blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
1ace6c9b79d2976602572934c15bbfb976f2eea9
37d8c1058a2362734aaffd9d9b94288e08caa7ad
/cv/roto.1.py
0926c62772f83c98186c56898cad0359f1531d99
[]
no_license
lewan42/pstu_ecobot
ef9ccd9dadedd5d947ddf15f635ce3c982627215
11c72414d9388b90304d942e116b6f1c27b39368
refs/heads/master
2020-06-15T18:01:01.210289
2019-07-18T10:55:38
2019-07-18T10:55:38
195,358,356
1
0
null
2019-07-05T07:14:47
2019-07-05T07:14:46
null
UTF-8
Python
false
false
5,199
py
import serial import sys #Ver M1.01 #Edited by Masalskiy M from 20.11.2018 from time import sleep ROTOADDR = 0x02; # адрес компьютера MYADDR = 0x01; # адрес контроллера CMD = 0xaa; # признак начала команды SET_CT = 0x02; # команда - "встать в положение" ASK_CT = 0x03; # команда - "вернуть положение" SET_FREE = 0x05; SET_KEEP = 0x06; ASK_STATE = 0x07; SET_VARS = 0x08; SET_SPEED = 0x09; ASK_VARS = 0x0A; SET_C_HOLD= 0x0B; SET_T_HOLD= 0x0C; SET_LASER_ON= 0x0D; SET_LASER_OFF= 0x0E; ASK_USONIC= 0x0F; ASK_VLMM= 0x10; SET_CTZ = 0x11; # команда - "встать в положение Z" ASK_CTZ = 0x12; # команда - "вернуть положение Z" # ASK_ MSG_STATE = 0x14; # состояние устройства MSG_READY = 0x15; # устройство готово MSG_POS = 0x16; # отправлена позиция LT = 1; RT = -1; UP = -1; DN = 1; FREE = 0; HOLD = 1; KEEP = 2; class Roto(object): port = None KA = 0 KB = 0 KZ = 0 def __init__(self): for n in [0,1,2,3,4]: p = '/dev/ttyUSB%s' % (n) print("Trying port %s..." % (p), file=sys.stderr) try: self.port = serial.Serial( port=p, baudrate=57600, parity='N', stopbits=1, bytesize=8, timeout=500, ) sleep(2) #self.to_port(self.to_cmd(SET_SPEED, 70, 40)) #state, cPOS, tPOS, DELTA, MODE, tMIN_DEG, tMAX_DEG, cMIN_DEG, cMAX_DEG, tMIN, tMAX, cMIN, cMAX, cSPD, tSPD = self.from_ans(self.from_port()) #self.from_port() #assert tSPD == 40 #self.to_port(self.to_cmd(SET_CT, self.KA, self.KB)) #self.from_port() #state, cPOS, tPOS = self.from_ans(self.from_port()) #assert state == MSG_POS break except serial.SerialException as e: print(e.with_traceback, file=sys.stderr) self.port = None assert self.port != None def to_port(self, string): print('>>> %s' % (string), file=sys.stderr) self.port.write(string) def from_port(self): _ = self.port.readline() print('<<< %s' % (_), file=sys.stderr) return str(_) def to_cmd(self, *args): s = "%s %s " % (ROTOADDR, CMD, ) for arg in args: s += str(arg) + " " s = s.strip() s += "\n" return bytes(s,'ascii') def from_ans(self, string=""): cmd, host, state = 0,0,0 try: _ = [int(_) for _ in string.strip("'b\\n\\r").split(' ')] print(_, file=sys.stderr) host, cmd, state = _[:3] except serial.SerialException as e: print(e.with_traceback, file=sys.stderr) assert cmd == CMD and host == MYADDR return [state] + _[3:] def move(self, c, t): if type(c) == list: c = int(c[0]) if type(t) == list: t = int(t[0]) self.to_port(self.to_cmd(SET_CT,c + self.KA, t + self.KB)) return self.from_ans(self.from_port()) def moveZ(self, z): if type(z) == list: z = int(z[0]) self.to_port(self.to_cmd(SET_CTZ,z + self.KZ)) return self.from_ans(self.from_port()) #-----------------Пример добавления ф-ции------------ def laserOn(self): self.to_port(self.to_cmd(SET_LASER_ON)) return self.from_ans(self.from_port()) def laserOff(self): self.to_port(self.to_cmd(SET_LASER_OFF)) return self.from_ans(self.from_port()) #---------------------------------------------------- def ask_uS(self): self.to_port(self.to_cmd(ASK_USONIC)) _, _a = self.from_ans(self.from_port()) return _, _a def ask_VL(self): self.to_port(self.to_cmd(ASK_VLMM)) _, _a = self.from_ans(self.from_port()) return _, _a def ask(self): self.to_port(self.to_cmd(ASK_CT)) _, _a, _b, _z = self.from_ans(self.from_port()) _a -= self.KA _b -= self.KB _z -= self.KZ return _, _a, _b,_z if __name__ == "__main__": r = Roto() r.ask() #-------------Запуск примера---------- #r.laserOn() #sleep(3) #r.laserOff() #------------------------------------- #r.move(150,150) #r.move(10,-10) #r.move(-10,-10) #r.move(-10,10) #r.move(0,0) # r.move(180, 180) # r.moveZ(50) # r.laserOn() # sleep(10) # r.move(120, 150) # r.moveZ(10) # sleep(10) # r.move(180, 180) # r.moveZ(50) # sleep(10) r.laserOff() # r.moveZ(-30) # sleep(2) # r.move(150, 180) # sleep(2) # r.move(180, 180) # r.moveZ(30) # sleep(2) # r.move(180, 150) # r.laserOn() # r.moveZ(-30) # sleep(1) # print(r.ask_VL()) # r.move(180, 180) # r.moveZ(-30) # sleep(3) # print(r.ask_uS()) # r.laserOff() # r.moveZ(60)
[ "master-forve@ya.ru" ]
master-forve@ya.ru
0a96dabd1afb8bcf75c36331d8d72eba0c8e42d4
3aadfc743fb3440ef564003e332260365d9639e8
/box_lake.py
eb3f4ad7f2ab42b77ef50e646dfdd52159ffdf24
[]
no_license
bbuman/tbl
b33a41e78f71fd66b489b3a4b4b5d82c700b49ef
0d1f683283d8e8e053d02958aa6ee5ddf12ac395
refs/heads/master
2023-02-03T10:29:11.802753
2020-12-15T07:49:31
2020-12-15T07:49:31
320,510,118
0
0
null
null
null
null
UTF-8
Python
false
false
8,994
py
class Lake: def __init__(self, lake_area, lake_volume, benthic_macrophytes, benthic_macrofauna, benthic_bacteria, phytoplankton, zooplankton, bacterioplankton, water_IC, water_OC, sediment): """Create the lake pool. Keyword arguments: lake_area -- area of the lake in the catchment [float] unit [m2] lake_volume -- volume of the lake [float] unit [m3] benthic_macrophytes -- mass of the benthic macrophyte vegetation [float] unit [kg C / m2] benthic_macrofauna -- mass of the benthic macro fauna [float] unit [kg C / m2] benthic_bacteria -- mass of the benthic bacteria population [float] unit [kg C / m2] phytoplankton -- mass of the phytoplankton community in the water [float] unit [kg C / m3] zooplankton -- mass of the zooplankton community in the water [float] unit [kg C / m3] bacterioplankton -- mass of the bacterioplankton community in the water [float] unit [kg C / m3] water_IC -- mass of the inorganic carbon dissolved in the water [float] unit [kg C / m3] water_OC -- mass of the organic carbon dissolved in the water [float] unit [kg C / m3] sediment -- mass of the carbon in the sediment [float] unit [kg C / m2] """ ## Geometry self.area = lake_area self.volume = lake_volume ## Organisms self.benthic_macrophytes = benthic_macrophytes self.benthic_macrofauna = benthic_macrofauna self.benthic_bacteria = benthic_bacteria self.phytoplankton = phytoplankton self.zooplankton = zooplankton self.bacterioplankton = bacterioplankton ## Dissolved self.water_IC = water_IC self.water_OC = water_OC ## Sediment self.sediment = sediment ## Biomass self.determine_benthic_macropyhte_biomass() self.determine_benthic_macrofauna_biomass() self.determine_benthic_bacteria_biomass() self.determine_phytoplankton_biomass() self.determine_zooplankton_biomass() self.determine_bacterioplankton_biomass() ## Total IC self.determine_total_IC() ## Total OC self.determine_total_OC() ## Total Sediment self.determine_sediment_carbon() ## Sum up self.determine_total() def determine_benthic_macropyhte_biomass(self): self.biomass_benthic_macrophyte = self.benthic_macrophytes * self.area def determine_benthic_macrofauna_biomass(self): self.biomass_benthic_macrofauna = self.benthic_macrofauna * self.area def determine_benthic_bacteria_biomass(self): self.biomass_benthic_bacteria = self.benthic_bacteria * self.area def determine_phytoplankton_biomass(self): self.biomass_phytoplankton = self.phytoplankton * self.volume def determine_zooplankton_biomass(self): self.biomass_zooplankton = self.zooplankton * self.volume def determine_bacterioplankton_biomass(self): self.biomass_bacterioplankton = self.bacterioplankton * self.volume def determine_total_IC(self): self.total_IC = self.water_IC * self.volume def determine_total_OC(self): self.total_OC = self.water_OC * self.volume def determine_sediment_carbon(self): self.carbon_sediment = self.sediment * self.area def determine_total(self): self.total_carbon = (self.biomass_benthic_macrophyte + self.biomass_benthic_macrofauna + self.biomass_benthic_bacteria + self.biomass_phytoplankton + self.biomass_zooplankton + self.biomass_bacterioplankton + self.total_IC + self.total_OC + self.carbon_sediment) # ------------< FLUXES >---------------------------------------------------------------------------------------- def set_fluxes(self, benthic_npp, benthic_respiration, pelagic_gpp, pelagic_resp_auto, pelagic_resp_hetero, lake_resp_hetero, sediment_accumulation, emission, deposition, lake_water_IC_out, lake_water_OC_out, lake_water_IC_in, lake_water_OC_in): """ Define the fluxes in the lake. Keyword arguments: benthic_npp -- the npp for the sediment dwelling organisms [float] unit [kg C / m2 a] benthic_respiration -- the respiration of the sediment dwelling organisms [flaot] unit [kg C / m2 a] pelagic_gpp -- the gpp of the aquatic producers [float] unit [kg C / m3 a] pelagic_resp_auto -- the autotrophic respiration of the aquatic producers [float] unit [kg C / m3 a] pelagic_resp_hetero -- the heterotrophic respiration of the aquatic consumers in summer [float] unit [kg C / m3 a] lake_resp_hetero -- the heterotrophic respiration of the aquatic consumers in winter [float] unit [kg C / m3 a] sediment_accumulation -- the amount of carbon incorporated into sediments [float] unit [kg C / m2 a] emission -- the amount of carbon lost to the atmosphere [float] unit [kg C / m2 a] deposition -- annual deposition of carbon onto the lake [float] unit [kg C / m2 a] lake_water_IC_out -- the amount of inorganic carbon exported from the lake downstream [float] unit [kg C / m3 a] lake_water_OC_out -- the amount of organic carbon exported from the lake downstream [float] unit [kg C / m3 a] lake_water_IC_in -- the amount of inorganic carbon imported from the catchment [float] unit [kg C / a] lake_water_OC_in -- the amount of organic carbon imported from the catchment [float] unit [kg C / a] """ # Benthic NPP self.benthic_npp = benthic_npp self.determine_total_benthic_npp() # Benthic Respiration self.benthic_respiration = benthic_respiration self.determine_total_benthic_respiration() # Pelagic NPP self.pelagic_gpp = pelagic_gpp self.pelagic_resp_auto = pelagic_resp_auto self.pelagic_resp_hetero = pelagic_resp_hetero self.lake_resp_hetero = lake_resp_hetero self.determine_pelagic_npp() self.determine_total_pelagic_npp() # Sediment accumulation self.sediment_accumulation = sediment_accumulation self.determine_total_sedimenet_accumulation() # CO2 emission self.emission = emission self.determine_total_emission() # Export self.lake_water_IC_out = lake_water_IC_out self.determine_total_lake_water_IC_out() self.lake_water_OC_out = lake_water_OC_out self.determine_total_lake_water_OC_out() # Import self.total_lake_water_IC_in = lake_water_IC_in self.total_lake_water_OC_in = lake_water_OC_in # Deposition self.deposition = deposition self.determine_total_deposition() def determine_total_benthic_npp(self): self.total_benthic_npp = self.benthic_npp * self.area def determine_total_benthic_respiration(self): self.total_benthic_respiration = self.benthic_respiration * self.area def determine_pelagic_npp(self): self.pelagic_npp = self.pelagic_gpp - self.pelagic_resp_auto - self.pelagic_resp_hetero - self.lake_resp_hetero def determine_total_pelagic_npp(self): self.total_pelagic_npp = self.pelagic_npp * self.area def determine_total_sedimenet_accumulation(self): self.total_sediment_accumulation = self.sediment_accumulation * self.area def determine_total_emission(self): self.total_emission = self.emission * self.area def determine_total_lake_water_IC_out(self): self.total_lake_water_IC_out = self.lake_water_IC_out * self.volume def determine_total_lake_water_OC_out(self): self.total_lake_water_OC_out = self.lake_water_OC_out * self.volume def determine_total_deposition(self): self.total_deposition = self.deposition * self.area # ------------< Process Functions >---------------------------------------------------------------------------------------- def export_IC_downstream(self): self.total_IC -= self.total_lake_water_IC_out def export_OC_downstream(self): self.total_OC -= self.total_lake_water_OC_out def lake_to_atmo(self): self.total_IC -= self.total_emission def import_IC(self): self.total_IC += self.total_lake_water_IC_in def import_OC(self): self.total_OC += self.total_lake_water_OC_in def atmo_to_lake(self): self.total_OC += self.total_deposition def lake_production(self): self.total_OC += self.total_benthic_npp self.total_OC -= self.total_benthic_respiration self.total_OC += self.pelagic_npp def sediment_incorporation(self): self.carbon_sediment += self.total_sediment_accumulation self.total_OC -= self.total_sediment_accumulation def update_total_carbon(self): self.determine_total()
[ "spam.rooster@protonmail.com" ]
spam.rooster@protonmail.com
d929ed62a19aa356c1852b172451852bf8d303b6
0db18688bda2f7f1c14ed4c35a645c07cb0ca552
/FYP UI/dashboard-updated.py
26a81d6d083a01dc513530607bba3235e5eec526
[]
no_license
hamzaiqbal786/FYP-Adaptive-Clustering-For-Gesture-Analysis
f472ca0803a2d931d2797df33bb6f7fddd73e855
aeeaff93ef5e3e8287f13cf56607043c3ca4c159
refs/heads/main
2023-02-24T02:50:14.673243
2021-01-22T20:03:39
2021-01-22T20:03:39
332,046,912
1
0
null
null
null
null
UTF-8
Python
false
false
11,096
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'dashboard-updated.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QApplication, QWidget, QInputDialog, QLineEdit, QFileDialog from PyQt5.QtGui import QIcon class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(1011, 520) MainWindow.setStyleSheet("background-color: rgb(255, 255, 255);") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(-20, 10, 1041, 61)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(22) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setLayoutDirection(QtCore.Qt.LeftToRight) self.label.setAutoFillBackground(False) self.label.setStyleSheet("background-color: rgb(85, 0, 127);\n" "color: rgb(255, 255, 255);\n" "") self.label.setObjectName("label") self.groupBox_2 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_2.setGeometry(QtCore.QRect(10, 90, 491, 191)) self.groupBox_2.setStyleSheet("background-color: rgb(241, 241, 241);") self.groupBox_2.setObjectName("groupBox_2") self.video_text_box = QtWidgets.QTextEdit(self.groupBox_2) self.video_text_box.setGeometry(QtCore.QRect(10, 50, 471, 31)) self.video_text_box.setStyleSheet("background-color: rgb(255, 255, 255);") self.video_text_box.setObjectName("video_text_box") self.startButton_2 = QtWidgets.QPushButton(self.groupBox_2) self.startButton_2.setGeometry(QtCore.QRect(130, 120, 101, 41)) self.startButton_2.setAutoFillBackground(False) self.startButton_2.setStyleSheet("background-color: rgb(255, 255, 255);") self.startButton_2.setFlat(False) self.startButton_2.setObjectName("startButton_2") # opening file dialouge on button click self.startButton_2.clicked.connect(self.openFile) self.clear_button = QtWidgets.QPushButton(self.groupBox_2) self.clear_button.setGeometry(QtCore.QRect(250, 120, 101, 41)) self.clear_button.setAutoFillBackground(False) self.clear_button.setStyleSheet("background-color: rgb(255, 255, 255);") self.clear_button.setFlat(False) self.clear_button.setObjectName("clear_button") self.groupBox_3 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_3.setGeometry(QtCore.QRect(510, 90, 491, 191)) self.groupBox_3.setStyleSheet("background-color: rgb(241, 241, 241);") self.groupBox_3.setObjectName("groupBox_3") self.startButton = QtWidgets.QPushButton(self.groupBox_3) self.startButton.setGeometry(QtCore.QRect(190, 130, 101, 41)) self.startButton.setAutoFillBackground(False) self.startButton.setStyleSheet("background-color: rgb(255, 255, 255);") self.startButton.setFlat(False) self.startButton.setObjectName("startButton") self.radioButton_25 = QtWidgets.QRadioButton(self.groupBox_3) self.radioButton_25.setGeometry(QtCore.QRect(50, 30, 111, 17)) self.radioButton_25.setChecked(False) self.radioButton_25.setAutoRepeat(False) self.radioButton_25.setObjectName("radioButton_25") self.radioButton_50 = QtWidgets.QRadioButton(self.groupBox_3) self.radioButton_50.setGeometry(QtCore.QRect(330, 30, 111, 17)) self.radioButton_50.setChecked(False) self.radioButton_50.setObjectName("radioButton_50") self.radioButton_75 = QtWidgets.QRadioButton(self.groupBox_3) self.radioButton_75.setGeometry(QtCore.QRect(50, 80, 111, 17)) self.radioButton_75.setChecked(True) self.radioButton_75.setObjectName("radioButton_75") self.groupBox_4 = QtWidgets.QGroupBox(self.centralwidget) self.groupBox_4.setGeometry(QtCore.QRect(10, 300, 991, 171)) self.groupBox_4.setStyleSheet("background-color: rgb(241, 241, 241);") self.groupBox_4.setObjectName("groupBox_4") self.label_3 = QtWidgets.QLabel(self.groupBox_4) self.label_3.setGeometry(QtCore.QRect(410, 20, 131, 21)) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(self.groupBox_4) self.label_4.setGeometry(QtCore.QRect(710, 20, 161, 21)) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.groupBox_4) self.label_5.setGeometry(QtCore.QRect(40, 70, 131, 21)) self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.groupBox_4) self.label_6.setGeometry(QtCore.QRect(40, 120, 131, 21)) self.label_6.setObjectName("label_6") self.label_cluster_predicted_result = QtWidgets.QLabel(self.groupBox_4) self.label_cluster_predicted_result.setGeometry(QtCore.QRect(650, 70, 261, 21)) self.label_cluster_predicted_result.setObjectName("label_cluster_predicted_result") self.label_word_true_result = QtWidgets.QLabel(self.groupBox_4) self.label_word_true_result.setGeometry(QtCore.QRect(320, 120, 281, 21)) self.label_word_true_result.setObjectName("label_word_true_result") self.label_word_predicted_result = QtWidgets.QLabel(self.groupBox_4) self.label_word_predicted_result.setGeometry(QtCore.QRect(640, 120, 281, 21)) self.label_word_predicted_result.setObjectName("label_word_predicted_result") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1011, 21)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def openFile(self,MainWindow): fileName = str(QtWidgets.QFileDialog.getOpenFileName(None,"Select File", "","MOV FIles(*.mov);;AVI Files (*.avi);; MP4 FIles(*.mp4)")) self.video_text_box.setText(fileName) print(fileName) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Adaptive Clustering For Gesture Analysis")) self.label.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><span style=\" font-weight:600;\">ADAPTIVE CLUSTERING FOR GESTURE ANALYSIS</span></p></body></html>")) self.groupBox_2.setTitle(_translate("MainWindow", "Input Video")) self.startButton_2.setText(_translate("MainWindow", "Select Video")) self.clear_button.setText(_translate("MainWindow", "Clear")) self.groupBox_3.setTitle(_translate("MainWindow", "Frames Percentage")) self.startButton.setText(_translate("MainWindow", "Start")) self.radioButton_25.setText(_translate("MainWindow", "First 25% Frames")) self.radioButton_50.setText(_translate("MainWindow", "First 50% Frames")) self.radioButton_75.setText(_translate("MainWindow", "First 75% Frames")) self.groupBox_4.setTitle(_translate("MainWindow", "Output")) self.label_3.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-size:12pt; font-weight:600;\">True Results</span></p></body></html>")) self.label_4.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-size:12pt; font-weight:600;\">Predicted Results</span></p></body></html>")) self.label_5.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-size:12pt; font-weight:600;\">Cluster Name</span></p></body></html><?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" "<ui version=\"4.0\">\n" " <widget name=\"__qt_fake_top_level\">\n" " <widget class=\"QLabel\" name=\"label_3\">\n" " <property name=\"geometry\">\n" " <rect>\n" " <x>30</x>\n" " <y>70</y>\n" " <width>131</width>\n" " <height>21</height>\n" " </rect>\n" " </property>\n" " <property name=\"text\">\n" " <string>&lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;&lt;span style=&quot; font-size:12pt; font-weight:600;&quot;&gt;True Results&lt;/span&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt;</string>\n" " </property>\n" " </widget>\n" " </widget>\n" " <resources/>\n" "</ui>\n" "")) self.label_6.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" font-size:12pt; font-weight:600;\">Word Name</span></p><p>30 70 131 21 &lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;&lt;span style=&quot; font-size:12pt; font-weight:600;&quot;&gt;True Results&lt;/span&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt; </p></body></html>")) self.label_cluster_predicted_result.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><span style=\" font-size:10pt; font-weight:600;\">B</span></p><p align=\"center\"><br/></p></body></html>")) self.label_word_true_result.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><span style=\" font-size:10pt; font-weight:600;\">Good Night</span><br/></p><p>410 70 281 21 &lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;&lt;span style=&quot; font-size:10pt; font-weight:600;&quot;&gt;Cluster&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;br/&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt; 410 70 281 21 &lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;&lt;span style=&quot; font-size:10pt; font-weight:600;&quot;&gt;Cluster&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;br/&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt; esources/&gt; </p></body></html>")) self.label_word_predicted_result.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><span style=\" font-size:10pt; font-weight:600;\">Good Night</span><br/></p><p>410 70 281 21 &lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;&lt;span style=&quot; font-size:10pt; font-weight:600;&quot;&gt;Cluster&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;br/&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt; 410 70 281 21 &lt;html&gt;&lt;head/&gt;&lt;body&gt;&lt;p&gt;&lt;span style=&quot; font-size:10pt; font-weight:600;&quot;&gt;Cluster&lt;/span&gt;&lt;/p&gt;&lt;p&gt;&lt;br/&gt;&lt;/p&gt;&lt;/body&gt;&lt;/html&gt; esources/&gt; </p></body></html>")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
[ "noreply@github.com" ]
hamzaiqbal786.noreply@github.com
f6db77f4a6e9500b2eac2f6f22c8da4e6e5571a5
9ebb54663069482988166480d1dde9e82bbf66cc
/main.py
47820be4a5647056e521b0c89505475e826a2704
[]
no_license
DHRUV-CODER/DogeHouse-Bot
f6a89cee96c1df27b2a5dad4cbd81406e5b22652
779948bf80c63cb2720a11eee66db5c7c9a9e5d5
refs/heads/master
2023-04-28T03:57:02.380063
2021-05-07T11:52:46
2021-05-07T11:52:46
356,579,395
2
0
null
null
null
null
UTF-8
Python
false
false
5,246
py
import dogehouse import requests as r import environ import os import keep_alive import json token = os.environ.get('TOKEN') refresh_token = os.environ.get('REFRESH_TOKEN') class Client(dogehouse.DogeClient): @dogehouse.event async def on_ready(self): print(f"Logged on as {self.user.username}") await self.create_room("Bot Room || Jokes || Facts & more..") # await self.join_room("1fbb7d1e-d3b1-43ae-9854-06cd9231fe50") print("Joined") @dogehouse.event async def on_message(self, message): # if message.author.id == self.user.id: # return if message.content.startswith("hi"): await self.send("sup , how are ya") @dogehouse.command async def help(self, ctx): whisper_that_g = [ctx.author.id] await self.send(message="Cmds -> !hanimal , !hcryptog , !hjoke", whisper=whisper_that_g) @dogehouse.command async def hanimal(self, ctx): whisper_that_g = [ctx.author.id] await self.send( message= "!catfact, !dogfact, !pandafact, !foxfact, !birdfact, !koalafact", whisper=whisper_that_g) @dogehouse.command async def hcryptog(self, ctx): whisper_that_g = [ctx.author.id] await self.send(message="!encode <msg>, !decode <msg>", whisper=whisper_that_g) @dogehouse.command async def hjoke(self, ctx): whisper_that_g = [ctx.author.id] await self.send(message="!joke", whisper=whisper_that_g) @dogehouse.command async def hello(self): await self.send("Hello!") # @dogehouse.command # async def ping(self, ctx): # await self.send(f"Hello {ctx.author.mention}") @dogehouse.command async def catfact(self, ctx): resp = r.get("https://some-random-api.ml/facts/cat").json() await self.send(message=f"{resp['fact']}", whisper=[ctx.author.id]) @dogehouse.command async def dogfact(self, ctx): resp = r.get("https://some-random-api.ml/facts/dog").json() await self.send(message=f"{resp['fact']}", whisper=[ctx.author.id]) @dogehouse.command async def pandafact(self, ctx): resp = r.get("https://some-random-api.ml/facts/panda").json() await self.send(message=f"{resp['fact']}", whisper=[ctx.author.id]) @dogehouse.command async def foxfact(self, ctx): resp = r.get("https://some-random-api.ml/facts/fox").json() await self.send(message=f"{resp['fact']}", whisper=[ctx.author.id]) @dogehouse.command async def birdfact(self, ctx): resp = r.get("https://some-random-api.ml/facts/bird").json() await self.send(message=f"{resp['fact']}", whisper=[ctx.author.id]) @dogehouse.command async def koalafact(self, ctx): resp = r.get("https://some-random-api.ml/facts/koala").json() await self.send(message=f"{resp['fact']}", whisper=[ctx.author.id]) @dogehouse.command async def encode(self, ctx, *, encode_msg="no_msg"): resp = r.get( f"https://some-random-api.ml/base64?encode={encode_msg}").json() await self.send(message=f"-> {resp['base64']}", whisper=[ctx.author.id]) @dogehouse.command async def decode(self, ctx, *, decode_msg="bm8gbXNn"): resp = r.get( f"https://some-random-api.ml/base64?decode={decode_msg}").json() await self.send(message=f"-> {resp['text']}", whisper=[ctx.author.id]) @dogehouse.command async def joke(self, ctx): resp = r.get(f"https://v2.jokeapi.dev/joke/Any?type=single").json() await self.send(message=f"{resp['joke']}", whisper=[ctx.author.id]) @dogehouse.command async def reg(self, ctx, *, act): with open("currentAct.json", "r") as f: reg = json.load(f) reg['Activity'] = act with open("currentAct.json", "w+") as f: json.dump(reg, f, indent=4) await self.send(message=f"Done!!, Actvity Changed To -> {act}", whisper=[ctx.author.id]) @dogehouse.command async def what_we_doin(self, ctx): with open("currentAct.json", "r") as f: reg = json.load(f) actv = reg['Activity'] await self.send(message=f'-> {actv}', whisper=[ctx.author.id]) @dogehouse.command async def source(self, ctx): url = 'https://github.com/DHRUV-CODER/DogeHouse-Bot' await self.send(message=f'-> {url}', whisper=[ctx.author.id]) # @dogehouse.event # async def on_error(self,error): # await self.send(f"oops -> {error}") # print(f"-> {error}") @dogehouse.event async def on_user_join(self, user): userNameToWhisper = [user.id] await self.send( message= f"welcome `{user.username}` !! , Pls Type `!help` For More Info & Btw If Udk What We Doin Type -> `!what_we_doin`", whisper=userNameToWhisper) # @dogehouse.event # async def on_user_leave(self,user): # await self.send(f"{user.username} Just Left") keep_alive.keep_alive() if __name__ == "__main__": Client(token, refresh_token, prefix="!").run()
[ "" ]
7844ad919dbe6add95bffc675d9fa9136a3abdc8
b2ff37406e50976b8db1c75bde4297f5039f7391
/Students/khushi_flask/Day1/file_read.py
100a6f19c50c722efa30eb60f4a2be2a07e31636
[ "MIT" ]
permissive
Throttlerz-devs/flask-tutorial
fa21a13e9b3c23992efaf33c5e3828d4086f9540
09e1ad364c73ffba4e698592219d448865c6b31a
refs/heads/master
2023-08-01T07:02:37.069561
2021-09-17T04:53:14
2021-09-17T04:53:14
407,056,478
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
def read_data(): f=open('todo.txt','r') data= f.read() f.close() return data
[ "khushik16001@gmail.com" ]
khushik16001@gmail.com
34fd6dcec550d6150395078c713f106bf57146a2
6103eb1edbc22f8ea5dddf244466074fe33ff3a6
/clothes/urls.py
04d3952c065a952434967ca337b593d09c52f8c6
[]
no_license
adik0708/thewayshop
d888a77263269ff8d3f81b3beb94d2645f28690c
a3c71db489578b9231fd666954fdc2f237f31707
refs/heads/main
2023-04-17T02:38:17.825392
2021-05-04T15:01:00
2021-05-04T15:01:00
364,254,722
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
from django.urls import path from .views import home, products, search, contact, category_detail, outfit_detail urlpatterns = [ path('', home, name='home'), path('products/', products, name='products'), path('search/', search, name='search'), path('contact/', contact, name='contact'), path('category/<int:id>', category_detail, name='category_detail'), path('outfit/<int:id>', outfit_detail, name='outfit_detail') ]
[ "akylbekov1@gmail.com" ]
akylbekov1@gmail.com
221cf3f8b981c2f28598a2e9958dcaebe825e227
49ca5ef9d9ede14dcd08d5770fe763be649f2185
/mooving_iot/utils/logger.py
870132070d66bcf64bbe5edd629e0760f7aa07e1
[ "MIT", "LicenseRef-scancode-other-permissive" ]
permissive
DAVFoundation/iot-prototyping-platform
94cacbb318c3a4bbd1b0297d8c53d179d77fa700
937578333a1a6a06235a8290486a2906d1a43a7c
refs/heads/master
2022-06-12T14:42:03.726130
2019-12-31T21:06:54
2019-12-31T21:06:54
199,249,645
1
0
NOASSERTION
2022-05-25T03:06:38
2019-07-28T06:09:28
Python
UTF-8
Python
false
false
3,568
py
#*************************************************************************************************** # Imports #*************************************************************************************************** # Global packages imports import datetime import os import threading # Local packages imports import mooving_iot.project_config as prj_cfg import mooving_iot.utils.exit as utils_exit #*************************************************************************************************** # Private constants #*************************************************************************************************** _MSG_TYPE_STR_ERR = 'ERROR' _MSG_TYPE_STR_WARN = 'WARNING' _MSG_TYPE_STR_INFO = 'INFO' _MSG_TYPE_STR_DEBUG = 'DEBUG' #*************************************************************************************************** # Public classes #*************************************************************************************************** class Logger: __log_file = None __file_lock = threading.Lock() __print_lock = threading.Lock() def __init__(self, module_name, log_level): assert type(module_name) is str, 'Value should be a string!' assert isinstance(log_level, prj_cfg.LogLevel), 'Value should be a LogLevel enum value!' self._module_name = module_name self._log_level = log_level if prj_cfg.FILE_LOG_ENABLE and (Logger.__log_file == None): file_path_name = '{path}/log_{date}.log'.format( path=prj_cfg.FILE_LOG_PATH, date=datetime.datetime.utcnow().strftime('%Y_%m_%d_T%H_%M_%S_%f')) with Logger.__file_lock: try: os.makedirs(prj_cfg.FILE_LOG_PATH, exist_ok=True) Logger.__log_file = open(file=file_path_name, mode='w') except OSError as err: self.error('Cannot open file: {file}, error: {err}' .format(file=file_path_name, err=err)) else: utils_exit.register_on_exit(Logger.close_log_file) def error(self, value, *args): if self._is_log_enabled(prj_cfg.LogLevel.ERROR): self._print(_MSG_TYPE_STR_ERR, value, *args) def warning(self, value, *args): if self._is_log_enabled(prj_cfg.LogLevel.WARNING): self._print(_MSG_TYPE_STR_WARN, value, *args) def info(self, value, *args): if self._is_log_enabled(prj_cfg.LogLevel.INFO): self._print(_MSG_TYPE_STR_INFO, value, *args) def debug(self, value, *args): if self._is_log_enabled(prj_cfg.LogLevel.DEBUG): self._print(_MSG_TYPE_STR_DEBUG, value, *args) @staticmethod def close_log_file(): if Logger.__log_file != None: Logger.__log_file.close() def _print(self, msg_type, value, *args): assert type(msg_type) is str, 'Value should be a string!' assert type(value) is str, 'Value should be a string!' with Logger.__print_lock: format_str = '[{date}] <{type}> "{module}": {value}'.format( date=datetime.datetime.utcnow().isoformat(), module=self._module_name, type=msg_type, value=value) print(format_str, *args) if prj_cfg.FILE_LOG_ENABLE and (Logger.__log_file != None): print(format_str, *args, file=Logger.__log_file) def _is_log_enabled(self, log_level): return (self._log_level >= log_level) and (prj_cfg.GLOBAL_LOG_LEVEL >= log_level)
[ "oleksandr.vanzuriak@lemberg.co.ua" ]
oleksandr.vanzuriak@lemberg.co.ua
12ab47844ddb06acc0e92fde5463668505dcec45
29f08a6a1191c6f07c688136539337cf8a117c9d
/z3solver/z3solver.py
d71346a843c5f56651370910342b0b0847b30dd3
[]
no_license
rajivkris/Artificial_Intelligence
b138420c8a71ab09c481de217d82862ac59a1650
045fef0c27d45d98f6b99a3a8b3f51d8215357b9
refs/heads/main
2023-01-27T12:48:21.206083
2020-12-01T19:27:18
2020-12-01T19:27:18
311,738,527
0
0
null
null
null
null
UTF-8
Python
false
false
336
py
from z3 import * x, y, z = Reals('x y z') solver = Solver() solver.add(2 * x + 3 * y == 5) solver.check() solver.add(y + 3 * z > 3) solver.add(x - 3 * z <= 10) print("Constraint added") solver.add(x > -5, x < 5) solver.add(y > 0) print(f'Check satisfiability of solver {solver.check()}') print(f'Solver model is {solver.model()}')
[ "rajivkris@gmail.com" ]
rajivkris@gmail.com
a28ad4adcf82d69674924724039e267f78fc5607
10a2875baa753e34bcb1784fad66c1606a7d3513
/manage.py
f6e0af264bf5a2fb796373940e7fdc0bd695e004
[]
no_license
cuong1404s7tp/city
eb7c30401d8d239f23afe844821457705dbdad86
33ae2f567bc1302648ec126e75b775b6dd916049
refs/heads/master
2020-04-18T02:17:21.588523
2019-01-23T09:39:55
2019-01-23T09:39:55
167,156,582
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'docity.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "cu.ong2177@gmail.com" ]
cu.ong2177@gmail.com
6eba1fe4f4ea544882132374afc1bd2f331d7373
d4ae6d6d1ab13a8a7fb3a8b895421a6a101f66f0
/virtual/sysata/pessoa/migrations/0007_convocacao_convocados.py
e341deb8c37bbee74cd06cca32e91313e134ef82
[]
no_license
eufrazio/programacao_comercial
7c75558d91b7d0d5c781aefc7609a24b8f1dd77f
0a268db18a97d92aa3bdd601ee44a095cc0870f2
refs/heads/master
2021-01-22T10:28:17.764085
2017-05-17T19:05:57
2017-05-17T19:05:57
82,005,168
0
0
null
null
null
null
UTF-8
Python
false
false
501
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-05-09 12:16 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pessoa', '0006_auto_20170508_2258'), ] operations = [ migrations.AddField( model_name='convocacao', name='convocados', field=models.ManyToManyField(related_name='pessoa_convocados', to='pessoa.Pessoa'), ), ]
[ "eufrazius@gmail.com" ]
eufrazius@gmail.com
fbd2493206b5434d598dec27afe045e16aa5912e
8430da1139e9ea5b81b8ac3b2ec0f96985824cf0
/assessment/tree.py
3cfa1fa83e6b78576019611bba51016931130c56
[]
no_license
tom-wagner/ip
7d453ff2bbff5555f8ad1353a69ee0f1eed386ea
6dc6c6301df09d1dba9575e4f72a413d63b3a6d4
refs/heads/master
2022-02-20T20:37:31.295952
2019-09-28T01:36:23
2019-09-28T01:36:23
199,317,634
0
0
null
null
null
null
UTF-8
Python
false
false
1,334
py
# START TIME: class Tree: def __init__(self, tree): self.tree = tree def breadth_first_traversal(self): pass def depth_first_traversal(self): pass def has(self): pass t = { 'v': 5, 'children': [ {'v': 9, 'children': [ {'v': 8, 'children': [ {'v': 0, 'children': []} ]}, {'v': 6, 'children': [ {'v': 1, 'children': []} ]} ]}, {'v': 1, 'children': [ {'v': 4, 'children': [ {'v': 7, 'children': []}, {'v': 0, 'children': []} ]} ]} ] } # TREE: # 5 # 9 1 # 8 6 4 # 0 1 7 0 print(t) my_tree = Tree(t) depth_first = [0, 8, 1, 6, 9, 7, 0, 4, 1, 5] breadth_first = [5, 9, 1, 8, 6, 4, 0, 1, 7, 0] print('DFS', my_tree.depth_first_traversal() == depth_first) print('BFS', my_tree.breadth_first_traversal() == breadth_first) print('has returns true correctly', my_tree.has(7)) print('has returns true correctly', my_tree.has(8)) print('has returns false correctly', my_tree.has('BILL')) # END TIME:
[ "tom.wagner@xaxis.com" ]
tom.wagner@xaxis.com
4e3b6f6b97c41325ad2959082ffe7e93c4e6cc92
c60da36fc2e7630a4e767d5ac984a4cff2e44132
/train.py
5a47a51a419dfc93b5e64e92ea58c6cfeb1de9cc
