blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
19e5914084188d5755d4c357569877b84a3db38f
5532a4b50e29cc114a439ee851640abcff8f5c1f
/baikeSpider/spiderMain.py
b482a72122424c12cace2af668327d389b3e8bf0
[]
no_license
xingjia05/crawler
c998620af1b90a1643bccdbc5d4a6a96d2f03c78
2ecd0420330feb5b63b206973fcabcbffbea09ba
refs/heads/master
2022-11-19T19:32:18.917684
2020-07-25T15:58:46
2020-07-25T15:58:46
282,476,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,129
py
# coding:utf8 import urlManager, htmlDownloader, htmlParser, htmlOutputer class SpiderMain(object): def __init__(self): self.urls = urlManager.UrlManager() self.downloader = htmlDownloader.HtmlDownloader() self.parser = htmlParser.HtmlParser() self.outputer = htmlOutputer.HtmlOutputer() def craw(self, root_url): count = 1 self.urls.addNewUrl(rootUrl) while self.urls.hasNewUrl(): #try : newUrl = self.urls.getNewUrl() print('craw %d:%s'%(count,newUrl)) htmlContent = self.downloader.download(newUrl) newUrls, newData = self.parser.parser(newUrl, htmlContent) self.urls.addNewUrls(newUrls) self.outputer.collectData(newData) if count == 5: break count = count + 1 #except: # print("craw failed") self.outputer.outputHtml() if __name__=="__main__": rootUrl = "https://baike.baidu.com/item/Python/407313" objSpider = SpiderMain() objSpider.craw(rootUrl)
[ "xingjiazhang@192.168.1.4" ]
xingjiazhang@192.168.1.4
9929b559634ed099ff922aaf1f3e3d1868db8a59
b438c197c2c564cce2c6c6525fe048e8804a5b6d
/setup.py
87c32fc998759e89874d5055790d290efefe706e
[]
no_license
serge-m/dlibfacedetector
06101bf4d7e3dc732c8857b1dc42fdb9c63ffb8c
0bc96d6ddea3660f670aa3029e7f515709c3d2a2
refs/heads/master
2021-01-20T18:15:25.239639
2017-07-29T09:52:02
2017-07-29T09:52:02
90,914,347
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
#!/usr/bin/env python from distutils.core import setup with open('requirements.txt') as f: required = f.read().splitlines() setup(name='dlibfaceextractor', version='0.0.1', description='Face extractor based on dlib', author='sergem', author_email='sbmatyunin@gmail.com', url='https://serge-m.github.io', install_requires=required, packages=['dlibfaceextractor'], )
[ "sbmatyunin@gmail.com" ]
sbmatyunin@gmail.com
7269fba168be92f031d45efcf6db471198159283
3acc2ba3aedf9ec54ef70384d8481a6f1ef8f9d8
/habgnab_art.py
6aa22731e8478c137052fb08fb4cc1c32a6dd6fa
[]
no_license
Aknexad/hangman
df8f7fce2bec5bcf191b6b2a62ec10dbe67b51d4
736f174a9652062410a0275a3853ad5b43a5d1e9
refs/heads/main
2023-05-06T20:45:21.265140
2021-06-02T19:10:18
2021-06-02T19:10:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
533
py
stage = [ ''' +---+ | | O | /|\ | / \ | | =========''', ''' +---+ | | O | /|\ | / | | =========''', ''' +---+ | | O | /|\ | | | =========''', ''' +---+ | | O | /| | | | =========''', ''' +---+ | | O | | | | | =========''', ''' +---+ | | O | | | | =========''', ''' +---+ | | | | | | =========''']
[ "noreply@github.com" ]
Aknexad.noreply@github.com
c636e5b018738670e0f6b6f4b1801954dca8e009
a85ad1cb4744755f8320319e154bca64fa84b889
/my_modules.py
c359669fbc7db8d085f62f126b7a04b1d4301500
[]
no_license
vfedotovs/text-based-password-generator
fc3946c7e443010f36bf8c2576a14a8a290f248d
ed8d3778370fa733b6b4fc1ea39e2bc44b693d6a
refs/heads/master
2022-11-29T04:50:48.052416
2020-07-25T21:18:51
2020-07-25T21:18:51
268,333,049
0
0
null
null
null
null
UTF-8
Python
false
false
4,249
py
import random spec_chars = ['!', '"', '£', '$', '%', '&', '*', '(', ')', '_', '+'] numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] def gen_random_index_list(count: int, range_len: int) -> list: "Function to generate list of random numbers" index_list = [] for i in range(count): x = random.randrange(1, range_len) index_list.append(x) return index_list def shuffle_pass(str_list: list) -> str: "Function takes row character list and return shuffled character string" # changes str_list to different characters and shuffles random.shuffle(str_list) pass_char_list = "" for pass_char in str_list: pass_char_list += str(pass_char) return pass_char_list def get_pwd_len() -> int: "Function collects password requiremnts from STDIN and " "validates that value is int and > 4 and < 30" "Return int: pwd_len" min_len = 4 max_len = 30 len_valid = True format_valid = True while format_valid: try: pwd_len = int(input("Choose password lenght(characters): ")) format_valid = False except ValueError: print("Password lenght should be digit") while len_valid: if pwd_len > min_len and pwd_len < max_len: return pwd_len if pwd_len < min_len: print("Minimum password lenght is 4, try again") pwd_len = int(input("Choose password lenght(characters): ")) if pwd_len > max_len: print("Max password lenght is 30 characters, try again") pwd_len = int(input("Choose password lenght(characters): ")) def get_char_types() -> list: "Function collects input from STDIN" "No error checking for invalid inputs TODO fix that" req_list = [] include_letter_up = str( input("Do you want include upper case letters (y/n)?:")) include_letter_low = str( input("Do you want include lower case letters (y/n)?:")) include_nums = str(input("Do you want include numbers (y/n)?:")) include_specials = str( input("Do you want include special characters (y/n)?:")) req_list.append(include_letter_up) req_list.append(include_letter_low) req_list.append(include_nums) req_list.append(include_specials) return req_list def calc_sect_len(req_list: list) -> list: "Function calculates section lenght for each character type" sect_count = 0 count_len_diff = [] pass_len = req_list[0] for req in req_list: if req is True: sect_count += 1 sect_len = pass_len // sect_count diff = pass_len - (sect_count * sect_len) count_len_diff.append(sect_count) count_len_diff.append(sect_len) count_len_diff.append(diff) return count_len_diff def pass_generator(requirements: list, count_len_diff: list) -> str: # sect_count = count_len_diff[0] sect_len = count_len_diff[1] diff = count_len_diff[2] final_pass = [] if diff > 0: let_idx_list = gen_random_index_list(diff, len(letters)) for index in let_idx_list: final_pass.append(letters[index]) if requirements[3]: num_idx_list = gen_random_index_list(sect_len, len(numbers)) for index in num_idx_list: final_pass.append(numbers[index]) # enabled_letters_up if requirements[1]: let_idx_list = gen_random_index_list(sect_len, len(letters)) for index in let_idx_list: final_pass.append(letters[index]) # enabled_letters_low if requirements[2]: let_idx_list = gen_random_index_list(sect_len, len(letters)) for index in let_idx_list: low_str = letters[index] low = low_str.lower() final_pass.append(low) if requirements[4]: spec_idx_list = gen_random_index_list(sect_len, len(spec_chars)) for index in spec_idx_list: final_pass.append(spec_chars[index]) return final_pass
[ "vtrader@inbox.lv" ]
vtrader@inbox.lv
623e0cd2ec63ea3b4ba362632a976b5f02d1847c
582be7636d99fa5d4523b9bfe2b1d99d2a79bd47
/PostModeling.py
4d13205b074b1b0d1b5a31d0b3a4fcfc912a7931
[]
no_license
srobles09/COVIDvaccineAllocationIP2021
d4ac3b11b95576467c6bb11b379197f83307a34c
d0f08f74893a99e197ad418dc690a29e9c43f712
refs/heads/master
2023-04-17T10:24:59.914576
2021-05-04T19:34:03
2021-05-04T19:34:03
357,250,644
0
0
null
null
null
null
UTF-8
Python
false
false
2,450
py
#import os import pandas as pd import numpy as np # Plotting packages import matplotlib.pyplot as plt #import matplotlib.lines as mlines #from matplotlib.colors import ListedColormap #import seaborn as sns # Geospatial packages import geopandas as gpd import fiona from shapely.geometry import Point # Shapely for converting latitude/longtitude to geometry #from shapely.wkt import loads as load_wkt # Get centroids from shapely file ## Read in data shp_path = "D:/Sandy Oaks/Documents/Grad School/S21_MATH-7594/Project/COVIDvaccineAllocationIP2021/shp_data/american_community_survey_tracts_2015_2019.shp" mod_path = "D:/Sandy Oaks/Documents/Grad School/S21_MATH-7594/Project/COVIDvaccineAllocationIP2021/Final Problem Solutions.xlsx" mod = pd.read_excel(mod_path,sheet_name='TRACTS') fiona.open(shp_path) denver_tracts = gpd.read_file(shp_path) denver_tracts.reset_index(inplace=True) servprov_path = "D:/Sandy Oaks/Documents/Grad School/S21_MATH-7594/Project/COVIDvaccineAllocationIP2021/Data_Denver_Vaccination_Sites.xlsx" serv_prov = pd.read_excel(servprov_path,sheet_name='Service Provider Sites') ## Handle service providers lat_long = serv_prov[['Lat','Long']].to_numpy() geometry = [Point(xy) for xy in zip(serv_prov['Long'], serv_prov['Lat'])] #crs = {'init': 'epsg:4326'} # In degrees crs = {'init': 'epsg:3857'} # In meters serv_lat_long = gpd.GeoDataFrame(serv_prov, crs = crs, geometry = geometry) mod['GEO_NAME'] = denver_tracts['GEO_NAME'] # save me later denver_tracts['social_metric'] = mod['SVI'] denver_tracts['Perc Vac iter'] = mod['Perc Vac iter'] denver_tracts['Perc Vac Full'] = mod['Perc Vac Full'] #Nice pink: PuRd plt.rcParams['axes.titlesize'] = 50 ax = denver_tracts.plot(column='social_metric', cmap='Blues', linewidth=0.8, edgecolor='black', figsize=(30, 18)) x, y = serv_prov['Long'].values, serv_prov['Lat'].values ax.scatter(x,y, marker="o", color='r') plt.title('SVI Metric') plt.show() ax = denver_tracts.plot(column='Perc Vac Full', cmap='Blues', linewidth=0.8, edgecolor='black', figsize=(30, 18)) x, y = serv_prov['Long'].values, serv_prov['Lat'].values ax.scatter(x,y, marker="o", color='r') plt.title('One batch distribution') plt.show() ax = denver_tracts.plot(column='Perc Vac iter', cmap='Blues', linewidth=0.8, edgecolor='black', figsize=(30, 18)) x, y = serv_prov['Long'].values, serv_prov['Lat'].values ax.scatter(x,y, marker="o", color='r') plt.title('Multi-batch distribution') plt.show()
[ "69159760+srobles09@users.noreply.github.com" ]
69159760+srobles09@users.noreply.github.com
abd99effc8066d0f99b112d3383ed33be7e2b560
2d732fa72d31bbbc3654037c8f9e8d73a2b34855
/CalcBWMatrix.py
34171373fc551d35efe8dae408c9af72c70e80e0
[]
no_license
seshadrs/EC2Tools
5380fe532355404353a08b53fe4b80da68c15d1b
b8ff5f8676bf2404796e914442c85848ed00fbcd
refs/heads/master
2016-09-06T07:05:01.755735
2013-02-17T21:38:53
2013-02-17T21:38:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,462
py
""" Author : Seshadri Sridharan A script that calculates the Bandwidth matrix for all EC2 instances using 'netconf' Input : Instances txt file with each line in the format "<ami-id> <public-dns>" """ import subprocess import sys class EC2Instance: """ lets you ssh to an EC2 instance using subprocess, execute a command, return result. """ def __init__(self, uname, host, pemfile=None): """uname, host and key file(optional)""" self.UNAME = uname self.HOST = host self.KEY = pemfile def execute(self, command): """executes shell command and returns result as a string""" ssh = None if self.KEY: ssh = subprocess.Popen(["ssh", "-i "+ self.KEY, self.UNAME+"@"+self.HOST, command], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) else: ssh = subprocess.Popen(["ssh", self.UNAME+"@"+self.HOST, command], shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) result = ssh.stdout.readlines() if result == []: error = ssh.stderr.readlines() print >> sys.stderr, "ERROR: %s" % error return ''.join(result) def executeMulti(self, commands): """ executes multiple commands. takes as input a list of commands to execute returns the nested-list of the result string """ results=[] ssh = None for command in commands: result = self.execute(command) results.append(result) return results def processorType(self): """ returns a list containing the instance's processor type and the cpuinfo file content """ cpuinfo = self.execute("cat /proc/cpuinfo") lines = cpuinfo.split('\n') for l in lines: if l[:10]=="model name": return [l.split(':')[1].strip(), cpuinfo] return [None,cpuinfo] def get_bw(netconfRes): """ Extracts n/w bandwidth from netconf result """ bw = netconfRes.strip().split(' ')[-1] return bw if __name__ == "__main__": print "# OBTAINING ALL INSTANCES FORM instances txt file\n" IPs=[] for l in open(sys.argv[1]).readlines(): l=l.strip() if l: IPs.append(l.split(' ')[-1].strip()) instances = [EC2Instance("ubuntu",ip) for ip in IPs] print "\n".join(IPs) # print "# STARTING NETSERVER ON ALL INSTANCES\n" # for instance in instances: # print instance.execute("sudo netserver") #start the netserver in all #run netconf test on all A-B pair-combinations of instances print "# RUNNING NETCONF SERVER ON ALL INSTANCES\n" combinations ={} #holds result for all A-B combinations for a in range(len(instances)): for b in range(len(instances)): combination = tuple(sorted([a,b])) if b!=a and combination not in combinations: print "=> RUNNING COMBINATION ",a,b, IPs[a], IPs[b] res = instances[a].execute("netperf -H "+IPs[b]) #A as client, B as server bw = get_bw(res) combinations[combination] = bw print bw, res print "# COMPLETED RUNNING ON ", len(combinations), " COMBINATIONS\n" print "# CONSTRUCTING BANDWIDTH MATRIX\n" bwmat=[["" for x in range(len(instances))] for y in range(len(instances))] for i in range(len(instances)): for j in range(len(instances)): if j==i: bwmat[i][i]="0" elif j>i: combination = tuple(sorted([i,j])) bwmat[i][j]=combinations[combination] else: bwmat[i][j]="" print "#BANDWIDTH MATRIX:\n" for i in range(len(instances)): print ", ".join(bwmat[i])
[ "seshadrs@cs.cmu.edu" ]
seshadrs@cs.cmu.edu
d2e9df288e273a43ccb5fec56e34bdea637cba51
ac5e52a3fc52dde58d208746cddabef2e378119e
/exps-gsn-edf/gsn-edf_ut=3.0_rd=0.5_rw=0.06_rn=4_u=0.075-0.35_p=harmonic-2/sched=RUN_trial=10/params.py
9a7717a916f586bbc8ca9cafff2ceb6bd92ebf1a
[]
no_license
ricardobtxr/experiment-scripts
1e2abfcd94fb0ef5a56c5d7dffddfe814752eef1
7bcebff7ac2f2822423f211f1162cd017a18babb
refs/heads/master
2023-04-09T02:37:41.466794
2021-04-25T03:27:16
2021-04-25T03:27:16
358,926,457
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
{'cpus': 4, 'duration': 30, 'final_util': '3.021810', 'max_util': '3.0', 'periods': 'harmonic-2', 'release_master': False, 'res_distr': '0.5', 'res_nmb': '4', 'res_weight': '0.06', 'scheduler': 'GSN-EDF', 'trial': 10, 'utils': 'uni-medium-3'}
[ "ricardo.btxr@gmail.com" ]
ricardo.btxr@gmail.com
d8b4a8e03d911c074131883c717616a071878443
1bd299b05b2c0769d9dfd77ecd336a103bf969fe
/Q2a.py
e0d8e349cd4259bd101cc6d11c0b4e6068c691e0
[]
no_license
xueyiyao/cs165a_hw1
89954e37c9412c5805a4961145072faf2a8ab07a
a1b0d0187d9cc2651783e4d831bb80166dbcf107
refs/heads/master
2020-12-20T04:57:40.982470
2020-01-25T00:09:08
2020-01-25T00:09:08
235,968,703
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
import numpy as np #Note: Should use numpy array for A and B # A: 5x4 # B: 4x3 A = np.arange(1,21).reshape(5,4) print(A) B = np.arange(1,13).reshape(4,3) print(B) AxB = A.dot(B) print(AxB) """ Output example: [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12] [13 14 15 16] [17 18 19 20]] [[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] [[ 70 80 90] [158 184 210] [246 288 330] [334 392 450] [422 496 570]] """
[ "xueyiyao@umail.ucsb.edu" ]
xueyiyao@umail.ucsb.edu
c95e855e9dbebcb86c55c09cf4e937203dc39f61
39a0b2d123198782fa39ae8f37855a7d312e2600
/prime.py
6dc64b70bac969d8aeebe20edc623f02dd4b312d
[]
no_license
ddchristian/Prime-Inventory
10effb95562e468dc89f35d078b95a215fb8ceeb
2230904f70b3711e11318f21c045710504fc11d3
refs/heads/master
2021-04-09T11:23:59.866737
2019-02-03T03:28:57
2019-02-03T03:28:57
125,563,068
1
0
null
null
null
null
UTF-8
Python
false
false
2,389
py
from startup import check_startup from queryMethods import getDevice startup_vars = check_startup(spark_bot=False) print('From __main__: startup_vars=', startup_vars) print('new startup_vars =', startup_vars) query_options = {'A' : 'serialNumberQ', 'B' : 'ipAddrQ', 'C' : 'macAddrQ', 'D' : 'deviceTypeQ', 'E' : 'softwareQ'} mac_options = {'A' : 'network', 'B' : 'client'} searchOp_options = {'A' : 'eq', 'B' : 'startsWith', 'C' : 'contains'} software_options = {'A' : 'IOS', 'B' : 'IOS-XE', 'C' : 'NX-OS', 'D' : 'Cisco Controller'} queryType = {'serialNumberQ': 'Serial Number', 'ipAddrQ': 'IP Address', 'macAddrQ': 'MAC Address', 'deviceTypeQ': 'Device Type', 'softwareQ': 'Software Type'} print('\nA Serial Number \nB IP Address \nC MAC Address \nD Device Type \nE Software Version') query = input('Select the query type(A, B, C, etc.): ') query = query_options[query.upper()] option = '' if query == 'macAddrQ': mac = input('Select the MAC lookup type(A or B):\nA Network MAC \nB Client MAC') option = mac_options[mac.upper()] elif query == 'deviceTypeQ': searchOp = input('Select the search option for Device Type (A, B or C):\nA Equal \nB Starts With \nC Contains') option = searchOp_options[searchOp.upper()] elif query == 'softwareQ' : print('\nA IOS \nB IOS-XE \nC NX-OS \nD Cisco Controller') software = input('Select the software type (A, B or C):') option = software_options[software.upper()] searchValue ='' if not query == 'softwareQ' : searchValue = input('\nEnter search value:\n').upper().strip() print('query is:', query) print('option is:', option) print('searchValue is:', searchValue) result = getDevice(startup_vars, query, searchValue, option) if query in ['serialNumberQ', 'ipAddrQ', 'macAddrQ'] : print('\n\nSummary details for search with', queryType[query], ':', searchValue, '!') for key, value in result.items() : print(key, ' : ', value) if query in ['softwareQ', 'deviceTypeQ'] : print('Total records found: ', len(result), '\n\n') for record in range(len(result)) : print('Record Number: ', record + 1) print('----------------------------------------\n') for key, value in result[record].items() : print(key, ':', value) print('\n\n') if not result : print('Nothing returned from search. Item', searchValue, 'not found in Prime database.')
[ "dchristi@cisco.com" ]
dchristi@cisco.com
f51c4db2199af5db649ce0d2dd84febdacf977fe
f0edb1fdfc89e3b01b82eca668b833c8e996c919
/src/meanvar.py
9127ddd84417a583b3f5b811ea7fd63d49fc1704
[]
no_license
SixByNine/gwdetect
420c14b595662485b735490323440d007f00e129
9cba6713d09e7442e1cbb2b04668f653c1688d6e
refs/heads/master
2021-01-02T09:39:04.249855
2017-06-29T09:37:10
2017-06-29T09:37:10
10,794,507
1
0
null
null
null
null
UTF-8
Python
false
false
931
py
#!/usr/bin/python from sys import argv from numpy import * import argparse parser = argparse.ArgumentParser(description='Mean, variance, other useful things.') parser.add_argument('file') parser.add_argument('col',type=int) parser.add_argument('-m','--median',action="store_const", const='median') parser.add_argument('-w','--weights',type=int,default=-1) args=parser.parse_args() w=list() vals=list() f=open(args.file) col=int(args.col)-1 wcol=0 if args.weights > 0: wcol = args.weights for line in f: elems=line.split() vals.append(float(elems[col])) if wcol > 0: s=float(elems[wcol-1]) w.append(1.0/pow(s,2)) else: w.append(1.0) w=array(w) w/=sum(w) ovals=array(vals) vals=ovals*w m= sum(vals) vals = (ovals - m) rms=sum(w*w*vals*vals)/sum(w*w) if args.median == "median": p=percentile(ovals,84) med=median(ovals) print med,p,p-med else: print m,rms,sqrt(rms)
[ "mkeith@pulsarastronomy.net" ]
mkeith@pulsarastronomy.net
504a3b7543dcbf0a72d82f024bc05d10b5648ab0
84907367f182ef7d5708c4232d9e41ea82a5c725
/Print_masterfile.py
77d3d22ff21d26afb09e7dbaa7cd42c2388078ce
[]
no_license
Paulina-Panek/BiopythonScripts
db91a53ffadd2bb7be006c9eca1379c1afd82e1c
b5e49b782684346a66e196b9ee63a6e6bf3a87c8
refs/heads/master
2021-03-17T09:31:08.708612
2020-05-01T00:06:27
2020-05-01T00:06:27
246,980,284
0
0
null
null
null
null
UTF-8
Python
false
false
5,545
py
# Paulina Panek # April 2020 # Script parsing result GenPept file (.gp) to get a csv file with all results from Bio import Entrez Entrez.email = "ppanek@hpu.edu" from Bio import SeqIO from Bio import Align from Bio.SubsMat.MatrixInfo import gonnet from PercentIdentity import * #imports all functions from PercentIdentity.py def numberRecords(ListRecords): #Function prints number of records records = list(SeqIO.parse(ListRecords, "genbank")) print("Found %i records in initial file " % len(records)) def CheckIfDuplicate(first_sequence_name, second_sequence_name, first_sequence, second_sequence): # returns 0 (same sequences), 1 (not same sequences, or 3 (something went wrong, function didn't work return_value = 3 # if same species AND length of sequence is the same, check if the sequence is the same if (first_sequence_name == second_sequence_name): if first_sequence == second_sequence: return_value = 0 #same sequences else: return_value = 1 else: return_value = 1 return(return_value) def RemoveLike(protein_name): #if protein has word like in it's name, returns 1 ret_val = 0 if "like" in protein_name: ret_val = 1 return ret_val def unknown_aas(sequence): #returns number of unknown amino acids in sequence X_in_sequence = 0 if 'X' in sequence: X_in_sequence = X_in_sequence + 1 return X_in_sequence numberRecords("arc_sequences_04202020.gp") file = open("allResults_classified.csv", "w") def MakeExcel(ListRecords): #assigns group, write with sequence to a file, (in progress) remove duplicate sequences or unknown XXXX counter = 0 counterRecs = 0 duplicates = 0 old_sequence_name = "empty" old_sequence = "no sequence yet" new_sequence_name = "empty2" sequence_title = "error! check what happened here" for seq_record in SeqIO.parse(ListRecords, "gb"): #for every record in the list # setting up initial vatiables new_sequence_name = seq_record.annotations["source"] new_sequence_length = len(seq_record) new_sequence = str(seq_record.seq) assignment = "UNASSIGNED FIX ME" Number_of_X = unknown_aas(new_sequence) prot_name = seq_record.description #if (CheckIfDuplicate(new_sequence_name, old_sequence_name, new_sequence, old_sequence) == 1) and (Number_of_X == 0) and RemoveLike(prot_name) == 0: # if not the same and no unknown aas (X) and no "like" in protein name, continue #Classification block begins~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if seq_record.annotations["taxonomy"][2] == "Ecdysozoa": #classify as invertebrate assignment = "Invertebrate" elif seq_record.annotations["taxonomy"][6] == "Amphibia": # classify as amphibia assignment = "Amphibian" elif seq_record.annotations["taxonomy"][6] == "Actinopterygii": # classify as fish assignment = "Fish" elif seq_record.annotations["taxonomy"][6] == "Archelosauria": # classify as reptile or bird if seq_record.annotations["taxonomy"][11] == "Coelurosauria" or seq_record.annotations["taxonomy"][11] == "Aves": #bird assignment = "Bird" else: assignment = "Reptile" elif seq_record.annotations["taxonomy"][6] == "Archosauria": # classify as bird if seq_record.annotations["taxonomy"][11] == "Aves": # bird assignment = "Bird" else: counter = counter + 1 elif seq_record.annotations["taxonomy"][6] == "Lepidosauria" or seq_record.annotations["taxonomy"][6] == "Testudines + Archosauria group": assignment = "Reptile" elif seq_record.annotations["taxonomy"][6] == "Mammalia": if seq_record.annotations["taxonomy"][9] == "Primates": assignment = "Primate" else: assignment = "Mammal" else: assignment = "UNCLASSIFIED FIX ME\n" counter = counter + 1 #end of classification block~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ counterRecs = counterRecs + 1 #counter of records recNumber = str(counterRecs) printname = seq_record.description comment = " " if (CheckIfDuplicate(new_sequence_name, old_sequence_name, new_sequence, old_sequence) == 0): comment = ("*REMOVED* Duplicate " ) elif (RemoveLike(prot_name)) == 1: comment = ("*REMOVED* Like-protein ") elif (Number_of_X != 0): comment = ("*REMOVED* Unknown AAs ") file.write(recNumber + "," + printname + "," + seq_record.annotations["source"] + "," + assignment + "," + str(new_sequence_length) + "," + seq_record.id+ ","+ comment +"\n") old_sequence_length = new_sequence_length old_sequence_name = new_sequence_name old_sequence = new_sequence print("Number of unclassified species:", counter) print("Number of records written to file: ", counterRecs) file.close() MakeExcel("arc_sequences_04202020.gp") #for seq_record in SeqIO.parse("arc_sequences_04202020.gp","gb"): #uses GenPept file #print(seq_record.description) #protein name [organism] #print(seq_record.seq) # sequence #print(seq_record.annotations["source"]) #name (common name) #print(seq_record.annotations["taxonomy"][0]) #print(seq_record.annotations) #print(len(seq_record)) #length of sequence
[ "noreply@github.com" ]
Paulina-Panek.noreply@github.com
dc9824e46b5a8cc9a859a0acb9b5bcb1772b368b
21c788e7d1a7b9b00eb355af223ede47fd877094
/stefan/RC4_stefan.py
f5f614bce21774f0a1afe5dbad2d849d4f7ea435
[]
no_license
StefanB7/EHN-410-Practical-2-AES-3DES-RC4
b97382a42924ef3208f071f9b77f1ff0370674ae
da232b6457a8ca53bcc12f2ad29bbd9881cadeb3
refs/heads/main
2023-05-30T20:55:51.364034
2021-06-12T18:30:10
2021-06-12T18:30:10
362,843,729
0
0
null
null
null
null
UTF-8
Python
false
false
9,146
py
# EHN 410 - Practical 2 - 2021 # RC4 Encryption and Decryption # Group 7 # Created: 14 May 2021 by Stefan Buys import numpy as np import copy from PIL import Image ##### MAIN CIPHER FUNCTIONS ##### def RC4_Enctrypt(inspect_mode, plaintext, key): #Generate the required stream generation variables: S = bytearray(256) T = bytearray(256) #Stores the current state of the S table: Sarchive = [] #Transform key to bytearray: keyBytes = bytearray(len(key)) for i in range(len(key)): keyBytes[i] = ord(key[i]) #Initialization: for i in range(256): S[i] = i T[i] = keyBytes[i % len(key)] #Perform a permutation on S: temp = 0 index = 0 for i in range(255): index = (index + S[i] + T[i]) % 256 temp = S[i] S[i] = S[index] S[index] = temp ### Plaintext Encoding ### # If the plaintext is a string to be encrypted: if (isinstance(plaintext, str)): cipherText = bytearray(len(plaintext)) #Transform the plaintext input into a bytearray: plaintextBytes = bytearray(len(plaintext)) for i in range(len(plaintext)): plaintextBytes[i] = ord(plaintext[i]) #Encrypt the plaintext: i = 0 j = 0 for index in range(len(plaintextBytes)): #Generate the next stream element: i = (i+1) % 256 j = (j+S[i]) % 256 temp = S[i] S[i] = S[j] S[j] = temp streamElementIndex = (S[i] + S[j]) % 256 streamElement = S[streamElementIndex] cipherText[index] = plaintextBytes[index] ^ streamElement #If inspect mode, add the S table to Sarchive: if (inspect_mode): Sarchive.append(makeBoxS(S)) cipherTextString = '' for i in range(len(cipherText)): cipherTextString = cipherTextString + chr(cipherText[i]) if (inspect_mode): return {"S-table": Sarchive, "Ciphertext": cipherTextString} else: return cipherTextString # If the plaintext is an image (ndarray) that needs to be encrypted: if (isinstance(plaintext, np.ndarray)): # Check the plaintext's dimentions: numRows = plaintext.shape[0] numColumns = plaintext.shape[1] numLayers = plaintext.shape[2] # Test if there is an AlphaLayer: bAlphaLayer = False if (numLayers > 3): bAlphaLayer = True numLayers = 3 alpha_layer = np.array(plaintext[:, :, 3]) # Ciphertext variable: cipherText = np.zeros((numRows, numColumns, numLayers), dtype='u1') #Variables used in the stream cipher should persist over different layer encryption: i = 0 j = 0 for layer in range(numLayers): #Create an input plaintext bytearray for the current layer: index = 0 plaintextBytes = bytearray(numRows*numColumns) cipherTextBytes = bytearray(numRows*numColumns) for i in range(numRows): for j in range(numColumns): plaintextBytes[index] = plaintext[i][j][layer] index += 1 #Encrypt the plaintext: for index in range(len(plaintextBytes)): # Generate the next stream element: i = (i + 1) % 256 j = (j + S[i]) % 256 temp = S[i] S[i] = S[j] S[j] = temp streamElementIndex = (S[i] + S[j]) % 256 streamElement = S[streamElementIndex] cipherTextBytes[index] = plaintextBytes[index] ^ streamElement # If inspect mode, add the S table to Sarchive: if (inspect_mode): Sarchive.append(makeBoxS(S)) #Transfer the calculated output to the ciphertext image ndarray variable: index = 0 for i in range(numRows): for j in range(numColumns): cipherText[i][j][layer] = cipherTextBytes[index] index += 1 if bAlphaLayer: cipherText = np.dstack((cipherText, alpha_layer)) if (inspect_mode): return {"S-table": Sarchive, "Ciphertext": cipherText.astype(int)} else: return cipherText.astype(int) def RC4_Decrypt(inspect_mode, ciphertext, key): #Generate the required stream generation variables: S = bytearray(256) T = bytearray(256) #Stores the current state of the S table: Sarchive = [] #Transform key to bytearray: keyBytes = bytearray(len(key)) for i in range(len(key)): keyBytes[i] = ord(key[i]) #Initialization: for i in range(256): S[i] = i T[i] = keyBytes[i % len(key)] #Perform a permutation on S: temp = 0 index = 0 for i in range(255): index = (index + S[i] + T[i]) % 256 temp = S[i] S[i] = S[index] S[index] = temp ### Text Decoding ### # If the ciphertext is a string to be encrypted: if (isinstance(ciphertext, str)): plainText = bytearray(len(ciphertext)) #Transform the plaintext input into a bytearray: ciphertextBytes = bytearray(len(ciphertext)) for i in range(len(ciphertext)): ciphertextBytes[i] = ord(ciphertext[i]) #Decrypt the ciphertext: i = 0 j = 0 for index in range(len(ciphertextBytes)): #Generate the next stream element: i = (i+1) % 256 j = (j+S[i]) % 256 temp = S[i] S[i] = S[j] S[j] = temp streamElementIndex = (S[i] + S[j]) % 256 streamElement = S[streamElementIndex] plainText[index] = ciphertextBytes[index] ^ streamElement # If inspect mode, add the S table to Sarchive: if (inspect_mode): Sarchive.append(makeBoxS(S)) plainTextString = '' for i in range(len(plainText)): plainTextString = plainTextString + chr(plainText[i]) if (inspect_mode): return {"S-table": Sarchive, "Ciphertext": plainTextString} else: return plainTextString # If the plaintext is an image (ndarray) that needs to be encrypted: if (isinstance(ciphertext, np.ndarray)): # Check the plaintext's dimentions: numRows = ciphertext.shape[0] numColumns = ciphertext.shape[1] numLayers = ciphertext.shape[2] # Test if there is an AlphaLayer: bAlphaLayer = False if (numLayers > 3): bAlphaLayer = True numLayers = 3 alpha_layer = np.array(ciphertext[:, :, 3]) # Ciphertext variable: plainText = np.zeros((numRows, numColumns, numLayers), dtype='u1') # Variables used in the stream cipher should persist over different layer encryption: i = 0 j = 0 for layer in range(numLayers): # Create an input plaintext bytearray for the current layer: index = 0 cipherTextBytes = bytearray(numRows * numColumns) plainTextBytes = bytearray(numRows * numColumns) for i in range(numRows): for j in range(numColumns): cipherTextBytes[index] = ciphertext[i][j][layer] index += 1 # Encrypt the plaintext: for index in range(len(cipherTextBytes)): # Generate the next stream element: i = (i + 1) % 256 j = (j + S[i]) % 256 temp = S[i] S[i] = S[j] S[j] = temp streamElementIndex = (S[i] + S[j]) % 256 streamElement = S[streamElementIndex] plainTextBytes[index] = cipherTextBytes[index] ^ streamElement # If inspect mode, add the S table to Sarchive: if (inspect_mode): Sarchive.append(makeBoxS(S)) # Transfer the calculated output to the ciphertext image ndarray variable: index = 0 for i in range(numRows): for j in range(numColumns): plainText[i][j][layer] = plainTextBytes[index] index += 1 if bAlphaLayer: cipherText = np.dstack((plainText, alpha_layer)) if (inspect_mode): return {"S-table": Sarchive, "Ciphertext": plainText.astype("int")} else: return plainText.astype("int") #This function returns a 16x16 numpy array consisting of the hex values of each byte in S_table (bytearray) def makeBoxS(S_table): S_temp = [['' for i in range(16)] for j in range(16)] index = 0 singleByte = bytearray(1) for row in range(16): for column in range(16): singleByte[0] = S_table[index] S_temp[row][column] = singleByte.hex().upper() index += 1 return np.array(S_temp)
[ "22056509+StefanB7@users.noreply.github.com" ]
22056509+StefanB7@users.noreply.github.com
f0fb2f80c33baa93c5b997b44cf6feaf76ebabe8
eccffae4ff27bccaab1d2c46f1fcd21751e3ad15
/aayudh/scanner.py
ced96a79d3a0364b8c8151c7086a4e9665a8d286
[]
no_license
pl0mo/aayudh
8430718dcf8d136c6bc9250c17ca082b2d55d021
18314e4e2276fa8402b2122e4cb18b99c85160ad
refs/heads/master
2021-12-22T10:56:26.374085
2017-10-13T06:38:55
2017-10-13T06:38:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,015
py
# -*- coding: utf-8 -*- import re import logging.config import pygal from pygal import Config from pygal.style import LightColorizedStyle, RedBlueStyle, CleanStyle import yara import pylibemu from external import utilitybelt import utils class Scanner: def __init__(self, config={}): self.logger = logging.getLogger(__name__) self.config = config self.online_reports = { "AlienVault": "http://www.alienvault.com/apps/rep_monitor/ip/{{host}}", "Fortiguard": "http://www.fortiguard.com/ip_rep/index.php?data={{host}}&lookup=Lookup", "FreeGeoIP": "http://freegeoip.net/json/{{host}}", "IP-API": "http://ip-api.com/#{{host}}", "IPVoid": "http://www.ipvoid.com/scan/{{host}}", "MalwareDomainList": "http://www.malwaredomainlist.com/mdl.php?search={{host}}&colsearch=All&quantity=50", "Robtex": "https://robtex.com/{{host}}", "VirusTotal": "https://www.virustotal.com/en/ip-address/{{host}}/information/", "Google Safe Browsing": "http://safebrowsing.clients.google.com/safebrowsing/diagnostic?site={{host}}", "Arin Whois": "http://whois.arin.net/rest/nets;q={{host}}?showDetails=true", "Yandex": "https://yandex.com/infected?l10n=en&url={{host}}", "URLVoid": "http://www.urlvoid.com/ip/{{host}}", "Mnemonic PDNS": "http://passivedns.mnemonic.no/search/?query={{host}}&method=exact", "BGP HE": "http://bgp.he.net/ip/{{host}}" } self.regexes = { "info": { #0: { # "regex": re.compile(r"\w{10}", re.I | re.S | re.M), # "description": "TEST/IGNORE" #}, 100: { "regex": re.compile(r"((https?|ftps?|gopher|telnet|file|notes|ms-help):((//)|(\\\\))+[\w\d:#@%/;$()~_?\+-=\\\.&]*)", re.I | re.S | re.M), "description": "Detects a URL over HTTP, HTTPS, FTP, Gopher, Telnet, File, Notes, MS-Help" }, #101: { # "regex": re.compile(r"(https?:\/\/)?(www.)?(youtube\.com\/watch\?v=|youtu\.be\/|youtube\.com\/watch\?feature=player_embedded&v=)([A-Za-z0-9_-]*)(\&\S+)?(\?\S+)?", re.I | re.S | re.M), # "description": "Detects YouTube links" #}, #102: { # "regex": re.compile(r"https?:\/\/(www.)?vimeo\.com\/([A-Za-z0-9._%-]*)((\?|#)\S+)?", re.I | re.S | re.M), # "description": "Detects Vimeo links" #}, 105: { "regex": re.compile(r"\W([\w-]+\.)(docx|doc|csv|pdf|xlsx|xls|rtf|txt|pptx|ppt)", re.I | re.S | re.M), "description": "Detects MS Office filenames via extension" }, 106: { "regex": re.compile(r"\W([\w-]+\.)(html|php|js)", re.I | re.S | re.M), "description": "Detects HTML, PHP or JS filenames via extension" }, #107: { # "regex": re.compile(r"\W([\w-]+\.)(exe|dll|jar)", re.I | re.S | re.M), # "description": "Detects EXE, DLL or JAR filenames via extension" #}, 108: { "regex": re.compile(r"\W([\w-]+\.)(zip|zipx|7z|rar|tar|gz)", re.I | re.S | re.M), "description": "Detects ZIP, ZIPX, 7Z, RAR, TAR or GZ archive filenames via extension" }, 109: { "regex": re.compile(r"\W([\w-]+\.)(jpeg|jpg|gif|png|tiff|bmp)", re.I | re.S | re.M), "description": "Detects JPEG, JPG, GIF, PNG, TIFF or BMP image filenames via extension" }, 110: { "regex": re.compile(r"\W([\w-]+\.)(flv|swf)", re.I | re.S | re.M), "description": "Detects FLV or SWF filenames via extension" }, 111: { "regex": re.compile(r"\\b[a-f0-9]{32}\\b", re.I | re.S | re.M), "description": "Detects MD5 hash strings" }, 112: { "regex": re.compile(r"\\b[a-f0-9]{40}\\b", re.I | re.S | re.M), "description": "Detects SHA1 hash strings" }, 113: { "regex": re.compile(r"\\b[a-f0-9]{64}\\b", re.I | re.S | re.M), "description": "Detects SHA256 hash strings" }, 114: { "regex": re.compile(r"\\b[a-f0-9]{128}\\b", re.I | re.S | re.M), "description": "Detects SHA512 hash strings" }, 115: { "regex": re.compile(r"\\b\\d{2}:[A-Za-z0-9/+]{3,}:[A-Za-z0-9/+]{3,}\\b", re.I | re.S | re.M), "description": "Detects SSDEEP fuzzy hash strings" }, 116: { "regex": re.compile('(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)', re.I | re.S | re.M), "description": "Detects an IPv4 address" }, 118: { "regex": re.compile('(?=^.{4,255}$)(^((?!-)[a-zA-Z0-9-]{1,63}(?<!-)\.)+[a-zA-Z]{2,63}$)', re.I | re.S | re.M), "description": "Detects a FQDN string" }, 119: { "regex": re.compile(r"(CVE-(19|20)\\d{2}-\\d{4,7})", re.I | re.S | re.M), "description": "Detects a CVE string identifier" }, 120: { "regex": re.compile(r"(((([01]? d?\\d)|(2[0-5]{2}))\\.){3}(([01]?\\d?\\d)|(2[0-5]{2})))|(([A-F0-9]){4}(:|::)){1,7}(([A-F0-9]){4})", re.I | re.S | re.M), "description": "Detects an IPv6 addrss" }, 121: { "regex": re.compile(r"([a-zA-Z0-9\.-_]+@)([a-zA-Z0-9-]+\.)(com|net|biz|cat|aero|asia|coop|info|int|jobs|mobi|museum|name|org|post|pre|tel|travel|xxx|edu|gov|mil|br|cc|ca|uk|ch|co|cx|de|fr|hk|jp|kr|nl|nr|ru|tk|ws|tw)\W", re.I | re.S | re.M), "description": "Detects an email address - 1" }, 122: { "regex": re.compile(r"(?<=^|(?<=[^a-zA-Z0-9-_\.]))(@)([A-Za-z]+[A-Za-z0-9]+){4}", re.I | re.S | re.M), "description": "Detects a Twitter handle" } }, "low": { 200: { "regex": re.compile(r"(\d{3}\-\d{2}\-\d{3})|(\d{3}\s\d{2}\s\d{3})", re.I | re.S | re.M), "description": "Detects a Social Security Number" }, 201: { # http://stackoverflow.com/questions/7165056/regex-to-match-email-addresses-and-common-obfuscations "regex": re.compile(r"^[A-Z0-9\._%+-]+(@|\s*\[\s*at\s*\]\s*)[A-Z0-9\.-]+(\.|\s*\[\s*dot\s*\]\s*)[a-z]{2,6}$", re.I | re.S | re.M), "description": "Detects an obfuscated email address" }, 202: { # https://www.sans.org/security-resources/idfaq/snort-detect-credit-card-numbers.php "regex": re.compile(r"4\d{3}(\s|-)?\d{4}(\s|-)?\d{4}(\s|-)?\d{4}", re.I | re.S | re.M), "description": "Detects a VISA Credit Card number" }, 203: { # https://www.sans.org/security-resources/idfaq/snort-detect-credit-card-numbers.php "regex": re.compile(r"5\d{3}(\s|-)?\d{4}(\s|-)?\d{4}(\s|-)?\d{4}", re.I | re.S | re.M), "description": "Detects a Master Card number" }, 204: { # https://www.sans.org/security-resources/idfaq/snort-detect-credit-card-numbers.php "regex": re.compile(r"6011(\s|-)?\d{4}(\s|-)?\d{4}(\s|-)?\d{4}", re.I | re.S | re.M), "description": "Detects a Discover Credit Card number" }, 205: { # https://www.sans.org/security-resources/idfaq/snort-detect-credit-card-numbers.php "regex": re.compile(r"3\d{3}(\s|-)?\d{6}(\s|-)?\d{5}", re.I | re.S | re.M), "description": "Detects an American Express Credit Card number" } }, "medium": { #300: { # "regex": re.compile(r"e.{0,2}v.{0,2}a.{0,2}l", re.I | re.S | re.M), # "description": "Detects obfuscated calls to JavaScript eval method" #}, 301: { "regex": re.compile(r"u.{0,2}n.{0,2}e.{0,2}s.{0,2}c.{0,2}a.{0,2}p.{0,1}e", re.I | re.S | re.M), "description": "Detects obfuscated calls to JavaScript unescape method" }, 302: { "regex": re.compile(r"s.{0,4}u.{0,4}b.{0,4}s.{0,4}t.{0,4}r.{0,4}", re.I | re.S | re.M), "description": "Detects obfuscated calls to JavaScript substr method" }, 303: { "regex": re.compile(r"[zrtypqsdfghjklmwxcvbnZRTYPQSDFGHJKLMWXCVBN]{6,}", re.I | re.S | re.M), "description": "Detects 6 or more consecutive occurences of consonants" }, 304: { # https://community.emc.com/community/connect/rsaxchange/netwitness/blog/2013/03/19/detecting-malicious-and-suspicious-user-agent-strings "regex": re.compile(r"funwebproducts", re.I | re.S), "description": "Probable Funwebproduct Adware BHO generated traffic" }, 305: { # https://community.emc.com/community/connect/rsaxchange/netwitness/blog/2013/03/19/detecting-malicious-and-suspicious-user-agent-strings "regex": re.compile(r"(maar|btrs|searchtoolbar|fctb|cpntdf|talwinhttpclient|bsalsa)", re.I | re.S), "description": "Probable Adware generated traffic" } }, "high": { 400: { "regex": re.compile(r"\xeb.*\x31.*\x20\x8b.*\x74\x07\xeb.*\xe8.