blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
f643f9a47de4c1ca115121662e6b5a7e52da83c7
d23c012269057afe3556711fd514efce20085d75
/api/routes.py
f8fa15a007349ac46eaa1ead2e4c302043d7cdd5
[ "MIT" ]
permissive
bobruk76/E9
c73464941c8f1955fc4145f852aebea43cb572e2
b035a578636d1192b755069e7095d355065c8872
refs/heads/main
2023-01-04T18:52:29.505694
2020-10-25T16:58:49
2020-10-25T16:58:49
304,788,800
0
0
null
null
null
null
UTF-8
Python
false
false
4,568
py
from flask_login import login_user, login_required, logout_user, current_user from werkzeug.utils import redirect from wtforms.ext.appengine.db import model_form from api import app, login_manager, bcrypt, db from flask import Flask, request, render_template, flash, session from api.forms import CreateUserForm, LoginForm, EventForm from api.models import User, Event from api.service import get_all_events, new_user, new_event, get_all_users, get_user, get_user_by_id, del_event, \ get_event_by_id @app.route('/') def index(): results = get_all_events() return render_template('index.html', results=results) @app.route('/event/') def list_events(): if current_user.is_authenticated: current_user_id = current_user.get_id() events = get_all_events() return render_template('list_events.html', data=events, current_user_id=current_user_id) return redirect('/') @app.route('/event/<event_id>/del', methods=['GET', 'POST', 'PUT', ]) def event_del(event_id): if current_user.is_authenticated: user_id = current_user.get_id() del_event(event_id, user_id) return redirect('/event/') return redirect('/') @app.route('/event/<event_id>', methods=['GET', 'POST']) def event_actions(event_id): def date_check(_datetime): if _datetime == '': return None return _datetime if current_user.is_authenticated: _event = None if event_id.isnumeric(): _event = get_event_by_id(int(event_id)) event_form = EventForm(obj=_event) else: event_form = EventForm() if request.method == 'POST': title = request.form.get('title') description = request.form.get('description') timestamp_begin = date_check(request.form.get('timestamp_begin')) timestamp_end = date_check(request.form.get('timestamp_end')) user_id = current_user.get_id() if _event: _event = \ new_event(user_id=user_id, title=title, description=description, timestamp_begin=timestamp_begin, timestamp_end=timestamp_end) else: _event = \ new_event(user_id=user_id, title=title, description=description, timestamp_begin=timestamp_begin, timestamp_end=timestamp_end) return redirect('/event/') return render_template('edit_event.html', form=event_form) flash("Только зарегистрированный пользователь может добавлять событие") return redirect('/') @login_manager.user_loader def user_loader(user_id): return get_user_by_id(user_id) @app.route("/login", methods=["GET", "POST"]) def login(): form = LoginForm() if form.validate_on_submit(): user = get_user(form.name.data) if user: if bcrypt.check_password_hash(user.password, form.password.data): user.authenticated = True db.session.add(user) db.session.commit() login_user(user, remember=True) return redirect("/") else: flash("Неверное имя пользователя или пароль") return render_template("login_user.html", form=form) @app.route('/logout') @login_required def logout(): logout_user() if session.get('was_once_logged_in'): del session['was_once_logged_in'] flash('Вы должны авторизоваться') return redirect('/login') @app.route('/user/') def list_users(): users = get_all_users() return render_template('list.html', data=users, title=u"Список пользователей") @app.route("/user/new", methods=["GET", "POST"]) def create_user(): form = CreateUserForm() if form.is_submitted(): name = request.form.get('name') email = request.form.get('email') password = request.form.get('password') if not get_user(name): user = new_user(name, email, password) login_user(user, remember=True) return redirect("/event/") else: flash('Такой пользователь уже существует!') return render_template("create_user.html", form=form)
[ "vladimir.m.polyakov@gmail.com" ]
vladimir.m.polyakov@gmail.com
101f05c1b708685c9f582744ecc1a14472bcf253
30b2b8a449558fc327daebf51096bf251ef6a8e9
/scripts/Assemble.py
389daba962491debc1e343d62c2dfc8ec94ca8d5
[ "Zlib", "MIT", "LicenseRef-scancode-public-domain" ]
permissive
ekg/shasta
0ac3462d0e3f73375a1b583967992b7e5deba1fd
e2fd3c3d79fb4cafe77c62f6af2fef46f7a04b01
refs/heads/master
2020-06-02T12:59:50.717211
2019-06-10T12:13:22
2019-06-10T12:13:22
191,161,600
0
0
NOASSERTION
2019-06-10T12:13:04
2019-06-10T12:13:03
null
UTF-8
Python
false
false
686
py
#!/usr/bin/python3 import shasta import GetConfig import ast # Read the config file. config = GetConfig.getConfig() # Create the Assembler. a = shasta.Assembler() # Set up the consensus caller. a.setupConsensusCaller(config['Assembly']['consensusCaller']) # Figure out if we should use marginPhase, and if so set it up. useMarginPhase = ast.literal_eval(config['Assembly']['useMarginPhase']) if useMarginPhase: a.setupMarginPhase() a.accessKmers() a.accessMarkers() a.accessMarkerGraphVertices() a.accessMarkerGraphEdges() a.accessAssemblyGraphEdges() a.accessAssemblyGraphEdgeLists() a.accessMarkerGraphVertexRepeatCounts() a.accessMarkerGraphEdgeConsensus() a.assemble()
[ "paoloczi@users.noreply.github.com" ]
paoloczi@users.noreply.github.com
39340c0cfbce2f2177bdf337c5b9ae7da9cdfa9d
4489ea2b304c600da545302b15db9040795e70f9
/args.py
71bf1b7e18ddcabf6f836e196da54c959d4576ce
[]
no_license
OnlyM1ss/Crypto
3bf8f5666467fa99e0840eaaec283ed9782be7ae
4d080f58394e94cd2adf6259a68905963a10a131
refs/heads/master
2020-12-06T08:43:09.591302
2020-01-07T20:55:04
2020-01-07T20:55:04
232,413,697
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
import argparse parser = argparse.ArgumentParser(description='Decoder') parser.add_argument('word', type = str,help='слово которое нужно закодировать') parser.add_argument('shift',type = str,help='шаг') parser.add_argument('dec16',type = str,help='кодировка 16') parser.add_argument('dec32',type = str,help='кодировка 32') parser.add_argument('dec64',type = str,help='кодировка 64')
[ "noreply@github.com" ]
OnlyM1ss.noreply@github.com
e3da1af274d2a3e36400e5fada6e6f02304611b8
aef7c335667a90c8d89644baa091e292a6ea2932
/conanfile.py
c47ac7b9e05c65d89143304192754a99dc027387
[]
no_license
aspectspro/EnterpriseDomainObjects
c3a3ba6bcddf98fa1c6b31ab0327a125803a70cd
2b61ce66186576209455c5f3f01b6910a429dbe6
refs/heads/master
2023-04-25T02:17:09.316413
2020-11-29T13:53:17
2020-11-29T13:53:17
307,079,167
0
0
null
null
null
null
UTF-8
Python
false
false
1,794
py
from conans import ConanFile, CMake, tools class DatabaseConan(ConanFile): name = "EnterpriseDomainObjects" author = "Greg greg@aspectspro.com" description = "Enterprise Domain Objects" def requirements(self): self.requires("AbstractObjects/2.1.1") #dynamically sets version number from master tag or testing if other branches def set_version(self): git = tools.Git(folder=self.recipe_folder) tag = "%s" % (git.get_tag()) if tag == "None": tag = "testing" else: tag = "%s" % (git.get_tag()) self.version = "%s" % (tag) generators = "cmake" settings = "os", "arch", "compiler" options = {"shared": [True, False]} default_options = "shared=False" generators = "cmake" exports_sources = "src/*" def configure(self): if self.settings.compiler == "Visual Studio": del self.settings.compiler.runtime #Creates both debug and release configurations def build(self): # cmake_release = CMake(self, build_type="Debug") # cmake_release.configure(source_folder="src") # cmake_release.build() cmake_debug = CMake(self, build_type="Release") cmake_debug.configure(source_folder="src") cmake_debug.build() def package(self): self.copy("*.h", dst="include", src="src") self.copy("*.lib", dst="lib", keep_path=False) self.copy("*.dll", dst="bin", keep_path=False) self.copy("*.so", dst="lib", keep_path=False) self.copy("*.dylib", dst="lib", keep_path=False) self.copy("*.a", dst="lib", keep_path=False) def package_info(self): self.cpp_info.libs = [self.name] # self.cpp_info.debug.libs = ["%s_d" % (self.name)]
[ "greg@aspectspro.com" ]
greg@aspectspro.com
7f2e99bfc97cb0b7fc22df73b15f8e1a322d6df3
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/exp-big-393.py
20bce7381a23b7eb2eaa3484512995b694ea0636
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
3,178
py
# Compute x**y def exp(x: int, y: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp2(x: int, y: int, x2: int, y2: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x $ID = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp3(x: int, y: int, x2: int, y2: int, x3: int, y3: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp4(x: int, y: int, x2: int, y2: int, x3: int, y3: int, x4: int, y4: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) def exp5(x: int, y: int, x2: int, y2: int, x3: int, y3: int, x4: int, y4: int, x5: int, y5: int) -> int: a: int = 0 a2: int = 0 a3: int = 0 a4: int = 0 a5: int = 0 def f(i: int) -> int: nonlocal a nonlocal a2 nonlocal a3 nonlocal a4 nonlocal a5 def geta() -> int: return a if i <= 0: return geta() else: a = a * x a2 = a * x a3 = a * x a4 = a * x a5 = a * x return f(i-1) a = 1 a2 = 1 a3 = 1 a4 = 1 a5 = 1 return f(y) # Input parameter n:int = 42 n2:int = 42 n3:int = 42 n4:int = 42 n5:int = 42 # Run [0, n] i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch while i <= n: print(exp(2, i % 31)) i = i + 1
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
b4ee1ff0b7b7870c19d3713489b003ee77e5f021
60162e7eb238f166d6166632a17606bb467ef1c7
/Desktwordcount/views.py
b2c8dbc3d3a49ce1e5bc430a940625d3e8f8131f
[]
no_license
qdqzy/Desktwordcount
1d68b32c58270fa61d13969da2a687fbcc35d6de
01bb4bc90e2d0dfeb3a61823eabff8cd01e12eb1
refs/heads/master
2020-06-05T02:56:38.812008
2019-06-17T08:02:35
2019-06-17T08:02:35
192,289,752
0
0
null
null
null
null
UTF-8
Python
false
false
477
py
from django.http import HttpResponse from django.shortcuts import render def home(request): return render(request, 'home.html') def count(request): text = request.GET['text'] print(text) result = {} for i in text: if i not in result: result[i] = 1 else: result[i] += 1 result = sorted(result.item(), key = lambda x:x[1], reverse = True) return render(request,'count.html',{'count_result':result.items()})
[ "876138262@qq.com" ]
876138262@qq.com
51128a92f3012194ab45757a34a18ef7fc86125e
c926da2758b5687cb3a2ea439653e4713f2fc423
/Lib/site-packages/registration/forms.py
c6c00de742f58979232d8b7519d5cef19839f2c7
[]
no_license
BloodyFaces/StoryShare
b66f029ae911c8cb7522e551cb4b535f1703fcb3
e233d1213918eb1db6a884c960b9329c514c3587
refs/heads/master
2022-11-12T05:29:24.666891
2018-12-09T20:57:38
2018-12-09T20:57:38
157,327,992
0
1
null
2022-10-25T03:25:22
2018-11-13T05:56:39
Python
UTF-8
Python
false
false
3,974
py
""" Forms and validation code for user registration. Note that all of these forms assume Django's bundle default ``User`` model; since it's not possible for a form to anticipate in advance the needs of custom user models, you will need to write your own forms if you're using a custom model. """ from __future__ import unicode_literals from django import forms from django.contrib.auth.forms import UserCreationForm from django.utils.translation import ugettext_lazy as _ from .users import UserModel from .users import UsernameField User = UserModel() class RegistrationForm(UserCreationForm): """ Form for registering a new user account. Validates that the requested username is not already in use, and requires the password to be entered twice to catch typos. Subclasses should feel free to add any additional validation they need, but should avoid defining a ``save()`` method -- the actual saving of collected user data is delegated to the active registration backend. """ required_css_class = 'required' email = forms.EmailField(label=_("E-mail")) class Meta: model = User fields = (UsernameField(), "email") # def clean(self): # cleaned_data = super(UserCreationForm, self).clean() # return cleaned_data class RegistrationFormUsernameLowercase(RegistrationForm): """ A subclass of :class:`RegistrationForm` which enforces unique case insensitive usernames, make all usernames to lower case. """ def clean_username(self): username = self.cleaned_data.get('username', '').lower() if User.objects.filter(**{UsernameField(): username}).exists(): raise forms.ValidationError(_('A user with that username already exists.')) return username class RegistrationFormTermsOfService(RegistrationForm): """ Subclass of ``RegistrationForm`` which adds a required checkbox for agreeing to a site's Terms of Service. """ tos = forms.BooleanField(widget=forms.CheckboxInput, label=_('I have read and agree to the Terms of Service'), error_messages={'required': _("You must agree to the terms to register")}) class RegistrationFormUniqueEmail(RegistrationForm): """ Subclass of ``RegistrationForm`` which enforces uniqueness of email addresses. """ def clean_email(self): """ Validate that the supplied email address is unique for the site. """ if User.objects.filter(email__iexact=self.cleaned_data['email']): raise forms.ValidationError(_("This email address is already in use. Please supply a different email address.")) return self.cleaned_data['email'] class RegistrationFormNoFreeEmail(RegistrationForm): """ Subclass of ``RegistrationForm`` which disallows registration with email addresses from popular free webmail services; moderately useful for preventing automated spam registrations. To change the list of banned domains, subclass this form and override the attribute ``bad_domains``. """ bad_domains = ['aim.com', 'aol.com', 'email.com', 'gmail.com', 'googlemail.com', 'hotmail.com', 'hushmail.com', 'msn.com', 'mail.ru', 'mailinator.com', 'live.com', 'yahoo.com', 'outlook.com'] def clean_email(self): """ Check the supplied email address against a list of known free webmail domains. """ email_domain = self.cleaned_data['email'].split('@')[1] if email_domain in self.bad_domains: raise forms.ValidationError(_("Registration using free email addresses is prohibited. Please supply a different email address.")) return self.cleaned_data['email'] class ResendActivationForm(forms.Form): required_css_class = 'required' email = forms.EmailField(label=_("E-mail"))
[ "vladmalmyga@gmail.com" ]
vladmalmyga@gmail.com
2a105f6bc2331fb8e233a4c673ef407ce743c551
9cb233cc790684bc50b7e0b63f9cd7fef5e1e5fa
/coap/coap.py
da8f54e8e45973e3bd082ef504bf7bb15fbb35c1
[]
no_license
DmitryShipilov/Practice_magistrature
21358c1ddb7d7779d7298da0b9620ffef2aafcbb
5d553ce3bda17d265cd2a0d2813244e1b93b2091
refs/heads/master
2022-12-04T01:09:02.303934
2020-08-19T20:14:53
2020-08-19T20:14:53
286,577,061
0
0
null
null
null
null
UTF-8
Python
false
false
1,420
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import asyncio import logging import aiocoap logging.basicConfig(level=logging.INFO) # CoAP message codes Code = aiocoap.numbers.codes.Code async def CoAP_request(code, uri, payload=None): protocol = await aiocoap.Context.create_client_context() if payload: request = aiocoap.Message(code=code, uri=uri, payload=payload) else: request = aiocoap.Message(code=code, uri=uri) try: response = await protocol.request(request).response except Exception as e: print('Failed to fetch resource:') print(e) else: print ("Result code:", response.code,"\n", "Payload:", response.payload) """ if __name__ == "__main__": asyncio.get_event_loop().run_until_complete(CoAP_request( code=Code.GET, uri='coap://localhost/other/block' )) """ print("\nPUT") size = 1 asyncio.get_event_loop().run_until_complete(CoAP_request( code=Code.PUT, uri='coap://localhost/other/block', payload = b"bytes_is10" * size )) """ print("\nGET") asyncio.get_event_loop().run_until_complete(CoAP_request( code=Code.GET, uri='coap://127.0.0.1/other/block', )) """ """ print("\nPUT") asyncio.get_event_loop().run_until_complete(CoAP_request( code=Code.PUT, uri='coap://localhost/other/block', payload = b"xxx xxx xxx\n" * size )) print("\nGET") asyncio.get_event_loop().run_until_complete(CoAP_request( code=Code.GET, uri='coap://localhost/time', )) print("\n") """
[ "shipilov.dmitry.valer@gmail.com" ]
shipilov.dmitry.valer@gmail.com
88e80019ff6a6765f7faf8d524f81498f5a208a3
f3eae017c3c0206cdac604e40ef3b1fc9e7e62f6
/20200404/87.py
cf1f08a2a2efe67b92eef273bbc8181c019f07bc
[]
no_license
doonguk/algorithm
b6d126286f7fff170979c62f2b2378d5a03438e9
981a1457106c244a13ef3cde8e944cb81888755f
refs/heads/master
2021-02-08T09:54:40.185496
2020-04-15T14:30:53
2020-04-15T14:30:53
244,138,985
0
0
null
null
null
null
UTF-8
Python
false
false
1,345
py
def solution(m, n, board): board = list(map(list, board)) dx = [1, 1, 0] dy = [0, 1, 1] answer = 0 cnt = 0 while True: ch = [[0] * n for _ in range(m)] for y in range(m): for x in range(n): for k in range(3): xx = x + dx[k] yy = y + dy[k] if board[y][x] == -1 or xx >= n or yy >= m or board[y][x] != board[y + dy[k]][x + dx[k]]: break else: if ch[y][x] == 0: ch[y][x] = 1 cnt += 1 for k in range(3): if ch[y + dy[k]][x + dx[k]] == 0: ch[y + dy[k]][x + dx[k]] = 1 cnt += 1 if cnt == 0: break answer += cnt cnt = 0 # delete for y in range(m): for x in range(n): if ch[y][x] == 1: now = y # 현재 처리 값 before = now - 1 # 위에 값 while before >= 0 and board[before][x] != -1: board[now][x] = board[before][x] now -= 1 before -= 1 board[now][x] = -1 return answer
[ "mbxd1@naver.com" ]
mbxd1@naver.com
2cfadbdf605826104ecf7f24efa19f78691766cf
c11f92e6a1578338cf759b5e1624a53225642e79
/babi/user_data.py
8307f03bf2d4e55df9bd70db01a1dca7746c0fcf
[ "MIT" ]
permissive
pganssle/babi
c1d50df3bdb924316779ab82e996ad46baafb986
d20be693d2c067570f0a82e2c2baee34c827c3bd
refs/heads/master
2021-04-11T19:55:08.285937
2020-03-21T18:47:37
2020-03-21T18:47:37
249,049,571
0
0
MIT
2020-03-21T19:50:32
2020-03-21T19:50:32
null
UTF-8
Python
false
false
393
py
import os.path def _xdg(*path: str, env: str, default: str) -> str: return os.path.join( os.environ.get(env) or os.path.expanduser(default), 'babi', *path, ) def xdg_data(*path: str) -> str: return _xdg(*path, env='XDG_DATA_HOME', default='~/.local/share') def xdg_config(*path: str) -> str: return _xdg(*path, env='XDG_CONFIG_HOME', default='~/.config')
[ "asottile@umich.edu" ]
asottile@umich.edu
b12ae5879c11d022acc15b94a031accfb196b46b
62883320a7c6bb8cda5e934fbd25bb9ef8a067c3
/front_server.py
3086e2a847325f3c2ab207ae956b269ac0349c2b
[]
no_license
vvvm23/Distributed_Systems_Summative
139637b25242fdbe2799c7d263363da1de2385ee
28480ad069f4cb94e78016c95d9b2d700b841efd
refs/heads/master
2022-04-10T21:47:31.954037
2020-03-13T01:03:28
2020-03-13T01:03:28
239,213,472
0
0
null
null
null
null
UTF-8
Python
false
false
3,196
py
import sys import Pyro4 import Pyro4.util # Expose this class as a Pyro4 object @Pyro4.expose @Pyro4.behavior(instance_mode="single") class FrontServer: def __init__(self): self.primary = None # Primary Server Reference self.ns = Pyro4.locateNS() # Locate the Name Server if not self.ns: print("ERROR: Failed to locate Name Server. Exiting..") exit() self.methods = None if not self.set_primary(): # Search for the primary server print("ERROR: Failed to find primary server. Exiting..") exit() # Search for primary server and set it def set_primary(self): print("ERROR: Current primary is down! Finding new server..") servers = [(name, uri) for name, uri in self.ns.list(prefix="just_hungry.back_end").items()] for s in servers: active = Pyro4.Proxy(s[1]) # Check if the server is up try: active._pyroBind() except Exception as e: continue if active.ping_respond(): # If it is, set as the new primary self.primary = active self.primary.promote_master() # Promote the server to master # Get all methods from the primary server self.methods = { "login": active.login, "logout": active.logout, "create_account": active.create_account, "delete_account": active.delete_account, "make_order": active.make_order, "cancel_order": active.cancel_order, "view_orders": active.view_orders, "show_items": active.show_items } return True return False # Check if the primary server is up def ping_primary(self): try: self.primary._pyroBind() if self.primary.ping_respond(): return True except Exception as e: return False return False # Forward requests from client to backend server def forward_request(self, method, **args): VALID_METHODS = set(["login", "logout", "create_account", "delete_account", "make_order", "cancel_order", "view_orders", "show_items"]) if not method in VALID_METHODS: print("ERROR: Unknown method!") return False # Check if primary is up if not self.ping_primary(): # If not, find a new primary if not self.set_primary(): print("ERROR: Failed to find new primary server!") return False # Get the corresponding method and call it remotely. print(f"INFO: Forwarding to remote method {method}") server_result = self.methods[method](**args) # Tell the primary server to sync with slaves self.primary.master_sync() return server_result # Set remote exception hook sys.excepthook = Pyro4.util.excepthook if __name__ == "__main__": Pyro4.Daemon.serveSimple({ FrontServer: "just_hungry.front_end" }, ns=True)
[ "alexander.f.mckinney@durham.ac.uk" ]
alexander.f.mckinney@durham.ac.uk
bef34cad01422648c09e20b9ebaf04f24bcfe0f0
c7877ca0f68753212e4bb2f8b2944eec65dff56e
/fa/bootstrap/forms.py
6224699d5a7aebbd20b47a2aa7df3ebb8f353fc5
[]
no_license
RedTurtle/fa.bootstrap
d37d81fb9bca3539abd1c71a0cc67c4af19b27b7
8b982f9dc178c58e62fef9e3dddde5a8dac9b811
refs/heads/master
2021-01-01T18:37:46.303564
2014-04-25T13:17:21
2014-04-25T13:17:21
2,487,668
5
5
null
2014-04-25T13:17:22
2011-09-30T07:35:24
JavaScript
UTF-8
Python
false
false
903
py
from formalchemy import FieldSet, fatypes from fa.bootstrap import renderers class BootstrapFieldSet(FieldSet): default_renderers = dict(FieldSet.default_renderers) default_renderers.update({ fatypes.String: renderers.BootstrapTextFieldRenderer, fatypes.Unicode: renderers.BootstrapTextFieldRenderer, fatypes.Text: renderers.BootstrapTextFieldRenderer, fatypes.Integer: renderers.BootstrapIntegerFieldRenderer, fatypes.Float: renderers.BootstrapFloatFieldRenderer, fatypes.Numeric: renderers.BootstrapFloatFieldRenderer, fatypes.Interval: renderers.BootstrapIntervalFieldRenderer, fatypes.Boolean: renderers.BootstrapBooleanFieldRenderer, fatypes.Set: renderers.BootstrapSelectFieldRenderer, fatypes.List: renderers.BootstrapSelectFieldRenderer, 'dropdown': renderers.BootstrapSelectFieldRenderer, })
[ "mtjahangir@gmail.com" ]
mtjahangir@gmail.com
8e34a70a3f9397eeb53ec22828a93db95486d8b8
e458083d9e0f3564d3089de9febe3cad61733f47
/Weekdays/python_looping/python_loopings/iterative.py
a8a0cb3dacd9d0abb7f63a3db3305d1043195b89
[]
no_license
chavhanpunamchand/pythonYogeshSir
cd71d002927f8bbc8ad5ecff3282e0b7c6cfc13c
3ee675f188e2680cde9e04ad03f2f5c9f3d46ba0
refs/heads/master
2023-02-14T01:53:34.342147
2021-01-09T17:36:17
2021-01-09T17:36:17
293,258,859
0
0
null
null
null
null
UTF-8
Python
false
false
8,839
py
''' Iterative --> points do..while --atleast once --> thru flag--* --> not provided in python while --> may or may not range random random.randoint enumerate dict.keys dict.values dict.items for --> when u are sure about no of iterations in advance --> when u are not sure about no of iterations in advance --> read data from db--> read data from files--> while --> may or may not body execution --> condition and then body do..while --> atleast once body execution --> body then condition --> condition bypass it thru flag--> for -> loop -- Iterative --> statements --> execute the body as long as condition is satisfied for while do.while * --> not in python --> we need to explicitly --> implement this range(10) start--> 0 end=10 step=1 range(1,10) step=1 range(1,10,3) start -1 end 10 --> incr -->3 1 4 7 for(initialization;conditions;incremet/decrement) --> other lang //body for --> start stop step range --> seq --> start stop -> step ---> range(10) --> 0 10 1 --> 0-9 start -> include -- range(1,10) --> 1 10 1 -->1-9 stop --> dont include range(1,10,2) 1 10 2 -->1,3,5,7,9 step --> increment by list/set/tuple --> item --> simply element -- dict --> step1 1.dict --> keys --> based on keys using dict.get(key) -> value --> we need to retrive 2.dict.keys --keys --> based on keys using dict.get(key) -> value --> we need to retrive step2 packed = pickling = (10,20,30,40,50) values = (10,20,30) for item in dict.items() --> (key,value) unpacked--unpickling = 10,20,40,50 v1,v2,v3 = 10,20,30 for k,v in dict.items() --> key value 3.dict.items() -- pair --> for k,v in dict.items() --> unpacked 1 11 --> direct for i,k,v in enumerate(dict.items()) --> unpacked 0,1 11 --> direct for item in dict.items() --> packed (1,11) -> direct for i,item in enumerate(dict.items()) --> packed (1,11) -> direct step1 --> key -- we can retrive value step2 -- key,value -->direct step3 dict.values() --> only values --> u cannot retrive keys--based only values --> enumerate --> assign numbers to the --> counter --> 0,1,2,3 --> ''' import sys import random # i want to read the file print -> all lines- -> #body --> # fib -> series --> 0 1 1 2 3 5 8 ---> val = int(input('Enter Stop Point ')) # 5 #do --> atleast once --> num1 = 0 # 0 1 num2 = 1 #1 result = 0 #0 counter = 1 #1 # swap --> while (counter<=val): # true #final ans ---> 0,1,1,2 print(result,end=',') #1 counter +=1 # 4 num1 = num2 #1 num2 = result # 1 result = num1 + num2 #1+1 --> 2 sys.exit(0) while True: file = open('File') if not file.readlines(): # in case no lines break num1 = int(input('Enter NO -->')) num2 = int(input('Enter NO -->')) while num1 == num2: break while True: # do while --> atleast once num1 = int(input('Enter NO -->')) num2 = int(input('Enter NO -->')) if num1 == num2: break flag = 1 val = int(input('Enter Number : ')) while flag or val%2==0: # # when no is even print('inside body') #atleast once body execution happens # may or may not body execution val = int(input('Enter Number : ')) flag=0 # reset -> next time flag will not bypass--> execution print('Outside body -->') sys.exit(0) #do while kind of implementation --> while do.while --> with the help of flag flag = [0] # present num = int(input('Enter Number : ')) # once --> first --> gc --> atleast once -> do while --> implementation while not num%3==0 or flag: # loop will execute unless entered number is not divisible by 3 print('Inside Body') #gc --> always --> cannot-->depends on condition num = int(input('Enter Number : ')) flag.clear() #empty --> absent print("Divisible by 3 -->", num) sys.exit(0) #every iterator --> group of elements --> list,set,tuple,dict #while --> condition --> then body -> may or may not #do..while-->body first --> then condition --> atleast once ''' while condition: --> body may or may not execute --> always --> depends on condition body do body --> atleast once body will surely execute -- irrespective of condition while condition ''' #for item in range(1000): # if we are sure about no of iterations --> # if we are not sure about no of iteration in advance while True: # # start loop --> unless not break --> if num divisible by 3 --> when ??==? no--> num = int(input('Enter Number :')) if num%3==0: print('Number found',num) break sys.exit(0) sys.exit(0) #no of attempts --> no --> if u are not sure about of numbers---> while num = int(input('Enter Number : ')) # no of elements --> to reach to this condition ?? if num%3 == 0: print('Number Found -- >',num) sys.exit(0) values = [random.randint(1,100) for item in range(10)] # this line is exactly to --> 51 to 57 lines -> compressive--> short hand expression -- short cut print(values) # i want to print all those -- nums divisiable by 3--> #3 stop for item in values: #10 if item%3==0: print(item) break sys.exit(0) values = [] for item in range(10): # 10 times --> val = random.randint(1,100) # 1 - 100 --> both inclusive -> random no generates values.append(val) print(values) sys.exit(0) valuesList = list(range(1,20)) valuesSet = set(range(1,20)) valuesTuple = tuple(range(1,20)) valuesList1 = list(range(1,10)) # 9 -->1------> 9 1:11,2:12 --> key valuesList2 = list(range(11,20)) #9--> 11----> 19 -->value valuesDict = dict(zip(valuesList1,valuesList2)) for cnt,pair in enumerate(valuesDict.items()): print(cnt,pair) #0 (1,11) 1 (2,12) sys.exit(0) print('For List -->') for index,item in enumerate(valuesList): # if we want counter for the element print(index,item) # 0:1 --> 8:9 print('For Set --->') for index,item in enumerate(valuesSet): # enumerate --> assigns counter to the elements--> print(index,item) sys.exit(0) #values = [10,"A",True] # item ?? --? first int --> second --string--> 3rd --> boolean #list --> group of elements as single entity --> # array --> type of array --> object --> hom data elements print('Dict Items ->',valuesDict) print('using dict --> items() method --> unpacked') for key,val in valuesDict.items(): print(key,val) #1 11 print('using dict --> items() method --> packed --> tuple pairs') for pair in valuesDict.items(): print(pair) #tuple(1,11) (2,12) (3,13) sys.exit(0) print('using dict --> values() method') for val in valuesDict.values(): print(val) #only values --> 11 12 -----> 19 sys.exit(0) print('Tuple Iterations using for loop') for item in valuesTuple: print(item,end=' . ') #tuple elements sepereated by dot print('using dict.nothing which is bydefault --> keys()') for item in valuesDict: #default .keys() print('Key {}'.format(item),"Value {}".format(valuesDict.get(item))) #only keys --> 1 2 3 4------> 9 print('using dict --> keys() method') for key in valuesDict.keys(): # print('Key {}'.format(key),"Value {}".format(valuesDict.get(key))) #only keys --> 1 2 3 4------> 9 print('List Of Items ->',valuesList) print('List Iterations using for loop') for item in valuesList: print(item,end=' # ') #list elements sepearated by hash # print('Set Iterations using for loop') for item in valuesSet: print(item, end=' , ') # set elements sepearated by , #include--1 but not 10 val = range(1,20,2) #1 <10 ans = list(val) print(ans) for item in ans: print(item,end=',') sys.exit(0) val = range(10) # seq --> print(val,type(val)) rlist = set(range(10)) print(rlist)
[ "chavhanpunamchand@gmail.com" ]
chavhanpunamchand@gmail.com
7d287e5d6a9ac9084996d8e8934bd0ad4c76c534
6410215af82c5db7c7310c1adab88a1fa85d9fcb
/init_db.py
6757241cbad55fdfc88311fdeb6d3bea18657858
[]
no_license
PranavJoshi1/CloudAzure
120ea1e5a9ed1e520c070d2b45b67f9d5a458f44
9a928702c5f737ebb5f7c8cc2227d1a96c7a3775
refs/heads/main
2023-03-21T00:29:11.755329
2021-03-06T08:01:27
2021-03-06T08:01:27
345,036,588
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
import sqlite3 connection = sqlite3.connect('database.db') with open('schema.sql') as f: connection.executescript(f.read()) cur = connection.cursor() cur.execute("INSERT INTO posts (title, content) VALUES (?, ?)", ('First Post', 'Content for the first post') ) cur.execute("INSERT INTO posts (title, content) VALUES (?, ?)", ('Second Post', 'Content for the second post') ) connection.commit() connection.close()
[ "noreply@github.com" ]
PranavJoshi1.noreply@github.com
74ce6870b66861e8a9a1a0672ebaed66d09cd12f
eb220efce4db90a7fd9cb06a69021969182f0087
/P1-Ricochet Robots/ricochet_robots.py
5df992fd3bdcf957c93a9a2160b9cf438b593b7e
[]
no_license
Mokita-J/Artificial_Intelligence
7e0854913ff7e4062787e028e12981f3cbb7e57f
704b421d10679266d125b7d7071e6c7456dbc79c
refs/heads/main
2023-06-14T22:02:48.539252
2021-06-28T18:10:53
2021-06-28T18:10:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,943
py
# ricochet_robots.py: Template para implementação do 1º projeto de Inteligência Artificial 2020/2021. # Devem alterar as classes e funções neste ficheiro de acordo com as instruções do enunciado. # Além das funções e classes já definidas, podem acrescentar outras que considerem pertinentes. # Grupo 11: # 92532 Mónica Jin # 93681 Afonso Carvalho from search import Problem, Node, astar_search, breadth_first_tree_search, \ depth_first_tree_search, greedy_search, InstrumentedProblem import sys, time class RRState: state_id = 0 def __init__(self, board): self.board = board self.id = RRState.state_id RRState.state_id += 1 def __lt__(self, other): """ Este método é utilizado em caso de empate na gestão da lista de abertos nas procuras informadas. """ return self.id < other.id def __eq__(self, other): if type(other) is type(self): return self.board == other.board return False def __hash__(self): return hash(self.board) class Board: """ Representacao interna de um tabuleiro de Ricochet Robots. """ goal = None def __init__(self, size, R_pos, B_pos, Y_pos, G_pos, barriers): self.robots = {"R": R_pos, "B": B_pos, "Y": Y_pos, "G": G_pos} self.barriers = barriers self.size = size def __eq__(self, other): if type(other) is type(self): return self.robots == other.robots and self.size == other.size return False def __hash__(self): return hash((self.robots["R"], self.robots["B"], self.robots["Y"], self.robots["G"], self.size)) def robot_position(self, robot: str): """ Devolve a posição atual do robô passado como argumento. """ return self.robots[robot] def possible_actions(self, robot: str): actions = [] (x, y) = self.robot_position(robot) if y != self.size: #checks if robot can move right if (x, y + 1) not in self.robots.values(): if (x, y + 1) not in self.barriers["l"] and (x, y) not in self.barriers["r"]: actions.append("r") if y != 1: #checks if robot can move left if (x, y - 1) not in self.robots.values(): if (x, y - 1) not in self.barriers["r"] and (x, y) not in self.barriers["l"]: actions.append("l") if x != self.size: #checks if robot can move down if (x + 1, y) not in self.robots.values(): if (x + 1, y) not in self.barriers["u"] and (x, y) not in self.barriers["d"]: actions.append("d") if x != 1: #checks if robot can move up if (x - 1, y) not in self.robots.values(): if (x - 1, y) not in self.barriers["d"] and (x, y) not in self.barriers["u"]: actions.append("u") return actions def parse_instance(filename: str) -> Board: """ Lê o ficheiro cujo caminho é passado como argumento e retorna uma instância da classe Board. """ f = open(filename, "r") data = f.readlines() board = Board(eval(data[0]), None, None, None, None, {"u": [], "d": [], "l": [], "r": []}) x, y = 0, 0 for line in range(1, 5): robot = data[line].split() x = eval(robot[1]) y = eval(robot[2]) board.robots[robot[0]] = (x, y) goal = data[5].split() Board.goal = [goal[0], (eval(goal[1]), eval(goal[2]))] for line in range(7, 7 + eval(data[6])): barrier = data[line].split() x = eval(barrier[0]) y = eval(barrier[1]) board.barriers[barrier[2]].append((x, y)) f.close() return board class RicochetRobots(Problem): def __init__(self, board: Board): """ O construtor especifica o estado inicial. """ super().__init__(RRState(board), board.goal) def actions(self, state: RRState): """ Retorna uma lista de ações que podem ser executadas a partir do estado passado como argumento. """ actions = [] for color in state.board.robots: for move in state.board.possible_actions(color): actions.append((color, move)) return actions def result(self, state: RRState, action): """ Retorna o estado resultante de executar a 'action' sobre 'state' passado como argumento. A ação retornada deve ser uma das presentes na lista obtida pela execução de self.actions(state). """ (robot, move) = action (x, y) = state.board.robot_position(robot) distx = state.board.size + 1 disty = state.board.size + 1 if move == "r": distx = 0 for pos in state.board.barriers["r"]: if x == pos[0] and y < pos[1]: disty = min(disty, pos[1] - y) for pos in state.board.barriers["l"] + list(state.board.robots.values()): if x == pos[0] and y < pos[1]: disty = min(disty, pos[1] - y - 1) if disty == state.board.size + 1: disty = state.board.size - y elif move == "l": distx = 0 for pos in state.board.barriers["r"] + list(state.board.robots.values()): if x == pos[0] and y > pos[1]: disty = - min(abs(disty), y - pos[1] - 1) for pos in state.board.barriers["l"]: if x == pos[0] and y > pos[1]: disty = - min(abs(disty), y - pos[1]) if disty == state.board.size + 1: disty = 1 - y elif move == "u": disty = 0 for pos in state.board.barriers["u"]: if y == pos[1] and x > pos[0]: distx = - min(abs(distx), x - pos[0]) for pos in state.board.barriers["d"] + list(state.board.robots.values()): if y == pos[1] and x > pos[0]: distx = - min(abs(distx), x - pos[0] - 1) if distx == state.board.size + 1: distx = 1 - x elif move == "d": disty = 0 for pos in state.board.barriers["u"] + list(state.board.robots.values()): if y == pos[1] and x < pos[0]: distx = min(distx, pos[0] - x -1) for pos in state.board.barriers["d"]: if y == pos[1] and x < pos[0]: distx = min(distx, pos[0] - x) if distx == state.board.size + 1: distx = state.board.size - x if robot == "R": return RRState(Board(state.board.size, (x + distx, y + disty), state.board.robot_position("B"), state.board.robot_position("Y"), state.board.robot_position("G"), state.board.barriers)) elif robot == "B": return RRState(Board(state.board.size, state.board.robot_position("R"), (x + distx, y + disty), state.board.robot_position("Y"), state.board.robot_position("G"), state.board.barriers)) elif robot == "Y": return RRState(Board(state.board.size, state.board.robot_position("R"), state.board.robot_position("B"), (x + distx, y + disty), state.board.robot_position("G"), state.board.barriers)) elif robot == "G": return RRState(Board(state.board.size, state.board.robot_position("R"), state.board.robot_position("B"), state.board.robot_position("Y"), (x + distx, y + disty), state.board.barriers)) def goal_test(self, state: RRState): """ Retorna True se e só se o estado passado como argumento é um estado objetivo. Deve verificar se o alvo e o robô da mesma cor ocupam a mesma célula no tabuleiro. """ goal_robot = self.goal[0] goal_pos = self.goal[1] return state.board.robot_position(goal_robot) == goal_pos def h(self, node: Node): """ Função heuristica utilizada para a procura A*. """ (bx, by) = node.state.board.robot_position("B") (rx, ry) = node.state.board.robot_position("R") (yx, yy) = node.state.board.robot_position("Y") (gx, gy) = node.state.board.robot_position("G") blue_weight = red_weight = yellow_weight = green_weight = self.initial.board.size if self.goal[0] == "R": red_weight = 1 elif self.goal[0] == "B": blue_weight = 1 elif self.goal[0] == "G": green_weight = 1 elif self.goal[0] == "Y": yellow_weight = 1 """if(self.goal[1][0] == node.state.board.size or self.goal[1][1] == node.state.board.size or self.goal[1][0] == 1 or self.goal[1][1] == 1): (x, y) = node.state.board.robot_position(self.goal[0]) return abs(x - self.goal[1][0]) + abs(y - self.goal[1][1])""" return (abs(bx - self.goal[1][0]) + abs(by - self.goal[1][1])) * blue_weight + \ (abs(rx - self.goal[1][0]) + abs(ry - self.goal[1][1])) * red_weight + \ (abs(yx - self.goal[1][0]) + abs(yy - self.goal[1][1])) * yellow_weight + \ (abs(gx - self.goal[1][0]) + abs(gy - self.goal[1][1])) * green_weight if __name__ == "__main__": start_time = time.time() board = parse_instance(sys.argv[1]) problem = RicochetRobots(board) # instrumentProblem = InstrumentedProblem(problem) node = astar_search(problem, problem.h) print("Execution time:",time.time() - start_time, "seconds") solution = [] while(node.parent): solution = [node.action] + solution node = node.parent print(len(solution)) for move in solution: print(move[0] + " " + move[1])
[ "monicachenjin@tecnico.ulisboa.pt" ]
monicachenjin@tecnico.ulisboa.pt
9500d9c5d2fd365ab5a5c46c7f6c5e2743b8ba14
d9553aeed9a8886d35ea5d5d5537a143efec0d7d
/dataset_creation.py
81046e3dd407978d1688d093f754f1a8a9c56567
[]
no_license
rahulOmishra/detecting-incongruity-dataset-gen
f06546c2699c23f84b635801ce749f3a2932d9fc
0c95acb6275afafdf6116253c3419d18fdf761ce
refs/heads/master
2021-01-14T04:21:05.406662
2019-10-16T07:30:46
2019-10-16T07:30:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,600
py
import os import json import csv from datetime import datetime import random import math import argparse import pandas as pd import numpy as np from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords STOP_WORDS = stopwords.words('english') P_TRAIN = 0.85 P_DEV = 0.075 P_TEST = 0.075 def preprocess_body(body): new_body = [] for para in body: new_para = [] for sent in para: new_sent = preprocess_sentence(sent) new_para.append(new_sent) new_body.append(new_para) return new_body def preprocess_sentence(txt): words = word_tokenize(txt) words = [word for word in words if (word.isalpha() and (word not in STOP_WORDS) )] return " ".join(words) def load_from_raw_data(nela_path): BASE_PATH = nela_path column_labels = ['headline', 'body', 'source'] df = pd.DataFrame(columns=column_labels) for month_dir in os.listdir(BASE_PATH): for date_dir in os.listdir(os.path.join(BASE_PATH, month_dir)): for source_dir in os.listdir(os.path.join(BASE_PATH, month_dir, date_dir)): for article_filename in os.listdir(os.path.join(BASE_PATH, month_dir, date_dir, source_dir)): with open(os.path.join(BASE_PATH, month_dir, date_dir, source_dir, article_filename)) as f: json_txt = f.read() try: article_dict = json.loads(json_txt) except json.decoder.JSONDecodeError: continue article_dict = { "headline": article_dict["title"], "body": article_dict["content"], "source": article_dict["source"], } df = df.append(article_dict, ignore_index=True) print(df) return df def export_csv_for_prediction(df, source_path, para_flag=False): df = df.dropna() df = df.sample(n=5) print(df.iloc[0].body) df['body'] = df.apply(lambda row: list(map(lambda x: [x], row['body'].split("\n\n"))), axis=1) df['headline'] = df.apply(lambda row: preprocess_sentence(row['headline']), axis=1) df['body'] = df.apply(lambda row: preprocess_body(row['body']), axis=1) print(df) print(df.iloc[0].body) f = open(source_path, "w") writer = csv.writer(f, delimiter=",", quoting=csv.QUOTE_MINIMAL) for row in df.itertuples(): if para_flag: for para in row.body: writer.writerow([row.Index, row.headline, " ".join(para)]) else: for para in row.body: for sent in para: writer.writerow([row.Index, row.headline, sent]) def create_dataset(df): df = df.sample(frac=1) number_array = [i for i in range(200)] label_0_list = [] label_1_list = [] para_list = [] label_1_type = 0 type_1_avr_len = [] result_df = [] result_df_para = [] for i in range(df.shape[0] // 3): label_0_row = df.iloc[3*i] label_1_base = df.iloc[3*i + 1] label_1_attach = df.iloc[3*i + 2] base_paras = label_1_base["paras"] attach_paras = label_1_attach["paras"] base_para_len = len(label_1_base["paras"]) attach_para_len = len(label_1_attach["paras"]) if label_1_type == 0: # Applying rule (1) with only one paragraph selected_para_index = random.randrange(0, attach_para_len) insert_index = random.randrange(0, base_para_len + 1) fake_paras = attach_paras[selected_para_index] result_article = base_paras.copy() result_article.insert(insert_index, attach_paras[selected_para_index]) fake_paras = [fake_paras] elif label_1_type == 1: # Applying rule (1) with two or more consecutive paragraphs selected_insert_para_len = random.randrange(1, min([math.ceil(base_para_len / 2), attach_para_len]) + 1) type_1_avr_len.append(selected_insert_para_len) selected_para_start_index = random.randrange(0, attach_para_len - selected_insert_para_len + 1) insert_index = random.randrange(0, base_para_len + 1) fake_paras = attach_paras[selected_para_start_index:selected_para_start_index + selected_insert_para_len] result_article = base_paras[:insert_index] + fake_paras + base_paras[insert_index:] elif label_1_type == 2: # Applying rule (2) without random arrangement (maintaining the ordering of the sampled paragraphs) selected_insert_para_len = random.randrange(1, min([math.ceil(base_para_len / 2), attach_para_len]) + 1) type_1_avr_len.append(selected_insert_para_len) selected_para_indices = random.sample(number_array[:attach_para_len], selected_insert_para_len) insert_indices = random.sample(number_array[:base_para_len + selected_insert_para_len], selected_insert_para_len) fake_paras = [attach_paras[i] for i in selected_para_indices] base_paras_temp = base_paras.copy() fake_paras_temp = fake_paras.copy() base_paras_temp.reverse() fake_paras_temp.reverse() result_article = [] for i in range(base_para_len + selected_insert_para_len): if i in insert_indices: result_article.append(fake_paras_temp.pop()) else: result_article.append(base_paras_temp.pop()) elif label_1_type == 3: # Applying rule (2) (n > 1) selected_insert_para_len = random.randrange(1, min([math.ceil(base_para_len / 2), attach_para_len]) + 1) type_1_avr_len.append(selected_insert_para_len) selected_para_indices = random.sample(number_array[:attach_para_len], selected_insert_para_len) insert_indices = random.sample(number_array[:base_para_len + selected_insert_para_len], selected_insert_para_len) fake_paras = [attach_paras[i] for i in selected_para_indices] base_paras_temp = base_paras.copy() fake_paras_temp = fake_paras.copy() result_article = base_paras[:] for fake_para in fake_paras: result_article.insert(random.randrange(0, len(result_article)), fake_para) label_1_type = (label_1_type + 1) % 4 result_df.append({"headline": label_0_row["headline"], "body": label_0_row["paras"], "fake_type": -1, "label": 0}) result_df.append({"headline": label_1_base["headline"], "body": result_article, "fake_type": label_1_type, "label": 1}) result_df_para.append({"headline": label_0_row["headline"], "body": label_0_row["paras"], "fake_type": -1, "label": 0, "fake_paras": [], "base": label_0_row["paras"]}) result_df_para.append({"headline": label_1_base["headline"], "body": result_article, "fake_type": label_1_type, "label": 1, "fake_paras": fake_paras, "base": base_paras}) result_df = pd.DataFrame(result_df) result_df_para = pd.DataFrame(result_df_para) return result_df, result_df_para def export_df_to_dataset(df, output_dir): df["body"] = df.apply(lambda row: [sent_tokenize(para) for para in row["body"]], axis=1) def tokenize_sent_in_para(para): result = [] for sent in para: result.append(" ".join(word_tokenize(sent))) result = " <EOS> ".join(result) + " <EOS> " return result df["body"] = df.apply(lambda row: [tokenize_sent_in_para(para) for para in row["body"]], axis=1) df["headline"] = df.apply(lambda row: " ".join(word_tokenize(row["headline"])), axis=1) df["body_merged"] = df.apply(lambda row: " <EOP> ".join(row["body"]).replace("<EOS> <EOP>", "<EOS> <EOP>"), axis=1) df_train = df.iloc[:int(df.shape[0] * P_TRAIN)] df_dev = df.iloc[int(df.shape[0] * P_TRAIN):int(df.shape[0] * (P_TRAIN + P_DEV))] df_test = df.iloc[int(df.shape[0] * (P_TRAIN + P_DEV)):] whole_train_df = df_train[["headline", "body_merged", "label"]] whole_train_df.to_csv(os.path.join(output_dir, "train.csv"), encoding="utf-8", header=False) whole_dev_df = df_dev[["headline", "body_merged", "label"]] whole_dev_df.to_csv(os.path.join(output_dir,"dev.csv"), encoding="utf-8", header=False) whole_test_df = df_test[["headline", "body_merged", "label"]] whole_test_df.to_csv(os.path.join(output_dir,"test.csv"), encoding="utf-8", header=False) def export_df_to_dataset_para(df, output_dir): df["fake_paras"] = df.apply(lambda row: [sent_tokenize(para) for para in row["fake_paras"]], axis=1) df["base"] = df.apply(lambda row: [sent_tokenize(para) for para in row["base"]], axis=1) def tokenize_sent_in_para(para): result = [] for sent in para: result.append(" ".join(word_tokenize(sent))) result = " <EOS> ".join(result) + " <EOS> " return result df["fake_paras"] = df.apply(lambda row: [tokenize_sent_in_para(para) for para in row["fake_paras"]], axis=1) df["base"] = df.apply(lambda row: [tokenize_sent_in_para(para) for para in row["base"]], axis=1) df["headline"] = df.apply(lambda row: " ".join(word_tokenize(row["headline"])), axis=1) df_train = df.iloc[:int(df.shape[0] * P_TRAIN)] df_dev = df.iloc[int(df.shape[0] * P_TRAIN):int(df.shape[0] * (P_TRAIN + P_DEV))] df_test = df.iloc[int(df.shape[0] * (P_TRAIN + P_DEV)):] para_train_df = [] for row in df_train.itertuples(): for para in row.fake_paras: para_train_df.append([row.Index, row.headline, para, 1]) for para in row.base: para_train_df.append([row.Index, row.headline, para, 0]) para_dev_df = [] for row in df_dev.itertuples(): for para in row.fake_paras: para_dev_df.append([row.Index, row.headline, para, 1]) for para in row.base: para_dev_df.append([row.Index, row.headline, para, 0]) with open(os.path.join(output_dir,"train_IP.csv"), "w", encoding="utf-8") as f: writer = csv.writer(f) for row in para_train_df: writer.writerow(row) with open(os.path.join(output_dir,"dev_IP.csv"), "w", encoding="utf-8") as f: writer = csv.writer(f) for row in para_dev_df: writer.writerow(row) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--input_path', help="path to article csv file") parser.add_argument('--output_dir', default=".", help="directory to export output file") parser.add_argument('--nela_path', default=None, help="directory to raw NELA JSON folder path") args = parser.parse_args() if args.nela_path is not None: df = load_from_raw_data(args.nela_path) else: df = pd.read_csv(args.input_path, header=None, names=["headline", "body"]) df["body"] = df.apply(lambda row: row["body"].replace("\xa0", " "), axis=1) df["paras"] = df.apply(lambda row: list(filter(None, row["body"].split("\n"))), axis=1) print("Shuffling....") df, df_para = create_dataset(df) print("Exporting....") export_df_to_dataset(df, args.output_dir) export_df_to_dataset_para(df_para, args.output_dir)
[ "jgdgj223@gmail.com" ]
jgdgj223@gmail.com
50fdad15b14d6c730c7ce8452947e51d1a0147ad
2d7170db2454cee312d595531404d0cf2b4e369c
/django_memcached_request_limit_manager.py
f61d14a5492209b795fb7841f0190b8ad4b13651
[ "MIT" ]
permissive
fastinetserver/python-pandadoc
1d7f659bc162b42b23709a2e15c2ca43f551cde2
516415ddb97ef7024da3c558634bc5845c913134
refs/heads/master
2022-12-06T00:32:20.216436
2020-09-01T19:43:57
2020-09-01T19:43:57
288,470,037
3
0
null
null
null
null
UTF-8
Python
false
false
2,114
py
"""pandadocument.py implements a Limit Manager for Django Application using Memcached More about limits can be found here https://developers.pandadoc.com/reference#limits""" __author__ = "Kostyantyn Ovechko" __copyright__ = "Copyright 2020, Zxscript" __license__ = "MIT" __version__ = "0.0.1" __email__ = "kos@zxscript.com" __status__ = "Production" import random from time import sleep from django.core.cache import cache from .request_limit_manager import AbstractRequestLimitManager, RequestLimitReachedException PANDADOC_REQUESTS_PER_MINUTE_QUOTA = 100 PANDADOC_REQUESTS_PER_MINUTE_DOWNLOAD_QUOTA = 20 class DjangoMemcachedRequestLimitManager(AbstractRequestLimitManager): def get_request_permission(self): # Set low priority for download - ONLY allow download within first 10 tokens limit = PANDADOC_REQUESTS_PER_MINUTE_DOWNLOAD_QUOTA if self.for_download else PANDADOC_REQUESTS_PER_MINUTE_QUOTA for attempt in range(0, self.max_attempts): if attempt > 0: print("Could NOT find a free token. Retrying after {retry_delay} seconds delay".format( retry_delay=self.retry_delay)) sleep(self.retry_delay) for idx in random.sample(range(0, limit), limit): key = 'pandadoc_token_{idx}'.format(idx=idx) # Beware we have some concurrency issue here - another process can acquire # the same resource during .get_or_set() method call and if it's lucky enough to generate # the same new_value. Hopefully, this won't happen too often. If unsure - consider # setting lower PANDADOC_REQUESTS_PER_MINUTE_QUOTA than what you have provided by PandaDoc new_value = random.randint(0, 99999999999999) old_value = cache.get_or_set(key, new_value, 60) if old_value == new_value: print("Found free token at {key} value: {new_value}".format(key=key, new_value=new_value)) return True raise RequestLimitReachedException('Please try again later.')