[]
no_license
PMingEli/hand-writing-recognition
55cc2c9b9deaff09edd4f54a395b6d21964968d4
3a04087da4f8611d637ffa95c106e3dd99c33b10
refs/heads/master
2022-11-21T04:07:02.492717
2020-06-28T15:20:50
2020-06-28T15:20:50
275,610,641
0
0
null
2020-06-28T15:13:11
2020-06-28T15:13:11
null
UTF-8
Python
false
false
4,195
py
import pickle import os import torch import torch.nn as nn import torch.optim as optim from tensorboardX import SummaryWriter from torchvision import transforms from torchsummary import summary from hwdb import HWDB from model import ConvNet def valid(epoch, net, test_loarder, writer): print("epoch %d 开始验证..." % epoch) with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loarder: images, labels = images.cuda(), labels.cuda() outputs = net(images) # 取得分最高的那个类 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('correct number: ', correct) print('totol number:', total) acc = 100 * correct / total print('第%d个epoch的识别准确率为:%d%%' % (epoch, acc)) writer.add_scalar('valid_acc', acc, global_step=epoch) def train(epoch, net, criterion, optimizer, train_loader, writer, save_iter=100): print("epoch %d 开始训练..." % epoch) net.train() sum_loss = 0.0 total = 0 correct = 0 # 数据读取 for i, (inputs, labels) in enumerate(train_loader): # 梯度清零 optimizer.zero_grad() if torch.cuda.is_available(): inputs = inputs.cuda() labels = labels.cuda() outputs = net(inputs) loss = criterion(outputs, labels) # 取得分最高的那个类 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() loss.backward() optimizer.step() # 每训练100个batch打印一次平均loss与acc sum_loss += loss.item() if (i + 1) % save_iter == 0: batch_loss = sum_loss / save_iter # 每跑完一次epoch测试一下准确率 acc = 100 * correct / total print('epoch: %d, batch: %d loss: %.03f, acc: %.04f' % (epoch, i + 1, batch_loss, acc)) writer.add_scalar('train_loss', batch_loss, global_step=i + len(train_loader) * epoch) writer.add_scalar('train_acc', acc, global_step=i + len(train_loader) * epoch) for name, layer in net.named_parameters(): writer.add_histogram(name + '_grad', layer.grad.cpu().data.numpy(), global_step=i + len(train_loader) * epoch) writer.add_histogram(name + '_data', layer.cpu().data.numpy(), global_step=i + len(train_loader) * epoch) total = 0 correct = 0 sum_loss = 0.0 if __name__ == "__main__": # 超参数 epochs = 20 batch_size = 100 lr = 0.01 data_path = r'data' log_path = r'logs/batch_{}_lr_{}'.format(batch_size, lr) save_path = r'checkpoints/' if not os.path.exists(save_path): os.mkdir(save_path) # 读取分类类别 with open('char_dict', 'rb') as f: class_dict = pickle.load(f) num_classes = len(class_dict) # 读取数据 transform = transforms.Compose([ transforms.Resize((64, 64)), transforms.ToTensor(), ]) dataset = HWDB(path=data_path, transform=transform) print("训练集数据:", dataset.train_size) print("测试集数据:", dataset.test_size) trainloader, testloader = dataset.get_loader(batch_size) net = ConvNet(num_classes) if torch.cuda.is_available(): net = net.cuda() # net.load_state_dict(torch.load('checkpoints/handwriting_iter_004.pth')) print('网络结构:\n') summary(net, input_size=(3, 64, 64), device='cuda') criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr) writer = SummaryWriter(log_path) for epoch in range(epochs): train(epoch, net, criterion, optimizer, trainloader, writer=writer) valid(epoch, net, testloader, writer=writer) print("epoch%d 结束, 正在保存模型..." % epoch) torch.save(net.state_dict(), save_path + 'handwriting_iter_%03d.pth' % epoch)
[ "1076050774@qq.com" ]
1076050774@qq.com
21a700bb20d695f0545a44e8ea56ccd2d5c1ecbd
d82ac08e029a340da546e6cfaf795519aca37177
/chapter_13_parallel_nn_training_theano/02_array_structures.py
041b18247a74fa59fe0cfc17db87096150e8cf80
[]
no_license
CSwithJC/PythonMachineLearning
4409303c3f4d4177dc509c83e240d7a589b144a0
0c4508861e182a8eeacd4645fb93b51b698ece0f
refs/heads/master
2021-09-04T04:28:14.608662
2018-01-15T20:25:36
2018-01-15T20:25:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
566
py
import theano import numpy as np from theano import tensor as T # Config Theano to use 32-bit architecture: theano.config.floatX = 'float32' #theano.config.device = 'gpu' # initialize x = T.fmatrix(name='x') x_sum = T.sum(x, axis=0) # compile calc_sum = theano.function(inputs=[x], outputs=x_sum) # execute (Python List) ary = [[1, 2, 3], [1, 2, 3]] print('Column sum:', calc_sum(ary)) # execute (NumPy array) ary = np.array([[1, 2, 3], [1, 2, 3]], dtype=theano.config.floatX) print('Column sum:', calc_sum(ary)) print('TensorType: ', x.type())
[ "jean.mendez2@upr.edu" ]
jean.mendez2@upr.edu
e3f2a8fb28e4efa6e7cf865d6c07704aaea945ea
837b0b70497d361ddd6794ca07d29cb2d3b55dbf
/model/notInUse/scripts/collectNikud.py
589115dab2ddf479b5cfd055bdb5344cc82e78a0
[]
no_license
LihiHadjb/nikud
7dc213d35ea5558126392ccabbda689767430baf
6968e20c0e0ccfdb67ecc4596479868eaa49897b
refs/heads/master
2023-03-23T01:41:28.279697
2021-03-20T23:29:55
2021-03-20T23:29:55
300,214,182
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
import pandas as pd with open('textToInputBasic.txt', 'r') as file: text = file.read() result = set() for c in text: if 'א' <= c <= 'ת' or 'a' <= c <= 'z' or 'A' <= c <= 'Z': continue result.add(c) df = pd.DataFrame(result) df.to_excel("collect.xlsx")
[ "48348862+LihiHadjb@users.noreply.github.com" ]
48348862+LihiHadjb@users.noreply.github.com
b30cb1c91f51ab070f30533bea726b2f5ed62392
9672bb77d97f5bf69d110108314febf54c3bd7ef
/Certifications/Combine_Json.py
251684e9336ea8d25e148faa9e4c6e594d22a45c
[]
no_license
haroonrasheed333/CareerTrajectory
9001b60ebd03f85878b280320611e5d6a73d359b
3461ecf86af52786cf4950bef54c601b941eac64
refs/heads/master
2021-01-25T08:32:16.745906
2013-12-12T03:22:32
2013-12-12T03:22:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
import os import json source_dir = 'certifications_acr' files = [ f for (dirpath, dirnames, filenames) in os.walk(source_dir) for f in filenames] print len(files) certifications_json = dict() certifications_json['certifications'] = [] for filename in files: jsonc = open(source_dir + '/' + filename) jsonc = json.load(jsonc) certifications_json['certifications'].append(jsonc) j = json.dumps(certifications_json, indent=4) f = open('certifications_final.json', 'w') print >> f, j f.close()
[ "haroonrasheed@berkeley.edu" ]
haroonrasheed@berkeley.edu
4bb43d3dd2e519289bd7d68b2eb6c251c1edeffc
b072a98e605a8325cf79efec92ffc564bd588916
/example/face_extract_dirs_example.py
0ce528fec03101b8ffda7fd93b87177ea712653c
[ "MIT" ]
permissive
J77M/facextr
176b862fbfa03a210efccda1fabe5f3d2185ec75
d13539f4816f0dfde300bd7612b18a9c06dcb3b1
refs/heads/master
2020-07-21T11:56:06.746216
2019-09-07T17:02:48
2019-09-07T17:02:48
206,856,780
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
''' example for extracting faces from multiple directories and their subdirectories extract all faces from images from paths in list - dirs upload_path - directory, where faces will be stored this code doesn't process face extraction if number of files is more then 10000 ''' import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import facextr upload_path = r"C:\Users\user\tensorflow\keras\face_detection\face_extractor\results\dirs" dirs = [r'\\123tb\Media\Photo\Pictures\2019', r'\\123tb\Media\Photo\Pictures\2018', r'\\123tb\Media\Photo\Pictures\2017', r'\\123tb\Media\Photo\Pictures\2016', r'\\123tb\Media\Photo\Pictures\2015', r'\\123tb\Media\Photo\Pictures\2014', r'\\123tb\Media\Photo\Pictures\2013', r'\\123tb\Media\Photo\Pictures\2012', r'\\123tb\Media\Photo\Pictures\2011', r'\\123tb\Media\Photo\Pictures\2010', r'\\123tb\Media\Photo\Pictures\2009', r'\\123tb\Media\Photo\Pictures\2008', r'\\123tb\Media\Photo\Pictures\2007', r'\\123tb\Media\Photo\Pictures\2006', r'\\123tb\Media\Photo\Pictures\2005'] if __name__ == '__main__': files = facextr.dirs_files_count(dirs) print('number of image files : {}'.format(files)) if files < 10000: facextr.face_extract_dirs(dirs, upload_path, dir_structure = True) else: print('too much files to process, may take more then 6 hours')
[ "juro.marusic@gmail.com" ]
juro.marusic@gmail.com
a7c6d0e74d240aa7da3f3c8beef4b72e3afe7cc6
c7993e915ab093ae755977f2d844e4604df9f440
/Praktikum 1 No.12.py
d48c3e8d35fe49c8847324a1b0adb6c92da65ffc
[]
no_license
ahmadalvin92/Chapter-05
fe7981182535681604a40baad7f53d0975d98a6e
b316c9540f25a09ceb88a0829d82cea2331945d1
refs/heads/main
2023-01-03T11:53:08.432939
2020-10-30T14:01:57
2020-10-30T14:01:57
308,644,689
0
0
null
null
null
null
UTF-8
Python
false
false
291
py
a = 8 b = 3 if (a > 0) and (b > 0): print("keduanya positif") else: print("keduanya tidak positif") a = 8 b = 3 if (a > 0): if (b > 0): print("Keduanya positif") else: print("Keduanya tidak positif") else: print("Keduanya tidak positif")
[ "noreply@github.com" ]
ahmadalvin92.noreply@github.com
5e95d15bbcb402658a0aa5ca152150228122ffa4
88be3911c7e73d4bf71b0482ee6d15f49030463a
/SEC31_Regex/Demo_findall.py
efd4979649d52b8aed3afc6af63204120a6ce980
[]
no_license
skyaiolos/Python_KE
85f879d1cb637debd2e3a0239d7c8d7bfb30c827
8cc42c8f4d1245de4b79af429f72a9ed2508bc1a
refs/heads/master
2021-01-22T08:47:47.761982
2017-05-28T14:57:02
2017-05-28T14:57:02
92,634,507
1
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
""" # Script Description: Python 正则表达式之RegexObject """ __author__ = "爱的彼岸(QQ:3124724)" __copyright__ = "Copyright 2017,3124724@qq.com" # Create by Jianguo on 2017/5/7 import re text = "Tom is 8 years old, Mike is 25 years old." # 模式对象, 表现编译后的正则表达式(编译为字节码并缓存) # re.compile(r'模式') print('findall()'.center(100, '*')) pattern = re.compile(r'\d+') print(pattern.findall(text)) print(re.findall(r'\d+', text)) s = "\\author:Tom" pattern = re.compile(r'\\author') rex = pattern.findall(s) print(rex) text = "Tom is 8 years old, Mike is 25 years old.Peter is 87 years old." pattern = re.compile(r'\d+') rex = pattern.findall(text) print(rex) p_name = re.compile(r'[A-Z]\w+') rex_p = p_name.findall(text) print(rex_p) p1 = re.compile(r'\d+') p2 = re.compile(r'[A-Z]\w+') print('findall() VS finditer()'.center(100, '*')) print(p1.findall(text)) print() print('finditer()'.center(30, '*')) it = p1.finditer(text) for item in it: print(item)
[ "skyaiolos@aliyun.com" ]
skyaiolos@aliyun.com
8ffb86706e389d8e762090671e43d0b079b34933
d5ba272c47ca56435da778dd3f307cc0369910c5
/IB CS/Hw/postfix_infix
36e293092a08c92b78a26d21a69c6dfc5998de28
[]
no_license
hhshhd/hhshhd
34dc5c54b6d51ec169a693cd7c00805554eb4273
de1508854f95441e45101c8d2472bab41df0f41c
refs/heads/master
2020-03-27T12:03:53.116051
2020-02-19T08:09:55
2020-02-19T08:09:55
146,523,137
0
0
null
null
null
null
UTF-8
Python
false
false
3,661
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 18 21:16:02 2018 @author: hhshhd """ class Stack(): def __init__(self): self.stack = [] def itself(self): return self.stack def isEmpty(self): return self.stack == [] def push(self, item): self.stack.append(item) def pop(self): return self.stack.pop() def peek(self): return self.stack[-1] def size(self): return len(self.stack) class Queue(): def __init__(self): self.queue = [] def itself(self): return self.queue def isEmpty(self): return not self.Queue def enQueue(self,temp): self.queue.insert(0,temp) def deQueue(self): return self.queue.pop() def size(self): return len(self.queue) def addRear(self,temp): self.queue.insert(0,temp) def addFront(self,temp): self.queue.append(temp) def removeRear(self): return self.queue.pop(0) def removeFront(self): return self.queue.pop() def __str__(self): return str(self.queue) def eval_postfix(postfix): test = Stack() token_postfix = postfix.split(' ') for i in token_postfix: if i.isdigit(): test.push(i) else: right = test.pop() left = test.pop() result = eval(left + i + right) test.push(str(result)) return test.itself() def postfix_infix(postfix): test = Stack() token_postfix = postfix.split(' ') signal = ' ' for i in token_postfix: if i.isdigit(): test.push(i) else: if i in ['**'] and signal in ['*','/','//','%','+','-']: temp = test.pop() temp = '(' + temp + ')' test.push(temp) elif i in ['*','/','//','%'] and signal in ['+','-']: temp = test.pop() temp = '(' + temp + ')' test.push(temp) right = test.pop() left = test.pop() result = left + i + right test.push(result) signal = i return test.itself() print(eval_postfix('122 11 11 * -')) print(postfix_infix('122 11 10 30 50 - + / **')) def infix_postfix(infix): test = Queue() token_infix = [] signal = ' ' signall = ' ' for i in infix: token_infix.append(i) for j in token_infix: if j.isdigit(): if signal.isdigit(): temp = test.deQueue() temp = signal + j test.enQueue(temp) else: test.enQueue(j) elif j in ['(']: continue else: if signall in [')']: test.deQueue() test.addFront(j) signall = j continue elif j in ['**'] and signall in ['*','/','//','%','+','-']: right = test.deQueue() left = test.deQueue() test.addFront(j) test.addFront(left) test.addFront(right) elif j in ['*','/','//','%'] and signall in ['+','-']: right = test.deQueue() left = test.deQueue() test.addFront(j) test.addFront(left) test.addFront(right) else: test.addFront(j) signall = j signal = j return test.itself() print(infix_postfix('(22+3)*3')) print(infix_postfix('22+3*3'))
[ "noreply@github.com" ]
hhshhd.noreply@github.com
687ddb9d4e990cf9ca5ebc733f3ffbe89ac6d8eb
9aca5ecc08bc81a58f33ea0082f7cac360a1633d
/2Var Simplex Algorithm.py
9919e5cfb9869b646f8477b3af6e6a328fa1b63c
[]
no_license
RealConjugate/Python-Algorithms
d31360d7684012882edd1af83e2521ddc51135e3
44b1bdd58d288c854db68c58c626e0f9470ac68a
refs/heads/master
2021-07-01T08:57:14.777960
2021-06-30T20:02:17
2021-06-30T20:02:17
240,720,292
0
0
null
null
null
null
UTF-8
Python
false
false
8,741
py
from math import gcd from decimal import Decimal from tkinter import * window = Tk() window.title("Simplex Algorithm 2Var") def InitialTable(a,b,c,d,e,f,g,h): array = [] array.append([c,d,(1,1),(0,1)]) array.append([f,g,(0,1),(1,1)]) array.append([(-1*a[0],a[1]),(-1*b[0],b[1]),(0,1),(0,1)]) values = [e,h,(0,1)] basicVars = ["r","s","P"] return (array, basicVars) def Iterate(array, basicVars, values): # Maximising P: x,y,r,s>=0. Lists contain tuples columns = ["x","y","r","s"] negative = [] numList = [] for num in array[2]: # array[2] is objective variable row if Sign(num) == "negative": negative.append(float(num[0]/num[1])) # float to compare values numList.append(num) if not negative == []: mostNegativeFloat = min(negative) mostNegative = numList[negative.index(mostNegativeFloat)] pivotCol = array[2].index(mostNegative) theta = [Div(values[0],array[0][pivotCol]), Div(values[1],array[1][pivotCol])] smallestPositive = (0,1) # zero tuple for value in theta: if Sign(value) == "positive": if Sign(smallestPositive) == "zero" or Sign(Subt(value, smallestPositive)) == "negative": smallestPositive = value if not Sign(smallestPositive) == "zero": pivotRow = theta.index(smallestPositive) pivot = array[pivotRow][pivotCol] newArray = [[],[],[]] newValues = [] dividedRow = [] for item in array[pivotRow]: dividedRow.append(Div(item,pivot)) for i in range(0,3): if i == pivotRow: newArray[i] = dividedRow newValues.append(Div(values[i],pivot)) else: for j in range(0,4): newArray[i].append(Subt(array[i][j],Mult(array[i][pivotCol],dividedRow[j]))) newValues.append(Subt(values[i],Mult(array[i][pivotCol],Div(values[pivotRow],pivot)))) newBasicVars = [] for var in basicVars: if var == basicVars[pivotRow]: newBasicVars.append(columns[pivotCol]) else: newBasicVars.append(var) Iterate(newArray,newBasicVars,newValues) else: print("Optimal solution found") pLabel["text"] = basicVars[2] + " = " + GetString(values[2]) var1["text"] = basicVars[0] + " = " + GetString(values[0]) var2["text"] = basicVars[1] + " = " + GetString(values[1]) if "x" in basicVars: var1["text"] = "x = " + GetString(values[basicVars.index("x")]) else: var1["text"] = "x = 0" if "y" in basicVars: var2["text"] = "y = " + GetString(values[basicVars.index("y")]) else: var2["text"] = "y = 0" def StringToRatio(string): # string into reduced fraction as tuple if "/" in string: # string already "floatable" - only one / index = string.index("/") numerator = int(string[0:index]) denominator = int(string[index + 1:len(string)]) return (numerator, denominator) else: return Decimal(string).as_integer_ratio() def IsStrFloatable(string): # checks if string can be written as fraction if "/" in string: index = string.index("/") # first instance numerator = string[0:index] denominator = string[index + 1:len(string)] # If >1 / in string we get ValueError try: int(numerator) try: int(denominator) return True except ValueError: return False except ValueError: return False else: try: float(string) return True except ValueError: return False def Simplify(pair): # simplifies tuple numerator = pair[0] denominator = pair[1] if denominator < 0: numerator = -1 * numerator denominator = -1 * denominator GCD = gcd(numerator, denominator) numerator = int(numerator / GCD) denominator = int(denominator / GCD) return (numerator, denominator) def Div(V,W): return Simplify((V[0]*W[1], V[1]*W[0])) def Mult(V,W): return Simplify((V[0]*W[0],V[1]*W[1])) def Subt(V,W): numerator = V[0]*W[1] - W[0]*V[1] denominator = V[1]*W[1] return Simplify((numerator, denominator)) def Sign(fraction): fraction = Simplify(fraction) if fraction[0] == 0: return "zero" if fraction[0] > 0: return "positive" if fraction[0] < 0: return "negative" def GetString(pair): # tuple --> fraction string numerator = pair[0] denominator = pair[1] if denominator == 1: return str(numerator) else: return str(numerator) + "/" + str(denominator) def Validate(): a = EntryPX.get() b = EntryPY.get() c = entryx1.get() d = entryy1.get() e = entryval1.get() f = entryx2.get() g = entryy2.get() h = entryval2.get() strings = [a,b,c,d,e,f,g,h] valid = True for item in strings: if not IsStrFloatable(item): valid = False if valid: a = StringToRatio(a) b = StringToRatio(b) c = StringToRatio(c) d = StringToRatio(d) e = StringToRatio(e) f = StringToRatio(f) g = StringToRatio(g) h = StringToRatio(h) strings = [a,b,c,d,e,f,g,h] if valid: print(strings) Iterate(InitialTable(a,b,c,d,e,f,g,h)[0],InitialTable(a,b,c,d,e,f,g,h)[1],[e,h,(0,1)]) # GUI Creation Fconstraints1 = Frame(window) constraints1 = Label(Fconstraints1, text = "Enter positive entries.") constraints1.grid(row=0,column=0) Fconstraints2 = Frame(window) constraints2 = Label(Fconstraints2, text = "Input as int/fraction/decimal.") constraints2.grid(row=0,column=0) inputFrame = Frame(window) FMaximise = Frame(inputFrame) maximise = Label(FMaximise, text = "Maximise", width = 20) maximise.grid(row=0,column=0) FMaximise.grid(row=0,column=0) FGiven = Frame(inputFrame) given = Label(FGiven, text = "given", width = 20) given.grid(row=0,column=0) FGiven.grid(row=1,column=0) gap1 = Frame(window) space = Label(gap1, text = " ") space.grid(row=0,column=0) gap1.grid(row=2,column=0) PRow = Frame(inputFrame) labelP = Label(PRow, text = "P =") labelP.grid(row=0,column=0) EntryPX = Entry(PRow, width = 4) EntryPX.grid(row=0,column=1) labelPX = Label(PRow, text = "x +") labelPX.grid(row=0,column=2) EntryPY = Entry(PRow, width = 4) EntryPY.grid(row=0,column=3) labelPY = Label(PRow, text = "y") labelPY.grid(row=0,column=4) PRow.grid(row=0,column=1) Row1 = Frame(inputFrame) entryx1 = Entry(Row1, width = 4) entryx1.grid(row=0,column=0) labelx1 = Label(Row1, text = "x +") labelx1.grid(row=0,column=1) entryy1 = Entry(Row1, width = 4) entryy1.grid(row=0,column=2) labely1 = Label(Row1, text = "y <=") labely1.grid(row=0,column=3) entryval1 = Entry(Row1, width = 4) entryval1.grid(row=0,column=4) Row1.grid(row=1,column=1) Row2 = Frame(inputFrame) entryx2 = Entry(Row2, width = 4) entryx2.grid(row=0,column=0) labelx2 = Label(Row2, text = "x +") labelx2.grid(row=0,column=1) entryy2 = Entry(Row2, width = 4) entryy2.grid(row=0,column=2) labely2 = Label(Row2, text = "y <=") labely2.grid(row=0,column=3) entryval2 = Entry(Row2, width = 4) entryval2.grid(row=0,column=4) Row2.grid(row=2,column=1) nonnegative = Frame(inputFrame) label = Label(nonnegative, text = "x, y >= 0") label.grid(row=0,column=0) nonnegative.grid(row=3,column=1) frameButton = Frame(inputFrame) button = Button( master = frameButton, text = "Execute", command = Validate, bg = "#1E7800", fg = "#FFFFFF" ) button.grid(row=0,column=0) frameButton.grid(row=4, column=1) pFrame = Frame(inputFrame) pLabel = Label(pFrame, text = "") pLabel.grid(row=0,column=0) pFrame.grid(row=5, column=1) var1Frame = Frame(inputFrame) var1 = Label(var1Frame, text = "") var1.grid(row=0,column=0) var2Frame = Frame(inputFrame) var2 = Label(var2Frame, text = "") var2.grid(row=0,column=0) var1Frame.grid(row=5, column=0) var2Frame.grid(row=6, column=0) Fconstraints1.grid(row=0,column=0) Fconstraints2.grid(row=1,column=0) inputFrame.grid(row=3,column=0) window.mainloop()
[ "noreply@github.com" ]
RealConjugate.noreply@github.com
d86c18ba4ec7afad2c900121e66fde4e22ba5e2c
ec47c9f3fa378151a23c80525ceb1d0c02122d95
/engine/urls.py
7c7812c878312447bde3822619c98bbbf2d698d8
[]
no_license
harshdalal442/udaaan
a45a5f1a397f2c0a9865c2b29e18720f47be9dfb
ad407fe2ce4b3985db81d88277df36dca059adce
refs/heads/master
2022-12-11T11:04:39.984886
2018-10-14T16:25:09
2018-10-14T16:25:09
152,994,274
0
0
null
2022-12-08T01:02:34
2018-10-14T16:24:40
Python
UTF-8
Python
false
false
290
py
from django.conf.urls import url from . import views urlpatterns = [ url(r'^screens/$', views.RegisterScreen), url(r'^screens/(?P<theatre_name>[a-zA-Z0-9]+)/reserve/$', views.RegisterSeat), url(r'^screens/(?P<theatre_name>[a-zA-Z0-9]+)/seats', views.RetreiveSeatInfo), ]
[ "harsh.d.btechi14@ahduni.edu.in" ]
harsh.d.btechi14@ahduni.edu.in
22b3ecfa2b4ceef4967d1ba577da57db61f5e99a
69b4d9b7edb6241cc08c29b4c9b84ef7fe024b24
/MusicMaze/model/graph/Vertice.py
9660916446a22b611f873ad0ffab68d5b9272ced
[ "MIT" ]
permissive
CookieComputing/MusicMaze
7e4c632c7d4dbb8686e17fc69cccadf832d28ab8
5a60fb23694583cfbfde3d19a0aec5292c5aa9cc
refs/heads/master
2020-03-31T18:20:24.738412
2019-04-23T05:59:15
2019-04-23T05:59:15
152,455,032
3
0
null
null
null
null
UTF-8
Python
false
false
3,632
py
class Vertice: """This class represents an implementation of a vertice. A vertice in the graph will be interpreted as a "position" that a user can walk onto in the maze, and will consequently also be used as the cells of a maze.""" def __init__(self, name): """Initialize a vertice. A vertice should given a unique identifier to promote the identification of nodes. Args: name(str): the unique identifier of a vertice. This name should be used to promote a uid for a node and proper care with vertices should enforce that no two nodes have the same name. Raises: ValueError: If the name is empty or None """ if not name: raise ValueError("Given null name in vertice") self.__name = name self.__neighbors = dict() def add_neighbor(self, neighbor): """Assign the given vertice to become this node's neighbor. This is assignment is a directed assignment, however, so only this vertice will be able to recognize the given neighbor as a neighbor after a single operation of this function. Args: neighbor(Vertice): the vertice to become a neighbor to Raises: ValueError: If given a null neighbor or attempting to add itself as a potential neighbor, or if adding a duplicate neighbor """ if not neighbor: raise ValueError("Given invalid neighbor") if neighbor == self: raise ValueError("Vertice cannot become it's own neighbor") if neighbor.name() in self.__neighbors: raise ValueError("Attempting to add duplicate neighbor") self.__neighbors[neighbor.name()] = neighbor def remove_neighbor(self, neighbor): """Removes a given neighbor from this vertice's neighbors. Args: neighbor(str): the neighbor to remove Raises: ValueError(str): If the neighbor does not exist """ if neighbor.name() not in self.__neighbors: raise ValueError("Neighbor does not exist to remove") if neighbor != self.__neighbors[neighbor.name()]: raise ValueError("Given vertice is not the actual vertice neighbor") del self.__neighbors[neighbor.name()] def is_neighbor(self, potential_neighbor): """Determines if the given vertice is a potential neighbor of this vertice. This neighbor checking function will only determine that the given vertice is a neighbor from this vertice's perspective, and not from the neighbor's perspective. Args: potential_neighbor(Vertice): the expected neighbor Returns: boolean: If the vertice is indeed a neighbor of this vertice. """ if potential_neighbor.name() not in self.__neighbors: return False return self.__neighbors[potential_neighbor.name()] \ == potential_neighbor def neighbors(self): """Returns a list of this vertice's neighbors. Since this is an internal implementation detail, we make the choice to allow the vertice to return actual references to other vertices. There is no guarantee of the order of the neighbors. Returns: neighbors(list(Vertice)): This vertice's neighbors """ return list(self.__neighbors.values()) def name(self): """Return the unique name of this vertice. Returns: str: the name of this vertice""" return self.__name
[ "kevinxu1@yahoo.com" ]
kevinxu1@yahoo.com
ea385301144e17aa355e09063a6bd7bb66103bb1
d7faf47825b6f8e5abf9a9587f1e7248c0eed1e2
/python/ray/tests/test_asyncio_cluster.py
bea440bdf4b27bb1b625ec135c2bbc2bd5dd6d5b
[ "Apache-2.0", "BSD-3-Clause", "MIT" ]
permissive
ggdupont/ray
7d7c7f39a8f99a09199fab60897da9e48b8e2645
15391026c19f1cbbb8d412e46b01f7998e42f2b9
refs/heads/master
2023-03-12T06:30:11.428319
2021-12-07T05:34:27
2021-12-07T05:34:27
165,058,028
0
0
Apache-2.0
2023-03-04T08:56:50
2019-01-10T12:41:09
Python
UTF-8
Python
false
false
815
py
# coding: utf-8 import asyncio import sys import pytest import numpy as np import ray from ray.cluster_utils import Cluster, cluster_not_supported @pytest.mark.xfail(cluster_not_supported, reason="cluster not supported") @pytest.mark.asyncio async def test_asyncio_cluster_wait(): cluster = Cluster() head_node = cluster.add_node() cluster.add_node(resources={"OTHER_NODE": 100}) ray.init(address=head_node.address) @ray.remote(num_cpus=0, resources={"OTHER_NODE": 1}) def get_array(): return np.random.random((192, 1080, 3)).astype(np.uint8) # ~ 0.5MB object_ref = get_array.remote() await asyncio.wait_for(object_ref, timeout=10) ray.shutdown() cluster.shutdown() if __name__ == "__main__": import pytest sys.exit(pytest.main(["-v", __file__]))
[ "noreply@github.com" ]
ggdupont.noreply@github.com
5f8fd14fe0082158a135dcb0d3498417336ebf42
904e00bb34a124e44d34ac1da61d4f6caca511c0
/server/data/models.py
e9210f20a4f0f1c7c417b36d4dc8fb62f9e86c42
[]
no_license
gunwooterry/inclusion-kaist
2dcb64da394955ad2e9bb9f89d4e155263ba5d8a
cecc01d0afcf58d6208cb0832b190578f536adda
refs/heads/master
2023-02-08T15:45:24.322827
2020-10-15T03:35:09
2020-10-15T03:35:09
115,467,626
1
0
null
2023-01-25T08:53:48
2017-12-27T01:19:13
JavaScript
UTF-8
Python
false
false
1,150
py
from django.db import models class Organization(models.Model): name_ko = models.CharField(max_length=100) name_en = models.CharField(max_length=100) description_ko = models.CharField(max_length=500, blank=True) description_en = models.CharField(max_length=500, blank=True) location_ko = models.CharField(max_length=100, blank=True) location_en = models.CharField(max_length=100, blank=True) phone = models.CharField(max_length=15, blank=True) email = models.EmailField(blank=True) link = models.URLField(blank=True) def __str__(self): return self.name_ko class Person(models.Model): name_ko = models.CharField(max_length=50) name_en = models.CharField(max_length=50) department_ko = models.CharField(max_length=100, blank=True) department_en = models.CharField(max_length=100, blank=True) position_ko = models.CharField(max_length=100, blank=True) position_en = models.CharField(max_length=100, blank=True) image = models.ImageField(blank=True, null=True, upload_to='profiles') def __str__(self): return '{} ({})'.format(self.name_ko, self.department_ko)
[ "gunwooterry@gmail.com" ]
gunwooterry@gmail.com
1fcb94080d373a4e5d005f3584cbd8aee502b1f7
3969ae549b1d6ab8871ceb86e3a834bdf03a55cb
/Day 14/puzzle_2.py
78167c96269891b4bb7f2543d5ae98bc164aec98
[]
no_license
HealYouDown/advent-of-code-2015
7737603177e5ae1b74a98e58fb0c641779c9373e
53c92dc090c40ff82342a611aee82826dbf86b0a
refs/heads/master
2022-11-16T19:58:33.786271
2020-07-06T10:40:30
2020-07-06T10:40:30
277,513,748
0
0
null
null
null
null
UTF-8
Python
false
false
1,725
py
import re class Reindeer: def __init__(self, line: str): match = re.match(r"(.*) can fly (\d*) km/s for (\d*) seconds, but then must rest for (\d*) seconds.", line) self.name = match.group(1) self.speed = int(match.group(2)) self.fly_time = int(match.group(3)) self.rest_time = int(match.group(4)) self.fly_counter = 0 self.rest_counter = 0 self.traveled = 0 self.flying = True self.resting = False self.points = 0 def __repr__(self) -> str: return f"<Reindeer {self.name} traveled={self.traveled} points={self.points}>" def __lt__(self, other: "Reindeer"): return self.traveled > other.traveled def action(self): if self.flying: self.traveled += self.speed self.fly_counter += 1 elif self.resting: self.rest_counter += 1 if self.fly_counter == self.fly_time: self.fly_counter = 0 self.resting = True self.flying = False elif self.rest_counter == self.rest_time: self.rest_counter = 0 self.resting = False self.flying = True if __name__ == "__main__": with open("Day 14/input.txt", "r") as fp: deers = [Reindeer(line) for line in fp.readlines()] seconds = 2503 for _ in range(seconds): for deer in deers: deer.action() deers.sort() for deer in filter(lambda deer: deer.points == deers[0].points, deers): deer.points += 1 deers.sort(key=lambda d: d.points, reverse=True) print(deers[0].points + 1) # Idk why I need to add 1. It works :)
[ "jeremyregitz@gmail.com" ]
jeremyregitz@gmail.com
a6a921b3c8898eaf78ef99de628b1da382cbb447
70e9fc1f810fac6bb90d840b30d66f23119e7633
/predict.py
b9d4425bf66af423d74137ff19efb81414c1b29e
[]
no_license
RimaSadh/flowers_classifier
1b671caa12c87317909945e61a61607a960ccee1
9de65872dda101eb07e3b81bd4cd2c16e475f3c2
refs/heads/master
2022-12-08T02:38:15.843521
2020-08-27T12:37:19
2020-08-27T12:37:19
290,755,780
0
0
null
null
null
null
UTF-8
Python
false
false
4,403
py
import argparse import tensorflow as tf import tensorflow_hub as hub from PIL import Image import numpy as np import json import warnings warnings.filterwarnings('ignore') # Function to define parser and its arguments def define_arguments(): # Create parser object parser = argparse.ArgumentParser(description = 'Flowers Image Classifier') # For each argument we provide(Name, Default Value, Data Type, and Help Message) # Image variable to get the image path used in the prediction parser.add_argument('--image', default = './test_images/wild_pansy.jpg', type = str, help = 'Image path') # Model variable to get the model path used for the prediction parser.add_argument('--model', default = './flowers_classifier.h5', type = str, help = 'Model file path') # K variable represents the top K most likely flowers parser.add_argument('--top_k', default = 5 , type = int, help = 'The top K most likely classes') # Variable to get the Json file that contains the labels parser.add_argument('--category_names', default = './label_map.json', help = 'Json file used to map the labels with category names') return parser # Function that handles the processing of flower image before being injected to the prediction model # ( Resizing and Normalizing ) def process_image(image): # Convert (NumPy array) image into a TensorFlow Tensor processed_image = tf.convert_to_tensor(image) # Resize the image processed_image = tf.image.resize(image, (224, 224)) # Normalize the pixel values processed_image /= 255 # Return the image as NumPy array return processed_image.numpy() # Function handles the prediction of labels by taking as an inputs (image path, loaded model, top K as an integer) def predict(image_path, model, top_k): # First: Process the Image #1. Load and import the image image = Image.open(image_path) #2. Convert it to numpy array image = np.asarray(image) #3. Resize and normalize the image image = process_image(image) #4. Add Extra dimension represents the batch size, to make the image in the needed dimensions for the model image = np.expand_dims(image, axis = 0) # Second: Predict tha labels using the loaded model predicted_probabilities = model.predict(image) # Third: Interpret the results returned by the model # Finds the k largest entries in the probabilities vector and outputs their values and crossoponding labels propabilities, classes = tf.nn.top_k(predicted_probabilities, k = top_k) # Converts both the probabilities and classes to numpy list of 1-D propabilities = propabilities.numpy().tolist()[0] classes = classes.numpy().tolist()[0] # Forth: Map the classes with the labels labels = [] for l in classes: labels.append(class_names[str(l+1)]) # (+1) for the difference in the labels names return propabilities, labels if __name__=="__main__": parser = define_arguments() arg_parser = parser.parse_args() # Save user inputs to variables image_path = arg_parser.image model_path = arg_parser.model top_k = arg_parser.top_k category_names = arg_parser.category_names # Load and map the labels to the flowers category with open(category_names, 'r') as f: class_names = json.load(f) # Load the prediction model using TensorFlow model = tf.keras.models.load_model(model_path, custom_objects = {'KerasLayer':hub.KerasLayer}) print("****Start Pridiction****\n") # Predict by passing the image path + loaded model + top k as integer probs, labels = predict(image_path, model, top_k) # Print the result of prediction print("Top {} prediction flower names and it's associated probability for the image in path: {}\n".format(top_k, image_path)) print('\t Flower Name | Probability% \n') for p, l in zip(probs, labels): p = float(format(p, '.4f')) print('\t {} | {}%'.format(l, p*100)) print("\n****End Pridiction****")
[ "noreply@github.com" ]
RimaSadh.noreply@github.com
dd57282a6f43709922c5f7cbe9ce63f81e77bcd0
414db33a43c50a500741784eea627ba98bb63e27
/0x0A-python-inheritance/9-rectangle.py
4092a9005ebb2873185b2c9b324c123b1c9c6344
[]
no_license
rayraib/holbertonschool-higher_level_programming
2308ea02bd7f97eae3643e3ce0a6489cc1ad9ff5
6b4196eb890ffcb91e541431da9f5f57c5b85d4e
refs/heads/master
2021-09-14T09:12:26.664653
2018-05-11T03:23:12
2018-05-11T03:23:12
113,070,818
1
0
null
null
null
null
UTF-8
Python
false
false
746
py
#!/usr/bin/python3 BaseGeometry = __import__('7-base_geometry').BaseGeometry ''' subclass of BaseGeometry class ''' class Rectangle(BaseGeometry): ''' representation of a rectangle''' def __init__(self, width, height): '''initialize the object attributes''' BaseGeometry.integer_validator(self, "height", height) self.__height = height BaseGeometry.integer_validator(self, "width", width) self.__width = width def area(self): ''' calculate area of the rectangle''' return (self.__height * self.__width) def __str__(self): '''return informal string represention of the object itself''' return ("[Rectangle] {}/{}".format(self.__width, self.__height))
[ "binitarai11@gmail.com" ]
binitarai11@gmail.com
89ddaad98abbd1f07088c068c03103c8d88bb637
b4507e2b9f424e7ceea0b1ef189d698196926847
/core/operators.py
3d1095bd14943401579a29159fde564b13a7b202
[]
no_license
sadernalwis/Scratchpad
9e57b61fcee8b20d348328853490a69bc5bed395
0387993a9853dbaf9122d373c8ab5d412ba4f739
refs/heads/master
2023-02-13T12:39:29.136998
2021-01-13T00:36:01
2021-01-13T00:36:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
