blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
1d79b7801e234433e8bc93bd5f80827c3dfe3bb1
5bc2e45a8e8c256ab8ed332ebc5323eaac6631eb
/bandit/arch/analyzer/base_analyzer.py
64c6f93d9efdb8dffd3ae2e40a03c166f2a16775
[]
no_license
ru-fix/permanent_predictor
1ed4a31cdaaf42ec8e882d679ff68522845138cc
a7662d31f887a5a5edb45e7114a281ba039b8884
refs/heads/master
2023-06-01T01:28:59.580346
2021-06-22T21:16:09
2021-06-22T21:16:09
379,379,745
0
0
null
null
null
null
UTF-8
Python
false
false
5,833
py
from plotly.graph_objects import Figure from arch.analyzer.utils.graphic_container import GraphicContainer from consts import html_bases class BaseAnalyzer: def __init__(self, **kwargs): for key in kwargs: setattr(self, key, kwargs[key]) def __format_graphics(self, metrics): graphics = {} for metric_name, metric_data in metrics.results.items(): if metric_name in self.graphics_params: graphics[metric_name] = GraphicContainer( metric_data, self.graphics_params[metric_name], self.default_graphics_params, metrics.params[metric_name], metric_name, metrics.experiment_name ) return graphics def __recursive_dropdown_build(self, current_key, key, dropdown_item, graphic_name): # leaf nodes if isinstance(dropdown_item, Figure): return current_key, key, html_bases.wrap_into_div( graphic_name+current_key, dropdown_item.to_html( include_plotlyjs=False, full_html=False)) # recursion current_level_dropdown_ids = [] current_level_dropdown_keys = [] current_level_dropdown_items = [] for index, (key, content) in enumerate(dropdown_item.items()): full_ids, level_ids, item_htmls = self.__recursive_dropdown_build( current_key + "_" + key, key, content, graphic_name ) # inner result if isinstance(full_ids, list): # we need all full ids current_level_dropdown_ids += full_ids if index == 0: level_ids.append(list(dropdown_item.keys())) current_level_dropdown_keys = level_ids # leaf result else: # get only first child info if index == 0: current_level_dropdown_ids = [[current_key + "_" + key for key in dropdown_item.keys()]] current_level_dropdown_keys = [[key for key in dropdown_item.keys()]] current_level_dropdown_items.append(item_htmls) return current_level_dropdown_ids, current_level_dropdown_keys, "\n".join(current_level_dropdown_items) def __build_html(self, graphics): # creating script html_script = html_bases.wrap_into_script( "\n".join(base.get_html_element_script() for base in [html_bases.Script, html_bases.Buttons, html_bases.Dropdown]) ) html_style = html_bases.Style.get_html_element_base() graphic_group_prefix = "graphic_group" graphic_groups = [f"{graphic_group_prefix}_{key}" for key in graphics.keys()] html_body = [html_bases.Buttons.get_html_element_base(graphic_groups, graphics.keys(), graphic_group_prefix)] for graphic_group_index, (graphic_name, graphic) in enumerate(graphics.items()): div_graphic_id = f"{graphic_name}_graph" content = graphic.get() if isinstance(content, dict): dropdown_full_ids, dropdowns_values, graphic_html = self.__recursive_dropdown_build("", "", content, div_graphic_id) dropdowns_values.reverse() dropdowns = [] for index, dropdown_type_values in enumerate(dropdowns_values): dropdown_id = f"{div_graphic_id}_{index}" dropdown = html_bases.Dropdown.get_html_element_base(dropdown_type_values, dropdown_id, div_graphic_id) dropdowns.append(dropdown) dropdowns = "\n".join(dropdowns) graphic_html = '\n'.join([dropdowns, graphic_html]) else: graphic_html = content.to_html( include_plotlyjs=False, full_html=False ) html_body.append(html_bases.wrap_into_div(graphic_groups[graphic_group_index], graphic_html)) result_html_body = html_bases.wrap_into_body('\n'.join(html_body)) result_head = html_bases.wrap_into_head('\n'.join([html_style, html_script])) result_html = html_bases.wrap_into_html('\n'.join([result_head, result_html_body])) return result_html def build(self, metrics_path): metrics = self.state_handler.load_metrics_data(metrics_path) graphics = self.__format_graphics(metrics) html = self.__build_html(graphics) self.state_handler.save_experiment(graphics, html, metrics.run_name, metrics.experiment_name) def compare_experiments(self, analyze_name, run_name, experiment_locations): experiments_graphics = self.state_handler.load_experiments_graphics(experiment_locations) compare_graphics = {} for experiment_name, experiment_graphics in experiments_graphics.items(): for metric_name, experiment_graphic in experiment_graphics.items(): if metric_name not in compare_graphics: experiment_graphic.update_graphic_params( self.default_compare_graphics_params ) if metric_name in self.compare_graphics_params: experiment_graphic.update_graphic_params( self.compare_graphics_params[metric_name] ) compare_graphics[metric_name] = experiment_graphic else: compare_graphics[metric_name].add(experiment_name, experiment_graphic) html = self.__build_html(compare_graphics) self.state_handler.save_analyze(html, analyze_name, run_name)
[ "rduryagin@fix.ru" ]
rduryagin@fix.ru
eacf58fddef56680e7da230bfefdd089d05d179f
b786ad8fdf75f0e132affd40de5a6809628fa071
/venv/Scripts/easy_install-script.py
6ef1646d4956685bccb239122bfeb7fa8863c96a
[]
no_license
Bhuvan-Rm/WebScraping
e703c673b321cad716f6289248a1cb1d55434f7f
9a3f1c967d7e3dba82a975a72913902774c914c1
refs/heads/master
2020-09-07T11:32:10.197385
2019-12-14T09:56:36
2019-12-14T09:56:36
220,765,917
0
0
null
null
null
null
UTF-8
Python
false
false
442
py
#!A:\PycharmProjects\WebScraping\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
[ "bhuvaneshrm@gmail.com" ]
bhuvaneshrm@gmail.com
e35ef6540b47da980333bbf7d153523adc956efb
eb2b13d90d54e6e1e7f348b34e23f19bdbca9e90
/9_class.py
a3e5c7569600970550504b29070a609f43c5584d
[]
no_license
diassor/platzi_pyhton_2019
6df0d4d9a996ee454aac05f88e1d5c5aff7e8f76
fdf74d41f6077069cdad8f8df291315d86783b40
refs/heads/master
2020-04-20T10:37:02.171540
2019-03-10T04:07:47
2019-03-10T04:07:47
168,794,052
1
0
null
null
null
null
UTF-8
Python
false
false
2,662
py
# -*- coding: utf-8 -*- """ Las funciones Las funciones es lo mas importante en la programacion En el contexto de la programación, una función es una secuencia enunciados (statements) con un nombre que realizan un cómputo Una función tiene un nombre, parámetros (opcional) y valor de regreso (return value)(opcional) Python incluye varias built-in functions en su librería estándar En el contexto de la programacion las funciones son una agrupacion de statements de enunciados que tienen un nombre Por que agrupamos nuestras funciones ? El nombre de las funciones deben ser descriptivos es muy importante Deben terner parametros (opcional) Que es lo que recive y puede regresar un valor Python() es uno de los lenguajes que se conocen como Battery include con baterias includas tiene muchas librerias para ser usadas Las funciones (Built-in functions) es una lista de constructores de funciones (https://docs.python.org/3/library/functions.html) aqui dejo el link de la informacion de las funciones de los constructores Para declarar otras funciones debemos declarar (un modulo) Otras funciones se pueden encontrar en módulos ○ Para utilizarlas es necesario importar el módulo ■ Ej. import math Para declarar una función, utilizamos el keyword def ○ Ej. def my_fuction(first_arg, second_arg=None) Las funciones se pueden componer. ○ Ej. def sum_two_numbers(x, y): return x + y other_function(sum_two_numbers(3, 4)) Ejemplo el metodo math que es para ecuaciones matematicas las funciones se pueden componer osea hacer una funcion y pasar este valor a otra funcion El orden las funciones es de arriba to down and left to right Los argumentos pueden ser posicionales(positional arguments) o con nombre (named arguments) *Los parametros y variables son locales a la funcion ~ global keyword fin del comunicado # ejecutando desde la shell >>> type(1) <class 'int'> >>> un_entero = int('5') comillas simples es un str >>> print(un_entero) pero la funcion int lo combierte 5 en un entero >>> type(5) <class 'int'> >>> >>> a = bool('a') Booleano >>> print(a) True >>> a = float(3) Flotante >>> print(a) 3.0 >>> type(a) <class 'float'> >>> def suma_de_dos_numeros(x, y): funcion ... return x + y ... >>> suma_de_dos_numeros(10, 15) 25 >>> type(suma_de_dos_numeros) <class 'function'> >>> suma_total = suma_de_dos_numeros(10, 15) tipo entero >>> print(suma_total) 25 >>> type(suma_total) <class 'int'> """
[ "gruasedwin@gmail.com" ]
gruasedwin@gmail.com
2bc9a632cf25a60f9ffb85dca3488916585b641e
732cf97fdd3b730938ed8fc383d8f6b0c82625bf
/examples/04_decoding/plot_discrete_decoders.py
e0b2aac1bf698e1a1b37b1cbe4e19b3321238f4a
[ "MIT" ]
permissive
akimbler/NiMARE
6c76980d0a008e99a6e2533e4b89de8d96f59ae1
717697035b04ff0244aa4aa170f5aa16a9fba69a
refs/heads/master
2022-12-09T05:17:22.041543
2020-08-08T21:10:07
2020-08-08T21:10:07
286,131,857
0
0
MIT
2020-08-08T23:00:19
2020-08-08T23:00:19
null
UTF-8
Python
false
false
2,291
py
# emacs: -*- mode: python-mode; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: """ .. _decode1: ============================================================== Decode regions of interest and subsets of Datasets ============================================================== We can use the methods in ``nimare.decode.discrete`` to apply functional characterization analysis to regions of interest or subsets of the Dataset. """ import os import numpy as np import pandas as pd import nibabel as nib from nilearn.plotting import plot_stat_map, plot_roi import nimare from nimare.decode import discrete from nimare.tests.utils import get_test_data_path ############################################################################### # Load dataset with abstracts # --------------------------- # We'll load a small dataset composed only of studies in Neurosynth with # Angela Laird as a coauthor, for the sake of speed. dset = nimare.dataset.Dataset.load( os.path.join(get_test_data_path(), 'neurosynth_laird_studies.pkl.gz')) dset.annotations.head(5) ############################################################################### # Create a region of interest # ------------------------------------------- # First we'll make an ROI arr = np.zeros(dset.masker.mask_img.shape, int) arr[65:75, 50:60, 50:60] = 1 mask_img = nib.Nifti1Image(arr, dset.masker.mask_img.affine) plot_roi(mask_img, draw_cross=False) # Get studies with voxels in the mask ids = dset.get_studies_by_mask(mask_img) ############################################################################### # Decode an ROI image using the Neurosynth method # ----------------------------------------------- # Run the decoder decoder = discrete.NeurosynthDecoder(correction=None) decoder.fit(dset) decoded_df = decoder.transform(ids=ids) decoded_df.sort_values(by='probReverse', ascending=False).head() ############################################################################### # Decode an ROI image using the BrainMap method # ----------------------------------------------- # Run the decoder decoder = discrete.BrainMapDecoder(correction=None) decoder.fit(dset) decoded_df = decoder.transform(ids=ids) decoded_df.sort_values(by='probReverse', ascending=False).head()
[ "noreply@github.com" ]
akimbler.noreply@github.com
087e986ecd374552b6acb1cab52581815e712c5e
573f1901b444e35a616f10923751a52ffe1d66a3
/combine-audio-video/cmdline_merging.py
ba98b96a23885e1ae2d240756422375ac318113b
[ "MIT" ]
permissive
dracogamer123/pytube-implementation
9d6280efec214c3b76b3e9003dc3f2a2f8db5b1e
84c856441f91b0f15e9ec6918e879e0c720c42a7
refs/heads/master
2023-08-25T10:37:10.670027
2021-10-19T01:47:46
2021-10-19T01:47:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
881
py
from pytube import YouTube def copy(video_path, audio_path, name, final_path): """ FFMPEG-COPY ------ video_path: path of video on disk audio_path: path of audio on disk name: name of output file final_path: path of output video on disk """ import ffmpeg video = ffmpeg.input(audio_path) audio = ffmpeg.input(video_path) ( ffmpeg .output(audio, video, f'{name}.mp4', acodec='copy', vcodec='copy') .run() ) def interface(): print("Welcome to the Pytube Downloader!") url = input("URL: ") yt = YouTube(url) yt.streams.get_highest_resolution.download( output_path='/media/pranav/240GB SSD/Youtube Project/Pytube/code/src/downloads') yt.streams.get_by_itag(139).download( output_path='/media/pranav/240GB SSD/Youtube Project/Pytube/code/src/downloads') interface()
[ "technotebook@yahoo.com" ]
technotebook@yahoo.com
240e21a8d399705b7c01de6ad24a1a73c2a7b0ad
baa9b9544c9e69c8ccd732c47de16f19247e91dd
/model/trainer.py
1c705156805175156653e4ad9e47eae2e3c5c90d
[]
no_license
amirveyseh/rumor-
d2a20e29a657c08e6de07113a9c64f2f5155ec08
ce501f2827d3b9de076b4607b080c7f87376d5a4
refs/heads/master
2020-06-07T12:09:17.683256
2019-06-21T02:56:06
2019-06-21T02:56:06
193,019,151
0
0
null
null
null
null
UTF-8
Python
false
false
4,167
py
""" A trainer class. """ import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from model.gcn import GCNClassifier from utils import constant, torch_utils class Trainer(object): def __init__(self, opt, emb_matrix=None): raise NotImplementedError def update(self, batch): raise NotImplementedError def predict(self, batch): raise NotImplementedError def update_lr(self, new_lr): torch_utils.change_lr(self.optimizer, new_lr) def load(self, filename): try: checkpoint = torch.load(filename) except BaseException: print("Cannot load model from {}".format(filename)) exit() self.model.load_state_dict(checkpoint['model']) self.opt = checkpoint['config'] def save(self, filename, epoch): params = { 'model': self.model.state_dict(), 'config': self.opt, } try: torch.save(params, filename) print("model saved to {}".format(filename)) except BaseException: print("[Warning: Saving failed... continuing anyway.]") def unpack_batch(batch, cuda): inputs = [Variable(b).cuda() for b in batch[:10]] labels = Variable(batch[10]).cuda() lens = batch[1].eq(0).long().sum(2).squeeze() return inputs, labels, lens class GCNTrainer(Trainer): def __init__(self, opt, emb_matrix=None): self.opt = opt self.emb_matrix = emb_matrix self.model = GCNClassifier(opt, emb_matrix=emb_matrix) self.criterion = nn.CrossEntropyLoss() self.parameters = [p for p in self.model.parameters() if p.requires_grad] if opt['cuda']: self.model.cuda() self.criterion.cuda() self.optimizer = torch_utils.get_optimizer(opt['optim'], self.parameters, opt['lr']) def update(self, batch): inputs, labels, lens = unpack_batch(batch, self.opt['cuda']) # step forward self.model.train() self.optimizer.zero_grad() logits, pooling_output, g, sparse_graph, c1, c2 = self.model(inputs) loss = self.criterion(logits, labels) # l2 decay on all conv layers if self.opt.get('conv_l2', 0) > 0: loss += self.model.conv_l2() * self.opt['conv_l2'] # l2 penalty on output representations # if self.opt.get('pooling_l2', 0) > 0: # loss += self.opt['pooling_l2'] * (pooling_output ** 2).sum(1).mean() # loss += 0.0000001 * self.hloss(g.view(-1,g.shape[1])) # loss += 0.0000000001 * torch.norm(torch.abs(g.view(-1, g.shape[-1])-sparse_graph.view(-1, sparse_graph.shape[-1]))) # c1l = c1.pow(2).sum(1).sqrt().unsqueeze(1) # c2l = c2.pow(2).sum(1).sqrt().unsqueeze(1) # loss_pred = -(torch.mm(c1, c2.transpose(0,1)) / torch.mm(c1l, c2l.transpose(0,1))).diag().abs().mean() + (c1l-c2l).abs().mean() c2 = torch.max(c2, 1)[1] loss_pred = self.criterion(c1, c2) loss += loss_pred loss_val = loss.item() # backward loss.backward() torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.opt['max_grad_norm']) self.optimizer.step() return loss_val, loss_pred.item() def predict(self, batch, unsort=True): inputs, labels, lens = unpack_batch(batch, self.opt['cuda']) # orig_idx = batch[11] # forward self.model.eval() logits, _, _, _, _, _ = self.model(inputs) loss = self.criterion(logits, labels) probs = F.softmax(logits, 1).data.cpu().numpy().tolist() predictions = np.argmax(logits.data.cpu().numpy(), axis=1).tolist() # if unsort: # _, predictions, probs = [list(t) for t in zip(*sorted(zip(orig_idx,\ # predictions, probs)))] return predictions, probs, loss.item() class HLoss(nn.Module): def __init__(self): super(HLoss, self).__init__() def forward(self, x): b = x * torch.log(x.clamp(min=1e-8)) b = -1.0 * b.sum(1) return b.mean()
[ "apouranb@iq.cs.uoregon.edu" ]
apouranb@iq.cs.uoregon.edu
ede5626aeb578a8f801688300ee8b55922c731a5
36e66b509260bf15266f89a7bcbbc8bc5a413d7f
/SinglePageApplication/SinglePageApplication/wsgi.py
412a6dd818aae42656f691bdaca7c55df352fc06
[]
no_license
Asdor1996/TestTable
66c18f54822bc55f71b95a55be2606c0d8cfdf32
09ba885af293743d3246fc03fcc34fa4bc5d7781
refs/heads/master
2023-04-24T06:40:46.580063
2021-05-18T12:42:22
2021-05-18T12:42:22
368,520,122
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
""" WSGI config for SinglePageApplication project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'SinglePageApplication.settings') application = get_wsgi_application()
[ "quazun@yandex.ru" ]
quazun@yandex.ru
b104fecc770ce509c27e2eec648f77b12ab83bd8
3b92548f49ead02f3655efc2f867659706dbfa59
/MidExamSimulation/Practice/2.py
e3925d331872a091ef058586572f76e15367991e
[]
no_license
hengkysanjaya123/Computational_Mathematic
f50c651bbbfb0d46f92ee10b25a1e28cc671b27e
566a827936a971aff1bf0111d184a165db84b46c
refs/heads/master
2020-05-09T10:10:56.313919
2019-07-08T12:40:30
2019-07-08T12:40:30
181,025,715
0
0
null
null
null
null
UTF-8
Python
false
false
1,144
py
import numpy as np import matplotlib.pyplot as plt data = [ 5.5, 1.1, 6.5, 4.9, 6.4, 7.0, 1.5, 5.7, 5.9, 5.4, 6.1, 1.2, 7.3, 6.1, 4.4, ] x = [1]*len(data) print(x) # x = [1, 10, 50] # y = [2, 5, 20] # plt.plot(x, y, 'red') # plt.plot(x, y, 'bo') # # plt.plot(x, y, color='green', marker='o', linestyle='dashed' # , linewidth=2,markersize=12) # plt.plot('xlabel', 'ylabel', data=x) #https://www.machinelearningplus.com/plots/top-50-matplotlib-visualizations-the-master-plots-python/ # plt.scatter(x, data, alpha=0.8, c='red') minimum = np.min(data) maximum = np.max(data) median = np.median(data) arrayInfo = [minimum, maximum, median] ax1 = plt.subplot2grid((1, 1), (0, 0)) for i in range(0,15): plt.plot(2, data[i], 'co') plt.errorbar(3, arrayInfo, marker="^") plt.boxplot(data, positions=[4]) plt.xticks([1, 2, 3, 4], ["","Data", "Error Bar", "Boxplot"]) ax1.spines['bottom'].set_color('w') ax1.spines['top'].set_color('w') ax1.spines['right'].set_color('w') ax1.spines['left'].set_color('w') ax = plt.gca() ax.grid(True, color='w', alpha=0.3) ax1.set_facecolor('lightgrey') plt.show()
[ "hengkysanjaya204@gmail.com" ]
hengkysanjaya204@gmail.com
013b58beacb2a8913cad6063f400be40ffbc1cd4
a96874d67911e51e60e903776264350887e8e486
/first poroject
1ba8f1305b5518116d47c616486a06382bfd9016
[]
no_license
MRALAMs/first-project
284c1f72056f22ee60723805a888eef9436282a2
7db00d4b99a32b21e89979e4ccabc21b22f7abfb
refs/heads/master
2022-11-11T10:52:09.294997
2020-07-02T08:58:01
2020-07-02T08:58:01
276,602,043
0
0
null
null
null
null
UTF-8
Python
false
false
364
#! /usr/bin/python3 def moadel(math,physics,dini,exersise): return ((int(math)*3)+(int(physics)*4)+(int(dini)*2)+(int(exersise)*1))*0.1 mylist =["reza","ali","mohamad"] for i in range(len(mylist)): a=input("math score ? ") b=input("physics score ? ") c=input("dini score ? ") d=input("exersise score ?") print (mylist[i],moadel(a,b,c,d))
[ "mr.alamshah222@gmail.com" ]
mr.alamshah222@gmail.com
046a3e964f46637b57ab5238becb3ebecbc1227f
a9878b55be543468cc94758cac5544a48100fa14
/TreeIntro.py
730647e3d35b997e27b88da1788871f56ea3db7b
[]
no_license
Vishalkapoor123/Data-Structures-and-Algorithms
b1e392bc189b831f0641c82bc3fd3bf91a984882
1a0048d1ed0843cebc7dfaa72901b3e0a24bbc29
refs/heads/master
2023-09-02T14:36:15.446584
2021-10-30T13:23:53
2021-10-30T13:23:53
417,809,457
0
0
null
null
null
null
UTF-8
Python
false
false
2,967
py
class Node: def __init__(self, data): self.data = data self.left = None self.right = None class BinaryTree: def __init__(self, data): self.root = Node(data) #Internal insert methpd i.e. not client facing def insert(self, root, data): newNode = Node(data) if(root == None): return newNode if(data < root.data): root.left = self.insert(root.left, data) elif(data > root.data): root.right = self.insert(root.right, data) elif(data == root.data): return root return root #Cliennt facing method def insert_client(self, data): temp = self.root self.root = self.insert(temp,data) def search(self, data): temp = self.root while(temp): if(temp.data == data): return True elif(temp.data > data): temp = temp.left elif(temp.data < data): temp = temp.right if(temp == None): return False def min(self, root): if(root.left==None): return root elif(root.left): return self.min(root.left) def min_client(self): temp=self.root return self.min(temp) def deleteMin(self,root): if(root.left==None): return root.right root.left = self.deleteMin(root.left) return root #Internal delete method i.e. not client facing def delete(self, root, data): if(root == None): return None if(root.data<data): root.left = self.delete(root.left , data) elif(root.data > data): root.right = self.delete(root.right, data) else: temp = root root = self.min(temp.right) root.right = self.deleteMin(temp.right) root.left = temp.left return root #Cliennt facing delete method def delete_client(self, data): temp = self.root self.root = self.delete(temp,data) def test(self): print(self.root.left.data) print(self.root.left.left.data) #Internal method def inorder(self, root): if(root.left): self.inorder(root.left) print(root.data) if(root.right): self.inorder(root.right) #Client facing inorder method def inorder_client(self): self.inorder(self.root) ################################Starter code ################################ if __name__ == '__main__': tree = BinaryTree(5) tree.insert_client(1) tree.insert_client(10) tree.insert_client(3) tree.insert_client(7) tree.insert_client(0) tree.insert_client(11) tree.inorder_client() # tree.test() print(tree.search(1)) tree.delete_client(5) print("minimum {}".format(tree.min_client().data)) tree.inorder_client()
[ "vishal.kapoor@cgi.com" ]
vishal.kapoor@cgi.com
7cdb29f9b285de5b818b392bf4e6f7bffb440a44
ed6fb97371218d6c7e779280924ca14ccfa8921c
/iris/utils/logging.py
4bbc7ba540044c5b5c820cfc615d68b5e51cfc03
[ "Apache-2.0" ]
permissive
lowks/lymph
d27e35d94f47836ac770158651db74e59aacd170
b4c68feb603b2c5347aaa61e112328eb82c22061
refs/heads/master
2020-12-25T16:02:43.004588
2014-06-25T09:25:31
2014-06-25T09:25:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
from __future__ import absolute_import import logging import six import zmq.green as zmq from iris.utils.sockets import bind_zmq_socket def get_loglevel(level_name): level = level_name.upper() if level not in ('DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'): raise ValueError("unknown loglevel: %s" % level) return getattr(logging, level) class PubLogHandler(logging.Handler): def __init__(self, endpoint): super(PubLogHandler, self).__init__() ctx = zmq.Context.instance() self.socket = ctx.socket(zmq.PUB) self.endpoint, port = bind_zmq_socket(self.socket, endpoint) def emit(self, record): topic = record.levelname self.socket.send_multipart([ _encode(topic), _encode(self.endpoint), _encode(self.format(record))]) def _encode(potentially_text, encoding='utf-8'): if isinstance(potentially_text, six.text_type): return potentially_text.encode(encoding) return potentially_text
[ "johannes.dollinger@deliveryhero.com" ]
johannes.dollinger@deliveryhero.com
ac365906676b84c1bb52b685f557dc14488325b5
57cf4f1a6da938b630039b2cab2ada2d017af82e
/clothing/migrations/0002_clothingitem_owner.py
eb6ae2805f508d12adac155523d61f125fcfdf23
[ "MIT" ]
permissive
shailevi23/iWear
babe5eb5bb281037bb9c434d25aac1e30185bcd8
4f28fd4aa4cc1a50695412bdf21fa5a0f174d554
refs/heads/main
2023-09-04T00:11:51.970694
2021-11-08T09:09:29
2021-11-08T09:09:29
425,762,550
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
# Generated by Django 3.2.5 on 2021-07-28 19:14 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('clothing', '0001_initial'), ] operations = [ migrations.AddField( model_name='clothingitem', name='owner', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='Item_owner', to=settings.AUTH_USER_MODEL), ), ]
[ "aharoni94@gmail.com" ]
aharoni94@gmail.com
16b96c658327248f2648d6e852c807401832b0b5
775fdf65590a4947bbbc4055e25f914577e730fd
/字符串格式化.py
f53a071a4be425978cf2a89815af8edbc52b7d83
[]
no_license
focusshell/Python
155c823037ddf6d31bf7915d2ebf7a2adbf52bdf
70ad14b6413ab97058db051403ccc34a5ee28cc2
refs/heads/master
2023-02-22T04:38:10.318959
2023-02-10T06:54:23
2023-02-10T06:54:23
143,408,423
0
0
null
null
null
null
UTF-8
Python
false
false
121
py
#!/usr/bin/python3 print("我叫%s 今年 %d 岁!" % ( '陈情',22)) print("我是%s 今年 %d岁!" % ( '一菲',27))
[ "1106328167@qq.com" ]
1106328167@qq.com
f84af80af296086f1881227d43ec06c829202f8e
0b699b4c6081b3b06acd0b64d8bb1f84bbb9c956
/manage.py
c04731a2df3f9d49fbdeabcd66b213e421d1e6cf
[]
no_license
rxy0424/django-learn
267d5b947e4d896cc2ddb29ef8b807342d5e0f84
735a6629911c1b455c0c68443031973f8b60593d
refs/heads/master
2021-01-20T06:12:03.705250
2017-04-30T13:17:00
2017-04-30T13:17:00
89,851,760
1
0
null
null
null
null
UTF-8
Python
false
false
802
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ksxt.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
[ "rxy0424@gmail.com" ]
rxy0424@gmail.com
8179861a56b00ea0aae727ab31ba65679ea3dcb6
5c0e83b07e01983b064980b805e6067cd1123714
/rd_caltech.py
81e59b15ea802ee43b2828b30359ef9bfbe9dc85
[ "MIT" ]
permissive
zyg11/MTCNN-TF
750ec7b6533b639deba5126e19a434da615585ac
4d41c5fd2dc13008d39b868aa2e921a7ff731e10
refs/heads/master
2020-08-26T14:24:41.084820
2019-04-02T09:02:23
2019-04-02T09:02:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,656
py
#author : lxy #time: 2018.3.23/ 11:30:00 #tool: python3 #version: 0.1 #modify: #project: pedestrian detection ################################ import numpy as np import glob import os import argparse def args(): parser = argparse.ArgumentParser(description="read caltech txt") parser.add_argument('--dir_in',type=str,default="/home/lxy/Downloads/DataSet/trainval/",\ help='annotation files saved dir ') parser.add_argument('--out_file',type=str,default='train_caltech.txt',\ help='generated outfiles saved') return parser.parse_args() def get_fil(): parm = args() dir_in = parm.dir_in out_f = parm.out_file f_wt = open(out_f,'w') file_txts = glob.glob(dir_in+'annotations/*.txt') pass_cnt = 0 for file_item in file_txts: f_rd = open(file_item,'r') line_list = f_rd.readlines() if len(line_list)==0: f_rd.close() print("empyt file: ",file_item) pass_cnt+=1 continue img_split = file_item.split('/') img_name = img_split[-1][:-4] img_lists = glob.glob(dir_in+'images/*') for img_one in img_lists: img_lists_split = img_one.split('/') img_one_name = img_lists_split[-1] if img_name in img_one_name: img_name = img_one_name f_wt.write("{} ".format(img_name)) for line in line_list: line = line.strip() f_wt.write("{} ".format(line[1:])) f_wt.write("\n") f_rd.close() f_wt.close() print("pass ",pass_cnt) if __name__=="__main__": get_fil()
[ "lixiaoyu283284@163.com" ]
lixiaoyu283284@163.com
31d24fc92e38e24e03ce1742b7ceec5868ba5c7e
b54b6168ba35ce6ad34f5a26b5a4a3ab8afa124a
/kratos/applications/ShapeOptimizationApplication/test_examples/03_Strain_Energy_Minimization_3D_Shell/optimization_settings.py
5e1b07aab234b21e628b0a82c683e10309050967
[]
no_license
svn2github/kratos
e2f3673db1d176896929b6e841c611932d6b9b63
96aa8004f145fff5ca6c521595cddf6585f9eccb
refs/heads/master
2020-04-04T03:56:50.018938
2017-02-12T20:34:24
2017-02-12T20:34:24
54,662,269
2
1
null
null
null
null
UTF-8
Python
false
false
5,125
py
# ================================================================================================================ # Workspace settings # ================================================================================================================ # Define directory with a relative or absolute path design_history_directory = "Design_history" design_history_file = "design_history.csv" # ================================================================================================================ # Response functions # ================================================================================================================ # Define container of objective functions # Format: objectives = { "unique_func_id": {"gradient_mode": "analytic"}, # "unique_func_id": {"gradient_mode": "semi_analytic", "step_size": 1e-5}, # "unique_func_id": {"gradient_mode": "external"}, # ... } objectives = { "strain_energy": {"gradient_mode": "semi_analytic", "step_size": 1e-8} } # Define container of constraint functions # Format: constraints = { "unique_func_id": {"type": "eq"/"ineq","gradient_mode": "analytic"}, # "unique_func_id": {"type": "eq"/"ineq","gradient_mode": "semi_analytic", "step_size": 1e-5}, # "unique_func_id": {"type": "eq"/"ineq","gradient_mode": "external"}, # ... } constraints = { } # ================================================================================================================ # Design variables # ================================================================================================================ design_control = "vertex_morphing" # options: "vertex_morphing" design_output_mode = "relative" # options: "relative" - X is defined relative to previous design # "total" - X is defined relative to initial design # "absolute" - X is defined as absolute values (coordinates) domain_size = 3 # options: 2 or 3 for 2D or 3D optimization patch # Case: design_control = "vertex_morphing" design_surface_name = "design_surface" filter_function = "linear" # options: "gaussian" # "linear" filter_size = 3 use_mesh_preserving_filter_matrix = False # options: True - surface normal information used in the filter matrix # : False - complete filter matrix is used perform_edge_damping = True # options: True - edge damping is applied with the settings below # : False - no edge damping is applied, settings below can be ignored damped_edges = [ ["support_edges", False, True, True, "linear", 3 ], ["side_edges", False, False, True, "linear", 3 ] ] # damped_edges = [ [edge_sub_model_part_name_1, damp_in_X, damp_in_Y, damp_in_Z, damping_function, damping_radius ], # [edge_sub_model_part_name_2, damp_in_X, damp_in_Y, damp_in_Z, damping_function, damping_radius ], # ... ] # options for damping function: "cosine" # "linear" # ================================================================================================================ # Optimization algorithm # ================================================================================================================ optimization_algorithm = "steepest_descent" # options: "steepest_descent", # "augmented_lagrange", # "penalized_projection", # General convergence criterions max_opt_iterations = 300 # Case: "steepest descent" relative_tolerance_objective = 1e-1 # [%] # Case: optimization_algorithm = "augmented_lagrange" max_sub_opt_iterations = 100 relative_tolerance_sub_opt = 1e-1 # [%] penalty_fac_0 = 4 gamma = 4 penalty_fac_max = 2000 lambda_0 = 0.0 # ================================================================================================================ # Determination of step size (line-search) # ================================================================================================================ # Only constant step-size is implemented yet normalize_search_direction = True step_size = .1 # e.g. 5 for active normalization or 1e7 for inactive normalization # ================================================================================================================ # For GID output # ================================================================================================================ nodal_results=[ "NORMALIZED_SURFACE_NORMAL", "OBJECTIVE_SENSITIVITY", "MAPPED_OBJECTIVE_SENSITIVITY", "DESIGN_UPDATE", "DESIGN_CHANGE_ABSOLUTE", "SHAPE_UPDATE", "SENSITIVITIES_DEACTIVATED", "SHAPE_UPDATES_DEACTIVATED", "SHAPE_CHANGE_ABSOLUTE"] VolumeOutput = True GiDPostMode = "Binary" GiDWriteMeshFlag = True GiDWriteConditionsFlag = True GiDMultiFileFlag = "Single" # ================================================================================================================
[ "dbaumgaertner@4358b7d9-91ec-4505-bf62-c3060f61107a" ]
dbaumgaertner@4358b7d9-91ec-4505-bf62-c3060f61107a
f099e8563d50a673936df3dfddd48a1bcda5b76d
2b3ed6bef2f569448918b8be72c733614c231fce
/hdf5_example.py
dd3342f3c57d95a4688d33cb9ed830c521fb325f
[]
no_license
jackdbd/dask-playground
8e67024ba60fbac3ff1ad77b94363731c04c0afd
721bc234eadf13e9ef24173bbbc9a68761bf1a7c
refs/heads/master
2021-04-25T19:58:47.303280
2017-11-01T12:49:00
2017-11-01T12:49:00
109,123,767
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
import os import h5py import numpy as np import dask.array as da h5file_path = 'myfile.hdf5' if os.path.exists(h5file_path): os.unlink(h5file_path) # create a continuous uniform distribution between 0.0 and 1.0 arr = np.random.random(size=(10000, 2000)) with h5py.File(h5file_path, 'w') as h5f: h5f.create_dataset('dataset_1', data=arr) with h5py.File(h5file_path, 'r') as h5f: dset = h5f['dataset_1'][:] x = da.from_array(dset, chunks=(1000, 1000)) result = x.mean().compute() print(result) # should be pretty clonse to 0.5
[ "jackdebidda@gmail.com" ]
jackdebidda@gmail.com
fa70a0452b646b1a21cf73baf1168baf012e94fb
089d3832f25c0e4167acd9f3ac692c78e808e1d6
/pymms/data/hapgood.py
6300784c2a9483074b59061ca11583b073a782e5
[ "MIT" ]
permissive
argallmr/pymms
ea135b57dd62370a0065680e573d09317e8575c0
69b2a0934f5fac548a47c6d9233cd345ea209b93
refs/heads/master
2023-07-22T17:48:35.022075
2023-07-06T19:49:55
2023-07-06T19:49:55
124,706,809
5
17
MIT
2020-05-31T02:52:15
2018-03-10T23:20:50
Python
UTF-8
Python
false
false
35,757
py
import numpy as np import pandas as pd from scipy.spatial.transform import Rotation as R from scipy.stats import binned_statistic from pathlib import Path # IGRF Coefficients sample_data_path = Path(__file__).parent / 'swfo' / 'data' igrf_coeff_file = sample_data_path / 'igrf13coeffs.txt' class IGRF_Coeff(): # See this link for: # - https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html # - IGRF coefficients # - Python library for IGRF reference field # - Publication of IGRF-13 def __init__(self): ''' Initialize the object ''' # Read in the table of IGRF coefficients self._coeffs = self.read_coeff() def closest_year(self, time): ''' Return the index of the most recent past IGRF year. Parameters ---------- time : `numpy.datetime64` Times at which to determine the IGRF coefficients ''' # Years of input time and of coefficients years = pd.to_datetime(time).year.values igrf_years = self._coeffs.columns.values[:-1].astype(np.float32).astype(np.int32) # Locate the closest IGRF year: equivalent to $T_{t}$ stat, edge, num = binned_statistic(years, years, statistic='count', bins=igrf_years, ) return num def coeff(self, gh, m, n, time): ''' Determine the IGRF coefficient at the given times. Parameters ---------- gh : str The spherical harmonic coefficient, ('g', 'h') m : int The order of the spherical harmonic coefficient n : int The degree of the spherical harmonic coefficient time : `numpy.datetime64` Times at which to determine the IGRF coefficients Returns ------- coeff_t : `numpy.array` The coefficient g_{n}^{m}(t) or h_{n}^{m}(t) ''' if (time < np.datetime64('1900', 'Y')).any() | (time > np.datetime64('2026', 'Y')).any(): raise ValueError('time must be in the range 1900-2025') # Coefficient of interest coeff = self.get_coeff(gh, m, n) # Most recent coefficient iyr = self.closest_year(time) coeff_T = coeff[:-1][iyr-1] # Linear change in coefficients over five years cdot_T = self.time_derivative(coeff, iyr) # Time difference from IGRF years dt = self.time_diff(time, iyr) # Linear interpolation of coefficients # - Axes cannot be aligned during addition because the index has # duplicate values # - Add the values together instead of the DataFrames. coeff_t = coeff_T + dt * cdot_T coeff_t.index = pd.to_datetime(time).year return coeff_t def get_coeff(self, gh, m, n): ''' Retrieve the values of a spherical harmonic coefficient from the look-up table. Parameters ---------- gh : str The spherical harmonic coefficient, ('g', 'h') m : int The order of the spherical harmonic coefficient n : int The degree of the spherical harmonic coefficient Returns ------- coeff_T : `numpy.array` The coefficient g_{n}^{m}(T) or h_{n}^{m}(T) ''' return self._coeffs.loc[(gh, m, n), :] @staticmethod def read_coeff(): ''' Read the look-up table of spherical harmonic coefficients ''' return pd.read_csv(igrf_coeff_file, delim_whitespace=True, header=3, index_col=('g/h', 'n', 'm') ) @staticmethod def test(gh='g', n=1, m=0): ''' Plot a coefficient and its interpolated values g_{n}^{m}(T) and g_{n}^{m}(t) Parameters ---------- gh : str The spherical harmonic coefficient, ('g', 'h') m : int The order of the spherical harmonic coefficient n : int The degree of the spherical harmonic coefficient ''' str_coeff = '${0:s}_{{{1:1d}}}^{{{2:1d}}}$'.format(gh, n, m) # Define a set of times at which to determine the coefficients t0 = np.datetime64('1900-01-01', 'Y') t1 = np.datetime64('2026-01-01', 'Y') times = np.arange(t0, t1, step=np.timedelta64(1, 'Y')) # Get the IGRF coefficients and the interpolated coefficients igrf = IGRF_Coeff() c = igrf.get_coeff(gh, n, m)[:-1] c_t = igrf.coeff(gh, n, m, times) # Plot the results from matplotlib import pyplot as plt fig, axes = plt.subplots(nrows=1, ncols=1, squeeze=False) plt.subplots_adjust(left=0.15, right=0.95, top=0.92) c.index = c.index.astype(np.float32).astype(np.int32) c_t.index = c_t.index.astype(np.float32).astype(np.int32) ax = axes[0,0] c_t.plot(marker='o', ax=ax, label=str_coeff[:-1]+'(t)$') c.plot(ax=ax, marker='x', label=str_coeff) ax.set_xlabel('Year') ax.set_ylabel(str_coeff + ' (nT)') ax.set_title('Interpolated IGRF Coefficients') ax.legend([str_coeff[:-1]+'(t)$', str_coeff[:-1]+'(T)$']) plt.show() def time_diff(self, time, iyr): ''' Time difference from the IGRF look-up table times: dt = t - T Parameters ---------- time : `numpy.datetime64` Times at which to determine the IGRF coefficients iyr : `numpy.array` int Index into the IGRF look-up table indicating the next earlier time (see `self.closest_year()`) Returns ------- dt : `numpy.datetime64` Time difference from the IGRF times ''' # IGRF years as datetimes igrf_yrs = np.array([c[0:4] for c in self._coeffs.columns[:-1]], dtype='datetime64[Y]') # Compute fractional years dt = ((time - igrf_yrs[iyr-1]).astype('timedelta64[s]') / np.timedelta64(1, 'Y').astype('timedelta64[s]') ) return dt @staticmethod def time_derivative(coeff, iyr): ''' Time derivative of an IGRF coefficient Parameters ---------- coeff : `numpy.array` Coefficient of which the derivative is computed iyr : `numpy.array` int Index into the IGRF look-up table indicating the next earlier time (see `self.closest_year()`) ''' # Coefficient at nearest IGRF year c_T = coeff[:-1][iyr-1] # Coefficient at the next IGRF year, T+5 # - Note that the last column is already the time derivative c_Tplus5 = coeff[iyr] # Time derivative: 1/5 * [c(T+5) - c(T)] cdot = 0.2 * (c_Tplus5.values - c_T.values) # Create a DataFrame cdot = pd.Series(cdot, name='cdot', index=c_T.index) cdot_T = cdot.where((c_Tplus5.index != coeff.index[-1]), other=c_Tplus5.values) return cdot_T def date2mjd(date): ''' Convert a date to Modified Julian Date -- the number WHOLE of days since 1858-11-17T00:00:00Z. Calling Sequence: mjd = date2mjd(year, month, day) Calculate the Modified Julian Date from the numeric year, month and day. mjd = date2mjd (date) Calulate the Modified Julian Date from a date string, Nx10 character array, or 1xN element cell array of strings, where N represents the number of dates formatted as 'yyyy-mm-dd'. Parameters ---------- date : array of `numpy.datetime64` Date to be converted. Dates are converted to datetime64[D] during calculation Returns ------- MJD : int Modified Julian Date References: - https://www.spenvis.oma.be/help/background/coortran/coortran.html - Hapgood, M. A. (1992). Space physics coordinate transformations: A user guide. Planetary and Space Science, 40 (5), 711?717. doi:http://dx.doi.org/10.1016/0032-0633 (92)90012-D - Hapgood, M. A. (1997). Corrigendum. Planetary and Space Science, 45 (8), 1047 ?. doi:http://dx.doi.org/10.1016/S0032-0633 (97)80261-9 ''' # datetime64: # Datetimes are always stored based on POSIX time (though having a TAI # mode which allows for accounting of leap-seconds is proposed), with an # epoch of 1970-01-01T00:00Z. # # MJD: # The MJD gives the number of days since midnight on November 17, 1858. # This date corresponds to 2400000.5 days after day 0 of the Julian # calendar. mjd0 = np.datetime64('1858-11-17T00:00:00', 's') return (date - mjd0) / np.timedelta64(86400, 's') def date2mjd2000(time): jul_2000 = date2mjd(np.datetime64('2000-01-01T12:00:00', 's')) mjd = date2mjd(time.astype('datetime64[D]')) return mjd - jul_2000 def date2ssm(time): ''' Convert time to seconds since midnight. Note that if `time` contains times from different dates, that will not be reflected in the results. Parameters ---------- time : `numpy.datetime64` Time to be converted Returns ------- ssm : int, `numpy.ndarray` Fractional seconds elapsed since the previous midnight. ''' return ((time - time.astype('datetime64[D]')).astype('timedelta64[ns]') ).astype(int) / 1e9 def date2ssny(time): ''' Convert time to seconds since new year. Note that if `time` contains times from different years, that will not be reflected in the results. Parameters ---------- time : `numpy.datetime64` Time to be converted Returns ------- ssny : int, `numpy.ndarray` Fractional seconds elapsed since new year's eve. ''' days = (time.astype('datetime64[D]') - time.astype('datetime64[Y]') ).astype('timedelta[s]').astype(int) ssm = date2ssm(time) return days + ssm def date2sse(time, epoch=None, unit='s'): ''' Convert time to seconds since new year. Note that if `time` contains times from different years, that will not be reflected in the results. Parameters ---------- time : `numpy.datetime64` Time to be converted Returns ------- ssny : int, `numpy.ndarray` Fractional seconds elapsed since new year's eve. ''' if (epoch is None) | (epoch in ('new year', 'ny')): epoch = time.astype('datetime64[Y]') elif epoch == 'midnight': epoch = time.astype('datetime64[D]') elif epoch == 'first': epoch = time[0].astype('datetime64[D]') t_delta = (time - epoch).astype('timedelta64[ns]') if unit == 'D': divisor = 1e9 * 86400 elif unit == 'h': divisor = 1e9 * 3600 elif units == 'm': divisor = 1e9 * 60 elif unit == 's': divisor = 1e9 elif unit == 'ms': divisor = 1e6 elif unit == 'us': divisor = 1e3 elif unit == 'ns': divisor = 1 else: raise ValueError('Unit not recognized. Must be denomination <= D') return t_delta.astype(float) / divisor def date2juldays(time): ''' Convert Gregorian date to Julian days. Julian days are calculated from noon on 1-Jan. 1900. Parameters ---------- time : array of datetime64 Gregorian datetimes to be converted to Julian days Returns ------- juldays : ndarray Julian days elapsed since noon on 1-Jan. 1900 ''' # Make sure the date is within range. if ((time < np.datetime64('1901', 'Y')).any() | (time > np.datetime64('2099', 'Y')).any() ): raise ValueError('Year must be between 1901 and 2099') # We need to convert to Julian centuries since 1900-01-01T12:00:00 # - Start by calculating the number of days # Whole years since 1900 years = time.astype('datetime64[Y]') - np.datetime64('1900', 'Y') # Number of leap days since 1900 (4 years per leap day) # - Julian Year: Exactly 365.25 days of 86,400 SI seconds each. try: leap_days = np.asarray(((time.astype('datetime64[Y]') - np.datetime64('1901', 'Y') ) / np.timedelta64(4, 'Y') ).astype(int), 'timedelta64[D]' ) except Exception: import pdb pdb.set_trace() # Number of days into the current year year_day = (time.astype('datetime64[D]') - time.astype('datetime64[Y]') + np.timedelta64(1, 'D')) # Fraction of the current day that has elapsed frac_day = ((time - time.astype('datetime64[D]')) / np.timedelta64(1, 'D').astype('timedelta64[s]')) # Number of days elapsed since 1900-01-01T12:00:00 # - Note that we subtract 0.5 because the epoch starts at noon Julian_days = ((365 * years.astype(int) + leap_days + year_day ).astype(float) - 0.5) + frac_day return Julian_days def earth_obliquity(T0): ''' Axial tilt (obliquity) is the angle between an object's rotational axis and its orbital axis; equivalently, the angle between its equatorial plane and orbital plane. Parameters ---------- T0 : `numpy.ndarray` Time in Julian centuries calculated from 12:00:00 UTC on 2000-01-01 (known as Epoch 2000) to the previous midnight. It is computed as: T0 = (MJD - 51544.5) / 36525.0 Returns ------- obliquity : `numpy.ndarray` Obliquity of Earth's ecliptic orbit (degrees). ''' # 23.439 is the dipole tilt angle in degrees at Earth's position on # Jan. 1, 2000. 0.013 is the fractional number of degrees that this # angle changes per day: (1 - 360 degrees / 365 days/year) return 23.439 - 0.013 * T0 def dipole_igrf_coeffs(time): ''' Compute the IGRF coefficients required to determine the dipole tilt axis and angle. Parameters ---------- time : `numpy.datetime64` Times at which to determine the IGRF coefficients Returns ------- g10 : `numpy.float` g10 IGRF coefficient g11 : `numpy.float` g11 IGRF coefficient h11 : `numpy.float` h11 IGRF coefficient ''' igrf = IGRF_Coeff() g10 = igrf.coeff('g', 1, 0, time) g11 = igrf.coeff('g', 1, 1, time) h11 = igrf.coeff('h', 1, 1, time) return g10, g11, h11 def dipole_latlon(time): ''' Compute the latitude and longitude of the dipole axis in GEO coordinates. Parameters ---------- time : `numpy.datetime64` Times at which to determine the coordinates of the dipole axis Returns ------- lat : `numpy.float` Latitude of Earth's dipole axis in GEO coordinates in degrees lon : `numpy.float` Longitude of Earth's dipole axis in GEO coordinates in degrees ''' g10, g11, h11 = dipole_igrf_coeffs(time) lat, lon = dipole_igrf2latlon(g10, g11, h11) return lat, lon def dipole_unit_vector(time): ''' Compute the (x, y, z) GEO coordinates of Earth's dipole axis unit vector. Parameters ---------- time : `numpy.datetime64` Times at which to determine the coordinates of the dipole axis Returns ------- Q_geo : `numpy.float` Earth's dipole axis as a unit vector in GEO coordinates ''' lat, lon = dipole_latlon(time) Q_geo = dipole_latlon2vector(lat, lon) return Q_geo def dipole_igrf2latlon(g10, g11, h11): ''' Convert IGRF coefficients that define Earth's magnetic dipole axis to latitude and longitude values in GEO coordinates. Parameters ---------- g10 : `numpy.float` g10 IGRF coefficient g11 : `numpy.float` g11 IGRF coefficient h11 : `numpy.float` h11 IGRF coefficient Returns ------- lat : `numpy.float` Latitude of Earth's dipole axis in GEO coordinates in degrees lon : `numpy.float` Longitude of Earth's dipole axis in GEO coordinates in degrees ''' geo_lon = np.rad2deg(np.arctan2(h11, g11)) geo_lat = 90.0 - np.rad2deg(np.arctan((g11*np.cos(geo_lon) + h11*np.sin(geo_lon) ) / g10)) return geo_lat, geo_lon def dipole_latlon2vector(lat, lon): ''' Convert the latitude and longitude of Earth's magnetic dipole axis to a unit vector in GEO coordinates. Parameters ---------- lat : `numpy.float` Latitude of Earth's dipole axis in GEO coordinates in degrees lon : `numpy.float` Longitude of Earth's dipole axis in GEO coordinates in degrees Returns ------- Q_geo : `numpy.float` Earth's dipole axis as a unit vector in GEO coordinates ''' dlat = np.deg2rad(lat) dlon = np.deg2rad(lon) return np.column_stack([np.cos(dlat)*np.cos(dlon), np.cos(dlat)*np.sin(dlon), np.sin(dlon)]) def dipole_time2latlon(time): ''' Calculate the latitude and longitude of Earth's magnetic dipole axis in GEO coordinates. Parameters ---------- time : `numpy.datetime64` Times at which to determine the coordinates of the dipole axis Returns ------- lat : `numpy.float` Latitude of Earth's dipole axis in GEO coordinates in degrees lon : `numpy.float` Longitude of Earth's dipole axis in GEO coordinates in degrees ''' mjd = time2mjd(time) lat = 78.8 + 4.283e-2 * (mjd - 46066) / 365.25 lon = 289.1 - 1.413e-2 * (mjd - 46066) / 365.25 return lat, lon def dipole_axis(lat=None, lon=None, g10=None, g11=None, h11=None, time=None): ''' Determine Earth's magnetic dipole axis as a unit vector in GEO coordinates. Parameters ---------- lat : `numpy.float` Latitude of Earth's dipole axis in GEO coordinates lon : `numpy.float` Longitude of Earth's dipole axis in GEO coordinates g10 : `numpy.float` g10 IGRF coefficient g11 : `numpy.float` g11 IGRF coefficient h11 : `numpy.float` h11 IGRF coefficient time : `numpy.datetime64` Times at which to determine the coordinates of the dipole axis Returns ------- Q_geo : `numpy.float` Earth's dipole axis as a unit vector in GEO coordinates ''' if time is not None: Q_geo = dipole_unit_vector(time) elif (g10 is not None) & (g11 is not None) & (h11 is not None): lat, lon = dipole_igrf2latlon(g10, g11, h11) if (lat is not None) & (lon is not None): Q_geo = dipole_latlon2vector(lat, lon) return Q_geo def dipole_inclination(time): ''' The angle between the GSE Z axis and projection of the magnetic dipole axis on the GSE YZ plane (i.e. the GSM Z axis) measured positive for rotations towards the GSE Y axis. Parameters ---------- time : `numpy.datetime64` Times at which to calculate the dipole inclination angle. Returns ------- psi : float Inclination angle between z-GSM and z-GSe ''' Q_geo = dipole_axis(time=time) # Rotate GEO coordinates to GSE coordinates r_geo2gse = geo2gse(time) axis = r_geo2gse.apply(Q_geo) # Compute the dipole tilt angle psi = np.arctan2(axis[:,1], axis[:,2]) return psi def dipole_tilt_angle(time): ''' Dipole tilt angle, i.e. the angle between the GSM Z axis and the dipole axis. It is positive for the North dipole pole sunward of GSM Z. Parameters ---------- time : `numpy.datetime64` Times at which to calculate the dipole tilt angle. Returns ------- mu : float Tilt angle between z-GSM and the dipole axis ''' Q_geo = dipole_axis(time=time) # Rotate GEO coordinates to GSE coordinates r_geo2gse = geo2gse(time) Q_gse = r_geo2gse.apply(Q_geo) # Compute the dipole tilt angle mu = np.arctan(Q_gse[:,0] / np.sqrt(Q_gse[:,1]**2 + Q_gse[:,2]**2)) return mu def gei2dsc(time, ra, dec): ''' Return the transformation to the despun spacecraft frame (SCS) from Geocentric Equatorial Inertial system (GEI) at the given time, with RA and dec (in degrees) of the spin vector. Parameters ---------- YEAR : in, required, type = double MONTH : in, required, type = double DAY : in, required, type = double SECS : in, required, type = double Seconds into `DAY`. RA : in, required, type = double Right-ascention of the spacecraft (degrees). DEC : in, required, type = double Declination of the spacecraft (degrees). Returns ------- SCS2GSE : out, optional, type = float Transformation matrix to rotate SCS to GSE. References ---------- - https://www.spenvis.oma.be/help/background/coortran/coortran.html - Hapgood, M. A. (1992). Space physics coordinate transformations: A user guide. Planetary and Space Science, 40 (5), 711?717. doi:http://dx.doi.org/10.1016/0032-0633 (92)90012-D - Hapgood, M. A. (1997). Corrigendum. Planetary and Space Science, 45 (8), 1047 ?. doi:http://dx.doi.org/10.1016/S0032-0633 (97)80261-9 ''' # Location of the sun SUN = sun_position(time) # in what coords? normalized? # RA and DEC form a spherical coordinate system. # - RA = number of hours past the vernal equinox (location on the # celestial equator of sunrise on the first day of spring). # - DEC = degrees above or below the equator dec_rad = np.deg2rad(dec) ra_rad = np.deg2rad(ra) # [x y z] components of the unit vector pointing in the direction of # the spin axis. # - The spin axis points to a location on the suface of the celestial sphere. # - RA and dec are the spherical coordinates of that location, # with the center of the earth as the origin. # - Transforming GEI to SCS transforms [0 0 1] to [x y z] = OMEGA # - Already normalized: spherical to cartesian with r = 1. scsz = np.column_stack((np.cos(ra_rad) * np.cos(dec_rad), np.sin(ra_rad) * np.cos(dec_rad), np.sin(dec_rad) )) # Form the X- and Y-vectors # - X must point in the direction of the sun. # - To ensure this, Y' = Z' x Sun # - X' = Y' x Z' scsy = np.cross(scsz, SUN, axis=1) scsy /= np.linalg.norm(scsy, axis=1)[:, np.newaxis] scsx = np.cross(scsy, scsz, axis=1) # scsy = mrvector_cross(scsz, SUN) # scsy = mrvector_normalize(scsy) # scsx = mrvector_cross(scsy, scsz) # Transformation from GEI to SCS. GEI2DSC = np.zeros((len(ra), 3, 3)) GEI2DSC[:,0,:] = scsx GEI2DSC[:,1,:] = scsy GEI2DSC[:,2,:] = scsz return R.from_matrix(GEI2DSC) def gei2geo(time): T0 = nJulCenturies(date2mjd2000(time)) UT = date2ssm(time) theta = 100.461 + 36000.770*T0 + 15.04107*UT # scipy rotates the vector. We want to rotate the coordinate system. return R.from_euler('Z', theta, degrees=True).inv() def geo2gse(time): T1 = gei2geo(time).inv() T2 = gei2gse(time) return T2 * T1 def geo2mag(time): lat, lon = dipole_latlon(time) # scipy rotates the vector. We want to rotate the coordinate system. return R.from_euler('Y', latitude-90).inv() * R.from_euler('Z', longitude).inv() def gei2gse(time): ''' Produce a rotation matrix from GEI to GSE. Parameters ---------- MJD : int Modified Julian Date. UTC : `numpy.ndarray` UTC in decimal hours since midnight. Returns ------- T3 : out, required, type = double Totation matrix from GEI to GSE. References: See Hapgood Rotations Glossary.txt. - https://www.spenvis.oma.be/help/background/coortran/coortran.html - Hapgood, M. A. (1992). Space physics coordinate transformations: A user guide. Planetary and Space Science, 40 (5), 711?717. doi:http://dx.doi.org/10.1016/0032-0633 (92)90012-D - Hapgood, M. A. (1997). Corrigendum. Planetary and Space Science, 45 (8), 1047 ?. doi:http://dx.doi.org/10.1016/S0032-0633 (97)80261-9 ''' # Number of julian centuries since Epoch 2000 jul_cent = nJulCenturies(date2mjd2000(time)) UTC = date2ssm(time) / 3600 # Axial tilt obliq = earth_obliquity(jul_cent) eLon = sun_ecliptic_longitude(jul_cent, UTC) # # The transformation from GEI to GSE, then is # - T2 = <eLon, Z> <obliq, X> # - A pure rotation about X by angle obliq # - A pure rotation about Z by angle eLon # # Scipy rotates the vector. We want to rotate the coordinate system. T21 = R.from_euler('X', obliq, degrees=True).inv() T22 = R.from_euler('Z', eLon, degrees=True).inv() T2 = T22 * T21 return T2 def gse2gsm(time): phi = dipole_inclination(time) # scipy rotates the vector. We want to rotate the coordinate system T3 = R.from_euler('X', -phi, degrees=True).inv() return T3 def gsm2sm(time): # Dipole tilt angle mu = dipole_tilt_angle(time) # scipy rotates the vector. We want to rotate the coordinate system return R.from_euler('Y', -mu).inv() def mjd2epoch2000(mjd): ''' Convert Modified Julian Date (MJD) to Epoch 2000 MJD: Number of days since midnight on November 17, 1858 Epoch2000: Number of days since noon on January 1, 2000 Parameters ---------- mjd : `numpy.ndarray` Modified Julian dates Returns ------- epoch2000 : `numpy.ndarray` Epoch 2000 times ''' return mjd - 51544.5 def nJulCenturies(nDays): ''' Convert number of days to Julian Centuries. there are exactly 36525 days in a Julian Century Parameters ---------- nDays : `numpy.ndarray` Fractional number of days Returns ------- jul_centuries : `numpy.ndarray` Number of Julian centuries ''' return nDays / 36525.0 def sun_ecliptic_longitude(T0, UTC): '''' Determine the ecliptic longitude of the sun Note: Strictly speaking, TDT (Terrestrial Dynamical Time) should be used here in place of UTC, but the difference of about a minute gives a difference of about 0.0007∞ in lambdaSun. Calling Sequence: eLon = sun_ecliptic_longitude (T0, UTC) Compute the sun's ecliptic longitude (degrees) given the number of julian centuries (T0) from 12:00 UTC 01-Jan-2000 until 00:00 UTC on the day of interest, and Universal Time (UTC) in fractional number of hours. Parameters ---------- T0 : `numpy.ndarray` Time in Julian centuries calculated from 12:00:00 UTC on 1 Jan 2000 (known as Epoch 2000) to the previous midnight. It is computed as: T0 = (MJD - 51544.5) / 36525.0 UTC : `numpy.ndarray` UTC decimal hours since midnight Returns ------- eLon : `numpy.ndarray` Mean anomaly of the sun, in degrees References ---------- See Hapgood Rotations Glossary.txt. - https://www.spenvis.oma.be/help/background/coortran/coortran.html - Hapgood, M. A. (1992). Space physics coordinate transformations: A user guide. Planetary and Space Science, 40 (5), 711?717. doi:http://dx.doi.org/10.1016/0032-0633 (92)90012-D - Hapgood, M. A. (1997). Corrigendum. Planetary and Space Science, 45 (8), 1047 ?. doi:http://dx.doi.org/10.1016/S0032-0633 (97)80261-9 ''' # Sun's Mean anomaly ma = np.deg2rad(sun_mean_anomaly(T0, UTC)) # Mean longitude (degrees) mLon = sun_mean_longitude(T0, UTC) # Ecliptic Longitude # - Force to the range [0, 360) eLon = (mLon + (1.915 - 0.0048 * T0) * np.sin(ma) + 0.020 * np.sin(2.0 * ma) ) % 360.0 return eLon def sun_mean_anomaly(T0, UTC): ''' Compute the sun's mean anomaly. Note: Strictly speaking, TDT (Terrestrial Dynamical Time) should be used here in place of UTC, but the difference of about a minute gives a difference of about 0.0007∞ in lambdaSun. Calling Sequence: ma = sun_mean_anomaly(T0, UTC) Compute the sun's mean anomaly (degrees) given the number of Julian centuries (T0) from 2000-01-01T12:00:00Z until 00:00 UTC on the day of interest, and Universal Time (UTC) in decimal hours. Parameters ---------- T0 : `numpy.ndarray` Time in Julian centuries calculated from 2000-01-01T12:00:00Z (known as Epoch 2000) to the previous midnight. It is computed as T0 = (MJD - 51544.5) / 36525.0 UTC : `numpy.ndarray` UTC decimal hours since midnight Returns ------- mean_anomaly : `numpy.ndarray` Ecliptic longitude of the sun, in degrees. References ---------- See Hapgood Rotations Glossary.txt. - https://www.spenvis.oma.be/help/background/coortran/coortran.html - Hapgood, M. A. (1992). Space physics coordinate transformations: A user guide. Planetary and Space Science, 40 (5), 711?717. doi:http://dx.doi.org/10.1016/0032-0633 (92)90012-D - Hapgood, M. A. (1997). Corrigendum. Planetary and Space Science, 45 (8), 1047 ?. doi:http://dx.doi.org/10.1016/S0032-0633 (97)80261-9 ''' # Sun's Mean anomaly # - Force to the range [0, 360) return (357.528 + 35999.050 * T0 + 0.04107 * UTC) % 360.0 def sun_mean_longitude(T0, UTC): ''' Compute the sun's mean longiude. Note: Strictly speaking, TDT (Terrestrial Dynamical Time) should be used here in place of UTC, but the difference of about a minute gives a difference of about 0.0007∞ in lambdaSun. Calling Sequence: lambda = sun_mean_anomaly(T0, UTC) Compute the sun's mean longitude (degrees) given the number of julian centuries (T0) from 2000-01-01T12:00:00Z until 00:00 UTC on the day of interest, and Universal Time (UTC) in decimal hours. Parameters ---------- T0: in, required, type = double Time in Julian centuries calculated from 2000-01-01T12:00:00Z (known as Epoch 2000) to the previous midnight. It is computed as T0 = (MJD - 51544.5) / 36525.0 UTC: in, required, type = double UTC decimal hours since midnight Returns ------- LAMBDA: out, required, type = double Mean longitude of the sun, in degrees. References ---------- - https://www.spenvis.oma.be/help/background/coortran/coortran.html - Hapgood, M. A. (1992). Space physics coordinate transformations: A user guide. Planetary and Space Science, 40 (5), 711?717. doi:http://dx.doi.org/10.1016/0032-0633 (92)90012-D - Hapgood, M. A. (1997). Corrigendum. Planetary and Space Science, 45 (8), 1047 ?. doi:http://dx.doi.org/10.1016/S0032-0633 (97)80261-9 ''' # Sun's Mean Longitude # - Force to the range [0, 360) return (280.460 + 36000.772 * T0 + 0.04107 * UTC) % 360 def sun_position(time): ''' Determine the direction of the sun in GEI. Program to caluclate sidereal time and position of the sun. It is good for years 1901 through 2099 due to leap-year limitations. Its accuracy is 0.006 degrees. Direction of the sun in cartesian coordinates: X = cos(SRASN) cos(SDEC) Y = sin(SRASN) cos(SDEC) Z = sin(SDEC) Parameters ---------- time : `numpy.datetime64` Year. Returns ------- S : out, optional, type=float Sidereal time and position of the sun. References ---------- C.T. Russel, Geophysical Coordinate Transformations. http://www-ssc.igpp.ucla.edu/personnel/russell/papers/gct1.html/#appendix2 The above link appears to be broken (2021-11-11). Here is another link. See Appendix 2. http://jsoc.stanford.edu/~jsoc/keywords/Chris_Russel/Geophysical%20Coordinate%20Transformations.htm#appendix2 See the following reference, page C5, for a brief description of the algorithm (with updated coefficients?). (US), N. A. O. (Ed.). (2013). The Astronomical Almanac for the Year 2014. U.S. Government Printing Office. Retrieved from http://books.google.com/books?id=2E0jXu4ZSQAC This reference provides an algroithm that reduces the error and extends the valid time range (i.e. not this algorithm). Reda, I.; Andreas, A. (2003). Solar Position Algorithm for Solar Radiation Applications. 55 pp.; NREL Report No. TP-560-34302, Revised January 2008. http://www.nrel.gov/docs/fy08osti/34302.pdf ''' # Seconds elapsed into day frac_day = (time - time.astype('datetime64[D]')) / np.timedelta64(1, 's') # Number of days elapsed since 1900-01-01T12:00:00 Julian_days = date2juldays(time) # Constants # RAD = 57.29578 # 180/pi # Convert seconds to days. # FDAY = SECS/86400 # Number of days since noon on 1 Jan 1900. # DDJ = 365 .* (IYR-1900) + fix((IYR-1901) / 4) + IDAY - 0.5 # DJ = DDJ .* ones(1, length(SECS)) + FDAY # Convert to Julian centuries from 1900 # - Julian Year: Exactly 365.25 days of 86,400 SI seconds each. # - Julian Century: 36,525 days T = nJulCenturies(Julian_days) # T = DJ / 36525 # Degrees per day # - It takes 365.2422 days to complete a revolution about the sun. # - There are 360 degrees in a circle. # => 360.0 / 365.2422 = 0.9856 degrees/day # Keep degrees between 0 and 360 # mod(..., 360) will force answer to be in range [0, 360). # Mean longitude of the sun VL = (279.696678 + 0.9856473354 * Julian_days) % 360.0 # Greenwhich sidereal time. GST = (279.690983 + 0.9856473354 * Julian_days + 360 * frac_day + 180.) % 360.0 # Mean anomaly G = np.deg2rad((358.475845 + 0.985600267 * Julian_days) % 360) # Ecliptic longitude SLONG = (VL + (1.91946 - 0.004789 * T) * np.sin(G) + 0.020094 * np.sin(2 * G)) # Obliquity (Axial tilt) OBLIQ = np.deg2rad(23.45229 - 0.0130125 * T) SLP = np.deg2rad(SLONG - 0.005686) SIND = np.sin(OBLIQ) * np.sin(SLP) COSD = np.sqrt(1 - SIND**2) # Solar declination SDEC = np.rad2deg(np.arctan(SIND / COSD)) # Solar right ascension SRASN = 180 - np.rad2deg(np.arctan2(SIND / (np.tan(OBLIQ) * COSD), -np.cos(SLP) / COSD)) # Equatorial rectangular coordinates of the sun S = np.column_stack((np.cos(np.deg2rad(SRASN)) * COSD, np.sin(np.deg2rad(SRASN)) * COSD, SIND)) return S
