raises(ValueError): replace_entities(df, "Countryyy", entities) def test_remove_dupes(self): """Tests remove dupes""" df = pd.DataFrame({"Person": ["peter", "peter"], "Country": ["US", "US"]}) no_dupes = remove_dupes(df, cols=["Person", "Country"]) assert no_dupes.shape[0] == 1
[ "maxim.komatovskiy@skoltech.ru" ]
maxim.komatovskiy@skoltech.ru
4b9296cf929939a105afe6f79ff869b0a5287bbf
e2197a4c8502138c0cf2d8219527aa7e2b5980c6
/assignments/six/q2.py
0b0866769abc11e56792ea56aa982925a85f1a0e
[]
no_license
sircpl/stanford-algorithms-1
af5efc610648fca38e8b8447670ff9d4365a568a
7bb9b319b52080f6ddbc64566572c1ef36c60aa8
refs/heads/master
2021-05-29T15:12:06.516409
2015-07-28T04:24:29
2015-07-28T04:24:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,491
py
__author__ = 'cman' from utils import data import heapq def _rebalance(minheap, maxheap): minlen = len(minheap) maxlen = len(maxheap) if minlen > maxlen: if (minlen - maxlen) > 1: minval = heapq.heappop(minheap) heapq.heappush(maxheap, -minval) else: if (maxlen - minlen) > 1: maxval = -heapq.heappop(maxheap) heapq.heappush(minheap, maxval) def medians(ints): minheap, maxheap = [], [] if len(ints) < 2: raise Exception('median maintenance algo only relevant for >= 2 elements') a = ints.pop(0) meds = [a] b = ints.pop(0) # add smaller to the max heap, bigger to min heap if a > b: meds.append(b) heapq.heappush(minheap, a) heapq.heappush(maxheap, -b) else: meds.append(a) heapq.heappush(minheap, b) heapq.heappush(maxheap, -a) for i in ints: if i < -maxheap[0]: heapq.heappush(maxheap, -i) else: heapq.heappush(minheap, i) _rebalance(minheap, maxheap) if len(minheap) > len(maxheap): med = minheap[0] elif len(maxheap) > len(minheap): med = -maxheap[0] else: med = min(-maxheap[0], minheap[0]) meds.append(med) return meds if __name__ == '__main__': ints = data.read_ints('q2.input') meds = medians(ints) sum = 0 for m in meds: sum = (sum + m) % 10000 print(sum)
[ "colin.p.lancaster@gmail.com" ]
colin.p.lancaster@gmail.com
3887ef5ba797cc8c6afd0e1c1b5fca46c761706d
f5e642d33aa2cbcc147646cf0c827bc2098e7eb9
/python3/varaiable_with_incremental_digit.py
d835bed0a6f51117a4692e48903ebceef1ca3f2c
[]
no_license
keeeeeeeeeeta/MySandbox
9d194e5656d53df997b6266d5e3cd2e1062eec59
65fbb1f5e185d636819b3be20dcf5bb33aecee73
refs/heads/master
2020-03-27T07:18:53.859242
2018-08-26T13:17:03
2018-08-26T13:17:03
146,180,928
0
0
null
null
null
null
UTF-8
Python
false
false
829
py
ans_candidate_list = ["cat", "dog", "bird", "penguin", ] num_answers = len(ans_candidate_list) #num_answers = 4 #ans_candidate_0 = "cat" #ans_candidate_1 = "dog" #ans_candidate_2 = "bird" #ans_candidate_3 = "penguin" #ans_candidate_list = list("" * num_answers) ans_candidate_list = [""] * num_answers #print(ans_candidate_list) #print("length of that is ...\n", len(ans_candidate_list)) for i in range(0, num_answers): ans_candidate_list = ans_candidate_$i #ans_candidate_list = [ans_candidate_0, # ans_candidate_1, # ans_candidate_2, # ans_candidate_3 # ] # #target_answer = random.randint(0, num_answers) #hangman(ans_candidate_list[target_answer])
[ "megalomania_12@hotmail.com" ]
megalomania_12@hotmail.com
88c4468df4f2f59a62715b68ba38cca6fbdcf5cc
7bbcfd9a8ba15476cc1d186587120d46ffe08009
/TrdVwSpider/spiders/TradingView.py
e96d7790f27bd6233848947a2925b55236b0ef1d
[]
no_license
rasoulkhaksari/Async_Scrap_Websocket
a8ffc30ed4e34eea01bf0131106704536a2ab4ee
8eb693ed695d5b7872e468ae51e3ebd4841db9d4
refs/heads/main
2023-07-16T00:37:50.204952
2021-08-27T00:24:10
2021-08-27T00:24:10
400,337,929
2
3
null
null
null
null
UTF-8
Python
false
false
855
py
import scrapy class TradingViewSpider(scrapy.Spider): name = 'tradingviewspider' start_urls=['https://www.tradingview.com/markets/cryptocurrencies/prices-all/'] def parse(self, response): for tr in response.css("#js-screener-container table tbody tr"): yield { 'Title': tr.css("td:nth-child(1) a::text").get().strip(), 'Mkt_Cap': tr.css("td:nth-child(2)::text").get(), 'FD_Mkt_Cap': tr.css("td:nth-child(3)::text").get(), 'LAST': tr.css("td:nth-child(4)::text").get(), 'Avail_Coins': tr.css("td:nth-child(5)::text").get(), 'Total_Coins': tr.css("td:nth-child(6)::text").get(), 'Traded_Vol': tr.css("td:nth-child(7)::text").get(), 'Chg': tr.css("td:nth-child(8)::text").get(), }
[ "rasoulkhaksari@gmail.com" ]
rasoulkhaksari@gmail.com
cb520c6f7226e6d93db405f5b980098484172815
fa05f4126ab47814159936e9e686dfd9519a1302
/MovieListProject/urls.py
626ebb48f844c22161c365f7d1fdcabb810d08e2
[]
no_license
paridev/MoviesList
4192aaaa724bae348c7aed5efd2881fcb31205fd
2dab6f5ef609d48235cb7676f84020a1f4820e39
refs/heads/master
2022-12-30T12:34:08.773162
2020-10-04T20:36:43
2020-10-04T20:36:43
301,220,721
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
"""MovieListProject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('MovieListApp.urls')), ]
[ "pari.sha.dev@gmail.com" ]
pari.sha.dev@gmail.com
bf27f64704824bf3d156ec80e7c388c25163aad4
54b5dc2323a5166ab0a61acaa01794f9b14cb1df
/brute.py
a0abc02d9ca2d25dd10575f1c4fce49b082a3c34
[ "MIT" ]
permissive
MikeWent/cf-hash-bruteforce
b7a2e46c7b79ad486611997779af0bf73bec11ed
d98131596c584fac16b670696548bb78b8895656
refs/heads/master
2021-09-02T09:33:37.686439
2018-01-01T13:38:07
2018-01-01T13:38:07
105,568,596
0
0
null
null
null
null
UTF-8
Python
false
false
1,254
py
#!/usr/bin/env python3 import hashlib class COLORS: HEADER = '\033[95m' BLUE = '\033[94m' GREEN = '\033[92m' ORANGE = '\033[93m' RED = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def get_hashes(text): text = text.encode('utf-8') md5 = "MD5: " + hashlib.md5(text).hexdigest() sha1 = "SHA1: " + hashlib.sha1(text).hexdigest() sha256 = "SHA256: " + hashlib.sha256(text).hexdigest() return md5, sha1, sha256 def number_generator(start, end): n = start while n <= end: yield n n += 1 PHRASE = input('Enter word to bruteforce: '+COLORS.BOLD) print(COLORS.ENDC, end='') RAW_CYCLES = input('Set maximum bruteforce cycles [500]: '+COLORS.BOLD) if RAW_CYCLES == '': CYCLES = 500 else: try: CYCLES = int(RAW_CYCLES) except: print(COLORS.RED+'Incorrect value!'+COLORS.ENDC) exit() print(COLORS.ENDC+'---') for n in number_generator(0, CYCLES): variant = PHRASE + str(n) hashes = get_hashes(variant) for hashstr in hashes: if hashstr.endswith('cf'): print(COLORS.BOLD+COLORS.GREEN+variant+COLORS.ENDC) print(hashstr) print('---') print(COLORS.BLUE+'Done!'+COLORS.ENDC)
[ "git@meew.me" ]
git@meew.me
fc1cd42e2c9a348ff35531e0e0e89433005fd76a
c2499b131c1936107638555eb524c733962455ec
/testcases/test_case_1822.sikuli/test_case_1822.py
b4fa613cc0a8da2613e79fed5f61163f67bee522
[]
no_license
liupeng330/mac_automation
b9fbfcd1ea53691d22951ce82de30f0dace4b09e
a53f8a12d545f06fecb5bfae6d4cc3aab68bc2df
refs/heads/master
2021-01-20T09:01:52.383478
2015-07-28T10:16:39
2015-07-28T10:16:39
39,117,004
0
0
null
null
null
null
UTF-8
Python
false
false
2,331
py