*\xff\xff\xff", re.I | re.S | re.M), "description": "This regex detects presence of CLET encoded byte sequences" }, 401: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"((\w+)|(\W+))((<\|>)|(\\))((\w+)|(\W+))((<\|>)|(\\))((\w+)|(\W+))((<\|>)|(\\))[^<|\\]+((<\|>)|(\\))((\w+)|(\W+))[^<|\\]+((<\|>)|(\\))[^<|\\]+((\w+)|(\W+))((\w+)|(\W+))+", re.I | re.S), "description": "Probable Houdini/Iniduoh/njRAT malware generated traffic" }, 402: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"nsis_inetc\s\(mozilla\)", re.I | re.S), "description": "Probable Zero Access malware generated traffic" }, 403: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla\/5\.0\sWinInet", re.I | re.S), "description": "Probable Generic Trojan generated traffic" }, 404: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Wget\/1\.9\+cvs-stable\s\(Red\sHat\smodified\)", re.I | re.S), "description": "Probable Dyre/Upatre malware generated traffic" }, 405: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"RookIE\/1\.0", re.I | re.S), "description": "Probable generic password stealing trojan generated traffic" }, 406: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla\/4\.0\s\(compatible;\sMSIE\s8\.0;\sWindows\sNT\s5\.1;\sTrident\/4\.0\)", re.I | re.S), "description": "Probable Egamipload malware generated traffic" }, 407: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla\/4\.0\s\(compatible;\sMSIE\s6\.0;\sWindows\sNT\s5\.1;\sSV1\)", re.I | re.S), "description": "Probable Botnet/Adware generated traffic" }, 408: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla\/4\.0\s\(compatible;MSIE\s7\.0;Windows\sNT\s6\.0\)", re.I | re.S), "description": "Probable Yakes malware generated traffic" }, 409: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"^AutoIt$", re.I | re.S), "description": "Probable Tupym malware generated traffic" }, 410: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"^M$", re.I | re.S), "description": "Probable HkMain malware generated traffic" }, 411: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"^InetAll$", re.I | re.S), "description": "Probable Pennonec malware generated traffic" }, 412: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Opera\/9\.80", re.I | re.S), "description": "Probable Andromeda malware generated traffic" }, 413: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla/4\.0\s\(compatible;\sMSIE;\sWin32\)", re.I | re.S), "description": "Probable Bandoo adware generated traffic" }, 414: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla/4\.0\s\(compatible;\sMSIE\s8\.0;\sWindows\sNT\s6\.0\)", re.I | re.S), "description": "Probable IRCbot malware generated traffic" }, 415: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"(Mozilla/5\.0\s\(compatible;\sMSIE\s9\.0;\sWindows\sNT\s7\.1;\sTrident/5\.0\)|Mozilla/5\.0\s\(Windows;\sU;\sMSIE\s7\.0;\sWindows\sNT\s6\.0;\sen-US\))", re.I | re.S), "description": "Probable Geodo/Feodo malware generated traffic" }, 416: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla/5\.0\s\(windows\snt\s6\.1;\swow64;\srv:25\.0\)\sGecko/20100101\sfirefox/25\.0", re.I | re.S), "description": "Probable Kuluoz malware generated traffic" }, 417: { # http://networkraptor.blogspot.in/2015/01/user-agent-strings.html, http://networkraptor.blogspot.in/p/user-agent-strings.html "regex": re.compile(r"Mozilla/4\.0\s\(compatible;\sMSIE\s6\.0;\sWindows\sNT\s5\.1;\sSV1;\s\.NET\sCLR\s1\.0\.1(288|975)\)", re.I | re.S), "description": "Probable Symml malware generated traffic" } } } self.matchdict = {} def inspect(self, report, filetype): if self.config['enable_yara']: report = self.inspect_yara(report, filetype) if self.config['enable_shellcode']: report = self.inspect_shellcode(report, filetype) if self.config['enable_regex']: report = self.inspect_regex(report, filetype) if self.config['enable_heuristics']: report = self.inspect_heuristics(report, filetype) self.logger.info('Running post-inspection cleanup tasks upon report dict') for k in sorted(report['flows'].keys()): proto = k.split(' - ')[2] if 'currtid' in report['flows'][k].keys(): del report['flows'][k]['currtid'] if 'transactions' in report['flows'][k].keys() and report['flows'][k]['transactions']: for tid in sorted(report['flows'][k]['transactions'].keys()): if proto == 'UDP': if 'yara' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['yara'] = { 'buf': None } if 'shellcode' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['shellcode'] = { 'buf': None } if 'regex' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['regex'] = { 'buf': None } if 'heuristics' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['heuristics'] = { 'buf': None } if proto == 'TCP': if 'yara' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['yara'] = { 'cts': None, 'stc': None } if 'shellcode' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['shellcode'] = { 'cts': None, 'stc': None } if 'regex' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['regex'] = { 'cts': None, 'stc': None } if 'heuristics' not in report['flows'][k]['transactions'][tid].keys(): report['flows'][k]['transactions'][tid]['heuristics'] = { 'cts': None, 'stc': None } stats = None if proto == 'UDP' and report['flows'][k]['transactions'][tid]['buf']: stats = utils.entropy_compression_stats_buf(report['flows'][k]['transactions'][tid]['buf']) report['flows'][k]['transactions'][tid]['bufcompressionratio'] = float(stats['compressionratio']) report['flows'][k]['transactions'][tid]['bufentropy'] = float(stats['shannonentropy']) # if entropy falls within the 0 - 1 or 7 - 8 range, categorize as suspicious if (report['flows'][k]['transactions'][tid]['bufentropy'] > 0 and report['flows'][k]['transactions'][tid]['bufentropy'] < 1) or report['flows'][k]['transactions'][tid]['bufentropy'] > 7: report['flows'][k]['transactions'][tid]['bufentropy_category'] = 'SUSPICIOUS' else: report['flows'][k]['transactions'][tid]['bufentropy_category'] = 'NORMAL' report['flows'][k]['transactions'][tid]['bufmindatasize'] = stats['mindatasize'] stats = None if proto == 'TCP' and report['flows'][k]['transactions'][tid]['ctsbuf']: stats = utils.entropy_compression_stats_buf(report['flows'][k]['transactions'][tid]['ctsbuf']) report['flows'][k]['transactions'][tid]['ctsbufcompressionratio'] = float(stats['compressionratio']) report['flows'][k]['transactions'][tid]['ctsbufentropy'] = float(stats['shannonentropy']) # if entropy falls within the 0 - 1 or 7 - 8 range, categorize as suspicious if (report['flows'][k]['transactions'][tid]['ctsbufentropy'] > 0 and report['flows'][k]['transactions'][tid]['ctsbufentropy'] < 1) or report['flows'][k]['transactions'][tid]['ctsbufentropy'] > 7: report['flows'][k]['transactions'][tid]['ctsbufentropy_category'] = 'SUSPICIOUS' else: report['flows'][k]['transactions'][tid]['ctsbufentropy_category'] = 'NORMAL' report['flows'][k]['transactions'][tid]['ctsbufmindatasize'] = stats['mindatasize'] stats = None if proto == 'TCP' and report['flows'][k]['transactions'][tid]['stcbuf']: stats = utils.entropy_compression_stats_buf(report['flows'][k]['transactions'][tid]['stcbuf']) report['flows'][k]['transactions'][tid]['stcbufcompressionratio'] = float(stats['compressionratio']) report['flows'][k]['transactions'][tid]['stcbufentropy'] = float(stats['shannonentropy']) # if entropy falls within the 0 - 1 or 7 - 8 range, categorize as suspicious if (report['flows'][k]['transactions'][tid]['stcbufentropy'] > 0 and report['flows'][k]['transactions'][tid]['stcbufentropy'] < 1) or report['flows'][k]['transactions'][tid]['stcbufentropy'] > 7: report['flows'][k]['transactions'][tid]['stcbufentropy_category'] = 'SUSPICIOUS' else: report['flows'][k]['transactions'][tid]['stcbufentropy_category'] = 'NORMAL' report['flows'][k]['transactions'][tid]['stcbufmindatasize'] = stats['mindatasize'] for host in report['hosts'].keys(): if utilitybelt.is_rfc1918(host) or utilitybelt.is_reserved(host): report['hosts'][host]['is_private'] = True report['hosts'][host]['online_reports'] = None else: report['hosts'][host]['is_private'] = False report['hosts'][host]['online_reports'] = self.online_reports for key, value in report['hosts'][host]['online_reports'].iteritems(): report['hosts'][host]['online_reports'][key] = re.sub(r"{{host}}", host, value) return dict(report) def inspect_yara(self, report, filetype): if filetype == 'PCAP': self.logger.info('Loading yara rules from %s' % self.config['yara_rules_dir']) rulefiles = [] rulefiles = utils.find_files(search_dir=self.config['yara_rules_dir'], regex=r"*.yar") + utils.find_files(search_dir=self.config['yara_rules_dir'], regex=r"*.yara") rulefiles = sorted(rulefiles) self.logger.debug('Found %d yara rule files in %s' % (len(rulefiles), self.config['yara_rules_dir'])) self.logger.info('Testing all rules found in %d files over %d sessions' % (len(rulefiles), len(report['flows'].keys()))) for k in sorted(report['flows'].keys()): proto = k.split(' - ')[2] for f in rulefiles: match = None y = yara.compile(f) if 'transactions' in report['flows'][k].keys() and report['flows'][k]['transactions']: for tid in sorted(report['flows'][k]['transactions']): if 'yara' not in report['flows'][k]['transactions'][tid].keys(): if proto == 'TCP': report['flows'][k]['transactions'][tid]['yara'] = { 'cts': None, 'stc': None } elif proto == 'UDP': report['flows'][k]['transactions'][tid]['yara'] = { 'buf': None } if proto == 'UDP' and report['flows'][k]['transactions'][tid]['buf']: if self.config['inspect_udp_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['buf'][:self.config['inspect_udp_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['buf'] matches = None try: matches = y.match( data=scanbuf, timeout=self.config['yara_match_timeout']) except Exception, e: pass if matches: rulefile = f.rpartition('/')[2] self.logger.debug('%s (UDP, Trans: #%d) matches %d rules from %s' % (k, tid, len(matches), rulefile)) for m in matches: rulename = m.rule.encode('utf-8').strip() if not report['flows'][k]['transactions'][tid]['yara']['buf']: report['flows'][k]['transactions'][tid]['yara']['buf'] = { rulefile: { rulename: { 'tags': None, 'description': None, 'strings': None, 'namespace': None } } } elif rulefile not in report['flows'][k]['transactions'][tid]['yara']['buf'].keys(): report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile] = { rulename: { 'tags': None, 'description': None, 'strings': None, 'namespace': None } } elif rulename not in report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile]: report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile][rulename] = { 'tags': None, 'description': None, 'strings': None, 'namespace': None } if len(m.tags) is not 0: report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile][rulename]['tags'] = [] for tag in m.tags: report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile][rulename]['tags'].append(tag.upper()) if 'description' in m.meta.keys(): report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile][rulename]['description'] = m.meta['description'] if len(m.strings) is not 0: report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile][rulename]['strings'] = [] for offset, var, val in m.strings: report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile][rulename]['strings'].append("Found %s @ offset 0x%x" % (var, int(offset))) report['flows'][k]['transactions'][tid]['yara']['buf'][rulefile][rulename]['namespace'] = m.namespace if proto == 'TCP' and report['flows'][k]['transactions'][tid]['ctsbuf']: if self.config['inspect_cts_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['ctsbuf'][:self.config['inspect_cts_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['ctsbuf'] matches = None try: matches = y.match( data=scanbuf, timeout=self.config['yara_match_timeout']) except Exception, e: pass if matches: rulefile = f.rpartition('/')[2] self.logger.debug('%s (CTS, Trans: #%d) matches %d rules from %s' % (k, tid, len(matches), rulefile)) for m in matches: rulename = m.rule.encode('utf-8').strip() if not report['flows'][k]['transactions'][tid]['yara']['cts']: report['flows'][k]['transactions'][tid]['yara']['cts'] = { rulefile: { rulename: { 'tags': None, 'description': None, 'strings': None, 'namespace': None } } } elif rulefile not in report['flows'][k]['transactions'][tid]['yara']['cts'].keys(): report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile] = { rulename: { 'tags': None, 'description': None, 'strings': None, 'namespace': None } } elif rulename not in report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile]: report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile][rulename] = { 'tags': None, 'description': None, 'strings': None, 'namespace': None } if len(m.tags) is not 0: report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile][rulename]['tags'] = [] for tag in m.tags: report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile][rulename]['tags'].append(tag.upper()) if 'description' in m.meta.keys(): report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile][rulename]['description'] = m.meta['description'] if len(m.strings) is not 0: report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile][rulename]['strings'] = [] for offset, var, val in m.strings: report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile][rulename]['strings'].append("Found %s @ offset 0x%x" % (var, int(offset))) report['flows'][k]['transactions'][tid]['yara']['cts'][rulefile][rulename]['namespace'] = m.namespace if proto == 'TCP' and report['flows'][k]['transactions'][tid]['stcbuf']: if self.config['inspect_stc_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['stcbuf'][:self.config['inspect_stc_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['stcbuf'] try: matches = y.match( data=scanbuf, timeout=self.config['yara_match_timeout']) except Exception, e: pass if matches: rulefile = f.rpartition('/')[2] self.logger.debug('%s (STC, Trans: #%d) matches %d rules from %s' % (k, tid, len(matches), rulefile)) for m in matches: rulename = m.rule.encode('utf-8').strip() if not report['flows'][k]['transactions'][tid]['yara']['stc']: report['flows'][k]['transactions'][tid]['yara']['stc'] = { rulefile: { rulename: { 'tags': None, 'description': None, 'strings': None, 'namespace': None } } } elif rulefile not in report['flows'][k]['transactions'][tid]['yara']['stc'].keys(): report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile] = { rulename: { 'tags': None, 'description': None, 'strings': None, 'namespace': None } } elif rulename not in report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile]: report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile][rulename] = { 'tags': None, 'description': None, 'strings': None, 'namespace': None } if len(m.tags) is not 0: report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile][rulename]['tags'] = [] for tag in m.tags: report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile][rulename]['tags'].append(tag.upper()) if 'description' in m.meta.keys(): report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile][rulename]['description'] = m.meta['description'] if len(m.strings) is not 0: report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile][rulename]['strings'] = [] for offset, var, val in m.strings: report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile][rulename]['strings'].append("Found %s @ offset 0x%x" % (var, int(offset))) report['flows'][k]['transactions'][tid]['yara']['stc'][rulefile][rulename]['namespace'] = m.namespace return dict(report) def inspect_shellcode(self, report, filetype): if filetype == 'PCAP': self.logger.info('Invoking shellcode detection on input buffers') for k in sorted(report['flows'].keys()): proto = k.split(' - ')[2] if 'transactions' in report['flows'][k].keys() and report['flows'][k]['transactions']: for tid in sorted(report['flows'][k]['transactions']): if 'shellcode' not in report['flows'][k]['transactions'][tid].keys(): if proto == 'TCP': report['flows'][k]['transactions'][tid]['shellcode'] = { 'cts': None, 'stc': None } elif proto == 'UDP': report['flows'][k]['transactions'][tid]['shellcode'] = { 'buf': None } if proto == 'UDP' and report['flows'][k]['transactions'][tid]['buf']: if self.config['inspect_udp_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['buf'][:self.config['inspect_udp_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['buf'] e = pylibemu.Emulator() offset = e.shellcode_getpc_test(scanbuf) e.test() profile = e.emu_profile_output if profile: # shellcode found! self.logger.debug('%s (UDP, Trans: #%d) has shellcode @ offset %d' % (k, tid, offset)) report['flows'][k]['transactions'][tid]['shellcode']['buf'] = { 'offset': offset, 'buf': scanbuf[offset:len(report['flows'][k]['transactions'][tid]['buf'])], 'profile': profile } if proto == 'TCP' and report['flows'][k]['transactions'][tid]['ctsbuf']: if self.config['inspect_cts_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['ctsbuf'][:self.config['inspect_cts_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['ctsbuf'] e = pylibemu.Emulator() offset = e.shellcode_getpc_test(scanbuf) e.test() profile = e.emu_profile_output if profile: # shellcode found! self.logger.debug('%s (CTS, Trans: #%d) has shellcode @ offset %d' % (k, tid, offset)) report['flows'][k]['transactions'][tid]['shellcode']['cts'] = { 'offset': offset, 'buf': scanbuf[offset:len(scanbuf)], 'profile': profile } if proto == 'TCP' and report['flows'][k]['transactions'][tid]['stcbuf']: if self.config['inspect_stc_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['stcbuf'][:self.config['inspect_stc_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['stcbuf'] e = pylibemu.Emulator() offset = e.shellcode_getpc_test(scanbuf) e.test() profile = e.emu_profile_output if profile: # shellcode found! self.logger.debug('%s (STC, Trans: #%d) has shellcode @ offset %d' % (k, tid, offset)) report['flows'][k]['transactions'][tid]['shellcode']['stc'] = { 'offset': offset, 'buf': scanbuf[offset:len(scanbuf)], 'profile': profile } return dict(report) def inspect_regex(self, report, filetype): if filetype == 'PCAP': self.logger.info('Invoking regex detection on input buffers') for k in sorted(report['flows'].keys()): proto = k.split(' - ')[2] if 'transactions' in report['flows'][k].keys() and report['flows'][k]['transactions']: for tid in sorted(report['flows'][k]['transactions']): if 'regex' not in report['flows'][k]['transactions'][tid].keys(): if proto == 'TCP': report['flows'][k]['transactions'][tid]['regex'] = { 'cts': None, 'stc': None } elif proto == 'UDP': report['flows'][k]['transactions'][tid]['regex'] = { 'buf': None } for severity in ['info', 'low', 'medium', 'high']: for rid in self.regexes[severity]: if proto == 'UDP' and report['flows'][k]['transactions'][tid]['buf']: if self.config['inspect_udp_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['buf'][:self.config['inspect_udp_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['buf'] match = self.regexes[severity][rid]['regex'].search(scanbuf) if match: self.logger.info("%s (Trans: #%d) %08x: Found %s match" % (k, tid, match.start(), utils.size_string(match.end() - match.start()))) if 'buf' not in report['flows'][k]['transactions'][tid]['regex'].keys() or not report['flows'][k]['transactions'][tid]['regex']['buf']: report['flows'][k]['transactions'][tid]['regex']['buf'] = {} report['flows'][k]['transactions'][tid]['regex']['buf'][rid] = { 'offset': match.start(), 'size': match.end() - match.start(), 'severity': severity, 'description': self.regexes[severity][rid]['description'], 'match': scanbuf[match.start():match.end()] } if proto == 'TCP' and report['flows'][k]['transactions'][tid]['ctsbuf']: if self.config['inspect_cts_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['ctsbuf'][:self.config['inspect_cts_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['ctsbuf'] match = self.regexes[severity][rid]['regex'].search(scanbuf) if match: self.logger.info("%s (CTS, Trans: #%d) %08x: Found %s match" % (k, tid, match.start(), utils.size_string(match.end() - match.start()))) if not report['flows'][k]['transactions'][tid]['regex']['cts']: report['flows'][k]['transactions'][tid]['regex']['cts'] = {} report['flows'][k]['transactions'][tid]['regex']['cts'][rid] = { 'offset': match.start(), 'size': match.end() - match.start(), 'severity': severity, 'description': self.regexes[severity][rid]['description'], 'match': scanbuf[match.start():match.end()] } if proto == 'TCP' and report['flows'][k]['transactions'][tid]['stcbuf']: if self.config['inspect_stc_depth'] > 0: scanbuf = report['flows'][k]['transactions'][tid]['stcbuf'][:self.config['inspect_stc_depth']] else: scanbuf = report['flows'][k]['transactions'][tid]['stcbuf'] match = self.regexes[severity][rid]['regex'].search(scanbuf) if match: self.logger.info("%s (STC, Trans: #%d) %08x: Found %s match" % (k, tid, match.start(), utils.size_string(match.end() - match.start()))) if not report['flows'][k]['transactions'][tid]['regex']['stc']: report['flows'][k]['transactions'][tid]['regex']['stc'] = {} report['flows'][k]['transactions'][tid]['regex']['stc'][rid] = { 'offset': match.start(), 'size': match.end() - match.start(), 'severity': severity, 'description': self.regexes[severity][rid]['description'], 'match': scanbuf[match.start():match.end()] } return dict(report) def inspect_heuristics(self, report, filetype): if filetype == 'PCAP': self.logger.info('Invoking heuristics detection on input buffers') for k in sorted(report['flows'].keys()): proto = k.split(' - ')[2] if 'transactions' in report['flows'][k].keys() and report['flows'][k]['transactions']: for tid in sorted(report['flows'][k]['transactions']): if 'heuristics' not in report['flows'][k]['transactions'][tid].keys(): if proto == 'TCP': report['flows'][k]['transactions'][tid]['heuristics'] = { 'cts': None, 'stc': None } elif proto == 'UDP': report['flows'][k]['transactions'][tid]['heuristics'] = { 'buf': None } return dict(report)
[ "7h3rAm@gmail.com" ]
7h3rAm@gmail.com
b558a5f18f55c7197200c0d002e7a91b389c657a
f18152728f6cc3ad6379181b303dc516cbd184ad
/actions.py
ce975520f8005426229fbb77a4e419e070707d81
[]
no_license
spirosavlonitis/sentiment_predictor
5d168cbd23b03786af1da4ea722139a3897e58df
5ef4e1c318db7ba35e7102ba56e2191c8aa8e1b3
refs/heads/master
2020-04-11T10:02:29.142794
2018-12-14T07:02:39
2018-12-14T07:02:39
161,700,872
0
0
null
null
null
null
UTF-8
Python
false
false
730
py
import numpy as np from vectorizer import vect import sqlite3 def classify(clf, document): """Classify user input.""" label = ['negative', 'positive'] X = vect.transform([document]) y = clf.predict(X)[0] proba = np.max(clf.predict_proba(X)) return proba, label[y] def train(clf, document, label): """Train model using user input.""" X = vect.transform([document]) clf.partial_fit(X, [label]) def update_db(document, label): """Add user input to review_db.""" conn = sqlite3.connect('reviews.sqlite') c = conn.cursor() c.execute('INSERT INTO review_db (review, sentiment, date) '\ 'VALUES (?,?, DATETIME("now"))', (document, label)) conn.commit() conn.close()
[ "spirosa84@hotmail.com" ]
spirosa84@hotmail.com
3116f1dbaf91e026539a62162fa063db593b5337
017916cc98e583ee7f0973220056fe5a6c5292b7
/basic_grammar/classs.py
f9da5db19a0581960ce4284a0d75a098fc017e75
[]
no_license
DongChanKIM2/JS
ae0674427be44b5459bb4cae1ed157d492c1925e
92ff17268e7831895a5909d404ddc2c7d9931430
refs/heads/main
2023-08-25T23:31:37.393520
2021-10-24T03:28:10
2021-10-24T03:28:10
362,272,742
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
class Car: def __init__(self, options): self.title = options.get('title') def drive(self): return '부릉부릉' options = {'title': '세단', 'color': 'blue'} car = Car(options) car.title # bmw car.drive() # 부릉 부릉 class Mercedes(Car): def __init__(self, options): super().__init__(options) self.color = options.get('color') def honk(self): return '빵빵' eclass = Mercedes(options) print( eclass.title, eclass.color, eclass.drive(), eclass.honk(), )
[ "fromecha@gmail.com" ]
fromecha@gmail.com
f6c55bbbbe2cfb9bba709afc8dc0371c8106a589
d78145457f180d4b6535f5590ed794e1da26b070
/fig5.py
981ab3bdf3a5b84a36e3a107f8e1c1f3f0b5cf11
[]
no_license
bolongz/MC_Telegraph_Equations
2c0953e10e013748bf0f4a4761c18519547dcf89
3c9f067262d8b2ab84c94bca7f28f921a43f7254
refs/heads/master
2020-03-28T19:40:01.649127
2018-09-18T00:14:40
2018-09-18T00:14:40
148,997,929
0
0
null
null
null
null
UTF-8
Python
false
false
5,648
py
# This is an code for the example at 4.1.1 to generate Figure 5 import math import random as rd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.legend_handler import HandlerLine2D import matplotlib matplotlib.rc('xtick', labelsize=18) matplotlib.rc('ytick', labelsize=18) import time a = 1.5 c = 1. N_MC = 200001 ksi = -a + math.sqrt(a**2 - c**2) ksibar = -a - math.sqrt(a**2 - c**2) A = 1. B = - 1. def phi(x): return 0.0 # Solution to the wave equation with same conditions def opsi(x): return (ksi - ksibar) * math.cos(x) def Psi(x): return (ksi - ksibar) * math.sin(x) def sol(t, x): return (phi(x + t) + phi(x - t)) / 2. + (Psi(x + t) - Psi(x - t)) / (2.*c) # Solution of the telegrapher's equation / For comparing purposes. def real_sol(t, x): return (math.exp(ksi * t) - math.exp(ksibar * t )) * math.cos(x) # argument is an array of ordered times def randtimes(l): T = 0 n = 1 result = -1. * np.ones(n) u = -1 i = 0 r = 0 while (i < n ) and (result[i] < 0): s = np.random.exponential(1./a) T += s u = -u r += u * s while (i < n) and T > l: # Need to use while loop because we could jump multiple epochs in one step result[i] = c*(r - u * (T - l)) i += 1 return result def route(l): n = 1 T = 0 u = -1 r = 0 i = 0 result = -1. * np.ones(n) length = 0.0 * np.ones(n) k = 0 while (i < n) and (result[i] < 0): s = np.random.exponential(1./a) T += s u = -u r += u * s k = k +1 while( i < n) and T > l: result[i] = c * (r - u * (T - l)) length[i] = k i+= 1 return result, length def jcp_op(t, x, l): f = 0.0 b = 0.0 ''' if l % 2 == 1: return (phi(x + c * t) + phi(x - c * t)) / 2. + (Psi(x + c * t) - Psi(x - c * t)) / (2.*c) else: return (phi(x + c * t) + phi(x - c * t)) / 2. - (Psi(x + c * t) - Psi(x - c * t)) / (2.*c) ''' if l % 2 == 1: f = phi(x - t) - 1. / c * Psi(x - t) b = phi(x + t) + 1. / c * Psi(x + t) else: f = phi(x + t) - 1. / c * Psi(x + t) b = phi(x - t) + 1. / c * Psi(x - t) return (f + b)/2 # Evaluates the solution for one random generation of the time ! def one_eval(times, points): newtimes = randtimes(times) n = len(points) result = np.empty(n) for i in range(n): result[i] = sol(newtimes, points[i]) return result def mc_method(times, points, err): n = len(points) stderr = np.zeros(n) sum1 = np.zeros(n) sum2 = np.zeros(n) t = 1000. i = 1; while( t > err or i < 1001): res = one_eval(times, points) sum1 = sum1 + res sum2 = sum2 + np.square(res) if(i % 2000 == 0): stderr = np.abs(sum2- (np.square(sum1) / (i))) / ( i - 1.) t = max(np.vectorize(math.sqrt)(stderr/(i)) / (np.abs(sum1/i))) print i, t i = i + 1 return sum1 / (i - 1), i - 1 #, int_conf def jcp_opsi(times, points): n = len(points) #n = 1 result = np.empty(n) newtimes, length = route(times) for i in range(n): result[i]= jcp_op(newtimes, points[i], length) return result def jcp_sol(times, points, err): n = len(points) stderr = np.zeros(n) sum1 = np.zeros(n) sum2 = np.zeros(n) t = 1000. i = 1; while( t > err or i < 1001): res = jcp_opsi(times, points) sum1 = sum1 + res sum2 = sum2 + np.square(res) if(i % 2000 == 0): stderr = np.abs(sum2- (np.square(sum1) / (i))) / ( i - 1.) t = max(np.vectorize(math.sqrt)(stderr/(i)) / (np.abs(sum1/i))) print i, t i = i + 1 return sum1/ (i - 1), i - 1 #, int_conf tab = [0.05, 0.5, 1., 2.] max_deviations = 0.0 max_deviations2 = 0.0 err = 0.01 for i, t in enumerate(tab): print "****************" plt.clf() nx = 12 # number of positive space points h = 0.5 #step between two space points times = t #* np.ones(2 * nx + 1) points = (np.arange(2 * nx + 1 ) - nx) * h start_time = time.time() mean, steps = mc_method(times, points,err) kacs_time = time.time() - start_time line1 = plt.scatter(points, mean,s = 40, marker = 'o', color = 'r', label = 'Presented algorithm' ) start_time2 = time.time() mean1, steps2 = jcp_sol(times, points,err) jcp_time = time.time() - start_time2 line2 = plt.scatter(points, mean1,s = 40, marker = '^', color = 'b', label = 'NMC' ) plt.ylim((-2.5, 2.5)) plt.xlim((-6, 6)) plt.ylabel('u(t,x)', size = 20) plt.xlabel('x', size = 20) plt.title('t = '+str(t),fontweight='bold', size = 20) plt.legend(scatterpoints=1,loc='upper right', numpoints = 1, prop={'size':15}) nx = 100 h = 0.06 points = (np.arange(2 * nx + 1 ) - nx) * h real_points = np.vectorize(lambda x: real_sol(t, x))(points) line3, = plt.plot(points, real_points, color = 'g', label='Accurate solution', linewidth = 2) plt.legend(handler_map={line3: HandlerLine2D(numpoints=2)}, prop = {'size':15}) plt.savefig("img/t="+str(t)+".pdf", bbox_inches='tight') plt.clf() print t print max_deviations print max_deviations2 print "kac based time" print kacs_time print "kac based steps" print steps print "jcp based time" print jcp_time print "jcp based steps" print steps2
[ "bolongz" ]
bolongz
86b50466e909a8234bcdbc3ac7b0ff8bc7f50dd6
56bf1dbfa5d23257522fb03906e13c597a829ed3
/plugins/YouMustBuildABoatGameAgentPlugin/files/you_must_build_a_boat_game_agent.py
07e82ecfd2b6fa01e7c341a9e7693b38e4526d2a
[ "MIT" ]
permissive
fendaq/SerpentAI
0417777bbc0fccb50df456d0ced1bce839aa3211
e9c147f33a790a9cd3e4ee631ddbf6bbf91c3921
refs/heads/master
2021-07-23T02:04:15.977726
2017-08-26T23:31:59
2017-08-26T23:31:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,236
py
from lib.game_agent import GameAgent from lib.machine_learning.context_classification.context_classifiers import CNNInceptionV3ContextClassifier from lib.sprite import Sprite import lib.cv import lib.ocr from .helpers.ocr import preprocess as ocr_preprocess from .helpers.game import parse_game_board, generate_game_board_deltas, score_game_board, score_game_board_vector, generate_boolean_game_board_deltas, display_game_board import offshoot import numpy as np import h5py import xtermcolor import skimage.io import sklearn from datetime import datetime, timedelta import time import uuid import random import collections import pickle import os import subprocess import shlex class YouMustBuildABoatGameAgent(GameAgent): def __init__(self, **kwargs): super().__init__(**kwargs) self.frame_handlers["PLAY"] = self.handle_play self.frame_handlers["PLAY_BOT"] = self.handle_play_bot self.frame_handlers["PLAY_RANDOM"] = self.handle_play_random self.frame_handler_setups["PLAY"] = self.setup_play self.frame_handler_setups["PLAY_BOT"] = self.setup_play_bot self.analytics_client = None @property def game_contexts(self): return dict( ) @property def rows(self): return ["A", "B", "C", "D", "E", "F"] @property def columns(self): return [1, 2, 3, 4, 5, 6, 7, 8] @property def match_milestone_sfx_mapping(self): return { 10: "/home/serpent/SFX/first_blood.wav", 20: "/home/serpent/SFX/Double_Kill.wav", 30: "/home/serpent/SFX/Killing_Spree.wav", 40: "/home/serpent/SFX/Dominating.wav", 50: "/home/serpent/SFX/MegaKill.wav", 60: "/home/serpent/SFX/Unstoppable.wav", 70: "/home/serpent/SFX/WhickedSick.wav", 80: "/home/serpent/SFX/MonsterKill.wav", 90: "/home/serpent/SFX/GodLike.wav", 100: "/home/serpent/SFX/Combowhore.wav" } def setup_play(self): plugin_path = offshoot.config["file_paths"]["plugins"] ocr_classifier_path = f"{plugin_path}/YouMustBuildABoatGameAgentPlugin/files/ml_models/you_must_build_a_boat_ocr.model" self.machine_learning_models["ocr_classifier"] = self.load_machine_learning_model(ocr_classifier_path) context_classifier_path = f"{plugin_path}/YouMustBuildABoatGameAgentPlugin/files/ml_models/you_must_build_a_boat_context.model" context_classifier = CNNInceptionV3ContextClassifier(input_shape=(384, 512, 3)) context_classifier.prepare_generators() context_classifier.load_classifier(context_classifier_path) self.machine_learning_models["context_classifier"] = context_classifier self.ocr_policy = lib.ocr.OCRPolicy( ocr_classifier=self.machine_learning_models["ocr_classifier"], character_window_shape="rectangle", character_window_size=(7, 2), word_window_shape="rectangle", word_window_size=(1, 10), preprocessing_function=ocr_preprocess, preprocessing_options=dict( contrast_stretch_percentiles=(80, 100) ) ) self.game_board = np.zeros((6, 8)) self.previous_game_board = np.zeros((6, 8)) self.mode = "PREDICT" # "RANDOM" self.current_run = 0 self.current_run_started_at = None self.current_attempts = 0 self.current_matches = 0 self.last_run_duration = 0 self.last_attempts = 0 self.last_matches = 0 self.record_random_duration = 0 self.record_random_duration_run = 0 self.record_random_matches = 0 self.record_random_matches_run = 0 self.record_random_duration_values = collections.deque(maxlen=1000) self.record_random_matches_values = collections.deque(maxlen=1000) self.record_predict_duration = 0 self.record_predict_duration_run = 0 self.record_predict_matches = 0 self.record_predict_matches_run = 0 self.record_predict_duration_values = collections.deque(maxlen=10) self.record_predict_matches_values = collections.deque(maxlen=10) self.game_boards = list() if os.path.isfile("datasets/ymbab_matching.model"): with open("datasets/ymbab_matching.model", "rb") as f: self.model = pickle.loads(f.read()) else: self.model = sklearn.linear_model.SGDRegressor() def setup_play_bot(self): plugin_path = offshoot.config["file_paths"]["plugins"] ocr_classifier_path = f"{plugin_path}/YouMustBuildABoatGameAgentPlugin/files/ml_models/you_must_build_a_boat_ocr.model" self.machine_learning_models["ocr_classifier"] = self.load_machine_learning_model(ocr_classifier_path) context_classifier_path = f"{plugin_path}/YouMustBuildABoatGameAgentPlugin/files/ml_models/you_must_build_a_boat_context.model" context_classifier = CNNInceptionV3ContextClassifier(input_shape=(384, 512, 3)) context_classifier.prepare_generators() context_classifier.load_classifier(context_classifier_path) self.machine_learning_models["context_classifier"] = context_classifier self.ocr_policy = lib.ocr.OCRPolicy( ocr_classifier=self.machine_learning_models["ocr_classifier"], character_window_shape="rectangle", character_window_size=(7, 2), word_window_shape="rectangle", word_window_size=(1, 10), preprocessing_function=ocr_preprocess, preprocessing_options=dict( contrast_stretch_percentiles=(80, 100) ) ) self.game_board = np.zeros((6, 8)) self.previous_game_board = np.zeros((6, 8)) def handle_play(self, game_frame): context = self.machine_learning_models["context_classifier"].predict(game_frame.frame) if context is None: return if context == "game_over": self.last_run_duration = (datetime.utcnow() - self.current_run_started_at).seconds if self.current_run_started_at else 0 self.last_attempts = self.current_attempts if self.current_attempts > 0 else 1 self.last_matches = self.current_matches if self.current_run > 0: if self.mode == "RANDOM": self.record_random_duration_values.appendleft(self.last_run_duration) self.record_random_matches_values.appendleft(self.last_matches) if self.last_run_duration > self.record_random_duration: self.record_random_duration = self.last_run_duration self.record_random_duration_run = self.current_run if self.last_matches > self.record_random_matches: self.record_random_matches = self.last_matches self.record_random_matches_run = self.current_run elif self.mode == "PREDICT": self.record_predict_duration_values.appendleft(self.last_run_duration) self.record_predict_matches_values.appendleft(self.last_matches) record = False if self.last_run_duration > self.record_predict_duration: record = True self.record_predict_duration = self.last_run_duration self.record_predict_duration_run = self.current_run if self.last_matches > self.record_predict_matches: record = True self.record_predict_matches = self.last_matches self.record_predict_matches_run = self.current_run if record: subprocess.Popen(shlex.split(f"play -v 0.45 /home/serpent/SFX/HolyShit_F.wav")) if self.last_matches < 10: subprocess.Popen(shlex.split(f"play -v 0.45 /home/serpent/SFX/Humiliating_defeat.wav")) print("\033c") game_board_vector_data = list() scores = list() if len(self.game_boards): print(f"GENERATING TRAINING DATASETS: 0 / 1") print(f"NEXT RUN: {self.current_run + 1}") game_board_deltas = generate_game_board_deltas(self.game_boards[-1]) boolean_game_board_deltas = generate_boolean_game_board_deltas(game_board_deltas) for game_move, boolean_game_boards in boolean_game_board_deltas.items(): for boolean_game_board in boolean_game_boards: for i in range(6): row = boolean_game_board[i, :] game_board_vector_data.append(row) scores.append(score_game_board_vector(row)) for i in range(8): column = boolean_game_board[:, i] column = np.append(column, [0, 0]) game_board_vector_data.append(column) scores.append(score_game_board_vector(column)) print("\033c") print(f"GENERATING TRAINING DATASETS: 1 / 1") print(f"NEXT RUN: {self.current_run + 1}") with h5py.File(f"datasets/ymbab/ymbab_run_{self.current_run}.h5", "w") as f: for index, data in enumerate(game_board_vector_data): f.create_dataset(f"{index}", data=data) for index, data in enumerate(scores): f.create_dataset(f"{index}_score", data=data) self.game_boards = list() self.current_run += 1 if self.current_run % 10 == 0: self.mode = "PREDICT" print("\033c") print("UPDATING MODEL WITH LATEST COLLECTED DATA...") print(f"NEXT RUN: {self.current_run}") for i in range(9 if self.current_run <= 10 else 10): data_file_path = f"datasets/ymbab/ymbab_run_{self.current_run - (i + 1)}.h5" data = list() scores = list() with h5py.File(data_file_path, "r") as f: count = len(f.items()) // 2 for ii in range(count): data.append(f[f"{ii}"][:]) scores.append(f[f"{ii}_score"].value) if len(data): self.model.partial_fit(data, scores) serialized_model = pickle.dumps(self.model) with open("datasets/ymbab_matching.model", "wb") as f: f.write(serialized_model) else: self.mode = "PREDICT" print("\033c") self.input_controller.click_screen_region(screen_region="GAME_OVER_RUN_AGAIN", game=self.game) time.sleep(2) self.current_run_started_at = datetime.utcnow() self.current_attempts = 0 self.current_matches = 0 elif context.startswith("level_"): self.previous_game_board = self.game_board self.game_board = parse_game_board(game_frame.frame) unknown_tile_coordinates = np.argwhere(self.game_board == 0) if 0 < unknown_tile_coordinates.size <= 10: coordinates = random.choice(unknown_tile_coordinates) tile_screen_region = f"GAME_BOARD_{self.rows[coordinates[0]]}{self.columns[coordinates[1]]}" self.input_controller.click_screen_region(screen_region=tile_screen_region, game=self.game) self.current_attempts += 1 game_board_deltas = generate_game_board_deltas(self.game_board) if self.game_board[self.game_board == 0].size < 3: self.game_boards.append(self.game_board) if self.mode == "PREDICT": boolean_game_board_deltas = generate_boolean_game_board_deltas(game_board_deltas, obfuscate=False) top_game_move_score = -10 top_game_move = None game_move_scores = dict() for game_move, boolean_game_boards in boolean_game_board_deltas.items(): split_game_move = game_move.split(" to ") axis = "ROW" if split_game_move[0][0] == split_game_move[1][0] else "COLUMN" total_score = 0 for boolean_game_board in boolean_game_boards: input_vectors = list() if axis == "ROW": row_index = self.rows.index(split_game_move[0][0]) row = boolean_game_board[row_index, :] input_vectors.append(row) for ii in range(8): column = boolean_game_board[:, ii] column = np.append(column, [False, False]) input_vectors.append(column) elif axis == "COLUMN": for ii in range(6): row = boolean_game_board[ii, :] input_vectors.append(row) column_index = self.columns.index(int(split_game_move[0][1])) column = boolean_game_board[:, column_index] column = np.append(column, [False, False]) input_vectors.append(column) prediction = self.model.predict(input_vectors) total_score += max(prediction) game_move_scores[game_move] = total_score if total_score > top_game_move_score: top_game_move_score = total_score top_game_move = game_move if top_game_move is None: return False start_coordinate, end_coordinate = top_game_move.split(" to ") start_screen_region = f"GAME_BOARD_{start_coordinate}" end_screen_region = f"GAME_BOARD_{end_coordinate}" elif self.mode == "RANDOM": axis = random.choice(["ROW", "COLUMN"]) if axis == "ROW": row = random.choice(self.rows) column = 1 end_column = 1 + (random.choice(range(7)) + 1) start_screen_region = f"GAME_BOARD_{row}{column}" end_screen_region = f"GAME_BOARD_{row}{end_column}" else: column = random.choice(self.columns) row = "A" end_row = self.rows[random.choice(range(5)) + 1] start_screen_region = f"GAME_BOARD_{row}{column}" end_screen_region = f"GAME_BOARD_{end_row}{column}" start_coordinate = start_screen_region.split('_')[-1] end_coordinate = end_screen_region.split('_')[-1] game_board_key = f"{start_coordinate} to {end_coordinate}" game_board_delta = None for board_delta in game_board_deltas: if board_delta[0] == game_board_key: game_board_delta = board_delta[1] break if score_game_board(game_board_delta) > 0: self.current_matches += 1 if self.current_matches in self.match_milestone_sfx_mapping: subprocess.Popen(shlex.split(f"play -v 0.45 {self.match_milestone_sfx_mapping[self.current_matches]}")) print("\033c") print(f"CURRENT RUN: {self.current_run}") print(f"CURRENT MODE: {self.mode}\n") print("BOARD STATE:\n") display_game_board(self.game_board) print("") print(xtermcolor.colorize(f" Moving {game_board_key}... ", ansi=0, ansi_bg=39)) print(f"\nCurrent Run Duration: {(datetime.utcnow() - self.current_run_started_at).seconds} seconds") print(f"Current Run Matches (Approximate): {self.current_matches}/{self.current_attempts}") print(f"\nLast Run Duration: {self.last_run_duration} seconds") print(f"Last Run Matches (Approximate): {self.last_matches}/{self.last_attempts}") print("") print(xtermcolor.colorize(" RECORDS ", ansi=29, ansi_bg=15)) print("") # print(f"Duration (RANDOM): {self.record_random_duration} seconds (Run #{self.record_random_duration_run})") print(f"Duration (PREDICT): {self.record_predict_duration} seconds (Run #{self.record_predict_duration_run})") # print(f"Matches (RANDOM - Approximate): {self.record_random_matches} (Run #{self.record_random_matches_run})") print(f"Matches (PREDICT - Approximate): {self.record_predict_matches} (Run #{self.record_predict_matches_run})") print("") print(xtermcolor.colorize(" PREDICT AVERAGES (Last 10 runs)", ansi=29, ansi_bg=15)) print("") print(f"Duration: {round(np.mean(self.record_predict_duration_values), 2)} seconds") print(f"{', '.join([str(v) for v in list(self.record_predict_duration_values)])}") print(f"\nMatches (Approximate): {np.mean(self.record_predict_matches_values)}") print(f"{', '.join([str(int(v)) for v in list(self.record_predict_matches_values)])}") game_move_direction = "ROW" if self.game.screen_regions[start_screen_region][0] == self.game.screen_regions[end_screen_region][0] else "COLUMN" if game_move_direction == "ROW": game_move_distance = int(end_coordinate[1]) - int(start_coordinate[1]) else: game_move_distance = self.rows.index(end_coordinate[0]) - self.rows.index(start_coordinate[0]) self.input_controller.drag_screen_region_to_screen_region( start_screen_region=start_screen_region, end_screen_region=end_screen_region, duration=(0.1 + (game_move_distance * 0.05)), game=self.game ) def handle_play_bot(self, game_frame): context = self.machine_learning_models["context_classifier"].predict(game_frame.frame) if context is None: return # if context == "game_over": # self.input_controller.click_screen_region(screen_region="GAME_OVER_RUN_AGAIN", game=self.game) # time.sleep(2) # elif context.startswith("level_"): # print("\033c") # print(context) # print("BOARD STATE:\n") # # self.previous_game_board = self.game_board # self.game_board = parse_game_board(game_frame.frame) # print(self.game_board) # # # Click the Unknown Tiles # unknown_tile_coordinates = np.argwhere(self.game_board == 0) # # if 0 < unknown_tile_coordinates.size <= 10: # coordinates = random.choice(unknown_tile_coordinates) # tile_screen_region = f"GAME_BOARD_{self.rows[coordinates[0]]}{self.columns[coordinates[1]]}" # # self.input_controller.click_screen_region(screen_region=tile_screen_region, game=self.game) # # if not np.array_equal(self.game_board, self.previous_game_board): # return # # game_board_deltas = generate_game_board_deltas(self.game_board) # game_board_delta_matches = detect_game_board_delta_matches(game_board_deltas) # # game_move = None # # for i in [5, 4, 3]: # if not len(game_board_delta_matches[i]): # continue # # game_move = random.choice(game_board_delta_matches[i]) # break # # if game_move is None: # time.sleep(0.1) # return # # game_move_start_cell, game_move_end_cell = game_move.split(" to ") # # start_screen_region = f"GAME_BOARD_{game_move_start_cell}" # end_screen_region = f"GAME_BOARD_{game_move_end_cell}" # # game_move_direction = "ROW" if self.game.screen_regions[start_screen_region][0] == self.game.screen_regions[end_screen_region][0] else "COLUMN" # # if game_move_direction == "ROW": # game_move_distance = int(game_move_end_cell[1]) - int(game_move_start_cell[1]) # else: # game_move_distance = self.rows.index(game_move_end_cell[0]) - self.rows.index(game_move_start_cell[0]) # # print(f"\nMoving {game_move_start_cell} to {game_move_end_cell}...") # # print(game_board_delta_matches) # # self.input_controller.drag_screen_region_to_screen_region( # start_screen_region=start_screen_region, # end_screen_region=end_screen_region, # duration=(0.1 + (game_move_distance * 0.05)), # game=self.game # ) def handle_play_random(self, game_frame): rows = ["A", "B", "C", "D", "E", "F"] columns = [1, 2, 3, 4, 5, 6, 7, 8] row = random.choice(rows) column = random.choice(columns) start_screen_region = f"GAME_BOARD_{row}{column}" axis = "row" if random.randint(0, 1) else "column" if axis == "row": end_column = random.choice(columns) while end_column == column: end_column = random.choice(columns) end_screen_region = f"GAME_BOARD_{row}{end_column}" else: end_row = random.choice(rows) while end_row == row: end_row = random.choice(rows) end_screen_region = f"GAME_BOARD_{end_row}{column}" print(f"\nMoving {start_screen_region.split('_')[-1]} to {end_screen_region.split('_')[-1]}...") self.input_controller.drag_screen_region_to_screen_region( start_screen_region=start_screen_region, end_screen_region=end_screen_region, duration=0.3, game=self.game ) time.sleep(1) def handle_collect_characters(self, game_frame): frame_uuid = str(uuid.uuid4()) skimage.io.imsave(f"datasets/ocr/frames/frame_{frame_uuid}.png", game_frame.frame) preprocessed_frame = ocr_preprocess(game_frame.frame, **self.ocr_policy.preprocessing_options) objects = lib.ocr.detect_image_objects_closing(preprocessed_frame, window_shape="rectangle", window_size=(7, 2)) normalized_objects = lib.ocr.normalize_objects(preprocessed_frame, objects) lib.ocr.save_objects("datasets/ocr/characters", objects, normalized_objects, frame_uuid) time.sleep(self.config.get("collect_character_interval") or 1)
[ "info@nicholasbrochu.com" ]
info@nicholasbrochu.com
1e4e61cf5e7e169794e46582487559adf479515b
abf605ecb315c256243c242eaac4cd392973c6e2
/GeoDocs/GeoDocs/cuentas/models.py
3c9402a5c01122b0cf9eb077c890e7e700466d74
[]
no_license
patriciozapata/Python-django-postgresql
67f0cceea399939fe1d36bcf4b8682c9909b06c6
2fbd8142da0fa661f04ec166dac43a2ed6c6d9be
refs/heads/tesis
2022-11-05T19:30:05.521923
2019-05-02T21:01:23
2019-05-02T21:01:23
184,653,172
0
1
null
2022-11-03T16:04:34
2019-05-02T21:21:03
null
UTF-8
Python
false
false
2,324
py
from django.db import models from django.contrib.auth.models import ( BaseUserManager, AbstractBaseUser ) class UserManager(BaseUserManager): def create_user(self, email, nombre, apellido, perfil, password=None): if not email: raise ValueError('Users must have an email address') user = self.model( email=self.normalize_email(email), ) user.nombre = nombre user.apellido = apellido perfil = Perfil.objects.get(pk=perfil) user.perfil = perfil user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, nombre, apellido, perfil,staff,admin, password): user = self.create_user(email, nombre, apellido, perfil,password=password) user.staff = staff user.admin = admin user.save(using=self._db) return user class Perfil(models.Model): perfil = models.CharField(max_length=50) def __str__(self): # __unicode__ on Python 2 return '{}'.format(self.perfil) # hook in the New Manager to our Model class User(AbstractBaseUser): email = models.EmailField( verbose_name='email address', max_length=255, unique=True, ) is_active = models.BooleanField(default=True) staff = models.BooleanField(default=False) #Necesario para administrador debido a que pregunta "is_staff" admin = models.BooleanField(default=False) # a superuser nombre = models.CharField(max_length=50) apellido = models.CharField(max_length=50) imagen = models.ImageField(upload_to='perfil_image',blank=True) perfil = models.ForeignKey(Perfil, on_delete=models.CASCADE) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['nombre', 'apellido','perfil','staff','admin'] # Email & Password are required by default. def __str__(self): # __unicode__ on Python 2 return self.perfil def __str__(self): # __unicode__ on Python 2 return self.email def has_perm(self, perm, obj=None): return True def has_module_perms(self, app_label): return True @property def is_staff(self): return self.staff @property def is_admin(self): return self.admin objects = UserManager()
[ "patrix_malito@hotmail.com" ]
patrix_malito@hotmail.com
be44bbc064d7280037111833692d80e31717c8e1
24f2deae78a3f5fa8b5b3a53baff5637e0ea80ff
/sinoera/tst/sinozodiac/test_monkeyclever.py
93fc4197c860d2006f56188460f678c512b554e0
[ "Apache-2.0" ]
permissive
sinotradition/sinoera
02b979a7dbca81594eed8862fa86671856b91e2e
1e93482c0a56a8917bc7ceebeef5b63b24ca3651
refs/heads/master
2021-01-10T03:20:20.231752
2015-12-14T15:13:42
2015-12-14T15:13:42
47,981,945
1
0
null
null
null
null
UTF-8
Python
false
false
394
py
#!/usr/bin/python #coding=utf-8 '''This is test module @author: sheng @contact: sinotradition@gmail.com @copyright: License according to the project license. ''' import unittest from sinoera.sinozodiac import monkeyclever TestMonkeycleverFunctions(unittest.TestCase): def setUp(self): pass def test_XXX(self): pass if __name__ == "__main__": unittest.main()
[ "smlh.sheng@gmail.com" ]
smlh.sheng@gmail.com
66a4d92f7ec31b6e8c4973554647c227fbf1f327
197d1e555430b8524b2f8ef62539a65005d53f44
/hw1_tagging/venv/bin/easy_install
40711d02ecb909628a5d0027230116ae3a089950
[]
no_license
yw778/COMS4705_nlp
b721aa5c20d7620d826cd39887b6f16699f51efb
b66dedf26af7e746454e6becfa01a314c5bf664e
refs/heads/master
2021-03-27T19:57:36.796081
2018-05-26T22:21:16
2018-05-26T22:21:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
253
#!/Users/yuwang/nlp_1/venv/bin/python # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "yuwang95320@gmail.com" ]
yuwang95320@gmail.com
dc2c0bcd950dff0ecd0af63cc4a6cdd8ea869cd3
e82b073e9b92499b35b2d45c1b5384609969778a
/CSE316/Assignment 2/Source Code/src/server.py
6bef0307749b867e565de2ad6711c358ee2a4c1a
[]
no_license
wjxhhhhh/XJTLU
2a6dbba2ec48231b299393ea10e7f58c957a9e82
a812446706e5d575d154035c338f58757ce0771f
refs/heads/master
2023-04-25T00:00:34.473128
2020-07-09T23:21:04
2020-07-09T23:21:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
860
py
# Sahand Sabour - 1614650 # Basic implementation of the CoAP server # 1) Change self.SERVER to IP address of your choosing. # 2) Run this file via: # python src/server.py from coapthon.server.coap import CoAP from tools.Resources import COAPResource class CoAPServer(CoAP): def __init__(self): self.SERVER = "192.168.0.3" # Access IP address self.PORT = 5683 # Access port # Bind IP and port to the CoAP server CoAP.__init__(self, (self.SERVER, self.PORT)) # Declare the available resources and their indexes self.add_resource("index/", COAPResource()) print("Server listening on %s:%d" % (self.SERVER, self.PORT)) if __name__ == "__main__": server = CoAPServer() try: server.listen(5) except KeyboardInterrupt: server.close() print("Server Shutdown")
[ "karimiali0022@yahoo.com" ]
karimiali0022@yahoo.com
59bd8f6d04bda0023fa0410fd105f1e5594bf584
b45b8fdc2daf1138e45dc3aa6adc05737a171e52
/votingapp/election/admin.py
4a5b2d62dad3d6150f3b077fb5d443fb2efb4abf
[]
no_license
princevanani9/SEPP
badfb5e8d13c049995d0ed295141c3c310f744da
ea8cc4ef43f9c0e59fd4e73f75ccc459e3d15497
refs/heads/master
2023-04-03T10:16:43.533755
2021-04-02T07:46:48
2021-04-02T07:46:48
353,250,327
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
from django.contrib import admin from .models import CreateElection @admin.register(CreateElection) class AdminCreateElecion(admin.ModelAdmin): list_display = ['name','type'] # Register your models here.