[ "matthew.argall@unh.edu" ]
matthew.argall@unh.edu
e6247400b23975a02a38404955166d70d6f867d6
f4e20f45fafae6cb0e6c21e2d47a2a31892c2408
/PythonExercicios/ex011.py
552c3fcf1c692efc57ffc779bbe4656321464e4c
[ "MIT" ]
permissive
andrei406/Meus-PycharmProjects-de-Iniciante
6e03accac46d75ee0973ae7e32fd059ddae59a82
6d59350eaa6538b68aca90046226cbc7b1f9f621
refs/heads/main
2023-03-01T22:18:08.141485
2021-02-07T14:06:06
2021-02-07T14:06:06
325,803,845
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
h = float(input('Sua parede mede quantos metros de altura?')) l = float(input('E de comprimento?')) a = h * l print('\033[1;30mVocê vai precisar de {} litro(s) de tinta\033[m'.format(h / 2))
[ "76476855+andrei406@users.noreply.github.com" ]
76476855+andrei406@users.noreply.github.com
0668cf1f54afe3f62d779d41ce8620b2ba97cb0e
c289c9472ce1f6eb80a9831b930674d3b71e85e4
/chap_10/client.py
bc6efd1313359fa57d236efa16aeaf20313f3c99
[]
no_license
Jordan-Rowland/oop-practice
a6ba2ad9f6323f58b7e4ac521c2885e5bd5b9571
b442c62bbc45ad599bb964b22f98d6237f2e0297
refs/heads/master
2020-07-10T00:22:51.433643
2019-11-20T05:48:17
2019-11-20T05:48:17
204,117,797
1
0
null
2019-11-20T05:48:18
2019-08-24T06:21:08
Python
UTF-8
Python
false
false
163
py
import socket client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.connect(('localhost', 2401)) print(f"Received: {client.recv(1024)}") client.close
[ "36084892+Jordan-Rowland@users.noreply.github.com" ]
36084892+Jordan-Rowland@users.noreply.github.com
25324867b9607040353779c80fb44f1218bdd375
86762033dd59308e764bad95acbdcc53f3b74598
/d04/guess number.py
236d9aad076eb991ef44ed3d1cb78657a9dc1f59
[]
no_license
HuaMa001/python001
59a992c4c485e4bb1c27bbc64e01d6fd672d612e
12b15585e1b3ef569ed01b30660146f72d699518
refs/heads/master
2022-11-26T22:59:42.499122
2020-08-11T10:47:42
2020-08-11T10:47:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
import random ans=random.randint(1, 99) min, max=0, 100 amount=5 #可猜五次 while amount>0: amount-=1 guess=int(input('請在%d-%d之間猜數字:'%(min, max))) #驗證範圍? if guess <=min or guess>=max: print('輸入範圍錯誤') continue #是否猜對 ? if guess > ans: max=guess elif guess < ans: min=guess else: print('恭喜答對了') break #若都沒猜對 if amount==0: print("你是非洲人 快看答案:",str(ans))
[ "chenenlin2@gmali.com" ]
chenenlin2@gmali.com
fc111a7c2540a79d6929363fbcd5d364985612e9
9c04dfec0c7e6a5e82fc5bf0ddf2e06c2308cdef
/packages/auto-nlp-deployment/src/deployments/entities/deployment_info.py
b5e8275c19aee3ff65293d93f3451400512a6665
[ "MIT" ]
permissive
fhswf/tagflip-autonlp
8d678c780476d20d4d870a23320e5908a4e8972f
f94abb35ed06198567e5d9cbb7abb7e112149d6c
refs/heads/main
2023-04-07T10:19:01.108884
2022-04-10T19:56:48
2022-04-10T19:56:48
410,777,896
5
2
MIT
2022-04-10T12:19:35
2021-09-27T07:07:28
TypeScript
UTF-8
Python
false
false
544
py
from typing import Any, Literal, Optional, Union from pydantic import AnyHttpUrl, BaseModel from deployments.entities.deployment_status import DeploymentStatus class ModelSignature(BaseModel): input: Optional[Any] output: Optional[Any] class Endpoint(BaseModel): url: AnyHttpUrl method: Union[Literal["POST"], Literal["GET"], Literal["PUT"]] signature: Optional[ModelSignature] class DeploymentInfo(BaseModel): deployment_id: str runtime: str status: DeploymentStatus endpoint: Optional[Endpoint]
[ "timo@n.euhaus.net" ]
timo@n.euhaus.net
8a9e6a093b51b04808ac6f330219095ad90cc1ac
cfdaf5972763d29df295dec0451546e7c3eec629
/bpsx-forghp.py
1ea2bda407641731e6c7aa95f161a653da01dc97
[]
no_license
setosato/myprivatecode
a452c3c0635942f0e8188198d8bea2f2f8d5eab8
5aa21759a35049cc67571bf888b5372572645ab1
refs/heads/master
2020-07-19T14:01:02.685777
2019-09-06T07:06:04
2019-09-06T07:06:04
206,461,350
0
0
null
null
null
null
UTF-8
Python
false
false
5,063
py
''' /* * Copyright 2010-2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ ''' from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient import logging import time import argparse import json AllowedActions = ['both', 'publish', 'subscribe'] # Custom MQTT message callback def customCallback(client, userdata, message): print("Received a new message: ") print(message.payload) print("from topic: ") print(message.topic) print("--------------\n\n") # Read in command-line parameters parser = argparse.ArgumentParser() parser.add_argument("-e", "--endpoint", action="store", required=False, dest="host", help="Your AWS IoT custom endpoint") parser.add_argument("-r", "--rootCA", action="store", required=False, dest="rootCAPath", help="Root CA file path") parser.add_argument("-c", "--cert", action="store", dest="certificatePath", help="Certificate file path") parser.add_argument("-k", "--key", action="store", dest="privateKeyPath", help="Private key file path") parser.add_argument("-p", "--port", action="store", dest="port", type=int, help="Port number override") parser.add_argument("-w", "--websocket", action="store_true", dest="useWebsocket", default=False, help="Use MQTT over WebSocket") parser.add_argument("-id", "--clientId", action="store", dest="clientId", default="basicPubSub", help="Targeted client id") parser.add_argument("-t", "--topic", action="store", dest="topic", default="sdk/test/Python", help="Targeted topic") parser.add_argument("-m", "--mode", action="store", dest="mode", default="both", help="Operation modes: %s"%str(AllowedActions)) parser.add_argument("-M", "--message", action="store", dest="message", default="Hello World!", help="Message to publish") args = parser.parse_args() host = args.host rootCAPath = args.rootCAPath certificatePath = args.certificatePath privateKeyPath = args.privateKeyPath port = args.port useWebsocket = args.useWebsocket clientId = args.clientId topic = args.topic #This is non-working configuation clientId="Handson_pc2" host="xxxxx-ats.iot.ap-northeast-1.amazonaws.com" rootCAPath="cert4/rootca" privateKeyPath="cert4/xxxxx-private.pem.key" certificatePath="cert4/xxxxx-certificate.pem.crt" """ #This is working configuation(commented out) clientId="Handson_pi1" host="xxxxx-ats.iot.ap-northeast-1.amazonaws.com" rootCAPath="cert/rootca" privateKeyPath="cert/yyyyy.private.key" certificatePath="cert/yyyyy.cert.pem" """ # Port defaults if args.useWebsocket and not args.port: # When no port override for WebSocket, default to 443 port = 443 if not args.useWebsocket and not args.port: # When no port override for non-WebSocket, default to 8883 port = 8883 # Configure logging logger = logging.getLogger("AWSIoTPythonSDK.core") logger.setLevel(logging.DEBUG) streamHandler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') streamHandler.setFormatter(formatter) logger.addHandler(streamHandler) # Init AWSIoTMQTTClient myAWSIoTMQTTClient = None if useWebsocket: myAWSIoTMQTTClient = AWSIoTMQTTClient(clientId, useWebsocket=True) myAWSIoTMQTTClient.configureEndpoint(host, port) myAWSIoTMQTTClient.configureCredentials(rootCAPath) else: myAWSIoTMQTTClient = AWSIoTMQTTClient(clientId) myAWSIoTMQTTClient.configureEndpoint(host, port) myAWSIoTMQTTClient.configureCredentials(rootCAPath, privateKeyPath, certificatePath) # AWSIoTMQTTClient connection configuration myAWSIoTMQTTClient.configureAutoReconnectBackoffTime(1, 32, 20) myAWSIoTMQTTClient.configureOfflinePublishQueueing(-1) # Infinite offline Publish queueing myAWSIoTMQTTClient.configureDrainingFrequency(2) # Draining: 2 Hz myAWSIoTMQTTClient.configureConnectDisconnectTimeout(10) # 10 sec myAWSIoTMQTTClient.configureMQTTOperationTimeout(5) # 5 sec # Connect and subscribe to AWS IoT myAWSIoTMQTTClient.connect() if args.mode == 'both' or args.mode == 'subscribe': myAWSIoTMQTTClient.subscribe(topic, 1, customCallback) time.sleep(2) # Publish to the same topic in a loop forever loopCount = 0 while True: if args.mode == 'both' or args.mode == 'publish': message = {} message['message'] = args.message message['sequence'] = loopCount messageJson = json.dumps(message) myAWSIoTMQTTClient.publish(topic, messageJson, 1) if args.mode == 'publish': print('Published topic %s: %s\n' % (topic, messageJson)) loopCount += 1 time.sleep(1)
[ "noreply@github.com" ]
setosato.noreply@github.com
23262b3f947db8170a051fb2936e3230dcb7c642
96bd5be700b926c598f8c69ee774cc24ca072f1f
/pykapa/xls_functions.py
1d323bab11e1ba645d2b96e72f2595e333b6d989
[ "Apache-2.0" ]
permissive
ikapadata/pykapa
b847bb6309300db99bf7db0ab2591b639a6a9ee4
24109a16dee380d2d4e688930b2a58883ba116ba
refs/heads/master
2021-07-14T04:02:55.489870
2020-05-22T11:41:06
2020-05-22T11:41:06
165,073,988
0
0
Apache-2.0
2020-05-19T08:11:32
2019-01-10T14:28:14
Python
UTF-8
Python
false
false
8,980
py
from dateutil import parser from datetime import datetime, timedelta import uuid as UUID # check if the selected field is equal to the expected value def selected(field,value): sel = str(field).split(" ") print('Selected: %s'%sel) print('Value: %s' %value ) if str(value) in sel: return True else: return False # determine the length of the string def string_length(field): return len(field) # return the selected value at the position described by the number def selected_at(field, number): field = field.split(' ') try: return field[number] except Exception as err: return err # count the number of selected items def count_selected(field): field = field.split(' ') return len(field) # concatenate strings def concat(field1, field2,*therest): return str(field1) + str(field2) + ''.join(map(str, therest)) #retrun substring def substr(fieldorstring, startindex, endindex): if endindex<len(fieldorstring) and startindex<len(fieldorstring): return fieldorstring[startindex:endindex] else: return 'Error: Specified startindex/endindex is out range' def coalesce(field1, field2): if len(field1)!=0: return field1 else: return field2 import re #Returns true or false depending on whether the field matches the regular expression specified def regex(field, expression): if re.search(expression,field) != None: return True else: return False #function to execute an if statement def IF(expression, valueiftrue, valueiffalse): if eval(expression)==True: return valueiftrue else: return valueiffalse # change data-type to float def number(field): return float(field) # change data-type to string def string(field): return str(field) # format dates from inputs #Converts string into a date def date(string): dt = parser.parse(string).date() return dt #Converts string into a date and time def date_time(string): dt = parser.parse(string) return dt #Converts date and/or time into a string def format_date_time(field, date_format): dt = parser.parse(str(field)).strftime(date_format) return dt #today's date def today(): dt = datetime.now().date() return dt #current date and time def now(): dt = datetime.now() return dt def date_N_days_ago(N): return datetime.now() - timedelta(days=N) # return the number of days def days(timedelta): try: days = timedelta.days return days except: Obj = string(type(timedelta)) err_msg = '*Argument Error*: days(arg) accepts datetime.timedelta arguments and not ' + Obj + '\n' +'days('+timedelta+') must take the form ' +'days(date_1 - date_2)' return err_msg # function to check if string is float def is_number(s): try: float(s) return True except ValueError: return False #Check if argument is date def date_check(dateX): try: dt = parser.parse(dateX).date() return True except : return False # return the label for a select_one or select_multiple field choice def jr_choice_name(value, field, df_xls): df_choices = df_xls['choices'] df_select = df_xls['select'] # find the listname of the field df_row = df_select[df_select.name == field] # find the row containing the field listname = df_row.loc[df_row.index.values[0], 'list_name'] # return the listname # find the label from the choices dataframe df_listname = df_choices[df_choices.choice_list_name == listname] # filter the choice dataframe by the listname df_list_row = df_listname[df_listname.choice_name == value] # find the row that contains the value if len(df_list_row)>0: label = df_list_row.loc[df_list_row.index.values[0],'choice_label'] # return the label from the row else: label = 'nan' return label # change syntax of a xls function in a string def str_func(s,func_name): # add open parentheses to func_name if func_name[-1]!='(': func_name = concat(func_name,'(') # replace colons and hyphens with underscores func = func_name.replace(':','_') # replace colons func = func.replace('-','_') # replace hyphens s_right= ')' # assign closed parantheses try: # get the argument and format the function sub_s = get_substring(func_name,s_right, s) if sub_s[-1] != ')': idx = sub_s.rfind(')') sub_s = sub_s[0:idx+1] new_func = concat(func,sub_s[1:len(sub_s)-1],',df_xls',')') # the correctly formated function # form new string new_str = s.replace(concat(func_name[0:len(func_name)-1],sub_s), new_func) # the new string with function return new_str except Exception as err: err = str(err) #print(string) return s #get substring def get_substring(s_left,s_right, s): r = re.search(concat(s_left,'(.*)',s_right),s) return r.group(1) # determine if sub string (sub_s) is in string (s) def is_in(sub_s,s): return sub_s in s # check for balanced parentheses in string def balanced_par(myStr): open_list = ["[","{","("] close_list = ["]","}",")"] stack = [] stack= [] for char in myStr: #print(char) if char in open_list: stack.append(char) # append char in stack list elif char in close_list: pos = close_list.index(char) # determine the index of the closed paranthesis if len(stack) > 0 and open_list[pos] == stack[len(stack)-1]: stack.pop() else: return False if len(stack) == 0: return True # get a function from string def get_func(string, func): f_idx = string.index(func) # index of the function new_str = string[f_idx+len(func) : ] # new short string char_i = 0 # initialize char counter open_list = ["[","{","("] try: if new_str[0] in open_list: for char in new_str: char_i +=1 # check if there are balanced parantheses bal_par = balanced_par(new_str[0:char_i]) if bal_par == True: func_0 = concat(func,new_str[0:char_i]) return func_0 except Exception as err: print(err) return None # eval functions in string def evalfunc_str(string,df_xls,funcs = ['jr_choice_name','date_check','count_selected','is_number','now', 'today','format_date_time','date_time','date','string','number','IF', 'regex', 'coalesce','substr','concat','count_selected','selected_at','string_length', 'selected','uuid','round','int']): nan = 'nan' for func in funcs: #print('evalFuncStr: ',string) occ = str(string).count(func)# count occurence of func in string if occ > 0: for i in range(occ): if func in string: func_str = get_func(string, func) else: func_str = None if func_str != None: try: result = eval(func_str) # evaluate function string= string.replace(func_str, str(result)) # replace function with the evluated result #print('Function: %s Result: %s'%(func_str, result)) except Exception as err: print(err) string = string return string # change the syntax of xls function to pyhton def format_funcstr(string,func): occ = string.count(func)# count occurence of func in string if occ > 0: for i in range(occ): #print('occ: ',i) if func in string: func_str = get_func(string, func) else: func_str = None if func_str != None: arg = func_str[len(func): len(func_str)] new_arg= concat(arg[0:len(arg)-1],', df_xls)') #print('index: ',i, ' o_arg: ', arg, ' n_arg: ', new_arg) new_func = func.replace(':','_') new_func = new_func.replace('-','_') string = string.replace(concat(func,arg),concat(new_func,new_arg)) #print(string) #print('ffs: ', string) return string def uuid(): return str(UUID.uuid4())
[ "noreply@github.com" ]
ikapadata.noreply@github.com
fa1ba4629c3a01734531a8062cab51667e0fbbe7
33a09a5221c4fa748b7cf7d7522e30f1d7068beb
/Alzheimer's/feature_selection_alz.py
044cca130d04720aca6bf434bd3e4a830535738a
[ "MIT" ]
permissive
Claudmj/Microarray-analysis-with-Bayesian-networks
17968fe20caf68fd87c3c4e7c9c1a877d20de042
4bf6640fa6ffcffb60922269eded83ace0678072
refs/heads/main
2023-07-14T11:08:01.286613
2021-08-20T14:05:12
2021-08-20T14:05:12
305,335,675
5
3
null
2020-10-20T14:16:18
2020-10-19T09:45:33
Python
UTF-8
Python
false
false
1,682
py
# -*- coding: utf-8 -*- """ Created on Fri Aug 21 11:32:09 2020 @author: claud """ import pandas as pd import numpy as np import seaborn as sns from sklearn import preprocessing #import data into dataframe #golub = pd.read_csv("Golub_Dataset.txt", delimiter='\t') filename='processed_alz.csv' golu=pd.read_csv(filename,header=None,skiprows=0) #no header n = 50 #transpose dataframe golub = golu.T #sort dataframe according to All/AML golub = golub.sort_values(by = 0) #column 0 contains the labels #add ideal gene vector golub['ideal_gene'] = golub[0].apply(lambda x: 0 if x == 'Healthy Control' else 1) #calculate pearson correlation between all the genes (1:7129) and the ideal gene. pearson_correlation = [] for i in np.arange(1,golub.shape[1] - 1): gene_corr = golub['ideal_gene'].corr(pd.to_numeric(golub.iloc[:,i])) pearson_correlation.append((i,gene_corr)) #sort the list of tuples (pearson_correlation) sorted_pearson_correlation = sorted(pearson_correlation, key=lambda x: x[1], reverse=True) #get the top correlated genes from the dataframe top_features_index = [i[0] for i in sorted_pearson_correlation[0:n]] top_features_genes = golub.iloc[:,top_features_index] #visualise sns.heatmap(top_features_genes.astype('float')) #add labels top_features_genes['Class_Type'] = golub[0] #write to csv top_features_genes.to_csv('PCC_alz_feature_selection.csv', header = True) #Select random features for exp2 random = golub.sample(n= n, axis=1, replace=False) #heatmap for random genes #sns.heatmap(random.astype('float'),cmap="YlGnBu") random['0'] = golub[0] random.to_csv('random_alz.csv', header = True)
[ "noreply@github.com" ]
Claudmj.noreply@github.com
27986b86b5af74996374d397e67b3192010b6e91
c0561a83b9950d3558d8e2a5dc3335fa68f6ec66
/ch6/heap_sort.py
961c7978e9cca24f00eed24e5baf5e51a947986b
[]
no_license
statco19/doit_pyalgo
e19800eb12ff34b89fefb8a88c1612b18ec931e8
55dfab8d0b62f73f59268cbef7ed099a21b53817
refs/heads/master
2023-03-03T09:01:53.229280
2021-02-08T06:58:34
2021-02-08T06:58:34
298,769,383
0
0
null
null
null
null
UTF-8
Python
false
false
565
py
def heap_sort(a): def down_heap(a, left, right): temp = a[left] parent = left while parent < (right + 1)//2: cl = parent * 2 + 1 cr = cl + 1 child = cr if cr <= right and a[cr]>a[cl] else cl if temp >= a[child]: break a[parent] = a[child] parent=child a[parent] = temp return a n = len(a) for i in range((n-1)//2, -1, -1): down_heap(a, i, n-1) for i in range(n-1, 0, -1): a[0],a[i] = a[i],a[0] down_heap(a, 0, i-1) return a if __name__ == "__main__": a = [6,4,3,7,1,9,8] print(heap_sort(a))
[ "noreply@github.com" ]
statco19.noreply@github.com
9df4c2da6b9587b435ea6909bb0ad98bd2d3b8c8
ecdb29762e4554fe9b3202f56688802c6d68683e
/blog/views.py
70e0d0624346d14d03e18b44270e7fd933f5eeaa
[]
no_license
zhangsjv/my-first-blog
236603365de0835469b02b5fef0489f0ff7245ec
4c2f64e6e30afc6e7b7f41a79e4d2457a1ee27ac
refs/heads/master
2022-12-27T02:49:10.435076
2020-10-10T11:26:09
2020-10-10T11:26:09
302,367,563
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
from django.shortcuts import render from django.utils import timezone from .models import Post # Create your views here def post_list(request): posts=Post.objects.filter(publised_date__lte=timezone.now()).order_by('-publised_date') return render(request,'blog/post_list.html',{'posts':posts})
[ "zhangsj0209@gmail.com" ]
zhangsj0209@gmail.com
58e81452937dfd410170e2ea91ccccbc72c18e66
99f26a233369d80c37938507bb16e648c640afc6
/neutronclient/tests/unit/test_cli20_network_ip_availability.py
eb325a8f68856adb41f1a3d136050916f8a0f158
[ "Apache-2.0" ]
permissive
starlingx-staging/stx-python-neutronclient
2d621ad4bd260474e6cc200bc5188a673cc5ff35
c64a68a330f7f938249523492068dd94fc8d46ea
refs/heads/master
2020-03-18T00:57:13.786897
2018-11-23T18:45:06
2018-11-24T01:18:08
134,120,728
0
3
Apache-2.0
2018-11-24T01:18:10
2018-05-20T04:51:37
Python
UTF-8
Python
false
false
2,357
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sys from neutronclient.neutron.v2_0 import network_ip_availability from neutronclient.tests.unit import test_cli20 class CLITestV20NetworkIPAvailability(test_cli20.CLITestV20Base): id_field = 'network_id' def _test_list_network_ip_availability(self, args, query): resources = "network_ip_availabilities" cmd = network_ip_availability.ListIpAvailability(test_cli20.MyApp (sys.stdout), None) self._test_list_resources(resources, cmd, base_args=args, query=query) def test_list_network_ip_availability(self): self._test_list_network_ip_availability(args=None, query='ip_version=4') def test_list_network_ip_availability_ipv6(self): self._test_list_network_ip_availability( args=['--ip-version', '6'], query='ip_version=6') def test_list_network_ip_availability_net_id_and_ipv4(self): self._test_list_network_ip_availability( args=['--ip-version', '4', '--network-id', 'myid'], query='ip_version=4&network_id=myid') def test_list_network_ip_availability_net_name_and_tenant_id(self): self._test_list_network_ip_availability( args=['--network-name', 'foo', '--tenant-id', 'mytenant'], query='network_name=foo&tenant_id=mytenant&ip_version=4') def test_show_network_ip_availability(self): resource = "network_ip_availability" cmd = network_ip_availability.ShowIpAvailability( test_cli20.MyApp(sys.stdout), None) self._test_show_resource(resource, cmd, self.test_id, args=[self.test_id])
[ "manjeet.s.bhatia@intel.com" ]
manjeet.s.bhatia@intel.com
e88f9fca86593c9f58548a9b9ee9d1d925f8edac
d3a836353ff223f76fa005215560bb9a0d5e1250
/tensorflow/python/grappler/layout_optimizer_test.py
d9c1c3ce41aee5a5a8bac5f9dd164771611413de
[ "Apache-2.0" ]
permissive
jhabikal21/tensorflow
9ee926adc0217aa379202fd5c714b7c03e4514f6
98d20962172301385aae694141801a375debd2bc
refs/heads/master
2021-07-15T20:10:13.666688
2021-06-23T11:12:14
2021-06-23T11:12:14
117,846,715
0
0
null
2018-01-17T14:22:49
2018-01-17T14:22:48
null
UTF-8
Python
false
false
45,939
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Grappler LayoutOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import device_properties_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.core.protobuf import saver_pb2 from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.grappler import cluster as gcluster from tensorflow.python.grappler import tf_optimizer from tensorflow.python.layers import convolutional as conv_layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import functional_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import gradient_descent from tensorflow.python.training import saver as saver_lib def _weight(shape): """Generates a weight of a given shape.""" return random_ops.truncated_normal(shape, seed=0, stddev=0.1) def _bias(shape): """Generates a bias of a given shape.""" return constant_op.constant(0.1, shape=shape) def _conv2d(x, w): """Returns a 2d convolution layer with full stride.""" return nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') def _max_pool_2x2(x): """Downsamples a feature map by 2X.""" return nn.max_pool( x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # Taken from tensorflow/examples/tutorials/mnist/mnist_deep.py def _two_layer_model(x): x_image = array_ops.reshape(x, [-1, 28, 28, 1]) w_conv1 = _weight([5, 5, 1, 32]) b_conv1 = _bias([32]) h_conv1 = nn.relu(_conv2d(x_image, w_conv1) + b_conv1) h_pool1 = _max_pool_2x2(h_conv1) w_conv2 = _weight([5, 5, 32, 64]) b_conv2 = _bias([64]) h_conv2 = nn.relu(_conv2d(h_pool1, w_conv2) + b_conv2) h_pool2 = _max_pool_2x2(h_conv2) return h_pool2 def _model_with_second_port(): random_seed.set_random_seed(0) x = random_ops.truncated_normal([2, 5, 5, 4], seed=0) scale = constant_op.constant(0.1, shape=[4]) offset = constant_op.constant(0.3, shape=[4]) y, mean, _ = nn.fused_batch_norm(x, scale, offset) mul = math_ops.add(y, mean) output = array_ops.identity(mul) return output def _model_with_branch(x): x_image = array_ops.reshape(x, [-1, 28, 28, 1]) w_conv1 = _weight([5, 5, 1, 32]) w_conv2 = _weight([5, 5, 1, 32]) c_conv1 = _conv2d(x_image, w_conv1) c_conv2 = _conv2d(x_image, w_conv2) add = math_ops.add(c_conv1, c_conv2) return add def _model_with_vec_and_4d(x): x_image = array_ops.reshape(x, [-1, 28, 28, 1]) w_conv1 = _weight([5, 5, 1, 32]) c_conv1 = _conv2d(x_image, w_conv1) vector = constant_op.constant(6.4, shape=[32]) add = math_ops.add(c_conv1, vector) return add def _loop(): random_seed.set_random_seed(0) x1 = random_ops.truncated_normal([1, 784], seed=0) x2 = random_ops.truncated_normal([1, 784], seed=0) x3 = random_ops.truncated_normal([1, 784], seed=0) x4 = random_ops.truncated_normal([1, 784], seed=0) elems = (x1, x2, x3, x4) outputs = functional_ops.map_fn(_two_layer_model, elems, dtype=dtypes.float32) return outputs def _loop_with_branch(): random_seed.set_random_seed(0) x1 = random_ops.truncated_normal([1, 784], seed=0) x2 = random_ops.truncated_normal([1, 784], seed=0) x3 = random_ops.truncated_normal([1, 784], seed=0) x4 = random_ops.truncated_normal([1, 784], seed=0) elems = (x1, x2, x3, x4) outputs = functional_ops.map_fn( _model_with_branch, elems, dtype=dtypes.float32) return outputs def _loop_with_vec_and_4d(): random_seed.set_random_seed(0) x1 = random_ops.truncated_normal([1, 784], seed=0) x2 = random_ops.truncated_normal([1, 784], seed=0) x3 = random_ops.truncated_normal([1, 784], seed=0) x4 = random_ops.truncated_normal([1, 784], seed=0) elems = (x1, x2, x3, x4) outputs = functional_ops.map_fn( _model_with_vec_and_4d, elems, dtype=dtypes.float32) return outputs def _get_config(layout_optimizer=True): if layout_optimizer: rewrite_options = rewriter_config_pb2.RewriterConfig( layout_optimizer=rewriter_config_pb2.RewriterConfig.ON) else: rewrite_options = rewriter_config_pb2.RewriterConfig( layout_optimizer=rewriter_config_pb2.RewriterConfig.OFF) graph_options = config_pb2.GraphOptions( rewrite_options=rewrite_options, build_cost_model=1) config = config_pb2.ConfigProto(graph_options=graph_options) return config def _simple_metagraph(depthwise=False): random_seed.set_random_seed(0) x = variables.Variable(random_ops.truncated_normal([1, 200, 200, 3], seed=0)) conv = conv_layers.separable_conv2d if depthwise else conv_layers.conv2d y = conv(x, 32, [3, 3]) z = conv(y, 32, [3, 3]) optimizer = gradient_descent.GradientDescentOptimizer(1e-4) loss = math_ops.reduce_mean(z) train_op = optimizer.minimize(loss) graph = ops.get_default_graph() graph.add_to_collection('train_op', train_op) meta_graph = saver_lib.export_meta_graph(graph_def=graph.as_graph_def()) return meta_graph def _get_cluster(): named_device = device_properties_pb2.NamedDevice() named_device.name = '/GPU:0' named_device.properties.type = 'GPU' named_device.properties.environment['architecture'] = '4' cluster = gcluster.Cluster(devices=[named_device]) return cluster class LayoutOptimizerTest(test.TestCase): """Tests the Grappler layout optimizer.""" def _train(self, checkpoint_path, layout_optimizer=False, restore=False): ops.reset_default_graph() graph = ops.get_default_graph() with session.Session( config=_get_config(layout_optimizer), graph=graph) as sess: batch = 2 height = 6 width = 7 input_channels = 3 shape = [batch, height, width, input_channels] image = array_ops.placeholder(dtype='float32', shape=shape) conv1 = conv_layers.conv2d(image, 32, [3, 3]) conv2 = conv_layers.conv2d(conv1, 32, [3, 3]) optimizer = gradient_descent.GradientDescentOptimizer(0.01) loss = math_ops.reduce_mean(conv2) train_op = optimizer.minimize(loss) saver = saver_lib.Saver(write_version=saver_pb2.SaverDef.V2) if restore: saver.restore(sess, checkpoint_path) else: sess.run(variables.global_variables_initializer()) np.random.seed(0) for _ in range(2): image_val = np.random.rand(*shape).astype(np.float32) sess.run([loss, train_op], feed_dict={image: image_val}) if restore: all_vars = ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES) all_vars_values = [var.eval(session=sess) for var in all_vars] return all_vars_values else: saver.save(sess, checkpoint_path) def testTwoConvLayers(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) output = _two_layer_model(x) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Relu_1-0-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testSplitWithNonConstAxis(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) dim = array_ops.placeholder(dtype='int32') split = array_ops.split(conv, 2, axis=dim) output = math_ops.reduce_sum(split[0]) with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={dim: 3}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata, feed_dict={dim: 3}) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-split-0-0', nodes) self.assertIn('LayoutOptimizerDimMapNHWCToNCHW_split_0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testSplitVWithNonConstAxis(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) dim = array_ops.placeholder(dtype='int32') sizes = constant_op.constant([50, 10, 4], shape=[3]) split = gen_array_ops._split_v( value=conv, size_splits=sizes, axis=dim, num_split=3) output = math_ops.reduce_sum(split[0]) with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={dim: 3}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata, feed_dict={dim: 3}) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-SplitV-0-0', nodes) self.assertIn('LayoutOptimizerDimMapNHWCToNCHW_SplitV_2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testPadWithConstPaddings(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) paddings_val = [[1, 2], [3, 4], [5, 6], [7, 8]] paddings = constant_op.constant( paddings_val, dtype='int32', name='PaddingsConst') pad = array_ops.pad(conv, paddings) output = array_ops.identity(pad) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Pad-0-0', nodes) self.assertIn('LayoutOptimizer-Pad-PaddingsConst', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testReduceSum(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) reduce_sum = math_ops.reduce_sum(conv) output = array_ops.identity(reduce_sum) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Three transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 1 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testReduceSumAlongHWC(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) reduce_sum = math_ops.reduce_sum(conv, axis=[1, 2, 3]) output = array_ops.identity(reduce_sum) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Three transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 1 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testReduceSumAlongNHW(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) reduce_sum = math_ops.reduce_sum(conv, axis=[0, 1, 2]) output = array_ops.identity(reduce_sum) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Three transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 1 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testReduceSumAlongC(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) reduce_sum = math_ops.reduce_sum(conv, axis=[3]) output = array_ops.identity(reduce_sum) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Three transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 1 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testConcatWithControlDependency(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) axis = constant_op.constant(3) var = variables.Variable(3) assign = state_ops.assign(var, 6) with ops.control_dependencies([assign]): concat = array_ops.concat([conv, conv], axis) output = array_ops.identity(concat) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-concat-0-0', nodes) self.assertIn('LayoutOptimizer-concat-Const_2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testFill(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = array_ops.placeholder(dtype='float32') conv = _two_layer_model(x) shape = array_ops.shape(conv) scalar = array_ops.constant(5.7) fill = array_ops.fill(shape, scalar) output = array_ops.identity(fill) x_val = [3.4] * 784 with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={x: x_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ x: x_val }) nodes = [] num_transposes = 0 num_vec_permute = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 if node.name.startswith('LayoutOptimizerVecPermute'): num_vec_permute += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) # Two vector permute nodes were initially added in the Expand phase of # LayoutOptimizer; they cancelled out each other in the Collapse phase. expected_vec_permute = 0 self.assertEqual(expected_vec_permute, num_vec_permute) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Fill-0-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testTile(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) multiple = array_ops.placeholder(dtype='int32') tile = array_ops.tile(conv, multiple) output = array_ops.identity(tile) multiple_val = [2, 3, 4, 1] with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={multiple: multiple_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ multiple: multiple_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Tile-0-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_Tile_1', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testReverseWithConstDims(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) dims = constant_op.constant([3, 1], name='DimsConst') reverse = array_ops.reverse(conv, dims) output = array_ops.identity(reverse) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-ReverseV2-0-0', nodes) self.assertIn('LayoutOptimizer-ReverseV2-DimsConst', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testReverseWithNonConstDims(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) dims = array_ops.placeholder(dtype='int32') reverse = array_ops.reverse(conv, dims) output = array_ops.identity(reverse) dims_val = [2, 3] with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={dims: dims_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ dims: dims_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-ReverseV2-0-0', nodes) self.assertIn('LayoutOptimizerDimMapNHWCToNCHW_ReverseV2_1', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testSelectOp(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) add = math_ops.add(conv, conv) mean = math_ops.reduce_mean(conv) condition = math_ops.less(conv, mean) select = gen_math_ops._select(condition, conv, add) output = array_ops.identity(select) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Select-0-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testSelectOpScalarCondition(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) add = math_ops.add(conv, conv) condition = constant_op.constant(True) select = gen_math_ops._select(condition, conv, add) output = array_ops.identity(select) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Select-0-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testPadWithNonConstPaddings(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) paddings = array_ops.placeholder(dtype='int32') pad = array_ops.pad(conv, paddings) output = array_ops.identity(pad) paddings_val = [[1, 2], [3, 4], [5, 6], [7, 8]] with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={paddings: paddings_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ paddings: paddings_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Pad-0-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_Pad_1', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testMaxPoolV2(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) ksize = constant_op.constant([1, 2, 3, 1], shape=[4]) strides = array_ops.placeholder(dtype='int32', shape=[4]) max_pool = gen_nn_ops._max_pool_v2(conv, ksize, strides, 'VALID') output = array_ops.identity(max_pool) strides_val = [1, 3, 2, 1] with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={strides: strides_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ strides: strides_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-MaxPoolV2-0-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_MaxPoolV2_2', nodes) self.assertIn('LayoutOptimizer-MaxPoolV2-Const_2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testMaxPoolGradV2(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) ksize = constant_op.constant([1, 2, 3, 1], shape=[4]) strides = array_ops.placeholder(dtype='int32', shape=[4]) max_pool_grad = gen_nn_ops.max_pool_grad_v2(conv, conv, conv, ksize, strides, 'VALID') output = array_ops.identity(max_pool_grad) strides_val = [1, 3, 2, 1] with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={strides: strides_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ strides: strides_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-MaxPoolGradV2-0-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_MaxPoolGradV2_4', nodes) self.assertIn('LayoutOptimizer-MaxPoolGradV2-Const_2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testSliceWithNonConstAxis(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) size = array_ops.placeholder(dtype='int32') s = array_ops.slice(conv, [0, 0, 0, 0], size) output = array_ops.identity(s) size_val = [1, 2, 3, 4] with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={size: size_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ size: size_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Slice-0-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_Slice_2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testStridedSliceWithNonConstAxis(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) end = array_ops.placeholder(dtype='int32') s = array_ops.strided_slice(conv, [0, 0, 0, 0], end, strides=[1, 2, 3, 1]) output = array_ops.identity(s) end_val = [1, 2, 3, 4] with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={end: end_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ end: end_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-StridedSlice-0-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_StridedSlice_2', nodes) self.assertIn('LayoutOptimizer-StridedSlice-StridedSlice/begin', nodes) self.assertIn('LayoutOptimizer-StridedSlice-StridedSlice/strides', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testStridedSliceWithMask(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) # This will generate a StridedSlice op with begin mask and end mask. s = conv[:, :, 1:-1, :] output = array_ops.identity(s) with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-strided_slice-0-0', nodes) self.assertIn('LayoutOptimizer-strided_slice-strided_slice/stack', nodes) self.assertIn('LayoutOptimizer-strided_slice-strided_slice/stack_1', nodes) self.assertIn('LayoutOptimizer-strided_slice-strided_slice/stack_2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testStridedSliceGradWithNonConstAxis(self): if test.is_gpu_available(cuda_only=True): random_seed.set_random_seed(0) x = random_ops.truncated_normal([1, 784], seed=0) conv = _two_layer_model(x) end = array_ops.placeholder(dtype='int32') shape = array_ops.shape(conv) end_val = [1, 2, 3, 4] s = array_ops.strided_slice( conv, [0, 0, 0, 0], end_val, strides=[1, 2, 3, 1]) s_grad = array_ops.strided_slice_grad(shape, [0, 0, 0, 0], end, [1, 2, 3, 1], s) output = array_ops.identity(s_grad) with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={end: end_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ end: end_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-StridedSliceGrad-0-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNHWCToNCHW_StridedSliceGrad_2', nodes) self.assertIn('LayoutOptimizer-StridedSlice-StridedSliceGrad/begin', nodes) self.assertIn('LayoutOptimizer-StridedSlice-StridedSliceGrad/strides', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testShapeN(self): if test.is_gpu_available(cuda_only=True): x = array_ops.placeholder(dtype='float32') conv = _two_layer_model(x) shapen = array_ops.shape_n([conv, conv]) output = math_ops.add(shapen[0], shapen[1]) x_val = [1.7] * 784 with session.Session() as sess: output_val_ref = sess.run(output, feed_dict={x: x_val}) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run( output, run_metadata=metadata, feed_dict={ x: x_val }) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 1 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-Conv2D-0', nodes) self.assertIn('LayoutOptimizerVecPermuteNCHWToNHWC-ShapeN-0-0', nodes) self.assertAllEqual(output_val_ref, output_val) def testLoop(self): if test.is_gpu_available(cuda_only=True): output = _loop() with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) # Four transposes were initially added in the Expand phase of # LayoutOptimizer; two of them are cancelled out in the Collapse phase. expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-map/while/Conv2D-0', nodes) self.assertIn( 'LayoutOptimizerTransposeNCHWToNHWC-map/while/MaxPool_1-0-2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testLoopWithBranch(self): if test.is_gpu_available(cuda_only=True): output = _loop_with_branch() with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-map/while/Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-map/while/Add-0-2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testLoopWithVecAnd4D(self): if test.is_gpu_available(cuda_only=True): output = _loop_with_vec_and_4d() with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-map/while/Conv2D-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-map/while/Add-0-2', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testBinaryOpSecondPort(self): if test.is_gpu_available(cuda_only=True): output = _model_with_second_port() with session.Session() as sess: output_val_ref = sess.run(output) with session.Session(config=_get_config()) as sess: metadata = config_pb2.RunMetadata() output_val = sess.run(output, run_metadata=metadata) nodes = [] num_transposes = 0 for node in metadata.cost_graph.node: if node.name.startswith('LayoutOptimizerTranspose'): num_transposes += 1 nodes.append(node.name) expected_num_transposes = 2 self.assertEqual(expected_num_transposes, num_transposes) self.assertIn('LayoutOptimizerTransposeNHWCToNCHW-FusedBatchNorm-0', nodes) self.assertIn('LayoutOptimizerTransposeNCHWToNHWC-Add-0-0', nodes) self.assertAllClose(output_val_ref, output_val, atol=1e-3) def testGradient(self): meta_graph = _simple_metagraph() rewrite_options = rewriter_config_pb2.RewriterConfig( layout_optimizer=rewriter_config_pb2.RewriterConfig.ON) optimized_graph = tf_optimizer.OptimizeGraph( rewrite_options, meta_graph, cluster=_get_cluster()) found = 0 for node in optimized_graph.node: if node.op in ['Conv2D', 'Conv2DBackpropFilter', 'Conv2DBackpropInput']: found += 1 self.assertEqual(node.attr['data_format'].s, b'NCHW') self.assertEqual(found, 5) def testDepthwise(self): meta_graph = _simple_metagraph(depthwise=True) rewrite_options = rewriter_config_pb2.RewriterConfig( layout_optimizer=rewriter_config_pb2.RewriterConfig.ON) optimized_graph = tf_optimizer.OptimizeGraph( rewrite_options, meta_graph, cluster=_get_cluster()) found = 0 for node in optimized_graph.node: if node.op in [ 'DepthwiseConv2dNative', 'DepthwiseConv2dNativeBackpropFilter', 'DepthwiseConv2dNativeBackpropInput' ]: found += 1 self.assertEqual(node.attr['data_format'].s, b'NCHW') self.assertEqual(found, 6) def testCheckpointCompatibility(self): if not test.is_gpu_available(cuda_only=True): self.skipTest('GPU required') checkpoint_path = self.get_temp_dir() self._train(checkpoint_path) vars_expected = self._train(checkpoint_path, restore=True) vars_layout_optimized = self._train( checkpoint_path, restore=True, layout_optimizer=True) for var_expected, var_layout_optimized in zip(vars_expected, vars_layout_optimized): self.assertAllClose(var_expected, var_layout_optimized, atol=1e-6) if __name__ == '__main__': test.main()
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
9dd7670dd482869fa273d037703679c2bf9427de
f66e717c600c0bd1e3272e4501491ec99185fd4e
/Andelabs Day 2/CarClass/CarClass.py
b0340dc623d8edc76241cadc7f08fa491a52a7da
[]
no_license
Andretalik/Adrian-Otieno-bc17-week-1
8e1814769d3498b1de6fc2c71aec67ca6bf58722
555420ec71a524053629e39f6dcf0601a661553d
refs/heads/master
2021-01-18T23:03:58.841109
2017-04-06T16:00:15
2017-04-06T16:00:15
87,086,288
0
0
null
2017-04-06T16:00:16
2017-04-03T14:54:48
Python
UTF-8
Python
false
false
964
py
class Car(object): def __init__(self, name='General', model='GM', type_car='saloon', num_of_doors=4, num_of_wheels=4, speed=0): self.name = name self.model = model self.num_of_doors = num_of_doors self.num_of_wheels = num_of_wheels self.type_car = type_car self.speed = speed if self.name == 'Porshe' or self.name == 'Koenigsegg': self.num_of_doors = 2 if self.type_car == 'trailer': self.num_of_wheels = 8 else: self.num_of_wheels = 4 self.type_car = 'saloon' def is_saloon(self): if self.type_car == 'saloon': return True else: return False def drive(self, moving_speed): if 3 < moving_speed <= 7: self.speed = 77 return self elif 0 < moving_speed <= 3: self.speed = 1000 return self else: return self
[ "noreply@github.com" ]
Andretalik.noreply@github.com
d624ff4893bd574e6c0d2ea5f9b242a26fa6d711
33698eb3976bbc8a64bc68787a24a7adb53c5c33
/projetojogo/venv/projetoflask.py
9cd4ee9eb1b48bd7dbf2e62d2b41de1e438e4ee0
[]
no_license
jacksonwsup/study_flask-microframework
f225470cbdf887b5345648aa3c52220b04e71c8d
72f263510ea7f52d5768bef1beea2d81574c404d
refs/heads/main
2023-08-31T17:03:39.816094
2021-11-02T04:37:13
2021-11-02T04:37:13
423,698,814
0
0
null
null
null
null
UTF-8
Python
false
false
274
py
from flask import Flask, render_template #funcção render_template utilizamos para renderizar qualqer formato app = Flask(__name__) #app.run(host='0.0.0.0', port=8080) @app.route('/inicio') def hellow(): return render_template('lista.html', titulo='Jogos') app.run()
[ "86334378+jacksonwsup@users.noreply.github.com" ]
86334378+jacksonwsup@users.noreply.github.com
6e2270dae209181b8af5ff3dcc9eea8dc4033c64
f6ed7bc808f5536bc77166fe5c3571e5c028f308
/neptune/internal/cli/commands/executing/null_executor.py
b7ba6ca006a08ffa645f0c58a15b0419a5cec32f
[ "Apache-2.0" ]
permissive
jiji-online/neptune-cli
d086bb59725b7545f3e0f80bd89e8f99ff3851a0
50cf680a80d141497f9331ab7cdaee49fcb90b0c
refs/heads/main
2023-07-18T17:56:10.671562
2021-09-14T07:54:13
2021-09-14T07:54:13
406,275,162
0
0
null
null
null
null
UTF-8
Python
false
false
742
py
# # Copyright (c) 2017, deepsense.io # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from future.builtins import object class NullExecutor(object): def execute(self, experiment, args): pass def abort(self): pass
[ "serhii.freidin@jiji.ng" ]
serhii.freidin@jiji.ng
e2a012ec71783edc7049afbffecf672773bea279
b71cbb9604d3ff09af51fb7d6df771a1198f545e
/home/bin/find_burnable_quantities.py
946fa92c784d624aadeac96e04e903cf805373ad
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
ssokolow/profile
74ed45f2eccd692da92b05cf5069b3d4e28d4ef2
0e1bb67e1c83b58e2c49d89b06b1fd3928273614
refs/heads/master
2022-09-18T06:05:59.220154
2022-09-04T19:13:25
2022-09-04T19:13:25
367,158
9
9
null
null
null
null
UTF-8
Python
false
false
8,524
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """A simple little script to walk a filesystem subtree from the leaves upwards and draw a tree of of folders large enough to be backed up to DVD+R. (Displayed size values for parent directories do not include content which matches the exclusion filter) """ from __future__ import (absolute_import, division, print_function, with_statement) __author__ = "Stephan Sokolow (deitarion/SSokolow)" __appname__ = "Find Burnable Quantities" __version__ = "0.0pre0" __license__ = "MIT" MIN_SIZE = 4480 * (1024 ** 2) # 4480MiB OMITTED_NAMES = ['VIDEO_TS'] # Only show DVD-Video dumps as whole entries # Avoid thrashing the disk by descending into directories with tons of tiny # files that we're unlikely to want to size for burning anyway. TRAVERSAL_EXCLUSIONS = [ '.backups', '.git', '.hg', '.bzr', '.svn', 'incomplete', 'ACTION_NEEDED_BEFORE_BURNING' ] import logging log = logging.getLogger(__name__) import itertools, math, os, re def walk(top, topdown=True, onerror=None, followlinks=False, traversal_filter_cb=None): """Python 2.7.3's os.walk(), modified to allow directory exclusion when using topdown=True. If a function is passed in via the traversal_filter_cb argument, call it with the same arguments that will be yielded before descending. Users may then mutate `dirs` to control traversal order or skip folders. """ islink, join, isdir = os.path.islink, os.path.join, os.path.isdir # We may not have read permission for top, in which case we can't # get a list of the files the directory contains. os.path.walk # always suppressed the exception then, rather than blow up for a # minor reason when (say) a thousand readable directories are still # left to visit. That logic is copied here. try: names = os.listdir(top) except os.error, err: if onerror is not None: onerror(err) return dirs, nondirs = [], [] for name in names: if isdir(join(top, name)): dirs.append(name) else: nondirs.append(name) if traversal_filter_cb: traversal_filter_cb(top, dirs, nondirs) if topdown: yield top, dirs, nondirs for name in dirs: new_path = join(top, name) if followlinks or not islink(new_path): for x in walk(new_path, topdown, onerror, followlinks, traversal_filter_cb=traversal_filter_cb): yield x if not topdown: yield top, dirs, nondirs def humansort_key(strng): """Human/natural sort key-gathering function for sorted() Source: http://stackoverflow.com/a/1940105 """ if isinstance(strng, tuple): strng = strng[0] return [w.isdigit() and int(w) or w.lower() for w in re.split(r'(\d+)', strng)] def format_file_size(size, unit='', precision=0): """Take a size in bits or bytes and return it all prettied up and rounded to whichever unit gives the smallest number. A fixed unit can be specified. Possible units are B, KiB, MiB, GiB, TiB, and PiB so far. Case-insensitive. Works on both negative and positive numbers. In the event that the given value is in bits, the user will have to use result = result[:-1] + 'b' to make it appear correct. Will calculate using integers unless precision is != 0. Will display using integers unless precision is > 0. """ # Each unit's position in the list is crucial. # units[2] = 'MiB' and size / 1024**2 = size in MiB # units[3] = 'GiB' and size / 1024**3 = size in GiB units = ['B', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB'] increment = 1024.0 # Must be float in Python 2.x to avoid floor division # Did the calling function specify a valid unit of measurement? if unit and unit.upper() in [x.upper() for x in units]: unit_idx = units.index(unit) else: unit_idx = min(int(math.log(abs(size), increment)), len(units) - 1) size /= increment ** unit_idx return '%.*f%s' % (precision, size, units[unit_idx]) class StatGatherer(object): """Gathers size-filtered disk usage stats""" def __init__(self, omitted_names=None, traversal_exclusions=None): """ param omitted_names: Names to be omitted from the listing for clarity (eg. VIDEO_TS) param traversal_exclusions: Directories to be skipped when descending for efficiency (eg. .git) """ self.size_cache = {} self.count_cache = {} self.omitted_names = omitted_names or [] self.traversal_exclusions = traversal_exclusions or [] def _exclusion_cb(self, top, dirs, nondirs): """Used with my custom os.walk() to implement traversal exclusions when using topdown=False """ for name in self.traversal_exclusions: while name in dirs: dirs.remove(name) def examine(self, root, min_size=MIN_SIZE): """Generator to walk a filesystem from the leaves in and print a tree of folders larger than C{min_size} bytes.""" for path, dirs, files in walk(root, topdown=False, traversal_filter_cb=self._exclusion_cb): path = os.path.normpath(os.path.normcase(path)) # Recursively sum file sizes size, fcount = 0, len(files) for fname in files: try: size += os.path.getsize(os.path.join(path, fname)) except OSError: pass for dname in dirs: dpath = os.path.join(path, dname) if dpath in self.size_cache: size += self.size_cache[dpath] if dpath in self.count_cache: fcount += self.count_cache[dpath] self.size_cache[path] = size self.count_cache[path] = fcount if size >= min_size and ( os.path.split(path)[1] not in self.omitted_names): yield (path, size, fcount) # pylint: disable=no-self-use def render(self, results): """Generator to render a list of (path, size, count) tuples as a treeview using indents.""" # Commented out to allow efficient generator stream processing # results.sort(key=humansort_key) for (path, size, files) in results: # print(path, size) yield '%s%s (%s in %s files)' % ( ' ' * (path.count(os.sep)), os.path.split(path)[1], format_file_size(size, precision=2), files) def main(): """The main entry point, compatible with setuptools entry points.""" # pylint: disable=bad-continuation from optparse import OptionParser parser = OptionParser(version="%%prog v%s" % __version__, usage="%prog [options] <path> ...", description=__doc__.replace('\r\n', '\n').split('\n--snip--\n')[0]) parser.add_option('-v', '--verbose', action="count", dest="verbose", default=2, help="Increase the verbosity. Use twice for extra effect") parser.add_option('-q', '--quiet', action="count", dest="quiet", default=0, help="Decrease the verbosity. Use twice for extra effect") parser.add_option('-r', '--reverse', action="store_true", dest="reverse", default=0, help="Show results as they are gathered (in reverse order)") # Allow pre-formatted descriptions parser.formatter.format_description = lambda description: description opts, args = parser.parse_args() # Set up clean logging to stderr log_levels = [logging.CRITICAL, logging.ERROR, logging.WARNING, logging.INFO, logging.DEBUG] opts.verbose = min(opts.verbose - opts.quiet, len(log_levels) - 1) opts.verbose = max(opts.verbose, 0) logging.basicConfig(level=log_levels[opts.verbose], format='%(levelname)s: %(message)s') statter = StatGatherer( omitted_names=OMITTED_NAMES, traversal_exclusions=TRAVERSAL_EXCLUSIONS) results = [statter.render(statter.examine(x)) for x in args] # Implement reverse() use with the minimum possible loss of # streaming display for resultset in results: if not opts.reverse: resultset = reversed(list(resultset)) for line in resultset: print(line) if __name__ == '__main__': main()
[ "http://www.ssokolow.com/ContactMe" ]
http://www.ssokolow.com/ContactMe
b70471b30ed693024129232b607386dcc2056eed
4d05be863b63a56a90b4c46b15069827b33ecaae
/Algorithms/leetcode/088_merge_sorted_array.py
cdc7c4756f42f6563a0e1d9faa78195016a55fbc
[]
no_license
leeo1116/PyCharm
e532fa9754056019508cc454214ee1a8ad9b26a9
b6942c05c27556e5fe47879e8b823845c84c5430
refs/heads/master
2022-11-06T00:43:14.882453
2017-07-13T04:50:00
2017-07-13T04:50:00
36,851,636
0
1
null
2022-10-20T10:44:39
2015-06-04T06:09:09
Python
UTF-8
Python
false
false
775
py
__author__ = 'Liang Li' class Solution: # @param {integer[]} nums1 # @param {integer} m # @param {integer[]} nums2 # @param {integer} n # @return {void} Do not return anything, modify nums1 in-place instead. def merge(self, nums1, m, nums2, n): i = m-1 j = n-1 k = m+n-1 while i >= 0 and j >= 0: if nums1[i] > nums2[j]: nums1[k] = nums1[i] i -= 1 k -= 1 else: nums1[k] = nums2[j] j -= 1 k -= 1 while j >= 0: nums1[k] = nums2[j] j -= 1 k -= 1 s = Solution() nums1 = [2, 5, 8, 12, 0, 0, 0, 0] nums2 = [1, 3, 4, 10] s.merge(nums1, 4, nums2, 4) print(nums1)
[ "leeo1116@gmail.com" ]
leeo1116@gmail.com
24516fbfe12de0980aa098f7de5d754300afa400
5fb8b98ed56253954cce5b82727f48a90ea89807
/standalone-modules/OneHotEncoder/run.py
1fe2ecd48f77ed379678ff1c818f1b80b73a5570
[]
no_license
gitter-badger/datacanvas-modules
2d96c922dcc866b3326c667b8467891484b9df2b
a4c50defe84166b282961a0f1d5601b27dea5434
refs/heads/master
2021-05-02T07:04:30.121612
2018-02-09T06:43:14
2018-02-09T06:43:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
import pandas as pd import category_encoders as ce def main(params, inputs, outputs): columns_param = params.columns data = inputs.data data_new = outputs.data_new data_0 = pd.read_pickle(data) encoder = ce.OneHotEncoder(cols=[col for col in columns_param.split(",")]) data_1 = encoder.fit_transform(data_0) data_1.to_pickle(data_new)
[ "yunky.dong@gmail.com" ]
yunky.dong@gmail.com
2b40da75789f55119d250b7354c69c87b1f8de71
b23d294fdffabe72c336644f119860f5ce704eef
/python_1000phone/预科/day1-turtle/01-第一个python代码.py
bc791ddb4d9c798be10d6dc7d7d522d3d4d2a228
[]