import os from nose.plugins.attrib import attr import time import helper from sikuli import * from global_config import * from controls.sign_in_control import * from controls.rt_control import * from controls.system_tray_control import * import ops.operations as op from base import * class TestCase_1822(TestCase_Base): """ Social Info: Like or unlike media in Shared with me """ def setUp(self): try: TestCase_Base.setUp(self) log("Start to verify if RT is signed in or not") if self.RT.is_sign_in: log("RT has been signed in already, start to sign out") self.RT.sign_out() op.launch_RT_before_running_case() self.RT.remove_all_from_cloud_view() # test clip test_name = "Download.mp4" test_case_path = os.path.join( test_content_path, "original", test_name) assert os.path.isfile(test_case_path), "The media file doesn't exist in '" + test_case_path + "'" # upload clip to cloud assert helper.upload_video_via_API( test_case_path), "Fail to upload test clip '" + self.test_name + "' via API" assert_step(self.RT.switch_to_all_view()) # share the clip to account_username2 assert_step(self.RT.share_media_in_library_view(["Download"])) op.switch_to_account2() log("after sign in") except: TestCase_Base.tearDown(self) raise @attr('BVT') def test_like_unlike_media(self): assert_step(self.RT.switch_to_shared_with_me_view()) # verify the shared item is in the view assert self.RT.does_exist_in_library(new_shared_media_item, "Download", default_wait_time), \ "The shared item doesn't exist in 'Share with me' view" # like the shared album log("Like a shared media") assert_step(self.RT.like_media(new_shared_media_item)) # exit the gallery mode log("Cloud gallery view") self.RT.close_gallery_view() time.sleep(2) # unlike the same album log("Unlike the shared media") assert_step(self.RT.unlike_media(shared_media_item)) def tearDown(self): TestCase_Base.tearDown(self)
[ "330liupeng@gmail.com" ]
330liupeng@gmail.com
a5dfde187c82574476f24c98be4e7986b5c80b60
9f51f10153db959a9d57e98f51b69a1ec0b8a57f
/data/SegmentationDataset.py
7c0e922868b51a8e725beb8f23842f26db099766
[]
no_license
StanfordDataScience/dssg_gsv
3b2b71feac57ba91ae94c7c6adc7bd02f8a8f39a
f64c688d7343a7c6606d5a1a4a894b26dc47791e
refs/heads/main
2023-07-27T19:47:26.072137
2021-09-10T20:55:23
2021-09-10T20:55:23
376,937,000
0
0
null
null
null
null
UTF-8
Python
false
false
3,274
py
"""SegmentationDataset.py ------------------------------------------------------------------------- Created by: Shubhang Desai Date created: April 2021 Last revised: June 15, 2021 Project: GSV Subproject: ml-buildings ------------------------------------------------------------------------- Abstraction for a Cityscape dataset to be used for pre-training. """ import torch from torch.utils.data import Dataset from torchvision import transforms from PIL import Image, ImageDraw import pandas as pd import numpy as np import os, json labels = ['rider', 'persongroup', 'motorcycle', 'traffic sign', 'road', 'car', 'trailer', 'wall', 'license plate', 'bicyclegroup', 'motorcyclegroup', 'ridergroup', 'pole', 'vegetation', 'ground', 'ego vehicle', 'out of roi', 'rectification border', 'sidewalk', 'train', 'person', 'polegroup', 'bridge', 'caravan', 'bus', 'dynamic', 'truckgroup', 'rail track', 'guard rail', 'sky', 'tunnel', 'bicycle', 'building', 'terrain', 'cargroup', 'truck', 'traffic light', 'fence', 'parking', 'static'] class SegmentationDataset(Dataset): def __init__(self, img_dir, setname): """ Initializes dataset of segmentation images/masks Paramters --------- img_dir : str directories which contains images in `imgs/` subdir and `[setname].csv` for labels setname : str one of ['train', 'val', 'test'] """ city_folders = [os.path.join(img_dir, 'imgs', setname, city) for city in os.listdir(os.path.join(img_dir, 'imgs', setname))] self.images = [] for city_folder in city_folders: self.images.extend(os.path.join(city_folder, image_name) for image_name in os.listdir(city_folder)) self.masks = [path.replace('imgs', 'masks').replace('leftImg8bit.png', 'gtFine_polygons.json') for path in self.images] self.transform = { 'train': transforms.Compose([ #transforms.RandomResizedCrop(224), transforms.Resize(256), transforms.CenterCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=.05), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), }[setname] def __len__(self): return len(self.images) def __getitem__(self, i): image = Image.open(self.images[i]) image = self.transform(image) mask_data = json.load(open(self.masks[i], 'r')) mask = Image.new('RGB', (mask_data['imgWidth'], mask_data['imgHeight'])) draw = ImageDraw.Draw(mask) for obj in mask_data['objects']: draw.polygon([tuple(coord) for coord in obj['polygon']], fill=(labels.index(obj['label']), 0, 0)) assert mask.size == (2048, 1024), 'Expected (2048, 1024), got ' + str(mask.size) mask = np.array(mask.resize((512, 256)))[16:16+224, 144:144+224, 0] return image, torch.Tensor(mask).long()
[ "acf67@cornell.edu" ]
acf67@cornell.edu
9809a6eed241dc36cf145acf485b56a0c367148e
077dbaa15e31d0fab8e26cda8e59b0582a13a11b
/bios/urls.py
317886f62c6e735324bf95653b2c56d182b3dc29
[]
no_license
thurloat/results
ad0794056f7bf215415935cb9db569ad5dcdeb61
183f6ef86ccc01242d1da98bc05d2f8bf17a2303
refs/heads/master
2021-01-19T04:52:20.688810
2009-08-14T14:36:57
2009-08-14T14:36:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
928
py
#!/usr/bin/env python # encoding: utf-8 """ urls.py Created by Adam on 2009-07-02. Copyright (c) 2009 __MyCompanyName__. All rights reserved. """ from django.conf.urls.defaults import * urlpatterns = patterns('bios.views', (r'^$', 'show_bios_overview_mobile'), (r'^img/(?P<id>.+)/$', 'image_view'), (r'^flag/(?P<id>.+)/$', 'flag_view'), (r'^athletes/(?P<country>[A-Z]{3})/$', 'show_athletes_all_country'), (r'^athletes/(?P<country>[A-Z]{3})/(?P<crewNum>.+)/$', 'show_athletes_country_crew'), (r'^athlete/(?P<identifier>.+)/$', 'show_athlete'), (r'^upload/$', 'bio_upload'), (r'^crew/(?P<key>.+)/$', 'show_crew'), (r'^purgec$', 'bio_delete_country'), (r'^purgea$', 'bio_delete_athlete'), (r'^purgecr$', 'bio_delete_crew'), )
[ "adam@Thurloat.local" ]
adam@Thurloat.local
be242b756ac86cf439b6ea3566fdcc7c02f809ee
b51dae034662f95d34b79a3f89e234d077443433
/Codes/11_Modules&Packages.py
5ce00156307424652b0a6cd79f36837e4ca522be
[]
no_license
busratican/PYTHON
555f6dfeb86e4503a6ec465670d87355a63bb533
a1265b92c4ffd0e4b90ef43186497b9b29c1ecba
refs/heads/master
2020-03-19T12:17:26.211510
2018-06-24T10:58:05
2018-06-24T10:58:05
136,508,317
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
# -*- coding: utf-8 -*- """ Created on Wed Jun 6 21:02:48 2018 @author: Busra """ #Modules and Packages #module:piece of software that has specific functionality.Each module is a different file. #for example,lets we module math operation like addition and substraction: #MODULES #.../math #../math/addition.py #../math/substraction.py #Please look at the math folder.