import bpy from bpy.types import Operator from libs.registry import autoregister @autoregister class SCRATCHPAD_OT_reload_sources(Operator): """Force reload of all shader source files""" bl_idname = 'scratchpad.reload_sources' bl_label = 'Reload Shader Sources' def invoke(self, context, event): for mat in bpy.data.materials: mat.scratchpad.force_reload = True return {'FINISHED'}
[ "cmcmanning@gmail.com" ]
cmcmanning@gmail.com
bd82d3e98d1a67cc87a28e599370a8b6475b91ae
3467fe90c6c49b4ac86785d1da19d7183b2ac0f5
/6002x/findCombination.py
85d683714d531ae692f4b2fa142f7782b706f04d
[ "MIT" ]
permissive
CarlosEduardoAS/MITx
277da453638da672c9946513bfb7a86e7446072b
532695d69c77581b6df80c145283b349b75e4973
refs/heads/main
2023-05-02T13:50:15.283211
2021-05-25T20:02:48
2021-05-25T20:02:48
351,555,645
0
0
null
null
null
null
UTF-8
Python
false
false
1,219
py
# -*- coding: utf-8 -*- """ Created on Tue May 25 16:10:53 2021 @author: caear """ import numpy import itertools def find_combination(choices, total): """ choices: a non-empty list of ints total: a positive int Returns result, a numpy.array of length len(choices) such that * each element of result is 0 or 1 * sum(result*choices) == total * sum(result) is as small as possible In case of ties, returns any result that works. If there is no result that gives the exact total, pick the one that gives sum(result*choices) closest to total without going over. """ power_set = [] for i in itertools.product([1,0], repeat = len(choices)): power_set.append(numpy.array(i)) filter_set_eq = [] filter_set_less = [] for j in power_set: if sum(j*choices) == total: filter_set_eq.append(j) elif sum(j*choices) < total: filter_set_less.append(j) if len(filter_set_eq) > 0: minidx = min(enumerate(filter_set_eq), key=lambda x:sum(x[1]))[1] return minidx else: minidx = max(enumerate(filter_set_less), key = lambda x:sum(x[1]))[1] return minidx
[ "79329559+CarlosEduardoAS@users.noreply.github.com" ]
79329559+CarlosEduardoAS@users.noreply.github.com
b7bda430b886d0141d2525d46d6a57a4df588c92
ef42f9ebfc427882bc30f8b29692b8bf1195fc96
/Codigo/homePage/migrations/0010_infolibro_preciolibro.py
c2bde5503c358d8d35efd6d538f7cae8c7c5dc97
[]
no_license
IngSw201910/ZonaCultura
9671a0fdab7ba2e80f53a88c5d520ddee12894cc
9bf543c0082a6c361f7980ae35977a7183952873
refs/heads/master
2020-04-19T11:41:19.564671
2019-05-23T13:54:31
2019-05-23T13:54:31
168,173,720
0
2
null
null
null
null
UTF-8
Python
false
false
390
py
# Generated by Django 2.2 on 2019-04-14 04:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('homePage', '0009_auto_20190413_2135'), ] operations = [ migrations.AddField( model_name='infolibro', name='PrecioLibro', field=models.IntegerField(default=0), ), ]
[ "dpbeltran97@gmail.com" ]
dpbeltran97@gmail.com
902b09ed2ee809a19293ec13b3fccd3cf58d2dbf
6ffd23679939f59f0a09c9507a126ba056b239d7
/imperative/python/megengine/core/_trace_option.py
638c142a12249cc9b7381b3c378d5b01f5b5ff9e
[ "LicenseRef-scancode-generic-cla", "Apache-2.0" ]
permissive
MegEngine/MegEngine
74c1c9b6022c858962caf7f27e6f65220739999f
66b79160d35b2710c00befede0c3fd729109e474
refs/heads/master
2023-08-23T20:01:32.476848
2023-08-01T07:12:01
2023-08-11T06:04:12
248,175,118
5,697
585
Apache-2.0
2023-07-19T05:11:07
2020-03-18T08:21:58
C++
UTF-8
Python
false
false
862
py
# -*- coding: utf-8 -*- import os from ._imperative_rt.core2 import set_cpp_use_symbolic_shape _use_symbolic_shape = False if os.environ.get("MEGENGINE_USE_SYMBOLIC_SHAPE"): _use_symbolic_shape = True _use_xla_backend = False def use_symbolic_shape() -> bool: r"""Returns whether tensor.shape returns a tensor instead of a tuple""" return _use_symbolic_shape def set_symbolic_shape(option: bool): r"""Sets whether tensor.shape returns a tensor instead of a tuple""" global _use_symbolic_shape _org = _use_symbolic_shape _use_symbolic_shape = option return _org def use_xla_backend() -> bool: return _use_xla_backend def set_use_xla_backend(option: bool) -> bool: global _use_xla_backend _org = _use_xla_backend _use_xla_backend = option return _org set_cpp_use_symbolic_shape(use_symbolic_shape)
[ "megengine@megvii.com" ]
megengine@megvii.com
e1b9f2842dd900818aff317fdcf377f37beb99ab
62e7193227d4929f6fbc2f95542bfd7ce42f7e76
/WindowsWrapper/create_experiment_dir.py
8726e5e4a15f663aec08b00e7fc2c69da6e16b95
[]
no_license
tomjmanuel/windows_ConvnetWrapper
892ce9759ad90f7614bf8a81f52e284becc69a69
5ec9304d6db8b859e1a6d8a860a7f709706ff0c9
refs/heads/master
2020-07-04T05:51:28.610011
2019-08-13T21:22:54
2019-08-13T21:22:54
202,177,416
0
0
null
2019-11-02T07:26:01
2019-08-13T15:51:48
Python
UTF-8
Python
false
false
2,453
py
#!/usr/bin/env python ######################################################### # # Creates an experiment directory for cell detection pipeline # # Author: Alex Riordan # # Description: creates a user-specified directory with # training/test/validation subdirectories and # an autopopulated main_config.cfg file # # Usage: dir_name is user-specified directory, should be an absolute path # # ################################################################ import os, shutil, ConfigParser, sys def create_experiment_directory(dir_name): if not os.path.exists(dir_name): os.makedirs(dir_name) else: raise AssertionError('Directory already exists.\n Choose a different name for your new experiment directory. ', dir_name) os.makedirs(dir_name + '/labeled/test') os.makedirs(dir_name + '/labeled/training') os.makedirs(dir_name + '/labeled/validation') def copy_main_config(dir_name): src_path = os.path.dirname(os.path.abspath(__file__)) shutil.copy(src_path + '/main_config.cfg', dir_name) config_path = dir_name + '/main_config.cfg' cfg_parser = ConfigParser.SafeConfigParser() cfg_parser.readfp(open(config_path, 'r')) cfg_parser.set('general','data_dir', dir_name + '/labeled') #repo_path = src_path.split('ConvnetCellDetection')[0] + 'ConvnetCellDetection/celldetection_znn' repo_path = os.path.dirname(src_path) + '/celldetection_znn' cfg_parser.set('network','net_arch_fpath', repo_path + '/2plus1d.znn') cfg_parser.set('training','training_input_dir', dir_name + '/labeled_preprocessed') cfg_parser.set('training','training_output_dir', dir_name + '/labeled_training_output') cfg_parser.set('training','training_net_prefix', dir_name + '/labeled_training_output/2plus1d') cfg_parser.set('forward','forward_net', dir_name + '/labeled_training_output/2plus1d_current.h5') with open(config_path, 'wb') as configfile: cfg_parser.write(configfile) def main(dir_name = 'new_expt'): dir_name = '../data/' + dir_name create_experiment_directory(dir_name) copy_main_config(dir_name) print 'new experiment directory', dir_name, 'successfully created.' if __name__ == "__main__": if len(sys.argv) > 1: dir_name = sys.argv[1] main(dir_name) else: main()
[ "noreply@github.com" ]
tomjmanuel.noreply@github.com
adf942ef17cc289e1c3cf16a609ecac205d03692
fc314838b18c14a00310f0059d5358c7c4afabd6
/special/models.py
6796cb77ef4370af265ada4e6ba8966f501a7cd4
[ "MIT" ]
permissive
opendream/asip
5cb4b997fab2438193ae7490c159efced6dc3d91
20583aca6393102d425401d55ea32ac6b78be048
refs/heads/master
2022-11-28T23:28:18.405604
2020-03-10T04:56:23
2020-03-10T04:56:23
190,504,979
1
1
MIT
2022-11-22T01:10:46
2019-06-06T03:06:03
HTML
UTF-8
Python
false
false
1,126
py
from django.db import models # Create your models here. from common.constants import STATUS_PUBLISHED, STATUS_CHOICES from common.models import AbstractPermalink, CommonTrashModel import files_widget class Special(CommonTrashModel, AbstractPermalink): title = models.CharField(max_length=512) image = files_widget.ImageField(verbose_name='Banner Image', null=True, blank=True) status = models.IntegerField(choices=STATUS_CHOICES, default=STATUS_PUBLISHED) created = models.DateTimeField(auto_now_add=True, null=True, blank=True) changed = models.DateTimeField(auto_now=True, null=True, blank=True) def __unicode__(self): return self.permalink def get_absolute_url(self): return '/%s/' % self.permalink class Page(CommonTrashModel, AbstractPermalink): special = models.ForeignKey(Special, related_name='pages', null=True, blank=True) status = models.IntegerField(choices=STATUS_CHOICES, default=STATUS_PUBLISHED) created = models.DateTimeField(auto_now_add=True, null=True, blank=True) changed = models.DateTimeField(auto_now=True, null=True, blank=True)
[ "server@set.com" ]
server@set.com
c83487e3debc10e945524c2ff7f63c1930983a75
537b1ccbd762bdad55d2cd49e6b24bb677a73dac
/reservations/migrations/0008_auto_20200831_0927.py
633be69d4350db3fe06f58668b412e8eb5dad19b
[]
no_license
MahidharBandaru/webloom
d0ace50a01811a99c6e87380242d43cb1a81be0f
be45f5bf8c4e90417ab605b1d994d296e36b4dfb
refs/heads/master
2022-12-10T04:38:31.035730
2020-09-01T14:34:08
2020-09-01T14:34:08
291,698,764
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
# Generated by Django 3.1 on 2020-08-31 09:27 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('reservations', '0007_auto_20200831_0925'), ] operations = [ migrations.RemoveField( model_name='reservation', name='datetime', ), migrations.AddField( model_name='reservation', name='date', field=models.DateField(default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='reservation', name='time', field=models.TimeField(default=django.utils.timezone.now), preserve_default=False, ), ]
[ "mahi.mahidhar2@gmail.com" ]
mahi.mahidhar2@gmail.com
933d859ca1c6bf077fcdc57be83a050da83f1265
a5dd8a280c96ab747215475e740cf49300bc13ab
/解析参数方法.py
fc4d549e9331d7d456aff38c8760b1819ae39061
[]
no_license
leiqin01/python-learning
93c00e14b2f6d59161e7b02ef2f69554393646c0
13c56a007530c375fd773f167edd2d677c4fd02b
refs/heads/main
2023-03-23T11:34:26.875733
2021-03-13T16:56:10
2021-03-13T16:56:10
347,425,017
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
import sys sys.float_info sys.float_info.max #Thonny的shell似乎运行不了这几行代码,直接使用IDLE可以运行
[ "noreply@github.com" ]
leiqin01.noreply@github.com
4fc93ceb92b53151fe738828150e99657579c265
cf5d2b3cce51ae4ada792720164f92edf13db3ea
/perchess/pieces/rook.py
270a9ecc6d307f301b53d0cc95d2956def6c291a
[]
no_license
rcisterna/perchess-py
95d6f49d5e884f1433d4572f882701765e00a742
fbd6650df6806345deb8bd801c3886e2f87cc54b
refs/heads/master
2022-11-14T04:43:38.731098
2020-07-05T02:36:21
2020-07-05T02:36:21
275,480,785
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
from perchess.pieces import Piece, Colors, Movement class Rook(Piece): """Torre.""" def __init__(self, color: Colors): """ :param color: Color de jugador. """ movements = [] for travel in range(1, 8): movements.extend([Movement(travel, 0), Movement(-travel, 0), Movement(0, travel), Movement(0, -travel)]) Piece.__init__(self, "R", color, movements)
[ "r.cisternasantos@gmail.com" ]
r.cisternasantos@gmail.com
905cb8c5f6d0197487ae82ee1d0f00475fb00efe
2153a7ecfa69772797e379ff5642d52072a69b7c
/library/test/test_compiler/sbs_code_tests/70_class.py
64ce08233157b32ce3204a302018c8a61bc3d153
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause", "Python-2.0" ]
permissive
KCreate/skybison
a3789c84541f39dc6f72d4d3eb9783b9ed362934
d1740e08d8de85a0a56b650675717da67de171a0
refs/heads/trunk
2023-07-26T04:50:55.898224
2021-08-31T08:20:46
2021-09-02T19:25:08
402,908,053
1
0
NOASSERTION
2021-09-03T22:05:57
2021-09-03T22:05:57
null
UTF-8
Python
false
false
422
py
# Copyright (c) Facebook, Inc. and its affiliates. (http://www.facebook.com) class C: pass # EXPECTED: [ LOAD_BUILD_CLASS(0), LOAD_CONST(Code((1, 0))), LOAD_CONST('C'), MAKE_FUNCTION(0), LOAD_CONST('C'), CALL_FUNCTION(2), STORE_NAME('C'), ..., CODE_START('C'), LOAD_NAME('__name__'), STORE_NAME('__module__'), LOAD_CONST('C'), STORE_NAME('__qualname__'), ..., ]
[ "emacs@fb.com" ]
emacs@fb.com
e2986c8aa61230f3eadcd07902d54ab807a0c186
d3c395fee26b8c7d468df3b6fc8d46109e3282ce
/SA_Math.py
d74bef19f20c3a6c74f893f461c1fd61e47c6edf
[]
no_license
heshijiu/SA1.0
030c3810cc7fbca71c5fa1b89f18bd3b7b5d4163
18ac5f93b6dc597ebe5f5260fc7aa5313fe24896
refs/heads/master
2021-01-24T18:58:11.036256
2017-07-02T10:20:20
2017-07-02T10:20:20
86,162,487
0
0
null
null
null
null
UTF-8
Python
false
false
2,008
py
#!/usr/bin/Python # -*- coding: utf-8 -*- import cmath class Point: x = 0 y = 0 def __init__(self, x, y): self.x = x self.y = y def __add__(self, other): self.x += other.x self.y += other.y class Vector: x = 0 y = 0 def __init__(self, x, y): self.x = x self.y = y def __init__(self, p1, p2): self.x = p2.x - p1.x self.y = p2.y - p1.y def Dot(self, v): dot =self.x * v.x + self.y * v.y return dot.real def Normal(self): m = cmath.sqrt(self.x * self.x + self.y * self.y) m = m.real if abs(m ) < 0.00000001: return 0 self.x /= m self.y /= m def Moudl(self): m = cmath.sqrt(self.x * self.x + self.y * self.y) return m.real def Transform(array): l = len(array) s = len(array[0]) newArray = [] i = 0 while i < s: j = 0 temp = [] while j < l: temp.append(array[j][i]) j += 1 newArray.append(temp) i += 1 return newArray class Samples: __array = None __count = 0 __mean = 0 __variance = 0 def __init__(self, array = None): self.__array = array self.__count = len(array) self.__Mean() self.__Variance() return def __Mean(self): if self.__array == None: return if self.__count == 0: return sum = 0 for item in self.__array: sum += item self.__mean = sum / self.__count return def __Variance(self): if self.__count < 2: return if self.__array == None: return sum = 0 for item in self.__array: sum += (item - self.__mean) * (item - self.__mean) self.__variance = sum / (self.__count - 1) return def mean(self): return self.__mean def variance(self): return self.__variance
[ "noreply@github.com" ]
heshijiu.noreply@github.com
b40cdf18254250789a2505f91f27df20c101aac1
1ed9e03e550469ebcf0a6de56d8cc87150a2b861
/fedml_core/distributed/communication/__init__.py
2547ee9667fa186251ebac9ccb53e01c04a03164
[]
no_license
StevenLOL/FedML
ba211140b9eb5c3acd18a4e3c8a8aa9dd8c175e3
fe4c6caeec680bb8f2fa8ae30c0717a4522e6f6c
refs/heads/master
2022-11-28T09:39:45.270989
2020-08-02T16:52:07
2020-08-02T16:52:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
from .com_manager import CommunicationManager from .message import Message
[ "me@chaoyanghe.com" ]
me@chaoyanghe.com
1c22d4445c54dc6358a0ba0086ed39af5a259b49
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/cloud/osconfig/agentendpoint/v1/osconfig-agentendpoint-v1-py/google/cloud/osconfig/agentendpoint_v1/services/agent_endpoint_service/transports/base.py
1529267fb51e6ac71e8e7bfbcf4c92072cb41021
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,967
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import packaging.version import pkg_resources import google.auth # type: ignore import google.api_core # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.osconfig.agentendpoint_v1.types import agentendpoint try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( 'google-cloud-osconfig-agentendpoint', ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() try: # google.auth.__version__ was added in 1.26.0 _GOOGLE_AUTH_VERSION = google.auth.__version__ except AttributeError: try: # try pkg_resources if it is available _GOOGLE_AUTH_VERSION = pkg_resources.get_distribution("google-auth").version except pkg_resources.DistributionNotFound: # pragma: NO COVER _GOOGLE_AUTH_VERSION = None class AgentEndpointServiceTransport(abc.ABC): """Abstract transport class for AgentEndpointService.""" AUTH_SCOPES = ( ) DEFAULT_HOST: str = 'osconfig.googleapis.com' def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ':' not in host: host += ':443' self._host = host scopes_kwargs = self._get_scopes_kwargs(self._host, scopes) # Save the scopes. self._scopes = scopes # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs("'credentials_file' and 'credentials' are mutually exclusive") if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default(**scopes_kwargs, quota_project_id=quota_project_id) # If the credentials is service account credentials, then always try to use self signed JWT. if always_use_jwt_access and isinstance(credentials, service_account.Credentials) and hasattr(service_account.Credentials, "with_always_use_jwt_access"): credentials = credentials.with_always_use_jwt_access(True) # Save the credentials. self._credentials = credentials # TODO(busunkim): This method is in the base transport # to avoid duplicating code across the transport classes. These functions # should be deleted once the minimum required versions of google-auth is increased. # TODO: Remove this function once google-auth >= 1.25.0 is required @classmethod def _get_scopes_kwargs(cls, host: str, scopes: Optional[Sequence[str]]) -> Dict[str, Optional[Sequence[str]]]: """Returns scopes kwargs to pass to google-auth methods depending on the google-auth version""" scopes_kwargs = {} if _GOOGLE_AUTH_VERSION and ( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0") ): scopes_kwargs = {"scopes": scopes, "default_scopes": cls.AUTH_SCOPES} else: scopes_kwargs = {"scopes": scopes or cls.AUTH_SCOPES} return scopes_kwargs def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.receive_task_notification: gapic_v1.method.wrap_method( self.receive_task_notification, default_retry=retries.Retry( initial=1.0,maximum=60.0,multiplier=1.3, predicate=retries.if_exception_type( core_exceptions.Aborted, core_exceptions.Cancelled, core_exceptions.DeadlineExceeded, core_exceptions.InternalServerError, core_exceptions.ServiceUnavailable, ), deadline=3600.0, ), default_timeout=3600.0, client_info=client_info, ), self.start_next_task: gapic_v1.method.wrap_method( self.start_next_task, default_timeout=None, client_info=client_info, ), self.report_task_progress: gapic_v1.method.wrap_method( self.report_task_progress, default_timeout=None, client_info=client_info, ), self.report_task_complete: gapic_v1.method.wrap_method( self.report_task_complete, default_timeout=None, client_info=client_info, ), self.register_agent: gapic_v1.method.wrap_method( self.register_agent, default_timeout=None, client_info=client_info, ), self.report_inventory: gapic_v1.method.wrap_method( self.report_inventory, default_timeout=None, client_info=client_info, ), } @property def receive_task_notification(self) -> Callable[ [agentendpoint.ReceiveTaskNotificationRequest], Union[ agentendpoint.ReceiveTaskNotificationResponse, Awaitable[agentendpoint.ReceiveTaskNotificationResponse] ]]: raise NotImplementedError() @property def start_next_task(self) -> Callable[ [agentendpoint.StartNextTaskRequest], Union[ agentendpoint.StartNextTaskResponse, Awaitable[agentendpoint.StartNextTaskResponse] ]]: raise NotImplementedError() @property def report_task_progress(self) -> Callable[ [agentendpoint.ReportTaskProgressRequest], Union[ agentendpoint.ReportTaskProgressResponse, Awaitable[agentendpoint.ReportTaskProgressResponse] ]]: raise NotImplementedError() @property def report_task_complete(self) -> Callable[ [agentendpoint.ReportTaskCompleteRequest], Union[ agentendpoint.ReportTaskCompleteResponse, Awaitable[agentendpoint.ReportTaskCompleteResponse] ]]: raise NotImplementedError() @property def register_agent(self) -> Callable[ [agentendpoint.RegisterAgentRequest], Union[ agentendpoint.RegisterAgentResponse, Awaitable[agentendpoint.RegisterAgentResponse] ]]: raise NotImplementedError() @property def report_inventory(self) -> Callable[ [agentendpoint.ReportInventoryRequest], Union[ agentendpoint.ReportInventoryResponse, Awaitable[agentendpoint.ReportInventoryResponse] ]]: raise NotImplementedError() __all__ = ( 'AgentEndpointServiceTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
a37961de642964b227bc2185002940eabeba5a67
58be0e0db1be823d62c021e273f4073b7aa5e312
/Index_strat/LSMarket_future288_0.36BHedit.py
5fccbc5ccc54404f48bc7a46b0b662ccf1407f82
[]
no_license
briansone/ai_a3d
028f7e9fbabeafaff3c628712e703c1fbcc8cbdf
80f053a4df0a4987edd0471966fca266e1f39e46
refs/heads/master
2022-11-30T20:57:44.913667
2020-08-16T09:00:24
2020-08-16T09:00:24
286,200,545
0
0
null
null
null
null
UTF-8
Python
false
false
3,726
py
import pandas as pd from keras.models import Sequential from keras.layers import Dense, Dropout from sklearn.model_selection import cross_val_score from keras.wrappers.scikit_learn import KerasClassifier from keras.models import load_model # from pprint import pprint as pp import numpy as np from sklearn.preprocessing import minmax_scale verbosity = 1 groupSize = 288 feature_names = [ 'Date', 'BHP', 'RIO', 'OSH', 'WPL' ] subset = [ 'RIO', 'OSH', 'WPL' ] voting_data = pd.read_csv( 'a3d_oil_equity.csv', names = feature_names ) voting_data.head() voting_data.dropna( inplace = True ) # this removes incomplete rows... interesting voting_data.describe() def groupData( data, groupSize ): mergedArray = [] for i in range( data.size ): if i > groupSize and i < data.shape[0] - 1: mergedList = [] for ii in range( groupSize ): mergedList = np.concatenate( ( mergedList, data[ i - ii ] ), axis=None ) mergedArray.append( mergedList ) return mergedArray def groupLabels( data, groupSize ): mergedArray = [] for i in range( data.size ): i = i - 1 if i > groupSize: mergedList = data[i] mergedArray.append( mergedList ) return mergedArray def doTraining(): trainingData = voting_data[ subset ].values trainingData = minmax_scale( trainingData ) trainingData = groupData( trainingData, groupSize = groupSize ) trainingData = np.array( trainingData ) # print( trainingData.shape ) trainingLabels = voting_data[ 'BHP' ].values trainingLabels = minmax_scale( trainingLabels ) trainingLabels = groupLabels( trainingLabels, groupSize = groupSize ) trainingLabels = np.array( trainingLabels ) # print( trainingLabels.shape ) model = Sequential() # 17 feature inputs (votes) going into a 32-unit layer model.add( Dense( 576, input_dim = len( trainingData[0] ), kernel_initializer = 'normal', activation = 'relu' ) ) # Another hidden layer of 16 units model.add( Dense( 192, kernel_initializer = 'normal', activation = 'relu' ) ) # Another hidden layer of 16 units model.add( Dense( 64, kernel_initializer = 'normal', activation = 'relu' ) ) # Output layer with a binary classification ( Democrat or Republican ) model.add( Dense( 1 ) ) # Compile model model.compile( loss = 'mse', optimizer = 'rmsprop', metrics = [ 'mae' ] ) # Train model model.fit( trainingData, trainingLabels, epochs = 5000, batch_size = 50, verbose = verbosity ) # Grade the model scores = model.evaluate( trainingData, trainingLabels, verbose = verbosity ) print( "%s: %.2f%%" % ( model.metrics_names[1], scores[1]*100 ) ) # Save the model model.save( 'BHMarket_Model.h5' ) def doPrediction(): trainingData = voting_data[ subset ].values originalValue = trainingData[0][0] trainingData = minmax_scale( trainingData ) normalizedValue = trainingData[0][0] multiple = originalValue / normalizedValue print( originalValue ) print( normalizedValue ) print( multiple ) trainingData = groupData( trainingData, groupSize = groupSize ) inputData = trainingData[-2] trainingLabels = voting_data[ 'Date' ].values trainingLabels = groupLabels( trainingLabels, groupSize = groupSize ) date = trainingLabels[-1] print( inputData.shape ) loaded_model = load_model( 'LSMarket_Model.h5' ) # evaluate loaded model on test data loaded_model.compile( loss = 'mse', optimizer = 'rmsprop', metrics = [ 'mae' ] ) # Predict things... print( inputData ) print( inputData.shape ) thegoods = loaded_model.predict( inputData.reshape( (1, 864) ), batch_size = None, verbose = verbosity, steps = None ) print ( date, thegoods * multiple ) doTraining() # doPrediction()
[ "noreply@github.com" ]
briansone.noreply@github.com
bd778f3a59e0229767373b451f37fe4d11718750
14fd8bd44393cfd196243be411039699bc0ee471
/marketplace/migrations/0008_auto_20181202_0032.py
a28a321e50734e0df60c7ec6a0d7a3421c58b81d
[]
no_license
Icebreaker2018/Icebreaker
5248d1fedfdc5321a3fc0633fe19304e2b67a995
df1c0cd606bbb42be8a06ba330d0fd84248c1508
refs/heads/master
2022-12-16T16:24:00.520244
2018-12-11T03:24:04
2018-12-11T03:24:04
154,955,218
0
1
null
2022-12-08T01:18:11
2018-10-27T11:10:52
CSS
UTF-8
Python
false
false
590
py
# Generated by Django 2.0.5 on 2018-12-01 19:02 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('marketplace', '0007_auto_20181202_0022'), ] operations = [ migrations.RemoveField( model_name='cart', name='product', ), migrations.AddField( model_name='cart', name='product', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to='marketplace.product'), ), ]
[ "ajith.n17@iiits.in" ]
ajith.n17@iiits.in
dbd667792f1668b9deab8ab7f7208a0d1aa2e8a7
f819e7e7ef6199b136ab14c6eb7778a9ca8ce2c1
/lib/plugins-loader/helpers/send_message.py
112b1bb7ca5a312274223802c9b8690df7bd1286
[]
no_license
ewnd9/limelight
e66a3ab790476a7bbe2c5b91f199599d4b778475
966b04af76218533d496c05355e4885142040734
refs/heads/master
2021-01-17T19:10:00.850748
2015-09-21T15:53:54
2015-09-21T15:53:54
55,278,092
1
0
null
2016-04-02T04:43:07
2016-04-02T04:43:07
null
UTF-8
Python
false
false
1,519
py
import urllib import contacts from applescript import asrun, asquote import re def normalize_phone(num): drop = ' -.' for c in drop: num = num.replace(c, '') if len(num) > 5 and re.match(r"^[0-9]+$", num): return num else: return None def send_message(recipient, body, attach_selected_files): buddy = None if normalize_phone(recipient): buddy = normalize_phone(recipient) else: address_book = contacts.address_book_to_list() result = contacts.find_contact(recipient, address_book, "phone") if result: buddy = result['phone'][0] if not buddy: asrun("display notification %s with title \"Limelight\""%(asquote("Couldn't find iMessage contact for %s."%recipient))) return set_selected_files = """ tell application "Finder" set selectedFiles to selection end tell """ if attach_selected_files else "set selectedFiles to {}" script = """ %s using terms from application "Messages" tell application "Messages" activate set targetService to 1st service whose service type = iMessage set targetBuddy to buddy %s of targetService send %s to targetBuddy repeat with theFile in selectedFiles send (theFile as alias) to targetBuddy end repeat end tell end using terms from """%(set_selected_files, asquote(buddy), asquote(body)) print script asrun(script) if __name__ == '__main__': send_message("rebecca plattus", "message test", True)
[ "marc.brookman@gmail.com" ]
marc.brookman@gmail.com
1000d07adde86b84f2994e67c3feb7eaa2dfe86f
6ff32eb4b6383c8f87b768af3873c6cbab5fb60a
/store/migrations/0008_order_customer.py
36944bf1561b3039c2a8672a4a9157d759de2ebf
[]
no_license
itsyst/django-e-commerce
32fb99ce28bdfe368d2c7435578c53d61ae42fab
034a0d9f07560abac7b9391b8d2b9159fb60e254
refs/heads/master
2023-07-06T04:04:54.119123
2021-08-08T19:59:01
2021-08-08T19:59:01
386,954,148
0
0
null
null
null
null
UTF-8
Python
false
false
553
py
# Generated by Django 3.2.5 on 2021-07-19 00:03 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('store', '0007_rename_membersship_customer_membership'), ] operations = [ migrations.AddField( model_name='order', name='customer', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='store.customer'), preserve_default=False, ), ]
[ "contact@elhamzi.me" ]
contact@elhamzi.me
cce49df897b7c13bc32a590dee0ca0638412edaa
ed71767a3f5da3004ef333fa05721eeb84988f5e
/HealthBot/HealthBot/settings.py
fd1d6ef046c2da5a36dbaf35957426a8a90432f6
[]
no_license
IISE-Hackathon/HealthBotWebapp
2c19606c19fef7c1f25749a54c2efe5a8b9fb301
2bdd9f66bcddcf956c7085a998379ae2db6c65f8
refs/heads/main
2023-02-06T04:10:07.380050
2020-12-20T02:34:05
2020-12-20T02:34:05
322,778,274
1
0
null
null
null
null
UTF-8
Python
false
false
3,085
py
""" Django settings for HealthBot project. Generated by 'django-admin startproject' using Django 3.1.3. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '$dgkfu1!k9a$6)y($wyt0%ncxcu1!v1e5@=zzp66$1l-92v1a4' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'Bot', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'HealthBot.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'HealthBot.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
[ "mk6386223@gmail.com" ]
mk6386223@gmail.com
ba29949675b315b73286a3656adc6c73f7fb2e03
c98e1a103faa18f7cb721607897466719f11642d
/sourcehold/maps/sections/section1049.py
3627310bb37aa279e0c7ead5bc23d53a18a14296
[ "MIT" ]
permissive
J-T-de/sourcehold-maps
fff77c9c1c3cdfae8cae7817e39ed0e4e1f0affb
330ab1b3426dbd93b5de3b0c031419e54f6a1618
refs/heads/master
2022-12-08T23:32:40.874993
2020-09-12T17:57:32
2020-09-12T17:57:32
294,927,094
0
0
MIT
2020-09-12T11:08:31
2020-09-12T11:08:30
null
UTF-8
Python
false
false
125
py
from .types import TileCompressedMapSection class Section1049(TileCompressedMapSection): _TYPE_ = "B" _CLASS_ = int
[ "gynt@users.noreply.github.com" ]
gynt@users.noreply.github.com
9d892e264bfcc2053dc648cf5f782ca27011689f
718b2424752e905e8c1451751b2afbca056ee3ff
/lacrosse_to_wunderground.py
d2675100ed09c27cfddccb1eaddbc23617b99f1b
[ "MIT" ]
permissive
niavasha/lacrosse_to_wunderground
e2308361cc8d3e46a4ca906d7405ba2af32020ab
3aa1cfebca0320d01d6eea148735e31de664f9cd
refs/heads/master
2022-04-07T15:14:36.674882
2020-01-23T18:08:18
2020-01-23T18:08:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,352
py
""" Downloads weather data from La Crosse Cloud System from your personal weather station and uploads it to Wunderground via the wunderground/weather personal weather station API. """ import sys import time import requests import json import datetime from lacrosse_weather.lacrosse import lacrosse_login, lacrosse_get_locations, lacrosse_get_devices, lacrosse_get_weather_data from wunderground_uploader.uploader import wunderground_upload_data_point email = 'YOUR LA CROSSE VIEW ACCOUNT EMAIL' password = 'YOUR LA CROSSE VIEW ACCOUNT PW' station_id = 'YOUR WUNDERGROUND PWS STATION ID' station_key = 'YOUR WUNDERGROUND PWS STATION KEY' api_key = 'YOUR WUNDERGROUND API KEY' def wunderground_get_utc_of_latest(station_id, api_key): try: r = requests.request('GET', 'https://api.weather.com/v2/pws/observations/current?stationId={}&format=json&units=e&apiKey={}'.format(station_id, api_key)) j = json.loads(r.content.decode('utf-8')) ts = datetime.datetime.strptime(j['observations'][0]['obsTimeUtc'], "%Y-%m-%dT%H:%M:%S%z").timestamp() except Exception: ts = 0 print("Warning: Didn't get latest observation time, loading from time 0") return int(ts) def celsius_to_fahrenheit(celsius): return (celsius * (9 / 5) ) + 32 def kilometers_per_hour_to_miles_per_hour(kilometers_per_hour): return kilometers_per_hour / 1.609 def push_all_since_timestamp_temperature_to_wunderground(w, old_utc_timestamp): for temp_data, humidity_data in zip(w['Temperature']['values'], w['Humidity']['values']): utc_timestamp = temp_data['u'] if utc_timestamp > old_utc_timestamp: weather_data = dict( tempf=celsius_to_fahrenheit(temp_data['s']), humidity=humidity_data['s'] ) wunderground_upload_data_point(station_id, station_key, weather_data, utc_timestamp) time.sleep(2.5) def push_all_since_timestamp_wind_to_wunderground(w, old_utc_timestamp): for wind_data in w['WindSpeed']['values']: utc_timestamp = wind_data['u'] if utc_timestamp > old_utc_timestamp: weather_data = dict( windspeedmph=kilometers_per_hour_to_miles_per_hour(wind_data['s']) ) wunderground_upload_data_point(station_id, station_key, weather_data, utc_timestamp) time.sleep(2.5) if __name__ == '__main__': try: old_utc_timestamp = int(sys.argv[1]) except Exception: old_utc_timestamp = wunderground_get_utc_of_latest(station_id, api_key) token = lacrosse_login(email, password) locations = lacrosse_get_locations(token) devices = lacrosse_get_devices(token, locations) new_timestamp = old_utc_timestamp try: for device in devices: # TODO Will need updated credentials if we do long operations # Your 'device_name' is likely different than 'temperature' # replace this name with something that has an external "Temperature" # sensor # doing the following can show you the name here: # print(device['device_name']) # Same below with 'wind' if device['device_name'] == 'temperature': w = lacrosse_get_weather_data(token, device) push_all_since_timestamp_temperature_to_wunderground(w, old_utc_timestamp) new_timestamp = w['Temperature']['values'][-1]['u'] # Do this twice, as long pushes agove may cause credentials to expire token = lacrosse_login(email, password) locations = lacrosse_get_locations(token) devices = lacrosse_get_devices(token, locations) for device in devices: if device['device_name'] == 'wind': w = lacrosse_get_weather_data(token, device) push_all_since_timestamp_wind_to_wunderground(w, old_utc_timestamp) except Exception: # Ignore all errors, just retry again later with your automation pass # Usage: # New timestamp is printed as output, pipe it to a file and use that file # as input the next time the script is run. Set the file the first time # manually # # i.e. python3 lacrosse_to_wunderground.py `cat weather_ts` > weather_ts print(new_timestamp)
[ "keith.prickett@sdvi.com" ]
keith.prickett@sdvi.com
6c54d81e4263105997a4b7dbcb57d4d4673fe0e2
5d0fe4a9e026234fe15e6c4380355061bb4dac64
/tests/functional/pages/profile/individual_enter_your_email_and_password.py
4ed6007a0f1fe073b148c538f8fdceb4a783b69b
[ "MIT" ]
permissive
uktrade/directory-tests
37e243862da8ac594cf1ea06ade714db5e1aba03
39ec6c26203580238e65566a472cbd80916e6726
refs/heads/master
2022-08-09T16:58:56.248982
2022-08-01T12:25:10
2022-08-01T12:25:10
71,367,747
4
3
MIT
2022-08-01T12:26:09
2016-10-19T14:48:57
Python
UTF-8
Python
false
false
1,702
py
# -*- coding: utf-8 -*- """Profile - Individual - Enter your business email address and set a password""" from requests import Response, Session from directory_tests_shared import PageType, Service, URLs from tests.functional.utils.context_utils import Actor from tests.functional.utils.request import ( Method, check_response, check_url, make_request, ) SERVICE = Service.PROFILE NAME = "Individual enter your email address and set a password" TYPE = PageType.FORM URL = URLs.PROFILE_ENROL_INDIVIDUAL_ENTER_YOUR_EMAIL_AND_PASSWORD.absolute EXPECTED_STRINGS = [ "Enter your email address and set a password", "Your email address", "Set a password", "Confirm password", "Tick this box to accept the", ] def go_to(session: Session) -> Response: return make_request(Method.GET, URL, session=session) def should_be_here(response: Response): check_url(response, URL) check_response(response, 200, body_contains=EXPECTED_STRINGS) def submit(actor: Actor) -> Response: session = actor.session headers = {"Referer": URL} data = { "csrfmiddlewaretoken": actor.csrfmiddlewaretoken, "individual_user_enrolment_view-current_step": "user-account", "user-account-email": actor.email, "user-account-password": actor.password, "user-account-password_confirmed": actor.password, "user-account-terms_agreed": "on", "user-account-remote_password_error": None, "g-recaptcha-response": "test mode", } return make_request( Method.POST, URL, session=session, headers=headers, files=data, no_filename_in_multipart_form_data=True, )
[ "kowalczykjanusz@gmail.com" ]
kowalczykjanusz@gmail.com
2b979052909dff740be6659a03ee1ad2b6daec66
3ef9439cc406f1c1a7a4877e2bee55acb8bad062
/manage.py
29c86fffcbc5e837668c6db3cb05c9d5d773fc5c
[]
no_license
Obsir/ixStudy
d6d031ff80248cc92f5af6cdad6d60ebc078f257
63f716d3a3660bb922d1c848bf8747386a102e6e
refs/heads/master
2023-05-10T11:37:34.026374
2021-06-03T14:45:53
2021-06-03T14:45:53
369,462,867
0
0
null
null
null
null
UTF-8
Python
false
false
805
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ixStudy.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ "Obser47@outlook.com" ]
Obser47@outlook.com
69af8143efa20aa1ca3024c64e30be8fef84b392
ff7864a5ab14702de8aab5d6af036b80f68247a4
/ipsolver/linprog/mehrotra/__init__.py