no_license
ikaros274556330/my_code
65232758fd20820e9f4fa8cb5a6c91a1969862a2
92db21c4abcbd88b7bd77e78d9f660b4534b5071
refs/heads/master
2020-11-26T09:43:58.200990
2019-12-23T02:08:39
2019-12-23T02:08:39
229,032,315
1
0
null
null
null
null
UTF-8
Python
false
false
42
py
# 打印hello world! print('hello world!')
[ "274556330@qq.com" ]
274556330@qq.com
100bf1b290d658349122b8ccac599bd77cba14c7
2f6511ae1ebe993754a5ec056186259cae213658
/selenium/main/login/main.py
88e4ba2f30fa47b36df77da91f33696754092ab2
[]
no_license
arvigupt/connect
508f16b2fcec03b1ecad90697d0f02730fd83af4
7dca766c8aae9bdb2f97366ed101dcc0f25a39c2
refs/heads/main
2023-03-28T04:10:34.990081
2021-03-31T07:15:46
2021-03-31T07:15:46
350,322,413
0
0
null
null
null
null
UTF-8
Python
false
false
5,875
py
from core.common import commoncomponent from core.common.repository import data_platform from core.common.repository import dp_applicant_login_info from core.common.models.UserCredential import UserCredential import uvicorn import datetime import json import os from typing import Optional from fastapi import FastAPI, Header from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.by import By from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.options import Options from selenium.webdriver import Firefox, DesiredCapabilities from selenium.webdriver.firefox.options import Options as FirefoxOptions login_status = 'login_status' app = FastAPI() grid_url = "http://localhost:4444/wd/hub" def default(o): if isinstance(o, (datetime.date, datetime.datetime)): return o.isoformat() def convert_response_into_json(result): return json.dumps(result, indent = 2, default = default) def check_authorization_value(authorization): if authorization != "success": raise "invalid authorization" @app.get("/platforms") def get_platforms(authorization: Optional[str] = Header(None)): check_authorization_value(authorization) result = data_platform.fetch_data_platforms() return convert_response_into_json(result) @app.get("/platforms/{platform_name}") def get_platform_by_name(platform_name, authorization: Optional[str] = Header(None)): check_authorization_value(authorization) result = data_platform.fetch_data_platform_by_name(platform_name) return convert_response_into_json(result) @app.post("/platforms") def get_platforms(credential: UserCredential, authorization: Optional[str] = Header(None)): check_authorization_value(authorization) driver = get_firefox_driver() result = start_login(driver, credential.tenant_id, credential.data_platform_id, credential.applicant_id, credential.username, credential.password, credential.otp, credential.relogin) return convert_response_into_json(result) def get_firefox_driver(): print("executing get_firefox_driver") options = webdriver.FirefoxOptions() # options.add_argument( "no-sandbox" ) # options.add_argument( "--disable-gpu" ) options.add_argument( "-private" ) # options.add_argument("--disable-infobars") # options.add_argument( "--disable-dev-shm-usage" ) # options.add_argument("start-maximized"); # options.add_argument("ignore-certificate-errors"); # options.add_argument("disable-popup-blocking"); # options.add_argument("disable-extensions"); # options.add_argument("disable-notifications"); driver = webdriver.Remote(command_executor=grid_url, desired_capabilities=DesiredCapabilities.FIREFOX, options=options ) return driver def get_chrome_driver(): print("executing get_chrome_driver") options = webdriver.ChromeOptions() options.add_argument( "no-sandbox" ) options.add_argument( "--disable-gpu" ) options.add_argument( "--incognito" ) options.add_argument("--disable-infobars") # options.add_argument( "--window-size=800,600" ) options.add_argument( "--disable-dev-shm-usage" ) options.add_argument("start-maximized"); options.add_argument("ignore-certificate-errors"); options.add_argument("disable-popup-blocking"); options.add_argument("disable-extensions"); options.add_argument("disable-notifications"); # options.add_experimental_option("prefs", {"profile.allow_all_cookies": True}); options.add_experimental_option("prefs", {"profile.enable-cookies": True}); # options.add_argument("enable-cookies"); # options.add_experimental_option("prefs", {"profile.default_content_settings.cookies": 2}); driver = webdriver.Remote(command_executor=grid_url, desired_capabilities=DesiredCapabilities.CHROME, options=options ) return driver def start_login(driver, tenant_id, data_platform_id, applicant_id, username, password, otp, relogin): applicant_login_info = dp_applicant_login_info.fetch_dp_applicant_login_info(tenant_id, data_platform_id, applicant_id) applicant_username = username applicant_pwd = password applicant_otp = otp if applicant_login_info == None: dp_applicant_login_info.insert_dp_applicant_login_info(tenant_id, data_platform_id, applicant_id) dp_applicant_login_info.update_login_status(tenant_id, data_platform_id, applicant_id, '', "none") applicant_login_info = dp_applicant_login_info.fetch_dp_applicant_login_info(tenant_id, data_platform_id, applicant_id) elif applicant_login_info[login_status] == "in-progress" : applicant_username = applicant_login_info['username'] applicant_pwd = applicant_login_info['pwd'] elif applicant_login_info[login_status] == "completed": if relogin == True: dp_applicant_login_info.delete_dp_applicant_login_info(tenant_id, data_platform_id, applicant_id) dp_applicant_login_info.insert_dp_applicant_login_info(tenant_id, data_platform_id, applicant_id) dp_applicant_login_info.update_login_status(tenant_id, data_platform_id, applicant_id, '', "none") applicant_login_info = dp_applicant_login_info.fetch_dp_applicant_login_info(tenant_id, data_platform_id, applicant_id) else: print("Operation completed successfully.") exit(1) commoncomponent.login_to_application(driver, tenant_id, data_platform_id, applicant_id, applicant_username, applicant_pwd, applicant_otp, applicant_login_info) if __name__ == '__main__': uvicorn.run(app, host="0.0.0.0", port=8000)
[ "arvind@Arvinds-MacBook-Pro.local" ]
arvind@Arvinds-MacBook-Pro.local
0bb311e3db55cf3f8c9eb6227d012f33756a20b9
f19ba7a733013aa9897f2ce9a1d25268bc26ba97
/Robot_e grafi_solutions/es_grafo_orientato_bassignana.py
d0c5579552d8043dc0598b934644a40fb6aef82a
[]
no_license
My-Students/Python-robotics
d876cb5a01aca583dbe48c4885e892a86e31e6ed
7b70f5dd1a62ef6f1ad305a3bd096b6eb1f87bd5
refs/heads/master
2021-02-13T14:32:37.153082
2020-03-30T15:31:45
2020-03-30T15:31:45
244,704,397
0
1
null
null
null
null
UTF-8
Python
false
false
2,193
py
import network as nx import matplotlib.pyplot as plt def main(): num_nodi = int(input("Inserire il numero di nodi")) dict = creaDictDaNumNodi(num_nodi) stampaDict(dict) stampaMatrice(creaMatriceDaDict(dict, num_nodi), num_nodi) disegnaGrafo(dict) def creaMatriceDaNumNodi(num_nodi): matrix = [] for i in range(1, num_nodi + 1): e = [int(i) for i in input(f"Inserire le num_nodiicinanze del nodo {i} (usare la '.' come separatore): ").split('.')] colonna = [0 for dim in range(0, num_nodi)] for j in e: if j != i: colonna[j - 1] = 1 matrix.append(colonna) return matrix def creaDictDaNumNodi(num_nodi): dict = {} for r in range(0, num_nodi): chianum_nodi = r + 1 occ = [int(i) for i in input(f"Inserire le num_nodiicinanze del nodo {chianum_nodi} (usare la '.' come separatore): ").split('.')] dict[chianum_nodi] = occ return dict def creaDictDaMatrice(grafo): dict = {} for r in range(0, len(grafo)): num_nodi = r + 1 occ = [] for c in range(0, len(grafo)): if grafo[r][c] == 1: occ.append(c + 1) dict[num_nodi] = occ return dict def creaMatriceDaDict(dict, num_nodi): matrix = [] for key, num_nodi in dict.items(): colonna = [0 for dim in range(0, num_nodi)] for link in num_nodi: colonna[link - 1] = 1 matrix.append(colonna) return matrix def stampaDict(dict): print("\n{") for key, num_nodi in dict.items(): print(f"\t{key}: {num_nodi},") print("}") def disegnaGrafo(dict): G = nx.Graph() for key, num_nodi in dict.items(): G.add_node(key) for i in num_nodi: G.add_edge(int(key), int(i)) print(f"\n{nx.info(G)}") nx.draw(G) plt.show() def stampaMatrice(matrix, num_nodi): for r in range(0, num_nodi): print(" ") for c in range(0, num_nodi): print(matrix[r][c], end=' ') if __name__ == '__main__': main()
[ "noreply@github.com" ]
My-Students.noreply@github.com
392ab4ad3209f4bb37e55cbada92691ad36b9f56
294f1ae78a6b0edf6857e3316ace22a7503c40fd
/app/crud/__init__.py
a0da9acee5fb1366c9bec782d7c2ad813a8473db
[ "Apache-2.0" ]
permissive
vampire725/EchoProxy
ecc535f7f9ea61fec208e858ecf28ac58c266d47
0273f47397b76fa0292db267d99eeb9dccc4e869
refs/heads/master
2022-04-06T05:54:14.824916
2020-03-08T13:41:09
2020-03-08T13:41:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
# !/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/3/4 0004 21:25 # @Author : Gpp # @File : __init__.py.py
[ "gpp0725@outlook.com" ]
gpp0725@outlook.com
9910357a988f65c5b80d36a05e1c1bf939455313
9d2bb59a7c7528750be78fc9b44081648f63364a
/pytils/date.py
1f50531f420b2ddb4003fa15057640fbcd114227
[]
no_license
johanlundahl/pytils
368ece19cf666a319811e269d3798dc1b681b10f
bae78dbe2e5025254b01d901134667ee7ac37454
refs/heads/master
2023-01-03T17:57:54.317305
2022-12-28T20:10:20
2022-12-28T20:10:20
143,716,827
0
0
null
null
null
null
UTF-8
Python
false
false
3,591
py
from abc import ABC, abstractmethod, abstractproperty from datetime import datetime, timedelta import calendar class Period(ABC): def __init__(self, dt=datetime.now()): self._datetime = datetime(dt.year, dt.month, dt.day) @classmethod def now(cls): return cls(datetime.now()) @classmethod def parse(cls, date_str): date = datetime.strptime(date_str, cls().date_pattern) return cls(date) @classmethod def of(cls, period): return cls(period._datetime) @staticmethod @abstractproperty def date_pattern(cls): pass @property def name(self): return str(self) @property @abstractmethod def number(self): pass @abstractmethod def prev(self): pass @abstractmethod def next(self): pass @abstractmethod def range(self): pass def __str__(self): return self._datetime.strftime(self.date_pattern) class Date(Period): @property def date_pattern(cls): return '%Y-%m-%d' @property def number(self): return self._datetime.day def prev(self): yesterday = self._datetime - timedelta(days=1) return Date(yesterday) def next(self): tomorrow = self._datetime + timedelta(days=1) return Date(tomorrow) def range(self): end = self._datetime.replace(hour=23, minute=59, second=59, microsecond=999) return (self._datetime, end) def __sub__(self, obj): if isinstance(obj, int): new_date = self._datetime - timedelta(days=obj) return Date(new_date) class Week(Period): @property def date_pattern(self): return '%V %Y' @property def number(self): return self._datetime.isocalendar()[1] def range(self): weekday = self._datetime.weekday() monday = self._datetime - timedelta(days=weekday) sunday = self._datetime + timedelta(days=(7-weekday)) return (Date(monday), Date(sunday)) def prev(self): monday, sunday = self.range() return Week.of(monday.prev()) def next(self): monday, sunday = self.range() return Week.of(sunday.next()) class Month(Period): @property def date_pattern(self): return '%B %Y' @property def number(self): return self._datetime.month @property def days(self): year = self._datetime.year month = self._datetime.month return calendar.monthrange(year, month)[1] def prev(self): first, last = self.range() return Month.of(first.prev()) def next(self): first, last = self.range() return Month.of(last.next()) def range(self): year = self._datetime.year month = self._datetime.month last_day = calendar.monthrange(year, month)[1] return (Date(datetime(year, month, 1)), Date(datetime(year, month, last_day))) class Year(Period): @property def date_pattern(self): return '%Y' @property def number(self): return self._datetime.year def prev(self): first, last = self.range() return Year.of(first.prev()) def next(self): first, last = self.range() return Year.of(last.next()) def range(self): year = self._datetime.year return (Date(datetime(year, 1, 1)), Date(datetime(year, 12, 31)))
[ "johan.t.lundahl@gmail.com" ]
johan.t.lundahl@gmail.com
d71d23c9bd97b0cc2e634b08122a66d17abfe9d2
08ab8bfeee89992e294a9ae34310ff349a104885
/pyserini/dsearch/_dsearcher.py
d1dffbeb57114bb7c527305cc12774db1818bfeb
[ "Apache-2.0" ]
permissive
RootofalleviI/pyserini
9b80cf3743dfb9331b7c37e239717870f6e01169
5023349d2ad1e8900d866b3e37b6afb3b74ef970
refs/heads/master
2023-08-08T08:24:58.811915
2021-09-15T22:18:52
2021-09-15T22:18:52
367,443,046
0
0
Apache-2.0
2021-09-15T21:59:43
2021-05-14T18:03:08
Python
UTF-8
Python
false
false
22,902
py
# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module provides Pyserini's dense search interface to FAISS index. The main entry point is the ``SimpleDenseSearcher`` class. """ import os from dataclasses import dataclass from typing import Dict, List, Union, Optional import numpy as np import pandas as pd from transformers import (AutoModel, AutoTokenizer, BertModel, BertTokenizer, BertTokenizerFast, DPRQuestionEncoder, DPRQuestionEncoderTokenizer, RobertaTokenizer) from transformers.file_utils import is_faiss_available, requires_backends from pyserini.util import (download_encoded_queries, download_prebuilt_index, get_dense_indexes_info, get_sparse_index) from pyserini.search import SimpleSearcher, Document from ._model import AnceEncoder import torch if is_faiss_available(): import faiss class QueryEncoder: def __init__(self, encoded_query_dir: str = None): self.has_model = False self.has_encoded_query = False if encoded_query_dir: self.embedding = self._load_embeddings(encoded_query_dir) self.has_encoded_query = True def encode(self, query: str): return self.embedding[query] @classmethod def load_encoded_queries(cls, encoded_query_name: str): """Build a query encoder from a pre-encoded query; download the encoded queries if necessary. Parameters ---------- encoded_query_name : str pre encoded query name. Returns ------- QueryEncoder Encoder built from the pre encoded queries. """ print(f'Attempting to initialize pre-encoded queries {encoded_query_name}.') try: query_dir = download_encoded_queries(encoded_query_name) except ValueError as e: print(str(e)) return None print(f'Initializing {encoded_query_name}...') return cls(encoded_query_dir=query_dir) @staticmethod def _load_embeddings(encoded_query_dir): df = pd.read_pickle(os.path.join(encoded_query_dir, 'embedding.pkl')) return dict(zip(df['text'].tolist(), df['embedding'].tolist())) class TctColBertQueryEncoder(QueryEncoder): def __init__(self, encoder_dir: str = None, tokenizer_name: str = None, encoded_query_dir: str = None, device: str = 'cpu'): super().__init__(encoded_query_dir) if encoder_dir: self.device = device self.model = BertModel.from_pretrained(encoder_dir) self.model.to(self.device) self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name or encoder_dir) self.has_model = True if (not self.has_model) and (not self.has_encoded_query): raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one') def encode(self, query: str): if self.has_model: max_length = 36 # hardcode for now inputs = self.tokenizer( '[CLS] [Q] ' + query + '[MASK]' * max_length, max_length=max_length, truncation=True, add_special_tokens=False, return_tensors='pt' ) inputs.to(self.device) outputs = self.model(**inputs) embeddings = outputs.last_hidden_state.detach().cpu().numpy() return np.average(embeddings[:, 4:, :], axis=-2).flatten() else: return super().encode(query) class DprQueryEncoder(QueryEncoder): def __init__(self, encoder_dir: str = None, tokenizer_name: str = None, encoded_query_dir: str = None, device: str = 'cpu'): super().__init__(encoded_query_dir) if encoder_dir: self.device = device self.model = DPRQuestionEncoder.from_pretrained(encoder_dir) self.model.to(self.device) self.tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(tokenizer_name or encoder_dir) self.has_model = True if (not self.has_model) and (not self.has_encoded_query): raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one') def encode(self, query: str): if self.has_model: input_ids = self.tokenizer(query, return_tensors='pt') input_ids.to(self.device) embeddings = self.model(input_ids["input_ids"]).pooler_output.detach().cpu().numpy() return embeddings.flatten() else: return super().encode(query) class BprQueryEncoder(QueryEncoder): def __init__(self, encoder_dir: str = None, tokenizer_name: str = None, encoded_query_dir: str = None, device: str = 'cpu'): self.has_model = False self.has_encoded_query = False if encoded_query_dir: self.embedding = self._load_embeddings(encoded_query_dir) self.has_encoded_query = True if encoder_dir: self.device = device self.model = DPRQuestionEncoder.from_pretrained(encoder_dir) self.model.to(self.device) self.tokenizer = DPRQuestionEncoderTokenizer.from_pretrained(tokenizer_name or encoder_dir) self.has_model = True if (not self.has_model) and (not self.has_encoded_query): raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one') def encode(self, query: str): if self.has_model: input_ids = self.tokenizer(query, return_tensors='pt') input_ids.to(self.device) embeddings = self.model(input_ids["input_ids"]).pooler_output.detach().cpu() dense_embeddings = embeddings.numpy() sparse_embeddings = self.convert_to_binary_code(embeddings).numpy() return {'dense':dense_embeddings.flatten(), 'sparse':sparse_embeddings.flatten()} else: return super().encode(query) def convert_to_binary_code(self, input_repr: torch.Tensor): return input_repr.new_ones(input_repr.size()).masked_fill_(input_repr < 0, -1.0) @staticmethod def _load_embeddings(encoded_query_dir): df = pd.read_pickle(os.path.join(encoded_query_dir, 'embedding.pkl')) ret = {} for text, dense, sparse in zip(df['text'].tolist(), df['dense_embedding'].tolist(), df['sparse_embedding'].tolist()): ret[text] = {'dense': dense, 'sparse': sparse} return ret class DkrrDprQueryEncoder(QueryEncoder): def __init__(self, encoder_dir: str = None, encoded_query_dir: str = None, device: str = 'cpu', prefix: str = "question:"): super().__init__(encoded_query_dir) self.device = device self.model = BertModel.from_pretrained(encoder_dir) self.model.to(self.device) self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") self.has_model = True self.prefix = prefix @staticmethod def _mean_pooling(model_output, attention_mask): model_output = model_output[0].masked_fill(1 - attention_mask[:, :, None], 0.) model_output = torch.sum(model_output, dim=1) / torch.clamp(torch.sum(attention_mask, dim=1), min=1e-9)[:, None] return model_output.flatten() def encode(self, query: str): if self.has_model: if self.prefix: query = f'{self.prefix} {query}' inputs = self.tokenizer(query, return_tensors='pt', max_length=40, padding="max_length") inputs.to(self.device) outputs = self.model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) embeddings = self._mean_pooling(outputs, inputs['attention_mask']).detach().cpu().numpy() return embeddings.flatten() else: return super().encode(query) class AnceQueryEncoder(QueryEncoder): def __init__(self, encoder_dir: str = None, tokenizer_name: str = None, encoded_query_dir: str = None, device: str = 'cpu'): super().__init__(encoded_query_dir) if encoder_dir: self.device = device self.model = AnceEncoder.from_pretrained(encoder_dir) self.model.to(self.device) self.tokenizer = RobertaTokenizer.from_pretrained(tokenizer_name or encoder_dir) self.has_model = True if (not self.has_model) and (not self.has_encoded_query): raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one') def encode(self, query: str): if self.has_model: inputs = self.tokenizer( [query], max_length=64, padding='longest', truncation=True, add_special_tokens=True, return_tensors='pt' ) inputs.to(self.device) embeddings = self.model(inputs["input_ids"]).detach().cpu().numpy() return embeddings.flatten() else: return super().encode(query) class AutoQueryEncoder(QueryEncoder): def __init__(self, encoder_dir: str = None, tokenizer_name: str = None, encoded_query_dir: str = None, device: str = 'cpu', pooling: str = 'cls', l2_norm: bool = False): super().__init__(encoded_query_dir) if encoder_dir: self.device = device self.model = AutoModel.from_pretrained(encoder_dir) self.model.to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name or encoder_dir) self.has_model = True self.pooling = pooling self.l2_norm = l2_norm if (not self.has_model) and (not self.has_encoded_query): raise Exception('Neither query encoder model nor encoded queries provided. Please provide at least one') @staticmethod def _mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask def encode(self, query: str): if self.has_model: inputs = self.tokenizer( query, padding='longest', truncation=True, add_special_tokens=True, return_tensors='pt' ) inputs.to(self.device) outputs = self.model(**inputs) if self.pooling == "mean": embeddings = self._mean_pooling(outputs, inputs['attention_mask']).detach().cpu().numpy() else: embeddings = outputs[0][:, 0, :].detach().cpu().numpy() if self.l2_norm: faiss.normalize_L2(embeddings) return embeddings.flatten() else: return super().encode(query) @dataclass class DenseSearchResult: docid: str score: float class SimpleDenseSearcher: """Simple Searcher for dense representation Parameters ---------- index_dir : str Path to faiss index directory. """ def __init__(self, index_dir: str, query_encoder: Union[QueryEncoder, str], prebuilt_index_name: Optional[str] = None): requires_backends(self, "faiss") if isinstance(query_encoder, QueryEncoder): self.query_encoder = query_encoder else: self.query_encoder = self._init_encoder_from_str(query_encoder) self.index, self.docids = self.load_index(index_dir) self.dimension = self.index.d self.num_docs = self.index.ntotal assert self.docids is None or self.num_docs == len(self.docids) if prebuilt_index_name: sparse_index = get_sparse_index(prebuilt_index_name) self.ssearcher = SimpleSearcher.from_prebuilt_index(sparse_index) @classmethod def from_prebuilt_index(cls, prebuilt_index_name: str, query_encoder: QueryEncoder): """Build a searcher from a pre-built index; download the index if necessary. Parameters ---------- query_encoder: QueryEncoder the query encoder, which has `encode` method that convert query text to embedding prebuilt_index_name : str Prebuilt index name. Returns ------- SimpleDenseSearcher Searcher built from the prebuilt faiss index. """ print(f'Attempting to initialize pre-built index {prebuilt_index_name}.') try: index_dir = download_prebuilt_index(prebuilt_index_name) except ValueError as e: print(str(e)) return None print(f'Initializing {prebuilt_index_name}...') return cls(index_dir, query_encoder, prebuilt_index_name) @staticmethod def list_prebuilt_indexes(): """Display information about available prebuilt indexes.""" get_dense_indexes_info() def search(self, query: str, k: int = 10, threads: int = 1) -> List[DenseSearchResult]: """Search the collection. Parameters ---------- query : str query text k : int Number of hits to return. threads : int Maximum number of threads to use for intra-query search. Returns ------- List[DenseSearchResult] List of search results. """ emb_q = self.query_encoder.encode(query) assert len(emb_q) == self.dimension emb_q = emb_q.reshape((1, len(emb_q))) faiss.omp_set_num_threads(threads) distances, indexes = self.index.search(emb_q, k) distances = distances.flat indexes = indexes.flat return [DenseSearchResult(self.docids[idx], score) for score, idx in zip(distances, indexes) if idx != -1] def batch_search(self, queries: List[str], q_ids: List[str], k: int = 10, threads: int = 1) \ -> Dict[str, List[DenseSearchResult]]: """ Parameters ---------- queries : List[str] List of query texts q_ids : List[str] List of corresponding query ids. k : int Number of hits to return. threads : int Maximum number of threads to use. Returns ------- Dict[str, List[DenseSearchResult]] Dictionary holding the search results, with the query ids as keys and the corresponding lists of search results as the values. """ q_embs = np.array([self.query_encoder.encode(q) for q in queries]) n, m = q_embs.shape assert m == self.dimension faiss.omp_set_num_threads(threads) D, I = self.index.search(q_embs, k) return {key: [DenseSearchResult(self.docids[idx], score) for score, idx in zip(distances, indexes) if idx != -1] for key, distances, indexes in zip(q_ids, D, I)} def load_index(self, index_dir: str): index_path = os.path.join(index_dir, 'index') docid_path = os.path.join(index_dir, 'docid') index = faiss.read_index(index_path) docids = self.load_docids(docid_path) return index, docids def doc(self, docid: Union[str, int]) -> Optional[Document]: """Return the :class:`Document` corresponding to ``docid``. Since dense indexes don't store documents but sparse indexes do, route over to corresponding sparse index (according to prebuilt_index_info.py) and use its doc API Parameters ---------- docid : Union[str, int] Overloaded ``docid``: either an external collection ``docid`` (``str``) or an internal Lucene ``docid`` (``int``). Returns ------- Document :class:`Document` corresponding to the ``docid``. """ return self.ssearcher.doc(docid) if self.ssearcher else None @staticmethod def _init_encoder_from_str(encoder): encoder = encoder.lower() if 'dpr' in encoder: return DprQueryEncoder(encoder_dir=encoder) elif 'tct_colbert' in encoder: return TctColBertQueryEncoder(encoder_dir=encoder) elif 'ance' in encoder: return AnceQueryEncoder(encoder_dir=encoder) elif 'sentence' in encoder: return AutoQueryEncoder(encoder_dir=encoder, pooling='mean', l2_norm=True) else: return AutoQueryEncoder(encoder_dir=encoder) @staticmethod def load_docids(docid_path: str) -> List[str]: id_f = open(docid_path, 'r') docids = [line.rstrip() for line in id_f.readlines()] id_f.close() return docids class BinaryDenseSearcher(SimpleDenseSearcher): """Simple Searcher for binary-dense representation Parameters ---------- index_dir : str Path to faiss index directory. """ def __init__(self, index_dir: str, query_encoder: Union[QueryEncoder, str], prebuilt_index_name: Optional[str] = None): super().__init__(index_dir, query_encoder, prebuilt_index_name) def search(self, query: str, k: int = 10, binary_k: int = 100, rerank: bool = True, threads: int = 1) -> List[DenseSearchResult]: """Search the collection. Parameters ---------- query : str query text k : int Number of hits to return at second stage. binary_k : int Number of hits to return at first stage. rerank: bool Whether to use dense repr to rerank the binary ranking results. threads : int Maximum number of threads to use for intra-query search. Returns ------- List[DenseSearchResult] List of search results. """ ret = self.query_encoder.encode(query) dense_emb_q = ret['dense'] sparse_emb_q = ret['sparse'] assert len(dense_emb_q) == self.dimension assert len(sparse_emb_q) == self.dimension dense_emb_q = dense_emb_q.reshape((1, len(dense_emb_q))) sparse_emb_q = sparse_emb_q.reshape((1, len(sparse_emb_q))) faiss.omp_set_num_threads(threads) distances, indexes = self.binary_dense_search(k, binary_k, rerank, dense_emb_q, sparse_emb_q) distances = distances.flat indexes = indexes.flat return [DenseSearchResult(str(idx), score) for score, idx in zip(distances, indexes) if idx != -1] def batch_search(self, queries: List[str], q_ids: List[str], k: int = 10, binary_k: int = 100, \ rerank: bool = True, threads: int = 1) -> Dict[str, List[DenseSearchResult]]: """ Parameters ---------- queries : List[str] List of query texts q_ids : List[str] List of corresponding query ids. k : int Number of hits to return. binary_k : int Number of hits to return at first stage. rerank: bool Whether to use dense repr to rerank the binary ranking results. threads : int Maximum number of threads to use. Returns ------- Dict[str, List[DenseSearchResult]] Dictionary holding the search results, with the query ids as keys and the corresponding lists of search results as the values. """ dense_q_embs = [] sparse_q_embs = [] for q in queries: ret = self.query_encoder.encode(q) dense_q_embs.append(ret['dense']) sparse_q_embs.append(ret['sparse']) dense_q_embs = np.array(dense_q_embs) sparse_q_embs = np.array(sparse_q_embs) n, m = dense_q_embs.shape assert m == self.dimension faiss.omp_set_num_threads(threads) D, I = self.binary_dense_search(k, binary_k, rerank, dense_q_embs, sparse_q_embs) return {key: [DenseSearchResult(str(idx), score) for score, idx in zip(distances, indexes) if idx != -1] for key, distances, indexes in zip(q_ids, D, I)} def binary_dense_search(self, k, binary_k, rerank, dense_emb_q, sparse_emb_q): num_queries = dense_emb_q.shape[0] sparse_emb_q = np.packbits(np.where(sparse_emb_q > 0, 1, 0)).reshape(num_queries, -1) if not rerank: distances, indexes = self.index.search(sparse_emb_q, k) else: raw_index = self.index.index _, indexes = raw_index.search(sparse_emb_q, binary_k) sparse_emb_p = np.vstack( [np.unpackbits(raw_index.reconstruct(int(id_))) for id_ in indexes.reshape(-1)] ) sparse_emb_p = sparse_emb_p.reshape( dense_emb_q.shape[0], binary_k, dense_emb_q.shape[1] ) sparse_emb_p = sparse_emb_p.astype(np.float32) sparse_emb_p = sparse_emb_p * 2 - 1 distances = np.einsum("ijk,ik->ij", sparse_emb_p, dense_emb_q) sorted_indices = np.argsort(-distances, axis=1) indexes = indexes[np.arange(num_queries)[:, None], sorted_indices] indexes = np.array([self.index.id_map.at(int(id_)) for id_ in indexes.reshape(-1)], dtype=np.int) indexes = indexes.reshape(num_queries, -1)[:, :k] distances = distances[np.arange(num_queries)[:, None], sorted_indices][:, :k] return distances, indexes def load_index(self, index_dir: str): index_path = os.path.join(index_dir, 'index') index = faiss.read_index_binary(index_path) return index, None @staticmethod def _init_encoder_from_str(encoder): encoder = encoder.lower() if 'bpr' in encoder: return BprQueryEncoder(encoder_dir=encoder) else: raise NotImplementedError
[ "noreply@github.com" ]
RootofalleviI.noreply@github.com
7b8c22e8a79c520dc513ac590e68f17e2239679c
e2be1907175772072e41781373afc7f82974e0f1
/src/factories/trainer_factory/GAN.py
ba89719767893b17426c78a6a58753948c3f3e2c
[]
no_license
MiuLab/TaylorGAN
6cdd40d0f035832e68cf22ee8bf5ce6bffdb2bcc
2f4b62aaa50e6d0b485bf3d33e1a19892d50527e
refs/heads/main
2023-04-08T10:22:53.161981
2021-01-26T02:54:57
2021-01-26T02:54:57
306,371,483
40
3
null
2021-01-26T03:30:18
2020-10-22T14:55:35
Python
UTF-8
Python
false
false
3,218
py
import tensorflow as tf from core.objectives.GAN import ( BCE, GANObjective, GANLossTuple, ReinforceEstimator, StraightThroughEstimator, TaylorEstimator, GumbelSoftmaxEstimator, ) from core.train import DiscriminatorUpdater, GANTrainer from factories.modules import discriminator_factory from flexparse import create_action, LookUp, IntRange from library.utils import cached_property from ..utils import create_factory_action from .trainer_factory import TrainerCreator from . import optimizers class GANCreator(TrainerCreator): def create_trainer(self, placeholder, generator_updater) -> GANTrainer: loss_tuple, _, d_steps = self.args[GAN_ARGS] return GANTrainer( placeholder=placeholder, generator_updater=generator_updater, discriminator_updater=self.create_discriminator_updater( self._discriminator, discriminator_loss=loss_tuple.discriminator_loss, ), d_steps=d_steps, ) def create_discriminator_updater(self, discriminator, discriminator_loss): return DiscriminatorUpdater( discriminator, optimizer=self.args[D_OPTIMIZER_ARG], losses=[ discriminator_loss, *self.args[discriminator_factory.REGULARIZER_ARG], ], ) @cached_property def objective(self): loss_tuple, estimator = self.args[GAN_ARGS[:2]] return GANObjective( discriminator=self._discriminator, generator_loss=loss_tuple.generator_loss, estimator=estimator, ) @cached_property def _discriminator(self): return discriminator_factory.create(self.args, self.meta_data) @classmethod def model_args(cls): return discriminator_factory.MODEL_ARGS @classmethod def objective_args(cls): return GAN_ARGS @classmethod def regularizer_args(cls): return [discriminator_factory.REGULARIZER_ARG] @classmethod def optimizer_args(cls): return [D_OPTIMIZER_ARG] D_OPTIMIZER_ARG = optimizers.create_action_of('discriminator') GAN_ARGS = [ create_action( '--loss', type=LookUp({ 'alt': GANLossTuple(lambda fake_score: BCE(fake_score, labels=1.)), # RKL - 2JS 'JS': GANLossTuple(lambda fake_score: -BCE(fake_score, labels=0.)), # 2JS 'KL': GANLossTuple(lambda fake_score: -tf.exp(fake_score)), # -sig / (1 - sig) 'RKL': GANLossTuple(lambda fake_score: -fake_score), # log((1 - sig) / sig) }), default='RKL', help='loss function pair of GAN.', ), create_factory_action( '--estimator', registry={ 'reinforce': ReinforceEstimator, 'st': StraightThroughEstimator, 'taylor': TaylorEstimator, 'gumbel': GumbelSoftmaxEstimator, }, default='taylor', help_prefix="gradient estimator for discrete sampling.\n", ), create_action( '--d-steps', type=IntRange(minval=1), default=1, help='update generator every n discriminator steps.', ), ]
[ "jsaon92@gmail.com" ]
jsaon92@gmail.com
436a25cdd1f502b59ba9088db92cf9788b40dfa7
0d041257a0633bb1654cad262462acb898616008
/Tech_Hub/urls.py
d5cb584db429be209a43c548bef12c60f9a0fa13
[]
no_license
SibghatShaikh/Tech
dd725ae3f54e758bcbf33cc675b80187015a7c1e
4da96f6cb5019bb026e284c3aa6afaee417714ce
refs/heads/master
2023-04-27T17:29:40.895915
2021-05-25T07:02:37
2021-05-25T07:02:37
366,473,992
1
0
null
null
null
null
UTF-8
Python
false
false
824
py
"""Tech_Hub URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('Tech.urls')) ]
[ "noreply@github.com" ]
SibghatShaikh.noreply@github.com
8975a6bd1fdea6404bbd69a7286fd7c7f358b085
7b164b810f84988ef0bb2016caf07433f12d4e8a
/library_management_system/Lib MS/LIBRAY_MANAGEMENT/ret.py
74e0f1519acf9851ade81d392a63bb2e0fed5b20
[]
no_license
iAnas19/Library-Management-System-project
b96b891a5cbf9d2a2ba2fa48d3fa48c5c0f326f0
52249b300020a33573fbf4c98fe639907fa7bf9e
refs/heads/main
2023-05-07T10:20:38.139817
2021-04-08T21:28:24
2021-04-08T21:28:24
356,052,279
0
0
null
null
null
null
UTF-8
Python
false
false
2,647
py
from tkinter import * from tkinter import messagebox import os,sys import mysql.connector from mysql.connector import Error from datetime import datetime,date py = sys.executable class ret(Tk): def __init__(self): super().__init__() self.iconbitmap(r'libico.ico') self.title("Return") self.maxsize(420,280) self.canvas = Canvas(width=500, height=417, bg='gray') self.canvas.pack() self.cal = 0 a = StringVar() def qui(): if len(a.get()) == '0': messagebox.showerror("Error","Please Enter The Book Id") else: try: self.conn = mysql.connector.connect(host='localhost', database='library', user='root', password='') self.mycursor = self.conn.cursor() self.mycursor.execute("Select book_id from issue_book where return_date = '' and book_id = %s",[a.get()]) temp = self.mycursor.fetchone() if temp: self.mycursor.execute("update book set availability ='YES' where book_id = %s", [a.get()]) self.conn.commit() now = datetime.now() idate = now.strftime('%Y-%m-%d %H:%M:%S') self.mycursor.execute("update issue_book set return_date = %s where book_id = %s", [idate,a.get()]) self.conn.commit() self.conn.close() messagebox.showinfo('Info', 'Succesfully Returned') d = messagebox.askyesno("Confirm", "Return more books?") if d: self.destroy() os.system('%s %s' % (py, 'ret.py')) else: self.destroy() else: messagebox.showinfo("Oop's", "Book not yet issued") except Error: messagebox.showerror("Error","Something Goes Wrong") Label(self, text='Return Book', fg='red',font=('arial', 35, 'bold')).pack() Label(self, text='Enter Book ID', font=('Comic Scan Ms', 15, 'bold')).place(x=20, y=120) Entry(self, textvariable=a, width=40).place(x=165, y=124) Button(self, text="Return", width=25, command=qui).place(x=180, y=180) ret().mainloop()
[ "noreply@github.com" ]
iAnas19.noreply@github.com
48b118b90caf47d3f1600ff81ab6b6d79a875e12
891cc1e3e9e452e9bf104fb19aa47c96077efd7d
/finding_cipher_key.py
1220c645661476cd730b28906274905475570ba4
[]
no_license
saemsheth/Co-relation-attack-on-A5-stream-cipher
4ef689e08eec35265758a69adabefbdba290d9fe
01aa095f978e47dbb65fd4545edaa10f60784aa0
refs/heads/master
2022-12-02T01:08:06.526733
2020-08-20T18:29:16
2020-08-20T18:29:16
289,075,676
0
0
null
null
null
null
UTF-8
Python
false
false
5,971
py
# -*- coding: utf-8 -*- """Finding_cipher_key.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1a_ydQwmXrzCV8F4GVzFh1mLt-zHkw4ni """ ai=[] bi=[] ci=[] m1=[] m2=[] m3=[] a=[] b=[] c1=[] def LFSR1(x): for i in range(0,520): x3=x&1 x = (x>>1)|(((x&1)^((x>>1)&1))<<6) ai.append(x3) def LFSR2(x): for i in range(0,520): x3=x&1 x = (x >> 1) | (((x & 1) ^ ((x >> 2) & 1) ^ ((x >> 3) & 1) ^ ((x >> 4) & 1)) << 7) bi.append(x3) def LFSR3(x): for i in range(0,520): x3=x&1 x = (x >> 1) | (((x & 1) ^ ((x >> 4) & 1)) << 8) ci.append(x3) def shift(seq, n): return seq[n:]+seq[:n] def com1(): c=0 zi = [0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1,1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1,1,0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1,0] for i in range(0,520): if(zi[i]==a[i]): c=c+1 else: c=c-1 return c def com2(): c=0 zi = [0,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,0,1,1,1,0,1,1,0,1,0,1,1,1,1,0,1 ,0,1,0,0,1,1,0,1,1,0,0,1,0,0,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0 ,1, 0,1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,0,0,0,1,1,0,0,0,1,0, 0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,1,1,1,0,1,0, 1, 0,0,1,1,1,0,0,0,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,1,1,1,1,0,1,0,0,0, 1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,1,1,0,0,1,0,0,1,0, 1, 1,1,1,1,0,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0,0,0,1,1,0,0,0,1, 0,0,1,1,1,0,0,1,0,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,1,0,0,0,1,0,1, 1, 0,0,1,1,0,0,1,1,1,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,1,1,0,1,1,0,0,0, 1,0,1,1,0,1,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1,1,0,1,0, 1, 0,0,1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,1, 1,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,1,0,1,1,1,0,1,0, 0, 0,0,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,1, 1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,1,1,1,1,0, 0, 0,1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0, 1,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,0,1,1,1,1,0,1, 0] for i in range(0,520): if(zi[i]==b[i]): c=c+1 else: c=c-1 return c def com3(): c=0 zi = [0,0,1,1,1,1,0,1,0,0,0,0,1,1,0,1,0,1,1,1,0,1,1,0,1,0,1,1,1,1,0,1 ,0,1,0,0,1,1,0,1,1,0,0,1,0,0,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0 ,1, 0,1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,1,1,1,0,0,1,0,0,0,1,1,0,0,0,1,0, 0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0,1,0,1,1,1,0,1,0, 1, 0,0,1,1,1,0,0,0,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,1,1,1,1,0,1,0,0,0, 1,0,0,0,1,1,1,0,1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,1,1,0,0,1,0,0,1,0, 1, 1,1,1,1,0,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,0,0,0,1,1,0,0,0,1, 0,0,1,1,1,0,0,1,0,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,1,0,0,0,1,0,1, 1, 0,0,1,1,0,0,1,1,1,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,1,1,0,1,1,0,0,0, 1,0,1,1,0,1,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1,1,0,1,0, 1, 0,0,1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,1, 1,1,0,1,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,1,0,1,1,1,0,1,0, 0, 0,0,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,1, 1,0,1,1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,1,1,1,1,0, 0, 0,1,1,1,0,1,1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0, 1,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0,0,1,1,1,1,0,1, 0] for i in range(0,520): if(zi[i]==c1[i]): c=c+1 else: c=c-1 return c i1=int(input("Enter the initial state for LFSR1 in range(1,127)")) i2=int(input("Enter the initial state for LFSR2 in range(1,255)")) i3=int(input("Enter the initial state for LFSR3 in range(1,511)")) LFSR1(i1) LFSR2(i2) LFSR3(i3) for i in range(0,520): T1= i % 128 a=shift(ai,T1) z1 = com1() m1.append(z1) v1=max(m1) max_index1=m1.index(v1) k1=shift(ai,max_index1) k1=shift(k1,128-64) k1=k1[:7] for i in range(0,520): T2= i % 256 b=shift(bi,T2) z2 = com2() m2.append(z2) v2=max(m2) max_index2=m2.index(v2) k2=shift(bi,max_index2) k2= shift(k2,256-64) k2=k2[:8] for i in range(0,520): T3= i % 512 c1=shift(ci,T3) z3 = com3() m3.append(z3) v3=max(m3) max_index3=m3.index(v3) k3=shift(ci,max_index3) k3= shift(k3,512-64) k3=k3[:9] print(k1) print(k2) print(k3)
[ "saemsheth11196@gmail.com" ]
saemsheth11196@gmail.com
c88410f5381d6ce6f915c44be912399406094dbc
2a08e70a1b893cb6b621635d83a86f15598cbd0c
/file.py
16800c32f5b8256526db2999dfc1c30c153d0833
[]
no_license
AlinaPy/python
b7543aba987f198f95b9984ccf714cf12388ae4d
db180579c12d9a8fd7bb1eccef3a83599a5b51a2
refs/heads/master
2020-06-17T19:09:44.023284
2019-07-09T17:45:36
2019-07-09T17:45:36
196,019,600
1
0
null
null
null
null
WINDOWS-1251
Python
false
false
364
py
print('Hello world!') print('Hi Marina!') answer = input("А ты в курсе, что можно запускать питоновский файл напрямую и вводить туда значения? (Y/N)") if answer == 'Y': print("умничка") else: print("А я не знаю как запустить файл напрямую((((((((")
[ "ino4kayo1@mail.ru" ]
ino4kayo1@mail.ru
bcf372a4ab7f0066d27d9f6f396a77ddb6dfb14b
da1037bdf6620861cf971115a9ad6ed8115a25cc
/backend/app/fastapi-tutorial/sample/tutorial/06-07-path-parameters-and-numeric-validations.py.py
893e2a79374dfff44e151f0e748202e8c916e3a1
[]
no_license
nukopy/past-application-architectures
b814124f21c581979e2e26533429ebb3010bd812
4f20a11ea7d0dd1d6c2278e8e82a3ca801da0c3a
refs/heads/master
2023-01-11T17:47:08.290825
2020-11-10T02:06:52
2020-11-10T02:06:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,954
py
from typing import Any, Dict, List, Optional, Type, TypeVar from fastapi import FastAPI, Path, Query from pydantic import BaseModel T = TypeVar("T", bound="ObjectBase") class ObjectBase(BaseModel): @classmethod def create(cls: Type[T], data: Dict[str, Any]) -> T: """ Factory method: Create pydantic model from dict """ return cls(**data) def dump(self: T) -> Dict[str, Any]: """ Dump pydantic model to dict """ return self.dict() class ItemConfig: TAX_RATIO: float = 0.10 class Item(ObjectBase): name: str description: Optional[str] = None price: float def total_price(self) -> float: tax = self.price * ItemConfig.TAX_RATIO return self.price + tax app = FastAPI() item_list = [ {"name": "Indian Curry", "price": "1000"}, {"name": "Coffee", "price": "500"}, {"name": "Orange Juice", "price": "450"}, ] item_models = [Item.create(item) for item in item_list] @app.get("/items") async def get_items( q: Optional[str] = Query(..., min_length=3, max_length=50, regex="^[a-z]+$") ): response = {"items": item_models} if q: response.update({"query": q}) return response @app.get("/multiple-query") async def multiple_query( q: Optional[List[str]] = Query( ..., title="List of Query String", description='複数のクエリパラメータ "q" を送信することができます.', alias="item-query", # Python の変数名として有効じゃないクエリパラメータ名を alias として使える deprecated=True, ) ): query_items = {"q": q} return query_items @app.get("/items/{item_id}") async def get_item( item_id: int = Path(..., title="The ID of the item to get", ge=100, le=500), q: Optional[str] = Query(None, alias="item-query"), ): response = {"item_id": item_id} if q: response.update({"query": q}) return response
[ "pytwbf201830@gmail.com" ]
pytwbf201830@gmail.com
d53eaa87254e74faa3a0cef995970e6ac910efe1
b728bf1e9dc90b1ae6d56aa70b5f5c598b87c097
/0x01-python_async_function/1-concurrent_coroutines.py
1ed8cdf6ce6faa0e5099e34058ab3df9dd71a049
[]
no_license
usfbelhadj/holbertonschool-web_back_end
2d0ad2271368abb380dc13c9ce1371ddc580767b
c3c9174b79539069d9f830381dff217e8d9688b5
refs/heads/master
2023-06-01T20:26:12.359948
2021-06-13T01:21:09
2021-06-13T01:21:09
310,302,595
0
0
null
null
null
null
UTF-8
Python
false
false
747
py
#!/usr/bin/env python3 ''' Let's execute multiple coroutines at the same time with async ''' import asyncio import random from typing import List wait_random = __import__('0-basic_async_syntax').wait_random async def wait_n(n: int, max_delay: int) -> List[float]: ''' Import wait_random from the previous python file/ that you’ve written and write an async routine called/ wait_n that takes in 2 int arguments (in this order): n and max_delay./ You will spawn wait_random n times with the specified max_delay. ''' n_wait = [] comp_wait = [] for i in range(n): n_wait.append(wait_random(max_delay)) for i in asyncio.as_completed(n_wait): comp_wait.append(await i) return comp_wait
[ "usf.belhadj@gmail.com" ]
usf.belhadj@gmail.com
4f8393409c232a000d3656181248c1ee0309bd84
c85c42d2d2bd565b462a0a0fe689488ed296cea8
/Studentinfoproject.py
7970dc551390204b80447392d2ea25f9ab0d3f71
[]
no_license
maryniya/hello
bd8b84429dbe386e68cc7374d31e63632e614ad9
de5a72675d6636c0c9f542837a7ffa1d999454d4
refs/heads/main
2023-06-04T01:13:27.836538
2021-07-04T15:17:35
2021-07-04T15:17:35
376,457,779
0
0
null
null
null
null
UTF-8
Python
false
false
1,628
py
#Project1: Basic school administartion tool import csv def write_into_csv(info_list): with open('student_info_list.csv','a', newline='') as csv_file: writer = csv.writer(csv_file) if csv_file.tell() == 0: writer.writerow(["Name", "Age", "Contact Number", "E-mail ID"]) writer.writerow(info_list) if __name__=='__main__': condition = True student_num = 1 while(condition): student_info = input("Enter student information in the following format(Name Age Contact_Number E-mail_ID): ".format(student_num)) print("Entered information:" + student_info) #split student_info_list = student_info.split(' ') print("Entered split up information is: "+str(student_info_list)) print("\nThe entered information is - \nName: {}\nAge: {}\nContact_number:{}\nE-mail ID: {}" .format(student_info_list[0], student_info_list[1],student_info_list[2],student_info_list[3])) write_into_csv(student_info_list) choice_check = input("Is the entered information correct? (yes/no): ") if choice_check =="yes": write_into_csv(student_info_list) condition_check = input("Enter (yes/no) if you want to enter information for another student: ") if condition_check == "yes": condition = True student_num = student_num + 1 elif condition_check == "no": condition = False elif choice_check =="no": print("\nPlease re-enter the values!")
[ "noreply@github.com" ]
maryniya.noreply@github.com
c82abc0f8f4240cc626ac3743057ba07fbf408e2
a65f9b9c40f7919004cb6e740bc9173a69487094
/oblig2/Exercise2.py
ce46c0d6eb191dd76e511f99cba0f591579685dc
[]
no_license
andrthu/mek4250
e99a66347fdfc68b8b70fd47ea0e6cca05f2b2b9
d8dbf2afa1e5bc2185cc8cf6f3fb86bf18eb08e9
refs/heads/master
2021-01-24T20:48:20.168198
2017-07-27T12:02:11
2017-07-27T12:02:11
51,002,555
0
0
null
null
null
null
UTF-8
Python
false
false
7,580
py
from dolfin import * from numpy import pi,matrix,sqrt,diagflat,zeros,vstack,ones,log,array,size,exp from scipy import linalg import matplotlib.pyplot as plt #defining lists with h values and lambdas, and setting my=1 Lam = [1,100,10000] my = 1 H = [8,16,32,64] #Expression u exact ue = Expression(("pi*x[0]*cos(pi*x[0]*x[1])","-pi*x[1]*cos(pi*x[0]*x[1])"),degree=3) #source term found by my*laplace(ue) f = Expression(("(-pow(pi*x[0],3)*cos(pi*x[0]*x[1]) - pow(pi,3)*x[0]*pow(x[1],2)*cos(pi*x[0]*x[1]) - 2*pow(pi,2)*x[1]*sin(pi*x[0]*x[1]))", "pow(pi,3)*pow(x[0],2)*x[1]*cos(pi*x[0]*x[1]) + 2*pow(pi,2)*x[0]*sin(pi*x[0]*x[1]) + pow(pi*x[1],3)*cos(pi*x[0]*x[1])"),degree=2) #lists to store errors L2_error = [[[],[],[]],[[],[],[]]] H1_error = [[[],[],[]],[[],[],[]]] #lists to store convergence rates aqnd their constants con = [[[],[]],[[],[]]] #solving the equation starts here. Loop over two types of element degrees for p in [1,2]: #loop over our lambda values for i in range(len(Lam)): #define a list to store minimum mesh resolution hv = [] #loop over different mesh resolutions for j in range(len(H)): #defone our mesh mesh = UnitSquareMesh(H[j],H[j]) #define our vectorspace, and an extra space to measure error V = VectorFunctionSpace(mesh,"Lagrange",p) V2= VectorFunctionSpace(mesh,"Lagrange",p+3) #test and trial u = TrialFunction(V) v = TestFunction(V) #fenics function that is our current lambda l = Constant(Lam[i]) #interpolta our source term into our space F = -interpolate(f,V) #write up our variational form a = inner(grad(u),grad(v))*dx + l*div(u)*div(v)*dx L = dot(F,v)*dx #fix our Dirichlet BCs bc = DirichletBC(V,ue,"on_boundary") #solve our equation u = Function(V) solve(a==L,u,bc) #interpolate the exact solution to a our higher degree space Ue = interpolate(ue,V2) #find the errors L2_error[p-1][i].append(errornorm(Ue,u)) H1_error[p-1][i].append(errornorm(Ue,u,'H1')) hv.append(mesh.hmax()) #plot(u-Ue) #interactive() #plot(Ue) #interactive() #calculate convergence using least square for each set of #parameters. Q1 = vstack([log(array(hv)),ones(len(hv))]).T con[p-1][0].append(linalg.lstsq(Q1, log(array(L2_error[p-1][i])))[0]) con[p-1][1].append(linalg.lstsq(Q1, log(array(H1_error[p-1][i])))[0]) #plt.plot(log(array(hv)),log(array(L2_error[p-1][i]))) #plt.plot(log(array(hv)),log(array(H1_error[p-1][i]))) #plt.plot((log(array(hv))),p*(log(array(hv))),"r--") #plt.plot((log(array(hv))),(p+1)*(log(array(hv))),"y--") #plt.legend(["L2","H1",str(p)+"*log(h)",str(2*p)+"*log(h)" ]) #plt.show() #do some fancy output print for i in range(2): print "**********************************" p=i+1 print "Polynomial order = %d" %p print for j in range(len(Lam)): print "-------------------lam=%d-------------------" % Lam[j] print print "L2 error: ", L2_error[i][j] print print "H1 error: ", H1_error[i][j] print print "L2 con-rate=%f C=%f" % (con[i][0][j][0] , exp(con[i][0][j][1])) print print "H1 con-rate=%f C=%f" % (con[i][1][j][0] , exp(con[i][1][j][1])) print print "---------------------------------------------" print print #plot to justify least squares. for j in range(3): fig,ax = plt.subplots(2, 1,sharex=True) for l in range(2): p=l+1 ax[l].plot(log(array(hv)),log(array(L2_error[l][j]))) ax[l].plot(log(array(hv)),log(array(H1_error[l][j]))) ax[l].plot((log(array(hv))),(l+1)*(log(array(hv))),"g--") ax[l].plot((log(array(hv))),(l+2)*(log(array(hv))),"b--") ax[l].set_title("P"+str(p)+" element, lambda="+str(Lam[j])) ax[l].legend(["L2","H1",str(p)+"*log(h)",str(l+2)+"*log(h)" ],loc=4) ax[l].set_xlabel("log(h)") ax[l].set_ylabel("log(error)") plt.show() """ terminal>> python Exercise2.py Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. Solving linear variational problem. ********************************** Polynomial order = 1 -------------------lam=1------------------- L2 error: [0.07143564353036871, 0.01858894010975571, 0.004697079781323455, 0.001177468248156252] H1 error: [1.3517242507219713, 0.6790867417407639, 0.3398473366000941, 0.1699577953467868] L2 con-rate=1.975326 C=2.213178 H1 con-rate=0.997337 C=7.621186 --------------------------------------------- -------------------lam=100------------------- L2 error: [0.29985169058331784, 0.16406710708851321, 0.06076135418164534, 0.017653643817245494] H1 error: [2.630391833510895, 1.423505893625182, 0.5774530212031616, 0.2179137174299302] L2 con-rate=1.369169 C=3.795261 H1 con-rate=1.208202 C=23.611052 --------------------------------------------- -------------------lam=10000------------------- L2 error: [0.444750039708708, 0.45628947339193204, 0.43298295714847634, 0.3519439457224945] H1 error: [3.7443848306183782, 3.6589796437836535, 3.4092084266679863, 2.7338766907550016] L2 con-rate=0.108859 C=0.567093 H1 con-rate=0.146335 C=5.043682 --------------------------------------------- ********************************** Polynomial order = 2 -------------------lam=1------------------- L2 error: [0.0020804727431950787, 0.0002521449774644887, 3.124455010249258e-05, 3.896910893232253e-06] H1 error: [0.12333779284666148, 0.031097865213979455, 0.007791325005348004, 0.0019488967225476028] L2 con-rate=3.019367 C=0.386373 H1 con-rate=1.994832 C=3.920336 --------------------------------------------- -------------------lam=100------------------- L2 error: [0.014397270633258623, 0.0014981362081414133, 0.00011945190272137094, 8.7436893209144e-06] H1 error: [0.45195247197065147, 0.09708626269773965, 0.01665272098869556, 0.0028154805090628452] L2 con-rate=3.570446 C=7.716594 H1 con-rate=2.452345 C=33.981253 --------------------------------------------- -------------------lam=10000------------------- L2 error: [0.029893235368636906, 0.007174945881791682, 0.0015772288060908345, 0.00027219372347456357] H1 error: [0.9452508877864363, 0.4515093401616464, 0.19729045871526465, 0.06764907638113875] L2 con-rate=2.252270 C=1.596042 H1 con-rate=1.260810 C=9.058619 --------------------------------------------- """
[ "andrthu@student.matnat.uio.no" ]
andrthu@student.matnat.uio.no
5fdd9607564a70b74cbab892584f6c9f6a83d532
3ee67adff6e3b08a821b51ac9935ca8c06b844b6
/Recursividade/elefantes.py
10fceabced39d590d7b666366cc82b49bafe4a2b
[]
no_license
vinaud/Exercicios-Python
5952b11701604b2068709e2fd86f3b62ad3ccc09
7575b8b90b52bf77f4b20c63224808466d187d40
refs/heads/master
2021-05-17T15:03:47.796947
2020-05-01T19:29:10
2020-05-01T19:29:10
250,834,430
1
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
""" Implemente a função incomodam(n) que devolve uma string contendo "incomodam " (a palavra seguida de um espaço) n vezes. Se n não for um inteiro estritamente positivo, a função deve devolver uma string vazia. Essa função deve ser implementada utilizando recursão. Utilizando a função acima, implemente a função elefantes(n) que devolve uma string contendo a letra da música "Um elefante incomoda muita gente" de 1 até n elefantes. Se n não for maior que 1, a função deve devolver uma string vazia. Essa função também deve ser implementada utilizando recursão. """ def incomodam(n): if n < 1: return "" return "incomodam " + incomodam(n-1) def elefantes(n): if n < 1: return "" if n == 1: return "Um elefante incomoda muita gente\n" if n == 2: return elefantes(n-1)+str(n)+" elefantes "+incomodam(n)+"muito mais\n" return elefantes(n-1)+str(n-1)+" elefantes incomodam muita gente\n"+str(n)+" elefantes " + incomodam(n)+"muito mais\n" print(elefantes(4))
[ "leyenasd@gmail.com" ]
leyenasd@gmail.com
5a8545f7845617099448aca9ffa37ec6059aadcb
b8bf409d1d1e38950c1b194c2d3c460920807bf0
/Python/Madlibs.py
0f5f1dbac134411c6ac06e45c4c9fa5bfc2c1aea
[ "MIT" ]
permissive
hhaslam11/SmallProjects
caf0e0c16a2f174361e549f9ceea2f3a98c841b1
3c861b1b42fdd564739717d2deae49bc0cdc24b4
refs/heads/master
2021-01-10T10:02:26.245979
2017-10-06T21:58:41
2017-10-06T21:58:41
55,207,559
0
0
null
null
null
null
UTF-8
Python
false
false
1,703
py
""" Madlibs.py Kaleb Haslam https://www.codecademy.com """ print("Mad Libs || Kaleb Haslam") print("Enter a name: ") name = raw_input() adj_1 = raw_input("Enter an adjective: ") adj_2 = raw_input("Enter another adjective: ") adj_3 = raw_input("Enter a final adjective: ") verb_1 = raw_input("Enter a verb: ") verb_2 = raw_input("Enter another verb: ") verb_3 = raw_input("Enter a final verb: ") noun_1 = raw_input("Enter a noun: ") noun_2 = raw_input("Enter another noun: ") noun_3 = raw_input("Enter a third noun: ") noun_4 = raw_input("Enter a final noun: ") animal = raw_input("Enter an animal: ") food = raw_input("Enter a food: ") fruit = raw_input("Enter a fruit: ") number = raw_input("Enter a number: ") superhero = raw_input("Enter a name of a superhero: ") country = raw_input("Enter a country: ") dessert = raw_input("Enter a type of dessert: ") year = raw_input("Enter a year:") #The template for the story STORY = "This morning I woke up and felt %s because %s was going to finally %s over the big %s %s. On the other side of the %s were many %ss protesting to keep %s in stores. The crowd began to %s to the rythym of the %s, which made all of the %ss very %s. %s tried to %s into the sewers and found %s rats. Needing help, %s quickly called %s. %s appeared and saved %s by flying to %s and dropping %s into a puddle of %s. %s then fell asleep and woke up in the year %s, in a world where %ss ruled the world." print(STORY % (adj_1, name, verb_1, adj_2, noun_1, noun_2, animal, food, verb_2, noun_3, fruit, adj_3, name, verb_3, number, name, superhero, superhero, name, country, name, dessert, name, year, noun_4))
[ "kalebmarc@hotmail.com" ]
kalebmarc@hotmail.com
6e35a820c430f2cff165c270e40d72afcb703803
7f7445e378de3ccb51387714607aa11949bf8f53
/config.py
7d492aeaee4ee968462f4fcf6f7a61604b1294bd
[]
no_license
HienB1812267/disaster_tweet
7e0b0d9fd4ba232e6bb069629cf7049a18359bcb
fd9ea29b37f73b57b1ef93133b23336450bcb49e
refs/heads/main
2023-09-03T08:49:44.942076
2021-10-27T15:35:07
2021-10-27T15:35:07
407,450,381
1
0
null
null
null
null
UTF-8
Python
false
false
190
py
DATA_TRAIN_PATH = "./train.csv" DATA_TEST_PATH = "./test.csv" SAMPE_SUBMISSTION_PATH ="./sample_submission.csv" ACRONYMS_PATH = "./acronyms_tweets.txt" TRUE_TARGET_PATH = "./real_target.csv"
[ "kgha2099@gmail.com" ]
kgha2099@gmail.com
2316ed9192f542f72a25d3038b16c60e3271862f
68b7d7b72a9d87123373f1e4523bf3655564769d
/backend/course/migrations/0001_initial.py
0ce22a04074cfc9aad1aacd1a19265b0239921a5
[]
no_license
crowdbotics-apps/help-procrastinatio-22418
c5a85b31e85b87e9d4e39f402ca3f037d916c990
b2a967a5b930ba5cacbeeea702ca9aba71899687
refs/heads/master
2023-01-09T12:19:42.589420
2020-11-08T23:45:22
2020-11-08T23:45:22
311,177,250
0
0
null
null
null
null
UTF-8
Python
false
false
5,517
py
# Generated by Django 2.2.17 on 2020-11-08 23:44 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ], ), migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(blank=True, max_length=256, null=True)), ('description', models.TextField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='course_author', to=settings.AUTH_USER_MODEL)), ('categories', models.ManyToManyField(blank=True, related_name='course_categories', to='course.Category')), ], ), migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ('date', models.DateTimeField()), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='event_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Group', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ], ), migrations.CreateModel( name='SubscriptionType', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ], ), migrations.CreateModel( name='Subscription', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('subscription_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='subscription_subscription_type', to='course.SubscriptionType')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='subscription_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Recording', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('media', models.URLField()), ('published', models.DateTimeField()), ('event', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='recording_event', to='course.Event')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='recording_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='PaymentMethod', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('primary', models.BooleanField()), ('token', models.CharField(max_length=256)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='paymentmethod_user', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Module', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=256)), ('description', models.TextField()), ('course', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='module_course', to='course.Course')), ], ), migrations.CreateModel( name='Lesson', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=256)), ('description', models.TextField()), ('media', models.URLField()), ('module', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='lesson_module', to='course.Module')), ], ), migrations.CreateModel( name='Enrollment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('course', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='enrollment_course', to='course.Course')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='enrollment_user', to=settings.AUTH_USER_MODEL)), ], ), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
e2e47c06e98fbfb0bdd1cc0fa413a8b3deb1e123
99b4956b0026c1c4cb023424342fc75f523aa4fa
/04.adventure/18.ui_preparation/scene.py
3032ff988bbdaff179596bf01bfd8d648f09c58b
[ "MIT" ]
permissive
Gaetz/python-training
37c234128d834ee29e0e625f265cf0b68158c228
542f658883c66aaa932fb9e385225cfd573bb6de
refs/heads/master
2021-05-09T03:44:22.990658
2020-10-02T18:29:50
2020-10-02T18:29:50
119,250,880
2
0
null
null
null
null
UTF-8
Python
false
false
3,399
py
import pygame from sprite_controlled import SpriteControlled from sprite import Sprite from warp import Warp from ui_group import UiGroup from ui_panel import UiPanel class Scene: path = 'D:\\Code\\ArtFx\\Python\\python-training\\01.adventure\\15.scene_amelioration\\' def __init__(self, filename): self.filename = filename self.load(filename) def load(self, filename): file = open(Scene.path + filename) data = file.read().splitlines() ground_height = 0 self.cursor = Sprite(0, 0, 'cursor.png', False) self.sprites = [] self.warps = [] self.ui_top = UiGroup() panel = UiPanel(0, 0, 800, 100) self.ui_top.add_element(panel) for line in data: cell = line.split(";") # Ground if(cell[0] == "ground"): self.ground = Sprite(0, 0, cell[1]+".png", False) _, screen_h = pygame.display.get_surface().get_size() ground_height = screen_h - self.ground.surface.get_height() self.ground.y = ground_height # Background elif(cell[0] == "background"): self.background = Sprite(0, 0, cell[1]+".png", False) # Player elif(cell[0] == "player"): height = 0 if cell[3] == "ground": height = -1 self.player = SpriteControlled(int(cell[2]), height, cell[1]+".png", True, int(cell[4])) # Sprites elif(cell[0] == "sprite"): height = 0 if cell[3] == "ground": height = -1 sprite = Sprite(int(cell[2]), height, cell[1]+".png", True) self.sprites.append(sprite) # Warps elif(cell[0] == "warp"): height = 0 if cell[3] == "ground": height = -1 warp = Warp(int(cell[2]), height, cell[1]+".png", False, eval(cell[4])) self.warps.append(warp) # Set heights if(self.player.y == -1): self.player.y = ground_height for s in self.sprites: if(s.y == -1): s.y = ground_height for w in self.warps: if(w.y == -1): w.y = ground_height - w.surface.get_height() / 2 def inputs(self, events): for event in events: if event.type == pygame.MOUSEBUTTONDOWN: mouse_click = pygame.mouse.get_pos() self.player.move_to(mouse_click[0]) if event.type == pygame.KEYDOWN: keys = pygame.key.get_pressed() if keys[pygame.K_F5]: self.load(self.filename) def update(self, change_scene): self.cursor.set_position(pygame.mouse.get_pos()) self.player.update() for w in self.warps: if(self.player.intersects(w)): change_scene(w.to_scene, w.to_scene_x) self.ui_top.update() def draw(self, screen): self.background.draw(screen) self.ground.draw(screen) for w in self.warps: w.draw(screen) for s in self.sprites: s.draw(screen) self.player.draw(screen) self.ui_top.draw(screen) self.cursor.draw(screen)
[ "gaetan.blaisecazalet@gmail.com" ]
gaetan.blaisecazalet@gmail.com
fad3a00b467541c57ee6edf27a6e4a28dee2abe7
54c3e0f24c1eb82fafd4d8f4ef7037f2a656f8a9
/extract.py
c64ef1de563c1cac223e6758b1da3a333787c6ca
[]
no_license
zeeker999/music-source-separation
4accd950675efdc81fa9ced2139bb368de1de69c
3e1067b7fbb91ceefa3c616ec9063ddd3617b9ad
refs/heads/master
2022-01-29T10:22:54.634784
2019-07-28T01:57:15
2019-07-28T01:58:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,306
py
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' By Dabi Ahn. andabi412@gmail.com. https://www.github.com/andabi ''' import os import librosa import numpy as np import tensorflow as tf from config import EvalConfig, ModelConfig from model import Model from preprocess import soft_time_freq_mask, to_wav, write_wav from preprocess import to_spectrogram, get_magnitude, get_phase, to_wav_mag_only def decode_input(filename): data, rate = librosa.load(filename, mono=False, sr=ModelConfig.SR) print ('channels: %d samples: %d' % data.shape) n_channels = data.shape[0] total_samples = data.shape[1] result = [] for ch in range(n_channels): result.append(np.array([data[ch, :]]).flatten()) return total_samples, data, np.array(result, dtype=np.float32) def separate(filename, channel): with tf.Graph().as_default(): # Model model = Model(ModelConfig.HIDDEN_LAYERS, ModelConfig.HIDDEN_UNITS) global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step') total_samples, origin_samples, samples = decode_input(filename) channels = origin_samples.shape[0] with tf.Session(config=EvalConfig.session_conf) as sess: # Initialized, Load state sess.run(tf.global_variables_initializer()) model.load_state(sess, EvalConfig.CKPT_PATH) mixed_wav, src1_wav, src2_wav = samples, samples, samples mixed_spec = to_spectrogram(mixed_wav) mixed_mag = get_magnitude(mixed_spec) mixed_batch, padded_mixed_mag = model.spec_to_batch(mixed_mag) mixed_phase = get_phase(mixed_spec) (pred_src1_mag, pred_src2_mag) = sess.run(model(), feed_dict={model.x_mixed: mixed_batch}) seq_len = mixed_phase.shape[-1] pred_src1_mag = model.batch_to_spec(pred_src1_mag, 1)[:, :, :seq_len] pred_src2_mag = model.batch_to_spec(pred_src2_mag, 1)[:, :, :seq_len] # Time-frequency masking mask_src1 = soft_time_freq_mask(pred_src1_mag, pred_src2_mag) # mask_src1 = hard_time_freq_mask(pred_src1_mag, pred_src2_mag) mask_src2 = 1. - mask_src1 pred_src1_mag = mixed_mag * mask_src1 pred_src2_mag = mixed_mag * mask_src2 # (magnitude, phase) -> spectrogram -> wav if EvalConfig.GRIFFIN_LIM: pred_src1_wav = to_wav_mag_only(pred_src1_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER) pred_src2_wav = to_wav_mag_only(pred_src2_mag, init_phase=mixed_phase, num_iters=EvalConfig.GRIFFIN_LIM_ITER) else: pred_src1_wav = to_wav(pred_src1_mag, mixed_phase) pred_src2_wav = to_wav(pred_src2_mag, mixed_phase) def stack(data): size = data.shape[0] // channels elements = [] for i in range(channels): elements.append(data[size * i:size * (i + 1)]) return np.dstack(elements)[0] music_data = pred_src1_wav voice_data = pred_src2_wav if channel >= 0: def filter_samples(data): for i in range(origin_samples.shape[0]): if i != channel: data[i, :] = origin_samples[i, 0:data.shape[1]] return data music_data = filter_samples(music_data) voice_data = filter_samples(voice_data) music_wav = np.dstack(music_data)[0] voice_wav = np.dstack(voice_data)[0] return music_wav, voice_wav return None def extract(filename, channel): music_wav, voice_wav = separate(filename, channel) base_file_name = os.path.splitext(filename)[0] write_wav(music_wav, base_file_name + '-h%d-music' % ModelConfig.HIDDEN_UNITS) write_wav(voice_wav, base_file_name + '-h%d-voice' % ModelConfig.HIDDEN_UNITS) if __name__ == '__main__': from optparse import OptionParser parser = OptionParser(usage='%prog music.wav') parser.add_option('-c', dest='channel', default=-1, type=int, help="extract voice from specified channel, -1 to extract all channels") parser.add_option('-p', dest='check_point', default=EvalConfig.CKPT_PATH, help="the path to checkpoint") parser.add_option('--hidden-units', dest='hidden_units', default=ModelConfig.HIDDEN_UNITS, type=int, help='the hidden units per GRU cell') parser.add_option('--hidden-layers', dest='hidden_layers', default=ModelConfig.HIDDEN_LAYERS, type=int, help='the hidden layers of network') parser.add_option('--case-name', dest='case_name', default=EvalConfig.CASE, help='the name of this setup') options, args = parser.parse_args() if options.check_point: EvalConfig.CKPT_PATH = options.check_point ModelConfig.HIDDEN_UNITS = options.hidden_units ModelConfig.HIDDEN_LAYERS = options.hidden_layers EvalConfig.CASE = options.case_name for arg in args: extract(arg, options.channel)
[ "sunmoon1997@gmail.com" ]
sunmoon1997@gmail.com
3b769885947b5d6041a315b1fcab32fb408af28c
cd85ea1a17cb0f3ec5b47e0c020c28c508c650ff
/020.finance.py
9b730a1a435184f22d6215f3603f50480b4c1d2e
[]
no_license
HappyPM/proj1
6181ee054e0c4a1bbfba669986e28f9127b9a293
08c0805f63f428ac381ccdbee602cd26a95e0932
refs/heads/master
2020-04-05T14:03:31.230156
2016-08-31T00:12:27
2016-08-31T00:12:27
34,797,301
2
0
null
null
null
null
UTF-8
Python
false
false
3,419
py
#-*- coding: utf-8 -*- import json import urllib2 from pymongo import MongoClient try: from BeautifulSoup import BeautifulSoup except ImportError: from bs4 import BeautifulSoup # exception import gnUrl = 'http://companyinfo.stock.naver.com/v1/company/cF1001.aspx?finGubun=MAIN&cmp_cd=' gnOpener = urllib2.build_opener() gnOpener.addheaders = [('User-agent', 'Mozilla/5.0')] # header define _client = MongoClient() _db = _client.hpm gnCompanyColl = _db.company gnFinanceColl = _db.finance def get_days_to_json(soup): script = soup.findAll('script')[4].string day = script.split("changeFin = ", 1)[1].split(";",1)[0] soup = BeautifulSoup(day) day = soup.text day = json.loads(day) return day #print script def get_data_to_json(soup): script = soup.findAll('script')[4].string data = script.split("changeFinData = ", 1)[1].split(";",1)[0] data = json.loads(data) return data #print script def set_year_and_quater(days, data, year_data_list, quater_data_list) : year_day = days[0] quater_day = days[1] for data1 in data: yy_dat = data1[0] qt_dat = data1[1] jj = 0 for yy_dat1 in yy_dat: dnam = yy_dat1[0] qt_dat1 = qt_dat[jj] jj = jj + 1 ii = 0 for yy_dat2 in yy_dat1[1:]: #print len(qt_dat1[ii]) qt_dat2 = qt_dat1[ii] year_data = {} year_data["day"] = year_day[ii] year_data["item_name"] = dnam year_data["item_value"] = yy_dat2.replace(',', '') year_data_list.append(year_data); quater_data = {} quater_data["day"] = quater_day[ii] quater_data["item_name"] = dnam quater_data["item_value"] = qt_dat2.replace(',', '') #print quater_data quater_data_list.append(quater_data); ii = ii + 1; #print iid def insert_finance(ncode): nUrl = gnUrl + ncode nResponse = gnOpener.open(nUrl) nPage = nResponse.read() # page2 # r = requests.get(gnUrl) nSoup = BeautifulSoup(nPage) days = get_days_to_json(nSoup) data = get_data_to_json(nSoup) #print days # embedded document 구조하기 위해서 root 에 code 저장 finance_list = []; finance = {}; finance["code"] = ncode finance_list.append(finance); #print finance_list gnFinanceColl.insert(finance_list) # year, quater 1차 json 데이터를 finance 구조에 맞게 다시 저장함 year_data_list = []; quater_data_list = []; set_year_and_quater(days, data, year_data_list, quater_data_list) gnFinanceColl.update({"code": ncode}, { "$push": {"year" : year_data_list, "quater" : quater_data_list } }) print ncode def load_company_all(): _companys = gnCompanyColl.find(); return _companys; #############3 main ################################ #insert_finance('192400') nCompanys = load_company_all() for company in nCompanys[:] insert_finance(company['code'][1:])
[ "runnablek@gmail.com" ]
runnablek@gmail.com
a04be61f7ffc613e9dba0bc3abe9e559b9929aee
4dc66e732ccd873490b79cf97b8dafa09fba803c
/chapter_9/car.py
e2773cf8ba3836004dbacccf24265ef1cde17fac
[]
no_license
AaronLaw/Python-Crash-Course-Bootcamp
18bf5e8cb2aa77af7c9e78afccb5f38941a50dd9
233cc7d82db7a90a11dd5c3dfce894b8dac939de
refs/heads/master
2020-06-07T14:45:50.410474
2019-07-06T22:24:31
2019-07-06T22:24:31
193,043,412
0
0
null
null
null
null
UTF-8
Python
false
false
2,759
py