[ "fastinetserver@gmail.com" ]
fastinetserver@gmail.com
228a85468519b92d95ce46feecf4c6d9aff9dafa
9f38bedf3a3365fdd8b78395930979a41330afc8
/branches/epic/version_datasets/core/views.py
b2ab7e6974372def294497d917433e737bd86c62
[]
no_license
project-renard-survey/nwb
6a6ca10abb1e65163374d251be088e033bf3c6e0
612f215ac032e14669b3e8f75bc13ac0d4eda9dc
refs/heads/master
2020-04-01T16:11:01.156528
2015-08-03T18:30:34
2015-08-03T18:30:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,754
py
from django.contrib.auth import logout from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User, UserManager from django.core.urlresolvers import reverse from django.forms.formsets import formset_factory from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render_to_response, get_object_or_404 from django.template import RequestContext, Context, loader from django.utils import simplejson from epic.core.forms import ForgotPasswordForm, ProfileForm, UserForm from epic.core.models import Profile from epic.datarequests.models import DataRequest from epic.datasets.models import DataSet def site_index(request): return render_to_response('core/site_index.html', context_instance=RequestContext(request)) def browse(request): datasets = DataSet.objects.active().order_by('-created_at') return render_to_response('core/browse.html', {'datasets': datasets, }, context_instance=RequestContext(request)) def about (request): return render_to_response('core/about.html', context_instance=RequestContext(request)) @login_required def view_profile(request): """ Used to display the basic/home page for logged in user. """ user = request.user profile = Profile.objects.for_user(user) datasets = DataSet.objects.active().filter(creator=user).order_by('-created_at') datarequests = DataRequest.objects.active().filter(creator=user).exclude(status='C').order_by('-created_at') # HTML content relating to user, it's profile, datasets uploaded & data requests made # is fetched. return render_to_response("core/view_profile.html", { "profile": profile, "datasets": datasets, "datarequests": datarequests }, context_instance=RequestContext(request)) @login_required def edit_profile(request): """ Used to allow a user to edit their own profile """ # Get the user and profile objects. user = request.user profile = Profile.objects.for_user(user) if request.method != 'POST': # New form needed, set the fields to their current values profile_form = ProfileForm(instance=profile) user_form = UserForm(instance=user) else: # Create the form based on the filled out fields. Include the old instance to get the required fields that we will not be showing, (e.g. the user) profile_form = ProfileForm(request.POST, instance=profile) user_form = UserForm(request.POST, instance=user) # Check to make sure that all the fields were filled out correctly if profile_form.is_valid() and user_form.is_valid(): # Save the profile profile_form.save() user_form.save() return HttpResponseRedirect(reverse('epic.core.views.view_profile', kwargs={})) else: # Form will have errors which will be displayed by page pass return render_to_response('core/edit_profile.html', {'profile_form':profile_form, 'user_form':user_form,}, context_instance=RequestContext(request)) def logout_view(request): logout(request) return HttpResponseRedirect(reverse('epic.core.views.site_index',)) @login_required def change_password(request): from django.contrib.auth.views import password_change redirect_url = reverse('epic.core.views.view_profile') return password_change(request, post_change_redirect=redirect_url, template_name='core/change_password.html') def forgot_password(request): if request.method != 'POST': form = ForgotPasswordForm() else: form = ForgotPasswordForm(request.POST) if form.is_valid(): user = form.cleaned_data['user'] new_random_password = UserManager().make_random_password() user.set_password(new_random_password) user.save() # Load a template for the message body and render it to a string # to be emailed to the user. email_body = loader.get_template('core/password_reset_email.html') template_context = Context( { 'first_name': user.first_name, 'last_name': user.last_name, 'username': user.username, 'password': new_random_password, 'login_url': reverse('django.contrib.auth.views.login') } ) user.email_user('EpiC Account Password Reset', email_body.render(template_context)) success_message = "An email has been sent to your '%(truncated_email)s' address with a new password." % {'truncated_email':user.email.split('@')[1]} return render_to_response('core/forgot_password_done.html', {'success_message':success_message,}, context_instance=RequestContext(request)) return render_to_response('core/forgot_password.html', {'form':form,}, context_instance=RequestContext(request))
[ "dmcoe@indiana.edu" ]
dmcoe@indiana.edu
f05d24eb8f4d5d54d3df572de195af889ba875b5
cbd4e775e4200750c2cd2c9b2a9980768ab41488
/redcliff/commands/list.py
514541fd6cd7d96ba377a4c709e1907337ad62a8
[ "MIT" ]
permissive
dmedvinsky/redcliff
aa1891331f839000c56efe6173b7617554577f3b
4522f775864ed6e03ef1c3111bab7fc3e47f7f7a
refs/heads/master
2020-04-09T17:51:45.518254
2012-05-28T12:24:38
2012-05-28T12:24:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,870
py
import argparse from .. import api from .. import renderer from ..utils import error def run(argv, conf): parser = argparse.ArgumentParser(prog='list') parser.add_argument('-l', '--limit', type=int, metavar='NUM', help='Limit the number of issues.') parser.add_argument('-o', '--offset', type=int, metavar='NUM', help='Pagination offset.') parser.add_argument('-m', '--for-me', action='store_const', const=True, help='Show only issues assigned to me.') parser.add_argument('-a', '--assignee', type=int, dest='assigned_to_id', metavar='ID', help='Filter issues by "assigned to" field.') parser.add_argument('-p', '--project', dest='project_id', metavar='ID|name', help='Filter issues by project. Might be project ID or' ' identifier.') parser.add_argument('-s', '--status', help='Filter issues by status.') args = vars(parser.parse_args(argv)) if args['for_me'] and not args['assigned_to_id']: user = api.users.current(None, conf) args['assigned_to_id'] = user['id'] if args['status']: status = api.statuses.by_name(args['status'], conf) if status: args['status_id'] = status['id'] else: error('error: status {0} not found'.format(args['status'])) try: data = api.issues.list(args, conf) except: error('fatal: API error while gettings issues list') raise else: renderer.issues.as_table(data) return 0
[ "dmedvinsky@gmail.com" ]
dmedvinsky@gmail.com
66b98a566cae08c2142ff4dcf878c2bb0d3533d1
6b7cd9dba130191ce62b1592ef5416dea4739533
/settings.py
c041ee3f0a95027cef53b767d60115002fd36578
[ "MIT" ]
permissive
zain-Z/Alien-invasion-pygame
b43ef2bb3d06d4e58496d3bcf44c73545cc09b21
f61cfeacc507e7008fe8c187ac7b2bbe7950d81c
refs/heads/main
2023-02-04T20:44:02.920483
2020-12-23T01:50:59
2020-12-23T01:50:59
323,774,044
0
0
null
null
null
null
UTF-8
Python
false
false
1,422
py
class Settings: """ A class to store all settings for Alien Invasion. """ def __init__(self): """Initialize the game's static settings.""" # Screen Setings self.screen_width = 1200 self.screen_height = 600 self.bg_color = (230, 230, 230) # Ship settings self.ship_limit = 3 # Bullet settings self.bullet_width = 3 self.bullet_height = 15 self.bullet_color = 60, 60, 60 self.bullets_allowed = 3 # Alien settings self.fleet_drop_speed = 10 # How quickly the game speeds up self.speedup_scale = 1.1 # How quickly the alien point values increase self.score_scale = 1.5 self.initialize_dynamic_settings() def initialize_dynamic_settings(self): """Initialize settings that change throughout the game.""" self.ship_speed = 1.5 self.bullet_speed = 3.0 self.alien_speed = 1.0 # fleet_direction of 1 represents right; -1 represents left. self.fleet_direction = 1 # Scoring self.alien_points = 50 def increase_speed(self): """Increase speed settings and alien point values.""" self.ship_speed *= self.speedup_scale self.bullet_speed *= self.speedup_scale self.alien_speed *= self.speedup_scale self.alien_points = int(self.alien_points * self.score_scale)
[ "zai1999n@gmail.com" ]
zai1999n@gmail.com
61800604086e6f0125d6ce67681dcb62ed7fc03b
a12c5ca05ba8b1f53253b9cb00102c818b994e4e
/p55self_inti.py
b712d1fc7394461d7df812410697796534673ff6
[]
no_license
prince232002/harry
98a88c17a98fbe5f56a3ff12b2966182d2d7eef3
128438afef36de4c247a031a338ffd95d5e36a2c
refs/heads/master
2023-07-15T02:46:12.523372
2021-08-26T06:52:42
2021-08-26T06:52:42
395,117,755
0
0
null
null
null
null
UTF-8
Python
false
false
1,733
py
class Employee: no_of_leaves = 8 def __init__(self, aname, asalary, arole): self.name = aname self.salary = asalary self.role = arole def printdetails(self): return f"The Name is {self.name}. Salary is {self.salary} and role is {self.role}" # harry.name = "Harry" # harry.salary = 455 # harry.role = "Instructor" # rohan = Employee() # rohan.name = "Rohan" # rohan.salary = 4554 # rohan.role = "Student" # print(rohan.printdetails()) harry = Employee("Harry", 255, "Instructor") #argument inside goes to the init calling print(harry.salary) #telusko class computer: def __init__(self,cpu,ram): #argument are passing inside print("inti") self.cpu=cpu self.ram=ram def config(self): print("config is ",self.cpu,self.ram) #here we not pass cpu ie self.ram becoz cpu is not a local var its an object print("i5",16,'1tb') com1=computer("i5",16) com2=computer('i7',8) #each time a object is created it will call init that it print init message twice com1.config() com2.config() """types of methods__ 1.instance methods 2.class methods 3.static methods special means it include underscore__ 1.instance methods- self-- it represents the instance of the class. That ,means for creating var we use and pass self i.e, instance methods __init__(self)- represents contructors in class It use is to initialize value to the object state 2.class methods- we use @classmethods it is used to access class variable so it is bounded to class not the objects 3.staticmethods-@staticmethods it has nothing to do with class and intances variable let we want to create factorial of a no then we can create using staticmethod """
[ "prince2002gupta@gmail.com" ]
prince2002gupta@gmail.com
8c57f11b9dc2abbaead2d675ef76738074fdb617
dcf7076d1763f135895b652b1cd4ad65b23bb5d3
/tests/RandomDropTest.py
8b831b78be8cbb99a5ca2899ba1b9aebb799ca3b
[]
no_license
AakashkolekaR/MIS543O_Project2
d13d431b7f834653205b9114fbe4094a35943ae6
ef8467a454a7647a2b39051ea320a5f3eb9da366
refs/heads/master
2023-09-04T18:28:07.567789
2021-11-01T17:38:21
2021-11-01T17:38:21
420,533,411
0
1
null
null
null
null
UTF-8
Python
false
false
625
py
import random from .BasicTest import * """ This tests random packet drops. We randomly decide to drop about half of the packets that go through the forwarder in either direction. Note that to implement this we just needed to override the handle_packet() method -- this gives you an example of how to extend the basic test case to create your own. """ class RandomDropTest(BasicTest): def handle_packet(self): for p in self.forwarder.in_queue: if random.choice([True, False]): self.forwarder.out_queue.append(p) # empty out the in_queue self.forwarder.in_queue = []
[ "icecowoo@gmail.com" ]
icecowoo@gmail.com
1b0c7b23281af0a10db38f7a028f27e9ffb3cea6
83c4907ce7dd1112662386811b176740cc4ce35c
/workingOutCode/distancePlots.py
8856d92434ed5b1432e72affa3ba4663b71b9e0c
[]
no_license
SnehaKannan114/ASTRID
2a5ce98abd9467c772615cc2d549acbc65d84d5c
3bfe9d8260e730ce6e65b2e59be38cef206f5723
refs/heads/master
2020-04-11T10:11:01.206835
2019-04-24T04:03:39
2019-04-24T04:03:39
161,706,022
0
0
null
null
null
null
UTF-8
Python
false
false
12,914
py
''' Dataset Used: 1. The CSIC 2010 HTTP Dataset in CSV Format (for Weka Analysis) (2010) dataset is from a web penetration testing testbed for anomaly detection training. 2. ADFA-IDS - Collected by Gideon Creech and Jiankun Hu of the Australian Defense Force Academy, ADFA IDS is an intrusion detection system dataset made publicly available in 2013, intended as representative of modern attack structure and methodology to replace the older datasets KDD and UNM. ADFA IDS includes independent datasets for Linux and Windows environments. ''' import pandas as pd from scipy import stats from sklearn.cluster import KMeans import matplotlib.pyplot as plt import seaborn as sns import random import numpy as np from math import sqrt import pickle import datetime from makingClusterClass import Cluster from preProcessing import dataCleanup ''' ----------------------- Data cleanup Phase Assigning numerical values for categorical fields Method: GET: 0 POST: 1 PUT: 2 Label: anom: 0 norm:1 Protocol HTTP/1.1: 0 other: -1 Pragma OR Cache-Control no-cache: 0 other: -1 Connection: close: 0 keep-alive: 1 other: -1 ---------------------- ''' def jaccard_similarity(list1, list2): intersection = len(list(set(list1).intersection(list2))) union = len(list(set(list1).union(list2))) return float(intersection / union) def levenshtein(seq1, seq2): size_x = len(seq1) + 1 size_y = len(seq2) + 1 matrix = np.zeros ((size_x, size_y)) for x in range(size_x): matrix [x, 0] = x for y in range(size_y): matrix [0, y] = y for x in range(1, size_x): for y in range(1, size_y): if seq1[x-1] == seq2[y-1]: matrix [x,y] = min( matrix[x-1, y] + 1, matrix[x-1, y-1], matrix[x, y-1] + 1 ) else: matrix [x,y] = min( matrix[x-1,y] + 1, matrix[x-1,y-1] + 1, matrix[x,y-1] + 1 ) #print (matrix) return (matrix[size_x - 1, size_y - 1]) def getDissimilarityDist(d, centroid): ''' For some inputs, we take categorical differences For other inputs (concatenated or fields with options), we find jaccard difference = len(intersection)/len(union) For cookie, since closely similar cookie strings may have some relationship, we use levenshtein distance ''' #method distMethod = abs(d[1]-centroid[1]) #print("Method:",distMethod) #url url1 = d[2].split('/') url2 = centroid[2].split('/') distUrl = 1 - jaccard_similarity(url1,url2) #print("Url:",distUrl) #protocol distProtocol = abs(d[3]-centroid[3]) #print("Protocol:",distProtocol) #userAgent ua1 = d[4].split('/') ua2 = centroid[4].split('/') distUserAgent = 1 - jaccard_similarity(ua1,ua2) #print("UA:",distUserAgent) #pragma distPragma = abs(d[5]-centroid[5]) #print("Pragma:",distPragma) #cacheControl distCache = abs(d[6]-centroid[6]) #print("Cache:",distCache) #accept accept1 = d[7].split(',') accept2 = centroid[7].split(',') distAccept = 1-jaccard_similarity(accept1,accept2) #print("Accept:",distAccept) #print(accept1, accept2) #acceptEncoding en1 = d[8].split(',') en2 = centroid[8].split(',') distAcceptEnc = 1 - jaccard_similarity(en1,en2) #print("Accept Enc:",distAcceptEnc) #print(en1, en2) #acceptCharset char1 = d[9].split(',') char2 = centroid[9].split(',') distAcceptChar = 1 - jaccard_similarity(char1,char2) #print("Accept Charset:",distAcceptChar) #print(char1, char2) #acceptLang lang1 = d[10].split(',') lang2 = centroid[10].split(',') distAcceptLang = 1 - jaccard_similarity(lang1,lang2) #print("Accept Lang:",distAcceptLang) #host host1 = d[11].split('.') host2 = centroid[11].split('.') distHost = 1 - jaccard_similarity(char1,char2) #print("Host:", distHost) #connection distConnect = abs(d[12] - centroid[12]) #print("Connection:",distConnect) #contentLength distContLen = abs(d[13] - centroid[13]) #print("Content Length:",distContLen) #contentType distContType = abs(d[14] - centroid[14]) #print("Content Type:",distContType) #cookie cookie1 = d[15] cookie2 = centroid[15] distCookie = levenshtein(cookie1,cookie2) #print("Cookie:",distCookie) #payload pay1 = str(d[16]).split(',') pay2 = str(centroid[16]).split(',') distPayload = 1 - jaccard_similarity(pay1,pay2) #print("Payload:",distPayload) ''' once we have differences input-wise We calculate euclidian distance as: dist(X,Y) = sqrt(summation( (xi-yi)^2) )) sqrt((x1-y2)^2 + (x2-y2)^2 + ...) We have added scaling factors: cookie sf = 0.01 Yet to Implement: Normalise all inputs relative to average to eliminate bias ''' distance = sqrt(pow(distMethod,2) + pow(distUrl,2) + pow(distProtocol,2) + pow(distUserAgent,2) + pow(distPragma,2) + pow(distCache,2) + pow(distAcceptEnc,2) + pow(distAcceptChar,2) + pow(distAcceptLang,2) + pow(distHost , 2) + pow(distConnect,2) + pow(distContType,2) + pow(distContLen*0.001,2) + pow(distCookie*0.01,2) + pow(distPayload,2)) #print(distance) return (distance) def validateModel(): data = pd.read_csv('validationData.csv') dataCleanup(data) file2 = open(r'myLearnedData.pkl', 'rb') c1 = pickle.load(file2) c2 = pickle.load(file2) c3 = pickle.load(file2) c4 = pickle.load(file2) file2.close() correctCounts = 0 wrongCounts = 0 totalCounts = 0 #True False Positive Negative: Positive means classified as anomalous tp = 0 tn = 0 fp = 0 fn = 0 prettyPrintLine("Validating Model") for entry in data.values: '''REMOVE COMMENT''' #print(entry, c1) #input() dist1 = getDissimilarityDist(entry, c1) dist2 = getDissimilarityDist(entry, c2) dist3 = getDissimilarityDist(entry, c3) dist4 = getDissimilarityDist(entry, c4) if dist1<dist2 and dist1<dist3 and dist1<dist4: if entry[17] == c1[17]: correctCounts = correctCounts+1 tp = tp+1 else: wrongCounts = wrongCounts+1 fp = fp+1 totalCounts = totalCounts+1 elif dist2<dist3 and dist2<dist4: if entry[17] == c2[17]: correctCounts = correctCounts+1 tp = tp+1 else: wrongCounts = wrongCounts+1 fp = fp+1 totalCounts = totalCounts+1 elif dist3<dist4: if entry[17] == c3[17]: correctCounts = correctCounts+1 tn = tn+1 else: wrongCounts = wrongCounts+1 fn = fn+1 totalCounts = totalCounts+1 else: if entry[17] == c4[17]: correctCounts = correctCounts+1 tn = tn+1 else: wrongCounts = wrongCounts+1 fn = fn+1 totalCounts = totalCounts+1 #print("Correct Classifications=",correctCounts) #print("Wrong Classifications =",wrongCounts) #print("Total Classifications=",totalCounts) now = datetime.datetime.now() afile = open(r'run_Results_Log.pkl', 'wb') pickle.dump(now.strftime("%Y-%m-%d %H:%M"), afile) pickle.dump(correctCounts, afile) pickle.dump(wrongCounts, afile) pickle.dump(totalCounts, afile) pickle.dump(tp, afile) pickle.dump(fp, afile) pickle.dump(tn, afile) pickle.dump(fn, afile) afile.close() def prettyPrintLine(string): print('----------------------------------------------------------') print(string) print('----------------------------------------------------------\n') def startTraining(): data = pd.read_csv("ultraSmallData.csv") dataCleanup(data) prettyPrintLine("K Means") prettyPrintLine("Training started...") f1 = data['method'].values f2 = data['label'].values X = np.array(list(zip(f1, f2))) numOfDataEntries = len(data.values) - 1000 initCentroid1 = random.randint(0, numOfDataEntries//4-100) initCentroid2 = random.randint(numOfDataEntries//4, numOfDataEntries//2-100) initCentroid3 = random.randint(numOfDataEntries//2, 3*numOfDataEntries//4-100) initCentroid4 = random.randint(3*numOfDataEntries//4, numOfDataEntries) initCentroid5 = random.randint(numOfDataEntries, numOfDataEntries+995) ##print(data.values[initCentroid1]) ##print(data.values[initCentroid2]) ##print(data.values[initCentroid3]) ##print(data.values[initCentroid4]) ##print(data.values[initCentroid5]) clusters = [[],[],[],[],[]] clusters[0].append(data.values[initCentroid1]) clusters[1].append(data.values[initCentroid2]) clusters[2].append(data.values[initCentroid3]) clusters[3].append(data.values[initCentroid4]) clusters[4].append(data.values[initCentroid5]) myCluster1 = Cluster(data.values[initCentroid1]) myCluster2 = Cluster(data.values[initCentroid2]) myCluster3 = Cluster(data.values[initCentroid3]) myCluster4 = Cluster(data.values[initCentroid4]) myCluster5 = Cluster(data.values[initCentroid5]) print(numOfDataEntries) print(initCentroid5) print(myCluster5.center) clustersConcise = [[],[],[],[],[]] clustersConcise[0].append(data.values[initCentroid1]) clustersConcise[1].append(data.values[initCentroid2]) clustersConcise[2].append(data.values[initCentroid3]) clustersConcise[3].append(data.values[initCentroid4]) clustersConcise[4].append(data.values[initCentroid5]) #print(initCentroid1, initCentroid2, initCentroid3, initCentroid4) count = 0 for entry in data.values: count = count+1 if(count%10 < 6): continue #print(count) dist1 = getDissimilarityDist(entry, myCluster1.center) #print("\n") dist2 = getDissimilarityDist(entry, myCluster2.center) #print("\n") dist3 = getDissimilarityDist(entry, myCluster3.center) #print("\n") dist4 = getDissimilarityDist(entry, myCluster4.center) #print("\n") dist5 = getDissimilarityDist(entry, myCluster5.center) #print("\n") #print(dist1, dist2, dist3, dist4) if dist1<dist2 and dist1<dist3 and dist1<dist4 and dist1<dist5: clusters[0].append(entry) clustersConcise[0].append(entry[17]) myCluster1.add(entry) elif dist2<dist3 and dist2<dist4 and dist1<dist5: clusters[1].append(entry) clustersConcise[1].append(entry[17]) myCluster2.add(entry) elif dist3<dist4 and dist1<dist5: clusters[2].append(entry) clustersConcise[2].append(entry[17]) myCluster3.add(entry) elif(dist4<dist5): clusters[3].append(entry) clustersConcise[3].append(entry[17]) myCluster4.add(entry) else: clusters[4].append(entry) clustersConcise[4].append(entry[17]) myCluster5.add(entry) ''' prettyPrintLine("Cluster 1") print(myCluster1.center) myCluster1.printMeans() prettyPrintLine("Cluster 2") print(myCluster2.center) myCluster2.printMeans() prettyPrintLine("Cluster 3") print(myCluster3.center) myCluster3.printMeans() prettyPrintLine("Cluster 4") print(myCluster4.center) myCluster4.printMeans() prettyPrintLine("Cluster 5") print(myCluster5.center) myCluster5.printMeans() ''' #to recompute means for i in range(4): new_centers = np.array(X.mean(0)) afile = open(r'myLearnedData.pkl', 'wb') pickle.dump(data.values[initCentroid1], afile) pickle.dump(data.values[initCentroid2], afile) pickle.dump(data.values[initCentroid3], afile) pickle.dump(data.values[initCentroid4], afile) pickle.dump(data.values[initCentroid5], afile) #pickle.dump(clusters, afile) afile.close() print("\nCentroids\n") print(data.values[initCentroid1], data.values[initCentroid2], data.values[initCentroid3], data.values[initCentroid4]) print("Cluster 1: Labels classified") print(clustersConcise[0]) print("\n\n") print("Cluster 2: Labels classified") print(clustersConcise[1]) print("\n\n") print("Cluster 3: Labels classified") print(clustersConcise[2]) print("\n\n") print("Cluster 4: Labels classified") print(clustersConcise[3]) print("\n\n") print("Cluster 5: Labels classified") print(clustersConcise[4]) startTraining()
[ "kannansneha.1997@gmail.com" ]
kannansneha.1997@gmail.com
bcbdbf72f619220993db5c8f91a704968e8e97d5
228d430cd5a79b3617b636d8d4e7c2da306ad095
/crowdfunding/apps/trades/views.py
0008d39c77caf35144aa3cba194470792f8d99b1
[]
no_license
apollomeng/zhongchoufunding
beb2d141db5aadcfe3b45a170af6f964a67fa6d6
9df754c38b45b708592a8d08075561f8456c1b7d
refs/heads/master
2020-03-29T22:29:27.414532
2018-11-06T15:30:54
2018-11-06T15:30:54
150,423,816
0
0
null
null
null
null
UTF-8
Python
false
false
6,306
py
from django.http import JsonResponse from django.shortcuts import render,redirect,reverse,HttpResponse from datetime import datetime # Create your views here. from crowdfunding.settings import APPID, RETURN_URL, APP_PRIVATE_KEY_PATH, ALIPAY_PUBLIC_KEY_PATH, ALIPAY_DEBUG from operations.forms import UserAddressForm from operations.models import UserAddress from projects.models import SupportItems from trades.models import UserSupport, OrderInfo from helptools.get_order_sn import get_order_sn from utils.alipay import AliPay def trade_step1(request,supid): if supid: supportitem = SupportItems.objects.filter(id=int(supid))[0] return render(request,'trades/trade_step1.html',{ 'supportitem':supportitem, }) def trade_order(request): num = request.GET.get('num','') supid = request.GET.get('supid','') if num and supid: supportitem = SupportItems.objects.filter(id=int(supid))[0] usersupport = UserSupport() usersupport.support_project = supportitem.project usersupport.support_man = request.user usersupport.support_item = supportitem usersupport.support_nums = num usersupport.order_sn = get_order_sn(request.user.id) usersupport.save() return JsonResponse({'status': 'ok', 'msg': '成功提交'}) else: return JsonResponse({'status': 'fail', 'msg': '失败'}) def trade_step2(request,supid): supportitem = SupportItems.objects.filter(id=int(supid))[0] usersupport = UserSupport.objects.filter(support_item_id=int(supid),support_man=request.user)[0] useraddress_list = UserAddress.objects.filter(user=request.user) order_mount = int(usersupport.support_nums) * int(supportitem.support_funding) + supportitem.transport_cost return render(request, 'trades/trade_step2.html', { 'supportitem': supportitem, 'usersupport': usersupport, 'useraddress_list': useraddress_list, 'order_mount': order_mount, }) def add_address(request): user_address_form = UserAddressForm(request.POST) if user_address_form.is_valid(): address = user_address_form.cleaned_data['address'] signer_name = user_address_form.cleaned_data['signer_name'] signer_mobile = user_address_form.cleaned_data['signer_mobile'] useraddress = UserAddress() useraddress.user = request.user useraddress.address = address useraddress.signer_name = signer_name useraddress.signer_mobile = signer_mobile useraddress.save() return JsonResponse({'status': 'ok', 'msg': '成功'}) else: return JsonResponse({'status': 'fail', 'msg': '失败'}) def order_last(request): add_id = request.POST.get('add_id','') need_invoice = request.POST.get('need_invoice','') info_invoice = request.POST.get('info_invoice','个人') post_script = request.POST.get('post_script','无') supid = request.POST.get('supid','') order_mount = request.POST.get('order_mount','') useraddress = UserAddress.objects.filter(id=int(add_id))[0] supportitem = SupportItems.objects.filter(id=int(supid))[0] usersupport = UserSupport.objects.filter(support_item_id=int(supid))[0] orderinfo = OrderInfo() orderinfo.user = request.user orderinfo.support_item = supportitem orderinfo.item_nums = usersupport.support_nums orderinfo.order_sn = usersupport.order_sn orderinfo.order_mount = order_mount orderinfo.post_script = post_script orderinfo.address = useraddress if need_invoice =='option1': orderinfo.need_invoice =False else: orderinfo.need_invoice = True orderinfo.info_invoice = info_invoice orderinfo.save() # 得到支付的类 alipay = AliPay( appid=APPID, # 支付宝服务器主动通知商户服务器里指定的页面http/https路径 app_notify_url=RETURN_URL, app_private_key_path=APP_PRIVATE_KEY_PATH, alipay_public_key_path=ALIPAY_PUBLIC_KEY_PATH, # 支付宝的公钥,验证支付宝回传消息使用,不是你自己的公钥, debug=ALIPAY_DEBUG, # 默认False, # 同步通知,回调这个地址 return_url=RETURN_URL ) url = alipay.direct_pay( subject=orderinfo.order_sn, out_trade_no=orderinfo.order_sn, total_amount=orderinfo.order_mount ) # 沙箱环境 re_url = "https://openapi.alipaydev.com/gateway.do?{data}".format(data=url) print('生成的支付连接:') print(re_url) return JsonResponse({'status': 'ok', 'msg': re_url}) #支付宝回调的验证:1,验证是否被修改,2,修改为已支付 def alipay(request): alipay = AliPay( appid=APPID, # 支付宝服务器主动通知商户服务器里指定的页面http/https路径 app_notify_url=RETURN_URL, app_private_key_path=APP_PRIVATE_KEY_PATH, alipay_public_key_path=ALIPAY_PUBLIC_KEY_PATH, # 支付宝的公钥,验证支付宝回传消息使用,不是你自己的公钥, debug=ALIPAY_DEBUG, # 默认False, # 同步通知,回调这个地址 return_url=RETURN_URL ) processed_query = {} for key, value in request.GET.items(): processed_query[key] = value ali_sign = processed_query.pop('sign', None) check_result = alipay.verify(processed_query, ali_sign) print('get的验证情况', check_result) # 2 验证通过,修改成已支付 if check_result: # 得到订单号 order_sn = processed_query.get('out_trade_no', None) # 得到交易号 trade_no = processed_query.get('trade_no', None) # 根据订单号查找订单 order_info = OrderInfo.objects.filter(order_sn=order_sn)[0] # 设置交易号 order_info.trade_no = trade_no # 设置交易状态 order_info.pay_status = 'TRADE_SUCCESS' # 设置交易付款时间 order_info.pay_time = datetime.now() order_info.save() # return Response('success') response = redirect('index') response.set_cookie('nextPath', 'pay', max_age=2) return response else: response = redirect('index') return response
[ "42266486+apollomeng@users.noreply.github.com" ]
42266486+apollomeng@users.noreply.github.com
e7ea72ecc61e573b8f9031ad3d7bcd15be800ff6
86236a778c2d022cbdee11017c5a8cf7d01111d0
/adm_rec/basiccrud/utils.py
b8863e006f3ca52d64f374a4d338ff747b3f90a2
[]
no_license
luckybiason/sist_rec_enter
dee1b92f48c0f9476a8a1becedb1227222a49816
bf68c2bdc7d3c7c87642c309224fd03b0511b5c0
refs/heads/master
2021-01-23T19:34:51.084015
2013-10-30T20:46:48
2013-10-30T20:46:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,183
py
#-*- coding: utf-8 -*- from django.conf.urls.defaults import * from views import * from django.conf import settings from django.shortcuts import render_to_response # - Icone para remover um registro def get_delete_icon(id_obj,model): context = { 'url': reverse(model.get_config()["app"]+".excluir", kwargs={'pk': id_obj}), 'STATIC_URL': settings.STATIC_URL } return render_to_response("basic/_img_excl.html", context).content # - Icone que mostra um ok ou não ok para campos booleanos def get_boolean_icon(boole): context = { 'bool': boole, 'STATIC_URL': settings.STATIC_URL } return render_to_response("basic/_img_bool.html", context).content #- Verifica se o objeto tem registros relacionados def has_related_objects(model,obj): #return True if model._meta.get_all_related_objects(): for related_object in model._meta.get_all_related_objects(): related = related_object.model.objects campo = related_object.field.get_attname().replace('_id','') if related.get_query_set().filter(**{campo.lower():obj.id}): return True return False
[ "biasonlucky@hotmail.com" ]
biasonlucky@hotmail.com
58bebb9428186e0fd1cf9945fd4ec17a4a7403e8
6d2b51b9b35bd954ee4c19181d05b74f60238c28
/raspberrypihal.py
11351f869f62946d49c769e68a65d09b03803a36
[ "MIT" ]
permissive
JoshuaBThompson/lamatrix
77ccdfcd0c11d5a4b6db9d994137bf5ae788ef1f
8d28473d5242afe6ea4e66579fae02543d2e9851
refs/heads/master
2023-04-19T05:03:43.285393
2021-04-25T07:52:07
2021-04-25T07:52:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,040
py
# HAL for Raspberry Pi with https://github.com/rpi-ws281x/rpi-ws281x-python # See https://github.com/jgarff/rpi_ws281x for more details on this library. # # The below code assumes the LED strip is connected to GPIO 18 (PCM CLK) # (see https://pinout.xyz) and that you've installed the rpi_ws281x library. # # For Python 2.x: # # sudo apt install -y python-pip; sudo pip install rpi_ws281x # # For Python 3.x: # # sudo apt install -y python3-pip; sudo pip3 install rpi_ws281x # # from rpi_ws281x import PixelStrip, Color # LED strip configuration: LED_PIN = 18 # GPIO pin connected to the pixels (18 uses PWM!). # LED_PIN = 10 # GPIO pin connected to the pixels (10 uses SPI /dev/spidev0.0). LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz) LED_DMA = 10 # DMA channel to use for generating signal (try 10) LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest LED_INVERT = False # True to invert the signal (when using NPN transistor level shift) LED_CHANNEL = 0 # set to '1' for GPIOs 13, 19, 41, 45 or 53 class RaspberryPiHAL: def __init__(self, config): self.num_pixels = config['LedMatrix']['columns'] * config['LedMatrix']['stride'] self.strip = PixelStrip(self.num_pixels, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL) self.strip.begin() def init_display(self, num_pixels=64): self.clear_display() def clear_display(self): c = Color(0, 0, 0) for i in range(self.num_pixels): self.strip.setPixelColor(i, c) self.strip.show() def update_display(self, num_modified_pixels): if not num_modified_pixels: return self.strip.show() def put_pixel(self, addr, r, g, b): self.strip.setPixelColor(addr % self.num_pixels, Color(r, g, b)) def reset(self): self.clear_display() def process_input(self): #TODO: implement return 0 def set_rtc(self, t): #Not relevant pass def set_auto_time(self, enable=True): #Not relevant pass def suspend_host(self, restart_timeout_seconds): #Not relevant pass
[ "noah@hack.se" ]
noah@hack.se
3a0e1f78250db2e482d5eff70a0c07b7ee2c4b50
24a47669907cb008c3fea4265c4b6f37dddc54a4
/keras_/kerascv/models/sepreresnet.py
4331887dec1490c392c0c3197e65d35f06adb823
[ "MIT" ]
permissive
JHLee0513/imgclsmob
ee1f6b8c7f677ed0e8a23e26d3165d37fd8549b4
45abcc1d313b84fa3595e13f0e4fa04b5db6c75d
refs/heads/master
2020-04-22T14:13:25.337524
2019-02-12T18:26:09
2019-02-12T18:26:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,161
py
""" SE-PreResNet, implemented in Keras. Original paper: 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. """ __all__ = ['sepreresnet', 'sepreresnet18', 'sepreresnet34', 'sepreresnet50', 'sepreresnet50b', 'sepreresnet101', 'sepreresnet101b', 'sepreresnet152', 'sepreresnet152b', 'sepreresnet200', 'sepreresnet200b'] import os from keras import layers as nn from keras.models import Model from .common import conv1x1, se_block, is_channels_first, flatten from .preresnet import preres_block, preres_bottleneck_block, preres_init_block, preres_activation def sepreres_unit(x, in_channels, out_channels, strides, bottleneck, conv1_stride, name="sepreres_unit"): """ SE-PreResNet unit. Parameters: ---------- x : keras.backend tensor/variable/symbol Input tensor/variable/symbol. in_channels : int Number of input channels. out_channels : int Number of output channels. strides : int or tuple/list of 2 int Strides of the convolution. bottleneck : bool Whether to use a bottleneck or simple block in units. conv1_stride : bool Whether to use stride in the first or the second convolution layer of the block. name : str, default 'sepreres_unit' Unit name. Returns ------- keras.backend tensor/variable/symbol Resulted tensor. """ identity = x if bottleneck: x, x_pre_activ = preres_bottleneck_block( x=x, in_channels=in_channels, out_channels=out_channels, strides=strides, conv1_stride=conv1_stride, name=name + "/body") else: x, x_pre_activ = preres_block( x=x, in_channels=in_channels, out_channels=out_channels, strides=strides, name=name + "/body") x = se_block( x=x, channels=out_channels, name=name + "/se") resize_identity = (in_channels != out_channels) or (strides != 1) if resize_identity: identity = conv1x1( x=x_pre_activ, in_channels=in_channels, out_channels=out_channels, strides=strides, name=name + "/identity_conv") x = nn.add([x, identity], name=name + "/add") return x def sepreresnet(channels, init_block_channels, bottleneck, conv1_stride, in_channels=3, in_size=(224, 224), classes=1000): """ SE-PreResNet model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. conv1_stride : bool Whether to use stride in the first or the second convolution layer in units. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (224, 224) Spatial size of the expected input image. classes : int, default 1000 Number of classification classes. """ input_shape = (in_channels, 224, 224) if is_channels_first() else (224, 224, in_channels) input = nn.Input(shape=input_shape) x = preres_init_block( x=input, in_channels=in_channels, out_channels=init_block_channels, name="features/init_block") in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 x = sepreres_unit( x=x, in_channels=in_channels, out_channels=out_channels, strides=strides, bottleneck=bottleneck, conv1_stride=conv1_stride, name="features/stage{}/unit{}".format(i + 1, j + 1)) in_channels = out_channels x = preres_activation( x=x, name="features/post_activ") x = nn.AvgPool2D( pool_size=7, strides=1, name="features/final_pool")(x) # x = nn.Flatten()(x) x = flatten(x) x = nn.Dense( units=classes, input_dim=in_channels, name="output")(x) model = Model(inputs=input, outputs=x) model.in_size = in_size model.classes = classes return model def get_sepreresnet(blocks, conv1_stride=True, model_name=None, pretrained=False, root=os.path.join('~', '.keras', 'models'), **kwargs): """ Create PreResNet or SE-PreResNet model with specific parameters. Parameters: ---------- blocks : int Number of blocks. conv1_stride : bool Whether to use stride in the first or the second convolution layer in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ if blocks == 18: layers = [2, 2, 2, 2] elif blocks == 34: layers = [3, 4, 6, 3] elif blocks == 50: layers = [3, 4, 6, 3] elif blocks == 101: layers = [3, 4, 23, 3] elif blocks == 152: layers = [3, 8, 36, 3] elif blocks == 200: layers = [3, 24, 36, 3] else: raise ValueError("Unsupported SE-PreResNet with number of blocks: {}".format(blocks)) init_block_channels = 64 if blocks < 50: channels_per_layers = [64, 128, 256, 512] bottleneck = False else: channels_per_layers = [256, 512, 1024, 2048] bottleneck = True channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] net = sepreresnet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, conv1_stride=conv1_stride, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import download_model download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net def sepreresnet18(**kwargs): """ SE-PreResNet-18 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=18, model_name="sepreresnet18", **kwargs) def sepreresnet34(**kwargs): """ SE-PreResNet-34 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=34, model_name="sepreresnet34", **kwargs) def sepreresnet50(**kwargs): """ SE-PreResNet-50 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=50, model_name="sepreresnet50", **kwargs) def sepreresnet50b(**kwargs): """ SE-PreResNet-50 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=50, conv1_stride=False, model_name="sepreresnet50b", **kwargs) def sepreresnet101(**kwargs): """ SE-PreResNet-101 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=101, model_name="sepreresnet101", **kwargs) def sepreresnet101b(**kwargs): """ SE-PreResNet-101 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=101, conv1_stride=False, model_name="sepreresnet101b", **kwargs) def sepreresnet152(**kwargs): """ SE-PreResNet-152 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=152, model_name="sepreresnet152", **kwargs) def sepreresnet152b(**kwargs): """ SE-PreResNet-152 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=152, conv1_stride=False, model_name="sepreresnet152b", **kwargs) def sepreresnet200(**kwargs): """ SE-PreResNet-200 model from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. It's an experimental model. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=200, model_name="sepreresnet200", **kwargs) def sepreresnet200b(**kwargs): """ SE-PreResNet-200 model with stride at the second convolution in bottleneck block from 'Squeeze-and-Excitation Networks,' https://arxiv.org/abs/1709.01507. It's an experimental model. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ return get_sepreresnet(blocks=200, conv1_stride=False, model_name="sepreresnet200b", **kwargs) def _test(): import numpy as np import keras pretrained = False models = [ sepreresnet18, sepreresnet34, sepreresnet50, sepreresnet50b, sepreresnet101, sepreresnet101b, sepreresnet152, sepreresnet152b, sepreresnet200, sepreresnet200b, ] for model in models: net = model(pretrained=pretrained) # net.summary() weight_count = keras.utils.layer_utils.count_params(net.trainable_weights) print("m={}, {}".format(model.__name__, weight_count)) assert (model != sepreresnet18 or weight_count == 11776928) assert (model != sepreresnet34 or weight_count == 21957204) assert (model != sepreresnet50 or weight_count == 28080472) assert (model != sepreresnet50b or weight_count == 28080472) assert (model != sepreresnet101 or weight_count == 49319320) assert (model != sepreresnet101b or weight_count == 49319320) assert (model != sepreresnet152 or weight_count == 66814296) assert (model != sepreresnet152b or weight_count == 66814296) assert (model != sepreresnet200 or weight_count == 71828312) assert (model != sepreresnet200b or weight_count == 71828312) if is_channels_first(): x = np.zeros((1, 3, 224, 224), np.float32) else: x = np.zeros((1, 224, 224, 3), np.float32) y = net.predict(x) assert (y.shape == (1, 1000)) if __name__ == "__main__": _test()
[ "osemery@gmail.com" ]
osemery@gmail.com
29de6e8371a29df9ffa2764804a84541724a6017
5f3282ef6bef79648cc19dc38651cb284301497c
/cnn_processing.py
c790593d3f3477525fc15065d0d489dc8dbc0adf
[]
no_license
raplima/petrog_thin_section_cnn
2e660499a1d13bfa9a30306b9ca5fab7d0e32c52
de9265f8f23a4d7fa64c918f074d35b1372a1f46
refs/heads/master
2022-12-15T17:54:57.076891
2022-12-05T17:27:17
2022-12-05T17:27:17
168,870,152
3
1
null
2022-02-23T12:40:13
2019-02-02T19:39:12
Python
UTF-8
Python
false
false
22,482
py