[ "busragul1022@gmail.com" ]
busragul1022@gmail.com
6271b04087343064f71998a629e765387f373ed3
d0a84d97aaa8dcc2dff4a6b33ce98dee6d474496
/com.CheckProofing/Test_w_04_Palette_PO_T4_LastChance/Utility_Page.py
76ab669f775bbd10411bd8701874ad2512ed09ac
[]
no_license
ahmed-test001/python
21a27248c4571a13c0ed4dccab256aede1beea3a
eab59b9a54fae1a51fbc18c391599eb3b0e28b3d
refs/heads/master
2023-03-10T21:00:54.634028
2021-02-27T05:31:58
2021-02-27T05:31:58
342,778,794
0
0
null
null
null
null
UTF-8
Python
false
false
955
py
import glob import sys import os sys.path.append(os.path.join(os.path.dirname(__file__),"..")) class utilityPage: unique_list = [] def write_Category_URL(self): path = 'C:/Users/a.ferdous.CORP/PycharmProjects/com.CheckProofing/Test_w_04_Palette_PO_T4_LastChance/creative/*.htm' with open('../TextFolder_Unique_URL/UniqueList_2.txt',"w")as f: files = glob.glob(path) for x in files: # if "DD" in x: self.unique_list.append(x) someline = x + '\n' f.writelines(someline) print(someline) def total_Count_URL(self): count=0 with open('../TextFolder_Unique_URL/UniqueList_2.txt')as f: for x in f: count += 1 print("Total Number of URL: ", count) if __name__ == '__main__': util = utilityPage() util.write_Category_URL() util.total_Count_URL()
[ "ahmedu.ferdous@gmail.com" ]
ahmedu.ferdous@gmail.com
b4fcabcc52d7108677b0248e2da7f62e36253e79
89e79c0a3f33de5fc03eec13c3346131b447a748
/searchAgents.py
95fa7a2539c5853b31eedb3efd29133b02fa9412
[]
no_license
gutorsantos/pacman-berkeley
09ec7c8be4a6a9ef3b0a901a8167fab867cf0276
df13c0b83ed06bffa794fa7271e1eef94d5a82bc
refs/heads/master
2023-07-08T09:44:30.715966
2021-08-12T00:32:35
2021-08-12T00:32:35
395,149,411
0
0
null
null
null
null
UTF-8
Python
false
false
22,793
py
# searchAgents.py # --------------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by John DeNero # (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # Student side autograding was added by Brad Miller, Nick Hay, and # Pieter Abbeel (pabbeel@cs.berkeley.edu). """ This file contains all of the agents that can be selected to control Pacman. To select an agent, use the '-p' option when running pacman.py. Arguments can be passed to your agent using '-a'. For example, to load a SearchAgent that uses depth first search (dfs), run the following command: > python pacman.py -p SearchAgent -a fn=depthFirstSearch Commands to invoke other search strategies can be found in the project description. Please only change the parts of the file you are asked to. Look for the lines that say "*** YOUR CODE HERE ***" The parts you fill in start about 3/4 of the way down. Follow the project description for details. Good luck and happy searching! """ from game import Directions from game import Agent from game import Actions import util import time import search class GoWestAgent(Agent): "An agent that goes West until it can't." def getAction(self, state): "The agent receives a GameState (defined in pacman.py)." if Directions.WEST in state.getLegalPacmanActions(): return Directions.WEST else: return Directions.STOP ####################################################### # This portion is written for you, but will only work # # after you fill in parts of search.py # ####################################################### class SearchAgent(Agent): """ This very general search agent finds a path using a supplied search algorithm for a supplied search problem, then returns actions to follow that path. As a default, this agent runs DFS on a PositionSearchProblem to find location (1,1) Options for fn include: depthFirstSearch or dfs breadthFirstSearch or bfs Note: You should NOT change any code in SearchAgent """ def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'): # Warning: some advanced Python magic is employed below to find the right functions and problems # Get the search function from the name and heuristic if fn not in dir(search): raise AttributeError, fn + ' is not a search function in search.py.' func = getattr(search, fn) if 'heuristic' not in func.func_code.co_varnames: print('[SearchAgent] using function ' + fn) self.searchFunction = func else: if heuristic in globals().keys(): heur = globals()[heuristic] elif heuristic in dir(search): heur = getattr(search, heuristic) else: raise AttributeError, heuristic + ' is not a function in searchAgents.py or search.py.' print('[SearchAgent] using function %s and heuristic %s' % (fn, heuristic)) # Note: this bit of Python trickery combines the search algorithm and the heuristic self.searchFunction = lambda x: func(x, heuristic=heur) # Get the search problem type from the name if prob not in globals().keys() or not prob.endswith('Problem'): raise AttributeError, prob + ' is not a search problem type in SearchAgents.py.' self.searchType = globals()[prob] print('[SearchAgent] using problem type ' + prob) def registerInitialState(self, state): """ This is the first time that the agent sees the layout of the game board. Here, we choose a path to the goal. In this phase, the agent should compute the path to the goal and store it in a local variable. All of the work is done in this method! state: a GameState object (pacman.py) """ if self.searchFunction == None: raise Exception, "No search function provided for SearchAgent" starttime = time.time() problem = self.searchType(state) # Makes a new search problem self.actions = self.searchFunction(problem) # Find a path totalCost = problem.getCostOfActions(self.actions) print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime)) if '_expanded' in dir(problem): print('Search nodes expanded: %d' % problem._expanded) def getAction(self, state): """ Returns the next action in the path chosen earlier (in registerInitialState). Return Directions.STOP if there is no further action to take. state: a GameState object (pacman.py) """ if 'actionIndex' not in dir(self): self.actionIndex = 0 i = self.actionIndex self.actionIndex += 1 if i < len(self.actions): return self.actions[i] else: return Directions.STOP class PositionSearchProblem(search.SearchProblem): """ A search problem defines the state space, start state, goal test, successor function and cost function. This search problem can be used to find paths to a particular point on the pacman board. The state space consists of (x,y) positions in a pacman game. Note: this search problem is fully specified; you should NOT change it. """ def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True): """ Stores the start and goal. gameState: A GameState object (pacman.py) costFn: A function from a search state (tuple) to a non-negative number goal: A position in the gameState """ self.walls = gameState.getWalls() self.startState = gameState.getPacmanPosition() if start != None: self.startState = start self.goal = goal self.costFn = costFn self.visualize = visualize if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)): print 'Warning: this does not look like a regular search maze' # For display purposes self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE def getStartState(self): return self.startState def isGoalState(self, state): isGoal = state == self.goal # For display purposes only if isGoal and self.visualize: self._visitedlist.append(state) import __main__ if '_display' in dir(__main__): if 'drawExpandedCells' in dir(__main__._display): #@UndefinedVariable __main__._display.drawExpandedCells(self._visitedlist) #@UndefinedVariable return isGoal def getSuccessors(self, state): """ Returns successor states, the actions they require, and a cost of 1. As noted in search.py: For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor """ successors = [] for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: x,y = state dx, dy = Actions.directionToVector(action) nextx, nexty = int(x + dx), int(y + dy) if not self.walls[nextx][nexty]: nextState = (nextx, nexty) cost = self.costFn(nextState) successors.append( ( nextState, action, cost) ) # Bookkeeping for display purposes self._expanded += 1 # DO NOT CHANGE if state not in self._visited: self._visited[state] = True self._visitedlist.append(state) return successors def getCostOfActions(self, actions): """ Returns the cost of a particular sequence of actions. If those actions include an illegal move, return 999999. """ if actions == None: return 999999 x,y= self.getStartState() cost = 0 for action in actions: # Check figure out the next state and see whether its' legal dx, dy = Actions.directionToVector(action) x, y = int(x + dx), int(y + dy) if self.walls[x][y]: return 999999 cost += self.costFn((x,y)) return cost class StayEastSearchAgent(SearchAgent): """ An agent for position search with a cost function that penalizes being in positions on the West side of the board. The cost function for stepping into a position (x,y) is 1/2^x. """ def __init__(self): self.searchFunction = search.uniformCostSearch costFn = lambda pos: .5 ** pos[0] self.searchType = lambda state: PositionSearchProblem(state, costFn, (1, 