"""A class that represents car.""" class Car(): """A simple simulation of car.""" def __init__(self, make, model, year): """Initial attributes of car.""" self.make = make self.model = model self.year = year self.odometer_reading = 0 def get_descriptive_name(self): """Return a simplely descriptive info of car.""" long_name = f"{self.year} {self.make} {self.model}" return long_name.title() def read_odometer(self): """Print an info about car's odometer.""" print(f"This car has {self.odometer_reading} miles on it.") def update_odometer(self, mileage): """Set odometer to mileage.""" if mileage >= self.odometer_reading: self.odometer_reading = mileage else: print("You can't roll back an odometer!") def increment_odometer(self, miles): """Increment miles to odometer.""" if miles >= 0: self.odometer_reading += miles else: print("You can't roll back an odometer!") def fill_gas_tank(self): """Fill the gas tank of car.""" print(f"The gas tank is filled.") class ElectricCar(Car): """Represent aspects of a car, specific to electric vehicles.""" def __init__(self, make, model, year): """Initial of parent class.""" super().__init__(make, model, year) # self.battery_size = 70 self.battery = Battery() def get_battery(self): """Return the size of battery.""" return self.battery.battery_size def describe_battery(self): """Print an info about battery.""" # print(f"This car has a {self.battery.battery_size}-kWh battery.") self.battery.describe_battery() def fill_gas_tank(self): """Electric car has no gas tank.""" print("This car doesn't need a gas tank!") def get_range(self): """Return the running range from battery.""" self.battery.get_range() class Battery(): """A simulation of battery in car.""" def __init__(self, battery_size=70): self.battery_size = battery_size def describe_battery(self): """Print an info about battery.""" print(f"This car has a {self.battery_size}-kWh battery.") def get_range(self): """Print a message to show how long it can run.""" if self.battery_size == 70: range = 240 elif self.battery_size == 85: range = 270 print(f"This car can go approximately {range} miles on a full charge.") def upgrade_battery(self): """Upgrade the battery when it's < 85.""" if self.battery_size < 85: self.battery_size = 85
[ "aaron.law@gmail.com" ]
aaron.law@gmail.com
39890e2873138702a15f6a3eb09242e782e318da
4d4d99a79e27eb4950724935caf64cf6298e9558
/touchpoint_distribution.py
b1189b34b8bfa22cdb10839c134a317921307730
[]
no_license
mathycee/Digital-Data-Analysis
6cf645fb66aaf77c8a1bf72e52801327e902971a
ce6f8332d93d4591c6519cdcdcb4d7d2c7b98a0b
refs/heads/master
2021-01-15T15:37:37.739991
2016-09-09T01:17:07
2016-09-09T01:17:07
37,562,612
0
0
null
null
null
null
UTF-8
Python
false
false
3,761
py
################################################################################## # Touch Point Distribution # The purpose of this script is to create touchpoint distribution. #Output: touchpoint_distribution.txt file #Author: Xiaomeng Chai <chaixiaomeng@gmail.com> #Date: 08/18/15, 08/24/15 # ################################################################################## import time as t ################################################################################## ##PARAMETERS## start_date = 20150401 #this should be the analysis period begin date end_date = 20150731 #this should be the analysis period end date #set to True if printing progress to screen is desired verbose = True #base output directory output_directory = "E:\\users\\xchai\\output\\" ################################################################################### start = t.time() ############################################################################################################################ #load tmp_final_model_dataset file fh_in = "E:\\xhcai\\output\\tmp_final_model_dataset_100_95_" + str(start_date) + "_" + str(end_date) + ".txt" # create an output file that is used later as input fh_out = output_directory + "SID_plength_convflag_" + str(start_date) + "_" + str(end_date) + ".txt" counter = 0 fh_out = open(fh_out,'w') with open(fh_in,'r') as fh: for line in fh.readlines()[1:]: v = line.strip().split('|') SID = v[0] converter_flag = v[2] if converter_flag == '1': converter_flag =1 else: converter_flag = 0 path_length = int(float(v[12]))+int(float(v[13]))+int(float(v[14]))+int(float(v[15]))+int(float(v[16]))+int(float(v[17]))+int(float(v[18]))+int(float(v[19]))+int(float(v[20]))+int(float(v[21])) print >> fh_out, '%s|%s|%s' % (SID,path_length, converter_flag) counter += 1 if (counter % 10000000 == 0): print '%d events processed from tmp_final_dataset file' % (counter) print 'finish pulling path length for each SID ' fh_out.close() #08/18/2015 Publisher Distribution cnt_0 = 0 cnt_1 = 0 cnt_2_10 = 0 cnt_11_50 = 0 cnt_51_100 = 0 cnt_101plus = 0 conv_0 = 0 conv_1 = 0 conv_2_10 = 0 conv_11_50 = 0 conv_51_100 = 0 conv_101plus = 0 fn_in = output_directory + "SID_plength_convflag_" + str(start_date) + "_" + str(end_date) + ".txt" #fn_in = output_directory + "SID_test.txt" fn_out = output_directory + "touchpoint_distribution_"+ str(start_date) + "_" + str(end_date) + ".txt" fn = open (fn_in, 'r') fh_out = open(fn_out,'w') for line in fn.readlines(): try: v = line.strip().split('|') SID = v[0] path_length = int(float(v[1])) conv_flag = int(float(v[2])) except: print '%s' %(v) if path_length == 0: cnt_0 += 1 conv_0 += conv_flag elif path_length == 1: cnt_1 += 1 conv_1 += conv_flag elif (path_length >=2 and path_length <= 10): cnt_2_10 += 1 conv_2_10 += conv_flag elif (path_length >= 11 and path_length <= 50): cnt_11_50 += 1 conv_11_50 += conv_flag elif (path_length >= 51 and path_length <= 100): cnt_51_100 += 1 conv_51_100 += conv_flag else: cnt_101plus += 1 conv_101plus += conv_flag print >> fh_out, 'cnt_0|cnt_1|cnt_2_10|cnt_11_50|cnt_51_100|cnt_101plus|conv_0|conv_1|conv_2_10|conv_11_50|conv_51_100|conv_101plus' print >> fh_out, '%s|%s|%s|%s|%s|%s|%s|%s|%s|%s|%s|%s' % (str(cnt_0),str(cnt_1), str(cnt_2_10),str(cnt_11_50),str(cnt_51_100),str(cnt_101plus),str(conv_0),str(conv_1), str(conv_2_10),str(conv_11_50),str(conv_51_100),str(conv_101plus)) fh_out.close() fn.close() #end of script actions end = t.time() elapsed = end - start #if verbose == True: print "done creating touchpoint distribution" print "Run time: ", elapsed, " seconds\n" print 'done' #execfile("E:/Users/xchai/touchpoint_distribution.py")
[ "chaixiaomeng@gmail.com" ]
chaixiaomeng@gmail.com
57982798e64264e70d17cad7d0d66871381e92be
f9dbf7d57606ded7f7800ee3c2eb50880d45a4f7
/python/daaltk/doc/docutils.py
d2f2ac936f94d27ce03c09fb5f6594e67b9a9a39
[ "Apache-2.0" ]
permissive
dmsuehir/daal-tk
bc96976719dc0918152c838be347d5927f7fe6bd
f2ed2307fb436fc4f976c46317d367f8c2aa56db
refs/heads/master
2021-04-30T18:48:31.301277
2016-11-07T17:19:18
2016-11-07T17:19:18
75,002,896
0
0
null
2016-12-13T01:48:07
2016-11-28T18:37:19
Scala
UTF-8
Python
false
false
9,526
py
""" Post-processes HTML generated by pdoc """ import re import datetime import os import sys import shutil import tempfile import logging logger = logging.getLogger(__file__) def pre_process_py(path): def go(full_name, reader, writer): text = reader.read() output = str(DocExamplesPreprocessor(text, mode='doc', file_name=full_name)) writer.write(output) walk_path(path, '.py', go) def post_process_html(path): def go(full_name, reader, writer): for line in reader.readlines(): processed_line = process_html_line(line, full_name) writer.write(processed_line) walk_path(path, '.html', go) def walk_path(path, suffixes, processor): """walks the path_to_examples and creates paths to all the .rst files found""" logger.debug("walk_path(path='%s', suffixes=%s)", path, suffixes) for root, dir_names, file_names in os.walk(path): logger.debug("walk_path: file_names=%s", file_names) for file_name in file_names: if file_name.endswith(suffixes): full_name = os.path.join(root, file_name) logger.debug("walk_path: processing file %s", full_name) with open(full_name, 'r') as r: with tempfile.NamedTemporaryFile(delete=False) as w: tmp_name = w.name logger.debug("walk_path: tmp_name=%s", tmp_name) processor(full_name, r, w) os.remove(full_name) shutil.move(tmp_name, full_name) def process_html_line(line, full_name): # Repair the "Up" link for certain files (this needs to match the doc/templates/css.mako) if full_name.endswith("/index.html") and '<a href="index.html" id="fixed_top_left">Up</a>' in line: if full_name.endswith("/daaltk/index.html"): return ' <!-- No Up for root level index.html -->\n' return '<a href="../index.html" id="fixed_top_left">Up</a>\n' # clean doctest flags return line def parse_for_doc(text, file_name=None): return str(DocExamplesPreprocessor(text, mode='doc', file_name=file_name)) def parse_for_doctest(text, file_name=None): return str(DocExamplesPreprocessor(text, mode='doctest', file_name=file_name)) class DocExamplesException(Exception): """Exception specific to processing documentation examples""" pass class DocExamplesPreprocessor(object): """ Processes text (intended for Documentation Examples) and applies daal-tk doc markup, mostly to enable doctest testing """ doctest_ellipsis = '-etc-' # override for the doctest ELLIPSIS_MARKER # multi-line tags hide_start_tag = '<hide>' hide_stop_tag = '</hide>' skip_start_tag = '<skip>' skip_stop_tag = '</skip>' # replacement tags doc_replacements = [('<progress>', '[===Job Progress===]'), ('<connect>', 'Connected ...'), ('<datetime.datetime>', repr(datetime.datetime.now())), ('<blankline>', '<BLANKLINE>')] # sphinx will ignore this for us doctest_replacements = [('<progress>', doctest_ellipsis), ('<connect>', doctest_ellipsis), ('<datetime.datetime>', doctest_ellipsis), ('<blankline>', '<BLANKLINE>')] # Two simple fsms, each with 2 states: Keep, Drop keep = 0 drop = 1 def __init__(self, text, mode='doc', file_name=None): """ :param text: str of text to process :param mode: preprocess mode, like 'doc' or 'doctest' :return: object whose __str__ is the processed example text """ if mode == 'doc': # process for human-consumable documentation self.replacements = self.doc_replacements self.is_state_keep = self._is_hide_state_keep self._disappear = '' # in documentation, we need complete disappearance elif mode == 'doctest': # process for doctest execution self.replacements = self.doctest_replacements self.is_state_keep = self._is_skip_state_keep self._disappear = '\n' # disappear means blank line for doctests, to preserve line numbers for error report else: raise DocExamplesException('Invalid mode "%s" given to %s. Must be in %s' % (mode, self.__class__, ", ".join(['doc', 'doctest']))) self.skip_state = self.keep self.hide_state = self.keep self.processed = '' self._file_name = file_name if text: lines = text.splitlines(True) self.processed = ''.join(self._process_line(line) for line in lines) if self.hide_state != self.keep: raise DocExamplesException("unclosed tag %s found%s" % (self.hide_start_tag, self._in_file())) if self.skip_state != self.keep: raise DocExamplesException("unclosed tag %s found" % self.skip_start_tag, self._in_file()) def _in_file(self): return (" in file %s" % self._file_name) if self._file_name else '' def _is_skip_state_keep(self): return self.skip_state == self.keep def _is_hide_state_keep(self): return self.hide_state == self.keep def _process_line(self, line): """processes line and advances fsms as necessary, returns processed line text""" stripped = line.lstrip() if stripped: # Repair the "Up" link for certain files (this needs to match the doc/templates/css.mako) if self._file_name and self._file_name.endswith("/index.html") and '<a href="index.html" id="fixed_top_left">Up</a>' in line: if self._file_name.endswith("/daaltk/index.html"): return ' <!-- No Up for root level index.html -->\n' return '<a href="../index.html" id="fixed_top_left">Up</a>\n' stripped = DocExamplesPreprocessor._strip_markdown_comment(stripped) if stripped[0] == '<': if self._process_if_tag_pair_tag(stripped): return self._disappear # tag-pair markup should disappear appropriately # check for keyword replacement for keyword, replacement in self.replacements: if stripped.startswith(keyword): line = line.replace(keyword, replacement, 1) break return line if self.is_state_keep() else self._disappear def _process_if_tag_pair_tag(self, stripped): """determines if the stripped line is a tag pair start or stop, advances fsms accordingly""" if stripped.startswith(self.skip_start_tag): if self.skip_state == self.drop: raise DocExamplesException("nested tag %s found%s" % (self.skip_start_tag, self._in_file())) self.skip_state = self.drop return True elif stripped.startswith(self.skip_stop_tag): if self.skip_state == self.keep: raise DocExamplesException("unexpected tag %s found%s" % (self.skip_stop_tag, self._in_file())) self.skip_state = self.keep return True elif stripped.startswith(self.hide_start_tag): if self.hide_state == self.drop: raise DocExamplesException("nested tag %s found%s" % (self.hide_start_tag, self._in_file())) self.hide_state = self.drop return True elif stripped.startswith(self.hide_stop_tag): if self.hide_state == self.keep: raise DocExamplesException("unexpected tag %s found%s" % (self.hide_stop_tag, self._in_file())) self.hide_state = self.keep return True return False markdown_comment_tell = r'[//]:' markdown_comment_re = r'^\[//\]:\s*#\s*\"(.+)\"$' markdown_comment_pattern = re.compile(markdown_comment_re) @staticmethod def _strip_markdown_comment(s): """ Checks if the given string is formatted as a Markdown comment per Magnus' response here: http://stackoverflow.com/questions/4823468/comments-in-markdown/32190021#32190021 If it is, the formatting is stripped and only the comment's content is returned If not, the string is returned untouched """ if s.startswith(DocExamplesPreprocessor.markdown_comment_tell): m = DocExamplesPreprocessor.markdown_comment_pattern.match(s) if m: return m.group(1) return s def __str__(self): return self.processed ########################################################## def main(): script_name = os.path.basename(__file__) usage = "Usage: %s <-html=HTML_DIR|-py=PY_DIR>" % script_name if len(sys.argv) < 2: raise RuntimeError(usage) option = sys.argv[1] html_flag = '-html=' py_flag = '-py=' if option.startswith(html_flag): value = option[len(html_flag):] html_dir = os.path.abspath(value) print "[%s] processing HTML at %s" % (script_name, html_dir) post_process_html(html_dir) elif option.startswith(py_flag): value = option[len(py_flag):] py_dir = os.path.abspath(value) print "[%s] processing Python at %s" % (script_name, py_dir) pre_process_py(py_dir) else: raise RuntimeError(usage) if __name__ == "__main__": main()
[ "rene.o.dorado@intel.com" ]
rene.o.dorado@intel.com
4639ffa783d2b6bac7000b63fbf2f0edebce684a
f61ac85822e491007d7459504c9cf94fd5d2f79c
/fluent_python/decorator/average_oo.py
1385225d466a47517a174ecd6778da28b9831070
[ "MIT" ]
permissive
ftconan/python3
9b587d17d125159b9b0b3bf1a6dc5817e7cd2838
74628fcfcfed439ee8dc5498d138b4d019f1ea58
refs/heads/master
2023-07-06T23:17:59.962048
2023-06-28T08:15:45
2023-06-28T08:15:45
138,450,461
1
1
MIT
2022-11-22T09:15:49
2018-06-24T03:28:02
Jupyter Notebook
UTF-8
Python
false
false
1,198
py
""" @author: magician @file: average_oo.py @date: 2020/10/20 """ class Averager(): """ Averager """ def __init__(self): self.series = [] def __call__(self, new_value): self.series.append(new_value) total = sum(self.series) return total / len(self.series) def make_averager(): """ make_averager @return: """ series = [] def averager(new_value): series.append(new_value) total = sum(series) return total / len(series) return averager def make_averager1(): """ make_averager1 @return: """ count = 0 total = 0 def averager(new_value): nonlocal count, total count += 1 total += new_value return total / count return averager if __name__ == '__main__': avg = Averager() print(avg(10)) print(avg(11)) print(avg(12)) avg1 = make_averager() print(avg1(10)) print(avg1(11)) print(avg1(12)) print(avg1.__code__.co_varnames) print(avg1.__code__.co_freevars) print(avg1.__closure__) print(avg1.__closure__[0].cell_contents) avg2 = make_averager1() print(avg2(10))
[ "1508907793@qq.com" ]
1508907793@qq.com
e737f30ee336c86d11634c5ffc31dd2d27b89f09
313b7c5dbd4e028f4ae5b27f7f293bc5b991fcd4
/Excercise5_2_Sinlawat_S.py
b832755dcf4d035f0fbc836c71a96440f70303c8
[]
no_license
Sinlawat/Laland
ae72a0e47142dbe13f9503dffb550f9ffeb5ac95
f8fd74dc0efda969e6529994407ec501e19bdabd
refs/heads/master
2020-11-28T22:58:41.593540
2020-06-22T00:03:02
2020-06-22T00:03:02
229,943,145
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
S = int(input("insert your Speeds = " )) T = int(input("insert your Times = " )) V = int(S/T) print(V , "m/s")
[ "Sinlawats58@gmail.com" ]
Sinlawats58@gmail.com
ce4d36e018e297df509215b25d6af8cbe17f9cd9
53b61ab08427f5e7a246bc2752b98be97cf299c1
/segmentation_framework/models/deeplabv3p/aspp.py
19d2e5179650cf326f48ebcda7017d4aacd68778
[]
no_license
branislavhesko/segmentation_framework
0822e1a367d21cf205c7cdaa479aa425171acb0e
8d4c55a219786930e97f6e57d98cbc10fe4b4da5
refs/heads/master
2022-08-27T12:47:09.160324
2022-08-01T21:28:35
2022-08-01T21:28:35
189,777,229
1
0
null
2020-11-01T22:48:41
2019-06-01T21:01:58
Python
UTF-8
Python
false
false
3,611
py
import math import torch import torch.nn as nn import torch.nn.functional as F from models.deeplabv3p.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d class _ASPPModule(nn.Module): def __init__(self, inplanes, planes, kernel_size, padding, dilation, BatchNorm): super(_ASPPModule, self).__init__() self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size, stride=1, padding=padding, dilation=dilation, bias=False) self.bn = BatchNorm(planes) self.relu = nn.ReLU() self._init_weight() def forward(self, x): x = self.atrous_conv(x) x = self.bn(x) return self.relu(x) def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class ASPP(nn.Module): def __init__(self, backbone, output_stride, BatchNorm): super(ASPP, self).__init__() if backbone == 'drn': inplanes = 512 elif backbone == 'mobilenet': inplanes = 320 else: inplanes = 2048 if output_stride == 16: dilations = [1, 6, 12, 18] elif output_stride == 8: dilations = [1, 12, 24, 36] else: raise NotImplementedError self.aspp1 = _ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0], BatchNorm=BatchNorm) self.aspp2 = _ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1], BatchNorm=BatchNorm) self.aspp3 = _ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2], BatchNorm=BatchNorm) self.aspp4 = _ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3], BatchNorm=BatchNorm) self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(inplanes, 256, 1, stride=1, bias=False), BatchNorm(256), nn.ReLU()) self.conv1 = nn.Conv2d(1280, 256, 1, bias=False) self.bn1 = BatchNorm(256) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.5) self._init_weight() def forward(self, x): x1 = self.aspp1(x) x2 = self.aspp2(x) x3 = self.aspp3(x) x4 = self.aspp4(x) x5 = self.global_avg_pool(x) x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True) x = torch.cat((x1, x2, x3, x4, x5), dim=1) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) return self.dropout(x) def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) torch.nn.init.kaiming_normal_(m.weight) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def build_aspp(backbone, output_stride, BatchNorm): return ASPP(backbone, output_stride, BatchNorm)
[ "branislavh@protonmail.ch" ]
branislavh@protonmail.ch
99681c36be3784e520c6d493f540d54bbb5b6ac4
d8a5fc2195165c970e2340eee87ae2ad5322da29
/{{cookiecutter.repo_name}}/{{cookiecutter.project_name}}/photos/views.py
48573cfdc703cc624f8d89eccaf4fa0037280c73
[ "BSD-3-Clause" ]
permissive
lendlsmith/chrisdev-cookiecutter
b76e6194aa8369c2dbf1dac73e3282e025d2b146
e0ab2d16bd1a066800ce46bb1740b1254c259a70
refs/heads/master
2021-10-11T22:20:02.391847
2014-07-21T16:57:32
2014-07-21T16:57:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
from django.views.generic import ListView, DetailView from filer.models import Folder class GalleryListView(ListView): #context_object_name = "gallery_list" try: queryset = Folder.objects.get( name='Gallery').children.all().order_by('-created_at') except Folder.DoesNotExist: queryset = None template_name = "gallery/gallery_archive.html" class GalleryDetailView(DetailView): #context_object_name = "gallery" try: queryset = Folder.objects.get(name='Gallery').children.all() except Folder.DoesNotExist: queryset = None template_name = "gallery/gallery_detail.html"
[ "lendl.smith@gmail.com" ]
lendl.smith@gmail.com
86158901edcbeb0e119d14f7e1d9a3dbc67a7ab7
beead56b100b562eb4eb03262a5fb6d688309166
/pydw/__init__.py
abdb214ea9ec9389d7b10b7fed00dd7e116f3188
[ "Apache-2.0" ]
permissive
quzhengpeng/pydw
b01f64c3a00ffdac53393ed977972ff87728b66c
afc003fdd0bc3ca243c81134fb6c660cc26d7c2e
refs/heads/master
2020-05-09T22:43:24.580879
2019-12-25T10:37:39
2019-12-25T10:37:39
181,480,242
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
from pydw.utils import config from pydw.utils import connection def connect(db_conn): conf = config.get_config(db_conn) conn = connection.get_conn(conf) return conn.conn def create(db_conn): conf = config.get_config(db_conn) conn = connection.get_conn(conf) return conn
[ "quzhengpeng@gmail.com" ]
quzhengpeng@gmail.com
4528a59aa0db7486bbbf2a3cb6b8db98636d7a1b
17e60f61fc82e7369802a1c597b58b0206ad9bec
/lib/poolLoop.py
0a25964115c941e48f0dbddf08013eda3d965d6c
[]
no_license
SLB-DeN/opensvc
5e06d42947f51662fa16203a00670a88b9e1fea9
75baeb19e0d26d5e150e770aef4d615c2327f32e
refs/heads/master
2021-05-17T05:35:18.585791
2020-03-19T15:20:05
2020-03-19T15:20:05
250,651,667
1
0
null
2020-03-27T21:29:22
2020-03-27T21:29:22
null
UTF-8
Python
false
false
1,366
py
from __future__ import print_function import os import pool import rcExceptions as ex from rcUtilities import lazy, justcall class Pool(pool.Pool): type = "loop" capabilities = ["rox", "rwx", "roo", "rwo", "blk"] @lazy def path(self): return self.oget("path") def translate(self, name=None, size=None, fmt=True, shared=False): data = [ { "rtype": "disk", "type": "loop", "file": os.path.join(self.path, "%s.img" % name), "size": size, } ] if fmt: data += self.add_fs(name, shared) return data def pool_status(self): from converters import convert_size if not os.path.exists(self.path): os.makedirs(self.path) data = { "name": self.name, "type": self.type, "capabilities": self.capabilities, } cmd = ["df", "-P", self.path] out, err, ret = justcall(cmd) if ret != 0: return data l = out.splitlines()[-1].split() data["free"] = convert_size(l[3], default_unit="K", _to="k") data["used"] = convert_size(l[2], default_unit="K", _to="k") data["size"] = convert_size(l[1], default_unit="K", _to="k") data["head"] = self.path return data
[ "christophe.varoqui@opensvc.com" ]
christophe.varoqui@opensvc.com
1fbcda7f3f1f05a9abcfa9a66315a7410e7cebba
cc38367d207e28e76fa087d0098757235208bbef
/Code/irc/banterbot_plugins/xkcd.py
f081cd7a7afa4612c3fdca06e8b46e56f0469c22
[]
no_license
RussellChamp/tilde-projects
c1943ac2120977f9bb6eb47b779266ed06326115
210200a8832e58f6197fe264567862a567b13d1a
refs/heads/master
2020-12-09T07:36:33.170952
2020-03-02T21:31:58
2020-03-02T21:31:58
28,719,355
8
4
null
2019-01-28T16:49:32
2015-01-02T16:48:52
HTML
UTF-8
Python
false
false
189
py
#!/usr/bin/python3 import pinhook.plugin import util.xkcdApropos @pinhook.plugin.register('!xkcd') def xkcd_plugin(msg): return pinhook.plugin.message(util.xkcdApropos.xkcd(msg.arg))
[ "RussellChamp@gmail.com" ]
RussellChamp@gmail.com
f57a5a411bc4bd9daee914c2fc13faf4310bdc9b
97ca8aedfc7959f99bf5add51c2fbb9d535c5aff
/tcml_tools/slurmer/parse/group.py
6142cd427c107f81a3ddab7c8eda3c9d7558ae77
[]
no_license
cogsys-tuebingen/tcml_tools
74b930b8109ef0ad559584bb51808edb83fe4e8c
4eabeb08e34993143c729136dc4349043dde00ad
refs/heads/main
2023-06-02T02:27:13.915943
2021-06-09T07:01:23
2021-06-09T07:01:23
359,801,189
0
0
null
null
null
null
UTF-8
Python
false
false
6,582
py
import numpy as np from typing import Union from collections import OrderedDict, defaultdict from tcml_tools.slurmer.parse import Result, Metrics class Group: """ A group of slurm jobs that share parameters (except e.g. seed) metrics will be computed over groups """ default_result = Result("__default__", -1, float_acc=1) all_param_keys = OrderedDict() all_result_keys = OrderedDict() def __init__(self, name: str, ids: list, **kwargs): self.name = name self.ids = [int(i) for i in ids] self.params = kwargs self.data = defaultdict(dict) self.results = OrderedDict() for k in kwargs.keys(): Group.all_param_keys[k] = True def get(self, key: str, default=None): """ get param/result, or default otherwise """ if key in self.params: return self.params.get(key) if key in self.results: return self.results.get(key).value return default def get_param_tuple(self, skip_keys=()) -> tuple: """ get a tuple of all parameter-values, except for the skipped ones """ return tuple([self.params.get(k, '') for k in self.all_param_keys.keys() if k not in skip_keys]) @staticmethod def __filter(dct: OrderedDict, ignore_keys=()) -> OrderedDict: new_dct = dct.copy() for key in ignore_keys: new_dct.pop(key, None) return new_dct @staticmethod def sorted_param_keys(**filter_kwargs): """ all known parameter keys of all groups """ return sorted([k for k in Group.__filter(Group.all_param_keys, **filter_kwargs).keys()]) def merge(self, other: 'Group'): """ merge another group into this one, keep this name """ self.ids.extend(other.ids) self.params.update(other.params) self.data.update(other.data) l0, l1 = len(self.results), len(other.results) self.results.update(other.results) assert len(self.results) == l0+l1, "Some results were overwritten by merging!" def update_all_data(self, data: {str: dict}): """ updates the data of all group members that are in the data dict """ for id_ in self.ids: if id_ in data: self.data[id_].update(data.get(id_)) def update_data(self, id_: int, data: dict): """ updates the data of group member with slurm id """ self.data[id_].update(data) def update_results(self, metrics: [Metrics]): for m in metrics: values, missing = self._values(key=m.get_key(), last_k=m.last_k) try: for result in m.from_values(values): self.results[result.name] = max([result, self.results.get(result.name)]) Group.all_result_keys[result.name] = True except KeyError: raise KeyError('Missing key "%s" in: %s, but the metric requires it' % (m.get_key(), missing)) def _values(self, key: str, last_k=-1) -> (Union[np.array, None], list): """ all values, different group members on axis 0, time series on axis 1, (can be None) and a list of slurm ids where the values are missing """ values = [] missing = [] for id_, data in self.data.items(): if key not in data: missing.append(id_) continue v = np.array([v[2] for v in data.get(key)]) # tensorboard has (step, time, value) triplets if isinstance(last_k, int) and (last_k > 0): v = v[-last_k:] values.append(v) assert all([len(v) == len(values[0]) for v in values]), "different value-array lengths for key=%s" % key if len(values) > 0: return np.stack(values, axis=0), missing return None, missing def __header_dict(self, separator: str, **filter_kwargs) -> dict: # param_keys = Group.sorted_param_keys(**filter_kwargs) param_keys = list(self.__filter(self.all_param_keys, **filter_kwargs).keys()) value_keys = list(self.__filter(self.all_result_keys, **filter_kwargs).keys()) return { 'n': 'name', 'ids': 'slurm_ids', 'params': separator.join(param_keys), 'values': separator.join(value_keys), } def __table_dict(self, separator: str, **filter_kwargs) -> dict: # param_keys = Group.sorted_param_keys(**filter_kwargs) param_keys = list(self.__filter(self.all_param_keys, **filter_kwargs).keys()) value_keys = list(self.__filter(self.all_result_keys, **filter_kwargs).keys()) return { 'n': self.name, 'ids': str(self.ids), 'params': separator.join([str(self.params.get(k, '')) for k in param_keys]), 'values': separator.join([self.results.get(k, self.default_result).str for k in value_keys]), } def get_csv_str_header(self, **filter_kwargs) -> str: """ table csv header, e.g. for libre office calc """ return '{n};{ids};;{params};;{values};'.format(**self.__header_dict(';', **filter_kwargs)) def get_csv_str(self, **filter_kwargs) -> str: """ table csv row, e.g. for libre office calc, printing params and the metric values """ return '{n};{ids};;{params};;{values};'.format(**self.__table_dict(';', **filter_kwargs)) def get_latex_str_header(self, **filter_kwargs) -> str: """ table header for latex """ return '{n} & {params} & {values} \\\\'.format(**self.__header_dict(' & ', **filter_kwargs)).replace('_', '\_') def get_latex_str(self, **filter_kwargs) -> str: """ table row for latex, printing params and the metric values """ return '{n} & {params} & {values} \\\\'.format(**self.__table_dict(' & ', **filter_kwargs)).replace('_', '\_') class GroupSeparator(Group): """ simple hack to just insert a midrule into latex tables, and empty rows into csv data will probably break everything if added first to a GroupManager, so don't do that """ _id = -1 def __init__(self, **kwargs): self._id += 1 super().__init__('separator %d' % self._id, [], **kwargs) def update_results(self, metrics): pass def get_csv_str(self, **filter_kwargs) -> str: """ table row for libre office calc, printing params and the metric values """ return '' def get_latex_str(self, **filter_kwargs) -> str: """ table row for latex, printing params and the metric values """ return '\\midrule'
[ "kevin.laube@uni-tuebingen.de" ]
kevin.laube@uni-tuebingen.de
6fd918e202a3968d5ca574c8f67d5791cf00f0a3
2785249737774981c54448096bfeb145aeedf08f
/run.py
273f2056a542cda4462cb1b00ab137c2e1192627
[ "MIT" ]
permissive
ninoseki/hash-hush
44e0029bb807e7c00cffc0b9068fdc7d40c7683a
20212ab23fec922dec4542acd2e20a6487da9e83
refs/heads/master
2022-07-18T06:34:22.380257
2019-10-25T04:41:46
2019-10-25T04:41:46
216,987,219
1
1
MIT
2020-08-07T00:43:50
2019-10-23T06:46:40
TypeScript
UTF-8
Python
false
false
50
py
import os from app import app app.run(port=5000)
[ "noreply@github.com" ]
ninoseki.noreply@github.com
9498aefa8f146488465c0dc49bcdcfecb6c2c61c
3b84c4b7b16ccfd0154f8dcb75ddbbb6636373be
/google-cloud-sdk/lib/googlecloudsdk/surface/compute/resource_views/resources/add.py
91a1766af1560f7ca696cc64491c0c49bb5e745d
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
twistedpair/google-cloud-sdk
37f04872cf1ab9c9ce5ec692d2201a93679827e3
1f9b424c40a87b46656fc9f5e2e9c81895c7e614
refs/heads/master
2023-08-18T18:42:59.622485
2023-08-15T00:00:00
2023-08-15T12:14:05
116,506,777
58
24
null
2022-02-14T22:01:53
2018-01-06T18:40:35
Python
UTF-8
Python
false
false
2,988
py
# Copyright 2014 Google Inc. All Rights Reserved. """'resourceviews resources add' command.""" from apiclient import errors from googlecloudsdk.api_lib.compute import rolling_updates_util as util from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.core import log from googlecloudsdk.core import properties class Add(base.Command): """Add resources to a resource view.""" @staticmethod def Args(parser): """Args is called by calliope to gather arguments for this command. Args: parser: An argparse parser that you can use to add arguments that go on the command line after this command. Positional arguments are allowed. """ parser.add_argument( 'resource', nargs='+', help=('A list of fully-qualified URLs to each resource that should ' 'be added to this view. For example: ' 'https://www.googleapis.com/compute/v1/projects/myproject/' 'zones/us-central1-a/instances/instance-1')) def Run(self, args): """Run 'resourceviews resources add'. Args: args: argparse.Namespace, The arguments that this command was invoked with. Raises: HttpException: A http error response was received while executing api request. ToolException: An error other than http error occured while executing the command. """ zone_views_client = self.context['zoneViewsClient'] region_views_client = self.context['regionViewsClient'] project = properties.VALUES.core.project.Get(required=True) request_body = {'resources': args.resource} if 'v1beta1' in self.context['api_version']: if args.region: request = region_views_client.addresources( projectName=project, region=args.region, resourceViewName=args.resourceview, body=request_body) else: request = zone_views_client.addresources( projectName=project, zone=args.zone, resourceViewName=args.resourceview, body=request_body) else: request = zone_views_client.addResources( project=project, zone=args.zone, resourceView=args.resourceview, body=request_body) try: request.execute() log.Print('Resources added to resource view {0}.'.format( args.resourceview)) except errors.HttpError as error: raise exceptions.HttpException(util.GetError(error)) except errors.Error as error: raise exceptions.ToolException(error) Add.detailed_help = { 'brief': 'Add resources to a resource view.', 'DESCRIPTION': """\ This command adds resources to a resource view. You must provide a list of fully-qualified URLs for each resource. Alternatively, you can also use the addinstances command and provide resource names rather than URLs. """, }
[ "joe@longreen.io" ]
joe@longreen.io
8ac9eb56ba0571fcfba55fe637d4b74150921482
67b69fc833f5dc9b32146b8bc3261f7bb84324bb
/sns/forms.py
f7a761da1158bd2f7c74fc95efe22d513d7ea524
[]
no_license
SotaEndo0214/My-SNS-app
08caf43244fba878a9153a2fc91c5f367472b9e7
72597f3689f976d46e9fb59198351a067896ea56
refs/heads/master
2022-11-05T04:59:18.222051
2020-06-26T10:30:05
2020-06-26T10:30:05
275,092,035
0
0
null
null
null
null
UTF-8
Python
false
false
1,794
py
from django import forms from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.forms import AuthenticationForm from .models import Message, User class UserCreateForm(UserCreationForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['username'].widget.attrs['class'] = 'form-control' self.fields['email'].widget.attrs['class'] = 'form-control' self.fields['password1'].widget.attrs['class'] = 'form-control' self.fields['password2'].widget.attrs['class'] = 'form-control' class Meta: model = User fields = ("username", "email", "password1", "password2",) class LoginForm(AuthenticationForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['username'].widget.attrs['class'] = 'form-control' self.fields['password'].widget.attrs['class'] = 'form-control' class PostForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['context'].widget.attrs['class'] = 'form-control' self.fields['image'].widget.attrs['class'] = 'form-control' class Meta: model = Message fields = ['context', 'image'] class ProfileEditForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['username'].widget.attrs['class'] = 'form-control' self.fields['email'].widget.attrs['class'] = 'form-control' self.fields['icon_image'].widget.attrs['class'] = 'form-control' self.fields['biography'].widget.attrs['class'] = 'form-control' class Meta: model = User fields = ['username', 'email', 'icon_image', 'biography']
[ "sotapea@gmail.com" ]
sotapea@gmail.com
4a515d5d729fa2b04b9fa633eeb2936a85a81110
ce392e553ddf78d6d52781db93f2ba128020f770
/docentes/forms.py
933c752a221176e7471604eba0d9cf3988ceb1ae
[]
no_license
orionkmc/sigpa
d7b3834ad1dc8dd64750733fe9bdc762da5aaf57
37a10df9096295c89fd6115ea32b8d784d2e5661
refs/heads/master
2023-07-06T11:39:22.253318
2020-01-21T06:16:07
2020-01-21T06:16:07
38,455,955
0
0
null
null
null
null
UTF-8
Python
false
false
531
py
# -*- coding: utf-8 -*- from django.forms import ModelForm from docentes.models import Docentes from django.forms import formset_factory class DocenteForm(ModelForm): class Meta: model = Docentes fields = '__all__' def __init__(self, *args, **kwargs): super(DocenteForm, self).__init__(*args, **kwargs) for field in self.fields: self.fields[field].widget.attrs['class'] =\ 'form-control form-control-sm' DocenteFormSet = formset_factory(DocenteForm, extra=2)
[ "orionkmc@gmail.com" ]
orionkmc@gmail.com
5a57d2d08af4a4dd8ad93e96047312d2f03db104
6e9a1c5f5095b5ebc78d264ce3adbdfeea113905
/affordance_gym/src/affordance_gym/trajectory_parser.py
37ac0d4de5c4391e7cbbbd2198db0a856aee4e45
[ "MIT" ]
permissive
AXINLETTER/affordance_gym
051fd2b085ec81130626bb80318638b45e7aefae
e2e6eeafd4d725c5c912ac97d4d5ad1cf318af5f
refs/heads/master
2020-06-19T19:16:04.150276
2019-04-08T17:40:12
2019-04-08T17:40:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,811
py
import numpy as np import os import pickle ''' This is used in generating a trajectory dataset. ''' def parse_trajectory(trajectory): trajectory = trajectory.joint_trajectory.points time_steps_raw = np.array([motion.time_from_start.to_sec() for motion in trajectory]) positions_raw = np.stack(np.array(motion.positions) for motion in trajectory) velocities_raw = np.stack(np.array(motion.velocities) for motion in trajectory) accelerations_raw = np.stack(np.array(motion.accelerations) for motion in trajectory) return time_steps_raw, positions_raw, velocities_raw, accelerations_raw class TrajectoryParser(object): def __init__(self, save_path, save_file, num_joints): self.save_path = save_path if not(os.path.exists(self.save_path)): os.makedirs(self.save_path) self.save_file = save_file self.num_joints = num_joints self.time_steps_raw = [] self.positions_raw = [] self.velocities_raw = [] self.accelerations_raw = [] self.end_poses = [] def add_trajectory(self, trajectory, end_pose): time_steps_raw, positions_raw, velocities_raw, accelerations_raw = parse_trajectory(trajectory) self.time_steps_raw.append(time_steps_raw) self.positions_raw.append(positions_raw) self.velocities_raw.append(velocities_raw) self.accelerations_raw.append(accelerations_raw) self.end_poses.append(end_pose) def save(self): f = open(os.path.join(self.save_path, '{}.pkl'.format(self.save_file)), 'wb') pickle.dump([ np.array(self.time_steps_raw), np.array(self.positions_raw), np.array(self.velocities_raw), np.array(self.accelerations_raw), np.array(self.end_poses) ], f) f.close()
[ "aleksijonathanhamalainen@gmail.com" ]
aleksijonathanhamalainen@gmail.com
bf827dd87006c899990aacccbb562772fcbfd3e6
78d35bb7876a3460d4398e1cb3554b06e36c720a
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2021_05_01/operations/_load_balancer_frontend_ip_configurations_operations.py
be7b0ac5d709fb10ed6105bb3d5c250f99998522
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
catchsrinivas/azure-sdk-for-python
e35f59b60318a31b3c940a7a3a07b61b28118aa5
596227a7738a5342274486e30489239d539b11d1
refs/heads/main
2023-08-27T09:08:07.986249
2021-11-11T11:13:35
2021-11-11T11:13:35
427,045,896
0
0
MIT
2021-11-11T15:14:31
2021-11-11T15:14:31
null
UTF-8
Python
false
false
9,049
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class LoadBalancerFrontendIPConfigurationsOperations(object): """LoadBalancerFrontendIPConfigurationsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2021_05_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str load_balancer_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.LoadBalancerFrontendIPConfigurationListResult"] """Gets all the load balancer frontend IP configurations. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LoadBalancerFrontendIPConfigurationListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2021_05_01.models.LoadBalancerFrontendIPConfigurationListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.LoadBalancerFrontendIPConfigurationListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-05-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('LoadBalancerFrontendIPConfigurationListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}/frontendIPConfigurations'} # type: ignore def get( self, resource_group_name, # type: str load_balancer_name, # type: str frontend_ip_configuration_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.FrontendIPConfiguration" """Gets load balancer frontend IP configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param load_balancer_name: The name of the load balancer. :type load_balancer_name: str :param frontend_ip_configuration_name: The name of the frontend IP configuration. :type frontend_ip_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FrontendIPConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_05_01.models.FrontendIPConfiguration :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FrontendIPConfiguration"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-05-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'loadBalancerName': self._serialize.url("load_balancer_name", load_balancer_name, 'str'), 'frontendIPConfigurationName': self._serialize.url("frontend_ip_configuration_name", frontend_ip_configuration_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('FrontendIPConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/loadBalancers/{loadBalancerName}/frontendIPConfigurations/{frontendIPConfigurationName}'} # type: ignore
[ "noreply@github.com" ]
catchsrinivas.noreply@github.com
abca959b9a298575138870b50ef3fb6c239191e7
6cb52959dbadaa610e91a6769079ff0ddee2422e
/exercices/008/solution.py
a61f843cd4dadeaafbb9e3579c749b05006babef
[]
no_license
LOUISvASS/hackinscience
9042e4f1a204c9cfd08ebcfc8178a93fa4d4f027
a2ec85cdf2a0851ee7e220481d17a7c44fa01b90
refs/heads/master
2021-01-13T15:35:11.209514
2016-12-19T19:23:03
2016-12-19T19:23:03
76,887,580
0
0
null
null
null
null
UTF-8
Python
false
false
73
py
! /usr/bin/python string = "Hello World !" for x in string: print(x)
[ "louis.vasselin@cri-paris.org" ]
louis.vasselin@cri-paris.org
7aa3530f559c27d7df393c936929fb4de6ee002b
ae101d2e6d75fb21243c90a9de99bcb0738e7b06
/keeper/views.py
1c4ee7fd8cd952d7fc7fffaaab3a6933641d41c4
[]
no_license
mikhail-vlasenko/Romanov_Key_Keeper
5fbc8cde8ea3b3b760a99abf63e4c3d017a1a76a
a228195518d310929178417469a558c3c02015b8
refs/heads/master
2022-12-12T17:36:13.956979
2019-11-03T10:05:43
2019-11-03T10:05:43
168,011,927
0
0
null
2022-12-08T01:45:59
2019-01-28T18:17:16
Python
UTF-8
Python
false
false
13,499
py
from .models import * # from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.shortcuts import get_object_or_404, render from .forms import * from django.contrib.auth.decorators import login_required from django.core.exceptions import ObjectDoesNotExist from django.http import HttpResponse, HttpResponseRedirect from django.db import IntegrityError # timezone = pytz.timezone("Europe/Moscow") REG_CODE = '12345' # code to enable registration PASSWORD_CHANGE_CODE = '54321' # code to change password CARD_TAKE_USERS = ['Guard', 'romanov_admin'] # who is allowed to use card reader @login_required def index(request): """ Main page rendering function. Lets users to transfer key to each other. Displays interface with owned keys and a form for key transfer. Login is required. :param request: request object :return: request answer object, contains *HTML* file :rtype: :class: `django.http.HttpResponse` """ context = {} if request.method == 'POST': f = TransferForm(request.POST) if 'transfer_req' in request.POST: if f.is_valid(): try: tran_user = CustomUser.objects.filter(username=f.data['username']).get() if tran_user != request.user: try: if tran_user.key_tran_last != -1: tran_user_last = CustomUser.objects.filter(username=tran_user.user_tran_last).get() hist = History.objects.filter(key=tran_user.key_tran_last, user_id=tran_user_last, active='Ожидает передачи').get() hist.active = 'Не сдан' hist.save() tran_user.key_tran_last = -1 tran_user.user_tran_last = 'никто' tran_user.save() hist = History.objects.filter(key=f.data['key_num'], user_id=request.user, active='Не сдан').get() hist.active = 'Ожидает передачи' hist.save() tran_user.user_tran_last = str(request.user.username) tran_user.key_tran_last = f.data['key_num'] tran_user.save() context['message'] = 'Ожидайте подтверждения' except ObjectDoesNotExist: context['message'] = 'У вас нет такого ключа' else: context['message'] = 'Нельзя передать ключ себе' except ObjectDoesNotExist: context['message'] = 'Нет такого пользователя' elif 'accept' in request.POST: user_tran = CustomUser.objects.filter(username=request.user.user_tran_last).get() hist = History.objects.filter(key=request.user.key_tran_last, user_id=user_tran, active='Ожидает передачи').get() try: hist_check = History.objects.filter(key=request.user.key_tran_last, user_id=request.user, active='Не сдан').get() context['message'] = 'У вас уже есть ключ от этого кабинета' except ObjectDoesNotExist: hist.active = 'Сдан' hist.time_back = datetime.datetime.now() hist.save() hist = History(key=request.user.key_tran_last, user_id=request.user, active='Не сдан') hist.save() request.user.key_tran_last = -1 request.user.user_tran_last = 'никто' request.user.save() context['message'] = 'Вы получили ключ' elif 'reject' in request.POST: user_tran = CustomUser.objects.filter(username=request.user.user_tran_last).get() hist = History.objects.filter(key=request.user.key_tran_last, user_id=user_tran, active='Ожидает передачи').get() hist.active = 'Не сдан' hist.save() request.user.key_tran_last = -1 request.user.user_tran_last = 'никто' request.user.save() context['message'] = 'Вы отказались получать ключ' else: f = TransferForm() key_list = History.objects.filter(user_id=request.user, active='Не сдан') context['key_list'] = key_list if request.user.key_tran_last != -1: context['key_receive'] = request.user.key_tran_last context['user_receive'] = request.user.user_tran_last context['form'] = f context['user_id'] = str(request.user.last_name) + ' ' + str(request.user.first_name) context['user_name'] = str(request.user.username) return render(request, 'transfer.html', context) @login_required def card_take(request): """ Card using page rendering function. Lets users to take/return keys using their cards. User should be Guard or Admin to enable this method. :param request: request object :return: request answer object, contains *HTML* file :rtype: :class: `django.http.HttpResponse` """ context = {} if request.method == 'POST': f = CardForm(request.POST) if f.is_valid(): if request.user.username in CARD_TAKE_USERS: try: card_user = CustomUser.objects.filter(card_id=f.data['card']).get() try: hist_unit = History.objects.filter(key=f.data['key_num'], user_id=card_user, active='Не сдан').get() hist_unit.active = 'Сдан' hist_unit.time_back = datetime.datetime.now() hist_unit.save() context['action'] = 'ОТДАЛ' except ObjectDoesNotExist: hist = History(key=f.data['key_num'], time_cr=datetime.datetime.now(), user_id=card_user) hist.active = 'Не сдан' hist.save() context['action'] = 'ВЗЯЛ' context['user_name'] = str(card_user.username) context['key_num'] = str(f.data['key_num']) except ObjectDoesNotExist: context['message'] = 'Нет такой карты' else: context['message'] = 'У вас недостаточно прав. Вы можете использовать карту только на охране' else: f = CardForm() context['form'] = f return render(request, 'card_reader.html', context) @login_required def history(request, page_id=1): """ History page rendering function. Lets users to see history or search through it. For security purposes login is also required. :param request: request object :param page_id: page number, influence displaying interval :return: request answer object, contains *HTML* file :rtype: :class: `django.http.HttpResponse` """ context = {} hist_list = [] hist_min_time = 0 for x in History.objects.all()[::-1]: if x.active == 'Не сдан': hist_min_time = x break if request.method == 'POST': f = SearchForm(request.POST) if f.is_valid(): hist_list = History.objects.all()[::-1] if f.data['key_num'] != '': hist_list2 = [] for x in hist_list: if x.key == int(f.data['key_num']): hist_list2.append(x) hist_list = hist_list2 if f.data['last_name'] != '': hist_list3 = [] for x in hist_list: if x.user_id.last_name == f.data['last_name']: hist_list3.append(x) hist_list = hist_list3 if f.data['is_active'] == 'true': context['select_active'] = 'true' hist_list4 = [] for x in hist_list: if x.active == 'Не сдан': hist_list4.append(x) hist_list = hist_list4 elif f.data['is_active'] == 'false': context['select_active'] = 'false' hist_list5 = [] for x in hist_list: if x.active == 'Сдан': hist_list5.append(x) hist_list = hist_list5 elif f.data['is_active'] == 'waiting': context['select_active'] = 'waiting' hist_list6 = [] for x in hist_list: if x.active == 'Ожидает передачи': hist_list6.append(x) hist_list = hist_list6 else: context['select_active'] = 'none' else: hist_list = History.objects.all()[::-1] f = SearchForm() context['hist_list'] = hist_list[(page_id - 1) * 100:(page_id * 100)] context['min_time_elem'] = hist_min_time context['page_id_p'] = page_id + 1 # can be improved if page_id != 1: context['page_id_m'] = page_id - 1 else: context['page_id_m'] = page_id context['form'] = f return render(request, 'history.html', context) @login_required def register(request): """ Register page rendering function. Lets users to register on the website. Only works on special accounts (as taking by card). This prevents unwanted access to log database. :param request: request object :return: request answer object, contains *HTML* file :rtype: :class: `django.http.HttpResponse` """ context = {} if request.method == 'POST': f = RegisterForm(request.POST) if f.is_valid() and f.data['password'] == f.data['password2']: if request.user.username in CARD_TAKE_USERS: try: if CustomUser.objects.filter(card_id=f.data['card_id']).exists(): context['message'] = 'Такая карта уже есть' else: user = CustomUser.objects.create_user(username=f.data['username'], password=f.data['password'], card_id=f.data['card_id'], last_name=f.data['last_name'], first_name=f.data['first_name']) user.save() context['message'] = 'Вы успешно зарегистрированы!' user = authenticate(request, username=f.data['username'], password=f.data['password']) if user is not None: return HttpResponseRedirect('/card') except IntegrityError: context['message'] = 'Такое имя пользователя уже есть' else: context['message'] = 'У вас недостаточно прав. Вы можете зарегистрироваться на охране' else: context['message'] = 'Пароли не совпадают' else: f = RegisterForm() context['users'] = CustomUser.objects.all() context['form'] = f return render(request, 'register.html', context) def login_user(request): """ Login page rendering function. Lets users to login on the website. :param request: request object :return: request answer object, contains *HTML* file :rtype: :class: `django.http.HttpResponse` """ context = {} if request.method == 'POST': f = LoginForm(request.POST) if f.is_valid(): user = authenticate(request, username=f.data['username'], password=f.data['password']) if user is not None: login(request, user) context['message'] = 'Вход выполнен!' return HttpResponseRedirect('/') else: context['message'] = 'Не получилось войти:(' else: f = LoginForm() context['user_name'] = str(request.user.username) context['form'] = f return render(request, 'login.html', context) def logout_user(request): """ Logout function :param request: request object :return: Redirect to login page :rtype: :class: `django.http.HttpResponseRedirect` """ logout(request) return HttpResponseRedirect('/login') def about(request): """ About page rendering function :param request: request object :return: request answer object, contains *HTML* file :rtype: :class: `django.http.HttpResponse` """ context = {} return render(request, 'doc_cap.html', context)
[ "medvedek2002@gmail.com" ]
medvedek2002@gmail.com
1107fd771f87376fcefbb02c4824430d8b657594
77a432201ab9e8429de1f6f2190d8048ea6c920b
/metREx/app/main/controller/scheduler_controller.py
bb859f9d2ce6f163dca35c2746bf83a5b49c6eb1
[ "Apache-2.0" ]
permissive
homedepot/metREx
0f794f12e803a89992a4658de29839e791a39139
d30f084fb0bf906372aa14b448d5d8a8fc9fe833
refs/heads/master
2023-04-03T02:21:26.706911
2023-03-29T14:45:41
2023-03-29T14:45:41
246,633,031
9
3
Apache-2.0
2023-03-29T14:45:43
2020-03-11T17:11:48
Python
UTF-8
Python
false
false
1,637
py
from flask_restx import Resource from flask_apscheduler import api as aps_api from ..util.dto import SchedulerDto api = SchedulerDto.api @api.route('') class Scheduler(Resource): @api.doc('get_scheduler_info') def get(self): """Gets the scheduler info.""" return aps_api.get_scheduler_info() @api.route('/jobs') class SchedulerJobList(Resource): @api.doc('get_jobs') def get(self): """Gets all scheduled jobs.""" return aps_api.get_jobs() # @api.doc('add_job') # def post(self): # """Adds a new job.""" # return aps_api.add_job() @api.route('/jobs/<job_id>') class SchedulerJob(Resource): @api.doc('get_job') def get(self, job_id): """Gets a job.""" return aps_api.get_job(job_id) # @api.doc('delete_job') # def delete(self, job_id): # """Deletes a job.""" # return aps_api.delete_job(job_id) # @api.doc('update_job') # def patch(self, job_id): # """Updates a job.""" # return aps_api.update_job(job_id) @api.route('/jobs/<job_id>/pause') class SchedulerJobPause(Resource): @api.doc('pause_job') def get(self, job_id): """Pauses a job.""" return aps_api.pause_job(job_id) @api.route('/jobs/<job_id>/resume') class SchedulerJobResume(Resource): @api.doc('resume_job') def get(self, job_id): """Resumes a job.""" return aps_api.resume_job(job_id) @api.route('/jobs/<job_id>/run') class SchedulerJobRun(Resource): @api.doc('run_job') def get(self, job_id): """Runs a job.""" return aps_api.run_job(job_id)
[ "MICHAEL_PHILLIPSON1@homedepot.com" ]
MICHAEL_PHILLIPSON1@homedepot.com
c5fc0a190aeb1eaa17bd948694bd6a152fcbd0d0
0c08f2101d6be5fc40f14d6b761fcd883b880035
/main1.py
34f4a017ca43eb0b0c0990e534a6e07d67a542c6
[]
no_license
shashank0786/Notification-alert-system
641ccc4006d3559d92cd6e1591adb1cc70ab0f95
11470902249c951b8354cd185372e8a0c28fa0a5
refs/heads/master
2023-04-22T10:05:55.164384
2021-05-01T18:23:00
2021-05-01T18:23:00
363,478,628
0
0
null
null
null
null
UTF-8
Python
false
false
1,269
py
from plyer import notification import requests from bs4 import BeautifulSoup import time def notifyMe(title,message): notification.notify( title=title, message=message, app_icon="G:\covid project new\images.ico", timeout=7 ) def getData(url): r=requests.get(url) return r.text if __name__ == "__main__": #notifyMe("shashank","plz stop this covid19") myHTMLData=getData('https://www.mohfw.gov.in/') soup = BeautifulSoup(myHTMLData,'html.parser') #print(soup.prettify()) Mydatast="" for tr in soup.find_all('thead')[1].find_all('tr'): Mydatastr +=tr.get_text() Mydatastr=Mydatastr[1:] itemList=Mydatastr.split('\n\n') states=['uttar pradesh','telangana','west bangal'] for item in itemList[0:35]: dataList=item.split('\n') if dataList[1] in states: nTitle='cases of Covid-19' nText=f"{States:{dataList[1]} \n IND :{dataList2} \n deaths:{dataList[3]}" notifyMe(nTitle,nText) time.sleep(2) # if you want to break out this notifiaction per hour then you can put a while loop on it and at last time.sleep(3600).then it will work very fine..
[ "srivastavashashank80@gmail.com" ]
srivastavashashank80@gmail.com
ee258a87e04e9ce5067d6218cbcd67df78c5b3f8
395b84c81af098192defb3540c48d5983c34cc5d
/stock_util/nadex.py
25442de5a58518fc84aaa9d3dc8011d169a0bb03
[ "MIT" ]
permissive
mpthomas/CNN-Forex-Trader
c41a25ae94cfeed9048fae516d7c730196bc1022
58f11e2c2b47c8c3cf570af8165c22707969fbdb
refs/heads/master
2022-12-08T06:17:15.677533
2020-09-26T19:18:08
2020-09-26T19:18:08
195,927,480
1
0
MIT
2022-12-08T05:51:48
2019-07-09T03:40:45
Jupyter Notebook
UTF-8
Python
false
false
3,458
py
from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import configparser import time class Nadex(): def __init__(self): self.in_results_frame=False try: config=configparser.RawConfigParser() config.read('config/nadex.cfg') self.chrome=config.get('nadex','chrome') self.login_url=config.get('nadex','login_url') self.demo=config.get('nadex','demo') config=configparser.RawConfigParser() config.read('config/passwd.cfg') self.username=config.get('nadex','username') print ("Finished getting login") self.passwd=config.get('nadex','password') except Exception as e: print(e) return None #self.driver=webdriver.Chrome(self.chrome) self.driver=webdriver.Remote( command_executor='http://127.0.0.1:4444/wd/hub', desired_capabilities=DesiredCapabilities.CHROME) #self.driver.start() def login(self): self.driver.get(str(self.login_url)) #time.sleep(5) el=self.driver.find_element_by_id("account_id") if(el): el.send_keys(self.username) else: print("login form not found. Might already be logged in") return False self.driver.find_element_by_id("password").send_keys(self.passwd) if(self.demo): self.driver.find_element_by_id("demo-toggle").click() self.driver.find_element_by_id("loginbutton").click() def get_contracts_old(self): self.driver.refresh() time.sleep(10) try: wait=WebDriverWait(self.driver,100) wait.until(EC.frame_to_be_available_and_switch_to_it((By.ID,'ifrMarketFilter'))) except Exception as e: print(e) return [] try: self.driver.find_element_by_id("ddDropDown_filterNameSelect").click() self.driver.find_element_by_css_selector("div[data='EUR/USD']").click() #self.driver.execute_script("arguments[0].setAttribute('data','EUR/USD')",e) self.driver.find_element_by_id("btnSearchFilter").click() except Exception as e: print(e) return [] try: self.driver.switch_to_default_content() wait.WebDriverWait(self.driver,10) wait.until(EC.frame_to_be_available_and_switch_to_it((By.ID,'ifrFilterResults'))) except Exception as e: print("Couldn't get results iframe") return [] contracts=self.driver.find_elements(By.CLASS_NAME,"contract") if(len(contracts) == 0): print("No contracts found") return [] for contract in contracts: print(contract.text) #contracts[0].click() def get_contracts(self): contracts = [] try: if not self.in_results_frame: wait=WebDriverWait(self.driver,300).until(EC.frame_to_be_available_and_switch_to_it((By.ID,'ifrFilterResults'))) print("Found results iframe") self.in_results_frame=True except Exception as e: print(e) print("Couldn't get filter results frame") return [] try: el=WebDriverWait(self.driver,300).until( EC.presence_of_all_elements_located((By.CLASS_NAME,"contract")) ) print("Wait: located elements by css contract") count=len(el) except Exception as e: print(e) print("Couldn't get contracts elements") return [] print("found "+str(len(el))+" contracts") for i in range(0,count): els=self.driver.find_elements_by_class_name("contract") contracts.append(els[i].text) return contracts def logout(self): return True
[ "matthomas@gmail.com" ]
matthomas@gmail.com
8f4e42b65ce09e4a562f2d4b298babce0fd4be3b
2417d9f6afe95ba19354c65bfb400556f2eb2e19
/setup.py
2a91c65f19fbb3863f4728098116fca13710074a
[ "Apache-2.0" ]
permissive
rakeshnb/pixiedust
39f1249a867719919441488f085e1f60519dae58
fb5198c7564589c267147d7bdee1f798e7b361ef
refs/heads/master
2020-05-23T08:09:42.603871
2016-10-07T22:08:10
2016-10-07T22:08:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
732
py
from setuptools import setup setup(name='pixiedust', version='0.38', description='Misc helpers for Spark Python Notebook', url='https://github.com/ibm-cds-labs/pixiedust', install_requires=['maven-artifact','mpld3'], author='David Taieb', author_email='david_taieb@us.ibm.com', license='Apache 2.0', packages=['pixiedust','pixiedust.packageManager','pixiedust.display', 'pixiedust.display.table','pixiedust.display.graph','pixiedust.display.chart','pixiedust.display.chart.plugins', 'pixiedust.display.tests','pixiedust.display.download', 'pixiedust.services', 'pixiedust.utils'], include_package_data=True, zip_safe=False)
[ "david_taieb@us.ibm.com" ]
david_taieb@us.ibm.com
f68cd316f77807458ca751c95bccb75bd365fa5b
227038c529ce9ad5dbc3040555724afa910f2aeb
/dialogue_manager.py
aaf84f31be676faac9eb316979fb055df8554e85
[]
no_license
EriChen0615/QAQ_chatbot
a5a78deb1049cf53d4820b9524baf682d7811f96
ecd7cb547a6ce78b02d8f32b64c8b0472e1db750
refs/heads/main
2023-01-06T20:01:22.279267
2020-10-25T14:55:34
2020-10-25T14:55:34
306,833,382
0
1
null
null
null
null
UTF-8
Python
false
false
12,126
py
from dumb_nlu import Dumb_NLU from component import Component import pandas as pd import numpy as np """ Intellegent: if one field is empty but only one candidate, can autofill gives suggestions based on historical features feature to be added: 1. suggestions refer to online forum 2. add top search list 3. maintaince feature to be tested:1. add customized measurements """ class DialogueManager(Component): def __init__(self): """ create a Dialogue Manager object :param :attributes input: get input from nlu input is a dictionary with three attributes: parts, error, states states[None=detect parts/error, yes/no=feedback from the user for the validity of the solution] setup1: transfer input to inner attributes(see function) last_state, state: None(to identify the problem), yes(we're done!), or no(the pass the next solution) state_counter: count how many states has been provided but failed filename: fixed variable for file path df: dataframe to the data file df_stats: a list of solutions, ranked based on success frequency :return None """ super().__init__() # self.tracker = tracker # self.agent = agent # self.tracker.connect(agent) self.input = None # self.setup1() self.last_state = None self.state = None # self.learnparameter=1 self.state_counter = 0 self.filename = 'data/cnc_troubleshooting.xlsx' self.df = self.excel_to_df() self.df_stats = [] self.msg = "" self.new_solution = "" def setup(self): pass def setup1(self): """ deal with input and update existing variables. if input contains an previously unknown attribute, then update the attribute else, create a placeholder/leave nothing DO NOT PERFORM COLLISION DETECTION: will keep the newest valid solution :return: None """ # print("Dialogue Manager is setup!") if "parts" in self.input and self.input['parts']: self.part = self.input["parts"] if "error" in self.input and self.input['error']: self.error = self.input["error"] self.last_state = self.state if "solution" in self.input: self.new_solution = self.input["solution"] # print(self.input) self.state = self.input["state"] try: self.part except AttributeError: self.part = None try: self.error except AttributeError: self.error = None def input_debug(self, intm): """ for debug and using the object as a function e.g. object.input_debug(<input dictionary>) get_result=object.do_step() :param intm: input :return: none """ self.input = intm self.setup1() return 0 def do_step(self): # self.tracker.input = self.input # self.tracker.run() # self.agent.run() # if self.state == "greeting": # response_msg = self.greeting() # elif self.state == "thanks": # response_msg = self.thanks() """ the main control of the program If either part is missing, request user to describe the problem using trouble_shooting If both parts are presented, provide the solution by solution_provider() (if problem solved, it will jump to thanks() as indicated in the solution_provider()) Additionally, if it is "yes", case closed and object inits itself. :return: response_msg to the UI """ if ((not self.part or not self.error) and self.state == 'no') or not self.state: response_msg = self.trouble_shooting() else: response_msg = self.solution_provider() self.output = response_msg print(response_msg) # , self.state_counter, self.state) self.msg = response_msg self.last_state = self.state if self.state == "yes": pass # self.__init__() return response_msg def to_front(self, action): """ aborted! """ return {'response': action['response'], 'browser_action': 'reply'} def greeting(self): """ Aborted! Replaced by greeting in UI :return: """ return "Hello, how can I help you?" def thanks(self): """ Run this function when the user solved the problem Update the methods on a sheet :return: Answer politely with a speck of pride. Our chatbot is well-educated gentleman/lady """ # print(self.part, self.error, self.state_counter) i = 1 while self.df.loc[i, 'Parts'] != self.part or self.df.loc[i, 'Error'] != self.error or self.df.loc[ i, 'Solution'] != self.df_stats[self.state_counter - 2]: i += 1 self.df.loc[i, 'appear_time'] += 1 self.df.to_excel(self.filename, sheet_name='Sheet1', index=False, header=True) self.df.to_excel(self.filename, index=False) # self.__init__() return "My pleasure." def trouble_shooting(self): """ Try to find some information form our poor dumb master. Hopefully he/she will say something reasonable :return: if none of "parts" and "error" is understood, give it another try (or am I)? if one part is missing: list all I know that fits another parameter. That's the best I can do. hope there is something for my poor master """ """ Intellegent: if one field is empty but only one candidate, can autofill gives suggestions based on historical features feature to be added: 1. suggestions refer to online forum feature to be tested:1. add customized measurements """ if not self.state: return "I'm sorry, TROUBLE!!" elif self.state == 'greeting': return "Please tell me more about your issue!" elif not self.part and not self.error: return "I'm sorry, I couldn't understand. Good luck :-D" elif not self.part: candidates = self.df.loc[(self.df['Error'] == self.error)] candidates = candidates.Parts.tolist() candidates = list(set(candidates)) if len(candidates) == 1: self.part = candidates[0] self.do_step() return 0 else: return "Which part has this problem? Is it " + ','.join(candidates) + "?" elif not self.error: self.df = self.excel_to_df() candidates = self.df.loc[(self.df['Parts'] == self.part)] candidates = candidates.Error.tolist() candidates = list(set(candidates)) if len(candidates) == 1: self.error = candidates[0] self.do_step() return 0 else: return "What's the problem with " + self.part + "? Is " + ', '.join(candidates).lower() + "?" else: return def solution_provider(self): """ Solution time! Trace how many solutions I have provided and provide the next possible solution based on the knowledge. If there's no more I can provide, sorry! If my master solved the problem, hooray! Jump to the wrap up thanks() :return: solution! """ if self.state == "no": if self.part and self.error: self.df_stats = self.get_solutions(self.part, self.error) self.state_counter = self.state_counter + 1 # print(self.error, self.part, self.state_counter, self.df_stats) if self.state_counter > len(self.df_stats): # self.__init__() return "Sorry, it is beyond my scope. Please tell me how you solve this problem if possible, " \ "so that I can help next time! $Enter your solution with the dollar signs$" # provide # user-defined manual return "Try to " + self.df_stats[self.state_counter - 1].lower() + ". Does it work?" elif self.state == "solution": self.study() return "Thank you for your information!" elif self.state == "yes": print(self.df_stats) print(self.state_counter) return self.thanks() elif self.state == 'greeting': return "Please tell me more about your issue!" def excel_to_df(self): """ as indicated :return: """ return pd.read_excel(self.filename, 0) def read_sorted_solution(self, df, part, error): """read file""" df = df.loc[(df['Parts'] == part) & (df['Error'] == error)] df = df.sort_values('appear_time') # print(df) solutions = df.Solution.tolist() return solutions[::-1] def get_solutions(self, part, error): """ Look for possible solutions from database :return: A list of solutions based on given part and error from most frequent to least frequent. """ return self.read_sorted_solution(self.df, part, error) def study(self): """ Add a new solution from user feedback if all the possible solutions are declined. """ df = pd.read_excel(self.filename, 0) df2 = pd.DataFrame([self.part,self.error,self.new_solution,0]) df = df.append(df2, ignore_index=True) df.to_excel(self.filename, index=False) def mergeprocess(nlu, m, text): input = nlu.process(text) print(input) m.input_debug(input) m.run() console_msg = m.msg if console_msg == "Sorry, it is beyond my scope." or console_msg == "My pleasure.": m.__init__() return console_msg def mergeprocess_fake(nlu, m, text): input = {"parts": "Tool magazine (Umbrella type)", "error": "Tool number in chaos", "state": 'study'} m.input_debug(input) m.run() console_msg = m.msg if console_msg == "Sorry, it is beyond my scope." or console_msg == "My pleasure.": m.__init__() return console_msg if __name__ == '__main__': """ input is a dictionary with three attributes: parts, error, states states[None=detect parts/error, yes/no=feedback from the user for the validity of the solution] """ m = DialogueManager() """test for local file""" """input = {"parts": None, "error": "Noise for tool changing umbrella", "state": "no"} m.input_debug(input) m.run()""" input = {"parts": None, "error": None, "state": 'greeting'} m.input_debug(input) m.run() """ input = {"parts": "Tool magazine(Umbrella type)", "error": "Noise for tool changing", "state": "no"} m = DialogueManager() m.input_debug(input) m.run()""" """testing for MERGING""" """ natural_language = Dumb_NLU() m = DialogueManager() user_input = 'hi' mergeprocess(natural_language, m, user_input) user_input = 'The change 4 noise milling is not working.,,,' mergeprocess(natural_language, m, user_input) user_input = 'yes' mergeprocess(natural_language, m, user_input) """ """ flow chart 0. initialize 1. input.debug() 2. run(): if attributes not complete: ask trouble_shooting() if attributes complete: solution_provider()->previous solution not correct, have another method, go through the list and suggest(use state_counter, get_solutions()) ->previous solutionnot correct no more method, sorry, and initialise ->previous solution correct go to thanks(), and initialize 3. waiting for input. """
[ "wonnor-pro@gmail.com" ]
wonnor-pro@gmail.com
56264f51c911aa35397825287da9b3ea40fae6b1
a9ddbd4a48fbaffabcae12c1ead1ac21416c6f32
/server.py
51af13766bb51d9398847203797173cbf03328be
[]
no_license
Krzysztof-Wojtczak/Allegro-Task
625790281461e5c2c90d02224a9e0fbc0b43a0da
0d1921c0403d83c06357502fa0680df8cfcb8770
refs/heads/master
2020-05-17T15:48:14.304053
2019-12-08T19:29:15
2019-12-08T19:29:15
183,801,968
2
0
null
2019-07-21T16:01:04
2019-04-27T17:22:16
Python
UTF-8
Python
false
false
2,242
py
from http.server import HTTPServer, BaseHTTPRequestHandler import re from urllib.request import urlopen import cv2 import numpy as np from mozaika import Mozaika class Serv(BaseHTTPRequestHandler): def do_GET(self): w = 2048 # default width h = 2048 # default height losowo = 1 # random image placement = true urls = [] # images URLs if self.path.startswith("/mozaika?"): # keyword for getting mosaic, URL should be put in format: parameters = self.path.split("&") # http://localhost:8080/mozaika?losowo=Z&rozdzielczosc=XxY&zdjecia=URL1,URL2,URL3.. for par in parameters: if par.find("losowo") == -1: pass else: losowo_index = par.find("losowo") try: losowo = int(par[losowo_index + 7]) except: pass if par.find("rozdzielczosc") == -1: pass else: try: w, h = re.findall('\d+', par) except: pass if par.find("zdjecia=") == -1: pass else: urls = self.path[self.path.find("zdjecia=") + 8 :] urls = urls.split(",") try: image_list = create_images_list(urls) # call mosaic creator # 1 required attribute: list of images in cv2 format, # 3 optional attributes: random image positioning, width of output image, height of output image mozaika = Mozaika(image_list, losowo, w, h) img = mozaika.output_image # store output image f = cv2.imencode('.jpg', img)[1].tostring() # encode to binary format self.send_response(200) self.send_header('Content-type', 'image/jpg') except: self.send_response(404) self.end_headers() self.wfile.write(f) # send output image #return def url_to_image(url): # gets image from URL and converts it to cv2 color image format resp = urlopen(url) image = np.asarray(bytearray(resp.read()), dtype="uint8") image = cv2.imdecode(image, cv2.IMREAD_COLOR) return image def create_images_list(urls): # takes URLs list and creates list of images image_list = [] for url in urls: image = url_to_image(url) if image is not None: image_list.append(image) return image_list httpd = HTTPServer(("localhost", 8080), Serv) httpd.serve_forever()
[ "noreply@github.com" ]
Krzysztof-Wojtczak.noreply@github.com
ffb4d6b50b4e12caf33c65ea3356284a98460588
e9978cdfe6754a1f9712bdd8d20221313b4c1ea4
/com/jefferson/test/test_operacoes.py
dcb2d61f3f176bcdd8132493b0e0f42fc981c688
[]
no_license
jefferson-paixao/devops_ac02
94b93eea987418d321befbd9810ce701074307fb
571bcfc581a9700df51922544a859673149c7767
refs/heads/master
2021-05-22T00:01:23.574384
2020-04-04T02:52:38
2020-04-04T02:52:38
252,871,635
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
from unittest import TestCase from com.jefferson.operacoes import Operacoes class TestOperacoes(TestCase): def setUp(self): self.operacoes = Operacoes() def test_multiplicacao(self): self.assertEqual(self.operacoes.multiplicacao(5,5),25,"Deveria ser 25!")