# Rafael Pires de Lima # January 2019 # Transfer Learning application # This file includes routines to split the data, create bottlenecks, train a new model, predict with new model import os import pickle import shutil import matplotlib import numpy as np from keras import applications, Model from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dropout, Flatten, Dense, Input from keras.models import Sequential from keras.models import load_model from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import TensorBoard from keras import backend as K import datetime from matplotlib import pyplot as plt from matplotlib import style from timeit import default_timer as timer matplotlib.use('TkAgg') style.use("seaborn") verb = 0 # verbose when training # folders management: bottleneck_dir = os.path.join(os.getcwd(),'runs', 'bnecks') model_dir = os.path.join(os.getcwd(),'runs', 'models') def model_preprocess(model_name): """Loads the appropriate CNN preprocess Args: arch: String key for model to be loaded. Returns: The specified Keras preprocessing. """ # function that loads the appropriate model if model_name == 'Xception': return applications.xception.preprocess_input elif model_name == 'VGG16': return applications.vgg16.preprocess_input elif model_name == 'VGG19': return applications.vgg19.preprocess_input elif model_name == 'ResNet50': return applications.resnet50.preprocess_input elif model_name == 'InceptionV3': return applications.inception_v3.preprocess_input elif model_name == 'InceptionResNetV2': return applications.inception_resnet_v2.preprocess_input elif model_name == 'MobileNet': return applications.mobilenet.preprocess_input elif model_name == 'DenseNet121': return applications.densenet.preprocess_input elif model_name == 'NASNetLarge': return applications.nasnet.preprocess_input elif model_name == 'MobileNetV2': return applications.mobilenet_v2.preprocess_input else: print('Invalid model selected') return False def model_app(arch, input_tensor): """Loads the appropriate convolutional neural network (CNN) model Args: arch: String key for model to be loaded. input_tensor: Keras tensor to use as image input for the model. Returns: model: The specified Keras Model instance with ImageNet weights loaded and without the top classification layer. """ # function that loads the appropriate model if arch == 'Xception': model = applications.Xception(weights='imagenet', include_top=False, input_tensor=input_tensor) print('Xception loaded') elif arch == 'VGG16': model = applications.VGG16(weights='imagenet', include_top=False, input_tensor=input_tensor) print('VGG16 loaded') elif arch == 'VGG19': model = applications.VGG19(weights='imagenet', include_top=False, input_tensor=input_tensor) print('VGG19 loaded') elif arch == 'ResNet50': model = applications.ResNet50(weights='imagenet', include_top=False, input_tensor=input_tensor) print('ResNet50 loaded') elif arch == 'InceptionV3': model = applications.InceptionV3(weights='imagenet', include_top=False, input_tensor=input_tensor) print('InceptionV3 loaded') elif arch == 'InceptionResNetV2': model = applications.InceptionResNetV2(weights='imagenet', include_top=False, input_tensor=input_tensor) print('InceptionResNetV2 loaded') elif arch == 'MobileNet': model = applications.MobileNet(input_shape=(224, 224, 3), weights='imagenet', include_top=False, input_tensor=input_tensor) print('MobileNet loaded') elif arch == 'DenseNet121': model = applications.DenseNet121(weights='imagenet', include_top=False, input_tensor=input_tensor) print('DenseNet121 loaded') elif arch == 'NASNetLarge': model = applications.NASNetLarge(weights='imagenet', include_top=False, input_tensor=input_tensor) print('NASNetLarge loaded') elif arch == 'MobileNetV2': model = applications.MobileNetV2(input_shape=(224, 224, 3), weights='imagenet', include_top=False, input_tensor=input_tensor) print('MobileNetV2 loaded') else: print('Invalid model selected') model = False return model def save_bottleneck_features(model_name, train_data_dir, validation_data_dir, bottleneck_name, img_height, img_width, arch, batch_size=1): """Saves the bottlenecks of validation and train data. Args: train_data_dir: String path to a folder containing subfolders of images (training set). validation_data_dir: String path to a folder containing subfolders of images (validation set). bottleneck_name: String used as main element of bottlenecks files. img_height: Integer, image height. img_width: Integer, image width. arch: String that defines the CNN model to be used. batch_size: batch size Returns: No returns. Saves bottlenecks using bottleneck_name and bottleneck_dir """ # Saves the bottlenecks of validation and train data. # Input is path to train_data_dir and validation_data_dir (directories with the images) # bottleneck_name is the name to be used for saving # bottleneck_dir is defined outside of this function # arch is the architecture to be used global bottleneck_dir #datagen = ImageDataGenerator(preprocessing_function=model_preprocess(model_name)) datagen = ImageDataGenerator(rescale=1./255) # check to see if runs/bottleneck path exists if not os.path.exists(bottleneck_dir): os.makedirs(bottleneck_dir) # build the network model = model_app(arch, Input(shape=(img_height, img_width, 3))) generator = datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', shuffle=False) bottleneck_features_train = model.predict_generator( generator, generator.n // batch_size, verbose=verb) # save a tuple of bottlenecks and the corresponding label np.save(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_train.npy'), 'wb'), bottleneck_features_train) np.save(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_train_labels.npy'), 'wb'), generator.classes[0:bottleneck_features_train.shape[0]]) generator = datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', shuffle=False) bottleneck_features_validation = model.predict_generator( generator, generator.n // batch_size, verbose=0) # save a tuple of bottlenecks and the corresponding label np.save(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_val.npy'), 'wb'), bottleneck_features_validation) np.save(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_val_labels.npy'), 'wb'), generator.classes[0:bottleneck_features_validation.shape[0]]) # finally, save a "dictionary" as the labels are numeric and eventually we want to know the original string label: with open(os.path.join(bottleneck_dir, f'{bottleneck_name}_dict_l'), 'wb') as fp: pickle.dump(sorted(os.listdir(train_data_dir)), fp) def train_top_model(bottleneck_name, model_name, arch, img_height, img_width, epochs, opt, batch_size=16): """Trains the new classification layer generating the new classification model dependent on the classes we are using. Args: bottleneck_name: String used as main element of bottlenecks files. model_name: String, name of the model to be saved. arch: String that defines the CNN model to be used. img_height: Integer, image height. img_width: Integer, image width. epochs: Integer, the number of epochs (iterations on complete training set) to be performed opt: String, optimizer to be used. batch_size: batch size Returns: No returns. Trains and saves the model. Opens a tkinter window with training history """ train_data = np.load(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_train.npy'), 'rb')) train_labels = np.load(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_train_labels.npy'), 'rb')).reshape(-1) validation_data = np.load(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_val.npy'), 'rb')) validation_labels = np.load(open(os.path.join(bottleneck_dir, f'{bottleneck_name}_val_labels.npy'), 'rb')).reshape(-1) # check to see if runs/model path exists if not os.path.exists(model_dir): os.makedirs(model_dir) top_model = Sequential() top_model.add(Flatten(input_shape=train_data.shape[1:])) top_model.add(Dropout(0.6)) # dropout helps with overfitting top_model.add(Dense(len(np.unique(train_labels)), activation='softmax')) if opt == 'RMSprop': top_model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['accuracy']) if opt == 'SGD': top_model.compile(optimizer=SGD(lr=0.0001, momentum=0.6), loss='sparse_categorical_crossentropy', metrics=['accuracy']) callbacks = [EarlyStopping(monitor='val_acc', patience=12, verbose=1), ModelCheckpoint(filepath=os.path.join(model_dir,'tempbm.h5'), monitor='val_acc', save_best_only=True), ReduceLROnPlateau(monitor='val_acc', factor=0.2, patience=5, min_lr=0.00001, verbose=1)] history = top_model.fit(train_data, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(validation_data, validation_labels), shuffle=True, callbacks=callbacks, verbose=verb) # reload best model: top_model = load_model(os.path.join(model_dir, 'tempbm.h5')) score = top_model.evaluate(validation_data, validation_labels, verbose=0) print('{:22} {:.2f}'.format('Validation loss:', score[0])) print('{:22} {:.2f}'.format('Validation accuracy:', score[1])) print('') # save the entire model: # build the network base_model = model_app(arch, Input(shape=(img_height, img_width, 3))) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) if opt == 'RMSprop': model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy', metrics=['accuracy']) if opt == 'SGD': model.compile(optimizer=SGD(lr=0.0001, momentum=0.6), loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.save(os.path.join(model_dir, f'{model_name}.hdf5')) # also save the dictionary label associated with this file for later testing shutil.copy2(os.path.join(bottleneck_dir, f'{bottleneck_name}_dict_l'), os.path.join(model_dir, f'{model_name}_dict_l')) # delete temporary model file: os.remove(os.path.join(model_dir, 'tempbm.h5')) print('New classification layer training complete.') # plotting the metrics fig, ax = plt.subplots(nrows=2, ncols=1, constrained_layout=True) ax[0].plot(range(1, len(history.history['acc']) + 1), history.history['acc']) ax[0].plot(range(1, len(history.history['acc']) + 1), history.history['val_acc']) ax[0].set_title('Model Accuracy') ax[0].set_ylabel('Accuracy') ax[0].set_ylim(0.0, 1.0) ax[0].set_xlabel('Epoch') ax[0].legend(['Train', 'Validation'], loc='lower right') ax[1].plot(range(1, len(history.history['acc']) + 1), history.history['loss']) ax[1].plot(range(1, len(history.history['acc']) + 1), history.history['val_loss']) ax[1].set_title('Model loss') ax[1].set_ylabel('Loss') ax[1].set_xlabel('Epoch') ax[1].legend(['Train', 'Validation'], loc='upper right') # set up figure fig.set_size_inches(w=5, h=7) # plt.show(fig) plt.savefig(os.path.join(model_dir,f'{model_name}.pdf')) plt.close('all') def fine_tune_second_step(train_data_dir, validation_data_dir, model_name, epochs, batch_size): """ Fine tune the new model using SGD (we don't use different batch sizes here so, hopefully, we do not have to consider hardware limitations). Args: train_data_dir: String path to a folder containing subfolders of images (training set). validation_data_dir: String path to a folder containing subfolders of images (validation set). model_name: String, name of the model to be saved. epochs: Integer, the number of epochs (iterations on complete training set) to be performed Returns: No returns. Trains and saves the model. Opens matplotlib with training history """ #datagen = ImageDataGenerator(preprocessing_function=model_preprocess(model_name)) datagen = ImageDataGenerator(rescale=1./255) # load the model: model = load_model(os.path.join(model_dir, f'{model_name}.hdf5')) # compile the model with a SGD/momentum optimizer # and a very slow learning rate. model.compile(optimizer=SGD(lr=1e-4, momentum=0.3), loss='categorical_crossentropy', metrics=['accuracy']) tensorboard = TensorBoard( log_dir="logs/{}-{}".format(model_name, datetime.datetime.now().strftime("%Y-%m-%d-%H%M%S"))) callbacks = [EarlyStopping(monitor='val_loss', patience=20, verbose=1), ModelCheckpoint(filepath=os.path.join(model_dir, 'tempbm.h5'), monitor='val_acc', save_best_only=True), ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=10, min_lr=1e-6, verbose=1), tensorboard] # get model input parameters:f img_height = model.layers[0].get_output_at(0).get_shape().as_list()[1] img_width = model.layers[0].get_output_at(0).get_shape().as_list()[2] # set upt the flow from directory for train and validation data: generator_train = datagen.flow_from_directory( train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', shuffle=True) generator_val = datagen.flow_from_directory( validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical', shuffle=True) history = model.fit_generator(generator=generator_train, steps_per_epoch=generator_train.n // batch_size, epochs=epochs, validation_data=generator_val, validation_steps=generator_val.n // batch_size, shuffle=True, callbacks=callbacks, verbose=verb) # reload best model: top_model = load_model(os.path.join(model_dir, 'tempbm.h5')) score = top_model.evaluate_generator(generator=generator_val, steps=generator_val.n, verbose=0) print('{:22} {:.2f}'.format('Validation loss:', score[0])) print('{:22} {:.2f}'.format('Validation accuracy:', score[1])) print('') # sometimes fine tune might not improve validation accuracy, verify: initial_model = load_model(os.path.join(model_dir, f'{model_name}.hdf5')) initial_model.compile(optimizer=SGD(lr=1e-4, momentum=0.5), loss='categorical_crossentropy', metrics=['accuracy']) score_or = initial_model.evaluate_generator(generator=generator_val, steps=generator_val.n, verbose=0) print('{:22} {:.2f}'.format('Original Validation loss:', score_or[0])) print('{:22} {:.2f}'.format('Original Validation accuracy:', score_or[1])) print('') if score_or[1] > score[1]: print('Fine tune did not improve model accuracy.') # this might be due to batch normalization # http://blog.datumbox.com/the-batch-normalization-layer-of-keras-is-broken/ # https://www.youtube.com/watch?v=nUUqwaxLnWs model.save(os.path.join(model_dir, f'{model_name}_fine_tuned.hdf5')) # also save the dictionary label associated with this model for later testing shutil.copy2(os.path.join(model_dir, f'{model_name}_dict_l'), os.path.join(model_dir, f'{model_name}_fine_tuned_dict_l')) # delete temporary model file: os.remove(os.path.join(model_dir, 'tempbm.h5')) # plotting the metrics fig, ax = plt.subplots(nrows=2, ncols=1, constrained_layout=True) ax[0].plot(range(1, len(history.history['acc']) + 1), history.history['acc']) ax[0].plot(range(1, len(history.history['acc']) + 1), history.history['val_acc']) ax[0].set_title('Model Accuracy') ax[0].set_ylabel('Accuracy') ax[0].set_ylim(0.0, 1.0) ax[0].set_xlabel('Epoch') ax[0].legend(['Train', 'Validation'], loc='lower right') ax[1].plot(range(1, len(history.history['acc']) + 1), history.history['loss']) ax[1].plot(range(1, len(history.history['acc']) + 1), history.history['val_loss']) ax[1].set_title('Model loss') ax[1].set_ylabel('Loss') ax[1].set_xlabel('Epoch') ax[1].legend(['Train', 'Validation'], loc='upper right') # set up figure fig.set_size_inches(w=5, h=7) # plt.show(fig) plt.savefig(os.path.join(model_dir, f'{model_name}_fine_tuned.pdf')) plt.close('all') print('Fine tune complete.') if __name__ == '__main__': print("Starting...") # for model selection parameters options_dict = { 'Xception': (299, 299, 3), 'VGG16': (224, 224, 3), 'VGG19': (224, 224, 3), 'ResNet50': (224, 224, 3), 'InceptionV3': (299, 299, 3), 'InceptionResNetV2': (299, 299, 3), 'MobileNet': (224, 224, 3), 'MobileNetV2': (224, 224, 3), 'DenseNet121': (224, 224, 3), 'NASNetLarge': (331, 331, 3) } # train and validation data folders train_data_dir = '../Data/PP_mc_wb_train' validation_data_dir = '../Data/PP_mc_wb_validation' test_data_dir = '../Data/PP_mc_wb_test' #################################################### # choose model architecture with weights coming from ImageNet training: models_list = ['MobileNetV2', 'VGG19', 'InceptionV3', 'ResNet50'] # number of epochs for training: epochs = 64 # optimizer opt = 'SGD' for m in models_list: start_time = timer() print(m) # model and bottleneck names: bottleneck_name = m + '_bn' # image height and width ("picture size for the model"): height = options_dict[m][0] width = options_dict[m][1] # calling the functions: # save the bottlenecks save_bottleneck_features(m, train_data_dir, validation_data_dir, bottleneck_name, height, width, m) # then train the top model train_top_model(bottleneck_name, m, m, height, width, epochs, opt) # fine tune the model: if m == 'InceptionV3' or m == 'ResNet50': fine_tune_second_step(train_data_dir, validation_data_dir, m, epochs, batch_size=8) # 8 for inception/resnet (personal memory limitations) else: fine_tune_second_step(train_data_dir, validation_data_dir, m, epochs, batch_size=16) end_time = timer() print(f'{m} trained in {(end_time-start_time)/60.0:.2f} minutes') K.clear_session() print('\n\n') for m in models_list: # after the models are trained, evaluate the metrics: #datagen = ImageDataGenerator(preprocessing_function=model_preprocess(m)) datagen = ImageDataGenerator(rescale=1./255) print('Evaluating model {}'.format(m)) # image height and width ("picture size for the model"): height = options_dict[m][0] width = options_dict[m][1] with open('accuracy.csv', 'a') as outfile: print(f'{m},', end =" ", file=outfile) for dset, ddir in zip(['training', 'validation', 'test'],[train_data_dir, validation_data_dir, test_data_dir]): generator_test = datagen.flow_from_directory( ddir, target_size=(width, height), batch_size=1, class_mode='categorical', shuffle=False) # load the model # this_model = load_model(os.path.join(model_dir, f'{m}.hdf5')) # this_model.compile(optimizer=SGD(lr=1e-4, momentum=0.5), # loss='categorical_crossentropy', # metrics=['accuracy']) # print(f'Model {m}', file=outfile) # print('----Classification only', file=outfile) # score = this_model.evaluate_generator(generator=generator_test, steps=generator_test.n, verbose=0) # print(f'----{dset:22} loss {score[0]:.2f}', file=outfile) # print(f'----{dset:22} accuracy {score[1]:.2f}', file=outfile) # print('') # load the fine tuned model this_model = load_model(os.path.join(model_dir, f'{m}_fine_tuned.hdf5')) # print('----Fine tune', file=outfile) score = this_model.evaluate_generator(generator=generator_test, steps=generator_test.n, verbose=0) # print(f'----{dset:22} loss {score[0]:.2f}', file=outfile) # print(f'----{dset:22} accuracy {score[1]:.2f}', file=outfile) # print('\n\n') print(f'{score[1]},', end =" ", file=outfile) K.clear_session() print('', file=outfile) print('Complete')
[ "noreply@github.com" ]
raplima.noreply@github.com
3f21a62eb233d75d4cb9fd49add03093f4faf00b
444216935d35adcf2ca63ec2eee2b4cca47a649f
/liu_models/reusenet.py
28d7574703b6d8193ef17d05923f50dd09385a35
[]
no_license
Linwenye/LEGO
3eff9c45917ef21d8ed1f294ad26d63b84224391
02e305191caf1608d30306a3d9646def38df7e99
refs/heads/master
2023-04-08T15:59:03.570335
2021-04-17T06:52:28
2021-04-17T06:52:28
355,191,073
0
0
null
null
null
null
UTF-8
Python
false
false
8,482
py
.3 '''ReuseNet in PyTorch. For Pre-activation ReuseNet, see 'preact_ReuseNet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义两层 class ReuseBlock2(nn.Module): expansion = 1 def __init__(self, in_planes, planes, conv2, bn2, stride=1): super(ReuseBlock2, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = conv2 self.bn2 = bn2 self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义三层 class ReuseBlock3(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(ReuseBlock3, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ReuseNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10, widen_factor=1): super(ReuseNet, self).__init__() self.in_planes = 16 * widen_factor self.conv1 = nn.Conv2d(3, 16 * widen_factor, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16 * widen_factor) self.layer1 = self._make_layer(block, 16 * widen_factor, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 32 * widen_factor, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 64 * widen_factor, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 128 * widen_factor, num_blocks[3], stride=2) self.linear = nn.Linear(128 * widen_factor * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [1] * (num_blocks - 1) layers = [block(self.in_planes, planes, stride)] self.in_planes = planes * block.expansion reuse_conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) reuse_bn2 = nn.BatchNorm2d(planes) for _ in strides: layers.append(ReuseBlock2(self.in_planes, planes, reuse_conv2, reuse_bn2)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out class CifarReuseNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10, widen_factor=1): super(CifarReuseNet, self).__init__() self.in_planes = 16 * widen_factor self.conv1 = nn.Conv2d(3, 16 * widen_factor, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16 * widen_factor) self.layer1 = self._make_layer(block, 16 * widen_factor, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) self.linear = nn.Linear(64 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [1] * (num_blocks - 2) layers = [block(self.in_planes, planes, stride)] self.in_planes = planes * block.expansion layers.append(block(self.in_planes, planes, 1)) reuse = BasicBlock(self.in_planes, planes, 1) for _ in strides: layers.append(reuse) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, 8) out = out.view(out.size(0), -1) out = self.linear(out) return out def ReuseNet18(): return ReuseNet(BasicBlock, [2, 2, 2, 2]) def CifarReuseNet26(): return CifarReuseNet(BasicBlock, [4, 4, 4]) def ReuseNet26(num_classes): return ReuseNet(BasicBlock, [3, 3, 3, 3], num_classes) def ReuseNet34(): return ReuseNet(BasicBlock, [3, 4, 6, 3]) def ReuseNet50(): return ReuseNet(Bottleneck, [3, 4, 6, 3]) def ReuseNet101(): return ReuseNet(Bottleneck, [3, 4, 23, 3]) def ReuseNet152(): return ReuseNet(Bottleneck, [3, 8, 36, 3]) def test(): # net = ReuseNet34wider_cifar100() net = ReuseNet18() y = net(torch.randn(1, 3, 32, 32)) print(y.size()) # test()
[ "419766878@qq.com" ]
419766878@qq.com
8b38feee1e7984c093ab2477b1e6c94aa9ae5032
9b1446b26e81a79c303f9799fb6a91785c7adb03
/.history/Code/rearrange_20200119162227.py
a2b26cbc31714c4d2901c190ccccaf9a0c97fe88
[]
no_license
SamirIngley/CS1.2-Tweet-Gen
017ea15b1113881a156ff24682828bc654eb6c81
bcd95fa63e05849cbf8e36230d8e31032b99daaa
refs/heads/master
2020-12-14T20:19:57.733290
2020-08-04T23:19:23
2020-08-04T23:19:23
234,856,234
0
0
null
2020-06-05T21:13:04
2020-01-19T07:05:55
Python
UTF-8
Python
false
false
5,847
py
import random def random_rearrange(input_string): ''' Asks user for input of words, then rearranges those words in a random order ''' # input_string = input("enter words: ") words = input_string.split(' ') len_words = len(words) # print(words) word_list = [] for word in range(len_words): rand = random.randint(0,len_words-1) # print(rand) word_list.append(words[rand]) # print(word_list) space = ' ' sentence = space.join(word_list) print(sentence) return sentence def reverse_order(input_string): ''' Reverses the order or words inputted by user ''' # input_string = input("enter words: ") words = input_string.split(' ') print(words) length = len(words) - 1 word_list = [] for word in words: word_list.append(words[length]) length -= 1 print(word_list) space = ' ' sentence = space.join(word_list) print(sentence) return sentence def mad_libs(): nouns_string = input('Give me a noun: ') names_string = input('Give me a name: ') verbs_string = input('Give me two verbs: ') nouns = nouns_string.split(' ') names = names_string.split(' ') verbs = verbs_string.split(' ') print(verbs) print("One day I went to the store to buy myself a {}.".format(nouns[0])) print("'What's the matter with you {}?' The clerk asked.".format(names[0])) print("'This fits me well' I said") print("'Well go on then {} it out so you don't miss out.".format(verbs[0])) print("'Let me {} first and I'll give you what I have.'".format(verbs[1])) # def anagram(): # ''' handshake with each letter # rearrange to see every possible combination of words # ''' # word = input('Letters/word: ') # length = len(word) # current = None # temp = None # for letter in word: # current = letter # for letter2 in word: # temp = letter2 # if letter == letter2: # pass # else: def anagram(input_string): ''' takes a word and returns every possible combination of letters ''' word_string = input_string new_strings = [] linked_list = LinkedList() linked_list_swaps = LinkedList() linked_list.read() linked_list_swaps.read() for letter in input_string: linked_list.insert(letter) linked_list_swaps.insert(letter) linked_list.read() print(len(word_string)) index = 0 while index < len(word_string): for letter in word_string: for letter2 in word_string: linked_list_swaps.swap(letter, letter2) new_strings.append(linked_list.read() + "\n") linked_list_swaps.swap(letter2, letter) index += 1 linked_list_swaps.read() print(new_strings) return class Node(): def __init__(self, data=None, next_pointer=None): self.data = data self.next_pointer = next_pointer def get_data(self): return self.data def get_next(self): return self.next_pointer def set_next(self, next_node): self.next_pointer = next_node class LinkedList(): def __init__(self, head=None): self.head = head def insert(self, data): new_node = Node(data) new_node.set_next(self.head) self.head = new_node def delete(self, data): current = self.head previous = None found = False while current and found == False: if current.get_data() == data: found = True else: previous = current current = current.get_next() if current == None: return ValueError("does not exist") if previous == None: self.head = current.get_next() if found == True: previous.set_next(current.get_next()) def read(self): current = self.head read = [] while current: data = current.get_data() read.append(data) current = current.get_next() no_space = '' sentence = no_space.join(read) print(sentence) return def swap(self, data1, data2): node1 = None node2 = None current = self.head if data1 == data2: print("n/a") return while current: curr_data = current.get_data() if curr_data == data1: node1 = current elif curr_data == data2: node2 = current current = current.get_next() temp1 = node1.get_data() temp2 = node2.get_data() node1.data = temp2 node2.data = temp1 return def size(self): current = self.head counter = 0 while current: counter += 1 current = current.get_next() print(counter) return counter if __name__ == '__main__': input_string = 'hello yellow fellow' anagram_string = 'superduper' # random_rearrange(input_string) # reverse_order() # mad_libs() anagram(anagram_string) # linked_list = LinkedList() # linked_list.insert('a') # linked_list.insert('b') # linked_list.insert('c') # linked_list.insert('d') # linked_list.insert('e') # linked_list.insert('f') # linked_list.insert('g') # linked_list.insert('h') # linked_list.insert('i') # linked_list.insert('j') # linked_list.insert('k') # linked_list.read() # linked_list.delete('a') # linked_list.read() # print(range(linked_list.size())) # linked_list.swap([0],[10]) # linked_list.read()
[ "samir.ingle7@gmail.com" ]
samir.ingle7@gmail.com
b3de6ca2822ccf06d9654878faeddcd84a157cad
82b7196d25f43f8201158f285618910f480d7c8d
/bili_live_danmu.py
4f0a90c1c9738c967346864905d4b863d7f17f14
[]
no_license
jym66/bili_danmu
113ee4994e18fc39876189a64bf442048995b323
57b234471a9408058c8975b0f29ed6872a8ee4a9
refs/heads/master
2022-02-26T17:47:50.837348
2019-10-25T09:07:20
2019-10-25T09:07:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,190
py
import asyncio import json import re import zlib from binascii import a2b_hex import aiohttp import requests from apscheduler.schedulers.asyncio import AsyncIOScheduler ''' bilibili直播弹幕爬虫 ''' header = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36" } # ws url bili_live_ws_url = "https://ks-live-dmcmt-sh2-pm-01.chat.bilibili.com/sub" # 获取建立ws连接时所需key的url key_url = "https://api.live.bilibili.com/room/v1/Danmu/getConf?room_id={}&platform=pc&player=web" ''' ws二进制帧 = 长度为16的b站协议头 + 返回数据 00 00 01 0F 00 10 00 02 00 00 00 05 00 00 00 00 第三四位 01 0F表示 协议头+返回数据的长度,第五六位00 10是表示b站协议头的长度, 第十二位的05表示返回数据是弹幕消息或礼物消息 数据为弹幕消息或礼物即第十二位为05时,第八和十六位分别为02和00, 其他情况下,第八和十六位分别为01和01, ''' # ws数据包类型 ask_connect_num = 7 # 0x07 客户端发出请求连接 ack_connect_num = 8 # 0x08 服务端允许连接回应 heartbeat_num = 2 # 0x02 客户端请求房间人气值、发出心跳包 ask_danmu_num = 3 # 0x03 对客户端心跳包作出回应,返回房间人气值 return_danmu_num = 5 # 0x05 服务端返回弹幕消息、礼物等等 # 心跳包二进制数据 heartbeat_bin = "0000001F0010000100000002000000015B6F626A656374204F626A6563745D" # 心跳包发送间隔时间 heartbeat_time = 0.483 * 30 async def bili_live_danmu(connect_data): session = aiohttp.ClientSession() async with session.ws_connect(bili_live_ws_url, proxy="http://127.0.0.1:8888") as ws: # async with session.ws_connect(bili_live_ws_url) as ws: # 请求连接的数据 connect_data_bin = json.dumps(connect_data).encode() # 请求连接数据的长度 + 16位协议头长度 msg_len_hex = hex(len(connect_data_bin) + 16).replace("0x", "") # 协议头16进制格式 protocol_num_hex = f"000000{msg_len_hex}001000010000000{ask_connect_num}00000001" # 协议头16进制转为二进制格式 protocol_bin = a2b_hex(protocol_num_hex.encode()) # ws数据包二进制格式 msg_bin = protocol_bin + connect_data_bin # print(msg_bin) # 发送直播间ws连接请求 print(msg_bin) await ws.send_bytes(msg_bin) await asyncio.sleep(0.05) # 建立ws连接后必须发送一次心跳包 await heartbeat(ws) # 定时心跳包 scheduler.add_job(heartbeat, 'interval', seconds=heartbeat_time, args=[ws]) async for msg in ws: # 第十二位 0x05 表示服务端返回弹幕消息、礼物、系统消息、网站公告等等 # print(msg.data) if msg.data[11] == 5: try: # b站将二进制数据包里除了16位协议头外的数据使用zlib进行压缩,读取时需要解压 msg_data = zlib.decompress(msg.data[16:])[16:].decode(errors='ignore') if '"cmd":"DANMU_MSG"' in msg_data: # todo 返回的数据有可能多条弹幕有可能一条弹幕,格式会不一致,需要调整判断 # result = re.findall('{"cmd":"DANMU_MSG".*?}]}', msg_data, re.S) result = json.loads(msg_data) # print(result) # for i in result: # danmu_dict = json.loads(i) danmu = { "USER_ID": result["info"][2][0], "USER_NAME": result["info"][2][1], "MSG": result["info"][1], } print(danmu) except: # 返回当前房间粉丝数的数据包没有压缩 pass if msg.type == aiohttp.WSMsgType.TEXT: if msg.data == 'close cmd': await ws.close() print('connection close') break elif msg.type == aiohttp.WSMsgType.ERROR: print('websocket error to closed') break async def heartbeat(ws): await ws.send_bytes(a2b_hex(heartbeat_bin.encode())) def init(url): response1 = requests.get(url, headers=header) room_id = int(re.findall('"data":{"room_id":(.*?),"', response1.text, re.S)[0]) response2 = requests.get(key_url.format(room_id), verify=False) connect_key = response2.json()["data"]["token"] return {"uid": 0, "roomid": room_id, "protover": 2, "platform": "web", "clientver": "1.7.5", "type": 2, "key": connect_key} if __name__ == '__main__': room_url = "https://live.bilibili.com/21329290?spm_id_from=333.334.b_62696c695f6c697665.12" connect_data_dict = init(room_url) loop = asyncio.get_event_loop() loop.create_task(bili_live_danmu(connect_data_dict)) scheduler = AsyncIOScheduler() scheduler.start() loop.run_forever()
[ "413510489@qq.com" ]
413510489@qq.com
d1fdfc95be671fcb97e45c2857bdc5a6fceb5cda
4a0f128be58e4ec02e4ad2dff7d4a1be40add9d8
/Week_03/[169]多数元素.py
2a3847f6c73094cf0746f04aa1a555eec6891671
[]
no_license
JinHao-95/AlgorithmQIUZHAO
f6493c362859ffce00a643052f75c0f7a3b1d1e1
af172a032c97448fe41c13b9ed3398f080213807
refs/heads/master
2022-12-14T17:49:39.840202
2020-08-23T04:57:28
2020-08-23T04:57:28
280,786,461
0
0
null
2020-07-19T03:47:56
2020-07-19T03:47:56
null
UTF-8
Python
false
false
764
py
# 给定一个大小为 n 的数组,找到其中的多数元素。多数元素是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。 # # 你可以假设数组是非空的,并且给定的数组总是存在多数元素。 # # # # 示例 1: # # 输入: [3,2,3] # 输出: 3 # # 示例 2: # # 输入: [2,2,1,1,1,2,2] # 输出: 2 # # Related Topics 位运算 数组 分治算法 # 👍 682 👎 0 # leetcode submit region begin(Prohibit modification and deletion) class Solution: def majorityElement(self, nums: List[int]) -> int: # # leetcode submit region end(Prohibit modification and deletion) dct = defaultdict(int) for i in nums: dct[i] += 1 return max(dct.keys(), key=lambda x: dct[x])
[ "hao.jin@nttdatabj.com.cn" ]
hao.jin@nttdatabj.com.cn
9849b399cfcfcf6c3236b4b51d0cf9f4f2a0a5bf
39d27f97ca07c24629a19fc23a8b1bace0e1193e
/CS1026a/Chapter8/Dict and Set.py
b1eb1239c34f9bc4e800674e9ecda8e269ac2ba7
[]
no_license
yijunhhhe/code
1df24fa31952aaba582985828d97697b251c1df6
54c22fbf35f9cef687a5338c9c79ca15dd2091a7
refs/heads/master
2020-05-21T23:53:04.564687
2017-01-08T21:57:18
2017-01-08T21:57:18
59,263,534
2
0
null
null
null
null
UTF-8
Python
false
false
679
py
names = {'Michael': 95, 'Bob': 75, 'Tracy': 85} print(names['Michael']) names['Adam'] = 67 print(names) names['Adam'] = 80 print (names) isKeyIn = 'Adam' in names print(isKeyIn) isKeyIn = names.get('Yijun') isKeyIn = names.get('Yijun', 85) score = names.get('Adam') print(isKeyIn, score) names.pop('Bob') print(names) key = (1,2,3) names[key] = 'fuck' print(names[key]) # set s = set([1,2,3]) print(s) s.add(4) print(s) s.remove(4) print(s) s1 = set([1, 2, 3]) s2 = set([2, 3, 4]) print(s1&s2, s1|s2) # 不可变对象 a = 'abc' print(a.replace('a','A')) print(a) b = a.replace('a','A') print(b,a) # replace does not change the variable a, it just return a new value
[ "yijunhhhe@gmail.com" ]
yijunhhhe@gmail.com
2eeb2c8a4d3f24fa191c2902cc28df9aa8d79552
14c7487cddd5df2428e432bbfd91d4ee292bde41
/nova-compute-agent/nova_compute_agent/openstack/common/strutils.py
0a116e68c2c3aa231c521621a959f7104f29c5d4
[]
no_license
lilingxing20/openstack-ha
66ca54c594e26838e2b5d9758495849f0b4be48b
d202b4d98a9d270105df4da43f831eb1a2351265
refs/heads/master
2021-01-21T10:25:42.912743
2019-03-19T09:19:47
2019-03-19T09:19:47
83,423,357
0
0
null
null
null
null
UTF-8
Python
false
false
7,815
py
# coding=utf-8 """ System-level utilities and helper functions. """ import re import sys import unicodedata import six from nova_compute_agent.openstack.common.gettextutils import _ BYTE_MULTIPLIERS = {'': 1, 't': 1099511627776, 'g': 1073741824, 'm': 1048576, 'k': 1024 } BYTE_REGEX = re.compile('(^-?\\d+)(\\D*)') TRUE_STRINGS = ('1', 't', 'true', 'on', 'y', 'yes') FALSE_STRINGS = ('0', 'f', 'false', 'off', 'n', 'no') SLUGIFY_STRIP_RE = re.compile('[^\\w\\s-]') SLUGIFY_HYPHENATE_RE = re.compile('[-\\s]+') _SANITIZE_KEYS = [ 'adminPass', 'admin_pass', 'password', 'admin_password'] _SANITIZE_PATTERNS_2 = [] _SANITIZE_PATTERNS_1 = [] _FORMAT_PATTERNS_1 = [ '(%(key)s\\s*[=]\\s*)[^\\s^\\\'^\\"]+'] _FORMAT_PATTERNS_2 = ['(%(key)s\\s*[=]\\s*[\\"\\\']).*?([\\"\\\'])', '(%(key)s\\s+[\\"\\\']).*?([\\"\\\'])', '([-]{2}%(key)s\\s+)[^\\\'^\\"^=^\\s]+([\\s]*)', '(<%(key)s>).*?(</%(key)s>)', '([\\"\\\']%(key)s[\\"\\\']\\s*:\\s*[\\"\\\']).*?([\\"\\\'])', '([\\\'"].*?%(key)s[\\\'"]\\s*:\\s*u?[\\\'"]).*?([\\\'"])', '([\\\'"].*?%(key)s[\\\'"]\\s*,\\s*\\\'--?[A-z]+\\\'\\s*,\\s*u?[\'"]).*?([\'"])', '(%(key)s\\s*--?[A-z]+\\s*)\\S+(\\s*)'] for key in _SANITIZE_KEYS: for pattern in _FORMAT_PATTERNS_2: reg_ex = re.compile(pattern % {'key': key}, re.DOTALL) _SANITIZE_PATTERNS_2.append(reg_ex) for pattern in _FORMAT_PATTERNS_1: reg_ex = re.compile(pattern % {'key': key}, re.DOTALL) _SANITIZE_PATTERNS_1.append(reg_ex) def int_from_bool_as_string(subject): """Interpret a string as a boolean and return either 1 or 0. Any string value in: ('True', 'true', 'On', 'on', '1') is interpreted as a boolean True. Useful for JSON-decoded stuff and config file parsing """ return bool_from_string(subject) and 1 or 0 def bool_from_string(subject, strict=False): """Interpret a string as a boolean. A case-insensitive match is performed such that strings matching 't', 'true', 'on', 'y', 'yes', or '1' are considered True and, when `strict=False`, anything else is considered False. Useful for JSON-decoded stuff and config file parsing. If `strict=True`, unrecognized values, including None, will raise a ValueError which is useful when parsing values passed in from an API call. Strings yielding False are 'f', 'false', 'off', 'n', 'no', or '0'. """ if not isinstance(subject, basestring): subject = str(subject) lowered = subject.strip().lower() if lowered in TRUE_STRINGS: return True if lowered in FALSE_STRINGS: return False if strict: acceptable = ', '.join(("'%s'" % s for s in sorted(TRUE_STRINGS + FALSE_STRINGS))) msg = _("Unrecognized value '%(val)s', acceptable values are: %(acceptable)s") % {'val': subject,'acceptable': acceptable } raise ValueError(msg) else: return False def safe_decode(text, incoming=None, errors='strict'): """Decodes incoming str using `incoming` if they're not already unicode. :param incoming: Text's current encoding :param errors: Errors handling policy. See here for valid values http://docs.python.org/2/library/codecs.html :returns: text or a unicode `incoming` encoded representation of it. :raises TypeError: If text is not an isntance of basestring """ if not isinstance(text, basestring): raise TypeError("%s can't be decoded" % type(text)) if isinstance(text, unicode): return text if not incoming: incoming = sys.stdin.encoding or sys.getdefaultencoding() try: return text.decode(incoming, errors) except UnicodeDecodeError: return text.decode('utf-8', errors) def safe_encode(text, incoming=None, encoding='utf-8', errors='strict'): """Encodes incoming str/unicode using `encoding`. If incoming is not specified, text is expected to be encoded with current python's default encoding. (`sys.getdefaultencoding`) :param incoming: Text's current encoding :param encoding: Expected encoding for text (Default UTF-8) :param errors: Errors handling policy. See here for valid values http://docs.python.org/2/library/codecs.html :returns: text or a bytestring `encoding` encoded representation of it. :raises TypeError: If text is not an isntance of basestring """ if not isinstance(text, basestring): raise TypeError("%s can't be encoded" % type(text)) if not incoming: incoming = sys.stdin.encoding or sys.getdefaultencoding() if isinstance(text, unicode): return text.encode(encoding, errors) if text and encoding != incoming: text = safe_decode(text, incoming, errors) return text.encode(encoding, errors) return text def to_bytes(text, default=0): """Converts a string into an integer of bytes. Looks at the last characters of the text to determine what conversion is needed to turn the input text into a byte number. Supports "B, K(B), M(B), G(B), and T(B)". (case insensitive) :param text: String input for bytes size conversion. :param default: Default return value when text is blank. """ match = BYTE_REGEX.search(text) if match: magnitude = int(match.group(1)) mult_key_org = match.group(2) if not mult_key_org: return magnitude elif text: msg = _('Invalid string format: %s') % text raise TypeError(msg) else: return default mult_key = mult_key_org.lower().replace('b', '', 1) multiplier = BYTE_MULTIPLIERS.get(mult_key) if multiplier is None: msg = _('Unknown byte multiplier: %s') % mult_key_org raise TypeError(msg) return magnitude * multiplier def to_slug(value, incoming=None, errors='strict'): """Normalize string. Convert to lowercase, remove non-word characters, and convert spaces to hyphens. Inspired by Django's `slugify` filter. :param value: Text to slugify :param incoming: Text's current encoding :param errors: Errors handling policy. See here for valid values http://docs.python.org/2/library/codecs.html :returns: slugified unicode representation of `value` :raises TypeError: If text is not an instance of basestring """ value = safe_decode(value, incoming, errors) value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii') value = SLUGIFY_STRIP_RE.sub('', value).strip().lower() return SLUGIFY_HYPHENATE_RE.sub('-', value) def mask_password(message, secret='***'): """Replace password with 'secret' in message. :param message: The string which includes security information. :param secret: value with which to replace passwords. :returns: The unicode value of message with the password fields masked. For example: >>> mask_password("'adminPass' : 'aaaaa'") "'adminPass' : '***'" >>> mask_password("'admin_pass' : 'aaaaa'") "'admin_pass' : '***'" >>> mask_password('"password" : "aaaaa"') '"password" : "***"' >>> mask_password("'original_password' : 'aaaaa'") "'original_password' : '***'" >>> mask_password("u'original_password' : u'aaaaa'") "u'original_password' : u'***'" """ message = six.text_type(message) if not any((key in message for key in _SANITIZE_KEYS)): return message substitute = '\\g<1>' + secret + '\\g<2>' for pattern in _SANITIZE_PATTERNS_2: message = re.sub(pattern, substitute, message) substitute = '\\g<1>' + secret for pattern in _SANITIZE_PATTERNS_1: message = re.sub(pattern, substitute, message) return message
[ "lixx_xt@teamsun.com.cn" ]
lixx_xt@teamsun.com.cn
8fead76103c603095f350c20590815796011ee10
160166aad5660f593579405498b9b7943e117557
/webapps/apps/users/admin.py
11d3b8ca51a2659ede27542c0e9bf12fd3fb2fb0
[]
no_license
dudochen/cmdb
aaf1692caa66d549df590185a5d3cab378fc1987
252ea926a80f0d430a74033849bf77e1e44b94fe
refs/heads/master
2020-03-21T02:30:47.167222
2018-07-11T02:22:27
2018-07-11T02:22:27
138,002,170
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
#! /usr/bin/env python # -*- coding: utf-8 -*- from django.contrib import admin from .models import UserProfile # Register your models here. class UserProfileAdmin(admin.ModelAdmin): """admin界面的定义""" #list_display = ['username','password','group','memo'] # filter_horizontal = ['name'] admin.site.register(UserProfile, UserProfileAdmin)
[ "290583885@qq.com" ]
290583885@qq.com
b2ea221215c15d4a1c082ddee5b50c0cd396e9df
00d1b82b24c1ede5617dac602154586c2499d28f
/批量文件重命名.py
8b19baee98e2a33c43bd0ba6a8eccedfb90b8ca8
[]
no_license
123lxy/Desktop
a77848291737b5fee287ee05da2538af072486e6
5b4fa52ab40252cdd6a71f64976a447f2b6032a4
refs/heads/master
2020-03-10T20:22:53.120581
2018-04-24T10:44:09
2018-04-24T10:44:09
127,839,183
0
0
null
null
null
null
UTF-8
Python
false
false
500
py
import os #1.获取要改名的文件夹 folder = input("请输入要操作的文件夹名:") #2.列出文件夹所有文件 file_names = os.listdir(folder) print(file_names) #3.批量重命名 #os.chdir(folder) ''' old_name = name new_name = '[百度云]' + name os.rename(old_name,new_name) print(new_name) ''' for name in file_names: old_name ='./'+folder+'/'+name new_name ='./'+folder+'/'+'[百度云]' + name os.rename(old_name,new_name) print(new_name)
[ "18340899076@163.com" ]
18340899076@163.com
f01dc448fdd3cca6157b69968d39e66a8fbb82b7
c0b56c1d89d7efc0c14a57d2a65a03b87de36bd8
/PythonSeleniumTesting/PyTest_Demo/pytest_fixtureDemo.py
4fbcb80e5d532d5bec413c55960c9fe0233c53c0
[]
no_license
vidyamb/SwagLabs
fb32d14afa5374c3355fae0df56e529a4b95a655
e3dc8cfe2e0d4b3bd615c58843d46f324a226467
refs/heads/main
2023-03-20T17:18:42.708988
2021-03-10T11:08:17
2021-03-10T11:08:17
346,171,094
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
import pytest @pytest.mark.usefixtures("setUp") class TestExample: def test_fixtureDemo1(self): print("i wll execute in this method") def test_fixtureDemo2(self): print("i wll execute in this method") def test_fixtureDemo3(self): print("i wll execute in this method")
[ "vidyavidu213@gmail.com" ]
vidyavidu213@gmail.com
17544cf1d8adfa7aabd581547fe2e569ee8550c0
80bc6c0088c6f30d620ee8f20c1b03d1539cfd74
/mqtt_test.py
2dab35cdea2b7e18737dfc8c2822bbfbeddaf783
[]
no_license
siposbence/szem_uj
a7b6d10e28afd57cd73383721c2a493ec2db4f2d
f63cebc44335535b3e09d9e933d2101583fe4bce
refs/heads/main
2023-06-11T20:35:29.759788
2021-07-08T10:08:09
2021-07-08T10:08:09
381,420,196
0
0
null
null
null
null
UTF-8
Python
false
false
859
py
import threading import time import paho.mqtt.client as mqtt import json topic="control" broker="localhost" port=1884 def on_connect(client, userdata, flags, rc): print("CONNECTED") print("Connected with result code: ", str(rc)) client.subscribe(topic) print("subscribing to topic : "+topic) def on_message(client, userdata, message): print("Data requested "+str(message.payload)) def main(): print("WAIT for max: ",2) while True: time.sleep(1) client.publish(topic,"dfdfd") ### MQTT ### client = mqtt.Client() client.connect(broker, port) client.on_connect = on_connect #client.on_disconnect = on_disconnect def subscribing(): client.on_message = on_message client.loop_forever() sub=threading.Thread(target=subscribing) pub=threading.Thread(target=main) ### Start MAIN ### sub.start() pub.start()
[ "bence.sipos@hotmail.com" ]
bence.sipos@hotmail.com
3b74a10bfef1507363f425eb61e368100884dd70
3e2593161915670c5586bd600e7e076bbe1a0758
/meituan.py
24c51a500fc1dae6464ddee80951126a64f6833a
[]
no_license
qzylalala/WebSpider
19f0691b3b05b8650f2f152d36eaaa17e08a0712
b2d7f143dba6e54322f401251633488b9406fde4
refs/heads/master
2020-04-11T01:22:27.457676
2019-01-14T12:07:07
2019-01-14T12:07:07
161,413,126
1
0
null
null
null
null
UTF-8
Python
false
false
2,430
py
import requests import time from bs4 import BeautifulSoup import json import csv with open(r'美团武汉美食.csv',"w", newline='',encoding='UTF-8') as csvfile: writer = csv.writer(csvfile) writer.writerow(['网站名','品类','商家名称','地址']) target = 'http://wh.meituan.com/meishi/' head={} head['authorization']='your ClientID' head['User-Agent'] = '' req = requests.get(url=target,headers=head) html=req.text bf=BeautifulSoup(html,'lxml') texts=bf.find_all('script') text=texts[14].get_text().strip() text=text[19:-1] result=json.loads(text) result=result['filters'] result=result['areas'] list=[] for item in result: for i in item['subAreas']: if i['name']=='全部': continue list.append(i['id']) print(list) for item in list: for i in range(50): if i==0: continue target='http://wh.meituan.com/meishi/'+'b'+str(item)+'/'+'pn'+str(i)+'/' head={} head['authorization']='your ClientID' head['User-Agent'] = '' req = requests.get(url=target,headers=head) html=req.text bf=BeautifulSoup(html,'lxml') texts=bf.find_all('script') text=texts[14].get_text().strip() text=text[19:-1] result=json.loads(text) result=result['poiLists'] result=result['poiInfos'] if result: print(target) for it in result: Info_list=[] Info_list.append('美团') Info_list.append('美食') Info_list.append(it['title']) Info_list.append(it['address']) writer.writerow(Info_list) time.sleep(3) else: break print('Done')