1), None, False) class StayWestSearchAgent(SearchAgent): """ An agent for position search with a cost function that penalizes being in positions on the East side of the board. The cost function for stepping into a position (x,y) is 2^x. """ def __init__(self): self.searchFunction = search.uniformCostSearch costFn = lambda pos: 2 ** pos[0] self.searchType = lambda state: PositionSearchProblem(state, costFn) def manhattanHeuristic(position, problem, info={}): "The Manhattan distance heuristic for a PositionSearchProblem" xy1 = position xy2 = problem.goal return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1]) def euclideanHeuristic(position, problem, info={}): "The Euclidean distance heuristic for a PositionSearchProblem" xy1 = position xy2 = problem.goal return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5 ##################################################### # This portion is incomplete. Time to write code! # ##################################################### class CornersProblem(search.SearchProblem): """ This search problem finds paths through all four corners of a layout. You must select a suitable state space and successor function """ def __init__(self, startingGameState): """ Stores the walls, pacman's starting position and corners. """ self.walls = startingGameState.getWalls() self.startingPosition = startingGameState.getPacmanPosition() top, right = self.walls.height-2, self.walls.width-2 self.corners = ((1,1), (1,top), (right, 1), (right, top)) for corner in self.corners: if not startingGameState.hasFood(*corner): print 'Warning: no food in corner ' + str(corner) self._expanded = 0 # DO NOT CHANGE; Number of search nodes expanded # Please add any code here which you would like to use # in initializing the problem "*** YOUR CODE HERE ***" def getStartState(self): """ Returns the start state (in your state space, not the full Pacman state space) """ "*** YOUR CODE HERE ***" return (self.startingPosition, []) def isGoalState(self, state): """ Returns whether this search state is a goal state of the problem. """ position = state[0] visited = state[1] if(position in self.corners): if(not position in visited): visited += [position] if(len(visited) == 4): return True return False def getSuccessors(self, state): """ Returns successor states, the actions they require, and a cost of 1. As noted in search.py: For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor """ successors = [] x,y = state[0] visited = state[1] for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: dx, dy = Actions.directionToVector(action) nextx, nexty = int(x + dx), int(y + dy) hitsWall = self.walls[nextx][nexty] if(not hitsWall): l = list(visited) nextState = (nextx, nexty) cost = 1 if nextState in self.corners: if (not nextState in l): l.append(nextState) successors.append(((nextState, l), action, cost)) self._expanded += 1 # DO NOT CHANGE return successors def getCostOfActions(self, actions): """ Returns the cost of a particular sequence of actions. If those actions include an illegal move, return 999999. This is implemented for you. """ if actions == None: return 999999 x,y= self.startingPosition for action in actions: dx, dy = Actions.directionToVector(action) x, y = int(x + dx), int(y + dy) if self.walls[x][y]: return 999999 return len(actions) def cornersHeuristic(state, problem): """ A heuristic for the CornersProblem that you defined. state: The current search state (a data structure you chose in your search problem) problem: The CornersProblem instance for this layout. This function should always return a number that is a lower bound on the shortest path from the state to a goal of the problem; i.e. it should be admissible (as well as consistent). """ from util import manhattanDistance corners = problem.corners # These are the corner coordinates walls = problem.walls # These are the walls of the maze, as a Grid (game.py) position = state[0] visited = state[1] unvisited = [] if(problem.isGoalState(position)): return 0 for c in corners: if(c not in visited): unvisited.append(c) h = 0 distances = [] for u in unvisited: d = manhattanDistance(position, u) distances.append(d) h = max(distances) return h class AStarCornersAgent(SearchAgent): "A SearchAgent for FoodSearchProblem using A* and your foodHeuristic" def __init__(self): self.searchFunction = lambda prob: search.aStarSearch(prob, cornersHeuristic) self.searchType = CornersProblem class FoodSearchProblem: """ A search problem associated with finding the a path that collects all of the food (dots) in a Pacman game. A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where pacmanPosition: a tuple (x,y) of integers specifying Pacman's position foodGrid: a Grid (see game.py) of either True or False, specifying remaining food """ def __init__(self, startingGameState): self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood()) self.walls = startingGameState.getWalls() self.startingGameState = startingGameState self._expanded = 0 # DO NOT CHANGE self.heuristicInfo = {} # A dictionary for the heuristic to store information def getStartState(self): return self.start def isGoalState(self, state): return state[1].count() == 0 def getSuccessors(self, state): "Returns successor states, the actions they require, and a cost of 1." successors = [] self._expanded += 1 # DO NOT CHANGE for direction in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: x,y = state[0] dx, dy = Actions.directionToVector(direction) nextx, nexty = int(x + dx), int(y + dy) if not self.walls[nextx][nexty]: nextFood = state[1].copy() nextFood[nextx][nexty] = False successors.append( ( ((nextx, nexty), nextFood), direction, 1) ) return successors def getCostOfActions(self, actions): """Returns the cost of a particular sequence of actions. If those actions include an illegal move, return 999999""" x,y= self.getStartState()[0] cost = 0 for action in actions: # figure out the next state and see whether it's legal dx, dy = Actions.directionToVector(action) x, y = int(x + dx), int(y + dy) if self.walls[x][y]: return 999999 cost += 1 return cost class AStarFoodSearchAgent(SearchAgent): "A SearchAgent for FoodSearchProblem using A* and your foodHeuristic" def __init__(self): self.searchFunction = lambda prob: search.aStarSearch(prob, foodHeuristic) self.searchType = FoodSearchProblem def foodHeuristic(state, problem): """ Your heuristic for the FoodSearchProblem goes here. This heuristic must be consistent to ensure correctness. First, try to come up with an admissible heuristic; almost all admissible heuristics will be consistent as well. If using A* ever finds a solution that is worse uniform cost search finds, your heuristic is *not* consistent, and probably not admissible! On the other hand, inadmissible or inconsistent heuristics may find optimal solutions, so be careful. The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid (see game.py) of either True or False. You can call foodGrid.asList() to get a list of food coordinates instead. If you want access to info like walls, capsules, etc., you can query the problem. For example, problem.walls gives you a Grid of where the walls are. If you want to *store* information to be reused in other calls to the heuristic, there is a dictionary called problem.heuristicInfo that you can use. For example, if you only want to count the walls once and store that value, try: problem.heuristicInfo['wallCount'] = problem.walls.count() Subsequent calls to this heuristic can access problem.heuristicInfo['wallCount'] """ position, foodGrid = state food_list = foodGrid.asList() distances = [] if(len(food_list) == 0): return 0 for f in food_list: distances.append(mazeDistance(position, f, problem.startingGameState)) return max(distances) # food_list = foodGrid.asList() # distances = [] # if(len(food_list) == 0): # return 0 # for f in food_list: # k = position + f # if (k in problem.heuristicInfo): # distances.append(problem.heuristicInfo[k]) # else: # problem.heuristicInfo[k] = mazeDistance(position, f, problem.startingGameState) # if(len(distances) > 0): # return max(distances) # else: # return 0 class ClosestDotSearchAgent(SearchAgent): "Search for all food using a sequence of searches" def registerInitialState(self, state): self.actions = [] currentState = state while(currentState.getFood().count() > 0): nextPathSegment = self.findPathToClosestDot(currentState) # The missing piece self.actions += nextPathSegment for action in nextPathSegment: legal = currentState.getLegalActions() if action not in legal: t = (str(action), str(currentState)) raise Exception, 'findPathToClosestDot returned an illegal move: %s!