blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
473268ca477e93353c4880008855c1dca2b2e4d7
fe5ae06133f41eddc00157df6ab85f8eabb50afd
/ex8.py
861e8bffc510f5339b04c59f08da86af531d1f9d
[]
no_license
haokong0703/PythonStartUp
32b39f8d2752a69a9cce83761554660264ea4461
c6edac07ee0cae0fc21560de364ea89cfed33fd0
refs/heads/master
2021-01-02T09:36:01.760941
2017-08-03T17:18:20
2017-08-03T17:18:20
99,257,442
0
0
null
2017-08-03T17:14:54
2017-08-03T17:14:54
null
UTF-8
Python
false
false
336
py
formatter="%r %r %r %r" print formatter % (1,2,3,4) print formatter % ("one","two","three","four") print formatter % (True,False,False,True) print formatter % (formatter,formatter,formatter,formatter) print formatter % ( "I had this thing.", "That you could type up right.", "But it didn't sing.", "So I said goodnight." )
[ "noreply@github.com" ]
haokong0703.noreply@github.com
6aec8a5f6568461bf58c30842b564a52615b417d
1a2ef374bca08dd879f9798bccfa8005cb7e08be
/apps/Configuration/migrations/0001_initial.py
ef159af27810426ac954b8ed169f716e9017eb50
[]
no_license
littleyunyun16/Auto_test_platform
ee9abe9d17dc60a28a46b29e019e4dbc6cc05cb4
fc10379b832e5d52b14c5f03c67f76d8dc985191
refs/heads/master
2023-02-25T19:39:48.890230
2021-01-28T15:09:10
2021-01-28T15:09:10
333,119,849
0
0
null
null
null
null
UTF-8
Python
false
false
893
py
# Generated by Django 3.1.3 on 2021-01-28 14:48 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='UserPower', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('power', models.CharField(max_length=255)), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'verbose_name': '用户权限', 'verbose_name_plural': '用户权限', }, ), ]
[ "1563115157@qq.com" ]
1563115157@qq.com
ccf3b93947b537abb68556df332c82c96f72d2bb
d9fbf494fc537b933debd9bad073fa42d546c770
/oops/oop_concept.py
5611c55a64bb1037544beadf5a41e32ea5b47539
[]
no_license
aks789/python-code-basics-to-expert
c125e9f37bdcf0928b4366b66df29f2eff5e881a
ff5e15f3fd7338bc8105e94a8b2d4877797d6156
refs/heads/main
2023-05-07T11:11:29.632261
2021-05-30T06:13:59
2021-05-30T06:13:59
371,897,106
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
class Dog(): species = 'mammal' def __init__(self,breed,name): self.my_attr=breed self.name=name def bark(self,number): print('Woof!! My name is {} and number is {}'.format(self.name,number)) my_dog=Dog('Lab','akshay') print(type(my_dog)) print(my_dog.my_attr) print(my_dog.name) print(my_dog.species) my_dog.bark(12) class Circle: pi = 3.14 def __init__(self,radius=1): self.radius=radius def circumference(self): return Circle.pi * self.radius * 2 my_circle = Circle() print(my_circle.circumference())
[ "aks789@gmail.com" ]
aks789@gmail.com
8647d26df7f988b7991592e5749aad87ff561a08
0f02f1e13993149833d09d0f85fc1e49435ddc13
/Lab9/hh_back/api/migrations/0002_auto_20210412_1409.py
2b2b5d9637fb50ad82142555625df6ace6b9415a
[]
no_license
beksultanrrr/Web-development
f821b345eb9637f2d81a5b772c7f2269a80b71e1
a4192adae583b7c6a27d453ee1d325e01cb501df
refs/heads/master