[ "jefferson.paixao@aluno.faculdadeimpacta.com.br" ]
jefferson.paixao@aluno.faculdadeimpacta.com.br
e5f98ccd8f816d3621fa6a5b9fd0132e0965826b
30a89ae47ca79e4ced151908f4059cd77ade30ef
/order/forms.py
0c700dce796932a329f19a1102f5113624a6fcd8
[]
no_license
harshit8858/mindful_project1_salesapp
0bd80c40b2349fe08744dcd0625283c5b6ba4029
66f7c7af868518898aa6422d1b17ca9f7cf433ef
refs/heads/master
2020-03-24T00:02:49.972583
2018-08-18T07:56:49
2018-08-18T07:56:49
142,269,897
1
0
null
null
null
null
UTF-8
Python
false
false
328
py
from django import forms from .models import * class OrderForm(forms.ModelForm): class Meta: model = Order fields = [ 'customer', 'remark', 'product', 'quantity', 'price', 'discount', 'tax', 'total', ]
[ "harshit8858@gmail.com" ]
harshit8858@gmail.com
a233dcc9c0864f3ff92942cdb4396157abb00221
436c40d8965274a32e48b0d92553efa14177db25
/intrusion-v2/src/estimator.py
33cf6c907625831eba850165f30ed96a0a08e78f
[ "Apache-2.0" ]
permissive
anuj-kh-quantela/end-to-end
daa1fad9beb96b2eb664ca38e9762a223b3ca1d7
b00009b80f680c3d1f79f56eee9cdb949963dfb2
refs/heads/master
2020-03-25T12:06:50.716637
2018-08-06T17:41:48
2018-08-06T17:41:48
143,760,774
1
0
null
null
null
null
UTF-8
Python
false
false
17,476
py
import itertools import logging import math from collections import namedtuple import cv2 import numpy as np import tensorflow as tf from scipy.ndimage import maximum_filter, gaussian_filter import common from common import CocoPairsNetwork, CocoPairs, CocoPart logger = logging.getLogger('TfPoseEstimator') logger.setLevel(logging.INFO) ch = logging.StreamHandler() formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) class Human: """ body_parts: list of BodyPart """ __slots__ = ('body_parts', 'pairs', 'uidx_list') def __init__(self, pairs): self.pairs = [] self.uidx_list = set() self.body_parts = {} for pair in pairs: self.add_pair(pair) @staticmethod def _get_uidx(part_idx, idx): return '%d-%d' % (part_idx, idx) def add_pair(self, pair): self.pairs.append(pair) self.body_parts[pair.part_idx1] = BodyPart(Human._get_uidx(pair.part_idx1, pair.idx1), pair.part_idx1, pair.coord1[0], pair.coord1[1], pair.score) self.body_parts[pair.part_idx2] = BodyPart(Human._get_uidx(pair.part_idx2, pair.idx2), pair.part_idx2, pair.coord2[0], pair.coord2[1], pair.score) self.uidx_list.add(Human._get_uidx(pair.part_idx1, pair.idx1)) self.uidx_list.add(Human._get_uidx(pair.part_idx2, pair.idx2)) def is_connected(self, other): return len(self.uidx_list & other.uidx_list) > 0 def merge(self, other): for pair in other.pairs: self.add_pair(pair) def part_count(self): return len(self.body_parts.keys()) def get_max_score(self): return max([x.score for _, x in self.body_parts.items()]) def __str__(self): return ' '.join([str(x) for x in self.body_parts.values()]) class BodyPart: """ part_idx : part index(eg. 0 for nose) x, y: coordinate of body part score : confidence score """ __slots__ = ('uidx', 'part_idx', 'x', 'y', 'score') def __init__(self, uidx, part_idx, x, y, score): self.uidx = uidx self.part_idx = part_idx self.x, self.y = x, y self.score = score def get_part_name(self): return CocoPart(self.part_idx) def __str__(self): return 'BodyPart:%d-(%.2f, %.2f) score=%.2f' % (self.part_idx, self.x, self.y, self.score) class PoseEstimator: heatmap_supress = False heatmap_gaussian = False adaptive_threshold = False NMS_Threshold = 0.15 Local_PAF_Threshold = 0.2 PAF_Count_Threshold = 5 Part_Count_Threshold = 4 Part_Score_Threshold = 4.5 PartPair = namedtuple('PartPair', [ 'score', 'part_idx1', 'part_idx2', 'idx1', 'idx2', 'coord1', 'coord2', 'score1', 'score2' ], verbose=False) def __init__(self): pass @staticmethod def non_max_suppression(plain, window_size=3, threshold=NMS_Threshold): under_threshold_indices = plain < threshold plain[under_threshold_indices] = 0 return plain * (plain == maximum_filter(plain, footprint=np.ones((window_size, window_size)))) @staticmethod def estimate(heat_mat, paf_mat): if heat_mat.shape[2] == 19: heat_mat = np.rollaxis(heat_mat, 2, 0) if paf_mat.shape[2] == 38: paf_mat = np.rollaxis(paf_mat, 2, 0) if PoseEstimator.heatmap_supress: heat_mat = heat_mat - heat_mat.min(axis=1).min(axis=1).reshape(19, 1, 1) heat_mat = heat_mat - heat_mat.min(axis=2).reshape(19, heat_mat.shape[1], 1) if PoseEstimator.heatmap_gaussian: heat_mat = gaussian_filter(heat_mat, sigma=0.5) if PoseEstimator.adaptive_threshold: _NMS_Threshold = max(np.average(heat_mat) * 4.0, PoseEstimator.NMS_Threshold) _NMS_Threshold = min(_NMS_Threshold, 0.3) else: _NMS_Threshold = PoseEstimator.NMS_Threshold # extract interesting coordinates using NMS. coords = [] # [[coords in plane1], [....], ...] for plain in heat_mat[:-1]: nms = PoseEstimator.non_max_suppression(plain, 5, _NMS_Threshold) coords.append(np.where(nms >= _NMS_Threshold)) # score pairs pairs_by_conn = list() for (part_idx1, part_idx2), (paf_x_idx, paf_y_idx) in zip(CocoPairs, CocoPairsNetwork): pairs = PoseEstimator.score_pairs( part_idx1, part_idx2, coords[part_idx1], coords[part_idx2], paf_mat[paf_x_idx], paf_mat[paf_y_idx], heatmap=heat_mat, rescale=(1.0 / heat_mat.shape[2], 1.0 / heat_mat.shape[1]) ) pairs_by_conn.extend(pairs) # merge pairs to human # pairs_by_conn is sorted by CocoPairs(part importance) and Score between Parts. humans = [Human([pair]) for pair in pairs_by_conn] while True: merge_items = None for k1, k2 in itertools.combinations(humans, 2): if k1 == k2: continue if k1.is_connected(k2): merge_items = (k1, k2) break if merge_items is not None: merge_items[0].merge(merge_items[1]) humans.remove(merge_items[1]) else: break # reject by subset count humans = [human for human in humans if human.part_count() >= PoseEstimator.PAF_Count_Threshold] # reject by subset max score humans = [human for human in humans if human.get_max_score() >= PoseEstimator.Part_Score_Threshold] return humans @staticmethod def score_pairs(part_idx1, part_idx2, coord_list1, coord_list2, paf_mat_x, paf_mat_y, heatmap, rescale=(1.0, 1.0)): connection_temp = [] cnt = 0 for idx1, (y1, x1) in enumerate(zip(coord_list1[0], coord_list1[1])): for idx2, (y2, x2) in enumerate(zip(coord_list2[0], coord_list2[1])): score, count = PoseEstimator.get_score(x1, y1, x2, y2, paf_mat_x, paf_mat_y) cnt += 1 if count < PoseEstimator.PAF_Count_Threshold or score <= 0.0: continue connection_temp.append(PoseEstimator.PartPair( score=score, part_idx1=part_idx1, part_idx2=part_idx2, idx1=idx1, idx2=idx2, coord1=(x1 * rescale[0], y1 * rescale[1]), coord2=(x2 * rescale[0], y2 * rescale[1]), score1=heatmap[part_idx1][y1][x1], score2=heatmap[part_idx2][y2][x2], )) connection = [] used_idx1, used_idx2 = set(), set() for candidate in sorted(connection_temp, key=lambda x: x.score, reverse=True): # check not connected if candidate.idx1 in used_idx1 or candidate.idx2 in used_idx2: continue connection.append(candidate) used_idx1.add(candidate.idx1) used_idx2.add(candidate.idx2) return connection @staticmethod def get_score(x1, y1, x2, y2, paf_mat_x, paf_mat_y): __num_inter = 10 __num_inter_f = float(__num_inter) dx, dy = x2 - x1, y2 - y1 normVec = math.sqrt(dx ** 2 + dy ** 2) if normVec < 1e-4: return 0.0, 0 vx, vy = dx / normVec, dy / normVec xs = np.arange(x1, x2, dx / __num_inter_f) if x1 != x2 else np.full((__num_inter,), x1) ys = np.arange(y1, y2, dy / __num_inter_f) if y1 != y2 else np.full((__num_inter,), y1) xs = (xs + 0.5).astype(np.int8) ys = (ys + 0.5).astype(np.int8) # without vectorization pafXs = np.zeros(__num_inter) pafYs = np.zeros(__num_inter) for idx, (mx, my) in enumerate(zip(xs, ys)): pafXs[idx] = paf_mat_x[my][mx] pafYs[idx] = paf_mat_y[my][mx] # vectorization slow? # pafXs = pafMatX[ys, xs] # pafYs = pafMatY[ys, xs] local_scores = pafXs * vx + pafYs * vy thidxs = local_scores > PoseEstimator.Local_PAF_Threshold return sum(local_scores * thidxs), sum(thidxs) class TfPoseEstimator: ENSEMBLE = 'addup' # average, addup def __init__(self, graph_path, target_size=(320, 240)): self.target_size = target_size # load graph with tf.gfile.GFile(graph_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) self.graph = tf.get_default_graph() tf.import_graph_def(graph_def, name='TfPoseEstimator') self.persistent_sess = tf.Session(graph=self.graph) # for op in self.graph.get_operations(): # print(op.name) self.tensor_image = self.graph.get_tensor_by_name('TfPoseEstimator/image:0') self.tensor_output = self.graph.get_tensor_by_name('TfPoseEstimator/Openpose/concat_stage7:0') self.heatMat = self.pafMat = None # warm-up self.persistent_sess.run( self.tensor_output, feed_dict={ self.tensor_image: [np.ndarray(shape=(target_size[1], target_size[0], 3), dtype=np.float32)] } ) def __del__(self): self.persistent_sess.close() @staticmethod def _quantize_img(npimg): npimg_q = npimg + 1.0 npimg_q /= (2.0 / 2**8) # npimg_q += 0.5 npimg_q = npimg_q.astype(np.uint8) return npimg_q @staticmethod def draw_humans(npimg, humans, imgcopy=False, draw_pose=False): if imgcopy: npimg = np.copy(npimg) image_h, image_w = npimg.shape[:2] centers_humans = {} for idx,human in enumerate(humans): centers = {} # draw point for i in range(common.CocoPart.Background.value): if i not in human.body_parts.keys(): continue body_part = human.body_parts[i] center = (int(body_part.x * image_w + 0.5), int(body_part.y * image_h + 0.5)) centers[i] = center if draw_pose: cv2.circle(npimg, center, 3, common.CocoColors[i], thickness=3, lineType=8, shift=0) centers_humans[idx] = centers # draw line for pair_order, pair in enumerate(common.CocoPairsRender): if pair[0] not in human.body_parts.keys() or pair[1] not in human.body_parts.keys(): continue #npimg = cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3) if draw_pose: cv2.line(npimg, centers[pair[0]], centers[pair[1]], common.CocoColors[pair_order], 3) return npimg,centers_humans def _get_scaled_img(self, npimg, scale): get_base_scale = lambda s, w, h: max(self.target_size[0] / float(w), self.target_size[1] / float(h)) * s img_h, img_w = npimg.shape[:2] if scale is None: if npimg.shape[:2] != (self.target_size[1], self.target_size[0]): # resize npimg = cv2.resize(npimg, self.target_size) return [npimg], [(0.0, 0.0, 1.0, 1.0)] elif isinstance(scale, float): # scaling with center crop base_scale = get_base_scale(scale, img_w, img_h) npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale) ratio_x = (1. - self.target_size[0] / float(npimg.shape[1])) / 2.0 ratio_y = (1. - self.target_size[1] / float(npimg.shape[0])) / 2.0 roi = self._crop_roi(npimg, ratio_x, ratio_y) return [roi], [(ratio_x, ratio_y, 1.-ratio_x*2, 1.-ratio_y*2)] elif isinstance(scale, tuple) and len(scale) == 2: # scaling with sliding window : (scale, step) base_scale = get_base_scale(scale[0], img_w, img_h) base_scale_w = self.target_size[0] / (img_w * base_scale) base_scale_h = self.target_size[1] / (img_h * base_scale) npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale) window_step = scale[1] rois = [] infos = [] for ratio_x, ratio_y in itertools.product(np.arange(0., 1.01 - base_scale_w, window_step), np.arange(0., 1.01 - base_scale_h, window_step)): roi = self._crop_roi(npimg, ratio_x, ratio_y) rois.append(roi) infos.append((ratio_x, ratio_y, base_scale_w, base_scale_h)) return rois, infos elif isinstance(scale, tuple) and len(scale) == 3: # scaling with ROI : (want_x, want_y, scale_ratio) base_scale = get_base_scale(scale[2], img_w, img_h) npimg = cv2.resize(npimg, dsize=None, fx=base_scale, fy=base_scale) ratio_w = self.target_size[0] / float(npimg.shape[1]) ratio_h = self.target_size[1] / float(npimg.shape[0]) want_x, want_y = scale[:2] ratio_x = want_x - ratio_w / 2. ratio_y = want_y - ratio_h / 2. ratio_x = max(ratio_x, 0.0) ratio_y = max(ratio_y, 0.0) if ratio_x + ratio_w > 1.0: ratio_x = 1. - ratio_w if ratio_y + ratio_h > 1.0: ratio_y = 1. - ratio_h roi = self._crop_roi(npimg, ratio_x, ratio_y) return [roi], [(ratio_x, ratio_y, ratio_w, ratio_h)] def _crop_roi(self, npimg, ratio_x, ratio_y): target_w, target_h = self.target_size h, w = npimg.shape[:2] x = max(int(w*ratio_x-.5), 0) y = max(int(h*ratio_y-.5), 0) cropped = npimg[y:y+target_h, x:x+target_w] cropped_h, cropped_w = cropped.shape[:2] if cropped_w < target_w or cropped_h < target_h: npblank = np.zeros((self.target_size[1], self.target_size[0], 3), dtype=np.uint8) copy_x, copy_y = (target_w - cropped_w) // 2, (target_h - cropped_h) // 2 npblank[copy_y:copy_y+cropped_h, copy_x:copy_x+cropped_w] = cropped else: return cropped def inference(self, npimg, scales=None): if npimg is None: raise Exception('The image is not valid. Please check your image exists.') if not isinstance(scales, list): scales = [None] if self.tensor_image.dtype == tf.quint8: # quantize input image npimg = TfPoseEstimator._quantize_img(npimg) pass rois = [] infos = [] for scale in scales: roi, info = self._get_scaled_img(npimg, scale) # for dubug... # print(roi[0].shape) # cv2.imshow('a', roi[0]) # cv2.waitKey() rois.extend(roi) infos.extend(info) logger.debug('inference+') output = self.persistent_sess.run(self.tensor_output, feed_dict={self.tensor_image: rois}) heatMats = output[:, :, :, :19] pafMats = output[:, :, :, 19:] logger.debug('inference-') output_h, output_w = output.shape[1:3] max_ratio_w = max_ratio_h = 10000.0 for info in infos: max_ratio_w = min(max_ratio_w, info[2]) max_ratio_h = min(max_ratio_h, info[3]) mat_w, mat_h = int(output_w/max_ratio_w), int(output_h/max_ratio_h) resized_heatMat = np.zeros((mat_h, mat_w, 19), dtype=np.float32) resized_pafMat = np.zeros((mat_h, mat_w, 38), dtype=np.float32) resized_cntMat = np.zeros((mat_h, mat_w, 1), dtype=np.float32) resized_cntMat += 1e-12 for heatMat, pafMat, info in zip(heatMats, pafMats, infos): w, h = int(info[2]*mat_w), int(info[3]*mat_h) heatMat = cv2.resize(heatMat, (w, h)) pafMat = cv2.resize(pafMat, (w, h)) x, y = int(info[0] * mat_w), int(info[1] * mat_h) if TfPoseEstimator.ENSEMBLE == 'average': # average resized_heatMat[max(0, y):y + h, max(0, x):x + w, :] += heatMat[max(0, -y):, max(0, -x):, :] resized_pafMat[max(0,y):y+h, max(0, x):x+w, :] += pafMat[max(0, -y):, max(0, -x):, :] resized_cntMat[max(0,y):y+h, max(0, x):x+w, :] += 1 else: # add up resized_heatMat[max(0, y):y + h, max(0, x):x + w, :] = np.maximum(resized_heatMat[max(0, y):y + h, max(0, x):x + w, :], heatMat[max(0, -y):, max(0, -x):, :]) resized_pafMat[max(0,y):y+h, max(0, x):x+w, :] += pafMat[max(0, -y):, max(0, -x):, :] resized_cntMat[max(0, y):y + h, max(0, x):x + w, :] += 1 if TfPoseEstimator.ENSEMBLE == 'average': self.heatMat = resized_heatMat / resized_cntMat self.pafMat = resized_pafMat / resized_cntMat else: self.heatMat = resized_heatMat self.pafMat = resized_pafMat / (np.log(resized_cntMat) + 1) humans = PoseEstimator.estimate(self.heatMat, self.pafMat) return humans
[ "anuj.khandelwal@quantela.com" ]
anuj.khandelwal@quantela.com
510b99d849b64f9db7ba0753063b53024e27520a
1a8dea7c14d807413d4e2ab38e72df78138778b3
/ao3_downloader/gui.py
595d76ec0b312eb77bd718e94293da55ab8da021
[]
no_license
ivywong/ao3-downloader
aa95f605b4c3a5bac5fbfe66bdc610108b201dac
46981482103d146818094393946ed5a3f64ad6cb
refs/heads/master
2022-04-08T03:42:40.906296
2020-02-27T10:20:01
2020-02-27T10:20:01
217,447,252
0
0
null
null
null
null
UTF-8
Python
false
false
2,314
py
import PySimpleGUI as sg import pathlib import sys from multiprocessing import Process import downloader # hacky debug window for showing progress print = sg.Print downloader.print = sg.Print class Gui(): def __init__(self): sg.theme('SystemDefault') # Add a touch of color user_home = str(pathlib.Path.home()) # All the stuff inside your window. layout = [ [sg.Text('Ao3 Download URL', size=(20, 1)), sg.InputText('https://archiveofourown.org/series/XXXXXX')], [sg.Text('Download Destination', size=(20,1)), sg.InputText(user_home), sg.FolderBrowse(initial_folder=user_home)], [sg.Text('File format', size=(20, 1)), sg.Combo(['azw3', 'mobi', 'epub', 'pdf', 'html'], default_value='epub')], # [sg.Text('Output:')], # [sg.Output(size=(88, 20), key='Output')], [sg.Button('Download'), sg.Button('Cancel')] ] # Create the Window self.window = sg.Window('AO3 Downloader', layout) def start_download(series_url, download_path, file_format): proc = Process(target=downloader.download_series, args=(series_url, download_path, file_format)) proc.start() proc.join() if __name__ == '__main__': gui = Gui() # Event Loop to process "events" and get the "values" of the inputs while True: event, values = gui.window.read() if event in (None, 'Cancel'): # if user closes window or clicks cancel break gui.window['Browse'].update(disabled=True) gui.window['Download'].update(disabled=True) print('You entered ', values) series_url = values[0] download_path = pathlib.Path(values[1]) file_format = values[2] print("Series URL: {}".format(series_url)) print("Download destination: {}".format(download_path)) print("File format: {}".format(file_format)) if series_url and download_path: try: downloader.download_series(series_url, download_path, file_format) except ValueError as e: print(e) sys.exit(1) print("done.") gui.window['Browse'].update(disabled=False) gui.window['Download'].update(disabled=False) gui.window.close()
[ "ivy.wong022@gmail.com" ]
ivy.wong022@gmail.com
b169441fb11c3aeb41ab3908e6be615f9254a595
14a5610f114b87485233b90f393f73ab377e0edb
/cart/.~c9_invoke_MERYI.py
f4af78caec2edbcd912fb47fafcbd685e9f6c2be
[]
no_license
Code-Institute-Submissions/ves-weather-app-1
8a15eb3fa2d54fdc371a971b66b03d942e322b01
77ae1eca6b7c9d0da8a8881bd66f3bb94815e686
refs/heads/master
2022-11-10T20:59:53.377370
2020-07-01T23:55:34
2020-07-01T23:55:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from django.shortcuts import render from .models import Cart def cart_home(request): cart_obj, new_obj = Cart.objects.new_or_get(request) products = cart_obj.products.all() return render(request, "cart/cart.html", {})
[ "ubuntu@ip-172-31-83-24.ec2.internal" ]
ubuntu@ip-172-31-83-24.ec2.internal
80304d1407e829f6971a6388dcbebcba61816075
4664e47fda25736687d8ab958356fcaa9447f139
/techa/momentum.py
c985d822a368d45b9aee6284233b2a356462d6b3
[ "Unlicense" ]
permissive
kkc-krish/techa
eb67d0ecf41ca3020d4a91676b852a827a6513ba
518f90805b0728466836993b88e820bc8b0405b1
refs/heads/master
2020-12-13T18:17:53.692915
2019-08-23T04:14:26
2019-08-23T04:14:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,981
py
# -*- coding: utf-8 -*- """ Momentum Indicators """ import pandas as pd from finta import TA from talib.abstract import Function from overlap import MA from volatility import ATR __all__ = ['ADX', 'ADXR', 'APO', 'AROON', 'AROONOSC', 'ATR', 'BASP', 'BASPN', 'BOP', 'CCI', 'CFI', 'CMO', 'COPP', 'DX', 'EBBP', 'EFI', 'EMV', 'Function', 'IFT_RSI', 'IMI', 'KST', 'MA', 'MACD', 'MACDEXT', 'MACDFIX', 'MFI', 'MI', 'MINUS_DI', 'MINUS_DM', 'MOM', 'PLUS_DI', 'PLUS_DM', 'PPO', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'RSI', 'STOCH', 'STOCHD', 'STOCHF', 'STOCHRSI', 'TA', 'TRIX', 'TSI', 'ULTOSC', 'UO', 'VZO', 'WILLR', 'WTO'] def MI(data, period=9): """ Mass Index MI uses the high-low range to identify trend reversals based on range expansions. In this sense, the Mass Index is a volatility indicator that does not have a directional bias. Instead, the Mass Index identifies range bulges that can foreshadow a reversal of the current trend. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ return TA.MI(data, period=period) def COPP(data): """ Coppock Curve COPP is a momentum indicator, it signals buying opportunities when the indicator moved from negative territory to positive territory. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :return pd.Series: with indicator data calculation results """ return TA.COPP(data) def VZO(data, period=14): """ VZO VZO uses price, previous price and moving averages to compute its oscillating value. It is a leading indicator that calculates buy and sell signals based on oversold / overbought conditions. Oscillations between the 5% and 40% levels mark a bullish trend zone, while oscillations between -40% and 5% mark a bearish trend zone. Meanwhile, readings above 40% signal an overbought condition, while readings above 60% signal an extremely overbought condition. Alternatively, readings below -40% indicate an oversold condition, which becomes extremely oversold below -60%. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ return TA.VZO(data, period) def KST(data, r1=10, r2=15, r3=20, r4=30): """ Know Sure Thing KST is a momentum oscillator based on the smoothed rate-of-change for four different time frames. KST measures price momentum for four different price cycles. It can be used just like any momentum oscillator. Chartists can look for divergences, overbought/oversold readings, signal line crossovers and center-line crossovers. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int r1: period used at first ROC calculation :param int r2: period used at second ROC calculation :param int r3: period used at third ROC calculation :param int r4: period used at last ROC calculation :return pd.Series: with indicator data calculation results """ return TA.KST(data, r1, r2, r3, r4) def TSI(data, long=25, short=13, signal=13): """ True Strength Index TSI is a momentum oscillator based on a double smoothing of price changes. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int long: long period used for indicator calculation :param int short: short period used for indicator calculation :param int signal: signal period used for indicator calculation :return pd.Series: with indicator data calculation results """ return TA.TSI(data, long, short, signal) def EFI(data, period=13): """ Elder Force Index EFI is an indicator that uses price and volume to assess the power behind a move or identify possible turning points. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ return TA.EFI(data, period=period) def IFT_RSI(data, rsi_period=14, wma_period=9): """ Modified Inverse Fisher Transform applied on RSI. Suggested method to use any IFT indicator is to buy when the indicator crosses over –0.5 or crosses over +0.5 if it has not previously crossed over –0.5 and to sell short when the indicators crosses under +0.5 or crosses under –0.5 if it has not previously crossed under +0.5. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int rsi_period: pandas DataFrame with open, high, low, close data :param int wma_period: pandas DataFrame with open, high, low, close data :return pd.Series: with indicator data calculation results """ return TA.IFT_RSI(data, rsi_period, wma_period) def BASP(data, period=40): """ Buy and Sell Pressure BASP indicator serves to identify buying and selling pressure. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ return TA.BASP(data, period) def BASPN(data, period=40): """ Buy and Sell Pressure Normalized :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ return TA.BASPN(data, period) def UO(data): """ Ultimate Oscillator UO is a momentum oscillator designed to capture momentum across three different time frames. The multiple time frame objective seeks to avoid the pitfalls of other oscillators. Many momentum oscillators surge at the beginning of a strong advance and then form bearish divergence as the advance continues. This is because they are stuck with one time frame. The Ultimate Oscillator attempts to correct this fault by incorporating longer time frames into the basic formula. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :return pd.Series: with indicator data calculation results """ return TA.UO(data) def CFI(data): """ Cumulative Force Index. Adopted from Elder's Force Index (EFI). :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :return pd.Series: with indicator data calculation results """ return TA.CFI(data) def EBBP(data): """ Bull power and bear power by Dr. Alexander Elder EBBP show where today’s high and low lie relative to the a 13-day EMA :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :return pd.Series: with indicator data calculation results """ return TA.EBBP(data) def EMV(data, period=14): """ Ease of Movement EMV is a volume-based oscillator that fluctuates above and below the zero line. As its name implies, it is designed to measure the "ease" of price movement. Prices are advancing with relative ease when the oscillator is in positive territory. Conversely, prices are declining with relative ease when the oscillator is in negative territory. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return:pd.Series: with indicator data calculation results """ return TA.EMV(data, period) def WTO(data, channel_length=10, average_length=21): """ Wave Trend Oscillator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int channel_length: channel length value :param int average_length: average length value :return pd.Series: with indicator data calculation results """ return TA.WTO(data, channel_length, average_length) def STOCHD(data, period=3): """ Stochastic Oscillator %D STOCH %D is a 3 period simple moving average of %K. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ return TA.STOCHD(data, period) def ADX(data, period=14): """ ADX ADX is 100 * smoothed moving average of absolute value (DMI +/-) divided by (DMI+ + DMI-). ADX does not indicate trend direction or momentum, only trend strength. Generally, ADX readings below 20 indicate trend weakness, and readings above 40 indicate trend strength. An extremely strong trend is indicated by readings above 50 :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ temp_df = pd.DataFrame() temp_df['up_move'] = data['high'].diff() temp_df['down_move'] = data['low'].diff() positive_dm = [] negative_dm = [] for row in temp_df.itertuples(): if row.up_move > row.down_move and row.up_move > 0: positive_dm.append(row.up_move) else: positive_dm.append(0) if row.down_move > row.up_move and row.down_move > 0: negative_dm.append(row.down_move) else: negative_dm.append(0) temp_df['positive_dm'] = positive_dm temp_df['negative_dm'] = negative_dm atr = ATR(data, period=period * 6) dir_plus = pd.Series(100 * (temp_df['positive_dm'] / atr).ewm(span=period, min_periods=period - 1).mean()) dir_minus = pd.Series(100 * (temp_df['negative_dm'] / atr).ewm(span=period, min_periods=period - 1).mean()) return pd.concat([dir_plus, dir_minus]) # fn = Function('ADX') # return fn(data, period) def ADXR(data, period=14): """ Average Directional Movement Index Rating :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('ADXR') return fn(data, period) def IMI(data): """ Inter-day Momentum Index source: http://www.fmlabs.com/reference/default.htm?url=IMI.htm """ imi_list = [] up_sum = .0 down_sum = .0 i = 0 while i < len(data['close']): if data['close'][i] > data['open'][i]: up_sum = up_sum + (data['close'][i] - data['open'][i]) else: down_sum = down_sum + (data['open'][i] - data['close'][i]) imi = 100 * (up_sum / (up_sum + down_sum)) imi_list.append(imi) i += 1 return imi_list def APO(data, fast_period=12, slow_period=26, ma_type=0, price='close'): """ Absolute Price Oscillator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int fast_period: fast period used for indicator calculation :param int slow_period: slow period used for indicator calculation :param int ma_type: moving average type (0 simple, 1 exponential) :param str price: column used for indicator calculation (default = "close") :return pd.Series: with indicator data calculation results """ apo_list = [] i = 0 while i < len(data[price]): if i + 1 < slow_period: apo = float('NaN') else: start_fast = i + 1 - fast_period end = i + 1 sma_fast = MA(data[price][start_fast:end], period=fast_period, ma_type=ma_type) start_slow = i + 1 - slow_period end = i + 1 sma_slow = MA(data[price][start_slow:end], period=slow_period, ma_type=ma_type) apo = sma_slow - sma_fast # apo *= -1 apo_list.append(apo) i += 1 return pd.Series(apo_list, name='APO') def AROON(data, period=14): """ Aroon indicator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: up and down indicators from data calculation """ fn = Function('AROON') return fn(data, period) def AROONOSC(data, period=14): """ Aroon Oscillator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('AROONOSC') return fn(data, period) def BOP(data): """ Balance of Power Indicator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :return pd.Series: with indicator data calculation results """ fn = Function('BOP') return fn(data) def CCI(data, period=14): """ Commodity Index Channel CCI is a versatile indicator that can be used to identify a new trend or warn of extreme conditions. CCI measures the current price level relative to an average price level over a given period of time. The CCI typically oscillates above and below a zero line. Normal oscillations will occur within the range of +100 and −100. Readings above +100 imply an overbought condition, while readings below −100 imply an oversold condition. As with other overbought/oversold indicators, this means that there is a large probability that the price will correct to more representative levels. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('CCI') return fn(data, period) def CMO(data, period=14): """ Chaikin Momentum Oscillator CMO is an oscillator that measures the accumulation/distribution line of the moving average convergence divergence (MACD). The Chaikin oscillator is calculated by subtracting a 10-day exponential moving average (EMA) of the ADL from a three-day EMA of the ADL, and highlights the momentum implied by the ADL. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('CMO') return fn(data, period) def DX(data, period=14): """ Directional Movement Index :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('DX') return fn(data, period) def MACD(data, slow_period=10, fast_period=21, signal=9, price='close'): """ Moving Average Convergence Divergence The MACD Line oscillates above and below the zero line, which is also known as the center-line. These crossovers signal that the 12-day EMA has crossed the 26-day EMA. The direction, of course, depends on the direction of the moving average cross. Positive MACD indicates that the 12-day EMA is above the 26-day EMA. Positive values increase as the shorter EMA diverges further from the longer EMA. This means upside momentum is increasing. Negative MACD values indicates that the 12-day EMA is below the 26-day EMA. Negative values increase as the shorter EMA diverges further below the longer EMA. This means downside momentum is increasing. Signal line crossovers are the most common MACD signals. The signal line is a 9-day EMA of the MACD Line. As a moving average of the indicator, it trails the MACD and makes it easier to spot MACD turns. A bullish crossover occurs when the MACD turns up and crosses above the signal line. A bearish crossover occurs when the MACD turns down and crosses below the signal line. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int slow_period: slow period used for indicator calculation :param int fast_period: fast period used for indicator calculation :param int signal: period used for signal calculation :param str price: column used for indicator calculation (default = "close") :return pd.Series: with indicator data calculation results """ ema_fast = pd.Series(data[price].ewm(ignore_na=False, min_periods=fast_period - 1, span=fast_period).mean(), index=data.index) ema_slow = pd.Series(data[price].ewm(ignore_na=False, min_periods=slow_period - 1, span=slow_period).mean(), index=data.index) macd_series = pd.Series(ema_fast - ema_slow, index=data.index, name='macd') macd_signal_series = macd_series.ewm(ignore_na=False, span=signal).mean() macd_signal_series = pd.Series(macd_signal_series, index=data.index, name='macd_signal') macd_df = pd.concat([macd_signal_series, macd_series], axis=1) return pd.DataFrame(macd_df) def MACDEXT(data, fast_period=12, fast_ma_type=0, slow_period=26, slow_ma_type=0, signal_period=9, signal_ma_type=0): """ Moving Average Convergence Divergence Extended :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int fast_period: fast period used for indicator calculation :param int fast_ma_type: fast moving average type (0 simple, 1 exponential) :param int slow_period: slow period used for indicator calculation :param int slow_ma_type: slow moving average type (0 simple, 1 exponential) :param int signal_period: period used for signal calculation :param int signal_ma_type: signal moving average type (0 simple, 1 exponential) :return pd.Series: with indicator data calculation results with indicator data calculation results """ fn = Function('MACDEXT') return fn(data, fastperiod=fast_period, fastmatype=fast_ma_type, slowperiod=slow_period, slowmatype=slow_ma_type, signalperiod=signal_period, signalmatype=signal_ma_type) def MACDFIX(data, signal_period=9): """ Moving Average Convergence/Divergence Fix 12/26 :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int signal_period: period used for signal calculation :return pd.Series: with indicator data calculation results """ fn = Function('MACDFIX') return fn(data, signalperiod=signal_period) def MFI(data, period=14): """ Money Flow Indicator MFI is a momentum indicator that measures the inflow and outflow of money into a security over a specific period of time. MFI can be understood as RSI adjusted for volume. The money flow indicator is one of the more reliable indicators of overbought and oversold conditions, perhaps partly because it uses the higher readings of 80 and 20 as compared to the RSI's overbought/oversold readings of 70 and 30. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('MFI') return fn(data, period) def MINUS_DI(data, period=14): """ Minus Directional indicator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('MINUS_DI') return fn(data, period) def MINUS_DM(data, period=14): """ Minus Directional Movement indicator DM is a valuable tool for assessing price direction and strength. This indicator was created in 1978 by J. Welles Wilder, who also created the popular relative strength index. DMI tells you when to be long or short. It is especially useful for trend trading strategies because it differentiates between strong and weak trends, allowing the trader to enter only the strongest trends. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('MINUS_DM') return fn(data, period) def MOM(data, period=9): """ Momentum Indicator MOM is measured by continually taking price differences for a fixed time interval. To construct a 10-day momentum line, simply subtract the closing price 10 days ago from the last closing price. This positive or negative value is then plotted around a zero line. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('MOM') return fn(data, period) def PLUS_DI(data, period=14): """ Plus Directional Index indicator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('PLUS_DI') return fn(data, period) def PLUS_DM(data, period=14): """ Plus Directional Movement indicator DM is a valuable tool for assessing price direction and strength. This indicator was created in 1978 by J. Welles Wilder, who also created the popular relative strength index. DMI tells you when to be long or short. It is especially useful for trend trading strategies because it differentiates between strong and weak trends, allowing the trader to enter only the strongest trends. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('PLUS_DM') return fn(data, period) def PPO(data, fast_period=12, slow_period=26, ma_type=0): """ Percentage Price Oscillator :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int fast_period: fast period used for indicator calculation :param int slow_period: slow period used for indicator calculation :param int ma_type: moving average type (0 simple, 1 exponential) :return pd.Series: with indicator data calculation results """ fn = Function('PPO') return fn(data, fastperiod=fast_period, slowperiod=slow_period, matype=ma_type) def ROC(data, period=10): """ Rate of Change ROC is a pure momentum oscillator that measures the percent change in price from one period to the next. The ROC calculation compares the current price with the price “n” periods ago. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('ROC') return fn(data, timeperiod=period) def ROCP(data, period=10): """ Rate of Change :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('ROCP') return fn(data, period) def ROCR(data, period=10): """ Rate of Change :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('ROCR') return fn(data, period) def ROCR100(data, period=10): """ Rate of Change as 100 percentage :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('ROCR100') return fn(data, period) def RSI(data, period=14, price='close'): """ Relative Strength Index RSI is a momentum oscillator that measures the speed and change of price movements. RSI oscillates between zero and 100. Traditionally, and according to Wilder, RSI is considered overbought when above 70 and oversold when below 30. Signals can also be generated by looking for divergences, failure swings and center-line crossovers. RSI can also be used to identify the general trend. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation period used for indicator calculation :param str price: column used for indicator calculation (default = "close") :return pd.Series: with indicator data calculation results """ rsi_series = pd.DataFrame(index=data.index) gain = [0] loss = [0] for row, shifted_row in zip(data[price], data[price].shift(-1)): if row - shifted_row > 0: gain.append(row - shifted_row) loss.append(0) elif row - shifted_row < 0: gain.append(0) loss.append(abs(row - shifted_row)) elif row - shifted_row == 0: gain.append(0) loss.append(0) rsi_series['gain'] = gain rsi_series['loss'] = loss avg_gain = rsi_series['gain'].rolling(window=period).mean() avg_loss = rsi_series['loss'].rolling(window=period).mean() relative_strength = avg_gain / avg_loss rsi_ = 100 - (100 / (1 + relative_strength)) return pd.Series(rsi_, index=data.index, name='RSI') # fn = Function('RSI') # return fn(data, period) def STOCH(data, fastk_period=5, slowk_period=3, slowk_ma_type=0, slowd_period=3, slowd_ma_type=0): """ Stochastic Oscillator The Stochastic Oscillator is a momentum indicator comparing the closing price of a security to the range of it's prices over a certain period of time. The sensitivity of the oscillator to market movements is reducible by adjusting that time period or by taking a moving average of the result. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int fastk_period: period used for K fast indicator calculation :param int slowk_period: period used for K slow indicator calculation :param int slowk_ma_type: slow K moving average type (0 simple, 1 exponential) :param int slowd_period: period used for D slow indicator calculation :param int slowd_ma_type: slow D moving average type (0 simple, 1 exponential) :return pd.Series: with indicator data calculation results """ fn = Function('STOCH') return fn(data, fastk_period=fastk_period, slowk_period=slowk_period, slowk_matype=slowk_ma_type, slowd_matype=slowd_ma_type, slowd_period=slowd_period) def STOCHF(data, fastk_period=5, fastd_period=3, fastd_ma_type=0): """ Stochastic %F :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int fastk_period: period used for K fast indicator calculation :param int fastd_period: period used for D fast indicator calculation :param int fastd_ma_type: fast D moving average type (0 simple, 1 exponential) :return pd.Series: with indicator data calculation results """ fn = Function('STOCHF') return fn(data, fastk_period=fastk_period, fastd_period=fastd_period, fastd_matype=fastd_ma_type) def STOCHRSI(data, period=14, fastk_period=5, fastd_period=3, fastd_ma_type=0): """ Stochastic RSI :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: RSI period :param int fastk_period: period used for K fast indicator calculation :param int fastd_period: period used for D fast indicator calculation :param int fastd_ma_type: fast D moving average type (0 simple, 1 exponential) :return pd.Series: with indicator data calculation results """ fn = Function('STOCHRSI') return fn(data, period, fastk_period=fastk_period, fastd_period=fastd_period, fastd_matype=fastd_ma_type) def TRIX(data, period=30): """ Triple Exponential Moving Average Oscillator The TRIX is a momentum indicator that oscillates around zero. It displays the percentage rate of change between two triple smoothed exponential moving averages. To calculate TRIX we calculate triple smoothed EMA3 of n periods and then subtracts previous period EMA3 value from last EMA3 value and divide the result with yesterdays EMA3 value. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('TRIX') return fn(data, period) def ULTOSC(data, period1=7, period2=14, period3=28): """ Ultimate Oscillator UO or ULTOSC is a momentum oscillator designed to capture momentum across three different time frames. The multiple time frame objective seeks to avoid the pitfalls of other oscillators. Many momentum oscillators surge at the beginning of a strong advance and then form bearish divergence as the advance continues. This is because they are stuck with one time frame. The Ultimate Oscillator attempts to correct this fault by incorporating longer time frames into the basic formula. :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period1: first period used for indicator calculation period used for indicator calculation :param int period2: second period used for indicator calculation period used for indicator calculation :param int period3: third period used for indicator calculation period used for indicator calculation :return pd.Series: with indicator data calculation results """ fn = Function('ULTOSC') return fn(data, timeperiod1=period1, timeperiod2=period2, timeperiod3=period3) def WILLR(data, period=14): """ Williams %R Williams %R, or just %R, is a technical analysis oscillator showing the current closing price in relation to the high and low of the past N days (for a given N). It was developed by a publisher and promoter of trading materials, Larry Williams. It's purpose is to tell whether a stock or commodity market is trading near the high or the low, or somewhere in between, of its recent trading range. The oscillator is on a negative scale, from −100 (lowest) up to 0 (highest). :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation period used for indicator calculation :return pd.Series: with indicator data calculation results """ willr_list = [] i = 0 close, high, low = data['close'], data['high'], data['low'] while i < len(close): if i + 1 < period: willr = float(' NaN') else: start = i + 1 - period end = i + 1 willr = (max(high[start:end]) - close[i]) / (max(high[start:end]) - min(low[start:end])) * 100 # willr *= -1 willr_list.append(willr) i += 1 return willr_list if __name__ == '__main__': print(str(getattr(__import__('momentum'), 'TRIX')))
[ "danielumpierrezdelrio@gmail.com" ]
danielumpierrezdelrio@gmail.com
9e970d6b5a4196876c2d30a1e3a820a778e6aabc
4fe0d37eb4810d3aa5fca50a60bd8f57c2558673
/build/ros_arduino_bridge/ros_arduino_python/catkin_generated/pkg.develspace.context.pc.py
cfcd6131b4b1dad06511bc5b36495eba4e78533a
[]
no_license
jim1949/gpsbot_ws
f0aa961472d65633f1d385426e6e0fd489a8e104
0dfa36223620ae226f6a40735179b6cae265693d
refs/heads/master
2021-05-07T05:55:08.584882
2017-11-22T08:45:06
2017-11-22T08:45:06
103,118,141
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "ros_arduino_python" PROJECT_SPACE_DIR = "/home/relaybot/gpsbot_ws/devel" PROJECT_VERSION = "0.2.0"
[ "jim1949@163.com" ]
jim1949@163.com
aea5124f9f2718dae828e8f08e419c0c88fa27e0
1d60c5a7b8ce6277bff514e376f79848f706344c
/Data Analyst with Python - Career Track/01. Introduction to Data Science in Python/04. Different Types of Plots/05. Modifying histograms.py
1ce32da1b97d613df25adfdb3b264ed5dbd7b8c8
[]
no_license
DidiMilikina/DataCamp
338c6e6d3b4f5b6c541c1aba155a36e9ee24949d
3bf2cf3c1430190a7f8e54efda7d50a5fd66f244
refs/heads/master
2020-12-15T13:16:54.178967
2020-05-06T17:30:54
2020-05-06T17:30:54
235,113,616
4
3
null
null
null
null
UTF-8
Python
false
false
764
py
''' Modifying histograms Let's explore how changes to keyword parameters in a histogram can change the output. Recall that: range sets the minimum and maximum datapoints that we will include in our histogram. bins sets the number of points in our histogram. We'll be exploring the weights of various puppies from the DataFrame puppies. matplotlib has been loaded under the alias plt. Instructions 1/3 35 XP Create a histogram of the column weight from the DataFrame puppies. Change the number of bins to 50. Change the range to start at 5 and end at 35. ''' SOLUTION # Change the range to start at 5 and end at 35 plt.hist(puppies.weight, range=(5, 35)) # Add labels plt.xlabel('Puppy Weight (lbs)') plt.ylabel('Number of Puppies') # Display plt.show()
[ "didimilikina8@gmail.com" ]
didimilikina8@gmail.com
857a4621182c97e535493ea4340e8ca458dd3fdf
39ce19349f32f62cdd87cbc86b89dee0fe145b90
/namespace/graph/comp_printer.py
06da72fc07b68d2427149d52832bbd133eaf683c
[ "MIT" ]
permissive
justjazz903/TFTCompEnumerator
cb01e5430061fb2b56447ccbda8af3c132cadf5b
a94d257c9fe4b670bcc17dc646c67ae9c113f32d
refs/heads/main
2023-09-01T02:15:42.885804
2021-10-22T02:47:59
2021-10-22T02:47:59
401,531,492
0
0
null
null
null
null
UTF-8
Python
false
false
1,291
py
import json import numpy as np from namespace.graph.coder import bit_code_to_comp_id from constant import CONSTANT def get_comp_matrix(comp_id, champion_matrix, trait_matrix): cost = champion_matrix[comp_id][:,-1] comp_trait = np.sum(champion_matrix[comp_id], axis=0)[:-1] comp_trait = comp_trait * trait_matrix.T trait = np.zeros((trait_matrix.shape[0]), dtype=np.int8) for trait_num in range(comp_trait.shape[0]): if trait_num == 0: continue trait += np.where(comp_trait[trait_num] >= trait_num, 1, 0) return trait, cost def print_comp(bit_code, champion_matrix, trait_matrix): with open(CONSTANT['FILE']['JSON'], 'r') as f: json_file = json.load(f) comp_id = bit_code_to_comp_id(bit_code, len(json_file['champions'])) trait, cost = get_comp_matrix(comp_id, champion_matrix, trait_matrix) champ_names = list() for champ_id in comp_id: champ_names.append(json_file['champions'][champ_id]['name']) trait_names = list() for trait_id in range(len(trait)): if trait[trait_id] != 0: trait_names.append(json_file['traits'][trait_id]['name'] + ': ' + str(json_file['traits'][trait_id]['level'][trait[trait_id] - 1])) return champ_names, trait_names, round(np.mean(cost), 2)
[ "31698772+justjazz903@users.noreply.github.com" ]
31698772+justjazz903@users.noreply.github.com
4642e5f6dd8a3f91769fb2903013e098207ac562
5a22ff4bf71dde6ade4ddbe9d688c8a6370baa80
/src/_ctype_c.py
d588b7f46643038cab0bcac448761ae8c32ffa3f
[]
no_license
sorenmulli/pyspeed
58ac7cb141954c1f8823ebef2089718a3d314117
1a51615713e32a2f5aac28fc1dc7b84ec93a4e96
refs/heads/master
2022-12-31T22:19:18.822724
2020-10-24T17:17:39
2020-10-24T19:07:13
288,703,022
0
0
null
null
null
null
UTF-8
Python
false
false
209
py
import sys, os from ctypes import CDLL, c_double so_file = os.path.join( os.path.dirname( sys.argv[0] ), 'src', 'c_src', 'lib.so' ) c_lib = CDLL(so_file) rootloop = c_lib.rootloop rootloop.restype = c_double
[ "swholm@protonmail.com" ]
swholm@protonmail.com
823ffb55f2f8f86439af50c36e239d023bb8afd2
e7196fd6e0fc1cab8ffc0417fca30947f673f774
/Remember/config.py
3c27d0a99411da95ef55720640a4ede50b3465de
[ "Apache-2.0" ]
permissive
maxis1314/pyutils
6298dc054bd9585e33179755b10e7723713ee053
7e0666c650209155b3da186d09c54cf14825df1e
refs/heads/master
2020-12-23T20:30:09.406487
2017-07-06T10:11:36
2017-07-06T10:11:36
92,569,049
2
0
null
null
null
null
UTF-8
Python
false
false
302
py
''' this is the config file of Remember ''' import os BASE_DIR = os.path.abspath(os.path.dirname(__file__)) DB_BASE_DIR = os.path.join(BASE_DIR, "db") SQLALCHEMY_DATABASE_URI = "sqlite:///" + os.path.join(DB_BASE_DIR, "app.db") SQLALCHEMY_MIGRATE_REPO = os.path.join(DB_BASE_DIR, "db_repository")
[ "maxis1314@163.com" ]
maxis1314@163.com
bc46d8ec26ee147ba88221d428f5a54885ec59e4
e061ab21018ac80573d03ef0c3cba8f448c4b7cc
/backend/alembic/versions/2023_01_05_1144-d4161e384f83_added_messagetreestate_table.py
778808cac77d094c4b4896e12badab8b30fb55dd
[ "Apache-2.0" ]
permissive
LAION-AI/Open-Assistant
8b82c24fac954da421d66c3e90fbae6776ae6280
8c0e1a31bea1542dd39716b1dbbecd46785d9d23
refs/heads/main
2023-08-25T23:33:38.114219
2023-08-22T21:04:33
2023-08-22T21:04:33
577,603,990
34,014
3,206
Apache-2.0
2023-09-11T19:13:48
2022-12-13T05:24:17
Python
UTF-8
Python
false
false
1,899
py
"""added MessageTreeState table Revision ID: d4161e384f83 Revises: 8d269bc4fdbd Create Date: 2023-01-05 11:44:02.630633 """ import sqlalchemy as sa import sqlmodel from alembic import op from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "d4161e384f83" down_revision = "8d269bc4fdbd" branch_labels = None depends_on = None def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.create_table( "message_tree_state", sa.Column("id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False), sa.Column("created_date", sa.DateTime(), server_default=sa.text("CURRENT_TIMESTAMP"), nullable=False), sa.Column("deleted", sa.Boolean(), server_default=sa.text("false"), nullable=False), sa.Column("message_tree_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("state", sqlmodel.sql.sqltypes.AutoString(length=128), nullable=False), sa.Column("goal_tree_size", sa.Integer(), nullable=False), sa.Column("current_num_non_filtered_messages", sa.Integer(), nullable=False), sa.Column("max_depth", sa.Integer(), nullable=False), sa.PrimaryKeyConstraint("id"), ) op.create_index( op.f("ix_message_tree_state_message_tree_id"), "message_tree_state", ["message_tree_id"], unique=False ) op.create_index("ix_message_tree_state_tree_id", "message_tree_state", ["message_tree_id"], unique=True) # ### end Alembic commands ### def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_index("ix_message_tree_state_tree_id", table_name="message_tree_state") op.drop_index(op.f("ix_message_tree_state_message_tree_id"), table_name="message_tree_state") op.drop_table("message_tree_state") # ### end Alembic commands ###
[ "noreply@github.com" ]
LAION-AI.noreply@github.com
84000dc843dc3b9bda62c43a3739cf9e263d6ba1
ecf2fa7f946b631d61c4ae88499976f1749e8b20
/P3B2/lstm_text_synthsis.py
14f673a21753cce27ba6b41c1cf2484ed59e780d
[ "MIT" ]
permissive
tianxiangchen2015/Benchmarks
92cae3059f29ac5860332ccef7d658d0270f98be
93359c5e33aed01fb0bc089198c1b194a452e0c8
refs/heads/master
2021-01-19T01:50:56.284600
2017-03-30T19:37:46
2017-03-30T19:37:46
84,397,274
0
0
null
2017-03-09T04:13:28
2017-03-09T04:13:28
null
UTF-8
Python
false
false
4,115
py
import keras from keras.models import Sequential from keras.layers import Dense, Activation, Dropout from keras.layers import LSTM from keras.optimizers import RMSprop import numpy as np import os import datetime import cPickle class LossHistory( keras.callbacks.Callback ): def on_train_begin( self, logs= {} ): self.losses = [] def on_batch_end( self, batch, logs= {} ): self.losses.append( logs.get( 'loss' ) ) rnn_size = 256 # load data from pickle f = open( 'data.pkl', 'r' ) classes = cPickle.load( f ) chars = cPickle.load( f ) char_indices = cPickle.load( f ) indices_char = cPickle.load( f ) maxlen = cPickle.load( f ) step = cPickle.load( f ) X_ind = cPickle.load( f ) y_ind = cPickle.load( f ) f.close() [ s1, s2 ] = X_ind.shape X = np.zeros( ( s1, s2, len( chars ) ), dtype=np.bool ) y = np.zeros( ( s1, len( chars ) ), dtype=np.bool ) for i in range( s1 ): for t in range( s2 ): X[ i, t, X_ind[ i, t ] ] = 1 y[ i, y_ind[ i ] ] = 1 # build the model: a single LSTM print( 'Build model...' ) model = Sequential() model.add( LSTM( rnn_size, input_shape=( maxlen, len( chars ) ) ) ) model.add( Dense( len( chars ) ) ) model.add( Activation( 'softmax' ) ) optimizer = RMSprop( lr= 0.001 ) model.compile( loss= 'categorical_crossentropy', optimizer= optimizer ) def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) # train the model, output generated text after each iteration min_loss = 1e15 loss_count = 0 for iteration in range(1, 100): print() print('-' * 50) print('Iteration', iteration) history = LossHistory() model.fit( X, y, batch_size= 100, nb_epoch= 1, callbacks= [ history ] ) loss = history.losses[ -1 ] print( loss ) if loss < min_loss: min_loss = loss loss_count = 0 else: loss_count = loss_count + 1 if loss_count > 4: break dirname = str( rnn_size ) + "/" + str( maxlen ) if not os.path.exists( dirname ): os.makedirs( dirname ) # serialize model to JSON model_json = model.to_json() with open( dirname + "/model_" + str( iteration ) + "." + str( round( loss, 6 ) ) + ".json", "w" ) as json_file: json_file.write( model_json ) # serialize weights to HDF5 model.save_weights( dirname + "/model_" + str( iteration ) + "." + str( round( loss, 6 ) ) + ".h5" ) print( "Checkpoint saved." ) outtext = open( dirname + "/example_" + str( iteration ) + "." + str( round( loss, 6 ) ) + ".txt", "w" ) for diversity in [0.2, 0.5, 1.0, 1.2]: outtext.write('----- diversity:' + str( diversity ) + "\n" ) generated = '' seedstr = "Diagnosis" outtext.write('----- Generating with seed: "' + seedstr + '"' + "\n" ) sentence = " " * maxlen # class_index = 0 generated += sentence outtext.write( generated ) for c in seedstr: sentence = sentence[1:] + c x = np.zeros( ( 1, maxlen, len( chars ) ) ) for t, char in enumerate(sentence): x[ 0, t, char_indices[ char ] ] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] generated += c outtext.write( c ) for i in range( 400 ): x = np.zeros( ( 1, maxlen, len( chars ) ) ) for t, char in enumerate(sentence): x[ 0, t, char_indices[ char ] ] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] generated += next_char sentence = sentence[1:] + next_char outtext.write(next_char) outtext.write( "\n" ) outtext.close()
[ "rarvind@arvind2.ornl.gov" ]
rarvind@arvind2.ornl.gov
5b9ce34590b5d06b5110ae260649e03585017ebf
7189f6cdbdf2fe9a374c7aeb59034043edfbca08
/pythonProjects/fileMoverGUI2.0/fileMoverGui.py
689cc4073b2b37614225311f2bcc979f8b9ca5ed
[]
no_license
tayharrison/AcademyProjects
072d42c9b5225c307decdc88e6ff99b619c186b8
22c1d3553384e2acba409d76d369f32f85f78fae
refs/heads/master
2020-06-24T23:16:13.908263
2017-10-24T20:05:40
2017-10-24T20:05:40
96,948,747
0
1
null
null
null
null
UTF-8
Python
false
false
3,157
py
# File Mover GUI # Taylor Harrison # Python 3.6 from tkinter import * from tkinter import messagebox import tkinter as ttk from datetime import * from datetime import timedelta import shutil import os import fileMoverGuiMain import fileMoverGuifunc def load_gui(self): # Create and place the header self.lbl_header = ttk.Label(self.master, bg='LIGHTGOLDENRODYELLOW', font=('Roboto',18,'bold'), text='Transfer Recently Modified Files') self.lbl_header.grid(row=0, column=0, columnspan=5, padx=(25,5), pady=(10,10), sticky=N) # Create and place the labels for the entry text fields self.lbl_transfer_from = ttk.Label(self.master, bg='LIGHTGOLDENRODYELLOW', font=('Roboto',12), text='Transfer from:') self.lbl_transfer_from.grid(row=1, column=0, columnspan=2, padx=(25,0), pady=(10,0), sticky=N+W) self.lbl_transfer_to = ttk.Label(self.master, bg='LIGHTGOLDENRODYELLOW', font=('Roboto',12), text='Transfer to:') self.lbl_transfer_to.grid(row=3, column=0, columnspan=2, padx=(25,0), pady=(10,0), sticky=N+W) # Create and place the entry text fields self.entry_transfer_from = ttk.Entry(self.master, width=50, font=('Arial', 10)) self.entry_transfer_from.grid(row=2, column=0, columnspan=4, padx=(25, 0), pady=(10, 0), sticky=N+W) self.entry_transfer_to = ttk.Entry(self.master, width=50, font=('Arial', 10)) self.entry_transfer_to.grid(row=4, column=0, columnspan=4, padx=(25, 0), pady=(10, 0), sticky=N+W) # Create and place the Browse buttons, that will look for a directory on the user's computer self.btn_browse_from = ttk.Button(self.master, width=10, height=1, bg='LIGHTGOLDENRODYELLOW', text='Browse', command=lambda: fileMoverGuifunc.browse_folder_from(self)) self.btn_browse_from.grid(row=2, column=4, padx=(25, 0), pady=(7, 0), sticky=N+W) self.btn_browse_to = ttk.Button(self.master, width=10, height=1, bg='LIGHTGOLDENRODYELLOW', text='Browse',command=lambda: fileMoverGuifunc.browse_folder_to(self)) self.btn_browse_to.grid(row=4, column=4, padx=(25, 0), pady=(7, 0), sticky=N+W) # Create and place the Run button, that will execute the file check and transfer self.btn_run = ttk.Button(self.master,width=8, height=2, bg='LIGHTGOLDENRODYELLOW', text='Run', command=lambda: fileMoverGuifunc.run_file_transfer(self)) self.btn_run.grid(row=5, column=3, rowspan = 2, padx=(0, 0), pady=(12, 10)) # Create and place label for the last time the file check was run self.lbl_last_run = ttk.Label(self.master, bg='LIGHTGOLDENRODYELLOW', font=('Courier',12), text='Last Run:') self.lbl_last_run.grid(row=5, column=0, columnspan=2, padx=(25,0), pady=(10,0), sticky=N+W) # Create and place the time the last file check was run self.lr_time = StringVar() self.lr_time.set('XX-XX-XXXX XX:XX:XX XX') self.txt_last_run_time = ttk.Label(self.master, bg='LIGHTGOLDENRODYELLOW', font=('Courier',12), width=22, textvariable=self.lr_time) self.txt_last_run_time.grid(row=6, column=0, columnspan=2, padx=(25,0), pady=(0,0), sticky=N+W) if __name__ == "__main__": pass
[ "noreply@github.com" ]
tayharrison.noreply@github.com
5e3ba54958a37cce2e223b5d076283b9591fe10e
c4551a6266e2a92fad6964f5764ebd849a4e3f4d
/runPboc_online.py
0f9ddf609c677851c44167065f2fc702dddf1b63
[]
no_license
xueyizhiyong-UUU/featureEngineerOnline
eaedf1557019053c4041130a81704b18a06922a1
1eb61e911a623910021fc4e71f110e0abab658db
refs/heads/master
2023-08-17T22:09:52.277120
2021-10-27T03:38:04
2021-10-27T03:42:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
389,035
py