f8f342a3c5f9f5a2314245dee330a716a43855b0
[]
no_license
codacy-badger/iplib
e99f90684cd7b57992da3cefbec7dea7d4d89af9
0f4eeea6cd6945a83f43b680c7321f7b9be2175e
refs/heads/master
2020-04-22T23:55:52.732562
2019-02-14T16:43:28
2019-02-14T16:43:28
170,759,222
1
0
null
2019-02-14T21:16:27
2019-02-14T21:16:26
null
UTF-8
Python
false
false
89
py
from . import base_imp from . import mehrotra_ipm from . import regularized_mehrotra_ipm
[ "maksym.shpakovych@gmail.com" ]
maksym.shpakovych@gmail.com
ba3daecdc648fa1992bea625ee5b35854be3a673
066f580391746d4ebef860007a831452fa2657cb
/server_functions.py
ac803849057c73352456fd1323b08eb4a5125f64
[]
no_license
KeremOzfo/Hybrid-Sparsification
a46c5e0747fa77a634ccbc17da651e4c8a0f8468
713e288b2c0636cb96c9fac75b6e072230368e8c
refs/heads/master
2023-02-23T16:40:36.239354
2021-01-28T17:43:30
2021-01-28T17:43:30
330,001,774
0
0
null
null
null
null
UTF-8
Python
false
false
11,404
py
import torch import math import time import numpy as np import torch.nn as nn def pull_model(model_user, model_server): for param_user, param_server in zip(model_user.parameters(), model_server.parameters()): param_user.data = param_server.data[:] + 0 return None def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def zero_grad_ps(model): for param in model.parameters(): param.grad = torch.zeros_like(param.data) return None def push_grad(model_user, model_server, num_cl): for param_user, param_server in zip(model_user.parameters(), model_server.parameters()): param_server.grad.data += param_user.grad.data / num_cl return None def push_model(model_user, model_server, num_cl): for param_user, param_server in zip(model_user.parameters(), model_server.parameters()): param_server.data += param_user.data / num_cl return None def initialize_zero(model): for param in model.parameters(): param.data.mul_(0) return None def update_model(model, prev_model, lr, momentum, weight_decay): for param, prevIncrement in zip(model.parameters(), prev_model.parameters()): incrementVal = param.grad.data.add(weight_decay, param.data) incrementVal.add_(momentum, prevIncrement.data) incrementVal.mul_(lr) param.data.add_(-1, incrementVal) prevIncrement.data = incrementVal return None def get_grad_flattened(model, device): grad_flattened = torch.empty(0).to(device) for p in model.parameters(): if p.requires_grad: a = p.grad.data.flatten().to(device) grad_flattened = torch.cat((grad_flattened, a), 0) return grad_flattened def get_model_flattened(model, device): model_flattened = torch.empty(0).to(device) for p in model.parameters(): a = p.data.flatten().to(device) model_flattened = torch.cat((model_flattened, a), 0) return model_flattened def get_model_sizes(model): # get the size of the layers and number of eleents in each layer. # only layers that are trainable net_sizes = [] net_nelements = [] for p in model.parameters(): if p.requires_grad: net_sizes.append(p.data.size()) net_nelements.append(p.nelement()) return net_sizes, net_nelements def unshuffle(shuffled_vec, seed): orj_vec = torch.empty(shuffled_vec.size()) perm_inds = torch.tensor([i for i in range(shuffled_vec.nelement())]) perm_inds_shuffled = shuffle_deterministic(perm_inds, seed) for i in range(shuffled_vec.nelement()): orj_vec[perm_inds_shuffled[i]] = shuffled_vec[i] return orj_vec def shuffle_deterministic(grad_flat, seed): # Shuffle the list ls using the seed `seed` torch.manual_seed(seed) idx = torch.randperm(grad_flat.nelement()) return grad_flat.view(-1)[idx].view(grad_flat.size()) def get_indices(net_sizes, net_nelements): # for reconstructing grad from flattened grad ind_pairs = [] ind_start = 0 ind_end = 0 for i in range(len(net_sizes)): for j in range(i + 1): ind_end += net_nelements[j] # print(ind_start, ind_end) ind_pairs.append((ind_start, ind_end)) ind_start = ind_end + 0 ind_end = 0 return ind_pairs def make_grad_unflattened(model, grad_flattened, net_sizes, ind_pairs): # unflattens the grad_flattened into the model.grad i = 0 for p in model.parameters(): if p.requires_grad: temp = grad_flattened[ind_pairs[i][0]:ind_pairs[i][1]] p.grad.data = temp.reshape(net_sizes[i]) i += 1 return None def make_model_unflattened(model, model_flattened, net_sizes, ind_pairs): # unflattens the grad_flattened into the model.grad i = 0 for p in model.parameters(): temp = model_flattened[ind_pairs[i][0]:ind_pairs[i][1]] p.data = temp.reshape(net_sizes[i]) i += 1 return None def make_sparse_grad(grad_flat, sparsity_window, device): # sparsify using block model num_window = math.ceil(grad_flat.nelement() / sparsity_window) for i in range(num_window): ind_start = i * sparsity_window ind_end = min((i + 1) * sparsity_window, grad_flat.nelement()) a = grad_flat[ind_start: ind_end] ind = torch.topk(a.abs(), k=1, dim=0)[1] # return index of top not value val = a[ind] ind_true = ind_start + ind grad_flat[ind_start: ind_end] *= torch.zeros(a.nelement()).to(device) grad_flat[ind_true] = val return None def adjust_learning_rate(optimizer, epoch, lr_change, lr): lr_change = np.asarray(lr_change) loc = np.where(lr_change == epoch)[0][0] + 1 lr *= (0.1 ** loc) lr = round(lr, 3) for param_group in optimizer.param_groups: param_group['lr'] = lr def get_LR(optimizer): lr = None for param_group in optimizer.param_groups: lr = param_group['lr'] return lr def lr_warm_up(optimizers, num_workers, epoch, start_lr): for cl in range(num_workers): for param_group in optimizers[cl].param_groups: if epoch == 0: param_group['lr'] = 0.1 else: lr_change = (start_lr - 0.1) / 4 param_group['lr'] = (lr_change * epoch) + 0.1 def get_bias_mask(model,device): model_flattened = torch.empty(0).to(device) for name, p in zip(model.named_parameters(),model.parameters()): layer = name[0].split('.') a = p.data.flatten().to(device) if layer[len(layer)-1] == 'bias': temp = torch.ones_like(a).to(device) model_flattened = torch.cat((model_flattened, temp), 0) else: temp = torch.zeros_like(a).to(device) model_flattened = torch.cat((model_flattened, temp), 0) return model_flattened def modify_freq_vec(freq_vec, grad, mask,bias_mask,add_percent,args): topk = math.ceil(add_percent * (grad.numel() - torch.sum(bias_mask).item()) / 100) vals, inds = torch.topk(grad.mul(1-mask).abs(), k=topk, dim=0) freq_vec.mul_(args.freq_momentum) freq_vec[inds] += 1 return None def add_to_mask(freq_vec,mask,bias_mask,add_percent): topk = math.ceil(add_percent * (freq_vec.numel() - torch.sum(bias_mask).item()) / 100) vals, inds = torch.topk(freq_vec, k=topk, dim=0) mask[inds] = 1 return None def remove_from_mask(model,mask,bias_mask,drop_val): model_size = model.numel() zeros = model_size - (torch.nonzero(model.mul(1-bias_mask), as_tuple=False)).numel() drop_k = math.ceil(drop_val * (model_size - torch.sum(bias_mask).item()) / 100) vals, inds = torch.topk((model.mul(1-bias_mask)).abs(),k=model_size,dim=0) inds = torch.flip(inds, dims=[0]) inds = inds[zeros:zeros+drop_k] mask[inds] = 0 return None def sparse_special_mask(flat_grad, sparsity_window, layer_spar, ind_pairs, device): inds = torch.empty(0).to(device) for layer in ind_pairs: startPoint = (layer[0]) endPoint = (layer[1]) layer_len = endPoint - startPoint l_top_k = math.ceil(layer_len / layer_spar) l_vals, l_ind = torch.topk((flat_grad[startPoint:endPoint]).abs(), k=l_top_k, dim=0) l_ind.add_(startPoint) inds = torch.cat((inds.float(), l_ind.float()), 0) inds = inds.long() clone_grad = torch.clone(flat_grad).to(device) clone_grad[inds] = 0 topk = math.ceil(len(flat_grad) / (sparsity_window)) - inds.numel() vals_, inds_ = torch.topk(clone_grad.abs(), k=topk, dim=0) inds = torch.cat((inds, inds_), 0) clone_grad *= 0 clone_grad[inds] = 1 return clone_grad def groups(grad_flat, group_len, denominator, device): sparseCount = torch.sum(grad_flat != 0) sparseCount = sparseCount.__int__() vals, ind = torch.topk(grad_flat.abs(), k=sparseCount, dim=0) group_boundries = torch.zeros(group_len + 1).to(device) group_boundries[0] = vals[0].float() sign_mask = torch.sign(grad_flat[ind]) for i in range(1, group_len): group_boundries[i] = group_boundries[i - 1] / denominator startPoint = 0 newVals = torch.zeros_like(vals) startPointz = [] for i in range(group_len): if vals[startPoint] > group_boundries[i + 1]: startPointz.append(startPoint) for index, val in enumerate(vals[startPoint:vals.numel()]): if val <= group_boundries[i + 1] and group_boundries[i + 1] != 0: newVals[startPoint:startPoint + index] = torch.mean(vals[startPoint:startPoint + index]) startPoint += index break elif group_boundries[i + 1] == 0: newVals[startPoint:vals.numel()] = torch.mean(vals[startPoint:vals.numel()]) break newVals *= sign_mask grad_flat *= 0 grad_flat[ind] = newVals def get_momentum_flattened(opt,device): momentum_flattened = torch.empty(0).to(device) for groupAvg in (opt.param_groups): # momentum for p_avg in groupAvg['params']: param_state_avg = opt.state[p_avg] if 'momentum_buffer' not in param_state_avg: buf_avg = param_state_avg['momentum_buffer'] = torch.zeros_like(p_avg.data) else: buf_avg = param_state_avg['momentum_buffer'] momentum_flattened = torch.cat((momentum_flattened, buf_avg.flatten().to(device)), 0) return momentum_flattened def make_momentum_unflattened(opt, momentum_flattened, net_sizes, ind_pairs): import copy i = 0 for groupAvg in (opt.param_groups): # momentum for p_avg in groupAvg['params']: temp = momentum_flattened[ind_pairs[i][0]:ind_pairs[i][1]] opt.state[p_avg]['momentum_buffer'] = temp.reshape(net_sizes[i]) i+=1 return None def custom_SGD(model,flat_momentum,mask,net_sizes,ind_pairs,lr,device,args): flat_model = get_model_flattened(model,device) flat_grad = get_grad_flattened(model,device) flat_grad = flat_grad.add(flat_model,alpha=args.wd) flat_grad.mul_(mask) flat_momentum.mul_(args.SGDmomentum).add_(flat_grad, alpha=1) if args.nesterov: flat_grad = flat_grad.add(flat_momentum, alpha=args.SGDmomentum) else: flat_grad = flat_momentum flat_model = flat_model.add(flat_grad, alpha=-lr) make_model_unflattened(model,flat_model,net_sizes,ind_pairs) return None def get_BN_mask(net,device): mask = torch.empty(0).to(device) for layer in net.modules(): # Prune only convolutional and linear layers if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear): layer_weight = layer.weight len = layer_weight.numel() mask_ = torch.zeros(len,device=device) mask = torch.cat((mask, mask_), 0) if layer.bias is not None: bias = layer.bias.numel() mask_ = torch.ones(bias, device=device) mask = torch.cat((mask, mask_), 0) elif isinstance(layer, nn.BatchNorm2d): bn_params = 0 for p in layer.parameters(): bn_params += p.numel() mask_ = torch.ones(bn_params, device=device) mask = torch.cat((mask, mask_), 0) return mask
[ "keremozfatura@me.com" ]
keremozfatura@me.com
984435c2ce0a43415fd4459d4871689edb1602c2
f8141f06d7fb3f80788086669fb3bda86564aed5
/Students/7-object-detection-frnn/cntk_helpers.py
d76e3c4124d1f1264447aed23227caa43b51421a
[ "MIT", "CC-BY-4.0" ]
permissive
Azure-Samples/learnAnalytics-DeepLearning-Azure
bff46e9dbcd5c949e9e44cabed4c4db28d20df09
00df3cc0c98e8ed28bb33364138e748aa8364b5b
refs/heads/master
2022-01-04T16:35:46.656647
2019-06-28T20:14:04
2019-06-28T20:14:04
102,758,327
8
6
null
null
null
null
UTF-8
Python
false
false
38,360
py
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== from __future__ import print_function from builtins import str import pdb, sys, os, time import numpy as np import selectivesearch from easydict import EasyDict from fastRCNN.nms import nms as nmsPython from builtins import range import cv2, copy, textwrap from PIL import Image, ImageFont, ImageDraw from PIL.ExifTags import TAGS available_font = "arial.ttf" try: dummy = ImageFont.truetype(available_font, 16) except: available_font = "FreeMono.ttf" #################################### # Region-of-interest #################################### def getSelectiveSearchRois(img, ssScale, ssSigma, ssMinSize, maxDim): # Selective Search # Parameters # ---------- # im_orig : ndarray # Input image # scale : int # Free parameter. Higher means larger clusters in felzenszwalb segmentation. # sigma : float # Width of Gaussian kernel for felzenszwalb segmentation. # min_size : int # Minimum component size for felzenszwalb segmentation. # Returns # ------- # img : ndarray # image with region label # region label is stored in the 4th value of each pixel [r,g,b,(region)] # regions : array of dict # [ # { # 'rect': (left, top, right, bottom), # 'labels': [...] # }, # ... # ] # inter_area seems to give much better results esp when upscaling image img, scale = imresizeMaxDim(img, maxDim, boUpscale=True, interpolation = cv2.INTER_AREA) _, ssRois = selectivesearch.selective_search(img, scale=ssScale, sigma=ssSigma, min_size=ssMinSize) rects = [] for ssRoi in ssRois: x, y, w, h = ssRoi['rect'] rects.append([x,y,x+w,y+h]) return rects, img, scale def getGridRois(imgWidth, imgHeight, nrGridScales, aspectRatios = [1.0]): rects = [] # start adding large ROIs and then smaller ones for iter in range(nrGridScales): cellWidth = 1.0 * min(imgHeight, imgWidth) / (2 ** iter) step = cellWidth / 2.0 for aspectRatio in aspectRatios: wStart = 0 while wStart < imgWidth: hStart = 0 while hStart < imgHeight: if aspectRatio < 1: wEnd = wStart + cellWidth hEnd = hStart + cellWidth / aspectRatio else: wEnd = wStart + cellWidth * aspectRatio hEnd = hStart + cellWidth if wEnd < imgWidth-1 and hEnd < imgHeight-1: rects.append([wStart, hStart, wEnd, hEnd]) hStart += step wStart += step return rects def filterRois(rects, maxWidth, maxHeight, roi_minNrPixels, roi_maxNrPixels, roi_minDim, roi_maxDim, roi_maxAspectRatio): filteredRects = [] filteredRectsSet = set() for rect in rects: if tuple(rect) in filteredRectsSet: # excluding rectangles with same co-ordinates continue x, y, x2, y2 = rect w = x2 - x h = y2 - y assert(w>=0 and h>=0) # apply filters if h == 0 or w == 0 or \ x2 > maxWidth or y2 > maxHeight or \ w < roi_minDim or h < roi_minDim or \ w > roi_maxDim or h > roi_maxDim or \ w * h < roi_minNrPixels or w * h > roi_maxNrPixels or \ w / h > roi_maxAspectRatio or h / w > roi_maxAspectRatio: continue filteredRects.append(rect) filteredRectsSet.add(tuple(rect)) # could combine rectangles using non-maxima surpression or with similar co-ordinates # groupedRectangles, weights = cv2.groupRectangles(np.asanyarray(rectsInput, np.float).tolist(), 1, 0.3) # groupedRectangles = nms_python(np.asarray(rectsInput, np.float), 0.5) assert(len(filteredRects) > 0) return filteredRects def readRois(roiDir, subdir, imgFilename): roiPath = os.path.join(roiDir, subdir, imgFilename[:-4] + ".roi.txt") rois = np.loadtxt(roiPath, np.int) if len(rois) == 4 and type(rois[0]) == np.int32: # if only a single ROI in an image rois = [rois] return rois #################################### # Generate and parse CNTK files #################################### def readGtAnnotation(imgPath): bboxesPath = imgPath[:-4] + ".bboxes.tsv" labelsPath = imgPath[:-4] + ".bboxes.labels.tsv" bboxes = np.array(readTable(bboxesPath), np.int32) labels = readFile(labelsPath) assert (len(bboxes) == len(labels)) return bboxes, labels def getCntkInputPaths(cntkFilesDir, image_set): cntkImgsListPath = os.path.join(cntkFilesDir, image_set + '.txt') cntkRoiCoordsPath = os.path.join(cntkFilesDir, image_set + '.rois.txt') cntkRoiLabelsPath = os.path.join(cntkFilesDir, image_set + '.roilabels.txt') cntkNrRoisPath = os.path.join(cntkFilesDir, image_set + '.nrRois.txt') return cntkImgsListPath, cntkRoiCoordsPath, cntkRoiLabelsPath, cntkNrRoisPath def roiTransformPadScaleParams(imgWidth, imgHeight, padWidth, padHeight, boResizeImg = True): scale = 1.0 if boResizeImg: assert padWidth == padHeight, "currently only supported equal width/height" scale = 1.0 * padWidth / max(imgWidth, imgHeight) imgWidth = round(imgWidth * scale) imgHeight = round(imgHeight * scale) targetw = padWidth targeth = padHeight w_offset = ((targetw - imgWidth) / 2.) h_offset = ((targeth - imgHeight) / 2.) if boResizeImg and w_offset > 0 and h_offset > 0: print ("ERROR: both offsets are > 0:", imgCounter, imgWidth, imgHeight, w_offset, h_offset) error if (w_offset < 0 or h_offset < 0): print ("ERROR: at least one offset is < 0:", imgWidth, imgHeight, w_offset, h_offset, scale) return targetw, targeth, w_offset, h_offset, scale def roiTransformPadScale(rect, w_offset, h_offset, scale = 1.0): rect = [int(round(scale * d)) for d in rect] rect[0] += w_offset rect[1] += h_offset rect[2] += w_offset rect[3] += h_offset return rect def getCntkRoiCoordsLine(rect, targetw, targeth): # Return the absolute coordinate of the ROI in the original image. x1, y1, x2, y2 = rect return " {} {} {} {}".format(x1, y1, x2, y2) def getCntkRoiLabelsLine(overlaps, thres, nrClasses): # get one hot encoding maxgt = np.argmax(overlaps) if overlaps[maxgt] < thres: # set to background label if small overlap with GT maxgt = 0 oneHot = np.zeros((nrClasses), dtype=int) oneHot[maxgt] = 1 oneHotString = " {}".format(" ".join(str(x) for x in oneHot)) return oneHotString def cntkPadInputs(currentNrRois, targetNrRois, nrClasses, boxesStr, labelsStr): assert currentNrRois <= targetNrRois, "Current number of rois ({}) should be <= target number of rois ({})".format(currentNrRois, targetNrRois) while currentNrRois < targetNrRois: boxesStr += " 0 0 0 0" labelsStr += " 1" + " 0" * (nrClasses - 1) currentNrRois += 1 return boxesStr, labelsStr def checkCntkOutputFile(cntkImgsListPath, cntkOutputPath, cntkNrRois, outputDim): imgPaths = getColumn(readTable(cntkImgsListPath), 1) with open(cntkOutputPath) as fp: for imgIndex in range(len(imgPaths)): if imgIndex % 100 == 1: print ("Checking cntk output file, image %d of %d..." % (imgIndex, len(imgPaths))) for roiIndex in range(cntkNrRois): assert (fp.readline() != "") assert (fp.readline() == "") # test if end-of-file is reached # parse the cntk output file and save the output for each image individually def parseCntkOutput(cntkImgsListPath, cntkOutputPath, outParsedDir, cntkNrRois, outputDim, saveCompressed = False, skipCheck = False, skip5Mod = None): if not skipCheck and skip5Mod == None: checkCntkOutputFile(cntkImgsListPath, cntkOutputPath, cntkNrRois, outputDim) # parse cntk output and write file for each image # always read in data for each image to forward file pointer imgPaths = getColumn(readTable(cntkImgsListPath), 1) with open(cntkOutputPath) as fp: for imgIndex in range(len(imgPaths)): line = fp.readline() if skip5Mod != None and imgIndex % 5 != skip5Mod: print ("Skipping image {} (skip5Mod = {})".format(imgIndex, skip5Mod)) continue print ("Parsing cntk output file, image %d of %d" % (imgIndex, len(imgPaths))) # convert to floats data = [] values = np.fromstring(line, dtype=float, sep=" ") assert len(values) == cntkNrRois * outputDim, "ERROR: expected dimension of {} but found {}".format(cntkNrRois * outputDim, len(values)) for i in range(cntkNrRois): posStart = i * outputDim posEnd = posStart + outputDim currValues = values[posStart:posEnd] data.append(currValues) # save data = np.array(data, np.float32) outPath = os.path.join(outParsedDir, str(imgIndex) + ".dat") if saveCompressed: np.savez_compressed(outPath, data) else: np.savez(outPath, data) assert (fp.readline() == "") # test if end-of-file is reached # parse the cntk labels file and return the labels def readCntkRoiLabels(roiLabelsPath, nrRois, roiDim, stopAtImgIndex = None): roiLabels = [] for imgIndex, line in enumerate(readFile(roiLabelsPath)): if stopAtImgIndex and imgIndex == stopAtImgIndex: break roiLabels.append([]) pos = line.find(b'|roiLabels ') valuesString = line[pos + 10:].strip().split(b' ') assert (len(valuesString) == nrRois * roiDim) for boxIndex in range(nrRois): oneHotLabels = [int(s) for s in valuesString[boxIndex*roiDim : (boxIndex+1)*roiDim]] assert(sum(oneHotLabels) == 1) roiLabels[imgIndex].append(np.argmax(oneHotLabels)) return roiLabels # parse the cntk rois file and return the co-ordinates def readCntkRoiCoordinates(imgPaths, cntkRoiCoordsPath, nrRois, padWidth, padHeight, stopAtImgIndex = None): roiCoords = [] for imgIndex, line in enumerate(readFile(cntkRoiCoordsPath)): if stopAtImgIndex and imgIndex == stopAtImgIndex: break roiCoords.append([]) pos = line.find(b'|rois ') valuesString = line[pos + 5:].strip().split(b' ') assert (len(valuesString) == nrRois * 4) imgWidth, imgHeight = imWidthHeight(imgPaths[imgIndex]) for boxIndex in range(nrRois): rect = [float(s) for s in valuesString[boxIndex*4 : (boxIndex+1)*4]] x1,y1,x2,y2 = rect # convert back from padded-rois-co-ordinates to image co-ordinates rect = getAbsoluteROICoordinates([x1,y1,x2,y2], imgWidth, imgHeight, padWidth, padHeight) roiCoords[imgIndex].append(rect) return roiCoords def getAbsoluteROICoordinates(roi, imgWidth, imgHeight, padWidth, padHeight, resizeMethod = 'padScale'): ''' The input image are usually padded to a fixed size, this method compute back the original ROI absolute coordinate before the padding. ''' if roi == [0,0,0,0]: # if padded roi return [0,0,0,0] if resizeMethod == "pad" or resizeMethod == "padScale": if resizeMethod == "padScale": scale = float(padWidth) / max(imgWidth, imgHeight) imgWidthScaled = int(round(imgWidth * scale)) imgHeightScaled = int(round(imgHeight * scale)) else: scale = 1.0 imgWidthScaled = imgWidth imgHeightScaled = imgHeight w_offset = float(padWidth - imgWidthScaled) / 2.0 h_offset = float(padHeight - imgHeightScaled) / 2.0 if resizeMethod == "padScale": assert(w_offset == 0 or h_offset == 0) rect = [roi[0] - w_offset, roi[1] - h_offset, roi[2] - w_offset, roi[3] - h_offset] rect = [int(round(r / scale)) for r in rect] else: print ("ERROR: Unknown resize method '%s'" % resizeMethod) error assert(min(rect) >=0 and max(rect[0],rect[2]) <= imgWidth and max(rect[1],rect[3]) <= imgHeight) return rect #################################### # Classifier training / scoring #################################### def getSvmModelPaths(svmDir, experimentName): svmWeightsPath = "{}svmweights_{}.txt".format(svmDir, experimentName) svmBiasPath = "{}svmbias_{}.txt".format(svmDir, experimentName) svmFeatScalePath = "{}svmfeature_scale_{}.txt".format(svmDir, experimentName) return svmWeightsPath, svmBiasPath, svmFeatScalePath def loadSvm(svmDir, experimentName): svmWeightsPath, svmBiasPath, svmFeatScalePath = getSvmModelPaths(svmDir, experimentName) svmWeights = np.loadtxt(svmWeightsPath, np.float32) svmBias = np.loadtxt(svmBiasPath, np.float32) svmFeatScale = np.loadtxt(svmFeatScalePath, np.float32) return svmWeights, svmBias, svmFeatScale def saveSvm(svmDir, experimentName, svmWeights, svmBias, featureScale): svmWeightsPath, svmBiasPath, svmFeatScalePath = getSvmModelPaths(svmDir, experimentName) np.savetxt(svmWeightsPath, svmWeights) np.savetxt(svmBiasPath, svmBias) np.savetxt(svmFeatScalePath, featureScale) def svmPredict(imgIndex, cntkOutputIndividualFilesDir, svmWeights, svmBias, svmFeatScale, roiSize, roiDim, decisionThreshold = 0): cntkOutputPath = os.path.join(cntkOutputIndividualFilesDir, str(imgIndex) + ".dat.npz") data = np.load(cntkOutputPath)['arr_0'] assert(len(data) == roiSize) # get prediction for each roi labels = [] maxScores = [] for roiIndex in range(roiSize): feat = data[roiIndex] scores = np.dot(svmWeights, feat * 1.0 / svmFeatScale) + svmBias.ravel() assert (len(scores) == roiDim) maxArg = np.argmax(scores[1:]) + 1 maxScore = scores[maxArg] if maxScore < decisionThreshold: maxArg = 0 labels.append(maxArg) maxScores.append(maxScore) return labels, maxScores def nnPredict(imgIndex, cntkParsedOutputDir, roiSize, roiDim, decisionThreshold = None): cntkOutputPath = os.path.join(cntkParsedOutputDir, str(imgIndex) + ".dat.npz") data = np.load(cntkOutputPath)['arr_0'] assert(len(data) == roiSize) # get prediction for each roi labels = [] maxScores = [] for roiIndex in range(roiSize): scores = data[roiIndex] scores = softmax(scores) assert (len(scores) == roiDim) maxArg = np.argmax(scores) maxScore = scores[maxArg] if decisionThreshold and maxScore < decisionThreshold: maxArg = 0 labels.append(maxArg) maxScores.append(maxScore) return labels, maxScores def imdbUpdateRoisWithHighGtOverlap(imdb, positivesGtOverlapThreshold): addedPosCounter = 0 existingPosCounter = 0 for imgIndex in range(imdb.num_images): for boxIndex, gtLabel in enumerate(imdb.roidb[imgIndex]['gt_classes']): if gtLabel > 0: existingPosCounter += 1 else: overlaps = imdb.roidb[imgIndex]['gt_overlaps'][boxIndex, :].toarray()[0] maxInd = np.argmax(overlaps) maxOverlap = overlaps[maxInd] if maxOverlap >= positivesGtOverlapThreshold and maxInd > 0: addedPosCounter += 1 imdb.roidb[imgIndex]['gt_classes'][boxIndex] = maxInd return existingPosCounter, addedPosCounter #################################### # Visualize results #################################### def visualizeResults(imgPath, roiLabels, roiScores, roiRelCoords, padWidth, padHeight, classes, nmsKeepIndices = None, boDrawNegativeRois = True, decisionThreshold = 0.0): # read and resize image imgWidth, imgHeight = imWidthHeight(imgPath) scale = 800.0 / max(imgWidth, imgHeight) imgDebug = imresize(imread(imgPath), scale) assert(len(roiLabels) == len(roiRelCoords)) if roiScores: assert(len(roiLabels) == len(roiScores)) # draw multiple times to avoid occlusions for iter in range(0,3): for roiIndex in range(len(roiRelCoords)): label = roiLabels[roiIndex] if roiScores: score = roiScores[roiIndex] if decisionThreshold and score < decisionThreshold: label = 0 # init drawing parameters thickness = 1 if label == 0: color = (255, 0, 0) else: color = getColorsPalette()[label] rect = [int(scale * i) for i in roiRelCoords[roiIndex]] # draw in higher iterations only the detections if iter == 0 and boDrawNegativeRois: drawRectangles(imgDebug, [rect], color=color, thickness=thickness) elif iter==1 and label > 0: if not nmsKeepIndices or (roiIndex in nmsKeepIndices): thickness = 4 drawRectangles(imgDebug, [rect], color=color, thickness=thickness) elif iter == 2 and label > 0: if not nmsKeepIndices or (roiIndex in nmsKeepIndices): try: font = ImageFont.truetype(available_font, 18) except: font = ImageFont.load_default() text = classes[label] if roiScores: text += "(" + str(round(score, 2)) + ")" imgDebug = drawText(imgDebug, (rect[0],rect[1]), text, color = (255,255,255), font = font, colorBackground=color) return imgDebug def applyNonMaximaSuppression(nmsThreshold, labels, scores, coords, ignore_background=False): # generate input for nms allIndices = [] nmsRects = [[[]] for _ in range(max(labels) + 1)] coordsWithScores = np.hstack((coords, np.array([scores]).T)) for i in range(max(labels) + 1): indices = np.where(np.array(labels) == i)[0] nmsRects[i][0] = coordsWithScores[indices,:] allIndices.append(indices) # call nms _, nmsKeepIndicesList = apply_nms(nmsRects, nmsThreshold, ignore_background=ignore_background) # map back to original roi indices nmsKeepIndices = [] for i in range(max(labels) + 1): for keepIndex in nmsKeepIndicesList[i][0]: nmsKeepIndices.append(allIndices[i][keepIndex]) # for keepIndex in nmsKeepIndicesList[i][0]] assert (len(nmsKeepIndices) == len(set(nmsKeepIndices))) # check if no roi indices was added >1 times return nmsKeepIndices def apply_nms(all_boxes, thresh, ignore_background=False, boUsePythonImpl=True): """Apply non-maximum suppression to all predicted boxes output by the test_net method.""" num_classes = len(all_boxes) num_images = len(all_boxes[0]) nms_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)] nms_keepIndices = [[[] for _ in range(num_images)] for _ in range(num_classes)] for cls_ind in range(num_classes): if ignore_background and (cls_ind == 0): continue for im_ind in range(num_images): dets = all_boxes[cls_ind][im_ind] if dets == []: continue if boUsePythonImpl: keep = nmsPython(dets, thresh) else: keep = nms(dets, thresh) if len(keep) == 0: continue nms_boxes[cls_ind][im_ind] = dets[keep, :].copy() nms_keepIndices[cls_ind][im_ind] = keep return nms_boxes, nms_keepIndices #################################### # Wrappers for compatibility with # original fastRCNN code #################################### class DummyNet(object): def __init__(self, dim, num_classes, cntkParsedOutputDir): self.name = 'dummyNet' self.cntkParsedOutputDir = cntkParsedOutputDir self.params = { "cls_score": [ EasyDict({'data': np.zeros((num_classes, dim), np.float32) }), EasyDict({'data': np.zeros((num_classes, 1), np.float32) })], "trainers" : None, } def im_detect(net, im, boxes, feature_scale=None, bboxIndices=None, boReturnClassifierScore=True, classifier = 'svm'): # trainers=None, # Return: # scores (ndarray): R x K array of object class scores (K includes # background as object category 0) # (optional) boxes (ndarray): R x (4*K) array of predicted bounding boxes # load cntk output for the given image cntkOutputPath = os.path.join(net.cntkParsedOutputDir, str(im) + ".dat.npz") cntkOutput = np.load(cntkOutputPath)['arr_0'] if bboxIndices != None: cntkOutput = cntkOutput[bboxIndices, :] # only keep output for certain rois else: cntkOutput = cntkOutput[:len(boxes), :] # remove zero-padded rois # compute scores for each box and each class scores = None if boReturnClassifierScore: if classifier == 'nn': scores = softmax2D(cntkOutput) elif classifier == 'svm': svmBias = net.params['cls_score'][1].data.transpose() svmWeights = net.params['cls_score'][0].data.transpose() scores = np.dot(cntkOutput * 1.0 / feature_scale, svmWeights) + svmBias assert (np.unique(scores[:, 0]) == 0) # svm always returns 0 for label 0 else: error return scores, None, cntkOutput #################################### # Subset of helper library # used in the fastRCNN code #################################### # Typical meaning of variable names -- Computer Vision: # pt = 2D point (column,row) # img = image # width,height (or w/h) = image dimensions # bbox = bbox object (stores: left, top,right,bottom co-ordinates) # rect = rectangle (order: left, top, right, bottom) # angle = rotation angle in degree # scale = image up/downscaling factor # Typical meaning of variable names -- general: # lines,strings = list of strings # line,string = single string # xmlString = string with xml tags # table = 2D row/column matrix implemented using a list of lists # row,list1D = single row in a table, i.e. single 1D-list # rowItem = single item in a row # list1D = list of items, not necessarily strings # item = single item of a list1D # slotValue = e.g. "terminator" in: play <movie> terminator </movie> # slotTag = e.g. "<movie>" or "</movie>" in: play <movie> terminator </movie> # slotName = e.g. "movie" in: play <movie> terminator </movie> # slot = e.g. "<movie> terminator </movie>" in: play <movie> terminator </movie> def makeDirectory(directory): if not os.path.exists(directory): os.makedirs(directory) def getFilesInDirectory(directory, postfix = ""): fileNames = [s for s in os.listdir(directory) if not os.path.isdir(os.path.join(directory, s))] if not postfix or postfix == "": return fileNames else: return [s for s in fileNames if s.lower().endswith(postfix)] def readFile(inputFile): #reading as binary, to avoid problems with end-of-text characters #note that readlines() does not remove the line ending characters with open(inputFile,'rb') as f: lines = f.readlines() return [removeLineEndCharacters(s) for s in lines] def readTable(inputFile, delimiter='\t', columnsToKeep=None): lines = readFile(inputFile); if columnsToKeep != None: header = lines[0].split(delimiter) columnsToKeepIndices = listFindItems(header, columnsToKeep) else: columnsToKeepIndices = None; return splitStrings(lines, delimiter, columnsToKeepIndices) def getColumn(table, columnIndex): column = []; for row in table: column.append(row[columnIndex]) return column def deleteFile(filePath): if os.path.exists(filePath): os.remove(filePath) def writeFile(outputFile, lines): with open(outputFile,'w') as f: for line in lines: f.write("%s\n" % line) def writeTable(outputFile, table): lines = tableToList1D(table) writeFile(outputFile, lines) def deleteFile(filePath): if os.path.exists(filePath): os.remove(filePath) def deleteAllFilesInDirectory(directory, fileEndswithString, boPromptUser = False): if boPromptUser: userInput = raw_input('--> INPUT: Press "y" to delete files in directory ' + directory + ": ") if not (userInput.lower() == 'y' or userInput.lower() == 'yes'): print ("User input is %s: exiting now." % userInput) exit() for filename in getFilesInDirectory(directory): if fileEndswithString == None or filename.lower().endswith(fileEndswithString): deleteFile(os.path.join(directory, filename)) def removeLineEndCharacters(line): if line.endswith(b'\r\n'): return line[:-2] elif line.endswith(b'\n'): return line[:-1] else: return line def splitString(string, delimiter='\t', columnsToKeepIndices=None): if string == None: return None items = string.decode('utf-8').split(delimiter) if columnsToKeepIndices != None: items = getColumns([items], columnsToKeepIndices) items = items[0] return items; def splitStrings(strings, delimiter, columnsToKeepIndices=None): table = [splitString(string, delimiter, columnsToKeepIndices) for string in strings] return table; def find(list1D, func): return [index for (index,item) in enumerate(list1D) if func(item)] def tableToList1D(table, delimiter='\t'): return [delimiter.join([str(s) for s in row]) for row in table] def sortDictionary(dictionary, sortIndex=0, reverseSort=False): return sorted(dictionary.items(), key=lambda x: x[sortIndex], reverse=reverseSort) def imread(imgPath, boThrowErrorIfExifRotationTagSet = True): if not os.path.exists(imgPath): print("ERROR: image path does not exist.") error rotation = rotationFromExifTag(imgPath) if boThrowErrorIfExifRotationTagSet and rotation != 0: print ("Error: exif roation tag set, image needs to be rotated by %d degrees." % rotation) img = cv2.imread(imgPath) if img is None: print ("ERROR: cannot load image " + imgPath) error if rotation != 0: img = imrotate(img, -90).copy() # got this error occassionally without copy "TypeError: Layout of the output array img is incompatible with cv::Mat" return img def rotationFromExifTag(imgPath): TAGSinverted = {v: k for k, v in TAGS.items()} orientationExifId = TAGSinverted['Orientation'] try: imageExifTags = Image.open(imgPath)._getexif() except: imageExifTags = None # rotate the image if orientation exif tag is present rotation = 0 if imageExifTags != None and orientationExifId != None and orientationExifId in imageExifTags: orientation = imageExifTags[orientationExifId] # print ("orientation = " + str(imageExifTags[orientationExifId])) if orientation == 1 or orientation == 0: rotation = 0 # no need to do anything elif orientation == 6: rotation = -90 elif orientation == 8: rotation = 90 else: print ("ERROR: orientation = " + str(orientation) + " not_supported!") error return rotation def imwrite(img, imgPath): cv2.imwrite(imgPath, img) def imresize(img, scale, interpolation = cv2.INTER_LINEAR): return cv2.resize(img, (0,0), fx=scale, fy=scale, interpolation=interpolation) def imresizeMaxDim(img, maxDim, boUpscale = False, interpolation = cv2.INTER_LINEAR): scale = 1.0 * maxDim / max(img.shape[:2]) if scale < 1 or boUpscale: img = imresize(img, scale, interpolation) else: scale = 1.0 return img, scale def imWidth(input): return imWidthHeight(input)[0] def imHeight(input): return imWidthHeight(input)[1] def imWidthHeight(input): width, height = Image.open(input).size #this does not load the full image return width,height def imArrayWidth(input): return imArrayWidthHeight(input)[0] def imArrayHeight(input): return imArrayWidthHeight(input)[1] def imArrayWidthHeight(input): width = input.shape[1] height = input.shape[0] return width,height def imshow(img, waitDuration=0, maxDim = None, windowName = 'img'): if isinstance(img, str): #test if 'img' is a string img = cv2.imread(img) if maxDim is not None: scaleVal = 1.0 * maxDim / max(img.shape[:2]) if scaleVal < 1: img = imresize(img, scaleVal) cv2.imshow(windowName, img) cv2.waitKey(waitDuration) def drawRectangles(img, rects, color = (0, 255, 0), thickness = 2): for rect in rects: pt1 = tuple(ToIntegers(rect[0:2])) pt2 = tuple(ToIntegers(rect[2:])) cv2.rectangle(img, pt1, pt2, color, thickness) def drawCrossbar(img, pt): (x,y) = pt cv2.rectangle(img, (0, y), (x, y), (255, 255, 0), 1) cv2.rectangle(img, (x, 0), (x, y), (255, 255, 0), 1) cv2.rectangle(img, (img.shape[1],y), (x, y), (255, 255, 0), 1) cv2.rectangle(img, (x, img.shape[0]), (x, y), (255, 255, 0), 1) def ptClip(pt, maxWidth, maxHeight): pt = list(pt) pt[0] = max(pt[0], 0) pt[1] = max(pt[1], 0) pt[0] = min(pt[0], maxWidth) pt[1] = min(pt[1], maxHeight) return pt def drawText(img, pt, text, textWidth=None, color = (255,255,255), colorBackground = None, font = None): # loading default value in function call so the script won't cause errors in system where # "arial.ttf" cannot be found if font == None: font = ImageFont.truetype("arial.ttf", 16) pilImg = imconvertCv2Pil(img) pilImg = pilDrawText(pilImg, pt, text, textWidth, color, colorBackground, font) return imconvertPil2Cv(pilImg) def pilDrawText(pilImg, pt, text, textWidth=None, color = (255,255,255), colorBackground = None, font = None): # loading default value in function call so the script won't cause errors in system where # "arial.ttf" cannot be found if font == None: font = ImageFont.truetype("arial.ttf", 16) textY = pt[1] draw = ImageDraw.Draw(pilImg) if textWidth == None: lines = [text] else: lines = textwrap.wrap(text, width=textWidth) for line in lines: width, height = font.getsize(line) if colorBackground != None: draw.rectangle((pt[0], pt[1], pt[0] + width, pt[1] + height), fill=tuple(colorBackground[::-1])) draw.text(pt, line, fill = tuple(color), font = font) textY += height return pilImg def getColorsPalette(): colors = [[255,0,0], [0,255,0], [0,0,255], [255,255,0], [255,0,255]] for i in range(5): for dim in range(0,3): for s in (0.25, 0.5, 0.75): if colors[i][dim] != 0: newColor = copy.deepcopy(colors[i]) newColor[dim] = int(round(newColor[dim] * s)) colors.append(newColor) return colors def imconvertPil2Cv(pilImg): rgb = pilImg.convert('RGB') return np.array(rgb).copy()[:, :, ::-1] def imconvertCv2Pil(img): cv2_im = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) return Image.fromarray(cv2_im) def ToIntegers(list1D): return [int(float(x)) for x in list1D] def softmax(vec): expVec = np.exp(vec) # TODO: check numerical stability if max(expVec) == np.inf: outVec = np.zeros(len(expVec)) outVec[expVec == np.inf] = vec[expVec == np.inf] outVec = outVec / np.sum(outVec) else: outVec = expVec / np.sum(expVec) return outVec def softmax2D(w): e = np.exp(w) dist = e / np.sum(e, axis=1)[:, np.newaxis] return dist def getDictionary(keys, values, boConvertValueToInt = True): dictionary = {} for key,value in zip(keys, values): if (boConvertValueToInt): value = int(value) dictionary[key] = value return dictionary class Bbox: MAX_VALID_DIM = 100000 left = top = right = bottom = None def __init__(self, left, top, right, bottom): self.left = int(round(float(left))) self.top = int(round(float(top))) self.right = int(round(float(right))) self.bottom = int(round(float(bottom))) self.standardize() def __str__(self): return ("Bbox object: left = {0}, top = {1}, right = {2}, bottom = {3}".format(self.left, self.top, self.right, self.bottom)) def __repr__(self): return str(self) def rect(self): return [self.left, self.top, self.right, self.bottom] def max(self): return max([self.left, self.top, self.right, self.bottom]) def min(self): return min([self.left, self.top, self.right, self.bottom]) def width(self): width = self.right - self.left + 1 assert(width>=0) return width def height(self): height = self.bottom - self.top + 1 assert(height>=0) return height def surfaceArea(self): return self.width() * self.height() def getOverlapBbox(self, bbox): left1, top1, right1, bottom1 = self.rect() left2, top2, right2, bottom2 = bbox.rect() overlapLeft = max(left1, left2) overlapTop = max(top1, top2) overlapRight = min(right1, right2) overlapBottom = min(bottom1, bottom2) if (overlapLeft>overlapRight) or (overlapTop>overlapBottom): return None else: return Bbox(overlapLeft, overlapTop, overlapRight, overlapBottom) def standardize(self): #NOTE: every setter method should call standardize leftNew = min(self.left, self.right) topNew = min(self.top, self.bottom) rightNew = max(self.left, self.right) bottomNew = max(self.top, self.bottom) self.left = leftNew self.top = topNew self.right = rightNew self.bottom = bottomNew def crop(self, maxWidth, maxHeight): leftNew = min(max(self.left, 0), maxWidth) topNew = min(max(self.top, 0), maxHeight) rightNew = min(max(self.right, 0), maxWidth) bottomNew = min(max(self.bottom, 0), maxHeight) return Bbox(leftNew, topNew, rightNew, bottomNew) def isValid(self): if self.left>=self.right or self.top>=self.bottom: return False if min(self.rect()) < -self.MAX_VALID_DIM or max(self.rect()) > self.MAX_VALID_DIM: return False return True def getEnclosingBbox(pts): left = top = float('inf') right = bottom = float('-inf') for pt in pts: left = min(left, pt[0]) top = min(top, pt[1]) right = max(right, pt[0]) bottom = max(bottom, pt[1]) return Bbox(left, top, right, bottom) def bboxComputeOverlapVoc(bbox1, bbox2): surfaceRect1 = bbox1.surfaceArea() surfaceRect2 = bbox2.surfaceArea() overlapBbox = bbox1.getOverlapBbox(bbox2) if overlapBbox == None: return 0 else: surfaceOverlap = overlapBbox.surfaceArea() overlap = max(0, 1.0 * surfaceOverlap / (surfaceRect1 + surfaceRect2 - surfaceOverlap)) assert (overlap >= 0 and overlap <= 1) return overlap def computeAveragePrecision(recalls, precisions, use_07_metric=False): """ ap = voc_ap(recalls, precisions, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(recalls >= t) == 0: p = 0 else: p = np.max(precisions[recalls >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrecalls = np.concatenate(([0.], recalls, [1.])) mprecisions = np.concatenate(([0.], precisions, [0.])) # compute the precision envelope for i in range(mprecisions.size - 1, 0, -1): mprecisions[i - 1] = np.maximum(mprecisions[i - 1], mprecisions[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrecalls[1:] != mrecalls[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrecalls[i + 1] - mrecalls[i]) * mprecisions[i + 1]) return ap
[ "alikaz.zaidi@gmail.com" ]
alikaz.zaidi@gmail.com
7531cac66c00aa9fa817aaa518bfbbedc102318d
f21a735d8e3e0ab7bcde2a88caf7658e1008f9c0
/simple_auto_encoder_keras/simple_auto_encoder_keras.py
633ba837694466e5120e034fd27f699b04609fba
[]
no_license
alizarghami/simple_dl_examples
cdaa1c48ddfa74e9f8b246a77e5242d74baa4b12
64ffb75c19d4ae45eed589719339f13f8c96542b
refs/heads/master
2023-02-15T19:12:55.258072
2021-01-07T09:41:37
2021-01-07T09:41:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,555
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Sep 5 22:19:50 2020 @author: ali """ from keras.datasets import fashion_mnist from keras.models import Sequential from keras.layers.core import Dense from keras.optimizers import Adam import matplotlib.pyplot as plt BATCH_SIZE = 1024 EPOCHS = 20 (X_train, y_train), (X_test, y_test) = fashion_mnist.load_data() Z_train = X_train.reshape(-1, 784) Z_test = X_test.reshape(-1, 784) simple_auto_encoder = Sequential() simple_auto_encoder.add(Dense(512, activation='elu', input_shape=(784,))) simple_auto_encoder.add(Dense(128, activation='elu')) simple_auto_encoder.add(Dense(10, activation='linear', name='bottleneck')) simple_auto_encoder.add(Dense(128, activation='elu')) simple_auto_encoder.add(Dense(512, activation='elu')) simple_auto_encoder.add(Dense(784)) simple_auto_encoder.compile(Adam(), loss='mean_squared_error') image = Z_test[0].reshape(28, 28) res = simple_auto_encoder.predict(Z_test[0].reshape(-1, 784)) res = res.reshape(28, 28) fig1 = plt.figure('Before training') ax1 = fig1.add_subplot(1,2,1) ax1.imshow(image) ax2 = fig1.add_subplot(1,2,2) ax2.imshow(res) trained_model = simple_auto_encoder.fit(Z_train, Z_train, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(Z_test, Z_test)) res = simple_auto_encoder.predict(Z_test[0].reshape(-1, 784)) res = res.reshape(28, 28) fig2 = plt.figure('After training') ax1 = fig2.add_subplot(1,2,1) ax1.imshow(image) ax2 = fig2.add_subplot(1,2,2) ax2.imshow(res) simple_auto_encoder.save('models/model.h5')
[ "alizarghami@gmail.com" ]
alizarghami@gmail.com
f342ac5aa82cd4281c3d4189cda3b8f347147b4f
1a5971b5e2960322b4f9d318b08e9fefa908a776
/Height.py
d7dc80e06611ef6b9f7f1bea4e593b1f33cd840b
[]
no_license
mikesmithlab/Ball
1253baf1f5c8a363683f86e741ffacbce3e5c774
33cc74aba6e4ff21bc1c6ec51a50cd390531f99b
refs/heads/master
2020-04-04T11:02:28.506512
2019-04-15T13:49:42
2019-04-15T13:49:42
155,876,736
0
0
null
null
null
null
UTF-8
Python
false
false
3,712
py
from scipy import signal import matplotlib.pyplot as plt import pandas as pd import numpy as np from tkinter import filedialog import os from scipy.signal import argrelextrema from scipy import optimize def createHistogram(ball,filename,binnum=100): plt.figure() file = filename[:-5]+'.txt' ball['Height'].hist(bins=binnum) surfmax = [ball['surface'].max(),ball['surface'].max()] count,binedges = np.histogram(ball['Height'],bins=binnum) countmax = [0,count.max()] bincentres = (binedges[:-1] + binedges[1:])/2 plt.plot(surfmax,countmax,'r--') np.savetxt('myfile.txt', np.c_[bincentres,count]) plt.savefig(file[:-4] + '.png') def surfaceScale(ball,FrameRate=500,accelerationmm = 33000): #Get values in pixels of surface motion minimumSurfVal,meanSurfVal,MaximumSurfVal=plotFitSurface(ball[ball['frame']<500]) #Need to use the actual amplitude to scale the surface motion. Amplitude = accelerationmm/(2*np.pi*50)**2 print('Amplitude pixels') print(abs(minimumSurfVal - MaximumSurfVal)/2) ball['surface'] = -(ball['surface']-meanSurfVal) scale_surface = Amplitude/abs(MaximumSurfVal-meanSurfVal) ball['surface']=ball['surface']*scale_surface return ball def ballScale(ball,FrameRate=500,RadBallInMM=5): #Define new yball in terms of height above the mean surface position, which is the optical axis ball['Height']=-(ball['yball'] - ball['surface'].mean())-ball['radball'] ball['ballscale']=RadBallInMM/ball['radball'] ball['Height']=ball['Height']*ball['ballscale'] print(ball['Height'].max()) print(ball['Height'].mean()) print(ball['Height'].min()) return ball def sin_f(x, A,B, C, D): # this is your 'straight line' y=f(x) return A*np.sin(B*x + C) + D def plotFitSurface(ball): drivingF = 50 camFPS = 500 dataLength = np.shape(ball.index.unique())[0] omega = 2*np.pi*(drivingF)/camFPS #frames = ball.groupby(by='frame').mean().index.values surfacedata = (ball.groupby(by='frame').mean()['surface'])#-ball.groupby(by='frame').mean()['surface'].mean()) frames = surfacedata.index params,SD = optimize.curve_fit(sin_f,frames,surfacedata,bounds=([-np.inf,omega*0.999,-np.inf,0],[np.inf,omega*1.001,np.inf,1000])) frame_fine = np.arange(0,dataLength,0.01) surface = sin_f(frame_fine,params[0],params[1],params[2],params[3]) if False: plt.figure() plt.plot(frames,surfacedata,'bx') plt.plot(frame_fine,surface,'r-') plt.show() minimumSurfVal = np.min(surface) maximumSurfVal = np.max(surface) meanSurfVal = np.mean(surface) return (minimumSurfVal,meanSurfVal,maximumSurfVal) def plotVar(ball,value,file='',maxVal=10000,show=False,save=True,): plt.figure() frames = ball.groupby('frame').mean().index Variable = ball.groupby('frame').mean()[value] plt.plot(frames[frames < maxVal],Variable[frames < maxVal],'rx') plt.plot(frames[frames < maxVal],Variable[frames < maxVal],'b-') if save: plt.savefig(file + value +'.png') if show: plt.show() if __name__ == "__main__": filename = filedialog.askopenfilename(initialdir='/media/ppzmis/data/BouncingBall_Data/newMovies/Processed Data/',title='Select Data File', filetypes = (('DataFrames', '*.hdf5'),)) print(filename) ball = pd.read_hdf(filename) ball = ballScale(ball,FrameRate=500,RadBallInMM=5) ball = surfaceScale(ball) plotVar(ball,'Height',file=filename,show=False) plotVar(ball,'radball',file=filename,show=False) createHistogram(ball,filename)
[ "mike.i.smith@nottingham.ac.uk" ]
mike.i.smith@nottingham.ac.uk
b9b9950099375ec0726ae8664dd690b39569313e
027ed4a5f07e2c74e3b709609cb782f5afc29558
/src/tp1/ga_rainhas.py
38f95811c3da9e85867419b7b7ec61c5391902a7
[]
no_license
vicrsp/ce-ppgee
1b0bebd6310150596137b01067b6443bf96a9851
360d26ce2a006629afa62be3a700ddc5eac08e84
refs/heads/master
2021-03-05T23:57:49.177900
2020-11-16T21:26:12
2020-11-16T21:26:12
246,164,688
0
0
null
2020-11-16T21:07:52
2020-03-09T23:37:10
Python
UTF-8
Python
false
false
8,131
py
from math import factorial import numpy as np import itertools import random class GAPermutation: def __init__(self, fitness_func, pop_size=100, num_generations=300, max_int=8, crossover_probability=0.6, mutation_probability=0.05, use_inversion_mutation=False): self.population_size = pop_size self.crossover_probability = crossover_probability self.mutation_probability = mutation_probability self.num_generations = num_generations self.fitness_func = fitness_func self.max_int = max_int self.use_inversion_mutation = use_inversion_mutation self.fitness_eval = 0 self.scale_factor = self.max_int*(self.max_int-1)/2 self.best_objective = np.Infinity self.best_solution = [] self.best_fitness = 0 self.converged = False def initialize_population(self): """ Initializes the population """ self.pop_size = (self.population_size, self.max_int) # self.population = np.random.randint( # low=0, high=self.max_int, size=self.pop_size) self.population = np.zeros(self.pop_size) for i in range(self.population_size): array = np.arange(self.max_int) np.random.shuffle(array) self.population[i, :] = array self.initial_population = np.copy(self.population) def cal_pop_fitness(self, population): """ Calculating the fitness values of all solutions in the current population. """ pop_fitness = [] # Calculating the fitness value of each solution in the current population. for sol in population: fitness = self.scale(self.fitness_func(sol)) pop_fitness.append(fitness) pop_fitness = np.array(pop_fitness) self.fitness_eval = self.fitness_eval + pop_fitness.shape[0] self.population_fitness = pop_fitness return pop_fitness def run(self): self.initialize_population() for generation in range(self.num_generations): # Measuring the fitness of each chromosome in the population. fitness = self.cal_pop_fitness(self.population) best_fitness_index = np.argmax(fitness) if(fitness[best_fitness_index] > self.best_fitness): self.best_fitness = fitness[best_fitness_index] self.best_solution = self.population[best_fitness_index, :] if self.descale(self.best_fitness) == 0: self.converged = True break # Selecting the best parents in the population for mating. parents = self.selection(fitness, int(self.population_size/2)) # Crossover offspring_crossover = self.crossover(parents) # Mutation offspring_mutated = self.mutation(offspring_crossover) # Survivor selection offspring_survived = self.survivor_selection( fitness, offspring_mutated) # Update population self.population = offspring_survived self.best_objective = self.descale(self.best_fitness) def crossover(self, parents): prob = np.random.rand() offspring = parents if prob < self.get_crossover_probability(): offspring = self.ordered_crossover(parents) return offspring def stochastic_universal_sampling_selection(self, fitness, num_parents): """ Selects the parents using SUS selection technique. """ sorted_parents = self.population[np.flip(np.argsort(fitness))] sorted_fitness = fitness[np.flip(np.argsort(fitness))] fitness_sum = np.sum(fitness) distance = fitness_sum / float(num_parents) start = random.uniform(0, distance) points = [start + i*distance for i in range(num_parents)] parents = np.empty((num_parents, self.max_int)) parents_fitness = np.empty(num_parents) parent_num = 0 for p in points: idx = 0 r = sorted_fitness[idx] while r < p: idx = idx + 1 r = r + sorted_fitness[idx] parents[parent_num, :] = sorted_parents[idx, :] parents_fitness[parent_num] = sorted_fitness[idx] parent_num = parent_num + 1 return parents, parents_fitness def selection(self, fitness, num_tournament): parents = np.zeros((2, self.max_int)) parent_selection, parent_fitness = self.stochastic_universal_sampling_selection( fitness, 2) sort_indexes = np.argsort(parent_fitness) best = parent_selection[sort_indexes[-1], :] second_best = parent_selection[sort_indexes[-2], :] parents[0, :] = best parents[1, :] = second_best return parents def survivor_selection(self, fitness, offspring): offspring_fitness = self.cal_pop_fitness(offspring) pop_fitness = np.hstack((fitness, offspring_fitness)) merged_pop = np.vstack((self.population, offspring)) sort_indexes = np.argsort(pop_fitness) sorted_pop = merged_pop[sort_indexes] return sorted_pop[2:, :] def inversion_mutation(self, offsprings): m, n = offsprings.shape mutated = np.zeros(offsprings.shape) for i in range(m): prob = np.random.rand() mutated[i, :] = offsprings[i, :] if prob < self.get_mutation_probability(): pos_1, pos_2 = np.sort( np.random.randint(low=0, high=n, size=2)) flipped_array = np.flip(offsprings[i, pos_1:pos_2]) mutated[i, pos_1:pos_2] = flipped_array return mutated def mutation(self, offsprings): if(self.use_inversion_mutation): return self.inversion_mutation(offsprings) else: return self.swap_mutation(offsprings) def swap_mutation(self, offsprings): m, n = offsprings.shape mutated = np.zeros(offsprings.shape) for i in range(m): prob = np.random.rand() mutated[i, :] = offsprings[i, :] if prob < self.get_mutation_probability(): pos_1, pos_2 = np.random.randint(low=0, high=n, size=2) first_num = offsprings[i, pos_1] second_num = offsprings[i, pos_2] mutated[i, pos_1] = second_num mutated[i, pos_2] = first_num return mutated def ordered_crossover(self, parents): """ Executes an ordered crossover (OX) on the input individuals. """ parent1, parent2 = parents[0, :], parents[1, :] size = len(parent1) a, b = random.sample(range(size), 2) if a > b: a, b = b, a holes1, holes2 = [True] * size, [True] * size for i in range(size): if i < a or i > b: holes1[int(parent2[i])] = False holes2[int(parent1[i])] = False # We must keep the original values somewhere before scrambling everything temp1, temp2 = parent1, parent2 k1, k2 = b + 1, b + 1 for i in range(size): if not holes1[int(temp1[(i + b + 1) % size])]: parent1[int(k1 % size)] = temp1[int((i + b + 1) % size)] k1 += 1 if not holes2[int(temp2[(i + b + 1) % size])]: parent2[int(k2 % size)] = temp2[int((i + b + 1) % size)] k2 += 1 # Swap the content between a and b (included) for i in range(a, b + 1): parent1[i], parent2[i] = parent2[i], parent1[i] return np.array([parent1, parent2]) def scale(self, fx): """ Scales the objective with Cmax scaling """ return self.scale_factor - fx def descale(self, fitness): return self.scale_factor - fitness def get_mutation_probability(self): return self.mutation_probability def get_crossover_probability(self): return self.crossover_probability
[ "victorspruela@gmail.com" ]
victorspruela@gmail.com
eef6bd0e000db126892cd5cf1efaecae9b0e373f
fadcdc099a17a031190db8a073ceb9b8ff3c52a3
/2017202085/src/srcipts/KGQA/neo_db/query_create_txt.py
d47e26de3052d2a6c38d23d93ce94aed54d78d61
[]
no_license
info-ruc/nlp20projects
751457d63e36baafc91aec2d8a6a9ed2c2634eef
0684e6204378761b471415743cbd63efe906deb0
refs/heads/master
2023-02-08T05:25:27.467295
2020-12-30T00:24:16
2020-12-30T00:24:16
291,974,135
0
10
null
2020-12-30T00:24:18
2020-09-01T11:03:42
Jupyter Notebook
UTF-8
Python
false
false
556
py
from neo_db.config import graph, CA_LIST, similar_words import codecs import os import json import base64 def concept(): data = list(graph.run( "MATCH (n:CONCEPT) RETURN n LIMIT 10000")) f = open('../raw_data/concept.txt', 'w', encoding='utf-8') for d in data: f.write(d['n']['conceptName']+'\n') def author(): data = list(graph.run( "MATCH (n:AUTHOR) RETURN n LIMIT 10000")) f = open('../raw_data/author.txt', 'w', encoding='utf-8') for d in data: f.write(d['n']['authorName']+'\n')
[ "857316974@qq.com" ]
857316974@qq.com
9957e818b639a1c4714fa373df9e059a62e4b8d1
40777537b6c47ffa32b565484325dc4fb0d42e83
/examples/separate_api_route_example.py
9a7e8b1b7e8116671eaf6dbcadeca22ac5455def
[ "MIT" ]
permissive
muhammedfurkan/aiogram
24e8e9c55ea01c6a2f08abd1122956640db92abd
692c1340b4dda556da640e5f9ea2200848c06840
refs/heads/dev-2.x
2021-12-03T21:33:40.494047
2021-10-28T21:03:46
2021-10-28T21:03:46
200,087,088
0
0
MIT
2020-11-04T15:52:35
2019-08-01T16:46:50
Python
UTF-8
Python
false
false
870
py
# NOTE: This is an example of an integration between # externally created Application object and the aiogram's dispatcher # This can be used for a custom route, for instance from aiohttp import web from aiogram import Bot, Dispatcher, types from aiogram.dispatcher.webhook import configure_app bot = Bot(token=config.bot_token) dp = Dispatcher(bot) @dp.message_handler(commands=["start"]) async def cmd_start(message: types.Message): await message.reply("start!") # handle /api route async def api_handler(request): return web.json_response({"status": "OK"}, status=200) app = web.Application() # add a custom route app.add_routes([web.post("/api", api_handler)]) # every request to /bot route will be retransmitted to dispatcher to be handled # as a bot update configure_app(dp, app, "/bot") if __name__ == "__main__": web.run_app(app, port=9000)
[ "noreply@github.com" ]
muhammedfurkan.noreply@github.com
8ad510177a0ecc90f3b4308ee64dee9040f7d329
2f0603a1a61baaf588c25b1960d18500e7060933
/Theano_code/dbn.py
334cbbb7c64aa6108b59613270881771eaf03c29
[]
no_license
mukami12/ReduceFA_2015
20a3b9dd4faf862465e5aec980a55734befa9a22
a6fe51a8d315c8771911389b1f744878f556ab65
refs/heads/master
2020-03-31T14:54:15.798399
2016-05-22T09:16:20
2016-05-22T09:16:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
23,586
py
import os import sys import time import numpy import theano import theano.tensor as T from theano.tensor.shared_randomstreams import RandomStreams from logistic_sgd import LogisticRegression from data_process import loadFeaturedData from data_process import load10secData from mlp import HiddenLayer from rbm import RBM # start-snippet-1 class DBN(object): """Deep Belief Network A deep belief network is obtained by stacking several RBMs on top of each other. The hidden layer of the RBM at layer `i` becomes the input of the RBM at layer `i+1`. The first layer RBM gets as input the input of the network, and the hidden layer of the last RBM represents the output. When used for classification, the DBN is treated as a MLP, by adding a logistic regression layer on top. """ def __init__(self, numpy_rng, theano_rng=None, n_ins=28 * 28, hidden_layers_sizes=[10, 10], n_outs=10): """This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the DBN :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network """ self.sigmoid_layers = [] self.rbm_layers = [] self.params = [] self.n_layers = len(hidden_layers_sizes) assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector # of [int] labels # end-snippet-1 # The DBN is an MLP, for which all weights of intermediate # layers are shared with a different RBM. We will first # construct the DBN as a deep multilayer perceptron, and when # constructing each sigmoidal layer we also construct an RBM # that shares weights with that layer. During pretraining we # will train these RBMs (which will lead to chainging the # weights of the MLP as well) During finetuning we will finish # training the DBN by doing stochastic gradient descent on the # MLP. for i in xrange(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden # units of the layer below or the input size if we are on # the first layer if i == 0: input_size = n_ins else: input_size = hidden_layers_sizes[i - 1] # the input to this layer is either the activation of the # hidden layer below or the input of the DBN if you are on # the first layer if i == 0: layer_input = self.x else: layer_input = self.sigmoid_layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid) # add the layer to our list of layers self.sigmoid_layers.append(sigmoid_layer) # its arguably a philosophical question... but we are # going to only declare that the parameters of the # sigmoid_layers are parameters of the DBN. The visible # biases in the RBM are parameters of those RBMs, but not # of the DBN. self.params.extend(sigmoid_layer.params) # Construct an RBM that shared weights with this layer rbm_layer = RBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b) self.rbm_layers.append(rbm_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.sigmoid_layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.params.extend(self.logLayer.params) # compute the cost for second phase of training, defined as the # negative log likelihood of the logistic regression (output) layer self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) # Compute Confusion_matrix by heehwan self.confusion_matrix = self.logLayer.confusion_matrix(self.y) def pretraining_functions(self, train_set_x, batch_size, k): '''Generates a list of functions, for performing one step of gradient descent at a given layer. The function will require as input the minibatch index, and to train an RBM you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared var. that contains all datapoints used for training the RBM :type batch_size: int :param batch_size: size of a [mini]batch :param k: number of Gibbs steps to do in CD-k / PCD-k ''' # index to a [mini]batch index = T.lscalar('index') # index to a minibatch learning_rate = T.scalar('lr') # learning rate to use # number of batches n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for rbm in self.rbm_layers: # get the cost and the updates list # using CD-k here (persisent=None) for training each RBM. # TODO: change cost function to reconstruction error cost, updates = rbm.get_cost_updates(learning_rate, persistent=None, k=k) # compile the theano function fn = theano.function( inputs=[index, theano.Param(learning_rate, default=0.1)], outputs=cost, updates=updates, givens={ self.x: train_set_x[batch_begin:batch_end] } ) # append `fn` to the list of functions pretrain_fns.append(fn) return pretrain_fns def build_finetune_functions(self, datasets, batch_size): '''Generates a function `train` that implements one step of finetuning, a function `validate` that computes the error on a batch from the validation set, and a function `main` that computes the error on a batch from the testing set :type datasets: list of pairs of theano.tensor.TensorType :param datasets: It is a list that contain all the datasets; the has to contain three pairs, `train`, `valid`, `main` in this order, where each pair is formed of two Theano variables, one for the datapoints, the other for the labels :type batch_size: int :param batch_size: size of a minibatch :type learning_rate: float :param learning_rate: learning rate used during finetune stage ''' (train_set_x, train_set_y) = datasets[0] (test_set_x, test_set_y) = datasets[1] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters gparams = T.grad(self.finetune_cost, self.params) # Dynamic learning rate by heehwan l_r = T.scalar('l_r', dtype=theano.config.floatX) # compute list of fine-tuning updates updates = [] for param, gparam in zip(self.params, gparams): updates.append((param, param - gparam * l_r)) train_fn = theano.function( inputs=[index, l_r], outputs=self.finetune_cost, updates=updates, givens={ self.x: train_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: train_set_y[ index * batch_size: (index + 1) * batch_size ] } ) train_cost_i = theano.function( [index], self.finetune_cost, givens={ self.x: train_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: train_set_y[ index * batch_size: (index + 1) * batch_size ] } ) test_score_i = theano.function( [index], self.errors, givens={ self.x: test_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: test_set_y[ index * batch_size: (index + 1) * batch_size ] } ) test_cost_i = theano.function( [index], self.finetune_cost, givens={ self.x: test_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: test_set_y[ index * batch_size: (index + 1) * batch_size ] } ) test_confmatrix_i = theano.function( [index], self.confusion_matrix, givens={ self.x: test_set_x[ index * batch_size: (index + 1) * batch_size ], self.y: test_set_y[ index * batch_size: (index + 1) * batch_size ] } ) # Create a function that scans the entire main set def train_cost(): return [train_cost_i(i) for i in xrange(n_train_batches)] def test_score(): return [test_score_i(i) for i in xrange(n_test_batches)] def test_cost(): return [train_cost_i(i) for i in xrange(n_test_batches)] def test_confmatrix(): return [test_confmatrix_i(i) for i in xrange(n_test_batches)] # return train_fn, valid_score, test_score return train_fn, train_cost, test_score, test_cost, test_confmatrix ############################################################################ # # # start-snippet-1 # class DBN(object): # """Deep Belief Network # # A deep belief network is obtained by stacking several RBMs on top of each # other. The hidden layer of the RBM at layer `i` becomes the input of the # RBM at layer `i+1`. The first layer RBM gets as input the input of the # network, and the hidden layer of the last RBM represents the output. When # used for classification, the DBN is treated as a MLP, by adding a logistic # regression layer on top. # """ # # def __init__(self, numpy_rng, theano_rng=None, n_ins=28 * 28, # hidden_layers_sizes=[10, 10], n_outs=10): # """This class is made to support a variable number of layers. # # :type numpy_rng: numpy.random.RandomState # :param numpy_rng: numpy random number generator used to draw initial # weights # # :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams # :param theano_rng: Theano random generator; if None is given one is # generated based on a seed drawn from `rng` # # :type n_ins: int # :param n_ins: dimension of the input to the DBN # # :type hidden_layers_sizes: list of ints # :param hidden_layers_sizes: intermediate layers size, must contain # at least one value # # :type n_outs: int # :param n_outs: dimension of the output of the network # """ # # self.sigmoid_layers = [] # self.rbm_layers = [] # self.params = [] # self.n_layers = len(hidden_layers_sizes) # # assert self.n_layers > 0 # # if not theano_rng: # theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # # # allocate symbolic variables for the data # self.x = T.matrix('x') # the data is presented as rasterized images # self.y = T.ivector('y') # the labels are presented as 1D vector # # of [int] labels # # end-snippet-1 # # The DBN is an MLP, for which all weights of intermediate # # layers are shared with a different RBM. We will first # # construct the DBN as a deep multilayer perceptron, and when # # constructing each sigmoidal layer we also construct an RBM # # that shares weights with that layer. During pretraining we # # will train these RBMs (which will lead to chainging the # # weights of the MLP as well) During finetuning we will finish # # training the DBN by doing stochastic gradient descent on the # # MLP. # # for i in xrange(self.n_layers): # # construct the sigmoidal layer # # # the size of the input is either the number of hidden # # units of the layer below or the input size if we are on # # the first layer # if i == 0: # input_size = n_ins # else: # input_size = hidden_layers_sizes[i - 1] # # # the input to this layer is either the activation of the # # hidden layer below or the input of the DBN if you are on # # the first layer # if i == 0: # layer_input = self.x # else: # layer_input = self.sigmoid_layers[-1].output # # sigmoid_layer = HiddenLayer(rng=numpy_rng, # input=layer_input, # n_in=input_size, # n_out=hidden_layers_sizes[i], # activation=T.nnet.sigmoid) # # # add the layer to our list of layers # self.sigmoid_layers.append(sigmoid_layer) # # # its arguably a philosophical question... but we are # # going to only declare that the parameters of the # # sigmoid_layers are parameters of the DBN. The visible # # biases in the RBM are parameters of those RBMs, but not # # of the DBN. # self.params.extend(sigmoid_layer.params) # # # Construct an RBM that shared weights with this layer # rbm_layer = RBM(numpy_rng=numpy_rng, # theano_rng=theano_rng, # input=layer_input, # n_visible=input_size, # n_hidden=hidden_layers_sizes[i], # W=sigmoid_layer.W, # hbias=sigmoid_layer.b) # self.rbm_layers.append(rbm_layer) # # # We now need to add a logistic layer on top of the MLP # self.logLayer = LogisticRegression( # input=self.sigmoid_layers[-1].output, # n_in=hidden_layers_sizes[-1], # n_out=n_outs) # self.params.extend(self.logLayer.params) # # # compute the cost for second phase of training, defined as the # # negative log likelihood of the logistic regression (output) layer # self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # # # compute the gradients with respect to the model parameters # # symbolic variable that points to the number of errors made on the # # minibatch given by self.x and self.y # self.errors = self.logLayer.errors(self.y) # # # Compute Confusion_matrix by heehwan # self.confusion_matrix = self.logLayer.confusion_matrix(self.y) # # def pretraining_functions(self, train_set_x, batch_size, k): # '''Generates a list of functions, for performing one step of # gradient descent at a given layer. The function will require # as input the minibatch index, and to train an RBM you just # need to iterate, calling the corresponding function on all # minibatch indexes. # # :type train_set_x: theano.tensor.TensorType # :param train_set_x: Shared var. that contains all datapoints used # for training the RBM # :type batch_size: int # :param batch_size: size of a [mini]batch # :param k: number of Gibbs steps to do in CD-k / PCD-k # # ''' # # # index to a [mini]batch # index = T.lscalar('index') # index to a minibatch # learning_rate = T.scalar('lr') # learning rate to use # # # number of batches # n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size # # begining of a batch, given `index` # batch_begin = index * batch_size # # ending of a batch given `index` # batch_end = batch_begin + batch_size # # pretrain_fns = [] # for rbm in self.rbm_layers: # # # get the cost and the updates list # # using CD-k here (persisent=None) for training each RBM. # # TODO: change cost function to reconstruction error # cost, updates = rbm.get_cost_updates(learning_rate, # persistent=None, k=k) # # # compile the theano function # fn = theano.function( # inputs=[index, theano.Param(learning_rate, default=0.1)], # outputs=cost, # updates=updates, # givens={ # self.x: train_set_x[batch_begin:batch_end] # } # ) # # append `fn` to the list of functions # pretrain_fns.append(fn) # # return pretrain_fns # # def build_finetune_functions(self, datasets, batch_size, learning_rate): # '''Generates a function `train` that implements one step of # finetuning, a function `validate` that computes the error on a # batch from the validation set, and a function `main` that # computes the error on a batch from the testing set # # :type datasets: list of pairs of theano.tensor.TensorType # :param datasets: It is a list that contain all the datasets; # the has to contain three pairs, `train`, # `valid`, `main` in this order, where each pair # is formed of two Theano variables, one for the # datapoints, the other for the labels # :type batch_size: int # :param batch_size: size of a minibatch # :type learning_rate: float # :param learning_rate: learning rate used during finetune stage # # ''' # # (train_set_x, train_set_y) = datasets[0] # (valid_set_x, valid_set_y) = datasets[1] # (test_set_x, test_set_y) = datasets[2] # # # compute number of minibatches for training, validation and testing # n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] # n_valid_batches /= batch_size # n_test_batches = test_set_x.get_value(borrow=True).shape[0] # n_test_batches /= batch_size # # index = T.lscalar('index') # index to a [mini]batch # # # compute the gradients with respect to the model parameters # gparams = T.grad(self.finetune_cost, self.params) # # # compute list of fine-tuning updates # updates = [] # for param, gparam in zip(self.params, gparams): # updates.append((param, param - gparam * learning_rate)) # # train_fn = theano.function( # inputs=[index], # outputs=self.finetune_cost, # updates=updates, # givens={ # self.x: train_set_x[ # index * batch_size: (index + 1) * batch_size # ], # self.y: train_set_y[ # index * batch_size: (index + 1) * batch_size # ] # } # ) # # test_score_i = theano.function( # [index], # self.errors, # givens={ # self.x: test_set_x[ # index * batch_size: (index + 1) * batch_size # ], # self.y: test_set_y[ # index * batch_size: (index + 1) * batch_size # ] # } # ) # # valid_score_i = theano.function( # [index], # self.errors, # givens={ # self.x: valid_set_x[ # index * batch_size: (index + 1) * batch_size # ], # self.y: valid_set_y[ # index * batch_size: (index + 1) * batch_size # ] # } # ) # # test_confmatrix_i = theano.function( # [index], # self.confusion_matrix, # givens={ # self.x: test_set_x[ # index * batch_size: (index + 1) * batch_size # ], # self.y: test_set_y[ # index * batch_size: (index + 1) * batch_size # ] # } # ) # # Create a function that scans the entire validation set # def valid_score(): # return [valid_score_i(i) for i in xrange(n_valid_batches)] # # # Create a function that scans the entire main set # def test_score(): # return [test_score_i(i) for i in xrange(n_test_batches)] # # def test_confmatrix(): # return [test_confmatrix_i(i) for i in xrange(n_test_batches)] # # # return train_fn, valid_score, test_score # return train_fn, valid_score, test_score, test_confmatrix