[ "vananiprince9@gmail.com" ]
vananiprince9@gmail.com
03e0ce534ea35cb85aa6b762ecc79460b25841f8
de2c194da09e8a00f67dfc81e4d2526598699ffe
/autoencoder_duong/test_keras_install.py
b9fffb9489ef8a7c4ebade37d2612768db0534d0
[]
no_license
vutienduong/CNNTensorFlow
972d0cc9468030d4837ea6fec31d1c6453b843c4
322434668334b524b2479135decc48cf762c6713
refs/heads/master
2021-01-12T08:23:36.699712
2017-05-25T03:00:30
2017-05-25T03:00:30
76,561,139
1
1
null
null
null
null
UTF-8
Python
false
false
1,107
py
from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD import keras.utils as keut # Generate dummy data import numpy as np x_train = np.random.random((1000, 20)) y_train = keut.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10) x_test = np.random.random((100, 20)) y_test = keut.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) model = Sequential() # Dense(64) is a fully-connected layer with 64 hidden units. # in the first layer, you must specify the expected input data shape: # here, 20-dimensional vectors. model.add(Dense(64, activation='relu', input_dim=20)) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(x_train, y_train, epochs=20, batch_size=128) score = model.evaluate(x_test, y_test, batch_size=128)
[ "lucifervtd@gmail.com" ]
lucifervtd@gmail.com
fe4ea25f10a6b7dc123b6983849f78f880cd66ff
9b3576dc1a0c8d9b778859372b8f8f4caa70d61d
/config.py
f9833ffe4f6025e3323868918f85ee9fee25ef9c
[]
no_license
dittohead/googlespeedtestchecker
8eb37a95432cf741906c7167ac530a4f80c9d788
f55d7cc2347f3e034558520d67ed598d607f8b65
refs/heads/master
2020-05-21T08:51:56.394729
2017-05-03T11:57:14
2017-05-03T11:57:14
70,039,971
0
1
null
null
null
null
UTF-8
Python
false
false
158
py
api_key = 'AIzaSyCRkic6tlrQqHESMQ6EnDubrZDrpML43xE' pagespeedHost = "https://www.googleapis.com/pagespeedonline/v2/runPagespeed?url=" sitemap = 'sitemap.txt'
[ "noreply@github.com" ]
dittohead.noreply@github.com
00de5095f39191fb4f1bd56a30416f2450ba71fb
f7330e58eddabd7d4fee5a4a9688d3515f8b9dd4
/checkpt_restart/run_with_restart/run_with_restart.py
8ed8540c1f34e7154796ccf35e1eca9b5bea714a
[ "BSD-3-Clause" ]
permissive
clawpack/apps
9960265fa818794e6ebec7b9b5b65aa8e188a27a
f520ff1bb5271cc565bd6d4370331b5530c0d257
refs/heads/master
2023-04-07T03:42:11.531257
2023-03-30T19:07:51
2023-03-30T19:07:51
3,307,858
8
36
NOASSERTION
2023-03-30T09:05:16
2012-01-30T19:16:21
Jupyter Notebook
UTF-8
Python
false
false
5,062
py
#!/usr/bin/env python # encoding: utf-8 """ Script to run a code or restart it from a checkpoint file automatically. Needs to be cleaned up and made more general. Assumes code is compiled already. python run_with_restart.py Will do the following: - Check whether _output exists with data from a run that appeared to complete (by checking last line of fort.amr -- more robust way?). - If so, it quits, - If _output exists with at least one checkpoint file, it will use the more recent one to restart the code. - If _output does not exist, it runs the code from scratch. So you should be able to type the command above, hit Ctrl-C, and repeat this process an arbitrary number of times and eventually the full output will be generated. Notes: - The setrun.py file is used also for the restart. The clawdata.restart value is set to True and written to claw.data explicitly from this script. """ from __future__ import print_function from __future__ import absolute_import import subprocess import os, sys sys.path.append('.') from setrun import setrun outdir = '_output' # set any desired environment flags: env = os.environ #env['FFLAGS'] = '-O2 -fopenmp' # currently assume code is already compiled. # runtime environment variables: env['OMP_NUM_THREADS'] = '3' # The next line insures that stdout is not buffered so if the code dies # the output sent to run_output.txt so the error message is visible: env['GFORTRAN_UNBUFFERED_PRECONNECTED'] = 'y' def examine_outdir(outdir='_output'): """ Check the outdir to see if the code has already run to completion (in which case nothing is done) or needs to be restarted. If outdir does not exist, run from scratch. """ from numpy import Inf fortamr = os.path.join(outdir,'fort.amr') try: f = open(fortamr).readlines() finished = ('end of' in f[-1]) # examine last line for ending message except: finished = False try: cfile = os.path.join(outdir,'fort.tckaaaaa') f = open(cfile).readlines() ta = float(f[0][29:]) except: ta = -Inf try: cfile = os.path.join(outdir,'fort.tckbbbbb') f = open(cfile).readlines() tb = float(f[0][29:]) except: tb = -Inf if (ta == -Inf) and (tb == -Inf): print("Could not read fort.tckaaaaa or fort.tckbbbbb in outdir %s" \ % outdir) latest = None t_latest = None elif ta > tb: latest = 'aaaaa' t_latest = ta else: latest = 'bbbbb' t_latest = tb return finished, latest, t_latest def run_code_or_restart(): import time tm = time.localtime() year = str(tm[0]).zfill(4) month = str(tm[1]).zfill(2) day = str(tm[2]).zfill(2) hour = str(tm[3]).zfill(2) minute = str(tm[4]).zfill(2) second = str(tm[5]).zfill(2) timestamp = '%s-%s-%s-%s%s%s' % (year,month,day,hour,minute,second) finished, latest, t_latest = examine_outdir(outdir) if finished: print("Code has finished running, remove %s to run again" % outdir) return restart = (latest is not None) fname_output = 'run_output.txt' fname_errors = 'run_errors.txt' if restart: print("Will attempt to restart using checkpoint file %s at t = %s" \ % (latest, t_latest)) print("Appending output stream to %s" % fname_output) access = 'a' else: print("Will run code -- no restart") print("Writing output stream to %s" % fname_output) access = 'w' fout = open(fname_output, access) ferr = open(fname_errors, access) if restart: fout.flush() fout.write("\n=========== RESTART =============\n" + \ "Local time: %s\n" % timestamp + \ "Will attempt to restart using checkpoint file %s at t = %s\n" \ % (latest, t_latest)) fout.flush() make_args = ['make','output','RESTART=True'] else: make_args = ['make','output'] #if restart: # No longer need to do this since new restart now adds to gauge*.txt files # fortgauge = os.path.join(outdir,'fort.gauge') # fortgauge2 = os.path.join(outdir,'fort.gauge_%s' % timestamp) # os.system("mv %s %s" % (fortgauge,fortgauge2)) # fout.write("Moving %s to %s \n" % (fortgauge,fortgauge2)) # fout.flush() rundata = setrun('amrclaw') rundata.clawdata.restart = restart rundata.clawdata.restart_file = 'fort.chk' + str(latest) if restart: rundata.clawdata.output_t0 = False # to avoid plotting at restart times rundata.write() job = subprocess.Popen(make_args, stdout=fout,stderr=ferr,env=env) return_code = job.wait() if return_code == 0: print("Successful run\n") else: print("Problem running code\n") print("See %s and %s" % (fname_output,fname_errors)) fout.close() ferr.close() if __name__ == "__main__": run_code_or_restart()
[ "rjl@uw.edu" ]
rjl@uw.edu
b0990df1a25a8c8ff0efe04b40609e2c15b42bb8
bdfd839c3324feff6f474f006a32b66c01784b92
/ros_vive_driver/src/ros_vive_driver/vrwrapper/VRTrackedDevice.py
195b7ddebe023c68cf8143ce1a74bb3a88f25eeb
[]
no_license
jdewaen/ros_vive
fddf3c7e84d9f588517d27592d97a16d80d1f4db
5e20c3cd9934c9fd87784fb1e1a05139b673b2f3
refs/heads/master
2020-08-09T22:07:25.801070
2019-09-30T09:09:46
2019-09-30T09:09:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,048
py
import math import openvr class VRTrackedDevice(object): TRACKING_RESULT = { 1: "Uninitialized", 100: "Calibrating_InProgress", 101: "Calibrating_OutOfRange", 200: "Running_OK", 201: "Running_OutOfRange" } def __init__(self, vr_obj, index, device_class, name): self.device_class = device_class self.index = index self.vr = vr_obj self.pose_cache = openvr.TrackedDevicePose_t() self.name = name def __del__(self): self.shutdown() def shutdown(self): pass def get_serial(self): return self.vr.getStringTrackedDeviceProperty(self.index, openvr.Prop_SerialNumber_String).decode('utf-8') def get_model(self): return self.vr.getStringTrackedDeviceProperty(self.index, openvr.Prop_ModelNumber_String).decode('utf-8') def get_pose(self, force_update=False): pose = self.pose_cache if force_update: pose = self.vr.getDeviceToAbsoluteTrackingPose(openvr.TrackingUniverseStanding, 0, openvr.k_unMaxTrackedDeviceCount)[self.index] if not pose.bPoseIsValid: return None return VRTrackedDevice.convert_matrix_to_pose(pose.mDeviceToAbsoluteTracking) def get_velocity(self, force_update=False): pose = self.pose_cache if force_update: pose = self.vr.getDeviceToAbsoluteTrackingPose(openvr.TrackingUniverseStanding, 0, openvr.k_unMaxTrackedDeviceCount)[self.index] if not pose.bPoseIsValid: return None velocity = pose.vVelocity angular_velocity = pose.vAngularVelocity return (velocity[0], velocity[1], velocity[2]), (angular_velocity[0], angular_velocity[1], angular_velocity[2]) def has_valid_pose(self, force_update=False): pose = self.pose_cache if force_update: pose = self.vr.getDeviceToAbsoluteTrackingPose(openvr.TrackingUniverseStanding, 0, openvr.k_unMaxTrackedDeviceCount)[self.index] return pose.bPoseIsValid == 1 def is_connected(self, force_update=False): pose = self.pose_cache if force_update: pose = self.vr.getDeviceToAbsoluteTrackingPose(openvr.TrackingUniverseStanding, 0, openvr.k_unMaxTrackedDeviceCount)[self.index] return pose.bDeviceIsConnected == 1 def get_tracking_result(self, force_update=False): pose = self.pose_cache if force_update: pose = self.vr.getDeviceToAbsoluteTrackingPose(openvr.TrackingUniverseStanding, 0, openvr.k_unMaxTrackedDeviceCount)[self.index] if pose.eTrackingResult not in VRTrackedDevice.TRACKING_RESULT: return "Unknown" return VRTrackedDevice.TRACKING_RESULT[pose.eTrackingResult] def update_pose(self, poses): self.pose_cache = poses[self.index] @staticmethod def convert_matrix_to_pose(pose_mat): # Changed from triad_openvr version since that one could crash due to divide by 0 error. # This calculation comes from issue #3 r_w = math.sqrt(max(0, 1 + pose_mat[0][0] + pose_mat[1][1] + pose_mat[2][2])) * 0.5 r_x = math.sqrt(max(0, 1 + pose_mat[0][0] - pose_mat[1][1] - pose_mat[2][2])) * 0.5 r_y = math.sqrt(max(0, 1 - pose_mat[0][0] + pose_mat[1][1] - pose_mat[2][2])) * 0.5 r_z = math.sqrt(max(0, 1 - pose_mat[0][0] - pose_mat[1][1] + pose_mat[2][2])) * 0.5 r_x *= math.copysign(1, r_x * (pose_mat[2][1] - pose_mat[1][2])) r_y *= math.copysign(1, r_y * (pose_mat[0][2] - pose_mat[2][0])) r_z *= math.copysign(1, r_z * (pose_mat[1][0] - pose_mat[0][1])) x = pose_mat[0][3] y = pose_mat[1][3] z = pose_mat[2][3] return (x, y, z), (r_x, r_y, r_z, r_w)
[ "noreply@github.com" ]
jdewaen.noreply@github.com
d59fa7860f877cedd7b28103192d75cb60a9b3b2
9ee94226f283d601b27ae0b97bcfa178b51b6514
/catkin_velodyne/build/sbg_ros_rec/catkin_generated/pkg.installspace.context.pc.py
d95db19ade852a50c6c45313259fae3fe71fe4cd
[]
no_license
zhang-quanzhe/navigation_car
ecaba1f385093ec3dc2ae433ce1ade96f278a466
2643a7827fcdc0660b11900f4118bb94be2291ee
refs/heads/master
2023-07-14T02:24:57.932726
2021-08-21T09:27:17
2021-08-21T09:27:17
398,517,655
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "sbg_driver_2" PROJECT_SPACE_DIR = "/home/ustb/catkin_velodyne/install" PROJECT_VERSION = "1.0.7"
[ "9418372+zhangquanzhe@user.noreply.gitee.com" ]
9418372+zhangquanzhe@user.noreply.gitee.com
e6fc9450a00f5c5945c80ab8beda73f5a5c6c6fc
aaf14b75a281d0d230591a503dafb49bcfa62be8
/params.py
b179fa5e43038c20cef058a5eb6c2db225c4b56c
[]
no_license
jialyu/MCIT582
6524021493a439ae130e5a145bacdc9236a96086
bbdf8840a4199094170ea113598ef4c84ee3d75e
refs/heads/main
2023-07-16T09:59:56.501976
2021-08-14T04:42:43
2021-08-14T04:42:43
367,925,781
0
1
null
null
null
null
UTF-8
Python
false
false
315
py
g=9698439374675276823390863679085787099821687964590973421364530706908301367232976242960049544758496470828675688981570819335336142993170304256564916507021997 p=17485407687035251201370420829093858071027518631263552549047038216080132036645437679594890870680904087373138192057582526597149370808367592630377967178132719
[ "jialyuz@seas.upenn.edu" ]
jialyuz@seas.upenn.edu
ba84f991060139b6c585752c2838f6d0855c1e5d
aaab39a353d12f182e107d1cf74f6b3a45d65bcd
/1/second.py
da9a718543e4aba6d31a3c9af9e43270fef52c99
[]
no_license
myonov/advent_of_code_2018
c27c1983d5479f0650fd303046d1ae6b115012fd
902c59d13c8119d976ed2c05a55a572852227fd5
refs/heads/master
2020-04-09T23:52:12.347631
2018-12-22T13:58:45
2018-12-22T13:58:45
160,669,082
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
s = 0 f = {0} with open('input.txt', 'r') as fin: d = [int(line) for line in fin] q = True while q: for item in d: s += item if s in f: print(s) q = False break f.add(s)
[ "myonov@gmail.com" ]
myonov@gmail.com
c581ade6b59cd845c34b70586cfc5b5cab2022fd
f559b4d607cfdd3f192daed155ed8b0d263c71b2
/env/bin/django-admin.py
2832c6575b235beacbbadfac18c346f0dd30d38c
[]
no_license
chris-baby/WbOnline
6270015e9a7897b413a3fe97e2aca8a33f744995
91425f677d2e7c2a0ac9aeb8c1ee47d75f9b9321
refs/heads/master
2022-07-14T23:57:56.162760
2020-05-11T13:56:22
2020-05-11T13:56:22
263,056,250
0
0
null
null
null
null
UTF-8
Python
false
false
162
py
#!/Users/tongtong/Desktop/root/bwOnline/env/bin/python3 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "918128078@qq.com" ]
918128078@qq.com
1bd6b6e60863db9b9d7ea35156c0117ede3c8461
0d118386f5bf841864d2679461624b4ad0d488fb
/day_three/solution.py
e4af81f085b546f2a5f565f5c8d6defc9e540352
[]
no_license
sandrohp88/adventofcode2018
6604d56f5d67a889b6f1327888e9b9861c0bd72b
7cc0a05f836ce4d29c482f18559ed74ea0d31498
refs/heads/master
2020-04-09T09:32:37.437124
2018-12-09T22:37:37
2018-12-09T22:37:37
160,237,449
0
0
null
null
null
null
UTF-8
Python
false
false
1,178
py
import re def part1(claims): # rows, columns = find_matrix_size(claims) matrix = [['.']*1000 for _ in range(1000)] overlaps = 0 for id_, l, t, w, h in claims: for i in range(t, t+h): for j in range(l, l+w): if matrix[i][j] == '.': matrix[i][j] = id_ else: matrix[i][j] = 'X' for row in matrix: for cell in row: if cell == 'X': overlaps += 1 print('overlaps:', overlaps) return matrix def part2(matrix, claims): id_count = dict() for row in matrix: for id_ in row: if id_ != '.' and id_ != 'X': id_count[id_] = id_count.get(id_, 0) + 1 for id_, _, _, w, h in claims: area = w * h if id_ in id_count.keys() and id_count[id_] == area: print('no-overlapped id:', id_) break # load data file_handler = open('input') claims = list() for line in file_handler: claim = list(map(int, re.findall(r'-?\d+', line))) claims.append(claim) matrix = part1(claims) # expected output 106501 part2(matrix, claims) # expected output 632
[ "sandrohp88@gmail.com" ]
sandrohp88@gmail.com
95025f13d1081fcd737d395850c6ddefe735a83f
19a4b144e8afa70931d7a6e03bad2acea3d58fec
/venv/Lib/site-packages/uiutil/frame/dynamic.py
a4b996a817ca562efe709e2ab8ab6b40f4e40a0d
[ "Apache-2.0" ]
permissive
avim2809/CameraSiteBlocker
29505f8d2d36f7d402787a032a916bd0fc2c4941
bfc0434e75e8f3f95c459a4adc86b7673200816e
refs/heads/master
2020-11-24T17:01:05.842820
2019-12-26T12:55:34
2019-12-26T12:55:34
228,260,283
0
0
null
null
null
null
UTF-8
Python
false
false
6,887
py
# encoding: utf-8 import json import logging_helper from future.utils import iteritems from uiutil.frame.frame import BaseFrame from configurationutil import Configuration, cfg_params from .._metadata import __version__, __authorshort__, __module_name__ from ..resources import templates, schema from ._dynamic_widget import DynamicWidgetFrame from ._dynamic_scroll import DynamicScrollFrame from ._dynamic_base import EXPANDING_ROWS, EXPANDING_COLUMNS from ..helper.dynamic_variable import handle_variable # Register Config details (These are expected to be overwritten by an importing app) cfg_params.APP_NAME = __module_name__ cfg_params.APP_AUTHOR = __authorshort__ cfg_params.APP_VERSION = __version__ # Set the config initialisation parameters LAYOUT_CFG = u'ui_layout' TEMPLATE = templates.ui_layout logging = logging_helper.setup_logging() # ConfigFrame keys CONFIG_FRAMES = u'frames' CONFIG_VARS = u'variables' # config frame keys CONFIG_CLASS = u'class' CONFIG_KEY = u'key' CONFIG_ROW = u'row' CONFIG_COLUMN = u'column' CONFIG_STICKY = u'sticky' CONFIG_VERTICAL = u'scroll_vertical' CONFIG_HORIZONTAL = u'scroll_horizontal' # Layout types ROOT_LAYOUT = u'root_layouts' WIDGET_LAYOUT = u'widget_layouts' def _add_layout(layout_type, layout_name, layout): cfg = Configuration() # Register configuration cfg.register(config=LAYOUT_CFG, config_type=cfg_params.CONST.json, template=TEMPLATE, schema=schema.ui_layout) key = u'{c}.{t}.{n}'.format(c=LAYOUT_CFG, t=layout_type, n=layout_name) cfg[key] = layout def add_root_layout(layout_name, layout): _add_layout(ROOT_LAYOUT, layout_name, layout) def add_widget_layout(layout_name, layout): _add_layout(WIDGET_LAYOUT, layout_name, layout) def add_layout_config(layout_cfg): if isinstance(layout_cfg, (str, unicode)): layout_cfg = json.load(open(layout_cfg)) root_layouts = layout_cfg.get(ROOT_LAYOUT) widget_layouts = layout_cfg.get(WIDGET_LAYOUT) if root_layouts is not None: for layout_name, layout in iteritems(root_layouts): add_root_layout(layout_name, layout) if widget_layouts is not None: for layout_name, layout in iteritems(widget_layouts): add_widget_layout(layout_name, layout) class DynamicFrame(BaseFrame): # Add the available frame classes FRAME_CLASSES = { u'DynamicWidgetFrame': DynamicWidgetFrame, u'DynamicScrollFrame': DynamicScrollFrame } def __init__(self, layout_key, item_dict=None, item_list=None, selected=None, *args, **kwargs): self.key = layout_key self.item_dict_name = u'' self.item_dict = item_dict if item_dict is not None else {} self.item_list = item_list if item_list is not None else [] self.selected = self.string_var(value=u'' if selected is None else selected) self.default = self.string_var() self.cfg = Configuration() # Register configuration self.cfg.register(config=LAYOUT_CFG, config_type=cfg_params.CONST.json, template=TEMPLATE, schema=schema.ui_layout) self.frames = {} self.variables = {} self.layout = self.cfg[self.key] BaseFrame.__init__(self, padx=0, pady=0, *args, **kwargs) self.init_variables() self.before_draw() self.draw_frames() def init_variables(self): for var_config in self.layout.get(CONFIG_VARS, []): var = handle_variable(frame=self, var_config=var_config) self.variables[var.name] = var def draw_frames(self): for frame_name, frame_config in iteritems(self.layout.get(CONFIG_FRAMES, {})): self.draw_frame(frame_name, frame_config) # Configure columns that are allowed to expand for column in self.layout.get(EXPANDING_COLUMNS, []): self.columnconfigure(column, weight=1) # Configure rows that are allowed to expand for row in self.layout.get(EXPANDING_ROWS, []): self.rowconfigure(row, weight=1) def draw_frame(self, name, config): frame_class = self.FRAME_CLASSES[config[CONFIG_CLASS]] frame_kwargs = { u'parent': self, u'key': config[CONFIG_KEY], u'row': config[CONFIG_ROW], u'column': config[CONFIG_COLUMN] } # If we are using a scroll frame check on scrollbar specific params # TODO: We should convert this to kwargs at some point. if config[CONFIG_CLASS] == u'DynamicScrollFrame': scroll_v = config.get(CONFIG_VERTICAL) scroll_h = config.get(CONFIG_HORIZONTAL) if scroll_v is not None: frame_kwargs[u'vbar'] = scroll_v if scroll_h is not None: frame_kwargs[u'hbar'] = scroll_h frame = frame_class(**frame_kwargs) sticky = config.get(CONFIG_STICKY) if sticky is not None: frame.grid(sticky=sticky) self.frames[name] = frame def refresh(self): logging.debug(u'REFRESH FRAMES') # Destroy existing frames for name, frame in iteritems(self.frames): frame.destroy() # Reset self.frames self.frames = {} # Re-draw self.init_variables() self.before_draw() self.draw_frames() # re-size window self.parent.parent.update_geometry() def update_layout(self, layout): # Change the DynamicFrame layout to use the add/edit layout self.layout = self.cfg[layout] # Remove variables specific to this layout for var_name in self.variables.keys(): if hasattr(self, var_name): delattr(self, var_name) # Call refresh to redraw with new layout self.refresh() def return_to_root_layout(self): self.selected.set(u'') self.default.set(u'') self.item_dict_name = u'' self.item_dict = {} self.item_list = [] self.update_layout(self.key) def close(self): self.parent.parent.destroy() def before_draw(self): """ Override this to run any extra steps before UI is drawn """
[ "avim2809@gmail.com" ]
avim2809@gmail.com
97fa9c0f4789f947ef64dd6ce8e5760526b25b7e
e3cf0d1f7ee2f3320f96b4ff5567e11b4155814f
/blog_nsi/urls.py
fe20079bb2cb7ff858d918813f2514645aa57226
[]
no_license
noumou2019/projets_nsi
6ef21e634126411a61ccdddd3fd436ea60c65774
e9c816d7fc8f8847c93d9d1cad6f40ed0eae0935
refs/heads/master
2023-07-29T13:42:26.057217
2020-04-24T20:37:25
2020-04-24T20:37:25
256,851,995
0
0
null
2021-09-22T18:54:14
2020-04-18T20:58:56
Python
UTF-8
Python
false
false
318
py
from . import views from django.urls import path from django.conf.urls import url urlpatterns = [ # path('', views.PostList.as_view(), name='home'), path('', views.post), url(r'^post/(?P<id>[0-9]+)$',views.show_post), #path('<slug:slug>/', views.PostDetail.as_view(), name='post_detail'), ]
[ "noumou diakhate" ]
noumou diakhate
013e3a057b78e9d567beb91e013b38d35609ed24
ba6cf7dc7403d475121460684a01e7aebeda38b1
/ag_Cog_Testing_Pred/ag_Cog_Testing_Pred/q_scripts/TL_DRM_IDA_Traget_restAPI_test.py
4f49f9e857c5405f50bcf55b8121f67e8036cb42
[]
no_license
ilanjaya/predictive-defect-management-1479716573136
a1d53a6297c52af14c4c429572e4cd4f79764808
1bf9f5a6b59041f771dbbe22cbb85358d77c844b
refs/heads/master
2023-07-09T11:23:18.159748
2023-06-27T11:56:35
2023-06-27T11:56:35
74,347,471
0
0
null
2016-11-22T07:35:56
2016-11-21T09:30:25
Java
UTF-8
Python
false
false
5,612
py
# -*- coding: utf-8 -*- """ @authors: Cognitive Development Team (Nilesh, Mandar, Abhishek, Gomathy, Rahul, Anil) """ from __future__ import print_function import sys import os import requests import time # User Inputs ----------------------------------------------------------------- path_base = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) # Set Base Path---------------------------------------------------------------- os.chdir(path_base) sys.path.append(path_base) from q_scripts.a_class_func_dir import DirStructure # Read Config File: ----------------------------------------------------------- fld = DirStructure('config.ini') def test(): # http://169.47.19.170:5004/CI_DRM_IDC_Target_noTP?title=new path order got kicked error code 999&problem_description=steps reproduce 1 initiate order new path 2 add wl configure 3 add dsl telco company fibe internet 15 10 configure offer offer nc targeted 9 m1 12 52 95 4 add telco company&resolution_description=there is not resolution for this test orig_url = "http://169.47.19.170:6000/CI_DRM_IDC_Target_noTP" r = requests.post(orig_url, data={'title': 'new path order got kicked error code 999', 'problem_description': 'steps reproduce 1 initiate order new path 2 add wl configure 3 add dsl telco company fibe internet 15 10 configure offer offer nc targeted 9 m1 12 52 95 4 add telco company', 'resolution_description': 'there is not resolution for this test'}) print(r.status_code, r.reason) print(r.text[:300] + '...') r = requests.post("http://169.47.19.170:6000/CI_DRM_IDC_Target_noTP", data={'title': '', 'problem_description': '', 'resolution_description': ''}) print(r.status_code, r.reason) print(r.text[:300] + '...') r = requests.post("http://169.47.19.170:6000/CI_DRM_IDC_Target_noTP", data={'title': 'and', 'problem_description': 'the', 'resolution_description': 'is'}) print(r.status_code, r.reason) print(r.text[:300] + '...') params = {} params['title'] = "the " params['problem_description'] = "and it is the important" params['resolution_description'] = "and it is the important " r = requests.post(orig_url, data=params) print (r.text) def timing(f): def wrap(*args): time1 = time.time() ret = f(*args) time2 = time.time() print('%s function took %0.3f ms' % (f.__name__, (time2-time1)*1000.0)) return ret return wrap @timing def test_timings(): orig_url = "http://169.47.19.170:6000/CI_DRM_IDC_Target_noTP" params = {} params['title'] = "Functional Requirement ID is missing" params['problem_description'] = "The last Functional Requirement List entry does not have a Functional Requirement ID." params['resolution_description'] = "Functional requirement ID is provided" r = requests.post(orig_url, data=params) print (r.text) def test_local(): orig_url = "http://localhost:6000/CI_DRM_IDC_Target_noTP" params = {} params['title'] = "IESA_DEV_Renewals_Unable to save/transact the quote" params['problem_description'] = """Renewals: Unable to save the quote or renew in devbeta4 We are unable to do renew/save quote. Also, unable to recalculate price and export to excel by unselecting some of the licenses. Steps to reproduce: 1) Open devbeta4 Url:http://devbeta4.citrite.net/MyCitrix/EmployeeMyCitrix/Frameset.aspx 2)Click on Samri and login. 3)Go to quote work sheet page 4)Click on renew or save quote Test data: TestData: Login: gplachn987 Customer Information Org ID: 45441738 Please find the attachment for more details Navy/HP Inc""" params['resolution_description'] = "" r = requests.post(orig_url, data=params) print (r.text) # Data #-- failed params['title'] = "Opp2Create: The Opp2Create Process is failing to create opportunities" params['problem_description'] = """Issue: Error Description: System.ServiceModel.Security.MessageSecurityException: The HTTP request is unauthorized with client authentication scheme 'Anonymous'. The authentication header received from the server was ''. ---> System.Net.WebException: The remote server returned an error: (401) Unauthorized. Tried for APAC, EMEA, Americas(NA) Customers. Please see the attachment.""" params['resolution_description'] = "" r = requests.post(orig_url, data=params) print (r.text) # Environment #-- pass #%% Start the port if __name__ == "__main__": if True: test() test_timings() else: test_local()
[ "noreply@github.com" ]
ilanjaya.noreply@github.com
834213ba2753b49b7973cec9cd548f30bae2ec2a
323cd948429b9e9e6b0e287be9e352cb4c78eebd
/MyCareer/mycareers/migrations/0014_auto_20190626_1718.py
d7e7673cd29c0d57445782ca9fe95c0f2a331a94
[]
no_license
Jiwon0801/MyCareer
2267aebc6295ae1ae68f2441da7c9b45a034e135
dabed70b885a4147d283f5aafa75ff29b1cb39ef
refs/heads/master
2022-11-16T23:39:34.631636
2019-06-27T05:33:40
2019-06-27T05:33:40
194,028,875
0
1
null
2022-11-03T16:24:10
2019-06-27T05:32:49
Python
UTF-8
Python
false
false
521
py
# Generated by Django 2.2.2 on 2019-06-26 17:18 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('mycareers', '0013_auto_20190626_1655'), ] operations = [ migrations.RenameField( model_name='tb_project', old_name='project_start', new_name='start', ), migrations.RenameField( model_name='tb_reward', old_name='reward_start', new_name='start', ), ]
[ "ssintico88@naver.com" ]
ssintico88@naver.com
897d586112f0ec222933a592cf1333bb33fa2f21
3615a5c3ef1a534630c07cdc128f258f505bbfdb
/CONNECT/settings.py
4a486906b9064b30564a19fa8b5a2f4e634b6200
[]
no_license
ashwinmendhe/Django-CONNECT
9310736c2092b6cf0e470f76e139f59bbb6a59a3
619c3f5817b66320bec9d486b899ca7481f70a3c
refs/heads/master
2023-08-21T10:31:24.314729
2021-10-28T05:38:30
2021-10-28T05:38:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,200
py
""" Django settings for CONNECT project. Generated by 'django-admin startproject' using Django 3.2.8. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-u)__h6*1#2m8xt)41*c(y0_^h0u@%^!61&udt6ul(hlo649qyv' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['connect-1106.herokuapp.com', '127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'social', 'crispy_forms', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'CONNECT.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'CONNECT.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'database name', 'USER':'database user', 'PASSWORD':'database password', 'HOST':'database endpoint', 'PORT':'database port', } } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.postgresql', # 'NAME': 'CONNECT', # 'USER':'postgres', # 'PASSWORD':'1234', # 'HOST':'localhost', # 'PORT':'5432', # } # } import dj_database_url db_from_env = dj_database_url.config(conn_max_age=600) DATABASES['default'].update(db_from_env) # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Kolkata' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' PROJECT_ROOT = os.path.realpath(os.path.dirname(__file__)) MEDIA_ROOT = PROJECT_ROOT + '/static/' MEDIA_URL = '/media/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "ashwin.mendhe11@gmail.com" ]
ashwin.mendhe11@gmail.com
724b4ac56c91b6848db180ec241a9630281cc4cf
d1276973203b51a7891d54c061d268dcce5686a8
/django-udemy/src/blog/migrations/0005_comment.py
a55c2b7f563d5df1d302ec02c05720af1a8a8db5
[]
no_license
srinumadhavv/django_restaurant
f576ef2c52cebaebff9155d6f1d33dba0e66ca61
39087916cdb804d30fca3197936d3902f5d00a14
refs/heads/master
2021-05-21T20:41:05.184948
2020-04-03T17:25:48
2020-04-03T17:25:48
252,791,832
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
# Generated by Django 3.0.4 on 2020-04-01 17:26 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('blog', '0004_post_tags'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.TextField()), ('created', models.DateTimeField(default=django.utils.timezone.now)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Post')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "srinumadhavv@gmail.com" ]
srinumadhavv@gmail.com
8a6ae4b1914dbad07b3f5757c33c8c2f26c55fe0
418f984fd7adc3f0c167b7b306cc5d7752149883
/LearnScrapy/books.toscrape.com/settings.py
4868c7fafbaefb54d503879a76561ae65a9c6c14
[]
no_license
shuihu001/Python3-Spiders
1c056fa6451973cac40651a23d8bce5d546f83a0
5e425010450cee73f3f45b0b5d4dffa51393adb3
refs/heads/master
2020-03-09T12:45:44.374079
2018-03-24T06:33:23
2018-03-24T06:33:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,149
py
# -*- coding: utf-8 -*- # Scrapy settings for ToscrapeBooks project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://doc.scrapy.org/en/latest/topics/settings.html # https://doc.scrapy.org/en/latest/topics/downloader-middleware.html # https://doc.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'ToscrapeBooks' SPIDER_MODULES = ['ToscrapeBooks.spiders'] NEWSPIDER_MODULE = 'ToscrapeBooks.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'ToscrapeBooks (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://doc.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'ToscrapeBooks.middlewares.ToscrapebooksSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'ToscrapeBooks.middlewares.ToscrapebooksDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://doc.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://doc.scrapy.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'ToscrapeBooks.pipelines.ToscrapebooksPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See https://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "noreply@github.com" ]
shuihu001.noreply@github.com
cd1aea6d076c2a8cb9f8340f9ffca0fa4ba1c63b
db5aac17b476308e291fc8ca6dc642d6a5ecb105
/gui/bin/wheel
2aa36ddfa2123ed46a53557291c9f4fb95cad95c
[]
no_license
maknetwork/windows_gui
2f93c6a3b5ff8a1581e1e3852fcb117835cf3cc0
6318371db12fd9aaa25a5a579e700f4e1a1c1a66
refs/heads/master
2023-08-14T23:54:13.254629
2020-04-18T10:18:20
2020-04-18T10:18:20
256,722,790
0
0
null
2023-07-23T12:22:47
2020-04-18T10:15:37
Python
UTF-8
Python
false
false
229
#!/home/arif/aarzeon/gui/gui/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "maknetwork" ]
maknetwork
79eeaa901ce0d9bd1a86ba03f05e476efff338c2
58ca1aedfd2c2c43ce3f71e7877f92c51d41adf8
/confusion_matrix.py
a98fcffcb0e3224af90edcaa6902019e8e7cc655
[]
no_license
seaun163/DeepSLAM
00d88ee00367987cb4b7a57db3b0bedafeeb4e68
a038772bd7de897fb8253214813bfab09e31d62f
refs/heads/master
2021-01-25T08:19:28.198277
2016-10-18T19:11:32
2016-10-18T19:11:32
93,752,917
1
0
null
2017-06-08T13:32:24
2017-06-08T13:32:24
null
UTF-8
Python
false
false
15,726
py
import numpy as np import matplotlib.pyplot as plt import scipy.io as sio import cPickle as pickle import math import h5py import getpass import sys import overfeat from scipy.ndimage import imread from scipy.misc import imresize from copy import deepcopy # Smush the 5 images together into one, otherwise treat them separately smush = True # Create the full confusion matrix, including sections not needed full = True # Whether or not the images have a colour channel colour = False # The type of pre-trained deep network to get the features from net_type = 'GoogLeNet' #net_type = 'AlexNet' #net_type = 'CaffeNet' #net_type = 'OverFeat' #anet_type = 'Cifar10' #net_type = 'Cifar10Full' #net_type = 'Cifar10SoftLIF' net_type = 'VGG16' net_type = 'VGG19' # Check the username, so the same code can work on all of our computers user = getpass.getuser() if user == 'ctnuser': caffe_root = '/home/ctnuser/saubin/src/caffe/' overfeat_root = '/home/ctnuser/saubin/src/OverFeat/' path_prefix = '/home/ctnuser/saubin/src/datasets/DatasetEynsham/Images/' elif user == 'bjkomer': caffe_root = '/home/bjkomer/caffe/' overfeat_root = '/home/bjkomer/OverFeat/' path_prefix = '/home/bjkomer/deep_learning/datasets/DatasetEynsham/Images/' elif user == 'saubin': #TODO: put in Sean's actual path, I just guessed for now caffe_root = '/home/saubin/src/caffe/' overfeat_root = '/home/saubin/src/OverFeat/' path_prefix = '/home/saubin/src/datasets/DatasetEynsham/Images/' else: caffe_root = '/home/ctnuser/saubin/src/caffe/' overfeat_root = '/home/ctnuser/saubin/src/OverFeat/' path_prefix = '/home/ctnuser/saubin/src/datasets/DatasetEynsham/Images/' sys.path.insert(0, caffe_root + 'python') import caffe # Open an IPython session if an exception is found from IPython.core import ultratb sys.excepthook = ultratb.FormattedTB(mode='Verbose', color_scheme='Linux', call_pdb=1) # Stuff for optional plotting plt.rcParams['figure.figsize'] = (10, 10) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # take an array of shape (n, height, width) or (n, height, width, channels) # and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n) def vis_square(data, padsize=1, padval=0): data -= data.min() data /= data.max() # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.imshow(data) plt.figure() #plt.show() def smush_images(im_list): return np.concatenate( map(lambda x: caffe.io.load_image(path_prefix + x), im_list) ) def process_overfeat_image(image): # resize and crop into a 231x231 image h0 = image.shape[0] w0 = image.shape[1] d0 = float(min(h0, w0)) # TODO: make this less hacky and more legit (if possible) if not colour: # Copy the monochrome image to all three channels to make OverFeat happy image = image.reshape(h0,w0,1) image = np.concatenate([image, image, image], axis=2) image = image[int(round((h0-d0)/2.)):int(round((h0-d0)/2.)+d0), int(round((w0-d0)/2.)):int(round((w0-d0)/2.)+d0), :] image = imresize(image, (231, 231)).astype(np.float32) # numpy loads image with colors as last dimension, transpose tensor h = image.shape[0] w = image.shape[1] c = image.shape[2] image = image.reshape(w*h, c) image = image.transpose() image = image.reshape(c, h, w) return image def load_overfeat_image(im): # read image return process_overfeat_image(imread(path_prefix + im)) def smush_overfeat_images(im_list): return process_overfeat_image(np.concatenate( map(lambda x: imread(path_prefix + x), im_list) )) index_mat = sio.loadmat(path_prefix + 'IndexToFilename.mat')['IndexToFilename'][0] # MATLAB code uses 4789 as the split point, and this seems to match the data beter # The dataset itself claims 4804 is the split point, but this looks to be incorrect if full: training_start_index = 0 training_end_index = len(index_mat) testing_start_index = 0 testing_end_index = len(index_mat) else: training_start_index = 0 training_end_index = 4789 #4804 testing_start_index = 4789 #4804 testing_end_index = len(index_mat) training_images = [] testing_images = [] if smush: # TODO: make sure concatenation is along the correct axis for i in range(training_start_index, training_end_index): training_images.append([ index_mat[i][0,0][0], index_mat[i][0,1][0], index_mat[i][0,2][0], index_mat[i][0,3][0], index_mat[i][0,4][0], ]) for i in range(testing_start_index, testing_end_index): testing_images.append([ index_mat[i][0,0][0], index_mat[i][0,1][0], index_mat[i][0,2][0], index_mat[i][0,3][0], index_mat[i][0,4][0], ]) else: for i in range(training_start_index, training_end_index): for j in range(5): training_images.append(index_mat[i][0,j][0]) for i in range(testing_start_index, testing_end_index): for j in range(5): testing_images.append(index_mat[i][0,j][0]) # TODO: use something better than a list training_features = [] # OverFeat does not use caffe if net_type == 'OverFeat': # OverFeat has 22 layers, including original image num_layers = 22 # For filename purposes layer = 'all' layer = 10 if layer == 'all': # Put all layers into one stacked confusion matrix confusion_matrix = np.zeros((num_layers, len(training_images), len(testing_images))) else: # Make the confusion matrix for a single layer confusion_matrix = np.zeros((len(training_images), len(testing_images))) overfeat.init(overfeat_root + 'data/default/net_weight_0', 0) for i in range(len(training_images)): print("Training Image %s of %s" % (i, len(training_images))) if smush: image = smush_overfeat_images(training_images[i]) else: image = load_overfeat_image(training_images[i]) b = overfeat.fprop(image) if layer == 'all': # Calculate features for all layers at once features = [] for n in range(num_layers): features.append(deepcopy(overfeat.get_output(n))) training_features.append(features) else: training_features.append(deepcopy(overfeat.get_output(layer))) for i in range(len(testing_images)): print("Testing Image %s of %s" % (i, len(testing_images))) if smush: image = smush_overfeat_images(testing_images[i]) else: image = load_overfeat_image(testing_images[i]) b = overfeat.fprop(image) for j in range(len(training_images)): if layer == 'all': for n in range(num_layers): feat = overfeat.get_output(n) confusion_matrix[n,j,i] = np.linalg.norm(feat - training_features[j][n]) else: feat = overfeat.get_output(layer) confusion_matrix[j,i] = np.linalg.norm(feat - training_features[j]) # Convert to string in case it is a layer number, for use in the filename layer = str(layer) # Use caffe for all other models else: confusion_matrix = np.zeros((len(training_images), len(testing_images))) if user == 'ctnuser': caffe.set_mode_gpu() else: caffe.set_mode_cpu() if net_type == 'GoogLeNet': net = caffe.Net(caffe_root + 'models/bvlc_googlenet/deploy.prototxt', caffe_root + 'models/bvlc_googlenet/bvlc_googlenet.caffemodel', caffe.TEST) elif net_type == 'CaffeNet': net = caffe.Net(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt', caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', caffe.TEST) elif net_type == 'AlexNet': net = caffe.Net(caffe_root + 'models/bvlc_alexnet/deploy.prototxt', caffe_root + 'models/bvlc_alexnet/bvlc_alexnet.caffemodel', caffe.TEST) elif net_type == 'Cifar10': net = caffe.Net(caffe_root + 'examples/cifar10/cifar10_quick.prototxt', caffe_root + 'examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5', caffe.TEST) elif net_type == 'Cifar10Full': net = caffe.Net(caffe_root + 'examples/cifar10/cifar10_full.prototxt', caffe_root + 'examples/cifar10/cifar10_full_iter_70000.caffemodel.h5', caffe.TEST) elif net_type == 'Cifar10SoftLIF': net = caffe.Net(caffe_root + 'examples/cifar10/cifar10_quick_softlif.prototxt', caffe_root + 'examples/cifar10/cifar10_quick_softlif_iter_5000.caffemodel.h5', caffe.TEST) elif net_type == 'Cifar10FullSoftLIF': net = caffe.Net(caffe_root + 'examples/cifar10/cifar10_full_softlif.prototxt', caffe_root + 'examples/cifar10/cifar10_full_softlif_iter_70000.caffemodel.h5', caffe.TEST) elif net_type == 'VGG16': net = caffe.Net(caffe_root + 'models/vgg/VGG_ILSVRC_16_layers_deploy.prototxt', caffe_root + 'models/vgg/VGG_ILSVRC_16_layers.caffemodel', caffe.TEST) elif net_type == 'VGG19': net = caffe.Net(caffe_root + 'models/vgg/VGG_ILSVRC_19_layers_deploy.prototxt', caffe_root + 'models/vgg/VGG_ILSVRC_19_layers.caffemodel', caffe.TEST) # input preprocessing: 'data' is the name of the input blob == net.inputs[0] transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) # mean pixel transformer.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1] transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB # AlexNet can do a batch_size of 50 # GoogLeNet needs a smaller batch_size, 10 works # They also have different names for each layer if net_type == 'GoogLeNet': batch_size = 10 #layer = 'inception_3a/output' layer = 'inception_3b/output' #layer = 'inception_4a/output' layer = 'inception_4b/output' layer = 'inception_4c/output' layer = 'inception_4d/output' layer = 'inception_4e/output' #layer = 'inception_5a/output' layer = 'inception_5b/output' layer = 'prob' net.blobs['data'].reshape(batch_size,3,224,224) # GoogLeNet uses 224x224 elif 'VGG' in net_type: batch_size = 10 layer = 'conv4_4' net.blobs['data'].reshape(batch_size,3,224,224) # VGG uses 224x224 elif net_type == 'AlexNet' or net_type == 'CaffeNet': batch_size = 50 layer = 'conv3' net.blobs['data'].reshape(batch_size,3,227,227) # AlexNet uses 227*227 if 'Cifar10' in net_type: batch_size = 10 layer = 'conv1' net.blobs['data'].reshape(batch_size,3,32,32) # Cifar10Net uses 32x32 # Get all the features for the training images for batch in range(int(len(training_images) / batch_size)): if smush: net.blobs['data'].data[...] = map(lambda x: transformer.preprocess('data', smush_images(x)), training_images[batch*batch_size:(batch+1)*batch_size]) else: net.blobs['data'].data[...] = map(lambda x: transformer.preprocess('data', caffe.io.load_image(path_prefix + x)), training_images[batch*batch_size:(batch+1)*batch_size]) out = net.forward() print("Training Batch %i of %i" % (batch, int(len(training_images) / batch_size))) for bi in range(batch_size): feat = net.blobs[layer].data[bi] #vis_square(feat, padval=0.5) training_features.append(deepcopy(feat)) # Run the last partial batch if needed extra = len(training_images) % batch_size if extra != 0: if smush: net.blobs['data'].data[:extra,...] = map(lambda x: transformer.preprocess('data', smush_images(x)), training_images[-extra:]) else: net.blobs['data'].data[:extra,...] = map(lambda x: transformer.preprocess('data', caffe.io.load_image(path_prefix + x)), training_images[-extra:]) out = net.forward() print("Training Overflow Batch") for bi in range(extra): feat = net.blobs[layer].data[bi] training_features.append(deepcopy(feat)) j = 0 for batch in range(int(len(testing_images) / batch_size)): if smush: net.blobs['data'].data[...] = map(lambda x: transformer.preprocess('data', smush_images(x)), testing_images[batch*batch_size:(batch+1)*batch_size]) else: net.blobs['data'].data[...] = map(lambda x: transformer.preprocess('data', caffe.io.load_image(path_prefix + x)), testing_images[batch*batch_size:(batch+1)*batch_size]) out = net.forward() print("Testing Batch %i of %i" % (batch, int(len(testing_images) / batch_size))) for bi in range(batch_size): feat = net.blobs[layer].data[bi] for i in range(len(training_images)): confusion_matrix[i,j] = np.linalg.norm(feat - training_features[i]) j += 1 # Run the last partial batch if needed extra = len(testing_images) % batch_size if extra != 0: if smush: net.blobs['data'].data[:extra,...] = map(lambda x: transformer.preprocess('data', smush_images(x)), testing_images[-extra:]) else: net.blobs['data'].data[:extra,...] = map(lambda x: transformer.preprocess('data', caffe.io.load_image(path_prefix + x)), testing_images[-extra:]) out = net.forward() print("Testing Overflow Batch") for bi in range(extra): feat = net.blobs[layer].data[bi] for i in range(len(training_images)): confusion_matrix[i,j] = np.linalg.norm(feat - training_features[i]) j += 1 # Remove any slashes from layer name layer = layer.replace('/','-') # Optional plotting of features #for i in range(len(training_images)): # vis_square(training_features[i], padval=0.5) #plt.show() print( confusion_matrix ) # Construct file name fname = 'conf_mat' if smush: fname += '_smush' if full: fname += '_full' fname += '_' + net_type.lower() + '_' + layer + '.h5' # Save to HDF5 format print( "Saving Confusion Matrix for %s to HDF5 File..." % layer ) h5f = h5py.File(fname, 'w') h5f.create_dataset('dataset', data=confusion_matrix) h5f.close() print( "Saving Complete!" )
[ "brent.komer@gmail.com" ]
brent.komer@gmail.com
b9a7c26b69d0c4bee348283b34b00c53ac903ea8
c157dc447672f47f2e4aef2291c25beea6d71cf0
/geGL/scripts/subscripts/glExtensionFilter.py
f6b45412710eee580962cd33b8e7885e56887db1
[]
no_license
Rendering-FIT/GPUEngine
a1b38299adb9ee972a3b0011ad3bfb31b9da9fab
a5f486d3dfdc7c4430d90cb6cf0ccdba6da37844
refs/heads/master
2022-04-29T17:50:56.736207
2022-04-29T09:59:10
2022-04-29T10:09:39
81,936,720
11
8
null
2019-10-16T07:15:04
2017-02-14T11:04:27
C++
UTF-8
Python
false
false
492
py
#!/usr/bin/python import sys import re import os import fileinput from subprocess import Popen, PIPE data0="" for line in fileinput.input(): data0+=line #ext = re.compile(r"AMD|NV|ATI|IBM|HP|EXT|ARB|OES|SUN|SGI|MESA|INTEL|APPLE|3DFX|GREMEDY|OVR|PGI|INGR|KHR|\[") ext = re.compile(r"AMD|NV|ATI|IBM|HP|ARB|OES|SUN|SGI|MESA|INTEL|APPLE|3DFX|GREMEDY|OVR|PGI|INGR|KHR|\[") for i in data0.split("\n"): if ext.findall(i)!=[]: continue if i=="": continue print i
[ "imilet@fit.vutbr.cz" ]
imilet@fit.vutbr.cz
51a76d49337dfbcacbf3e19f4ad22b413a2df96f
c68f4ef6b038d54489593efdbc5829793d9bc620
/official/urls.py
bae2e51e7f7ae08e6a372850ae95bc9c4881a99e
[]
no_license
sivanZhang/official
8aec0e0e56421c098847a66813943fc162bfff04
255c3baa04a1920d46607434819d0dd8899c4f1c
refs/heads/master
2021-09-16T00:15:25.199375
2018-06-13T14:27:54
2018-06-13T14:27:54
139,970,003
1
0
null
null
null
null
UTF-8
Python
false
false
2,284
py
"""official URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin from official import views from official import en_views from django.conf import settings from django.conf.urls.static import static urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^product/', include('product.urls', namespace="product")), url(r'^pic/', include('piclab.urls', namespace="piclab")), url(r'^$', views.home, name='home'), url(r'^users/', include('appuser.urls', namespace="users")), url(r'^ckeditor/', include('ckeditor_uploader.urls')), url(r'^category/', include('category.urls', namespace="category")), url(r'^sitecontent/', include('sitecontent.urls', namespace="sitecontent")), url(r'^page/', include('page.urls', namespace="page")), url(r'^book/', include('book.urls', namespace="book")), url(r'^bussiness/', include('bussiness.urls', namespace="bussiness")), url(r'^area/', include('area.urls', namespace="area")), url(r'^dept/', include('dept.urls', namespace="dept")), url(r'^subscribe/', include('subscribe.urls', namespace="subscribe")), url(r'^$', views.home, name='home'), url(r'^en/home$', en_views.home, name='home'), url(r'^en/watch$', en_views.watch, name='watch'), url(r'^en/aboutus$', en_views.aboutus, name='aboutus'), url(r'^en/contactus$', en_views.contactus, name='contactus'), url(r'^en/accessories$', en_views.accessories, name='accessories'), url(r'^en/parameters$', en_views.parameters, name='parameters'), url(r"^pay/", include('pay.urls', namespace="pay")), ]+ static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "461882709@qq.com" ]
461882709@qq.com
b45ff9e709d93a0c576a76a3dfe00c1a545240a4
c74e1e14535b6343a27ddbd9fe130a327ba75716
/shop/migrations/0005_auto_20200503_0226.py
1d6c6a34b6964241ac006bb5efa30cd12507c825
[]
no_license
parmaryash49/Django-Simple-Ecommerce-Site
7736bbbf331df0c80bf1029ee3496f8e577b7bdd
cd0bf17fb70e35ecbf7db05d637fd80b77244889
refs/heads/master
2022-12-17T23:56:42.908596
2020-05-31T19:35:40
2020-05-31T19:35:40
299,948,894
0
0
null
2020-09-30T14:39:34
2020-09-30T14:36:51
null
UTF-8
Python
false
false
526
py
# Generated by Django 3.0.5 on 2020-05-02 20:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0004_orders'), ] operations = [ migrations.RenameField( model_name='orders', old_name='item_json', new_name='items_Json', ), migrations.AddField( model_name='orders', name='phone', field=models.CharField(default='', max_length=111), ), ]
[ "chintakd999@gmail.com" ]
chintakd999@gmail.com
4a3aa4ea3c917d43b650b80ecfdaa059e4256042
003b6b60d7b89779a304ac05612a83364f01bbe4
/TrialOne/EComWeb/website/migrations/0011_remove_order_start_date.py
5d15e3e40014a0711e4db2bb5764ddbc9ab7fe8b
[]
no_license
Shrenik99/DBMS_Python_project
7d8ab2f04e31054139f7eb8948dad37dc3aa891b
ed26f1bfadc42252e0a43b1efb91a1b476344aaf
refs/heads/main
2023-03-27T04:35:48.273102
2021-03-21T11:10:58
2021-03-21T11:10:58
350,084,267
2
0
null
2021-03-21T18:27:24
2021-03-21T18:27:24
null
UTF-8
Python
false
false
330
py
# Generated by Django 3.1.5 on 2021-03-17 11:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('website', '0010_orderitem_ordered'), ] operations = [ migrations.RemoveField( model_name='order', name='start_date', ), ]
[ "arya21kapoor@gmail.com" ]
arya21kapoor@gmail.com
544248a2f00936d0a98efc4feaa3d18b67957fb1
eb720d10b398f08a08770599c091f483c8504fc3
/src/state_definitions.py
e81b1bcb9043a067d1f3cc9692a3d086123429a1
[]
no_license
colepeterson4/Wall-Follower
deeb90e5d773f6de396b6b81ddd895c9dbaf2de9
3c5ed49428e69a5a8612e83f9d14b3142ca54c12
refs/heads/master
2023-03-13T05:08:38.481887
2021-03-05T04:07:49
2021-03-05T04:07:49
344,686,827
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
#Here is where you can define all of your states in a clever way to make your code more readable. #Think of all the states your robot could be in if thrown randomly into a world. #Currently the code is set up for a variable name being equal to an integer like: #FOLLOW_LEFT = 1 #FOLLOW_RIGHT = 2 #TURN_LEFT = 3 #TURN_RIGHT = 4 #WANDERING = 5 #for each of your states.