# coding:utf-8 import pboc_features from model_handle import * import features_func import bh_data from new_bhData import * from main_score import * import datetime from dateutil.relativedelta import relativedelta from pandas import json_normalize from handle_third import * from joblib import Parallel, delayed, load, dump import sys sys.path.append(r'/home/youzhengjie/WorkHome/generalFunction') # 人行特征 feature = [ "loan_second_by03_classify5_giniimpurity", "loan_second_m24_ncycle_month60_State_num_mean_mean", "loan_rating_worst", "loan_second_hdue1R_month60_to_report_mean_min", "loan_second_by06_month60_Amount_num_mean_mean", "loan_second_by06_ncycle_month60_Amount_num_mean_mean", "age_idcard", "blacn_lac", "business_loan_amount_max", "business_loan_amount_sum", "card_second_m06_maxUsed_vs_sumAmount", "card_second_m12_sumUsed_vs_sumAmount", "CardCount_count", "CardCount_ratio", "clacn_lac", "consume_loan_account_count", "consume_loan_amount_sum_now", "consume_loan_balance_max_now", "consume_loan_planRepayAmount_max_now", "credit_tips_total_count", "creditCardCount_vs_TotalCount", "debit_card_five_years_normal_ratio", "debit_card_lastmonth_normal_balance_avg", "debit_card_lastmonth_normal_planRepayAmount_count", "debit_card_lastmonth_normal_repayedAmount_count", "debit_card_repayment_billday_count", "debit_card_repayment_m1_count", "debit_card_repayment_normal_ratio", "diploma", "first_loan_amount", "first_loan_time_till_now", "firstCreditCardMonth_to_report", "laco03_lacn", "laco06_lac", "lc_month60_Amount_num_mean", "lc_month60_C_count", "lc_month60_m01_C_ratio", "lc_month60_m01_N_ratio", "lc_month60_m01_Null_count", "lc_month60_m03_Amount_num_mean", "lc_month60_m03_N_count", "lc_month60_m03_Null_ratio", "lc_month60_m06_Amount_num_mean", "lc_month60_m06_C_ratio", "lc_month60_m06_N_count", "lc_month60_m06_N_ratio", "lc_month60_m06_Null_ratio", "lc_month60_m06_State_num_mean", "lc_month60_m12_C_count", "lc_month60_m12_C_ratio", "lc_month60_m12_N_count", "lc_month60_m12_N_ratio", "lc_month60_m12_Null_count", "lc_month60_m12_Null_ratio", "lc_month60_m12_State_num_mean", "lc_month60_m24_1_ratio", "lc_month60_m24_Amount_num_mean", "lc_month60_m24_C_count", "lc_month60_m24_N_count", "lc_month60_m24_State_giniimpurity", "lc_month60_m24_State_num_mean", "lc_month60_m36_1_ratio", "lc_month60_m36_Amount_num_mean", "lc_month60_m36_C_count", "lc_month60_m36_N_count", "lc_month60_m36_N_ratio", "lc_month60_m36_Null_count", "lc_month60_m36_Null_ratio", "lc_month60_m36_State_big0_mean", "lc_month60_m36_State_giniimpurity", "lc_month60_m48_C_count", "lc_month60_m48_N_count", "lc_month60_m48_Null_count", "lc_month60_m48_Null_ratio", "lc_month60_m48_State_num_mean", "lc_month60_m60_C_count", "lc_month60_m60_N_count", "lc_month60_m60_Null_count", "lc_month60_N_count", "lc_month60_N_ratio", "lc_month60_Null_count", "lc_month60_State_big0_mean", "liv_36m_cnt", "liveaddr_num", "ln_1m_expiresum", "loan_account_count", "loan_amount_sum_open_03m", "loan_card_amount_count", "loan_card_balance_mean", "loan_card_card_total_amount_ratio", "loan_card_credit_card_ratio", "loan_card_debt_total_amount_ratio", "loan_card_gm06_credit_card_ratio", "loan_card_gm06_other_consumer_ratio", "loan_card_gm06_planRepayAmount_count", "loan_card_gm06_remainingTerms_max", "loan_card_gm12_balance_max", "loan_card_gm12_credit_card_ratio", "loan_card_gm12_finance_lease_ratio", "loan_card_gm12_other_consumer_org_cnt", "loan_card_gm12_other_consumer_ratio", "loan_card_gm12_planRepayAmount_count", "loan_card_gm12_planRepayAmount_max", "loan_card_gm12_planRepayAmount_mean", "loan_card_gm12_remainingTerms_max", "loan_card_gm12_remainingTerms_sum", "loan_card_gm12_RepayedAmount_max", "loan_card_gm12_type_card_ratio", "loan_card_gm12_type_loan_ratio", "loan_card_loan_total_amount_ratio", "loan_card_m01_amount_count", "loan_card_m01_amount_maxCardVsMaxComsum", "loan_card_m01_comsum_amount_max", "loan_card_m01_comsumOrCard_amount_max", "loan_card_m01_operation_loan_ratio", "loan_card_m01_other_loan_ratio", "loan_card_m01_planRepayAmount_count", "loan_card_m01_planRepayAmount_max", "loan_card_m01_planRepayAmount_mean", "loan_card_m01_remainingTerms_max", "loan_card_m01_RepayedAmount_max", "loan_card_m01_RepayedAmount_mean", "loan_card_m01_RepayedAmount_sum", "loan_card_m01_startdata_min_to_report_days", "loan_card_m06_amount_count", "loan_card_m06_other_loan_org_cnt", "loan_card_m06_planRepayAmount_mean", "loan_card_m06_remainingTerms_max", "loan_card_m06_RepayedAmount_max", "loan_card_m06_RepayedAmount_mean", "loan_card_notcycle_avgRepaymentAmount_ratio", "loan_card_now_other_consumer_org_cnt", "loan_card_now_other_loan_count", "loan_card_now_other_loan_org_cnt", "loan_card_now_other_loan_ratio", "loan_card_now_planRepayAmount_max", "loan_card_now_planRepayAmount_mean", "loan_card_now_remainingTerms_sum", "loan_card_now_RepayedAmount_mean", "loan_card_other_consumer_count", "loan_card_other_consumer_org_cnt", "loan_card_other_consumer_ratio", "loan_card_other_loan_org_cnt", "loan_card_planRepayAmount_sum", "loan_card_r_card_ratio", "loan_card_r_finance_lease_ratio", "loan_card_r_guaranty_combine_nhave_count", "loan_card_r_guaranty_combine_nhave_ratio", "loan_card_r_guaranty_credit_no_count", "loan_card_r_guaranty_credit_no_ratio", "loan_card_r_guaranty_pledge_count", "loan_card_r_ncycle_count", "loan_card_r_other_consumer_count", "loan_card_RepayedAmount_count", "loan_card_RepayedAmount_max", "loan_card_RepayedAmount_mean", "loan_card_startdata_min_to_report_days", "loan_card_total_amount_sum", "loan_card_type_loan_count", "loan_card_type_loan_org_cnt", "loan_current_ndue_account_count", "loan_current_ndue_balance_sum", "loan_GrantOrg_CD", "loan_GrantOrg_CD_now", "loan_is_vouch_loanAmount_max", "loan_ndue_account_count", "loan_ndue_account_count_03m", "loan_ndue_account_count_24m", "loan_ndue_amount_sum", "loan_second_as_settle_count", "loan_second_balance_mean", "loan_second_bt_other_loan_ratio", "loan_second_bt_other_person_count", "loan_second_bt_other_person_ratio", "loan_second_businessType_giniimpurity", "loan_second_by03_accountStatus_giniimpurity", "loan_second_by03_balance_min", "loan_second_by03_byDate_to_report_mean", "loan_second_by03_gf_combine_nowarranty_ratio", "loan_second_by03_gf_crdit_count", "loan_second_by03_leftRepayTerms_range", "loan_second_by03_month60_State_countCr_max", "loan_second_by03_month60_State_countNull_mean", "loan_second_by03_month60_State_num_size_sum", "loan_second_by03_month60_to_report_max_range", "loan_second_by03_month60_to_report_mean_range", "loan_second_by03_month60_to_report_min_mean", "loan_second_by03_ncycle_balance_min", "loan_second_by03_ncycle_balance_ratio_mean", "loan_second_by03_ncycle_balance_ratio_range", "loan_second_by03_ncycle_bt_finance_lease_ratio", "loan_second_by03_ncycle_bt_other_loan_ratio", "loan_second_by03_ncycle_gf_crdit_ratio", "loan_second_by03_ncycle_leftRepayTerms_mean", "loan_second_by03_ncycle_month60_State_count2r_max", "loan_second_by03_ncycle_month60_State_count2r_sum", "loan_second_by03_ncycle_month60_State_count3r_max", "loan_second_by03_ncycle_month60_State_count3r_mean", "loan_second_by03_ncycle_month60_State_countC_sum", "loan_second_by03_ncycle_month60_State_countCr_sum", "loan_second_by03_ncycle_month60_State_countN_mean", "loan_second_by03_ncycle_month60_State_countN_sum", "loan_second_by03_ncycle_month60_State_countNullr_range", "loan_second_by03_ncycle_org_commercial_bank_ratio", "loan_second_by03_ncycle_org_consumer_finance_ratio", "loan_second_by03_ncycle_planRepayAmount_mean", "loan_second_by03_ncycle_planRepayAmount_range", "loan_second_by03_ncycle_repayAmt_max", "loan_second_by03_ncycle_repayedAmount_min", "loan_second_by03_ncycle_repayMons_mean", "loan_second_by03_ncycle_repayMons_range", "loan_second_by03_ncycle_repayTerms_mean", "loan_second_by03_ncycle_rf_month_ratio", "loan_second_by03_ncycle_rf_other_ratio", "loan_second_by03_ncycle_startDate_to_report_max", "loan_second_by03_ncycleR_balance_range", "loan_second_by03_ncycleR_month60_State_countN_max", "loan_second_by03_ncycleR_month60_State_countNr_max", "loan_second_by03_ncycleR_month60_State_countNull_max", "loan_second_by03_ncycleR_month60_State_num_size_sum", "loan_second_by03_ncycleR_month60_to_report_mean_sum", "loan_second_by03_ncycleR_startDate_to_report_sum", "loan_second_by03_now_balance_ratio_mean", "loan_second_by03_now_bt_other_person_ratio", "loan_second_by03_now_loanAmount_max", "loan_second_by03_now_loanGrantOrg_giniimpurity", "loan_second_by03_now_month60_State_count2_max", "loan_second_by03_now_month60_State_count2_mean", "loan_second_by03_now_month60_State_count2r_sum", "loan_second_by03_now_month60_State_countNr_range", "loan_second_by03_now_month60_State_countNullr_mean", "loan_second_by03_now_org_consumer_finance_count", "loan_second_by03_now_org_lease_finance_ratio", "loan_second_by03_now_repayTerm_ratio_min", "loan_second_by03_now_rf_month_ratio", "loan_second_by03_now_rf_other_count", "loan_second_by03_now_rt_unknow_count", "loan_second_by03_nowR_balance_range", "loan_second_by03_nowR_bt_other_person_count", "loan_second_by03_nowR_byDate_to_report_sum", "loan_second_by03_nowR_gf_crdit_ratio", "loan_second_by03_nowR_gf_other_ratio", "loan_second_by03_nowR_loanAmount_max", "loan_second_by03_nowR_loanAmount_min", "loan_second_by03_nowR_loanGrantOrg_nunique", "loan_second_by03_nowR_month60_State_countC_mean", "loan_second_by03_nowR_month60_State_countN_mean", "loan_second_by03_nowR_month60_State_countNull_sum", "loan_second_by03_nowR_month60_State_countNullr_max", "loan_second_by03_nowR_month60_State_countNullr_mean", "loan_second_by03_nowR_month60_State_countNullr_range", "loan_second_by03_nowR_month60_State_num_size_max", "loan_second_by03_nowR_month60_State_num_size_range", "loan_second_by03_nowR_month60_to_report_max_mean", "loan_second_by03_nowR_month60_to_report_max_range", "loan_second_by03_nowR_month60_to_report_mean_mean", "loan_second_by03_nowR_month60_to_report_mean_range", "loan_second_by03_nowR_month60_to_report_min_mean", "loan_second_by03_nowR_month60_to_report_min_sum", "loan_second_by03_nowR_org_commercial_bank_ratio", "loan_second_by03_nowR_org_consumer_finance_count", "loan_second_by03_nowR_org_consumer_finance_ratio", "loan_second_by03_nowR_org_micro_loan_count", "loan_second_by03_nowR_planRepayAmount_range", "loan_second_by03_nowR_repayAmt_max", "loan_second_by03_nowR_repayAmt_range", "loan_second_by03_nowR_repayedAmount_range", "loan_second_by03_nowR_repayFrequency_giniimpurity", "loan_second_by03_nowR_repayMons_range", "loan_second_by03_nowR_repayMons_ratio_max", "loan_second_by03_nowR_repayMons_ratio_range", "loan_second_by03_nowR_repayMons_sum", "loan_second_by03_nowR_repayTerms_sum", "loan_second_by03_nowR_rf_other_count", "loan_second_by03_nowR_startDate_to_report_max", "loan_second_by03_nowR_startDate_to_report_mean", "loan_second_by03_org_micro_loan_ratio", "loan_second_by03_org_other_ratio", "loan_second_by03_planRepayAmount_max", "loan_second_by03_planRepayAmount_mean", "loan_second_by03_repayAmt_mean", "loan_second_by03_repayTerm_ratio_min", "loan_second_by03_rf_month_ratio", "loan_second_by03_startDate_to_report_max", "loan_second_by03_startDate_to_report_mean", "loan_second_by03_startDate_to_report_sum", "loan_second_by03_vouchR_month60_to_report_mean_sum", "loan_second_by06_bt_other_person_ratio", "loan_second_by06_byDate_to_report_sum", "loan_second_by06_classify5_giniimpurity", "loan_second_by06_classify5_num_range", "loan_second_by06_cycleR_repayMons_ratio_sum", "loan_second_by06_hdue1_month60_State_num_mean_mean", "loan_second_by06_hdue1R_month60_State_countNull_sum", "loan_second_by06_hdue1R_month60_State_countNullr_sum", "loan_second_by06_hdue1R_repayMons_ratio_sum", "loan_second_by06_month60_State_countCr_max", "loan_second_by06_month60_State_countN_range", "loan_second_by06_month60_State_countN_sum", "loan_second_by06_month60_State_countNr_range", "loan_second_by06_month60_State_countNull_mean", "loan_second_by06_month60_State_countUnknow_mean", "loan_second_by06_month60_State_countUnknowr_mean", "loan_second_by06_month60_State_num_size_sum", "loan_second_by06_month60_to_report_max_sum", "loan_second_by06_month60_to_report_mean_max", "loan_second_by06_month60_to_report_mean_range", "loan_second_by06_ncycle_balance_max", "loan_second_by06_ncycle_balance_ratio_mean", "loan_second_by06_ncycle_bt_other_loan_count", "loan_second_by06_ncycle_bt_person_business_ratio", "loan_second_by06_ncycle_byDate_to_report_mean", "loan_second_by06_ncycle_classify5_num_range", "loan_second_by06_ncycle_gf_combine_nowarranty_ratio", "loan_second_by06_ncycle_gf_other_ratio", "loan_second_by06_ncycle_is_now_min", "loan_second_by06_ncycle_month60_State_count2_max", "loan_second_by06_ncycle_month60_State_countCr_max", "loan_second_by06_ncycle_month60_State_countCr_mean", "loan_second_by06_ncycle_month60_State_countCr_range", "loan_second_by06_ncycle_month60_State_countN_sum", "loan_second_by06_ncycle_month60_State_countNull_sum", "loan_second_by06_ncycle_month60_State_countUnknow_mean", "loan_second_by06_ncycle_month60_State_countUnknowr_mean", "loan_second_by06_ncycle_month60_to_report_max_sum", "loan_second_by06_ncycle_month60_to_report_mean_mean", "loan_second_by06_ncycle_month60_to_report_mean_range", "loan_second_by06_ncycle_month60_to_report_min_mean", "loan_second_by06_ncycle_org_commercial_bank_count", "loan_second_by06_ncycle_org_commercial_bank_ratio", "loan_second_by06_ncycle_org_giniimpurity", "loan_second_by06_ncycle_org_other_ratio", "loan_second_by06_ncycle_repayAmt_mean", "loan_second_by06_ncycle_repayAmt_range", "loan_second_by06_ncycle_repayedAmount_mean", "loan_second_by06_ncycle_repayMons_mean", "loan_second_by06_ncycle_repayMons_range", "loan_second_by06_ncycle_repayMons_ratio_range", "loan_second_by06_ncycle_repayMons_sum", "loan_second_by06_ncycle_repayTerm_ratio_min", "loan_second_by06_ncycle_repayTerm_ratio_range", "loan_second_by06_ncycle_rf_other_count", "loan_second_by06_ncycle_rf_other_ratio", "loan_second_by06_ncycle_rt_unknow_count", "loan_second_by06_ncycle_startDate_to_report_sum", "loan_second_by06_ncycleR_balance_range", "loan_second_by06_ncycleR_month60_State_countNullr_sum", "loan_second_by06_ncycleR_RepayedAmount_ratio_max", "loan_second_by06_ncycleR_repayTerm_ratio_max", "loan_second_by06_now_balance_ratio_mean", "loan_second_by06_now_bt_other_loan_count", "loan_second_by06_now_byDate_to_report_mean", "loan_second_by06_now_month60_State_countN_mean", "loan_second_by06_now_month60_State_countNr_range", "loan_second_by06_now_month60_State_num_size_mean", "loan_second_by06_now_org_commercial_bank_count", "loan_second_by06_now_org_myself_count", "loan_second_by06_now_planRepayAmount_sum", "loan_second_by06_now_rf_other_ratio", "loan_second_by06_now_rt_unknow_count", "loan_second_by06_now_startDate_to_report_range", "loan_second_by06_nowR_balance_ratio_range", "loan_second_by06_nowR_bt_other_person_ratio", "loan_second_by06_nowR_byDate_to_report_mean", "loan_second_by06_nowR_byDate_to_report_sum", "loan_second_by06_nowR_gf_combine_nowarranty_ratio", "loan_second_by06_nowR_gf_other_ratio", "loan_second_by06_nowR_guaranteeForm_giniimpurity", "loan_second_by06_nowR_loanAmount_range", "loan_second_by06_nowR_loanGrantOrg_giniimpurity", "loan_second_by06_nowR_loanGrantOrg_nunique", "loan_second_by06_nowR_month60_State_countN_max", "loan_second_by06_nowR_month60_State_countNull_mean", "loan_second_by06_nowR_month60_State_countNullr_mean", "loan_second_by06_nowR_month60_State_countUnknowr_mean", "loan_second_by06_nowR_month60_to_report_max_max", "loan_second_by06_nowR_month60_to_report_max_mean", "loan_second_by06_nowR_month60_to_report_max_range", "loan_second_by06_nowR_month60_to_report_max_sum", "loan_second_by06_nowR_month60_to_report_mean_max", "loan_second_by06_nowR_month60_to_report_mean_mean", "loan_second_by06_nowR_month60_to_report_mean_range", "loan_second_by06_nowR_month60_to_report_min_sum", "loan_second_by06_nowR_org_commercial_bank_count", "loan_second_by06_nowR_org_commercial_bank_ratio", "loan_second_by06_nowR_repayAmt_max", "loan_second_by06_nowR_repayAmt_range", "loan_second_by06_nowR_repayMons_ratio_mean", "loan_second_by06_nowR_repayMons_ratio_range", "loan_second_by06_nowR_rf_month_ratio", "loan_second_by06_nowR_rf_once_ratio", "loan_second_by06_nowR_startDate_to_report_max", "loan_second_by06_nowR_startDate_to_report_range", "loan_second_by06_org_commercial_bank_ratio", "loan_second_by06_org_micro_loan_ratio", "loan_second_by06_org_other_ratio", "loan_second_by06_repayAmt_mean", "loan_second_by06_repayedAmount_sum", "loan_second_by06_repayMons_mean", "loan_second_by06_repayMons_ratio_mean", "loan_second_by06_repayMons_ratio_sum", "loan_second_by06_repayTerm_ratio_min", "loan_second_by06_repayTerms_range", "loan_second_by06_rf_other_ratio", "loan_second_by06_startDate_to_report_range", "loan_second_by06_startDate_to_report_sum", "loan_second_by06_vouch_loanAmount_sum", "loan_second_by06_vouchR_loanGrantOrg_nunique", "loan_second_by06_vouchR_month60_State_num_size_sum", "loan_second_by06_vouchR_repayTerm_ratio_min", "loan_second_by12_accountStatus_giniimpurity", "loan_second_by12_as_settle_count", "loan_second_by12_balance_min", "loan_second_by12_balance_ratio_range", "loan_second_by12_bt_other_loan_count", "loan_second_by12_byDate_to_report_max", "loan_second_by12_byDate_to_report_mean", "loan_second_by12_byDate_to_report_sum", "loan_second_by12_c5_unknow_count", "loan_second_by12_c5_unknow_ratio", "loan_second_by12_class_ncycle_count", "loan_second_by12_classify5_num_sum", "loan_second_by12_gf_combine_nowarranty_ratio", "loan_second_by12_gf_crdit_count", "loan_second_by12_hdue1_month60_State_countNr_mean", "loan_second_by12_hdue1R_bt_other_person_count", "loan_second_by12_hdue1R_loanGrantOrg_nunique", "loan_second_by12_hdue1R_month60_State_countNullr_sum", "loan_second_by12_hdue1R_month60_State_num_max_mean", "loan_second_by12_hdue1R_month60_to_report_mean_min", "loan_second_by12_hdue1R_repayAmt_sum", "loan_second_by12_hdue1R_repayMons_ratio_sum", "loan_second_by12_leftRepayTerms_min", "loan_second_by12_loanAmount_range", "loan_second_by12_loanGrantOrg_nunique", "loan_second_by12_month60_Amount_num_mean_mean", "loan_second_by12_month60_Amount_num_sum_mean", "loan_second_by12_month60_State_count1r_mean", "loan_second_by12_month60_State_countCr_mean", "loan_second_by12_month60_State_countN_max", "loan_second_by12_month60_State_countN_mean", "loan_second_by12_month60_State_countN_sum", "loan_second_by12_month60_State_countNr_range", "loan_second_by12_month60_State_countNr_sum", "loan_second_by12_month60_State_countNull_max", "loan_second_by12_month60_State_countNull_sum", "loan_second_by12_month60_State_countNullr_range", "loan_second_by12_month60_State_num_size_mean", "loan_second_by12_month60_State_num_sum_mean", "loan_second_by12_month60_to_report_max_mean", "loan_second_by12_month60_to_report_mean_max", "loan_second_by12_month60_to_report_min_max", "loan_second_by12_month60_to_report_min_sum", "loan_second_by12_ncycle_balance_min", "loan_second_by12_ncycle_balance_ratio_max", "loan_second_by12_ncycle_balance_ratio_mean", "loan_second_by12_ncycle_balance_ratio_min", "loan_second_by12_ncycle_byDate_to_report_max", "loan_second_by12_ncycle_byDate_to_report_sum", "loan_second_by12_ncycle_class_ncycle_count", "loan_second_by12_ncycle_classify5_giniimpurity", "loan_second_by12_ncycle_gf_combine_nowarranty_ratio", "loan_second_by12_ncycle_guaranteeForm_giniimpurity", "loan_second_by12_ncycle_leftRepayTerms_mean", "loan_second_by12_ncycle_loanAmount_range", "loan_second_by12_ncycle_month60_Amount_num_mean_mean", "loan_second_by12_ncycle_month60_State_count1_mean", "loan_second_by12_ncycle_month60_State_count1r_mean", "loan_second_by12_ncycle_month60_State_countCr_mean", "loan_second_by12_ncycle_month60_State_countN_mean", "loan_second_by12_ncycle_month60_State_countN_sum", "loan_second_by12_ncycle_month60_State_countNr_mean", "loan_second_by12_ncycle_month60_State_countNr_sum", "loan_second_by12_ncycle_month60_State_countNullr_sum", "loan_second_by12_ncycle_month60_State_countUnknow_max", "loan_second_by12_ncycle_month60_State_num_mean_mean", "loan_second_by12_ncycle_month60_State_num_size_mean", "loan_second_by12_ncycle_month60_State_num_sum_mean", "loan_second_by12_ncycle_month60_to_report_max_mean", "loan_second_by12_ncycle_month60_to_report_mean_max", "loan_second_by12_ncycle_month60_to_report_mean_sum", "loan_second_by12_ncycle_month60_to_report_min_max", "loan_second_by12_ncycle_month60_to_report_min_sum", "loan_second_by12_ncycle_org_commercial_bank_ratio", "loan_second_by12_ncycle_org_micro_loan_count", "loan_second_by12_ncycle_org_micro_loan_ratio", "loan_second_by12_ncycle_org_myself_count", "loan_second_by12_ncycle_org_trust_company_ratio", "loan_second_by12_ncycle_repayAmt_mean", "loan_second_by12_ncycle_repayAmt_range", "loan_second_by12_ncycle_repayedAmount_sum", "loan_second_by12_ncycle_repayMons_ratio_mean", "loan_second_by12_ncycle_repayMons_ratio_range", "loan_second_by12_ncycle_repayTerm_ratio_mean", "loan_second_by12_ncycle_repayTerm_ratio_range", "loan_second_by12_ncycle_repayTerms_mean", "loan_second_by12_ncycle_rf_month_count", "loan_second_by12_ncycle_rf_month_ratio", "loan_second_by12_ncycle_rf_other_ratio", "loan_second_by12_ncycle_startDate_to_report_max", "loan_second_by12_ncycle_startDate_to_report_mean", "loan_second_by12_ncycle_startDate_to_report_range", "loan_second_by12_ncycleR_month60_State_countNull_sum", "loan_second_by12_ncycleR_month60_State_countUnknowr_max", "loan_second_by12_ncycleR_org_giniimpurity", "loan_second_by12_now_balance_ratio_mean", "loan_second_by12_now_balance_ratio_min", "loan_second_by12_now_balance_ratio_range", "loan_second_by12_now_bt_other_loan_ratio", "loan_second_by12_now_byDate_to_report_mean", "loan_second_by12_now_classify5_num_range", "loan_second_by12_now_gf_other_ratio", "loan_second_by12_now_month60_State_countN_mean", "loan_second_by12_now_month60_State_countNull_mean", "loan_second_by12_now_repayAmt_max", "loan_second_by12_now_repayAmt_min", "loan_second_by12_now_repayedAmount_mean", "loan_second_by12_now_repayMons_ratio_mean", "loan_second_by12_now_repayTerm_ratio_range", "loan_second_by12_now_rf_other_count", "loan_second_by12_nowR_bt_other_loan_count", "loan_second_by12_nowR_byDate_to_report_mean", "loan_second_by12_nowR_loanAmount_max", "loan_second_by12_nowR_loanAmount_mean", "loan_second_by12_nowR_loanAmount_sum", "loan_second_by12_nowR_loanGrantOrg_nunique", "loan_second_by12_nowR_month60_State_countN_sum", "loan_second_by12_nowR_month60_State_countNull_max", "loan_second_by12_nowR_month60_State_countNull_sum", "loan_second_by12_nowR_month60_State_countUnknow_mean", "loan_second_by12_nowR_month60_State_num_size_mean", "loan_second_by12_nowR_month60_State_num_size_range", "loan_second_by12_nowR_month60_to_report_mean_mean", "loan_second_by12_nowR_month60_to_report_mean_range", "loan_second_by12_nowR_month60_to_report_min_mean", "loan_second_by12_nowR_org_commercial_bank_count", "loan_second_by12_nowR_org_commercial_bank_ratio", "loan_second_by12_nowR_org_consumer_finance_ratio", "loan_second_by12_nowR_org_micro_loan_count", "loan_second_by12_nowR_planRepayAmount_range", "loan_second_by12_nowR_repayAmt_max", "loan_second_by12_nowR_repayAmt_range", "loan_second_by12_nowR_repayAmt_sum", "loan_second_by12_nowR_repayFrequency_giniimpurity", "loan_second_by12_nowR_repayMons_max", "loan_second_by12_nowR_repayMons_ratio_mean", "loan_second_by12_nowR_repayTerms_sum", "loan_second_by12_nowR_startDate_to_report_mean", "loan_second_by12_nowR_startDate_to_report_range", "loan_second_by12_org_consumer_finance_count", "loan_second_by12_org_consumer_finance_ratio", "loan_second_by12_org_micro_loan_ratio", "loan_second_by12_org_trust_company_ratio", "loan_second_by12_repayAmt_max", "loan_second_by12_repayFrequency_giniimpurity", "loan_second_by12_repayMons_max", "loan_second_by12_repayMons_ratio_mean", "loan_second_by12_repayMons_ratio_sum", "loan_second_by12_repayTerm_ratio_mean", "loan_second_by12_repayTerm_ratio_range", "loan_second_by12_repayTerms_max", "loan_second_by12_repayTerms_mean", "loan_second_by12_rf_month_ratio", "loan_second_by12_rf_other_ratio", "loan_second_by12_vouch_loanAmount_min", "loan_second_by12_vouch_org_micro_loan_ratio", "loan_second_by12_vouch_repayAmt_min", "loan_second_by12_vouchR_loanGrantOrg_nunique", "loan_second_by12_vouchR_month60_State_countNr_sum", "loan_second_by12_vouchR_month60_State_countNullr_sum", "loan_second_by12_vouchR_month60_to_report_mean_sum", "loan_second_by12_vouchR_org_micro_loan_ratio", "loan_second_by12_vouchR_repayMons_ratio_mean", "loan_second_byDate_to_report_sum", "loan_second_c5_unknow_count", "loan_second_class_ncycle_count", "loan_second_class_ncycle_ratio", "loan_second_cycle_repayTerms_range", "loan_second_cycleR_month60_State_countNull_sum", "loan_second_gf_crdit_count", "loan_second_gf_other_ratio", "loan_second_hdue1_month60_Amount_num_max_mean", "loan_second_hdue1_month60_Amount_num_mean_mean", "loan_second_hdue1_month60_State_count1r_min", "loan_second_hdue1_month60_State_countN_sum", "loan_second_hdue1_month60_State_countNr_min", "loan_second_hdue1_month60_State_num_mean_mean", "loan_second_hdue1_month60_State_num_mean_min", "loan_second_hdue1_month60_State_num_size_min", "loan_second_hdue1_month60_to_report_max_min", "loan_second_hdue1_month60_to_report_mean_max", "loan_second_hdue1_month60_to_report_mean_mean", "loan_second_hdue1_repayAmt_mean", "loan_second_hdue1_repayMons_ratio_mean", "loan_second_hdue1R_class_ncycle_count", "loan_second_hdue1R_loanAmount_mean", "loan_second_hdue1R_loanGrantOrg_nunique", "loan_second_hdue1R_month60_State_countCr_sum", "loan_second_hdue1R_month60_State_countN_sum", "loan_second_hdue1R_month60_State_countNr_sum", "loan_second_hdue1R_month60_State_countNullr_sum", "loan_second_hdue1R_month60_to_report_max_min", "loan_second_hdue1R_month60_to_report_max_range", "loan_second_hdue1R_month60_to_report_mean_max", "loan_second_hdue1R_org_micro_loan_ratio", "loan_second_hdue1R_org_trust_company_ratio", "loan_second_hdue1R_repayMons_ratio_min", "loan_second_hdue1R_repayTerms_sum", "loan_second_hdue1R_rt_unknow_count", "loan_second_hdue1R_startDate_to_report_max", "loan_second_leftRepayTerms_min", "loan_second_loanGrantOrg_giniimpurity", "loan_second_loanGrantOrg_nunique", "loan_second_m06_balance_ratio_mean", "loan_second_m06_businessType_giniimpurity", "loan_second_m06_byDate_to_report_mean", "loan_second_m06_guaranteeForm_giniimpurity", "loan_second_m06_leftRepayTerms_range", "loan_second_m06_loanAmount_min", "loan_second_m06_month60_Amount_num_mean_max", "loan_second_m06_month60_Amount_num_sum_max", "loan_second_m06_month60_State_countCr_mean", "loan_second_m06_month60_State_countNull_mean", "loan_second_m06_month60_State_countNullr_mean", "loan_second_m06_month60_State_num_mean_mean", "loan_second_m06_month60_to_report_max_range", "loan_second_m06_month60_to_report_mean_mean", "loan_second_m06_ncycle_balance_min", "loan_second_m06_ncycle_balance_ratio_max", "loan_second_m06_ncycle_balance_ratio_mean", "loan_second_m06_ncycle_balance_ratio_min", "loan_second_m06_ncycle_balance_ratio_range", "loan_second_m06_ncycle_byDate_to_report_mean", "loan_second_m06_ncycle_due_class_mean", "loan_second_m06_ncycle_guaranteeForm_giniimpurity", "loan_second_m06_ncycle_leftRepayTerms_max", "loan_second_m06_ncycle_loanAmount_min", "loan_second_m06_ncycle_month60_Amount_num_max_max", "loan_second_m06_ncycle_month60_Amount_num_sum_mean", "loan_second_m06_ncycle_month60_State_countCr_mean", "loan_second_m06_ncycle_month60_State_countNr_mean", "loan_second_m06_ncycle_month60_State_countNullr_mean", "loan_second_m06_ncycle_month60_State_num_max_sum", "loan_second_m06_ncycle_month60_State_num_mean_max", "loan_second_m06_ncycle_month60_State_num_size_sum", "loan_second_m06_ncycle_month60_to_report_max_mean", "loan_second_m06_ncycle_month60_to_report_mean_sum", "loan_second_m06_ncycle_org_commercial_bank_ratio", "loan_second_m06_ncycle_org_consumer_finance_ratio", "loan_second_m06_ncycle_org_giniimpurity", "loan_second_m06_ncycle_org_other_ratio", "loan_second_m06_ncycle_repayedAmount_max", "loan_second_m06_ncycle_repayedAmount_mean", "loan_second_m06_ncycle_repayedAmount_sum", "loan_second_m06_ncycle_repayFrequency_giniimpurity", "loan_second_m06_ncycle_repayMons_ratio_min", "loan_second_m06_ncycle_repayTerm_ratio_range", "loan_second_m06_ncycle_startDate_to_report_mean", "loan_second_m06_ncycleR_guaranteeForm_giniimpurity", "loan_second_m06_ncycleR_repayTerms_mean", "loan_second_m06_now_balance_ratio_mean", "loan_second_m06_now_balance_ratio_range", "loan_second_m06_now_bt_other_loan_ratio", "loan_second_m06_now_businessType_giniimpurity", "loan_second_m06_now_c5_normal_ratio", "loan_second_m06_now_due_class_max", "loan_second_m06_now_due_class_mean", "loan_second_m06_now_gf_other_ratio", "loan_second_m06_now_is_now_sum", "loan_second_m06_now_leftRepayTerms_mean", "loan_second_m06_now_leftRepayTerms_range", "loan_second_m06_now_loanAmount_min", "loan_second_m06_now_month60_Amount_num_mean_sum", "loan_second_m06_now_month60_Amount_num_meanbig0_sum", "loan_second_m06_now_month60_Amount_num_sum_max", "loan_second_m06_now_month60_State_count1r_mean", "loan_second_m06_now_month60_State_countNr_mean", "loan_second_m06_now_month60_State_countNull_mean", "loan_second_m06_now_month60_State_countNullr_mean", "loan_second_m06_now_month60_State_num_sum_sum", "loan_second_m06_now_month60_to_report_max_mean", "loan_second_m06_now_month60_to_report_mean_mean", "loan_second_m06_now_org_giniimpurity", "loan_second_m06_now_org_other_ratio", "loan_second_m06_now_org_trust_company_ratio", "loan_second_m06_now_planRepayAmount_mean", "loan_second_m06_now_planRepayAmount_min", "loan_second_m06_now_repayedAmount_max", "loan_second_m06_now_repayedAmount_mean", "loan_second_m06_now_repayedAmount_range", "loan_second_m06_now_repayedAmount_sum", "loan_second_m06_now_repayMons_range", "loan_second_m06_now_repayTerms_range", "loan_second_m06_now_rf_once_ratio", "loan_second_m06_now_rt_onschedule_ratio", "loan_second_m06_now_startDate_to_report_mean", "loan_second_m06_nowR_balance_range", "loan_second_m06_nowR_balance_ratio_range", "loan_second_m06_nowR_bt_other_loan_ratio", "loan_second_m06_nowR_businessType_giniimpurity", "loan_second_m06_nowR_byDate_to_report_mean", "loan_second_m06_nowR_byDate_to_report_sum", "loan_second_m06_nowR_month60_State_countNull_mean", "loan_second_m06_nowR_month60_State_countNullr_mean", "loan_second_m06_nowR_month60_State_num_size_min", "loan_second_m06_nowR_month60_to_report_max_mean", "loan_second_m06_nowR_month60_to_report_mean_max", "loan_second_m06_nowR_month60_to_report_mean_mean", "loan_second_m06_nowR_month60_to_report_mean_range", "loan_second_m06_nowR_month60_to_report_mean_sum", "loan_second_m06_nowR_month60_to_report_min_max", "loan_second_m06_nowR_org_giniimpurity", "loan_second_m06_nowR_repayAmt_max", "loan_second_m06_nowR_repayAmt_mean", "loan_second_m06_nowR_repayMons_mean", "loan_second_m06_nowR_repayMons_min", "loan_second_m06_nowR_repayMons_range", "loan_second_m06_nowR_repayMons_ratio_mean", "loan_second_m06_nowR_repayMons_ratio_range", "loan_second_m06_nowR_repayMons_sum", "loan_second_m06_nowR_repayTerms_mean", "loan_second_m06_nowR_startDate_to_report_mean", "loan_second_m06_org_consumer_finance_count", "loan_second_m06_org_consumer_finance_ratio", "loan_second_m06_org_micro_loan_ratio", "loan_second_m06_org_other_ratio", "loan_second_m06_repayAmt_range", "loan_second_m06_repayedAmount_max", "loan_second_m06_repayedAmount_mean", "loan_second_m06_repayMons_ratio_mean", "loan_second_m06_startDate_to_report_mean", "loan_second_m12_balance_ratio_min", "loan_second_m12_bt_other_person_ratio", "loan_second_m12_businessType_giniimpurity", "loan_second_m12_classify5_num_range", "loan_second_m12_gf_combine_nowarranty_ratio", "loan_second_m12_gf_other_ratio", "loan_second_m12_month60_Amount_num_max_sum", "loan_second_m12_month60_Amount_num_mean_mean", "loan_second_m12_month60_Amount_num_meanbig0_sum", "loan_second_m12_month60_Amount_num_sum_max", "loan_second_m12_month60_Amount_num_sum_mean", "loan_second_m12_month60_State_count1r_max", "loan_second_m12_month60_State_countCr_mean", "loan_second_m12_month60_State_countN_mean", "loan_second_m12_month60_State_countNr_range", "loan_second_m12_month60_State_countUnknowr_mean", "loan_second_m12_month60_State_num_mean_max", "loan_second_m12_month60_State_num_mean_mean", "loan_second_m12_month60_State_num_size_mean", "loan_second_m12_month60_State_num_size_range", "loan_second_m12_month60_State_num_size_sum", "loan_second_m12_month60_State_num_sum_max", "loan_second_m12_month60_State_num_sum_mean", "loan_second_m12_month60_to_report_max_mean", "loan_second_m12_ncycle_balance_max", "loan_second_m12_ncycle_balance_ratio_max", "loan_second_m12_ncycle_balance_ratio_mean", "loan_second_m12_ncycle_balance_ratio_min", "loan_second_m12_ncycle_balance_ratio_range", "loan_second_m12_ncycle_balance_sum", "loan_second_m12_ncycle_bt_other_loan_ratio", "loan_second_m12_ncycle_bt_other_person_count", "loan_second_m12_ncycle_byDate_to_report_max", "loan_second_m12_ncycle_byDate_to_report_mean", "loan_second_m12_ncycle_classify5_num_range", "loan_second_m12_ncycle_due_class_max", "loan_second_m12_ncycle_gf_combine_nowarranty_ratio", "loan_second_m12_ncycle_gf_crdit_ratio", "loan_second_m12_ncycle_guaranteeForm_giniimpurity", "loan_second_m12_ncycle_leftRepayTerms_max", "loan_second_m12_ncycle_loanGrantOrg_nunique", "loan_second_m12_ncycle_month60_Amount_num_mean_mean", "loan_second_m12_ncycle_month60_State_count1r_mean", "loan_second_m12_ncycle_month60_State_count2r_mean", "loan_second_m12_ncycle_month60_State_countCr_mean", "loan_second_m12_ncycle_month60_State_countNr_mean", "loan_second_m12_ncycle_month60_State_countNr_range", "loan_second_m12_ncycle_month60_State_num_max_mean", "loan_second_m12_ncycle_month60_State_num_max_sum", "loan_second_m12_ncycle_month60_State_num_mean_max", "loan_second_m12_ncycle_month60_State_num_mean_mean", "loan_second_m12_ncycle_month60_State_num_sum_max", "loan_second_m12_ncycle_month60_State_num_sum_mean", "loan_second_m12_ncycle_month60_to_report_mean_range", "loan_second_m12_ncycle_org_consumer_finance_count", "loan_second_m12_ncycle_org_micro_loan_ratio", "loan_second_m12_ncycle_org_other_ratio", "loan_second_m12_ncycle_org_trust_company_count", "loan_second_m12_ncycle_org_trust_company_ratio", "loan_second_m12_ncycle_repayAmt_mean", "loan_second_m12_ncycle_repayAmt_min", "loan_second_m12_ncycle_repayedAmount_max", "loan_second_m12_ncycle_repayedAmount_mean", "loan_second_m12_ncycle_repayedAmount_range", "loan_second_m12_ncycle_RepayedAmount_ratio_max", "loan_second_m12_ncycle_RepayedAmount_ratio_range", "loan_second_m12_ncycle_repayedAmount_sum", "loan_second_m12_ncycle_repayMons_range", "loan_second_m12_ncycle_rf_other_count", "loan_second_m12_ncycle_startDate_to_report_sum", "loan_second_m12_ncycleR_balance_range", "loan_second_m12_ncycleR_byDate_to_report_mean", "loan_second_m12_ncycleR_month60_State_countUnknow_mean", "loan_second_m12_ncycleR_month60_State_countUnknowr_mean", "loan_second_m12_ncycleR_repayTerm_ratio_range", "loan_second_m12_now_balance_ratio_mean", "loan_second_m12_now_bt_other_person_ratio", "loan_second_m12_now_bt_person_business_ratio", "loan_second_m12_now_businessType_giniimpurity", "loan_second_m12_now_byDate_to_report_mean", "loan_second_m12_now_byDate_to_report_sum", "loan_second_m12_now_gf_combine_warranty_count", "loan_second_m12_now_gf_crdit_ratio", "loan_second_m12_now_gf_other_ratio", "loan_second_m12_now_leftRepayTerms_range", "loan_second_m12_now_loanAmount_range", "loan_second_m12_now_month60_Amount_num_mean_max", "loan_second_m12_now_month60_Amount_num_mean_sum", "loan_second_m12_now_month60_State_count1r_sum", "loan_second_m12_now_month60_State_countN_max", "loan_second_m12_now_month60_State_countN_mean", "loan_second_m12_now_month60_State_countN_range", "loan_second_m12_now_month60_State_countNr_sum", "loan_second_m12_now_month60_State_countNullr_mean", "loan_second_m12_now_month60_State_countUnknowr_mean", "loan_second_m12_now_month60_State_num_size_mean", "loan_second_m12_now_month60_to_report_min_sum", "loan_second_m12_now_org_consumer_finance_ratio", "loan_second_m12_now_repayAmt_max", "loan_second_m12_now_repayAmt_mean", "loan_second_m12_now_repayAmt_min", "loan_second_m12_now_repayedAmount_mean", "loan_second_m12_now_repayedAmount_range", "loan_second_m12_now_RepayedAmount_ratio_max", "loan_second_m12_now_RepayedAmount_ratio_range", "loan_second_m12_now_repayMons_range", "loan_second_m12_now_repayMons_ratio_mean", "loan_second_m12_now_repayMons_ratio_range", "loan_second_m12_now_repayTerm_ratio_mean", "loan_second_m12_now_repayTerm_ratio_min", "loan_second_m12_now_rf_other_count", "loan_second_m12_now_rf_other_ratio", "loan_second_m12_now_startDate_to_report_mean", "loan_second_m12_nowR_balance_ratio_range", "loan_second_m12_nowR_businessType_giniimpurity", "loan_second_m12_nowR_byDate_to_report_sum", "loan_second_m12_nowR_gf_crdit_count", "loan_second_m12_nowR_gf_crdit_ratio", "loan_second_m12_nowR_loanAmount_min", "loan_second_m12_nowR_month60_State_countN_sum", "loan_second_m12_nowR_month60_State_countNr_mean", "loan_second_m12_nowR_month60_State_countNull_mean", "loan_second_m12_nowR_month60_State_countNullr_mean", "loan_second_m12_nowR_month60_State_countNullr_sum", "loan_second_m12_nowR_month60_State_countUnknow_mean", "loan_second_m12_nowR_month60_State_countUnknowr_mean", "loan_second_m12_nowR_month60_State_num_size_range", "loan_second_m12_nowR_month60_State_num_size_sum", "loan_second_m12_nowR_month60_to_report_mean_range", "loan_second_m12_nowR_org_commercial_bank_ratio", "loan_second_m12_nowR_org_consumer_finance_count", "loan_second_m12_nowR_org_consumer_finance_ratio", "loan_second_m12_nowR_org_micro_loan_ratio", "loan_second_m12_nowR_org_trust_company_ratio", "loan_second_m12_nowR_repayAmt_max", "loan_second_m12_nowR_repayAmt_mean", "loan_second_m12_nowR_repayedAmount_mean", "loan_second_m12_nowR_repayMons_ratio_max", "loan_second_m12_nowR_repayMons_ratio_mean", "loan_second_m12_nowR_repayMons_ratio_min", "loan_second_m12_nowR_repayMons_ratio_range", "loan_second_m12_nowR_repayTerms_sum", "loan_second_m12_nowR_rf_once_ratio", "loan_second_m12_nowR_rf_other_count", "loan_second_m12_org_micro_loan_ratio", "loan_second_m12_org_trust_company_count", "loan_second_m12_org_trust_company_ratio", "loan_second_m12_planRepayAmount_mean", "loan_second_m12_repayAmt_max", "loan_second_m12_repayAmt_mean", "loan_second_m12_RepayedAmount_ratio_max", "loan_second_m12_repayMons_range", "loan_second_m12_repayMons_ratio_sum", "loan_second_m12_repayTerm_ratio_range", "loan_second_m12_repayTerms_mean", "loan_second_m12_rf_irregular_ratio", "loan_second_m12_rf_month_ratio", "loan_second_m12_rf_other_ratio", "loan_second_m24_balance_min", "loan_second_m24_bt_other_loan_count", "loan_second_m24_businessType_giniimpurity", "loan_second_m24_byDate_to_report_max", "loan_second_m24_gf_combine_nowarranty_ratio", "loan_second_m24_hdue1_month60_State_num_mean_min", "loan_second_m24_hdue1R_loanGrantOrg_nunique", "loan_second_m24_hdue1R_month60_State_countNullr_sum", "loan_second_m24_hdue1R_month60_State_num_size_sum", "loan_second_m24_leftRepayTerms_max", "loan_second_m24_month60_Amount_num_mean_sum", "loan_second_m24_month60_State_count2r_mean", "loan_second_m24_month60_State_countCr_max", "loan_second_m24_month60_State_countNull_max", "loan_second_m24_month60_State_countNull_mean", "loan_second_m24_month60_State_countNull_sum", "loan_second_m24_month60_State_countNullr_mean", "loan_second_m24_month60_State_countNullr_range", "loan_second_m24_month60_State_num_mean_mean", "loan_second_m24_month60_to_report_max_max", "loan_second_m24_month60_to_report_max_mean", "loan_second_m24_month60_to_report_max_sum", "loan_second_m24_month60_to_report_min_max", "loan_second_m24_ncycle_balance_mean", "loan_second_m24_ncycle_balance_ratio_max", "loan_second_m24_ncycle_balance_ratio_min", "loan_second_m24_ncycle_bt_other_person_ratio", "loan_second_m24_ncycle_businessType_giniimpurity", "loan_second_m24_ncycle_byDate_to_report_range", "loan_second_m24_ncycle_classify5_num_min", "loan_second_m24_ncycle_gf_crdit_ratio", "loan_second_m24_ncycle_guaranteeForm_giniimpurity", "loan_second_m24_ncycle_is_now_range", "loan_second_m24_ncycle_leftRepayTerms_max", "loan_second_m24_ncycle_loanAmount_min", "loan_second_m24_ncycle_loanAmount_range", "loan_second_m24_ncycle_loanGrantOrg_giniimpurity", "loan_second_m24_ncycle_loanGrantOrg_nunique", "loan_second_m24_ncycle_logo_max", "loan_second_m24_ncycle_logo_mean", "loan_second_m24_ncycle_month60_Amount_num_mean_sum", "loan_second_m24_ncycle_month60_State_countC_sum", "loan_second_m24_ncycle_month60_State_countCr_max", "loan_second_m24_ncycle_month60_State_countCr_sum", "loan_second_m24_ncycle_month60_State_countNr_mean", "loan_second_m24_ncycle_month60_State_countNr_sum", "loan_second_m24_ncycle_month60_State_countNull_mean", "loan_second_m24_ncycle_month60_State_num_mean_max", "loan_second_m24_ncycle_month60_State_num_size_mean", "loan_second_m24_ncycle_month60_State_num_size_min", "loan_second_m24_ncycle_month60_State_num_size_range", "loan_second_m24_ncycle_month60_to_report_max_max", "loan_second_m24_ncycle_month60_to_report_max_mean", "loan_second_m24_ncycle_month60_to_report_mean_max", "loan_second_m24_ncycle_month60_to_report_mean_mean", "loan_second_m24_ncycle_month60_to_report_mean_sum", "loan_second_m24_ncycle_month60_to_report_min_max", "loan_second_m24_ncycle_org_consumer_finance_count", "loan_second_m24_ncycle_org_consumer_finance_ratio", "loan_second_m24_ncycle_org_other_ratio", "loan_second_m24_ncycle_org_trust_company_count", "loan_second_m24_ncycle_org_trust_company_ratio", "loan_second_m24_ncycle_planRepayAmount_mean", "loan_second_m24_ncycle_repayAmt_max", "loan_second_m24_ncycle_repayAmt_mean", "loan_second_m24_ncycle_repayAmt_range", "loan_second_m24_ncycle_RepayedAmount_ratio_mean", "loan_second_m24_ncycle_repayFrequency_giniimpurity", "loan_second_m24_ncycle_repayMons_min", "loan_second_m24_ncycle_repayMons_ratio_mean", "loan_second_m24_ncycle_repayTerm_ratio_range", "loan_second_m24_ncycle_repayTerms_mean", "loan_second_m24_ncycle_repayTerms_range", "loan_second_m24_ncycle_rf_month_ratio", "loan_second_m24_ncycle_rf_once_count", "loan_second_m24_ncycle_rf_other_ratio", "loan_second_m24_ncycle_startDate_to_report_max", "loan_second_m24_ncycle_startDate_to_report_sum", "loan_second_m24_ncycleR_byDate_to_report_max", "loan_second_m24_ncycleR_month60_State_countCr_max", "loan_second_m24_ncycleR_month60_State_countCr_range", "loan_second_m24_ncycleR_month60_State_countNr_mean", "loan_second_m24_ncycleR_month60_State_countNr_min", "loan_second_m24_ncycleR_month60_State_countNr_sum", "loan_second_m24_ncycleR_month60_to_report_min_range", "loan_second_m24_ncycleR_org_trust_company_count", "loan_second_m24_ncycleR_repayFrequency_giniimpurity", "loan_second_m24_ncycleR_rf_once_ratio", "loan_second_m24_now_balance_max", "loan_second_m24_now_balance_ratio_min", "loan_second_m24_now_gf_other_count", "loan_second_m24_now_guaranteeForm_giniimpurity", "loan_second_m24_now_leftRepayTerms_max", "loan_second_m24_now_leftRepayTerms_range", "loan_second_m24_now_loanAmount_range", "loan_second_m24_now_month60_State_count2r_sum", "loan_second_m24_now_month60_State_countN_mean", "loan_second_m24_now_month60_State_countNr_mean", "loan_second_m24_now_month60_State_countNull_mean", "loan_second_m24_now_month60_State_countNullr_range", "loan_second_m24_now_month60_State_countUnknowr_max", "loan_second_m24_now_month60_State_countUnknowr_mean", "loan_second_m24_now_month60_to_report_max_range", "loan_second_m24_now_month60_to_report_mean_range", "loan_second_m24_now_month60_to_report_min_sum", "loan_second_m24_now_org_micro_loan_ratio", "loan_second_m24_now_org_trust_company_ratio", "loan_second_m24_now_planRepayAmount_min", "loan_second_m24_now_repayAmt_mean", "loan_second_m24_now_repayedAmount_mean", "loan_second_m24_now_repayedAmount_min", "loan_second_m24_now_RepayedAmount_ratio_range", "loan_second_m24_now_repayFrequency_giniimpurity", "loan_second_m24_now_repayMons_range", "loan_second_m24_now_repayMons_ratio_sum", "loan_second_m24_now_repayTerm_ratio_min", "loan_second_m24_now_repayTerm_ratio_range", "loan_second_m24_now_repayTerms_mean", "loan_second_m24_now_rf_other_ratio", "loan_second_m24_now_rt_onschedule_ratio", "loan_second_m24_nowR_balance_ratio_range", "loan_second_m24_nowR_bt_other_loan_count", "loan_second_m24_nowR_bt_person_business_ratio", "loan_second_m24_nowR_byDate_to_report_mean", "loan_second_m24_nowR_byDate_to_report_sum", "loan_second_m24_nowR_loanAmount_max", "loan_second_m24_nowR_loanAmount_mean", "loan_second_m24_nowR_loanAmount_range", "loan_second_m24_nowR_month60_State_countN_max", "loan_second_m24_nowR_month60_State_countN_mean", "loan_second_m24_nowR_month60_State_countN_sum", "loan_second_m24_nowR_month60_State_countNull_max", "loan_second_m24_nowR_month60_State_countNull_mean", "loan_second_m24_nowR_month60_State_countNullr_mean", "loan_second_m24_nowR_month60_to_report_max_max", "loan_second_m24_nowR_month60_to_report_max_sum", "loan_second_m24_nowR_month60_to_report_mean_max", "loan_second_m24_nowR_month60_to_report_mean_mean", "loan_second_m24_nowR_month60_to_report_mean_range", "loan_second_m24_nowR_month60_to_report_min_max", "loan_second_m24_nowR_month60_to_report_min_mean", "loan_second_m24_nowR_org_commercial_bank_ratio", "loan_second_m24_nowR_org_consumer_finance_count", "loan_second_m24_nowR_org_consumer_finance_ratio", "loan_second_m24_nowR_repayFrequency_giniimpurity", "loan_second_m24_nowR_repayMons_max", "loan_second_m24_nowR_repayMons_ratio_mean", "loan_second_m24_nowR_repayMons_ratio_sum", "loan_second_m24_nowR_repayTerms_min", "loan_second_m24_nowR_repayTerms_range", "loan_second_m24_nowR_repayTerms_sum", "loan_second_m24_nowR_rf_month_ratio", "loan_second_m24_nowR_rf_once_count", "loan_second_m24_nowR_rf_once_ratio", "loan_second_m24_nowR_rf_other_ratio", "loan_second_m24_nowR_startDate_to_report_max", "loan_second_m24_org_consumer_finance_count", "loan_second_m24_org_other_count", "loan_second_m24_org_other_ratio", "loan_second_m24_org_trust_company_count", "loan_second_m24_org_trust_company_ratio", "loan_second_m24_repayAmt_max", "loan_second_m24_repayAmt_range", "loan_second_m24_RepayedAmount_ratio_range", "loan_second_m24_RepayedAmount_ratio_sum", "loan_second_m24_repayMons_ratio_sum", "loan_second_m24_repayTerm_ratio_range", "loan_second_m24_repayTerms_min", "loan_second_m24_rf_once_count", "loan_second_m24_rf_once_ratio", "loan_second_m24_rf_other_count", "loan_second_m24_rf_other_ratio", "loan_second_m24_vouch_balance_max", "loan_second_m24_vouch_loanAmount_max", "loan_second_m24_vouch_loanAmount_sum", "loan_second_m24_vouch_month60_State_countCr_max", "loan_second_m24_vouch_month60_State_countN_max", "loan_second_m24_vouch_month60_State_countNr_max", "loan_second_m24_vouch_month60_State_countNr_mean", "loan_second_m24_vouch_month60_State_countNr_min", "loan_second_m24_vouch_repayMons_mean", "loan_second_m24_vouch_repayMons_ratio_sum", "loan_second_m24_vouch_repayTerms_mean", "loan_second_m24_vouchR_bt_other_person_count", "loan_second_m24_vouchR_bt_other_person_ratio", "loan_second_m24_vouchR_byDate_to_report_mean", "loan_second_m24_vouchR_leftRepayTerms_sum", "loan_second_m24_vouchR_loanAmount_max", "loan_second_m24_vouchR_loanAmount_sum", "loan_second_m24_vouchR_loanGrantOrg_nunique", "loan_second_m24_vouchR_month60_State_countN_sum", "loan_second_m24_vouchR_month60_State_countNr_max", "loan_second_m24_vouchR_month60_State_countNr_sum", "loan_second_m24_vouchR_month60_State_countNull_mean", "loan_second_m24_vouchR_month60_State_num_size_sum", "loan_second_m24_vouchR_org_micro_loan_count", "loan_second_m24_vouchR_repayMons_min", "loan_second_m24_vouchR_repayTerms_sum", "loan_second_m24_vouchR_startDate_to_report_max", "loan_second_month60_1_ratio", "loan_second_month60_Amount_big0_mean", "loan_second_month60_Amount_num_max_mean", "loan_second_month60_Amount_num_mean_max", "loan_second_month60_C_count", "loan_second_month60_C_ratio", "loan_second_month60_N_count", "loan_second_month60_N_ratio", "loan_second_month60_Null_count", "loan_second_month60_Null_ratio", "loan_second_month60_State_countCr_mean", "loan_second_month60_State_countN_max", "loan_second_month60_State_countN_mean", "loan_second_month60_State_countN_sum", "loan_second_month60_State_countNr_max", "loan_second_month60_State_countNr_mean", "loan_second_month60_State_countNr_sum", "loan_second_month60_State_countNull_max", "loan_second_month60_State_countNull_mean", "loan_second_month60_State_countNull_sum", "loan_second_month60_State_countNullr_max", "loan_second_month60_State_countNullr_mean", "loan_second_month60_State_countNullr_sum", "loan_second_month60_State_countUnknow_sum", "loan_second_month60_State_giniimpurity", "loan_second_month60_State_num_max_mean", "loan_second_month60_State_num_mean", "loan_second_month60_State_num_mean_max", "loan_second_month60_State_num_mean_mean", "loan_second_month60_State_num_size_max", "loan_second_month60_State_num_size_sum", "loan_second_month60_to_report_max_max", "loan_second_month60_to_report_max_range", "loan_second_month60_to_report_max_sum", "loan_second_month60_to_report_mean_max", "loan_second_month60_to_report_mean_mean", "loan_second_month60_to_report_mean_range", "loan_second_month60_to_report_mean_sum", "loan_second_month60_to_report_min_max", "loan_second_month60_to_report_min_sum", "loan_second_ncycle_as_settle_count", "loan_second_ncycle_as_settle_ratio", "loan_second_ncycle_balance_mean", "loan_second_ncycle_bt_other_loan_count", "loan_second_ncycle_bt_other_person_count", "loan_second_ncycle_businessType_giniimpurity", "loan_second_ncycle_byDate_to_report_mean", "loan_second_ncycle_byDate_to_report_sum", "loan_second_ncycle_c5_unknow_count", "loan_second_ncycle_class_ncycle_count", "loan_second_ncycle_due_class_mean", "loan_second_ncycle_gf_combine_nowarranty_count", "loan_second_ncycle_gf_crdit_count", "loan_second_ncycle_gf_crdit_ratio", "loan_second_ncycle_loanAmount_min", "loan_second_ncycle_loanAmount_range", "loan_second_ncycle_loanGrantOrg_giniimpurity", "loan_second_ncycle_loanGrantOrg_nunique", "loan_second_ncycle_month60_State_countC_sum", "loan_second_ncycle_month60_State_countCr_mean", "loan_second_ncycle_month60_State_countCr_sum", "loan_second_ncycle_month60_State_countN_max", "loan_second_ncycle_month60_State_countN_sum", "loan_second_ncycle_month60_State_countNr_max", "loan_second_ncycle_month60_State_countNr_sum", "loan_second_ncycle_month60_State_countNull_max", "loan_second_ncycle_month60_State_countNull_mean", "loan_second_ncycle_month60_State_countNull_sum", "loan_second_ncycle_month60_State_countNullr_max", "loan_second_ncycle_month60_State_countNullr_sum", "loan_second_ncycle_month60_State_countUnknow_max", "loan_second_ncycle_month60_State_countUnknow_mean", "loan_second_ncycle_month60_State_countUnknow_range", "loan_second_ncycle_month60_State_countUnknow_sum", "loan_second_ncycle_month60_State_countUnknowr_max", "loan_second_ncycle_month60_State_num_mean_max", "loan_second_ncycle_month60_State_num_mean_mean", "loan_second_ncycle_month60_State_num_size_max", "loan_second_ncycle_month60_State_num_size_min", "loan_second_ncycle_month60_State_num_size_range", "loan_second_ncycle_month60_State_num_size_sum", "loan_second_ncycle_month60_to_report_max_mean", "loan_second_ncycle_month60_to_report_max_sum", "loan_second_ncycle_month60_to_report_mean_max", "loan_second_ncycle_month60_to_report_mean_sum", "loan_second_ncycle_month60_to_report_min_range", "loan_second_ncycle_month60_to_report_min_sum", "loan_second_ncycle_org_commercial_bank_count", "loan_second_ncycle_org_commercial_bank_ratio", "loan_second_ncycle_org_consumer_finance_count", "loan_second_ncycle_org_giniimpurity", "loan_second_ncycle_org_trust_company_ratio", "loan_second_ncycle_repayAmt_max", "loan_second_ncycle_repayAmt_range", "loan_second_ncycle_repayedAmount_range", "loan_second_ncycle_RepayedAmount_ratio_sum", "loan_second_ncycle_repayFrequency_giniimpurity", "loan_second_ncycle_repayMons_ratio_max", "loan_second_ncycle_repayMons_ratio_mean", "loan_second_ncycle_repayMons_ratio_sum", "loan_second_ncycle_repayMons_sum", "loan_second_ncycle_repayTerms_min", "loan_second_ncycle_rf_month_count", "loan_second_ncycle_rf_once_count", "loan_second_ncycle_rf_once_ratio", "loan_second_ncycle_rf_other_ratio", "loan_second_ncycle_rt_unknow_count", "loan_second_ncycle_startDate_to_report_sum", "loan_second_ncycleR_month60_State_countNr_mean", "loan_second_ncycleR_month60_State_countNull_sum", "loan_second_ncycleR_month60_State_countNullr_mean", "loan_second_ncycleR_month60_to_report_max_min", "loan_second_ncycleR_month60_to_report_max_sum", "loan_second_ncycleR_org_giniimpurity", "loan_second_ncycleR_repayMons_ratio_mean", "loan_second_ncycleR_repayTerms_mean", "loan_second_now_bt_other_person_ratio", "loan_second_now_byDate_to_report_mean", "loan_second_now_gf_other_count", "loan_second_now_gf_other_ratio", "loan_second_now_month60_State_count2r_mean", "loan_second_now_month60_to_report_min_mean", "loan_second_now_org_commercial_bank_ratio", "loan_second_now_planRepayAmount_mean", "loan_second_now_repayMons_range", "loan_second_now_rf_other_count", "loan_second_nowR_bt_other_loan_count", "loan_second_nowR_bt_other_person_ratio", "loan_second_nowR_bt_person_business_ratio", "loan_second_nowR_byDate_to_report_max", "loan_second_nowR_byDate_to_report_mean", "loan_second_nowR_c5_normal_ratio", "loan_second_nowR_gf_crdit_count", "loan_second_nowR_gf_other_count", "loan_second_nowR_gf_other_ratio", "loan_second_nowR_guaranteeForm_giniimpurity", "loan_second_nowR_loanAmount_mean", "loan_second_nowR_loanAmount_range", "loan_second_nowR_month60_State_countN_max", "loan_second_nowR_month60_State_countN_mean", "loan_second_nowR_month60_State_countN_range", "loan_second_nowR_month60_State_countNr_mean", "loan_second_nowR_month60_State_countNull_max", "loan_second_nowR_month60_State_countNull_mean", "loan_second_nowR_month60_State_countNull_range", "loan_second_nowR_month60_State_countNullr_mean", "loan_second_nowR_month60_State_countNullr_sum", "loan_second_nowR_month60_State_countUnknow_sum", "loan_second_nowR_month60_State_countUnknowr_sum", "loan_second_nowR_month60_to_report_min_max", "loan_second_nowR_org_commercial_bank_count", "loan_second_nowR_org_consumer_finance_count", "loan_second_nowR_org_consumer_finance_ratio", "loan_second_nowR_org_trust_company_count", "loan_second_nowR_planRepayAmount_mean", "loan_second_nowR_planRepayAmount_range", "loan_second_nowR_repayAmt_mean", "loan_second_nowR_repayedAmount_mean", "loan_second_nowR_repayFrequency_giniimpurity", "loan_second_nowR_repayMons_max", "loan_second_nowR_repayMons_range", "loan_second_nowR_repayMons_ratio_max", "loan_second_nowR_repayMons_ratio_mean", "loan_second_nowR_repayMons_ratio_range", "loan_second_nowR_repayTerms_mean", "loan_second_nowR_repayTerms_sum", "loan_second_nowR_rf_irregular_ratio", "loan_second_nowR_rf_month_ratio", "loan_second_nowR_rf_once_count", "loan_second_nowR_rf_once_ratio", "loan_second_nowR_rf_other_count", "loan_second_nowR_rf_other_ratio", "loan_second_nowR_startDate_to_report_mean", "loan_second_nowR_startDate_to_report_range", "loan_second_org_commercial_bank_count", "loan_second_org_commercial_bank_ratio", "loan_second_org_consumer_finance_count", "loan_second_org_consumer_finance_ratio", "loan_second_org_micro_loan_count", "loan_second_org_micro_loan_ratio", "loan_second_org_trust_company_count", "loan_second_planRepayAmount_mean", "loan_second_planRepayAmount_sum", "loan_second_repayAmt_max", "loan_second_repayAmt_min", "loan_second_repayedAmount_mean", "loan_second_RepayedAmount_ratio_mean", "loan_second_repayMons_mean", "loan_second_repayMons_ratio_mean", "loan_second_repayMons_ratio_sum", "loan_second_repayTerm_ratio_range", "loan_second_repayTerms_max", "loan_second_rf_once_count", "loan_second_rf_once_ratio", "loan_second_rt_unknow_count", "loan_second_startDate_to_report_mean", "loan_second_startDate_to_report_range", "loan_second_startDate_to_report_sum", "loan_second_vouch_loanAmount_mean", "loan_second_vouch_loanAmount_min", "loan_second_vouch_month60_State_countCr_sum", "loan_second_vouch_month60_State_countNr_mean", "loan_second_vouch_month60_State_countNr_min", "loan_second_vouch_month60_to_report_max_sum", "loan_second_vouchR_balance_ratio_mean", "loan_second_vouchR_class_ncycle_count", "loan_second_vouchR_classify5_num_sum", "loan_second_vouchR_loanGrantOrg_nunique", "loan_second_vouchR_month60_State_countN_sum", "loan_second_vouchR_month60_State_countNull_sum", "loan_second_vouchR_month60_State_num_size_sum", "loan_second_vouchR_month60_to_report_max_sum", "loan_second_vouchR_repayAmt_min", "loan_second_vouchR_repayMons_ratio_mean", "loan_second_vouchR_repayMons_sum", "loan_second_vouchR_repayTerms_sum", "loan_second_vouchR_rf_month_count", "loan_second_vouchR_rf_month_ratio", "loan_special_settlement_count", "LoanCount_count", "m01_query_detail_loan_financing_guarantee_count", "m03_query_detail_card_approval_ratio", "m03_query_detail_date_to_report_mean", "m03_query_detail_guarantee_ratio", "m03_query_detail_loan_commercial_bank_count", "m03_query_detail_loan_commercial_bank_ratio", "m03_query_detail_loan_consumer_finance_ratio", "m03_query_detail_loan_date_to_report_mean", "m06_query_detail_card_approval_count", "m06_query_detail_card_approval_ratio", "m06_query_detail_card_cnt", "m06_query_detail_card_date_to_report_mean", "m06_query_detail_date_to_report_mean", "m06_query_detail_loan_commercial_bank_count", "m06_query_detail_loan_commercial_bank_ratio", "m06_query_detail_loan_date_to_report_max", "m06_query_detail_loan_date_to_report_mean", "m06_query_detail_loan_financing_guarantee_ratio", "m06_query_detail_reason_giniimpurity", "m12_loan_special_settlement_amt", "m12_loan_special_settlement_ratio", "m12_query_detail_card_approval_ratio", "m12_query_detail_card_date_to_report_mean", "m12_query_detail_cnt", "m12_query_detail_date_to_report_mean", "m12_query_detail_funding_approval_ratio", "m12_query_detail_funding_date_to_report_mean", "m12_query_detail_guarantee_date_to_report_max", "m12_query_detail_guarantee_ratio", "m12_query_detail_loan_cnt", "m12_query_detail_loan_consumer_finance_ratio", "m12_query_detail_loan_date_to_report_mean", "m12_query_detail_loan_financing_guarantee_ratio", "m12_query_detail_loan_mon_report_06_count", "m12_query_detail_loan_mon_report_06_ratio", "m12_query_detail_loan_queryDate_to_report_06_ratio", "m12_query_detail_loan_small_loan_count", "m12_query_detail_mon_report_12_count", "m12_query_detail_mon_report_12_ratio", "m12_query_detail_mon_report_giniimpurity", "m12_query_detail_reason_giniimpurity", "m12_query_detail_small_loan_count", "m120_loan_special_other_ratio", "m18_loan_special_guarantor_amt", "m18_loan_special_guarantor_count", "m18_loan_special_other_amt", "m18_loan_special_prepayment_ratio", "m18_loan_special_settlement_amt", "m18_loan_special_settlement_ratio", "m180_loan_special_settlement_amt", "m24_loan_special_guarantor_amt", "m24_loan_special_prepayment_ratio", "m24_loan_special_roll_count", "m24_loan_special_settlement_amt", "m24_loan_special_settlement_count", "m24_loan_special_settlement_ratio", "m24_query_detail_card_mon_report_06_count", "m24_query_detail_card_mon_report_06_ratio", "m24_query_detail_card_queryDate_to_report_06_ratio", "m24_query_detail_cnt", "m24_query_detail_commercial_bank_count", "m24_query_detail_commercial_bank_ratio", "m24_query_detail_date_to_report_mean", "m24_query_detail_funding_approval_ratio", "m24_query_detail_guarantee_cnt", "m24_query_detail_lease_finance_ratio", "m24_query_detail_loan_approval_count", "m24_query_detail_loan_consumer_finance_ratio", "m24_query_detail_loan_date_to_report_max", "m24_query_detail_loan_date_to_report_mean", "m24_query_detail_loan_financing_guarantee_ratio", "m24_query_detail_loan_mon_report_06_ratio", "m24_query_detail_loan_mon_report_12_count", "m24_query_detail_loan_mon_report_12_ratio", "m24_query_detail_loan_mon_report_18_count", "m24_query_detail_loan_mon_report_24_count", "m24_query_detail_loan_mon_report_24_ratio", "m24_query_detail_loan_mon_report_giniimpurity", "m24_query_detail_loan_queryDate_to_report_06_ratio", "m24_query_detail_loan_queryDate_to_report_12_ratio", "m24_query_detail_loan_trust_company_count", "m24_query_detail_loan_trust_company_ratio", "m24_query_detail_mon_report_12_ratio", "m24_query_detail_mon_report_24_ratio", "m24_query_detail_mon_report_giniimpurity", "m24_query_detail_queryDate_to_report_06_ratio", "m24_query_detail_small_loan_count", "m24_query_detail_small_loan_ratio", "m240_loan_special_other_ratio", "m3_loan_special_other_amt", "m3_loan_special_settlement_amt", "m30_loan_special_prepayment_ratio", "m30_loan_special_settlement_count", "m300_loan_special_other_ratio", "m36_loan_special_settlement_count", "m36_query_detail_card_approval_ratio", "m36_query_detail_card_mon_report_06_count", "m36_query_detail_card_mon_report_06_ratio", "m36_query_detail_commercial_bank_count", "m36_query_detail_financing_guarantee_ratio", "m36_query_detail_loan_approval_count", "m36_query_detail_loan_date_to_report_max", "m36_query_detail_loan_date_to_report_mean", "m36_query_detail_loan_financing_guarantee_ratio", "m36_query_detail_loan_mon_report_06_ratio", "m36_query_detail_loan_mon_report_18_count", "m36_query_detail_loan_mon_report_24_count", "m36_query_detail_loan_mon_report_24_ratio", "m36_query_detail_loan_mon_report_giniimpurity", "m36_query_detail_loan_mon_report_nunique", "m36_query_detail_loan_queryDate_to_report_06_ratio", "m36_query_detail_loan_trust_company_count", "m36_query_detail_loan_trust_company_ratio", "m36_query_detail_mon_report_06_ratio", "m36_query_detail_mon_report_12_count", "m36_query_detail_mon_report_24_count", "m36_query_detail_small_loan_ratio", "m360_loan_special_other_ratio", "m42_loan_special_other_ratio", "m42_loan_special_prepayment_amt", "m42_loan_special_prepayment_ratio", "m48_loan_special_prepayment_ratio", "m48_loan_special_settlement_ratio", "m48_query_detail_card_approval_ratio", "m48_query_detail_commercial_bank_count", "m48_query_detail_insurance_company_ratio", "m48_query_detail_lease_finance_ratio", "m48_query_detail_loan_date_to_report_max", "m48_query_detail_loan_date_to_report_mean", "m48_query_detail_loan_financing_guarantee_ratio", "m48_query_detail_loan_mon_report_06_ratio", "m48_query_detail_loan_mon_report_18_count", "m48_query_detail_loan_mon_report_24_count", "m48_query_detail_loan_mon_report_giniimpurity", "m48_query_detail_loan_queryDate_to_report_06_ratio", "m48_query_detail_loan_small_loan_count", "m48_query_detail_loan_trust_company_ratio", "m48_query_detail_mon_report_24_ratio", "m48_query_detail_mon_report_giniimpurity", "m48_query_detail_operator_giniimpurity", "m48_query_detail_queryDate_to_report_06_ratio", "m48_query_detail_queryDate_to_report_12_ratio", "m48_query_detail_reason_giniimpurity", "m48_query_detail_trust_company_ratio", "m54_loan_special_other_ratio", "m54_loan_special_prepayment_amt", "m54_loan_special_prepayment_ratio", "m54_loan_special_settlement_ratio", "m6_loan_special_other_amt", "m60_query_detail_card_mon_report_06_count", "m60_query_detail_card_mon_report_06_ratio", "m60_query_detail_card_queryDate_to_report_06_ratio", "m60_query_detail_commercial_bank_ratio", "m60_query_detail_date_to_report_mean", "m60_query_detail_guarantee_ratio", "m60_query_detail_loan_cnt", "m60_query_detail_loan_consumer_finance_ratio", "m60_query_detail_loan_date_to_report_max", "m60_query_detail_loan_date_to_report_mean", "m60_query_detail_loan_financing_guarantee_ratio", "m60_query_detail_loan_mon_report_06_ratio", "m60_query_detail_loan_mon_report_12_ratio", "m60_query_detail_loan_mon_report_18_count", "m60_query_detail_loan_mon_report_24_count", "m60_query_detail_loan_mon_report_24_ratio", "m60_query_detail_loan_mon_report_giniimpurity", "m60_query_detail_loan_queryDate_to_report_06_ratio", "m60_query_detail_loan_queryDate_to_report_12_ratio", "m60_query_detail_loan_small_loan_count", "m60_query_detail_mon_report_06_ratio", "m60_query_detail_mon_report_giniimpurity", "m60_query_detail_queryDate_to_report_12_ratio", "nloc_6mpay_amt", "other_fstmth", "otherFirstMonth", "otherLoanCount", "otherLoanCount_vs_TotalCount", "query_12m_lnsum", "query_24m_reasonsum", "query_detail_card_queryDate_to_report_01_ratio", "query_detail_card_queryDate_to_report_03_ratio", "query_detail_date_to_report_mean", "query_detail_financing_guarantee_count", "query_detail_lease_finance_ratio", "query_detail_loan_approval_count", "query_detail_loan_date_to_report_max", "query_detail_loan_date_to_report_mean", "query_detail_loan_financing_guarantee_ratio", "query_detail_loan_mon_report_06_ratio", "query_detail_loan_mon_report_12_ratio", "query_detail_loan_mon_report_18_count", "query_detail_loan_mon_report_18_ratio", "query_detail_loan_mon_report_24_count", "query_detail_loan_mon_report_24_ratio", "query_detail_loan_mon_report_giniimpurity", "query_detail_loan_mon_report_nunique", "query_detail_loan_queryDate_to_report_01_ratio", "query_detail_loan_queryDate_to_report_03_ratio", "query_detail_loan_queryDate_to_report_06_ratio", "query_detail_loan_queryDate_to_report_12_ratio", "query_detail_loan_small_loan_count", "query_detail_mon_report_06_ratio", "query_detail_mon_report_12_count", "query_detail_mon_report_18_count", "query_detail_mon_report_18_ratio", "query_detail_queryDate_to_report_01_ratio", "query_detail_queryDate_to_report_03_ratio", "query_detail_small_loan_count", "query_detail_trust_company_ratio", "query_summary_loanAfterQueryCount", "query_summary_selfQueryCount", "recent_loan_rating_worst", "recent_loan_time_till_now", "self_2y_qrynum", "consume_loan_amount_max_now", "consume_loan_planRepayAmount_sum_now", "laco06_lacn", "loan_card_amount_sum", "loan_card_gm06_planRepayAmount_max", "loan_card_gm06_remainingTerms_sum", "loan_card_gm12_RepayedAmount_mean", "loan_card_gm12_RepayedAmount_sum", "loan_card_m01_balance_sum", "loan_card_now_startdata_min_to_report_days", "loan_card_r_operation_loan_ratio", "loan_card_RepayedAmount_sum", "loan_ndue_planRepayAmount_max_24m_now", "loan_second_by03_ncycleR_gf_crdit_ratio", "loan_second_by03_now_month60_State_count1r_mean", "loan_second_by03_now_month60_State_countN_max", "loan_second_by03_now_month60_to_report_mean_sum", "loan_second_by03_now_org_consumer_finance_ratio", "loan_second_by03_nowR_loanAmount_mean", "loan_second_by03_org_giniimpurity", "loan_second_by03_repayFrequency_giniimpurity", "loan_second_by03_startDate_to_report_range", "loan_second_by06_bt_other_loan_ratio", "loan_second_by06_ncycle_guaranteeForm_giniimpurity", "loan_second_by06_ncycleR_bt_other_person_ratio", "loan_second_by06_ncycleR_month60_to_report_min_sum", "loan_second_by06_ncycleR_repayedAmount_sum", "loan_second_by06_now_leftRepayTerms_range", "loan_second_by06_now_month60_State_countNull_range", "loan_second_by06_nowR_repayAmt_sum", "loan_second_by06_RepayedAmount_ratio_mean", "loan_second_by12_month60_to_report_max_max", "loan_second_by12_ncycle_bt_other_person_count", "loan_second_by12_ncycle_bt_other_person_ratio", "loan_second_by12_ncycle_loanGrantOrg_giniimpurity", "loan_second_by12_ncycle_org_consumer_finance_count", "loan_second_by12_ncycle_repayTerm_ratio_min", "loan_second_by12_ncycleR_month60_to_report_mean_mean", "loan_second_by12_now_month60_to_report_min_mean", "loan_second_by12_now_repayMons_min", "loan_second_by12_now_repayMons_ratio_max", "loan_second_by12_now_rf_other_ratio", "loan_second_by12_nowR_balance_ratio_range", "loan_second_by12_nowR_class_ncycle_ratio", "loan_second_by12_nowR_month60_to_report_min_sum", "loan_second_by12_nowR_repayMons_ratio_min", "loan_second_by12_org_commercial_bank_count", "loan_second_m06_loanAmount_max", "loan_second_m06_month60_State_countNullr_range", "loan_second_m06_month60_to_report_min_sum", "loan_second_m06_ncycle_gf_other_count", "loan_second_m06_ncycle_month60_to_report_mean_mean", "loan_second_m06_ncycleR_balance_sum", "loan_second_m06_ncycleR_gf_crdit_ratio", "loan_second_m06_ncycleR_leftRepayTerms_mean", "loan_second_m06_ncycleR_org_commercial_bank_ratio", "loan_second_m06_now_balance_range", "loan_second_m06_now_byDate_to_report_mean", "loan_second_m06_now_month60_State_countNr_max", "loan_second_m06_now_month60_to_report_min_sum", "loan_second_m06_now_repayAmt_min", "loan_second_m06_now_repayMons_mean", "loan_second_m06_now_repayMons_ratio_sum", "loan_second_m06_nowR_loanAmount_range", "loan_second_m06_nowR_month60_to_report_min_mean", "loan_second_m06_org_giniimpurity", "loan_second_m06_RepayedAmount_ratio_mean", "loan_second_m12_month60_State_countNr_mean", "loan_second_m12_month60_to_report_min_mean", "loan_second_m12_ncycle_month60_State_countNullr_mean", "loan_second_m12_ncycle_planRepayAmount_mean", "loan_second_m12_ncycle_repayAmt_range", "loan_second_m12_ncycle_RepayedAmount_ratio_min", "loan_second_m12_ncycle_repayTerms_mean", "loan_second_m12_now_repayedAmount_min", "loan_second_m12_now_repayTerms_range", "loan_second_m12_nowR_month60_to_report_min_mean", "loan_second_m12_nowR_planRepayAmount_mean", "loan_second_m12_nowR_repayedAmount_range", "loan_second_m12_nowR_repayTerms_mean", "loan_second_m12_nowR_rf_month_ratio", "loan_second_m24_month60_State_countNr_max", "loan_second_m24_ncycle_month60_State_countCr_mean", "loan_second_m24_ncycle_month60_State_countNr_range", "loan_second_m24_ncycle_month60_State_countUnknowr_mean", "loan_second_m24_ncycle_org_giniimpurity", "loan_second_m24_ncycle_repayTerm_ratio_max", "loan_second_m24_ncycleR_month60_State_countNullr_mean", "loan_second_m24_now_loanAmount_sum", "loan_second_m24_nowR_bt_other_person_ratio", "loan_second_m24_nowR_repayAmt_mean", "loan_second_m24_planRepayAmount_mean", "loan_second_m24_RepayedAmount_ratio_mean", "loan_second_month60_State_count1r_mean", "loan_second_ncycle_month60_to_report_max_range", "loan_second_ncycle_org_consumer_finance_ratio", "loan_second_ncycle_org_micro_loan_count", "loan_second_ncycle_org_trust_company_count", "loan_second_ncycle_repayAmt_min", "loan_second_ncycle_RepayedAmount_ratio_range", "loan_second_ncycle_repayMons_ratio_min", "loan_second_ncycleR_balance_mean", "loan_second_ncycleR_gf_crdit_ratio", "loan_second_ncycleR_month60_to_report_min_sum", "loan_second_ncycleR_org_commercial_bank_ratio", "loan_second_now_month60_State_countNull_sum", "loan_second_now_month60_State_countUnknowr_mean", "loan_second_nowR_loanGrantOrg_giniimpurity", "loan_second_rf_month_ratio", "loan_second_rf_other_ratio", "m36_query_detail_mon_report_06_count", "m60_loan_special_other_ratio", "m60_query_detail_loan_mon_report_12_count", "m60_query_detail_reason_giniimpurity", "otherloan_num", "query_detail_loan_commercial_bank_count", "loan_second_by12_month60_State_num_mean_mean", ] def getMonList_new(month60Desc): date_list = [] if len(month60Desc) > 5: begin_end_date = re.findall('[0-9]{4}年[0-9]{2}月', month60Desc) begin_date = datetime.datetime.strptime(begin_end_date[0], '%Y年%m月') end_date = datetime.datetime.strptime(begin_end_date[1], '%Y年%m月') while begin_date <= end_date: date_str = begin_date.strftime("%Y.%m") date_list.append(date_str) begin_date += relativedelta(months=1) if len(date_list) > 0: return date_list[-1] else: return '' # 人行数据处理 def rhDataOnline(applyInfo, rhInfo, channel): dict_feature = {} error_rh = [] # data_info = json.loads(request_body) # data_info = request_body # 逐步判断每个数据集内是否都存在数据 pboc_info = rhInfo apply_info = applyInfo # 安徽征信 if (channel == 2) and (len(pboc_info['cc_rh_report_detail_loan_second']) > 0): for i in pboc_info['cc_rh_report_detail_loan_second']: if 'byDate' in i.keys(): pass else: i['byDate'] = getMonList_new(i['month60Desc']) if 'month60Desc' in i else np.nan if (channel == 2) and (len(pboc_info['cc_rh_report_detail_debit_card_second']) > 0): for i in pboc_info['cc_rh_report_detail_debit_card_second']: if 'byDate' in i.keys(): pass else: i['byDate'] = getMonList_new(i['month60Desc']) if 'month60Desc' in i else np.nan if 'statementDate' in i.keys(): pass else: i['statementDate'] = i['cardGrantDate'] if 'cardGrantDate' in i else np.nan if len(pboc_info) > 0 and len(apply_info) > 0: try: # 人行数据返回 dict_out1 = pboc_features.pboc_f(pboc_info=pboc_info, apply_info=apply_info) except Exception as e: error_rh.append(str(e)) dict_out1 = {} # print(dict_out1) # 剔出正确的特征 for key, value in dict_out1.items(): if key in feature: dict_feature[key] = value customer_info = {"loanNo": apply_info["loanNo"], "businessChannel": apply_info['businessChannel'], "name": apply_info['name'], "idcardNo": apply_info['idcardNo'], "mobile": apply_info['mobile'], "loan_time": apply_info['loan_time'], "totalAmount":apply_info['totalAmount']} # 对每个 特征进行辨识 customer_info.update(dict_feature) rh_data = pd.DataFrame([customer_info]) # print(rh_data['self_2y_qrynum']) rh_data = rh_data.add_prefix('rhData_') rh_data = rh_data.rename(columns={"rhData_loanNo": "loanNo", "rhData_businessChannel": "businessChannel", "rhData_name": "name", "rhData_idcardNo": "idcardNo", "rhData_mobile": "mobile"}) else: error_rh.append("人行数据为空!") return {"code":1,"data":-1,"msg":"人行数据为空!"} # 对error_rhData数据进行增加 rh_data["error_rhData"] = [str(error_rh)] # rh_data.fillna(-99, inplace=True) json_records = rh_data.to_json(orient="records", force_ascii=False) json_records = json.loads(json_records) # print(json_records) # response_data = {"code": 0, # "data": json_records[0], # "msg": "Success!"