2023-04-01T22:24:53.965225
2021-04-19T17:02:08
2021-04-19T17:02:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,497
py
# Generated by Django 2.0 on 2021-04-12 14:09 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('api', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='company', options={'verbose_name_plural': 'Companies'}, ), migrations.AlterModelOptions( name='vacancy', options={'verbose_name_plural': 'Vacancies'}, ), migrations.AddField( model_name='company', name='address', field=models.TextField(default=''), ), migrations.AddField( model_name='company', name='description', field=models.TextField(default=''), ), migrations.AddField( model_name='vacancy', name='description', field=models.TextField(default=''), ), migrations.AddField( model_name='vacancy', name='salary', field=models.FloatField(default=0), ), migrations.AlterField( model_name='company', name='city', field=models.CharField(max_length=300), ), migrations.AlterField( model_name='vacancy', name='company', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, to='api.Company'), ), ]
[ "elvinashm@gmail.com" ]
elvinashm@gmail.com
72ee7a4ce27029e51b027616e8398695f52f6fe0
778bc60655bc3e7d2b474cc9280eceabe700bfea
/models/__init__.py
363c1cdef1efe920dcfe8cc18ff8015178f9f8c6
[]
no_license
12334zq/speculosity
166512beb14551b3e31a27d759d4e523f44ad2b2
01144dfaed2e380c6da16dd132fbe9081a3fab29
refs/heads/master
2021-09-15T23:02:49.075668
2018-06-12T10:14:37
2018-06-12T10:14:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
76
py
from .vgg16 import VGG16 from .vgg19 import VGG19 from .vgg11 import VGG11
[ "thibault.wildi@epfl.ch" ]
thibault.wildi@epfl.ch
c97b9d3e3131f7d9ab9e546f82002586e0c0d257
bd2900b3a3e77d3cf1f123ae2b5845391660b159
/tests/test_basic_elements.py
59559ec035ec12929a655847d089354b17424daf
[]
no_license
YakunAlex/MIPT-testing-e2e
7c87245cf3ff48e9abd31fbc31842e135fe83a9e
64ee524cfa6bc5dc542a9f4319d75997589d5294
refs/heads/master
2022-07-31T00:19:43.570947
2020-05-21T20:08:56
2020-05-21T20:08:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
224
py
from pages.main_page import MainPage def test_basic_elements(browser_is_opened): main_page = MainPage(*browser_is_opened) assert main_page.check_news_banner_exit() assert main_page.check_sponsors_notes_exist()
[ "ihatecapslook@gmail.com" ]
ihatecapslook@gmail.com
5d97d95d16c772bc0539baded389858d75f40403
7597fe68b0d7b750c3ddfeaeee19e8dedf8c3186
/library/sources/core/kernels/binop/binop_common.py
bbf7ca60afc1c3426fa8137f7a922756e4f4791f
[]
no_license
nasingfaund/Yeppp-Mirror
33de08f1e5a50b7e75ee905ac4f026a178786752
23cc725a7489d376558bef3e92e31fda014b6c47
refs/heads/master
2023-03-20T13:14:23.502813
2016-08-06T06:34:54
2016-08-06T06:34:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,832
py