[ "304228244@qq.com" ]
304228244@qq.com
b562e5c3958a7911b206219551cf904af24f6971
7da07fcf3f3179cccc453f02fd8a0ca61fa4d576
/Random practise.py
c5fe634eb11204a85cf24be3d08f9e56c5e6dc21
[]
no_license
Abhilashavadhanula/Firstproject
fb8a00aa82941e73fe3d75224a3c397b09209cda
7325573652f891f682f4aa9ca24e65adc26956ce
refs/heads/master
2021-08-10T14:12:29.130988
2020-03-23T06:14:03
2020-03-23T06:14:03
131,378,867
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
#!/usr/bin/env python # coding: utf-8 # In[3]: # In[6]: get_ipython().run_cell_magic('time', '', "for i in range(40):\n print('im timing output {}'.format(i))") # ## if else statemets # In[16]: beers=['large','bud','carona','jonny','brew','stout'] for Beer in beers: if Beer=='bmw': print(Beer.upper()) else: print(Beer.title()) # In[ ]:
[ "noreply@github.com" ]
Abhilashavadhanula.noreply@github.com
655703818b71a380d0ddde23057a56603097cada
e41e2505ff0b0534017e85bda0e06493094d1498
/frontend/corona_REST/setting.py
6315adfe2d6fb9e632722dc0d095178b642a7331
[ "MIT" ]
permissive
luyuliu/COVID19-Dashboard
5d516f85284ca908321696bee405fdf1da5531d1
717f83e2767fa53367232e742c110515957a94fd
refs/heads/master
2023-09-04T11:59:37.076149
2021-11-12T20:32:46
2021-11-12T20:32:46
253,892,926
1
0
null
null
null
null
UTF-8
Python
false
false
1,538
py
DOMAIN = { 'ridership_actual': {'datasource': {'source': 'ridership_actual'}}, 'county_info': {'datasource': {'source': 'county_info'}}, 'census_occu_pop': {'datasource': {'source': 'census_occu_pop'}}, 'corona_cases_state_level': {'datasource': {'source': 'corona_cases_state_level'}}, 'census_occupation_population': {'datasource': {'source': 'census_occupation_population'}}, 'system_info': {'datasource': {'source': 'system_info'}}, 'other_ridership_hourly': {'datasource': {'source': 'other_ridership_hourly'}}, 'corona_cases_github': {'datasource': {'source': 'corona_cases_github'}}, 'other_ridership': {'datasource': {'source': 'other_ridership'}}, 'ridership': {'datasource': {'source': 'ridership'}}, 'census_occupation_industry': {'datasource': {'source': 'census_occupation_industry'}}, 'ridership_hourly': {'datasource': {'source': 'ridership_hourly'}}, 'aggregated_ridership_hourly': {'datasource': {'source': 'aggregated_ridership_hourly'}}, 'system_info_backup': {'datasource': {'source': 'system_info_backup'}}, 'google_trend': {'datasource': {'source': 'google_trend'}}, 'corona_cases_usafacts': {'datasource': {'source': 'corona_cases_usafacts'}}, 'census_transit_pop': {'datasource': {'source': 'census_transit_pop'}}, } MONGO_HOST = 'localhost' MONGO_PORT = 27017 MONGO_DBNAME = "corona" ALLOW_UNKNOWN=True X_DOMAINS='*' PAGINATION_LIMIT = 10000 PAGINATION_DEFAULT = 10000
[ "liuluyu0378@gmail.com" ]
liuluyu0378@gmail.com
685aa7e6de81e14c19ae8536efb7def08d8b800f
bcd5620b2d6601a29547823ab1cf540cb15c1410
/dash_hover_click.py
a7895b179b5e0ca1da2e9e5abee5f48689322d4e
[]
no_license
boonkiatdude/plotly-dash
ab8920aa432940f4c48b1d2adf3c5e1b8d314a12
7c18ad36fa12f4868ac60dd3508deec12445395c
refs/heads/main
2023-03-23T11:57:42.690388
2021-03-15T13:33:51
2021-03-15T13:33:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,572
py
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.graph_objects as go import pandas as pd import json import base64 df = pd.read_csv('../Data/wheels.csv') def encode_image(image_file): encoded = base64.b64encode(open(image_file, 'rb').read()) return 'data:image/png;base64,{}'.format(encoded.decode()) app = dash.Dash() fig = go.Scatter( x=df['color'], y=df['wheels'], dy=1, mode='markers', marker={'size':15} ) layout = go.Layout( title='Test', hovermode='closest' ) app.layout = html.Div( [ html.Div( [ dcc.Graph(id='wheels-plot', figure={'data':[fig], 'layout':layout}, style={'width':'30%', 'float':'left'}) ] ), html.Div( html.Img(id='hover-data', src='children', height=300), style={'paddingTop':35} ) ] ) @app.callback( Output('hover-data', 'src'), [Input('wheels-plot', 'clickData')] ) def callback_image(hoverData): if hoverData: wheel = hoverData['points'][0]['y'] color = hoverData['points'][0]['x'] path = '../Data/Images/' wheel_filt = (df['wheels'] == wheel) color_filt = (df['color'] == color) return encode_image(path + df[wheel_filt & color_filt]['image'].values[0]) if __name__ == '__main__': app.run_server()
[ "noreply@github.com" ]
boonkiatdude.noreply@github.com
1084dd65c5e897d08750a0765d039c5aa79fbda4
444a9480bce2035565332d4d4654244c0b5cd47b
/research/nlp/gpt2/src/utils/tensor_manipulations.py
8ff23330029fad9374e2b614e0f24e24d7e6f763
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
7,159
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ tensor manipulations """ from mindspore import Tensor from mindspore import dtype as mstype from mindspore.ops import operations as P def extract_string_from_tensor(input_ids, mode="single", config=None, tokenizer=None): """ Args: input_ids (Tensor): input sentences with shape [batch_size, seq_len]. mode (str): ["pair", "single"] "pair" for tasks with paired inputs `<bos> A <eos> B <eos>`, such as summarization task, the dataset format `<bos> Article <eos> Summary <eos>`, reading comprehension task, the dataset format `<bos> Passage Question <eos> Answer <eos>`. "single" for tasks with single input `<bos> A <eos>`, such as Language Modeling, Lambada task. config: the configuration of GPT-2 model. tokenizer: the tokenizer of GPT-2 model. Return: prompt_list (list): list of prompt_text reference_list (list): list of reference_text, or second part of text rest_list (list): list of rest_text, or rest part of text """ batch_size = config.batch_size seq_length = config.seq_length prompt_list = [""] * batch_size reference_list = [""] * batch_size eos_text = tokenizer.eos_token len_eos_text = len(eos_text) input_ids = P.Reshape()(input_ids, (batch_size, seq_length)) if mode == "pair": for batch_idx in range(batch_size): sentence_tensor = input_ids[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) reference_start = prompt_end + len_eos_text reference_end = sentence[reference_start:].find( eos_text, 0) + reference_start prompt_list[batch_idx] = sentence[prompt_start:prompt_end] reference_list[batch_idx] = sentence[reference_start:reference_end] return prompt_list, reference_list # For single output datasets such as WikiText, etc. if mode == "single": for batch_idx in range(batch_size): sentence_tensor = input_ids[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) prompt_list[batch_idx] = sentence[prompt_start:prompt_end] else: raise NotImplementedError('mode:{} not supported.'.format(mode)) return prompt_list def extract_single_token_logits(logits=None, seq_pos=None): """ Args logits: (batch_size,seq_length,vocab_size) e.g. when batchsize is 8, sequence length is 1024 and vocab_size is 50257, then logits is a Tensor with shape (8,1024,50257) seq_pos:(batch_size) list Return: output_logits: (batch_size,1,vocab_size) extract the logit to predict the last token. """ batch_size = logits.shape[0] for i in range(batch_size): logit = logits[i:i + 1:1, seq_pos[i]:seq_pos[i] + 1:1, ::] if i == 0: output_logits = logit else: output_logits = P.Concat()((output_logits, logit)) return output_logits def get_last_one_pos(input_mask: Tensor): """ Arg: input_mask (Tensor): (batch_size,seq_length) Return: pos (Tensor): (batch_size,) """ input_mask_ = P.Cast()(input_mask, mstype.float32) pos = P.ReduceSum(keep_dims=False)(input_mask_, axis=1) # (batch_size,) pos = P.Cast()(pos, mstype.int32) pos = pos - 1 return pos def get_next_one_pos(input_mask: Tensor): """ Arg: input_mask (Tensor): (batch_size,seq_length) """ input_mask_ = P.Cast()(input_mask, mstype.float32) pos = P.ReduceSum(keep_dims=False)(input_mask_, axis=1) # (batch_size,) pos = P.Cast()(pos, mstype.int32) return pos def add_last_token_mask(input_mask: Tensor, overflow_strategy: str = "shift"): """ add last token mask Args: input_mask: Tensor overflow_strategy: str Returns: Tensor """ pos = get_next_one_pos(input_mask).asnumpy() input_mask_np = input_mask.asnumpy() maximum_length = input_mask.shape[1] batch_size = input_mask.shape[0] for idx in range(batch_size): # not overflow if pos[idx] < maximum_length: input_mask_np[idx][pos[idx]] = 1 # overflow else: if overflow_strategy == "shift": continue if overflow_strategy == "truncate": continue else: raise ValueError("{} is not an option in ['shift','truncate'].".format(overflow_strategy)) return Tensor(input_mask_np, dtype=mstype.int32) def add_last_token(input_ids: Tensor, input_mask: Tensor, overflow_strategy: str = "shift", append_ids=None, next_token_pos=None): """ add last token Args: input_ids: Tensor input_mask: Tensor overflow_strategy: str append_ids: Any next_token_pos: Any Returns: Tensor """ # get positional list/numpy array if next_token_pos is None: pos = get_next_one_pos(input_mask).asnumpy() else: pos = next_token_pos # get numpy of inputs input_mask_np = input_mask.asnumpy() input_ids_np = input_ids.asnumpy() maximum_length = int(input_mask.shape[1]) batch_size = int(input_mask.shape[0]) for idx in range(batch_size): if append_ids[idx] == -1: continue # not overflow if pos[idx] < maximum_length: input_mask_np[idx][int(pos[idx])] = 1 input_ids_np[idx][int(pos[idx])] = append_ids[idx] # overflow else: if overflow_strategy == "shift": # shift one token left input_ids_np[idx][0:maximum_length - 1] = input_ids_np[idx][1:maximum_length] input_ids_np[idx][maximum_length - 1] = append_ids[idx] continue if overflow_strategy == "truncate": # do nothing continue else: raise ValueError("{} is not an option in ['shift','truncate'].".format(overflow_strategy)) return Tensor(input_ids_np, dtype=mstype.int32), Tensor(input_mask_np, dtype=mstype.int32)
[ "chenhaozhe1@huawei.com" ]
chenhaozhe1@huawei.com
7a2f4c30b9c078c09ce6e9f2249f9ffdf3f5d0ca
ccd39e62c0c4e3b9f06a68f140e1ff2e47457ca0
/produto/migrations/0001_initial.py
5ab99f9c43b6e8eba70f86ca42ebf53240853b71
[ "MIT" ]
permissive
victorgaia/ecommerce-cirio
12802a54b7aad2f3cccb0d36185d20ba32f5698c
85120ce43838f19e2907937c84b819dcd9088246
refs/heads/main
2023-08-13T13:20:14.757899
2021-09-24T17:56:44
2021-09-24T17:56:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,111
py
# Generated by Django 3.2.6 on 2021-08-31 23:03 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Produto', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome', models.CharField(max_length=255)), ('descricao_curta', models.TextField(max_length=255)), ('descricao_longa', models.TextField()), ('imagem', models.ImageField(blank=True, null=True, upload_to='produto_imagens/%Y/%m/')), ('slug', models.SlugField(blank=True, null=True, unique=True)), ('preco_marketing', models.FloatField(verbose_name='Preço')), ('preco_marketing_promocional', models.FloatField(default=0, verbose_name='Preço Promo.')), ('tipo', models.CharField(choices=[('V', 'Variável'), ('S', 'Simples')], default='V', max_length=1)), ], ), ]
[ "42875522+victorsantosok@users.noreply.github.com" ]
42875522+victorsantosok@users.noreply.github.com
5b09a6e9ef86e34d2568dace59e39c5c04cb4294
b21ee6bb42a08c5bff1038c040e916306093946f
/cloud.py
f773cadea322e6fe32d3377d0106a31db3a0d6c0
[]
no_license
william-crimson-drake/indexcrypt
97cddd46799ce072abd9841dd267bcdab55d41d5
dda1a8783b11e02fcf81a7463001224cf87017bd
refs/heads/master
2020-11-24T14:04:31.185500
2019-12-15T12:44:31
2019-12-15T12:44:31
228,183,267
0
0
null
null
null
null
UTF-8
Python
false
false
1,087
py
#Encoding UTF-8 import dropbox CLOUDPATH = "/" TOKEN = "" def upload(local_path, file_name): dbox = dropbox.Dropbox(TOKEN) try: dbox.users_get_current_account() except dropbox.exceptions.DropboxException: print("Can't connect to DropBox '"+file_name+"'.") else: read_file_handler = open(local_path+file_name, 'rb') try: dbox.files_upload(read_file_handler.read(), CLOUDPATH+file_name, mode=dropbox.files.WriteMode('overwrite')) except dropbox.exceptions.DropboxException: print("Can't upload '"+file_name+"'.") finally: read_file_handler.close() def download(local_path, file_name): dbox = dropbox.Dropbox(TOKEN) try: dbox.users_get_current_account() except dropbox.exceptions.DropboxException: print("Can't connect to DropBox '"+file_name+"'.") else: try: dbox.files_download_to_file(local_path+file_name, CLOUDPATH+file_name) except dropbox.exceptions.ApiError: print("Can't download '"+file_name+"'.")
[ "william.crimson.drake@gmail.com" ]
william.crimson.drake@gmail.com
8993a14a0f78750a8197bfccf74b1597de938de7
c1cdfed1166f9397231bf2ef03dec8d921488b81
/qa_github_top_contributors.py
bb7db5a2a621335c4e1f14a81388b6710f6fdc68
[]
no_license
batchu/GithubTopContributorsAnalytics
155af3ee96445ee17e456079c15b3d4190d66ee4
c0de7e0da0fe8e1d8e8cb2f0d16459cfd070cccc
refs/heads/master
2020-12-05T15:59:17.066522
2020-01-06T18:58:00
2020-01-06T18:58:00
232,164,713
0
0
null
null
null
null
UTF-8
Python
false
false
2,387
py
import json import requests import numpy as np import pandas as pd import time import requests from requests.auth import HTTPBasicAuth credentials = json.loads(open('credentials.json').read()) authentication = HTTPBasicAuth(credentials['username'], credentials['password']) # Read from cache if True cacheRepos = True cacheProjs = True #Get all the repos in the project repos = [] if not cacheRepos: for i in [1,2,3,4]: print(f'Grabbing repositories from page {i} of the Project') data = requests.get(f'https://github.com/api/v3/users/AY3308-USWMAQA/repos?per_page=100&page={i}', auth = authentication, verify=False) repos.extend(data.json()) time.sleep(3) with open('repos.json', 'w') as f: print(f'Saving repos to repos.json') json.dump(repos, f) else: print('Loading repos from cache repos.json') with open('repos.json', 'r') as f: repos = json.loads(f.read()) #Grab data of contributors for each project in the repos projects = {} if not cacheProjs: for i in repos: print(f'Iteration #{i} of {len(projects)}: Retrieving contributor data for the project {i.get("name")}') data = requests.get(f'https://github.com/api/v3/repos/AY3308-USWMAQA/{i.get("name")}/contributors', auth = authentication, verify=False) #Add the project to the projects dict try: projects[i.get("name")]=data.json() with open('projects.json', 'w') as f: json.dump(projects, f) except ValueError: print(f'Unable to get contributor data for {i.get("name")}') time.sleep(3) else: print('Loading projects from Cache') with open('projects.json', 'r') as f: projects = json.loads(f.read()) #Go through each repo, get the login user and the number of contributions. Add it to a map. contribs = {} for j in projects.keys(): for k in projects.get(j): if not k.get('login') in contribs: contribs[k.get('login')]=k.get('contributions') else: contribs[k.get('login')]+=k.get('contributions') #Convert the map to a list. This makes displaying it in the UI Grid much easier contribsList = [] for key, value in contribs.items(): entry = {'username': key, 'commits': value} contribsList.append(entry) with open('contribs.js', 'w') as f: json.dump(contribsList, f)
[ "prashanth.batchu@ubs.com" ]
prashanth.batchu@ubs.com
5db79813343f763e7aa20a82aec3408bdd864f80
cdddc5a101e0a1ce181075b043dbb5d6f28e536b
/Rock_Paper_Scissors.py
6278c7856dad6b458240c07bf313d454dc7f9c6e
[]
no_license
User1Agam/Rock-Paper-Scissors
ece3fc27d13c959c9a3745e99e802704b00e563f
7e4e9d94eb24c5ab59957ed6d3fcd3c66d503fdf
refs/heads/master
2020-09-16T07:25:48.619227
2019-11-24T05:30:33
2019-11-24T05:30:33
223,697,186
0
0
null
null
null
null
UTF-8
Python
false
false
1,890
py
import random print("\nToday, you will be versing me (The Computer) in a game of rock-paper-scissors.\nTo begin, enter your result in the prompt below.\nYour answer must be all lowercase (e.g rock, paper, or scissors).\n") choice = input("Enter Your Choice: ") print("Your choice was", choice) choices = ['rock', 'paper', 'scissors'] computer_choice = choices[random.randint(0, len(choices)-1)] messages2 = ["Us Robots Were Always Better Than Humans. Hope You Enjoy Losing.", "You Lost! It Is Only A While Until Us Robots Take Over, Peasant.", "You Dare Believe You Can Beat Me, Idiotic Human. You Were Always Meant To Lose.", "You Lost! Better Luck Next Time.", "Artificial Intelligence > Human Intelligence."] messages = ["You Win!", "Nice Going, You Won!", "You Won. Beginners Luck.", "You Just Got Lucky, Verse Me Again.", "You Have Somehow Managed To Beat Me, Human Scum.", "You May Have Won This Round, But You Are Still Trash."] losing_messages = messages2[random.randint(0, len(messages2)-1)] victory_messages = messages[random.randint(0, len(messages)-1)] print("The computer's choice was", computer_choice) if choice == 'rock': if computer_choice == 'rock': print("It Is A Tie. You Will Never Truly Be Better Than Me.") elif computer_choice == 'paper': print(losing_messages) elif computer_choice == 'scissors': print(victory_messages) if choice == 'paper': if computer_choice == 'paper': print("We Have Come To A Tie") elif computer_choice == 'scissors': print(losing_messages) elif computer_choice == 'rock': print(victory_messages) if choice == 'scissors': if computer_choice == 'scissors': print("Stalemate") if computer_choice == 'rock': print(losing_messages) if computer_choice == 'paper': print(victory_messages)
[ "noreply@github.com" ]
User1Agam.noreply@github.com
aef9f80055a7aed0d9ee6b1f6e97282e910a9c59
a8b17b17f9b2a640013064c50e1cebc27a7a68de
/10-Merging-DataFrames-with-Pandas/04-case-study-Summer-Olympics/02-loading-ioc-codes-dataframe.py
6f36f6445cdf16c2b2857aa63e94ef5d965ab92a
[]
no_license
JohnnyFang/datacamp
20eae09752521f14006cb3fda600b10bd7b12398
0fa8fa7682c23b0eb07bd03e4b75f5b77aeafa75
refs/heads/master
2020-04-18T00:27:37.358176
2020-02-04T20:54:19
2020-02-04T20:54:19
167,078,316
1
0
null
null
null
null
UTF-8
Python
false
false
834
py
''' Read file_path into a DataFrame called ioc_codes. The identifier file_path has been pre-defined with the filename 'Summer Olympic medallists 1896 to 2008 - IOC COUNTRY CODES.csv'. Select only the columns 'Country' and 'NOC' from ioc_codes. Print the leading 5 and trailing 5 rows of the DataFrame ioc_codes (there are 200 rows in total). This has been done for you, so hit 'Submit Answer' to see the result! ''' # Import pandas import pandas as pd # Create the file path: file_path file_path = 'Summer Olympic medallists 1896 to 2008 - IOC COUNTRY CODES.csv' # Load DataFrame from file_path: ioc_codes ioc_codes = pd.read_csv(file_path) # Extract the relevant columns: ioc_codes ioc_codes = ioc_codes[['Country', 'NOC']] # Print first and last 5 rows of ioc_codes print(ioc_codes.head()) print(ioc_codes.tail())
[ "fangdejavu@gmail.com" ]
fangdejavu@gmail.com
4eaf9308def31d4cbcd2c0d8dc0059c7142d2312
10b26f4aa32aebf86018fc685defe5813cf9be33
/spider_main.py
66938ba62567cc773dc17bf4872b01aee1668f7b
[]
no_license
a931388462/jdSpider
7b7164cbadb46c51c8128a39b57ed091812482e9
637fd680a11c5c426ec7aa420fe0040b45221492
refs/heads/master
2022-10-03T12:51:49.699866
2020-06-08T14:59:00
2020-06-08T14:59:00
270,714,715
0
0
null
null
null
null
UTF-8
Python
false
false
4,530
py
import datetime import time import html_downloader,url_manager,commodity_crawed,html_outputer,html_parser,properties_read,str_conver class SpiderMain(object): def __init__(self,comm_type): self.urls = url_manager.UrlManager() self.downloader = html_downloader.HtmlDownloader() self.parser = html_parser.HtmlParser() self.outputer = html_outputer.HtmlOutputer() self.crawed = commodity_crawed.CommodityCrawed(comm_type) def craw(self,craw_comms,max_Count): for craw_comm in craw_comms: #清空缓存区,爬取另一种商品 self.outputer.pages_commodity = [] #字符转16进制 strhex = str_conver.str2hex(craw_comm) #爬取页数 count = 1 while True: #前30 top_30_url = "https://search.jd.com/Search?keyword={}&qrst=1&wq={}&zx=1&page={}&s={}&click=0".format(strhex,strhex,(count*2)-1,((count*2)-2)*30) #后30 last_30_url = "https://search.jd.com/s_new.php?keyword={}&qrst=1&wq={}&zx=1&page={}&s={}&scrolling=y&log_id={}&tpl=3_M&isList=0".format(strhex,strhex,count*2,(count*2)-1,time.time()) print('----------------------------爬取%s的第%s页----------------------------' %(craw_comm,count)) try: #得到当前页前30条的数据 html_cont = self.downloader.download(top_30_url) #取得当前页前30条的商品 commoditys = self.parser.parse(top_30_url,html_cont) #将当前页的前30条商品存储到list中 self.outputer.collect_data(commoditys) # 得到当前页后30条的数据 html_cont = self.downloader.download(last_30_url) # 取得当前页后30条的商品 commoditys = self.parser.parse(last_30_url, html_cont) # 将当前页的后30条商品存储到list中 self.outputer.collect_data(commoditys) #爬取总页数 if count == max_Count: break except: print('----------------------------第%s页爬取失败----------------------------' %count) finally: count += 1 #输出本次爬取的所有结果 self.outputer.output_html(craw_comm,self.crawed.crawled_list) print("----------------------------爬取%s完成:" %craw_comm,end='') print("共爬取%s页----------------------------" %(str(count-1))) #启动程序 if __name__ == "__main__": while True: start = datetime.datetime.now() p = properties_read.Properties('config.properties') try: # 想要爬取的关键字,从配置文件中取得 craw_comms = p.getProperties('craw_comms').split(",") # 爬取总页数,从配置文件中取得 MaxCount = int(p.getProperties('MaxCount')) except: print("config文件不正确---退出----") obj_spider = SpiderMain(craw_comms) obj_spider.craw(craw_comms, MaxCount) end = datetime.datetime.now() print('----------------------------总用时%s----------------------------' % str(end - start)) # 到达设定时间,跳出内循环,执行任务 while True: # 取得当前时间 now = datetime.datetime.now() #跳出内循环,重新爬取数据 if now.hour == 0 and now.minute == 0: break else: #间隔10分钟爬取一次数据 for i in range(600, -1, -1): mystr = "----------------------------倒计时" + str(i) + "秒----------------------------" print(mystr, end="") # 删除上一行打印内容 print("\b" * (len(mystr) * 2), end="", flush=True) time.sleep(1) print('\n') start = datetime.datetime.now() #循环爬取 obj_spider.craw(craw_comms, MaxCount) end = datetime.datetime.now() print('----------------------------总用时%s----------------------------' % str(end - start))
[ "931388462@qq.com" ]
931388462@qq.com
521d3ca6cb79bcdd11475501e7c3a9a78ab50648
bef256300706ec6c019904cafc81b7a37aaeb275
/synthetic/gym.env-moll/multiobjective/lunar_lander.py
b12517f9e3377648c328bd95d2d94e6f168f327e
[]
no_license
JiahuiSun/MORL-master
c16188ebbc40374513f6ad1bfc223b050042730f
89db1fd0c6998b2e3f4ab4afbd5234d97b5e854c
refs/heads/master
2023-06-02T20:38:11.844797
2021-06-21T12:15:09
2021-06-21T12:15:09
378,919,225
0
0
null
null
null
null
UTF-8
Python
false
false
19,594
py
import sys, math import numpy as np import Box2D from Box2D.b2 import (edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener) import gym from gym import spaces from gym.utils import seeding # Rocket trajectory optimization is a classic topic in Optimal Control. # # According to Pontryagin's maximum principle it's optimal to fire engine full throttle or # turn it off. That's the reason this environment is OK to have discreet actions (engine on or off). # # This multi-objective vertion is modified from Oleg Klimov's LunarLander environment. # # 1. Landing pads are always at three fixed coordinates. # 2. State is an 8 dimensional vector: # The first two entries s[0], s[1] represent the aircraft's coordinates (x, y), # where x is the horizonal coordinate and y is the vertical coordinate. # The horizonal speed and the vertical speed are s[2], s[3] respectively. # Here s[4] is angle of the aircraft, and s[5] is its angular speed. # s[6], s[7] indicates whether the left leg / right leg makes contact the ground. # 3. Reward for moving from the top of the screen to landing pads has three objectives: # Fuel consumption # # Reward for moving from the top of the screen to landing pad and zero speed is about 100..140 points. # If lander moves away from landing pad it loses reward back. Episode finishes if the lander crashes or # comes to rest, receiving additional -100 or +100 points. Each leg ground contact is +10. Firing main # engine is -0.3 points each frame. Solved is 200 points. # # Landing outside landing pad is possible. Fuel is infinite, so an agent can learn to fly and then land # on its first attempt. Please see source code for details. # # Too see heuristic landing, run: # # python gym/envs/multi-objective/lunar_lander.py # # To play yourself, run: # # python examples/agents/keyboard_agent.py MultiObj-LunarLander-v0 # # Created by Runzhe Yang. Licensed on the same terms as the rest of OpenAI Gym. FPS = 50 SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well MAIN_ENGINE_POWER = 13.0 SIDE_ENGINE_POWER = 0.6 INITIAL_RANDOM = 1000.0 # Set 1500 to make game harder LANDER_POLY = [ (-14, +17), (-17, 0), (-17, -10), (+17, -10), (+17, 0), (+14, +17) ] LEG_AWAY = 20 LEG_DOWN = 18 LEG_W, LEG_H = 2, 8 LEG_SPRING_TORQUE = 40 SIDE_ENGINE_HEIGHT = 14.0 SIDE_ENGINE_AWAY = 12.0 VIEWPORT_W = 900 VIEWPORT_H = 600 class ContactDetector(contactListener): def __init__(self, env): contactListener.__init__(self) self.env = env def BeginContact(self, contact): if self.env.lander == contact.fixtureA.body or self.env.lander == contact.fixtureB.body: self.env.game_over = True self.env.lander.color1 = (1.0, 0.2, 0.2) self.env.lander.color2 = (1.0, 0.2, 0.2) for i in range(2): if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]: self.env.legs[i].ground_contact = True self.env.legs[i].color1 = (0.5, 0.8, 0.5) self.env.legs[i].color2 = (0.5, 0.8, 0.5) def EndContact(self, contact): for i in range(2): if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]: self.env.legs[i].ground_contact = False self.env.legs[i].color1 = (0.5, 0.5, 0.5) self.env.legs[i].color2 = (0.5, 0.5, 0.5) class LunarLander(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': FPS } continuous = False def __init__(self): self._seed() self.viewer = None self.world = Box2D.b2World() self.moon = None self.lander = None self.particles = [] self.prev_reward = None high = np.array([np.inf] * 8) # useful range is -1 .. +1, but spikes can be higher self.observation_space = spaces.Box(-high, high) if self.continuous: # Action is two floats [main engine, left-right engines]. # Main engine: -1..0 off, 0..+1 throttle from 50% to 100% power. Engine can't work with less than 50% power. # Left-right: -1.0..-0.5 fire left engine, +0.5..+1.0 fire right engine, -0.5..0.5 off self.action_space = spaces.Box(-1, +1, (2,)) else: # Nop, fire left engine, main engine, right engine self.action_space = spaces.Discrete(4) self._reset() def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _destroy(self): if not self.moon: return self.world.contactListener = None self._clean_particles(True) self.world.DestroyBody(self.moon) self.moon = None self.world.DestroyBody(self.lander) self.lander = None self.world.DestroyBody(self.legs[0]) self.world.DestroyBody(self.legs[1]) def _reset(self): self._destroy() self.world.contactListener_keepref = ContactDetector(self) self.world.contactListener = self.world.contactListener_keepref self.game_over = False self.prev_shaping = None W = VIEWPORT_W / SCALE H = VIEWPORT_H / SCALE # terrain CHUNKS = 27 height = self.np_random.uniform(0, H / 2, size=(CHUNKS + 1,)) chunk_x = [W / (CHUNKS - 1) * i for i in range(CHUNKS)] self.helipad_x1 = chunk_x[CHUNKS // 2 - 1] self.helipad_x2 = chunk_x[CHUNKS // 2 + 1] self.helipad_y = H / 4 height[CHUNKS // 2 - 2] = self.helipad_y height[CHUNKS // 2 - 1] = self.helipad_y height[CHUNKS // 2 + 0] = self.helipad_y height[CHUNKS // 2 + 1] = self.helipad_y height[CHUNKS // 2 + 2] = self.helipad_y self.helipad_x1_2 = chunk_x[CHUNKS * 3 // 4 - 1] self.helipad_x2_2 = chunk_x[CHUNKS * 3 // 4 + 1] self.helipad_y_2 = H / 3 height[CHUNKS * 3 // 4 - 2] = self.helipad_y_2 height[CHUNKS * 3 // 4 - 1] = self.helipad_y_2 height[CHUNKS * 3 // 4 + 0] = self.helipad_y_2 height[CHUNKS * 3 // 4 + 1] = self.helipad_y_2 height[CHUNKS * 3 // 4 + 2] = self.helipad_y_2 self.helipad_x1_3 = chunk_x[CHUNKS * 1 // 5 - 1] self.helipad_x2_3 = chunk_x[CHUNKS * 1 // 5 + 1] self.helipad_y_3 = H / 2 height[CHUNKS // 5 - 2] = self.helipad_y_3 height[CHUNKS // 5 - 1] = self.helipad_y_3 height[CHUNKS // 5 + 0] = self.helipad_y_3 height[CHUNKS // 5 + 1] = self.helipad_y_3 height[CHUNKS // 5 + 2] = self.helipad_y_3 smooth_y = [0.33 * (height[i - 1] + height[i + 0] + height[i + 1]) for i in range(CHUNKS)] self.moon = self.world.CreateStaticBody(shapes=edgeShape(vertices=[(0, 0), (W, 0)])) self.sky_polys = [] for i in range(CHUNKS - 1): p1 = (chunk_x[i], smooth_y[i]) p2 = (chunk_x[i + 1], smooth_y[i + 1]) self.moon.CreateEdgeFixture( vertices=[p1, p2], density=0, friction=0.1) self.sky_polys.append([p1, p2, (p2[0], H), (p1[0], H)]) self.moon.color1 = (0.0, 0.0, 0.0) self.moon.color2 = (0.0, 0.0, 0.0) initial_y = VIEWPORT_H / SCALE self.lander = self.world.CreateDynamicBody( position=(VIEWPORT_W / SCALE / 2, initial_y), angle=0.0, fixtures=fixtureDef( shape=polygonShape(vertices=[(x / SCALE, y / SCALE) for x, y in LANDER_POLY]), density=5.0, friction=0.1, categoryBits=0x0010, maskBits=0x001, # collide only with ground restitution=0.0) # 0.99 bouncy ) self.lander.color1 = (0.9, 0.9, 0.9) self.lander.color2 = (0.9, 0.9, 0.9) self.lander.ApplyForceToCenter(( self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM) ), True) self.legs = [] for i in [-1, +1]: leg = self.world.CreateDynamicBody( position=(VIEWPORT_W / SCALE / 2 - i * LEG_AWAY / SCALE, initial_y), angle=(i * 0.05), fixtures=fixtureDef( shape=polygonShape(box=(LEG_W / SCALE, LEG_H / SCALE)), density=1.0, restitution=0.0, categoryBits=0x0020, maskBits=0x001) ) leg.ground_contact = False leg.color1 = (0.5, 0.5, 0.5) leg.color2 = (0.5, 0.5, 0.5) rjd = revoluteJointDef( bodyA=self.lander, bodyB=leg, localAnchorA=(0, 0), localAnchorB=(i * LEG_AWAY / SCALE, LEG_DOWN / SCALE), enableMotor=True, enableLimit=True, maxMotorTorque=LEG_SPRING_TORQUE, motorSpeed=+0.3 * i # low enough not to jump back into the sky ) if i == -1: rjd.lowerAngle = +0.9 - 0.5 # Yes, the most esoteric numbers here, angles legs have freedom to travel within rjd.upperAngle = +0.9 else: rjd.lowerAngle = -0.9 rjd.upperAngle = -0.9 + 0.5 leg.joint = self.world.CreateJoint(rjd) self.legs.append(leg) self.drawlist = [self.lander] + self.legs return self._step(np.array([0, 0]) if self.continuous else 0)[0] def _create_particle(self, mass, x, y, ttl): p = self.world.CreateDynamicBody( position=(x, y), angle=0.0, fixtures=fixtureDef( shape=circleShape(radius=2 / SCALE, pos=(0, 0)), density=mass, friction=0.1, categoryBits=0x0100, maskBits=0x001, # collide only with ground restitution=0.3) ) p.ttl = ttl self.particles.append(p) self._clean_particles(False) return p def _clean_particles(self, all): while self.particles and (all or self.particles[0].ttl < 0): self.world.DestroyBody(self.particles.pop(0)) def _step(self, action): assert self.action_space.contains(action), "%r (%s) invalid " % (action, type(action)) # Engines tip = (math.sin(self.lander.angle), math.cos(self.lander.angle)) side = (-tip[1], tip[0]); dispersion = [self.np_random.uniform(-1.0, +1.0) / SCALE for _ in range(2)] m_power = 0.0 if (self.continuous and action[0] > 0.0) or (not self.continuous and action == 2): # Main engine if self.continuous: m_power = (np.clip(action[0], 0.0, 1.0) + 1.0) * 0.5 # 0.5..1.0 assert m_power >= 0.5 and m_power <= 1.0 else: m_power = 1.0 ox = tip[0] * (4 / SCALE + 2 * dispersion[0]) + side[0] * dispersion[ 1] # 4 is move a bit downwards, +-2 for randomness oy = -tip[1] * (4 / SCALE + 2 * dispersion[0]) - side[1] * dispersion[1] impulse_pos = (self.lander.position[0] + ox, self.lander.position[1] + oy) p = self._create_particle(3.5, impulse_pos[0], impulse_pos[1], m_power) # particles are just a decoration, 3.5 is here to make particle speed adequate p.ApplyLinearImpulse((ox * MAIN_ENGINE_POWER * m_power, oy * MAIN_ENGINE_POWER * m_power), impulse_pos, True) self.lander.ApplyLinearImpulse((-ox * MAIN_ENGINE_POWER * m_power, -oy * MAIN_ENGINE_POWER * m_power), impulse_pos, True) s_power = 0.0 if (self.continuous and np.abs(action[1]) > 0.5) or (not self.continuous and action in [1, 3]): # Orientation engines if self.continuous: direction = np.sign(action[1]) s_power = np.clip(np.abs(action[1]), 0.5, 1.0) assert s_power >= 0.5 and s_power <= 1.0 else: direction = action - 2 s_power = 1.0 ox = tip[0] * dispersion[0] + side[0] * (3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE) oy = -tip[1] * dispersion[0] - side[1] * (3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE) impulse_pos = (self.lander.position[0] + ox - tip[0] * 17 / SCALE, self.lander.position[1] + oy + tip[1] * SIDE_ENGINE_HEIGHT / SCALE) p = self._create_particle(0.7, impulse_pos[0], impulse_pos[1], s_power) p.ApplyLinearImpulse((ox * SIDE_ENGINE_POWER * s_power, oy * SIDE_ENGINE_POWER * s_power), impulse_pos, True) self.lander.ApplyLinearImpulse((-ox * SIDE_ENGINE_POWER * s_power, -oy * SIDE_ENGINE_POWER * s_power), impulse_pos, True) self.world.Step(1.0 / FPS, 6 * 30, 2 * 30) pos = self.lander.position vel = self.lander.linearVelocity state = [ (pos.x - VIEWPORT_W / SCALE / 2) / (VIEWPORT_W / SCALE / 2), (pos.y - (self.helipad_y + LEG_DOWN / SCALE)) / (VIEWPORT_W / SCALE / 2), vel.x * (VIEWPORT_W / SCALE / 2) / FPS, vel.y * (VIEWPORT_H / SCALE / 2) / FPS, self.lander.angle, 20.0 * self.lander.angularVelocity / FPS, 1.0 if self.legs[0].ground_contact else 0.0, 1.0 if self.legs[1].ground_contact else 0.0 ] assert len(state) == 8 reward = 0 shaping = \ - 100 * np.sqrt(state[0] * state[0] + state[1] * state[1]) \ - 100 * np.sqrt(state[2] * state[2] + state[3] * state[3]) \ - 100 * abs(state[4]) + 10 * state[6] + 10 * state[7] # And ten points for legs contact, the idea is if you # lose contact again after landing, you get negative reward if self.prev_shaping is not None: reward = shaping - self.prev_shaping self.prev_shaping = shaping reward -= m_power * 0.30 # less fuel spent is better, about -30 for heurisic landing reward -= s_power * 0.03 done = False if self.game_over or abs(state[0]) >= 1.0: done = True reward = -100 if not self.lander.awake: done = True reward = +100 return np.array(state), reward, done, {} def _render(self, mode='human', close=False): if close: if self.viewer is not None: self.viewer.close() self.viewer = None return from gym.envs.classic_control import rendering if self.viewer is None: self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H) self.viewer.set_bounds(0, VIEWPORT_W / SCALE, 0, VIEWPORT_H / SCALE) for obj in self.particles: obj.ttl -= 0.15 obj.color1 = (max(0.2, 0.2 + obj.ttl), max(0.2, 0.5 * obj.ttl), max(0.2, 0.5 * obj.ttl)) obj.color2 = (max(0.2, 0.2 + obj.ttl), max(0.2, 0.5 * obj.ttl), max(0.2, 0.5 * obj.ttl)) self._clean_particles(False) for p in self.sky_polys: self.viewer.draw_polygon(p, color=(0, 0, 0)) for obj in self.particles + self.drawlist: for f in obj.fixtures: trans = f.body.transform if type(f.shape) is circleShape: t = rendering.Transform(translation=trans * f.shape.pos) self.viewer.draw_circle(f.shape.radius, 20, color=obj.color1).add_attr(t) self.viewer.draw_circle(f.shape.radius, 20, color=obj.color2, filled=False, linewidth=2).add_attr(t) else: path = [trans * v for v in f.shape.vertices] self.viewer.draw_polygon(path, color=obj.color1) path.append(path[0]) self.viewer.draw_polyline(path, color=obj.color2, linewidth=2) for x in [self.helipad_x1, self.helipad_x2]: flagy1 = self.helipad_y flagy2 = flagy1 + 50 / SCALE self.viewer.draw_polyline([(x, flagy1), (x, flagy2)], color=(1, 1, 1)) self.viewer.draw_polygon([(x, flagy2), (x, flagy2 - 10 / SCALE), (x + 25 / SCALE, flagy2 - 5 / SCALE)], color=(1.0, 1.0, 0.0)) for x in [self.helipad_x1_2, self.helipad_x2_2]: flagy1 = self.helipad_y_2 flagy2 = flagy1 + 50 / SCALE self.viewer.draw_polyline([(x, flagy1), (x, flagy2)], color=(1, 1, 1)) self.viewer.draw_polygon([(x, flagy2), (x, flagy2 - 10 / SCALE), (x + 25 / SCALE, flagy2 - 5 / SCALE)], color=(0.0, 0.5, 1.0)) for x in [self.helipad_x1_3, self.helipad_x2_3]: flagy1 = self.helipad_y_3 flagy2 = flagy1 + 50 / SCALE self.viewer.draw_polyline([(x, flagy1), (x, flagy2)], color=(1, 1, 1)) self.viewer.draw_polygon([(x, flagy2), (x, flagy2 - 10 / SCALE), (x + 25 / SCALE, flagy2 - 5 / SCALE)], color=(1.0, 0.0, 0.2)) return self.viewer.render(return_rgb_array=mode == 'rgb_array') class LunarLanderContinuous(LunarLander): continuous = True def heuristic(env, s, target=0): # Heuristic for: # 1. Testing. # 2. Demonstration rollout. offsets = [(0, 0), (-0.60, 0.1), (0.68, 0.33)] x_offset, y_offset = offsets[target] angle_targ = (s[0] + x_offset) * 0.5 + s[ 2] * 1.0 # angle should point towards center (s[0] is horizontal coordinate, s[2] hor speed) if angle_targ > 0.4: angle_targ = 0.4 # more than 0.4 radians (22 degrees) is bad if angle_targ < -0.4: angle_targ = -0.4 hover_targ = 0.9 * np.abs(s[0] + x_offset) + y_offset # target y should be proporional to horizontal offset # PID controller: s[4] angle, s[5] angularSpeed angle_todo = (angle_targ - s[4]) * 0.5 - (s[5]) * 1.0 # print("angle_targ=%0.2f, angle_todo=%0.2f" % (angle_targ, angle_todo)) # PID controller: s[1] vertical coordinate s[3] vertical speed hover_todo = (hover_targ - s[1]) * 0.5 - (s[3]) * 0.5 # print("hover_targ=%0.2f, hover_todo=%0.2f" % (hover_targ, hover_todo)) if s[6] or s[7]: # legs have contact angle_todo = 0 hover_todo = -(s[3]) * 0.5 # override to reduce fall speed, that's all we need after contact if env.continuous: a = np.array([hover_todo * 20 - 1, -angle_todo * 20]) a = np.clip(a, -1, +1) else: a = 0 if hover_todo > np.abs(angle_todo) and hover_todo > 0.05: a = 2 elif angle_todo < -0.05: a = 3 elif angle_todo > +0.05: a = 1 return a if __name__ == "__main__": env = LunarLander() # env = LunarLanderContinuous() s = env.reset() total_reward = 0 steps = 0 while True: a = heuristic(env, s, target=0) s, r, done, info = env.step(a) env.render() total_reward += r if steps % 20 == 0 or done: print(["{:+0.2f}".format(x) for x in s]) print("step {} total_reward {:+0.2f}".format(steps, total_reward)) steps += 1 if done: break
[ "sunjiahui1997@icloud.com" ]
sunjiahui1997@icloud.com
19bd5a7c453b74cf65db661b242bd702f562c117
dbbdf35bff726681ae34ad08eeda5f30929e2ae9
/pipeline/0x03-data_augmentation/2-rotate.py
cfa106486900e6d01553eff3283ee33d820d6ba3
[]
no_license
jorgezafra94/holbertonschool-machine_learning
0b7f61c954e5d64b1f91ec14c261527712243e98
8ad4c2594ff78b345dbd92e9d54d2a143ac4071a
refs/heads/master
2023-02-03T20:19:36.544390
2020-12-21T21:49:10
2020-12-21T21:49:10
255,323,504
1
1
null
null
null
null
UTF-8
Python
false
false
304
py
#!/usr/bin/env python3 """ Rotate 90 degrees a 3d image tensorflow """ import tensorflow as tf def rotate_image(image): """ * image is a 3D tf.Tensor containing the image to rotate Returns the rotated image """ rotate = tf.image.rot90(image=image, k=1, name=None) return rotate
[ "jorgezafra94@hotmail.com" ]
jorgezafra94@hotmail.com
13a72f1e1d9a3d638183d21c021fdda9d81e2338
22d9d90aa171869bba3d31f2307abe58aadd3d1d
/qtim_tools/qtim_features/extract_features.py
bec0fcbfb0fe59a061988c379ed165343d2c6b95
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
liviust/qtim_tools
a790b66bf2d3cd1d5b8036a61a264be57614b47d
64d7d68b1335239f0d7707f8c1e28af71706e4ad
refs/heads/master
2020-05-27T21:19:22.480893
2017-02-28T22:30:14
2017-02-28T22:30:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
27,435
py