[ "colepeterson4@gmail.com" ]
colepeterson4@gmail.com
d6e187a43b57948110fc80cd494a67623b5d163b
816ef1dccf6212505fe4eb9579f2e121010a3c8e
/mysite/settings.py
8692deeaaf1b2f369ddc2dfb878059c0a8741afc
[]
no_license
ginamb/my-first-blog1
fd82c66e1340d000c52bb665ed2de6ded6346d72
606e2c1cc072b82552e298c77c4b23a69ab9055b
refs/heads/master
2020-12-30T13:40:00.175766
2017-06-13T17:12:42
2017-06-13T17:12:42
91,241,139
0
0
null
null
null
null
UTF-8
Python
false
false
3,200
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.10.7. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '3_kj#(kt3j8e5a!r8afe72x-!w%5a@!s7ffox51@%t%d*+=cwh' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Vilnius' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "ambrozaityte.g@gmail.com" ]
ambrozaityte.g@gmail.com
c263e9bdb7f6f66dd4cc071975d148c40f35b7c8
5436ef13bec2476f5abe9d8f1f586a90d87119d6
/wsgi_adapter/request.py
9ef2791a22d337b0dea5ec33b9f16606eb322561
[ "MIT" ]
permissive
carltongibson/azure-functions-wsgi-adapter
392f2890880882b3c7740d5a9ae1159a977d677b
0dc0a45aa1b6b72155c62dcb1388ff43b21a1c1d
refs/heads/master
2023-08-26T15:19:27.753700
2020-04-12T13:12:48
2020-04-12T13:12:48
157,197,174
9
2
null
null
null
null
UTF-8
Python
false
false
745
py
import os class AzureRequestAdapter: def __init__(self, azure_request): self.azure_request = azure_request def as_dict(self): """WSGI environ MUST be a plain Python dict.""" req = self.azure_request path_info = req.route_params.get('path_info', '') path_info = '/' + os.getenv('FUNCTIONS_MOUNT_POINT') + '/' + path_info environ = {'HTTP_' + k.upper().replace('-', '_'): v for k, v in req.headers.items()} environ.update({ "REQUEST_METHOD": req.method, "wsgi.input": req.get_body(), # Wrap in io.BytesIO? "SERVER_NAME": "localhost", "SERVER_PORT": "7071", "PATH_INFO": path_info, }) return environ
[ "carlton.gibson@noumenal.es" ]
carlton.gibson@noumenal.es
084e6fcc39a7e35823dbbce5f8f327f6cc08ee9e
b93321838d339c9354e735cd691bbc4bfa5b7e4e
/website/urls.py
c4d34bd6180baf470bac0c204b7c6f1bf8271ee6
[]
no_license
deviank/firstDjangoSite
45a68759515ff5b5b31bfe5427495f270dee69b2
efd33f49878a8e495913b41b6358af383ad12be5
refs/heads/master
2021-01-11T02:05:51.631143
2017-05-18T15:20:36
2017-05-18T15:20:36
70,809,280
0
1
null
2017-03-29T07:10:17
2016-10-13T13:28:25
HTML
UTF-8
Python
false
false
1,115
py
"""website URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^music/', include('music.urls')), url(r'^', include('music.urls')), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "noreply@github.com" ]
deviank.noreply@github.com
b6eb439655a13dd067a935ed76756f4f55fc72b6
baeca56d705aab0325fe6c2fc5fbd0b8c9883303
/递归/3.py
584f48796718a0023c0086352b63cac3e9aa6283
[]
no_license
lixiangwang/SEU---Data-structure-and-algorithm-design
69411225934636ea791ced494b598d610224b48f
cbc03bff7e885a196dfd6a6a75de112e8b6a3aa5
refs/heads/master
2020-11-23T22:46:19.928513
2019-12-23T11:06:14
2019-12-23T11:06:14
227,852,147
1
1
null
null
null
null
UTF-8
Python
false
false
480
py
# encoding: utf-8 def LCS(a, b): if a == '' or b == '': return '' elif a[-1] == b[-1]: return LCS(a[:-1], b[:-1]) + a[-1] else: sol_a = LCS(a[:-1], b) sol_b = LCS(a, b[:-1]) if len(sol_a) > len(sol_b): return sol_a return sol_b if __name__ == "__main__": a = 'abdebcbb' print('a序列为:', a) b = 'adacbcb' print('b序列为:', b) print('a,b的最长公共子序列为:', LCS(a, b))
[ "47591862+lixiangwang@users.noreply.github.com" ]
47591862+lixiangwang@users.noreply.github.com
86aa76b0f91c8917deb6bc800a3a98983bb2bb02
51f887286aa3bd2c3dbe4c616ad306ce08976441
/pybind/nos/v6_0_2f/overlay_gateway/attach/rbridge_id/__init__.py
444af2f5f0cc31eaaf8279728fd9afc3fcb242cc
[ "Apache-2.0" ]
permissive
b2220333/pybind
a8c06460fd66a97a78c243bf144488eb88d7732a
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
refs/heads/master
2020-03-18T09:09:29.574226
2018-04-03T20:09:50
2018-04-03T20:09:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,382
py
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class rbridge_id(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-tunnels - based on the path /overlay-gateway/attach/rbridge-id. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__rb_add','__rb_remove',) _yang_name = 'rbridge-id' _rest_name = 'rbridge-id' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__rb_remove = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-remove", rest_name="remove", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'remove', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True) self.__rb_add = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-add", rest_name="add", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'add', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'overlay-gateway', u'attach', u'rbridge-id'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'overlay-gateway', u'attach', u'rbridge-id'] def _get_rb_add(self): """ Getter method for rb_add, mapped from YANG variable /overlay_gateway/attach/rbridge_id/rb_add (comn:ui32-range) """ return self.__rb_add def _set_rb_add(self, v, load=False): """ Setter method for rb_add, mapped from YANG variable /overlay_gateway/attach/rbridge_id/rb_add (comn:ui32-range) If this variable is read-only (config: false) in the source YANG file, then _set_rb_add is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_rb_add() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-add", rest_name="add", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'add', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """rb_add must be of a type compatible with comn:ui32-range""", 'defined-type': "comn:ui32-range", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-add", rest_name="add", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'add', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True)""", }) self.__rb_add = t if hasattr(self, '_set'): self._set() def _unset_rb_add(self): self.__rb_add = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-add", rest_name="add", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'add', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True) def _get_rb_remove(self): """ Getter method for rb_remove, mapped from YANG variable /overlay_gateway/attach/rbridge_id/rb_remove (comn:ui32-range) """ return self.__rb_remove def _set_rb_remove(self, v, load=False): """ Setter method for rb_remove, mapped from YANG variable /overlay_gateway/attach/rbridge_id/rb_remove (comn:ui32-range) If this variable is read-only (config: false) in the source YANG file, then _set_rb_remove is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_rb_remove() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-remove", rest_name="remove", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'remove', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """rb_remove must be of a type compatible with comn:ui32-range""", 'defined-type': "comn:ui32-range", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-remove", rest_name="remove", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'remove', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True)""", }) self.__rb_remove = t if hasattr(self, '_set'): self._set() def _unset_rb_remove(self): self.__rb_remove = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[0-9]+(-[0-9]+)?(,[0-9]+(-[0-9]+)?)*'}), is_leaf=True, yang_name="rb-remove", rest_name="remove", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'alt-name': u'remove', u'cli-suppress-no': None}}, namespace='urn:brocade.com:mgmt:brocade-tunnels', defining_module='brocade-tunnels', yang_type='comn:ui32-range', is_config=True) rb_add = __builtin__.property(_get_rb_add, _set_rb_add) rb_remove = __builtin__.property(_get_rb_remove, _set_rb_remove) _pyangbind_elements = {'rb_add': rb_add, 'rb_remove': rb_remove, }
[ "badaniya@brocade.com" ]
badaniya@brocade.com
2372188140a1e8060d79cb303a3e257bee50b3c8
c718f1694f84b96ee45ca348045b3e0a11c38444
/account_profile/migrations/0004_auto_20141207_0003.py
edc8931a8d22583289fb24831177cd385ea02008
[]
no_license
damianpv/realtymplace
26a3ad48ad132d7993b3741fb6c351c376b5d9f2
7e84d46ddb82066c4b1b1d73abcb7df038f05dc3
refs/heads/master
2020-03-18T02:54:22.686441
2018-05-21T03:28:17
2018-05-21T03:28:17
134,212,955
0
1
null
null
null
null
UTF-8
Python
false
false
445
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('account_profile', '0003_auto_20141207_0002'), ] operations = [ migrations.AlterField( model_name='userprofile', name='avatar', field=models.ImageField(null=True, upload_to=b'avatar', blank=True), ), ]
[ "damian.adriel@gmail.com" ]
damian.adriel@gmail.com
92bfa05bea61a869b6d79595e5b28f340350f31c
c4f4499e19a80381be650d01fb4f0c176f07cbb9
/Python/buttonLED.py
f5b8938628c1a699c19fa4b2e78f0e5fd69b5600
[]
no_license
dcmid/doodads
6af8f61b3182707bd69f925507675b2ab2de2008
d48cfe3fc27407ba0e89dda741c24ec80e6337e9
refs/heads/master
2021-01-22T11:38:38.848244
2015-05-27T16:02:26
2015-05-27T16:02:26
33,454,497
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BOARD) GPIO.setup(15, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(40, GPIO.OUT) while True: try: startTime=time.time() while not GPIO.input(15): time.sleep(.05) elapsedTime=time.time()-startTime if elapsedTime>.05: print elapsedTime startTime=time.time() while time.time()<startTime+elapsedTime: GPIO.output(40,1) time.sleep(.05) GPIO.output(40,0) time.sleep(.05) except: break GPIO.cleanup()
[ "d.claymidkiff@gmail.com" ]
d.claymidkiff@gmail.com
863dda01ba3e7e7715f7baace8a7169afe070a36
58bcdda18a727374830c8b536ca413714a137a36
/plebian/news/tests.py
c1ddda7b126ec9de362c9e7838cb3781e7570d89
[]
no_license
alanzoppa/django-plebian
c337fa120090a46966791e69e41b2d5497b3bd87
eb3f861abf1da1ebee0550a774923fc4a7122294
refs/heads/master
2016-09-09T22:52:23.121713
2010-11-19T23:14:18
2010-11-19T23:14:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
545
py
import random import json from django.test.client import Client from django.test import TestCase from django.conf import settings from django.core.cache import cache from django.core.urlresolvers import reverse from plebian.news.models import * class SimpleTest(TestCase): def test_validity_of_urls(self): c = Client() for i in NewsItem.objects.filter(published=True): print 'testing:', i.get_absolute_url() page = c.get(i.get_absolute_url()) if not page.status_code == 200: assert False
[ "azoppa@Manifest-Digitals-MacBook-Pro-5.local" ]
azoppa@Manifest-Digitals-MacBook-Pro-5.local
2293fb2827ff3dc063a3779584f029916bbccf17
a700e0378dcb2409aaea43f671a242e7d747fd8a
/gui/Table.py
351b5db048854a55c1384208d88e5f5195a024a8
[]
no_license
razzaksr/PythonAnnamalai
da8d3a09a97489e43cd880a8114e24412ba36362
4f0e431fcd0fe5cd22075c9348c9fff954785c89
refs/heads/master
2023-02-02T00:54:42.694291
2020-12-22T09:58:15
2020-12-22T09:58:15
281,579,023
0
0
null
null
null
null
UTF-8
Python
false
false
2,741
py
# Getting records from tkinter import * from tkinter import messagebox from tkinter.ttk import Combobox from pymysql import * class record(Tk): def __init__(self): Tk.__init__(self) self.title("Getting records") self.geometry("500x400") p1 = PhotoImage(file="C:\\Users\\DOLL\\PycharmProjects\\MorningBatch\\eventmanage\\bday.ico") self.iconphoto(False, p1) self.head=Label(self,text="Fetch by following options")#,font=('Times New Roman',30)) self.head.grid(row=0,column=0) self.spec = Combobox(self) self.spec['values'] = ['edate', 'eid', 'ename', 'edept', 'eorg', 'prize', 'winner', 'participants'] self.spec.grid(row=2, column=0) self.men=Entry(self) self.men.grid(row=2,column=1) self.bt = Button(self, text="GetOne", command=self.read) self.bt.grid(row=2, column=2) def read(self): self.f1=font=('Times New Roman',12,'bold') self.f2 = font = ('Times New Roman', 11, 'italic') self.h1=Entry(self,font=self.f1);self.h1.insert(END,"Event Id");self.h1.grid(row=5,column=0) self.h2 = Entry(self, font=self.f1);self.h2.insert(END, "Event Name");self.h2.grid(row=5, column=1) self.h3 = Entry(self, font=self.f1);self.h3.insert(END, "Event Date");self.h3.grid(row=5, column=2) self.h4 = Entry(self, font=self.f1);self.h4.insert(END, "Event Department");self.h4.grid(row=5, column=3) self.h5 = Entry(self, font=self.f1);self.h5.insert(END, "Event Organizer");self.h5.grid(row=5, column=4) self.h6 = Entry(self, font=self.f1);self.h6.insert(END, "Event Participants");self.h6.grid(row=5, column=5) self.h7 = Entry(self, font=self.f1);self.h7.insert(END, "Event Winner");self.h7.grid(row=5, column=6) self.h8 = Entry(self, font=self.f1);self.h8.insert(END, "Event Prize");self.h8.grid(row=5, column=7) try: con = connect("localhost", "root", "", "avscollege") cur = con.cursor() if self.spec.get()!='participants':qry="select * from events where "+self.spec.get()+"='"+self.men.get()+"'" else:qry="select * from events where "+self.spec.get()+" like'%"+self.men.get()+"%'" cur.execute(qry) ware = cur.fetchall() lin=6 for rows in range(len(ware)): for each in range(len(ware[rows])): self.data=Entry(self,font=self.f2) self.data.insert(END,ware[rows][each]) self.data.grid(row=lin,column=each) lin+=1 con.close() except Exception as e:messagebox.showinfo("Error",e) rec=record() rec.mainloop()
[ "razzaksr@gmail.com" ]
razzaksr@gmail.com
061c8009fa7bb28dc55261adf8cd2fd22130be4c
08bac92b1741c0b2e106935bab47ff65b309123c
/0x0F-python-object_relational_mapping/5-filter_cities.py
7ec7e23ceb57945823f543d7cfa6fe82316dd399
[]
no_license
RoMalms10/holbertonschool-higher_level_programming
5702dbcc17156b66b472df79eddb55baac2613aa
aebff20e55c7fe07e9e3fb1ff33dd65d17d8ee1f
refs/heads/master
2021-09-14T10:10:56.680309
2018-05-11T17:59:40
2018-05-11T17:59:40
113,100,806
0
1
null
null
null
null
UTF-8
Python
false
false
812
py
#!/usr/bin/python3 ''' This module queries cities TABLE and joins it with states and sorts by input ''' if __name__ == "__main__": import MySQLdb from sys import argv db = MySQLdb.connect(host="localhost", port=3306, user=argv[1], passwd=argv[2], db=argv[3]) cur = db.cursor() cur.execute("SELECT cities.name \ FROM cities \ INNER JOIN states \ ON cities.state_id = states.id \ WHERE states.name=%s \ ORDER BY cities.id ASC", (argv[4], )) query = cur.fetchall() for row in range(len(query)): if row != len(query) - 1: print(query[row][0], end=", ") else: print(query[row][0], end="") print() cur.close() db.close()
[ "156@holbertonschool.com" ]
156@holbertonschool.com
3d5181261fd7d8e2a51740ad8383f25860efab5c
67a7ebf702ce3fd3b7d198313e3c5d444ca7ac0c
/modules/entry.py
a1dfbae9f114c76eb68865cd32324d7dd1b2372d
[ "Apache-2.0" ]
permissive
syslock/ems
82b959efbdbba48da28d781afe5bfb66dfc3b072
241a93b90ef866200f78c023236921ab8f8c115c
refs/heads/master
2021-01-17T02:23:20.858297
2020-10-10T23:15:27
2020-10-10T23:15:27
4,173,565
0
0
null
null
null
null
UTF-8
Python
false
false
1,298
py
import json from lib import db_object from lib import entry from lib import errors from modules import get as get_module def process( app ): query = app.query obj_id = query.parms["id"] if not app.user.can_read( obj_id ): raise errors.PrivilegeError( "%d cannot read %d" % (app.user.id, obj_id) ) obj = db_object.DBObject.create_typed_object( app=app, object_id=obj_id ) result = {} if type(obj)==entry.Entry: if query.parms["method"] == "create_draft": draft = obj.create_draft() result = { "succeeded" : True, "draft" : get_module.get(app=app, object_ids=[draft.id], recursive=(True,True))[0] } else: raise errors.ParameterError( "Unsupported method for type" ) elif type(obj)==entry.Draft: if query.parms["method"] == "publish": entry_id = obj.publish() result = { "succeeded" : True, "entry" : get_module.get(app=app, object_ids=[entry_id], recursive=(True,True))[0] } elif query.parms["method"] == "merge_to_parent": entry_id = obj.merge_to_parent() result = { "succeeded" : True, "entry" : get_module.get(app=app, object_ids=[entry_id], recursive=(True,True))[0] } else: raise errors.ParameterError( "Unsupported method for type" ) else: raise errors.ParameterError( "Object with unsupported type" ) app.response.output = json.dumps( result )
[ "syslock@gmx.de" ]
syslock@gmx.de
d456c30b907b604c4ef16dcf5f3a4f3774303ec4
7979c7d4162d75c749d6e22c4914c3ff7f92dd5a
/我手敲的代码(中文注释)/chapter11/volatility/plugins/dumpfiles.py
afac695daf92e55f1fe01a5845fe3d6d6eb6c276
[]
no_license
giantbranch/python-hacker-code
11f2bc491c43d20d754cefd7084057af47b3f62c
addbc8c73e7e6fb9e4fcadcec022fa1d3da4b96d
refs/heads/master
2023-08-05T01:46:19.582299
2021-11-25T06:17:40
2021-11-25T06:17:40
52,247,436
400
179
null
null
null
null
UTF-8
Python
false
false
52,457
py
# Volatility # Copyright (C) 2012-13 Volatility Foundation # # This file is part of Volatility. # # Volatility is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License Version 2 as # published by the Free Software Foundation. You may not use, modify or # distribute this program under any other version of the GNU General # Public License. # # Volatility is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Volatility. If not, see <http://www.gnu.org/licenses/>. # # Notwithstanding any rights to use the Software granted by the foregoing, # if entities or individuals have received a Cease & Desist letter from # the Volatility Project, the Volatility Foundation, or its copyright holders # for violating the terms of the GPL version 2, those entities (their employees, # subcontractors, independent contractors, and affiliates) and / or persons # are granted no such rights and any use by any one or more of them is # expressly prohibited, in accordance with Section 4 of the GPL version 2. # Any rights granted to such entities and / or persons by earlier license # agreements have been previously terminated as to them. #pylint: disable-msg=C0111 import os import re import math import volatility.obj as obj import volatility.utils as utils import volatility.debug as debug import volatility.win32.tasks as tasks_mod import volatility.win32.modules as modules import volatility.plugins.common as common import volatility.plugins.taskmods as taskmods import json #-------------------------------------------------------------------------------- # Constants #-------------------------------------------------------------------------------- PAGE_SIZE = 0x1000 PAGE_MASK = PAGE_SIZE - 1 IMAGE_EXT = "img" DATA_EXT = "dat" FILEOFFSET_MASK = 0xFFFFFFFFFFFF0000 VACB_BLOCK = 0x40000 VACB_ARRAY = 0x80 VACB_OFFSET_SHIFT = 18 VACB_LEVEL_SHIFT = 7 VACB_SIZE_OF_FIRST_LEVEL = 1 << (VACB_OFFSET_SHIFT + VACB_LEVEL_SHIFT) class _CONTROL_AREA(obj.CType): def extract_ca_file(self, unsafe = False): """ Extracts a file from a specified CONTROL_AREA Attempts to extract the memory resident pages pertaining to a particular CONTROL_AREA object. Args: control_area: Instance of a CONTROL_AREA object unsafe: Relax safety constraints for more data Returns: mdata: List of pages, (physoffset, fileoffset, size) tuples, that are memory resident zpad: List of pages, (offset, size) tuples, that not memory resident Raises: """ zpad = [] mdata = [] # Depending on the particular address space being used we need to # determine if the MMPTE will be either 4 or 8 bytes. The x64 # and IA32_PAE both use 8 byte PTEs. Whereas, IA32 uses 4 byte # PTE entries. memory_model = self.obj_vm.profile.metadata.get('memory_model', '32bit') pae = self.obj_vm.pae if pae: mmpte_size = self.obj_vm.profile.get_obj_size("_MMPTEPA") else: mmpte_size = self.obj_vm.profile.get_obj_size("_MMPTE") # Calculate the size of the _CONTROL_AREA object. It is used to find # the correct offset for the SUBSECTION object and the size of the # CONTROL_AREA can differ between versions of Windows. control_area_size = self.size() # The segment is used to describe the physical view of the # file. We also use this as a semantic check to see if # the processing should continue. If the Segment address # is invalid, then we return. Segment = self.Segment if not Segment.is_valid(): return mdata, zpad # The next semantic check validates that the _SEGMENT object # points back to the appropriate _CONTROL_AREA object. If the # check is invalid, then we return. if (self.obj_offset != Segment.ControlArea): return mdata, zpad # This is a semantic check added to make sure the Segment.SizeOfSegment value # is consistant with the Segment.TotalNumberOfPtes. This occurs fequently # when traversing through CONTROL_AREA Objects (~5%), often leading to # impossible values. Thus, to be conservative we do not proceed if the # Segment does not seem sound. if Segment.SizeOfSegment != (Segment.TotalNumberOfPtes * PAGE_SIZE): return mdata, zpad # The _SUBSECTION object is typically found immediately following # the CONTROL_AREA object. For Image Section Objects, the SUBSECTIONS # typically correspond with the sections found in the PE. On the otherhand, # for Data Section Objects, there is typically only a single valid SUBSECTION. subsection_offset = self.obj_offset + control_area_size #subsection = obj.Object("_SUBSECTION", subsection_offset, self.kaddr_space) subsection = obj.Object("_SUBSECTION", subsection_offset, self.obj_vm) # This was another check which was inspired by Ruud's code. It # verifies that the first SubsectionBaase (Mmst) never starts # at the beginning of a page. The UNSAFE option allows us to # ignore this constraint. This was necessary for dumping file data # for file objects found with filescan (ie $Mft) SubsectionBase = subsection.SubsectionBase if (SubsectionBase & PAGE_MASK == 0x0) and not unsafe: return mdata, zpad # We obtain the Subsections associated with this file # by traversing the singly linked list. Ideally, this # list should be null (0) terminated. Upon occasion we # we have seen instances where the link pointers are # undefined (XXX). If we hit an invalid pointer, the we # we exit the traversal. while subsection.is_valid() and subsection.v() != 0x0: if not subsection: break # This constraint makes sure that the _SUBSECTION object # points back to the associated CONTROL_AREA object. Otherwise, # we exit the traversal. if (self.obj_offset != subsection.ControlArea): break # Extract subsection meta-data into local variables # this helps with performance and not having to do # repetitive lookups. PtesInSubsection = subsection.PtesInSubsection SubsectionBase = subsection.SubsectionBase NextSubsection = subsection.NextSubsection # The offset into the file is stored implicitely # based on the PTE's location within the Subsection. StartingSector = subsection.StartingSector SubsectionOffset = StartingSector * 0x200 # This was another check based on something Ruud # had done. We also so instances where DataSectionObjects # would hit a SubsectionBase that was paged aligned # and hit strange data. In those instances, the # MMPTE SubsectionAddress would not point to the associated # Subsection. (XXX) if (SubsectionBase & PAGE_MASK == 0x0) and not unsafe: break ptecount = 0 while (ptecount < PtesInSubsection): pteoffset = SubsectionBase + (mmpte_size * ptecount) FileOffset = SubsectionOffset + ptecount * 0x1000 # The size of MMPTE changes depending on if it is IA32 (4 bytes) # or IA32_PAE/AMD64 (8 bytes). objname = "_MMPTE" if pae: objname = "_MMPTEPA" mmpte = obj.Object(objname, offset = pteoffset, vm = \ subsection.obj_vm) if not mmpte: ptecount += 1 continue # First we check if the entry is valid. If the entry is valid # then we get the physical offset. The valid entries are actually # handled by the hardware. if mmpte.u.Hard.Valid == 0x1: # There are some valid Page Table entries where bit 63 # is used to specify if the page is executable. This is # maintained by the processor. If it is not executable, # then the bit is set. Within the Intel documentation, # this is known as the Execute-disable (XD) flag. Regardless, # we will use the get_phys_addr method from the address space # to obtain the physical address. ### Should we check the size of the PAGE? Haven't seen # a hit for LargePage. #if mmpte.u.Hard.LargePage == 0x1: # print "LargePage" physoffset = mmpte.u.Hard.PageFrameNumber << 12 mdata.append([physoffset, FileOffset, PAGE_SIZE]) ptecount += 1 continue elif mmpte.u.Soft.Prototype == 0x1: # If the entry is not a valid physical address then # we check if it contains a pointer back to the SUBSECTION # object. If so, the page is in the backing file and we will # need to pad to maintain spacial integrity of the file. This # check needs to be performed for looking for the transition flag. # The prototype PTEs are initialized as MMPTE_SUBSECTION with the # SubsectionAddress. # On x86 systems that use 4 byte MMPTE , the MMPTE_SUBSECTION # stores an "encoded" version of the SUBSECTION object address. # The data is relative to global variable (MmSubsectionBase or # MmNonPagedPoolEnd) depending on the WhichPool member of # _SUBSECTION. This applies to x86 systems running ntoskrnl.exe. # If bit 10 is set then it is prototype/subsection if (memory_model == "32bit") and not pae: SubsectionOffset = \ ((mmpte.u.Subsect.SubsectionAddressHigh << 7) | (mmpte.u.Subsect.SubsectionAddressLow << 3)) #WhichPool = mmpte.u.Subsect.WhichPool #print "mmpte 0x%x ptecount 0x%x sub-32 0x%x pteoffset 0x%x which 0x%x subdelta 0x%x"%(mmpte.u.Long,ptecount,subsection_offset,pteoffset,WhichPool,SubsectionOffset) zpad.append([FileOffset, PAGE_SIZE]) ptecount += 1 continue if memory_model == "64bit" or pae: SubsectionAddress = mmpte.u.Subsect.SubsectionAddress else: SubsectionAddress = mmpte.u.Long if SubsectionAddress == subsection.obj_offset: # sub proto/prot 4c0 420 #print "mmpte 0x%x ptecount 0x%x sub 0x%x offset 0x%x"%(mmpte.u.Long,ptecount,SubsectionAddress,pteoffset) zpad.append([FileOffset, PAGE_SIZE]) ptecount += 1 continue elif (SubsectionAddress == (subsection.obj_offset + 4)): # This was a special case seen on IA32_PAE systems where # the SubsectionAddress pointed to subsection.obj_offset+4 # (0x420, 0x460, 0x4a0) #print "mmpte 0x%x ptecount 0x%x sub+4 0x%x offset 0x%x"%(mmpte.u.Long,ptecount,SubsectionAddress,pteoffset) zpad.append([FileOffset, PAGE_SIZE]) ptecount += 1 continue else: #print "mmpte 0x%x ptecount 0x%x sub_unk 0x%x offset 0x%x suboffset 0x%x"%(mmpte.u.Long,ptecount,SubsectionAddress,pteoffset,subsection.obj_offset) zpad.append([FileOffset, PAGE_SIZE]) ptecount += 1 continue # Check if the entry is a DemandZero entry. elif (mmpte.u.Soft.Transition == 0x0): if ((mmpte.u.Soft.PageFileLow == 0x0) and (mmpte.u.Soft.PageFileHigh == 0x0)): # Example entries include: a0,e0 #print "mmpte 0x%x ptecount 0x%x zero offset 0x%x subsec 0x%x"%(mmpte.u.Long,ptecount,pteoffset,subsection.obj_offset) zpad.append([FileOffset, PAGE_SIZE]) ptecount += 1 else: #print "mmpte 0x%x ptecount 0x%x paged offset 0x%x subsec 0x%x file 0x%x offset 0x%x"%(mmpte.u.Long,ptecount,pteoffset,subsection.obj_offset,mmpte.u.Soft.PageFileLow,mmpte.u.Soft.PageFileHigh) zpad.append([FileOffset, PAGE_SIZE]) ptecount += 1 # If the entry is not a valid physical address then # we also check to see if it is in transition. elif mmpte.u.Trans.Transition == 0x1: physoffset = mmpte.u.Trans.PageFrameNumber << 12 #print "mmpte 0x%x ptecount 0x%x transition 0x%x offset 0x%x"%(mmpte.u.Long,ptecount,physoffset,pteoffset) mdata.append([physoffset, FileOffset, PAGE_SIZE]) ptecount += 1 continue else: # This is a catch all for all the other entry types. # sub proto/pro 420,4e0,460,4a0 (x64 +0x28)(x32 +4) # other a0,e0,0, (20,60) # 0x80000000 #print "mmpte 0x%x ptecount 0x%x other offset 0x%x subsec 0x%x"%(mmpte.u.Long,ptecount,pteoffset,subsection.obj_offset) zpad.append([FileOffset, PAGE_SIZE]) ptecount += 1 # Traverse the singly linked list to its next member. subsection = NextSubsection return (mdata, zpad) class _SHARED_CACHE_MAP(obj.CType): def is_valid(self): if not obj.CType.is_valid(self): return False # Added a semantic check to make sure the data is in a sound state. It's better # to catch it early. FileSize = self.FileSize.QuadPart ValidDataLength = self.ValidDataLength.QuadPart SectionSize = self.SectionSize.QuadPart #print "SectionSize 0x%x < 0 or FileSize < 0x%x ValidDataLength 0x%x"%(SectionSize,FileSize,ValidDataLength) #if SectionSize < 0 or (FileSize < ValidDataLength): if SectionSize < 0 or ((FileSize < ValidDataLength) and (ValidDataLength != 0x7fffffffffffffff)): return False return True def process_index_array(self, array_pointer, level, limit, vacbary = None): """ Recursively process the sparse multilevel VACB index array Args: array_pointer: The address of a possible index array shared_cache_map: The associated SHARED_CACHE_MAP object level: The current level limit: The level where we abandon all hope. Ideally this is 7 vacbary: An array of collected VACBs Returns: vacbary: Collected VACBs """ if vacbary is None: vacbary = [] if level > limit: return [] # Create an array of VACB entries VacbArray = obj.Object("Array", offset = array_pointer, \ vm = self.obj_vm, count = VACB_ARRAY, \ targetType = "address", parent = self) # Iterate through the entries for _i in range(0, VACB_ARRAY): # Check if the VACB entry is in use if VacbArray[_i] == 0x0: continue Vacbs = obj.Object("_VACB", offset = int(VacbArray[_i]), vm = self.obj_vm) # Check if this is a valid VACB entry by verifying # the SharedCacheMap member. if Vacbs.SharedCacheMap == self.obj_offset: # This is a VACB associated with this cache map vacbinfo = self.extract_vacb(Vacbs, VACB_BLOCK) if vacbinfo: vacbary.append(vacbinfo) else: #Process the next level of the multi-level array vacbary = self.process_index_array(VacbArray[_i], level + 1, limit, vacbary) #vacbary = vacbary + _vacbary return vacbary def extract_vacb(self, vacbs, size): """ Extracts data from a specified VACB Attempts to extract the memory resident data from a specified VACB. Args: vacbs: The VACB object size: How much data should be read from the VACB shared_cache_map: The associated SHARED_CACHE_MAP object Returns: vacbinfo: Extracted VACB meta-information """ # This is used to collect summary information. We will eventually leverage this # when creating the externally exposed APIs. vacbinfo = {} # Check if the Overlay member of _VACB is resident # The Overlay member stores information about the FileOffset # and the ActiveCount. This is just another proactive check # to make sure the objects are seemingly sound. if not vacbs.Overlay: return vacbinfo # We should add another check to make sure that # the SharedCacheMap member of the VACB points back # to the corresponding SHARED_CACHE_MAP if vacbs.SharedCacheMap != self.v(): return vacbinfo # The FileOffset member of VACB is used to denote the # offset within the file where the view begins. Since all # views are 256 KB in size, the bottom 16 bits are used to # store the number of references to the view. FileOffset = vacbs.Overlay.FileOffset.QuadPart if not FileOffset: return vacbinfo ActiveCount = vacbs.Overlay.ActiveCount FileOffset = FileOffset & FILEOFFSET_MASK BaseAddress = vacbs.BaseAddress.v() vacbinfo['foffset'] = int(FileOffset) vacbinfo['acount'] = int(ActiveCount) vacbinfo['voffset'] = int(vacbs.obj_offset) vacbinfo['baseaddr'] = int(BaseAddress) vacbinfo['size'] = int(size) return vacbinfo def extract_scm_file(self): """ Extracts a file from a specified _SHARED_CACHE_MAP Attempts to extract the memory resident pages pertaining to a particular _SHARED_CACHE_MAP object. Args: shared_cache_map: Instance of a _SHARED_CACHE_MAP object Returns: vacbary: List of collected VACB meta information. Raises: """ vacbary = [] if self.obj_offset == 0x0: return # Added a semantic check to make sure the data is in a sound state. #FileSize = shared_cache_map.FileSize.QuadPart #ValidDataLength = shared_cache_map.ValidDataLength.QuadPart SectionSize = self.SectionSize.QuadPart # Let's begin by determining the number of Virtual Address Control # Blocks (VACB) that are stored within the cache (nonpaged). A VACB # represents one 256-KB view in the system cache. There a are a couple # options to use for the data size: ValidDataLength, FileSize, # and SectionSize. full_blocks = SectionSize / VACB_BLOCK left_over = SectionSize % VACB_BLOCK # As an optimization, the shared cache map object contains a VACB index # array of four entries. The VACB index arrays are arrays of pointers # to VACBs, that track which views of a given file are mapped in the cache. # For example, the first entry in the VACB index array refers to the first # 256 KB of the file. The InitialVacbs can describe a file up to 1 MB (4xVACB). iterval = 0 while (iterval < full_blocks) and (full_blocks <= 4): Vacbs = self.InitialVacbs[iterval] vacbinfo = self.extract_vacb(Vacbs, VACB_BLOCK) if vacbinfo: vacbary.append(vacbinfo) iterval += 1 # We also have to account for the spill over data # that is not found in the full blocks. The first case to # consider is when the spill over is still in InitialVacbs. if (left_over > 0) and (full_blocks < 4): Vacbs = self.InitialVacbs[iterval] vacbinfo = self.extract_vacb(Vacbs, left_over) if vacbinfo: vacbary.append(vacbinfo) # If the file is larger than 1 MB, a seperate VACB index array # needs to be allocated. This is based on how many 256 KB blocks # would be required for the size of the file. This newly allocated # VACB index array is found through the Vacbs member of # SHARED_CACHE_MAP. Vacbs = self.Vacbs if not Vacbs or (Vacbs.v() == 0): return vacbary # There are a number of instances where the initial value in # InitialVacb will also be the fist entry in Vacbs. Thus we # ignore, since it was already processed. It is possible to just # process again as the file offset is specified for each VACB. if self.InitialVacbs[0].obj_offset == Vacbs.v(): return vacbary # If the file is less than 32 MB than it can be found in # a single level VACB index array. size_of_pointer = self.obj_vm.profile.get_obj_size("address") if not SectionSize > VACB_SIZE_OF_FIRST_LEVEL: ArrayHead = Vacbs.v() _i = 0 for _i in range(0, full_blocks): vacb_addr = ArrayHead + (_i * size_of_pointer) vacb_entry = obj.Object("address", offset = vacb_addr, vm = Vacbs.obj_vm) # If we find a zero entry, then we proceed to the next one. # If the entry is zero, then the view is not mapped and we # skip. We do not pad because we use the FileOffset to seek # to the correct offset in the file. if not vacb_entry or (vacb_entry.v() == 0x0): continue Vacb = obj.Object("_VACB", offset = vacb_entry.v(), vm = self.obj_vm) vacbinfo = self.extract_vacb(Vacb, VACB_BLOCK) if vacbinfo: vacbary.append(vacbinfo) if left_over > 0: vacb_addr = ArrayHead + ((_i + 1) * size_of_pointer) vacb_entry = obj.Object("address", offset = vacb_addr, vm = Vacbs.obj_vm) if not vacb_entry or (vacb_entry.v() == 0x0): return vacbary Vacb = obj.Object("_VACB", offset = vacb_entry.v(), vm = self.obj_vm) vacbinfo = self.extract_vacb(Vacb, left_over) if vacbinfo: vacbary.append(vacbinfo) # The file is less than 32 MB, so we can # stop processing. return vacbary # If we get to this point, then we know that the SectionSize is greator than # VACB_SIZE_OF_FIRST_LEVEL (32 MB). Then we have a "sparse multilevel index # array where each VACB index array is made up of 128 entries. We no # longer assume the data is sequential. (Log2 (32 MB) - 18)/7 #tree_depth = math.ceil((math.ceil(math.log(file_size, 2)) - 18)/7) level_depth = math.ceil(math.log(SectionSize, 2)) level_depth = (level_depth - VACB_OFFSET_SHIFT) / VACB_LEVEL_SHIFT level_depth = math.ceil(level_depth) limit_depth = level_depth if SectionSize > VACB_SIZE_OF_FIRST_LEVEL: # Create an array of 128 entries for the VACB index array VacbArray = obj.Object("Array", offset = Vacbs.v(), \ vm = self.obj_vm, count = VACB_ARRAY, \ targetType = "address", parent = self) # We use a bit of a brute force method. We walk the # array and if any entry points to the shared cache map # object then we extract it. Otherwise, if it is non-zero # we attempt to traverse to the next level. for _i in range(0, VACB_ARRAY): if VacbArray[_i] == 0x0: continue Vacb = obj.Object("_VACB", offset = int(VacbArray[_i]), vm = self.obj_vm) if Vacb.SharedCacheMap == self.obj_offset: vacbinfo = self.extract_vacb(Vacb, VACB_BLOCK) if vacbinfo: vacbary.append(vacbinfo) else: # The Index is a pointer #Process the next level of the multi-level array # We set the limit_depth to be the depth of the tree # as determined from the size and we initialize the # current level to 2. vacbary = self.process_index_array(VacbArray[_i], 2, limit_depth, vacbary) #vacbary = vacbary + _vacbary return vacbary class ControlAreaModification(obj.ProfileModification): conditions = {'os': lambda x: x == 'windows'} def modification(self, profile): profile.object_classes.update({ '_CONTROL_AREA': _CONTROL_AREA, '_SHARED_CACHE_MAP': _SHARED_CACHE_MAP, }) #-------------------------------------------------------------------------------- # VTypes #-------------------------------------------------------------------------------- # Windows x86 symbols for ntkrnlpa ntkrnlpa_types_x86 = { '__ntkrnlpa' : [ 0x8, { 'Long' : [ 0x0, ['unsigned long long']], 'VolatileLong' : [ 0x0, ['unsigned long long']], 'Hard' : [ 0x0, ['_MMPTE_HARDWARE_64']], 'Flush' : [ 0x0, ['_HARDWARE_PTE']], 'Proto' : [ 0x0, ['_MMPTE_PROTOTYPE']], 'Soft' : [ 0x0, ['_MMPTE_SOFTWARE_64']], 'TimeStamp' : [ 0x0, ['_MMPTE_TIMESTAMP']], 'Trans' : [ 0x0, ['_MMPTE_TRANSITION_64']], 'Subsect' : [ 0x0, ['_MMPTE_SUBSECTION_64']], 'List' : [ 0x0, ['_MMPTE_LIST']], } ], '_MMPTEPA' : [ 0x8, { 'u' : [ 0x0, ['__ntkrnlpa']], } ], '_MMPTE_SUBSECTION_64' : [ 0x8, { 'Valid' : [ 0x0, ['BitField', dict(start_bit = 0, end_bit = 1, native_type = 'unsigned long long')]], 'Unused0' : [ 0x0, ['BitField', dict(start_bit = 1, end_bit = 5, native_type = 'unsigned long long')]], 'Protection' : [ 0x0, ['BitField', dict(start_bit = 5, end_bit = 10, native_type = 'unsigned long long')]], 'Prototype' : [ 0x0, ['BitField', dict(start_bit = 10, end_bit = 11, native_type = 'unsigned long long')]], 'Unused1' : [ 0x0, ['BitField', dict(start_bit = 11, end_bit = 32, native_type = 'unsigned long long')]], 'SubsectionAddress' : [ 0x0, ['BitField', dict(start_bit = 32, end_bit = 64, native_type = 'long long')]], } ], '_MMPTE_TRANSITION_64' : [ 0x8, { 'Valid' : [ 0x0, ['BitField', dict(start_bit = 0, end_bit = 1, native_type = 'unsigned long long')]], 'Write' : [ 0x0, ['BitField', dict(start_bit = 1, end_bit = 2, native_type = 'unsigned long long')]], 'Owner' : [ 0x0, ['BitField', dict(start_bit = 2, end_bit = 3, native_type = 'unsigned long long')]], 'WriteThrough' : [ 0x0, ['BitField', dict(start_bit = 3, end_bit = 4, native_type = 'unsigned long long')]], 'CacheDisable' : [ 0x0, ['BitField', dict(start_bit = 4, end_bit = 5, native_type = 'unsigned long long')]], 'Protection' : [ 0x0, ['BitField', dict(start_bit = 5, end_bit = 10, native_type = 'unsigned long long')]], 'Prototype' : [ 0x0, ['BitField', dict(start_bit = 10, end_bit = 11, native_type = 'unsigned long long')]], 'Transition' : [ 0x0, ['BitField', dict(start_bit = 11, end_bit = 12, native_type = 'unsigned long long')]], 'PageFrameNumber' : [ 0x0, ['BitField', dict(start_bit = 12, end_bit = 48, native_type = 'unsigned long long')]], 'Unused' : [ 0x0, ['BitField', dict(start_bit = 48, end_bit = 64, native_type = 'unsigned long long')]], }], '_MMPTE_HARDWARE_64' : [ 0x8, { 'Valid' : [ 0x0, ['BitField', dict(start_bit = 0, end_bit = 1, native_type = 'unsigned long long')]], 'Dirty1' : [ 0x0, ['BitField', dict(start_bit = 1, end_bit = 2, native_type = 'unsigned long long')]], 'Owner' : [ 0x0, ['BitField', dict(start_bit = 2, end_bit = 3, native_type = 'unsigned long long')]], 'WriteThrough' : [ 0x0, ['BitField', dict(start_bit = 3, end_bit = 4, native_type = 'unsigned long long')]], 'CacheDisable' : [ 0x0, ['BitField', dict(start_bit = 4, end_bit = 5, native_type = 'unsigned long long')]], 'Accessed' : [ 0x0, ['BitField', dict(start_bit = 5, end_bit = 6, native_type = 'unsigned long long')]], 'Dirty' : [ 0x0, ['BitField', dict(start_bit = 6, end_bit = 7, native_type = 'unsigned long long')]], 'LargePage' : [ 0x0, ['BitField', dict(start_bit = 7, end_bit = 8, native_type = 'unsigned long long')]], 'Global' : [ 0x0, ['BitField', dict(start_bit = 8, end_bit = 9, native_type = 'unsigned long long')]], 'CopyOnWrite' : [ 0x0, ['BitField', dict(start_bit = 9, end_bit = 10, native_type = 'unsigned long long')]], 'Unused' : [ 0x0, ['BitField', dict(start_bit = 10, end_bit = 11, native_type = 'unsigned long long')]], 'Write' : [ 0x0, ['BitField', dict(start_bit = 11, end_bit = 12, native_type = 'unsigned long long')]], 'PageFrameNumber' : [ 0x0, ['BitField', dict(start_bit = 12, end_bit = 48, native_type = 'unsigned long long')]], 'reserved1' : [ 0x0, ['BitField', dict(start_bit = 48, end_bit = 52, native_type = 'unsigned long long')]], 'SoftwareWsIndex' : [ 0x0, ['BitField', dict(start_bit = 52, end_bit = 63, native_type = 'unsigned long long')]], 'NoExecute' : [ 0x0, ['BitField', dict(start_bit = 63, end_bit = 64, native_type = 'unsigned long long')]], } ], '_MMPTE_SOFTWARE_64' : [ 0x8, { 'Valid' : [ 0x0, ['BitField', dict(start_bit = 0, end_bit = 1, native_type = 'unsigned long long')]], 'PageFileLow' : [ 0x0, ['BitField', dict(start_bit = 1, end_bit = 5, native_type = 'unsigned long long')]], 'Protection' : [ 0x0, ['BitField', dict(start_bit = 5, end_bit = 10, native_type = 'unsigned long long')]], 'Prototype' : [ 0x0, ['BitField', dict(start_bit = 10, end_bit = 11, native_type = 'unsigned long long')]], 'Transition' : [ 0x0, ['BitField', dict(start_bit = 11, end_bit = 12, native_type = 'unsigned long long')]], 'UsedPageTableEntries' : [ 0x0, ['BitField', dict(start_bit = 12, end_bit = 22, native_type = 'unsigned long long')]], 'InStore' : [ 0x0, ['BitField', dict(start_bit = 22, end_bit = 23, native_type = 'unsigned long long')]], 'Reserved' : [ 0x0, ['BitField', dict(start_bit = 23, end_bit = 32, native_type = 'unsigned long long')]], 'PageFileHigh' : [ 0x0, ['BitField', dict(start_bit = 32, end_bit = 64, native_type = 'unsigned long long')]], } ], } class DumpFilesVTypesx86(obj.ProfileModification): """This modification applies the vtypes for all versions of 32bit Windows.""" before = ['WindowsObjectClasses'] conditions = {'os': lambda x: x == 'windows', 'memory_model': lambda x : x == '32bit'} def modification(self, profile): profile.vtypes.update(ntkrnlpa_types_x86) class DumpFiles(common.AbstractWindowsCommand): """Extract memory mapped and cached files""" def __init__(self, config, *args, **kwargs): common.AbstractWindowsCommand.