from peachpy.x86_64 import * from peachpy import * from instruction_maps.avx_instruction_maps import * from instruction_maps.sse_instruction_maps import * def avx2_scalar_instruction_select(input_type, output_type, op): if input_type == Yep32u and output_type == Yep64u: SCALAR_LOAD = lambda x, y: MOV(x.as_dword, y) elif input_type.size == output_type.size: SCALAR_LOAD = avx_scalar_mov_map[input_type] else: SCALAR_LOAD = avx_scalar_movsx_map[(input_type, output_type)] op_map = { "add" : avx_scalar_add_map, "subtract" : avx_scalar_sub_map, "max" : avx_scalar_max_map, "min" : avx_scalar_min_map }[op] if output_type in [Yep8s, Yep8u, Yep16s, Yep16u, Yep32s, Yep32u, Yep64s, Yep64u]: SCALAR_OP = lambda x, y, z: op_map[output_type](x, z) \ if x == y else op_map[output_type](x, y) else: SCALAR_OP = lambda x, y, z: op_map[output_type](x, y, z) SCALAR_STORE = avx_scalar_mov_map[output_type] return SCALAR_LOAD, SCALAR_OP, SCALAR_STORE def avx2_vector_instruction_select(input_type, output_type, op): if input_type.size == output_type.size: SIMD_LOAD = avx_vector_unaligned_mov_map[input_type] else: SIMD_LOAD = avx_vector_movsx_map[(input_type, output_type)] op_map = { "add" : avx_vector_add_map, "subtract" : avx_vector_sub_map, "max" : avx_vector_max_map, "min" : avx_vector_min_map }[op] SIMD_OP = op_map[output_type] SIMD_STORE = avx_vector_aligned_mov_map[output_type] return SIMD_LOAD, SIMD_OP, SIMD_STORE def sse_scalar_instruction_select(input_type, output_type, op): if input_type == Yep32u and output_type == Yep64u: SCALAR_LOAD = lambda x, y: MOV(x.as_dword, y) elif input_type.size == output_type.size: SCALAR_LOAD = sse_scalar_mov_map[input_type] else: SCALAR_LOAD = sse_scalar_movsx_map[(input_type, output_type)] op_map = { "add" : sse_scalar_add_map, "subtract" : sse_scalar_sub_map, "max" : sse_scalar_max_map, "min" : sse_scalar_min_map }[op] SCALAR_OP = lambda x, y, z: op_map[output_type](x, z) \ if x == y else op_map[output_type](x, y) SCALAR_STORE = sse_scalar_mov_map[output_type] return SCALAR_LOAD, SCALAR_OP, SCALAR_STORE def sse_vector_instruction_select(input_type, output_type, op): if input_type.size == output_type.size: SIMD_LOAD = sse_vector_unaligned_mov_map[input_type] else: SIMD_LOAD = sse_vector_movsx_map[(input_type, output_type)] op_map = { "add" : sse_vector_add_map, "subtract" : sse_vector_sub_map, "max" : sse_vector_max_map, "min" : sse_vector_min_map }[op] SIMD_OP = lambda x, y, z: op_map[output_type](x, z) \ if x == y else op_map[output_type](x, y) SIMD_STORE = sse_vector_aligned_mov_map[output_type] return SIMD_LOAD, SIMD_OP, SIMD_STORE def scalar_instruction_select(input_type, output_type, op, isa_ext): if isa_ext == "AVX2": return avx2_scalar_instruction_select(input_type, output_type, op) elif isa_ext == "SSE": return sse_scalar_instruction_select(input_type, output_type, op) def vector_instruction_select(input_type, output_type, op, isa_ext): if isa_ext == "AVX2": return avx2_vector_instruction_select(input_type, output_type, op) elif isa_ext == "SSE": return sse_vector_instruction_select(input_type, output_type, op) def scalar_reg_select(OUTPUT_TYPE, isa_ext): if isa_ext == "AVX2": reg_type = avx_scalar_register_map[OUTPUT_TYPE] elif isa_ext == "SSE": reg_type = sse_scalar_register_map[OUTPUT_TYPE] return reg_type(), reg_type() def vector_reg_select(isa_ext, UNROLL_FACTOR, scalar=False): if isa_ext == "AVX2": reg = YMMRegister elif isa_ext == "SSE": reg = XMMRegister simd_accs = [reg() for _ in range(UNROLL_FACTOR)] if scalar: simd_ops = reg() else: simd_ops = [reg() for _ in range(UNROLL_FACTOR)] return simd_accs, simd_ops def MOV_GPR_TO_VECTOR(vector_reg, gpr, input_type, output_type, isa_ext): if isa_ext == "AVX2": avx2_mov_gpr_to_vector(vector_reg, gpr, input_type, output_type) elif isa_ext == "SSE": sse_mov_gpr_to_vector(vector_reg, gpr, input_type, output_type) def avx2_mov_gpr_to_vector(vector_reg, gpr, input_type, output_type): if input_type == Yep32f: VMOVSS(vector_reg.as_xmm, gpr, gpr) elif input_type == Yep64f: VMOVSD(vector_reg.as_xmm, gpr, gpr) else: GPR_TO_VECTOR_MOV = avx_scalar_reg_to_vector_reg_mov_map[output_type] if input_type.size < 4: GPR_TO_VECTOR_MOV(vector_reg.as_xmm, gpr.as_dword) else: GPR_TO_VECTOR_MOV(vector_reg.as_xmm, gpr) BROADCAST = avx_broadcast_map[output_type] BROADCAST(vector_reg, vector_reg.as_xmm) def sse_mov_gpr_to_vector(vector_reg, gpr, input_type, output_type): if input_type == Yep32f: PSHUFD(vector_reg, gpr, 0x0) elif input_type == Yep64f: assert vector_reg == gpr PUNPCKLQDQ(vector_reg, gpr) # In this case, vector_reg == gpr elif output_type.size <= 4: if output_type.size < 4: MOVZX(gpr.as_dword, gpr) if output_type.size == 1: IMUL(gpr.as_dword, gpr.as_dword, 0x01010101) elif output_type.size == 2: IMUL(gpr.as_dword, gpr.as_dword, 0x00010001) MOVD(vector_reg, gpr.as_dword) PSHUFD(vector_reg, vector_reg, 0x0) elif output_type.size == 8: MOVQ(vector_reg, gpr) PUNPCKLQDQ(vector_reg, vector_reg)
[ "rguthrie6595@gmail.com" ]
rguthrie6595@gmail.com
0accec4ed702daf5f14fea3c2b52ce1ee500ff57
8f1738c453a38b4fb2cb75a471d7938f3ea6d49d
/167.py
e1a5e047e25c2bdc83845d4ab52ea543edd1f47e
[ "MIT" ]
permissive
geethakamath18/Leetcode
5f7492ad5909f84f1ee8f13b6484baa2af235ecc
8e55e0a47ee35ed100b30dda6682c7ce1033d4b2
refs/heads/master
2023-05-13T09:52:13.577146
2021-06-11T23:20:34
2021-06-11T23:20:34
291,392,504
0
0
null
null
null
null
UTF-8
Python
false
false
379
py
#LeetCode problem 167: Two Sum II - Input array is sorted class Solution: def twoSum(self, numbers: List[int], target: int) -> List[int]: d={} for i in range(len(numbers)): d[numbers[i]]=i for j in range(len(numbers)): if((target-numbers[j])) in d and d[target-numbers[j]]!=j: return[j+1,d[target-numbers[j]]+1]
[ "37272001+geethakamath18@users.noreply.github.com" ]
37272001+geethakamath18@users.noreply.github.com
043c662c8aea819fade56d6bb682f6c44f7d36f3
162dec075b6e622c9495d115fbe8b7a83a992e3d
/apps/exam/admin.py
41011d4e67e2ef6196307e5ee93ecd27937ca81b
[]
no_license
shubhamdevgan/flamboyant
b4fcca86b3c85b82fcdf42bc1af8279de465536a
461e5a16320cdea5c1945628633932e75b5e207a
refs/heads/master
2022-02-10T09:34:03.398111
2022-01-30T06:43:18
2022-01-30T06:43:18
230,481,030
0
0
null
2020-05-10T03:39:47
2019-12-27T16:58:50