[ "heehwan.park@gmail.com" ]
heehwan.park@gmail.com
21f9d1804e8d0e7fa36cfa13c8694012e9e3e993
7280a5bff73d67b16f0fce871dec606edd0c7347
/test.py
72f01014d94246fe0444d69e30d72f664a4d9e22
[]
no_license
nj-sseo/Korean-language-classifier
59032520514754a2beb335ffd02d0461671bb249
ee467f7a7b8432d23ed7bf299a30742ebf969f86
refs/heads/master
2020-12-10T03:07:49.059802
2020-01-14T15:15:57
2020-01-14T15:15:57
233,489,535
0
0
null
null
null
null
UTF-8
Python
false
false
10,867
py
# -*- coding: utf-8 -*- """test Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1GixyCfk27jb3GlyRfsyFVX3f3rhPp0IE """ import random import os import time import math import torchvision import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils import torch from torch.utils.data import DataLoader,Dataset from torch.autograd import Variable import torch.nn as nn from torch import optim import torch.nn.functional as F from PIL import Image import PIL.ImageOps import numpy as np import matplotlib.pyplot as plt class GargLeNet(nn.Module): __constants__ = ['transform_input'] def __init__(self, num_classes= 36, transform_input=False, init_weights=True, blocks=None): super(GargLeNet, self).__init__() if blocks is None: blocks = [BasicConv2d, Inception] assert len(blocks) == 2 conv_block = blocks[0] inception_block = blocks[1] self.transform_input = transform_input # Stem self.conv1 = conv_block(3, 64, kernel_size=5, stride=1, padding=0) self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True) #in_channels, ch1x1, ch3x3red_a, ch3x3_a, ch3x3red_b, ch3x3_b1, ch3x3_b2, ch3x3_pool_proj # Inception #1 self.inception2a1 = inception_block(64, 32, 24, 32, 32, 48, 48, 16) self.inception2b1 = inception_block(128, 64, 48, 64, 64, 96, 96, 64) self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True) # Inception #2 self.inception3b1 = inception_block(288, 64, 48, 64, 64, 96, 96, 32) self.inception3b2 = inception_block(256, 64, 48, 64, 64, 96, 96, 32) self.inception3b3 = inception_block(256, 64, 48, 64, 64, 96, 96, 32) self.inception3b4 = inception_block(256, 64, 48, 64, 64, 96, 96, 32) self.inception3c1 = inception_block(256, 128, 96, 128, 128, 192, 192, 64) self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True) # Inception #3 self.inception4c1 = inception_block(512, 128, 96, 128, 128, 192, 192, 64) self.inception4c2 = inception_block(512, 128, 96, 128, 128, 192, 192, 64) # AvgPool, Dropout, FC self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(0.4) self.fc = nn.Linear(512, num_classes) if init_weights: self._initialize_weights() def _initialize_weights(self): # 아직 이해는 다 못했지만 일단 사용 가능한것 같아 냅둠. for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): import scipy.stats as stats X = stats.truncnorm(-2, 2, scale=0.01) values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) values = values.view(m.weight.size()) with torch.no_grad(): m.weight.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _transform_input(self, x): # 이것도 아직 이해를 못했는데, 우리에게 맞게 변형하거나 삭제. # type: (Tensor) -> Tensor if self.transform_input: x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5 x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5 x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5 x = torch.cat((x_ch0, x_ch1, x_ch2), 1) return x def _forward(self, x): # Stem (1) x = self.conv1(x) x = self.maxpool1(x) # Inception #1 (2) x = self.inception2a1(x) x = self.inception2b1(x) x = self.maxpool2(x) # Inception #2 (3) x = self.inception3b1(x) x = self.inception3b2(x) x = self.inception3b3(x) x = self.inception3b4(x) x = self.inception3c1(x) x = self.maxpool3(x) # Inception #3 (4) x = self.inception4c1(x) x = self.inception4c2(x) # AvgPool, Dropout, and FC x = self.avgpool(x) x = torch.flatten(x, 1) # N x 1024 x = self.dropout(x) x = self.fc(x) # N x 1000 (num_classes) return x def forward(self, x): x = self._transform_input(x) x = self._forward(x) return x # Inception module은 논문에서와 같이 변형. (Inception v1 -> factorized ver.) class Inception(nn.Module): __constants__ = ['branch2', 'branch3', 'branch4'] def __init__(self, in_channels, ch1x1, ch3x3red_a, ch3x3_a, ch3x3red_b, ch3x3_b1, ch3x3_b2, ch3x3_pool_proj, conv_block=None): super(Inception, self).__init__() if conv_block is None: conv_block = BasicConv2d self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1) self.branch2 = nn.Sequential( conv_block(in_channels, ch3x3red_a, kernel_size=1), conv_block(ch3x3red_a, ch3x3_a, kernel_size=3, padding=1) ) self.branch3 = nn.Sequential( conv_block(in_channels, ch3x3red_b, kernel_size=1), conv_block(ch3x3red_b, ch3x3_b1, kernel_size=3, padding=1), conv_block(ch3x3_b1, ch3x3_b2, kernel_size=3, padding=1) ) self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True), conv_block(in_channels, ch3x3_pool_proj, kernel_size=1) ) def _forward(self, x): branch1 = self.branch1(x) branch2 = self.branch2(x) branch3 = self.branch3(x) branch4 = self.branch4(x) outputs = [branch1, branch2, branch3, branch4] return outputs def forward(self, x): outputs = self._forward(x) return torch.cat(outputs, 1) class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) x = self.bn(x) return F.relu(x, inplace=True) class FinalDataset(Dataset): def __init__(self, root_dir, train = True, transform = None, augment = None): self.folder_dataset = dset.ImageFolder(root = root_dir) self.train = train self.transform = transform self.augment = augment def __getitem__(self,index): img_dir, label = self.folder_dataset.imgs[index] #label 은 폴더 index로 리턴 img = Image.open(img_dir).convert('RGB') # convert to grayscale if self.train is True and self.augment is not None: augment = np.random.choice(self.augment, 1).tolist() augment += self.transform # print(len(augment)) else: augment = self.transform if self.transform is not None: img = transforms.Compose(augment)(img) return img, label def __len__(self): return len(self.folder_dataset.imgs) def train(model, train_loader, optimizer, criterion, epoch, time_start): model.train() percent_prev = -1 for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) # print(output.shape, target.shape) loss = criterion(output, target) loss.backward() optimizer.step() #if batch_idx % log_interval == 0: percent_curr = 100 * batch_idx // len(train_loader) if percent_curr > percent_prev: percent_prev = percent_curr print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f},\tTime duration: {}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item(), timeSince(time_start))) #torch.save(model.state_dict(),"drive/My Drive/public/results/mnist_cnn.pt") return loss.item() def test(model, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) # sum up batch loss test_loss += F.cross_entropy(output, target, reduction = 'sum').item() # get the index of the max log-probability pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() print("output, target = ") print(pred, target) test_loss /= len(test_loader.dataset) print('\nTest: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) return test_loss # From Prof's CNN_MNIST practice code def timeSince(since): now = time.time() s = now - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) train_dir = "./train" valid_dir = "./val" output_dir = "./output" try: os.makedirs(output_dir + "/output", exist_ok = True) except OSError as e: if os.path.isdir('.output'): pass else: print('\nPlease make a directory ./output\n', e) option = {'train_dir': train_dir, 'valid_dir': valid_dir, 'output' : output_dir, 'input_size': (224,224), 'batch': 16, 'epoch': 10, 'lr': 0.001, 'momentum': 0.9, 'log_interval': 2, 'valid_interval': 2, 'n_cpu': 100, 'augment': True, 'ver': 0.2} use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': option['n_cpu'], 'pin_memory': True} if use_cuda else {} print('option:', option) print('use cuda:', use_cuda) if __name__ == '__main__': transform = [transforms.Resize(option['input_size']), transforms.ToTensor()] valid_set = FinalDataset(root_dir = option['valid_dir'], train = False, transform = transform) valid_loader = DataLoader(valid_set, shuffle = False, batch_size = 100, # test batch: 100 **kwargs) model = GargLeNet().to(device) model.load_state_dict(torch.load(output_dir+"/gargle0.72_20.pth"), strict = False) test_loss = test(model, valid_loader)
[ "nj.ssseo@gmail.com" ]
nj.ssseo@gmail.com
b3e8ae7b18054584b3712e746015b1abd10e5a7a
d1c637544d893247a4731d8638b7b13aebcc3f4e
/youtubeScrape.py
26be9c5c00b6444c486cb178a0370923bce39666
[]
no_license
jayachandra2128/Youtube-comments-scraper
17c3b8119531166c122974ee6d1d8f921347fef6
ecf88c6a89edf097c2a4f310cf73d44267f27693
refs/heads/master
2021-09-25T02:16:51.616218
2018-10-17T00:07:59
2018-10-17T00:07:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,455
py
import simplejson as json import urllib2 from urllib import urlopen import sys import time import csv import os import io os.chdir(r'C:\Users\jc\Desktop') csvFile =open('test.csv',"w") #csvFile =open('test.tsv',"w") #writer = csv.writer(csvFile,delimiter=',') #writer.writerow('Comments') csvFile.write("comments\n") STAGGER_TIME = 1 # open the url and the screen name # (The screen name is the screen name of the user for whom to return results for) url = "https://www.googleapis.com/youtube/v3/commentThreads?key=AIzaSyCYkTUjKgFGcKDnkNQMgSBbb4obnqIzUEM&textFormat=plainText&part=snippet&videoId=Ye8mB6VsUHw&maxResults=50" # this takes a python object and dumps it to a string which is a JSON # representation of that object url1=urlopen(url) #data = json.load(urllib2.urlopen(url)) result = json.load(url1) # print the result itemList= result.get("items") length=len(itemList) for i in range(0,length): results= (result["items"][i].get('snippet').get("topLevelComment").get('snippet').get("textDisplay")).encode("utf-8") print results results=results.replace(",", "") #print (result["items"][i].get('snippet').get("topLevelComment").get('snippet').get("textDisplay")).encode("utf-8") #writer.writerow((result["items"][i].get('snippet').get("topLevelComment").get('snippet').get("textDisplay")).encode("utf-8")) csvFile.write(results) csvFile.write('\n') time.sleep(STAGGER_TIME) csvFile.close()
[ "noreply@github.com" ]
jayachandra2128.noreply@github.com
ca882b27134e8b7e97382771cc03bef0fcd2a3fe
242f1dafae18d3c597b51067e2a8622c600d6df2
/src/1300-1399/1344.angle.clock.py
8f16b6ea976d0a6986c2e132b2eb2b95f928c1e3
[]
no_license
gyang274/leetcode
a873adaa083270eb05ddcdd3db225025533e0dfe
6043134736452a6f4704b62857d0aed2e9571164
refs/heads/master
2021-08-07T15:15:01.885679
2020-12-22T20:57:19
2020-12-22T20:57:19
233,179,192
1
0
null
null
null
null
UTF-8
Python
false
false
429
py
class Solution: def angleClock(self, hour: int, minutes: int) -> float: h, m = hour % 12, minutes % 60 hA, mA = h * 30 + m / 60 * 30, m * 6 dA = abs(hA - mA) return min(dA, 360 - dA) if __name__ == '__main__': solver = Solution() cases = [ (2, 58), ] rslts = [solver.angleClock(hour, minutes) for hour, minutes in cases] for cs, rs in zip(cases, rslts): print(f"case: {cs} | solution: {rs}")
[ "gyang274@gmail.com" ]
gyang274@gmail.com
00e86c23f7f35dd581b7ede27815d2dc38061604
f149dae096359ff81715fa3cd856d9dba81e1e52
/nakey/core/admin.py
2e010798ddb2271d9b90bcd08a83b6cb1a398042
[]
no_license
aibaq/nakey
2cfe65be10f3dfc146ee811ae57de988b84e7e01
c93ff72ae5784d9145c36c46abf43edb37906f3b
refs/heads/master
2022-12-10T21:41:42.561790
2019-10-13T16:13:38
2019-10-13T16:13:38
158,396,548
1
0
null
2022-11-22T03:13:58
2018-11-20T13:48:03
JavaScript
UTF-8
Python
false
false
1,150
py
from django.contrib import admin from mptt.admin import MPTTModelAdmin from .models import * @admin.register(Banner) class BannerAdmin(admin.ModelAdmin): list_display = ('id', 'title', 'image') @admin.register(Category) class CategoryAdmin(MPTTModelAdmin): list_display = ('id', 'name') @admin.register(Color) class ColorAdmin(admin.ModelAdmin): list_display = ('id', 'name') @admin.register(Size) class SizeAdmin(admin.ModelAdmin): list_display = ('id', 'name') @admin.register(Manufacture) class ManufactureAdmin(admin.ModelAdmin): list_display = ('id', 'name') class ItemImageAdmin(admin.StackedInline): model = ItemImage @admin.register(Item) class ItemAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'price', 'category') search_fields = ('name',) inlines = (ItemImageAdmin,) class RequestItemAdmin(admin.StackedInline): model = RequestItem readonly_fields = ('item', 'count') @admin.register(Request) class RequestAdmin(admin.ModelAdmin): list_display = ('id', 'full_name', 'phone', 'address', 'email') search_fields = ('full_name',) inlines = (RequestItemAdmin,)
[ "aiba.prenov@gmail.com" ]
aiba.prenov@gmail.com
c088e5173d99e3899018d41fce0902bfd0be8dab
06c1179ff523f2de0b2caf68cc1f93b1012ced77
/bot/cogs/polls.py
34f8f43458c4e010df7a29845fc47d69488447a4
[]
no_license
jpark9013/Discord-Bot
6ab6bae3070ff9542dd862fc7fc2e732c3f8a3b1
290c638cf46379219ee5ac9426bf0ee98ee79776
refs/heads/master
2022-12-06T17:53:32.814677
2020-08-28T01:25:01
2020-08-28T01:25:01
281,536,004
0
0
null
null
null
null
UTF-8
Python
false
false
6,342
py
import operator import time import typing from datetime import datetime import discord from discord.ext import commands, tasks from utils.format import send_embed class Polls(commands.Cog, name="Polls"): def __init__(self, bot): self.bot = bot global db db = self.bot.db self.EMOJIS = ( "1️⃣", "2️⃣", "3️⃣", "4️⃣", "5️⃣", "6️⃣", "7️⃣", "8️⃣", "9️⃣", "🔟" ) self.check_polls.start() @commands.group() async def poll(self, ctx): """The base poll command. Doesn't do anything when invoked.""" @commands.cooldown(rate=1, per=5, type=commands.BucketType.user) @poll.command(aliases=["add"]) @commands.has_permissions(administrator=True) @commands.bot_has_permissions(add_reactions=True) @commands.guild_only() async def create(self, ctx, channel: typing.Optional[discord.TextChannel], minutes: float, title: str, *options): """Create a poll. Make the options space separated, with quotes if spaces within the options themselves, such as ``do thing 2`` are needed.""" if len(options) > 10 or len(options) < 1: return await send_embed(ctx, "Invalid number of options; must be between one and ten.", negative=True) if minutes < 0.5 or minutes > 604800: return await send_embed(ctx, "Invalid length of time given. Must be between 0.5 and 604800 minutes.", negative=True) cursor = await db.execute("Select count(GuildID) from Polls where GuildID = ?", (ctx.guild.id,)) result = await cursor.fetchone() if result[0] == 50: return await send_embed(ctx, "Your guild already has the maximum number of available of polls at 50.", negative=True) if not channel: channel = ctx.channel then = time.time() + minutes * 60 embed = discord.Embed( colour=discord.Colour.orange(), title=title ) embed.set_author(name="React to answer the poll with the corresponding number.") embed.set_footer(text=f"Ends at {datetime.utcfromtimestamp(then).strftime('%m/%d/%Y, %H:%M:%S')}") embed.description = "\n\n".join([f"{i}. {v}" for i, v in enumerate(options, start=1)]) msg = await channel.send(embed=embed) to_insert = (ctx.guild.id, channel.id, msg.id, len(options), then) + tuple([i for i in options]) \ + tuple([None for i in range(10 - len(options))]) await db.execute("Insert into Polls values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", to_insert) await db.commit() for i in range(len(options)): await msg.add_reaction(self.EMOJIS[i]) await send_embed(ctx, "Created poll.") @commands.cooldown(rate=1, per=5, type=commands.BucketType.user) @poll.command(aliases=["stop"]) @commands.has_permissions(administrator=True) @commands.guild_only() async def end(self, ctx, msg: discord.Message): """End a poll early. Give Message ID as the parameter.""" if msg.guild != ctx.guild: return await send_embed(ctx, "You do not have permission to do that.", negative=True) cursor = await db.execute("Select count(*), TopNumber, " "Option1, Option2, Option3, Option4, Option5, Option6, Option7, Option8, Option9, " "Option10 " "from Polls where MessageID = ?", (msg.id,)) result = await cursor.fetchone() if not result[0]: return await send_embed(ctx, "The specified poll does not exist.", negative=True) old_embed = msg.embeds[0] emojis = self.EMOJIS[:result[1]] options = [v for i, v in enumerate(result[2:12]) if i <= result[1]] reactions = [i.count for i in msg.reactions if str(i) in emojis] total = sum(reactions) if total == 0: await db.execute("Delete from Polls where MessageID = ?", (msg.id,)) await db.commit() embed = discord.Embed( colour=discord.Colour.red(), title=f"Poll has ended (No Votes)\n" f"(Original title: {old_embed.title})", description=old_embed.description ) embed.set_footer(text=f"Ended at {datetime.now().strftime('%m/%d/%Y, %H:%M:%S')}") return await send_embed(ctx, f"No votes for the poll with message ID {msg.id}.", negative=True) result_dict = {i + 1: reactions[i] for i in range(result[1])} result_dict = dict(sorted(result_dict.items(), key=operator.itemgetter(1), reverse=True)) results = [f"``{options[i - 1]}`` with **{v}** votes " f"({round(v/total*100, 2)}% of the total)" for i, v in result_dict.items()] description = ["Results:"] + [f"{i}. {v}" for i, v in enumerate(results, start=1)] embed = discord.Embed( colour=discord.Colour.green(), title=f"Poll has ended\n" f"(Original title: {old_embed.title})", description="\n\n".join(description) ) embed.set_footer(text=f"Ended at {datetime.now().strftime('%m/%d/%Y, %H:%M:%S')}") await msg.edit(embed=embed) await db.execute("Delete from Polls where MessageID = ?", (msg.id,)) await db.commit() await send_embed(ctx, "Ended poll.") @tasks.loop(seconds=30) async def check_polls(self): cursor = await db.execute("Select GuildID, ChannelID, MessageID from Polls where TimeEnding <= ?", (time.time(),)) result = await cursor.fetchall() for guild_id, channel_id, message_id in result: try: msg = await self.bot.get_guild(guild_id).get_channel(channel_id).fetch_message(message_id) cmd = self.bot.get_command("poll end") ctx = await self.bot.get_context(msg) await cmd(ctx, msg) except Exception as e: print(e) def setup(bot): bot.add_cog(Polls(bot))
[ "jpark9013@gmail.com" ]
jpark9013@gmail.com
f3f1d4c14482ef7424b06e6354575ee7e493a375
dfb55278f50b2e3fd040a62d40cedf225072a2f5
/flask1.py
e27863fcbd061ab7f9fc8053c7c6ca19625df00a
[]
no_license
2ahmedabdullah/first_repo
26ab335d493a166da6c95e582e1a3498cc696d00
0bd93849f834a8b9682de7fde1541c9ff6e84c4f
refs/heads/main
2023-07-29T14:44:36.837253
2021-09-14T11:33:49
2021-09-14T11:33:49
406,337,130
0
0
null
null
null
null
UTF-8
Python
false
false
357
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from flask import Flask, request app = Flask(__name__) @app.route('/hello_world', methods=['GET', 'POST']) def add(): #a = request.form["a"] #b = request.form["b"] #c = request.form["c"] return "Hello World!"#str( int(a) + int(b) + int(c) ) if __name__=='__main__': app.run(port=7000)
[ "noreply@github.com" ]
2ahmedabdullah.noreply@github.com
66ebb027ebb9fcf1674157a1fd4328b8c803a1b6
60aa3bcf5ace0282210685e74ee8ed31debe1769
/base/lib/encodings/cp1253.py
e32862ea0e2b0a2d349861903d7635099bf924b3
[]
no_license
TheBreadGuy/sims4-ai-engine
42afc79b8c02527353cc084117a4b8da900ebdb4
865212e841c716dc4364e0dba286f02af8d716e8
refs/heads/master
2023-03-16T00:57:45.672706
2016-05-01T17:26:01
2016-05-01T17:26:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,776
py
import codecs class Codec(codecs.Codec): __qualname__ = 'Codec' def encode(self, input, errors='strict'): return codecs.charmap_encode(input, errors, encoding_table) def decode(self, input, errors='strict'): return codecs.charmap_decode(input, errors, decoding_table) class IncrementalEncoder(codecs.IncrementalEncoder): __qualname__ = 'IncrementalEncoder' def encode(self, input, final=False): return codecs.charmap_encode(input, self.errors, encoding_table)[0] class IncrementalDecoder(codecs.IncrementalDecoder): __qualname__ = 'IncrementalDecoder' def decode(self, input, final=False): return codecs.charmap_decode(input, self.errors, decoding_table)[0] class StreamWriter(Codec, codecs.StreamWriter): __qualname__ = 'StreamWriter' class StreamReader(Codec, codecs.StreamReader): __qualname__ = 'StreamReader' def getregentry(): return codecs.CodecInfo(name='cp1253', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter) decoding_table = '\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\x7f€\ufffe‚ƒ„…†‡\ufffe‰\ufffe‹\ufffe\ufffe\ufffe\ufffe\ufffe‘’“”•–—\ufffe™\ufffe›\ufffe\ufffe\ufffe\ufffe\xa0΅Ά£¤¥¦§¨©\ufffe«¬\xad®―°±²³΄µ¶·ΈΉΊ»Ό½ΎΏΐΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡ\ufffeΣΤΥΦΧΨΩΪΫάέήίΰαβγδεζηθικλμνξοπρςστυφχψωϊϋόύώ\ufffe' encoding_table = codecs.charmap_build(decoding_table)
[ "jp@bellgeorge.com" ]
jp@bellgeorge.com
82a31547b7df987e69677a23ad29f56ad9a5ccbe
41c5f7da28b87a3034754254d21791b322e819d8
/test/test_json_analysis_result_sub_group_all_of.py
e181c4639ce155f9ebebe587db93934f73ee12ae
[]
no_license
MADANA-IO/madana-apiclient-python
16cb3eb807897903df2a885a94a2c02fc405818a
40dc21ab43d9565ac3dff86d7270093cce112753
refs/heads/master
2023-03-08T05:02:32.616469
2021-02-11T10:17:30
2021-02-11T10:17:30
287,797,297
1
0
null
null
null
null
UTF-8
Python
false
false
2,151
py
# coding: utf-8 """ madana-api <h1>API Quickstart Guide</h1> <p>This documentation contains a Quickstart Guide, a few <a href=\"downloads.html\">sample clients</a> for download and information about the available <a href=\"resources.html\">endpoints</a> and <a href=\"data.html\">DataTypes</a> </p> <p>The <a target=\"_blank\" href=\"http://madana-explorer-staging.eu-central-1.elasticbeanstalk.com/login\"> MADANA Explorer</a> can be used to verify the interactions with the API</p> <p>Internal use only. For more information visit <a href=\"https://www.madana.io\">www.madana.io</a></p> <br> <br> # noqa: E501 The version of the OpenAPI document: 0.4.12 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import madana_sampleclient_python from madana_sampleclient_python.models.json_analysis_result_sub_group_all_of import JsonAnalysisResultSubGroupAllOf # noqa: E501 from madana_sampleclient_python.rest import ApiException class TestJsonAnalysisResultSubGroupAllOf(unittest.TestCase): """JsonAnalysisResultSubGroupAllOf unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test JsonAnalysisResultSubGroupAllOf include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = madana_sampleclient_python.models.json_analysis_result_sub_group_all_of.JsonAnalysisResultSubGroupAllOf() # noqa: E501 if include_optional : return JsonAnalysisResultSubGroupAllOf( filter = '0' ) else : return JsonAnalysisResultSubGroupAllOf( ) def testJsonAnalysisResultSubGroupAllOf(self): """Test JsonAnalysisResultSubGroupAllOf""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
[ "dev@madana.io" ]
dev@madana.io
c34ebf8df587e82c4940fe9afa6c7a9bfb778caf
8d3d49f028960bb018adac71172847eb21887810
/ruffus/test/test_branching_dependencies.py
44a2bcdd246f96933c56a67f8a3caa307eca064b
[ "MIT" ]
permissive
msGenDev/ruffus
534c2c834d64078471e28df3cc45f96edb549d57
8f2e3e34b8eb013bd38ca8fd2cab6af94dd38d31
refs/heads/master
2021-01-18T09:15:47.035339
2014-07-25T13:36:16
2014-07-25T13:36:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,581
py
#!/usr/bin/env python from __future__ import print_function """ branching.py test branching dependencies """ #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # options #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 from optparse import OptionParser import sys, os import os.path try: import StringIO as io except: import io as io import re # add self to search path for testing exe_path = os.path.split(os.path.abspath(sys.argv[0]))[0] sys.path.insert(0,os.path.abspath(os.path.join(exe_path,"..", ".."))) if __name__ == '__main__': module_name = os.path.split(sys.argv[0])[1] module_name = os.path.splitext(module_name)[0]; else: module_name = __name__ parser = OptionParser(version="%prog 1.0") parser.add_option("-D", "--debug", dest="debug", action="store_true", default=False, help="Make sure output is correct and clean up.") parser.add_option("-t", "--target_tasks", dest="target_tasks", action="append", default = list(), metavar="JOBNAME", type="string", help="Target task(s) of pipeline.") parser.add_option("-f", "--forced_tasks", dest="forced_tasks", action="append", default = list(), metavar="JOBNAME", type="string", help="Pipeline task(s) which will be included even if they are up to date.") parser.add_option("-j", "--jobs", dest="jobs", default=1, metavar="jobs", type="int", help="Specifies the number of jobs (commands) to run simultaneously.") parser.add_option("-v", "--verbose", dest = "verbose", action="count", default=0, help="Do not echo to shell but only print to log.") parser.add_option("--touch_files_only", dest = "touch_files_only", action="store_true", default=False, help="Do not run pipeline. Only touch.") parser.add_option("-d", "--dependency", dest="dependency_file", #default="simple.svg", metavar="FILE", type="string", help="Print a dependency graph of the pipeline that would be executed " "to FILE, but do not execute it.") parser.add_option("-F", "--dependency_graph_format", dest="dependency_graph_format", metavar="FORMAT", type="string", default = 'svg', help="format of dependency graph file. Can be 'ps' (PostScript), "+ "'svg' 'svgz' (Structured Vector Graphics), " + "'png' 'gif' (bitmap graphics) etc ") parser.add_option("-n", "--just_print", dest="just_print", action="store_true", default=False, help="Print a description of the jobs that would be executed, " "but do not execute them.") parser.add_option("-M", "--minimal_rebuild_mode", dest="minimal_rebuild_mode", action="store_true", default=False, help="Rebuild a minimum of tasks necessary for the target. " "Ignore upstream out of date tasks if intervening tasks are fine.") parser.add_option("-K", "--no_key_legend_in_graph", dest="no_key_legend_in_graph", action="store_true", default=False, help="Do not print out legend and key for dependency graph.") parser.add_option("-H", "--draw_graph_horizontally", dest="draw_horizontally", action="store_true", default=False, help="Draw horizontal dependency graph.") parameters = [ ] #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # imports #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 import time import re import operator import sys,os from collections import defaultdict import random sys.path.append(os.path.abspath(os.path.join(exe_path,"..", ".."))) from ruffus import * import ruffus # use simplejson in place of json for python < 2.6 try: import json except ImportError: import simplejson json = simplejson #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # Functions #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 def test_job_io(infiles, outfiles, extra_params): """ cat input files content to output files after writing out job parameters """ # dump parameters params = (infiles, outfiles) + extra_params if isinstance(infiles, str): infiles = [infiles] elif infiles == None: infiles = [] if isinstance(outfiles, str): outfiles = [outfiles] output_text = list() for f in infiles: output_text.append(open(f).read()) output_text = "".join(sorted(output_text)) output_text += json.dumps(infiles) + " -> " + json.dumps(outfiles) + "\n" for f in outfiles: open(f, "w").write(output_text) #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # Main logic #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # get help string f =io.StringIO() parser.print_help(f) helpstr = f.getvalue() (options, remaining_args) = parser.parse_args() #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # Tasks #88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888 # # 1 -> 2 -> 3 -> # -> 4 -> # 5 -> 6 # tempdir = "temp_branching_dir/" # # task1 # @originate([tempdir + d for d in ('a.1', 'b.1', 'c.1')]) @follows(mkdir(tempdir)) @posttask(lambda: open(tempdir + "task.done", "a").write("Task 1 Done\n")) def task1(outfile, *extra_params): """ First task """ open(tempdir + "jobs.start", "a").write('job = %s\n' % json.dumps([None, outfile])) test_job_io(None, outfile, extra_params) open(tempdir + "jobs.finish", "a").write('job = %s\n' % json.dumps([None, outfile])) # # task2 # @posttask(lambda: open(tempdir + "task.done", "a").write("Task 2 Done\n")) @transform(task1, suffix(".1"), ".2") def task2(infiles, outfiles, *extra_params): """ Second task """ open(tempdir + "jobs.start", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) test_job_io(infiles, outfiles, extra_params) open(tempdir + "jobs.finish", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) # # task3 # @transform(task2, regex('(.*).2'), inputs([r"\1.2", tempdir + "a.1"]), r'\1.3') @posttask(lambda: open(tempdir + "task.done", "a").write("Task 3 Done\n")) def task3(infiles, outfiles, *extra_params): """ Third task """ open(tempdir + "jobs.start", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) test_job_io(infiles, outfiles, extra_params) open(tempdir + "jobs.finish", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) # # task4 # @jobs_limit(1) @transform(tempdir + "*.1", suffix(".1"), ".4") @follows(task1) @posttask(lambda: open(tempdir + "task.done", "a").write("Task 4 Done\n")) def task4(infiles, outfiles, *extra_params): """ Fourth task is extra slow """ open(tempdir + "jobs.start", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) time.sleep(0.1) test_job_io(infiles, outfiles, extra_params) open(tempdir + "jobs.finish", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) # # task5 # @files(None, tempdir + 'a.5') @follows(mkdir(tempdir)) @posttask(lambda: open(tempdir + "task.done", "a").write("Task 5 Done\n")) def task5(infiles, outfiles, *extra_params): """ Fifth task is extra slow """ open(tempdir + "jobs.start", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) time.sleep(1) test_job_io(infiles, outfiles, extra_params) open(tempdir + "jobs.finish", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) # # task6 # #@files([[[tempdir + d for d in 'a.3', 'b.3', 'c.3', 'a.4', 'b.4', 'c.4', 'a.5'], tempdir + 'final.6']]) @merge([task3, task4, task5], tempdir + "final.6") @follows(task3, task4, task5, ) @posttask(lambda: open(tempdir + "task.done", "a").write("Task 6 Done\n")) def task6(infiles, outfiles, *extra_params): """ final task """ open(tempdir + "jobs.start", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) test_job_io(infiles, outfiles, extra_params) open(tempdir + "jobs.finish", "a").write('job = %s\n' % json.dumps([infiles, outfiles])) def check_job_order_correct(filename): """ 1 -> 2 -> 3 -> -> 4 -> 5 -> 6 """ precedence_rules = [[1, 2], [2, 3], [1, 4], [5, 6], [3, 6], [4, 6]] index_re = re.compile(r'.*\.([0-9])["\]\n]*$') job_indices = defaultdict(list) for linenum, l in enumerate(open(filename)): m = index_re.search(l) if not m: raise "Non-matching line in [%s]" % filename job_indices[int(m.group(1))].append(linenum) for job_index in job_indices: job_indices[job_index].sort() for before, after in precedence_rules: if before not in job_indices or after not in job_indices: continue if job_indices[before][-1] >= job_indices[after][0]: raise Exception("Precedence violated for job %d [line %d] and job %d [line %d] of [%s]" % ( before, job_indices[before][-1], after, job_indices[after][0], filename)) def check_final_output_correct(after_touch_files = False): """ check if the final output in final.6 is as expected """ expected_output = \ """ ["DIR/a.1"] -> ["DIR/a.2"] ["DIR/a.1"] -> ["DIR/a.4"] ["DIR/a.2", "DIR/a.1"] -> ["DIR/a.3"] ["DIR/a.3", "DIR/b.3", "DIR/c.3", "DIR/a.4", "DIR/b.4", "DIR/c.4", "DIR/a.5"] -> ["DIR/final.6"] ["DIR/b.1"] -> ["DIR/b.2"] ["DIR/b.1"] -> ["DIR/b.4"] ["DIR/b.2", "DIR/a.1"] -> ["DIR/b.3"] ["DIR/c.1"] -> ["DIR/c.2"] ["DIR/c.1"] -> ["DIR/c.4"] ["DIR/c.2", "DIR/a.1"] -> ["DIR/c.3"] [] -> ["DIR/a.1"] [] -> ["DIR/a.1"] [] -> ["DIR/a.1"] [] -> ["DIR/a.1"] [] -> ["DIR/a.1"] [] -> ["DIR/a.5"] [] -> ["DIR/b.1"] [] -> ["DIR/b.1"] [] -> ["DIR/c.1"] [] -> ["DIR/c.1"]""" expected_output = expected_output.replace(" ", "").replace("DIR/", tempdir).split("\n") orig_expected_output = expected_output if after_touch_files: expected_output.pop(-3) final_6_contents = sorted([l.rstrip() for l in open(tempdir + "final.6", "r").readlines()]) if final_6_contents != expected_output: print("Actual:", file=sys.stderr) for ll in final_6_contents: print(ll, file=sys.stderr) print("_" * 80, file=sys.stderr) print("Expected:", file=sys.stderr) for ll in orig_expected_output: print(ll, file=sys.stderr) print("_" * 80, file=sys.stderr) for i, (l1, l2) in enumerate(zip(final_6_contents, expected_output)): if l1 != l2: sys.stderr.write("%d\nActual:\n >%s<\nExpected:\n >%s<\n" % (i, l1, l2)) raise Exception ("Final.6 output is not as expected\n") # # Necessary to protect the "entry point" of the program under windows. # see: http://docs.python.org/library/multiprocessing.html#multiprocessing-programming # if __name__ == '__main__': print("Python version %s" % sys.version, file=sys.stderr) print("Ruffus version %s" % ruffus.__version__, file=sys.stderr) if options.just_print: pipeline_printout(sys.stdout, options.target_tasks, options.forced_tasks, verbose=options.verbose) elif options.dependency_file: pipeline_printout_graph ( open(options.dependency_file, "w"), options.dependency_graph_format, options.target_tasks, options.forced_tasks, draw_vertically = not options.draw_horizontally, no_key_legend = options.no_key_legend_in_graph) elif options.debug: import os os.system("rm -rf %s" % tempdir) pipeline_run(options.target_tasks, options.forced_tasks, multiprocess = options.jobs, logger = stderr_logger if options.verbose else black_hole_logger, verbose = options.verbose) check_final_output_correct() check_job_order_correct(tempdir + "jobs.start") check_job_order_correct(tempdir + "jobs.finish") # # check touch file works, running the pipeline leaving an empty file where b.1 # would be # if options.touch_files_only: # # remove these because the precedence for the two runs must not be mixed together # os.unlink(os.path.join(tempdir, "jobs.start") ) os.unlink(os.path.join(tempdir, "jobs.finish") ) # # remove b.1 and touch # if options.verbose: print("\n\nNow just delete b.1 for task2...\n") os.unlink(os.path.join(tempdir, "b.1")) pipeline_run([task2], options.forced_tasks, multiprocess = options.jobs, logger = stderr_logger if options.verbose else black_hole_logger, gnu_make_maximal_rebuild_mode = not options.minimal_rebuild_mode, verbose = options.verbose, touch_files_only = options.touch_files_only) # # Now wait for the empty b.1 to show up in the output # if options.verbose: print("\n\nRun normally...\n") pipeline_run(options.target_tasks, options.forced_tasks, multiprocess = options.jobs, logger = stderr_logger if options.verbose else black_hole_logger, gnu_make_maximal_rebuild_mode = not options.minimal_rebuild_mode, verbose = options.verbose) check_final_output_correct(options.touch_files_only) check_job_order_correct(tempdir + "jobs.start") check_job_order_correct(tempdir + "jobs.finish") print("OK") import shutil shutil.rmtree(tempdir) else: pipeline_run(options.target_tasks, options.forced_tasks, multiprocess = options.jobs, logger = stderr_logger if options.verbose else black_hole_logger, gnu_make_maximal_rebuild_mode = not options.minimal_rebuild_mode, verbose = options.verbose, touch_files_only = options.touch_files_only) print("OK")