\n%s' % t currentState = currentState.generateSuccessor(0, action) self.actionIndex = 0 print 'Path found with cost %d.' % len(self.actions) def findPathToClosestDot(self, gameState): """ Returns a path (a list of actions) to the closest dot, starting from gameState. """ from search import breadthFirstSearch # Here are some useful elements of the startState startPosition = gameState.getPacmanPosition() food = gameState.getFood() walls = gameState.getWalls() problem = AnyFoodSearchProblem(gameState) return breadthFirstSearch(problem) class AnyFoodSearchProblem(PositionSearchProblem): """ A search problem for finding a path to any food. This search problem is just like the PositionSearchProblem, but has a different goal test, which you need to fill in below. The state space and successor function do not need to be changed. The class definition above, AnyFoodSearchProblem(PositionSearchProblem), inherits the methods of the PositionSearchProblem. You can use this search problem to help you fill in the findPathToClosestDot method. """ def __init__(self, gameState): "Stores information from the gameState. You don't need to change this." # Store the food for later reference self.food = gameState.getFood() # Store info for the PositionSearchProblem (no need to change this) self.walls = gameState.getWalls() self.startState = gameState.getPacmanPosition() self.costFn = lambda x: 1 self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE def isGoalState(self, state): """ The state is Pacman's position. Fill this in with a goal test that will complete the problem definition. """ x,y = state return state in self.food.asList() def mazeDistance(point1, point2, gameState): """ Returns the maze distance between any two points, using the search functions you have already built. The gameState can be any game state -- Pacman's position in that state is ignored. Example usage: mazeDistance( (2,4), (5,6), gameState) This might be a useful helper function for your ApproximateSearchAgent. """ x1, y1 = point1 x2, y2 = point2 walls = gameState.getWalls() assert not walls[x1][y1], 'point1 is a wall: ' + str(point1) assert not walls[x2][y2], 'point2 is a wall: ' + str(point2) prob = PositionSearchProblem(gameState, start=point1, goal=point2, warn=False, visualize=False) return len(search.bfs(prob))
[ "gustavo.r.santos@outlook.com" ]
gustavo.r.santos@outlook.com
683c47aa2f3a2e18a964daa205fbf11433d07209
7e3d11d117aa42a729af2775aab66d9466a9b390
/stock_class(starterFile).py
8c7397ac1a55aaa9cd6e40aa0226129e27b4f468
[]
no_license
ge8matt/CEIS150-Course-Project
87bb9562e1cb875f2c5e1eb2de4554121a9f0290
676b8ca7731e7e51d344502c065d5a8989e6dac2
refs/heads/main
2023-08-14T22:16:31.214000
2021-10-06T02:46:28
2021-10-06T02:46:28
402,296,925
0
0
null
null
null
null
UTF-8
Python
false
false
5,012
py
# Summary: This module contains the class definitions that will be used in the stock analysis program # Author: # Date: from datetime import datetime # Create Stock class here class Stock: def __init__(self, symbol, name, shares): self._symbol = symbol self._name = name self._shares = shares self.DataList = [] # list of daily stock data @property def name(self): return self._name @name.setter def name(self,name): self._name = name # Create DailyData class here. # Unit Test - Do Not Change Code Below This Line *** *** *** *** *** *** *** *** *** # main() is used for unit testing only. It will run when stock_class.py is run. # Run this to test your class code. Once you have eliminated all errors, you are # ready to continue with the next part of the project. def main(): error_count = 0 error_list = [] print("Unit Testing Starting---") # Test Add Stock print("Testing Add Stock...",end="") try: testStock = Stock("TEST","Test Company",100) print("Successful!") except: print("***Adding Stock Failed!") error_count = error_count+1 error_list.append("Stock Constructor Error") # Test Change Symbol print("Testing Change Symbol...",end="") try: testStock.symbol = "NEWTEST" print("***ERROR! Changing stock symbol should not be allowed.") error_count = error_count+1 error_list.append("Stock symbol change allowed. Stock symbol changes should not be allowed.") except: print("Successful! - Stock symbol change blocked") # Test Change Name print("Test Change Name...",end="") try: testStock.name = "New Test Company" if testStock.name == "New Test Company": print("Successful!") else: print("***ERROR! Name change unsuccessful.") error_count = error_count+1 error_list.append("Name Change Error") except: print("***ERROR! Name change failed.") error_count = error_count+1 error_list.append("Name Change Failure") # Test Change Shares print("Test Change Shares...",end="") try: testStock.shares = 200 print("***ERROR! Changing stock shares directly should not be allowed.") error_count = error_count+1 error_list.append("Stock shares change allowed. Change in shares should be done through buy() or sell().") except: print("Successful! - Stock shares change blocked") # Test Buy and Sell print("Test Buy shares...",end="") try: testStock.buy(50) if testStock.shares == 150: print("Successful!") else: print("***ERROR! Buy shares unsuccessful.") error_count = error_count + 1 error_list.append("Buy Shares Failure!") except: print("***ERROR! Buy shares failed.") error_count = error_count + 1 error_list.append("Buy Shares Failure!") print("Test Sell shares...",end="") try: testStock.sell(25) if testStock.shares == 125: print("Successful!") else: print("***ERROR! Sell shares unsuccessful.") error_count = error_count+1 error_list.append("Sell Shares Failure!") except: print("***ERROR! Sell shares failed.") error_count = error_count + 1 error_list.append("Sell Shares Failure!") # Test add daily data print("Creating daily stock data...",end="") daily_data_error = False try: dayData = DailyData(datetime.strptime("1/1/20","%m/%d/%y"),float(14.50),float(100000)) testStock.add_data(dayData) if testStock.DataList[0].date != datetime.strptime("1/1/20","%m/%d/%y"): error_count = error_count + 1 daily_data_error = True error_list.append("Add Daily Data - Problem with Date") if testStock.DataList[0].close != 14.50: error_count = error_count + 1 daily_data_error = True error_list.append("Add Daily Data - Problem with Closing Price") if testStock.DataList[0].volume != 100000: error_count = error_count + 1 daily_data_error = True error_list.append("Add Daily Data - Problem with Volume") except: print("***ERROR! Add daily data failed.") error_count = error_count + 1 error_list.append("Add daily data Failure!") daily_data_error = True if daily_data_error == True: print("***ERROR! Creating daily data failed.") else: print("Successful!") if (error_count) == 0: print("Congratulations - All Tests Passed") else: print("-=== Problem List - Please Fix ===-") for em in error_list: print(em) print("Goodbye") # Program Starts Here if __name__ == "__main__": # run unit testing only if run as a stand-alone script main()
[ "mlau@my.devry.edu" ]
mlau@my.devry.edu
b1aa7ea3141770bd399797efad6d17bf39deb627
ef472552e618b5cb66e2d1b8040bcc99fae915c4
/generator_sample/gen_sample.py
0e01ef3817c1708a9e5451d9085cc8ce05cb210d
[]
no_license
kumarhardik47/python-tutorials
544c1786081c6a2b7e40f2840f7d1745a146367b
e965febc907987b3b54ef16a9ec51bdc504fc1ed
refs/heads/master
2020-03-26T23:27:09.475974
2018-09-07T09:16:55
2018-09-07T09:16:55
145,542,824
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
import os class Fib: def __init__(self): self.a = 0 self.b = 1 def __iter__(self): return self def next(self): retval = self.a +self.b self.a = self.b self.b = retval return retval fib = iter(Fib()) print 0 print 1 for i in range(10): print next(fib)
[ "kiran@localhost.localdomain" ]
kiran@localhost.localdomain
f0e53c98f91c5f065040c630715d6ab7abe78881
2e5c0e502216b59a4e348437d4291767e29666ea
/Flask-Web/flasky/Lib/site-packages/dns/rdtypes/ANY/HIP.py
1c774bbff4eab998e5b99baee67f99272e514e84
[ "Apache-2.0", "GPL-1.0-or-later" ]
permissive
fengzse/Feng_Repository
8881b64213eef94ca8b01652e5bc48e92a28e1f5
db335441fa48440e72eefab6b5fd61103af20c5d
refs/heads/master
2023-07-24T04:47:30.910625
2023-02-16T10:34:26
2023-02-16T10:34:26
245,704,594
1
0
Apache-2.0
2023-07-15T00:54:20
2020-03-07T20:59:04
Python
UTF-8
Python
false
false
3,354
py