CSS
UTF-8
Python
false
false
109
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Exam)
[ "devganshubham2@gmail.com" ]
devganshubham2@gmail.com
72c869f6621fd60a33ce24785b818e1ae15e5e87
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/gluinoGMSB/gluinoGMSB_M2450_ctau10000p0_TuneCUETP8M1_13TeV_pythia8_cff.py
f7d05477a5be68d6fcfb3e3c2425fddbdc7d028d
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
50,207
py
FLAVOR='gluino' COM_ENERGY = 13000. CROSS_SECTION = 0.000104886 CTAU = 10000.0 MASS_POINT = 2450 SLHA_TABLE=""" ## Important note! ## This file has been modified by hand to give the gluino and the ## stop_1 a very narrow width, such that it can be used to try out ## the R-hadron machinery. It is not a realistic SUSY scenario. ## ##****************************************************************** ## MadGraph/MadEvent * ##****************************************************************** ## * ## param_card corresponding the SPS point 1a (by SoftSusy 2.0.5) * ## * ##****************************************************************** ## Les Houches friendly file for the (MS)SM parameters of MadGraph * ## SM parameter set and decay widths produced by MSSMCalc * ##****************************************************************** ##*Please note the following IMPORTANT issues: * ## * ##0. REFRAIN from editing this file by hand! Some of the parame- * ## ters are not independent. Always use a calculator. * ## * ##1. alpha_S(MZ) has been used in the calculation of the parameters* ## This value is KEPT by madgraph when no pdf are used lpp(i)=0, * ## but, for consistency, it will be reset by madgraph to the * ## value expected IF the pdfs for collisions with hadrons are * ## used. * ## * ##2. Values of the charm and bottom kinematic (pole) masses are * ## those used in the matrix elements and phase space UNLESS they * ## are set to ZERO from the start in the model (particles.dat) * ## This happens, for example, when using 5-flavor QCD where * ## charm and bottom are treated as partons in the initial state * ## and a zero mass might be hardwired in the model definition. * ## * ## The SUSY decays have calculated using SDECAY 1.1a * ## * ##****************************************************************** # BLOCK DCINFO # Decay Program information 1 SDECAY # decay calculator 2 1.1a # version number # BLOCK SPINFO # Spectrum calculator information 1 SOFTSUSY # spectrum calculator 2 2.0.5 # version number # BLOCK MODSEL # Model selection 1 1 sugra # BLOCK SMINPUTS # Standard Model inputs 1 1.27934000E+02 # alpha_em^-1(M_Z)^MSbar 2 1.16637000E-05 # G_F [GeV^-2] 3 1.18000000E-01 # alpha_S(M_Z)^MSbar 4 9.11876000E+01 # M_Z pole mass 5 4.25000000E+00 # mb(mb)^MSbar 6 1.75000000E+02 # mt pole mass 7 1.77700000E+00 # mtau pole mass # BLOCK MINPAR # Input parameters - minimal models 1 1.00000000E+02 # m0 2 2.50000000E+02 # m12 3 1.00000000E+01 # tanb 4 1.00000000E+00 # sign(mu) 5 -1.00000000E+02 # A0 # BLOCK MASS # Mass Spectrum # PDG code mass