} response_data = pd.DataFrame(json_records) # response = lgh_rh_20211001(response_data) return response_data # 百融数据处理 def bairongDataOnline(applyInfo, bairongInfo): error_bairong = [] if len(bairongInfo) > 0: bairong_respBody = bairongInfo # 百融数据 try: bairong_data = features_func.BAIRONG_APPLY_LOAN_feature_online(dict_out={}, json_dict=bairong_respBody) except Exception as e: error_bairong.append(str(e)) bairong_data = {} else: error_bairong.append("No bairong_respBody") print('{"error":1,"data":"-1","msg":"No bairong_respBody!"}') bairong_respBody = {} try: bairong_data = features_func.BAIRONG_APPLY_LOAN_feature_online(dict_out={}, json_dict={}) except Exception as e: error_bairong.append(str(e)) bairong_data = {} bairong_data = pd.DataFrame([bairong_data]) bairong_data["loanNo"] = applyInfo["loanNo"] if 'loanNo' in applyInfo.keys() else np.nan bairong_data["businessChannel"] = applyInfo["businessChannel"] if 'businessChannel' in applyInfo.keys() else np.nan bairong_data["name"] = applyInfo["name"] if 'name' in applyInfo.keys() else np.nan bairong_data["idcardNo"] = applyInfo["idcardNo"] if 'idcardNo' in applyInfo.keys() else np.nan bairong_data["mobile"] = applyInfo["mobile"] if 'mobile' in applyInfo.keys() else np.nan bairong_data["loan_time"] = applyInfo["loan_time"] if 'loan_time' in applyInfo.keys() else np.nan bairong_data = bairong_data.add_prefix('bairongData_') bairong_data["error_bairongData"] = [str(error_bairong)] # print(bairong_data) # bairong_data.fillna(-99, inplace=True) json_records = bairong_data.to_json(orient="records", force_ascii=False) json_records = json.loads(json_records) response_data = pd.DataFrame(json_records) # response_data = {"code": 0, # "data": json_records[0], # "msg": "Success!"} return response_data # 新颜数据处理 def xinyanDataOnline(applyInfo, xinyanInfo): error_xinyan = [] apply_info = applyInfo # 新颜数据 if len(xinyanInfo) > 0: xinyan_respBody = xinyanInfo try: xinyan_data = features_func.XINYAN_RADAR_feature_func_online(dict_add={}, json_dict=xinyan_respBody, appl_time=apply_info['loan_time']) except Exception as e: error_xinyan.append(str(e)) xinyan_data = {} else: error_xinyan.append("No xinyan_respBody") print('{"error":1,"data":"-1","msg":"No xinyan_respBody!"}') xinyan_respBody = {} try: xinyan_data = features_func.XINYAN_RADAR_feature_func_online(dict_add={}, json_dict={}, appl_time=apply_info['loan_time']) except Exception as e: error_xinyan.append(str(e)) xinyan_data = {} xinyan_data = pd.DataFrame([xinyan_data]) xinyan_data["loanNo"] = applyInfo["loanNo"] if 'loanNo' in applyInfo.keys() else np.nan xinyan_data["businessChannel"] = applyInfo["businessChannel"] if 'businessChannel' in applyInfo.keys() else np.nan xinyan_data["name"] = applyInfo["name"] if 'name' in applyInfo.keys() else np.nan xinyan_data["idcardNo"] = applyInfo["idcardNo"] if 'idcardNo' in applyInfo.keys() else np.nan xinyan_data["mobile"] = applyInfo["mobile"] if 'mobile' in applyInfo.keys() else np.nan xinyan_data["loan_time"] = applyInfo["loan_time"] if 'loan_time' in applyInfo.keys() else np.nan xinyan_data = xinyan_data.add_prefix('xinyanData_') xinyan_data["error_xinyanData"] = [str(error_xinyan)] # print(xinyan_data) # xinyan_data.fillna(-99, inplace=True) json_records = xinyan_data.to_json(orient="records", force_ascii=False) json_records = json.loads(json_records) # response_data = {"code": 0, # "data": json_records[0], # "msg": "Success!"} response_data = pd.DataFrame(json_records) return response_data # 京东数据处理 def jingdongDataOnline(applyInfo, jingdongInfo): error_jingdong = [] if len(jingdongInfo) > 0: jingdong_respBody = jingdongInfo["data"] # 京东数据 try: jingdong_data = features_func.JD_feature_func_online(dict_add={}, json_dict=jingdong_respBody) except Exception as e: error_jingdong.append(str(e)) jingdong_data = {} else: error_jingdong.append("No JD_CUSTOM_YHHXZB") print('{"error":1,"data":"-1","msg":"No JD_CUSTOM_YHHXZB!"}') jingdong_respBody = {} # 京东数据 try: jingdong_data = features_func.JD_feature_func_online(dict_add={}, json_dict={}) except Exception as e: error_jingdong.append(str(e)) jingdong_data = {} jingdong_data = pd.DataFrame([jingdong_data]) jingdong_data["loanNo"] = applyInfo["loanNo"] if 'loanNo' in applyInfo.keys() else np.nan jingdong_data["businessChannel"] = applyInfo["businessChannel"] if 'businessChannel' in applyInfo.keys() else np.nan jingdong_data["name"] = applyInfo["name"] if 'name' in applyInfo.keys() else np.nan jingdong_data["idcardNo"] = applyInfo["idcardNo"] if 'idcardNo' in applyInfo.keys() else np.nan jingdong_data["mobile"] = applyInfo["mobile"] if 'mobile' in applyInfo.keys() else np.nan jingdong_data["loan_time"] = applyInfo["loan_time"] if 'loan_time' in applyInfo.keys() else np.nan jingdong_data = jingdong_data.add_prefix('jingdongData_') jingdong_data["error_jingdongData"] = [str(error_jingdong)] # jingdong_data.fillna(-99, inplace=True) json_records = jingdong_data.to_json(orient="records", force_ascii=False) json_records = json.loads(json_records) # response_data = {"code": 0, # "data": json_records[0], # "msg": "Success!"} response_data = pd.DataFrame(json_records) return response_data # 华道数据处理 def huadaoDataOnline(applyInfo, huadaoInfo): error_huadao = [] apply_info = applyInfo # 华道数据 if len(huadaoInfo) > 0: huadao_respBody = huadaoInfo try: huadao_data = features_func.huadao_feature_func_online(dict_add={}, json_dict=huadao_respBody, appl_time=apply_info['loan_time']) except Exception as e: error_huadao.append(str(e)) huadao_data = {} else: error_huadao.append("No huadao_respBody") print('{"error":1,"data":"-1","msg":"No huadao_respBody!"}') huadao_respBody = {} try: # 华道数据 huadao_data = features_func.huadao_feature_func_online(dict_add={}, json_dict={}, appl_time=apply_info['loan_time']) except Exception as e: error_huadao.append(str(e)) huadao_data = {} huadao_data = pd.DataFrame([huadao_data]) huadao_data["loanNo"] = applyInfo["loanNo"] if 'loanNo' in applyInfo.keys() else np.nan huadao_data["businessChannel"] = applyInfo["businessChannel"] if 'businessChannel' in applyInfo.keys() else np.nan huadao_data["name"] = applyInfo["name"] if 'name' in applyInfo.keys() else np.nan huadao_data["idcardNo"] = applyInfo["idcardNo"] if 'idcardNo' in applyInfo.keys() else np.nan huadao_data["mobile"] = applyInfo["mobile"] if 'mobile' in applyInfo.keys() else np.nan huadao_data["loan_time"] = applyInfo["loan_time"] if 'loan_time' in applyInfo.keys() else np.nan huadao_data = huadao_data.add_prefix('huadaoData_') huadao_data["error_huadaoData"] = [str(error_huadao)] # print(huadao_data) # huadao_data.fillna(-99, inplace=True) json_records = huadao_data.to_json(orient="records", force_ascii=False) json_records = json.loads(json_records) # response_data = {"code": 0, # "data": json_records[0], # "msg": "Success!"} response_data = pd.DataFrame(json_records) return response_data # 百行数据处理 def bhDataOnline(applyInfo, bhInfo): error_baihang = [] if len(bhInfo) > 0: try: baihang_info = bhInfo # 百行数据返回 baihang_data = bh_data.get_data_set(baihang_info=baihang_info) # 新百行特征-1 dict_in, dict_out = bh_data.get_data(baihang_info=baihang_info) data_new1 = newBhData(dict_in, dict_out) # 特征加工 baihang_data.update(data_new1) baihang_data = pd.DataFrame([baihang_data]) except Exception as e: error_baihang.append(str(e)) baihang_data = pd.DataFrame() else: error_baihang.append("No baihanginfo") print('{"error":1,"data":"-1","msg":"No baihanginfo!"}') try: baihang_info = {} # 百行数据返回 baihang_data = bh_data.get_data_set(baihang_info=baihang_info) # 新百行特征-1 dict_in, dict_out = bh_data.get_data(baihang_info=baihang_info) data_new1 = newBhData(dict_in, dict_out) # 特征加工 baihang_data.update(data_new1) baihang_data = pd.DataFrame([baihang_data]) except Exception as e: error_baihang.append(str(e)) baihang_data = pd.DataFrame() baihang_data["loanNo"] = applyInfo["loanNo"] if 'loanNo' in applyInfo.keys() else np.nan baihang_data["businessChannel"] = applyInfo["businessChannel"] if 'businessChannel' in applyInfo.keys() else np.nan baihang_data["name"] = applyInfo["name"] if 'name' in applyInfo.keys() else np.nan baihang_data["idcardNo"] = applyInfo["idcardNo"] if 'idcardNo' in applyInfo.keys() else np.nan baihang_data["mobile"] = applyInfo["mobile"] if 'mobile' in applyInfo.keys() else np.nan baihang_data["loan_time"] = applyInfo["loan_time"] if 'loan_time' in applyInfo.keys() else np.nan baihang_data = baihang_data.add_prefix('baihangData_') baihang_data['error_baihangData'] = [str(error_baihang)] # baihang_data.fillna(-99, inplace=True) json_records = baihang_data.to_json(orient="records", force_ascii=False) json_records = json.loads(json_records) # print(json_records[0]) # print(type(json_records)) # response_data = {"code": 0, # "data": json_records[0], # "msg": "Success!"} response_data = pd.DataFrame(json_records) return response_data # 百行普惠-优分黑名单-优分多头-安徽社保数据处理 def bhph_black_duotou_shebao(bhphInfo, youfenInfo, shebaoInfo): """ :param bhphInfo: 百行普惠数据 :param youfenInfo: 优分黑名单,优分多头 :param shebaoInfo: 安徽社保 :return: """ # 字典处理黑名单数据 def dict_handle_black(x): if x['data']['statusCode'] == "2012": data = json_normalize(x['data']['result']) data = data.rename(columns=lambda x: x.replace(".", "_") if type(x) is str else x) return data else: return intal_init_black(pd.DataFrame()) # 字典处理社保数据 def dict_handle_shebao(x): return pd.DataFrame([x['levelInfo']]) # 字典处理百行普惠数据 def dict_handle_bh_ph(x): return pd.DataFrame([{"score": x['score']}]) # 字典处理多头数据 def dict_handle_duotou(x): if x['data']['statusCode'] == "2012": data = json_normalize(x['data']['result']) data = data.rename(columns=lambda x: x.replace(".", "_") if type(x) is str else x) return data else: return intal_init_duotou(pd.DataFrame()) if 'black' in youfenInfo.keys(): df_black = dict_handle_black(youfenInfo['black']) if df_black.empty: pass else: df_black = df_black.add_prefix('black_') else: df_black = intal_init_black(pd.DataFrame()) if 'risk' in youfenInfo.keys(): df_duotou = dict_handle_duotou(youfenInfo['risk']) if df_duotou.empty: pass else: df_duotou = df_duotou.add_prefix('duotou_') else: df_duotou = intal_init_duotou(pd.DataFrame()) if len(shebaoInfo) > 0: df_shebao = dict_handle_shebao(shebaoInfo) df_shebao = df_shebao.add_prefix('shebao_') else: df_shebao = intal_init_shebao(pd.DataFrame()) if len(bhphInfo) > 0: df_bhph = dict_handle_bh_ph(bhphInfo) df_bhph = df_bhph.add_prefix('bhph_') else: df_bhph = intal_init_bhph(pd.DataFrame()) data = pd.concat([df_black, df_duotou, df_shebao,df_bhph],axis=1) # 特征工程 finnal_data = data.replace('', np.nan) col = finnal_data.select_dtypes(include='object').columns.tolist() for i in col: try: finnal_data[i] = finnal_data[i].astype("float64") except: pass finnal_data = handle_new_third(finnal_data) return finnal_data # 数据处理 def runMain(request_body=None, channel=0): # 取三要素 # 特征返回处理 if 'applyInfo' in request_body.keys(): applyInfo = request_body['applyInfo'] loanNo = request_body['applyInfo']['loanNo'] businessChannel = request_body['applyInfo']['businessChannel'] idcardNo = applyInfo['idcardNo'] mobile = applyInfo['mobile'] name = applyInfo['name'] data = { "idcardNo": applyInfo['idcardNo'], "mobile": applyInfo['mobile'], "name": applyInfo['name'] } else: applyInfo = {} loanNo = np.nan data = {} businessChannel = np.nan idcardNo = np.nan mobile = np.nan name = np.nan if 'rhInfo' in request_body.keys(): rhInfo = request_body['rhInfo'] else: rhInfo = {} if 'bhInfo' in request_body.keys(): bhInfo = request_body['bhInfo'] else: bhInfo = {} if 'jingdongInfo' in request_body.keys(): jdInfo = request_body['jingdongInfo'] else: jdInfo = {} if 'xinyanInfo' in request_body.keys(): xinyanInfo = request_body['xinyanInfo'] else: xinyanInfo = {} if 'bairongInfo' in request_body.keys(): brInfo = request_body['bairongInfo'] else: brInfo = {} if 'huadaoInfo' in request_body.keys(): huadaoInfo = request_body['huadaoInfo'] else: huadaoInfo = {} if 'bhphInfo' in request_body.keys(): bhphInfo = request_body['bhphInfo'] else: bhphInfo = {} if 'youfenInfo' in request_body.keys(): youfenInfo = request_body['youfenInfo'] else: youfenInfo = {} if 'shebaoInfo' in request_body.keys(): shebaoInfo = request_body['shebaoInfo'] else: shebaoInfo = {} # 加载数据object数据格式 col_object = load('./joblib/col_object.joblib') # lgh_rh_20211001 人行模型处理 rh_feature_df = rhDataOnline(applyInfo, rhInfo, channel) # lgh_bh_20211001 百行模型处理 bh_feature_df = bhDataOnline(applyInfo, bhInfo) # lgh_br_20211001 百融模型处理 br_feature_df = bairongDataOnline(applyInfo, brInfo) # lgh_jd_20211001 京东模型处理 jd_feature_df = jingdongDataOnline(applyInfo, jdInfo) # lgh_hd_20211001 华道模型处理 hd_feature_df = huadaoDataOnline(applyInfo, huadaoInfo) # lgh_xy_20211001 新颜模型处理 xinyan_feature_df = xinyanDataOnline(applyInfo, xinyanInfo) # lgh_all_20211001 全数据模型 all_feature_df = pd.concat([br_feature_df, jd_feature_df, hd_feature_df, xinyan_feature_df, bh_feature_df, rh_feature_df], axis=1) # 转数据格式 all_col = all_feature_df.select_dtypes(include='object').columns.tolist() all_object = list(set(all_col)-set(col_object)) for i in all_object: all_feature_df[i] = pd.to_numeric(all_feature_df[i], errors='ignore') test1_time = time() print("特征加工计算时间:", test1_time - begin_time) try: lgh_rh_20211001_score = lgh_rh_20211001(all_feature_df) except Exception as e: print("人行模型报错:", e) lgh_rh_20211001_score = {'rh_dpd60_raw_score': -1,'pboc2_fpd20_raw_coor_score': -1} rh_time = time() print("人行模型计算时间:", rh_time - test1_time) try: lgh_br_20211001_score = lgh_br_20211001(all_feature_df) except Exception as e: print("百融模型报错:", e) lgh_br_20211001_score = {'bairong_dpd60_raw_score': -1} br_time = time() print("百融模型计算时间:", br_time - rh_time) try: lgh_jd_20211001_score = lgh_jd_20211001(all_feature_df) except Exception as e: print("京东模型报错:", e) lgh_jd_20211001_score = {'jingdong_fpd20_raw_block3_score': -1} jd_time = time() print("京东模型计算时间:", jd_time - br_time) try: # lgh_big_20211001 大数据模型 lgh_big_20211001_score = lgh_big_20211001(all_feature_df) except Exception as e: print("大数据模型报错:", e) lgh_big_20211001_score = {'big3_dpd60_raw_block3_score': -1, 'big3_dpd60_raw_n3_score': -1, 'big3_fpd20_raw_coor_score': -1, 'big_fpd20_raw_coor_1_score': -1, 'big_fpd20_raw_score': -1} big_time = time() print("大数据模型计算时间:", big_time - jd_time) try: lgh_all_20211001_score = lgh_all_20211001(all_feature_df) except Exception as e: print("全数据模型报错:", e) lgh_all_20211001_score = {'all3_dpd60_raw_block3_score': -1, 'all3_fpd20_raw_block3_score': -1, 'all3_fpd20_raw_coor_score': -1, 'all_dpd60_raw_score': -1} all_time = time() print("全数据模型计算时间:", all_time - big_time) # yzj_all_20211001 全数据模型 yzj_all_20211001_score = yzj_all_20211001(all_feature_df) yzj_time = time() print("yzj模型计算时间:", yzj_time - all_time) # cxt_all_20211001 全数据模型 cxt_all_20211001_score = cxt_all_20211001(all_feature_df) cxt_time = time() print("cxt模型计算时间:", cxt_time - yzj_time) # zgl 全数据模型 # zgl_all_20211001_score = zgl_main(request_body) # 百行普惠-优分黑名单-优分多头-安徽社保数据处理 new_third_data = bhph_black_duotou_shebao(bhphInfo, youfenInfo, shebaoInfo) try: lgh_youfen_20211001_score = lgh_youfen_20211001(new_third_data) except Exception as e: print("百行普惠-优分黑名单-优分多头-安徽社保数据模型报错:", e) lgh_youfen_20211001_score = {'youfen_fpd20_raw_coor3_score': -1} test2_time = time() print("新三方模型计算时间:", test2_time - cxt_time) print("模型计算时间:",test2_time-test1_time) # final_data = pd.concat([all_feature_df, new_third_data], axis=1) if new_third_data['black_cellphoneDimension_seriousCondition_hit'].values.tolist(): black_cellphoneDimension_seriousCondition_hit = new_third_data['black_cellphoneDimension_seriousCondition_hit'].values[0] else: black_cellphoneDimension_seriousCondition_hit = np.nan if new_third_data['black_idcardDimension_seriousCondition_hit'].values.tolist(): black_idcardDimension_seriousCondition_hit = new_third_data['black_idcardDimension_seriousCondition_hit'].values[0] else: black_idcardDimension_seriousCondition_hit = np.nan if new_third_data['bhph_score'].values.tolist(): bhph_score = new_third_data['bhph_score'].values[0] else: bhph_score = np.nan if new_third_data['shebao_IncomeLevel'].values.tolist(): shebao_IncomeLevel = new_third_data['shebao_IncomeLevel'].values[0] else: shebao_IncomeLevel = np.nan if new_third_data['shebao_StabilityLevel'].values.tolist(): shebao_StabilityLevel = new_third_data['shebao_StabilityLevel'].values[0] else: shebao_StabilityLevel = np.nan if new_third_data['shebao_CreditLevel'].values.tolist(): shebao_CreditLevel = new_third_data['shebao_CreditLevel'].values[0] else: shebao_CreditLevel = np.nan # 拼接返回 dict_a = {'loanNo': loanNo, 'businessChannel': businessChannel, 'name': name, 'idcardNo': idcardNo, 'mobile': mobile, 'black_cellphoneDimension_seriousCondition_hit': black_cellphoneDimension_seriousCondition_hit, 'black_idcardDimension_seriousCondition_hit': black_idcardDimension_seriousCondition_hit, 'bhph_score': bhph_score, 'shebao_IncomeLevel': shebao_IncomeLevel, 'shebao_StabilityLevel': shebao_StabilityLevel, 'shebao_CreditLevel': shebao_CreditLevel} dict_a.update(lgh_rh_20211001_score) dict_a.update(lgh_br_20211001_score) dict_a.update(lgh_jd_20211001_score) dict_a.update(lgh_youfen_20211001_score) dict_a.update(lgh_big_20211001_score) dict_a.update(lgh_all_20211001_score) dict_a.update(yzj_all_20211001_score) dict_a.update(cxt_all_20211001_score) # dict_a.update(zgl_all_20211001_score) return dict_a request_body = {"rhInfo":{"cc_rh_report_status":{"badCardCount":0,"badClassify5":0,"creditCardCurrentOverdue":0,"creditCardCurrentOverdueAmount":0,"id":160878,"loanCurrentOverdue":0,"loanCurrentOverdueAmount":0,"loanOverdue180Amount":0,"loanOverdue31Amount":0,"loanOverdue61Amount":0,"loanOverdue91Amount":0,"reportId":158537},"cc_rh_report_dissent_tips":{"content":"信息主体对信用报告内容提出了0笔异议且正在处理中,请浏览时注意阅读相关内容。","id":147342,"reportId":158537},"cc_rh_report_public_housefund":[{"id":45318,"payArea":"广东省深圳市","payDate":"2020.09.17","payEndDate":"2021.03","payFirstDate":"2020.09","payMonthAmount":0,"payPersonPercent":"9 %","payStatus":"封存","payWorkUnit":"石家庄魔宁网络科技有限公司深圳分公司","payWorkUnitPercent":"9 %","reportId":158537,"updateDate":"2021.06"}],"cc_rh_report_summary_recovery":[],"cc_rh_report_summary_debt_loan":{"accountCount":4,"avgRepaymentAmount":845,"balance":5277,"businessType":1,"creditTotalAmount":9775,"id":158992,"orgCount":4,"reportId":158537},"cc_rh_report_summary_overdue":{"badDebtBalance":0,"badDebtCount":0,"cardOverdueCount":0,"cardOverdueMonthMax":0,"cardOverdueMonthMaxAmount":0,"cardOverdueMonthSum":0,"compensationBalance":0,"compensationCount":0,"disposalBalance":0,"disposalCount":0,"id":158291,"loanOverdueCount":0,"loanOverdueMaxMonth":0,"loanOverdueMonthMaxAmount":0,"loanOverdueMonthSum":0,"loopLoanCount":0,"loopLoanMaxAmount":0,"loopLoanMaxMonth":0,"loopLoanTotalMonth":0,"reportId":158537,"semiCardOverdueCount":0,"semiCardOverdueMonthMax":0,"semiCardOverdueMonthMaxAmount":0,"semiCardOverdueMonthSum":0,"subAccountCount":0,"subAccountMaxAmount":0,"subAccountMaxMonth":0,"subAccountTotalMonth":0},"cc_rh_report_detail_debit_card_second":[],"cc_rh_report_customer_mobile":[{"id":251096,"mobile":"13016277626","reportId":158537,"updateDate":"2021.05.21"},{"id":251095,"mobile":"16689776475","reportId":158537,"updateDate":"2021.05.29"}],"cc_rh_report_query_detail":[{"id":6408944,"queryDate":"2021.07.28","queryOperator":"商业银行\"SR\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408946,"queryDate":"2021.07.02","queryOperator":"消费金融公司\"OW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408948,"queryDate":"2021.06.22","queryOperator":"消费金融公司\"VO\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408950,"queryDate":"2021.06.21","queryOperator":"小额贷款公司\"DA\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408953,"queryDate":"2021.06.01","queryOperator":"融资租赁公司\"AV\"","queryReason":"融资审批","reportId":158537,"reportNo":""},{"id":6408955,"queryDate":"2021.05.31","queryOperator":"小额贷款公司\"SS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408957,"queryDate":"2021.05.31","queryOperator":"消费金融公司\"ZH\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408959,"queryDate":"2021.05.30","queryOperator":"商业银行\"ON\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6408961,"queryDate":"2021.05.30","queryOperator":"小额贷款公司\"CY\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408963,"queryDate":"2021.05.30","queryOperator":"消费金融公司\"JX\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408965,"queryDate":"2021.05.29","queryOperator":"消费金融公司\"SC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408967,"queryDate":"2021.05.29","queryOperator":"小额贷款公司\"AZ\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408969,"queryDate":"2021.05.27","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408971,"queryDate":"2021.05.22","queryOperator":"商业银行\"QC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408973,"queryDate":"2021.05.21","queryOperator":"商业银行\"FB\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408975,"queryDate":"2021.05.21","queryOperator":"消费金融公司\"VW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408978,"queryDate":"2021.04.05","queryOperator":"消费金融公司\"SC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408980,"queryDate":"2021.03.27","queryOperator":"商业银行\"MG\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408982,"queryDate":"2021.03.22","queryOperator":"小额贷款公司\"DA\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408984,"queryDate":"2021.03.12","queryOperator":"商业银行\"SR\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408986,"queryDate":"2021.02.20","queryOperator":"消费金融公司\"SC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408988,"queryDate":"2021.02.15","queryOperator":"商业银行\"QC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408990,"queryDate":"2021.02.10","queryOperator":"商业银行\"CW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408992,"queryDate":"2021.02.10","queryOperator":"消费金融公司\"RC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408994,"queryDate":"2021.02.10","queryOperator":"消费金融公司\"VQ\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408996,"queryDate":"2021.01.30","queryOperator":"商业银行\"JY\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6408998,"queryDate":"2021.01.30","queryOperator":"小额贷款公司\"CY\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409000,"queryDate":"2021.01.29","queryOperator":"商业银行\"YX\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409002,"queryDate":"2021.01.29","queryOperator":"消费金融公司\"ZH\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409005,"queryDate":"2021.01.29","queryOperator":"小额贷款公司\"AZ\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409007,"queryDate":"2021.01.29","queryOperator":"小额贷款公司\"WT\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409009,"queryDate":"2021.01.29","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409011,"queryDate":"2021.01.17","queryOperator":"商业银行\"CE\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409013,"queryDate":"2021.01.15","queryOperator":"商业银行\"RS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409015,"queryDate":"2021.01.15","queryOperator":"商业银行\"TQ\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409017,"queryDate":"2021.01.04","queryOperator":"商业银行\"GJ\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409019,"queryDate":"2020.12.26","queryOperator":"消费金融公司\"HI\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409021,"queryDate":"2020.12.25","queryOperator":"小额贷款公司\"AZ\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409023,"queryDate":"2020.12.25","queryOperator":"小额贷款公司\"YI\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409025,"queryDate":"2020.12.25","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409027,"queryDate":"2020.12.22","queryOperator":"小额贷款公司\"SS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409029,"queryDate":"2020.12.21","queryOperator":"商业银行\"PR\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409031,"queryDate":"2020.12.21","queryOperator":"商业银行\"RS\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409034,"queryDate":"2020.12.21","queryOperator":"消费金融公司\"SC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409036,"queryDate":"2020.12.20","queryOperator":"小额贷款公司\"VC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409038,"queryDate":"2020.12.18","queryOperator":"小额贷款公司\"DA\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409040,"queryDate":"2020.12.17","queryOperator":"商业银行\"MQ\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409042,"queryDate":"2020.12.11","queryOperator":"商业银行\"SR\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409044,"queryDate":"2020.12.04","queryOperator":"商业银行\"SX\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409046,"queryDate":"2020.11.10","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409048,"queryDate":"2020.11.06","queryOperator":"商业银行\"QC\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409050,"queryDate":"2020.10.29","queryOperator":"商业银行\"FB\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409051,"queryDate":"2020.09.30","queryOperator":"消费金融公司\"GW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409052,"queryDate":"2020.09.21","queryOperator":"商业银行\"DH\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409053,"queryDate":"2020.09.20","queryOperator":"商业银行\"FB\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409054,"queryDate":"2020.08.17","queryOperator":"商业银行\"QC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409055,"queryDate":"2020.07.14","queryOperator":"商业银行\"RS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409056,"queryDate":"2020.07.14","queryOperator":"消费金融公司\"ZH\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409057,"queryDate":"2020.07.13","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409058,"queryDate":"2020.07.13","queryOperator":"小额贷款公司\"DA\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409059,"queryDate":"2020.06.14","queryOperator":"商业银行\"RS\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409060,"queryDate":"2020.06.03","queryOperator":"外资银行\"UX\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409061,"queryDate":"2020.06.03","queryOperator":"商业银行\"RS\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409062,"queryDate":"2020.05.26","queryOperator":"商业银行\"ST\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409063,"queryDate":"2020.05.26","queryOperator":"商业银行\"MQ\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409064,"queryDate":"2020.05.26","queryOperator":"商业银行\"YX\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409065,"queryDate":"2020.05.22","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409066,"queryDate":"2020.05.19","queryOperator":"商业银行\"MT\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409067,"queryDate":"2020.05.13","queryOperator":"商业银行\"WR\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409068,"queryDate":"2020.05.13","queryOperator":"商业银行\"QC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409069,"queryDate":"2020.04.04","queryOperator":"商业银行\"MQ\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409070,"queryDate":"2020.03.28","queryOperator":"商业银行\"DH\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409071,"queryDate":"2020.03.28","queryOperator":"商业银行\"YX\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409072,"queryDate":"2020.03.23","queryOperator":"商业银行\"VU\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409073,"queryDate":"2020.03.23","queryOperator":"商业银行\"CE\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409074,"queryDate":"2020.03.18","queryOperator":"商业银行\"QC\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409075,"queryDate":"2020.03.18","queryOperator":"商业银行\"RS\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409076,"queryDate":"2020.02.21","queryOperator":"消费金融公司\"XW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409077,"queryDate":"2020.02.21","queryOperator":"消费金融公司\"GW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409078,"queryDate":"2020.02.12","queryOperator":"商业银行\"DH\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409079,"queryDate":"2020.02.12","queryOperator":"消费金融公司\"XO\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409080,"queryDate":"2020.02.11","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409081,"queryDate":"2020.02.11","queryOperator":"商业银行\"YX\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409082,"queryDate":"2020.02.11","queryOperator":"消费金融公司\"XW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409083,"queryDate":"2020.02.02","queryOperator":"消费金融公司\"SC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409084,"queryDate":"2020.01.31","queryOperator":"商业银行\"QC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409085,"queryDate":"2020.01.31","queryOperator":"商业银行\"QC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409086,"queryDate":"2020.01.06","queryOperator":"商业银行\"MQ\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409087,"queryDate":"2019.12.24","queryOperator":"商业银行\"PR\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409088,"queryDate":"2019.12.24","queryOperator":"消费金融公司\"XO\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409089,"queryDate":"2019.12.21","queryOperator":"消费金融公司\"OW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409090,"queryDate":"2019.12.11","queryOperator":"商业银行\"RS\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409091,"queryDate":"2019.11.29","queryOperator":"商业银行\"QC\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409092,"queryDate":"2019.11.24","queryOperator":"消费金融公司\"XO\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409093,"queryDate":"2019.11.09","queryOperator":"商业银行\"YX\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409094,"queryDate":"2019.11.05","queryOperator":"消费金融公司\"GW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409095,"queryDate":"2019.11.04","queryOperator":"消费金融公司\"XW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409096,"queryDate":"2019.10.13","queryOperator":"消费金融公司\"XO\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409097,"queryDate":"2019.10.13","queryOperator":"商业银行\"QC\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409098,"queryDate":"2019.09.27","queryOperator":"小额贷款公司\"GS\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409099,"queryDate":"2019.09.14","queryOperator":"商业银行\"KS\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409100,"queryDate":"2019.09.12","queryOperator":"商业银行\"VU\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409101,"queryDate":"2019.09.11","queryOperator":"商业银行\"RS\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409102,"queryDate":"2019.09.07","queryOperator":"消费金融公司\"GW\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409103,"queryDate":"2019.09.07","queryOperator":"消费金融公司\"XO\"","queryReason":"贷款审批","reportId":158537,"reportNo":""},{"id":6409104,"queryDate":"2019.09.06","queryOperator":"外资银行\"EA\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409105,"queryDate":"2019.08.29","queryOperator":"商业银行\"QC\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""},{"id":6409106,"queryDate":"2019.08.21","queryOperator":"商业银行\"MQ\"","queryReason":"信用卡审批","reportId":158537,"reportNo":""}],"cc_rh_report":{"applyId":176546,"createTime":"2021-07-30 17:08:32","id":158537,"idType":"身份证","idcardNo":"430223199810267273","name":"吴凯","queryOperator":"青年优品融资租赁有限公司","queryReason":"融资审批","queryTime":"","reportNo":"2021073016024885764780","reportTime":"2021.07.30 16:02:48"},"cc_rh_report_customer_profession":[{"duty":"--","entryYear":"--","id":505648,"industry":"--","profession":"不便分类的其他从业人员","reportId":158537,"technicalLevel":"--","updateTime":"2021.05.21","workUnit":"未知","workUnitAddr":"湖南省攸县联星街道雪花社区翻身巷15号附203号","workUnitPhone":"--","workUnitType":"--"},{"duty":"--","entryYear":"--","id":505649,"industry":"租赁和商务服务业","profession":"生产、运输设备操作人员及有关人员","reportId":158537,"technicalLevel":"--","updateTime":"2021.04.05","workUnit":"海南网神网咖网络有限公司","workUnitAddr":"--","workUnitPhone":"--","workUnitType":"--"},{"duty":"--","entryYear":"--","id":505650,"industry":"信息传输、软件和信息技术服务业","profession":"办事人员和有关人员","reportId":158537,"technicalLevel":"--","updateTime":"2021.03.27","workUnit":"吴凯","workUnitAddr":"湖南省攸县联星街道雪花社区翻身巷15号附203号","workUnitPhone":"--","workUnitType":"--"}],"cc_rh_report_loan_special_detail_second":[{"id":1225776,"loanId":4105765,"reportId":158537,"specialTradeAmount":1500,"specialTradeChangeMonth":1,"specialTradeDate":"2021.04.21","specialTradeDetail":"提前还款/结清。","specialTradeType":"提前结清"},{"id":1225775,"loanId":4105763,"reportId":158537,"specialTradeAmount":2230,"specialTradeChangeMonth":0,"specialTradeDate":"2021.01.30","specialTradeDetail":"提前还款(全部),变更月数0个月","specialTradeType":"提前结清"},{"id":1225774,"loanId":4105760,"reportId":158537,"specialTradeAmount":703,"specialTradeChangeMonth":0,"specialTradeDate":"2021.01.31","specialTradeDetail":"--","specialTradeType":"提前结清"},{"id":1225773,"loanId":4105758,"reportId":158537,"specialTradeAmount":407,"specialTradeChangeMonth":0,"specialTradeDate":"2020.10.15","specialTradeDetail":"--","specialTradeType":"提前结清"}],"cc_rh_report_detail_recovery":[],"cc_rh_report_public_court":[],"cc_rh_report_customer":{"birthday":"1998.10.26","degree":"--","education":"初中及以下","email":"--","employmentStatus":"在职","homeTelNo":"","id":158537,"marry":"未婚","messageAddrLat":"26.993067","messageAddrLng":"113.342067","messageAddress":"湖南省攸县联星街道雪花社区翻身巷15号附203号","mobile":"","nationality":"中国","reportId":158537,"residenceAddress":"--","sex":"男","workTelNo":""},"cc_rh_report_detail_loan_second":[{"accountLogo":"******","accountStatus":"正常","balance":550,"businessType":"其他个人消费贷款","byDate":"截至2021年07月02日","classify5":"正常","closeDate":"","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"2021.09.01","guaranteeForm":"其他","id":4105747,"leftRepayTerms":"2","loanAmount":2900,"loanGrantOrg":"商业银行\"SX\"","loanType":1,"month60Amount":"0/0/0/0/0/0/0/0","month60Desc":"2020年12月 —2021年07月的还款记录","month60State":"*NNNNNNN","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":432,"planRepayDate":"2021.07.01","recentRepayDate":"2021.07.02","repayFrequency":"月","repayTerms":9,"repayType":"--","repayedAmount":432,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.12.04"},{"accountLogo":"******","accountStatus":"正常","balance":8,"businessType":"其他个人消费贷款","byDate":"截至2021年06月30日","classify5":"正常","closeDate":"","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"2021.08.01","guaranteeForm":"其他","id":4105748,"leftRepayTerms":"2","loanAmount":78,"loanGrantOrg":"消费金融公司\"VW\"","loanType":1,"month60Amount":"0/0/0/0/0","month60Desc":"2021年02月 —2021年06月的还款记录","month60State":"*NNNN","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":57,"planRepayDate":"2021.06.30","recentRepayDate":"2021.06.30","repayFrequency":"月","repayTerms":6,"repayType":"--","repayedAmount":57,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.02.14"},{"accountLogo":"******","accountStatus":"正常","balance":2722,"businessType":"其他个人消费贷款","byDate":"截至2021年07月27日","classify5":"正常","closeDate":"","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"2021.12.27","guaranteeForm":"信用/免担保","id":4105749,"leftRepayTerms":"6","loanAmount":4800,"loanGrantOrg":"商业银行\"MG\"","loanType":1,"month60Amount":"0/0/0/0/0","month60Desc":"2021年03月 —2021年07月的还款记录","month60State":"*NNNN","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":562,"planRepayDate":"2021.07.27","recentRepayDate":"2021.07.27","repayFrequency":"月","repayTerms":10,"repayType":"--","repayedAmount":562,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.03.27"},{"accountLogo":"******","accountStatus":"正常","balance":1997,"businessType":"其他个人消费贷款","byDate":"截至2021年06月30日","classify5":"正常","closeDate":"","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"2022.06.21","guaranteeForm":"信用/免担保","id":4105750,"leftRepayTerms":"--","loanAmount":1997,"loanGrantOrg":"商业银行\"SR\"","loanType":1,"month60Amount":"0/0","month60Desc":"2021年05月 —2021年06月的还款记录","month60State":"**","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"2021.06.30","recentRepayDate":"2021.05.21","repayFrequency":"一次性","repayTerms":0,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.05.21"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2018年03月31日","classify5":"","closeDate":"2018.03.04","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105751,"leftRepayTerms":"","loanAmount":1500,"loanGrantOrg":"消费金融公司\"XW\"","loanType":1,"month60Amount":"0/0/0/0/0/0/0/0/0/0/0/0","month60Desc":"2017年04月 —2018年03月的还款记录","month60State":"*NNNNNNNNNNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":11,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2017.04.04"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2018年12月31日","classify5":"","closeDate":"2018.12.14","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105752,"leftRepayTerms":"","loanAmount":2999,"loanGrantOrg":"消费金融公司\"XW\"","loanType":1,"month60Amount":"0/0/0/0/0/0/0/0","month60Desc":"2018年05月 —2018年12月的还款记录","month60State":"*NNNNNNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":8,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2018.05.07"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2018年12月07日","classify5":"","closeDate":"2018.12.07","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105753,"leftRepayTerms":"","loanAmount":1000,"loanGrantOrg":"消费金融公司\"PB\"","loanType":1,"month60Amount":"0/0","month60Desc":"2018年11月 —2018年12月的还款记录","month60State":"*C","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"一次性","repayTerms":0,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2018.11.07"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2019年07月30日","classify5":"","closeDate":"2019.07.30","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105754,"leftRepayTerms":"","loanAmount":1477,"loanGrantOrg":"消费金融公司\"GW\"","loanType":1,"month60Amount":"0/0/0/0/0/0/0/0/0","month60Desc":"2018年11月 —2019年07月的还款记录","month60State":"****NNNNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":8,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2018.11.26"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2019年08月28日","classify5":"","closeDate":"2019.08.28","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105755,"leftRepayTerms":"","loanAmount":1400,"loanGrantOrg":"消费金融公司\"GW\"","loanType":1,"month60Amount":"0","month60Desc":"2019年08月 —2019年08月的还款记录","month60State":"C","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":1,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2019.08.02"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2019年09月25日","classify5":"","closeDate":"2019.09.25","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105756,"leftRepayTerms":"","loanAmount":1500,"loanGrantOrg":"消费金融公司\"GW\"","loanType":1,"month60Amount":"0","month60Desc":"2019年09月 —2019年09月的还款记录","month60State":"C","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":0,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2019.09.12"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2019年12月15日","classify5":"","closeDate":"2019.11.27","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105757,"leftRepayTerms":"","loanAmount":1599,"loanGrantOrg":"消费金融公司\"GW\"","loanType":1,"month60Amount":"0/0/0","month60Desc":"2019年10月 —2019年12月的还款记录","month60State":"*NC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":1,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2019.10.14"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2020年10月15日","classify5":"","closeDate":"2020.10.15","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105758,"leftRepayTerms":"","loanAmount":1319,"loanGrantOrg":"消费金融公司\"XO\"","loanType":1,"month60Amount":"0/0/0/0/0/0/0","month60Desc":"2020年04月 —2020年10月的还款记录","month60State":"*NNNNNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":9,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.04.22"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他贷款","byDate":"截至2021年02月10日","classify5":"","closeDate":"2021.02.10","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"其他","id":4105759,"leftRepayTerms":"","loanAmount":5000,"loanGrantOrg":"商业银行\"FB\"","loanType":1,"month60Amount":"0/0/0/0/0/0","month60Desc":"2020年09月 —2021年02月的还款记录","month60State":"*NNNNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":6,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.09.20"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2021年01月31日","classify5":"","closeDate":"2021.01.31","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105760,"leftRepayTerms":"","loanAmount":1000,"loanGrantOrg":"消费金融公司\"XO\"","loanType":1,"month60Amount":"0/0/0/0","month60Desc":"2020年10月 —2021年01月的还款记录","month60State":"*NNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":6,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.10.29"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他贷款","byDate":"截至2021年04月22日","classify5":"","closeDate":"2021.04.22","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"其他","id":4105761,"leftRepayTerms":"","loanAmount":1665,"loanGrantOrg":"商业银行\"FB\"","loanType":1,"month60Amount":"0/0/0/0/0/0/0","month60Desc":"2020年10月 —2021年04月的还款记录","month60State":"**NNNNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":6,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.10.29"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2021年03月28日","classify5":"","closeDate":"2021.03.28","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105762,"leftRepayTerms":"","loanAmount":1600,"loanGrantOrg":"消费金融公司\"GW\"","loanType":1,"month60Amount":"0/0/0/0/0","month60Desc":"2020年11月 —2021年03月的还款记录","month60State":"*NNNC","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":5,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.11.10"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2021年01月30日","classify5":"","closeDate":"2021.01.30","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105763,"leftRepayTerms":"","loanAmount":2230,"loanGrantOrg":"消费金融公司\"VP\"","loanType":1,"month60Amount":"0/0","month60Desc":"2020年12月 —2021年01月的还款记录","month60State":"*C","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":2,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.12.26"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2021年04月30日","classify5":"","closeDate":"2021.04.19","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105764,"leftRepayTerms":"","loanAmount":1996,"loanGrantOrg":"商业银行\"SR\"","loanType":1,"month60Amount":"0/0/0/0/0","month60Desc":"2020年12月 —2021年04月的还款记录","month60State":"*N**C","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"一次性","repayTerms":0,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2020.12.30"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2021年04月21日","classify5":"","closeDate":"2021.04.21","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"信用/免担保","id":4105765,"leftRepayTerms":"","loanAmount":1500,"loanGrantOrg":"消费金融公司\"SC\"","loanType":1,"month60Amount":"0","month60Desc":"2021年04月 —2021年04月的还款记录","month60State":"C","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":1,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.04.05"},{"accountLogo":"******","accountStatus":"结清","balance":0,"businessType":"其他贷款","byDate":"截至2021年06月02日","classify5":"","closeDate":"2021.06.02","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"--","guaranteeForm":"其他","id":4105766,"leftRepayTerms":"","loanAmount":2800,"loanGrantOrg":"商业银行\"FB\"","loanType":1,"month60Amount":"0/0","month60Desc":"2021年05月 —2021年06月的还款记录","month60State":"*C","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"","recentRepayDate":"","repayFrequency":"月","repayTerms":1,"repayType":"--","repayedAmount":0,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.05.21"},{"accountLogo":"******","accountStatus":"正常","balance":38614,"businessType":"其他个人消费贷款","byDate":"截至2021年06月30日","classify5":"正常","closeDate":"","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"2023.02.12","guaranteeForm":"信用/免担保","id":4105767,"leftRepayTerms":"34","loanAmount":40000,"loanGrantOrg":"消费金融公司\"XO\"","loanType":2,"month60Amount":"0/0/0","month60Desc":"2021年04月 —2021年06月的还款记录","month60State":"NNN","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":1551,"planRepayDate":"2021.06.22","recentRepayDate":"2021.06.22","repayFrequency":"月","repayTerms":0,"repayType":"不区分还款方式","repayedAmount":1551,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.04.15"},{"accountLogo":"******","accountStatus":"正常","balance":0,"businessType":"其他个人消费贷款","byDate":"截至2021年06月30日","classify5":"正常","closeDate":"","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"2022.05.31","guaranteeForm":"信用/免担保","id":4105768,"leftRepayTerms":"1","loanAmount":6350,"loanGrantOrg":"消费金融公司\"VP\"","loanType":2,"month60Amount":"0/0","month60Desc":"2021年05月 —2021年06月的还款记录","month60State":"NN","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":24,"planRepayDate":"2021.06.29","recentRepayDate":"2021.06.29","repayFrequency":"月","repayTerms":0,"repayType":"不区分还款方式","repayedAmount":24,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.05.29"},{"accountLogo":"******","accountStatus":"正常","balance":3345,"businessType":"其他个人消费贷款","byDate":"截至2021年06月30日","classify5":"正常","closeDate":"","currency":"人民币元","currentOverdueAmount":0,"currentOverdueTerms":0,"dissentTagging":"","dissentTaggingDate":"","endDate":"2021.12.26","guaranteeForm":"信用/免担保","id":4105769,"leftRepayTerms":"6","loanAmount":6350,"loanGrantOrg":"消费金融公司\"VP\"","loanType":2,"month60Amount":"0","month60Desc":"2021年06月 —2021年06月的还款记录","month60State":"N","mutualFlag":"无","orgExplain":"","orgExplainDate":"","outDate":"","overdue180Amount":0,"overdue31Amount":0,"overdue61Amount":0,"overdue91Amount":0,"planRepayAmount":0,"planRepayDate":"--","recentRepayDate":"2021.06.29","repayFrequency":"月","repayTerms":0,"repayType":"不区分还款方式","repayedAmount":683,"reportId":158537,"selfDeclare":"","selfDeclareDate":"","specialTagging":"","startDate":"2021.06.01"}],"cc_rh_report_customer_home":[{"address":"湖南省攸县联星街道雪花社区翻身巷15号附203号","addressState":"--","id":625438,"phone":"16689776475","reportId":158537,"updateTime":"2021.05.29"},{"address":"广东省深圳市福田区金宇新村30号503","addressState":"其他","id":625439,"phone":"--","reportId":158537,"updateTime":"2021.04.05"},{"address":"海口市","addressState":"--","id":625440,"phone":"--","reportId":158537,"updateTime":"2020.11.10"},{"address":"海南省海口市龙华区金宇新村30号503","addressState":"其他","id":625441,"phone":"--","reportId":158537,"updateTime":"2018.11.07"},{"address":"海南海口龙华区金宇新村3号503号房","addressState":"--","id":625442,"phone":"--","reportId":158537,"updateTime":"2018.05.07"}],"cc_rh_report_summary_credit_tips":{"commercialHouseLoanCount":0,"commercialHouseLoanFirstMonth":"--","creditCardCount":0,"declareCount":0,"dissentCount":0,"firstCreditCardMonth":"--","firstLoanMonth":"","firstReadyCardMonth":"--","houseLoanCount":0,"houseLoanFirstMonth":"--","id":153706,"otherCount":0,"otherFirstMonth":"--","otherLoanCount":23,"otherLoanFirstMonth":"2017.04","readyCardCount":0,"reportId":158537},"cc_rh_report_query_summary":{"bussinessRealNameQueryCount":0,"cardQueryCount":0,"cardQueryOrgCount":0,"guaranteeQueryCount":0,"id":152729,"loanAfterQueryCount":8,"loanQueryCount":2,"loanQueryOrgCount":2,"reportId":158537,"selfQueryCount":0}},"bairongInfo":{"applyLoanStr":{"d15":{"cell":{"coon":{"allnum":"2","orgnum":"2"},"nbank":{"allnum":"2","cons_allnum":"1","cons_orgnum":"1","night_allnum":"1","night_orgnum":"1","orgnum":"2","oth_allnum":"2","oth_orgnum":"2","selfnum":"1","sloan_allnum":"1","sloan_orgnum":"1","week_allnum":"0","week_orgnum":"0"}},"id":{"caon":{"allnum":"1","orgnum":"1"},"coon":{"allnum":"2","orgnum":"2"},"nbank":{"allnum":"4","ca_allnum":"1","ca_orgnum":"1","cf_allnum":"1","cf_orgnum":"1","cons_allnum":"3","cons_orgnum":"3","night_allnum":"1","night_orgnum":"1","orgnum":"4","oth_allnum":"2","oth_orgnum":"2","selfnum":"1","sloan_allnum":"1","sloan_orgnum":"1","week_allnum":"0","week_orgnum":"0"},"pdl":{"allnum":"1","orgnum":"1"}}},"d7":{},"fst":{"cell":{"bank":{"inteday":"221"},"nbank":{"inteday":"339"}},"id":{"bank":{"inteday":"221"},"nbank":{"inteday":"353"}}},"lst":{"cell":{"bank":{"consnum":"1","csinteday":"1","inteday":"125"},"nbank":{"consnum":"1","csinteday":"1","inteday":"9"}},"id":{"bank":{"consnum":"1","csinteday":"1","inteday":"125"},"nbank":{"consnum":"1","csinteday":"1","inteday":"7"}}},"m1":{"cell":{"caon":{"allnum":"1","orgnum":"1"},"coon":{"allnum":"2","orgnum":"2"},"nbank":{"allnum":"3","cons_allnum":"1","cons_orgnum":"1","else_allnum":"1","else_orgnum":"1","night_allnum":"2","night_orgnum":"2","orgnum":"3","oth_allnum":"3","oth_orgnum":"3","selfnum":"1","sloan_allnum":"1","sloan_orgnum":"1","week_allnum":"0","week_orgnum":"0"}},"id":{"caon":{"allnum":"2","orgnum":"2"},"coon":{"allnum":"2","orgnum":"2"},"nbank":{"allnum":"6","ca_allnum":"1","ca_orgnum":"1","cf_allnum":"2","cf_orgnum":"1","cons_allnum":"4","cons_orgnum":"3","else_allnum":"1","else_orgnum":"1","night_allnum":"2","night_orgnum":"2","orgnum":"5","oth_allnum":"3","oth_orgnum":"3","selfnum":"1","sloan_allnum":"1","sloan_orgnum":"1","week_allnum":"0","week_orgnum":"0"},"pdl":{"allnum":"2","orgnum":"1"}}},"m12":{"cell":{"af":{"allnum":"1","orgnum":"1"},"avg_monnum":"7.17","bank":{"allnum":"11","avg_monnum":"2.75","max_inteday":"39","max_monnum":"7","min_inteday":"0","min_monnum":"0","night_allnum":"2","night_orgnum":"2","orgnum":"11","selfnum":"0","tot_mons":"4","tra_allnum":"9","tra_orgnum":"9","week_allnum":"4","week_orgnum":"4"},"caoff":{"allnum":"7","orgnum":"5"},"caon":{"allnum":"32","orgnum":"19"},"cooff":{"allnum":"5","orgnum":"2"},"coon":{"allnum":"7","orgnum":"6"},"max_inteday":"37","max_monnum":"19","min_inteday":"0","min_monnum":"1","nbank":{"allnum":"75","avg_monnum":"6.25","ca_allnum":"7","ca_orgnum":"3","cf_allnum":"21","cf_orgnum":"9","cons_allnum":"28","cons_orgnum":"10","else_allnum":"20","else_orgnum":"13","finlea_allnum":"2","finlea_orgnum":"2","max_inteday":"37","max_monnum":"13","mc_allnum":"2","mc_orgnum":"1","min_inteday":"0","min_monnum":"1","night_allnum":"10","night_orgnum":"10","nsloan_allnum":"10","nsloan_orgnum":"5","orgnum":"39","oth_allnum":"45","oth_orgnum":"26","selfnum":"2","sloan_allnum":"15","sloan_orgnum":"9","tot_mons":"12","week_allnum":"20","week_orgnum":"17"},"oth":{"allnum":"3","orgnum":"3"},"pdl":{"allnum":"20","orgnum":"7"},"rel":{"allnum":"13","orgnum":"9"},"tot_mons":"12"},"id":{"af":{"allnum":"1","orgnum":"1"},"avg_monnum":"8.50","bank":{"allnum":"11","avg_monnum":"2.75","max_inteday":"39","max_monnum":"7","min_inteday":"0","min_monnum":"0","night_allnum":"2","night_orgnum":"2","orgnum":"11","selfnum":"0","tot_mons":"4","tra_allnum":"9","tra_orgnum":"9","week_allnum":"4","week_orgnum":"4"},"caoff":{"allnum":"7","orgnum":"5"},"caon":{"allnum":"38","orgnum":"20"},"cooff":{"allnum":"5","orgnum":"2"},"coon":{"allnum":"8","orgnum":"7"},"max_inteday":"36","max_monnum":"22","min_inteday":"0","min_monnum":"1","nbank":{"allnum":"91","avg_monnum":"7.58","ca_allnum":"11","ca_orgnum":"4","cf_allnum":"31","cf_orgnum":"9","cons_allnum":"41","cons_orgnum":"11","else_allnum":"21","else_orgnum":"14","finlea_allnum":"2","finlea_orgnum":"2","max_inteday":"36","max_monnum":"15","mc_allnum":"2","mc_orgnum":"1","min_inteday":"0","min_monnum":"1","night_allnum":"11","night_orgnum":"11","nsloan_allnum":"10","nsloan_orgnum":"5","orgnum":"41","oth_allnum":"47","oth_orgnum":"27","selfnum":"2","sloan_allnum":"17","sloan_orgnum":"9","tot_mons":"12","week_allnum":"23","week_orgnum":"17"},"oth":{"allnum":"3","orgnum":"3"},"pdl":{"allnum":"29","orgnum":"7"},"rel":{"allnum":"13","orgnum":"9"},"tot_mons":"12"}},"m3":{"cell":{"avg_monnum":"9.67","caoff":{"allnum":"1","orgnum":"1"},"caon":{"allnum":"16","orgnum":"14"},"cooff":{"allnum":"2","orgnum":"2"},"coon":{"allnum":"4","orgnum":"3"},"max_inteday":"20","max_monnum":"13","min_inteday":"0","min_monnum":"4","nbank":{"allnum":"29","avg_monnum":"9.67","ca_allnum":"3","ca_orgnum":"2","cf_allnum":"4","cf_orgnum":"4","cons_allnum":"8","cons_orgnum":"7","else_allnum":"9","else_orgnum":"7","finlea_allnum":"2","finlea_orgnum":"2","max_inteday":"20","max_monnum":"13","mc_allnum":"1","mc_orgnum":"1","min_inteday":"0","min_monnum":"4","night_allnum":"8","night_orgnum":"8","nsloan_allnum":"3","nsloan_orgnum":"3","orgnum":"24","oth_allnum":"21","oth_orgnum":"17","selfnum":"2","sloan_allnum":"7","sloan_orgnum":"5","tot_mons":"3","week_allnum":"8","week_orgnum":"8"},"pdl":{"allnum":"3","orgnum":"2"},"rel":{"allnum":"3","orgnum":"3"},"tot_mons":"3"},"id":{"avg_monnum":"11.33","caoff":{"allnum":"1","orgnum":"1"},"caon":{"allnum":"17","orgnum":"15"},"cooff":{"allnum":"2","orgnum":"2"},"coon":{"allnum":"5","orgnum":"4"},"max_inteday":"20","max_monnum":"14","min_inteday":"0","min_monnum":"7","nbank":{"allnum":"34","avg_monnum":"11.33","ca_allnum":"4","ca_orgnum":"3","cf_allnum":"7","cf_orgnum":"5","cons_allnum":"12","cons_orgnum":"9","else_allnum":"10","else_orgnum":"8","finlea_allnum":"2","finlea_orgnum":"2","max_inteday":"20","max_monnum":"14","mc_allnum":"1","mc_orgnum":"1","min_inteday":"0","min_monnum":"7","night_allnum":"9","night_orgnum":"9","nsloan_allnum":"3","nsloan_orgnum":"3","orgnum":"27","oth_allnum":"22","oth_orgnum":"18","selfnum":"2","sloan_allnum":"7","sloan_orgnum":"5","tot_mons":"3","week_allnum":"8","week_orgnum":"8"},"pdl":{"allnum":"6","orgnum":"3"},"rel":{"allnum":"3","orgnum":"3"},"tot_mons":"3"}},"m6":{"cell":{"af":{"allnum":"1","orgnum":"1"},"avg_monnum":"7.83","bank":{"allnum":"3","avg_monnum":"1.50","max_inteday":"39","max_monnum":"2","min_inteday":"6","min_monnum":"0","night_allnum":"0","night_orgnum":"0","orgnum":"3","selfnum":"0","tot_mons":"2","tra_allnum":"3","tra_orgnum":"3","week_allnum":"1","week_orgnum":"1"},"caoff":{"allnum":"1","orgnum":"1"},"caon":{"allnum":"22","orgnum":"17"},"cooff":{"allnum":"4","orgnum":"2"},"coon":{"allnum":"6","orgnum":"5"},"max_inteday":"37","max_monnum":"15","min_inteday":"0","min_monnum":"1","nbank":{"allnum":"45","avg_monnum":"7.33","ca_allnum":"3","ca_orgnum":"2","cf_allnum":"10","cf_orgnum":"6","cons_allnum":"18","cons_orgnum":"10","else_allnum":"13","else_orgnum":"10","finlea_allnum":"2","finlea_orgnum":"2","max_inteday":"37","max_monnum":"13","mc_allnum":"1","mc_orgnum":"1","min_inteday":"0","min_monnum":"1","night_allnum":"8","night_orgnum":"8","nsloan_allnum":"4","nsloan_orgnum":"3","orgnum":"30","oth_allnum":"31","oth_orgnum":"21","selfnum":"2","sloan_allnum":"8","sloan_orgnum":"5","tot_mons":"6","week_allnum":"13","week_orgnum":"12"},"oth":{"allnum":"2","orgnum":"2"},"pdl":{"allnum":"8","orgnum":"3"},"rel":{"allnum":"5","orgnum":"4"},"tot_mons":"6"},"id":{"af":{"allnum":"1","orgnum":"1"},"avg_monnum":"8.83","bank":{"allnum":"3","avg_monnum":"1.50","max_inteday":"39","max_monnum":"2","min_inteday":"6","min_monnum":"0","night_allnum":"0","night_orgnum":"0","orgnum":"3","selfnum":"0","tot_mons":"2","tra_allnum":"3","tra_orgnum":"3","week_allnum":"1","week_orgnum":"1"},"caoff":{"allnum":"1","orgnum":"1"},"caon":{"allnum":"24","orgnum":"18"},"cooff":{"allnum":"4","orgnum":"2"},"coon":{"allnum":"7","orgnum":"6"},"max_inteday":"30","max_monnum":"14","min_inteday":"0","min_monnum":"2","nbank":{"allnum":"52","avg_monnum":"8.33","ca_allnum":"5","ca_orgnum":"3","cf_allnum":"14","cf_orgnum":"6","cons_allnum":"24","cons_orgnum":"11","else_allnum":"14","else_orgnum":"11","finlea_allnum":"2","finlea_orgnum":"2","max_inteday":"30","max_monnum":"14","mc_allnum":"1","mc_orgnum":"1","min_inteday":"0","min_monnum":"2","night_allnum":"9","night_orgnum":"9","nsloan_allnum":"4","nsloan_orgnum":"3","orgnum":"32","oth_allnum":"32","oth_orgnum":"22","selfnum":"2","sloan_allnum":"8","sloan_orgnum":"5","tot_mons":"6","week_allnum":"13","week_orgnum":"12"},"oth":{"allnum":"2","orgnum":"2"},"pdl":{"allnum":"12","orgnum":"3"},"rel":{"allnum":"5","orgnum":"4"},"tot_mons":"6"}}},"code":"00","flag":{"applyloanstr":"1"},"oldDate":true,"swift_number":"3001820_20210730183946_99943315A"},"bhInfo":{"bh_bh_report_customer_work":[{"date":"2021-02-17","id":229417,"reportId":196109,"workAddress":"广东省深圳市福田区文化创意园H馆南门2楼","workName":"石家庄魔宁网络科技有限公司深圳分公司"}],"bh_bh_report_revolving_detail_od":[],"bh_bh_report_loan_revolving_day_summary":[{"accountCount":0,"applyTenantCount":0,"creditLimitSum":0.0,"id":784433,"lendingAmount":0.0,"overdueAccountCount":0,"reportId":196109,"revolvingCompensationAmount":0.0,"revolvingCompensationCount":0,"revolvingCompensationTimes":0,"type":1},{"accountCount":0,"applyTenantCount":1,"creditLimitSum":0.0,"id":784434,"lendingAmount":0.0,"overdueAccountCount":0,"reportId":196109,"revolvingCompensationAmount":0.0,"revolvingCompensationCount":0,"revolvingCompensationTimes":0,"type":2},{"accountCount":0,"applyTenantCount":1,"creditLimitSum":0.0,"id":784435,"lendingAmount":0.0,"overdueAccountCount":0,"reportId":196109,"revolvingCompensationAmount":0.0,"revolvingCompensationCount":0,"revolvingCompensationTimes":0,"type":3},{"accountCount":0,"applyTenantCount":2,"creditLimitSum":0.0,"id":784436,"lendingAmount":0.0,"overdueAccountCount":0,"reportId":196109,"revolvingCompensationAmount":0.0,"revolvingCompensationCount":0,"revolvingCompensationTimes":0,"type":4}],"bh_bh_report":{"applyId":205233,"createTime":"2021-07-30 18:37:55","id":196109,"idcardNo":"430223199810267273","mobile":"16689776475","mobileCount":0,"name":"吴凯","queryResult":1,"reportId":"BH2107301838016854417765","reportTime":"2021-07-30 18:38:01"},"bh_bh_report_non_revolving_detail_od":[],"bh_bh_report_finance_lease_day_summary":[{"averageFinLseAmount":0.0,"createTime":"2021-07-30 18:37:55","finLseAmount":0.0,"finLseApplyTenantCount":0,"finLseCompensationAmount":0.0,"finLseCompensationCount":0,"finLseCompensationTimes":0,"finLseCount":0,"finLseTenantCount":0,"id":198817,"maxFinLseAmount":0.0,"overdueFinLseCount":0,"reportId":196109,"type":1},{"averageFinLseAmount":0.0,"createTime":"2021-07-30 18:37:55","finLseAmount":0.0,"finLseApplyTenantCount":0,"finLseCompensationAmount":0.0,"finLseCompensationCount":0,"finLseCompensationTimes":0,"finLseCount":0,"finLseTenantCount":0,"id":198818,"maxFinLseAmount":0.0,"overdueFinLseCount":0,"reportId":196109,"type":2},{"averageFinLseAmount":0.0,"createTime":"2021-07-30 18:37:55","finLseAmount":0.0,"finLseApplyTenantCount":0,"finLseCompensationAmount":0.0,"finLseCompensationCount":0,"finLseCompensationTimes":0,"finLseCount":0,"finLseTenantCount":0,"id":198819,"maxFinLseAmount":0.0,"overdueFinLseCount":0,"reportId":196109,"type":3},{"averageFinLseAmount":0.0,"createTime":"2021-07-30 18:37:55","finLseAmount":0.0,"finLseApplyTenantCount":0,"finLseCompensationAmount":0.0,"finLseCompensationCount":0,"finLseCompensationTimes":0,"finLseCount":0,"finLseTenantCount":0,"id":198820,"maxFinLseAmount":0.0,"overdueFinLseCount":0,"reportId":196109,"type":4}],"bh_bh_report_loan_revolving":{"accountCount":0,"creditLimitSum":0.0,"id":196109,"maxCreditLimitPerTenant":0.0,"maxOverdueStatus":"N","overdueCount":0,"remainingAmount":0.0,"remainingMaxOverdueStatus":"N","remainingOverdueAccountCount":0,"remainingOverdueAmount":0.0,"reportId":196109,"revolvingLastCompensationDate":"","validAccountCount":0},"bh_bh_report_finlse_detail_od":[],"bh_bh_report_query_history_summary":[{"cAQC":0,"cAQI":0,"createTime":"2021-07-30 18:37:56","gQC":0,"gQI":0,"id":298219,"pQC":0,"pQI":0,"qLQC":0,"qLQI":0,"reportId":196109,"type":1},{"cAQC":0,"cAQI":0,"createTime":"2021-07-30 18:37:56","gQC":0,"gQI":0,"id":298220,"pQC":0,"pQI":0,"qLQC":0,"qLQI":0,"reportId":196109,"type":2},{"cAQC":0,"cAQI":0,"createTime":"2021-07-30 18:37:56","gQC":0,"gQI":0,"id":298221,"pQC":0,"pQI":0,"qLQC":0,"qLQI":0,"reportId":196109,"type":3},{"cAQC":2,"cAQI":2,"createTime":"2021-07-30 18:37:56","gQC":0,"gQI":0,"id":298222,"pQC":0,"pQI":0,"qLQC":0,"qLQI":0,"reportId":196109,"type":4},{"cAQC":7,"cAQI":5,"createTime":"2021-07-30 18:37:56","gQC":0,"gQI":0,"id":298223,"pQC":0,"pQI":0,"qLQC":0,"qLQI":0,"reportId":196109,"type":5},{"cAQC":11,"cAQI":6,"createTime":"2021-07-30 18:37:56","gQC":0,"gQI":0,"id":298224,"pQC":0,"pQI":0,"qLQC":0,"qLQI":0,"reportId":196109,"type":6}],"bh_bh_report_personal_statement":[],"bh_bh_report_loan_non_revolving":{"id":196109,"lastCompensationDate":"","loanCount":4,"maxOverdueStatus":"N","openLoanCount":0,"overdueCount":0,"remainingAmount":0.0,"remainingMaxOverdueStatus":"N","remainingOverdueAmount":0.0,"remainingOverdueLoanCount":0,"reportId":196109},"bh_bh_report_non_revolving_detail_rp24":[{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694432,"nCPS":"/","nPC":"2019-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694433,"nCPS":"/","nPC":"2019-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694434,"nCPS":"/","nPC":"2019-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694435,"nCPS":"/","nPC":"2019-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694436,"nCPS":"/","nPC":"2019-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694437,"nCPS":"/","nPC":"2020-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694438,"nCPS":"/","nPC":"2020-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694439,"nCPS":"/","nPC":"2020-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694440,"nCPS":"/","nPC":"2020-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694441,"nCPS":"/","nPC":"2020-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694442,"nCPS":"/","nPC":"2020-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694443,"nCPS":"/","nPC":"2020-07","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694444,"nCPS":"/","nPC":"2020-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694445,"nCPS":"/","nPC":"2020-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694446,"nCPS":"/","nPC":"2020-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694447,"nCPS":"/","nPC":"2020-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694448,"nCPS":"/","nPC":"2020-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694449,"nCPS":"/","nPC":"2021-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694450,"nCPS":"/","nPC":"2021-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694451,"nCPS":"/","nPC":"2021-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694452,"nCPS":"/","nPC":"2021-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694453,"nCPS":"/","nPC":"2021-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694454,"nCPS":"/","nPC":"2021-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403935,"id":9694455,"nCPS":"/","nPC":"2021-07","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694456,"nCPS":"/","nPC":"2019-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694457,"nCPS":"/","nPC":"2019-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694458,"nCPS":"/","nPC":"2019-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694459,"nCPS":"/","nPC":"2019-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694460,"nCPS":"/","nPC":"2019-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694461,"nCPS":"/","nPC":"2020-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694462,"nCPS":"/","nPC":"2020-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694463,"nCPS":"/","nPC":"2020-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694464,"nCPS":"/","nPC":"2020-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694465,"nCPS":"/","nPC":"2020-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694466,"nCPS":"/","nPC":"2020-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694467,"nCPS":"/","nPC":"2020-07","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694468,"nCPS":"/","nPC":"2020-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694469,"nCPS":"/","nPC":"2020-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694470,"nCPS":"/","nPC":"2020-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694471,"nCPS":"/","nPC":"2020-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694472,"nCPS":"/","nPC":"2020-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694473,"nCPS":"/","nPC":"2021-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694474,"nCPS":"/","nPC":"2021-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694475,"nCPS":"/","nPC":"2021-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694476,"nCPS":"/","nPC":"2021-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694477,"nCPS":"/","nPC":"2021-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694478,"nCPS":"/","nPC":"2021-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403936,"id":9694479,"nCPS":"/","nPC":"2021-07","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694480,"nCPS":"/","nPC":"2019-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694481,"nCPS":"/","nPC":"2019-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694482,"nCPS":"/","nPC":"2019-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694483,"nCPS":"/","nPC":"2019-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694484,"nCPS":"/","nPC":"2019-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694485,"nCPS":"/","nPC":"2020-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694486,"nCPS":"/","nPC":"2020-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694487,"nCPS":"/","nPC":"2020-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694488,"nCPS":"/","nPC":"2020-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694489,"nCPS":"/","nPC":"2020-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694490,"nCPS":"/","nPC":"2020-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694491,"nCPS":"/","nPC":"2020-07","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694492,"nCPS":"/","nPC":"2020-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694493,"nCPS":"/","nPC":"2020-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694494,"nCPS":"/","nPC":"2020-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694495,"nCPS":"/","nPC":"2020-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694496,"nCPS":"/","nPC":"2020-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694497,"nCPS":"/","nPC":"2021-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:55","detailId":403937,"id":9694498,"nCPS":"/","nPC":"2021-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403937,"id":9694499,"nCPS":"/","nPC":"2021-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403937,"id":9694500,"nCPS":"/","nPC":"2021-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403937,"id":9694501,"nCPS":"/","nPC":"2021-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403937,"id":9694502,"nCPS":"/","nPC":"2021-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403937,"id":9694503,"nCPS":"/","nPC":"2021-07","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694504,"nCPS":"/","nPC":"2019-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694505,"nCPS":"/","nPC":"2019-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694506,"nCPS":"/","nPC":"2019-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694507,"nCPS":"/","nPC":"2019-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694508,"nCPS":"/","nPC":"2019-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694509,"nCPS":"/","nPC":"2020-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694510,"nCPS":"/","nPC":"2020-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694511,"nCPS":"/","nPC":"2020-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694512,"nCPS":"/","nPC":"2020-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694513,"nCPS":"/","nPC":"2020-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694514,"nCPS":"/","nPC":"2020-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694515,"nCPS":"/","nPC":"2020-07","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694516,"nCPS":"/","nPC":"2020-08","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694517,"nCPS":"/","nPC":"2020-09","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694518,"nCPS":"/","nPC":"2020-10","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694519,"nCPS":"/","nPC":"2020-11","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694520,"nCPS":"/","nPC":"2020-12","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694521,"nCPS":"/","nPC":"2021-01","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694522,"nCPS":"/","nPC":"2021-02","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694523,"nCPS":"/","nPC":"2021-03","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694524,"nCPS":"/","nPC":"2021-04","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694525,"nCPS":"/","nPC":"2021-05","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694526,"nCPS":"/","nPC":"2021-06","nWOS":"/"},{"createTime":"2021-07-30 