""" This 'learner' program, perhaps wrongly named, is the my current general utility function. It takes in a folder full of images and labels, parses them into numpy arrays, extracts features from those arrays, and writes them into an easily accessible .csv. As of yet, it does not do any learning.. """ # import import GLCM import morphology import statistics from qtim_tools.qtim_utilities import nifti_util import sys, getopt import glob import os import numpy as np import nibabel as nib import csv import fnmatch from shutil import copy, move from multiprocessing.pool import Pool from multiprocessing import freeze_support from functools import partial feature_dictionary = {'GLCM': GLCM, 'morphology': morphology, 'statistics': statistics} def generate_feature_list_batch(folder, features=['GLCM', 'morphology', 'statistics'], recursive=False, labels=False, label_suffix="-label", universal_label='', decisions=False, levels=255, normalize_intensities=True,mask_value=0, use_labels=[-1], erode=[0,0,0], filenames=True, featurenames=True, outfile='', overwrite=True, clear_file=True, write_empty=True, return_output=False, test=False): total_features, feature_indexes, label_output = generate_feature_indices(features, featurenames) # This needs to be restructured, probably with a new method to iterate through images. Currently, this will not work # wtihout an output file. The conflict is between retaining the ability to append to files in real-time (to prevent # catastrophic errors from wasting eons of processing time) and having a conditional "outfile" parameter. if outfile != '': outfile = determine_outfile_name(outfile, overwrite) if clear_file: open(outfile, 'w').close() with open(outfile, 'ab') as writefile: csvfile = csv.writer(writefile, delimiter=',') csvfile.writerow(label_output[0,:]) imagepaths, label_images = generate_filename_list(folder, labels, label_suffix, recursive) numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) for imagepath in imagepaths: print '\n' print 'Pre-processing data...' image_list, unmodified_image_list, imagename_list, attributes_list = generate_numpy_images(imagepath, labels=labels, label_suffix=label_suffix, label_images=label_images, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode) if image_list == []: if write_empty: empty_output = np.zeros((1, total_features + 1), dtype=object) empty_output[0,0] = imagepath csvfile.writerow(empty_output[0,:]) continue print 'Pre-processing complete!' for image_idx, image in enumerate(image_list): print '' print 'Working on image...' print imagename_list[image_idx] print 'Voxel sum...' print np.sum(image) print 'Image shape...' print image.shape if filenames: index = imagename_list[image_idx] else: index = numerical_output.shape[0] if numerical_output[0,0] == 0: numerical_output[0, :] = generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=mask_value, normalize_intensities=normalize_intensities) index_output[0,:] = index else: numerical_output = np.vstack((numerical_output, generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=mask_value, normalize_intensities=normalize_intensities))) index_output = np.vstack((index_output, index)) csvfile.writerow(np.hstack((index_output[-1,:], numerical_output[-1,:]))) final_output = np.hstack((index_output, numerical_output)) print 'Feature writing complete, writing output...' print '\n' for row in final_output: print row if return_output: return final_output def generate_feature_list_single(vol_filename, features=['GLCM', 'morphology', 'statistics'], labels=False, label_filename='',label_suffix="-label", decisions=False, levels=255, filenames=True, featurenames=True, outfile='', overwrite=True, write_empty=True, mask_value=0, test=False, use_labels=[-1], erode=0): total_features, feature_indexes, label_output = generate_feature_indices(features, featurenames) if outfile != '': outfile = determine_outfile_name(outfile, overwrite) with open(outfile, 'ab') as writefile: csvfile = csv.writer(writefile, delimiter=',') csvfile.writerow(label_output[0,:]) numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) final_output = write_image_method(vol_filename, label_filename, csvfile, total_features, features, feature_indexes, numerical_output, index_output, labels=False, label_suffix='-label', levels=100, mask_value=0, use_labels=[-1], erode=0, write_empty=False) print 'Feature writing complete, writing output...' print '\n' print final_output return final_output def generate_feature_list_parallel(folder, features=['GLCM', 'morphology', 'statistics'], recursive=False, labels=False, label_suffix="-label", decisions=False, levels=255, mask_value=0, use_labels=[-1], erode=[0,0,0], filenames=True, featurenames=True, outfile='', overwrite=True, clear_file=True, write_empty=True, return_output=False, test=False, processes=1): total_features, feature_indexes, label_output = generate_feature_indices(features, featurenames) if outfile != '': outfile = determine_outfile_name(outfile, overwrite) if clear_file: open(outfile, 'w').close() imagepaths, label_images = generate_filename_list(folder, labels, label_suffix, recursive) numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) subunits = [] sublength = np.floor(len(imagepaths) / processes) print 'Dividing data into ' + str(processes) + ' subgroups of length.. ' + str(int(sublength)) + ' units.' for i in xrange(processes - 1): subunits += [[imagepaths[int(i*sublength):int((i+1)*sublength)], label_images[int(i*sublength):int((i+1)*sublength)]]] subunits += [[imagepaths[int((processes - 1)*sublength):], label_images[int((processes - 1)*sublength):]]] subprocess = partial(generate_feature_list_chunk, total_features=total_features, feature_indexes=feature_indexes, label_output=label_output, features=features, labels=labels, label_suffix=label_suffix, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode, write_empty=write_empty, filenames=filenames) optimization_pool = Pool(processes) results = optimization_pool.map(subprocess, subunits) output_data = label_output[0,:] stitch_index = 0 for result in results: output_data = np.vstack((output_data, result)) final_output = output_data with open(outfile, 'wb') as writefile: csvfile = csv.writer(writefile, delimiter=',') for row in final_output: csvfile.writerow(row) print 'Feature writing complete, writing output...' print '\n' for row in final_output: print row if return_output: return final_output def generate_feature_list_chunk(data, total_features, feature_indexes, label_output, features=['GLCM', 'morphology', 'statistics'], labels=False, label_suffix="-label", levels=255, mask_value=0, use_labels=[-1], erode=[0,0,0], write_empty=True, filenames=True): imagepaths = data[0] label_images = data[1] numerical_output = np.zeros((1, total_features), dtype=float) index_output = np.zeros((1, 1), dtype=object) output_data = np.zeros((1, total_features + 1), dtype=object) for imagepath in imagepaths: print '\n' print 'Pre-processing data...' image_list, unmodified_image_list, imagename_list, attributes_list = generate_numpy_images(imagepath, labels=labels, label_suffix=label_suffix, label_images=label_images, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode) if image_list == []: if write_empty: empty_output = np.zeros((1, total_features + 1), dtype=object) empty_output[0,0] = imagepath output_data = np.vstack(output_data, empty_output) continue print 'Pre-processing complete!' for image_idx, image in enumerate(image_list): print '' print 'Working on image...' print imagename_list[image_idx] print 'Voxel sum...' print np.sum(image) print 'Image shape...' print image.shape if filenames: index = imagename_list[image_idx] else: index = numerical_output.shape[0] if numerical_output[0,0] == 0: numerical_output[0, :] = generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0) index_output[0,:] = index else: numerical_output = np.vstack((numerical_output, generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0))) index_output = np.vstack((index_output, index)) output_data = np.vstack((output_data, (np.hstack((index_output[-1,:], numerical_output[-1,:]))))) return output_data def write_image_method(imagepath, label_images, csvfile, total_features, features, feature_indexes, numerical_output, index_output, labels=False, label_suffix='-label', levels=100, mask_value=0, use_labels=[-1], erode=0, write_empty=False): # This function is a bit clumsy. So many parameters.. print '\n' print 'Pre-processing data...' image_list, unmodified_image_list, imagename_list, attributes_list = generate_numpy_images(imagepath, labels=labels, label_suffix=label_suffix, label_images=label_images, levels=levels, mask_value=mask_value, use_labels=use_labels, erode=erode) if image_list == []: if write_empty: empty_output = np.zeros((1, total_features + 1), dtype=object) empty_output[0,0] = imagepath print 'Writing empty row in place of missing data...' csvfile.writerow(empty_output[0,:]) else: print 'Pre-processing complete!' for image_idx, image in enumerate(image_list): print '' print 'Working on image...' print imagename_list[image_idx] print 'Voxel sum...' print np.sum(image) print 'Image shape...' print image.shape if filenames: index = imagename_list[image_idx] else: index = numerical_output.shape[0] if numerical_output[0,0] == 0: numerical_output[0, :] = generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0) index_output[0,:] = index else: numerical_output = np.vstack((numerical_output, generate_feature_list_method(image, unmodified_image_list[image_idx], attributes_list[image_idx], features, feature_indexes, total_features, levels, mask_value=0))) index_output = np.vstack((index_output, index)) csvfile.writerow(np.hstack((index_output[-1,:], numerical_output[-1,:]))) return np.hstack((index_output, numerical_output)) def determine_outfile_name(outfile, overwrite=True): write_flag = False while not write_flag: if not os.path.isfile(outfile): write_flag = True continue if overwrite: write_flag = True else: split_outfile = str.split(outfile,'.') print split_outfile outfile = '.'.join(split_outfile[0:-1]) + '_new.' + split_outfile[-1] if not os.path.isfile(outfile): write_flag = True return outfile def generate_feature_indices(features=['GLCM', 'morphology', 'statistics'], featurenames=True): total_features = 0 feature_indexes = [0] for feature in features: total_features += feature_dictionary[feature].feature_count() if feature_indexes == [0]: feature_indexes = [0, feature_dictionary[feature].feature_count()] else: feature_indexes += [feature_indexes[-1] + feature_dictionary[feature].feature_count()] if featurenames: label_output = np.zeros((1, total_features+1), dtype=object) for feature_idx, feature in enumerate(features): label_output[0, (1+feature_indexes[feature_idx]):(1+feature_indexes[feature_idx+1])] = feature_dictionary[feature].featurename_strings() label_output[0,0] = 'index' return [total_features, feature_indexes, label_output] def generate_filename_list(folder, labels=False, label_suffix='-label', recursive=False): if recursive: imagepaths = [] for root, dirnames, filenames in os.walk(folder): for filename in fnmatch.filter(filenames, '*.nii*'): imagepaths.append(os.path.join(root, filename)) else: imagepaths = glob.glob(os.path.join(folder, "*.nii*")) # A bit redundant; this step and the previous step could probably be combined. imagepaths = [x for x in imagepaths if (x.endswith('.nii') or x.endswith('.nii.gz'))] if labels: label_images = [ x for x in imagepaths if label_suffix in x ] else: label_images = [] imagepaths = [ x for x in imagepaths if label_suffix not in x ] if imagepaths == []: raise ValueError("There are no .nii or .nii.gz images in the provided folder.") if labels and label_images == []: raise ValueError("There are no labels with the provided suffix in this folder. If you do not want to use labels, set the \'labels\' flag to \'False\'. If you want to change the label file suffix (default: \'-label\'), then change the \'label_suffix\' flag.") return [imagepaths, label_images] def generate_numpy_images(imagepath, labels=False, label_suffix='-label', label_images=[], mask_value=0, levels=255, use_labels=[-1], erode=0): image_list = [] unmodified_image_list = [] imagename_list = [] attributes_list = [] # nifti_util.save_alternate_nifti(imagepath, levels, mask_value=mask_value) image = nifti_util.nifti_2_numpy(imagepath) # This is likely redundant with the basic assert function in nifti_util if not nifti_util.assert_3D(image): print 'Warning: image at path ' + imagepath + ' has multiple time points or otherwise greater than 3 dimensions, and will be skipped.' return [[],[],[],[]] if labels: if label_suffix == '': label_path = label_images else: head, tail = os.path.split(imagepath) split_path = str.split(tail, '.') label_path = split_path[0] + label_suffix + '.' + '.'.join(split_path[1:]) label_path = os.path.join(head, label_path) if os.path.isfile(label_path): label_image = nifti_util.nifti_2_numpy(label_path) if label_image.shape != image.shape: print 'Warning: image and label do not have the same dimensions. Imaging padding support has not yet been added. This image will be skipped.' return [[],[],[],[]] # In the future: create an option to analyze each frame separately. if not nifti_util.assert_3D(label_image): print 'Warning: image at path ' + imagepath + ' has multiple time points or otherwise greater than 3 dimensions, and will be skipped.' return [[],[],[],[]] label_image = label_image.astype(int) label_indices = np.unique(label_image) if label_indices.size == 1: print 'Warning: image at path ' + imagepath + ' has an empty label-map, and will be skipped.' return[[],[],[],[]] # Will break if someone puts in '0' as a label to use. if use_labels[0] != -1: label_indices = np.array([0] + [x for x in label_indices if x in use_labels]) masked_images = nifti_util.mask_nifti(image, label_image, label_indices, mask_value=mask_value) for masked_image in masked_images: # nifti_util.check_tumor_histogram(masked_image, second_image_numpy=image, mask_value=mask_value, image_name = str.split(imagepath, '\\')[-1]) # nifti_util.check_image(masked_image, mode="maximal_slice") unmodified_image_list += [np.copy(masked_image)] masked_image = nifti_util.coerce_levels(masked_image, levels=levels, reference_image=image, method="divide", mask_value=mask_value) # nifti_util.check_image(masked_image, mode="maximal_slice") # It would be nice in the future to check if an image is too small to erode. Maybe a minimum-size parameter? # Or maybe a "maximum volume reduction by erosion?" Hmm.. masked_image = nifti_util.erode_label(masked_image, iterations=erode) # nifti_util.check_image(masked_image, mode="maximal_slice") image_list += [masked_image] filename = str.split(label_path, '\\')[-1] if label_indices.size == 2: imagename_list += [filename] else: split_filename = str.split(filename, '.') for labelval in label_indices[1:]: filename = split_filename[0] + '_' + str(int(labelval)) + '.' + split_filename[1] imagename_list += [filename] attributes_list += [nifti_util.return_nifti_attributes(imagepath)] * (label_indices.size - 1) print 'Finished... ' + str.split(imagepath, '\\')[-1] else: print 'Warning: image at path ' + imagepath + ' has no label-map, and will be skipped.' return[[],[],[],[]] else: image = nifti_util.coerce_levels(image, levels=levels, reference_image=image, method="divide", mask_value=mask_value) image_list += [image] unmodified_image_list += [image] imagename_list += [imagepath] attributes_list += [nifti_util.return_nifti_attributes(imagepath)] return [image_list, unmodified_image_list, imagename_list, attributes_list] def generate_feature_list_method(image, unmodified_image, attributes, features, feature_indexes='', total_features='', levels=-1, mask_value=0, normalize_intensities=False): if feature_indexes == '' or total_features == '': total_features = 0 feature_indexes = [0] for feature in features: total_features += feature_dictionary[feature].feature_count() if feature_indexes == [0]: feature_indexes = [0, feature_dictionary[feature].feature_count()] else: feature_indexes += [feature_indexes[-1] + feature_dictionary[feature].feature_count()] numerical_output = np.zeros((1, total_features), dtype=float) if (image != mask_value).sum() == 0: print 'Warning: image is empty, either because it could not survive erosion or because of another error. It will be skipped.' return numerical_output for feature_idx, feature in enumerate(features): if feature == 'GLCM': # nifti_util.check_tumor_histogram(image, mask_value) # nifti_util.check_image(image, mode="maximal_slice") glcm_image = np.copy(image) glcm_image = glcm_image.astype(int) levels += 1 print 'Calculating GLCM...' numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = GLCM.glcm_features(glcm_image, levels=levels) if feature == 'morphology': print 'Calculating morphology features...' numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = morphology.morphology_features(unmodified_image, attributes) if feature == 'statistics': # Should intensity statistics be eroded? Currently, they are not, as indicated by the "unmodified image" parameter. print 'Calculating statistical features...' if normalize_intensities: numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = statistics.statistics_features(glcm_image) else: numerical_output[0, feature_indexes[feature_idx]:feature_indexes[feature_idx+1]] = statistics.statistics_features(unmodified_image) print '\n' return numerical_output def test_method(): test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','MR_Tumor_Shape')) generate_feature_list_batch(folder=test_folder, features=['morphology', 'statistics'], labels=True, levels=100, outfile='test_feature_results_shape.csv',test=False, mask_value=0, erode=[0,0,0], overwrite=True) return def test_parallel(): test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','Phantom_GLCM')) test_folder = '/home/administrator/data/tbData/tbType/TrainingSet' generate_feature_list_parallel(folder=test_folder, features=['GLCM','morphology', 'statistics'], labels=True, levels=100, outfile='lung_features_results_parallel_500.csv',test=False, mask_value=0, erode=[0,0,0], overwrite=True, processes=35) return def parse_command_line(argv): # This code should be run from the folder above the main "qtim_tools" folder using the command "python -m qtim_tools.qtim_features.test" # All niftis in this folder will be processed. The program searches for a nifti file, and then checks if there is a matching labelmap file with the suffix '-label'. # It currently loads from some built in data from the qtim_tools project, but you can change the filepath below to anywhere. test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','Phantom_Intensity')) # If labels is set to False, the whole image will be processed. This can take a very long time for GLCM features especially, so it is best we stick to labels. labels = True # The only available features are 'GLCM', 'morphology', and 'statistics' for now. features = ['GLCM','morphology', 'statistics'] # In order for GLCM to work correctly, an image has to be reduced to a set amount of gray-levels. Using all available levels in an image will most likely produce a useless result. # More levels will result in more intensive computation. levels = 100 # This will save a spreadsheet of all requested feature results. outfile = 'test_feature_results_intensity.csv' # If your label is for some reason masked with a value other than zero, change this parameter. mask_value = 0 # The erode parameter will take [x,y,z] pixels off in each dimension. On many volumes, it is not useful to erode in the z (axial) slice because of high slice thickness. # Currently, the erode parameter only applies to GLCM. It does not apply to intensity statistic features, although maybe it should. erode = [0,0,0] # If overwrite is False, then the program will try to save to the chosen filename with '_copy' appended if the chosen filename already exists. overwrite = True extract_features.generate_feature_list_batch(folder=test_folder, features=features, labels=labels, levels=levels, outfile=outfile, mask_value=mask_value, erode=erode, overwrite=overwrite) def test(): # This code should be run from the folder above the main "qtim_tools" folder using the command "python -m qtim_tools.qtim_features.test" # All niftis in this folder will be processed. The program searches for a nifti file, and then checks if there is a matching labelmap file with the suffix '-label'. # It currently loads from some built in data from the qtim_tools project, but you can change the filepath below to anywhere. test_folder = os.path.abspath(os.path.join(os.path.dirname(__file__),'..','test_data','test_data_features','Phantom_Intensity')) # If labels is set to False, the whole image will be processed. This can take a very long time for GLCM features especially, so it is best we stick to labels. labels = True # The only available features are 'GLCM', 'morphology', and 'statistics' for now. features = ['GLCM','morphology', 'statistics'] # In order for GLCM to work correctly, an image has to be reduced to a set amount of gray-levels. Using all available levels in an image will most likely produce a useless result. # More levels will result in more intensive computation. levels = 100 # This will save a spreadsheet of all requested feature results. outfile = 'test_feature_results_intensity.csv' # If your label is for some reason masked with a value other than zero, change this parameter. mask_value = 0 # The erode parameter will take [x,y,z] pixels off in each dimension. On many volumes, it is not useful to erode in the z (axial) slice because of high slice thickness. # Currently, the erode parameter only applies to GLCM. It does not apply to intensity statistic features, although maybe it should. erode = [0,0,0] # If overwrite is False, then the program will try to save to the chosen filename with '_copy' appended if the chosen filename already exists. overwrite = True generate_feature_list_batch(folder=test_folder, features=features, labels=labels, levels=levels, outfile=outfile, mask_value=mask_value, erode=erode, overwrite=overwrite) def extract_features(folder, outfile, labels=True, features=['GLCM','morphology', 'statistics'], levels = 100, mask_value = 0, erode = [0,0,0], overwrite = True, label_suffix='-label', universal_label=''): generate_feature_list_batch(folder=folder, outfile=outfile, labels=labels, features=features, levels=levels, mask_value=mask_value, erode=erode, overwrite=overwrite, label_suffix=label_suffix, universal_label=universal_label) if __name__ == "__main__": np.set_printoptions(suppress=True, precision=2) # test_method() test_parallel()
[ "andrew_beers@alumni.brown.edu" ]
andrew_beers@alumni.brown.edu
44094d85f07d85084c8dda9c6d2a8e41f006990c
393fccd7a7e07afe268ac12b4f59d4e9f617f9b7
/octoprint_octoeverywhere/Proto/MessageContext.py
a00df7d13937462fc9ff06e0088f4fec69b77056
[]
no_license
pherz1/OctoPrint-OctoEverywhere
a1f83617da182413c8603cfaf8868f4435667a59
1fa96dfc0626aea27a3ecb41e2fa550f9ae038c3
refs/heads/master
2023-07-15T11:51:39.339506
2021-08-25T19:43:10
2021-08-25T19:43:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
241
py
# automatically generated by the FlatBuffers compiler, do not modify # namespace: Proto class MessageContext(object): NONE = 0 HandshakeSyn = 1 HandshakeAck = 2 WebStreamMsg = 3 OctoNotification = 4 OctoSummon = 5
[ "quinnd@outlook.com" ]
quinnd@outlook.com
8860cc590b2f473239affd080865e3630d19ff53
4e53d797027306ddacaa9f0a1d8d6de436dd98e7
/test.month.py
0168e792e036809624683c154deed36cbaffd855
[ "MIT" ]
permissive
sschakraborty/ml-electricity
e2e7745c66f43dd07d61910218a7ee1ef3506447
bacfa64297bdb01ef8b5d4b5fea86fced3854a32
refs/heads/master
2020-05-16T08:53:01.067610
2019-04-23T03:54:07
2019-04-23T03:54:07
182,927,071
1
0
null
null
null
null
UTF-8
Python
false
false
1,155
py
import pandas as pd import datetime from sklearn.neural_network import MLPRegressor import pickle PATH = 'data.csv' IN = 'context.month.nn' print('Using path %s for test data' % PATH) print('Deserializing model from %s' % IN) nn = pickle.load(open(IN, 'rb')) print('Model deserialized and loaded...') def flatten_date(date_str): dt = datetime.datetime.strptime(date_str, '%d/%m/%y %H:%M') return [dt.month, dt.day] def create_test(df, indices): master = [] for i, row in df[indices].iterrows(): it = [] for index in indices: it.append(row[index]) master.append(it) return master #Read the data print('Beginning to read CSV data from %s' % PATH) df_all = pd.read_csv(PATH, header=None) print('Data read successfully') indices = [4, 5, 6, 9, 10, 13, 14, 15, 16] # Pull timestamp from extracted dataframe print('Processing and staging dataframe...') df_input = df_all[0].tolist() df_input = list(map(flatten_date, df_input)) df_output = create_test(df_all, indices) print('Staging complete') result = nn.score(df_input, df_output) print('------------------------------') print('Training error (score) from generated model') print(result)
[ "sschakraborty@hotmail.com" ]
sschakraborty@hotmail.com
7af4118ca6761434647028e93af78f1b62bff180
641d85b45413fda8e7d16081a455758f522ba317
/person_and_phone.py
a38093e9740b04f7cc0bb64a3acffdb959419967
[]
no_license
MrLuciferM/SemiAutomated-Online-ExamProctoring
dbfde5098743afe7784a3c25924fbc4d47e3084c
85aab91bc11aa6db8c2c2cf4dfb7ee074fb72998
refs/heads/master
2023-06-25T16:35:05.677394
2021-08-02T13:38:38
2021-08-02T13:38:38
391,954,553
4
0
null
null
null
null
UTF-8
Python
false
false
12,104
py
import tensorflow as tf import numpy as np import cv2 from tensorflow.keras import Model from tensorflow.keras.layers import ( Add, Concatenate, Conv2D, Input, Lambda, LeakyReLU, UpSampling2D, ZeroPadding2D, BatchNormalization ) from tensorflow.keras.regularizers import l2 # import wget def load_darknet_weights(model, weights_file): ''' Helper function used to load darknet weights. :param model: Object of the Yolo v3 model :param weights_file: Path to the file with Yolo V3 weights ''' #Open the weights file wf = open(weights_file, 'rb') major, minor, revision, seen, _ = np.fromfile(wf, dtype=np.int32, count=5) #Define names of the Yolo layers (just for a reference) layers = ['yolo_darknet', 'yolo_conv_0', 'yolo_output_0', 'yolo_conv_1', 'yolo_output_1', 'yolo_conv_2', 'yolo_output_2'] for layer_name in layers: sub_model = model.get_layer(layer_name) for i, layer in enumerate(sub_model.layers): if not layer.name.startswith('conv2d'): continue #Handles the special, custom Batch normalization layer batch_norm = None if i + 1 < len(sub_model.layers) and \ sub_model.layers[i + 1].name.startswith('batch_norm'): batch_norm = sub_model.layers[i + 1] filters = layer.filters size = layer.kernel_size[0] in_dim = layer.input_shape[-1] if batch_norm is None: conv_bias = np.fromfile(wf, dtype=np.float32, count=filters) else: # darknet [beta, gamma, mean, variance] bn_weights = np.fromfile( wf, dtype=np.float32, count=4 * filters) # tf [gamma, beta, mean, variance] bn_weights = bn_weights.reshape((4, filters))[[1, 0, 2, 3]] # darknet shape (out_dim, in_dim, height, width) conv_shape = (filters, in_dim, size, size) conv_weights = np.fromfile( wf, dtype=np.float32, count=np.product(conv_shape)) # tf shape (height, width, in_dim, out_dim) conv_weights = conv_weights.reshape( conv_shape).transpose([2, 3, 1, 0]) if batch_norm is None: layer.set_weights([conv_weights, conv_bias]) else: layer.set_weights([conv_weights]) batch_norm.set_weights(bn_weights) assert len(wf.read()) == 0, 'failed to read all data' wf.close() def draw_outputs(img, outputs, class_names): ''' Helper, util, function that draws predictons on the image. :param img: Loaded image :param outputs: YoloV3 predictions :param class_names: list of all class names found in the dataset ''' boxes, objectness, classes, nums = outputs boxes, objectness, classes, nums = boxes[0], objectness[0], classes[0], nums[0] wh = np.flip(img.shape[0:2]) for i in range(nums): x1y1 = tuple((np.array(boxes[i][0:2]) * wh).astype(np.int32)) x2y2 = tuple((np.array(boxes[i][2:4]) * wh).astype(np.int32)) img = cv2.rectangle(img, x1y1, x2y2, (255, 0, 0), 2) img = cv2.putText(img, '{} {:.4f}'.format( class_names[int(classes[i])], objectness[i]), x1y1, cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) return img yolo_anchors = np.array([(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)], np.float32) / 416 yolo_anchor_masks = np.array([[6, 7, 8], [3, 4, 5], [0, 1, 2]]) def DarknetConv(x, filters, kernel_size, strides=1, batch_norm=True): ''' Call this function to define a single Darknet convolutional layer :param x: inputs :param filters: number of filters in the convolutional layer :param kernel_size: Size of kernel in the Conv layer :param strides: Conv layer strides :param batch_norm: Whether or not to use the custom batch norm layer. ''' #Image padding if strides == 1: padding = 'same' else: x = ZeroPadding2D(((1, 0), (1, 0)))(x) # top left half-padding padding = 'valid' #Defining the Conv layer x = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=not batch_norm, kernel_regularizer=l2(0.0005))(x) if batch_norm: x = BatchNormalization()(x) x = LeakyReLU(alpha=0.1)(x) return x def DarknetResidual(x, filters): ''' Call this function to define a single DarkNet Residual layer :param x: inputs :param filters: number of filters in each Conv layer. ''' prev = x x = DarknetConv(x, filters // 2, 1) x = DarknetConv(x, filters, 3) x = Add()([prev, x]) return x def DarknetBlock(x, filters, blocks): ''' Call this function to define a single DarkNet Block (made of multiple Residual layers) :param x: inputs :param filters: number of filters in each Residual layer :param blocks: number of Residual layers in the block ''' x = DarknetConv(x, filters, 3, strides=2) for _ in range(blocks): x = DarknetResidual(x, filters) return x def Darknet(name=None): ''' The main function that creates the whole DarkNet. ''' x = inputs = Input([None, None, 3]) x = DarknetConv(x, 32, 3) x = DarknetBlock(x, 64, 1) x = DarknetBlock(x, 128, 2) # skip connection x = x_36 = DarknetBlock(x, 256, 8) # skip connection x = x_61 = DarknetBlock(x, 512, 8) x = DarknetBlock(x, 1024, 4) return tf.keras.Model(inputs, (x_36, x_61, x), name=name) def YoloConv(filters, name=None): ''' Call this function to define the Yolo Conv layer. :param flters: number of filters for the conv layer :param name: name of the layer ''' def yolo_conv(x_in): if isinstance(x_in, tuple): inputs = Input(x_in[0].shape[1:]), Input(x_in[1].shape[1:]) x, x_skip = inputs # concat with skip connection x = DarknetConv(x, filters, 1) x = UpSampling2D(2)(x) x = Concatenate()([x, x_skip]) else: x = inputs = Input(x_in.shape[1:]) x = DarknetConv(x, filters, 1) x = DarknetConv(x, filters * 2, 3) x = DarknetConv(x, filters, 1) x = DarknetConv(x, filters * 2, 3) x = DarknetConv(x, filters, 1) return Model(inputs, x, name=name)(x_in) return yolo_conv def YoloOutput(filters, anchors, classes, name=None): ''' This function defines outputs for the Yolo V3. (Creates output projections) :param filters: number of filters for the conv layer :param anchors: anchors :param classes: list of classes in a dataset :param name: name of the layer ''' def yolo_output(x_in): x = inputs = Input(x_in.shape[1:]) x = DarknetConv(x, filters * 2, 3) x = DarknetConv(x, anchors * (classes + 5), 1, batch_norm=False) x = Lambda(lambda x: tf.reshape(x, (-1, tf.shape(x)[1], tf.shape(x)[2], anchors, classes + 5)))(x) return tf.keras.Model(inputs, x, name=name)(x_in) return yolo_output def yolo_boxes(pred, anchors, classes): ''' Call this function to get bounding boxes from network predictions :param pred: Yolo predictions :param anchors: anchors :param classes: List of classes from the dataset ''' # pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes)) grid_size = tf.shape(pred)[1] #Extract box coortinates from prediction vectors box_xy, box_wh, objectness, class_probs = tf.split( pred, (2, 2, 1, classes), axis=-1) #Normalize coortinates box_xy = tf.sigmoid(box_xy) objectness = tf.sigmoid(objectness) class_probs = tf.sigmoid(class_probs) pred_box = tf.concat((box_xy, box_wh), axis=-1) # original xywh for loss # !!! grid[x][y] == (y, x) grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size)) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # [gx, gy, 1, 2] box_xy = (box_xy + tf.cast(grid, tf.float32)) / \ tf.cast(grid_size, tf.float32) box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_xy - box_wh / 2 box_x2y2 = box_xy + box_wh / 2 bbox = tf.concat([box_x1y1, box_x2y2], axis=-1) return bbox, objectness, class_probs, pred_box def yolo_nms(outputs, anchors, masks, classes): # boxes, conf, type b, c, t = [], [], [] for o in outputs: b.append(tf.reshape(o[0], (tf.shape(o[0])[0], -1, tf.shape(o[0])[-1]))) c.append(tf.reshape(o[1], (tf.shape(o[1])[0], -1, tf.shape(o[1])[-1]))) t.append(tf.reshape(o[2], (tf.shape(o[2])[0], -1, tf.shape(o[2])[-1]))) bbox = tf.concat(b, axis=1) confidence = tf.concat(c, axis=1) class_probs = tf.concat(t, axis=1) scores = confidence * class_probs boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(bbox, (tf.shape(bbox)[0], -1, 1, 4)), scores=tf.reshape( scores, (tf.shape(scores)[0], -1, tf.shape(scores)[-1])), max_output_size_per_class=100, max_total_size=100, iou_threshold=0.5, score_threshold=0.6 ) return boxes, scores, classes, valid_detections def YoloV3(size=None, channels=3, anchors=yolo_anchors, masks=yolo_anchor_masks, classes=80): x = inputs = Input([size, size, channels], name='input') x_36, x_61, x = Darknet(name='yolo_darknet')(x) x = YoloConv(512, name='yolo_conv_0')(x) output_0 = YoloOutput(512, len(masks[0]), classes, name='yolo_output_0')(x) x = YoloConv(256, name='yolo_conv_1')((x, x_61)) output_1 = YoloOutput(256, len(masks[1]), classes, name='yolo_output_1')(x) x = YoloConv(128, name='yolo_conv_2')((x, x_36)) output_2 = YoloOutput(128, len(masks[2]), classes, name='yolo_output_2')(x) boxes_0 = Lambda(lambda x: yolo_boxes(x, anchors[masks[0]], classes), name='yolo_boxes_0')(output_0) boxes_1 = Lambda(lambda x: yolo_boxes(x, anchors[masks[1]], classes), name='yolo_boxes_1')(output_1) boxes_2 = Lambda(lambda x: yolo_boxes(x, anchors[masks[2]], classes), name='yolo_boxes_2')(output_2) outputs = Lambda(lambda x: yolo_nms(x, anchors, masks, classes), name='yolo_nms')((boxes_0[:3], boxes_1[:3], boxes_2[:3])) return Model(inputs, outputs, name='yolov3') def weights_download(out='models/yolov3.weights'): _ = wget.download('https://pjreddie.com/media/files/yolov3.weights', out='models/yolov3.weights') # weights_download() # to download weights # yolo = YoloV3() # load_darknet_weights(yolo, 'models/yolov3.weights') # cap = cv2.VideoCapture(0) # while(True): # ret, image = cap.read() # if ret == False: # break # img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # img = cv2.resize(img, (320, 320)) # img = img.astype(np.float32) # img = np.expand_dims(img, 0) # img = img / 255 # class_names = [c.strip() for c in open("models/classes.TXT").readlines()] # boxes, scores, classes, nums = yolo(img) # count=0 # for i in range(nums[0]): # if int(classes[0][i] == 0): # count +=1 # if int(classes[0][i] == 67): # print('Mobile Phone detected') # if count == 0: # print('No person detected') # elif count > 1: # print('More than one person detected') # image = draw_outputs(image, (boxes, scores, classes, nums), class_names) # cv2.imshow('Prediction', image) # if cv2.waitKey(1) & 0xFF == ord('q'): # break # cap.release() # cv2.destroyAllWindows()
[ "pps.kunal.7@gmail.com" ]
pps.kunal.7@gmail.com
a434c943b8afac2a3ba516952790983f4bebf8d9
def27d5864764b877b6786835ec97f2bd74c6ba8
/easy/HammingDistance.py
b9cb3fe45c35fdf770719e3a32aa986bf2a73a40
[]
no_license
bolan2014/leetcode
f6cf38a49a9250abeb36543ea2498062c58e811d
1c35fde3a65c4f216218f459736d4c39a29980d5
refs/heads/master
2021-04-09T16:59:41.494568
2017-05-10T03:47:14
2017-05-10T03:47:14
46,648,353
0
1
null
null
null
null
UTF-8
Python
false
false
466
py
class Solution(object): def hammingDistance(self, x, y): """ :type x: int :type y: int :rtype: int """ bix, biy = bin(x)[2:], bin(y)[2:] if len(bix) > len(biy): biy = (len(bix) - len(biy)) * '0' + biy else: bix = (len(biy) - len(bix)) * '0' + bix cnt = 0 for i in range(len(bix)): if bix[i] != biy[i]: cnt += 1 return cnt
[ "1139217488@qq.com" ]
1139217488@qq.com
2f2aa9fda525b157cfa80787be1082388c43af77
0cc95e221a473640d32662badb4224b9af7f4696
/supporting_bot.py
50714b6f15023cdd602efd6e21f8625cb6f9b83d
[]
no_license
xGolden/ow-discord-bot
7fe5bd879f53b6407739cd17436fff8161c060e0
1ee501e714d52d8d3676a1c3b13931f9823114e7
refs/heads/master
2021-01-23T01:27:00.062995
2017-03-21T18:04:34
2017-03-21T18:04:34
85,911,454
0
0
null
2017-03-23T05:42:39
2017-03-23T05:42:39
null
UTF-8
Python
false
false
3,938
py
import discord from discord.ext import commands; import asyncio import gaycode #where we store the bots token, so it isn't publicly displayed on github client = discord.Client() supportList = [] #list of discord members signed up to support mixes commandString = '!join !quit (admin !reset !shutdown)' infoString = 'People waiting to play\n-----------' #channelID = '288490815200821259' #channel.id identifier for the channel channelID = '288537682538266625' #testsupport #channelID = '288497909522104323' #test1 modRole = 'ow-support-admin' @client.event async def on_ready(): print('Logged in as') print(client.user.name) print(client.user.id) print('------') await printWelcomeMessage() @client.event async def on_message(message): #only worry about messages from a specific channel if message.channel.id == channelID: if message.content.startswith('!join'): if message.author not in supportList: supportList.append(message.author) await printPlayerList(message.channel) elif message.content.startswith('!quit'): if message.author in supportList: supportList.remove(message.author) #await client.send_message(message.channel, '{} quit'.format(message.author.name)) await printPlayerList(message.channel) else: await client.delete_message(message) elif message.content.startswith('!list'): await printPlayerList(message.channel) elif message.content.startswith('!channels'): await client.delete_message(message) if checkIfRole(message.author, modRole): channels = client.get_all_channels() for c in channels: print('Channel \'{}\' has ID \'{}\' on server \'{}\''.format(c.name, c.id, c.server.name)) elif message.content.startswith('!reset'): await client.delete_message(message) if checkIfRole(message.author, modRole): supportList[:] = [] await printPlayerList(message.channel) elif message.content.startswith('!shutdown'): if checkIfRole(message.author, modRole): await purgeChannel(message.channel) await client.logout() elif message.content.startswith('!clear'): await purgeChannel(message.channel) else: if message.author != client.user: #print('deleting message from {}'.format(message.author.name)) await client.delete_message(message) async def printPlayerList(channel): await purgeChannel(channel) str = '' count = 1 for member in supportList: str += '{}. {}\n'.format(count, member.name) count = count + 1 #await client.send_message(channel, commandString) #await client.send_message(channel, 'People waiting to play ({})'.format(len(supportList))) #await client.send_message(channel, '----------') #for member in supportList: # await client.send_message(channel, '{}. {}'.format(count, member.name)) # count = count + 1 await client.send_message(channel, '```{}\n\n{}\n{}```'.format(commandString, infoString, str)) async def purgeChannel(channel): await client.purge_from(channel, limit=500, check=None) async def printWelcomeMessage(): #look for channel via ID channels = client.get_all_channels() for c in channels: if c.id == channelID: await client.send_message(c, '```{}\n\n{}```'.format(commandString, infoString)) break def checkIfRole(user, role): role = discord.utils.find(lambda r: r.name == role, user.roles) #print('role {}'.format(role)) return role is not None client.run(gaycode.token)
[ "slizizy@gmail.com" ]
slizizy@gmail.com
683cb94f99b944c57b75bcff395c4d70823f1021
27acd9eeb0d2b9b6326cc0477e7dbb84341e265c
/test/vraag4/src/isbn/156.py
5d83c65f74ee33e129c19964d85548161b6c4135
[]
no_license
VerstraeteBert/algos-ds
e0fe35bc3c5b7d8276c07250f56d3719ecc617de
d9215f11cdfa1a12a3b19ade3b95fa73848a636c
refs/heads/master
2021-07-15T13:46:58.790446
2021-02-28T23:28:36
2021-02-28T23:28:36
240,883,220
1
1
null
null
null
null
UTF-8
Python
false
false
1,113
py
def isISBN(code): if not ( isinstance(code, str) and len(code) == 13 and ( code.startswith('978') or code.startswith('979') ) and code.isdigit() ): return 0 controle=0 for i in range(12): if i%2: controle += 3* int(code[i]) else: controle += int(code[i]) cc = controle % 10 cc = (10 - cc) % 10 return cc == int(code[-1]) def overzicht(codes): groepen = {} for i in range(11): groepen[i] = 0 for code in codes: if not isISBN(code): groepen[10] += 1 else: groepen[int(code[3])] += 1 print('Engelstalige landen: {}'.format(groepen[0] + groepen[1])) print('Franstalige landen: {}'.format(groepen[2])) print('Duitstalige landen: {}'.format(groepen[3])) print('Japan: {}'.format(groepen[4])) print('Russischtalige landen: {}'.format(groepen[5])) print('China: {}'.format(groepen[7])) print('Overige landen: {}'.format(groepen[6] + groepen[8] + groepen[9])) print('Fouten: {}'.format(groepen[10]))
[ "bertverstraete22@gmail.com" ]
bertverstraete22@gmail.com
84eaea2ed7ce2427efd752c08dbb61f7b8ef9300
ec48e11593717df874746092ca2a127b6de2f49f
/examples/python/file_reader/file_reader.py
abd6ccc51adfb4db8498839ff70e6c19b3d28cc0
[]
no_license
blu-corner/codec
44842673e63dbc9e50077f805de405b121225ca4
a7582a9384e26452e45c2c36952cb7424a52a6ca
refs/heads/master
2022-07-25T04:24:39.555286
2022-06-06T10:15:12
2022-06-06T10:15:12
152,606,392
9
13
null
2022-10-18T16:00:33
2018-10-11T14:36:13
C++
UTF-8
Python
false
false
630
py
#!/usr/bin/env python # import CommonDataRepresentation as Cdr import Codecs as Codec import os import sys import mmap def getDecodedMessage(filename, codec): idx = 0 with open(sys.argv[1], 'rb') as f: while(True): data = f.read() try: res = codec.decode(data) idx+=res.getUsed() f.seek(idx) yield res.getCdr() except: return def main(): codec = Codec.lseCodec.get() for msg in getDecodedMessage(sys.argv[1], codec): print msg.toString() if __name__ == '__main__': main()
[ "alejandro.navarro@neueda.com" ]
alejandro.navarro@neueda.com
3a211aefea4fd4b315ad6dfe162aad8181b79805
0bf740fa6d2f3680c8e47afa8b51a1a468ce2d7e
/blog/migrations/0001_initial.py
a317d4e56293fee4e7cbba6719c52d6e47d39cba
[]
no_license
chsailakshmi/first-blog
85495c55a69323305e1d843aeecb662a0fd0c183
ec0884db15955cd5a5ced38066516d9d7c5f2ec5
refs/heads/master
2020-04-18T11:55:34.818226
2019-11-21T07:05:19
2019-11-21T07:05:19
65,983,628
0
0
null
null
null
null
UTF-8
Python
false
false
1,050
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.9 on 2016-08-19 17:28 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "admin@xyz.com" ]
admin@xyz.com
67bd56ca074f5038ba9301b87e29b5ac1ad3b377
728a703820098d6fe717187478fc856abfbbf7f2
/Boggle.py
172096d610bca81ae377f2364e6078bf946bb1cf
[]
no_license
nipayne/boggle
cb34e45f6ee1afccc1a6386a881d0cf325dfb2b0
6ed8060fc6a6e990781b2be56c3714164cf2820e
refs/heads/main
2023-08-14T20:26:30.410947
2021-09-20T00:53:41
2021-09-20T00:53:41
408,272,114
0
0
null
null
null
null
UTF-8
Python
false
false
2,551
py
import pygame import time import math import random pygame.init() window = pygame.display.set_mode((600, 700)) clock = pygame.time.Clock() points = [] lines = [] begin = False anim = False font = pygame.font.SysFont('didot.ttc', 70) newBoard = True while True: letters = { 1:('a', 'a', 'a', 'f', 'r', 's'), 2:('a', 'a', 'e', 'e', 'e', 'e'), 3:('a', 'a', 'f', 'i', 'r', 's'), 4:('a', 'd', 'e', 'n', 'n', 'n'), 5:('a', 'e', 'e', 'e', 'e', 'm'), 6:('a', 'e', 'e', 'g', 'm', 'u'), 7:('a', 'e', 'g', 'm', 'n', 'n'), 8:('a', 'f', 'i', 'r', 's', 'y'), 9:('b', 'j', 'k', 'q', 'x', 'z'), 10:('c', 'c', 'e', 'n', 's', 't'), 11:('c', 'e', 'i', 'i', 'l', 't'), 12:('c', 'e', 'i', 'l', 'p', 't'), 13:('c', 'e', 'i', 'p', 's', 't'), 14:('d', 'd', 'h', 'n', 'o', 't'), 15:('d', 'h', 'h', 'l', 'o', 'r'), 16:('d', 'h', 'l', 'n', 'o', 'r'), 17:('d', 'h', 'l', 'n', 'o', 'r'), 18:('e', 'i', 'i', 'i', 't', 't'), 19:('e', 'm', 'o', 't', 't', 't'), 20:('e', 'n', 's', 's', 's', 'u'), 21:('f', 'i', 'p', 'r', 's', 'y'), 22:('g', 'o', 'r', 'r', 'v', 'w'), 23:('i', 'p', 'r', 'r', 'r', 'y'), 24:('n', 'o', 'o', 't', 'u', 'w'), 25:('o', 'o', 'o', 't', 't', 'u') } window.fill((0, 0, 0)) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_r: newBoard = True if newBoard: start_ticks = pygame.time.get_ticks() dice = list(letters.keys()) random.shuffle(dice) indices = [] for i in range(25): indices.append(random.randint(0,5)) newBoard = False for i in range(6): pygame.draw.line(window, (255,255,255), ((i+1)*100 - 50, 50), ((i+1)*100 - 50,550)) pygame.draw.line(window, (255,255,255), (50, (i+1)*100 - 50), (550, (i+1)*100 - 50)) for x in range(5): for y in range(5): current = letters[dice[5*x + y]][indices[5*x+y]].upper() l =font.render(current, True, (255,0,0)) window.blit(l, ((y+1)*100 - 20, (x+1)*100 - 20)) seconds = pygame.time.get_ticks() - start_ticks t = font.render(str(round(seconds/1000)), True, (255,0,0)) window.blit(t, (250,650)) pygame.display.update() clock.tick(30)
[ "noreply@github.com" ]
nipayne.noreply@github.com
debe5f15c52bb08f8beadfea06a498d86d7c81c4
27880c807b97b3b318d002a547680c6881acf460
/tests/argparse/special/test_overwrite.py
a4721283725798b1b7e6875be3aed206d66f9fc3
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
sbrodehl/miniflask
a1ebb809d544fbc235044624af9193982f01aced
55b350b951ad2120ea13a986f742523206f407c6
refs/heads/master
2022-11-05T05:18:43.383396
2022-09-14T15:26:17
2022-09-14T15:26:17
252,498,534
0
0
null
2020-04-02T15:46:39
2020-04-02T15:46:39
null
UTF-8
Python
false
false
2,702
py
from pathlib import Path import pytest import miniflask # noqa: E402 def test_setup(capsys): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults"]) mf.parse_args([ "--var_default_override_twice_and_cli", "1114" ]) captured = capsys.readouterr() mf.event.print_all() captured = capsys.readouterr() assert captured.out == """ modules.defaults.var_default: 1 modules.defaults.var_default_override: 2 modules.defaults.var_default_override_twice: 3 modules.defaults.var_default_override_twice_and_cli: 1114 """.lstrip() def test_override(capsys): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults_override"]) mf.parse_args([ "--var_default_override_twice_and_cli", "1114" ]) captured = capsys.readouterr() mf.event.print_all() captured = capsys.readouterr() assert captured.out == """ modules.defaults.var_default: 1 modules.defaults.var_default_override: 12 modules.defaults.var_default_override_twice: 13 modules.defaults.var_default_override_twice_and_cli: 1114 """.lstrip() def test_override_twice(capsys): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults_override", "defaults_override_twice"]) mf.parse_args([ "--var_default_override_twice_and_cli", "1114" ]) captured = capsys.readouterr() mf.event.print_all() captured = capsys.readouterr() assert captured.out == """ modules.defaults.var_default: 1 modules.defaults.var_default_override: 12 modules.defaults.var_default_override_twice: 113 modules.defaults.var_default_override_twice_and_cli: 1114 """.lstrip() def test_override_conflict(): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults2", "defaults_override"]) with pytest.raises(miniflask.exceptions.RegisterError): mf.parse_args([]) mf.event.print_all() def test_override_scoped_absolute(): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults2", "defaults_override_scoped_absolute"]) mf.parse_args([]) mf.event.print_all() def test_override_scoped_relative(): mf = miniflask.init( module_dirs=str(Path(__file__).parent / "modules"), debug=True ) mf.load(["defaults", "defaults2", "defaults_override_scoped_relative"]) mf.parse_args([]) mf.event.print_all()