__init__(self, config, *args, **kwargs) self.kaddr_space = None self.filters = [] config.add_option('REGEX', short_option = 'r', help = 'Dump files matching REGEX', action = 'store', type = 'string') config.add_option('IGNORE-CASE', short_option = 'i', help = 'Ignore case in pattern match', action = 'store_true', default = False) config.add_option('OFFSET', short_option = 'o', default = None, help = 'Dump files for Process with physical address OFFSET', action = 'store', type = 'int') config.add_option('PHYSOFFSET', short_option = 'Q', default = None, help = 'Dump File Object at physical address PHYSOFFSET', action = 'store', type = 'int') config.add_option('DUMP-DIR', short_option = 'D', default = None, cache_invalidator = False, help = 'Directory in which to dump extracted files') config.add_option('SUMMARY-FILE', short_option = 'S', default = None, cache_invalidator = False, help = 'File where to store summary information') config.add_option('PID', short_option = 'p', default = None, help = 'Operate on these Process IDs (comma-separated)', action = 'store', type = 'str') config.add_option('NAME', short_option = 'n', help = 'Include extracted filename in output file path', action = 'store_true', default = False) config.add_option('UNSAFE', short_option = 'u', help = 'Relax safety constraints for more data', action = 'store_true', default = False) # Possible filters include: # SharedCacheMap,DataSectionObject,ImageSectionObject,HandleTable,VAD config.add_option("FILTER", short_option = 'F', default = None, help = 'Filters to apply (comma-separated)') def filter_tasks(self, tasks): """ Reduce the tasks based on the user selectable PIDS parameter. Returns a reduced list or the full list if config.PIDS not specified. """ if self._config.PID is None: return tasks try: pidlist = [int(p) for p in self._config.PID.split(',')] except ValueError: debug.error("Invalid PID {0}".format(self._config.PID)) return [t for t in tasks if t.UniqueProcessId in pidlist] def audited_read_bytes(self, vm, vaddr, length, pad): """ This function provides an audited zread capability It performs a similar function to zread, in that it will pad "invalid" pages. The main difference is that it allows us to collect auditing information about which pages were actually present and which ones were padded. Args: vm: The address space to read the data from. vaddr: The virtual address to start reading the data from. length: How many bytes to read pad: This argument controls if the unavailable bytes are padded. Returns: ret: Data that was read mdata: List of pages that are memory resident zpad: List of pages that not memory resident Raises: """ zpad = [] mdata = [] vaddr, length = int(vaddr), int(length) ret = '' while length > 0: chunk_len = min(length, PAGE_SIZE - (vaddr % PAGE_SIZE)) buf = vm.read(vaddr, chunk_len) if vm.vtop(vaddr) is None: zpad.append([vaddr, chunk_len]) if pad: buf = '\x00' * chunk_len else: buf = '' else: mdata.append([vaddr, chunk_len]) ret += buf vaddr += chunk_len length -= chunk_len return ret, mdata, zpad def calculate(self): """ Finds all the requested FILE_OBJECTS Traverses the VAD and HandleTable to find all requested FILE_OBJECTS """ # Initialize containers for collecting artifacts. control_area_list = [] shared_maps = [] procfiles = [] # These lists are used for object collecting files from # both the VAD and handle tables vadfiles = [] handlefiles = [] # Determine which filters the user wants to see self.filters = [] if self._config.FILTER: self.filters = self._config.FILTER.split(',') # Instantiate the kernel address space self.kaddr_space = utils.load_as(self._config) # Check to see if the physical address offset was passed for a # particular process. Otherwise, use the whole task list. if self._config.OFFSET != None: tasks_list = [taskmods.DllList.virtual_process_from_physical_offset( self.kaddr_space, self._config.OFFSET)] else: # Filter for the specified processes tasks_list = self.filter_tasks(tasks_mod.pslist(self.kaddr_space)) # If a regex is specified, build it. if self._config.REGEX: try: if self._config.IGNORE_CASE: file_re = re.compile(self._config.REGEX, re.I) else: file_re = re.compile(self._config.REGEX) except re.error, e: debug.error('Error parsing regular expression: {0:s}'.format(e)) # Check to see if a specific physical address was specified for a # FILE_OBJECT. In particular, this is useful for FILE_OBJECTS that # are found with filescan that are not associated with a process # For example, $Mft. if self._config.PHYSOFFSET: file_obj = obj.Object("_FILE_OBJECT", self._config.PHYSOFFSET, self.kaddr_space.base, native_vm = self.kaddr_space) procfiles.append((None, [file_obj])) #return # Iterate through the process list and collect all references to # FILE_OBJECTS from both the VAD and HandleTable. Each open handle to a file # has a corresponding FILE_OBJECT. if not self._config.PHYSOFFSET: for task in tasks_list: pid = task.UniqueProcessId # Extract FILE_OBJECTS from the VAD if not self.filters or "VAD" in self.filters: for vad in task.VadRoot.traverse(): if vad != None: try: control_area = vad.ControlArea if not control_area: continue file_object = vad.FileObject if file_object: vadfiles.append(file_object) except AttributeError: pass if not self.filters or "HandleTable" in self.filters: # Extract the FILE_OBJECTS from the handle table if task.ObjectTable.HandleTableList: for handle in task.ObjectTable.handles(): otype = handle.get_object_type() if otype == "File": file_obj = handle.dereference_as("_FILE_OBJECT") handlefiles.append(file_obj) # Append the lists of file objects #allfiles = handlefiles + vadfiles procfiles.append((pid, handlefiles + vadfiles)) for pid, allfiles in procfiles: for file_obj in allfiles: if not self._config.PHYSOFFSET: offset = file_obj.obj_offset else: offset = self._config.PHYSOFFSET name = None if file_obj.FileName: name = str(file_obj.file_name_with_device()) # Filter for specific FILE_OBJECTS based on user defined # regular expression. if self._config.REGEX: if not name: continue if not file_re.search(name): continue # The SECTION_OBJECT_POINTERS structure is used by the memory # manager and cache manager to store file-mapping and cache information # for a particular file stream. We will use it to determine what type # of FILE_OBJECT we have and how it should be parsed. if file_obj.SectionObjectPointer: DataSectionObject = \ file_obj.SectionObjectPointer.DataSectionObject SharedCacheMap = \ file_obj.SectionObjectPointer.SharedCacheMap ImageSectionObject = \ file_obj.SectionObjectPointer.ImageSectionObject # The ImageSectionObject is used to track state information for # an executable file stream. We will use it to extract memory # mapped binaries. if not self.filters or "ImageSectionObject" in self.filters: if ImageSectionObject and ImageSectionObject != 0: summaryinfo = {} # It points to a image section object( CONTROL_AREA ) control_area = \ ImageSectionObject.dereference_as('_CONTROL_AREA') if not control_area in control_area_list: control_area_list.append(control_area) # The format of the filenames: file.<pid>.<control_area>.[img|dat] ca_offset_string = "0x{0:x}".format(control_area.obj_offset) if self._config.NAME and name != None: fname = name.split("\\") ca_offset_string += "." + fname[-1] file_string = ".".join(["file", str(pid), ca_offset_string, IMAGE_EXT]) of_path = os.path.join(self._config.DUMP_DIR, file_string) (mdata, zpad) = control_area.extract_ca_file(self._config.UNSAFE) summaryinfo['name'] = name summaryinfo['type'] = "ImageSectionObject" if pid: summaryinfo['pid'] = int(pid) else: summaryinfo['pid'] = None summaryinfo['present'] = mdata summaryinfo['pad'] = zpad summaryinfo['fobj'] = int(offset) summaryinfo['ofpath'] = of_path yield summaryinfo # The DataSectionObject is used to track state information for # a data file stream. We will use it to extract artifacts of # memory mapped data files. if not self.filters or "DataSectionObject" in self.filters: if DataSectionObject and DataSectionObject != 0: summaryinfo = {} # It points to a data section object (CONTROL_AREA) control_area = DataSectionObject.dereference_as('_CONTROL_AREA') if not control_area in control_area_list: control_area_list.append(control_area) # The format of the filenames: file.<pid>.<control_area>.[img|dat] ca_offset_string = "0x{0:x}".format(control_area.obj_offset) if self._config.NAME and name != None: fname = name.split("\\") ca_offset_string += "." + fname[-1] file_string = ".".join(["file", str(pid), ca_offset_string, DATA_EXT]) of_path = os.path.join(self._config.DUMP_DIR, file_string) (mdata, zpad) = control_area.extract_ca_file(self._config.UNSAFE) summaryinfo['name'] = name summaryinfo['type'] = "DataSectionObject" if pid: summaryinfo['pid'] = int(pid) else: summaryinfo['pid'] = None summaryinfo['present'] = mdata summaryinfo['pad'] = zpad summaryinfo['fobj'] = int(offset) summaryinfo['ofpath'] = of_path yield summaryinfo # The SharedCacheMap is used to track views that are mapped to the # data file stream. Each cached file has a single SHARED_CACHE_MAP object, # which has pointers to slots in the system cache which contain views of the file. # The shared cache map is used to describe the state of the cached file. if self.filters and "SharedCacheMap" not in self.filters: continue if SharedCacheMap: vacbary = [] summaryinfo = {} #The SharedCacheMap member points to a SHARED_CACHE_MAP object. shared_cache_map = SharedCacheMap.dereference_as('_SHARED_CACHE_MAP') if shared_cache_map.obj_offset == 0x0: continue # Added a semantic check to make sure the data is in a sound state. It's better # to catch it early. if not shared_cache_map.is_valid(): continue if not shared_cache_map.obj_offset in shared_maps: shared_maps.append(shared_cache_map.obj_offset) else: continue shared_cache_map_string = ".0x{0:x}".format(shared_cache_map.obj_offset) if self._config.NAME and name != None: fname = name.split("\\") shared_cache_map_string = shared_cache_map_string + "." + fname[-1] of_path = os.path.join(self._config.DUMP_DIR, "file." + str(pid) + shared_cache_map_string + ".vacb") vacbary = shared_cache_map.extract_scm_file() summaryinfo['name'] = name summaryinfo['type'] = "SharedCacheMap" if pid: summaryinfo['pid'] = int(pid) else: summaryinfo['pid'] = None summaryinfo['fobj'] = int(offset) summaryinfo['ofpath'] = of_path summaryinfo['vacbary'] = vacbary yield summaryinfo def render_text(self, outfd, data): """Renders output for the dumpfiles plugin. This includes extracting the file artifacts from memory to the specified dump directory. Args: outfd: The file descriptor to write the text to. data: (summaryinfo) """ # Summary file object summaryfo = None summaryinfo = data if self._config.DUMP_DIR == None: debug.error("Please specify a dump directory (--dump-dir)") if not os.path.isdir(self._config.DUMP_DIR): debug.error(self._config.DUMP_DIR + " is not a directory") if self._config.SUMMARY_FILE: summaryfo = open(self._config.SUMMARY_FILE, 'wb') for summaryinfo in data: if summaryinfo['type'] == "DataSectionObject": outfd.write("DataSectionObject {0:#010x} {1:<6} {2}\n".format(summaryinfo['fobj'], summaryinfo['pid'], summaryinfo['name'])) if len(summaryinfo['present']) == 0: continue of = open(summaryinfo['ofpath'], 'wb') for mdata in summaryinfo['present']: rdata = None if not mdata[0]: continue try: rdata = self.kaddr_space.base.read(mdata[0], mdata[2]) except (IOError, OverflowError): debug.debug("IOError: Pid: {0} File: {1} PhysAddr: {2} Size: {3}".format(summaryinfo['pid'], summaryinfo['name'], mdata[0], mdata[2])) if not rdata: continue of.seek(mdata[1]) of.write(rdata) continue # XXX Verify FileOffsets #for zpad in summaryinfo['pad']: # of.seek(zpad[0]) # of.write("\0" * zpad[1]) if self._config.SUMMARY_FILE: json.dump(summaryinfo, summaryfo) of.close() elif summaryinfo['type'] == "ImageSectionObject": outfd.write("ImageSectionObject {0:#010x} {1:<6} {2}\n".format(summaryinfo['fobj'], summaryinfo['pid'], summaryinfo['name'])) if len(summaryinfo['present']) == 0: continue of = open(summaryinfo['ofpath'], 'wb') for mdata in summaryinfo['present']: rdata = None if not mdata[0]: continue try: rdata = self.kaddr_space.base.read(mdata[0], mdata[2]) except (IOError, OverflowError): debug.debug("IOError: Pid: {0} File: {1} PhysAddr: {2} Size: {3}".format(summaryinfo['pid'], summaryinfo['name'], mdata[0], mdata[2])) if not rdata: continue of.seek(mdata[1]) of.write(rdata) continue # XXX Verify FileOffsets #for zpad in summaryinfo['pad']: # print "ZPAD 0x%x"%(zpad[0]) # of.seek(zpad[0]) # of.write("\0" * zpad[1]) if self._config.SUMMARY_FILE: json.dump(summaryinfo, summaryfo) of.close() elif summaryinfo['type'] == "SharedCacheMap": outfd.write("SharedCacheMap {0:#010x} {1:<6} {2}\n".format(summaryinfo['fobj'], summaryinfo['pid'], summaryinfo['name'])) of = open(summaryinfo['ofpath'], 'wb') for vacb in summaryinfo['vacbary']: if not vacb: continue (rdata, mdata, zpad) = self.audited_read_bytes(self.kaddr_space, vacb['baseaddr'], vacb['size'], True) ### We need to update the mdata,zpad if rdata: try: of.seek(vacb['foffset']) of.write(rdata) except IOError: # TODO: Handle things like write errors (not enough disk space, etc) continue vacb['present'] = mdata vacb['pad'] = zpad if self._config.SUMMARY_FILE: json.dump(summaryinfo, summaryfo) of.close() else: return if self._config.SUMMARY_FILE: summaryfo.close()
[ "493254599@qq.com" ]
493254599@qq.com
605bd581f662bb2525fc236b7fb33a2086e737a5
8780bc7f252f14ff5406ce965733c099034920b7
/pyCode/MongoToMysql/ods_mongodb_enterprise.py
58d9f7ddcd5e4fab7187e43a6bedc2822c48e69c
[]
no_license
13661892653/workspace
5e4e458d31b9355c67d67ba7d9faccbcc1ac9f6b
17960becabb3b4f0fc30009c71a11c4f7a5f8330
refs/heads/master
2020-12-24T20:00:15.541432
2018-08-14T13:56:15
2018-08-14T13:56:15
86,225,975
1
0
null
null
null
null
UTF-8
Python
false
false
2,727
py
#coding=utf-8 #Version:python3.5.2 #Tools:Pycharm #Date: """ 数据仓库,处理Mongodb到Mysql的数据问题 """ __author__ = "Colby" import pymongo import pymysql #--------------------------数据库启动函数------------------------------ def start_MySQL(): conn = pymysql.connect(host='localhost', user='root', passwd='root', db='youboy', charset='utf8') cur = conn.cursor() myConn_list = [conn, cur] print('success',myConn_list) return myConn_list #--------------------------------------------------------------------- #--------------------------关闭数据库-------------------------------- def close_MySQL(cur,conn): cur.close() conn.commit() conn.close() #------------------------------------------------------------------ if __name__ == "__main__": client = pymongo.MongoClient('localhost', 27017) TempleSpider = client['youboy'] enterprise_collect = TempleSpider['enterprise'] print('enterprise_collect',enterprise_collect) myConn_list = start_MySQL() cur = myConn_list[1] conn = myConn_list[0] sqli = "replace into ods_mongodb_enterprise(" \ "_id" \ ",catagory_1_Name" \ ",catagory_1_Url" \ ",catagory_2_Name" \ ",catagory_2_Url" \ ",catagory_3_Name" \ ",catagory_3_Url" \ ",cityName,cityUrl" \ ",contactPerson" \ ",enterpriseAddr" \ ",enterpriseFax" \ ",enterpriseMobile" \ ",enterpriseName" \ ",enterprisePhone" \ ",enterpriseUrl" \ ",provinceName" \ ",url) " \ "values(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #print('sqli',sqli) dataList=[] for temple in enterprise_collect.find(): print(temple['_id']) #print('temple',temple) data=(str(temple['_id']), temple['catagory_1_Name'], temple['catagory_1_Url'], temple['catagory_2_Name'], temple['catagory_2_Url'], temple['catagory_3_Name'], temple['catagory_3_Url'], temple['cityName'], temple['cityUrl'], temple['contactPerson'], temple['enterpriseAddr'], temple['enterpriseFax'], temple['enterpriseMobile'], temple['enterpriseName'], temple['enterprisePhone'], temple['enterpriseUrl'], temple['provinceName'], temple['url']) dataList.append(data) #print('dataList', dataList) cur.executemany(sqli,dataList) #conn.commit() close_MySQL(cur, conn)
[ "470563152@qq.com" ]
470563152@qq.com
3b5c3590e555db3f87a54ef3874064e2167e7ede
8c922f362fdb28782502eb91176e686df8142087
/src/novaposhta/views.py
1747e1c8e0bd35d9e525700883a05c24ebc09d3d
[]
no_license
JaVood/pasta_family
94d981088b8183845e8f12b3fab4c99bd651e3bf
fc6698e388c5e4ac5a0c58a93a610cbf4000e58a
refs/heads/master
2020-05-02T12:35:02.403867
2019-03-27T09:37:51
2019-03-27T09:37:51
177,957,070
0
0
null
null
null
null
UTF-8
Python
false
false
646
py
from django.http import JsonResponse, HttpResponse from django.contrib.auth.decorators import login_required from novaposhta.lib import search_warehouses, refresh_warehouses, refresh_areas, refresh_cities, refresh_all @login_required def refresh(request): refresh_warehouses() refresh_areas() refresh_cities() refresh_all() return HttpResponse('Warehouses were successfully refreshed') def autocomplete(request): query = request.GET.get('query') suggestions = [w.full_name for w in search_warehouses(query, limit=10)] return JsonResponse({ 'query': query, 'suggestions': suggestions })
[ "javood@JaVood.local" ]
javood@JaVood.local
f3b263e9f663d8a6408e7f735bb694cdad3097e4
8b9989ea9e96b20eecaf2132fff1a7d3ef22aad9
/Length_of_Last_Word.py
67668bc7c2fe7a5c6514a02be5f998d1d7f9d076
[]
no_license
useyourfeelings/leetcode
421a113e3b46208e98b573f83b4518ad06251856
4847f7f2d50d82f56932491426e4a948687d82ea
refs/heads/master
2021-01-01T20:06:22.766922
2015-02-17T05:53:41
2015-02-17T05:53:41
30,801,531
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
class Solution: # @param s, a string # @return an integer def lengthOfLastWord(self, s): s = s.rstrip() length = len(s) if length == 0: return 0 return len((s.split(' ')[-1].lstrip()))
[ "raidercodebear@gmail.com" ]
raidercodebear@gmail.com
545da36839f6b07f36ef3b328c0fdcda8d0d1c9f
5d680ec506efe6b6e743fd3fb0ba7554a341028e
/andreasmusic/pitches.py
cb49af2170184da88293b5062e3c35449d562f27
[]
no_license
andreasjansson/andreasmusic
200e0252fe3ca33b1e58dc5a1ccb460fbc061212
f3906a9588e066b6aceb271613fcf674b4b55890
refs/heads/master
2021-01-10T19:01:52.006316
2014-08-22T06:07:17
2014-08-22T06:07:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,867
py
import sys import numpy as np from collections import namedtuple Note = namedtuple('Note', ['name', 'fq', 'midi_pitch']) NOTE_NAMES = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'] ENHARMONIC_EQUIVALENTS = { 'C#': 'Db', 'Db': 'C#', 'D#': 'Eb', 'Eb': 'D#', 'E' : 'Fb', 'Fb': 'E', 'E#': 'F', 'F' : 'E#', 'F#': 'Gb', 'Gb': 'F#', 'G#': 'Ab', 'Ab': 'G#', 'A#': 'Bb', 'Bb': 'A#', 'B' : 'Cb', 'Cb': 'B', 'B#': 'C', 'C' : 'B#', } MIDI_FREQS = {} def _setup(): for octave in range(0, 7): for i, note_name in enumerate(NOTE_NAMES): dist_from_a = (octave - 3) * 12 + i - 9 fq = 440 * np.power(2, dist_from_a / 12.0) midi_pitch = (octave + 1) * 12 + i MIDI_FREQS[midi_pitch] = fq note_names = [note_name] if note_name in ENHARMONIC_EQUIVALENTS: note_names.append(ENHARMONIC_EQUIVALENTS[note_name]) for n in [note_name] + ([ENHARMONIC_EQUIVALENTS[note_name]] if note_name in ENHARMONIC_EQUIVALENTS else []): name = '%s%d' % (n, octave) note = Note(name, fq, midi_pitch) setattr(sys.modules[__name__], name.replace('#', '_'), note) _setup() class UnknownNote(Exception): pass def note_number(note_name): if note_name in NOTE_NAMES: return NOTE_NAMES.index(note_name) elif note_name in ENHARMONIC_EQUIVALENTS: return NOTE_NAMES.index(ENHARMONIC_EQUIVALENTS[note_name]) raise UnknownNote(note_name) def note_name(note_number): if note_number < 0: raise UnknownNote(note_number) name = NOTE_NAMES[note_number % 12] octave = int(note_number / 12) return '%s%d' % (name, octave) def pitch_to_freq(pitch): return MIDI_FREQS[pitch]
[ "andreas.s.t.jansson@gmail.com" ]
andreas.s.t.jansson@gmail.com
bc96466615bc972f927d839ba7be56459ff8f060
2ecfe901f9b955d9f1ce32c80d5342f345e7f986
/py3oauth2/tests/test_refreshtokengrant.py
c8e2350fafa78b73c78713d59cbcb6daaa4f1252
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
putyta/py3oauth2
731b6f6919be6b98703bcded0e0d2659fcc2020f
060dc6f896382ae74842126df011e92bb9fb7146
refs/heads/master
2021-01-14T08:03:52.853376
2014-12-03T07:26:03
2014-12-03T07:26:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,233
py
# -*- coding: utf-8 -*- import contextlib import uuid from examples.models import ( Owner, Store, ) from py3oauth2.refreshtokengrant import RefreshTokenRequest from py3oauth2.tests import ( BlindAuthorizationProvider, mock, TestBase, ) class TestRefreshTokenRequest(TestBase): def setUp(self): self.store = Store() self.client = self.make_client() self.store.persist_client(self.client) self.owner = Owner(str(uuid.uuid4())) self.access_token = self.store.issue_access_token(self.client, self.owner, {'view', 'write'}) def test_answer_access_denied(self): from py3oauth2.errors import AccessDenied req = RefreshTokenRequest() req.update({ 'grant_type': 'refresh_token', 'refresh_token': 'unknown_refresh_token', }) provider = BlindAuthorizationProvider(self.store) with self.assertRaises(AccessDenied): req.answer(provider, self.owner) def test_answer_unauthorized_client(self): from py3oauth2.errors import UnauthorizedClient from py3oauth2.provider import AuthorizationProvider req = RefreshTokenRequest() req.update({ 'grant_type': 'refresh_token', 'refresh_token': self.access_token.get_refresh_token(), }) provider = AuthorizationProvider(self.store) with contextlib.ExitStack() as stack: stack.enter_context(mock.patch.object(provider, 'authorize_client', return_value=False)) stack.enter_context(self.assertRaises(UnauthorizedClient)) req.answer(provider, self.owner) def test_answer_store_raises_error_exception(self): from py3oauth2.errors import AccessDenied req = RefreshTokenRequest() req.update({ 'grant_type': 'refresh_token', 'refresh_token': self.access_token.get_refresh_token(), }) self.store.issue_access_token = mock.Mock(side_effect=AccessDenied()) provider = BlindAuthorizationProvider(self.store) try: req.answer(provider, self.owner) except AccessDenied as why: self.assertIs(why.request, req) else: self.fail() def test_answer(self): req = RefreshTokenRequest() req.update({ 'grant_type': 'refresh_token', 'refresh_token': self.access_token.get_refresh_token(), }) provider = BlindAuthorizationProvider(self.store) resp = req.answer(provider, self.owner) self.assertIsInstance(resp, req.response) token = self.store.get_access_token(resp.access_token) self.assertIsNotNone(token) self.assertEqual(resp.token_type, token.get_type()) self.assertEqual(resp.expires_in, token.get_expires_in()) self.assertEqual(provider.normalize_scope(resp.scope), token.get_scope()) def test_answer_invalid_scope_1(self): from py3oauth2.errors import InvalidScope provider = BlindAuthorizationProvider(self.store) req = RefreshTokenRequest() req.update({ 'grant_type': 'refresh_token', 'refresh_token': self.access_token.get_refresh_token(), 'scope': 'view write admin', }) with self.assertRaises(InvalidScope): req.answer(provider, self.owner) def test_answer_invalid_scope_2(self): from py3oauth2.errors import InvalidScope access_token = self.store.issue_access_token(self.client, self.owner, {'write'}) provider = BlindAuthorizationProvider(self.store) req = RefreshTokenRequest() req.update({ 'grant_type': 'refresh_token', 'refresh_token': access_token.get_refresh_token(), 'scope': 'view', }) with self.assertRaises(InvalidScope): req.answer(provider, self.owner)
[ "kohei.yoshida@gehirn.co.jp" ]
kohei.yoshida@gehirn.co.jp
745923603c9c69d1a0fb4c0aaea41d9fd536dda3
8dbf1dd411a4f1b4c9b3c6c5a5cdbe40404aa3ae
/polls/migrations/0001_initial.py
d1e1b2ee96c7de3f72901a3820f02cd7e6f30587
[ "BSD-3-Clause" ]
permissive
marcaurele/debian-packaging-for-django
31ac3005cd820979a472827ad2422ec365b7bf83
b0b8431f801a8cc5f068a6570d30939d40d333e7
refs/heads/master
2021-08-23T09:10:58.761508
2017-12-04T12:50:02
2017-12-04T12:50:02
112,287,266
0
0
null
null
null
null
UTF-8
Python
false
false
1,230
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-27 16:43 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Choice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('choice_text', models.CharField(max_length=200)), ('votes', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question_text', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='date published')), ], ), migrations.AddField( model_name='choice', name='question', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='polls.Question'), ), ]
[ "m@brothier.org" ]
m@brothier.org
48b9d26fb186dac78386c6dfe0f315b7e5cdd08d
662232c0bd3aa31dd0f80b2a07c7d6342b672e68
/src/image_crawler.py
64b6684fe3f0a970f4047af8df08f1022199fcb9
[ "MIT" ]
permissive
quqixun/ImageCrawler
4373c01b6afc79d5163f385e1c17d25df6a7e456
98205ae74f5e32ac90a04b902c0f49eb165d5a63
refs/heads/master
2022-12-16T00:02:02.000676
2021-03-19T08:02:53
2021-03-19T08:02:53
164,621,794
25
7
MIT
2022-12-07T03:03:38
2019-01-08T10:13:11
Python
UTF-8
Python
false
false
3,285
py
import os import ssl import json import time import pandas as pd from tqdm import * from selenium import webdriver class ImageCrawler(object): SETTINGS = { 'baidu': {'url': 'https://image.baidu.com/search/index?tn=baiduimage&word=${KEYWORD}', 'see_more': None, 'xpath': '//div[@id="imgContainer"]//li[@class="imgitem"]', 'item': 'data-objurl', 'item_attr': None}, 'bing': {'url': 'https://www.bing.com/images/search?q=${KEYWORD}', 'see_more': '//div[@class="mm_seemore"]/a[@class="btn_seemore"]', 'xpath': '//div[@class="imgpt"]/a[@class="iusc"]', 'item': 'm', 'item_attr': 'murl'}, 'google': {'url': 'https://www.google.com.hk/search?q=${KEYWORD}&source=lnms&tbm=isch', 'see_more': '//*[@id="smb"]', 'xpath': '//div[contains(@class,"rg_meta")]', 'item': 'innerHTML', 'item_attr': 'ou'} } def __init__(self, engine='google'): self.engine = engine self.url = self.SETTINGS[engine]['url'] self.see_more = self.SETTINGS[engine]['see_more'] self.xpath = self.SETTINGS[engine]['xpath'] self.item = self.SETTINGS[engine]['item'] self.item_attr = self.SETTINGS[engine]['item_attr'] self.image_links = set() self._init_ssl() return def run(self, keyword, n_scroll): self.n_scroll = n_scroll self.keyword = keyword print('Searching keyword: ', keyword) print('Searching engine: ', self.engine) self._generate_links() print() return def save_links(self, save_dir, file_name): self._create_dir(save_dir) links_file = os.path.join(save_dir, file_name) links_df = pd.DataFrame(data=list(self.image_links), columns=['links']) links_df.to_csv(links_file, index=False) return def _init_ssl(self): ssl._create_default_https_context = \ ssl._create_unverified_context() def _generate_links(self): browser_driver = webdriver.Chrome() browser_driver.get(self.url.replace('${KEYWORD}', self.keyword)) for _ in tqdm(range(self.n_scroll), ncols=70): browser_driver.execute_script('window.scrollBy(0, 1000000)') time.sleep(1) if self.see_more is not None: try: browser_driver.find_element_by_xpath(self.see_more).click() except Exception as e: print('Error:', str(e)) image_blocks = browser_driver.find_elements_by_xpath(self.xpath) for image_block in image_blocks: image_link = image_block.get_attribute(self.item) if self.item_attr is not None: try: image_link = json.loads(image_link)[self.item_attr] except Exception as e: print('Error:', str(e)) self.image_links.add(image_link) browser_driver.quit() return def _create_dir(self, dir_path): if not os.path.isdir(dir_path): os.makedirs(dir_path)
[ "quqixun@icarbonx.com" ]
quqixun@icarbonx.com
9710326985b7fbf02113f33f4cf94e5cdee47478
3c5d86d087ce526ac3456f2fa443c71cc79f0e35
/qa/rpc-tests/fundrawtransaction-hd.py
c844e7b3ce3d68c3afd1a094aca48c31ffbb0b23
[ "MIT" ]
permissive
perfectblockchain/coin-core
937577b2836fb032283fa5e90f0dac9abf524f9d
b79deef27798fb51f0140541f2493807efa893b2
refs/heads/master
2020-03-25T04:34:54.900739
2018-09-12T10:44:52
2018-09-12T10:44:52
143,402,539
0
0
null
null
null
null
UTF-8
Python
false
false
25,445
py
#!/usr/bin/env python2 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 4) def setup_network(self, split=False): self.nodes = start_nodes(4, self.options.tmpdir, [['-usehd=1'], ['-usehd=1'], ['-usehd=1'], ['-usehd=1']]) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() def run_test(self): print "Mining blocks..." min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].validateaddress(watchonly_address)["pubkey"] watchonly_amount = Decimal(2000) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 15) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 50) self.sync_all() self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enought inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 22 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 26 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 26, self.nodes[1].getnewaddress() : 25 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 50: utx = aUtx break assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 50: utx = aUtx break assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(50) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 10: utx = aUtx break assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 10: utx = aUtx if aUtx['amount'] == 50: utx2 = aUtx assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 60 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 10: utx = aUtx if aUtx['amount'] == 50: utx2 = aUtx assert(utx!=False) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 60, self.nodes[0].getnewaddress() : 10 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 10} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) try: rawtxfund = self.nodes[2].fundrawtransaction(rawtx) raise AssertionError("Spent more than available") except JSONRPCException as e: assert("Insufficient" in e.error['message']) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():11} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():11,self.nodes[1].getnewaddress():12,self.nodes[1].getnewaddress():1,self.nodes[1].getnewaddress():13,self.nodes[1].getnewaddress():2,self.nodes[1].getnewaddress():3} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:11} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:11} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 11) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 12 RIZ to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 12) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():11} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawTx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('11.0000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.nodes[1].encryptwallet("test") self.nodes.pop(1) stop_nodes(self.nodes) wait_bitcoinds() self.nodes = start_nodes(4, self.options.tmpdir, [['-usehd=1'], ['-usehd=1'], ['-usehd=1'], ['-usehd=1']]) # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) self.is_network_split=False self.sync_all() # drain the keypool self.nodes[1].getnewaddress() self.nodes[1].getrawchangeaddress() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked try: fundedTx = self.nodes[1].fundrawtransaction(rawTx) raise AssertionError("Wallet unlocked without passphrase") except JSONRPCException as e: assert('Keypool ran out' in e.error['message']) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].keypoolrefill(2) #need to refill the keypool to get an internal change address self.nodes[1].walletlock() try: self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 12) raise AssertionError("Wallet unlocked without passphrase") except JSONRPCException as e: assert('walletpassphrase' in e.error['message']) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():11} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #now we need to unlock self.nodes[1].walletpassphrase("test", 100) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('511.0000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('500.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransaction(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransaction(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) if __name__ == '__main__': RawTransactionsTest().main()
[ "coinbuildhelp@gmail.com" ]
coinbuildhelp@gmail.com
6b93d035eb85106993e327a9d8ba4d5830bc4b5d
6ab3d02c6b5426cd122b3d3c7b31faee7ea917d4
/hashmap_uncommonChar.py
16b0e41f244203ec15510a06985977b9d8972898
[]
no_license
AishwaryalakshmiSureshKumar/DS-Algo
e54967ed24c641059fe15b286359f1b71141eeff
a624b29182c92b5fa8017aae597eb4ad2475deae
refs/heads/main
2023-04-21T17:17:10.342833
2021-04-18T18:03:57
2021-04-18T18:03:57
356,888,335
0
0
null
null
null
null
UTF-8
Python
false
false
1,148
py
#code def uncommonChar(str1, str2): ll = [] for i in str1: if i not in str2 and i not in ll: ll.append(i) for i in str2: if i not in str1 and i not in ll: ll.append(i) ll = sorted(ll) for i in ll: print(i,end='') '''MAX_CHAR = 26 def uncommonChar(str1, str2): result = [0]*MAX_CHAR for i in range(0, MAX_CHAR): result[i] = 0 l1 = len(str1) l2 = len(str2) for i in range(l1): result[ord(str1[i])-ord('a')]=1 for i in range(l2): if result[ord(str2[i])-ord('a')]==1 or result[ord(str2[i])-ord('a')]==-1: result[ord(str2[i])-ord('a')]=-1 else: result[ord(str2[i])-ord('a')]=2 for i in range(0, MAX_CHAR): if result[i]==1 or result[i]==2: print(chr(i + ord('a')), end=' ')''' case = int(input()) for i in range(case): str1 = str(input()) str2 = str(input()) uncommonChar(str1, str2)
[ "noreply@github.com" ]
AishwaryalakshmiSureshKumar.noreply@github.com
50c787eff65d485ac370b05518c45b8ed17ebf5f
9e103392e152873fcad9e3d0f0c18ca9507a0ddb
/accounts/admin.py
b5f060489948390e62ac6e006dd83507575c5a5d
[]
no_license
do324/instaclone
9911a300809df1d4d7acbdf69902310b4829ccc4
2e07cd68d0849b8d27cc3b46917a2930ec56bd36
refs/heads/master
2022-05-28T17:45:13.398274
2020-05-06T08:46:15
2020-05-06T08:46:15
260,907,845
0
0
null
null
null
null
UTF-8
Python
false
false
591
py
from django.contrib import admin from .models import Profile, Follow # Register your models here. class FollowInline(admin.TabularInline): model = Follow fk_name = 'from_user' @admin.register(Profile) class ProfileAdmin(admin.ModelAdmin): list_display = ['id', 'nickname', 'user'] list_display_links = ['nickname', 'user'] search_fields = ['nickname'] inlines = [FollowInline,] @admin.register(Follow) class FollowAdmin(admin.ModelAdmin): list_display = ['from_user', 'to_user', 'created_at'] list_display_links = ['from_user', 'to_user', 'created_at']
[ "doyun5114@gmail.com" ]
doyun5114@gmail.com
fb1355a16b36ac4d9c03852ba9890a86a3dc94af
7fe6407014fcfbab69c2ef6a56e6864227f66e2c
/Game.py
7faab7b0b0dd6a6b0ffc3456dbba01712fc8f560
[ "MIT" ]
permissive
enosal/jubal-pygame
3951effc18f723052824d6d44f78163c29c5a903
331bf2be2f3e1165653be8a4dc02fbf0c6277da3
refs/heads/master
2021-01-17T16:15:03.037529
2014-04-12T04:18:59
2014-04-12T04:18:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,483
py
#!/usr/bin/env python import pygame, sys, pyganim, os from pygame.locals import * from Player import Player from Input import Input from Tile import Tile pygame.init() FPS = 30 # frames per second settings fpsClock = pygame.time.Clock() DURATION = 0.1 # Screen size SCREEN_X=400 SCREEN_Y=400 # This is the length of the sprite LEN_SPRT_X=64 LEN_SPRT_Y=64 # This is where the sprite is found on the sheet SPRT_RECT_X=0 SPRT_RECT_Y=LEN_SPRT_Y def main(): # Determine assets sprite_asset, bullet_sound_asset = DetermineAssets() # Load sprite assets IMAGESDICT, animObjs = LoadSpriteAssets(sprite_asset) # Main game surface DISPLAYSURF = pygame.display.set_mode((SCREEN_X, SCREEN_Y)) #Make the screen # Colors BLACK = (0,0,0) # Calculate starting position of player startX = SCREEN_X - LEN_SPRT_X startY = SCREEN_Y - LEN_SPRT_Y # Hold info on keys pressed, held, released keyinput = Input() # Initialize gamemap and Player player = Player(IMAGESDICT, animObjs, bullet_sound_asset) player.rect.topleft = startX, startY # Add tiles startx = 0 starty = SCREEN_Y - LEN_SPRT_Y/2 tile = Tile(IMAGESDICT['ground']) tile.rect.topleft = startx, starty # Sprite Groups allsprites = pygame.sprite.RenderPlain(player) environment = pygame.sprite.RenderPlain(tile) # Start game loop while True: # Clear key info keyinput.clearKeys() # Draw screen black DISPLAYSURF.fill(BLACK) # Check for game events for event in pygame.event.get(): # Reset player direction if event.type == QUIT: pygame.quit() sys.exit() elif event.type == KEYDOWN: # Handle key presses keyinput.keyDownEvent(event.key) elif event.type == KEYUP: keyinput.keyUpEvent(event.key) # Player horizontal logic if keyinput.isKeyHeld(K_LEFT) and keyinput.isKeyHeld(K_RIGHT): player.stopMoving() elif keyinput.isKeyHeld(K_LEFT): player.moveLeft() elif keyinput.isKeyHeld(K_RIGHT): player.moveRight() elif keyinput.wasKeyPressed(K_SPACE): # Play player shooting animation player.shoot() elif keyinput.wasKeyPressed(K_ESCAPE): pygame.quit() sys.exit() elif not player.shooting: player.stopMoving() # Vertical logic if keyinput.wasKeyPressed(K_UP): player.jump() # Check for collisions between player and environment collision_list = pygame.sprite.spritecollide(player, environment, False) # Update allsprites.update() environment.update() # Draw allsprites.draw(DISPLAYSURF) environment.draw(DISPLAYSURF) pygame.display.update() fpsClock.tick(FPS) # Determines what filesystem accessor to use and retreives graphic and sound assets def DetermineAssets(): # Find out if in Windows or Unix/Linux then load SpriteSheet if os.path.isfile('assets\\jubal_64.png'): SHEET = pygame.image.load('assets\\jubal_64.png') bullet_sound = pygame.mixer.Sound("assets\\bullet.wav") elif os.path.isfile('assets//jubal_64.png'): SHEET = pygame.image.load('assets//jubal_64.png') bullet_sound = pygame.mixer.Sound("assets//bullet.wav") return SHEET, bullet_sound def LoadSpriteAssets(SHEET): # Global dictionary that contains all static images IMAGESDICT = { 'j_normal': SHEET.subsurface(pygame.Rect(0, 0, LEN_SPRT_X, LEN_SPRT_Y)), 'j_rightface': SHEET.subsurface(pygame.Rect(SPRT_RECT_X, SPRT_RECT_Y, LEN_SPRT_X, LEN_SPRT_Y)), 'j_leftface': SHEET.subsurface(pygame.Rect(SPRT_RECT_X+(LEN_SPRT_X*5), SPRT_RECT_Y, LEN_SPRT_X, LEN_SPRT_Y)), 'bullet': SHEET.subsurface(pygame.Rect(SPRT_RECT_X+(LEN_SPRT_X*8), SPRT_RECT_Y*3, 2, 2)), 'ground': SHEET.subsurface(pygame.Rect(LEN_SPRT_X*4, SPRT_RECT_Y*5, LEN_SPRT_X, LEN_SPRT_Y/2)), } # Define the different animation types animTypes = 'right_walk left_walk shoot_right shoot_left jump_right jump_left right_face left_face normal'.split() # These tuples contain (base_x, base_y, numOfFrames) # numOfFrames is in the x-direction animTypesInfo = { 'right_walk': (SPRT_RECT_X+LEN_SPRT_X, SPRT_RECT_Y, 4), 'left_walk': (SPRT_RECT_X+(LEN_SPRT_X*6), SPRT_RECT_Y, 4), 'shoot_right': (LEN_SPRT_X, 0, 4), 'shoot_left': (LEN_SPRT_X*5, 0, 4), 'jump_right': (0, LEN_SPRT_Y*2, 7), 'jump_left': (0, LEN_SPRT_Y*3, 7), 'normal': (0, 0, 1), 'right_face': (0, LEN_SPRT_Y, 1), 'left_face': (0, LEN_SPRT_Y*3, 1) } animObjs = {} for animType in animTypes: xbase = (animTypesInfo[animType])[0] ybase = (animTypesInfo[animType])[1] numFrames = (animTypesInfo[animType])[2] imagesAndDurations = [(SHEET.subsurface(pygame.Rect(xbase+(LEN_SPRT_X*num), ybase, LEN_SPRT_X, LEN_SPRT_Y)), DURATION) for num in range(numFrames)] loopforever = True if(animType == 'shoot_right' or animType == 'shoot_left'): loopforever = False animObjs[animType] = pyganim.PygAnimation(imagesAndDurations, loop=loopforever) return IMAGESDICT, animObjs if __name__ == "__main__": main()
[ "aavina2@gmail.com" ]
aavina2@gmail.com
789f0bc4c608fc5a4c4e46b52cb7634a18ec644f
fee6bb5e775c41d7c9e820a10ba785c526cb5fbf
/PythonAPI/CrudApp/serializers.py
69405f83dda5afbe713496488fb7a7276f2b56dd
[]
no_license
jaovw/pbl7
c6d898d06086fc506f9cfa984a06e226a4ad4269
76b9541246de5f7c9e27cd8f0e1500d6d86f6d14
refs/heads/main
2023-08-30T00:32:05.254036
2021-11-02T22:27:54
2021-11-02T22:27:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
600
py
from django.db.models import fields from django.db.models.base import Model from rest_framework import serializers from CrudApp.models import Editora, EditoraLivro, Livro class EditoraSerializer(serializers.ModelSerializer): class Meta: model = Editora fields = ('EditoraId', 'NomeEditora', 'LocalEditora') class LivroSerializer(serializers.ModelSerializer): class Meta: model = Livro fields = ('LivroId') class EditoraLivroSerializer(serializers.ModelSerializer): class Meta: model = EditoraLivro fields = ('Id_Editora', 'Id_Livro')
[ "gabriel_fsbs2@hotmail.com" ]
gabriel_fsbs2@hotmail.com
3ec85d43915036c75522d11ebe231715c5e0a19c
b08a5bb3f0b570236774a85230533532c0343389
/swami-control/usr/lib/python2.7/dist-packages/swami_startupapps/swami_startupapps.py
527df86ffbc8f7596ea1a21e755a53da5be0af52
[]
no_license
BodhiDev/bodhi5packages
007d262b9367f698159ae41fe4ba8e4fa4a0e3ce
2581afa2dcf7145fc683cb5275c2a012b9c687ac
refs/heads/master
2022-10-08T20:28:10.470593
2022-09-23T05:36:54
2022-09-23T05:36:54
134,073,827
1
3
null
2021-03-31T11:42:21
2018-05-19T15:24:05
Python
UTF-8
Python
false
false
11,254
py