[ "src@llew.org.uk" ]
src@llew.org.uk
61ba1bf8f484efe8d1927186299780006459dc35
d8e839c8b630a6f4bd67cdbf3e8624178451719f
/testtask/constants.py
b7f029bb90483bd3249d3e1e988d6e956502bf44
[]
no_license
andy071001/evaluate
ea5535224029caffbbd7cd66462790cb16635f1d
0f94288e2b15864c9b9f21027c28d74011067586
refs/heads/master
2021-01-01T05:48:16.399143
2013-09-26T02:25:10
2013-09-26T02:25:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
#coding=utf8 VERIFY_CODE_LENGTH = 4 online_makepolo_url = "http://192.168.0.211/spc_new.php?search_flag=0&q=" strategy_makepolo_url = "http://caigou.makepolo.com/spc_new.php?search_flag=0&q=" alibaba_url = "http://s.1688.com/selloffer/offer_search.htm?n=y&keywords=" CON_REQ = 5 QUERY_WORD_PER_PAGE = 10 QUERY_TASK_PER_PAGE = 10 SHEET_NAME_DICT = [u'相关性评估', u'数据质量评估', u'策略GSB评估'] STRATEGY_RATING_TEXT = [u'左边好很多', u'左边好一些', u'两边差不多', u'右边好一些', u'右边好很多']
[ "liuwenbin_2011@163.com" ]
liuwenbin_2011@163.com
a3107b0c1a2da9aed5839d1306f79a2aa6a91e03
0d2f636592dc12458254d793f342857298c26f12
/vowel.py
d1da799f259f873b5637804df56c23b3325a671c
[]
no_license
chenpc1214/test
c6b545dbe13e672f11c58464405e024394fc755b
8610320686c499be2f5fa36ba9f11935aa6d657b
refs/heads/master
2022-12-13T22:44:41.256315
2020-09-08T16:25:49
2020-09-08T16:25:49
255,796,035
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
vowel = ['a', 'e', 'i', 'o', 'u'] word= "milliway" for letter in word: if letter in vowel: print(letter)
[ "kkbuger1523@gmail.com" ]
kkbuger1523@gmail.com
5a44841660257beadc2955a6caffe9c38d935a58
313cbdec2661f507409389a4d3f5a3bdd7248658
/end-term design/server.py
7a0ae5b366096e6d993b8a41b3c696c62d250725
[]
no_license
huangjj27/web2.0_experiments
673853e49d857bd1bbcd7f3d3bb2e3967494853e
a8151ca9ff1569865f1103aff45821d311206950
refs/heads/master
2021-01-18T13:21:44.627631
2016-07-01T13:34:36
2016-07-01T13:34:36
25,640,762
0
0
null
null
null
null
UTF-8
Python
false
false
8,103
py
#! encoding=utf-8 import tornado.httpserver import tornado.ioloop import tornado.options import tornado.web import os.path import re import time from tornado.options import define, options define("port", default=8888, help="run on the given port", type=int) name_pattern = re.compile(r"[a-zA-Z0-9]{6,12}") password_pattern = re.compile(r"[A-Z][a-zA-Z0-9]{5,11}") #file input-output functions #operations on userData def get_Users(): users_file = open("static/data/userData.txt") users_list = users_file.read().strip().split('\n') users = [] for user_item in users_list: users.append(user_item.split(',')) users_file.close() return users def write_Users(users): users_file = open("static/data/userData.txt", "w") users_list = [] for user in users: users_list.append(','.join(user)) users_file.write('\n'.join(users_list)+'\n') users_file.close() #operations on questionsData def get_Questions(): questions_file = open("static/data/questionData.txt") questions_list = questions_file.read().decode('utf8').strip().split('\n') questions = [] for question_item in questions_list: questions.append(question_item.split(';')) questions_file.close() return questions def write_Questions(questions): questions_file = open("static/data/questionData.txt", "w") questions_list = [] for question in questions: questions_list.append(';'.join(question).encode('utf8')) questions_file.write('\n'.join(questions_list)+'\n') questions_file.close() #operations on replyData def get_Replies(): reply_file = open("static/data/replyData.txt") reply_list = reply_file.read().decode('utf8').strip().split('\n') reply = [] for reply_item in reply_list: reply.append(reply_item.split(';')) reply_file.close() return reply def write_Replies(replies): reply_file = open("static/data/replyData.txt", "w") reply_list = [] for reply in replies: reply_list.append(';'.join(reply).encode('utf-8')) reply_file.write('\n'.join(reply_list)+'\n') reply_file.close() class BaseHandler(tornado.web.RequestHandler): def get_current_user(self): return self.get_secure_cookie("user") class IndexHandler(BaseHandler): def get(self): if self.current_user: questions = get_Questions() questions = questions[::-1] replies = get_Replies() self.render("index.html",title='主页', Username=self.current_user, questions=questions, replies=replies) else: self.redirect("/login") return name = tornado.escape.xhtml_escape(self.current_user) class LoginHandler(BaseHandler): def get(self): self.render("login_signup.html", title="登录页面", button="登录", link="没有账号?点击注册", url="/signup", action="/login", subtitle="") def post(self): user = [self.get_argument("name").encode('utf-8'), self.get_argument("password").encode('utf-8')] users = get_Users() if user in users: self.set_secure_cookie("user", user[0], expires_days=None) self.redirect("/") else: self.render("login_signup.html", title="登录页面", button="登录", link="没有账号?点击注册", url="/signup", action="/login", subtitle="登录失败,请重新尝试") class LogoutHandler(BaseHandler): def get(self): self.clear_all_cookies() return self.redirect("/login") class SignUpHandler(BaseHandler): def get(self): self.render("login_signup.html", title = "注册页面", button="注册", link="已有账号?点击登录", url="/login", action="/signup", subtitle="") def post(self): user = [self.get_argument("name").encode('utf-8'), self.get_argument("password").encode('utf-8')] users = get_Users() valid_1 = name_pattern.match(user[0]) and \ password_pattern.match(user[1]) # avoid the same user be registered again by other password valid_2 = True for user_item in users: if user_item[0] == user[0]: valid_2 = False if valid_1 and valid_2: users.append(user) write_Users(users) self.render("login_signup.html", title = "注册页面", button="注册", link="已有账号?点击登录", url="/login", action="/signup", subtitle="注册成功!请前往登录页面登录") else: self.render("login_signup.html", title = "注册页面", button="注册", link="已有账号?点击登录", url="/login", action="/signup", subtitle="注册失败,请重新尝试") # coded by YaoShaoling, correted by HuangJunjie class QuestionHandler(BaseHandler): def get(self): if self.current_user: self.render('question.html', title="提问页面", subtitle="问题", uptext="问题内容", button="提交问题", Username=self.current_user) else: self.redirect("/login") def post(self): questions = get_Questions() stitle = self.get_argument('title', None) stime = time.strftime("%Y-%m-%d %H:%M") stext = self.get_argument('content', None) invalid_1 = re.search(';', stitle) or re.search(';', stext) invalid_2 = re.search('\n', stitle)or re.search('\n', stext) if invalid_1 or invalid_2: return self.render('question.html', title="提问页面", subtitle="问题", uptext="问题内容", button="提交问题", Username=self.current_user) if stitle and stime and stext: new_question = [stitle, stime, self.current_user, stext] questions.append(new_question) write_Questions(questions) return self.redirect('/') return self.render('question.html', title="提问页面", subtitle="问题", uptext="问题内容", button="提交问题", Username=self.current_user) class WrongHandler(tornado.web.RequestHandler): def get(self): self.write_error(404) def write_error(self, status_code, **kwages): if status_code == 404: self.render('404.html', title = "404") else: self.write('Ah ha! error:' + str(status_code)) class ResponseHandler(BaseHandler): def post(self): replies = get_Replies() responsetext = self.get_argument('responsetext', None) responsetitle = self.get_argument('title', None) if responsetext and responsetitle: new_reply = [responsetitle, time.strftime("%Y-%m-%d %H:%M"), self.current_user, responsetext] replies.append(new_reply) write_Replies(replies) return self.redirect('/') settings = { "template_path": os.path.join(os.path.dirname(__file__), "template"), "static_path": os.path.join(os.path.dirname(__file__), "static"), "cookie_secret": "61oETzKXQAGaYdkL5gEmGeJJFuYh7EQnp2XdTP1o/Vo=", "login_url": "/login", "debug": True } if __name__ == "__main__": tornado.options.parse_command_line() app = tornado.web.Application([ (r"/", IndexHandler), (r"/login", LoginHandler), (r"/signup", SignUpHandler), (r"/logout", LogoutHandler), (r"/question", QuestionHandler), (r"/response", ResponseHandler), (r".*", WrongHandler)], **settings ) http_server = tornado.httpserver.HTTPServer(app) http_server.listen(options.port) tornado.ioloop.IOLoop.instance().start()
[ "349373001@qq.com" ]
349373001@qq.com
cc6579536149f92ed343cb5352c5a36895ee78d9
dca141c8c887d09828b259e4e85edefe303a8684
/basic/models.py
b4bf9f47c234654e050133059330db10ac672fcb
[]
no_license
ImLordImpaler/hackathon2.0
f55cd499f0e64042d689d5ca0f2510edc6af6880
6dfbfb2a90c6e3b9e8ddc5cc22111bb592d3a195
refs/heads/main
2023-04-22T01:40:50.170012
2021-05-16T06:53:08
2021-05-16T06:53:08
367,805,425
0
0
null
null
null
null
UTF-8
Python
false
false
1,651
py
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver class Profile(models.Model): user = models.OneToOneField(User , related_name='profile_user',on_delete=models.CASCADE) fname = models.CharField(max_length=1000, null=True) lname = models.CharField(max_length=1000, null=True) dob = models.DateField(null=True) email = models.EmailField(null=True) fake_id = models.IntegerField(default=0) friends = models.ManyToManyField(User ) def __str__(self) : return str(self.fname) class Post(models.Model): txt = models.CharField(max_length=100000) user = models.ForeignKey(User , on_delete=models.CASCADE) likes = models.IntegerField(default=0) dislikes = models.IntegerField(default=0) time = models.DateTimeField(auto_now_add=True) liked = models.ManyToManyField(User , related_name="post_like" ) def total_liked(self): return self.liked.count() def __str__(self) : return self.txt class Comment(models.Model): post = models.ForeignKey(Post , on_delete=models.CASCADE) text = models.CharField(max_length=100000) user = models.ForeignKey(User , on_delete=models.CASCADE) liked = models.ManyToManyField(User , related_name="comment_like" , blank=True) def __str__(self) : return self.text @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: obj = Profile.objects.create(user=instance) obj.fake_id = instance.user.id obj.save()
[ "ksfastners619@gmail.com" ]
ksfastners619@gmail.com
ae993260199a1bd4f613b868736c93d2f0d23f44
198a9eee33187d90bab8d4e2d57c0cea10eedb84
/chap5/exe1.py
b010e5f90be03ca317a786ff0d17f81cf3748f1c
[]
no_license
mihirverma7781/Python-Scripts
2fe7de78004dcc0ff7f5c7b5a85f0a0f4d539967
5fa6751fb072f4599d4919d2b0ee096b9064e963
refs/heads/master
2022-12-19T04:38:55.611510
2020-10-01T18:47:15
2020-10-01T18:47:15
300,388,242
0
0
null
null
null
null
UTF-8
Python
false
false
136
py
number = list(range(1,11)) def square(l): empty=[] for i in l: empty.append(i*i) return empty print(square(number))
[ "mihirv7781@gmail.com" ]
mihirv7781@gmail.com
da38fc3ea3b67732802f09a7cad2d4a6fc6d2eaf
177b5e8c33d3fede31291556cf57cd9fda08bb73
/03.welcome-user/data_models/__init__.py
ebbed7f923f54df3b6e1382d16d212dce66ae2f3
[]
no_license
Lycrika/Prueba_bot
d6d32954cfb53989d7ed1dbcec262adf88eb383e
3dc22991d6ef2d94a4b230ea9d0ddaff5e7db658
refs/heads/master
2022-12-10T23:07:54.561038
2020-09-03T16:54:32
2020-09-03T16:54:32
292,627,876
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from .welcome_user_state import WelcomeUserState __all__ = ["WelcomeUserState"]
[ "noreply@github.com" ]
Lycrika.noreply@github.com
50c8ed36aa0ef9ef9ff88d080685ef00cd226fff
2ab8567a39de52b0bd31b69be40a6a4c1080121f
/posts/models.py
a2dab9e06801ccc00ec7edf08a48a3ddfb897215
[]
no_license
urahman1517/twitter
d84526cfb93ca09f08344790118ec1a8f0c542c9
61052cf3feb2e9cf66ff765973c436064bbfb4f8
refs/heads/main
2023-07-01T22:32:26.273753
2021-08-20T04:26:42
2021-08-20T04:26:42
397,506,132
0
0
null
null
null
null
UTF-8
Python
false
false
675
py
from django.db import models from cloudinary.models import CloudinaryField # Create your models here. class Post(models.Model): class Meta(object): db_table = 'post' name = models.CharField( 'Name' , blank=False, null=False, max_length=14, db_index=True, default='Anonymous' ) body = models.CharField( 'Body' , blank=True, null=True, max_length=140, db_index=True ) image = CloudinaryField ( 'image' , blank=True ) like_count=models.PositiveIntegerField ( 'like_count' , default=0 , blank=True ) created_at = models.DateTimeField( 'Created DateTime', blank=True, auto_now_add=True )
[ "urahman1517@outlook.com" ]
urahman1517@outlook.com
a2e495fdc47015c860dc2e716dfa6d8a401a6538
0b40232eb2395c27353c892ef4ccb5c604bb75be
/Array/third_max.py
174029680ba012a49f9c34cb0d61196da859ba00
[]
no_license
HareshNasit/LeetCode
971ae9dd5e4f0feeafa5bb3bcf5b7fa0a514d54d
674728af189aa8951a3fcb355b290f5666b1465c
refs/heads/master
2021-06-18T07:37:40.121698
2021-02-12T12:30:18
2021-02-12T12:30:18
168,089,751
5
0
null
null
null
null
UTF-8
Python
false
false
366
py
def thirdMax(self, nums): """ https://leetcode.com/problems/third-maximum-number/submissions/ :type nums: List[int] :rtype: int """ nums_set = set(nums) nums_list = list(nums_set) nums_list.sort(reverse = True) if len(nums_list) > 2: return nums_list[2] return nums_list[0]
[ "harsh.nasit@mail.utoronto.ca" ]
harsh.nasit@mail.utoronto.ca
448f10654f9220c75b2e6296a98881c99e513397
ea54fa9ee09d90ec2db1c5740704d55577bc1b54
/app/test.py
fafe813236502ee648c274261f4ee63939cd0caa
[ "MIT" ]
permissive
bayuajinurmnsh/test_task
0cf004c2600bc4bd13cd822ee5478ab03a1f818e
67331413d240f9fd3c67ab05343e5a216b112f4a
refs/heads/main
2023-07-06T09:54:13.551712
2021-08-15T08:58:19
2021-08-15T08:58:19
395,964,607
0
0
null
null
null
null
UTF-8
Python
false
false
8,563
py
from logging import error import unittest from requests.api import request from app import app import technical class Test(unittest.TestCase): #UNIT TEST FOR app.py URL = "http://127.0.0.1:5000/test_task/api/distance_address" data_valid = {"address": "Moscow"} key_invalid = {"adres": "Moscow"} invalid_address_1 ={"address": "@5-!&*a"} invalid_address_2 ={"address": "-1@1 jgstuo2"} outside_mkad = {"address": "Jakarta, Indonesia"} error_1 = b'{"message":"You have to send data in json format"}\n' error_2 = b'{"message":"make sure you have key address in your JSON data"}\n' error_3 = b'{"message":"Invalid address!"}\n' error_4 = b'{"message":"Can not find your address!"}\n' error_5 = b'{"message":"Server do not have access to yandex API"}\n' inside_mkad = b'{"message":"area inside MKAD"}\n' # Test for index function # Test to check the index function if it run properly or not def test_index(self): test = app.test_client(self) response = test.get('/', content_type = 'html/text') self.assertEqual(response.status_code, 200) # Test for distance_address function # Test to check if address is inside Moscow ring road def test_inside_mkad(self): tester = app.test_client(self) response = tester.post(self.URL, json = self.data_valid, content_type = 'application/json') self.assertEqual(self.inside_mkad,response.data) self.assertEqual(response.status_code, 200) # Test to check if address is outside Moscow ring road def test_outside_mkad(self): tester = app.test_client(self) response = tester.post(self.URL, json = self.outside_mkad, content_type = 'application/json') self.assertNotEqual(response.data, self.inside_mkad) self.assertEqual(response.status_code, 200) # Test to check if client not post a json file type # In this case i try to use xml def test_content_type_not_json(self): test = app.test_client(self) response = test.post(self.URL, data = self.data_valid, content_type='application/xml') self.assertEqual(response.data, self.error_1) self.assertEqual(response.status_code, 415) # Test to check if key not is json file # valid key is 'address' but in this test used 'adres' def test_content_key_invalid(self): test = app.test_client(self) response = test.post(self.URL, json = self.key_invalid, content_type = 'application/json') self.assertEqual(response.data, self.error_2) self.assertEqual(response.status_code, 400) # Invalid address type 1 # This test check if client only send one letter in address or # maybe a number with single value like only "5" def test_invalid_addres_1(self): tester = app.test_client(self) response = tester.post(self.URL, json = self.invalid_address_1, content_type = 'application/json') self.assertEqual(response.data, self.error_3) self.assertEqual(response.status_code, 422) # Invalid address type 2 # If address have passed the invalid type 1 but yandex can not find # latitude and longitude from specific address def test_invalid_addres_2(self): tester = app.test_client(self) response = tester.post(self.URL, json = self.invalid_address_2, content_type = 'application/json') self.assertEqual(response.data, self.error_4) self.assertEqual(response.status_code, 404) # Test if our server have access to Yandex API # Error occurs when our server do not have valid API Key def test_access(self): tester = app.test_client(self) response = tester.post(self.URL, json = self.data_valid, content_type = 'application/json') self.assertNotEqual(response.data, self.error_5) self.assertNotEqual(response.status_code, 500) #UNIT TEST FOR technical.py # Test if address inside mkad [test class CheckDistance] def test_count_distance_1(self): lat = 55.753220 #lat for Moscow, Russia long = 37.622513 #long for Moscow, Russia obj_check_distance = technical.CheckDistance(lat,long) count_distance = obj_check_distance.count_distance() self.assertEqual('area inside MKAD', count_distance) # Test if address outside mkad [test class CheckDistance] # And test if count_distance return a value in float type def test_count_distance_2(self): lat = -6.175391 #lat for Jakarta, Indonesia long = 106.826261 #long for Jakarta, Indonesia obj_check_distance = technical.CheckDistance(lat,long) count_distance = obj_check_distance.count_distance() self.assertNotEqual('area inside MKAD', count_distance) self.assertIs(type(count_distance), float) # Test if lat, and long not in float type [test class CheckDistance] def test_count_distance_3(self): lat_1 = "-6.175391" long_1 = 106.826261 lat_2 = "Moscow, Russia" long_2 = "Jakarta, Indonesia" obj_check_distance_1 = technical.CheckDistance(lat_1,long_1) count_distance_1 = obj_check_distance_1.count_distance() self.assertEqual("latitude and longitude must be in float type", count_distance_1) obj_check_distance_2 = technical.CheckDistance(lat_2,long_2) count_distance_2 = obj_check_distance_2.count_distance() self.assertEqual("latitude and longitude must be in float type", count_distance_2) # Test haversine function if lat and long in float type # And check if result not in string type [test class CheckDistance] def test_haversine_1(self): lat_1 = 55.898947 #lat for MKAD, 88th kilometre, inner side long_1 = 37.632206 # long for MKAD, 88th kilometre, inner side lat_2 = 38.231572 long_2 = 25.192846 obj_check_distance = technical.CheckDistance(lat_2,long_2) haversine = obj_check_distance.haversine(lat_1, long_1, lat_2, long_2) self.assertIsNot(type(haversine), str) self.assertIs(type(haversine), float) # Test haversine function if lat and lon in integer def test_haversine_2(self): lat_1 = int(55) long_1 = int(37) lat_2 = int(38) long_2 = int(-25) obj_check_distance = technical.CheckDistance(lat_2,long_2) haversine = obj_check_distance.haversine(lat_1, long_1, lat_2, long_2) self.assertIsNot(type(haversine), str) # Test if lat or long in string type def test_haversine_3(self): lat_1 = str(55) #lat for MKAD, 88th kilometre, inner side long_1 = 37 # long for MKAD, 88th kilometre, inner side lat_2 = 38.0098 long_2 = "15" obj_check_distance = technical.CheckDistance(lat_2,long_2) haversine = obj_check_distance.haversine(lat_1, long_1, lat_2, long_2) self.assertEqual("latitude and longitude can not be string", haversine) # Test check_address function to check address is valid or not # Test valid if (address is a letter, length addres >=2) # Test valid if (address is number, length address >=2) def test_check_address_valid_1(self): address = "Moscow, Russia" obj_check_address = technical.TextPreprocessing(address) check_address = obj_check_address.check_address() self.assertEqual("valid", check_address) # Test if lat and long value in string type def test_check_address_valid_2(self): address = "55.2333, 25.444221" obj_check_address = technical.TextPreprocessing(address) check_address = obj_check_address.check_address() self.assertEqual("valid", check_address) # Test if address not in string type def test_check_address_valid_2(self): address = 55.233325 obj_check_address = technical.TextPreprocessing(address) check_address = obj_check_address.check_address() self.assertEqual("address must be in string type", check_address) if __name__ == "__main__": unittest.main()
[ "bayuaji.nurmansah16@gmail.com" ]
bayuaji.nurmansah16@gmail.com
7564c377061b8558390c11f80829db31740ea8d9
7b3305ce06473172df7e441dbaa4d486f1449171
/linked_dynamic_solver.py
96b6cda67a837cf320b97aea8e4ee57a44021661
[]
no_license
Kylepoore/knapsack-solver
6ffda82b442e6d1119b83820b44bb8a5d97411fd
3eb27fc4740919ecab52ddeb5a572422236e7303
refs/heads/master
2020-04-05T23:40:41.176024
2013-07-18T03:28:10
2013-07-18T03:28:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,619
py
#!/usr/bin/python # -*- coding: utf-8 -*- def solveIt(inputData): # Modify this code to run your optimization algorithm # parse the input lines = inputData.split('\n') firstLine = lines[0].split() items = int(firstLine[0]) capacity = int(firstLine[1]) values = [] weights = [] for i in range(1, items+1): line = lines[i] parts = line.split() values.append(int(parts[0])) weights.append(int(parts[1])) items = len(values) #dp algorithm: print items * capacity ltable = [ [] ] tuples = zip(values,weights) for j in range(0,items+1): ltable.append([]) for k in range(0,capacity+1): ltable[j].append([]) ltable[j][k] = ((0,0)) if(j == 0 or k == 0): continue if(weights[j-1] <= k): ltable[j][k] = tuples[j-1] else: ltable[j][k] = ltable[j-1][k] continue if(weights[j-1] + ltable[j-1][k][1] <= k): ltable[j][k] = tuple(a+b for a,b in zip(ltable[j-1][k], tuples[j-1])) if(ltable[j-1][k][0] > values[j-1]): ltable[j][k] = ltable[j-1][k] if (ltable[j-1][k-weights[j-1]][0] + values[j-1] > ltable[j-1][k][0]): ltable[j][k] = tuple(a+b for a, b in zip(ltable[j-1][k-weights[j-1]], tuples[j-1])) else: ltable[j][k] = ltable[j-1][k] print "-", print "done" value = ltable[items][capacity][0] print "backtracking..." taken = [] i = items j = capacity for i in range(items,0,-1): if(ltable[i][j][0] == ltable[i-1][j][0]): taken.append(0) else: j = j - weights[i-1] taken.append(1) taken.reverse() for k in range(0,capacity+1): for j in range(0,items+1): print str(ltable[j][k][0]) + "\t", print "" # print table[(items,capacity,0)] # prepare the solution in the specified output format outputData = str(value) + ' ' + str(1) + '\n' outputData += ' '.join(map(str, taken)) return outputData import sys if __name__ == '__main__': if len(sys.argv) > 1: fileLocation = sys.argv[1].strip() inputDataFile = open(fileLocation, 'r') inputData = ''.join(inputDataFile.readlines()) inputDataFile.close() print solveIt(inputData) else: print 'This test requires an input file. Please select one from the data directory. (i.e. python solver.py ./data/ks_4_0)'
[ "kylepoore1@gmail.com" ]
kylepoore1@gmail.com
c2e4537265eacfee364c3be61266d0a16861c951
dc39ccc50b7d34e5de84f3cc132c5cc096a32656
/BASIC/class/attribute.py
40377cc862a0cdd596c36046d3178d5438bfeccf
[]
no_license
Shukladas1115/Python
0947aefd62a9ce4c3140360cb7259b031368709c
feb32bc2e2e7df377fc2d92330bfdacb83f31a55
refs/heads/master
2022-02-20T04:15:56.036495
2019-08-26T16:36:52
2019-08-26T16:36:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
class A(object): x = 1 class B(A): pass class C(A): pass print(A.x, B.x, C.x) # 1 1 1 B.x = 2 print(A.x, B.x, C.x) # 1 2 1 A.x = 3 print(A.x, B.x, C.x) # 3 2 3 tại sao vậy? ''' C doesn’t have its own x property, independent of A. Thus, references to C.x are in fact references to A.x C kế thừa từ A, C không thực sự sở hữu thuộc tính x mà nó tham chiếu đến thuộc tính x của A '''
[ "minhhien90@gmail.com" ]
minhhien90@gmail.com
cd96121d34ea23c08f5222fe1efa991136ffc79b
8b3345a2a5005dfe42afbd6a0653ac7fc61f037d
/server/app.py
0d9764ae696d6f3c9c51fe32821d0cb4edc39d99
[ "MIT" ]
permissive
bfortuner/label-ai
a40be4e65ef7c4f46f8810d98c3d13b114bc42fc
f05896c2b2c2d282763ee7db54b5f66066073961
refs/heads/master
2021-01-19T14:17:00.034167
2017-09-01T16:07:59
2017-09-01T16:07:59
100,892,823
1
1
null
null
null
null
UTF-8
Python
false
false
731
py
from flask import Flask from flask_cors import CORS from flask_graphql import GraphQLView from schema import Schema from flask import Response, request, abort, send_from_directory from PIL import Image from io import StringIO import config as cfg import data def create_app(**kwargs): app = Flask(__name__) app.debug = True app.add_url_rule( '/graphql', view_func=GraphQLView.as_view('graphql', schema=Schema, **kwargs) ) return app app = create_app(graphiql=True) @app.route('/image/<filename>') def image(filename): return send_from_directory(cfg.MEDIA_PATH, filename) if __name__ == '__main__': CORS(app, resources={r'/graphql': {'origins': '*'}}) app.run(host='0.0.0.0')
[ "bfortuner@gmail.com" ]
bfortuner@gmail.com
fec89b02f0a042bdaf94e3f1b051f4f3ce65eb22
286407dc9a39025447a2a796125125b5558882e1
/comments_app/forms.py
c197c6c0599f2213a340f64f620cbf498d8c0b97
[]
no_license
cyh1995/blog0.9
f2a608e0bc2ffd91ee9fd8b68133eb5cc2698ef0
ee535bfec3068a2e3b6cfafce34a7cd22263a284
refs/heads/master
2022-12-09T05:04:51.772719
2018-06-09T02:31:53
2018-06-09T02:31:53
136,444,754
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
# 通过调用这个继承与form对象的类的一些方法和属性,来代替原有的前端表单 from django import forms from .models import Comment class CommentForm(forms.ModelForm): class Meta: model = Comment fields = ['name','email','url','text']
[ "969963179@qq.com" ]
969963179@qq.com
d3d9bd3030137f0b28db61765cc2c6f602ff6ca5
591806a05facb216f4bec4615c91417ea8b68293
/yummy/restaurant/forms.py
e1a592327d58fd5c86d37518dee33e6e61ef8412
[]
no_license
neostoic/yummy
e8e214b3e56605850c40a823f82bd85a50b282bd
bedbdd6239e8aab7ea38778bf5b92e2812095c55
refs/heads/master
2021-01-17T23:36:14.032762
2014-05-12T15:30:33
2014-05-12T15:30:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
from django import forms from restaurant.models import Review from django.utils.translation import ugettext_lazy as _ class ReviewForm(forms.ModelForm): class Meta: model = Review fields = ['content', 'rating'] widgets = {'rating': forms.RadioSelect()} labels = {'content': _('Write Review')} help_texts = {'content': _('Please write your reviews for this restaurant.')} def clean_rating(self): rating = self.cleaned_data['rating'] if rating < 1 or rating > 5: raise forms.ValidationError('rating should be an int between 1 and 5') return rating
[ "ghylxdw@gmail.com" ]
ghylxdw@gmail.com
f4c38240821bf96e65612f342986cf276694f90d
34578a08451dc124f02fbba92a219da3347059cd
/.history/tools/views_20190502130213.py
5ef8462e7964c7373832387076323b91f3acac43
[]
no_license
gwjczwy/CTF-Exercises
b35d938b30adbc56c1b6f45dc36cea1421c702fb
c2d5c47f5047b1601564453e270ce50aad7f56fc
refs/heads/master
2020-05-25T23:51:26.190350
2019-05-22T13:18:59
2019-05-22T13:18:59
188,042,255
0
0
null
null
null
null
UTF-8
Python
false
false
6,399
py
from django.shortcuts import render from django.views.decorators.csrf import csrf_exempt from django.http import HttpResponse from django.contrib.auth.decorators import login_required from json import dumps from .models import Url,Money import time ######################### #配置变量 sourcePath=r'C:\Users\arnoux\Desktop\训练平台\sql\log.txt' ######################### #主页 @login_required def index(requests): data={'toolname':'index','user':requests.user} return render(requests,'tools/index.html',data) ######################### #短链接 @login_required def surl(requests):#短链接 index data={} data['toolName']="surl" data['parameter']="index" return render(requests, 'tools/index.html', data) def surls(requests,parameter):#带参数的短链接跳转 data={} data['toolName']="surl" data['parameter']="link" print('短链接参数',parameter) try: req=Url.objects.get(sUrl=parameter) print('获取对象成功') except: return HttpResponse('你来错地方了,悟空') req=req.fullUrl return HttpResponse('<script>window.location.href="'+req+'";</script>') @csrf_exempt @login_required def createSUrl(requests): if not (requests.method == 'POST' and requests.POST['fullUrl']): req={'message':'fail'} return HttpResponse(dumps(req),content_type="application/json") fullUrl=requests.POST['fullUrl'] while True: randUrl=randStr(5)#随机长度为5的字符串 try: Url.objects.get(sUrl=randUrl)#如果重复就继续随机 print('再!来!一!次!') except: break randUrl=randStr(5) Url(sUrl=randUrl,fullUrl=fullUrl).save() req={'message':'success','url':randUrl} return HttpResponse(dumps(req),content_type="application/json") def randStr(l): import random import string seed = "1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" sa = [] for i in range(l): sa.append(random.choice(seed)) salt = ''.join(sa) return salt ######################### #商店 @login_required def shop(requests): data={} data['toolName']="shop" money = Money.objects.get(user=requests.user) data['money']=money return render(requests, 'tools/index.html', data) #商店兑换 @csrf_exempt @login_required def shopExchange(requests): if not (requests.method == 'POST' and 'rule' in requests.POST and 'num' in requests.POST): print('非法请求') req={'message':'fail','reason':'非法请求'} return HttpResponse(dumps(req),content_type="application/json") rule=requests.POST['rule'] num=requests.POST['num'] if not rule in ['m2b','b2m']:# 判断转换规则是否合法 print('rule参数不合法') req={'message':'fail','reason':'rule参数不合法'} return HttpResponse(dumps(req),content_type="application/json") if num.isdigit():# 判断数字是否合法 num=int(num) if num<0: req={'message':'fail','reason':'非法参数'} return HttpResponse(dumps(req),content_type="application/json") else: req={'message':'fail','reason':'非法参数'} return HttpResponse(dumps(req),content_type="application/json") # 获取货币对象 money = Money.objects.get(user=requests.user) if rule=='m2b': if money.monero>=num: money.bitcoin+=num money.save() time.sleep(5) #等待时间 造成条件竞争 money.monero-=num money.save() else: req={'message':'fail','reason':'monero 不足'} return HttpResponse(dumps(req),content_type="application/json") elif rule=='b2m': if money.bitcoin>=num: money.monero+=num money.save() time.sleep(5) money.bitcoin-=num money.save() else: req={'message':'fail','reason':'bitcoin 不足'} return HttpResponse(dumps(req),content_type="application/json") else: req={'message':'fail','reason':'未知错误'} return HttpResponse(dumps(req),content_type="application/json") req={'message':'success','monero':money.monero,'bitcoin':money.bitcoin} return HttpResponse(dumps(req),content_type="application/json") ######################### #日志 @login_required def logs(requests): data={} data['toolName']="logs" return render(requests, 'tools/index.html', data) # 添加日志 @csrf_exempt @login_required def addLog(requests): if not (requests.method == 'POST' and 'path' in requests.POST and 'content' in requests.POST): req={'message':'fail','reason':'非法请求'} return HttpResponse(dumps(req),content_type="application/json") path=requests.POST['path'] content=requests.POST['content'] # 获取货币对象 money = Money.objects.get(user=requests.user) if money.bitcoin >=100: try: with open(path,'at') as file: file.write(content) money.bitcoin-=100 money.save() req={'message':'success','reason':'操作成功'} return HttpResponse(dumps(req),content_type="application/json") except: req={'message':'fail','reason':'写入文件错误'} return HttpResponse(dumps(req),content_type="application/json") else: req={'message':'fail','reason':'货币不足'} return HttpResponse(dumps(req),content_type="application/json") # 获取日志 def getLog(requests): req={'message':'fail','reason':'货币不足'} return HttpResponse(dumps(req),content_type="application/json") #下载源代码 def downSource(requests): # 获取货币对象 money = Money.objects.get(user=requests.user) if money.bitcoin >=1000: money.bitcoin-=1000 money.save() file = open(sourcePath, 'rb') response = HttpResponse(file) response['Content-Type'] = 'application/octet-stream' #设置头信息,告诉浏览器这是个文件 response['Content-Disposition'] = 'attachment;filename="'+sourcePath.split('\\')[-1]+'";' return response else: req={'message':'fail','reason':'货币不足'} return HttpResponse(dumps(req),content_type="application/json")
[ "zwy053@163.com" ]
zwy053@163.com
3c8a6763e29d5fa0d860c9b0725bd43c3a8400b0
71aa88ebc6fc7b2b7cb119ab19e7d0815b2bb11b
/mysite/settings.py
07aaac233aab2ed0e099f5c7e9826578132a24ac
[]
no_license
zv100558snv/my-first-blog
e69f9b9fe6a18b6499603c776038d24bd6c8c7e5
52d7544a604986dde2e969b4e7dd08d8f4d9a03b
refs/heads/master
2021-01-25T11:33:33.377867
2017-06-16T17:57:40
2017-06-16T17:57:40
93,933,293
0
0
null
null
null
null
UTF-8
Python
false
false
3,293
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.8. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '!8uh7@x(rb=8+suo0u3sn)olh&9bs_3ma+c*o-^2f$+&rd#=_)' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['zv100558snv.pythonanywhere.com'] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog', # 'blog', 'register', # Регистрация ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', #'whitenoise.middleware.WhiteNoiseMiddleware', # http://whitenoise.evans.io/en/stable/ ) ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'ru-ru' TIME_ZONE = 'Europe/Kiev' #'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' # расположении статических файлов STATIC_ROOT = os.path.join(BASE_DIR, 'static') # + расположении статических файлов LOGIN_REDIRECT_URL = '/'