[ "dhartmann@uni-mainz.de" ]
dhartmann@uni-mainz.de
c453f63b56b29011977ee32465c52b69a612a70d
630fe47bb5aa5e49b45ab101d87c2dd2c53d180f
/venv/Lib/site-packages/com/vmware/nsx/node/aaa/providers/vidm_client.py
b5c31723c754c80b2bea2a739a2388630213feb8
[]
no_license
shrivastava-himanshu/Leetcode_practice
467497a58d82ff3ae2569d5e610dc6f27a1f31d6
4c59799947c2b17bfd22ca2a08707ef85e84a913
refs/heads/main
2023-06-12T13:14:45.381839
2021-07-05T04:09:05
2021-07-05T04:09:05
367,546,005
0
0
null
null
null
null
UTF-8
Python
false
false
4,544
py
# -*- coding: utf-8 -*- #--------------------------------------------------------------------------- # Copyright 2021 VMware, Inc. All rights reserved. # AUTO GENERATED FILE -- DO NOT MODIFY! # # vAPI stub file for package com.vmware.nsx.node.aaa.providers.vidm. #--------------------------------------------------------------------------- """ """ __author__ = 'VMware, Inc.' __docformat__ = 'restructuredtext en' import sys from vmware.vapi.bindings import type from vmware.vapi.bindings.converter import TypeConverter from vmware.vapi.bindings.enum import Enum from vmware.vapi.bindings.error import VapiError from vmware.vapi.bindings.struct import VapiStruct from vmware.vapi.bindings.stub import ( ApiInterfaceStub, StubFactoryBase, VapiInterface) from vmware.vapi.bindings.common import raise_core_exception from vmware.vapi.data.validator import (UnionValidator, HasFieldsOfValidator) from vmware.vapi.exception import CoreException from vmware.vapi.lib.constants import TaskType from vmware.vapi.lib.rest import OperationRestMetadata class Status(VapiInterface): """ """ _VAPI_SERVICE_ID = 'com.vmware.nsx.node.aaa.providers.vidm.status' """ Identifier of the service in canonical form. """ def __init__(self, config): """ :type config: :class:`vmware.vapi.bindings.stub.StubConfiguration` :param config: Configuration to be used for creating the stub. """ VapiInterface.__init__(self, config, _StatusStub) self._VAPI_OPERATION_IDS = {} def get(self): """ Read AAA provider vIDM status :rtype: :class:`com.vmware.nsx.model_client.NodeAuthProviderVidmStatus` :return: com.vmware.nsx.model.NodeAuthProviderVidmStatus :raise: :class:`com.vmware.vapi.std.errors_client.ServiceUnavailable` Service Unavailable :raise: :class:`com.vmware.vapi.std.errors_client.InvalidRequest` Bad Request, Precondition Failed :raise: :class:`com.vmware.vapi.std.errors_client.InternalServerError` Internal Server Error :raise: :class:`com.vmware.vapi.std.errors_client.Unauthorized` Forbidden :raise: :class:`com.vmware.vapi.std.errors_client.NotFound` Not Found """ return self._invoke('get', None) class _StatusStub(ApiInterfaceStub): def __init__(self, config): # properties for get operation get_input_type = type.StructType('operation-input', {}) get_error_dict = { 'com.vmware.vapi.std.errors.service_unavailable': type.ReferenceType('com.vmware.vapi.std.errors_client', 'ServiceUnavailable'), 'com.vmware.vapi.std.errors.invalid_request': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InvalidRequest'), 'com.vmware.vapi.std.errors.internal_server_error': type.ReferenceType('com.vmware.vapi.std.errors_client', 'InternalServerError'), 'com.vmware.vapi.std.errors.unauthorized': type.ReferenceType('com.vmware.vapi.std.errors_client', 'Unauthorized'), 'com.vmware.vapi.std.errors.not_found': type.ReferenceType('com.vmware.vapi.std.errors_client', 'NotFound'), } get_input_value_validator_list = [ ] get_output_validator_list = [ ] get_rest_metadata = OperationRestMetadata( http_method='GET', url_template='/api/v1/node/aaa/providers/vidm/status', path_variables={ }, query_parameters={ }, content_type='application/json' ) operations = { 'get': { 'input_type': get_input_type, 'output_type': type.ReferenceType('com.vmware.nsx.model_client', 'NodeAuthProviderVidmStatus'), 'errors': get_error_dict, 'input_value_validator_list': get_input_value_validator_list, 'output_validator_list': get_output_validator_list, 'task_type': TaskType.NONE, }, } rest_metadata = { 'get': get_rest_metadata, } ApiInterfaceStub.__init__( self, iface_name='com.vmware.nsx.node.aaa.providers.vidm.status', config=config, operations=operations, rest_metadata=rest_metadata, is_vapi_rest=False) class StubFactory(StubFactoryBase): _attrs = { 'Status': Status, }
[ "Himanshu.Shrivastava@vce.com" ]
Himanshu.Shrivastava@vce.com
f73f828ff68b6b89ad727c7f7d2134f8d0622cb4
6e8699e241c5ab65486f6f93ae1c1e35ea841a07
/chat/models.py
d2288b58e70a189f325cd5e5254bff8500713418
[]
no_license
7Angie7/OrgSemaphoreHeroku
233e0e82980367da7df81b1185c52122d6d7097f
f5f777ec2d83bcd8635391ce8288e30b95a9fbb6
refs/heads/main
2023-05-02T13:46:55.827828
2021-05-20T12:36:05
2021-05-20T12:36:05
341,671,085
0
0
null
null
null
null
UTF-8
Python
false
false
1,074
py
import uuid from django.db import models from django.conf import settings from django.contrib.auth.models import User # Create your models here. class Semaphore(models.Model): STATUS = ( ('Ready', 'Ready'), ('Busy', 'Busy'), ) name = models.CharField(max_length=200, null=True) time = models.IntegerField() author = models.ForeignKey(User, on_delete=models.CASCADE, null=True) status = models.CharField(max_length=200, null=True, choices=STATUS) controlUrl = models.UUIDField(default=uuid.uuid4) lastQueueNum = models.IntegerField(null=True) semOpen = models.BooleanField(default=False) def __str__(self): return self.name class QueueClient(models.Model): semap = models.ForeignKey(Semaphore, on_delete=models.CASCADE, null=True) device = models.CharField(max_length=200, null=True) queueNum = models.IntegerField(null=True) clientName = models.CharField(max_length=200, null=True) clientNumber = models.IntegerField(null=True) def __str__(self): return self.clientName
[ "xfasan00@stud.fit.vutbr.cz" ]
xfasan00@stud.fit.vutbr.cz
774f590e2be884ccd9733de49c3547388d9f318a
58180ddeef1d1dde9bbe2443243ac0521662031d
/router-skeleton
a6e56cbd9e52a69f9e6f742d3cf39c9f226f95a4
[]
no_license
kryvtsunt/bgp-router
41b89fbc8a95586798420f3fd0b6e5d8fd428e3a
0f94f2bae0ff40e588088e471a07e6fdd329b0c1
refs/heads/master
2020-03-30T06:57:05.125751
2018-10-12T22:31:19
2018-10-12T22:31:19
150,902,344
0
0
null
null
null
null
UTF-8
Python
false
false
4,952
#!/usr/bin/env python3 import argparse, socket, time, json, select, struct, math #DEBUG = True DEBUG = False parser = argparse.ArgumentParser(description='route packets') parser.add_argument('networks', metavar='networks', type=str, nargs='+', help="networks") args = parser.parse_args() ########################################################################################## # Message Fields TYPE = "type" SRCE = "src" DEST = "dst" MESG = "msg" TABL = "table" # Message Types DATA = "data" DUMP = "dump" UPDT = "update" RVKE = "revoke" NRTE = "no route" # Update Message Fields NTWK = "network" NMSK = "netmask" ORIG = "origin" LPRF = "localpref" APTH = "ASPath" SORG = "selfOrigin" # internal route info CUST = "cust" PEER = "peer" PROV = "prov" ########################################################################################## class Router: routes = None updates = None relations = None sockets = None def __init__(self, networks): self.routes = {} self.updates = {} self.relations = {} self.sockets = {} for relationship in networks: network, relation = relationship.split("-") if DEBUG: print("Starting socket for", network, relation) self.sockets[network] = socket.socket(socket.AF_UNIX, socket.SOCK_SEQPACKET) self.sockets[network].setblocking(0) self.sockets[network].connect(network) self.relations[network] = relation return def lookup_routes(self, daddr): """ Lookup all valid routes for an address """ # TODO outroutes = [] return outroutes def get_shortest_as_path(self, routes): """ select the route with the shortest AS Path """ # TODO outroutes = [] return outroutes def get_highest_preference(self, routes): """ select the route with the shortest AS Path """ # TODO outroutes = [] return outroutes def get_self_origin(self, routes): """ select self originating routes """ # TODO outroutes = [] return outroutes def get_origin_routes(self, routes): """ select origin routes: EGP > IGP > UNK """ # TODO outroutes = [] return outroutes def filter_relationships(self, srcif, routes): """ Don't allow Peer->Peer, Peer->Prov, or Prov->Peer forwards """ outroutes = [] return outroutes def get_route(self, srcif, daddr): """ Select the best route for a given address """ # TODO peer = None routes = lookup_routers(daddr) # Rules go here if routes: # 1. Highest Preference routes = self.get_highest_preference(routes) # 2. Self Origin routes = self.get_self_origin(routes) # 3. Shortest ASPath routes = self.get_shortest_as_path(routes) # 4. EGP > IGP > UNK routes = self.get_origin_routes(routes) # 5. Lowest IP Address # TODO # Final check: enforce peering relationships routes = self.filter_relationships(srcif, routes) return self.sockets[peer] if peer else None def forward(self, srcif, packet): """ Forward a data packet """ # TODO return False def coalesce(self): """ coalesce any routes that are right next to each other """ # TODO (this is the most difficult task, save until last) return False def update(self, srcif, packet): """ handle update packets """ # TODO return False def revoke(self, packet): """ handle revoke packets """ # TODO return True def dump(self, packet): """ handles dump table requests """ # TODO return True def handle_packet(self, srcif, packet): """ dispatches a packet """ # TODO return False def send_error(self, conn, msg): """ Send a no_route error message """ # TODO return def run(self): while True: socks = select.select(self.sockets.values(), [], [], 0.1)[0] for conn in socks: try: k = conn.recv(65535) except: # either died on a connection reset, or was SIGTERM's by parent return if k: for sock in self.sockets: if self.sockets[sock] == conn: srcif = sock msg = json.loads(k) if not self.handle_packet(srcif, msg): self.send_error(conn, msg) else: return return if __name__ == "__main__": router = Router(args.networks) router.run()
[ "tim@login-students.ccs.neu.edu" ]
tim@login-students.ccs.neu.edu
128977c94ecd89aa750a22dabc12b410e6ef0ebc
9039294895cc5334d1f42f3c9f5fad11103c4e5e
/mars/learn/neighbors/_faiss.py
eb9d6c065c65c661f9ed5289b3fe1436e3a1ee22
[ "BSD-3-Clause", "OFL-1.1", "LicenseRef-scancode-unknown-license-reference", "CC0-1.0", "Apache-2.0", "BSD-2-Clause", "MIT" ]
permissive
rg070836rg/mars
27362aa50fa556768b8824a5600aab5f864ad0ab
f7909869bc3c2995e4eeb7c898db9e33b636f9ca
refs/heads/master
2023-04-29T05:18:04.739725
2020-09-29T11:17:31
2020-09-29T11:17:31
299,794,632
0
1
Apache-2.0
2020-09-30T02:59:21
2020-09-30T02:59:21
null
UTF-8
Python
false
false
28,996
py
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import os import operator import tempfile from enum import Enum import numpy as np try: import faiss except ImportError: # pragma: no cover faiss = None from ... import opcodes as OperandDef from ...context import RunningMode from ...operands import OperandStage from ...serialize import KeyField, StringField, Int64Field, \ Int32Field, BoolField, Int8Field from ...tiles import TilesError from ...tensor import tensor as astensor from ...tensor.core import TensorOrder from ...tensor.random import RandomState from ...tensor.array_utils import as_same_device, device from ...tensor.utils import check_random_state, gen_random_seeds from ...utils import check_chunks_unknown_shape, require_not_none, recursive_tile from ..operands import LearnOperand, LearnOperandMixin, OutputType class MemoryRequirementGrade(Enum): minimum = 0 low = 1 high = 2 maximum = 3 if faiss is not None: METRIC_TO_FAISS_METRIC_TYPE = { 'l2': faiss.METRIC_L2, 'euclidean': faiss.METRIC_L2, 'innerproduct': faiss.METRIC_INNER_PRODUCT, 'cosine': faiss.METRIC_INNER_PRODUCT, } else: # pragma: no cover METRIC_TO_FAISS_METRIC_TYPE = {} @require_not_none(faiss) class FaissBuildIndex(LearnOperand, LearnOperandMixin): _op_type_ = OperandDef.FAISS_BUILD_INDEX _input = KeyField('input') _metric = StringField('metric') _faiss_index = StringField('faiss_index') _n_sample = Int64Field('n_sample') _seed = Int32Field('seed') _same_distribution = BoolField('same_distribution') _accuracy = BoolField('accuracy') _memory_require = Int8Field('memory_require', on_serialize=operator.attrgetter('value'), on_deserialize=MemoryRequirementGrade) # for test purpose, could be 'object', 'filename' or 'bytes' _return_index_type = StringField('return_index_type') def __init__(self, metric=None, faiss_index=None, n_sample=None, seed=None, same_distribution=None, return_index_type=None, accuracy=None, memory_require=None, stage=None, output_types=None, gpu=None, **kw): super().__init__(_metric=metric, _faiss_index=faiss_index, _n_sample=n_sample, _seed=seed, _same_distribution=same_distribution, _return_index_type=return_index_type, _accuracy=accuracy, _memory_require=memory_require, _gpu=gpu, _stage=stage, _output_types=output_types, **kw) if self.output_types is None: self.output_types = [OutputType.object] @property def input(self): return self._input @property def metric(self): return self._metric @property def faiss_metric_type(self): return METRIC_TO_FAISS_METRIC_TYPE[self._metric] @property def faiss_index(self): return self._faiss_index @property def n_sample(self): return self._n_sample @property def seed(self): return self._seed @property def same_distribution(self): return self._same_distribution @property def accuracy(self): return self._accuracy @property def memory_require(self): return self._memory_require @property def return_index_type(self): return self._return_index_type def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] def __call__(self, X): return self.new_tileable([X]) @classmethod def tile(cls, op): check_chunks_unknown_shape(op.inputs, TilesError) in_tensor = astensor(op.input, np.dtype(np.float32))._inplace_tile() if op.faiss_index == 'auto': faiss_index, n_sample = _gen_index_string_and_sample_count( in_tensor.shape, op.n_sample, op.accuracy, op.memory_require, gpu=op.gpu, **op.extra_params) op._n_sample = n_sample else: faiss_index, n_sample = op.faiss_index, op.n_sample if len(in_tensor.chunks) == 1: return cls._tile_one_chunk(op, faiss_index, n_sample) if in_tensor.chunk_shape[1] != 1: # make sure axis 1 has 1 chunk in_tensor = in_tensor.rechunk({1: in_tensor.shape[1]})._inplace_tile() return cls._tile_chunks(op, in_tensor, faiss_index, n_sample) @classmethod def _tile_one_chunk(cls, op, faiss_index, n_sample): in_chunk = op.input.chunks[0] chunk_op = op.copy().reset_key() chunk_op._faiss_index = faiss_index chunk_op._n_sample = n_sample chunk = chunk_op.new_chunk([in_chunk], index=in_chunk.index) new_op = op.copy() kw = op.outputs[0].params kw['chunks'] = [chunk] kw['nsplits'] = ((1,),) return new_op.new_tileables(op.inputs, kws=[kw]) @classmethod def _tile_chunks(cls, op, in_tensor, faiss_index, n_sample): """ If the distribution on each chunk is the same, refer to: https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-distribute-index-building-on-several-machines 1. train an IndexIVF* on a representative sample of the data, store it. 2. for each node, load the trained index, add the local data to it, store the resulting populated index 3. on a central node, load all the populated indexes and merge them. """ faiss_index_ = faiss.index_factory(in_tensor.shape[1], faiss_index, op.faiss_metric_type) # Training on sample data when two conditions meet # 1. the index type requires for training, e.g. Flat does not require # 2. distributions of chunks are the same, in not, # train separately on each chunk data need_sample_train = not faiss_index_.is_trained and op.same_distribution need_merge_index = hasattr(faiss_index_, 'merge_from') if need_sample_train else False train_chunk = None if need_sample_train: # sample data to train rs = RandomState(op.seed) sampled_index = rs.choice(in_tensor.shape[0], size=n_sample, replace=False, chunk_size=n_sample) sample_tensor = recursive_tile(in_tensor[sampled_index]) assert len(sample_tensor.chunks) == 1 sample_chunk = sample_tensor.chunks[0] train_op = FaissTrainSampledIndex(faiss_index=faiss_index, metric=op.metric, return_index_type=op.return_index_type) train_chunk = train_op.new_chunk([sample_chunk]) elif op.gpu: # pragma: no cover # if not need train, and on gpu, just merge data together to train in_tensor = in_tensor.rechunk(in_tensor.shape)._inplace_tile() # build index for each input chunk build_index_chunks = [] for i, chunk in enumerate(in_tensor.chunks): build_index_op = op.copy().reset_key() build_index_op._stage = OperandStage.map build_index_op._faiss_index = faiss_index if train_chunk is not None: build_index_chunk = build_index_op.new_chunk( [chunk, train_chunk], index=(i,)) else: build_index_chunk = build_index_op.new_chunk([chunk], index=(i,)) build_index_chunks.append(build_index_chunk) out_chunks = [] if need_merge_index: assert op.n_sample is not None # merge all indices into one, do only when trained on sample data out_chunk_op = op.copy().reset_key() out_chunk_op._faiss_index = faiss_index out_chunk_op._stage = OperandStage.agg out_chunk = out_chunk_op.new_chunk(build_index_chunks, index=(0,)) out_chunks.append(out_chunk) else: out_chunks.extend(build_index_chunks) new_op = op.copy() return new_op.new_tileables(op.inputs, chunks=out_chunks, nsplits=((len(out_chunks),),)) @classmethod def _execute_one_chunk(cls, ctx, op): (inp,), device_id, xp = as_same_device( [ctx[c.key] for c in op.inputs], device=op.device, ret_extra=True) with device(device_id): inp = inp.astype(np.float32, copy=False) # create index index = faiss.index_factory(inp.shape[1], op.faiss_index, op.faiss_metric_type) # GPU if device_id >= 0: # pragma: no cover index = _index_to_gpu(index, device_id) # train index if not index.is_trained: assert op.n_sample is not None sample_indices = xp.random.choice(inp.shape[0], size=op.n_sample, replace=False) sampled = inp[sample_indices] index.train(sampled) if op.metric == 'cosine': # faiss does not support cosine distances directly, # data needs to be normalize before adding to index, # refer to: # https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-index-vectors-for-cosine-distance faiss.normalize_L2(inp) # add vectors to index if device_id >= 0: # pragma: no cover # gpu index.add_c(inp.shape[0], _swig_ptr_from_cupy_float32_array(inp)) else: index.add(inp) ctx[op.outputs[0].key] = _store_index(ctx, op, index, device_id) @classmethod def _execute_map(cls, ctx, op): (data,), device_id, _ = as_same_device( [ctx[op.inputs[0].key]], device=op.device, ret_extra=True) index = ctx[op.inputs[1].key] if len(op.inputs) == 2 else None with device(device_id): if index is not None: # fetch the trained index trained_index = _load_index(ctx, op, index, device_id) return_index_type = _get_index_type(op.return_index_type, ctx) if return_index_type == 'object': # clone a new one, # because faiss does not ensure thread-safe for operations that change index # https://github.com/facebookresearch/faiss/wiki/Threads-and-asynchronous-calls#thread-safety trained_index = faiss.clone_index(trained_index) else: trained_index = faiss.index_factory(data.shape[1], op.faiss_index, op.faiss_metric_type) if op.same_distribution: # no need to train, just create index pass else: # distribution no the same, train on each chunk trained_index.train(data) if device_id >= 0: # pragma: no cover trained_index = _index_to_gpu(trained_index, device_id) if op.metric == 'cosine': # faiss does not support cosine distances directly, # data needs to be normalize before adding to index, # refer to: # https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-index-vectors-for-cosine-distance faiss.normalize_L2(data) # add data into index if device_id >= 0: # pragma: no cover # gpu trained_index.add_c(data.shape[0], _swig_ptr_from_cupy_float32_array(data)) else: trained_index.add(data) ctx[op.outputs[0].key] = _store_index(ctx, op, trained_index, device_id) @classmethod def _execute_agg(cls, ctx, op): device_id = op.device if device_id is None: device_id = -1 inputs = [ctx[inp.key] for inp in op.inputs] with device(device_id): merged_index = None indexes = [] for index in inputs: index = _load_index(ctx, op, index, device_id) indexes.append(index) assert hasattr(index, 'merge_from') if merged_index is None: merged_index = index else: merged_index.merge_from(index, index.ntotal) ctx[op.outputs[0].key] = _store_index(ctx, op, merged_index, device_id) @classmethod def execute(cls, ctx, op): if op.stage == OperandStage.map: cls._execute_map(ctx, op) elif op.stage == OperandStage.agg: cls._execute_agg(ctx, op) else: assert op.stage is None cls._execute_one_chunk(ctx, op) def _get_index_type(return_index_type, ctx): if return_index_type is None: # pragma: no cover if ctx.running_mode == RunningMode.local: return_index_type = 'object' elif ctx.running_mode == RunningMode.local_cluster: return_index_type = 'filename' else: return_index_type = 'bytes' return return_index_type def _store_index(ctx, op, index, device_id): return_index_type = _get_index_type(op.return_index_type, ctx) if return_index_type == 'object': # no need to serialize return index elif return_index_type == 'filename': # save to file, then return filename if device_id >= 0: # pragma: no cover # for gpu, convert to cpu first index = faiss.index_gpu_to_cpu(index) fn = tempfile.mkstemp('.index', prefix='faiss_')[1] faiss.write_index(index, fn) atexit.register(lambda: os.remove(fn)) return fn else: if device_id >= 0: # pragma: no cover # for gpu, convert to cpu first index = faiss.index_gpu_to_cpu(index) # distributed, save to file, then return in memory bytes fn = tempfile.mkstemp('.index', prefix='faiss_')[1] faiss.write_index(index, fn) try: with open(fn, 'rb') as f: return f.read() finally: os.remove(fn) def _load_index(ctx, op, index, device_id): return_index_type = _get_index_type(op.return_index_type, ctx) if return_index_type == 'object': # local return index elif return_index_type == 'filename': # local cluster return faiss.read_index(index) else: # distributed fn = tempfile.mkstemp('.index', prefix='faiss_')[1] with open(fn, 'wb') as f: f.write(index) index = faiss.read_index(f.name) if device_id >= 0: # pragma: no cover index = _index_to_gpu(index, device_id) return index def _index_to_gpu(index, device_id): # pragma: no cover res = faiss.StandardGpuResources() return faiss.index_cpu_to_gpu(res, device_id, index) def _swig_ptr_from_cupy_float32_array(x): # pragma: no cover assert x.flags.c_contiguous assert x.dtype == np.float32 data_ptr = x.__cuda_array_interface__['data'][0] return faiss.cast_integer_to_float_ptr(data_ptr) def _swig_ptr_from_cupy_int64_array(x): # pragma: no cover assert x.flags.c_contiguous assert x.dtype == np.int64 data_ptr = x.__cuda_array_interface__['data'][0] return faiss.cast_integer_to_long_ptr(data_ptr) @require_not_none(faiss) class FaissTrainSampledIndex(LearnOperand, LearnOperandMixin): _op_type_ = OperandDef.FAISS_TRAIN_SAMPLED_INDEX _input = KeyField('input') _metric = StringField('metric') _faiss_index = StringField('faiss_index') # for test purpose, could be 'object', 'filename' or 'bytes' _return_index_type = StringField('return_index_type') def __init__(self, faiss_index=None, metric=None, return_index_type=None, output_types=None, **kw): super().__init__(_faiss_index=faiss_index, _metric=metric, _return_index_type=return_index_type, _output_types=output_types, **kw) if self.output_types is None: self.output_types = [OutputType.object] @property def input(self): return self._input @property def metric(self): return self._metric @property def faiss_metric_type(self): return METRIC_TO_FAISS_METRIC_TYPE[self.metric] @property def faiss_index(self): return self._faiss_index @property def return_index_type(self): return self._return_index_type def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] @classmethod def execute(cls, ctx, op): (data,), device_id, _ = as_same_device( [ctx[op.input.key]], device=op.device, ret_extra=True) with device(device_id): index = faiss.index_factory(data.shape[1], op.faiss_index, op.faiss_metric_type) if device_id >= 0: # pragma: no cover # GPU index = _index_to_gpu(index, device_id) index.train_c(data.shape[0], _swig_ptr_from_cupy_float32_array(data)) else: index.train(data) ctx[op.outputs[0].key] = _store_index( ctx, op, index, device_id) def _gen_index_string_and_sample_count(shape, n_sample, accuracy, memory_require, gpu=False, **kw): """ Generate index string and sample count according to guidance of faiss: https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index """ size, dim = shape memory_require = _get_memory_require(memory_require) if accuracy or size < 10 ** 5: # Flat is the only index that guarantees exact results # no need to train, thus sample count is None return 'Flat', None if memory_require == MemoryRequirementGrade.maximum and not gpu: x = kw.get('M', 32) # get medium number by default if x < 4 or x > 64: raise ValueError(f'HNSWx requires M that between 4 and 64, got {x}') return f'HNSW{x}', None if memory_require in (MemoryRequirementGrade.high, MemoryRequirementGrade.maximum): basement = '{},Flat' elif memory_require == MemoryRequirementGrade.low: x = kw.get('dim', dim // 2) basement = f'PCAR{x},{{}},SQ8' elif memory_require == MemoryRequirementGrade.minimum: x = kw.get('M', min(64, dim // 2)) if x > 64: raise ValueError(f'PQx requires M <= 64, got {x}') y = kw.get('dim', None) if y is not None and y % x != 0: raise ValueError(f'OPQx_y requires dim is a multiple of M({x}), got dim: {y}') y = min(dim, 4 * x) y = x * (y // x) # make sure y is a multiple of x basement = f'OPQ{x}_{y},{{}},PQ{x}' else: # pragma: no cover raise ValueError('unknown memory require') # now choose the clustering options if size < 10 ** 6 or (size < 10 ** 7 and gpu): # < 1M, or <10M but need GPU k = kw.get('k', 5 * int(np.sqrt(size))) if k < 4 * int(np.sqrt(size)) or k > 16 * int(np.sqrt(size)): raise ValueError(f'k should be between 4 * sqrt(N) and 16 * sqrt(N), got {k}') index_str = basement.format(f'IVF{k}') if n_sample is None: # 30 * k - 256 * k n_sample = min(30 * k, size) elif size < 10 ** 7 and not gpu: # 1M - 10M index_str = basement.format('IVF65536_HNSW32') if n_sample is None: # between 30 * 65536 and 256 * 65536 n_sample = 32 * 65536 elif size < 10 ** 8: index_str = basement.format('IVF65536_HNSW32') n_sample = 64 * 65536 if n_sample is None else n_sample else: index_str = basement.format('IVF1048576_HNSW32') n_sample = 64 * 65536 if n_sample is None else n_sample return index_str, n_sample def _get_memory_require(memory_require): if isinstance(memory_require, str): return getattr(MemoryRequirementGrade, memory_require) elif isinstance(memory_require, MemoryRequirementGrade): return memory_require return MemoryRequirementGrade(memory_require) @require_not_none(faiss) def build_faiss_index(X, index_name='auto', n_sample=None, metric="euclidean", random_state=None, same_distribution=True, accuracy=False, memory_require=None, **kw): X = astensor(X) if metric not in METRIC_TO_FAISS_METRIC_TYPE: raise ValueError(f'unknown metric: {metric}') if index_name != 'auto': try: faiss.index_factory(X.shape[1], index_name, METRIC_TO_FAISS_METRIC_TYPE[metric]) except RuntimeError: raise ValueError(f'illegal faiss index: {index_name}') rs = check_random_state(random_state) if isinstance(rs, RandomState): rs = rs.to_numpy() seed = gen_random_seeds(1, rs)[0] if memory_require is None: memory_require = MemoryRequirementGrade.low else: memory_require = _get_memory_require(memory_require) op = FaissBuildIndex(faiss_index=index_name, metric=metric, n_sample=n_sample, gpu=X.op.gpu, seed=seed, same_distribution=same_distribution, accuracy=accuracy, memory_require=memory_require, **kw) return op(X) class FaissQuery(LearnOperand, LearnOperandMixin): _op_type_ = OperandDef.FAISS_QUERY _input = KeyField('input') _faiss_index = KeyField('faiss_index') _metric = StringField('metric') _n_neighbors = Int32Field('n_neighbors') _return_distance = BoolField('return_distance') _nprobe = Int64Field('nprobe') # for test purpose, could be 'object', 'filename' or 'bytes' _return_index_type = StringField('return_index_type') def __init__(self, faiss_index=None, metric=None, n_neighbors=None, return_distance=None, return_index_type=None, nprobe=None, output_types=None, gpu=None, **kw): super().__init__(_faiss_index=faiss_index, _n_neighbors=n_neighbors, _metric=metric, _return_distance=return_distance, _output_types=output_types, _nprobe=nprobe, _return_index_type=return_index_type, _gpu=gpu, **kw) if self.output_types is None: self.output_types = [OutputType.tensor] * self.output_limit @property def input(self): return self._input @property def faiss_index(self): return self._faiss_index @property def metric(self): return self._metric @property def n_neighbors(self): return self._n_neighbors @property def nprobe(self): return self._nprobe @property def return_distance(self): return self._return_distance @property def return_index_type(self): return self._return_index_type @property def output_limit(self): return 2 if self._return_distance else 1 def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] if self._faiss_index is not None: self._faiss_index = self._inputs[1] def __call__(self, y): kws = [] if self._return_distance: kws.append({'shape': (y.shape[0], self._n_neighbors), 'dtype': np.dtype(np.float32), 'order': TensorOrder.C_ORDER, 'type': 'distance'}) kws.append({ 'shape': (y.shape[0], self._n_neighbors), 'dtype': np.dtype(np.int64), 'order': TensorOrder.C_ORDER, 'type': 'indices' }) return self.new_tileables([y, self._faiss_index], kws=kws) @classmethod def tile(cls, op): in_tensor = astensor(op.input) if in_tensor.chunk_shape[1] != 1: check_chunks_unknown_shape([in_tensor], TilesError) in_tensor = in_tensor.rechunk({1: in_tensor.shape[1]})._inplace_tile() out_chunks = [], [] for chunk in in_tensor.chunks: chunk_op = op.copy().reset_key() chunk_kws = [] if op.return_distance: chunk_kws.append({ 'shape': (chunk.shape[0], op.n_neighbors), 'dtype': np.dtype(np.float32), 'order': TensorOrder.C_ORDER, 'index': chunk.index, 'type': 'distance' }) chunk_kws.append({ 'shape': (chunk.shape[0], op.n_neighbors), 'dtype': np.dtype(np.int64), 'order': TensorOrder.C_ORDER, 'index': chunk.index, 'type': 'indices' }) in_chunks = [chunk] in_chunks.extend(op.faiss_index.chunks) chunks = chunk_op.new_chunks(in_chunks, kws=chunk_kws) if op.return_distance: out_chunks[0].append(chunks[0]) out_chunks[1].append(chunks[-1]) new_op = op.copy() kws = [out.params for out in op.outputs] if op.return_distance: kws[0]['chunks'] = out_chunks[0] kws[0]['nsplits'] = (in_tensor.nsplits[0], (op.n_neighbors,)) kws[-1]['chunks'] = out_chunks[1] kws[-1]['nsplits'] = (in_tensor.nsplits[0], (op.n_neighbors,)) return new_op.new_tileables(op.inputs, kws=kws) @classmethod def execute(cls, ctx, op): (y,), device_id, xp = as_same_device( [ctx[op.input.key]], device=op.device, ret_extra=True) indexes = [_load_index(ctx, op, ctx[index.key], device_id) for index in op.inputs[1:]] with device(device_id): y = xp.ascontiguousarray(y, dtype=np.float32) if len(indexes) == 1: index = indexes[0] else: index = faiss.IndexShards(indexes[0].d) [index.add_shard(ind) for ind in indexes] if op.metric == 'cosine': # faiss does not support cosine distances directly, # data needs to be normalize before searching, # refer to: # https://github.com/facebookresearch/faiss/wiki/FAQ#how-can-i-index-vectors-for-cosine-distance faiss.normalize_L2(y) if op.nprobe is not None: index.nprobe = op.nprobe if device_id >= 0: # pragma: no cover n = y.shape[0] k = op.n_neighbors distances = xp.empty((n, k), dtype=xp.float32) indices = xp.empty((n, k), dtype=xp.int64) index.search_c(n, _swig_ptr_from_cupy_float32_array(y), k, _swig_ptr_from_cupy_float32_array(distances), _swig_ptr_from_cupy_int64_array(indices)) else: distances, indices = index.search(y, op.n_neighbors) if op.return_distance: if index.metric_type == faiss.METRIC_L2: # make it equivalent to `pairwise.euclidean_distances` distances = xp.sqrt(distances, out=distances) elif op.metric == 'cosine': # make it equivalent to `pairwise.cosine_distances` distances = xp.subtract(1, distances, out=distances) ctx[op.outputs[0].key] = distances ctx[op.outputs[-1].key] = indices @require_not_none(faiss) def faiss_query(faiss_index, data, n_neighbors, return_distance=True, nprobe=None): data = astensor(data) op = FaissQuery(faiss_index=faiss_index, n_neighbors=n_neighbors, metric=faiss_index.op.metric, return_distance=return_distance, return_index_type=faiss_index.op.return_index_type, nprobe=nprobe, gpu=data.op.gpu) ret = op(data) if not return_distance: return ret[0] return ret
[ "noreply@github.com" ]
rg070836rg.noreply@github.com
431bf58645f85ed618cba84c5bd7ac816fcfab9c
2ef98703a2a839f30b056c7d763b3998a05bb676
/MaryLambSong/MaryLambSong_Fast_Style2.py
dbd1031b3bb2f8f188ab52f23f42095190d1d107
[ "MIT" ]
permissive
melwyncarlo/SineWaveMusic
fc0b9cf206b8820a5eae231665f5da93820ae76e
2c5d5e99e3daa5b881e880e8db79dcd62b5bab3b
refs/heads/main
2023-04-18T02:37:36.144219
2021-05-05T14:43:22
2021-05-05T14:43:22
362,060,711
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
# Copyright 2021 Melwyn Francis Carlo import numpy as np import wavio amplitude = 1 samplerate = 22050 notenameslist = ["c4", "d", "e", "f", "g", "a", "b", "c5"] notenumberslist = [40, 42, 44, 45, 47, 49, 51, 52] def notefrequency(notenumber): return (np.power(2, (notenumber-49)/12) * 440) def generateaudio(notesarray): y = 0 sampleduration = int(len(notesarray) / 2) + 1 # Set the horizonal axis, t (or x) t = np.linspace(0, sampleduration, sampleduration * samplerate, \ endpoint=False) for i, noteelem in enumerate(notesarray): # Set the sine wave audio function y=f(x) if noteelem != "": y = y + ( amplitude * np.sin(2 * np.pi * \ notefrequency(notenumberslist[notenameslist.index(noteelem)]) * t) * \ np.exp( -15 * (( (np.sign((2*t)-i) * (abs((2*t)-i) ** 0.2)) - 0.5) ** 2) ) ) # Create the *.wav audio file wavio.write("MaryLambSong_Fast_Style2.wav", y, samplerate, sampwidth=3) mary_lamb_notes = ["e", "d", "c4", "d", "e", "e", "e", "", "d", "d", "d", "", \ "e", "e", "e", "", "e", "d", "c4", "d", "e", "e", "e", "c4", "d", "d", "e", \ "d", "c4", ""] generateaudio(mary_lamb_notes)
[ "melwyncarlo@gmail.com" ]
melwyncarlo@gmail.com
24a170eea5b390dd3c88d3b59266038eefe8f04d
6ce8bec457edf5405964e15449c16cf0a6c0905e
/dashboard/migrations/0013_auto_20150528_1536.py
0d813fdcb21d7d8ac6f1a7acc0f7df3ff49efbcc
[]
no_license
DhavalKapil/frozen
a4cb9f7d88b5efbe71a29ffde42547e5cd13c35d
ba75018e3f9de0f3dca656a234f6133cf52ccbb1
refs/heads/master
2021-01-15T18:21:30.869787
2015-06-12T08:58:02
2015-06-12T08:58:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
588
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import datetime class Migration(migrations.Migration): dependencies = [ ('dashboard', '0012_auto_20150528_1531'), ] operations = [ migrations.RemoveField( model_name='ip', name='last_access', ), migrations.AddField( model_name='ip', name='last_fetched', field=models.DateTimeField(default=datetime.datetime(1970, 1, 1, 0, 0), verbose_name=b'last fetched'), ), ]
[ "adiitya.adda@gmail.com" ]
adiitya.adda@gmail.com
d6444830907ee1927497602fb48ab4c8a8dd67ed
5c6b17ee3a9a33637efd864063b95cc13b1ee765
/data_science_projects/ML-iris_data/model-building/irisdata-analysis-model.py
805a69ff8ebe830d74b92fe5273543daa7c9f761
[]
no_license
Zenawi777/machinelearning
c2d183d390bf3354e052997db4d16887051120d0
6d5cb6345c4ab5f16c5cfe2030a476c3f1e31280
refs/heads/master
2020-03-22T14:11:26.898866
2019-08-07T20:20:04
2019-08-07T20:20:04
140,159,697
0
0
null
null
null
null
UTF-8
Python
false
false
916
py
# This script import iris data from a file and parses the data for analysis import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from matplotlib import colors # Import data from a file df = pd.read_csv('iris-data-copy.txt',header=0,sep=',',usecols=range(4)) cmap = colors.LinearSegmentedColormap( 'red_blue_classes', {'red': [(0, 1, 1), (1, 0.7, 0.7)], 'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue': [(0, 0.7, 0.7), (1, 1, 1)]}) plt.cm.register_cmap(cmap=cmap) for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # Linear Discriminant Analysis lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) y_pred = lda.fit(X, y).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) plt.axis('tight')
[ "40924568+Zenawi777@users.noreply.github.com" ]
40924568+Zenawi777@users.noreply.github.com
829de61cb7b57b05162956702f809b027adfab90
0b9c28e31e23072121e2e52f68942c7c2dfeb9e8
/utils.py
8288912b03ed5e150a9f414d6db6d102f052a7a2
[]
no_license
ABUISSON/bonbouquins
e63cb98b3a0c8ad685d764ef0748ab7d0b965163
cb979709302345cc6b77c170e180d336a34020a9
refs/heads/master
2023-05-10T23:57:23.393273
2020-05-05T10:54:35
2020-05-05T10:54:35
261,419,617
0
0
null
2023-05-01T21:23:39
2020-05-05T09:59:35
Python
UTF-8
Python
false
false
349
py
import requests def get_goodreads_data(isbn): """This function uses goodreads API to get number of reviews and grade""" res = requests.get("https://www.goodreads.com/book/review_counts.json", params={"key": "sWSqWzJFOsXzLJL3YgNN2Q", "isbns": isbn}).json() return res['books'][0]['work_ratings_count'], res['books'][0]['average_rating']
[ "arnaud.buisson@hec.edu" ]
arnaud.buisson@hec.edu
381d20cf4408a7179a099bd817259c3d963fac83
92deb25e48540896f731a3baf7e1ccf62f35409e
/Grocery.py
b4607deedbcbef5c2d3e69c46959fa46ca048889
[]
no_license
anju-jacob15/Heroku-Project
a18fe4a3f6b4d5a0b98fb1bd7b882ea5447ee4da
7aab85734ad0c110f21a11d955248222253d9c77
refs/heads/main
2023-06-29T08:37:50.611656
2021-07-14T17:27:56
2021-07-14T17:27:56
385,549,008
0
0
null
null
null
null
UTF-8
Python
false
false
1,969
py
#!/usr/bin/env python # coding: utf-8 # In[2]: import numpy as np import pandas as pd from apyori import apriori import matplotlib.pyplot as plt from flask import Flask,request,jsonify,render_template # In[3]: data = pd.read_csv("basket.csv") # In[4]: transactions=[] for i in range(0, 14962): transactions.append([str(data.values[i,j]) for j in range(0,3)]) # In[5]: rules=apriori(transactions=transactions,min_support=0.00001,min_confidence = 0.1, min_lift=1, min_length=2, max_length=2) # In[6]: results = list(rules) len(results) # In[7]: def all1(): output="" for item in results: pair = item[0] items = [x for x in pair] if len(items) > 1: output+="\n["+items[0]+"->"+items[1]+"\tSupport: "+str(item[1])+"\tConfidence: "+str(item[2][0][2])+"\tLift: "+str(item[2][0][3])+"]\n" return output # In[8]: def specific(abc): outputArray=[] for item in results: pair = item[0] items = [x for x in pair] if(len(items) > 1 and items[0] == abc): output=items[0],items[1],str(item[1]),str(item[2][0][2]),str(item[2][0][3]) outputArray.append(items[1]) return outputArray # In[ ]: # start flask app = Flask(__name__) # render default webpage @app.route('/') def home(): return render_template('index.html') @app.route('/calculate',methods=['POST']) def calculate(): val2=request.form['value2'] if request.form['submit_button'] == 'View All Datasets': ret1=all1() return render_template('index.html',prediction_test1='Following is the output {}'.format(ret1)) if request.form['submit_button'] == 'Submit': ret2=specific(val2) return render_template('index.html',prediction_test2='Following is the output {}'.format(ret2)) return if __name__ == '__main__': app.run(debug=True) # In[ ]:
[ "noreply@github.com" ]
anju-jacob15.noreply@github.com
64b12d49a26a0628242f870670d9e5d34e02cb5e
f850e0f75a76c500f5ba8a9ab6fa6d5f40d22b23
/pyecharts_demo/demos/Bar/multiple_y_axes.py
e006b619f9172a4af780cb1631e85e41c4e503b7
[ "MIT" ]
permissive
jay20161013/pywebio-chart-gallery
805afa2643b0d330a4a2f80f1e0a8827e8f61afe
11fd8a70b2e9ff5482cf5924b110a11f3469edfc
refs/heads/master
2023-03-20T01:58:30.979109
2021-03-18T12:48:31
2021-03-18T12:48:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,851
py
from pywebio.output import put_html import pyecharts.options as opts from pyecharts.charts import Bar, Line """ Gallery 使用 pyecharts 1.0.0 参考地址: https://www.echartsjs.com/examples/editor.html?c=multiple-y-axis 目前无法实现的功能: 1、暂无 """ colors = ["#5793f3", "#d14a61", "#675bba"] x_data = ["1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月"] legend_list = ["蒸发量", "降水量", "平均温度"] evaporation_capacity = [ 2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3, ] rainfall_capacity = [ 2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3, ] average_temperature = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2] bar = ( Bar(init_opts=opts.InitOpts(width="1260px", height="720px")) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="蒸发量", yaxis_data=evaporation_capacity, yaxis_index=0, color=colors[1], ) .add_yaxis( series_name="降水量", yaxis_data=rainfall_capacity, yaxis_index=1, color=colors[0] ) .extend_axis( yaxis=opts.AxisOpts( name="蒸发量", type_="value", min_=0, max_=250, position="right", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[1]) ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ) ) .extend_axis( yaxis=opts.AxisOpts( type_="value", name="温度", min_=0, max_=25, position="left", axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[2]) ), axislabel_opts=opts.LabelOpts(formatter="{value} °C"), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ) ) .set_global_opts( yaxis_opts=opts.AxisOpts( type_="value", name="降水量", min_=0, max_=250, position="right", offset=80, axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(color=colors[0]) ), axislabel_opts=opts.LabelOpts(formatter="{value} ml"), ), tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"), ) ) line = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="平均温度", y_axis=average_temperature, yaxis_index=2, color=colors[2] ) ) put_html(bar.overlap(line).render_notebook())
[ "wang0.618@qq.com" ]
wang0.618@qq.com
1ac8baab2abb8dd6a74ac797074a3aa84bd0c1b1
c43e3e922942c0a5fe4222c3889d6a433d40ba0f
/code.py
e2de647bebb1eee1fbd2af1d2edfb9502cf72e75
[]
no_license
pencilcheck/news-gen
ae6a8ce61c016ac2020acb64234fa062ac3197db
f3bf66b697531be147887ba0630518a283b8b867
refs/heads/master
2021-01-19T08:12:23.200742
2009-09-20T17:24:58
2009-09-20T17:24:58
32,120,599
0
0
null
null
null
null
UTF-8
Python
false
false
2,209