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2010, 2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import struct import base64 import binascii import dns.exception import dns.rdata import dns.rdatatype class HIP(dns.rdata.Rdata): """HIP record""" # see: RFC 5205 __slots__ = ['hit', 'algorithm', 'key', 'servers'] def __init__(self, rdclass, rdtype, hit, algorithm, key, servers): super().__init__(rdclass, rdtype) object.__setattr__(self, 'hit', hit) object.__setattr__(self, 'algorithm', algorithm) object.__setattr__(self, 'key', key) object.__setattr__(self, 'servers', dns.rdata._constify(servers)) def to_text(self, origin=None, relativize=True, **kw): hit = binascii.hexlify(self.hit).decode() key = base64.b64encode(self.key).replace(b'\n', b'').decode() text = '' servers = [] for server in self.servers: servers.append(server.choose_relativity(origin, relativize)) if len(servers) > 0: text += (' ' + ' '.join((x.to_unicode() for x in servers))) return '%u %s %s%s' % (self.algorithm, hit, key, text) @classmethod def from_text(cls, rdclass, rdtype, tok, origin=None, relativize=True, relativize_to=None): algorithm = tok.get_uint8() hit = binascii.unhexlify(tok.get_string().encode()) if len(hit) > 255: raise dns.exception.SyntaxError("HIT too long") key = base64.b64decode(tok.get_string().encode()) servers = [] while 1: token = tok.get() if token.is_eol_or_eof(): break server = tok.as_name(token, origin, relativize, relativize_to) servers.append(server) return cls(rdclass, rdtype, hit, algorithm, key, servers) def _to_wire(self, file, compress=None, origin=None, canonicalize=False): lh = len(self.hit) lk = len(self.key) file.write(struct.pack("!BBH", lh, self.algorithm, lk)) file.write(self.hit) file.write(self.key) for server in self.servers: server.to_wire(file, None, origin, False) @classmethod def from_wire_parser(cls, rdclass, rdtype, parser, origin=None): (lh, algorithm, lk) = parser.get_struct('!BBH') hit = parser.get_bytes(lh) key = parser.get_bytes(lk) servers = [] while parser.remaining() > 0: server = parser.get_name(origin) servers.append(server) return cls(rdclass, rdtype, hit, algorithm, key, servers)
[ "fzhuse@gmail.com" ]
fzhuse@gmail.com
ba454f85e30e19f707db52ff84fa97d079100090
8a8b0267c4db8847a898ac73ccb6e78e1744e24c
/Python_Net_Programming/pnp-ex01/broadcast/udpserver.py
b6270c96643b1e6cd819ae6a34c32278d5926f20
[]
no_license
entirelymagic/Link_Academy
41ba890df6793924d186ea94dc8d13b0636c6679
844c39ff1281fae8406cd1a0dc06afd357f0bef3
refs/heads/master
2023-06-07T03:17:00.527924
2021-07-03T09:59:25
2021-07-03T09:59:25
314,755,255
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
import socket server = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server.bind(("0.0.0.0", 8005)) msg = server.recvfrom(16) print(msg)
[ "elvislinkacademy" ]
elvislinkacademy
697ae5846d96f604324973625902f39c27564424
c1127091c486afa9271ae4beca05b00aaa62ff06
/lockss_configuration/lockss-configuration-python/config_exchange.py
6120643be42ed52d623bf8d7ea28f685c91a4af5
[ "BSD-3-Clause" ]
permissive
lockss/lockss-configuration-python
d747c6bc9cbf74748569597a951c0fc1df82d51a
d645b42e0fdae5ccfcaf80b26c09218c1e1c9c94
refs/heads/master
2020-03-28T13:58:12.286190
2018-09-12T08:22:07
2018-09-12T08:22:07
148,446,328
0
0
null
null
null
null
UTF-8
Python
false
false
3,283
py
# coding: utf-8 """ LOCKSS Configuration Service REST API API of the LOCKSS Configuration REST Service # noqa: E501 OpenAPI spec version: 1.0.0 Contact: lockss-support@lockss.org Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ConfigExchange(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'props': 'dict(str, str)' } attribute_map = { 'props': 'props' } def __init__(self, props=None): # noqa: E501 """ConfigExchange - a model defined in Swagger""" # noqa: E501 self._props = None self.discriminator = None self.props = props @property def props(self): """Gets the props of this ConfigExchange. # noqa: E501 The map of configuration items # noqa: E501 :return: The props of this ConfigExchange. # noqa: E501 :rtype: dict(str, str) """ return self._props @props.setter def props(self, props): """Sets the props of this ConfigExchange. The map of configuration items # noqa: E501 :param props: The props of this ConfigExchange. # noqa: E501 :type: dict(str, str) """ if props is None: raise ValueError("Invalid value for `props`, must not be `None`") # noqa: E501 self._props = props def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ConfigExchange, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ConfigExchange): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "dlvargas@stanford.edu" ]
dlvargas@stanford.edu
0c02fc3a75f4781dfaaf085875102433acfc575b
436a23cfa35885c919cc74e6a539a33ec383237c
/training/sock_utils.py
77445f8c014f220b885f3c3561cb3a622f536aa9
[]
no_license
CameronFoss/SQLAlchemy-Client-Server
2bd6104fa7dc9662e07b29a20b2783f1567c3391
295273c8cb35d780af25bd170e3527f97d88067e
refs/heads/main
2023-04-26T14:16:35.790194
2021-05-26T20:46:04
2021-05-26T20:46:04
368,533,957
1
1
null
2021-05-25T18:55:17
2021-05-18T13:08:34
Python
UTF-8
Python
false
false
1,195
py
import socket import json def send_message(host, port, msg_dict): """Connect to sock via host and port and sends a message to sock.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) msg_json = json.dumps(msg_dict) sock.sendall(msg_json.encode('utf-8')) # Close the socket so 'data' will be null in get_data_from_connection sock.close() def decode_message_chunks(chunks): """Decode message chunks into a Python dictionary.""" msg_bytes = b''.join(chunks) msg_str = msg_bytes.decode("utf-8") # Note: caller needs to catch errors thrown by json.loads return json.loads(msg_str) def get_data_from_connection(sock): """Accept a client connection and get data until they close the socket.""" try: clientsocket, address = sock.accept() except socket.timeout: return [] print("Connection from", address[0]) message_chunks = [] while True: try: data = clientsocket.recv(4096) except socket.timeout: continue if not data: break message_chunks.append(data) clientsocket.close() return message_chunks
[ "fossc@umich.edu" ]
fossc@umich.edu
6d5b238a3ab38ee681515a4631abf1b6147f4397
2c59e943a98fe0c25b2f7267324fe850603def57
/leetcode/数组/remove_duplicates_from_sorted_array.py
5b12385139f7c3ffa4f8c445a947de82aad75cf6
[]
no_license
xxNB/sword-offer
047dd6b3db7ea24af1a83d5a7a46ab47daa9ab85
e2699a43e9f7aecc475e21a4b2582c6ee3b41a1c
refs/heads/master
2021-07-06T18:44:47.074632
2019-01-16T15:57:27
2019-01-16T15:57:27
125,879,250
0
0
null
null
null
null
UTF-8
Python
false
false
775
py
""" 100. Remove Duplicates from Sorted Array Given a sorted array, remove the duplicates in place such that each element appear only once and return the new length. Do not allocate extra space for another array, you must do this in place with constant memory. Example Given input array A = [1,1,2], Your function should return length = 2, and A is now [1,2]. """ class Solution: """ @param: nums: An ineger array @return: An integer """ def removeDuplicates(self, A): # write your code here if A == []: return 0 index = 0 for i in range(1, len(A)): if A[index] != A[i]: index += 1 # 跟上脚步去比较 A[index] = A[i] return index + 1
[ "zhangxin@juxinli.com" ]
zhangxin@juxinli.com
bca68ca7795bed595f511a30b2a1ec6ba44148b9
4e308e8bb7056f1fd6914777b38d98b18254867f
/DECOMPYLED/FireOne/FireOne.py
5d6a9c07271a0c970312cc62a8b5afe6861d5c82
[]
no_license
bschreck/cuttlefish
165aae651bf58c1142cc47934802a7a3614e39da
0f44ccca0ebf1a6f78165001586fcb67b98b406a
refs/heads/master
2020-05-19T23:07:11.520086
2014-02-25T05:26:18
2014-02-25T05:26:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,087
py
# emacs-mode: -*- python-*- import Live import MidiRemoteScript NOTE_OFF_STATUS = 128 NOTE_ON_STATUS = 144 CC_STATUS = 176 NUM_NOTES = 128 NUM_CC_NO = 128 NUM_CHANNELS = 16 JOG_DIAL_CC = 60 RWD_NOTE = 91 FFWD_NOTE = 92 STOP_NOTE = 93 PLAY_NOTE = 94 REC_NOTE = 95 SHIFT_NOTE = 70 FIRE_ONE_TRANSPORT = [RWD_NOTE, FFWD_NOTE, STOP_NOTE, PLAY_NOTE, REC_NOTE] FIRE_ONE_F_KEYS = range(54, 64) FIRE_ONE_CHANNEL = 0 class FireOne: __module__ = __name__ __doc__ = ' Small script for the Tascam FireOne mapping transport, jog dial, and shift ' def __init__(self, c_instance): self._FireOne__c_instance = c_instance self._FireOne__shift_pressed = False self._FireOne__rwd_pressed = False self._FireOne__ffwd_pressed = False self._FireOne__jog_dial_map_mode = Live.MidiMap.MapMode.absolute self._FireOne__spooling_counter = 0 self.song().add_is_playing_listener(self._FireOne__playing_status_changed) self.song().add_record_mode_listener(self._FireOne__recording_status_changed) self.song().add_tracks_listener(self._FireOne__tracks_changed) self._FireOne__playing_status_changed() self._FireOne__recording_status_changed() def application(self): """returns a reference to the application that we are running in """ return Live.Application.get_application() def song(self): """returns a reference to the Live song instance that we do control """ return self._FireOne__c_instance.song() def disconnect(self): """Live -> Script Called right before we get disconnected from Live. """ self.send_midi(((NOTE_OFF_STATUS + FIRE_ONE_CHANNEL), PLAY_NOTE, 0)) self.send_midi(((NOTE_OFF_STATUS + FIRE_ONE_CHANNEL), REC_NOTE, 0)) self.song().remove_is_playing_listener(self._FireOne__playing_status_changed) self.song().remove_record_mode_listener(self._FireOne__recording_status_changed) self.song().remove_tracks_listener(self._FireOne__tracks_changed) def connect_script_instances(self, instanciated_scripts): """Called by the Application as soon as all scripts are initialized. You can connect yourself to other running scripts here, as we do it connect the extension modules (MackieControlXTs). """ pass def suggest_input_port(self): """Live -> Script Live can ask the script for an input port name to find a suitable one. """ return str('FireOne