#Moksha startup applications module for the Swami Control Panel import os from efl.evas import EVAS_HINT_EXPAND, EVAS_HINT_FILL from efl import elementary from efl.elementary.button import Button from efl.elementary.box import Box from efl.elementary.entry import Entry from efl.elementary.icon import Icon from efl.elementary.image import Image from efl.elementary.list import List, ListItem from efl.elementary.frame import Frame from efl.elementary.flip import Flip, ELM_FLIP_ROTATE_YZ_CENTER_AXIS from efl.elementary.popup import Popup from elmextensions import StandardButton, SearchableList EXPAND_BOTH = EVAS_HINT_EXPAND, EVAS_HINT_EXPAND EXPAND_HORIZ = EVAS_HINT_EXPAND, 0.0 FILL_BOTH = EVAS_HINT_FILL, EVAS_HINT_FILL FILL_HORIZ = EVAS_HINT_FILL, 0.5 ALIGN_CENTER = 0.5, 0.5 UserHome = os.path.expanduser("~") StartupApplicationsFile = "%s/.e/e/applications/startup/.order"%UserHome StartupCommandsFile = "%s/.e/e/applications/startup/startupcommands"%UserHome ApplicationPaths = [ "/usr/share/applications/", "%s/.local/share/applications/"%UserHome] class SwamiModule(Box): def __init__(self, rent): Box.__init__(self, rent) self.parent = rent #This appears on the button in the main swmai window self.name = "Startup Applications" #The section in the main window the button is added to self.section = "Applications" #Search terms that this module should appear for self.searchData = ["startup", "command", "applications", "apps"] #Command line argument to open this module directly self.launchArg = "--startupapps" #Should be none by default. This value is used internally by swami self.button = None self.icon = Icon(self, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) #Use FDO icons -> http://standards.freedesktop.org/icon-naming-spec/latest/ar01s04.html self.icon.standard_set('system-run') self.icon.show() self.mainBox = Box(self, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) self.mainBox.show() buttonBox = Box(self, size_hint_weight = EXPAND_HORIZ, size_hint_align = FILL_BOTH) buttonBox.horizontal = True buttonApply = StandardButton(self, "Apply", "ok", self.applyPressed) buttonApply.show() buttonFlip = StandardButton(self, "Startup Commands", "preferences-system", self.flipPressed) buttonFlip.show() buttonReturn = StandardButton(self, "Back", "go-previous", self.returnPressed) buttonReturn.show() buttonBox.pack_end(buttonApply) buttonBox.pack_end(buttonFlip) buttonBox.pack_end(buttonReturn) buttonBox.show() startupApplications = [] with open(StartupApplicationsFile) as startupFile: for line in startupFile: startupApplications.append(line.rstrip()) desktopFiles = [] for ourPath in ApplicationPaths: desktopFiles += [os.path.join(dp, f) for dp, dn, filenames in os.walk(ourPath) for f in filenames if os.path.splitext(f)[1] == '.desktop'] self.startupList = startupList = List(self, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) self.applicationsList = applicationsList = SearchableList(self, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) startupToAdd = [] applicationsToAdd = [] for d in desktopFiles: try: with open(d) as desktopFile: fileName = d.split("/")[-1] icon = None for line in desktopFile: if line[:5] == "Name=": name = line[5:][:-1] if line[:5] == "Icon=": icon = line[5:].strip() try: iconObj = Icon(self, standard=icon, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) except: iconObj = Icon(self, standard="preferences-system", size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) icon = None if fileName in startupApplications: startupToAdd.append([name, iconObj, fileName, icon]) else: applicationsToAdd.append([name, iconObj, fileName, icon]) except IOError: print('Warning Startup Apps: Unable to open {}'.format(d)) startupToAdd.sort() applicationsToAdd.sort() for s in startupToAdd: ourItem = startupList.item_append(s[0], s[1]) ourItem.data["file"] = s[2] ourItem.data["icon"] = s[3] #ourItem.append_to(startupList) #startupList.item_append(ourItem) for a in applicationsToAdd: ourItem = applicationsList.item_append(a[0], a[1]) ourItem.data["file"] = a[2] ourItem.data["icon"] = a[3] #ourItem.append_to(applicationsList.ourList) #applicationsList.item_append(a[0], a[1]) startupList.callback_clicked_double_add(self.startupAppRemove) applicationsList.callback_clicked_double_add(self.startupAppAdd) startupList.go() startupList.show() applicationsList.show() startupFrame = Frame(self, size_hint_weight = EXPAND_BOTH, size_hint_align=FILL_BOTH) startupFrame.text = "Startup Applications" startupFrame.content_set(startupList) startupFrame.show() otherFrame = Frame(self, size_hint_weight = EXPAND_BOTH, size_hint_align=FILL_BOTH) otherFrame.text = "Other Applications" otherFrame.content_set(applicationsList) otherFrame.show() self.mainBox.pack_end(startupFrame) self.mainBox.pack_end(otherFrame) self.backBox = Box(self, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) self.backBox.show() self.commandsList = commandsList = List(self, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) with open(StartupCommandsFile) as scf: for line in scf: if line.rstrip()[-3:] == "| \\": commandsList.item_append(line.rstrip()[:-3]) else: commandsList.item_append(line.rstrip()) commandsList.callback_clicked_right_add(self.commandRightClicked) commandsList.go() commandsList.show() commandBox = Box(self, size_hint_weight=EXPAND_HORIZ, size_hint_align=(1, 0.5)) commandBox.horizontal = True commandBox.show() self.newCommandEntry = newCommandEntry = Entry(self, size_hint_weight = EXPAND_HORIZ, size_hint_align = FILL_BOTH) newCommandEntry.single_line = True newCommandEntry.text = "<i>Type command here</i>" newCommandEntry.data["default text"] = True newCommandEntry.callback_clicked_add(self.entryClicked) newCommandEntry.show() newCommandButton = StandardButton(self, "Add Command", "add", self.newCmdPressed) newCommandButton.show() delCommandButton = StandardButton(self, "Delete Command", "exit", self.delCmdPressed) delCommandButton.show() commandBox.pack_end(newCommandButton) commandBox.pack_end(delCommandButton) newCommandFrame = Frame(self, size_hint_weight = EXPAND_HORIZ, size_hint_align = FILL_BOTH) newCommandFrame.text = "Add Startup Command:" newCommandFrame.content_set(newCommandEntry) newCommandFrame.show() self.backBox.pack_end(commandsList) self.backBox.pack_end(newCommandFrame) self.backBox.pack_end(commandBox) self.flip = Flip(self, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) self.flip.part_content_set("front", self.mainBox) self.flip.part_content_set("back", self.backBox) self.flip.show() self.pack_end(self.flip) self.pack_end(buttonBox) def startupAppRemove(self, lst, itm): text = itm.text dataFile = itm.data["file"] dataIcon = itm.data["icon"] itm.delete() if dataIcon: iconObj = Icon(self, standard=dataIcon, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) else: iconObj = Icon(self, standard="preferences-system", size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) ourItem = self.applicationsList.item_append(text, iconObj) ourItem.data["file"] = dataFile ourItem.data["icon"] = dataIcon self.applicationsList.ourList.go() def startupAppAdd(self, lst, itm): text = itm.text dataFile = itm.data["file"] dataIcon = itm.data["icon"] itm.delete() if dataIcon: iconObj = Icon(self, standard=dataIcon, size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) else: iconObj = Icon(self, standard="preferences-system", size_hint_weight=EXPAND_BOTH, size_hint_align=FILL_BOTH) ourItem = self.startupList.item_append(text, iconObj) ourItem.data["file"] = dataFile ourItem.data["icon"] = dataIcon self.startupList.go() def flipPressed(self, btn): if btn.text == "Startup Commands": btn.text = "Startup Applications" else: btn.text = "Startup Commands" self.flip.go(ELM_FLIP_ROTATE_YZ_CENTER_AXIS) def commandRightClicked(self, lst, itm): self.delCmdMenu.move(1, 1) self.delCmdMenu.show() def entryClicked(self, entry): if entry.data["default text"]: entry.data["default text"] = False entry.text = "" def newCmdPressed(self, btn): self.commandsList.item_append(self.newCommandEntry.text) self.newCommandEntry.text = "" self.commandsList.go() def delCmdPressed(self, btn): selectedCommand = self.commandsList.selected_item_get() selectedCommand.delete() def applyPressed(self, btn): with open(StartupApplicationsFile, 'w') as saf: for i in self.startupList.items_get(): saf.write(i.data["file"]) saf.write("\n") with open(StartupCommandsFile, 'w') as scf: lastI = self.commandsList.last_item_get() for i in self.commandsList.items_get(): if i != lastI: scf.write(i.text + " | \\ \n") else: scf.write(i.text) p = Popup(self, size_hint_weight=EXPAND_BOTH, timeout=3.0) p.text = "Changes Successfully Applied" p.show() def returnPressed(self, btn): self.parent.returnMain()
[ "ylee@bodhilinux.com" ]
ylee@bodhilinux.com
db782fe99f4bfbce673138a8c29e635dd5b552ad
d24a6e0be809ae3af8bc8daa6dacfc1789d38a84
/ABC/ABC251-300/ABC290/F.py
c84a613c4d9104d5bde110858967956466e6c904
[]
no_license
k-harada/AtCoder
5d8004ce41c5fc6ad6ef90480ef847eaddeea179
02b0a6c92a05c6858b87cb22623ce877c1039f8f
refs/heads/master
2023-08-21T18:55:53.644331
2023-08-05T14:21:25
2023-08-05T14:21:25
184,904,794
9
0
null
2023-05-22T16:29:18
2019-05-04T14:24:18
Python
UTF-8
Python
false
false
1,140
py
MOD = 998244353 def solve(t, case_list): n = 2 * max(case_list) factorial = [1] * (n + 1) factorial_inv = [1] * (n + 1) for i in range(1, n + 1): factorial[i] = (factorial[i - 1] * i) % MOD factorial_inv[-1] = pow(factorial[-1], MOD - 2, MOD) for i in range(n, 0, -1): factorial_inv[i - 1] = (factorial_inv[i] * i) % MOD res_list = [] for k in case_list: if k >= 3: res = factorial[2 * k - 3] * factorial_inv[k - 1] * factorial_inv[k - 2] res %= MOD res += k * factorial[2 * k - 4] * factorial_inv[k - 1] * factorial_inv[k - 3] res %= MOD res_list.append(res) else: res_list.append(1) # print(res_list) return res_list def main(): t = int(input()) case_list = [int(input()) for _ in range(t)] res = solve(t, case_list) for r in res: print(r) def test(): assert solve(10, [2, 3, 5, 8, 13, 21, 34, 55, 89, 144]) == [ 1, 6, 110, 8052, 9758476, 421903645, 377386885, 881422708, 120024839, 351256142 ] if __name__ == "__main__": test() main()
[ "cashfeg@gmail.com" ]
cashfeg@gmail.com
09ada11b6a8f3cef5e9f809a0c7cac1bf266055b
859e3c2582d38d4bf76363f7695b6003513707ed
/Alphabet_Rangoli.py
7d3b575c2a6d0c11e5c6880cabf17dfc28caa5a5
[]
no_license
tiptop-crazy/hackerrank
a1612038eb52e1c9a04c436e05d92619ff014867
53fc624db5da822afd875ef58cba5e360ed56dc5
refs/heads/master
2020-12-04T06:02:08.937639
2020-01-04T11:45:03
2020-01-04T11:45:03
231,645,800
0
0
null
null
null
null
UTF-8
Python
false
false
3,729
py
""" You are given an integer, N. Your task is to print an alphabet rangoli of size N. (Rangoli is a form of Indian folk art based on creation of patterns.) Different sizes of alphabet rangoli are shown below: #size 3 ----c---- --c-b-c-- c-b-a-b-c --c-b-c-- ----c---- #size 5 --------e-------- ------e-d-e------ ----e-d-c-d-e---- --e-d-c-b-c-d-e-- e-d-c-b-a-b-c-d-e --e-d-c-b-c-d-e-- ----e-d-c-d-e---- ------e-d-e------ --------e-------- #size 10 ------------------j------------------ ----------------j-i-j---------------- --------------j-i-h-i-j-------------- ------------j-i-h-g-h-i-j------------ ----------j-i-h-g-f-g-h-i-j---------- --------j-i-h-g-f-e-f-g-h-i-j-------- ------j-i-h-g-f-e-d-e-f-g-h-i-j------ ----j-i-h-g-f-e-d-c-d-e-f-g-h-i-j---- --j-i-h-g-f-e-d-c-b-c-d-e-f-g-h-i-j-- j-i-h-g-f-e-d-c-b-a-b-c-d-e-f-g-h-i-j --j-i-h-g-f-e-d-c-b-c-d-e-f-g-h-i-j-- ----j-i-h-g-f-e-d-c-d-e-f-g-h-i-j---- ------j-i-h-g-f-e-d-e-f-g-h-i-j------ --------j-i-h-g-f-e-f-g-h-i-j-------- ----------j-i-h-g-f-g-h-i-j---------- ------------j-i-h-g-h-i-j------------ --------------j-i-h-i-j-------------- ----------------j-i-j---------------- ------------------j------------------ The center of the rangoli has the first alphabet letter a, and the boundary has the Nth alphabet letter (in alphabetical order). """ """ You are given an integer, N. Your task is to print an alphabet rangoli of size N. (Rangoli is a form of Indian folk art based on creation of patterns.) Different sizes of alphabet rangoli are shown below: #size 3 ----c---- --c-b-c-- c-b-a-b-c --c-b-c-- ----c---- #size 5 --------e-------- ------e-d-e------ ----e-d-c-d-e---- --e-d-c-b-c-d-e-- e-d-c-b-a-b-c-d-e --e-d-c-b-c-d-e-- ----e-d-c-d-e---- ------e-d-e------ --------e-------- #size 10 ------------------j------------------ ----------------j-i-j---------------- --------------j-i-h-i-j-------------- ------------j-i-h-g-h-i-j------------ ----------j-i-h-g-f-g-h-i-j---------- --------j-i-h-g-f-e-f-g-h-i-j-------- ------j-i-h-g-f-e-d-e-f-g-h-i-j------ ----j-i-h-g-f-e-d-c-d-e-f-g-h-i-j---- --j-i-h-g-f-e-d-c-b-c-d-e-f-g-h-i-j-- j-i-h-g-f-e-d-c-b-a-b-c-d-e-f-g-h-i-j --j-i-h-g-f-e-d-c-b-c-d-e-f-g-h-i-j-- ----j-i-h-g-f-e-d-c-d-e-f-g-h-i-j---- ------j-i-h-g-f-e-d-e-f-g-h-i-j------ --------j-i-h-g-f-e-f-g-h-i-j-------- ----------j-i-h-g-f-g-h-i-j---------- ------------j-i-h-g-h-i-j------------ --------------j-i-h-i-j-------------- ----------------j-i-j---------------- ------------------j------------------ The center of the rangoli has the first alphabet letter a, and the boundary has the Nth alphabet letter (in alphabetical order). """ import sys import string def matrix(N=1, M=1, a='-'): sp = [] for i in range(N): sp.append([a] * M) return sp def printMatrix(matr, N=1, M=1): for i in range(N): for j in range(M): sys.stdout.write(matr[i][j]) print () def print_rangoli(size): # your code goes here alph = list(string.ascii_lowercase) matr = matrix(2 * size - 1, 4 * size - 3, '-') for i in range(size): for j in range(2 * size - 1): if (j % 2 == 0 and 2 * i + j >= 2 * size - 2): matr[i][j] = alph[2 * size - 2 - (i + j // 2)] matr[2 * size - 2 - i][4 * size - 4 - j] = alph[2 * size - 2 - (i + j // 2)] matr[i][4 * size - 4 - j] = alph[2 * size - 2 - (i + j // 2)] matr[2 * size - 2 - i][j] = alph[2 * size - 2 - (i + j // 2)] printMatrix(matr, 2 * size - 1, 4 * size - 3) if __name__ == '__main__': n = int(input("Enter positive number:")) print_rangoli(n)
[ "andrei.shewko@gmail.com" ]
andrei.shewko@gmail.com
3e9b8378b946a2f7f7bff6cca9a458bb921a97ab
94dcc6470f46734e033dea761e48028f5cf9d3b2
/backend/apps/httpproxy/models.py
16dfb92768740bb2e93c0ac8a008e2a32b3485f7
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
cnap-cobre/synapse
08adf02fb22166b26846265511a800ce92d9bbf1
edb850412b6f95d1d4e057674e5cd899ee0b444e
refs/heads/master
2021-03-24T09:25:01.365514
2018-12-12T22:41:38
2018-12-12T22:41:38
108,348,892
1
2
MIT
2018-12-25T09:52:49
2017-10-26T02:02:02
CSS
UTF-8
Python
false
false
3,856
py
from django.db import models from django.utils.six.moves import urllib from django.utils.translation import ugettext as _ class Request(models.Model): """ An HTTP request recorded in the database. Used by the :class:`~httpproxy.recorder.ProxyRecorder` to record all identifying aspects of an HTTP request for matching later on when playing back the response. Request parameters are recorded separately, see :class:`~httpproxy.models.RequestParameter`. """ method = models.CharField(_('method'), max_length=20) domain = models.CharField(_('domain'), max_length=100) port = models.PositiveSmallIntegerField(default=80) path = models.CharField(_('path'), max_length=250) date = models.DateTimeField(auto_now=True) querykey = models.CharField(_('query key'), max_length=255, editable=False) @property def querystring(self): """ The URL-encoded set of request parameters. """ return self.parameters.urlencode() def querystring_display(self): maxlength = 50 if len(self.querystring) > maxlength: return '%s [...]' % self.querystring[:50] else: return self.querystring querystring_display.short_description = 'querystring' def __unicode__(self): output = u'%s %s:%d%s' % \ (self.method, self.domain, self.port, self.path) if self.querystring: output += '?%s' % self.querystring return output[:50] # TODO add elipsed if truncating class Meta: verbose_name = _('request') verbose_name_plural = _('requests') unique_together = ('method', 'domain', 'port', 'path', 'querykey') get_latest_by = 'date' class RequestParameterManager(models.Manager): def urlencode(self): output = [] for param in self.values('name', 'value'): output.extend([urllib.parse.urlencode( {param['name']: param['value']} )]) return '&'.join(output) class RequestParameter(models.Model): """ A single HTTP request parameter for a :class:`~httpproxy.models.Request` object. """ REQUEST_TYPES = ( ('G', 'GET'), ('P', 'POST'), ) request = models.ForeignKey( Request, verbose_name=_('request'), related_name='parameters', on_delete=models.CASCADE) type = models.CharField(max_length=1, choices=REQUEST_TYPES, default='G') order = models.PositiveSmallIntegerField(default=1) name = models.CharField(_('name'), max_length=100) value = models.CharField(_('value'), max_length=250, null=True, blank=True) objects = RequestParameterManager() def __unicode__(self): return u'%d %s=%s' % (self.pk, self.name, self.value) class Meta: ordering = ('order',) verbose_name = _('request parameter') verbose_name_plural = _('request parameters') class Response(models.Model): """ The response that was recorded in response to the corresponding :class:`~httpproxy.models.Request`. """ request = models.OneToOneField( Request, verbose_name=_('request'), on_delete=models.CASCADE ) status = models.PositiveSmallIntegerField(default=200) content_type = models.CharField(_('content type'), max_length=200) content = models.TextField(_('content')) @property def request_domain(self): return self.request.domain @property def request_path(self): return self.request.path @property def request_querystring(self): return self.request.querystring def __unicode__(self): return u'Response to %s (%d)' % (self.request, self.status) class Meta: verbose_name = _('response') verbose_name_plural = _('responses')
[ "kevin.dice1@gmail.com" ]
kevin.dice1@gmail.com
bbfe78db4af645877df6f330d30b8cc4bebf4d84
75d6c8bc41d3228139c58f9360b18fdd2306cf55
/scrapy_app/youtube/youtube/items.py
b3d36b8004dfb0f700e5d4f33b4cfd824a6e81ca
[]
no_license
memadd/youtubecrawler
b5f372176f6516e23621a7e53569cec6f6f72b30
bec5b22bf104405c579f044b569dedc0e285cabf
refs/heads/main
2023-04-30T14:04:53.064650
2021-05-03T22:39:06
2021-05-03T22:39:06
363,543,612
0
0
null
null
null
null
UTF-8
Python
false
false
426
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class YoutubeItem(scrapy.Item): # define the fields for your item here like: url = scrapy.Field() title = scrapy.Field() duration = scrapy.Field() views = scrapy.Field() thumbnail_url = scrapy.Field() images_url = scrapy.Field()
[ "memad632@gmail.com" ]
memad632@gmail.com
e868a94e30c3ecc3ee54bc639d661943d16f2dc2
642759c2986011e1ead0093d3217567b9c6bcb51
/dictionary.py
551526b571ad2c9b4078b1b715ef5efab6bdafad
[]
no_license
VashStampede/LRU_cache
7249a039aa57ac41e09acedf407906f1557dea65
c7ff66f754f4fac75be8d75f94bfe13a2c8820e6
refs/heads/master
2020-09-13T07:15:17.743276
2019-11-20T16:25:31
2019-11-20T16:25:31
222,691,807
0
0
null
null
null
null
UTF-8
Python
false
false
884
py
import random QUOTES = [ "There's a huge amount of faith and confidence in the stunt team. ...", "All of the stunt men - these are the unsung heroes. ...", "Revenge is a caustic thing. ...", "When I'm getting ready for a movie, let's just say my diet is 'The Antisocial Diet.'", "High risk is high adrenaline", "Without music, life would be a mistake.", "It is not a lack of love, but a lack of friendship that makes unhappy marriages.", "That which does not kill us makes us stronger.", "I'm not upset that you lied to me, I'm upset that from now on I can't believe you.", "And those who were seen dancing were thought to be insane by those who could not hear the music." , "There is always some madness in love. But there is also always some reason in madness." , ] def get_random_quote(): return random.choice(QUOTES) if __name__ == '__main__': print(get_random_quote())
[ "ilyshameal@gmail.com" ]
ilyshameal@gmail.com
8200dd9efd8cd574e153819ddf517425d1c2d3d5
e74ccc836611b5131356f6f446f21b2e76c41247
/cifar10_classification.py
c42749ad11afcb4bbf16e03c06d322727a787d8f
[]
no_license
Bruces1998/NeuralNetwork
5754096c1be7403b23d12ad7832f939ffcd8b1d6
b6ba2c61c0c5671eaa5aac9890101fbb61cb1aa0
refs/heads/master
2020-06-29T12:27:19.803675
2019-08-27T12:51:23
2019-08-27T12:51:23
200,535,554
0
0
null
null
null
null
UTF-8
Python
false
false
1,346
py
import numpy as np from keras.datasets import cifar10 from keras.layers import Dense from keras.models import Sequential from keras.optimizers import SGD from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import classification_report import matplotlib.pyplot as pyplot print("[INFO] loading CIFAR-10 data.....") ((trainX, trainY),(testX, testY))=cifar10.load_data() trainX = trainX.astype("float") / 255.0 testX = testX.astype("float") / 255.0 trainX = trainX.reshape((trainX.shape[0], 3072)) testX = testX.reshape((testX.shape[0], 3072)) le = LabelBinarizer() trainY = le.fit_transform(trainY) testY = le.fit_transform(testY) labelNames = ["airplane", "automobile", "bird", "cat", "deer","dog", "frog", "horse", "ship", "truck"] model=Sequential() model.add(Dense(1024, input_shape=(3072,), activation="relu")) model.add(Dense(512, activation="relu")) model.add(Dense(10, activation="softmax")) print("[INFO] training network....") sgd = SGD(0.1) model.compile(loss = "categorical_crossentropy", optimizer=sgd, metrics=["accuracy"]) H = model.fit(trainX, trainY, validation_data=(testX, testY), epochs=50, batch_size=32) print("[INFO] evaluating network....") predictions = model.predict(testX, batch_size=32) print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), target_names=labelNames))
[ "bruces1998@gmail.com" ]
bruces1998@gmail.com
f71e67ea97ed8728bbb2893bbcb69248df256a18
b6d6062570f02cb278d6189ab4135cc17e2cc4d4
/django_tctip/admin.py
62937195148f71f4e88f81d00064bfbbe8517e9a
[ "MIT" ]
permissive
mooremok/django-tctip
92fb190cb059d8cb2dfc56231fb250914b414978
d15a47aab0f9f3e18d407df38fbd81f296cc4bfe
refs/heads/master
2022-11-23T10:20:06.830429
2020-07-20T02:25:17
2020-07-20T02:25:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,192
py
from django.contrib import admin from .models import Tip # Register your models here. @admin.register(Tip) class TipAdmin(admin.ModelAdmin): fieldsets = ( ('基本设置', {'fields': (('is_on',), ('name', 'minScreenSize'), ('headText', 'siderText'), ('siderTextTop', 'siderBgcolor', 'siderTop'))}), ('公告栏设置', {'fields': (('notice_flag',), ('notice_name', 'notice_title'), ('notice_text',))}), ('支付宝栏设置', {'fields': (('alipay_flag',), ('alipay_name', 'alipay_title'), ('alipay_desc', 'alipay_qrimg'))}), ('微信栏设置', {'fields': (('weixin_flag',), ('weixin_name', 'weixin_title'), ('weixin_desc', 'weixin_qrimg'))}), ('微信群设置', {'fields': (('wechat_flag',), ('wechat_name', 'wechat_title'), ('wechat_desc', 'wechat_qrimg'), ('wechat_icon',))}) )
[ "zlwork2014@163.com" ]
zlwork2014@163.com
3836c2b712e9e2ef692b159a8849ce4fafa9da48
a6f91bafaca735998fa2400c930aee121918623a
/sif/migrations/0002_auto_20160525_1204.py
bde59ac09571ce957d1a6a16866ca280877ca1d7
[]
no_license
ramonvg/shareitfast
0ae99b395710eec3329a822b65e906e126cb4e70
761eb4a102dbe7b53ce39822ebb575f444daea73
refs/heads/master
2020-12-24T19:04:09.148997
2016-05-25T14:05:34
2016-05-25T14:05:34
59,667,200
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-25 12:04 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sif', '0001_initial'), ] operations = [ migrations.AlterField( model_name='file', name='file', field=models.FileField(upload_to=''), ), ]
[ "rvg@openmailbox.org" ]
rvg@openmailbox.org
31c63861b0e0320ebbcb5ece22a79a725f3fbd66
7f3b81cca74eac23f270a9f8e956d0c5a47728e1
/Final/Shop/services.py
bc101202fb0ba8e99de475ba81083e3664e89dec
[]
no_license
dhtien95/cuoiky
2540c987a0e3202a292d4ca8bb8c0460e8eda1cd
c6566d1ababc2f33e7f3a5d7cd5f2c275012eb05
refs/heads/master
2020-03-19T23:51:36.116939
2018-06-12T06:08:26
2018-06-12T06:08:26
137,022,923
0
0
null
null
null
null
UTF-8
Python
false
false
5,006
py
import os from mimetypes import MimeTypes from django.contrib.auth.models import User from Shop.models import Song from api import drive_api from api.drive_api import downloads_path,createFolder from sys import argv downloads_path = os.path.expanduser((os.sep.join(["~","Downloads"]))) class EncodeWAV: def __init__(self): self.header_offset =44 self.DELIMITER='$' self.error_msg="" self.encoded_file = '' self.processing_byte_ord = self.header_offset def encode_file(self, file_path,msg,file_name): origin_file = open(file_path, 'rb').read() origin_file = bytearray(origin_file) self.encoded_file=origin_file #if b"WAE" in origin_file[8:11]: msg_len_str = str(len(msg)) #show check case len(msg) > file size self.hide(msg_len_str + self.DELIMITER) # Insert Len of Msg self.hide(msg) # Insert Msg full_path = downloads_path + os.sep + file_name fh = open(full_path,'wb') fh.write(self.encoded_file) fh.close() return full_path def hide(self,msg): for c in msg: c_in_binary = '{0:08b}'.format(ord(c)) for b in c_in_binary: new_value = self.encoded_file[self.processing_byte_ord] + self.encoded_file[ self.processing_byte_ord] % 2 + int(b) self.encoded_file[self.processing_byte_ord] = new_value % 256 self.processing_byte_ord += 1 class DecodeWAV: def __init__(self): self.msg = '' self.header_offset = 44 self.DELIMITER = '$' self.error_msg = "" self.len_hidden_msg = "" self.processing_byte_ord = self.header_offset def decode_file(self, file_path): encoded_file = open(file_path, 'rb').read() encoded_file = bytearray(encoded_file) processing_byte_ord = self.header_offset # if b"WAV" in encoded_file[8:11]: # get msg length temp_byte = "" while True: for b in encoded_file[processing_byte_ord:processing_byte_ord + 8]: temp_byte += (str(b % 2)) decrypted_char = chr(int(temp_byte, 2)) self.msg += decrypted_char temp_byte = "" processing_byte_ord += 8 if decrypted_char == '$': try: self.len_hidden_msg = int(self.msg[:-1]) # Ignore '$' char at the end self.msg = "" break except ValueError: return "This file has no Signature" for i in range(0, self.len_hidden_msg): for b in encoded_file[processing_byte_ord:processing_byte_ord + 8]: temp_byte += (str(b % 2)) decrypted_char = chr(int(temp_byte, 2)) self.msg += decrypted_char temp_byte = "" processing_byte_ord += 8 return self.msg # endif def upload_new_song(user, song_id, file_path, signature=None): # Get song info print("Upload new song \nSong path: ", file_path) song = Song.objects.get(pk=song_id) name = song.name author = song.author price = song.price extension = song.extension = open(file_path).name.rsplit('.', 1)[1] print("Extension: ", extension) mime_type = MimeTypes() content_type = mime_type.guess_extension(file_path) print("Mime type: ", content_type) if not user.is_superuser: # if normal user, upload to their own directory if user.profile.drive_folder_id: folder_id = user.profile.drive_folder_id else: folder_id = drive_api.createFolder(user.username) user.profile.drive_folder_id = folder_id user.profile.save() else: # if superuser upload to shiro store directory folder_id = drive_api.shiro_store_folder_id output_filename = name + " - " + author + "." + extension file_id = drive_api.uploadFile(output_filename, file_path, content_type, folder_id=folder_id) # Build new song with info new_song = Song(id=file_id, name=name, author=author, extension=extension, price=price) if signature: new_song.signature = signature if not user.is_superuser: new_song.owner = user new_song.save() user.profile.songs.add(new_song) # Update Archived Song to Profile user.profile.save() else: new_song.save() return file_id
[ "38153453+dhtien95@users.noreply.github.com" ]
38153453+dhtien95@users.noreply.github.com
3f35d71922b13339d2c2ab0ce88a514fd571b483
8872abd7028ea45cc84074a4657650261a92fbbc
/VigenereCipher/vigenercipher1.py
9e2ab10d3b903943da67405ced48ba6dc1c3451f
[]
no_license
MatteoGardini1988/opencodes
92e775b5d6de238633a777257cd77faaddfdd9c4
ee0c9b20e96728aee420b15c3ad0ec503938a6d8
refs/heads/main
2023-08-24T13:52:15.821362
2021-10-13T08:47:21
2021-10-13T08:47:21
415,842,722
0
0
null
null
null
null
UTF-8
Python
false
false
3,557
py
import constants as c class VigenereCipher: def __init__(self, msg, alphabeth="LATIN"): # Choose the alphabeth assert alphabeth in c.ALPHABETHS.keys(), f"The alphabeth ',{alphabeth},' does not exists." chosen_alphabeth = c.ALPHABETHS[alphabeth] # Inizialize the message to cipher check_msg = msg.replace(" ", "") assert self.only_admissible_letters(check_msg, chosen_alphabeth), 'You have entered an invalid message. You have to use only letter from latin alphabeth' self.msg = msg self.__key = "" # This is a private content self.vigmatrix = self.create_vig_cipher_matrix(chosen_alphabeth) self.cripedmsg = "" self.was_upper = [x.isupper() for x in self.msg] @property def key(self): return self.__key @key.setter def key(self, key_val): if self.only_admissible_letters(key_val, alphabeth="Latin"): raise Exception("The key must contains values only from the alphabeth") elif key_val.islower(): raise Exception("The key must be in Italics") else: self.__key = key_val @staticmethod def only_admissible_letters(text, alphabeth): # Check if a text contains only latin-letters # text is a string # alphabeth is a list containining symbols of an alphabeth # Turn my set is upper case text = text.upper() # Turn the alphabeth into a set myalphabeth = set(alphabeth) mytext = set(text) return mytext.issubset(myalphabeth) @staticmethod def create_vig_cipher_matrix(alphabeth): # Create the vigenere matrix from a given alphabeth n = len(alphabeth) vig_cipher = [None]*n for i in range(n): vig_cipher[i] = alphabeth[i:] + alphabeth[0:i] return vig_cipher def encriptmsg(self): n = len(self.msg) msg_to_encript = self.msg.upper() nkey = len(self.__key) d = self.vigmatrix[0] # This is my dictionary j = 0 # This is needed to run over the ciphring string for i in range(n): if msg_to_encript[i] == ' ': ciphred = ' ' else: val2cip = msg_to_encript[i] p = j % nkey j += 1 col = d.index(val2cip) row = d.index(self.__key[p]) ciphred = self.vigmatrix[row][col] self.cripedmsg += ciphred def decipher(self): n = len(self.msg) nkey = len(self.__key) d = self.vigmatrix[0] # This is my dictionary decripted_msg = "" j = 0 for i in range(n): if self.cripedmsg[i] == ' ': # if there is an empty space you don't have anything to cipher deciphred = ' ' else: val2dec = self.cripedmsg[i] # get the current position of the crypto string p = j % nkey j += 1 row = d.index(self.__key[p]) col = self.vigmatrix[row].index(val2dec.upper()) deciphred = self.vigmatrix[0][col] # Restyle: this respect the input upper/lower case if not self.was_upper[i]: deciphred = deciphred.lower() decripted_msg += deciphred return decripted_msg
[ "noreply@github.com" ]
MatteoGardini1988.noreply@github.com
0a7a15e03741213c91a5d2b06212b2b10de010e8
71f39b722f1204738b53e90d8566bcf6da99d494
/apps/utils/yunpian.py
efd6bd4e99d5ed743b872b2e50e3c07ff167dd63
[]
no_license
kingvern/txplatform
cd9fc36fe3ba536b7578d734f520d0f091db4b22
235465b742d0ba13132f872e0f3818990f232888
refs/heads/master
2022-12-17T00:03:50.675329
2018-11-16T10:02:35
2018-11-16T10:02:35
149,862,235
0
0
null
2022-11-22T02:53:29
2018-09-22T09:17:06
JavaScript
UTF-8
Python
false
false
732
py
# _*_ coding: utf-8 _*_ import requests class YunPian(object): def __init__(self, api_key): self.api_key = api_key self.single_send_url = 'https://sms.yunpian.com/v2/sms/single_send.json' def send_sms(self, code, mobile): parmas = { 'apikey': self.api_key, 'mobile': mobile, 'text': '【王远欣】您的验证码是{code}'.format(code=code) } # text必须要跟云片后台的模板内容 保持一致,不然发送不出去! r = requests.post(self.single_send_url, data=parmas) print(r) if __name__ == '__main__': yun_pian = YunPian('460b7e12332b41a211c21ab4dd4b6481') yun_pian.send_sms('123456', '18801272770')
[ "kingvern@foxmail.com" ]
kingvern@foxmail.com
c5912fceef6b9dcb1f1cc8b305861e72abef1b77
20b0eb954615e6953b641cf9122c2212a2b32e32
/shoot/account/forms.py
d10a7615d32d87d2428cd2cf15f58dbe64c22f7f
[]
no_license
divyeshbhatt/sports
254f160cb7731b89fe78d8cfbd44680f75125a89
029a30c76255bebd6103335b89721303edb61a1c
refs/heads/master
2020-03-09T22:36:39.399852
2018-04-11T06:28:47
2018-04-11T06:28:47
129,038,184
0
0
null
null
null
null
UTF-8
Python
false
false
1,174
py
from django import forms from django.contrib.auth import ( authenticate, get_user_model, login, logout, ) User = get_user_model() class UserLoginForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'placeholder':'username'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'placeholder':'password'})) class UserRegistrationForm(forms.ModelForm): username = forms.CharField(widget=forms.TextInput(attrs={'placeholder':'User Name'})) email = forms.EmailField(widget=forms.EmailInput(attrs={'placeholder':'Email'})) email2 = forms.EmailField(widget=forms.EmailInput(attrs={'placeholder':'Confirm Email'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'placeholder':'Password'})) class Meta: model = User fields = ('username', 'email','email2', 'password') def clean_email2(self): email = self.cleaned_data.get('email') email2 = self.cleaned_data.get('email2') if email != email2: raise forms.ValidationError('Emails Not Match..') email_qs = User.objects.filter(email = email) if email_qs.exists(): raise forms.ValidationError('Email already exists..!') return email2
[ "divyesh171975@gmail.com" ]
divyesh171975@gmail.com
a3706a1097368c223b6395e2a2418e3ff40dc558
04662a4b20227f8ab7446cce71a77e2bd7fbfffb
/flask-aws/bin/rst2odt_prepstyles.py
b60558395fdfc271bbe3400b2be1d2bb9f46d108
[]
no_license
poonesh/flask-aws-tutorial
d77511290cf2b293c01dd9ac93a46678f4dd9d12
ccd2b829f9f381d0fdb84c1c995ce7aaeb7ea2ed
refs/heads/master
2021-01-25T14:39:39.219960
2018-03-03T21:34:19
2018-03-03T21:34:19
123,721,060
0
0
null
2018-03-03T18:43:18
2018-03-03T18:43:18
null
UTF-8
Python
false
false
1,744
py
#!/Users/Pooneh/projects/flask-aws-tutorial/flask-aws/bin/python # $Id: rst2odt_prepstyles.py 5839 2009-01-07 19:09:28Z dkuhlman $ # Author: Dave Kuhlman <dkuhlman@rexx.com> # Copyright: This module has been placed in the public domain. """ Fix a word-processor-generated styles.odt for odtwriter use: Drop page size specifications from styles.xml in STYLE_FILE.odt. """ # # Author: Michael Schutte <michi@uiae.at> from lxml import etree import sys import zipfile from tempfile import mkstemp import shutil import os NAMESPACES = { "style": "urn:oasis:names:tc:opendocument:xmlns:style:1.0", "fo": "urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0" } def prepstyle(filename): zin = zipfile.ZipFile(filename) styles = zin.read("styles.xml") root = etree.fromstring(styles) for el in root.xpath("//style:page-layout-properties", namespaces=NAMESPACES): for attr in el.attrib: if attr.startswith("{%s}" % NAMESPACES["fo"]): del el.attrib[attr] tempname = mkstemp() zout = zipfile.ZipFile(os.fdopen(tempname[0], "w"), "w", zipfile.ZIP_DEFLATED) for item in zin.infolist(): if item.filename == "styles.xml": zout.writestr(item, etree.tostring(root)) else: zout.writestr(item, zin.read(item.filename)) zout.close() zin.close() shutil.move(tempname[1], filename) def main(): args = sys.argv[1:] if len(args) != 1: print >> sys.stderr, __doc__ print >> sys.stderr, "Usage: %s STYLE_FILE.odt\n" % sys.argv[0] sys.exit(1) filename = args[0] prepstyle(filename) if __name__ == '__main__': main() # vim:tw=78:sw=4:sts=4:et:
[ "poonehshooshtari@gmail.com" ]
poonehshooshtari@gmail.com
bf340fac36686131acd709efb2fff3a1258101c7
ecec5645d7cc552565e466b2f233275294bab108
/lab2_v9/code.py
f28ef7ec803e23f78f7de1d6353ae1c2b0230471
[]
no_license
stepatron/MobileDevicesManagement
677b3cffe7956040f69cf98182c3b3708f32c042
66690443cc6007b67b42e763f46cd098b9a887de
refs/heads/master
2022-04-14T11:52:47.487215
2022-02-10T18:09:17
2022-02-10T18:09:17
255,310,079
0
0
null
null
null
null
UTF-8
Python
false
false
1,502
py
import os import re import math import matplotlib.pyplot as plt table = [] table_1 = [] mbit_rate = 0.5 kbit_free_total = 1000 byte_total = bill_total = 0 ip_client = '192.168.250.3' # os.system("nfdump -r nfcapd.202002251200 >> nfcapd202002251200.txt") file_in = open('nfcapd202002251200.txt', 'r') [table_1.append(string.rstrip()) for string in file_in] for i in range(len(table_1)): table_1[i] = re.sub(r'\.\d\sM', '500000', table_1[i]) [table.append(re.sub(r'\s+', ' ', elem).split(' ')) for elem in table_1[1:-4]] [row.remove('->') for row in table] [row.remove('->') for row in table] X_unsort = [] [X_unsort.append(re.sub(r':\d{2}\.{1}\d{3}', '', row[1])) for row in table] Y_unsort = [] [Y_unsort.append(int(row[9])) for row in table] XY_unsort = zip(X_unsort,Y_unsort) XY = sorted(XY_unsort, key=lambda tup: tup[0]) X = [XY[0] for XY in XY] Y = [XY[1] for XY in XY] for i in range(len(X)): if i == len(X)-1: break if X[i] == X[i+1]: Y[i] += Y[i+1] del X[i+1] del Y[i+1] i -= 1 for row in table: if ip_client in row[5]: byte_total += int(row[9]) bill_total = math.ceil((byte_total*8 - kbit_free_total*1024)/(1024*1024)) * mbit_rate print ('Затраты абонента', ip_client, 'составляют:', bill_total, 'руб.') fig, ax = plt.subplots() ax.bar(X, Y) plt.ylabel('Объем трафика (бит)') plt.xlabel('Время (поминутно)') plt.show() os.system("pause") sys.exit(0)
[ "noreply@github.com" ]
stepatron.noreply@github.com
c9673f0f6fd4aecb76d02fa3a8f44211346f42e5
b32fdf5e74c46bcde51c12c152e6762a92e272e0
/Login/urls.py
e5d4c36a606fd87dc4459f8c29d1a3c2ea44f235
[]
no_license
INHDI/demo_sql
172722f6a7122bec0d103aee7e62cb65925e4aa1
d77f7a796bf3d406f1881f0753cd4278948a5b74
refs/heads/main
2023-07-20T04:32:24.296373
2021-08-19T04:36:08
2021-08-19T04:36:08
397,814,454
0
0
null
null
null
null
UTF-8
Python
false
false
255
py
from django.urls import path from . import views urlpatterns = [ path('login/', views.login, name='home'), path("them/", views.them, name="them"), path("sua/<str:pk>", views.sua, name="sua"), path("xoa/<str:pk>", views.xoa, name="xoa") ]
[ "dang12.10.1999@gmail.com" ]
dang12.10.1999@gmail.com
bf59a8d1751a59bb7477c25729c5179e6bdb4d4d
1daabb9079a80fdf24f1e27d750b7bd53ac1c4c3
/pybot/plugins/perms.py
135f8d20745484fe1e6cc8faf9c1ac71c70d6986
[ "MIT" ]
permissive
jkent/pybot
ea01bd0d9b19b65a30a50f429b563e3ff39d1ee9
0c70a7c29caa709413e04a411a5fdb22a8dbdb12
refs/heads/master
2023-07-14T20:22:56.612958
2021-08-20T04:49:05
2021-08-20T04:49:05
12,857,889
0
1
MIT
2021-05-02T00:36:54
2013-09-16T03:42:14
Python
UTF-8
Python
false
false
4,918
py
# -*- coding: utf-8 -*- # vim: set ts=4 et import json import os import sqlite3 from pybot.plugin import * class Plugin(BasePlugin): default_level = 1000 def on_load(self): self.db = sqlite3.connect(os.path.join(self.bot.core.data_path, 'perms.db')) self.cur = self.db.cursor() self.cur.execute('''CREATE TABLE IF NOT EXISTS allow (mask TEXT PRIMARY KEY, rules TEXT)''') self.cur.execute('''CREATE TABLE IF NOT EXISTS deny (mask TEXT PRIMARY KEY, rules TEXT)''') self.db.commit() self.load_rules() def on_unload(self): self.save_rules() self.db.close() def load_rules(self): self.bot.allow_rules = {} self.bot.deny_rules = {} self.cur.execute('SELECT COUNT(*) FROM allow') count = self.cur.fetchone()[0] if count == 0: self.bot.allow_rules['*'] = {'ANY': 1} else: for mask, rules in self.cur.execute('SELECT mask, rules ' \ 'FROM allow'): self.bot.allow_rules[mask] = json.loads(rules) for mask, rules in self.cur.execute('SELECT mask, rules FROM ' \ 'deny'): self.bot.deny_rules[mask] = json.loads(rules) superuser = self.config.get('superuser') if superuser: self.bot.allow_rules[superuser] = {'ANY': 1000} def save_rules(self): for mask, rules in list(self.bot.allow_rules.items()): rules = json.dumps(rules) self.cur.execute('INSERT OR REPLACE INTO allow (mask, rules) ' \ 'VALUES (?, ?)', (mask, rules)) for mask, rules in list(self.bot.deny_rules.items()): rules = json.dumps(rules) self.cur.execute('INSERT OR REPLACE INTO deny (mask, rules) ' \ 'VALUES (?, ?)', (mask, rules)) self.db.commit() @hook def perms_list_trigger(self, msg, args, argstr): msg.reply('Allow:') for mask, rules in list(self.bot.allow_rules.items()): line = ' ' + mask for plugin, level in list(rules.items()): line += ' %s=%s' % (plugin, level) msg.reply(line) msg.reply('Deny:') for mask, rules in list(self.bot.deny_rules.items()): line = ' ' + mask for plugin, level in list(rules.items()): line += ' %s=%s' % (plugin, level) msg.reply(line) @hook def perms_allow_trigger(self, msg, args, argstr): if len(args) < 2: msg.reply('a prefix mask is required') return mask = args[1] if mask.startswith('-'): if len(args) != 2: msg.reply('only one argument expected') mask = mask[1:] if mask in self.bot.allow_rules: del self.bot.allow_rules[mask] self.cur.execute('DELETE FROM allow WHERE mask=?', (mask,)) self.db.commit() return rules = self.bot.allow_rules.setdefault(mask, {}) for arg in args[2:]: if arg.startswith('-'): plugin = arg[1:] try: del rules[plugin] except: msg.reply('no rule exists for plugin "%s"' % plugin) return else: try: plugin, level = arg.split('=', 1) level = int(level) except: msg.reply('invalid syntax, "plugin=level" format required') return rules[plugin] = level @hook def perms_deny_trigger(self, msg, args, argstr): if len(args) < 2: msg.reply('a prefix mask is required') return mask = args[1] if mask.startswith('-'): if len(args) != 2: msg.reply('only one argument expected') mask = mask[1:] if mask in self.bot.deny_rules: del self.bot.deny_rules[mask] self.cur.execute('DELETE FROM deny WHERE mask=?', (mask,)) self.db.commit() return rules = self.bot.deny_rules.setdefault(mask, {}) for arg in args[2:]: if arg.startswith('-'): plugin = arg[1:] try: del rules[plugin] except: msg.reply('no rule exists for plugin "%s"' % plugin) return else: try: plugin, level = arg.split('=', 1) level = int(level) except: msg.reply('invalid syntax, "plugin=level" format required') return rules[plugin] = level
[ "jeff@jkent.net" ]
jeff@jkent.net
f5a46d1bbb3b34ce030ff8beb152402b946804ea
e188b95dd14ec5de77056be87c30ccc322f87d7a
/Week2/command line/command-line/SNParrray2fasta.py
b7ce71fb3b5408ab4e7385968507cafa51fdeb64
[]
no_license
anuhanovic/BIOF475Spring2018
f0db901b45c7bac4d736f2ced93ec1e2b794dfa7
fdeafbea61b58d90399c4ae0b09bbefe3a705ea6
refs/heads/master
2021-05-08T13:56:17.463030
2019-07-12T18:13:24
2019-07-12T18:13:24
120,050,640
7
7
null
2018-12-04T19:41:58
2018-02-03T01:56:19
Jupyter Notebook
UTF-8
Python
false
false
2,096
py