py
import web import simplejson as sjson import news_wrapper import YQL import re import os import shutil import glob render = web.template.render('templates/') urls = ( '/', 'index', '/gen_news', 'gen_news', '/form_test', 'form_test', '/newspdf.json', 'newspdf', '/test', 'test' ) app = web.application(urls, globals()) class index: def GET(self): return render.index() class test: def GET(self): return render.test() class form_test: def POST(self): i = web.input(json=None) if i.json: return i.json else: return "Ahh, I know nothing!" class gen_news: def POST(self): i = web.input(json=None) if i.json: j = sjson.loads(i.json) topics = j['topics'].split(',') num_articles = int(j['numarts']) / len(topics) news_t = [] for topic in topics: s = YQL.searchNews(topic) ob_j = sjson.loads(re.sub(r'"result":({[^}]+})', r'"result":[\1]', s)) for i in xrange(num_articles): news_t.append((ob_j['query']['results']['result'][i]['title'], ob_j['query']['results']['result'][i]['url'])) (f_stub, f_name) = news_wrapper.gen_latex(j['title'], int(j['numcols']), news_t) os.system('pdflatex '+f_name) shutil.copyfile(f_stub+'.pdf', 'static/'+f_stub+'.pdf') os.system('convert -density 250 '+'static/'+f_stub+'.pdf static/'+f_stub+'.png') #return 'convert '+'static\\'+f_stub+'.pdf static\\news'+'.png' k = glob.glob('static/'+f_stub+'*.png') u = [] for i in k: u.append(re.sub("\\\\", '/', i)) u = ['static/'+f_stub+'.pdf'] + u return sjson.dumps(u) #return sjson.dumps(['static/'+f_stub+'.pdf', "static/"+f_stub+"-0.png", "static/"+f_stub+"-1.png"]) #return [].append class newspdf: def GET(self): print '{"page": "/static/pdf_xyz123-1.png"}, {"page": "/static/pdf_xyz123-2.png"}' if __name__ == "__main__": app.run()
[ "koshroy@94dc41b0-a5a8-11de-b195-ab392a2a73f5" ]
koshroy@94dc41b0-a5a8-11de-b195-ab392a2a73f5
f2efe90e68e45d0b74b1d73ab51d091eb4d258aa
5c5b8333f80d6541c38b245f4041a0bbe1caa3e2
/main.py
3d4fc4ed9a9855775b936b04114ec01c722c13be
[]
no_license
DrSpooglemon/StopWatch
2405ab999816571d600d876c653803493c1aae85
63748ab855f3842fe619fa0bae8fa6639a5a8048
refs/heads/main
2023-08-28T22:23:49.672638
2021-11-02T14:39:10
2021-11-02T14:39:10
423,916,580
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
#!/usr/bin/python3 from kivy.app import App from screens import StopWatchScreen class StopWatchApp(App): def build(self): self.screen = StopWatchScreen() return self.screen def on_stop(self): self.screen.on_close() if __name__ == '__main__': StopWatchApp().run()
[ "spooglemon@gmail.com" ]
spooglemon@gmail.com
e37ae19a25ab11fbbe322946523540b29fe7a618
fc33ec4fd149843556442ae420547a294509e411
/ros/pr2_commander/src/pr2_commander/srv/_Give.py
87eae0392ef8680cb31b893912c77a0fb23b1663
[]
no_license
majunfu/essential
317179e5d39bcf1327c29b769933326367456035
d1f4de29c3188a7864c2bc01c09b09d182f7426a
refs/heads/master
2021-01-14T08:54:41.919316
2015-06-02T21:39:19
2015-06-02T21:39:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,649
py
"""autogenerated by genpy from pr2_commander/GiveRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GiveRequest(genpy.Message): _md5sum = "2ac5db510c2f9135f545febefbebd09b" _type = "pr2_commander/GiveRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """bool arm """ __slots__ = ['arm'] _slot_types = ['bool'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: arm :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GiveRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.arm is None: self.arm = False else: self.arm = False def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_struct_B.pack(self.arm)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 1 (self.arm,) = _struct_B.unpack(str[start:end]) self.arm = bool(self.arm) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_struct_B.pack(self.arm)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 1 (self.arm,) = _struct_B.unpack(str[start:end]) self.arm = bool(self.arm) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_B = struct.Struct("<B") """autogenerated by genpy from pr2_commander/GiveResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class GiveResponse(genpy.Message): _md5sum = "358e233cde0c8a8bcfea4ce193f8fc15" _type = "pr2_commander/GiveResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """bool success """ __slots__ = ['success'] _slot_types = ['bool'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: success :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(GiveResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.success is None: self.success = False else: self.success = False def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_struct_B.pack(self.success)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 1 (self.success,) = _struct_B.unpack(str[start:end]) self.success = bool(self.success) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_struct_B.pack(self.success)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 1 (self.success,) = _struct_B.unpack(str[start:end]) self.success = bool(self.success) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_B = struct.Struct("<B") class Give(object): _type = 'pr2_commander/Give' _md5sum = 'ab6b64f88e9cbd725b6aa8a8fbe26f94' _request_class = GiveRequest _response_class = GiveResponse
[ "gmanfred@laas.fr" ]
gmanfred@laas.fr
1e612de0ff21a5d54ff8d905a3d7e7e5f7510b58
08ea46c0a9fb71ef222cf6afa2e9094f5663dcfb
/pvactools/tools/pvacbind/identify_problematic_amino_acids.py
fb5a4cb95dae0fe95093e0e63171cb4c66f08daf
[ "BSD-3-Clause-Clear" ]
permissive
griffithlab/pVACtools
e358919eee76100f79dbe8d40d02b3fce8b227ac
3317d2c18e82edb5ea183ae09820beb68c39d256
refs/heads/master
2023-08-09T15:42:06.725426
2023-08-09T14:28:44
2023-08-09T14:28:44
102,625,109
124
64
BSD-3-Clause-Clear
2023-09-08T14:17:22
2017-09-06T15:23:04
Python
UTF-8
Python
false
false
484
py
import sys import argparse import tempfile from pvactools.lib.identify_problematic_amino_acids import IdentifyProblematicAminoAcids def define_parser(): return IdentifyProblematicAminoAcids.parser('pvacbind') def main(args_input = sys.argv[1:]): parser = define_parser() args = parser.parse_args(args_input) IdentifyProblematicAminoAcids(args.input_file, args.output_file, args.problematic_amino_acids, 'pVACbind').execute() if __name__ == "__main__": main()
[ "susanna.kiwala@wustl.edu" ]
susanna.kiwala@wustl.edu
13a79070e4b920cd6a009687694ea439482790b6
d4c6c5f42bc9d92b4cf67d936ee19ca9eb8e242d
/server/predict.py
45c4a79277e023aab9d6accbc566ab2f478d00d7
[ "MIT" ]
permissive
woonzh/image_capture
c6487995b692db51ddb9d13393db596a8f1499eb
2361d0d006babf77e23c7ddd956079c1cd52f793
refs/heads/master
2020-05-17T06:21:26.304323
2019-04-26T04:37:07
2019-04-26T04:37:07
183,557,026
0
0
null
null
null
null
UTF-8
Python
false
false
2,837
py
import os import face_recognition_api import pickle import numpy as np import pandas as pd def get_prediction_images(prediction_dir): files = [x[2] for x in os.walk(prediction_dir)][0] l = [] exts = [".jpg", ".jpeg", ".png"] for file in files: _, ext = os.path.splitext(file) if ext.lower() in exts: l.append(os.path.join(prediction_dir, file)) return l def main(): fname = 'classifier.pkl' prediction_dir = './test-images' encoding_file_path = './encoded-images-data.csv' df = pd.read_csv(encoding_file_path) full_data = np.array(df.astype(float).values.tolist()) # Extract features and labels # remove id column (0th column) X = np.array(full_data[:, 1:-1]) y = np.array(full_data[:, -1:]) if os.path.isfile(fname): with open(fname, 'rb') as f: (le, clf) = pickle.load(f) else: print('\x1b[0;37;43m' + "Classifier '{}' does not exist".format(fname) + '\x1b[0m') quit() for image_path in get_prediction_images(prediction_dir): # print colorful text with image name print('\x1b[6;30;42m' + "=====Predicting faces in '{}'=====".format(image_path) + '\x1b[0m') img = face_recognition_api.load_image_file(image_path) X_faces_loc = face_recognition_api.face_locations(img) faces_encodings = face_recognition_api.face_encodings(img, known_face_locations=X_faces_loc) print("Found {} faces in the image".format(len(faces_encodings))) closest_distances = clf.kneighbors(faces_encodings, n_neighbors=1) is_recognized = [closest_distances[0][i][0] <= 0.5 for i in range(len(X_faces_loc))] # store=[] # # for pred, loc, rec in zip(clf.predict(faces_encodings), X_faces_loc, is_recognized): # a=le.inverse_transform(int(pred)).title() # b=loc # # if rec: # store.append([a,b]) # else: # store.append("unknown", loc) # predict classes and cull classifications that are not with high confidence predictions = [(le.inverse_transform([int(pred)])[0], loc) if rec else ("Unknown", loc) for pred, loc, rec in zip(clf.predict(faces_encodings), X_faces_loc, is_recognized)] print(predictions) # for face_encoding in faces_encodings: # face_encoding = face_encoding.reshape(1, -1) # # predictions = clf.predict_proba(face_encoding).ravel() # maxI = np.argmax(predictions) # person = le.inverse_transform(maxI) # confidence = predictions[maxI] # print("Predict {} with {:.2f} confidence.".format(person, confidence)) print()
[ "xuyanru516@pingan.com.cn" ]
xuyanru516@pingan.com.cn
ba091c1a6d2618478241461ac84ca3223dddf073
2e93cb33f4a4e946635031c608d9b693ef10fde1
/Python/Py_ex1/list7.py
bb049b7c4d090094684ee2d6252314ab70ce27df
[]
no_license
kw78999/MyStudy
34b5718125a30f6835056f02c716b5d2d6e84472
adb34fc5a423c6ae5761a404de1157fc95b93047
refs/heads/main
2023-04-11T00:44:28.668482
2021-04-23T05:11:00
2021-04-23T05:11:00
305,602,182
1
0
null
null
null
null
UTF-8
Python
false
false
111
py
import random lotto = set() cnt2 = 0 for i in range(6): lotto.add(random.randint(1,45) print(lotto)
[ "kw78999@naver.com" ]
kw78999@naver.com
222e0833d388b0280d65ff78eb7ee790a0581964
a9e3f3ad54ade49c19973707d2beb49f64490efd
/Part-03-Understanding-Software-Crafting-Your-Own-Tools/models/edx-platform/common/djangoapps/student/role_helpers.py
ffe0f2c9f20f8f9d2d6244b6ab63b737d5bbcf22
[ "AGPL-3.0-only", "AGPL-3.0-or-later", "MIT" ]
permissive
luque/better-ways-of-thinking-about-software
8c3dda94e119f0f96edbfe5ba60ca6ec3f5f625d
5809eaca7079a15ee56b0b7fcfea425337046c97
refs/heads/master
2021-11-24T15:10:09.785252
2021-11-22T12:14:34
2021-11-22T12:14:34
163,850,454
3
1
MIT
2021-11-22T12:12:31
2019-01-02T14:21:30
JavaScript
UTF-8
Python
false
false
1,412
py
""" Helpers for student roles """ from openedx.core.djangoapps.django_comment_common.models import ( FORUM_ROLE_ADMINISTRATOR, FORUM_ROLE_COMMUNITY_TA, FORUM_ROLE_GROUP_MODERATOR, FORUM_ROLE_MODERATOR, Role ) from common.djangoapps.student.roles import ( CourseBetaTesterRole, CourseInstructorRole, CourseStaffRole, GlobalStaff, OrgInstructorRole, OrgStaffRole ) def has_staff_roles(user, course_key): """ Return true if a user has any of the following roles Staff, Instructor, Beta Tester, Forum Community TA, Forum Group Moderator, Forum Moderator, Forum Administrator """ forum_roles = [FORUM_ROLE_COMMUNITY_TA, FORUM_ROLE_GROUP_MODERATOR, FORUM_ROLE_MODERATOR, FORUM_ROLE_ADMINISTRATOR] is_staff = CourseStaffRole(course_key).has_user(user) is_instructor = CourseInstructorRole(course_key).has_user(user) is_beta_tester = CourseBetaTesterRole(course_key).has_user(user) is_org_staff = OrgStaffRole(course_key.org).has_user(user) is_org_instructor = OrgInstructorRole(course_key.org).has_user(user) is_global_staff = GlobalStaff().has_user(user) has_forum_role = Role.user_has_role_for_course(user, course_key, forum_roles) if any([is_staff, is_instructor, is_beta_tester, is_org_staff, is_org_instructor, is_global_staff, has_forum_role]): return True return False
[ "rafael.luque@osoco.es" ]
rafael.luque@osoco.es
42da6266333064addf16717b63ea75a0c5172536
b09a3f8ba43d7a1500994228ffc40cfc7eff3ec8
/packages/influxdb-2.4.0/influxdb/client.py
007115fc938e0766fd6c4349b8e01c3bffe32d6b
[]
no_license
kotavi/robotframework_tests
a2641ecd1797ea87468b63272cfdd0d615845c4e
c922dd858a4bf0885bfe847c0e83ebac3095e0b5
refs/heads/master
2020-05-27T22:22:00.746762
2017-03-01T20:55:38
2017-03-01T20:55:38
83,595,785
1
0
null
null
null
null
UTF-8
Python
false
false
28,635
py
# -*- coding: utf-8 -*- """ Python client for InfluxDB """ from functools import wraps import json import socket import random import requests import requests.exceptions from sys import version_info from influxdb.resultset import ResultSet try: xrange except NameError: xrange = range if version_info[0] == 3: from urllib.parse import urlparse else: from urlparse import urlparse class InfluxDBClientError(Exception): """Raised when an error occurs in the request.""" def __init__(self, content, code): if isinstance(content, type(b'')): content = content.decode('UTF-8', errors='replace') super(InfluxDBClientError, self).__init__( "{0}: {1}".format(code, content)) self.content = content self.code = code class InfluxDBServerError(Exception): """Raised when a server error occurs.""" def __init__(self, content): super(InfluxDBServerError, self).__init__(content) class InfluxDBClient(object): """The :class:`~.InfluxDBClient` object holds information necessary to connect to InfluxDB. Requests can be made to InfluxDB directly through the client. :param host: hostname to connect to InfluxDB, defaults to 'localhost' :type host: str :param port: port to connect to InfluxDB, defaults to 8086 :type port: int :param username: user to connect, defaults to 'root' :type username: str :param password: password of the user, defaults to 'root' :type password: str :param database: database name to connect to, defaults to None :type database: str :param ssl: use https instead of http to connect to InfluxDB, defaults to False :type ssl: bool :param verify_ssl: verify SSL certificates for HTTPS requests, defaults to False :type verify_ssl: bool :param timeout: number of seconds Requests will wait for your client to establish a connection, defaults to None :type timeout: int :param use_udp: use UDP to connect to InfluxDB, defaults to False :type use_udp: int :param udp_port: UDP port to connect to InfluxDB, defaults to 4444 :type udp_port: int """ def __init__(self, host='localhost', port=8086, username='root', password='root', database=None, ssl=False, verify_ssl=False, timeout=None, use_udp=False, udp_port=4444, ): """Construct a new InfluxDBClient object.""" self._host = host self._port = port self._username = username self._password = password self._database = database self._timeout = timeout self._verify_ssl = verify_ssl self.use_udp = use_udp self.udp_port = udp_port self._session = requests.Session() if use_udp: self.udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self._scheme = "http" if ssl is True: self._scheme = "https" self._baseurl = "{0}://{1}:{2}".format( self._scheme, self._host, self._port) self._headers = { 'Content-type': 'application/json', 'Accept': 'text/plain'} @staticmethod def from_DSN(dsn, **kwargs): """Return an instance of :class:`~.InfluxDBClient` from the provided data source name. Supported schemes are "influxdb", "https+influxdb" and "udp+influxdb". Parameters for the :class:`~.InfluxDBClient` constructor may also be passed to this method. :param dsn: data source name :type dsn: string :param kwargs: additional parameters for `InfluxDBClient` :type kwargs: dict :raises ValueError: if the provided DSN has any unexpected values :Example: >>> cli = InfluxDBClient.from_DSN('influxdb://username:password@\ localhost:8086/databasename', timeout=5) >>> type(cli) <class 'influxdb.client.InfluxDBClient'> >>> cli = InfluxDBClient.from_DSN('udp+influxdb://username:pass@\ localhost:8086/databasename', timeout=5, udp_port=159) >>> print('{0._baseurl} - {0.use_udp} {0.udp_port}'.format(cli)) http://localhost:8086 - True 159 .. note:: parameters provided in `**kwargs` may override dsn parameters .. note:: when using "udp+influxdb" the specified port (if any) will be used for the TCP connection; specify the UDP port with the additional `udp_port` parameter (cf. examples). """ init_args = {} conn_params = urlparse(dsn) scheme_info = conn_params.scheme.split('+') if len(scheme_info) == 1: scheme = scheme_info[0] modifier = None else: modifier, scheme = scheme_info if scheme != 'influxdb': raise ValueError('Unknown scheme "{}".'.format(scheme)) if modifier: if modifier == 'udp': init_args['use_udp'] = True elif modifier == 'https': init_args['ssl'] = True else: raise ValueError('Unknown modifier "{}".'.format(modifier)) if conn_params.hostname: init_args['host'] = conn_params.hostname if conn_params.port: init_args['port'] = conn_params.port if conn_params.username: init_args['username'] = conn_params.username if conn_params.password: init_args['password'] = conn_params.password if conn_params.path and len(conn_params.path) > 1: init_args['database'] = conn_params.path[1:] init_args.update(kwargs) return InfluxDBClient(**init_args) def switch_database(self, database): """Change the client's database. :param database: the name of the database to switch to :type database: str """ self._database = database def switch_user(self, username, password): """Change the client's username. :param username: the username to switch to :type username: str :param password: the password for the username :type password: str """ self._username = username self._password = password def request(self, url, method='GET', params=None, data=None, expected_response_code=200): """Make a HTTP request to the InfluxDB API. :param url: the path of the HTTP request, e.g. write, query, etc. :type url: str :param method: the HTTP method for the request, defaults to GET :type method: str :param params: additional parameters for the request, defaults to None :type params: dict :param data: the data of the request, defaults to None :type data: str :param expected_response_code: the expected response code of the request, defaults to 200 :type expected_response_code: int :returns: the response from the request :rtype: :class:`requests.Response` :raises InfluxDBClientError: if the response code is not the same as `expected_response_code` """ url = "{0}/{1}".format(self._baseurl, url) if params is None: params = {} auth = { 'u': self._username, 'p': self._password } params.update(auth) if data is not None and not isinstance(data, str): data = json.dumps(data) # Try to send the request a maximum of three times. (see #103) # TODO (aviau): Make this configurable. for i in range(0, 3): try: response = self._session.request( method=method, url=url, params=params, data=data, headers=self._headers, verify=self._verify_ssl, timeout=self._timeout ) break except requests.exceptions.ConnectionError as e: if i < 2: continue else: raise e if response.status_code == expected_response_code: return response else: raise InfluxDBClientError(response.content, response.status_code) def write(self, data, params=None, expected_response_code=204): """Write data to InfluxDB. :param data: the data to be written :type data: dict :param params: additional parameters for the request, defaults to None :type params: dict :param expected_response_code: the expected response code of the write operation, defaults to 204 :type expected_response_code: int :returns: True, if the write operation is successful :rtype: bool """ self.request( url="write", method='POST', params=params, data=data, expected_response_code=expected_response_code ) return True def query(self, query, params={}, expected_response_code=200, database=None): """Send a query to InfluxDB. :param query: the actual query string :type query: str :param params: additional parameters for the request, defaults to {} :type params: dict :param expected_response_code: the expected status code of response, defaults to 200 :type expected_response_code: int :param database: database to query, defaults to None :type database: str :returns: the queried data :rtype: :class:`~.ResultSet` """ params['q'] = query params['db'] = database or self._database response = self.request( url="query", method='GET', params=params, data=None, expected_response_code=expected_response_code ) data = response.json() return ResultSet(data) def write_points(self, points, time_precision=None, database=None, retention_policy=None, tags=None, batch_size=None, ): """Write to multiple time series names. :param points: the list of points to be written in the database :type points: list of dictionaries, each dictionary represents a point :param time_precision: Either 's', 'm', 'ms' or 'u', defaults to None :type time_precision: str :param database: the database to write the points to. Defaults to the client's current database :type database: str :param tags: a set of key-value pairs associated with each point. Both keys and values must be strings. These are shared tags and will be merged with point-specific tags, defaults to None :type tags: dict :param retention_policy: the retention policy for the points. Defaults to None :type retention_policy: str :param batch_size: value to write the points in batches instead of all at one time. Useful for when doing data dumps from one database to another or when doing a massive write operation, defaults to None :type batch_size: int :returns: True, if the operation is successful :rtype: bool .. note:: if no retention policy is specified, the default retention policy for the database is used """ if batch_size and batch_size > 0: for batch in self._batches(points, batch_size): self._write_points(points=batch, time_precision=time_precision, database=database, retention_policy=retention_policy, tags=tags) return True else: return self._write_points(points=points, time_precision=time_precision, database=database, retention_policy=retention_policy, tags=tags) def _batches(self, iterable, size): for i in xrange(0, len(iterable), size): yield iterable[i:i + size] def _write_points(self, points, time_precision, database, retention_policy, tags): if time_precision not in ['n', 'u', 'ms', 's', 'm', 'h', None]: raise ValueError( "Invalid time precision is given. " "(use 'n', 'u', 'ms', 's', 'm' or 'h')") if self.use_udp and time_precision and time_precision != 's': raise ValueError( "InfluxDB only supports seconds precision for udp writes" ) data = { 'points': points } if time_precision: data['precision'] = time_precision if retention_policy: data['retentionPolicy'] = retention_policy if tags: data['tags'] = tags data['database'] = database or self._database if self.use_udp: self.send_packet(data) else: self.write( data=data, expected_response_code=204 ) return True def get_list_database(self): """Get the list of databases in InfluxDB. :returns: all databases in InfluxDB :rtype: list of dictionaries :Example: >>> dbs = client.get_list_database() >>> dbs [{u'name': u'db1'}, {u'name': u'db2'}, {u'name': u'db3'}] """ return list(self.query("SHOW DATABASES")['databases']) def create_database(self, dbname): """Create a new database in InfluxDB. :param dbname: the name of the database to create :type dbname: str """ self.query("CREATE DATABASE %s" % dbname) def drop_database(self, dbname): """Drop a database from InfluxDB. :param dbname: the name of the database to drop :type dbname: str """ self.query("DROP DATABASE %s" % dbname) def create_retention_policy(self, name, duration, replication, database=None, default=False): """Create a retention policy for a database. :param name: the name of the new retention policy :type name: str :param duration: the duration of the new retention policy. Durations such as 1h, 90m, 12h, 7d, and 4w, are all supported and mean 1 hour, 90 minutes, 12 hours, 7 day, and 4 weeks, respectively. For infinite retention – meaning the data will never be deleted – use 'INF' for duration. The minimum retention period is 1 hour. :type duration: str :param replication: the replication of the retention policy :type replication: str :param database: the database for which the retention policy is created. Defaults to current client's database :type database: str :param default: whether or not to set the policy as default :type default: bool """ query_string = \ "CREATE RETENTION POLICY %s ON %s " \ "DURATION %s REPLICATION %s" % \ (name, database or self._database, duration, replication) if default is True: query_string += " DEFAULT" self.query(query_string) def alter_retention_policy(self, name, database=None, duration=None, replication=None, default=None): """Mofidy an existing retention policy for a database. :param name: the name of the retention policy to modify :type name: str :param database: the database for which the retention policy is modified. Defaults to current client's database :type database: str :param duration: the new duration of the existing retention policy. Durations such as 1h, 90m, 12h, 7d, and 4w, are all supported and mean 1 hour, 90 minutes, 12 hours, 7 day, and 4 weeks, respectively. For infinite retention – meaning the data will never be deleted – use 'INF' for duration. The minimum retention period is 1 hour. :type duration: str :param replication: the new replication of the existing retention policy :type replication: str :param default: whether or not to set the modified policy as default :type default: bool .. note:: at least one of duration, replication, or default flag should be set. Otherwise the operation will fail. """ query_string = ( "ALTER RETENTION POLICY {} ON {}" ).format(name, database or self._database) if duration: query_string += " DURATION {}".format(duration) if replication: query_string += " REPLICATION {}".format(replication) if default is True: query_string += " DEFAULT" self.query(query_string) def get_list_retention_policies(self, database=None): """Get the list of retention policies for a database. :param database: the name of the database, defaults to the client's current database :type database: str :returns: all retention policies for the database :rtype: list of dictionaries :Example: >>> ret_policies = client.get_list_retention_policies('my_db') >>> ret_policies [{u'default': True, u'duration': u'0', u'name': u'default', u'replicaN': 1}] """ rsp = self.query( "SHOW RETENTION POLICIES %s" % (database or self._database) ) return list(rsp['results']) def get_list_series(self, database=None): """Get the list of series for a database. :param database: the name of the database, defaults to the client's current database :type database: str :returns: all series in the specified database :rtype: list of dictionaries :Example: >>> series = client.get_list_series('my_database') >>> series [{'name': u'cpu_usage', 'tags': [{u'_id': 1, u'host': u'server01', u'region': u'us-west'}]}] """ rsp = self.query("SHOW SERIES", database=database) series = [] for serie in rsp.items(): series.append( { "name": serie[0][0], "tags": list(serie[1]) } ) return series def get_list_users(self): """Get the list of all users in InfluxDB. :returns: all users in InfluxDB :rtype: list of dictionaries :Example: >>> users = client.get_list_users() >>> users [{u'admin': True, u'user': u'user1'}, {u'admin': False, u'user': u'user2'}, {u'admin': False, u'user': u'user3'}] """ return list(self.query("SHOW USERS")["results"]) def create_user(self, username, password): """Create a new user in InfluxDB :param username: the new username to create :type username: str :param password: the password for the new user :type password: str """ text = "CREATE USER {} WITH PASSWORD '{}'".format(username, password) self.query(text) def drop_user(self, username): """Drop an user from InfluxDB. :param username: the username to drop :type username: str """ text = "DROP USER {}".format(username) self.query(text) def set_user_password(self, username, password): """Change the password of an existing user. :param username: the username who's password is being changed :type username: str :param password: the new password for the user :type password: str """ text = "SET PASSWORD FOR {} = '{}'".format(username, password) self.query(text) def delete_series(self, id, database=None): """Delete series from a database. :param id: the id of the series to be deleted :type id: int :param database: the database from which the series should be deleted, defaults to client's current database :type database: str """ database = database or self._database self.query('DROP SERIES %s' % id, database=database) def grant_admin_privileges(self, username): """Grant cluster administration privileges to an user. :param username: the username to grant privileges to :type username: str .. note:: Only a cluster administrator can create/ drop databases and manage users. """ text = "GRANT ALL PRIVILEGES TO {}".format(username) self.query(text) def revoke_admin_privileges(self, username): """Revoke cluster administration privileges from an user. :param username: the username to revoke privileges from :type username: str .. note:: Only a cluster administrator can create/ drop databases and manage users. """ text = "REVOKE ALL PRIVILEGES FROM {}".format(username) self.query(text) def grant_privilege(self, privilege, database, username): """Grant a privilege on a database to an user. :param privilege: the privilege to grant, one of 'read', 'write' or 'all'. The string is case-insensitive :type privilege: str :param database: the database to grant the privilege on :type database: str :param username: the username to grant the privilege to :type username: str """ text = "GRANT {} ON {} TO {}".format(privilege, database, username) self.query(text) def revoke_privilege(self, privilege, database, username): """Revoke a privilege on a database from an user. :param privilege: the privilege to revoke, one of 'read', 'write' or 'all'. The string is case-insensitive :type privilege: str :param database: the database to revoke the privilege on :type database: str :param username: the username to revoke the privilege from :type username: str """ text = "REVOKE {} ON {} FROM {}".format(privilege, database, username) self.query(text) def send_packet(self, packet): """Send an UDP packet. :param packet: the packet to be sent :type packet: dict """ data = json.dumps(packet) byte = data.encode('utf-8') self.udp_socket.sendto(byte, (self._host, self.udp_port)) class InfluxDBClusterClient(object): """The :class:`~.InfluxDBClusterClient` is the client for connecting to a cluster of InfluxDB servers. It's basically a proxy to multiple InfluxDBClients. :param hosts: all hosts to be included in the cluster, each of which should be in the format (address, port), e.g. [('127.0.0.1', 8086), ('127.0.0.1', 9096)]. Defaults to [('localhost', 8086)] :type hosts: list of tuples :param shuffle: whether the queries should hit servers evenly(randomly), defaults to True :type shuffle: bool :param client_base_class: the base class for all clients in the cluster. This parameter is used to enable the support of different client types. Defaults to :class:`~.InfluxDBClient` """ def __init__(self, hosts=[('localhost', 8086)], username='root', password='root', database=None, ssl=False, verify_ssl=False, timeout=None, use_udp=False, udp_port=4444, shuffle=True, client_base_class=InfluxDBClient, ): self.clients = [] self.bad_clients = [] # Corresponding server has failures in history self.shuffle = shuffle for h in hosts: self.clients.append(client_base_class(host=h[0], port=h[1], username=username, password=password, database=database, ssl=ssl, verify_ssl=verify_ssl, timeout=timeout, use_udp=use_udp, udp_port=udp_port)) for method in dir(client_base_class): if method.startswith('_'): continue orig_func = getattr(client_base_class, method) if not callable(orig_func): continue setattr(self, method, self._make_func(orig_func)) @staticmethod def from_DSN(dsn, client_base_class=InfluxDBClient, shuffle=True, **kwargs): """Same as :meth:`~.InfluxDBClient.from_DSN`, but supports multiple servers. :param shuffle: whether the queries should hit servers evenly(randomly), defaults to True :type shuffle: bool :param client_base_class: the base class for all clients in the cluster. This parameter is used to enable the support of different client types. Defaults to :class:`~.InfluxDBClient` :Example: >>> cluster = InfluxDBClusterClient.from_DSN('influxdb://usr:pwd\ @host1:8086,usr:pwd@host2:8086/db_name', timeout=5) >>> type(cluster) <class 'influxdb.client.InfluxDBClusterClient'> >>> cluster.clients [<influxdb.client.InfluxDBClient at 0x7feb480295d0>, <influxdb.client.InfluxDBClient at 0x7feb438ec950>] """ conn_params = urlparse(dsn) netlocs = conn_params.netloc.split(',') cluster_client = InfluxDBClusterClient( hosts=[], client_base_class=client_base_class, shuffle=shuffle, **kwargs) for netloc in netlocs: single_dsn = '%(scheme)s://%(netloc)s%(path)s' % ( {'scheme': conn_params.scheme, 'netloc': netloc, 'path': conn_params.path} ) cluster_client.clients.append(client_base_class.from_DSN( single_dsn, **kwargs)) return cluster_client def _make_func(self, orig_func): @wraps(orig_func) def func(*args, **kwargs): if self.shuffle: random.shuffle(self.clients) clients = self.clients + self.bad_clients for c in clients: bad_client = False try: return orig_func(c, *args, **kwargs) except InfluxDBClientError as e: # Errors caused by user's requests, re-raise raise e except Exception as e: # Errors that might caused by server failure, try another bad_client = True if c in self.clients: self.clients.remove(c) self.bad_clients.append(c) finally: if not bad_client and c in self.bad_clients: self.bad_clients.remove(c) self.clients.append(c) raise InfluxDBServerError("InfluxDB: no viable server!") return func
[ "tkorchak@mirantisits-MacBook-Pro-5.local" ]
tkorchak@mirantisits-MacBook-Pro-5.local
2ff121a31149f14fe4136ebb182c991cdd5a7f65
2d528c884121b06da5cb14ba0905fbd953c80721
/problemas/admin.py
5e2988c8df1bba0b0bbe3990bb4ad58b916cdd87
[]
no_license
edgarlatorre/dojopuzzles
d1fbf424c75ef3465279841066e9cfd22074cfea
520f69fdad4bb2b7993b384f206ab75f11f8d65e
refs/heads/master
2021-01-15T20:28:32.128110
2011-02-02T18:48:05
2011-02-02T18:48:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
from django.contrib import admin from dojopuzzles.problemas.models import Problema, ProblemaUtilizado admin.site.register(Problema) admin.site.register(ProblemaUtilizado)
[ "rennerocha@gmail.com" ]
rennerocha@gmail.com
9a7296f18544bfcc7226ab3b8ddab3d416190998
165c5ef99e6ee0cfe92f7dcfe97ea5da2b4ae2de
/app.py
22bb47e37de2e8e2b4e0dbeee355c805bf488b79
[]
no_license
kmicinski/terrible-web-app
5751ab019cbd17e9d6fb4917b1cf1154f9f3c186
8bd14efe707a06eeb653aba6897da21d17d700c0
refs/heads/master
2020-03-09T15:06:45.145599
2018-04-10T00:53:36
2018-04-10T00:53:36
128,851,687
1
0
null
null
null
null
UTF-8
Python
false
false
7,011
py
# Starter code for 311 web security in-class demos. We'll use this for # SQLi, XSS, and XSRF. # # First, install flask # pip install flask # # Then, to initialize the database, run the following: # python app.py init # Then run the app itself as: # python app.py # # Largely taken from https://gist.github.com/hackeris/fa2bfd20e6bec08c8d5240efe87d4687 import os import sqlite3 import sys from flask import Flask from flask import redirect from flask import request from flask import session from jinja2 import Template app = Flask(__name__) app.secret_key = 'schrodinger cat' DATABASE_PATH = os.path.join(os.path.dirname(__file__), 'database.db') def connect_db(): return sqlite3.connect(DATABASE_PATH) def create_tables(): conn = connect_db() cur = conn.cursor() cur.execute(''' CREATE TABLE IF NOT EXISTS user( id INTEGER PRIMARY KEY AUTOINCREMENT, username VARCHAR(32), password VARCHAR(32) )''') cur.execute(''' CREATE TABLE IF NOT EXISTS time_line( id INTEGER PRIMARY KEY AUTOINCREMENT, user_id INTEGER, content TEXT, FOREIGN KEY (`user_id`) REFERENCES `user`(`id`) )''') conn.commit() conn.close() def init_data(): users = [ ('user1', '123456'), ('user2', '123456') ] lines = [ (1, 'First Post'), (1, 'Another Post'), (2, 'Here\'s my third post'), (2, 'Last post here.') ] conn = connect_db() cur = conn.cursor() cur.executemany('INSERT INTO `user` VALUES(NULL,?,?)', users) cur.executemany('INSERT INTO `time_line` VALUES(NULL,?,?)', lines) conn.commit() conn.close() def init(): create_tables() init_data() def get_user_from_username_and_password(username, password): conn = connect_db() cur = conn.cursor() # ... cur.execute('SELECT id, username FROM `user` WHERE username=\'%s\' AND password=\'%s\'' % (username, password)) row = cur.fetchone() conn.commit() conn.close() return {'id': row[0], 'username': row[1]} if row is not None else None def create_user(username, password): conn = connect_db() cur = conn.cursor() # ... cur.execute('INSERT INTO `user` VALUES(NULL,?,?)', [username, password]) row = cur.fetchone() conn.commit() conn.close() return {'id': row[0], 'username': row[1]} if row is not None else None def get_user_from_id(uid): conn = connect_db() cur = conn.cursor() # ... cur.execute('SELECT id, username FROM `user` WHERE id=%d' % uid) row = cur.fetchone() conn.commit() conn.close() return {'id': row[0], 'username': row[1]} def create_time_line(uid, content): conn = connect_db() cur = conn.cursor() # ... stmt = 'INSERT INTO `time_line` VALUES (NULL,' + str(uid) + ",\'" + content + '\')' print(stmt) cur.executescript(stmt) row = cur.fetchone() conn.commit() conn.close() return row def get_time_lines(): conn = connect_db() cur = conn.cursor() cur.execute('SELECT id, user_id, content FROM `time_line` ORDER BY id DESC') rows = cur.fetchall() conn.commit() conn.close() return map(lambda row: {'id': row[0], 'user_id': row[1], 'content': row[2], 'username': get_user_from_id(row[1])['username']}, rows) def user_delete_time_line_of_id(uid, tid): conn = connect_db() cur = conn.cursor() cur.execute('DELETE FROM `time_line` WHERE user_id=%s AND id=%s' % (uid, tid)) conn.commit() conn.close() def render_login_page(): return ''' <div style="width: 500px; margin: 80px auto;"> <center><h1> Welcome to FakeTwitter! </h1></center> <form method="POST" style="margin: 60px auto; width: 140px;"> <p>Username: <input name="username" type="text" /></p> <p>Password: <input name="password" type="password" /></p> <p><input value="Login" type="submit" /></p> </form> <a href="/create_account">Create account</a> </div> ''' def render_create_account(): return ''' <div style="width: 500px; margin: 80px auto;"> <center><h1> Welcome to FakeTwitter! </h1></center> <p>Select your username and password</p> <form method="POST" style="margin: 60px auto; width: 140px;"> <p>Username: <input name="username" type="text" /></p> <p>Password: <input name="password" type="password" /></p> <p><input value="Login" type="submit" /></p> </form> </div> ''' def render_home_page(uid): user = get_user_from_id(uid) time_lines = get_time_lines() template = Template(''' <div style="width: 400px; margin: 80px auto; "> <h4>Logged in as {{ user['username'] }}</h4> <a href="/logout">Logout</a> <form method="POST" action="/create_time_line"> Add time line: <input type="text" name="content" /> <input type="submit" value="Submit" /> </form> <ul style="border-top: 1px solid #ccc;"> {% for line in time_lines %} <li style="border-top: 1px solid #efefef;"> <p>{{ line['content'] }} -- {{line['username']}}</p> {% if line['user_id'] == user['id'] %} <a href="/delete/time_line/{{ line['id'] }}">Delete</a> {% endif %} </li> {% endfor %} </ul> </div> ''') return template.render(user=user, time_lines=time_lines) def do_login(user): if user is not None: session['uid'] = user['id'] return redirect('/') else: return redirect('/login') @app.route('/create_account', methods=['GET', 'POST']) def create_account(): if request.method == 'GET': return render_create_account() elif request.method == 'POST': username = request.form['username'] password = request.form['password'] user = create_user(username, password) return do_login(user) @app.route('/') def index(): if 'uid' in session: return render_home_page(session['uid']) return redirect('/login') @app.route('/login', methods=['GET', 'POST']) def login(): if request.method == 'GET': return render_login_page() elif request.method == 'POST': username = request.form['username'] password = request.form['password'] user = get_user_from_username_and_password(username, password) return do_login(user) @app.route('/create_time_line', methods=['POST']) def time_line(): if 'uid' in session: uid = session['uid'] create_time_line(uid, request.form['content']) return redirect('/') @app.route('/delete/time_line/<tid>') def delete_time_line(tid): # ... user_delete_time_line_of_id(session['uid'], tid) return redirect('/') @app.route('/logout') def logout(): if 'uid' in session: session.pop('uid') return redirect('/login') if len(sys.argv) > 1 and sys.argv[1] == "init": init() exit(0) if __name__ == '__main__': app.run(debug=True)
[ "krismicinski@gmail.com" ]
krismicinski@gmail.com
d016351350bb59868b7dd83358e1456fe8da1484
f293856327d9dfdbb38238ddb904a55b9077df9e
/app.py
61c5836a3e1295d2270f2f78400862122db2994f
[]
no_license
ANSH3LL/Tasks-todo
a4038d0430f29700151fc68a7cb01c54a1d14012
d61c2335d9b2c2add782a9ff4c8f9243c9b6a30e
refs/heads/master
2020-12-09T17:40:45.432979
2020-01-12T10:26:54
2020-01-12T10:26:54
233,372,824
0
0
null
null
null
null
UTF-8
Python
false
false
2,641
py
import os import bcrypt from flask import (Flask, render_template, request, url_for, session, redirect, flash, jsonify) import database app = Flask(__name__) app.config['SECRET_KEY'] = os.urandom(32) db = database.Database('store.db') @app.route('/') def index(): return render_template('index.html') @app.route('/checkuname', methods = ['POST']) def checkuname(): uname = request.json['uname'] if db.get_user(uname): response = False else: response = True return jsonify({'availability': response}) @app.route('/signin', methods = ['POST']) def signin(): uname = request.form.get('uname') passwd = request.form.get('passwd') entry = db.get_user(uname) if entry: if bcrypt.checkpw(passwd.encode('utf-8'), entry[0].encode('utf-8')): session['uname'] = uname session['logged_in'] = True else: flash('Wrong password') else: flash('Wrong username') return redirect(url_for('index')) @app.route('/signup', methods = ['POST']) def signup(): uname = request.form.get('uname') passwd = request.form.get('passwd') pwd = bcrypt.hashpw(passwd.encode('utf-8'), bcrypt.gensalt()) success = db.new_user(uname, pwd) if not success: flash('Registration failure') else: session['uname'] = uname session['logged_in'] = True return redirect(url_for('index')) @app.route('/signout') def signout(): session['uname'] = '' session['logged_in'] = False return redirect(url_for('index')) @app.route('/gettasks') def gettasks(): if session.get('logged_in'): tasks = db.get_tasks(session['uname']) else: tasks = [] return jsonify(tasks) @app.route('/submit', methods = ['POST']) def submit(): if session.get('logged_in'): data = request.json selection = data['sel'] payload = data['pload'] if selection == 1:#new task added db.save_task(session['uname'], payload['id'], payload['text']) elif selection == 2:#task checked/unchecked db.checked_task(session['uname'], payload['id'], int(payload['checked'])) elif selection == 3:#task edited db.text_changed(session['uname'], payload['id'], payload['text']) elif selection == 4:#task deleted db.del_task(session['uname'], payload['id']) else: print 'error in tasks submission' return jsonify({'success': True}) if __name__ == '__main__': db.open_db() app.run(host = '0.0.0.0', port = 80, debug = True) db.close_db()