Control') def suggest_output_port(self): """Live -> Script Live can ask the script for an output port name to find a suitable one. """ return str('FireOne Control') def suggest_map_mode(self, cc_no, channel): """Live -> Script Live can ask the script for a suitable mapping mode for a given CC. """ suggested_map_mode = Live.MidiMap.MapMode.absolute if (cc_no == JOG_DIAL_CC): suggested_map_mode = self._FireOne__jog_dial_map_mode return suggested_map_mode def can_lock_to_devices(self): return False def request_rebuild_midi_map(self): """Script -> Live When the internal MIDI controller has changed in a way that you need to rebuild the MIDI mappings, request a rebuild by calling this function This is processed as a request, to be sure that its not too often called, because its time-critical. """ self._FireOne__c_instance.request_rebuild_midi_map() def send_midi(self, midi_event_bytes): """Script -> Live Use this function to send MIDI events through Live to the _real_ MIDI devices that this script is assigned to. """ self._FireOne__c_instance.send_midi(midi_event_bytes) def refresh_state(self): """Live -> Script Send out MIDI to completely update the attached MIDI controller. Will be called when requested by the user, after for example having reconnected the MIDI cables... """ pass def build_midi_map(self, midi_map_handle): """Live -> Script Build DeviceParameter Mappings, that are processed in Audio time, or forward MIDI messages explicitly to our receive_midi_functions. Which means that when you are not forwarding MIDI, nor mapping parameters, you will never get any MIDI messages at all. """ script_handle = self._FireOne__c_instance.handle() Live.MidiMap.forward_midi_cc(script_handle, midi_map_handle, FIRE_ONE_CHANNEL, JOG_DIAL_CC) for note in FIRE_ONE_TRANSPORT: Live.MidiMap.forward_midi_note(script_handle, midi_map_handle, FIRE_ONE_CHANNEL, note) Live.MidiMap.forward_midi_note(script_handle, midi_map_handle, FIRE_ONE_CHANNEL, SHIFT_NOTE) for index in range(len(self.song().tracks)): if (len(FIRE_ONE_F_KEYS) > index): Live.MidiMap.forward_midi_note(script_handle, midi_map_handle, FIRE_ONE_CHANNEL, FIRE_ONE_F_KEYS[index]) else: break def update_display(self): """Live -> Script Aka on_timer. Called every 100 ms and should be used to update display relevant parts of the controller """ if self._FireOne__ffwd_pressed: self._FireOne__spooling_counter += 1 if ((self._FireOne__spooling_counter % 2) == 0): self.song().jump_by(self.song().signature_denominator) elif self._FireOne__rwd_pressed: self._FireOne__spooling_counter += 1 if ((self._FireOne__spooling_counter % 2) == 0): self.song().jump_by((-1 * self.song().signature_denominator)) def receive_midi(self, midi_bytes): """Live -> Script MIDI messages are only received through this function, when explicitly forwarded in 'build_midi_map'. """ cc_or_note = midi_bytes[1] if ((midi_bytes[0] & 240) == CC_STATUS): if (cc_or_note is JOG_DIAL_CC): self._FireOne__jog_dial_message(cc_or_note, midi_bytes[2]) elif ((midi_bytes[0] & 240) in (NOTE_ON_STATUS, NOTE_OFF_STATUS)): value = midi_bytes[2] if ((midi_bytes[0] & 240) == NOTE_OFF_STATUS): value = 0 if (cc_or_note is SHIFT_NOTE): self._FireOne__shift_pressed = (value != 0) elif (cc_or_note in FIRE_ONE_TRANSPORT): self._FireOne__transport_message(cc_or_note, value) elif (cc_or_note in FIRE_ONE_F_KEYS): self._FireOne__f_key_message(cc_or_note, value) def __playing_status_changed(self): """ Update the LED accordingly """ status = NOTE_OFF_STATUS note = PLAY_NOTE value = 0 if self.song().is_playing: status = NOTE_ON_STATUS value = 127 status += FIRE_ONE_CHANNEL self.send_midi((status, note, value)) def __recording_status_changed(self): """ Update the LED accordingly """ status = NOTE_OFF_STATUS note = REC_NOTE value = 0 if self.song().record_mode: status = NOTE_ON_STATUS value = 127 status += FIRE_ONE_CHANNEL self.send_midi((status, note, value)) def __tracks_changed(self): self.request_rebuild_midi_map() def __transport_message(self, note, value): """ One of the transport buttons was pressed or release """ assert (note in FIRE_ONE_TRANSPORT) if ((note is PLAY_NOTE) and (value != 0)): if self._FireOne__shift_pressed: self.song().continue_playing() else: self.song().is_playing = True elif ((note is STOP_NOTE) and (value != 0)): self.song().is_playing = False elif ((note is REC_NOTE) and (value != 0)): self.song().record_mode = (not self.song().record_mode) elif (note is FFWD_NOTE): if ((value != 0) and (not self._FireOne__rwd_pressed)): if self._FireOne__shift_pressed: self.song().jump_by(1) else: self.song().jump_by(self.song().signature_denominator) self._FireOne__ffwd_pressed = True self._FireOne__spooling_counter = 0 elif (value == 0): self._FireOne__ffwd_pressed = False elif (note is RWD_NOTE): if ((value != 0) and (not self._FireOne__ffwd_pressed)): if self._FireOne__shift_pressed: self.song().jump_by(-1) else: self.song().jump_by((-1 * self.song().signature_denominator)) self._FireOne__rwd_pressed = True self._FireOne__spooling_counter = 0 elif (value == 0): self._FireOne__rwd_pressed = False def __jog_dial_message(self, cc_no, cc_value): """ Jog Dial: the function is based on the shift status and the active view """ assert (cc_value in range(1, 128)) moved_forward = (cc_value in range(1, 64)) if (not self._FireOne__shift_pressed): if self.application().view.is_view_visible('Session'): index = list(self.song().scenes).index(self.song().view.selected_scene) if moved_forward: if (index < (len(self.song().scenes) - 1)): index = (index + 1) elif (index > 0): index = (index - 1) self.song().view.selected_scene = self.song().scenes[index] else: value = cc_value if (not moved_forward): value -= 64 value *= -1 self.song().jump_by(value) elif self.application().view.is_view_visible('Session'): index = list(self.song().tracks).index(self.song().view.selected_track) if moved_forward: if (index < (len(self.song().tracks) - 1)): index = (index + 1) elif (index > 0): index = (index - 1) self.song().view.selected_track = self.song().tracks[index] else: value = cc_value if (not moved_forward): value -= 64 value *= -0.10000000000000001 self.song().tempo = (self.song().tempo + (0.10000000000000001 * value)) def __f_key_message(self, f_key, value): index = list(FIRE_ONE_F_KEYS).index(f_key) assert (index >= 0) assert (len(self.song().tracks) > index) track = self.song().tracks[index] assert (track != None) if (value > 0): if self._FireOne__shift_pressed: if track.can_be_armed: track.arm = (not track.arm) else: track.mute = (not track.mute) # local variables: # tab-width: 4
[ "bschreck@mit.edu" ]
bschreck@mit.edu
0435ada236ecf42249ff98d1e29cbc6e5e46c607
16030618fe1481bea86289a15c4d2f6e8bc3808e
/Django/finalwebsite/pension/views.py
42da8f7031581d4114aecb2d98d982148e5bbf82
[]
no_license
vfloresp/Sistemas_distribuidos
d3607d05b395da458f7ad62adff427356c51a79f
8b8ae67c5351d8576c64f38e0a46f46c0cf12f56
refs/heads/main
2023-05-05T19:28:35.526239
2021-05-26T20:47:07
2021-05-26T20:47:07
331,456,473
0
0
null
null
null
null
UTF-8
Python
false
false
1,148
py
from django.shortcuts import render from django.http import HttpResponse from .models import Pensionado from django.template import loader # Create your views here. def index(request): template = loader.get_template("pension/index.html") contexto = {} return HttpResponse(template.render(contexto, request)) def simulacion(request): nombre = request.POST.get("nombre") edad_actual = request.POST.get("edad_actual") edad_retiro = request.POST.get("edad_retiro") saldo_acumulado = request.POST.get("saldo_acumulado") ahorro_mensual = request.POST.get("ahorro_mensual") genero = request.POST.get("genero") pensionado = Pensionado( nombre=nombre, edad_actual=edad_actual, edad_retiro=edad_retiro, saldo_acumulado=saldo_acumulado, ahorro_mensual=ahorro_mensual, genero=genero, ) pensionado.save() return HttpResponse( "%s tendrás una pensión de %s pesos" % pensionado.nombre % pensionado.pension_mensual ) def listado(request): Pensionado.objects.all() template = loader.get_template("pension/listadod.html")
[ "vflores@pop-os.localdomain" ]
vflores@pop-os.localdomain
603dfd9080de185194161fca663cfce4d6ecf267
d7fcd508920f12bbb80c4f953b92d879758db376
/BasicConcepts/SyntaxErrors/Volume1_Chapter2_SyntaxErrors.py
682fdd42fdea897b54cd908258e602f6fef92ff1
[ "Unlicense" ]
permissive
jpike/PythonProgrammingForKids
394c14a585f6fe779a571e4520fc6a59efa21af3
79a36d6db525d39f78e33b6f7b2d0da0d65a073c
refs/heads/master
2021-07-20T11:01:04.440281
2021-06-08T23:56:17
2021-06-08T23:56:17
108,654,449
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
# This program contains various "syntax" errors. # It's your job to fix this program so that it runs correctly. PRINT('Hello, world!') primt('Hello, world!') prin('Hello, world!') print 'Hello, world!') print['Hello, world!') print('Hello, world!' print(Hello, world!) print('Hello, world!) print 'Hello, world!' print('Hello, world!") print(''Hello, world!')