particle 5 4.88991651E+00 # b-quark pole mass calculated from mb(mb)_Msbar 6 1.75000000E+02 # mt pole mass (not read by ME) 24 7.98290131E+01 # W+ 25 1.25899057E+02 # h 35 3.99960116E+05 # H 36 3.99583917E+05 # A 37 4.07879012E+05 # H+ 1000001 5.68441109E+05 # ~d_L 2000001 5.45228462E+05 # ~d_R 1000002 5.61119014E+05 # ~u_L 2000002 5.49259265E+05 # ~u_R 1000003 5.68441109E+05 # ~s_L 2000003 5.45228462E+05 # ~s_R 1000004 5.61119014E+05 # ~c_L 2000004 5.49259265E+05 # ~c_R 1000005 10000000 # ~b_1 2000005 5.12315123E+05 # ~b_2 1000006 1000000.00 # ~t_1 2000006 5.85785818E+05 # ~t_2 1000011 2.02915690E+05 # ~e_L 2000011 1.44102799E+05 # ~e_R 1000012 1.85258326E+05 # ~nu_eL 1000013 2.02915690E+05 # ~mu_L 2000013 1.44102799E+05 # ~mu_R 1000014 1.85258326E+05 # ~nu_muL 1000015 1.34490864E+05 # ~tau_1 2000015 2.06867805E+05 # ~tau_2 1000016 1.84708464E+05 # ~nu_tauL 1000021 2450 # ~g 1000022 10.0 # ~chi_10 1000023 1.81088157E+05 # ~chi_20 1000025 -3.63756027E+05 # ~chi_30 1000035 3.81729382E+05 # ~chi_40 1000024 1.81696474E+05 # ~chi_1+ 1000037 3.79939320E+05 # ~chi_2+ # BLOCK NMIX # Neutralino Mixing Matrix 1 1 9.86364430E-01 # N_11 1 2 -5.31103553E-02 # N_12 1 3 1.46433995E-01 # N_13 1 4 -5.31186117E-02 # N_14 2 1 9.93505358E-02 # N_21 2 2 9.44949299E-01 # N_22 2 3 -2.69846720E-01 # N_23 2 4 1.56150698E-01 # N_24 3 1 -6.03388002E-02 # N_31 3 2 8.77004854E-02 # N_32 3 3 6.95877493E-01 # N_33 3 4 7.10226984E-01 # N_34 4 1 -1.16507132E-01 # N_41 4 2 3.10739017E-01 # N_42 4 3 6.49225960E-01 # N_43 4 4 -6.84377823E-01 # N_44 # BLOCK UMIX # Chargino Mixing Matrix U 1 1 9.16834859E-01 # U_11 1 2 -3.99266629E-01 # U_12 2 1 3.99266629E-01 # U_21 2 2 9.16834859E-01 # U_22 # BLOCK VMIX # Chargino Mixing Matrix V 1 1 9.72557835E-01 # V_11 1 2 -2.32661249E-01 # V_12 2 1 2.32661249E-01 # V_21 2 2 9.72557835E-01 # V_22 # BLOCK STOPMIX # Stop Mixing Matrix 1 1 5.53644960E-01 # O_{11} 1 2 8.32752820E-01 # O_{12} 2 1 8.32752820E-01 # O_{21} 2 2 -5.53644960E-01 # O_{22} # BLOCK SBOTMIX # Sbottom Mixing Matrix 1 1 9.38737896E-01 # O_{11} 1 2 3.44631925E-01 # O_{12} 2 1 -3.44631925E-01 # O_{21} 2 2 9.38737896E-01 # O_{22} # BLOCK STAUMIX # Stau Mixing Matrix 1 1 2.82487190E-01 # O_{11} 1 2 9.59271071E-01 # O_{12} 2 1 9.59271071E-01 # O_{21} 2 2 -2.82487190E-01 # O_{22} # BLOCK ALPHA # Higgs mixing -1.13825210E-01 # Mixing angle in the neutral Higgs boson sector # BLOCK HMIX Q= 4.67034192E+02 # DRbar Higgs Parameters 1 3.57680977E+02 # mu(Q)MSSM DRbar 2 9.74862403E+00 # tan beta(Q)MSSM DRba 3 2.44894549E+02 # higgs vev(Q)MSSM DRb 4 1.66439065E+05 # mA^2(Q)MSSM DRbar # BLOCK GAUGE Q= 4.67034192E+02 # The gauge couplings 3 1.10178679E+00 # g3(Q) MSbar # BLOCK AU Q= 4.67034192E+02 # The trilinear couplings 1 1 0.00000000E+00 # A_u(Q) DRbar 2 2 0.00000000E+00 # A_c(Q) DRbar 3 3 -4.98129778E+02 # A_t(Q) DRbar # BLOCK AD Q= 4.67034192E+02 # The trilinear couplings 1 1 0.00000000E+00 # A_d(Q) DRbar 2 2 0.00000000E+00 # A_s(Q) DRbar 3 3 -7.97274397E+02 # A_b(Q) DRbar # BLOCK AE