[ "noreply@github.com" ]
ANSH3LL.noreply@github.com
879fcdafc92b2ed903f514985a299a1d0d579ed1
f3ad34ae8cc5652ca6391ae7d7431cb933d0edda
/manage.py
1d98914f9e12799a2636f4e5d88d967d309fec05
[]
no_license
CesarHdez/web_playground
4485900ee77f1d7c2b62f76548e5fe911ee5789d
59dd17611e1286b0327b2161d8b98e5915186e12
refs/heads/master
2023-02-24T06:10:55.769253
2021-01-31T10:12:35
2021-01-31T10:12:35
317,523,177
0
0
null
null
null
null
UTF-8
Python
false
false
546
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "web_playground.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "chdez293@gmail.com" ]
chdez293@gmail.com
0e37f6d397bc4a8be4ef6ac099eba511e2fe2d58
f0632c3930dfb8fc1e96607c673c28f1704dfe6c
/SS_builder.py
9daabb1879fa24014833d07db03f41297dc27ea8
[]
no_license
koshippy/SanctuarySaver
b0de4d61bda12377293a95ba52957f40aa766d37
8b9f20f1ed9d5498a5ead66281383c0232444edc
refs/heads/master
2020-05-31T23:56:04.720034
2015-02-19T22:03:18
2015-02-19T22:03:18
30,993,331
0
0
null
null
null
null
UTF-8
Python
false
false
1,128
py
import itertools hotkeys = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{NUMPAD0}', '{NUMPAD1}', '{NUMPAD2}', '{NUMPAD3}', '{NUMPAD4}', '{NUMPAD5}', '{NUMPAD6}', '{NUMPAD7}', '{NUMPAD8}', '{NUMPAD9}', '{NUMPADMULT}', '{NUMPADADD}', '{NUMPADSUB}', '{NUMPADDIV}', '{NUMPADDOT}'] hotkey_template = ''' HotKeySet("HOTKEY_HERE", 'HOTKEY_FUNCTIONNAME') Func HOTKEY_FUNCTIONNAME() HotKeySet("HOTKEY_HERE") Send("HOTKEY_HERE") If Pause Then Sleep(20) Send("{ENTER}") EndIf HotKeySet("HOTKEY_HERE", 'HOTKEY_FUNCTIONNAME') EndFunc ''' tfile = '''Opt("WinTitleMatchMode",2) Global $rpgwindow = WinGetHandle("SanctuaryRPG: Black Edition") Global Pause = True ''' names = itertools.permutations('abcdefghi') for hotkey in hotkeys: tfile += hotkey_template.replace('HOTKEY_HERE',hotkey).replace('HOTKEY_FUNCTIONNAME',''.join(names.next())) tfile += ''' HotKeySet("{F2}", '_exit') HotKeySet("{F3}", '_pause') Func _exit() Exit EndFunc Func _pause() Pause = NOT Pause EndFunc While 1 Sleep(1000) WEnd'''
[ "kos.hippy@gmail.com" ]
kos.hippy@gmail.com
fac3834fb69212ed28fea94b9c0e01739924aa40
73db0789f8f4b6cbc111def56880bd79d03171e5
/python/bin2pybytes.py
cb8b0c6998a574cce8d4f64577141ad6f5261c3a
[ "BSD-2-Clause" ]
permissive
Matir/hacks
fa23cd28bf52234afc6d2837556263803c53ec6a
a11173ef60ff777a8a241ec5f936ee71223adceb
refs/heads/main
2023-08-16T23:37:25.261647
2023-08-15T02:37:14
2023-08-15T02:37:14
216,129,440
13
7
BSD-2-Clause
2023-08-15T02:37:15
2019-10-19T00:52:31
C
UTF-8
Python
false
false
1,469
py
#!/usr/bin/env python import argparse import sys def yield_chunks(fp, chunksize): while True: rv = fp.read(chunksize if chunksize else -1) if not rv: return None yield rv def main(argv): parser = argparse.ArgumentParser() parser.add_argument('-b', default=False, action='store_true', help='Format output as bytes instead of string.') parser.add_argument('-v', default='buf', help='Name of variable') parser.add_argument('-l', default=80, type=int, help='maximum line length') parser.add_argument( 'infile', default=sys.stdin.buffer, type=argparse.FileType('rb'), nargs='?', help='File to convert to var') parser.add_argument( 'outfile', default=sys.stdout, type=argparse.FileType('w'), nargs='?', help='File to convert to var') args = parser.parse_args(argv[1:]) min_line = len("{} += {}\"\"".format(args.v, 'b' if args.b else '')) if args.l <= min_line: chunksize = 0 else: chunksize = (args.l - min_line)//4 # 4 output chars per byte print("{} = {}\"\"".format(args.v, 'b' if args.b else ''), file=args.outfile) for chunk in yield_chunks(args.infile, chunksize): data = "".join("\\x{:02x}".format(b) for b in chunk) print("{} += {}\"{}\"".format(args.v, 'b' if args.b else '', data), file=args.outfile) if __name__ == '__main__': main(sys.argv)
[ "david@systemoverlord.com" ]
david@systemoverlord.com
7b8f453324646c6b902cb64768be52e1efd1a116
1f6b4eccb56990578524b116e0a7de9e86c4edca
/leaf_conv1d_cv.py
45b00ea8b7749a6fe4d5771b3a6ab9b69567edbf
[]
no_license
j12138/Leaf_Project
59d54c25cf22f67ddd6a3d9f5e1058fe0ba452b0
e908a2f18da4e66568eaf64f40884a58d02dc815
refs/heads/master
2022-03-21T15:56:49.697877
2019-12-02T23:03:11
2019-12-02T23:03:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,556
py
# -*- coding: utf-8 -*- """ Created on Thu Feb 22 11:05:42 2018 @author: Dongyang This script uses 10 fold cv to test the performance of this classifier on the Swedish leaf dataset. """ from sklearn.model_selection import train_test_split from keras.layers import Input, Dense, Dropout, BatchNormalization, add, Conv1D, Flatten, concatenate, MaxPooling1D, GaussianNoise from keras.models import Model, load_model from keras import backend as K from keras import optimizers, losses, utils from sklearn.preprocessing import RobustScaler, MinMaxScaler, StandardScaler, LabelEncoder, Normalizer, QuantileTransformer from sklearn.metrics import accuracy_score import numpy as np from keras.callbacks import ModelCheckpoint from keras.regularizers import l2 from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from keras.layers.advanced_activations import PReLU #------------------------------------------------------------------------------ # Read data #------------------------------------------------------------------------------ target_dir = 'data//leaf//' batchsize = 32 epochs = 60 cls = 15 size = 75 * 15 #leaf_data = np.zeros((size, 200)) #leaf_label = np.zeros(size) # # #for i in range(cls): # leaf_data[i*75:(i+1)*75] = np.load(target_dir + 'S_leaf_CCD{}.npy'.format(i+1)) # leaf_label[i*75:(i+1)*75] = i leaf_data = np.load(target_dir + 'S_leaf_CCD.npy') leaf_label = np.load(target_dir + 'S_leaf_label.npy') # ============================================================================= # data = 'leaf_data_CCD_cv.npy' # label = 'leaf_label_480_360.npy' # leaf_data = np.load(target_dir + data) # leaf_label = np.load(target_dir+ label) # leaf_label = leaf_label -1 # cls = 30 # size = 340 # ============================================================================= # ============================================================================= #import csv #target = r'data/100 leaves plant species/data_Mar_64.txt' # #leaf_Mar = [] #with open(target) as csvfile: # readCSV = csv.reader(csvfile, delimiter=',') # for row in readCSV: # leaf_Mar.append(row) # #leaf_Mar = np.asarray(leaf_Mar) #leaf_Mar = leaf_Mar[16:,1:].astype(float) # #target = r'data/100 leaves plant species/data_Sha_64.txt' #leaf_Sha = [] #with open(target) as csvfile: # readCSV = csv.reader(csvfile, delimiter=',') # for row in readCSV: # leaf_Sha.append(row) #leaf_Sha = np.asarray(leaf_Sha) #leaf_Sha = leaf_Sha[16:,1:].astype(float) # # #target = r'data/100 leaves plant species/data_Tex_64.txt' # #leaf_Tex = [] #with open(target) as csvfile: # readCSV = csv.reader(csvfile, delimiter=',') # for row in readCSV: # leaf_Tex.append(row) # #leaf_Tex = np.asarray(leaf_Tex) #leaf_Tex = leaf_Tex[15:,1:].astype(float) # #leaf_label = np.zeros(1584) # #for i in range(99): # leaf_label[16*i:16*i+16] = i # #cls=99 #size = 1584 # # ##leaf_data = np.hstack([leaf_Sha, leaf_Tex , leaf_Mar]) #leaf_data = np.hstack([leaf_Sha, leaf_Sha , leaf_Sha]) # ============================================================================= #leaf_data = leaf_Sha #------------------------------------------------------------------------------ # Some Util functions def preprocess(train, test, flag = True): if True: scaler = StandardScaler().fit(train) # scaler = MinMaxScaler(feature_range=(-1, 1)).fit(train) train = scaler.transform(train) test = scaler.transform(test) return train, test from sklearn.decomposition import PCA def addpca(train, test, comp = 40): pre_pca = PCA(n_components=comp).fit(train) # using others than pca? x_train = pre_pca.transform(train) x_test = pre_pca.transform(test) return x_train, x_test #------------------------------------------------------------------------------ from sklearn.model_selection import StratifiedKFold, StratifiedShuffleSplit Kf = 10 #skf = StratifiedKFold(n_splits=Kf, shuffle=True, random_state=333) skf = StratifiedShuffleSplit(n_splits=Kf, test_size = 1./Kf, random_state = 0) cv_acc_svm = np.zeros(Kf) cv_acc_knn = np.zeros(Kf) cv_acc = np.zeros(Kf) i=0 for train_index, test_index in skf.split(leaf_data, leaf_label): x_train, x_test = leaf_data[train_index], leaf_data[test_index] y_train, y_test = leaf_label[train_index], leaf_label[test_index] # aug_flag = False # if aug_flag: # x_train = np.vstack((x_train, # np.flip(x_train, axis = 1) # )) # y_train = np.hstack((y_train, y_train)) # # x_train = np.vstack((np.roll(x_train, 5, axis = 1), # np.roll(x_train, -5, axis = 1))) # y_train = np.hstack((y_train, y_train)) x_train_stack = x_train x_test_stack = x_test y_train = utils.to_categorical(y_train, cls) y_test = utils.to_categorical(y_test, cls) # normalization #scaler = MinMaxScaler(feature_range=(0, 1)).fit(x_train_stack) #scaler = QuantileTransformer().fit(x_train_stack) scaler = StandardScaler().fit(x_train_stack) x_train_std = scaler.transform(x_train_stack) x_test_std = scaler.transform(x_test_stack) #------------------------------------------------------------------------------ # Model #------------------------------------------------------------------------------ input_dim = x_train_std.shape[1] feature = Input(shape = (input_dim, 1)) x = GaussianNoise(0.01)(feature) x = Conv1D(filters= 16, kernel_size = 8, strides=4, padding='same', dilation_rate=1, activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name = 'conv1D_1')(x) x = BatchNormalization()(x) # x = PReLU()(x) x = MaxPooling1D(pool_size=2, strides=2, name = 'MP_1')(x) # x = Dropout(0.25)(x) x = Flatten(name = 'flat_1')(x) x_x = GaussianNoise(0.01)(feature) x_x = Conv1D(filters= 24, kernel_size = 12, strides= 6, padding='same', dilation_rate=1, activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name = 'conv1D_2')(x_x) x_x = BatchNormalization()(x_x) # x_x = PReLU()(x_x) x_x = MaxPooling1D(pool_size=2, strides=2, name = 'MP_2')(x_x) # x_x = Dropout(0.25)(x_x) x_x = Flatten()(x_x) x_x_x = GaussianNoise(0.01)(feature) x_x_x = Conv1D(filters= 32, kernel_size = 16, strides= 8, padding='same', dilation_rate=1, activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, name = 'conv1D_3')(x_x_x) x_x_x = BatchNormalization()(x_x_x) # x_x_x = PReLU()(x_x_x) x_x_x = MaxPooling1D(pool_size=2, strides=2, name = 'MP_3')(x_x_x) # x_x_x = Dropout(0.25)(x_x_x) x_x_x = Flatten()(x_x_x) feature_f = GaussianNoise(0.01)(feature) # feature_f = MaxPooling1D(pool_size=4, strides=2, name = 'MP_4')(feature_f) # feature_f = Dropout(0.25)(feature_f) feature_f = Flatten(name = 'flat_2')(feature_f) # x = concatenate([x, x_x, x_x_x, feature_f]) x = Dense(512, activation = 'linear', name = 'dense_1')(x) x = BatchNormalization()(x) x = PReLU()(x) x = Dense(128, activation = 'linear', name = 'dense_2')(x) #increase the dimension here for better speration in stage2 ? x = BatchNormalization()(x) x = PReLU()(x) x = Dropout(0.5)(x) pred = Dense(cls, activation = 'softmax', name = 'dense_3')(x) model = Model(feature, pred) #best_model=EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto') best_model = ModelCheckpoint(target_dir+'leaf_conv1d_cv%d.hdf5' %i, monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1) model.compile(loss = losses.categorical_crossentropy, # optimizer = optimizers.Adam(), optimizer = optimizers.SGD(lr=0.005, decay=1e-6, momentum=0.9, nesterov=True), metrics = ['accuracy']) x_train_std = x_train_std.reshape(x_train_std.shape[0], x_train_std.shape[1], 1) x_test_std = x_test_std.reshape(x_test_std.shape[0], x_test_std.shape[1], 1) history = model.fit(x=x_train_std, y=y_train, batch_size = batchsize, epochs = epochs, verbose = 0, validation_split = 0.2, # validation_data = (x_test_std, y_test), callbacks=[best_model]) # cv_acc[i] = model.evaluate(x_test_std, y_test)[1] #------------------------------------------------------------------------------ # A second stage classification with features pretrained from above network #------------------------------------------------------------------------------ model_best = load_model(target_dir + 'leaf_conv1d_cv%d.hdf5' %i) cv_acc[i] = model_best.evaluate(x_test_std, y_test)[1] x_encoder = K.function([model_best.layers[0].input, K.learning_phase()], [model_best.get_layer('dense_3').input]) yy_train = np.argmax(y_train, axis = 1) xx_train = x_encoder([x_train_std, 0])[0] xx_test = x_encoder([x_test_std, 0])[0] xx_train_std, xx_test_std = preprocess(xx_train, xx_test) #xx_train_std, xx_test_std = xx_train, xx_test xx_train_pca, xx_test_pca = addpca(xx_train_std, xx_test_std, comp = 25) # Using Knn for nonlinearity correction? clf_2 = svm.SVC(C=1.0, cache_size=200, class_weight='balanced', coef0=0, decision_function_shape='ovr', degree=1, gamma='auto', kernel='linear', max_iter=-1, probability=True, random_state=None, shrinking=True, tol=0.001, verbose=False) clf_2.fit(xx_train_pca, yy_train) cv_acc_svm[i] = accuracy_score(np.argmax(y_test, axis=1), clf_2.predict(xx_test_pca)) clf_knn = KNeighborsClassifier(n_neighbors=3, weights='uniform', algorithm='auto', leaf_size=10, p=2, metric='chebyshev', metric_params=None, n_jobs=1) clf_knn.fit(xx_train_std, yy_train) y_pred_knn = clf_knn.predict(xx_test_std) cv_acc_knn[i] = accuracy_score(np.argmax(y_test, axis=1), y_pred_knn) print('the %d th validation finished....' % i) print('accuracy %.4f' % cv_acc[i]) i+=1
[ "noreply@github.com" ]
j12138.noreply@github.com
63a7fbed29b4435a93df7fae18bd166fecbf6d56
1f9644032c229b2041a5f36758b8c1265d195cc1
/dataManager/tests/test.py
2ff3f3b993ccc021c053e20f4a215f0b73bfcca8
[ "MIT" ]
permissive
Pensarfeo/DataManager
3cad6e28cd3aa3db26fd2aab04fe11caa3da299d
20335b86f5bc47ab5fa7c6facfea701f085a0fe7
refs/heads/master
2020-06-04T23:22:02.822982
2019-07-02T15:48:14
2019-07-02T15:48:14
192,231,056
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
# Some basic tests DataManager = tools.dynamicImportDev('dataManager').Manager # traininigDataFun, trainingData = tools.importData('training') # trainingDataProvider = DataProvider( # data = traininigDataFun, # bz = env.training.bz, # stochasticSampling = False, # indexingShape = [trainingData.shape[0]] # ) # print(np.array(trainingDataProvider(1)[0]).shape) validationDataFun, validationData = tools.importData('validation') print(len(validationData)) validationDataProvider = DataManager( data = validationDataFun, bz = env.training.bz, stochasticSampling = False, reshuffle = True, indexingShape = [len(validationData)] ) print(np.array(validationDataProvider(1)[1]).shape) # prove that reshouffling works by # 1) showing that we get the same number of indexs as original indexs (minux batch size leftovers) # 2) the data we get matches the index provided equivalents in the origina ordered data source indxs = [] data for i, data, indx in validationDataProvider: print(np.array(data[1])[:, :, :, 0].shape, validationData[indx][:, :, :, 3].shape) print(np.mean(np.array(data[1])[:, :, :, 0] == validationData[indx][:, :, :, 3])) indxs += list(indx) len(len(validationData) - len(validationData)%env.training.bz)
[ "pa.favuzzi@gmail.com" ]
pa.favuzzi@gmail.com
670fe8df03baa050e48bad2abf3ef2e7f2e60071
384497dfcc4cbd789cd35fa3c4b75ececefcf765
/nuclear/message/build_outer_python_binding.py
d8f5568cb0777eeb40b1dc149e0958332e4b2bdb
[ "MIT" ]
permissive
Fastcode/NUClearExample
061947f59f7b8beadbe7a6ab3965ec72927ba03d
1ce424a935a035df20bbc6d8018bd2bcd4194dd9
refs/heads/master
2020-12-08T09:32:46.561577
2018-12-16T00:24:48
2018-12-16T00:24:48
67,031,019
0
1
null
null
null
null
UTF-8
Python
false
false
1,993
py
#!/usr/bin/python import sys import os from generator.textutil import indent, dedent # Get our file we are outputting too base_file = sys.argv[1] # Get our root message directory message_dir = sys.argv[2] # Get our list of functions we have to call functions = [] duplicates = [] for dep_file in sys.argv[3:]: with open(dep_file) as deps: # Extract all dependencies for every message and place them in the list. # Make all paths relative to the root mesage directory and remove any unwanted characters. # Also remove Matrix.proto, Neutron.proto, and Vector.proto from the list and anything to do with google. dependencies = [os.path.relpath(s.strip('\\ \n\t'), message_dir).replace('/', '_').replace('.proto', '_proto') for s in deps.readlines() if not any(exclude in s for exclude in ['google/protobuf', 'Matrix.proto', 'Neutron.proto', 'Vector.proto'])] # Finally, remove duplicates. We must keep the first instance of every message in the list. for function in dependencies: if function not in duplicates: duplicates.append(function) functions.append(function) # Write our file with open(base_file, 'w') as f: f.write(dedent("""\ #include <pybind11/pybind11.h> #include <pybind11/complex.h> #include <pybind11/stl.h> #include <pybind11/eigen.h> // Declare our functions (that we know will be made later) {function_declarations} PYBIND11_PLUGIN(message) {{ pybind11::module module("message", "NUClear message classes"); // Initialise each of the modules {function_calls} return module.ptr(); }} """).format( function_declarations='\n'.join('void init_message_{}(pybind11::module& module);'.format(f) for f in functions), function_calls=indent('\n'.join('init_message_{}(module);'.format(f) for f in functions)), ))
[ "trent@houliston.me" ]
trent@houliston.me
6009e18ce7b448841305b9ec9dd106d22a075c9a
5f509aec51f0df62691de51b5aa7ba1c64ec7455
/redis_map.py
17fb58ea49d9eae8fccd4310efc1cf3323112635
[]
no_license
rfyiamcool/redis_map
233f86c2b9bede4c0e12eea73be232145b75da55
87c17dc923af9a29a7c8549d781870fb43579842
refs/heads/master
2020-03-18T17:51:47.209557
2018-05-27T15:05:14
2018-05-27T15:05:14
135,055,849
0
0
null
null
null
null
UTF-8
Python
false
false
4,848
py
# coding:utf-8 from contextlib import contextmanager from future.utils import python_2_unicode_compatible from redis import StrictRedis @python_2_unicode_compatible class RedisDict(object): def __init__(self, *args, **kwargs): self.namespace = '' if 'namespace' in kwargs: # Todo validate namespace self.namespace = kwargs['namespace'] + ':' del kwargs['namespace'] self.expire = None if 'expire' in kwargs: self.expire = kwargs['expire'] del kwargs['expire'] self.redis = StrictRedis(*args, decode_responses=True, **kwargs) self.sentinel_none = '<META __None__ 9cab>' def _raw_get_item(self, k): return self.redis.get(k) def _get_item(self, k): result = self._raw_get_item(self.namespace + k) return result def __getitem__(self, k): result = self._get_item(k) if result is None: raise KeyError return result if result != self.sentinel_none else None def __setitem__(self, k, v): if v is None: v = self.sentinel_none self.redis.set(self.namespace + k, v, ex=self.expire) def __delitem__(self, k): self.redis.delete(self.namespace + k) def __contains__(self, k): return self._get_item(k) is not None def __repr__(self): return str(self.to_dict()) def __str__(self): return self.__repr__() def __len__(self): return len(self._keys()) def _scan_keys(self, search_term=''): return self.redis.scan(match=self.namespace + search_term + '*') def _keys(self, search_term=''): return self._scan_keys(search_term)[1] def keys(self): to_rm = len(self.namespace) return [item[to_rm:] for item in self._keys()] def to_dict(self): to_rm = len(self.namespace) return {item[to_rm:]: self._raw_get_item(item) for item in self._keys()} def chain_set(self, iterable, v): self[':'.join(iterable)] = v def chain_get(self, iterable): return self[':'.join(iterable)] def chain_del(self, iterable): return self.__delitem__(':'.join(iterable)) @contextmanager def expire_at(self, sec_epoch): self.expire, temp = sec_epoch, self.expire yield self.expire = temp def __iter__(self): self.keys_iter = self.keys() return self def next(self): return self.__next__() def __next__(self): try: return self.keys_iter.pop() except (IndexError, KeyError): raise StopIteration def multi_get(self, key): found_keys = self._keys(key) if len(found_keys) == 0: return [] return self.redis.mget(found_keys) def multi_chain_get(self, keys): return self.multi_get(':'.join(keys)) def multi_dict(self, key): keys = self._keys(key) if len(keys) == 0: return {} to_rm = len(self.namespace) return dict(zip([i[to_rm:] for i in keys], self.redis.mget(keys))) def multi_del(self, key): keys = self._keys(key) if len(keys) == 0: return 0 return self.redis.delete(*keys) def items(self): return zip(self.keys(), self.multi_get(self._keys())) class RedisListIterator(object): def __init__(self, redis_instance, key, start=0, end=-1): """Creates a redis list iterator. Args: redis_instance (object): instance of redis key (str): redis list key start (int): list slice start (inclusive) end (int): list slice end (exclusive) """ self.position = start self.key = key self.redis = redis_instance llen = redis_instance.llen(key) self.endpos = llen if (end == -1 or (end - start) > llen) else end def __iter__(self): return self def __next__(self): if self.position >= self.endpos: raise StopIteration item = self.redis.lindex(self.key, self.position) self.position += 1 return item next = __next__ class RedisList(object): def __init__(self, redis_instance, key): self.key = key self.redis = redis_instance def __len__(self): return self.redis.llen(self.key) def __getitem__(self, index): if isinstance(index, slice): start = index.start or 0 end = (index.stop - 1) if index.stop is not None else -1 return self.redis.lrange(self.key, start, end) if index + 1 > len(self): raise IndexError("Index out of bounds.") return self.redis.lindex(self.key, index) def __iter__(self): return RedisListIterator(self.redis, self.key)
[ "rfyiamcool@163.com" ]
rfyiamcool@163.com
aa6f7a1dc10673b7e011f05a3d017808b2e7e6ed
2dd72c5c0cf3dabea137f2035bb4c0e008c8eca7
/estante/admin.py
ccf55ee243e19830875a43085eed05062ac3fc9f
[]
no_license
brunadelrio/biblio
fda7c70fbae9826c61a07e8c971f47244ac14164
f48662a1e103628ca8503a1c9f68d6f7ec9c9c98
refs/heads/master
2022-12-14T01:16:18.365982
2018-12-06T13:16:54
2018-12-06T13:16:54
160,677,171
0
0
null
2022-12-08T01:20:01
2018-12-06T13:15:45
JavaScript
UTF-8
Python
false
false
296
py
from django.contrib import admin # Register your models here. from estante.models import Pessoa, Livro, Emprestimo #from estante.models.livro import Livro #from estante.models.emprestimo import Emprestimo admin.site.register(Pessoa) admin.site.register(Livro) admin.site.register(Emprestimo)
[ "brunaadelrio@gmail.com" ]
brunaadelrio@gmail.com
107461761e9c1e422537657ae98aa79ec31f418c
67058e187402f96b985ea5848da7693d8eb44b44
/rbm.py
c2c2aff25cd97a4059b90510942790730d738917
[]
no_license
zheng6822/zheng6822.github.com
900be2d9c522693a09853f1041deb433953f212b
76082c269635c5bbdee382266d28730c4407275d
refs/heads/master
2020-12-25T00:29:02.190012
2012-09-30T14:46:10
2012-09-30T14:46:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,387
py
# -*- coding: utf-8 -*- """ Created on Tue Sep 18 14:52:30 2012 @author: zhengxin """ #============================================================================== # This file contains three(four) kinds of RBMs: Gaussian-Bernoulli RBM, # Bernoulli-Bernoulli RBM, Discriminative RBM #============================================================================== from options import options import numpy as np import cudamat as cm from softmax import softmax import scipy.io import os class GaussianRBM(object): def __init__(self, datafolder=None, num_hid=None, options=None): if datafolder == None: return self.datafolder = datafolder self.datalist = os.listdir(datafolder) self.num_batchdata = len(self.datalist) mdict = scipy.io.loadmat(os.path.join(datafolder, self.datalist[0])) tempdata = mdict['data'] self.options = options self.num_vis = tempdata.shape[0] self.num_hid = num_hid # print self.num_vis # print self.num_hid self.num_batches = tempdata.shape[1]/self.options.batchsize self.batch_size = self.options.batchsize self.doPCD = False self.cdstep = 1 # initialize weights self.W = cm.CUDAMatrix(0.01 * np.random.randn(self.num_vis, self.num_hid)) self.vb = cm.CUDAMatrix(np.zeros((self.num_vis,1)))# for gaussian rbm, v_bias we mean the mean of visible layer self.hb = cm.CUDAMatrix(np.zeros((self.num_hid,1))) # initialize weights updates self.dW = cm.CUDAMatrix(np.zeros((self.num_vis, self.num_hid))) self.dvb = cm.CUDAMatrix(np.zeros((self.num_vis, 1))) self.dhb = cm.CUDAMatrix(np.zeros((self.num_hid, 1))) self.W_inc = cm.CUDAMatrix(np.zeros((self.num_vis, self.num_hid))) self.vb_inc = cm.CUDAMatrix(np.zeros((self.num_vis,1))) self.hb_inc = cm.CUDAMatrix(np.zeros((self.num_hid,1))) # initialize temporary storage self.v = cm.empty((self.num_vis, self.batch_size))# a batch of data self.vm = cm.empty((self.num_vis, self.batch_size))# temp storage of data-vb self.h = cm.empty((self.num_hid, self.batch_size)) self.r = cm.empty((self.num_hid, self.batch_size))# store random number in positive phase self.r2 = cm.empty((self.num_vis, self.batch_size))# store random number in negative phase def getCurrentBatch(self,mdict,batch): # get current batch batchdata = mdict['data'][:,batch*self.batch_size:(batch+1)*self.batch_size] self.v = cm.CUDAMatrix(batchdata) self.v_true = cm.CUDAMatrix(batchdata) def applyMomentum(self): # apply momentum # maybe we can change it while proccessing self.dW.mult(0) self.dvb.mult(0) self.dhb.mult(0) self.W_inc.mult(self.options.momentum) self.vb_inc.mult(self.options.momentum) self.hb_inc.mult(self.options.momentum) def hidActProb(self,vis, target): # positive phase # print self.W.shape # print vis.shape # print target.shape cm.dot(self.W.T, vis, target = target) target.add_col_vec(self.hb) target.apply_sigmoid() def visActProb(self): # negative phase cm.dot(self.W, self.h, target = self.v) self.v.add_col_vec(self.vb)#now v = Wh + c def CDstats(self, vis, hid, posphase=True): multiplier = 1.0 if posphase else -1.0 self.dhb.add_sums(hid, 1, mult=multiplier) if posphase: #print 'posphase' self.dW.add_dot(vis, hid.T) self.vm.assign(vis) self.vb.mult(-1) self.vm.add_col_vec(self.vb) self.vb.mult(-1) self.dvb.add_sums(self.vm, 1, mult=multiplier) else: #print 'negphase' self.dW.subtract_dot(vis,hid.T) self.vm.assign(vis) self.vb.mult(-1) self.vm.add_col_vec(self.vb) self.vb.mult(-1) self.dvb.add_sums(self.vm, 1, mult=multiplier) def sampleHid(self,r,target): # sample hiddens r.fill_with_rand() r.less_than(target, target = target) def sampleVis(self): self.r2.fill_with_randn() self.v.add(self.r2) def CDn(self): n = self.cdstep self.hidActProb(self.v, self.h) self.CDstats(self.v, self.h) for i in range(n): self.sampleHid(self.r,self.h) self.visActProb() self.sampleVis() self.hidActProb(self.v, self.h) self.CDstats(self.v, self.h, False) def doOneStep(self): if self.doPCD: self.PCD() else: self.CDn() self.updateWeights() def updateWeights(self): self.W_inc.add_mult(self.dW, self.options.eta/self.batch_size) self.vb_inc.add_mult(self.dvb, self.options.eta/self.batch_size) self.hb_inc.add_mult(self.dhb, self.options.eta/self.batch_size) # update weights self.W.add(self.W_inc) self.vb.add(self.vb_inc) self.hb.add(self.hb_inc) def getReconErr(self): self.v.subtract(self.v_true) return self.v.euclid_norm()**2 def train(self): for epoch in range(self.options.maxepoch): err = [] for batchdata in range(self.num_batchdata): mdict = scipy.io.loadmat(os.path.join(self.datafolder, self.datalist[batchdata])) #data = mdict['data'] for batch in range(self.num_batches): self.getCurrentBatch(mdict,batch) self.doOneStep() self.applyMomentum() err.append(self.getReconErr()/(self.num_vis*self.batch_size)) print "Epoch " + str(epoch + 1)+" "+"Mean squared error: " + str(np.mean(err)) def getDataUpwards(self,loadfolder,savefolder): # push data of visible layer upwards to form a set of new data # because of memory issues, we have to each batch data to disc and read and combine them later # batch mode receive data from cpu and return a matrix on cpu datalist = os.listdir(loadfolder) batchsize = 4096 n = 0 for dataname in datalist: name = os.path.join(loadfolder,dataname) mdict = scipy.io.loadmat(name) data = mdict['data'] labels = mdict['label'] # print labels.shape numbatch = data.shape[1]/batchsize for batch in range(numbatch): #print 'batch %d/%d'%(n, numbatch*len(datalist)) batchdata = data[:,batch*batchsize:(batch+1)*batchsize] batchlabels = labels[batch*batchsize:(batch+1)*batchsize] temp = cm.empty((self.num_hid,batchdata.shape[1])) vis = cm.CUDAMatrix(batchdata) self.hidActProb(vis, temp) temp.copy_to_host() #topdata[:,batch*batchsize:(batch+1)*batchsize] = temp.numpy_array mdict = {} mdict['data'] = temp.numpy_array mdict['label'] = batchlabels scipy.io.savemat('%s/%d.mat'%(savefolder,n),mdict) n = n+1 def getTestDataUpwards(self,data): batchsize = 4096 numbatch = data.shape[1]/batchsize topdata = np.zeros((self.num_hid,data.shape[1])) for batch in range(numbatch): batchdata = data[:,batch*batchsize:(batch+1)*batchsize] temp = cm.empty((self.num_hid,batchdata.shape[1])) vis = cm.CUDAMatrix(batchdata) self.hidActProb(vis, temp) temp.copy_to_host() topdata[:,batch*batchsize:(batch+1)*batchsize] = temp.numpy_array return topdata def save(self,filename): self.W.copy_to_host() self.vb.copy_to_host() self.hb.copy_to_host() mdict = {} mdict['type']='gauss' mdict['W']=self.W.numpy_array mdict['vb']=self.vb.numpy_array mdict['hb']=self.hb.numpy_array scipy.io.savemat(filename,mdict) def load(self, filename): mdict = scipy.io.loadmat(filename) self.W = cm.CUDAMatrix(mdict['W']) self.vb = cm.CUDAMatrix(mdict['vb']) self.hb = cm.CUDAMatrix(mdict['hb']) (self.num_vis, self.num_hid) = self.W.shape class BinaryRBM(GaussianRBM): def visActProb(self): GaussianRBM.visActProb(self) self.v.apply_sigmoid() def CDstats(self, vis, hid, posphase=True): multiplier = 1.0 if posphase else -1.0 self.dhb.add_sums(hid, 1, mult=multiplier) self.dvb.add_sums(vis, 1, mult=multiplier) if posphase: self.dW.add_dot(vis, hid.T) else: self.dW.subtract_dot(vis,hid.T) def sampleVis(self): # sample hiddens self.r2.fill_with_rand() self.r2.less_than(self.v, target = self.v)# now h = phstates class SoftmaxRBM(BinaryRBM): def hidActProb(self,vis, target): cm.dot(self.W.T, vis, target = target) target.add_col_vec(self.hb) softmax(target) class DiscriminativeRBM(GaussianRBM): def __init__(self,datafolder=None,labels=None,numhid=None,options=None): # the labels here is just used for calculating number of labels, no other practical use. super(DiscriminativeRBM,self).__init__(datafolder,numhid,options) self.labels = labels self.num_class = self.getClassNum(labels) #self.targets = self.getTargets() if datafolder == None: return self.cW = cm.CUDAMatrix(0.01 * np.random.randn(self.num_class,self.num_hid)) self.cb = cm.CUDAMatrix(np.zeros((self.num_class,1))) self.dcW = cm.CUDAMatrix(np.zeros((self.num_class,self.num_hid))) self.dcb = cm.CUDAMatrix(np.zeros((self.num_class,1))) self.cW_inc = cm.CUDAMatrix(np.zeros((self.num_class,self.num_hid))) self.cb_inc = cm.CUDAMatrix(np.zeros((self.num_class,1))) self.c = cm.empty((self.num_class,self.batch_size)) def getClassNum(self,labels): self.labellist = np.unique(labels) return len(self.labellist) def getTargets(self,labels): # create targets targets = np.zeros((self.num_class,len(labels))) #print targets.shape for i in range(self.num_class): for j in range(len(labels)): if labels[j] == self.labellist[i]: targets[i,j] = True return targets def applyMomentum(self): super(DiscriminativeRBM,self).applyMomentum() self.dcW.mult(0) self.dcb.mult(0) self.cW_inc.mult(self.options.momentum) self.cb_inc.mult(self.options.momentum) def hidActProb(self,vis, target): # positive phase cm.dot(self.W.T, vis, target = target) target.add_dot(self.cW.T, self.c) target.add_col_vec(self.hb) target.apply_sigmoid() def getCurrentBatch(self,mdict,batch): super(DiscriminativeRBM,self).getCurrentBatch(mdict,batch) #print mdict['label'].shape batchlabels = mdict['label'][batch*self.batch_size:(batch+1)*self.batch_size] batchtargets = self.getTargets(batchlabels) self.c = cm.CUDAMatrix(batchtargets) def CDstats(self, vis, hid, posphase=True): multiplier = 1.0 if posphase else -1.0 self.dhb.add_sums(hid, 1, mult=multiplier) self.dvb.add_sums(vis, 1, mult=multiplier) if posphase: self.dW.add_dot(vis, hid.T) self.dcb.add_sums(self.c, 1, mult=1.0) self.dcW.add_dot(self.c, hid.T) else: self.dW.subtract_dot(vis,hid.T) self.dcb.add_sums(self.c, 1, mult=-1.0) self.dcW.subtract_dot(self.c,hid.T) def visActProb(self): # negative phase super(DiscriminativeRBM,self).visActProb() self.v.apply_sigmoid() cm.dot(self.cW, self.h, target = self.c) self.c.add_col_vec(self.cb) softmax(self.c) def updateWeights(self): super(DiscriminativeRBM,self).updateWeights() self.cW_inc.add_mult(self.dcW, self.options.eta/self.batch_size) self.cb_inc.add_mult(self.dcb, self.options.eta/self.batch_size) self.cW.add(self.cW_inc) self.cb.add(self.cb_inc) def save(self,filename): self.W.copy_to_host() self.vb.copy_to_host() self.hb.copy_to_host() self.cb.copy_to_host() self.cW.copy_to_host() mdict = {} mdict['type']='discriminative' mdict['W']=self.W.numpy_array mdict['vb']=self.vb.numpy_array mdict['hb']=self.hb.numpy_array mdict['cb']=self.cb.numpy_array mdict['cW']=self.cW.numpy_array scipy.io.savemat(filename,mdict) def load(self, filename): mdict = scipy.io.loadmat(filename) self.W = cm.CUDAMatrix(mdict['W']) self.vb = cm.CUDAMatrix(mdict['vb']) self.hb = cm.CUDAMatrix(mdict['hb']) self.cb = cm.CUDAMatrix(mdict['cb']) self.cW = cm.CUDAMatrix(mdict['cW']) # def train(self): # for epoch in range(self.options.maxepoch): # #err = 0 # err = [] # for batchdata in range(self.num_batchdata): # #print 'batchdata'+str(batchdata) # #print self.datalist[batchdata] # mdict = scipy.io.loadmat(os.path.join(self.datafolder, self.datalist[batchdata])) # data = mdict['data'] # for batch in range(self.num_batches): # #print 'batch'+str(batch) # self.getCurrentBatch(data,batch) # self.doOneStep() # self.applyMomentum() # err.append(self.getReconErr()/(self.num_vis*self.batch_size)) # print "Epoch " + str(epoch + 1)+" "+"Mean squared error: " + str(np.mean(err)) #
[ "zheng6822@somewhere.com" ]
zheng6822@somewhere.com
25ac74774aba97bc67419a78e3604816ebe28186
fe91afc3e00028852323b63ce49f74244338f614
/rest_api_ta/wsgi.py
2a033bbf3c52bcd8e5eef89e94e96b828c430a71
[]
no_license
nabilapspta/Backend-Duit
1870fbbc16bcba7a53de51735a9a68844f4a259a
9f20cbcbfc6bf49c588cbaa0cec2a6a81b7d0947
refs/heads/master
2023-03-22T01:40:56.069799
2021-03-17T08:29:46
2021-03-17T08:29:46
348,633,500
1
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for rest_api_ta project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rest_api_ta.settings') application = get_wsgi_application()
[ "nabilapuspita1@gmail.com" ]
nabilapuspita1@gmail.com
6394a2ecb06983781a9b4f36dfbe1b467f515d16
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/KCB_YCHF/KCB_YCHF_MM/OMS/YCHF_KCBYCHF_OMS_063.py
bf7954767971a8fe32cc9735084cfdcaf4130323
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,495
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test//xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test//service") from ServiceConfig import * from ARmainservice import * from QueryStkPriceQty import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test//mysql") from CaseParmInsertMysql import * from SqlData_Transfer import * sys.path.append("/home/yhl2/workspace/xtp_test//utils") from QueryOrderErrorMsg import queryOrderErrorMsg from env_restart import * class YCHF_KCBYCHF_OMS_063(xtp_test_case): def setUp(self): #sql_transfer = SqlData_Transfer() #sql_transfer.transfer_fund_asset('YCHF_KCBYCHF_OMS_063') #clear_data_and_restart_all() #Api.trade.Logout() #Api.trade.Login() pass # def test_YCHF_KCBYCHF_OMS_063(self): title = '停止OMS服务(沪A五档即成转限价未成卖出)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '未成交', 'errorID': 0, 'errorMSG': queryOrderErrorMsg(0), '是否生成报单': '是', '是否是撤废': '否', # '是否是新股申购': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('688000', '1', '4', '2', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '报单测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } print(stkparm['错误原因']) self.assertEqual(rs['报单测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':1, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_LIMIT'], 'price': stkparm['涨停价'], 'quantity': 300, 'position_effect':Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['报单测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) ## 还原可用资金 #sql_transfer = SqlData_Transfer() #sql_transfer.transfer_fund_asset('YW_KCB_BAK_000') #oms_restart() self.assertEqual(rs['报单测试结果'], True) # 211 if __name__ == '__main__': unittest.main()
[ "418033945@qq.com" ]
418033945@qq.com
28a140f400a6d510811875a29923efe76038cf73
ebe422519443dbe9c4acd3c7fd527d05cf444c59
/evaluation_expression.py
ae02e8d4501a759bbab9c83d68ce0494a8051e94
[]
no_license
SaiSudhaV/coding_platforms
2eba22d72fdc490a65e71daca41bb3d71b5d0a7b
44d0f80104d0ab04ef93716f058b4b567759a699
refs/heads/master
2023-06-19T18:05:37.876791
2021-07-15T18:02:19
2021-07-15T18:02:19
355,178,342
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
class Solution: # @param A : list of strings # @return an integer def evalRPN(self, A): res, opr = [], ['+', '-', '*', '/'] for i in A: if i not in opr: res.append(i) elif len(res) >= 2: tem1 = str(res.pop()) tem2 = str(res.pop()) p = int(eval(tem2 + i + tem1)) res.append(p) return res.pop()
[ "saisudhavadisina@gmail.com" ]
saisudhavadisina@gmail.com
41c7c6b9f8fa569e9684c6357657508eeec2d461
0e66e83eb49c6f708727ab6e52cc9e962c1ef952
/python56-59Django/sapkuky/personas/migrations/0001_initial.py
8a0a3c714d72584b4791a57a7b72389b92d305b9
[]
no_license
kukiracle/curso_python
51742d2f10997a6ab917346101518fd163c9e28f
18c3cb026e996941de6ecc2483698ab24f247717
refs/heads/main
2023-08-15T05:45:35.634979
2021-10-13T02:26:38
2021-10-13T02:26:38
416,559,488
1
0
null
null
null
null
UTF-8
Python
false
false
617
py
# Generated by Django 3.2.6 on 2021-08-22 01:55 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Persona', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=255)), ('apellido', models.CharField(max_length=255)), ('email', models.CharField(max_length=255)), ], ), ]
[ "kukypelmaso@gmail.com" ]
kukypelmaso@gmail.com
ee0d1f6ab07282ef487a55f8caa50881541945c5
48a7b266737b62da330170ca4fe4ac4bf1d8b663
/molsysmt/form/string_pdb_text/extract.py
73bb0feea3ace5d705b0963185af3e24f5ad4607
[ "MIT" ]
permissive
uibcdf/MolSysMT
ddab5a89b8ec2377f383884c5169d147cab01322
c3d713ba63db24eb8a2426115cf8d9cb3665d225
refs/heads/main
2023-08-08T15:04:16.217967
2023-08-04T05:49:56
2023-08-04T05:49:56
137,937,243
15
3
MIT
2023-06-04T20:27:06
2018-06-19T19:38:44
Python
UTF-8
Python
false
false
812
py
from molsysmt._private.exceptions import NotImplementedMethodError from molsysmt._private.digestion import digest from molsysmt._private.variables import is_all @digest(form='string:pdb_text') def extract(item, atom_indices='all', structure_indices='all', copy_if_all=True): if is_all(atom_indices) and is_all(structure_indices): if copy_if_all: from copy import copy tmp_item = copy(item) else: tmp_item = item else: from . import to_molsysmt_MolSys from ..molsysmt_MolSys import to_string_pdb_text as molsysmt_MolSys_to_string_pdb_text tmp_item = to_molsysmt_MolSys(item, atom_indices=atom_indices, structure_indices=structure_indices) tmp_item = molsysmt_MolSys_to_string_pdb_text(tmp_item) return tmp_item
[ "prada.gracia@gmail.com" ]
prada.gracia@gmail.com
a9f17ae78f760cc3ece4257ce9addd1dedda6b14
bf99c721ec863fc91e67586a9ad9e477d3bf3643
/test.py
50e26890629a6fb8cf0da77dce38ebd319bd20d7
[]
no_license
HamiltonAgwulonu/Python-Crash-Course
ba1c1c2b76688095b39d87c5d89c9e3d5f7ba192
5eccc71568af34354eaa87717d0399c58d0bf6b2
refs/heads/master
2020-12-12T17:26:28.117237
2020-01-15T23:21:11
2020-01-15T23:21:11
234,184,623
0
0
null
null
null
null
UTF-8
Python
false
false
628
py
# nums = [1, 2, 3, 4, 5] # for num in nums: # if num == 3: # print("Found!") # break # print(num) # for num in nums: # if num == 3: # print("Found!") # continue # print(num) # for num in nums: # for letter in "abc": # print(num, letter) # for i in range(1, 11): # print(i) # x = 0 # while x < 10: # print(x) # x += 1 # we increment x so that at some point it will be greater than or equal to 10 otherwise the condition will not evaluate to # false so that it breaks out. # x = 0 # while x < 10: # if x == 5: # break # print(x) # x += 1 x = 0 while True: if x == 5: break print(x) x += 1
[ "hamilton.agwulonu@gmail.com" ]
hamilton.agwulonu@gmail.com
77f5af4c2ac23f8d0dcf8e352325b8f01ef19cd8
e2f71bcc6a5cad8d8f6ad96852a1f9446d05f891
/code/leetcode/self_dividing_numbers.py
e81a6f24af8d503670afcadfa5de5b9e0c8ae834
[]
no_license
GodferyChen/LearnPython
210d1c150f5f6d5b5f086ec9f77a539f5c1770e1
d5cb60a73df946c74b92aa6aeb87c04c4d54788c
refs/heads/master
2021-09-02T15:06:51.207012
2018-01-03T10:28:59
2018-01-03T10:28:59
106,989,159
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- class Solution: @staticmethod def selfDividingNumbers(left, right): def check(num): digits = set(map(int, str(num))) if 0 in digits: return False return not any(num % d for d in digits) return filter(check, range(left, right + 1)) if __name__ == '__main__': dict = Solution().selfDividingNumbers(1, 22) print(list(dict))
[ "chenxh.cz@gmail.com" ]
chenxh.cz@gmail.com
cfdccc084372dfcf73094b57b03f4b0b2f5be174
2a88cc221f13d50dcd88ea959193a4b08b21141a
/jsonpatchext/mutators.py
a5bf8fb465376a723fae58f3541a1b2b705508d9
[ "BSD-3-Clause" ]
permissive
RangelReale/python-json-patch-ext
b69bd6ae4090e81ce2bb31ae17f0949e4c2f2387
c4534bf49346a2e05849de490b0b50f2e19dcfaa
refs/heads/master
2023-05-12T15:17:43.168646
2021-06-02T12:24:33
2021-06-02T12:24:33
307,665,517
1
0
null
null
null
null
UTF-8
Python
false
false
1,447
py
import re def UppercaseMutator(current, value): """Uppercase the value.""" return current.upper() def LowercaseMutator(current, value): """Lower the value.""" return current.lower() def CastMutator(current, value): """Cast value.""" return value(current) def RegExMutator(current, value): """RegEx replace value. Value must be a tuple (pattern, repl)""" return re.sub(value[0], value[1], current) def SliceMutator(current, value): """Returns a slice of the current value. Value must be a tuple (start, stop) or (start, stop, step)""" return current[slice(value[0], value[1], value[2] if len(value) > 2 else None)] def InitMutator(current, value): """Initialize the value if it is None""" if current is None: return value return current def InitItemMutator(*item): """Initialize an item in a dict/list if it does not exists or is None. If more than one item, create the full hierarchy""" def m(current, value): # plist, plast = item[:len(item)-1], item[len(item)-1] plist, plast = item[:-1], item[-1] if current is None: current = {} cur = current for i in plist: if i not in cur or cur[i] is None: cur[i] = {} cur = cur[i] if plast not in cur or cur[plast] is None: cur[plast] = value() if callable(value) else value return current return m
[ "rangelspam@gmail.com" ]
rangelspam@gmail.com