[ "jacob@jacobpike.com" ]
jacob@jacobpike.com
3ec82d07bf02c984ab35547af825f962b899d545
d1b85f3093b5d6c9ba3a84c0a54f4dba8a8b0482
/src/models/_rl_helpers.py
d3d25241a3d26e09a1e75942c7f8da10cdcf085d
[ "MIT" ]
permissive
qihongl/learn-hippo
dc3599b04a53f31e3ab0987693a392562a42a802
6a4a1be4fd6780d4c8413ffc6b1facade4741135
refs/heads/master
2023-09-04T21:13:47.143537
2022-02-18T22:03:53
2022-02-18T22:03:53
192,548,807
33
7
MIT
2021-09-21T04:50:59
2019-06-18T13:46:19
Python
UTF-8
Python
false
false
3,059
py
import numpy as np import torch from torch.nn.functional import smooth_l1_loss '''helpers''' eps = np.finfo(np.float32).eps.item() def get_reward(a_t, y_t, penalty, allow_dk=True): """define the reward function at time t Parameters ---------- a_t : int action a_t_targ : int target action penalty : int the penalty magnitude of making incorrect state prediction allow_dk : bool if True, then activating don't know makes r_t = 0, regardless of a_t Returns ------- torch.FloatTensor, scalar immediate reward at time t """ dk_id = y_t.size()[0] # if y_t is all zeros (delay period), then action target DNE if torch.all(y_t == 0): # -1 is not in the range of a_t, so r_t = penalty unless a_t == dk a_t_targ = torch.tensor(-1) else: a_t_targ = torch.argmax(y_t) # compare action vs. target action if a_t == dk_id and allow_dk: r_t = 0 elif a_t_targ == a_t: r_t = 1 else: r_t = - penalty return torch.from_numpy(np.array(r_t)).type(torch.FloatTensor).data # return torch.tensor(r_t).type(torch.FloatTensor).clone().detach() def compute_returns(rewards, gamma=0, normalize=False): """compute return in the standard policy gradient setting. Parameters ---------- rewards : list, 1d array immediate reward at time t, for all t gamma : float, [0,1] temporal discount factor normalize : bool whether to normalize the return - default to false, because we care about absolute scales Returns ------- 1d torch.tensor the sequence of cumulative return """ # compute cumulative discounted reward since t, for all t R = 0 returns = [] for r in rewards[::-1]: R = r + gamma * R returns.insert(0, R) returns = torch.tensor(returns) # normalize w.r.t to the statistics of this trajectory if normalize: returns = (returns - returns.mean()) / (returns.std() + eps) return returns def compute_a2c_loss(probs, values, returns, use_V=True): """compute the objective node for policy/value networks Parameters ---------- probs : list action prob at time t values : list state value at time t returns : list return at time t Returns ------- torch.tensor, torch.tensor Description of returned object. """ policy_grads, value_losses = [], [] for prob_t, v_t, R_t in zip(probs, values, returns): if use_V: A_t = R_t - v_t.item() value_losses.append( smooth_l1_loss(torch.squeeze(v_t), torch.squeeze(R_t)) ) else: A_t = R_t value_losses.append(torch.FloatTensor(0).data) # accumulate policy gradient policy_grads.append(-prob_t * A_t) policy_gradient = torch.stack(policy_grads).sum() value_loss = torch.stack(value_losses).sum() return policy_gradient, value_loss
[ "lvqihong1992@gmail.com" ]
lvqihong1992@gmail.com
bf114a09d6a97cebd6a7d5f46428325554fd9c65
a6065fd0743734c4ad0619b066d583ea462c1bde
/DjangoTest/DjangoTest/__init__.py
3ef6feb4e947e6e8f93252fb6708fa9efd3af984
[]
no_license
kangziwen/DjangoTest
4c3f1e25983a4b6553a9801f8221fa1970b843a2
c603f409ae1aaad5e64b3d7a48b58fd6103ec12e
refs/heads/master
2021-08-18T16:32:04.714241
2017-11-23T08:45:55
2017-11-23T08:45:55
111,491,210
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
''' Django默认使用MySQLdb模块链接MySQL 主动修改为pymysql,在project同名文件夹下的__init__文件中添加如下代码即可: ''' ''' django-admin startproject mysite python manage.py startapp cmdb ''' import pymysql pymysql.install_as_MySQLdb()
[ "baobao.kang@godinsec.com" ]
baobao.kang@godinsec.com
bc50fd1c8d8ed9f3119f0a1a543e344df1fb6491
5c7f6d5f17da26413698d64c51dda0743cdf41af
/9.little_knowledge/1.concate.py
97e4b3fd8ee3116ea8ea4e1993dd7d5e4b905a73
[]
no_license
choococo/DeepLearning
349fb51761991a642c6d43b557f69b9a3d882c36
c28b3f7bfdf2d6238f829ecf2a23f0112913559f
refs/heads/master
2023-03-07T14:04:48.175679
2021-02-18T07:08:04
2021-02-18T07:08:04
316,958,218
0
0
null
null
null
null
UTF-8
Python
false
false
656
py
import numpy as np """ cat操作是一个很好地操作,可以很好的对高维的数据进行拼接等操作,numpy和torch包中都有API 应用地方: (1)曾经在复现MTCNN代码的时候用到:主要用到的地方,1)在制作数据样本时,使用 """ seed = np.random.seed(0) a = np.random.randint(0, 10, (10, 1)) b = np.random.randint(0, 10, (10, 1)) print(a) print(b) c = np.concatenate([a, b], axis=0) # 这里在0轴的时候,相当于列表的追加 print(c) d = np.concatenate([a, b], axis=1) # 对a,b进行一对一的组合 print(d) """ [[5 7] [0 6] [3 8] [3 8] [7 1] [9 6] [3 7] [5 7] [2 8] [4 1]] """
[ "lzy@liev.com" ]
lzy@liev.com
f2be2563cae05a623512af9fc6b201160883394d
de945ae0b19c40b2c198ffea68cde5b2214a4a3d
/day01/01.py
5854f772b4167be97dfbe3923d90c36b80f0363f
[]
no_license
bonanaaaaaa/AdventOfCode2018
bf5025260dedd7f1bee538d0006a1dbd04eafbba
110bf89240763485d1c3b6482db7f9f283ac31bd
refs/heads/master
2021-11-24T17:28:27.216700
2018-12-12T10:10:00
2018-12-12T10:10:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
91
py
file = open("input.txt", "r") sum = 0 for line in file: sum += int(line) print(sum)
[ "pittawatm@gmail.com" ]
pittawatm@gmail.com
a475af5cc275bf91e3cecce1e6d78442fa1eebbb
b53a98a19425c5f5ba20495bc1d8739c299b504f
/middleware/middle.py
fb3b0b6907742013564b526210dd9e5d0925cf45
[]
no_license
davypython/py36_tests
bf8338812109c70437096eaa4b683aaf33b48b61
d63c36b3fc82774c7c02c5197ca53603b8a8717a
refs/heads/master
2023-03-13T05:15:32.498071
2021-02-26T07:02:31
2021-02-26T07:02:31
340,954,902
0
0
null
null
null
null
UTF-8
Python
false
false
3,829
py
import os import random import re from pymysql.cursors import DictCursor from common.db_handler import DBHandler from common.logger_handler import LoggerHandler from common.yaml_handler import YamlHandler from common.excel_handler import ExcelHandler from config.path import logs_path, data_path class MidDBHandler(DBHandler): def __init__(self): yaml_config = YamlHandler('config.yaml').yaml_load() safe_config = YamlHandler('safe.yaml').yaml_load() super().__init__(host=safe_config['db']['host'], port=safe_config['db']['port'], user=safe_config['db']['user'], password=safe_config['db']['password'], # 不要写成utf-8 charset=safe_config['db']['charset'], # 指定数据库 database=safe_config['db']['database'], cursorclass=DictCursor) class MidHandler(): """任务:中间层。common和调用层,使用项目的配置数据,填充common模块""" # 设置属性 new_phone = '' investor_user_id = '' investor_user_token = '' admin_user_id = '' admin_user_token = '' load_id = '' load_token = '' yaml_config = YamlHandler('config.yaml').yaml_load() safe_config = YamlHandler('safe.yaml').yaml_load() # logger获取 log_file = os.path.join(logs_path, yaml_config['logger']['File']) logger = LoggerHandler(Logger_Name=yaml_config['logger']['Logger_Name'], File=log_file, Logger_Level=yaml_config['logger']['Logger_Level'], Hand_Level=yaml_config['logger']['Hand_Level'], File_Hand_Level=yaml_config['logger']['File_Hand_Level']) # 需要替换的数据 investor_phone =safe_config['investor_user']['mobile_phone'] investor_pwd = safe_config['investor_user']['pwd'] admin_phone = safe_config['admin_user']['mobile_phone'] admin_pwd = safe_config['admin_user']['pwd'] loan_phone = safe_config['loan_user']['mobile_phone'] loan_pwd = safe_config['loan_user']['pwd'] @classmethod def replace_data(cls, string): '''替换表格数据函数''' pattern = '#(.*?)#' results = re.finditer(pattern=pattern, string=string) for result in results: old = result.group() key = result.group(1) new = str(getattr(cls, key, '')) string = string.replace(old, new) return string # excel对象 excel_file = os.path.join(data_path, 'cases.xlsx') excel = ExcelHandler(excel_file) # excelwrite = ExcelHandler(excel_file).write('', '哈哈', row='', column='') # 数据库 db_class = MidDBHandler @classmethod def random_number_1(cls): '''随机生成电话''' while True: mobile_number = '1' + random.choice(['3', '5']) for i in range(9): mobile_number += str(random.randint(1, 9)) sql = 'SELECT mobile_phone FROM member WHRER mobile_phone={};'.format(str(mobile_number)) db = MidDBHandler() db_num = db.connect(sql, fetchone=True) if not db_num: # cls.new_phone = mobile_number return mobile_number if __name__ == '__main__': sql = 'select leave_amount from member where id=2067;' data = MidHandler.db_class() info = data.connect(sql, fetchone=True) print(info) da=MidHandler.replace_data('{"mobile_phone":"#investor_phone#","pwd":"#investor_pwd#","mobile_phone":"#admin_phone#","mobile_phone":"#load_phone#","pwd":"#load_pwd#"}') print(da) new_phone = MidHandler.random_number_1() print(new_phone)
[ "809021517@qq.com" ]
809021517@qq.com