[ "zv100558snv@gmail.com" ]
zv100558snv@gmail.com
fa36d96624f3655b5258367533c44b0c14db498b
d364123a0655bff7e9d725382934fe2c15b5bfc4
/Crawler/lianxi/hsimg_test.py
bc62fc7c1c354c4ba3007bd3c78507f7a0a83c1e
[]
no_license
yuan1093040152/SeleniumTest
88d75361c8419354f56856c326f843a0a89d7ca6
d155b98702bc46c174499042b43257696b861b5e
refs/heads/master
2023-08-31T15:00:25.415642
2023-08-30T09:26:42
2023-08-30T09:26:42
227,269,300
0
1
null
null
null
null
UTF-8
Python
false
false
2,271
py
#coding=utf-8 ''' Created on 2018年7月15日 @author: kai.yangf ''' import requests,re,time from multiprocessing import pool from requests.exceptions import RequestException from threading import Thread def get_one_page(url): try: response = requests.get(url) html = response.text if response.status_code == 200: print (True) print (html[:5]) return html else: return None except RequestException: return None def parse_one_page(url): html = get_one_page(url) pettern = re.compile('<img.*?alt.*?src="(.*?)" />',re.S) items = re.findall(pettern,html) print (len(items)) for item in items: writeIO(item) def writeIO(item): filename = str(time.time()) + '.jpg' response = requests.get(item) Path = 'E:\\CrawlerImg\\' + filename with open(Path,'wb') as f: f.write(response.content) f.close() def each_page(url): host = 'https://www.8484dd.com' html = get_one_page(url) pettern = re.compile('<li.*?<a.*?href="(.+?)".*?</a>',re.S) items = re.findall(pettern,html) print (len(items)) for item in items: if re.match('/pic', item): if re.search('.html', item): url = host + item parse_one_page(url) def each_page_value(i): url = 'https://www.8484dd.com/pic/5/index_'+ str(i) +'.html' host = 'https://www.8484dd.com' html = get_one_page(url) pettern = re.compile('<li.*?<a.*?href="(.+?)".*?</a>',re.S) items = re.findall(pettern,html) print (len(items)) for item in items: if re.match('/pic', item): if re.search('.html', item): url = host + item parse_one_page(url) def main(url): html = get_one_page(url) parse_one_page(html) if __name__ == '__main__': # for i in range(2,10): # url = 'https://www.8484dd.com/pic/5/index_'+ str(i) +'.html' # each_page(url) Threads = [] for i in range(2,11): t = Thread(target=each_page_value, args =(i,)) Threads.append(t) for i in range(2,11): Threads[i].start() for i in range(2,11): Threads[i].join()
[ "1093040152@qq.com" ]
1093040152@qq.com
99b6572f5e721b9004712c8f912dddaaac91b703
712394b09a33cfb1d66726a32e051f2729fcc2a8
/python/api_scraping.py
70e864b5b95b99b9802c9377b1f046da89b386fb
[]
no_license
AaronDonaldson74/code-challenges
6c8f0deade05ea33d589f98720ae2cc0090c046e
d266a6eee7364451b9b233abc44d8964738e6aab
refs/heads/master
2022-07-16T16:53:18.914504
2020-05-22T15:05:50
2020-05-22T15:05:50
256,545,075
0
0
null
null
null
null
UTF-8
Python
false
false
1,133
py
####Mine didn't work """ import requests import pprint from bs4 import BeautifulSoup r = requests.get('http://www.dailysmarty.com/topics/python') html = r.text soup = BeautifulSoup(html, 'html.parser') # print(soup.find_all('a')) links = soup.find_all('a') for link in links: if link.get('href'): print(link.get('href')) """ import requests from bs4 import BeautifulSoup from inflection import titleize def title_generator(links): titles = [] def post_formatter(url): if 'posts/' in url: url = url.split('/')[-1] url = url.replace('-', ' ') url = titleize(url) titles.append(url) # <!--- UPDATED CODE --> for link in links: if link.get('href') == None: continue else: post_formatter(link.get("href")) # <!--- UPDATED CODE --> return titles r = requests.get('http://www.dailysmarty.com/topics/python') soup = BeautifulSoup(r.text, 'html.parser') links = soup.find_all('a') titles = title_generator(links) for title in titles: f = open("demofile.txt", "a") f.write(f'{title} \n') f.close()
[ "Dev.Aaron.Donaldson@gmail.com" ]
Dev.Aaron.Donaldson@gmail.com
30f79ab832c61791b1d7ad8a735e2dd76ec18658
1cb77df33f8a3abaf7d9e775e0b4d51867554341
/mysite/settings.py
38d216e79024bab6347fd8ea7820213b845f3aa8
[]
no_license
EugeneLemeshevsky/Django.test
6a0f50c84ce77156273d1de59fe4458b8cb1b11f
fe7991b139195118b5acbc7d866482e800826ada
refs/heads/master
2021-01-19T20:22:35.155499
2017-05-18T15:31:24
2017-05-18T15:31:24
88,501,044
1
0
null
null
null
null
UTF-8
Python
false
false
3,124
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'i7c%m4-6f^!gm@ji-z+_ylh2b$r+v2k4ew_ttjphqcie12@3ry' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
[ "elemeshevsky@gmail.com" ]
elemeshevsky@gmail.com
31f64762cb63b1fbd9b34933a297a9ed4438eddb
ffad0de28109d0156baba92b5793e6d8142ced7c
/server/channels_list_test.py
84b54743e63a3c4deed2798a8d9a3f3a3ced6293
[]
no_license
nomii15/COMP1531-server
823753e11b78619b7f67c32d9f5f1f39d839b6f8
af00ba90cdf2fa1ce5170a7a2bf506bfe550bbd7
refs/heads/master
2021-07-17T08:26:57.074709
2019-11-17T07:29:44
2019-11-17T07:29:44
228,518,923
1
0
null
2021-01-05T18:13:55
2019-12-17T02:47:02
Python
UTF-8
Python
false
false
1,550
py
import pytest from channels_list import channels_list from auth_register import auth_register from channels_create import channels_create ''' Provide a list of all channels (and their associated details) that the authorised user is part of ''' def test_list_one(): #setup register1 = auth_register("validemail1@gmail.com", "validpassword1", "USER1", "validname1") token1 = register1['token'] u_id1 = register1['u_id'] channel_id1 = channels_create(token1, 'channel1', True) channel_list1 = channels_list(token1) channel_list = {'channels': [{'channel_id': 1, 'name': 'channel1'}]} #check only channel user is part of exists in the list assert channel_list == channel_list1 def test_list_empty(): #setup register2 = auth_register("validemail2@gmail.com", "validpassword2", "USER2", "validname2") token2 = register2['token'] u_id2 = register2['u_id'] register3 = auth_register("validemail3@gmail.com", "validpassword3", "USER3", "validname3") token3 = register3['token'] u_id3 = register3['u_id'] register4 = auth_register("validemail4@gmail.com", "validpassword4", "USER4", "validname4") token4 = register4['token'] u_id4 = register4['u_id'] channel_id2 = channels_create(token2, 'channel2', True) channel_id3 = channels_create(token3, 'channel3', True) channel_list4 = channels_list(token4) empty_list = {'channels' : []} #check channel list is empty as user does not belong to any channels assert channel_list4 == empty_list
[ "email@example.com" ]
email@example.com
f389fa4b887a9f39521c43981f7fa8e10aff2cd2
779e9e07d82b745e81d135e298274d82371218ea
/Introduction_to_the_Bioinformatics_armory.py
9b0a57f87236c6d7b1686e6ceec185f9f731f7eb
[]
no_license
TigerYassin/Rosalind
099660b47e8137e0a092a651908a25f34ddb76ed
c11921f790c8ae0453df3d967784675a93921408
refs/heads/master
2021-01-19T08:00:40.142454
2017-04-22T19:57:03
2017-04-22T19:57:03
87,594,445
0
0
null
null
null
null
UTF-8
Python
false
false
229
py
""" count how many times each time the each letter appears working """ myString = raw_input("Enter your string") A = myString.count("A") G = myString.count("G") T = myString.count("T") C = myString.count("C") print A,C,G,T
[ "yassin@incorporated.org" ]
yassin@incorporated.org
7e076554b3b3afe2172491769a0650071b0ad1b5
bf3d9406b1ae813c4f93a3f294483146848bd566
/slp/util/parallel.py
47e48ba7c49f98fdf3bea6393f8f65e1b6cf9879
[ "MIT" ]
permissive
Hadryan/slp
9c038c0273d7c3ff109bba1b5381a1b1a256e3ed
9a5a2b4d56a256e953c5f2c8972b8cd8ca584ced
refs/heads/master
2020-07-25T21:32:06.970945
2019-06-18T17:49:37
2019-06-18T17:49:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,327
py
# flake8: noqa ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang, Rutgers University, Email: zhang.hang@rutgers.edu ## Modified by Thomas Wolf, HuggingFace Inc., Email: thomas@huggingface.co ## Copyright (c) 2017-2018 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ """Encoding Data Parallel""" import threading import functools import torch from torch.autograd import Variable, Function import torch.cuda.comm as comm from torch.nn.parallel.data_parallel import DataParallel from torch.nn.parallel.distributed import DistributedDataParallel from torch.nn.parallel.parallel_apply import get_a_var from torch.nn.parallel.scatter_gather import gather from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast __all__ = ['allreduce', 'DataParallelModel', 'DataParallelCriterion', 'patch_replication_callback'] def allreduce(*inputs): """Cross GPU all reduce autograd operation for calculate mean and variance in SyncBN. """ return AllReduce.apply(*inputs) class AllReduce(Function): @staticmethod def forward(ctx, num_inputs, *inputs): ctx.num_inputs = num_inputs ctx.target_gpus = [inputs[i].get_device() for i in range(0, len(inputs), num_inputs)] inputs = [inputs[i:i + num_inputs] for i in range(0, len(inputs), num_inputs)] # sort before reduce sum inputs = sorted(inputs, key=lambda i: i[0].get_device()) results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) outputs = comm.broadcast_coalesced(results, ctx.target_gpus) return tuple([t for tensors in outputs for t in tensors]) @staticmethod def backward(ctx, *inputs): inputs = [i.data for i in inputs] inputs = [inputs[i:i + ctx.num_inputs] for i in range(0, len(inputs), ctx.num_inputs)] results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) outputs = comm.broadcast_coalesced(results, ctx.target_gpus) return (None,) + tuple([Variable(t) for tensors in outputs for t in tensors]) class Reduce(Function): @staticmethod def forward(ctx, *inputs): ctx.target_gpus = [inputs[i].get_device() for i in range(len(inputs))] inputs = sorted(inputs, key=lambda i: i.get_device()) return comm.reduce_add(inputs) @staticmethod def backward(ctx, gradOutput): return Broadcast.apply(ctx.target_gpus, gradOutput) class DistributedDataParallelModel(DistributedDataParallel): """Implements data parallelism at the module level for the DistributedDataParallel module. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. In the forward pass, the module is replicated on each device, and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. Note that the outputs are not gathered, please use compatible :class:`encoding.parallel.DataParallelCriterion`. The batch size should be larger than the number of GPUs used. It should also be an integer multiple of the number of GPUs so that each chunk is the same size (so that each GPU processes the same number of samples). Args: module: module to be parallelized device_ids: CUDA devices (default: all devices) Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. “Context Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DistributedDataParallelModel(model, device_ids=[0, 1, 2]) >>> y = net(x) """ def gather(self, outputs, output_device): return outputs class DataParallelModel(DataParallel): """Implements data parallelism at the module level. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. In the forward pass, the module is replicated on each device, and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. Note that the outputs are not gathered, please use compatible :class:`encoding.parallel.DataParallelCriterion`. The batch size should be larger than the number of GPUs used. It should also be an integer multiple of the number of GPUs so that each chunk is the same size (so that each GPU processes the same number of samples). Args: module: module to be parallelized device_ids: CUDA devices (default: all devices) Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. “Context Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) >>> y = net(x) """ def gather(self, outputs, output_device): return outputs def replicate(self, module, device_ids): modules = super(DataParallelModel, self).replicate(module, device_ids) execute_replication_callbacks(modules) return modules class DataParallelCriterion(DataParallel): """ Calculate loss in multiple-GPUs, which balance the memory usage. The targets are splitted across the specified devices by chunking in the batch dimension. Please use together with :class:`encoding.parallel.DataParallelModel`. Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. “Context Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) >>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2]) >>> y = net(x) >>> loss = criterion(y, target) """ def forward(self, inputs, *targets, **kwargs): # input should be already scatterd # scattering the targets instead if not self.device_ids: return self.module(inputs, *targets, **kwargs) targets, kwargs = self.scatter(targets, kwargs, self.device_ids) if len(self.device_ids) == 1: return self.module(inputs, *targets[0], **kwargs[0]) replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) outputs = _criterion_parallel_apply(replicas, inputs, targets, kwargs) #return Reduce.apply(*outputs) / len(outputs) #return self.gather(outputs, self.output_device).mean() return self.gather(outputs, self.output_device) def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices=None): assert len(modules) == len(inputs) assert len(targets) == len(inputs) if kwargs_tup: assert len(modules) == len(kwargs_tup) else: kwargs_tup = ({},) * len(modules) if devices is not None: assert len(modules) == len(devices) else: devices = [None] * len(modules) lock = threading.Lock() results = {} grad_enabled = torch.is_grad_enabled() def _worker(i, module, input, target, kwargs, device=None): torch.set_grad_enabled(grad_enabled) if device is None: device = get_a_var(input).get_device() try: with torch.cuda.device(device): # this also avoids accidental slicing of `input` if it is a Tensor if not isinstance(input, (list, tuple)): input = (input,) if not isinstance(target, (list, tuple)): target = (target,) output = module(*(input + target), **kwargs) with lock: results[i] = output except Exception as e: with lock: results[i] = e if len(modules) > 1: threads = [threading.Thread(target=_worker, args=(i, module, input, target, kwargs, device),) for i, (module, input, target, kwargs, device) in enumerate(zip(modules, inputs, targets, kwargs_tup, devices))] for thread in threads: thread.start() for thread in threads: thread.join() else: _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0]) outputs = [] for i in range(len(inputs)): output = results[i] if isinstance(output, Exception): raise output outputs.append(output) return outputs ########################################################################### # Adapted from Synchronized-BatchNorm-PyTorch. # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch # class CallbackContext(object): pass def execute_replication_callbacks(modules): """ Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` Note that, as all modules are isomorphism, we assign each sub-module with a context (shared among multiple copies of this module on different devices). Through this context, different copies can share some information. We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback of any slave copies. """ master_copy = modules[0] nr_modules = len(list(master_copy.modules())) ctxs = [CallbackContext() for _ in range(nr_modules)] for i, module in enumerate(modules): for j, m in enumerate(module.modules()): if hasattr(m, '__data_parallel_replicate__'): m.__data_parallel_replicate__(ctxs[j], i) def patch_replication_callback(data_parallel): """ Monkey-patch an existing `DataParallel` object. Add the replication callback. Useful when you have customized `DataParallel` implementation. Examples: > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) > patch_replication_callback(sync_bn) # this is equivalent to > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) """ assert isinstance(data_parallel, DataParallel) old_replicate = data_parallel.replicate @functools.wraps(old_replicate) def new_replicate(module, device_ids): modules = old_replicate(module, device_ids) execute_replication_callbacks(modules) return modules data_parallel.replicate = new_replicate
[ "geopar@central.ntua.gr" ]
geopar@central.ntua.gr
a4aa71959c2f1c3dce79168ddb51c85bfaa1899c
cdee5cc20a5085b40f8555e7199fe19403e005c3
/experimental/graphicalClassification/MultiClassMajorityVote.py
e02402ed226105cb3faf7d5e5aab05424c9616b6
[ "Apache-2.0" ]
permissive
visenger/aggregation
1e908d11df701e900d94d6545f3cc35a6c7dc915
82dce87eaaf14b0b2bedd29fc82c026fda2a0138
refs/heads/master
2020-03-19T03:08:52.140663
2017-06-21T10:32:27
2017-06-21T10:32:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
638
py
#!/usr/bin/env python from __future__ import print_function __author__ = 'greghines' class MultiClassMajorityVote: def __init__(self,subjectNodes,userNodes): self.subjectNodes = subjectNodes self.userNodes = userNodes self.alpha = 0.6 def __classify__(self,attributeList): for att in attributeList: for user in self.userNodes: user.__changeClassificationAttributes__(att) for subject in self.subjectNodes: subject.__changeClassificationAttributes__(att) #what alpha value would this subject need to get correct positive?
[ "ggdhines@gmail.com" ]
ggdhines@gmail.com
a8ed54d16d183772b2a0c8c2adc1a98cc0b4f006
4aa464b9fe64e12527524ae46e3fd52d8b555232
/extractAndSplitSDF.py
85d25b4018b9abb8dfe1959bc85bd7a588962811
[]
no_license
amaunz/embrel
8ebf669a6835b982761b2f7e9bde9434e3fd85c9
683b01fec6e7fe2f022e615c4325811d8dc09d62
refs/heads/master
2020-05-15T13:17:32.389335
2009-06-20T16:10:28
2009-06-20T16:10:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,046
py
import sys import getopt import re import os import openbabel, pybel def setHash(hash,key,value,debug=False): if debug: print 'debug::%s' % key try: hash[key] = value except: print key pass class SDFReader: molecules = {} fieldStructure = {'animals' : ['Dog_Primates','Hamster','Mouse','Rat'],'cell' : ['MultiCellCall','SingleCellCall'],'muta' : ['Mutagenicity'],'td50' : ['mg','note','mmol'],'sex' : ['Female','Male','BothSexes'],'targetS' : ['Cynomolgus', 'Rhesus']} filename = '' def __init__(self, filename=None): if filename: molecules = [mol for mol in pybel.readfile("sdf", filename)] possibleFields = {} for mol in molecules: map(lambda x: setHash(possibleFields,x,1), mol.data) dataEntryKeys = possibleFields.keys() dataEntryKeys.sort() #for key in dataEntryKeys: # print key map(lambda x: setHash(self.molecules,x.data['STRUCTURE_InChIKey'],x), molecules) print len(self.molecules) self.filename = filename def getMolecules(self,what=('ActivityOutcome','Mouse'),activity=None,format='smi'): returnMols = [] returnActs = [] if what[0] == 'ActivityOutcome': mols = [] if not activity: for x in self.molecules: try: if self.molecules[x].data['ActivityOutcome_CPDBAS_%s' % (what[1])] != 'blank': mols.append(self.molecules[x]) except: pass else: for x in self.molecules: try: if self.molecules[x].data['ActivityOutcome_CPDBAS_%s' % (what[1])] == activity: mols.append(self.molecules[x]) except: pass returnMols = [] if format=='smi': returnMols = map(lambda x : '%s\t# CID=%s\tactivity=%s\n' % (x.write().strip(),x.data['DSSTox_CID'],x.data['ActivityOutcome_CPDBAS_%s' % (what[1])]), mols) elif format=='fminer': returnMols = map(lambda x : '%s\t%s\n' % (x.data['DSSTox_CID'], x.write().strip()), mols) endpoint = 'CPDBAS_%s' % (what[1]) returnActs = map(lambda x : '%s\t%s\t%s\n' % (x.data['DSSTox_CID'], endpoint ,((x.data['ActivityOutcome_CPDBAS_%s' % (what[1])]) == 'active' and '1' or '0')), mols) elif format=='sdf': returnMols = map(lambda x : '%s' % (x.write('sdf')), mols) #endpoint = 'CPDBAS_%s' % (what[1]) #returnActs = map(lambda x : '%s\t%s\t%s\n' % (x.data['DSSTox_CID'], endpoint ,((x.data['ActivityOutcome_CPDBAS_%s' % (what[1])]) == 'active' and '1' or '0')), mols) return (returnMols,returnActs) def writeMols(self,what=('ActivityOutcome','Mouse'),activity=None,format='smi'): nameStem = os.path.splitext(os.path.basename(self.filename))[0] outFilename = '%s_%s_%s' % (nameStem,what[0],what[1]) if activity != None: outFilename += '_%s' % (activity) outFilenameStructures = outFilename + '.%s' % (format) outFilenameActivities = outFilename + '.act' (mols,actvities) = self.getMolecules(what=what,activity=activity,format=format) fh = open(outFilenameStructures,'w') fh.writelines(mols) fh.close() if actvities: fh = open(outFilenameActivities,'w') fh.writelines(actvities) fh.close() sdf = SDFReader('../cpdb/dsstox/CPDBAS_v5d_1547_20Nov2008.sdf') #sdf.writeMols(format='fminer',activity='active') #sdf.writeMols(format='fminer',activity='inactive') #sdf.writeMols(format='fminer') sdf.writeMols(format='sdf',activity='inactive') #for mol in sdf.getMolecules(format='fminer',activity='inactive'): # print mol
[ "andreas@maunz.de" ]
andreas@maunz.de
596371fc40da72e9144ca944c568c4e424504ca9
7d7a50abe111fbd95ef0fcc89a89a891938627da
/halalapp/models.py
2b3b0449ff9cfe5655c2976df38e70f9e6fbf0e0
[]
no_license
YounngR/HalalApp
398e347dae2779b2e762d5f321887b6477774f1a
593e7f3375e3150957587dda0e1782a244caf153
refs/heads/master
2022-03-29T23:12:16.767267
2019-12-01T09:13:46
2019-12-01T09:13:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,137
py
from django.db import models class User(models.Model): user_ID = models.CharField(max_length=20, blank=False) user_PW = models.CharField(max_length=20, blank=False) e_mail = models.CharField(max_length=20, null=True, blank=False) phone_number = models.CharField(max_length=20, null=True, blank=False) adress = models.CharField(max_length=20, null=True, blank=False) user_date = models.DateTimeField(null=True, blank=False) user_gender = models.BooleanField(default=True) class Recipe(models.Model): user_ID = models.ForeignKey(User, on_delete=models.DO_NOTHING, null=True, blank=False) Recipe_name = models.CharField(max_length=20, blank=False) type_list = (('1','한식'), ('2','일식'),('3','중식'),('4','분식'),('5','야식'),('6','아시안')) type = models.CharField(max_length=20, choices=type_list, blank=False) Recipe_date = models.DateTimeField(null=True, blank=False) Recipe_image = models.ImageField(null=True, blank=True, default="photo") Recipe_etc = models.CharField(max_length=20, null=True, blank=False) Recipe_recommend = models.IntegerField(default=0)
[ "syr94@daum.net" ]
syr94@daum.net
a70c7ad6684dd6121db4c63219f381a8d520655e
eddb7468b7f1b54789893d509fbf119e0bbf1786
/fetcher/BlessFetcher.py
dfd28dc77348cc81ddf4145907bb26bade96698a
[]
no_license
destinationluo/wedding-invitation-analysis
e86f6568de96c2de2fb217de9f4af011c35d86fb
5762faad61a2181e22004f4f0b0de2117235944c
refs/heads/master
2020-04-10T13:54:04.040371
2018-12-13T16:00:44
2018-12-13T16:00:44
161,061,875
4
1
null
null
null
null
UTF-8
Python
false
false
351
py
# -*- coding: utf-8 -*- __author__ = 'luoqian' from datasource.MySQLUtil import * class BlessFetcher(object): def __init__(self, mysqlUtil: MySQLUtil): self.mysqlUtil = mysqlUtil def fetch(self, callback): sql = "SELECT * FROM bless order by id desc" self.mysqlUtil.executeQuery(sql, lambda data: callback(data))
[ "359583129@qq.com" ]
359583129@qq.com
bb9642dc5230886722fa77ed337f507f0a5ba8c9
c72f2ab329485a67ac57b19f40ec77ae37195e52
/tests/tools.py
eb91ba610df13cd4da8389cdbbf084031022c06b
[]
no_license
YiningGuo/Habit-Tracker
26ab2cfc15fa74610d2625f7850d3d32eef2aa4a
63883259ec8037206dd58ae7ed31e47c930d155f
refs/heads/master
2021-05-11T01:34:16.319350
2018-03-13T07:46:45
2018-03-13T07:46:45
118,332,341
0
0
null
null
null
null
UTF-8
Python
false
false
949
py
import os import sys import unittest from google.appengine.ext import testbed class TestTool(unittest.TestCase): """Test set up tools for unit testing""" lib_path = os.path.abspath(os.path.join(__file__, '..', '..', 'py')) sys.path.append(lib_path) test_email = "test@example.com" user_id = '123' def set_test(self): os.environ['ENV'] = 'prod' self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.setup_env(USER_EMAIL=self.test_email, USER_ID=self.user_id, USER_IS_ADMIN='1', overwrite=True) self.testbed.init_user_stub() self.testbed.init_datastore_v3_stub() self.testbed.init_memcache_stub() def tearDown(self): self.testbed.deactivate() def set_user(self, email, id): self.test_email = email self.user_id = id self.testbed.setup_env(USER_EMAIL=email, USER_ID=id) def set_non_admin(self): self.testbed.setup_env(USER_IS_ADMIN='0')
[ "yguo9310@uni.sydney.edu.au" ]
yguo9310@uni.sydney.edu.au
39ddeb9ad873ed4901adbf3640031f907f3503a3
2b5bc632859ca01b6b2feae6186b1314ed8c5187
/everpad/provider/daemon.py
5b6b49be3c92f2d0a2ee5e6669c92c7f6b8189b9
[]
no_license
mcardillo55/everpad
c64e2d35bd4ccceff901d9720030dbb8adfcef56
ab6271a5b73eedf81d0c31e351e567282dbd6685
refs/heads/master
2020-12-25T05:55:05.811394
2012-12-19T03:36:25
2012-12-19T03:36:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,175
py
import sys sys.path.insert(0, '../..') from everpad.provider.service import ProviderService from everpad.provider.sync import SyncThread from everpad.provider.tools import set_auth_token, get_db_session from everpad.tools import get_auth_token, print_version from everpad.provider import models from PySide.QtCore import Slot, QSettings import dbus import dbus.mainloop.glib import signal import fcntl import os import getpass import argparse if 'kde' in os.environ.get('DESKTOP_SESSION'): # kde init qwidget for wallet access from PySide.QtGui import QApplication App = QApplication else: from PySide.QtCore import QCoreApplication App = QCoreApplication class ProviderApp(App): def __init__(self, verbose, *args, **kwargs): App.__init__(self, *args, **kwargs) self.settings = QSettings('everpad', 'everpad-provider') self.verbose = verbose session_bus = dbus.SessionBus() self.bus = dbus.service.BusName("com.everpad.Provider", session_bus) self.service = ProviderService(self, session_bus, '/EverpadProvider') self.sync_thread = SyncThread(self) self.sync_thread.sync_state_changed.connect( Slot(int)(self.service.sync_state_changed), ) self.sync_thread.data_changed.connect( Slot()(self.service.data_changed), ) if get_auth_token(): self.sync_thread.start() self.service.qobject.authenticate_signal.connect( self.on_authenticated, ) self.service.qobject.remove_authenticate_signal.connect( self.on_remove_authenticated, ) @Slot(str) def on_authenticated(self, token): set_auth_token(token) self.sync_thread.start() @Slot() def on_remove_authenticated(self): self.sync_thread.quit() set_auth_token('') session = get_db_session() session.query(models.Note).delete( synchronize_session='fetch', ) session.query(models.Resource).delete( synchronize_session='fetch', ) session.query(models.Notebook).delete( synchronize_session='fetch', ) session.query(models.Tag).delete( synchronize_session='fetch', ) session.commit() def log(self, data): if self.verbose: print data def main(): signal.signal(signal.SIGINT, signal.SIG_DFL) fp = open('/tmp/everpad-provider-%s.lock' % getpass.getuser(), 'w') fcntl.lockf(fp, fcntl.LOCK_EX | fcntl.LOCK_NB) try: os.mkdir(os.path.expanduser('~/.everpad/')) os.mkdir(os.path.expanduser('~/.everpad/data/')) except OSError: pass parser = argparse.ArgumentParser() parser.add_argument('--verbose', action='store_true', help='verbose output') parser.add_argument('--version', '-v', action='store_true', help='show version') args = parser.parse_args(sys.argv[1:]) if args.version: print_version() dbus.mainloop.glib.DBusGMainLoop(set_as_default=True) app = ProviderApp(args.verbose, sys.argv) app.exec_() if __name__ == '__main__': main()
[ "nvbn.rm@gmail.com" ]
nvbn.rm@gmail.com
4726012f426c9e8943505c2ecbca998aa912a06a
246e9200a834261eebcf1aaa54da5080981a24ea
/project-euler/26-50/distinct-powers.py
548316d3dcc396ed31b53767aa4519b6d076d20d
[]
no_license
kalsotra2001/practice
db435514b7b57ce549b96a8baf64fad8f579da18
bbc8a458718ad875ce5b7caa0e56afe94ae6fa68
refs/heads/master
2021-12-15T20:48:21.186658
2017-09-07T23:01:56
2017-09-07T23:01:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
powers = set() for i in range(2, 101): for j in range(2, 101): powers.add(i ** j) print len(powers)
[ "jacquelineluo95@gmail.com" ]
jacquelineluo95@gmail.com
08de3983cade375a46349f7de656f9ca3a921a9e
89b45e528f3d495f1dd6f5bcdd1a38ff96870e25
/PythonCrashCourse/chapter_06/exercise6_05.py
b03a04f3a086ec1337414ecd27d147eb1ba55d24
[]
no_license
imatyukin/python
2ec6e712d4d988335fc815c7f8da049968cc1161
58e72e43c835fa96fb2e8e800fe1a370c7328a39
refs/heads/master
2023-07-21T13:00:31.433336
2022-08-24T13:34:32
2022-08-24T13:34:32
98,356,174
2
0
null
2023-07-16T02:31:48
2017-07-25T22:45:29
Python
UTF-8
Python
false
false
660
py
#!/usr/bin/env python3 rivers = { 'amazon': 'brasil', 'nile': 'egypt', 'mississippi': 'usa', } for river, country in rivers.items(): if river == 'mississippi': print("The " + river.title() + " runs through " + country.upper() + ".") else: print("The " + river.title() + " runs through " + country.title() + ".") print("\nThe following rivers have been mentioned:") for river in set(rivers.keys()): print(river.title()) print("\nThe following countries have been mentioned:") for country in set(rivers.values()): if country == 'usa': print(country.upper()) else: print(country.title())
[ "i.matukin@gmail.com" ]
i.matukin@gmail.com
5455de00b15db2d7287cf466dab2e7fcaf5920cb
9bc780c6414ce29fde8c8294db88a2464b563a59
/myst/wsgi.py
a317d395bcdad76cde1aa1d4e78cca2452abc915
[]
no_license
me3onik/test
36d63105c9193971f59b4905cac7aadd740aa76f
b5057ef8a0e20c37b7cadcddb9e80b5cc20113e9
refs/heads/master
2020-05-26T08:09:12.176370
2019-06-13T07:55:29
2019-06-13T07:55:29
188,161,875
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
""" WSGI config for myst project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myst.settings') application = get_wsgi_application()
[ "me3onik@gmail.com" ]
me3onik@gmail.com
b07e20842b46cac3da56fd62ca2c28f96062795b
f34184e6060b58680a9768c58f53e10ca17a0dc3
/manage.py
894acc68496b98d22c16a94be490e713ff01efaa
[]
no_license
ExtremelySeriousChicken/instaTravel
ee150249e6a4d061bfff1ec7f3ffa4ee11fff036
d4dbb61ccea838197639f872cdfcd96af61eb91f
refs/heads/master
2021-01-16T21:27:29.566892
2015-09-30T21:42:21
2015-09-30T21:42:21
42,782,219
1
0
null
null
null
null
UTF-8
Python
false
false
197
py
#!/usr/bin/env python import os from app import create_app from flask.ext.script import Manager, Shell app = create_app('default') manager = Manager(app) if __name__ == '__main__': manager.run()
[ "wijaya@umich.edu" ]
wijaya@umich.edu
8ac9678fb6079ee9bfdb77dac2a762f5d30f718e
2f1e83dc48cca5c14fad53ad95a4b920756508e4
/src/z3c/menu/simple/menu.py
02483430e7ffc333cd90b1dee8efeaea95e67078
[ "ZPL-2.1" ]
permissive
ZeitOnline/z3c.menu.simple
c5839c70a3eaccc3c8a1a2f1e72de96b030f7176
fc6f8ce8fddb5918a18e997e3adb53a58547b419
refs/heads/main
2023-02-22T19:45:47.983639
2019-12-12T10:14:33
2019-12-12T10:14:33
220,233,855
0
0
null
null
null
null
UTF-8
Python
false
false
6,017
py
############################################################################## # # Copyright (c) 2005 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ $Id: menu.py 114728 2010-07-14 06:53:53Z icemac $ """ __docformat__ = 'restructuredtext' import zope.component import zope.interface from zope.contentprovider.interfaces import IContentProvider from zope.viewlet import viewlet from zope.viewlet import manager from zope.app.component import hooks from zope.app.publisher.interfaces.browser import IBrowserMenu from zope.browserpage.viewpagetemplatefile import ViewPageTemplateFile from zope.traversing.browser.absoluteurl import absoluteURL from z3c.i18n import MessageFactory as _ from z3c.menu.simple.interfaces import ISimpleMenuItem from z3c.menu.simple.interfaces import ITabMenu from z3c.menu.simple.interfaces import ITab from z3c.menu.simple.interfaces import IAction # ISimpleMenuItem implementation @zope.interface.implementer(ISimpleMenuItem) class SimpleMenuItem(viewlet.ViewletBase): """Selectable menu item.""" template = ViewPageTemplateFile('menu_item.pt') selectedViewNames = None activeCSS = u'active-menu-item' inActiveCSS = u'inactive-menu-item' @property def title(self): return _(self.__name__) @property def url(self): return u'' @property def extras(self): return {} @property def selected(self): name = self.__parent__.__name__ if self.selectedViewNames is None: if name == self.url: return True elif name in self.selectedViewNames: return True return False @property def css(self): if self.selected: return self.activeCSS else: return self.inActiveCSS def render(self): """Return the template with the option 'menus'""" return self.template() class ContextMenuItem(SimpleMenuItem): """Menu item viewlet generating context related links.""" urlEndings = [] viewURL = u'' @property def selected(self): requestURL = self.request.getURL() for urlEnding in self.urlEndings: if requestURL.endswith(urlEnding): return True return False @property def url(self): contextURL = absoluteURL(self.context, self.request) return contextURL + '/' + self.viewURL class GlobalMenuItem(SimpleMenuItem): """Menu item viewlet generating global/site related links.""" urlEndings = [] viewURL = u'' @property def selected(self): requestURL = self.request.getURL() for urlEnding in self.urlEndings: if requestURL.endswith(urlEnding): return True return False @property def url(self): siteURL = absoluteURL(hooks.getSite(), self.request) return siteURL + '/' + self.viewURL # ITabMenu implementation @zope.interface.implementer(ITabMenu) class TabMenu(object): """Tab menu offering tabs and actions.""" def __init__(self, context, request, view): self.__parent__ = view self.context = context self.request = request def update(self): """See zope.contentprovider.interfaces.IContentProvider""" self.tabs = zope.component.queryMultiAdapter( (self.context, self.request, self.__parent__), IContentProvider, 'ITab') if self.tabs is not None: self.tabs.update() self.actions = zope.component.queryMultiAdapter( (self.context, self.request, self.__parent__), IContentProvider, 'IAction') if self.actions is not None: self.actions.update() def render(self): """See zope.contentprovider.interfaces.IContentProvider""" result = u'' if self.tabs is not None: result += self.tabs.render() if self.actions is not None: result += self.actions.render() return result @zope.interface.implementer(ITab) class Tab(manager.WeightOrderedViewletManager): """Tab Menu""" def render(self): """Return the template with the option 'menus'""" if not self.viewlets: return u'' return self.template() @zope.interface.implementer(ISimpleMenuItem) class TabItem(SimpleMenuItem): """Base implementation for menu items.""" template = ViewPageTemplateFile('tab_item.pt') @zope.interface.implementer(IAction) class Action(manager.WeightOrderedViewletManager): """Action Menu""" def render(self): """Return the template with the option 'menus'""" if not self.viewlets: return u'' return self.template() @zope.interface.implementer(ISimpleMenuItem) class ActionItem(SimpleMenuItem): """Base implementation for action items.""" template = ViewPageTemplateFile('action_item.pt') class BrowserMenu(TabMenu): """Menu Action Menu Items A special tab menu, which takes its items from a browser menu """ template = ViewPageTemplateFile('browser_menu_action_item.pt') # This is the name of the menu menuId = None def update(self): menu = zope.component.getUtility(IBrowserMenu, self.menuId) self.title = menu.title self.menuItems = menu.getMenuItems(self.context, self.request) def render(self): """Return the template with the option 'menus'""" if not self.menuItems: return u'' return self.template()
[ "tom.lazar@zeit.de" ]
tom.lazar@zeit.de