18:37:56","detailId":403938,"id":9694527,"nCPS":"/","nPC":"2021-07","nWOS":"/"}],"bh_bh_report_revolving_detail_rp24":[],"bh_bh_report_customer_home":[],"bh_bh_report_non_revolving_detail":[{"createTime":"2021-07-30 18:37:55","id":403935,"nBGT":1,"nBON":"BH0754","nCA":0.0,"nCM":"","nCOA":0.0,"nDD":"2018-09-20","nFRD":"2018-09-20","nLAI":"1809061555021894","nLCA":0.0,"nLCD":"","nLID":"2018-09-06","nLOD":"2018-09-06","nLP":99,"nLRD":"2018-09-20","nLRS":"C","nLS":1504.52,"nOTC":0,"nRCA":0.0,"nTM":"","nTP":14,"nTRT":1,"nTT":1,"nUD":"2018-09-21","reportId":196109},{"createTime":"2021-07-30 18:37:55","id":403936,"nBGT":1,"nBON":"BH0754","nCA":0.0,"nCM":"","nCOA":0.0,"nDD":"2018-09-20","nFRD":"2018-09-20","nLAI":"1809061556021926","nLCA":0.0,"nLCD":"","nLID":"2018-09-06","nLOD":"2018-09-06","nLP":99,"nLRD":"2018-09-20","nLRS":"C","nLS":189.86,"nOTC":0,"nRCA":0.0,"nTM":"","nTP":14,"nTRT":1,"nTT":1,"nUD":"2018-09-21","reportId":196109},{"createTime":"2021-07-30 18:37:55","id":403937,"nBGT":1,"nBON":"BH0754","nCA":0.0,"nCM":"","nCOA":0.0,"nDD":"2018-10-14","nFRD":"2018-10-14","nLAI":"1809300957006629","nLCA":0.0,"nLCD":"","nLID":"2018-09-30","nLOD":"2018-09-30","nLP":99,"nLRD":"2018-10-14","nLRS":"C","nLS":1003.01,"nOTC":0,"nRCA":0.0,"nTM":"","nTP":14,"nTRT":1,"nTT":1,"nUD":"2018-10-15","reportId":196109},{"createTime":"2021-07-30 18:37:56","id":403938,"nBGT":1,"nBON":"BH0754","nCA":0.0,"nCM":"","nCOA":0.0,"nDD":"2018-10-14","nFRD":"2018-10-14","nLAI":"1809301010007201","nLCA":0.0,"nLCD":"","nLID":"2018-09-30","nLOD":"2018-09-30","nLP":99,"nLRD":"2018-10-14","nLRS":"C","nLS":126.57,"nOTC":0,"nRCA":0.0,"nTM":"","nTP":14,"nTRT":1,"nTT":1,"nUD":"2018-10-15","reportId":196109}],"bh_bh_report_loan_non_revolving_day_summary":[{"applyTenantCount":0,"averageLoanAmount":0.0,"compensationAmount":0.0,"compensationCount":0,"compensationTimes":0,"id":784433,"loanAmount":0.0,"loanCount":0,"loanTenantCount":0,"maxLoanAmount":0.0,"overdueLoanCount":0,"reportId":196109,"type":1},{"applyTenantCount":3,"averageLoanAmount":0.0,"compensationAmount":0.0,"compensationCount":0,"compensationTimes":0,"id":784434,"loanAmount":0.0,"loanCount":0,"loanTenantCount":0,"maxLoanAmount":0.0,"overdueLoanCount":0,"reportId":196109,"type":2},{"applyTenantCount":4,"averageLoanAmount":0.0,"compensationAmount":0.0,"compensationCount":0,"compensationTimes":0,"id":784435,"loanAmount":0.0,"loanCount":0,"loanTenantCount":0,"maxLoanAmount":0.0,"overdueLoanCount":0,"reportId":196109,"type":3},{"applyTenantCount":5,"averageLoanAmount":0.0,"compensationAmount":0.0,"compensationCount":0,"compensationTimes":0,"id":784436,"loanAmount":0.0,"loanCount":0,"loanTenantCount":0,"maxLoanAmount":0.0,"overdueLoanCount":0,"reportId":196109,"type":4}],"bh_bh_report_finlse_detail_rp24":[],"bh_bh_report_revolving_detail":[],"bh_bh_report_query_history":[{"date":"2021-06-30","id":2058284,"reason":1,"reportId":196109,"tenantName":"BH4535","tenantType":"","userId":"*"},{"date":"2021-06-30","id":2058285,"reason":1,"reportId":196109,"tenantName":"BH3632","tenantType":"","userId":"*"},{"date":"2021-05-30","id":2058286,"reason":1,"reportId":196109,"tenantName":"BH4535","tenantType":"","userId":"*"},{"date":"2021-05-30","id":2058287,"reason":1,"reportId":196109,"tenantName":"BH3632","tenantType":"","userId":"*"},{"date":"2021-05-30","id":2058288,"reason":1,"reportId":196109,"tenantName":"BH4730","tenantType":"","userId":"*"},{"date":"2021-05-30","id":2058289,"reason":1,"reportId":196109,"tenantName":"BH8923","tenantType":"","userId":"*"},{"date":"2021-05-27","id":2058290,"reason":1,"reportId":196109,"tenantName":"BH1230","tenantType":"","userId":"*"},{"date":"2021-02-16","id":2058291,"reason":1,"reportId":196109,"tenantName":"BH4730","tenantType":"","userId":"*"},{"date":"2021-01-30","id":2058292,"reason":1,"reportId":196109,"tenantName":"BH3632","tenantType":"","userId":"*"},{"date":"2021-01-30","id":2058293,"reason":1,"reportId":196109,"tenantName":"BH1230","tenantType":"","userId":"*"},{"date":"2021-01-29","id":2058294,"reason":1,"reportId":196109,"tenantName":"BH0217","tenantType":"","userId":"*"}],"bh_bh_report_finance_lease_summary":{"createTime":"2021-07-30 18:37:55","finLseCount":0,"finLseCurrRemainingMaxOverdueStatus":"N","finLseCurrRemainingOverdueAmount":0.0,"finLseLastCompensationDate":"","finLseMaxOverdueStatus":"N","finLseOverdueCount":0,"finLseRemainingAmount":0.0,"id":49705,"openFinLseCount":0,"remainingOverdueFinLseCount":0,"reportId":196109},"bh_bh_report_objection_labeling":[],"bh_bh_report_finlse_detail":[]},"shebaoInfo":{"clientNo":"202110131141070731647865","levelInfo":{"creditLevel":"A","incomeLevel":"A","stabilityLevel":"A"},"oldDate":true,"responseCode":100,"responseText":"接口调用成功","result":3,"resultText":"查无结果","serialNo":"6adb1b00-0f87-4a4e-b1f5-43f5e5f412be","version":"v1.0"},"channel":0,"youfenInfo":{"black":{"data":{"statusCode":"2007","statusMsg":"本数据库中未查得"},"resCode":"0000","resMsg":"提交成功"},"risk":{"data":{"result":{"app_bank_biggest_money":"","app_bank_biggest_money_history_day":"","app_bank_biggest_money_recently_day":"","app_bank_counts":"","app_bank_history_day":"","app_bank_recently_day":"","app_bank_small_money":"","app_bank_small_money_history_day":"","app_bank_small_money_recently_day":"","app_biggest_money":"0W~0.2W","app_biggest_money_history_day":"302","app_biggest_money_recently_day":"136","app_counts":"2","app_history_day":"302","app_month":"","app_month12":"2","app_month18":"2","app_month24":"2","app_month3":"","app_month6":"1","app_platform_counts":"2","app_platform_month":"","app_platform_month12":"2","app_platform_month18":"2","app_platform_month24":"2","app_platform_month3":"","app_platform_month6":"1","app_platform_week":"","app_recently_day":"136","app_small_money":"0W~0.2W","app_small_money_history_day":"302","app_small_money_recently_day":"136","app_unbank_biggest_money":"0W~0.2W","app_unbank_biggest_money_history_day":"302","app_unbank_biggest_money_recently_day":"136","app_unbank_counts":"2","app_unbank_history_day":"302","app_unbank_recently_day":"136","app_unbank_small_money":"0W~0.2W","app_unbank_small_money_history_day":"302","app_unbank_small_money_recently_day":"136","app_week":"","arrearage_biggest_money":"","arrearage_counts":"","arrearage_platform_counts":"","arrearage_small_money":"","loan_bank_biggest_money":"","loan_bank_biggest_money_history_day":"","loan_bank_biggest_money_recently_day":"","loan_bank_counts":"","loan_bank_history_day":"","loan_bank_recently_day":"","loan_bank_small_money":"","loan_bank_small_money_history_day":"","loan_bank_small_money_recently_day":"","loan_biggest_money":"0W~0.2W","loan_biggest_money_history_day":"302","loan_biggest_money_recently_day":"302","loan_counts":"1","loan_counts_month":"","loan_counts_month12":"1","loan_counts_month18":"1","loan_counts_month24":"1","loan_counts_month3":"","loan_counts_month6":"","loan_counts_week":"","loan_history_day":"302","loan_platform_counts":"1","loan_platform_month":"","loan_platform_month12":"1","loan_platform_month18":"1","loan_platform_month24":"1","loan_platform_month3":"","loan_platform_month6":"","loan_platform_week":"","loan_recently_day":"302","loan_small_money":"0W~0.2W","loan_small_money_history_day":"302","loan_small_money_recently_day":"302","loan_unbank_biggest_money":"0W~0.2W","loan_unbank_biggest_money_history_day":"302","loan_unbank_biggest_money_recently_day":"302","loan_unbank_counts":"1","loan_unbank_history_day":"302","loan_unbank_recently_day":"302","loan_unbank_small_money":"0W~0.2W","loan_unbank_small_money_history_day":"302","loan_unbank_small_money_recently_day":"302","overdue_biggest_money":"","overdue_biggest_money_history_day":"","overdue_biggest_money_recently_day":"","overdue_counts":"","overdue_history_day":"","overdue_month":"","overdue_month12":"","overdue_month18":"","overdue_month24":"","overdue_month3":"","overdue_month6":"","overdue_platform_counts":"","overdue_platform_month":"","overdue_platform_month12":"","overdue_platform_month18":"","overdue_platform_month24":"","overdue_platform_month3":"","overdue_platform_month6":"","overdue_platform_week":"","overdue_recently_day":"","overdue_small_money":"","overdue_small_money_history_day":"","overdue_small_money_recently_day":"","overdue_week":"","reg_bank_history_day":"","reg_bank_recently_day":"","reg_history_day":"670","reg_platform_counts":"7","reg_platform_month":"1","reg_platform_month12":"6","reg_platform_month18":"6","reg_platform_month24":"7","reg_platform_month3":"1","reg_platform_month6":"4","reg_platform_week":"","reg_recently_day":"25","reg_unbank_history_day":"670","reg_unbank_recently_day":"25","reject_bank_counts":"","reject_bank_history_day":"","reject_bank_recently_day":"","reject_counts":"1","reject_history_day":"136","reject_month":"","reject_month12":"1","reject_month18":"1","reject_month24":"1","reject_month3":"","reject_month6":"1","reject_platform_counts":"1","reject_platform_month":"","reject_platform_month12":"1","reject_platform_month18":"1","reject_platform_month24":"1","reject_platform_month3":"","reject_platform_month6":"1","reject_platform_week":"","reject_recently_day":"136","reject_unbank_counts":"1","reject_unbank_history_day":"136","reject_unbank_recently_day":"136","reject_week":""},"statusCode":"2012","statusMsg":"查询成功"},"resCode":"0000","resMsg":"提交成功"}},"huadaoInfo":{"cODE":"200","dATA":{"d001":"2020-12","d002":"2","d003":"2","d004":"2","d005":"2","d006":"1","d007":"1","d008":"none","d009":"none","d010":"none","d011":"none","d012":"none","d013":"none","d014":"2","d015":"2","d016":"2","d017":"2","d018":"none","d019":"none","d020":"none","d021":"none","d022":"2","d023":"2","d024":"2","d025":"2","d026":"3","d027":"3","d028":"2","d029":"2","d030":"1","d031":"1","d032":"0","d033":"0","d034":"0","d035":"0","d036":"0","d037":"0","d038":"2","d039":"2","d040":"2","d041":"2","d042":"0","d043":"0","d044":"0","d045":"0","d046":"3","d047":"3","d048":"2","d049":"2","d050":"2021-05","d051":"2021-04","d052":"0","d053":"0","d054":"0","d055":"0","d056":"2","d057":"2","d058":"2","d059":"2","d060":"1","d061":"1","d062":"none","d063":"none","d064":"none","d065":"none","d066":"none","d067":"none","d068":"2","d069":"2","d070":"2","d071":"2","d072":"none","d073":"none","d074":"none","d075":"none","d076":"2","d077":"2","d078":"2","d079":"2","d080":"2","d081":"2","d082":"1","d083":"1","d084":"1","d085":"1","d086":"0","d087":"0","d088":"0","d089":"0","d090":"0","d091":"0","d092":"1","d093":"1","d094":"1","d095":"1","d096":"0","d097":"0","d098":"0","d099":"0","d100":"2","d101":"2","d102":"1","d103":"1","d104":"2021-04","d105":"2021-04","d106":"2","d107":"2","d108":"2","d109":"2","d110":"1","d111":"1","d112":"none","d113":"none","d114":"none","d115":"none","d116":"none","d117":"none","d118":"2","d119":"2","d120":"2","d121":"2","d122":"none","d123":"none","d124":"none","d125":"none","d126":"2","d127":"2","d128":"2","d129":"2","d130":"2","d131":"2","d132":"1","d133":"1","d134":"1","d135":"1","d136":"0","d137":"0","d138":"0","d139":"0","d140":"0","d141":"0","d142":"1","d143":"1","d144":"1","d145":"1","d146":"0","d147":"0","d148":"0","d149":"0","d150":"2","d151":"2","d152":"1","d153":"1","d154":"2021-05","d155":"2021-05","d156":"11","d157":"8","d158":"5","d159":"5","d160":"2021-05","d161":"0","d162":"3","d163":"5","d164":"0","d165":"0","d166":"3","d167":"5","d168":"0","d169":"0","d170":"0","d171":"5","d172":"0","d173":"0","d174":"0","d175":"5","d176":"0","d223":"none","d224":"none","d225":"none","d226":"none","d227":"0","d228":"0","d229":"0","d230":"0","d231":"none","d232":"none","d233":"none","d234":"none","d235":"0","d236":"0","d237":"0","d238":"0","d239":"none","d240":"none","d241":"none","d242":"none","d243":"0","d244":"0","d245":"0","d246":"0","d247":"0","d248":"0","d249":"0","d251":"0","d252":"0","d253":"0","d254":"0","d255":"0","d256":"0","d257":"0","d258":"0","d259":"0","d260":"0","d261":"0","d262":"0","d263":"0","d264":"0","d265":"0","d266":"0","d267":"0","d268":"0","d269":"0","d270":"0","d271":"0","d272":"0","d273":"0","d274":"0","d275":"0","d276":"0","d277":"0","d278":"0","d279":"0","d280":"0","d281":"0","d282":"0","d283":"0","d284":"0","d285":"0","d286":"0","d287":"0","d288":"0","d289":"0","d290":"0","d291":"0","d292":"0","d293":"0","d294":"0","d295":"0","d296":"0","d297":"0","d298":"0","d299":"0","d300":"0","d301":"0","d302":"0","d303":"0","d304":"0","d305":"0","d306":"0","d307":"0","d308":"0","d309":"0","d310":"0","d311":"0","d312":"0","d313":"0","d314":"0","d315":"0","d316":"0","d317":"0","d318":"0","d319":"0","d320":"0","d321":"0","d322":"0","d323":"0","d324":"0","d325":"0","d326":"0","d327":"0","d328":"0","d329":"0","d330":"0","d331":"0","d332":"0","d333":"0","d334":"0","d335":"0","d336":"0","d337":"0","d338":"0","d339":"0","d340":"0","d344":"0","d345":"0","d346":"0","d347":"0","d348":"0","d349":"0","d350":"0","d351":"0","d352":"0","d353":"0","d354":"0","d355":"0","d356":"0","d357":"0","d358":"0","d359":"0","d360":"0","d361":"0","d362":"0","d363":"0","d364":"0","d365":"0","d366":"0","d367":"0","d368":"0","d369":"0","d370":"0","d371":"0","d372":"0","d373":"0","d374":"0","d375":"0","d376":"0","d377":"0","d378":"0","d379":"0","d380":"0","d381":"0","d382":"0","d383":"0","d384":"0","d385":"0","d386":"0","d387":"0","d388":"0","d389":"0","d390":"0","d391":"0","d392":"0","d393":"0","d394":"0","d395":"0","d396":"0","d397":"0","d398":"0","d399":"0","d400":"0","d401":"0","d417":"2019-09","d418":"2021-05","d419":"2019-09","d420":"2021-05","d421":"2019-12","d422":"1970-01","d423":"1970-01","d424":"2020-12","d425":"2021-01","d428":"0","d429":"0","d430":"0","d431":"0","d432":"6","d433":"5","d434":"3","d435":"3","d436":"4","d437":"2","d438":"2","d439":"2"},"eXISTS":"1","iDCARD":"430223199810267273","nAME":"吴凯","oldDate":true,"pHONE":"16689776475"},"riskGoRank":[{"hitValue":"8R004","result":10},{"hitValue":"8R005","result":10},{"hitValue":"8R011","result":10},{"hitValue":"8R257X","result":10},{"hitValue":"R1000","result":10},{"hitValue":"R1001","result":10},{"hitValue":"8R707","result":10},{"hitValue":"8R706","result":10},{"hitValue":"2R042","result":10},{"hitValue":"2R043","result":10},{"hitValue":"2R044","result":10},{"hitValue":"2R045","result":10},{"hitValue":"2R046","result":10},{"hitValue":"2R047","result":10},{"hitValue":"2R048","result":10},{"hitValue":"2R049","result":10},{"hitValue":"2R085","result":10},{"hitValue":"2R090","result":10},{"hitValue":"2R091","result":10},{"hitValue":"2R094","result":10},{"hitValue":"2R101","result":10},{"hitValue":"2R102","result":10},{"hitValue":"2R500","result":10},{"hitValue":"2R502","result":5},{"hitValue":"2R503","result":10},{"hitValue":"2R504","result":10},{"hitValue":"2R505","result":10},{"hitValue":"8R053","result":10},{"hitValue":"8R054","result":10},{"hitValue":"8R055","result":10},{"hitValue":"8R056","result":10},{"hitValue":"8R156","result":10},{"hitValue":"R803","result":10},{"hitValue":"R500","result":10},{"hitValue":"R797","result":10},{"hitValue":"R900","result":10},{"hitValue":"R1006","result":5},{"hitValue":"R1002","result":10},{"hitValue":"R1003","result":10},{"hitValue":"R1008","result":5},{"hitValue":"R1009","result":10},{"hitValue":"R1010","result":10},{"hitValue":"R901","result":10},{"hitValue":"R1012","result":5},{"hitValue":"R1013","result":10},{"hitValue":"8R012","result":10},{"hitValue":"8R013","result":10},{"hitValue":"8R014","result":10},{"hitValue":"8R029","result":10},{"hitValue":"8R017","result":10},{"hitValue":"8R015","result":10},{"hitValue":"8R022","result":10},{"hitValue":"8R023","result":10},{"hitValue":"8R113","result":10},{"hitValue":"8R700","result":10},{"hitValue":"8R701","result":10},{"hitValue":"8R702","result":10},{"hitValue":"8R703","result":10},{"hitValue":"8R704","result":10},{"hitValue":"8R258","result":10},{"hitValue":"8R257","result":10},{"hitValue":"8R318","result":10},{"hitValue":"8R303","result":10},{"hitValue":"8R708","result":10},{"hitValue":"8R401","result":10},{"hitValue":"2R501","result":10},{"hitValue":"8R260","result":10},{"hitValue":"8R265","result":10},{"hitValue":"8R600","result":5}],"jingdongInfo":{"code":"1000","data":{"asset_score":"69.623846","business_travel":"-1","buyingIndex":"40","car_score":"-1","cd_level":"2","cellphonePreference":"4","city":"深圳市","comsumingSocial":"40","consume_cnt_freq":"5","consume_m_freq":"5","credit_consume_level":"1","debt_bearing_level":"6","dec_ord_freq":"1","ecommerceAddressStability":"2","ecommercecellphoneStability":"5","gd_level":"1","have_child":"30.794295","house_score":"62.236556","income_score":"79.015385","liability_level":"1","mal_ord_freq":"1","max_dlq_days_all_180_level":"1","max_dlq_days_all_30_level":"1","max_dlq_days_all_365_level":"1","max_dlq_days_all_60_level":"1","max_dlq_days_all_90_level":"1","pay_preference":"4","performance_score":"73.791706","pur_preference":"3, 1, 2, 6, 14","resonableConsuming":"73.62","riskCategoryConsuming":"12.5","riskIndex":"21.9","riskPeriodConsuming":"28.8","risk_pre_level":"-1","risk_pre_score":"-1","stability":"1","time_on_book":"2","tob_rank":"3","tot_180_amt_level":"1","tot_180_cnt_level":"1","tot_180_m_cnt_level":"1","tot_30_amt_level":"1","tot_30_cnt_level":"1","tot_365_amt_level":"1","tot_365_cnt_level":"1","tot_365_m_cnt_level":"1","tot_60_amt_level":"1","tot_60_cnt_level":"1","tot_90_amt_level":"1","tot_90_cnt_level":"1","tot_charge_180_amt_level":"1","tot_charge_180_cnt_level":"1","tot_charge_30_amt_level":"1","tot_charge_30_cnt_level":"1","tot_charge_365_amt_level":"1","tot_charge_365_cnt_level":"1","tot_charge_60_amt_level":"1","tot_charge_60_cnt_level":"1","tot_charge_90_amt_level":"1","tot_charge_90_cnt_level":"1","tot_dlq_days_all_180_level":"1","tot_dlq_days_all_30_level":"1","tot_dlq_days_all_365_level":"1","tot_dlq_days_all_60_level":"1","tot_dlq_days_all_90_level":"1","worktimeShopping":"19.4"},"msg":"调用成功,有效数据","oldDate":true},"ruleInfo":{"8R401":20,"8R029":10,"R1012":10},"mongoInfo":[{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675079","businessChannel":11,"mobileSystem":"android","lng":"113.97846","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-31 09:28:54","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675079","businessChannel":11,"mobileSystem":"android","lng":"113.97846","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-31 09:28:49","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675079","businessChannel":11,"mobileSystem":"android","lng":"113.97846","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-31 09:28:47","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675079","businessChannel":11,"mobileSystem":"android","lng":"113.97846","ip":"58.250.250.59","eventType":2,"eventCode":"200010","createTime":"2021-07-31 09:28:47","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675079","businessChannel":11,"mobileSystem":"android","lng":"113.97846","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-31 09:28:35","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675079","businessChannel":11,"mobileSystem":"android","lng":"113.97846","ip":"58.250.250.59","eventType":2,"eventCode":"200004","createTime":"2021-07-31 09:28:07","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675079","businessChannel":11,"mobileSystem":"android","lng":"113.97846","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-31 09:27:59","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200003","createTime":"2021-07-31 09:27:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200002","createTime":"2021-07-31 09:27:52","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-31 09:27:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-31 09:27:47","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-31 09:27:33","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-31 09:27:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-31 09:27:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-31 09:25:29","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-31 09:25:09","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-31 09:25:09","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-31 09:25:04","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-31 09:24:52","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 22:11:07","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 22:11:01","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 22:11:01","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 22:10:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 22:10:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 21:31:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 21:31:26","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 21:31:25","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 19:17:07","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 19:17:05","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 19:17:05","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 19:17:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 19:17:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 19:16:53","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 19:16:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 19:16:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 19:16:41","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 19:16:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 19:16:28","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 19:16:25","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 19:16:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 19:16:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 19:16:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.22","eventType":1,"eventCode":"100003","createTime":"2021-07-30 18:30:28","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.22","eventType":2,"eventCode":"200005","createTime":"2021-07-30 18:30:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.22","eventType":1,"eventCode":"100006","createTime":"2021-07-30 18:30:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.22","eventType":1,"eventCode":"100003","createTime":"2021-07-30 18:30:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.22","eventType":1,"eventCode":"100001","createTime":"2021-07-30 18:30:18","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"NONE","businessChannel":11,"mobileSystem":"android","ip":"112.97.50.174","eventType":1,"eventCode":"100006","createTime":"2021-07-30 18:28:03","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 18:16:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 18:16:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 18:16:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 18:16:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:50:03","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 16:49:58","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 16:49:58","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:49:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 16:49:53","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 16:35:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-30 16:35:04","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 16:34:58","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:34:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 16:34:53","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:34:53","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:30:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 16:29:59","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 16:29:58","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:29:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 16:29:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 16:29:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:12:38","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 16:12:36","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 16:12:35","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:12:32","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:12:29","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 16:12:22","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 16:12:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 15:04:55","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 15:04:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 15:04:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 15:03:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 15:03:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 15:03:41","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 15:03:37","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 15:03:36","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 14:19:22","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 14:19:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 14:19:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 14:19:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 14:19:06","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":1,"eventCode":"100006","createTime":"2021-07-30 13:24:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":2,"eventCode":"200005","createTime":"2021-07-30 13:24:01","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":1,"eventCode":"100006","createTime":"2021-07-30 13:23:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":2,"eventCode":"200005","createTime":"2021-07-30 13:23:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":1,"eventCode":"100003","createTime":"2021-07-30 13:23:45","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":1,"eventCode":"100001","createTime":"2021-07-30 13:23:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:29:50","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:29:50","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":1,"eventCode":"100003","createTime":"2021-07-30 12:29:46","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"4G","businessChannel":11,"mobileSystem":"android","ip":"112.97.52.206","eventType":1,"eventCode":"100001","createTime":"2021-07-30 12:29:45","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:11:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:11:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 12:11:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 12:10:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 12:10:21","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 12:08:46","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:08:36","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:08:36","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:08:01","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:07:38","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:07:38","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:06:52","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:06:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:06:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:06:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:06:22","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:06:21","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:06:16","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:06:16","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:06:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:06:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:05:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:05:23","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:05:21","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:05:21","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 12:05:18","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 12:05:18","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 12:05:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 12:05:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 11:53:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 11:53:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 11:53:38","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 11:53:34","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 11:53:34","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 11:45:25","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 11:45:21","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 11:45:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 11:45:16","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 11:45:15","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 11:15:00","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 11:14:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 11:14:55","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 11:14:52","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 11:14:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:51:20","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:51:12","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:51:12","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:34:46","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:34:45","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:34:31","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:34:20","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:34:20","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:34:14","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:32:59","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:32:58","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:32:29","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:25:18","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:25:18","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:25:08","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:25:06","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:25:05","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:25:02","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:25:02","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:24:51","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:24:37","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:24:23","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:24:19","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:24:18","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:24:11","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:24:10","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:23:59","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:23:59","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:23:52","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:23:52","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:23:41","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:23:31","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:23:30","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:23:28","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:23:23","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:23:17","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:23:17","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:22:55","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:22:54","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:22:46","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:22:46","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:22:36","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:22:35","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:21:53","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:21:51","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:21:49","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200010","createTime":"2021-07-30 09:21:48","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:21:44","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.67506","businessChannel":11,"mobileSystem":"android","lng":"113.978391","ip":"58.250.250.59","eventType":2,"eventCode":"200004","createTime":"2021-07-30 09:21:08","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:20:58","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":2,"eventCode":"200003","createTime":"2021-07-30 09:20:56","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":2,"eventCode":"200002","createTime":"2021-07-30 09:20:53","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:20:51","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":2,"eventCode":"200010","createTime":"2021-07-30 09:20:50","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-30 09:20:50","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:20:46","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:20:39","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:20:25","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:20:19","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:20:17","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":2,"eventCode":"200004","createTime":"2021-07-30 09:19:44","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.675144","businessChannel":11,"mobileSystem":"android","lng":"113.978351","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:19:04","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道深圳梅华公寓恒大·时尚慧谷"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200003","createTime":"2021-07-30 09:19:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:18:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:18:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:18:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:18:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-30 09:18:22","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-30 09:18:19","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:18:13","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:18:02","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:17:55","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:17:55","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:17:52","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:17:50","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"7yMNSR8AAbJyFxzedEGefcMr3X67CmYh","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":7,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:17:34","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:17:25","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:17:23","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200010","createTime":"2021-07-30 09:17:22","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:17:15","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200003","createTime":"2021-07-30 09:17:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:17:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200010","createTime":"2021-07-30 09:17:09","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:16:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200003","createTime":"2021-07-30 09:16:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200002","createTime":"2021-07-30 09:16:45","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:16:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-30 09:16:40","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:16:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:15:58","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:15:55","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:15:55","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:15:44","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:15:40","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:15:40","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:15:37","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:15:37","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:13:48","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:13:38","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:13:37","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:13:31","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:13:31","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:13:18","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:12:50","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:12:50","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:12:47","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:12:46","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:12:44","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:12:42","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200010","createTime":"2021-07-30 09:12:42","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:12:12","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677871","businessChannel":23,"mobileSystem":"android","lng":"113.973516","ip":"58.250.250.59","eventType":2,"eventCode":"200004","createTime":"2021-07-30 09:12:09","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:11:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200003","createTime":"2021-07-30 09:11:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200002","createTime":"2021-07-30 09:11:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200002","createTime":"2021-07-30 09:11:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200002","createTime":"2021-07-30 09:11:29","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:11:22","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-30 09:11:16","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:11:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:11:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:08:50","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:08:47","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:08:46","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:08:46","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-30 09:08:41","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-30 09:05:23","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-30 09:04:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-30 09:04:07","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 09:04:03","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:04:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 09:03:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 09:03:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 09:03:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 08:55:47","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-30 08:55:45","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-30 08:55:45","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-30 08:55:40","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-30 08:55:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 22:01:59","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 22:01:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 22:01:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 22:01:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 22:01:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 22:00:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 22:00:55","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 22:00:53","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 21:47:47","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 21:47:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 21:47:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 21:47:41","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 21:47:38","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 20:44:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 20:44:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 20:44:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 20:44:25","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 20:44:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:23:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:23:37","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 19:23:36","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:03:29","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:02:59","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 19:02:35","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 19:02:35","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:02:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 19:02:18","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 19:02:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:02:13","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 19:02:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 19:02:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 19:01:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 19:01:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:01:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:01:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 19:01:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-29 19:00:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-29 19:00:47","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 19:00:26","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 19:00:25","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 19:00:21","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 19:00:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 18:59:53","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 18:59:33","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 18:59:27","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 18:59:26","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 18:52:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 18:52:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-29 18:52:23","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-29 18:51:55","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-29 18:51:46","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 18:51:40","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 18:51:38","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 18:51:35","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 18:50:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 18:41:21","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 18:41:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 18:41:13","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 18:41:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 18:41:07","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 18:40:52","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 18:40:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 18:40:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 17:33:13","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 17:32:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 17:31:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-29 17:31:45","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-29 17:31:45","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-29 17:31:41","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-29 17:31:40","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 22:43:06","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 22:42:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-28 22:42:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 22:42:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-28 22:42:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"4G","businessChannel":23,"mobileSystem":"android","ip":"112.97.60.217","eventType":1,"eventCode":"100003","createTime":"2021-07-28 15:18:28","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"4G","businessChannel":23,"mobileSystem":"android","ip":"112.97.60.217","eventType":1,"eventCode":"100006","createTime":"2021-07-28 15:18:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"4G","businessChannel":23,"mobileSystem":"android","ip":"112.97.60.217","eventType":2,"eventCode":"200005","createTime":"2021-07-28 15:18:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"4G","businessChannel":23,"mobileSystem":"android","ip":"112.97.60.217","eventType":1,"eventCode":"100001","createTime":"2021-07-28 15:18:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"4G","businessChannel":23,"mobileSystem":"android","ip":"112.97.60.217","eventType":1,"eventCode":"100003","createTime":"2021-07-28 15:18:10","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 13:01:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 13:01:32","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-28 13:01:32","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-28 13:01:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-28 13:01:29","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-28 13:01:09","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-28 13:01:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200010","createTime":"2021-07-28 13:00:50","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-28 13:00:50","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-28 13:00:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-28 13:00:37","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 13:00:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 13:00:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-28 13:00:01","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 12:59:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 12:59:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 12:59:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 12:58:05","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-28 12:58:04","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 12:57:59","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-28 12:57:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-28 12:57:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-28 12:57:15","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-28 12:57:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-28 12:57:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 12:57:01","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200005","createTime":"2021-07-28 12:56:58","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 12:56:58","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100003","createTime":"2021-07-28 12:56:48","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-28 12:56:47","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677936","businessChannel":23,"mobileSystem":"android","lng":"113.973273","ip":"58.250.250.59","eventType":1,"eventCode":"100006","createTime":"2021-07-28 12:54:30","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","lat":"22.677936","businessChannel":23,"mobileSystem":"android","lng":"113.973273","ip":"58.250.250.59","eventType":2,"eventCode":"200004","createTime":"2021-07-28 12:53:50","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区大浪街道龙华交警大队扣车场"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-28 12:52:29","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200003","createTime":"2021-07-28 12:52:25","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-28 12:52:16","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":3,"eventCode":"300001","createTime":"2021-07-28 12:51:19","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-28 12:51:02","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":2,"eventCode":"200001","createTime":"2021-07-28 12:49:52","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100005","createTime":"2021-07-28 12:49:19","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":4,"eventCode":"400001","createTime":"2021-07-28 12:49:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"o0zNr5I98-xAQQmzJULoVLmh7A3o","mobileVersion":"Android 10","uuid":"xf6naE8txbJRwMPancw6dZawynEnAs5X","mobileBrand":"SAMSUNG","mobileModel":"SM-N960U","net":"WIFI","businessChannel":23,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-28 12:49:04","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"58.250.250.59","eventType":1,"eventCode":"100001","createTime":"2021-07-28 12:48:15","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":3,"eventCode":"300001","createTime":"2021-07-27 12:33:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":1,"eventCode":"100001","createTime":"2021-07-27 12:33:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":2,"eventCode":"200001","createTime":"2021-07-27 12:33:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":2,"eventCode":"200001","createTime":"2021-07-27 12:33:09","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":2,"eventCode":"200001","createTime":"2021-07-27 12:32:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":1,"eventCode":"100005","createTime":"2021-07-27 12:31:47","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":4,"eventCode":"400001","createTime":"2021-07-27 12:31:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":1,"eventCode":"100001","createTime":"2021-07-27 12:31:37","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"112.95.173.94","eventType":1,"eventCode":"100001","createTime":"2021-07-27 12:31:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 06:27:32","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-21 06:27:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-21 06:24:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200001","createTime":"2021-07-21 06:24:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100005","createTime":"2021-07-21 06:24:41","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200010","createTime":"2021-07-21 06:24:41","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 06:24:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 06:24:13","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 06:24:07","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 06:23:52","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100003","createTime":"2021-07-21 02:25:46","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100003","createTime":"2021-07-21 02:25:35","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100006","createTime":"2021-07-21 02:23:35","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200005","createTime":"2021-07-21 02:23:35","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100006","createTime":"2021-07-21 02:22:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200005","createTime":"2021-07-21 02:22:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100006","createTime":"2021-07-21 02:22:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200005","createTime":"2021-07-21 02:22:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100003","createTime":"2021-07-21 02:22:18","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 02:22:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.626075","businessChannel":11,"mobileSystem":"android","lng":"114.036754","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 02:21:24","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区民治街道宜水居公寓塘水围2区"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.626075","businessChannel":11,"mobileSystem":"android","lng":"114.036754","ip":"27.38.141.134","eventType":2,"eventCode":"200010","createTime":"2021-07-21 02:21:23","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区民治街道宜水居公寓塘水围2区"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.626075","businessChannel":11,"mobileSystem":"android","lng":"114.036754","ip":"27.38.141.134","eventType":1,"eventCode":"100006","createTime":"2021-07-21 02:21:08","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区民治街道宜水居公寓塘水围2区"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.626075","businessChannel":11,"mobileSystem":"android","lng":"114.036754","ip":"27.38.141.134","eventType":2,"eventCode":"200004","createTime":"2021-07-21 02:20:38","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区民治街道宜水居公寓塘水围2区"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-21 02:20:33","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200003","createTime":"2021-07-21 02:20:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-21 02:20:27","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200001","createTime":"2021-07-21 02:20:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200010","createTime":"2021-07-21 02:20:19","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100005","createTime":"2021-07-21 02:20:19","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":4,"eventCode":"400001","createTime":"2021-07-21 02:20:16","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 02:20:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100003","createTime":"2021-07-21 02:20:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100003","createTime":"2021-07-21 02:20:06","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 02:20:05","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","lat":"22.626075","businessChannel":11,"mobileSystem":"android","lng":"114.036754","ip":"27.38.141.134","eventType":2,"eventCode":"200004","createTime":"2021-07-21 02:19:40","ipProvince":"广东省","locationAddr":"广东省深圳市龙华区民治街道宜水居公寓塘水围2区"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-21 02:19:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200003","createTime":"2021-07-21 02:19:15","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-21 02:18:59","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-21 02:18:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-21 02:18:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-21 02:18:56","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-21 02:16:42","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-21 02:16:34","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200001","createTime":"2021-07-21 02:16:31","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100005","createTime":"2021-07-21 02:16:30","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-21 02:16:27","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200010","createTime":"2021-07-21 02:16:24","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-21 02:16:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200003","createTime":"2021-07-21 02:16:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-21 02:16:15","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200001","createTime":"2021-07-21 02:16:09","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100005","createTime":"2021-07-21 02:16:08","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":4,"eventCode":"400001","createTime":"2021-07-21 02:16:04","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-21 02:15:57","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-20 23:18:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-20 23:18:36","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-20 23:18:12","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200001","createTime":"2021-07-20 23:17:36","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200010","createTime":"2021-07-20 23:17:32","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":3,"eventCode":"300001","createTime":"2021-07-20 23:17:06","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200003","createTime":"2021-07-20 23:17:04","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-20 23:16:55","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-20 23:16:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200002","createTime":"2021-07-20 23:16:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":2,"eventCode":"200001","createTime":"2021-07-20 23:16:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100005","createTime":"2021-07-20 23:16:39","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"27.38.141.134","eventType":1,"eventCode":"100001","createTime":"2021-07-20 23:16:29","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100001","createTime":"2021-07-19 13:03:34","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":4,"eventCode":"400001","createTime":"2021-07-19 12:34:17","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":3,"eventCode":"300001","createTime":"2021-07-19 12:33:00","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100001","createTime":"2021-07-19 12:32:58","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100005","createTime":"2021-07-19 12:32:51","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100001","createTime":"2021-07-19 12:32:43","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":3,"eventCode":"300001","createTime":"2021-07-18 13:38:16","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100001","createTime":"2021-07-18 13:38:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":2,"eventCode":"200002","createTime":"2021-07-18 13:38:00","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":2,"eventCode":"200001","createTime":"2021-07-18 13:37:55","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100005","createTime":"2021-07-18 13:37:54","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":3,"eventCode":"300001","createTime":"2021-07-18 13:37:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100001","createTime":"2021-07-18 13:37:49","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100005","createTime":"2021-07-18 13:37:44","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":3,"eventCode":"300001","createTime":"2021-07-18 13:37:27","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":1,"eventCode":"100001","createTime":"2021-07-18 13:37:26","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":3,"eventCode":"300001","createTime":"2021-07-18 13:37:20","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":2,"eventCode":"200002","createTime":"2021-07-18 13:37:14","ipProvince":"广东省"},{"appVersion":"0.0.1","timeLong":0,"ipCity":"深圳市","openId":"2088712359801808","mobileVersion":"10","uuid":"kQCrQeHHFn5cYtBAdY7w7SdJkmSCsHTa","mobileBrand":"SAMSUNG","mobileModel":"SAMSUNG SM-N960U","net":"WIFI","businessChannel":11,"mobileSystem":"android","ip":"163.125.39.94","eventType":2,"eventCode":"200002","createTime":"2021-07-18 13:37:13","ipProvince":"广东省"}],"bhphInfo":{"scoreID":"5623363072","score":"623","reason":"","oldDate":true,"costType":2,"costAmount":1.3},"applyInfo":{"receiverAddress":"广东省深圳市龙华区白云山新村50栋901","totalAmount":10956.40,"amount":10956.40,"loanNo":"21073109281912371555","monthAmount":12,"mobile":"16689776475","name":"吴凯","receiverMobile":"16689776475","idCardAddress":"湖南省攸县联星街道雪花社区翻身巷15号附203号","idcardNo":"430223199810267273","businessChannel":11,"loan_time":"2021-07-31 09:28:34"},"xinyanInfo":{"data":{"code":"0","desc":"查询成功","fee":"Y","id_name":"119479f7926108f02db4c0a11129b938","id_no":"e000b97edb6a8a4b7c807e99c5ae9555","result_detail":{"apply_report_detail":{"a22160001":"623","a22160002":"75","a22160003":"16","a22160004":"7","a22160005":"8","a22160006":"24","a22160007":"2021-07","a22160008":"3","a22160009":"9","a22160010":"13"},"behavior_report_detail":{"b22170001":"605","b22170002":"0","b22170003":"0","b22170004":"1","b22170005":"1","b22170006":"1","b22170007":"0","b22170008":"0","b22170009":"[3000,5000)","b22170010":"[3000,5000)","b22170011":"[3000,5000)","b22170012":"0","b22170013":"1","b22170014":"0","b22170015":"0","b22170016":"0","b22170017":"0","b22170018":"1","b22170019":"1","b22170020":"1","b22170021":"1","b22170022":"1","b22170023":"0","b22170024":"0","b22170025":"0","b22170026":"0","b22170027":"0","b22170028":"0","b22170029":"0","b22170030":"0","b22170031":"0","b22170032":"0","b22170033":"0","b22170034":"100%","b22170035":"0","b22170036":"0","b22170037":"0","b22170038":"0","b22170039":"0","b22170040":"[500,1000)","b22170041":"[1000,2000)","b22170042":"[1000,2000)","b22170043":"[1000,2000)","b22170044":"[1000,2000)","b22170045":"1","b22170046":"2","b22170047":"3","b22170048":"3","b22170049":"3","b22170050":"(15,30]","b22170051":"85","b22170052":"1","b22170053":"98","b22170054":"2021-04"},"current_report_detail":{"c22180001":"0","c22180002":"0","c22180003":"0","c22180004":"0","c22180005":"0","c22180006":"0","c22180007":"1","c22180008":"2","c22180009":"3600","c22180010":"3600","c22180011":"3600","c22180012":"85"}},"trade_no":"20210721022252102000009855734000","trans_id":"202107210222510511579492","versions":"2.1.0"},"oldDate":true,"success":true}} from time import * begin_time = time() a = runMain(request_body=request_body, channel=0) end_time = time() run_time = end_time-begin_time print(begin_time) print(end_time) print ('该循环程序运行时间:',run_time) #该循环程序运行时间: 1.4201874732 print(a)
[ "youzhengjie@qnvip.com" ]
youzhengjie@qnvip.com
86df1e55a9124a5ef39b58a13013e3833bb34158
a4575a8628de6cf49fd2a8901d7f75e65fedbecf
/setup.py
3ce490f30cdf003ac59b8194d4031d4431757d8c
[ "MIT" ]
permissive
Skorii/Henallux-Project-2019
6a3228797cd33e32aa81091b87599315dc88e2e1
1376f4f143963b3309f545f7f80e8ded32fa21f4
refs/heads/master
2022-12-23T04:15:49.632171
2020-09-24T18:05:33
2020-09-24T18:05:33
229,773,337
0
0
null
null
null
null
UTF-8
Python
false
false
1,038
py
from setuptools import setup def readme(): with open('README.md') as f: README = f.read() return README setup( name='master-slave', version='1.0.0', description='package to communicate with infected devices trought a local network', long_description=readme(), long_description_content_type='text/markdown', url='https://github.com/Skorii/ProjetPython2019', author='Arnaud "Skorii" Gony', license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], packages=['master_slave'], include_package_data=True, install_requires=['argparse', 'datetime', 'logging', 'os', 'platform', 'psutil', 're', 'requests', 'shutil', 'socket', 'threading', 'time', 'uuid'], entry_points={ "console_scripts": [ "master = master_slave.master:main", "slave = master_slave.slave:main", ], }, )
[ "noreply@github.com" ]
Skorii.noreply@github.com
cc2f87dd75c15312568839c8506425e329400ef6
7815090f077e0c83e13a41b15aab324d0d6e89fa
/python_example_1/download_file.py
3ea5ac4495d7088db3272a2504e6c8157a9482d9
[ "BSD-3-Clause" ]
permissive
namolo2017/hackZEISS
61e525bcaa3de469a5f0e86649691524c61bd526
fdb2c7342fbe0adf9b137f90bf54e8899b1924fb
refs/heads/master
2021-01-11T18:08:19.065875
2017-01-19T23:35:48
2017-01-19T23:35:48
79,501,786
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
#!/usr/bin/python3 import boto3 s3 = boto3.resource('s3') # Print out bucket names for bucket in s3.buckets.all(): print(bucket.name) # download a file s3_client = boto3.client('s3') s3_client.download_file('z0001-bucket', 't_0002.png', 't_0002.png')
[ "oliver@momo.Speedport_W_724V_Typ_A_05011603_00_009" ]
oliver@momo.Speedport_W_724V_Typ_A_05011603_00_009
0f57847960a06f7e8f4b1adc58374dbc48ad303d
29976a5db2873bf084137ca5dc0920efe0b5a1f2
/lora/__init__.py
32c547656e83fa88e0ef64782f40460e6e997670
[ "MIT" ]
permissive
jieter/python-lora
874540b3c68588022afaae8a1b0954e0c82b28cc
5452c5aad29247d1bb0c1c57b409c976592a4190
refs/heads/master
2023-02-21T13:09:57.342877
2022-10-27T20:15:24
2022-10-27T20:15:24
53,316,778
67
24
MIT
2023-02-08T00:43:15
2016-03-07T10:27:45
Python
UTF-8
Python
false
false
18
py
VERSION = "1.1.9"
[ "noreply@github.com" ]
jieter.noreply@github.com