#!/usr/bin/python # """ Modified to deal with tab-delimited rows of IDs and nucleotides. Did this to parse a SNP array into FASTA format. Author: R. Burke Squires, BCBB """ # __version__: 0.1.1 def converter(args): """ This method takes the command line arguments and converts the input SNP file into a FASTA for for further analysis. """ import os if not args.output_file: input_filename, file_extension = os.path.splitext(args.input_file) file_extension = 'fasta' output_file = "%s.%s" % (input_filename, file_extension) else: output_file = '%s.fasta' % args.output_file output = open(output_file, 'w') with open(args.input_file, 'U') as f: for line in f: data = line.split('\t') identifier = data[0] sequence = ''.join(data[1:]) output.write(">%s\n%s" % (identifier, sequence)) output.close() if __name__ == '__main__': """ This is the main function of the program and what is run first. This sets up the arguments and then feeds tehm into the converter method when run. """ import argparse PARSER = argparse.ArgumentParser(prog='SNParray2fasta.py', usage='%(prog)s -in (SNP file)\n', description='Create FASTA file from tab delimited SNP data.', formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=15), add_help=False) REQUIRED = PARSER.add_argument_group('Required') REQUIRED.add_argument('-in', '--input_file', required=True, help='The input SNP file.') OPTIONAL = PARSER.add_argument_group('Options') OPTIONAL.add_argument('-out', '--output_file', help='The output FASTA file.') OPTIONAL.add_argument('-h', '--help', action='help', help='show this help message & exit') OPTIONAL.add_argument('-path', default='.', help=argparse.SUPPRESS) ARGS = PARSER.parse_args() converter(ARGS)
[ "noreply@github.com" ]
anuhanovic.noreply@github.com
2508cc3d31dd4401b54226b20e67701253be7c4d
547018e2fb9b178aacfe2ceabcab4313647ffb79
/test_cases/general/primitive_type/time/py/test_generate/parse.py
edef0527fe4b9af76816443699824edcbb8c8aa6
[ "MIT" ]
permissive
Parquery/mapry
2eb22862494342f71ca4254e7b2b53df84bd666f
93515307f9eba8447fe64b0ac7cc68b2d07205a7
refs/heads/master
2021-06-11T09:57:17.764387
2021-06-02T14:19:52
2021-06-02T14:19:52
165,482,780
11
3
MIT
2021-06-02T14:19:53
2019-01-13T08:31:08
C++
UTF-8
Python
false
false
2,269
py
# File automatically generated by mapry. DO NOT EDIT OR APPEND! """provides general structures and functions for parsing.""" import typing import some.graph class Error: """represents an error occurred while parsing.""" def __init__(self, ref: str, message: str) -> None: """ initializes the error with the given values. :param ref: references the cause (e.g., a reference path) :param message: describes the error """ self.ref = ref self.message = message class Errors: """ collects errors capped at a certain quantity. If the capacity is full, the subsequent surplus errors are ignored. """ def __init__(self, cap: int) -> None: """ initializes the error container with the given cap. :param cap: maximum number of contained errors """ self.cap = cap self._values = [] # type: typing.List[Error] def add(self, ref: str, message: str) -> None: """ adds an error to the container. :param ref: references the cause (e.g., a reference path) :param message: describes the error """ if len(self._values) < self.cap: self._values.append(Error(ref=ref, message=message)) def full(self) -> bool: """gives True when there are exactly ``cap`` errors contained.""" return len(self._values) == self.cap def empty(self) -> bool: """gives True when there are no errors contained.""" return len(self._values) == 0 def count(self) -> int: """returns the number of errors.""" return len(self._values) def values(self) -> typing.Iterable[Error]: """gives an iterator over the errors.""" return iter(self._values) def placeholder_some_graph() -> some.graph.SomeGraph: """ creates a placeholder instance of SomeGraph. Placeholders are necessary so that we can pre-allocate class registries during parsing. All the attribute of the placeholder are set to None. Consider a placeholder an empty shell to be filled out during parsing. :return: empty shell """ return some.graph.SomeGraph( # type: ignore some_time=None, formatless_time=None)
[ "noreply@github.com" ]
Parquery.noreply@github.com
f2a93f6eb0f2a4b12c9f597dd58d59b49426ecb9
efe53f7c0b0439bd9dcdcf49847222c87aad6c51
/study_algorithm/python/Recursion/Fibonnaci.py
34d5b4ce62808109109459c9e944593ed16230ef
[ "MIT" ]
permissive
AlphaSunny/study
f13eca7bfa830dcdcb395fb05e9c2006b86190ad
4e65127fefa9078b7ae6b9db92369c93e61e4327
refs/heads/master
2020-04-09T07:57:30.685004
2019-03-21T08:40:29
2019-03-21T08:40:29
160,177,045
0
0
null
null
null
null
UTF-8
Python
false
false
354
py
# Instantiate Cache information n = 10 cache = [None] * (n + 1) def fib_dyn(n): # Base Case if n == 0 or n == 1: return n # Check cache if cache[n] != None: return cache[n] # Keep setting cache cache[n] = fib_dyn(n-1) + fib_dyn(n-2) return cache[n] fib_dyn(10)
[ "epsilonsunny@gmai.com" ]
epsilonsunny@gmai.com
cc0b92b1e557e4310fac89d5ba17a487c4827dce
ecdbfdcc607f7c58e2728f76b7819790d6ab51c7
/Machine Learning Lab 1.py
a0c5c6a83a3972fd64ffdbc052081ebd8dd34f3d
[]
no_license
NischalKothariM-1CE17CS074/ML-LAB-7TH-SEM_NISCHAL
0908143c6ef7568195868d10c34df854ec8d4aef
5122da8109536c7aa437fcfe4a5b73b2075bf99e
refs/heads/main
2023-02-20T22:48:55.111346
2021-01-27T15:31:26
2021-01-27T15:31:26
329,391,518
0
0
null
null
null
null
UTF-8
Python
false
false
958
py
#!/usr/bin/env python # coding: utf-8 # In[6]: import csv num_attribute=6 a=[] with open('pro1.csv', 'r') as csvfile: reader=csv.reader(csvfile) for row in reader: a.append(row) print(row) print("\n The total number of training instances are : ",len(a)) num_attribute = len(a[0])-1 print("\n The initial hypothesis is : ") hypothesis = ['0']*num_attribute print(hypothesis) for j in range(0,num_attribute): hypothesis[j]=a[0][j] print("\n Find-S: Finding maximally specific Hypothesis\n") for i in range(0,len(a)): if a[i][num_attribute]=='Yes': for j in range(0,num_attribute): if a[i][j]!=hypothesis[j]: hypothesis[j]='?' else: hypothesis[j]=a[i][j] print("\n For training Example No:{0} the hypothesis is".format(i),hypothesis) print("\n The Maximally specific hypothesis for the training instance is ") print(hypothesis) # In[ ]:
[ "noreply@github.com" ]
NischalKothariM-1CE17CS074.noreply@github.com
b168b5b02efedee13bf8554f7c91b90784e428ae
96cc90fd90b838c55f08605d0096e8a91f35a797
/Django_ben6/urls.py
2a7e5261e84508cc217896c4a2f57316d36a1db7
[]
no_license
obt817/Django_ben6
832165818b05c07e013b2309c270a4ced0234001
8ab3e3671ee571777e4a8e0dcb4a3c512cc17d68
refs/heads/master
2023-01-30T15:39:41.183016
2020-12-04T14:39:08
2020-12-04T14:39:08
316,948,120
0
0
null
null
null
null
UTF-8
Python
false
false
798
py
"""Django_ben6 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/dev/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include("app6.urls")), ]
[ "obatayouhei@obatayouheinoMacBook-Air.local" ]
obatayouhei@obatayouheinoMacBook-Air.local
1d6b32455392c0bcd4af1a417953e142dfb8d24e
367e63b0a34178713613b737d8a8ca59dc039acc
/Sorting/Insertion-sort.py
99dcd274283d4b31f257203cc4d528ce0614f95f
[]
no_license
ossayed/hackerrank-problems
1d92d13750cdfc7420c284001772b093992d5714
53fcbbdef97527cbca8b79119436c826b0c2edc3
refs/heads/master
2020-03-28T05:08:39.559407
2018-09-07T02:19:28
2018-09-07T02:19:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
731
py
#!/bin/python3 import sys #https://www.hackerrank.com/challenges/insertionsort2/problem def insertionSort2(n, arr): # Complete this function for x in range(1,n): sort_num = arr[x] for y in range(1,x + 1): if sort_num < arr[x-y]: arr[(x-y)+1] = arr[x-y] arr[(x-y)] = sort_num #print(arr,"a") if sort_num > arr[x-y]: arr[(x-y)+1]= sort_num #print(arr,"b") break arr_str =" ".join(str(v) for v in arr) print(arr_str) if __name__ == "__main__": n = int(input().strip()) arr = list(map(int, input().strip().split(' '))) insertionSort2(n, arr)
[ "ossayedkh@gmail.com" ]
ossayedkh@gmail.com
a1f5abefe278e255ac9bb7768c3d39e92105bc60
c074fb834cb4a8ac75d107146df10f9496590792
/users/urls.py
df7702c6046b6ab2fde4eb8a1c751b9e23eb5677
[ "Unlicense" ]
permissive
jmhubbard/quote_of_the_day_custom_user
4d5ffd4183d7e6290161b84cae2aa1f7ad621a99
27024b2953c1c94fd2970563c3ab31ad444912b6
refs/heads/master
2023-02-19T00:59:27.372671
2021-01-10T02:45:56
2021-01-10T02:45:56
293,443,918
1
0
Unlicense
2020-12-03T17:59:59
2020-09-07T06:41:25
Python
UTF-8
Python
false
false
771
py
from django.urls import path, include from users.views import UserCreate, UserDeleteView, useraccountview from main.views import UserLoginView, UserLogoutView # from django.contrib.auth import views as auth_views urlpatterns = [ path('login/', UserLoginView.as_view(), name='login'), path('add/', UserCreate.as_view(), name='user-add'), #Create user page path('logout/' , UserLogoutView.as_view(), name='logout'), path('delete_account/<int:pk>/', UserDeleteView.as_view(), name='delete_account'), path('account_page/', useraccountview, name='account_page') # path('', include('django.contrib.auth.urls')), #accounts/login = login page # path('accounts/', include('django.contrib.auth.urls')), #accounts/login = login page ]
[ "jasonhubb@gmail.com" ]
jasonhubb@gmail.com
e98c78de8aedaf45e00b38c10dbe13f7032afb9b
1684a619346926098eb66e818dfc7fda160d7062
/src/Profiles/migrations/0006_alter_profile_user.py
b8588138e874d998425c096983088ed79d928cfb
[]
no_license
mah-di/social
e5fc0a531d8f5cc66074e1fd100077524ad48d01
d1f10b15872e8a015f7bbc8180eec67657e7efd2
refs/heads/main
2023-07-04T18:02:54.574786
2021-08-28T06:01:32
2021-08-28T06:01:32
400,711,110
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
# Generated by Django 3.2.5 on 2021-07-27 15:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('Profiles', '0005_alter_profile_friends'), ] operations = [ migrations.AlterField( model_name='profile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL), ), ]
[ "mahdiiqbal37@gmail.com" ]
mahdiiqbal37@gmail.com
a6467223350da4911eb89579ea7f11c2fb8744a8
c34dd2c2d8c0b5916743bb7014e5011a5197dfd2
/projects/NLR_MEG/PSI_session1_ROI_3.py
82e54b1d6ee9f8032cd6fa7313485480352d2c14
[ "BSD-3-Clause" ]
permissive
yeatmanlab/BrainTools
c6858c2a2623ee4ec1160ef98872f15e2ad05dad
890db4256b0290918045e53cd3c6fd6197fcbb4e
refs/heads/master
2021-05-22T03:47:32.162046
2021-04-14T17:56:12
2021-04-14T17:56:12
46,300,396
5
7
BSD-3-Clause
2019-06-18T21:22:46
2015-11-16T20:25:44
Python
UTF-8
Python
false
false
102,702
py
# -*- coding: utf-8 -*- """ Created on Tue Nov 15 12:05:40 2016 @author: sjjoo """ #%% import sys import mne import matplotlib.pyplot as plt import imageio from mne.utils import run_subprocess, logger import os from os import path as op import copy import shutil import numpy as np from numpy.random import randn from scipy import stats as stats import scipy.io as sio import time from functools import partial from mne.stats import (spatio_temporal_cluster_1samp_test, summarize_clusters_stc) from mne import set_config set_config('MNE_MEMMAP_MIN_SIZE', '1M') set_config('MNE_CACHE_DIR', '.tmp') mne.set_config('MNE_USE_CUDA', 'true') this_env = copy.copy(os.environ) fs_dir = '/mnt/diskArray/projects/avg_fsurfer' this_env['SUBJECTS_DIR'] = fs_dir raw_dir = '/mnt/scratch/NLR_MEG3' os.chdir(raw_dir) subs = ['NLR_102_RS','NLR_103_AC','NLR_110_HH','NLR_127_AM', 'NLR_130_RW','NLR_132_WP','NLR_133_ML','NLR_145_AC','NLR_151_RD', 'NLR_152_TC','NLR_160_EK','NLR_161_AK','NLR_163_LF','NLR_164_SF', 'NLR_170_GM','NLR_172_TH','NLR_174_HS','NLR_179_GM','NLR_180_ZD', 'NLR_187_NB','NLR_203_AM','NLR_204_AM','NLR_205_AC','NLR_206_LM', 'NLR_207_AH','NLR_211_LB','NLR_150_MG' ] # 'NLR_202_DD','NLR_105_BB','NLR_150_MG','NLR_201_GS', brs = [87, 102, 78, 115, 91, 121, 77, 91, 93, 88, 75, 90, 66, 59, 81, 84, 81, 72, 71, 121,75, 66, 90, 93, 101, 56, 93] #75 101, 93, brs = np.array(brs) age = [125, 132, 138, 109, 138, 108, 98, 105, 87, 131, 123, 95, 112, 133, 152, 103, 89, 138, 93, 117, 122, 109, 90, 111, 86, 147] age = np.divide(age, 12) # Session 1 # subs are synced up with session1 folder names... # session1 = ['102_rs160618','103_ac150609', '110_hh160608','127_am161004','130_rw151221', '132_wp160919','133_ml151124','145_ac160621', '151_rd160620','152_tc160422','160_ek160627', '161_ak160627','163_lf160707', '164_sf160707','170_gm160613','172_th160614', '174_hs160620','179_gm160701','180_zd160621', '187_nb161017','203_am150831', '204_am150829','205_ac151208','206_lm151119', '207_ah160608','211_lb160617','150_mg160606' ] #'202_dd150919'(# of average is zero) '105_bb150713'(# of average is less than 10) #,(# of average is less than 20) '201_gs150729'(# of average is less than 10) n_subjects = len(subs) c_table = ( (0.6510, 0.8078, 0.8902), # Blue, Green, Red, Orange, Purple, yellow (0.1216, 0.4706, 0.7059), (0.6980, 0.8745, 0.5412), (0.2000, 0.6275, 0.1725), (0.9843, 0.6039, 0.6000), (0.8902, 0.1020, 0.1098), (0.9922, 0.7490, 0.4353), (1.0000, 0.4980, 0), (0.7922, 0.6980, 0.8392), (0.4157, 0.2392, 0.6039), (1.0000, 1.0000, 0.6000), (0.6941, 0.3490, 0.1569)) method = "dSPM" snr = 3. lambda2 = 1. / snr ** 2 fname_data = op.join(raw_dir, 'session1_data.npy') m1 = np.transpose(brs) >= 90 m2 = np.logical_not(m1) #m1[19] = False m2[12] = False m2[16] = False m1[26] = False m2[26] = False #m2[15] = False good_readers = np.where(m1)[0] poor_readers = np.where(m2)[0] all_subject = [] all_subject.extend(good_readers) all_subject.extend(poor_readers) all_subject.sort() poor_subs = [] for n in np.arange(0,len(poor_readers)): poor_subs.append(subs[poor_readers[n]]) #m1 = np.transpose(age) > 9 # #m2 = np.logical_not(m1) # #m2[12] = False #m2[16] = False #m2[26] = False #old_readers = np.where(m1)[0] #young_readers = np.where(m2)[0] # #all_readers = [] #all_readers.extend(good_readers) #all_readers.extend(poor_readers) #all_readers.sort() #%% """ Here we do the real deal... """ # Session 1 load_data = False method = "dSPM" snr = 3. lambda2 = 1. / snr ** 2 #conditions1 = [0, 2, 4, 6, 8, 16, 18, 20, 22, 24] # Lets compare word vs. scramble conditions1 = ['word_c254_p20_dot', 'word_c254_p50_dot', 'word_c137_p20_dot', 'word_c254_p80_dot', 'word_c137_p80_dot', #'bigram_c254_p20_dot', # 'bigram_c254_p50_dot', 'bigram_c137_p20_dot', 'word_c254_p20_word', 'word_c254_p50_word', 'word_c137_p20_word', 'word_c254_p80_word', 'word_c137_p80_word', #'bigram_c254_p20_word', # 'bigram_c254_p50_word', 'bigram_c137_p20_word' ] # conditions2 = [16, 22] # Lets compare word vs. scramble X13 = np.empty((20484, 601, n_subjects, len(conditions1))) #word_data = np.empty((20484, 421, n_subjects, len(conditions1[8:]))) fs_vertices = [np.arange(10242)] * 2 n_epochs = np.empty((n_subjects,len(conditions1))) """ Read HCP labels """ labels = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', subjects_dir=fs_dir) PHT_label_lh = [label for label in labels if label.name == 'L_PHT_ROI-lh'][0] PHT_label_rh = [label for label in labels if label.name == 'R_PHT_ROI-rh'][0] TE1p_label_lh = [label for label in labels if label.name == 'L_TE1p_ROI-lh'][0] TE1p_label_rh = [label for label in labels if label.name == 'R_TE1p_ROI-rh'][0] TE2p_label_lh = [label for label in labels if label.name == 'L_TE2p_ROI-lh'][0] TE2p_label_rh = [label for label in labels if label.name == 'R_TE2p_ROI-rh'][0] PH_label_lh = [label for label in labels if label.name == 'L_PH_ROI-lh'][0] PH_label_rh = [label for label in labels if label.name == 'R_PH_ROI-rh'][0] FFC_label_lh = [label for label in labels if label.name == 'L_FFC_ROI-lh'][0] FFC_label_rh = [label for label in labels if label.name == 'R_FFC_ROI-rh'][0] IFSp_label_lh = [label for label in labels if label.name == 'L_IFSp_ROI-lh'][0] IFSp_label_rh = [label for label in labels if label.name == 'R_IFSp_ROI-rh'][0] IFJp_label_lh = [label for label in labels if label.name == 'L_IFJp_ROI-lh'][0] IFJp_label_rh = [label for label in labels if label.name == 'R_IFJp_ROI-rh'][0] IFJa_label_lh = [label for label in labels if label.name == 'L_IFJa_ROI-lh'][0] IFJa_label_rh = [label for label in labels if label.name == 'R_IFJa_ROI-rh'][0] a45_label_lh = [label for label in labels if label.name == 'L_45_ROI-lh'][0] a45_label_rh = [label for label in labels if label.name == 'R_45_ROI-rh'][0] a44_label_lh = [label for label in labels if label.name == 'L_44_ROI-lh'][0] a44_label_rh = [label for label in labels if label.name == 'R_44_ROI-rh'][0] PGi_label_lh = [label for label in labels if label.name == 'L_PGi_ROI-lh'][0] PGi_label_rh = [label for label in labels if label.name == 'R_PGi_ROI-rh'][0] PGs_label_lh = [label for label in labels if label.name == 'L_PGs_ROI-lh'][0] PGs_label_rh = [label for label in labels if label.name == 'R_PGs_ROI-rh'][0] STSvp_label_lh = [label for label in labels if label.name == 'L_STSvp_ROI-lh'][0] STSvp_label_rh = [label for label in labels if label.name == 'R_STSvp_ROI-rh'][0] STSdp_label_lh = [label for label in labels if label.name == 'L_STSdp_ROI-lh'][0] STSdp_label_rh = [label for label in labels if label.name == 'R_STSdp_ROI-rh'][0] TPOJ1_label_lh = [label for label in labels if label.name == 'L_TPOJ1_ROI-lh'][0] TPOJ1_label_rh = [label for label in labels if label.name == 'R_TPOJ1_ROI-rh'][0] V1_label_lh = [label for label in labels if label.name == 'L_V1_ROI-lh'][0] V1_label_rh = [label for label in labels if label.name == 'R_V1_ROI-rh'][0] if load_data == False: for n, s in enumerate(session1): os.chdir(os.path.join(raw_dir,session1[n])) os.chdir('inverse') fn = 'Conditions_40-sss_eq_'+session1[n]+'-ave.fif' fn_inv = session1[n] + '-inv.fif' inv = mne.minimum_norm.read_inverse_operator(fn_inv, verbose=None) evoked = mne.read_evokeds(fn, condition=None, baseline=(None,0), kind='average', proj=True) stc = mne.minimum_norm.apply_inverse(evoked[0],inv,lambda2, method=method, pick_ori="normal") s_label = IFSp_label_lh.morph(subject_from='fsaverage', subject_to=subs[n], subjects_dir=fs_dir, n_jobs=18) #grade=[np.arange(10242), np.arange(10242)] stc_label = stc.in_label(s_label) os.chdir(os.path.join(raw_dir,session1[n])) os.chdir('epochs') fn = 'All_40-sss_'+session1[n]+'-epo.fif' epochs = mne.read_epochs(fn) eid = epochs.events[:,2] == 101 epo = epochs[eid] epo.crop(0., 0.7) snr = 1.0 # use lower SNR for single epochs lambda2 = 1.0 / snr ** 2 stcs = mne.minimum_norm.apply_inverse_epochs(epo, inv, lambda2, method, pick_ori="normal", return_generator=True) os.chdir(os.path.join(fs_dir,subs[n])) os.chdir('bem') fn = subs[n] + '-ico-5-src.fif' src = mne.read_source_spaces(fn, patch_stats=False, verbose=None) src = inv['src'] label = mne.read_label('TE2p_label_lh') seed_ts = mne.extract_label_time_course(stcs, label, src, #labels_parc mode='mean_flip', allow_empty=True, return_generator=False) comb_ts = zip(seed_ts, stcs) #Construct indices to estimate connectivity between the label time course # and all source space time courses vertices = [src[i]['vertno'] for i in range(2)] n_signals_tot = 1 + len(vertices[0]) + len(vertices[1]) indices = mne.connectivity.seed_target_indices([0], np.arange(1, n_signals_tot)) # read colors node_colors = [label.color for label in labels] # Compute the PSI in the frequency range 8Hz..30Hz. We exclude the baseline # period from the connectivity estimation fmin = 8. fmax = 30. tmin_con = 0. sfreq = 600 # the sampling frequency psi, freqs, times, n_epochs, _ = mne.connectivity.phase_slope_index( comb_ts, mode='multitaper', indices=indices, sfreq=sfreq, fmin=fmin, fmax=fmax, tmin=tmin_con) # Generate a SourceEstimate with the PSI. This is simple since we used a single # seed (inspect the indices variable to see how the PSI scores are arranged in # the output) psi_stc = mne.SourceEstimate(psi, vertices=vertices, tmin=0, tstep=1, subject='sample') # Now we can visualize the PSI using the plot method. We use a custom colormap # to show signed values v_max = np.max(np.abs(psi)) brain = psi_stc.plot(surface='inflated', hemi='lh', time_label='Phase Slope Index (PSI)', subjects_dir=subjects_dir, clim=dict(kind='percent', pos_lims=(95, 97.5, 100))) brain.show_view('medial') brain.add_label(fname_label, color='green', alpha=0.7) os.chdir(raw_dir) np.save(fname_data, X13) np.save('session1_times.npy',times) np.save('session1_tstep.npy',tstep) np.save('session1_n_averages.npy',n_epochs) else: os.chdir(raw_dir) X13 = np.load(fname_data) times = np.load('session1_times.npy') tstep = np.load('session1_tstep.npy') n_epochs3 = np.load('session1_n_averages.npy') tmin = -0.1 #%% """ Read HCP labels """ labels = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', subjects_dir=fs_dir) #regexp=aparc_label_name #aparc_label_name = 'PHT_ROI'#'_IP'#'IFSp_ROI'#'STSvp_ROI'#'STSdp_ROI'#'PH_ROI'#'TE2p_ROI' #'SFL_ROI' #'IFSp_ROI' #'TE2p_ROI' #'inferiortemporal' #'pericalcarine' # anat_label = mne.read_labels_from_annot('fsaverage', parc='aparc',surf_name='white', # subjects_dir=fs_dir, regexp=aparc_label_name) #%% #labels = mne.read_labels_from_annot('fsaverage', 'HCPMMP1', 'lh', subjects_dir=fs_dir) #aud_label = [label for label in labels if label.name == 'L_A1_ROI-lh'][0] #brain.add_label(aud_label, borders=False) """ Task effects """ #TE2p_mask_lh = mne.Label.get_vertices_used(TE2p_label[0]) #TE2p_mask_rh = mne.Label.get_vertices_used(TE2p_label[1]) k = 1 #tmin = 0 tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] mask = times == 0.15 PHT_label_lh = [label for label in labels if label.name == 'L_PHT_ROI-lh'][0] PHT_label_rh = [label for label in labels if label.name == 'R_PHT_ROI-rh'][0] TE1p_label_lh = [label for label in labels if label.name == 'L_TE1p_ROI-lh'][0] TE1p_label_rh = [label for label in labels if label.name == 'R_TE1p_ROI-rh'][0] TE2p_label_lh = [label for label in labels if label.name == 'L_TE2p_ROI-lh'][0] TE2p_label_rh = [label for label in labels if label.name == 'R_TE2p_ROI-rh'][0] PH_label_lh = [label for label in labels if label.name == 'L_PH_ROI-lh'][0] PH_label_rh = [label for label in labels if label.name == 'R_PH_ROI-rh'][0] FFC_label_lh = [label for label in labels if label.name == 'L_FFC_ROI-lh'][0] FFC_label_rh = [label for label in labels if label.name == 'R_FFC_ROI-rh'][0] IFSp_label_lh = [label for label in labels if label.name == 'L_IFSp_ROI-lh'][0] IFSp_label_rh = [label for label in labels if label.name == 'R_IFSp_ROI-rh'][0] IFJp_label_lh = [label for label in labels if label.name == 'L_IFJp_ROI-lh'][0] IFJp_label_rh = [label for label in labels if label.name == 'R_IFJp_ROI-rh'][0] IFJa_label_lh = [label for label in labels if label.name == 'L_IFJa_ROI-lh'][0] IFJa_label_rh = [label for label in labels if label.name == 'R_IFJa_ROI-rh'][0] a45_label_lh = [label for label in labels if label.name == 'L_45_ROI-lh'][0] a45_label_rh = [label for label in labels if label.name == 'R_45_ROI-rh'][0] a44_label_lh = [label for label in labels if label.name == 'L_44_ROI-lh'][0] a44_label_rh = [label for label in labels if label.name == 'R_44_ROI-rh'][0] PGi_label_lh = [label for label in labels if label.name == 'L_PGi_ROI-lh'][0] PGi_label_rh = [label for label in labels if label.name == 'R_PGi_ROI-rh'][0] PGs_label_lh = [label for label in labels if label.name == 'L_PGs_ROI-lh'][0] PGs_label_rh = [label for label in labels if label.name == 'R_PGs_ROI-rh'][0] STSvp_label_lh = [label for label in labels if label.name == 'L_STSvp_ROI-lh'][0] STSvp_label_rh = [label for label in labels if label.name == 'R_STSvp_ROI-rh'][0] STSdp_label_lh = [label for label in labels if label.name == 'L_STSdp_ROI-lh'][0] STSdp_label_rh = [label for label in labels if label.name == 'R_STSdp_ROI-rh'][0] TPOJ1_label_lh = [label for label in labels if label.name == 'L_TPOJ1_ROI-lh'][0] TPOJ1_label_rh = [label for label in labels if label.name == 'R_TPOJ1_ROI-rh'][0] V1_label_lh = [label for label in labels if label.name == 'L_V1_ROI-lh'][0] V1_label_rh = [label for label in labels if label.name == 'R_V1_ROI-rh'][0] new_data = X13[:,:,poor_readers,:] data1 = np.subtract(np.mean(new_data[:,:,:,[5]],axis=3), np.mean(new_data[:,:,:,[8]],axis=3)) #data1 = np.mean(new_data[:,:,:,[3]],axis=3) del new_data data11 = data1[:,:,:] del data1 data11 = np.transpose(data11,[2,1,0]) #""" Spatiotemporal clustering """ #p_threshold = 0.001 #t_threshold = -stats.distributions.t.ppf(p_threshold / 2., n_subjects - 1) #print('Clustering.') #connectivity = mne.spatial_tris_connectivity(mne.grade_to_tris(5)) #T_obs, clusters, cluster_p_values, H0 = clu = \ # spatio_temporal_cluster_1samp_test(data11, connectivity=connectivity, n_jobs=12, # threshold=t_threshold) ## Now select the clusters that are sig. at p < 0.05 (note that this value ## is multiple-comparisons corrected). #good_cluster_inds = np.where(cluster_p_values < 0.05)[0] # #print('Visualizing clusters.') ## Now let's build a convenient representation of each cluster, where each ## cluster becomes a "time point" in the SourceEstimate #stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep, # vertices=fs_vertices, # subject='fsaverage') # ## Let's actually plot the first "time point" in the SourceEstimate, which ## shows all the clusters, weighted by duration #brain = stc_all_cluster_vis.plot(hemi='both', views='lateral', # time_label='Duration significant (ms)') #brain.save_image('clusters.png') #stat_fun = partial(mne.stats.ttest_1samp_no_p,sigma=1e-3) stat_fun = partial(mne.stats.ttest_1samp_no_p) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data11)), fs_vertices, tmin, tstep,subject='fsaverage') brain3_1 = temp3.plot(hemi='lh', subjects_dir=fs_dir, views = ['lat','ven'], #views=['lat','ven','med'], #transparent = True, initial_time=0.15, clim=dict(kind='value', pos_lims=[2.3, 2.4, 4.3])) #np.max(temp3.data[:,:])])) brain3_1.add_label(PHT_label_lh, borders=True, color=c_table[0]) brain3_1.add_label(TE2p_label_lh, borders=True, color=c_table[1]) brain3_1.add_label(PH_label_lh, borders=True, color=c_table[2]) brain3_1.add_label(FFC_label_lh, borders=True, color=c_table[3]) brain3_1.add_label(TE1p_label_lh, borders=True, color=c_table[4]) brain3_1.add_label(IFSp_label_lh, borders=True, color=c_table[5]) brain3_1.add_label(IFJp_label_lh, borders=True, color=c_table[6]) brain3_1.add_label(IFJa_label_lh, borders=True, color=c_table[7]) brain3_1.add_label(a45_label_lh, borders=True, color=c_table[8]) brain3_1.add_label(a44_label_lh, borders=True, color=c_table[8]) brain3_1.add_label(PGi_label_lh, borders=True, color=c_table[9]) brain3_1.add_label(PGs_label_lh, borders=True, color=c_table[9]) brain3_1.add_label(STSvp_label_lh, borders=True, color=c_table[11]) brain3_1.add_label(STSdp_label_lh, borders=True, color=c_table[11]) brain3_1.add_label(V1_label_lh, borders=True, color='k') brain3_1.save_movie('DotTask_LowNoise-HighNoise_GR_lh.mp4',time_dilation = 4.0,framerate = 30) brain3_2 = temp3.plot(hemi='rh', subjects_dir=fs_dir, views='lat', clim=dict(kind='value', lims=[2.9, 3, np.max(temp3.data[:,:])]), initial_time=0.15) brain3_2.add_label(PHT_label_rh, borders=True, color=c_table[0]) brain3_2.add_label(TE2p_label_rh, borders=True, color=c_table[1]) brain3_2.add_label(PH_label_rh, borders=True, color=c_table[2]) brain3_2.add_label(FFC_label_rh, borders=True, color=c_table[3]) brain3_2.add_label(TE1p_label_rh, borders=True, color=c_table[4]) brain3_2.add_label(IFSp_label_rh, borders=True, color=c_table[5]) brain3_2.add_label(IFJp_label_rh, borders=True, color=c_table[6]) brain3_2.add_label(IFJa_label_rh, borders=True, color=c_table[7]) brain3_2.add_label(a45_label_rh, borders=True, color=c_table[8]) """ Frontal """ temp = temp3.in_label(a44_label_lh) broca_vertices = temp.vertices[0] temp = temp3.in_label(a45_label_lh) broca_vertices = np.unique(np.append(broca_vertices, temp.vertices[0])) temp = temp3.in_label(IFSp_label_lh) broca_vertices = np.unique(np.append(broca_vertices, temp.vertices[0])) #temp = temp3.in_label(IFJp_label_lh) #broca_vertices = np.unique(np.append(broca_vertices, temp.vertices[0])) #temp = temp3.in_label(IFJa_label_lh) #broca_vertices = np.unique(np.append(broca_vertices, temp.vertices[0])) """ Ventral """ temp = temp3.in_label(TE2p_label_lh) ventral_vertices = temp.vertices[0] #temp = temp3.in_label(PH_label_lh) #ventral_vertices = np.unique(np.append(ventral_vertices, temp.vertices[0])) # #temp = temp3.in_label(FFC_label_lh) #ventral_vertices = np.unique(np.append(ventral_vertices, temp.vertices[0])) """ Temporal """ temp = temp3.in_label(STSvp_label_lh) w_vertices = temp.vertices[0] temp = temp3.in_label(STSdp_label_lh) w_vertices = np.unique(np.append(w_vertices, temp.vertices[0])) temp = temp3.in_label(TPOJ1_label_lh) w_vertices = np.unique(np.append(w_vertices, temp.vertices[0])) """ V1 """ temp = temp3.in_label(V1_label_lh) v1_vertices = temp.vertices[0] #temp = temp3.in_label(IFSp_label_lh) #broca_vertices = np.unique(np.append(broca_vertices, temp.vertices[0])) """ Just to visualize the new ROI """ mask = np.logical_and(times >= tp1[k], times <= tp2[k]) lh_label = temp3.in_label(TE2p_label_lh) data = np.max(lh_label.data[:,mask],axis=1) lh_label.data[data < 1.5] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = temp3.in_label(temp_labels) ven_vertices = temp.vertices[0] lh_label = temp3.in_label(FFC_label_lh) data = np.max(lh_label.data[:,mask],axis=1) lh_label.data[data < 1.5] = 0. temp_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) temp = temp3.in_label(temp_labels) ven_vertices = np.unique(np.append(ven_vertices, temp.vertices[0])) new_label = mne.Label(ven_vertices, hemi='lh') brain3_1.add_label(new_label, borders=True, color='k') """ Overwrite functional with anatomical ROIs """ lh_label = temp3.in_label(PHT_label_lh) data = np.mean(lh_label.data[:,:],axis=1) #lh_label.data[data < 1.5] = 0. func_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) ven_vertices = func_labels.vertices # Figures #%% """ All subjects """ plt.figure(1) plt.clf() X11 = X13[ventral_vertices,:,:,:] M = np.mean(np.mean(X11[:,:,all_subject,:],axis=0),axis=1) plt.subplot(3,2,1) plt.hold(True) plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[0]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[0]],axis=1)-yerr, np.mean(M[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[1]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[1]],axis=1)-yerr, np.mean(M[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[3]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[3]],axis=1)-yerr, np.mean(M[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.title('Dot task: Ventral') plt.subplot(3,2,2) plt.hold(True) plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[5]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[5]],axis=1)-yerr, np.mean(M[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[6]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[6]],axis=1)-yerr, np.mean(M[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[8]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[8]],axis=1)-yerr, np.mean(M[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.title('Lexical task: Ventral') X11 = X13[broca_vertices,:,:,:] M = np.mean(np.mean(X11[:,:,all_subject,:],axis=0),axis=1) plt.subplot(3,2,3) plt.hold(True) plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[0]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[0]],axis=1)-yerr, np.mean(M[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[1]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[1]],axis=1)-yerr, np.mean(M[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[3]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[3]],axis=1)-yerr, np.mean(M[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task: Frontal') plt.subplot(3,2,4) plt.hold(True) plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[5]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[5]],axis=1)-yerr, np.mean(M[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[6]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[6]],axis=1)-yerr, np.mean(M[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[8]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[8]],axis=1)-yerr, np.mean(M[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task: Frontal') X11 = X13[w_vertices,:,:,:] M = np.mean(np.mean(X11[:,:,all_subject,:],axis=0),axis=1) plt.subplot(3,2,5) plt.hold(True) plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[0]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[0]],axis=1)-yerr, np.mean(M[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[1]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[1]],axis=1)-yerr, np.mean(M[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[3]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[3]],axis=1)-yerr, np.mean(M[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task: Temporal') plt.subplot(3,2,6) plt.hold(True) plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[5]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[5]],axis=1)-yerr, np.mean(M[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[6]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[6]],axis=1)-yerr, np.mean(M[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[8]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[8]],axis=1)-yerr, np.mean(M[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task: Temporal') #%% """ V1 """ plt.figure(2) plt.clf() X11 = X13[v1_vertices,:,:,:] M = np.mean(np.mean(X11[:,:,all_subject,:],axis=0),axis=1) plt.subplot(3,2,1) plt.hold(True) plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[0]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[0]],axis=1)-yerr, np.mean(M[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[1]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[1]],axis=1)-yerr, np.mean(M[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[3]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[3]],axis=1)-yerr, np.mean(M[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task: V1') plt.subplot(3,2,2) plt.hold(True) plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') yerr = np.std(np.mean(M[:,[5]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[5]],axis=1)-yerr, np.mean(M[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') yerr = np.std(np.mean(M[:,[6]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[6]],axis=1)-yerr, np.mean(M[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') yerr = np.std(np.mean(M[:,[8]],axis=1)) / np.sqrt(len(all_subject)) plt.fill_between(times, np.mean(M[:,[8]],axis=1)-yerr, np.mean(M[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task: V1') M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 2, 3) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (GR): V1') plt.subplot(3, 2, 4) plt.hold(True) plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (GR): V1') plt.subplot(3, 2, 5) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (PR): V1') plt.subplot(3, 2, 6) plt.hold(True) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (PR): V1') """ Plot individual V1 responses """ #for iSub in np.arange(0,len(poor_readers)): # plt.figure(100+iSub) # plt.clf() # plt.subplot(1,2,1) # plt.hold(True) # plt.plot(times, np.mean(X1[v1_vertices,:,poor_readers[iSub],0],axis=0), '--', color=c_table[5]) # plt.plot(times, np.mean(X1[v1_vertices,:,poor_readers[iSub],1],axis=0), '--', color=c_table[3]) # plt.plot(times, np.mean(X1[v1_vertices,:,poor_readers[iSub],3],axis=0), '--', color=c_table[1]) # plt.plot([0.1, 0.1],[0, 8],'-',color='k') # plt.title(subs[poor_readers[iSub]]) # plt.subplot(1,2,2) # plt.hold(True) # plt.plot(times, np.mean(X1[v1_vertices,:,poor_readers[iSub],5],axis=0), '-', color=c_table[5]) # plt.plot(times, np.mean(X1[v1_vertices,:,poor_readers[iSub],6],axis=0), '-', color=c_table[3]) # plt.plot(times, np.mean(X1[v1_vertices,:,poor_readers[iSub],8],axis=0), '-', color=c_table[1]) # plt.plot([0.1, 0.1],[0, 8],'-',color='k') # plt.title(subs[poor_readers[iSub]]) #%% """ Good readers """ plt.figure(3) plt.clf() X11 = X13[ventral_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 2, 1) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (GR): Ventral') plt.subplot(3, 2, 2) plt.hold(True) plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (GR): Ventral') X11 = X13[broca_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 2, 3) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (GR): Frontal') plt.subplot(3, 2, 4) plt.hold(True) plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (GR): Frontal') X11 = X13[w_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 2, 5) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (GR): Temporal') plt.subplot(3, 2, 6) plt.hold(True) plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (GR): Temporal') #%% """ Poor readers """ plt.figure(4) plt.clf() X11 = X13[ventral_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 2, 1) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (PR): Ventral') plt.subplot(3, 2, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (PR): Ventral') X11 = X13[broca_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 2, 3) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (PR): Frontal') plt.subplot(3, 2, 4) plt.hold(True) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (PR): Frontal') X11 = X13[w_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 2, 5) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Dot task (PR): Temporal') plt.subplot(3, 2, 6) plt.hold(True) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Lexical task (PR): Temporal') #%% """ Dot task: Good vs. Poor """ plt.figure(5) plt.clf() X11 = X1[ventral_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 1) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[4]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[4], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('No Noise (GP vs. PR): Ventral') plt.subplot(3, 3, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[2]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[2], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Med Noise (GP vs. PR): Ventral') plt.subplot(3, 3, 3) plt.hold(True) plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[0]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[0], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Noise (GP vs. PR): Ventral') X11 = X1[broca_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 4) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[4]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[4], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('No Noise (GP vs. PR): Frontal') plt.subplot(3, 3, 5) plt.hold(True) plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[2]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[2], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Med Noise (GP vs. PR): Frontal') plt.subplot(3, 3, 6) plt.hold(True) plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[0]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[0], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Noise (GP vs. PR): Frontal') X11 = X1[w_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 7) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[4]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[4], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('No Noise (GP vs. PR): Frontal') plt.subplot(3, 3, 8) plt.hold(True) plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[2]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[2], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Med Noise (GP vs. PR): Frontal') plt.subplot(3, 3, 9) plt.hold(True) plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[0]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(len(poor_readers)) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[0], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(len(good_readers)) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Noise (GP vs. PR): Frontal') #%% """ Lexical task: Good vs. Poor """ plt.figure(6) plt.clf() X11 = X1[ventral_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 1) plt.hold(True) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[4]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[4], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('No Noise (GP vs. PR): Ventral') plt.subplot(3, 3, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[2]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[2], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Med Noise (GP vs. PR): Ventral') plt.subplot(3, 3, 3) plt.hold(True) plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[0]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[0], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Noise (GP vs. PR): Ventral') X11 = X1[broca_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 4) plt.hold(True) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[4]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[4], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('No Noise (GP vs. PR): Frontal') plt.subplot(3, 3, 5) plt.hold(True) plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[2]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[2], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Med Noise (GP vs. PR): Frontal') plt.subplot(3, 3, 6) plt.hold(True) plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[0]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[0], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Noise (GP vs. PR): Frontal') X11 = X1[w_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 7) plt.hold(True) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[4]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[4], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('No Noise (GP vs. PR): Temporal') plt.subplot(3, 3, 8) plt.hold(True) plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[2]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[2], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Med Noise (GP vs. PR): Temporal') plt.subplot(3, 3, 9) plt.hold(True) plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[0]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[0], alpha=0.3, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('Noise (GP vs. PR): Temporal') #%% """ Task effects """ plt.figure(7) plt.clf() X11 = X1[ventral_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 1) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Ventral') plt.subplot(3, 3, 2) plt.hold(True) plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Ventral') plt.subplot(3, 3, 3) plt.hold(True) plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Ventral') X11 = X1[broca_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 4) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Frontal') plt.subplot(3, 3, 5) plt.hold(True) plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Frontal') plt.subplot(3, 3, 6) plt.hold(True) plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Frontal') X11 = X1[w_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 7) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M1[:,[0]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[0]],axis=1)-yerr, np.mean(M1[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M1[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[5]],axis=1)-yerr, np.mean(M1[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Temporal') plt.subplot(3, 3, 8) plt.hold(True) plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M1[:,[1]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[1]],axis=1)-yerr, np.mean(M1[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M1[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[6]],axis=1)-yerr, np.mean(M1[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Temporal') plt.subplot(3, 3, 9) plt.hold(True) plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M1[:,[3]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[3]],axis=1)-yerr, np.mean(M1[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M1[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M1[:,[8]],axis=1)-yerr, np.mean(M1[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Temporal') #%% """ Task effects """ plt.figure(8) plt.clf() X11 = X1[ventral_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 1) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Ventral') plt.subplot(3, 3, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Ventral') plt.subplot(3, 3, 3) plt.hold(True) plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Ventral') X11 = X1[broca_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 4) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Frontal') plt.subplot(3, 3, 5) plt.hold(True) plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Frontal') plt.subplot(3, 3, 6) plt.hold(True) plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Frontal') X11 = X1[w_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.subplot(3, 3, 7) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) yerr = np.std(np.mean(M2[:,[0]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[0]],axis=1)-yerr, np.mean(M2[:,[0]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5]) yerr = np.std(np.mean(M2[:,[5]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[5]],axis=1)-yerr, np.mean(M2[:,[5]],axis=1)+yerr, facecolor=c_table[5], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Temporal') plt.subplot(3, 3, 8) plt.hold(True) plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) yerr = np.std(np.mean(M2[:,[1]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[1]],axis=1)-yerr, np.mean(M2[:,[1]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3]) yerr = np.std(np.mean(M2[:,[6]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[6]],axis=1)-yerr, np.mean(M2[:,[6]],axis=1)+yerr, facecolor=c_table[3], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Temporal') plt.subplot(3, 3, 9) plt.hold(True) plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) yerr = np.std(np.mean(M2[:,[3]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[3]],axis=1)-yerr, np.mean(M2[:,[3]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1]) yerr = np.std(np.mean(M2[:,[8]],axis=1)) / np.sqrt(M.shape[1]) plt.fill_between(times, np.mean(M2[:,[8]],axis=1)-yerr, np.mean(M2[:,[8]],axis=1)+yerr, facecolor=c_table[1], alpha=0.2, edgecolor='none') plt.grid(b=True) plt.ylim([0, 4]) plt.title('GR: Temporal') #%% """ Right h """ temp = temp3.in_label(a44_label_rh) broca_vertices = temp.vertices[1] temp = temp3.in_label(a45_label_rh) broca_vertices = np.unique(np.append(broca_vertices, temp.vertices[0])) temp = temp3.in_label(TE2p_label_rh) ventral_vertices1 = temp.vertices[1] temp = temp3.in_label(PH_label_rh) ventral_vertices1 = np.unique(np.append(ventral_vertices1, temp.vertices[0])) temp = temp3.in_label(PHT_label_rh) ventral_vertices1 = np.unique(np.append(ventral_vertices1, temp.vertices[0])) temp = temp3.in_label(TE1p_label_rh) ventral_vertices1 = np.unique(np.append(ventral_vertices1, temp.vertices[0])) plt.figure(20) plt.clf() plt.subplot(2,1,1) plt.hold(True) X11 = X1[ventral_vertices1,:,:,:] M = np.mean(np.mean(X11[:,:,:,:],axis=0),axis=1) plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') plt.subplot(2,1,2) plt.hold(True) X11 = X1[broca_vertices,:,:,:] M = np.mean(np.mean(X11[:,:,:,:],axis=0),axis=1) plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') X11 = X1[ventral_vertices1,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.figure(30) plt.clf() plt.subplot(2, 1, 1) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1],label='Noise') plt.ylabel('%s value' % method) plt.title('Good readers') plt.legend(loc='upper left', shadow=True) plt.subplot(2, 1, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1],label='Noise') #plt.ylim(0, 4) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) plt.title('Poor readers') plt.legend(loc='upper left', shadow=True) plt.show() X11 = X1[broca_vertices,:,:,:] M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.figure(40) plt.clf() plt.subplot(2, 1, 1) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1],label='Noise') plt.ylabel('%s value' % method) plt.title('Good readers') plt.legend(loc='upper left', shadow=True) plt.subplot(2, 1, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1],label='Noise') #plt.ylim(0, 4) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) plt.title('Poor readers') plt.legend(loc='upper left', shadow=True) plt.show() #%% #plt.plot([0.15, 0.15],[0, 4],'-',color='k') #plt.ylim(0, 4) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) #plt.title('High contrast') plt.legend(loc='upper left', shadow=True) plt.show() M1 = np.mean(np.mean(X11[:,:,good_readers,:],axis=0),axis=1) M2 = np.mean(np.mean(X11[:,:,poor_readers,:],axis=0),axis=1) plt.figure(3) plt.clf() plt.subplot(2, 1, 1) plt.hold(True) plt.plot(times, np.mean(M1[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M1[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M1[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M1[:,[8]],axis=1),'-',color=c_table[1],label='Noise') plt.ylabel('%s value' % method) plt.title('Good readers') plt.legend(loc='upper left', shadow=True) plt.subplot(2, 1, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M2[:,[5]],axis=1),'-',color=c_table[5],label='Word-No noise') plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3],label='Word-Med noise') plt.plot(times, np.mean(M2[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M2[:,[8]],axis=1),'-',color=c_table[1],label='Noise') #plt.ylim(0, 4) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) plt.title('Poor readers') plt.legend(loc='upper left', shadow=True) plt.show() #%% k = 1 tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] mask = np.logical_and(times >= tp1[k], times <= tp2[k]) """ Plot scatter """ temp_diff = np.subtract(np.mean(X1[:,:,:,[0,1]],axis=3), np.mean(X1[:,:,:,[3]],axis=3)) data_diff = np.mean(temp_diff[vwfa_labels,:,:], axis = 0) #data1 = data1.reshape((data1.shape[1],data1.shape[0],data1.shape[2])) vwfa_response = np.mean(data_diff[mask,:],axis=0) plt.figure(4) plt.clf() ax = plt.subplot() ax.scatter(brs, vwfa_response, s=30, c='k', alpha=0.5) for i, txt in enumerate(subs): ax.annotate(txt, (brs[i],vwfa_response[i])) np.corrcoef(vwfa_response,brs) #%% """ Individual """ for iSub, s in enumerate(subs): plt.figure(100+iSub) plt.clf() plt.subplot(2,2,1) plt.hold(True) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,0],axis=0), '--', color=c_table[5]) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,3],axis=0), '--', color=c_table[1]) plt.subplot(2,2,2) plt.hold(True) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,5],axis=0), '-', color=c_table[5]) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,8],axis=0), '-', color=c_table[1]) plt.subplot(2,2,3) plt.hold(True) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,5],axis=0), '-', color=c_table[5]) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,0],axis=0), '--', color=c_table[5]) plt.subplot(2,2,4) plt.hold(True) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,8],axis=0), '-', color=c_table[1]) plt.plot(times, np.mean(X1[ven_vertices,:,iSub,3],axis=0), '--', color=c_table[1]) plt.title(s) #%% """ Good readers vs. poor readers """ k = 1 #tmin = 0 tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] mask = times == 0.15 PHT_label_lh = [label for label in labels if label.name == 'L_PHT_ROI-lh'][0] PHT_label_rh = [label for label in labels if label.name == 'R_PHT_ROI-rh'][0] TE1p_label_lh = [label for label in labels if label.name == 'L_TE1p_ROI-lh'][0] TE1p_label_rh = [label for label in labels if label.name == 'R_TE1p_ROI-rh'][0] TE2p_label_lh = [label for label in labels if label.name == 'L_TE2p_ROI-lh'][0] TE2p_label_rh = [label for label in labels if label.name == 'R_TE2p_ROI-rh'][0] PH_label_lh = [label for label in labels if label.name == 'L_PH_ROI-lh'][0] PH_label_rh = [label for label in labels if label.name == 'R_PH_ROI-rh'][0] FFC_label_lh = [label for label in labels if label.name == 'L_FFC_ROI-lh'][0] FFC_label_rh = [label for label in labels if label.name == 'R_FFC_ROI-rh'][0] IFSp_label_lh = [label for label in labels if label.name == 'L_IFSp_ROI-lh'][0] IFSp_label_rh = [label for label in labels if label.name == 'R_IFSp_ROI-rh'][0] IFJp_label_lh = [label for label in labels if label.name == 'L_IFJp_ROI-lh'][0] IFJp_label_rh = [label for label in labels if label.name == 'R_IFJp_ROI-rh'][0] IFJa_label_lh = [label for label in labels if label.name == 'L_IFJa_ROI-lh'][0] IFJa_label_rh = [label for label in labels if label.name == 'R_IFJa_ROI-rh'][0] a45_label_lh = [label for label in labels if label.name == 'L_45_ROI-lh'][0] a45_label_rh = [label for label in labels if label.name == 'R_45_ROI-rh'][0] a44_label_lh = [label for label in labels if label.name == 'L_44_ROI-lh'][0] a44_label_rh = [label for label in labels if label.name == 'R_44_ROI-rh'][0] stv_label_lh = [label for label in labels if label.name == 'L_STV_ROI-lh'][0] stv_label_rh = [label for label in labels if label.name == 'R_STV_ROI-rh'][0] #new_data = X1[:,:,all_subject,:] good_data = X1[:,:,good_readers,:] poor_data = X1[:,:,poor_readers,:] data1 = np.subtract(np.mean(good_data[:,:,:,[6]],axis=3), np.mean(poor_data[:,:,:,[6]],axis=3)) #del new_data data11 = data1[:,:,:] del data1, good_data, poor_data #stat_fun = partial(mne.stats.ttest_1samp_no_p,sigma=1e-3) data11 = np.transpose(data11,[2,1,0]) stat_fun = partial(mne.stats.ttest_1samp_no_p) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data11)), fs_vertices, tmin, tstep,subject='fsaverage') brain3_1 = temp3.plot(hemi='lh', subjects_dir=fs_dir, views = ['lat','ven','med'], #views=['lat','ven','med'], #transparent = True, initial_time=0.15) # clim=dict(kind='value', lims=[2.0, 2.1, np.max(temp3.data[:,:])]) brain3_1.add_label(PHT_label_lh, borders=True, color=c_table[0]) brain3_1.add_label(TE2p_label_lh, borders=True, color=c_table[1]) brain3_1.add_label(PH_label_lh, borders=True, color=c_table[2]) brain3_1.add_label(FFC_label_lh, borders=True, color=c_table[3]) brain3_1.add_label(TE1p_label_lh, borders=True, color=c_table[4]) brain3_1.add_label(IFSp_label_lh, borders=True, color=c_table[5]) brain3_1.add_label(IFJp_label_lh, borders=True, color=c_table[6]) brain3_1.add_label(IFJa_label_lh, borders=True, color=c_table[7]) brain3_1.add_label(a45_label_lh, borders=True, color=c_table[8]) brain3_1.add_label(a44_label_lh, borders=True, color=c_table[8]) brain3_1.add_label(stv_label_lh, borders=True, color=c_table[9]) brain3_1.save_movie('GoodPoor_Lexical_MedNoise_lh.mp4',time_dilation = 4.0,framerate = 24) #%% """ Single condition """ k = 1 #tmin = 0 tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] mask = times == 0.15 PHT_label_lh = [label for label in labels if label.name == 'L_PHT_ROI-lh'][0] PHT_label_rh = [label for label in labels if label.name == 'R_PHT_ROI-rh'][0] TE1p_label_lh = [label for label in labels if label.name == 'L_TE1p_ROI-lh'][0] TE1p_label_rh = [label for label in labels if label.name == 'R_TE1p_ROI-rh'][0] TE2p_label_lh = [label for label in labels if label.name == 'L_TE2p_ROI-lh'][0] TE2p_label_rh = [label for label in labels if label.name == 'R_TE2p_ROI-rh'][0] PH_label_lh = [label for label in labels if label.name == 'L_PH_ROI-lh'][0] PH_label_rh = [label for label in labels if label.name == 'R_PH_ROI-rh'][0] FFC_label_lh = [label for label in labels if label.name == 'L_FFC_ROI-lh'][0] FFC_label_rh = [label for label in labels if label.name == 'R_FFC_ROI-rh'][0] IFSp_label_lh = [label for label in labels if label.name == 'L_IFSp_ROI-lh'][0] IFSp_label_rh = [label for label in labels if label.name == 'R_IFSp_ROI-rh'][0] IFJp_label_lh = [label for label in labels if label.name == 'L_IFJp_ROI-lh'][0] IFJp_label_rh = [label for label in labels if label.name == 'R_IFJp_ROI-rh'][0] IFJa_label_lh = [label for label in labels if label.name == 'L_IFJa_ROI-lh'][0] IFJa_label_rh = [label for label in labels if label.name == 'R_IFJa_ROI-rh'][0] a45_label_lh = [label for label in labels if label.name == 'L_45_ROI-lh'][0] a45_label_rh = [label for label in labels if label.name == 'R_45_ROI-rh'][0] a44_label_lh = [label for label in labels if label.name == 'L_44_ROI-lh'][0] a44_label_rh = [label for label in labels if label.name == 'R_44_ROI-rh'][0] stv_label_lh = [label for label in labels if label.name == 'L_STV_ROI-lh'][0] stv_label_rh = [label for label in labels if label.name == 'R_STV_ROI-rh'][0] #new_data = X1[:,:,all_subject,:] good_data = X1[:,:,good_readers,:] poor_data = X1[:,:,poor_readers,:] data1 = np.mean(good_data[:,:,:,[6]],axis=3) #del new_data data11 = data1[:,:,:] del data1, good_data, poor_data #stat_fun = partial(mne.stats.ttest_1samp_no_p,sigma=1e-3) data11 = np.transpose(data11,[2,1,0]) stat_fun = partial(mne.stats.ttest_1samp_no_p) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data11)), fs_vertices, tmin, tstep,subject='fsaverage') brain3_1 = temp3.plot(hemi='lh', subjects_dir=fs_dir, views = ['lat','ven','med'], #views=['lat','ven','med'], #transparent = True, initial_time=0.15) # clim=dict(kind='value', lims=[2.0, 2.1, np.max(temp3.data[:,:])]) brain3_1.add_label(PHT_label_lh, borders=True, color=c_table[0]) brain3_1.add_label(TE2p_label_lh, borders=True, color=c_table[1]) brain3_1.add_label(PH_label_lh, borders=True, color=c_table[2]) brain3_1.add_label(FFC_label_lh, borders=True, color=c_table[3]) brain3_1.add_label(TE1p_label_lh, borders=True, color=c_table[4]) brain3_1.add_label(IFSp_label_lh, borders=True, color=c_table[5]) brain3_1.add_label(IFJp_label_lh, borders=True, color=c_table[6]) brain3_1.add_label(IFJa_label_lh, borders=True, color=c_table[7]) brain3_1.add_label(a45_label_lh, borders=True, color=c_table[8]) brain3_1.add_label(a44_label_lh, borders=True, color=c_table[8]) brain3_1.add_label(stv_label_lh, borders=True, color=c_table[9]) brain3_1.save_movie('Single_Lexical_MedNoise_GR_lh.mp4',time_dilation = 4.0,framerate = 24) #%% """ VWFA TE2p """ aparc_label_name = 'TE2p_ROI'#'TE2p_ROI' #'TE2p_ROI' #'inferiortemporal' #'pericalcarine' #anat_label1 = mne.read_labels_from_annot('fsaverage', parc='aparc',surf_name='white', # subjects_dir=fs_dir, regexp=aparc_label_name) anat_label1 = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', subjects_dir=fs_dir, regexp=aparc_label_name) vertices_mask_lh = mne.Label.get_vertices_used(anat_label1[0]) vertices_mask_rh = mne.Label.get_vertices_used(anat_label1[1]) #aparc_label_name = 'PH_ROI' #'TE2p_ROI' #'inferiortemporal' #'pericalcarine' ## anat_label = mne.read_labels_from_annot('fsaverage', parc='aparc',surf_name='white', ## subjects_dir=fs_dir, regexp=aparc_label_name) #anat_label2 = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', # subjects_dir=fs_dir, regexp=aparc_label_name) #vertices_mask_lh2 = mne.Label.get_vertices_used(anat_label2[0]) #vertices_mask_rh2 = mne.Label.get_vertices_used(anat_label2[1]) # #vertices_mask_lh = np.append(vertices_mask_lh1,vertices_mask_lh2) #vertices_mask_rh = np.append(vertices_mask_rh1,vertices_mask_rh2) data1 = np.subtract(np.mean(X1[:,:,:,[1,6]],axis=3), np.mean(X1[:,:,:,[3,8]],axis=3)) data11 = data1[:,:,:] #stat_fun = partial(mne.stats.ttest_1samp_no_p,sigma=1e-3) data11 = np.transpose(data11,[2,1,0]) stat_fun = partial(mne.stats.ttest_1samp_no_p) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data11)), fs_vertices, tmin, tstep,subject='fsaverage') ## brain3_1 = temp3.plot(hemi='lh', subjects_dir=fs_dir, views='lat', #transparent = True, clim=dict(kind='value', lims=[0, 1.5, np.max(temp3.data[vertices_mask_lh,:])]), initial_time=0.15) # background='white', size=(800, 600) brain3_1.add_label(anat_label1[0], borders=True, color='k') #brain3_1.add_label(anat_label2[0], borders=True, color='k') brain3_2 = temp3.plot(hemi='rh', subjects_dir=fs_dir, views='lat', clim=dict(kind='value', lims=[0, 1.5, np.max(temp3.data[vertices_mask_rh,:])]), initial_time=0.15) brain3_2.add_label(anat_label1[1], borders=True, color='k') #brain3_2.add_label(anat_label2[1], borders=True, color='k') k = 1 #tmin = 0 tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] #mask = np.logical_and(times >= tp1[k], times <= tp2[k]) mask = times == 0.15 """ Left """ lh_label = temp3.in_label(anat_label1[0]) data = np.mean(lh_label.data[:,mask],axis=1) lh_label.data[data < 1.5] = 0. func_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) brain3_1.add_label(func_labels, borders=True, color='b') #brain3_1.save_image('l_TE2p.png') """ Right """ rh_label = temp3.in_label(anat_label1[1]) #data2 = rh_label.data #rh_label.data[data2 < 1.5] = 0. _, func_labels2 = mne.stc_to_label(rh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) brain3_2.add_label(func_labels2, borders=True, color='b') vwfa_labels = func_labels.vertices X11 = X1[vwfa_labels,:,:,:] X11 = X11[:,:,:,:] #X11 = np.delete(X11,16,2) #M = np.mean(np.mean(X1[vwfa_labels,:,:,:],axis=0),axis=1) M = np.mean(np.mean(X11[:,:,:,:],axis=0),axis=1) plt.figure(2) plt.clf() plt.subplot(2,1,1) plt.hold(True) #plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word') #plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3]) plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word') #plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1]) plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') plt.plot([0.15, 0.15],[0, 4],'-',color='k') #plt.ylim(0, 4) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) #plt.title('High contrast') plt.legend(loc='upper left', shadow=True) plt.subplot(2,1,2) plt.hold(True) plt.plot(times, np.mean(M[:,[0]],axis=1),'--',color=c_table[5],label='Word') #plt.plot(times, np.mean(M[:,[5]],axis=1),'-',color=c_table[5],label='Word') plt.plot(times, np.mean(M[:,[1]],axis=1),'--',color=c_table[3],label='Word') #plt.plot(times, np.mean(M[:,[6]],axis=1),'-',color=c_table[3],label='Word') plt.plot(times, np.mean(M[:,[3]],axis=1),'--',color=c_table[1],label='Noise') #plt.plot(times, np.mean(M[:,[8]],axis=1),'-',color=c_table[1],label='Noise') #plt.plot(times, np.mean(M[:,[2]],axis=1),'--',color=c_table[5]) #plt.plot(times, np.mean(M[:,[7]],axis=1),'-',color=c_table[5],label='Word') # #plt.plot(times, np.mean(M[:,[4]],axis=1),'--',color=c_table[1]) #plt.plot(times, np.mean(M[:,[9]],axis=1),'-',color=c_table[1],label='Noise') plt.plot([0.15, 0.15],[0, 4],'-',color='k') #plt.ylim(0, 4) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) #plt.title('Low contrast') plt.legend(loc='upper left', shadow=True) plt.show() m1 = np.transpose(brs) >= 85 M1 = np.mean(np.mean(X11[:,:,m1,:],axis=0),axis=1) m2 = np.logical_not(m1) M2 = np.mean(np.mean(X11[:,:,m2,:],axis=0),axis=1) plt.figure(4) plt.clf() plt.subplot(2, 1, 1) plt.hold(True) plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[5],label='Word') #plt.plot(times, np.mean(M1[:,[1]],axis=1),'--',color=c_table[3]) #plt.plot(times, np.mean(M1[:,[6]],axis=1),'-',color=c_table[3],label='Word') plt.plot(times, M1[:,3],'--',color=c_table[1]) plt.plot(times, M1[:,8],'-',color=c_table[1],label='Noise') plt.ylabel('%s value' % method) plt.title('Good readers') plt.legend(loc='upper left', shadow=True) plt.subplot(2, 1, 2) plt.hold(True) plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[5]) plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[5],label='Word') #plt.plot(times, np.mean(M2[:,[1]],axis=1),'--',color=c_table[3]) #plt.plot(times, np.mean(M2[:,[6]],axis=1),'-',color=c_table[3],label='Word') plt.plot(times, M2[:,3],'--',color=c_table[1]) plt.plot(times, M2[:,8],'-',color=c_table[1],label='Noise') #plt.ylim(0, 4) plt.xlabel('time (ms)') plt.ylabel('%s value' % method) plt.title('Poor readers') plt.legend(loc='upper left', shadow=True) plt.show() #data = { # 'X11': X11, # 'brs': brs # } #sio.savemat('R21.mat',{'data':data}) #%% k = 1 #tmin = 0 tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] mask = np.logical_and(times >= tp1[k], times <= tp2[k]) """ Plot scatter """ temp_diff = np.subtract(np.mean(X1[:,:,:,[0,1]],axis=3), np.mean(X1[:,:,:,[3]],axis=3)) data_diff = np.mean(temp_diff[vwfa_labels,:,:], axis = 0) #data1 = data1.reshape((data1.shape[1],data1.shape[0],data1.shape[2])) vwfa_response = np.mean(data_diff[mask,:],axis=0) plt.figure(4) plt.clf() ax = plt.subplot() ax.scatter(brs, vwfa_response, s=30, c='k', alpha=0.5) for i, txt in enumerate(subs): ax.annotate(txt, (brs[i],vwfa_response[i])) np.corrcoef(vwfa_response,brs) for iSub, s in enumerate(subs): plt.figure(100+iSub) plt.clf() plt.subplot(1,2,1) plt.hold(True) plt.plot(times, np.mean(X1[vwfa_labels,:,iSub,0],axis=0), '--', color=c_table[5]) plt.plot(times, np.mean(X1[vwfa_labels,:,iSub,3],axis=0), '--', color=c_table[1]) plt.subplot(1,2,2) plt.hold(True) plt.plot(times, np.mean(X1[vwfa_labels,:,iSub,5],axis=0), '-', color=c_table[5]) plt.plot(times, np.mean(X1[vwfa_labels,:,iSub,8],axis=0), '-', color=c_table[1]) plt.title(s) #%% #temp3 = mne.SourceEstimate(np.mean(X1[:,:,:,0],axis=2), fs_vertices, tmin, # tstep,subject='fsaverage') ##vertno_max, time_max = temp1.get_peak(hemi='lh',mode='pos') #temp3.plot(hemi='lh', subjects_dir=fs_dir, views='lat', #transparent = True, # clim=dict(kind='value', lims=[0.5, 2, 4]), # initial_time=0.1) """ V1 V1 """ #k = 0 #tmin = 0 # #tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] #tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] aparc_label_name = '_V1_ROI' #'inferiortemporal' #'pericalcarine' # anat_label = mne.read_labels_from_annot('fsaverage', parc='aparc',surf_name='white', # subjects_dir=fs_dir, regexp=aparc_label_name) anat_label = mne.read_labels_from_annot('fsaverage', parc='HCPMMP1', surf_name='white', subjects_dir=fs_dir, regexp=aparc_label_name) vertices_mask_lh = mne.Label.get_vertices_used(anat_label[0]) vertices_mask_rh = mne.Label.get_vertices_used(anat_label[1]) #mask = np.logical_and(times >= tp1[k], times <= tp2[k]) #data1 = temp_avg1[:,mask,:] #data1 = np.mean(data1, axis = 2) data1 = np.subtract(np.mean(X1[:,:,:,[0,5]],axis=3), np.mean(X1[:,:,:,[2,7]],axis=3)) data11 = data1[:,:,:] #data11 = data11[:,mask,:] #data1 = np.mean(data1,axis=2) #stat_fun = partial(mne.stats.ttest_1samp_no_p,sigma=1e-3) data11 = np.transpose(data11,[2,1,0]) stat_fun = partial(mne.stats.ttest_1samp_no_p) temp3 = mne.SourceEstimate(np.transpose(stat_fun(data11)), fs_vertices, tmin, tstep,subject='fsaverage') #vertno_max, time_max = temp3.get_peak(hemi='lh',mode='pos') ## brain3_1 = temp3.plot(hemi='lh', subjects_dir=fs_dir, views=['lat','ven','med'], #transparent = True, clim=dict(kind='value', lims=[2, 3, np.max(temp3.data[vertices_mask_lh,:])]), initial_time=0.10) # background='white', size=(800, 600) #brain3_1.save_movie('test.mp4',time_dilation =8.0,framerate = 30) brain3_1.add_label(anat_label[0], borders=True, color='k') brain3_2 = temp3.plot(hemi='rh', subjects_dir=fs_dir, views='lat', clim=dict(kind='value', lims=[2, np.max(temp3.data[vertices_mask_lh,:])*.7, np.max(temp3.data[vertices_mask_lh,:])]), initial_time=0.1) brain3_2.add_label(anat_label[1], borders=True, color='k') """ Left """ lh_label = temp3.in_label(anat_label[0]) #data = lh_label.data # #lh_label.data[data < np.max(data)*0.9] = 0. func_labels, _ = mne.stc_to_label(lh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) brain3_1.add_label(func_labels, borders=True, color='b') #brain3_1.save_image('l_TE2p.png') """ Right """ rh_label = temp3.in_label(anat_label[1]) #data2 = rh_label.data # #rh_label.data[data2 < np.max(data2)*0.9] = 0. _, func_labels2 = mne.stc_to_label(rh_label, src='fsaverage', smooth=False, subjects_dir=fs_dir, connected=False) brain3_2.add_label(func_labels2, borders=True, color='b') v1_labels = func_labels.vertices v1_labels2 = func_labels2.vertices M = np.mean(np.mean(X1[v1_labels,:,:,:],axis=0),axis=1) plt.figure(20) plt.clf() plt.hold(True) plt.plot(times, M[:,0],'--',color=c_table[5]) plt.plot(times, M[:,5],'-',color=c_table[5],label='High') plt.plot(times, M[:,2],'--',color=c_table[1]) plt.plot(times, M[:,7],'-',color=c_table[1],label='Low') plt.legend(loc='upper left', shadow=True) plt.show() plt.figure(300) plt.clf() plt.hold(True) plt.plot(times, M[:,0],'--',color=c_table[5]) plt.plot(times, M[:,5],'-',color=c_table[5],label='High') plt.plot(times, M[:,1],'--',color=c_table[1]) plt.plot(times, M[:,6],'-',color=c_table[1],label='med') plt.plot(times, M[:,3],'--',color=c_table[3]) plt.plot(times, M[:,8],'-',color=c_table[3],label='Noise') plt.legend(loc='down right', shadow=True) k = 0 tp1 = [0.08, 0.13, 0.15, 0.20, 0.30] tp2 = [0.12, 0.17, 0.19, 0.24, 0.35] mask = np.logical_and(times >= tp1[k], times <= tp2[k]) """ Plot scatter """ temp_diff = np.subtract(np.mean(X1[:,:,:,[0,5]],axis=3), np.mean(X1[:,:,:,[2,7]],axis=3)) data_diff = np.mean(temp_diff[v1_labels,:,:], axis = 0) #data1 = np.subtract(X1[v1_labels,:,:,[0,5]], X1[v1_labels,:,:,[3,7]]) #data1 = data1.reshape((data1.shape[1],data1.shape[0],data1.shape[2])) v1_response = np.mean(data_diff[mask,:],axis=0) fig = plt.figure(40) plt.clf() ax1 = plt.subplot() ax1.scatter(brs, v1_response, s=30, c='k', alpha=0.5) for i, txt in enumerate(subs): ax1.annotate(txt, (brs[i],v1_response[i])) np.corrcoef(v1_response,brs) """ Plot individual V1 responses """ for iSub, s in enumerate(subs): plt.figure(100+iSub) plt.clf() plt.subplot(1,2,1) plt.hold(True) plt.plot(times, np.mean(X1[v1_labels,:,iSub,0],axis=0), '--', color=c_table[5]) plt.plot(times, np.mean(X1[v1_labels,:,iSub,1],axis=0), '--', color=c_table[3]) plt.plot(times, np.mean(X1[v1_labels,:,iSub,3],axis=0), '--', color=c_table[1]) plt.plot([0.1, 0.1],[0, 8],'-',color='k') plt.title(s) plt.subplot(1,2,2) plt.hold(True) plt.plot(times, np.mean(X1[v1_labels,:,iSub,5],axis=0), '-', color=c_table[5]) plt.plot(times, np.mean(X1[v1_labels,:,iSub,6],axis=0), '-', color=c_table[3]) plt.plot(times, np.mean(X1[v1_labels,:,iSub,8],axis=0), '-', color=c_table[1]) plt.plot([0.1, 0.1],[0, 8],'-',color='k') plt.title(s) #%% #connectivity = mne.spatial_tris_connectivity(mne.grade_to_tris(5)) #p_threshold = 0.02 #t_threshold = -stats.distributions.t.ppf(p_threshold / 2., n_subjects - 1) # #T_obs, clusters, cluster_p_values, H0 = clu = \ # mne.stats.spatio_temporal_cluster_1samp_test(data1, connectivity=connectivity, n_jobs=18, # threshold=t_threshold) #good_cluster_inds = np.where(cluster_p_values < 0.05)[0] # #stc_all_cluster_vis1 = mne.stats.summarize_clusters_stc(clu, tstep=tstep, # vertices=fs_vertices, # subject='fsaverage') #brain1_1 = stc_all_cluster_vis1.plot(hemi='lh', views='lateral', # subjects_dir=fs_dir, # time_label='Duration significant (ms)') #brain1_2 = stc_all_cluster_vis1.plot(hemi='rh', views='lateral', # subjects_dir=fs_dir, # time_label='Duration significant (ms)') #"" #aparc_label_name = 'lateraloccipital'#'inferiortemporal'#'fusiform'#'lingual' #fusiform'#'pericalcarine' # lateraloccipital ## tmin, tmax = 0.080, 0.12 #tmin, tmax = 0.13, 0.18 ## tmin, tmax = 0.10, 0.15 # #stc_mean = stc.crop(tmin, tmax).mean() #label = mne.read_labels_from_annot(subs[0], parc='aparc',surf_name='white', # subjects_dir=fs_dir, # regexp=aparc_label_name) # #stc_mean_label = stc_mean.in_label(label[0]) #data = np.abs(stc_mean_label.data) #stc_mean_label.data[data < 0.6 * np.max(data)] = 0. # #func_labels, _ = mne.stc_to_label(stc_mean_label, src=src, smooth=True, # subjects_dir=fs_dir, connected=True) #func_label = func_labels[0] # #anat_label = mne.read_labels_from_annot(subs[0], parc='aparc', # subjects_dir=fs_dir, # regexp=aparc_label_name) # ## extract the anatomical time course for each label #stc_anat_label = stc.in_label(anat_label[0]) #pca_anat = stc.extract_label_time_course(anat_label[0], src, mode='pca_flip')[0] # #stc_func_label = stc.in_label(func_label) #pca_func = stc.extract_label_time_course(func_label, src, mode='pca_flip')[0] # ## flip the pca so that the max power between tmin and tmax is positive #pca_anat *= np.sign(pca_anat[np.argmax(np.abs(pca_anat))]) #pca_func *= np.sign(pca_func[np.argmax(np.abs(pca_anat))]) # #plt.figure() #plt.plot(1e3 * stc_anat_label.times, pca_anat, 'k', # label='Anatomical %s' % aparc_label_name) #plt.plot(1e3 * stc_func_label.times, pca_func, 'b', # label='Functional %s' % aparc_label_name) #plt.legend() #plt.show() # #brain = stc_mean.plot(hemi='lh', subjects_dir=fs_dir, # clim=dict(kind='value', lims=[3, 5, 10])) #brain.show_view('lateral') # ## show both labels #brain.add_label(anat_label[0], borders=True, color='k') #brain.add_label(func_label, borders=True, color='b')
[ "sjjoo@utexas.edu" ]
sjjoo@utexas.edu
addf62c3fc65ce49d477e0cfdd502a0fd8dedf6e
3c3b8c27c3478a52bb7b68caf8fecd6431d7a786
/backend/swagger_server/controllers/document/info.py
8313e530913cac567e5dd311e1b0174b9a3731fb
[ "MIT" ]
permissive
Lend88/libresign
d7116aa71904de011c48700bff65f06cde2853d4
9537f39a696fa5f3433052406329d77d528b6cf9
refs/heads/master
2020-04-20T07:02:13.623754
2018-08-24T19:56:02
2018-08-24T19:56:02
145,740,805
0
0
null
null
null
null
UTF-8
Python
false
false
4,232
py
import json from uuid import UUID from flask import Response, jsonify from flask_jwt_extended import jwt_required, get_jwt_identity from ...decorators import produces from ...db import Session from ...models import ErrorMessage from ...mappings import Document, Field, FileUsage, FieldUsage from ... import config from ...helpers import verify_permission, type_check @type_check def get_filled(session, doc_id: UUID): ''' Get all fields that have been filled ''' subquery = ( session .query(FieldUsage) .filter(FieldUsage.field_id == Field.id) .filter(FieldUsage.fieldusage_type == config.FIELD_USAGE_TYPE["filled"]) ) return ( session .query(Field) .filter(Field.document_id == doc_id.bytes) .filter(subquery.exists()) .with_entities(Field.id) .all() ) @jwt_required @produces('application/json') def info_get(docId: str): ''' Fetch information about the document. This information is intended to be used by applications showing the fields to users and includes the location, size and status of various fields in the document and the dimensions of all pages within the document. Note that all sizes/locations are in PDF units. Arguments: docId (str): The document ID Response: If successful, this endpoint will respond with HTTP 200 and JSON describing the document fields/pages. The only fields carried within the document are those that the current user should sign. See the swagger specification for a schema of the returned JSON. If an error occurrs this endpoint will respond with a 4XX error code and a JSON body describing the error. ''' uid = UUID(hex=get_jwt_identity()) doc_id = None try: doc_id = UUID(hex=docId) except ValueError: return ErrorMessage("Not a valid document ID"), 400 session = Session() if not verify_permission(session, doc_id): return ErrorMessage("Not Authorized"), 401 field_data = ( session .query(FileUsage) .filter(FileUsage.document_id == doc_id.bytes) .filter(FileUsage.fileusage_type == config.FILE_USAGE_TYPES['describe-fields']) .with_entities(FileUsage.data) .order_by(FileUsage.timestamp.asc()) .first() ) doc_title = ( session .query(Document) .filter(Document.id == doc_id.bytes) .with_entities(Document.title) .one() )[0] if not field_data: # If the field data hasn't been created yet, then # return a 503 to indicate that the client should # retry at a later time return Response( json.dumps({'msg':"Field data is still being generated"}), headers={ # This should hopefully be in the right area 'Retry-After': 30 } ), 503 else: field_data = json.loads(field_data[0]) # Assert on properties of json data assert isinstance(field_data, dict) assert 'fields' in field_data assert 'pages' in field_data assert isinstance(field_data['fields'], list) assert isinstance(field_data['pages'], list) fields_for_user = dict( session .query(Field) .filter(Field.document_id == doc_id.bytes) .filter(Field.user_id == uid.bytes) .with_entities(Field.field_name, Field.id) .all() ) filled = set(UUID(bytes=x[0]) for x in get_filled(session, doc_id)) print(filled) filtered = [] for field in field_data['fields']: if field['name'] in fields_for_user: field_id = UUID(bytes=fields_for_user[field['name']]) field['id'] = field_id.hex field['filled'] = field_id in filled field['optional'] = False filtered.append(field) field_data['fields'] = filtered field_data['title'] = doc_title return jsonify(field_data), 200
[ "sean@lend88.com" ]
sean@lend88.com
7cc2cd33d853705b4649625af3ff61164575e74b
1eab20f73802746572c2a4a1996ce7355afca276
/app.py
97d97d79cd999c0cd9a9708e1ce190b02b71ee36
[]
no_license
gretelup/bbb
5b57f1732a23e1edb59b0aadb443eceef53c8f1d
ab5157e3a46561f773d990cee0acfd3e7375e519
refs/heads/master
2023-03-20T21:29:38.100908
2021-03-20T13:13:36
2021-03-20T13:13:36
277,312,251
0
0
null
2021-03-20T04:26:59
2020-07-05T13:55:13
JavaScript
UTF-8
Python
false
false
3,097
py
import os import pandas as pd import numpy as np import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine from flask import Flask, jsonify, render_template from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) ################################################# # Database Setup ################################################# app.config["SQLALCHEMY_DATABASE_URI"] = "sqlite:///db/bellybutton.sqlite" db = SQLAlchemy(app) # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(db.engine, reflect=True) # Save references to each table Samples_Metadata = Base.classes.sample_metadata Samples = Base.classes.samples @app.route("/") def index(): """Return the homepage.""" return render_template("index.html") @app.route("/names") def names(): """Return a list of sample names.""" # Use Pandas to perform the sql query stmt = db.session.query(Samples).statement df = pd.read_sql_query(stmt, db.session.bind) # Return a list of the column names (sample names) return jsonify(list(df.columns)[2:]) @app.route("/metadata/<sample>") def sample_metadata(sample): """Return the MetaData for a given sample.""" sel = [ Samples_Metadata.sample, Samples_Metadata.ETHNICITY, Samples_Metadata.GENDER, Samples_Metadata.AGE, Samples_Metadata.LOCATION, Samples_Metadata.BBTYPE, Samples_Metadata.WFREQ, ] results = db.session.query(*sel).filter(Samples_Metadata.sample == sample).all() # Create a dictionary entry for each row of metadata information sample_metadata = {} for result in results: sample_metadata["sample"] = result[0] sample_metadata["ETHNICITY"] = result[1] sample_metadata["GENDER"] = result[2] sample_metadata["AGE"] = result[3] sample_metadata["LOCATION"] = result[4] sample_metadata["BBTYPE"] = result[5] sample_metadata["WFREQ"] = result[6] print(sample_metadata) return jsonify(sample_metadata) @app.route("/samples/<sample>") def samples(sample): """Return `otu_ids`, `otu_labels`,and `sample_values`.""" stmt = db.session.query(Samples).statement df = pd.read_sql_query(stmt, db.session.bind) # Filter the data based on the sample number and # only keep rows with values above 1 sample_data = df.loc[df[sample] > 1, ["otu_id", "otu_label", sample]] # Format the data to send as json data = { "otu_ids": sample_data.otu_id.values.tolist(), "sample_values": sample_data[sample].values.tolist(), "otu_labels": sample_data.otu_label.tolist(), } return jsonify(data) @app.route("/wfreq/<sample>") def wfreq(sample): """Return washing frequency for sample.""" result = db.session.query(Samples_Metadata.WFREQ).\ filter(Samples_Metadata.sample == sample).all() sample_wfreq = result[0] return jsonify(sample_wfreq) if __name__ == "__main__": app.run()
[ "gretelup@gmail.com" ]
gretelup@gmail.com
c24c4e3521e3a3b230daaaf0d2f590d8e5fe952d
e7e5ac71c941e3daf82781249ae6d32d8614f78e
/2017/day-04/part1.py
10683698d8af82bdb1eaa74118c13286e071c8aa
[ "MIT" ]
permissive
amochtar/adventofcode
7f952ebee6b41aa5147cc788710fb054579742e7
292e7f00a1e19d2149d00246b0a77fedfcd3bd08
refs/heads/master
2022-07-14T22:46:21.175533
2021-12-15T08:14:17
2021-12-15T08:28:43
222,647,709
1
0
MIT
2022-06-22T04:45:13
2019-11-19T08:36:02
Python
UTF-8
Python
false
false
144
py
with open("input.txt", "r") as f: lines = f.readlines() print("Part 1:", len([l for l in lines if len(set(l.split())) == len(l.split())]))
[ "amochtar@xebia.com" ]
amochtar@xebia.com
ed65d2fbf91fb60c18f53d2cb981e925bd6c5fdc
3a702d84cb15e76dc0eebf9d9d1939e0334c57c8
/Site/list/models.py
d49a066c028e24d410ff9d5f0ff95309f12c0098
[]
no_license
DanilParunov/SiteAgLib
3fa99007e0bdb411f075d8464474cf96168a8bbb
f16544f8c4d86b172d241b3710949a568f5b8a2a
refs/heads/master
2023-02-22T12:28:42.325291
2021-01-17T20:57:52
2021-01-17T20:57:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,158
py
from django.db import models from django.urls import reverse class Articles(models.Model): title = models.CharField('Название', max_length=50) anons = models.CharField('Автор', max_length=250) text = models.TextField('Текст') date = models.DateField('Дата выпуска') def __str__(self): return self.title def get_absolute_url(self): return reverse('book', {'book_id': self.pk}) class Meta: verbose_name = 'Список литературы' verbose_name_plural = 'Список литературы' class CustomersBooks(models.Model): customer = models.ForeignKey(to='accounts.Customers', on_delete=models.CASCADE) article = models.ForeignKey(Articles, on_delete=models.CASCADE) class Library(models.Model): title = models.CharField('Название', max_length=50) addres = models.CharField('Адрес',max_length=250) text = models.TextField('Текст') def __str__(self): return self.title class Meta: verbose_name = 'Список Библиотек' verbose_name_plural= 'Список библиотек'
[ "danil19056@gmail.com" ]
danil19056@gmail.com
3288c028cd4b3fe106a6c3cdfd5ea08541dd253e
3fffc40cf16672cb36b4ce5da6b8a6fc3fe3f848
/digitRecognizer.py
f1b49241574c4d1c26cc905c86652987a82c892d
[]
no_license
pranauv1/Digit_Recognizer
04dfec8dcb113fa987d9f1b760c5de42d7b4825c
f303f49fdd8ea1064092b21c0c8afb0c033f26db
refs/heads/main
2023-07-05T15:38:12.791482
2021-08-20T16:18:24
2021-08-20T16:18:24
398,330,081
0
0
null
null
null
null
UTF-8
Python
false
false
2,362
py
#Get the dataset ! kaggle competitions download -c digit-recognizer #Unzip them ! unzip /path/test.csv.zip ! unzip /path/train.csv.zip import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.utils.np_utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, BatchNormalization from sklearn.model_selection import train_test_split #Load CSV files test = pd.read_csv('/content/test.csv') train = pd.read_csv('/content/train.csv') sample = pd.read_csv('/content/sample_submission.csv') #Analysing Dataframes test.head() train.head() sample.head() #We can directly jump into spltting the data #Defining train, test and labels x_train = train.drop('label', axis=1) y_train = train['label'] x_test = test #Will check the shapes print(x_train.shape) print(y_train.shape) print(x_test.shape) #Converting them into an array x_train = x_train.values.reshape(-1, 28, 28, 1)/255 x_test = x_test.values.reshape(-1, 28, 28, 1)/255 #One hot encoding the labels y_train = to_categorical(y_train,10) #Will see if everything is okay print(x_train.shape) print(x_test.shape) print(y_train.shape) #Creating the model model = Sequential() model.add(Conv2D(32, (3,3), activation="relu", input_shape=(28, 28, 1))) model.add(Conv2D(32, (3,3), activation='relu')) model.add(MaxPool2D(pool_size = (2,2))) model.add(Conv2D(64, (3,3), activation='relu', padding='same')) model.add(Conv2D(64, (3,3), activation='relu', padding='same')) model.add(MaxPool2D(pool_size = (2,2), strides = (2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.summary() #Will train model.compile(loss="categorical_crossentropy", optimizer="Adam", metrics=["acc"]) history = model.fit(x_train, y_train, epochs=20, batch_size=50, verbose=2) #Save the model model.save('digit_recognizer.h5') #Predicting using the given test dataset results = model.predict(x_test) results = np.argmax(results, axis=1) results = pd.Series(results, name='label') #Submission(Kaggle) submission = pd.concat([pd.Series(range(1,28001), name='ImageId'), results], axis=1) submission.head() #CSV to submit submission.to_csv('submission.csv', index=False)
[ "noreply@github.com" ]
pranauv1.noreply@github.com