Q= 4.67034192E+02 # The trilinear couplings 1 1 0.00000000E+00 # A_e(Q) DRbar 2 2 0.00000000E+00 # A_mu(Q) DRbar 3 3 -2.51776873E+02 # A_tau(Q) DRbar # BLOCK YU Q= 4.67034192E+02 # The Yukawa couplings 3 3 8.92844550E-01 # y_t(Q) DRbar # BLOCK YD Q= 4.67034192E+02 # The Yukawa couplings 3 3 1.38840206E-01 # y_b(Q) DRbar # BLOCK YE Q= 4.67034192E+02 # The Yukawa couplings 3 3 1.00890810E-01 # y_tau(Q) DRbar # BLOCK MSOFT Q= 4.67034192E+02 # The soft SUSY breaking masses at the scale Q 1 1.01396534E+02 # M_1(Q) 2 1.91504241E+02 # M_2(Q) 3 5.88263031E+02 # M_3(Q) 21 3.23374943E+04 # mH1^2(Q) 22 -1.28800134E+05 # mH2^2(Q) 31 1.95334764E+02 # meL(Q) 32 1.95334764E+02 # mmuL(Q) 33 1.94495956E+02 # mtauL(Q) 34 1.36494061E+02 # meR(Q) 35 1.36494061E+02 # mmuR(Q) 36 1.34043428E+02 # mtauR(Q) 41 5.47573466E+02 # mqL1(Q) 42 5.47573466E+02 # mqL2(Q) 43 4.98763839E+02 # mqL3(Q) 44 5.29511195E+02 # muR(Q) 45 5.29511195E+02 # mcR(Q) 46 4.23245877E+02 # mtR(Q) 47 5.23148807E+02 # mdR(Q) 48 5.23148807E+02 # msR(Q) 49 5.19867261E+02 # mbR(Q) # # # # ================= # |The decay table| # ================= # # - The multi-body decays for the inos, stops and sbottoms are included. # # PDG Width DECAY 25 1.98610799E-03 # h decays # BR NDA ID1 ID2 1.45642955E-01 2 15 -15 # BR(H1 -> tau- tau+) 8.19070713E-01 2 5 -5 # BR(H1 -> b bb) 3.36338173E-02 2 24 -24 # BR(H1 -> W+ W-) 1.65251528E-03 2 23 23 # BR(H1 -> Z Z) # # PDG Width DECAY 35 5.74801389E-01 # H decays # BR NDA ID1 ID2 1.39072676E-01 2 15 -15 # BR(H -> tau- tau+) 4.84110879E-02 2 6 -6 # BR(H -> t tb) 7.89500067E-01 2 5 -5 # BR(H -> b bb) 3.87681171E-03 2 24 -24 # BR(H -> W+ W-) 1.80454752E-03 2 23 23 # BR(H -> Z Z) 0.00000000E+00 2 24 -37 # BR(H -> W+ H-) 0.00000000E+00 2 -24 37 # BR(H -> W- H+) 0.00000000E+00 2 37 -37 # BR(H -> H+ H-) 1.73348101E-02 2 25 25 # BR(H -> h h) 0.00000000E+00 2 36 36 # BR(H -> A A) # # PDG Width DECAY 36 6.32178488E-01 # A decays # BR NDA ID1 ID2 1.26659725E-01 2 15 -15 # BR(A -> tau- tau+) 1.51081526E-01 2 6 -6 # BR(A -> t tb) 7.19406137E-01 2 5 -5 # BR(A -> b bb) 2.85261228E-03 2 23 25 # BR(A -> Z h) 0.00000000E+00 2 23 35 # BR(A -> Z H) 0.00000000E+00 2 24 -37 # BR(A -> W+ H-) 0.00000000E+00 2 -24 37 # BR(A -> W- H+) # # PDG Width DECAY 37 5.46962813E-01 # H+ decays # BR NDA ID1 ID2 1.49435135E-01 2 -15 16 # BR(H+ -> tau+ nu_tau) 8.46811711E-01 2 6 -5 # BR(H+ -> t bb) 3.75315387E-03 2 24 25 # BR(H+ -> W+ h) 0.00000000E+00 2 24 35 # BR(H+ -> W+ H) 0.00000000E+00 2 24 36 # BR(H+ -> W+ A) # # PDG Width DECAY 1000021 1.9732e-17 #1.9732E-14 # gluino decays # BR NDA ID1 ID2 1.0 2 1000039 21 # 2.08454202E-02 2 1000001 -1 # BR(~g -> ~d_L db) # 2.08454202E-02 2 -1000001 1 # BR(~g -> ~d_L* d ) # 5.07075274E-02 2 2000001 -1 # BR(~g -> ~d_R db) # 5.07075274E-02 2 -2000001 1 # BR(~g -> ~d_R* d ) # 2.89787767E-02 2 1000002 -2 # BR(~g -> ~u_L ub) # 2.89787767E-02 2 -1000002 2 # BR(~g -> ~u_L* u ) # 4.46872773E-02 2 2000002 -2 # BR(~g -> ~u_R ub) # 4.46872773E-02 2 -2000002 2 # BR(~g -> ~u_R* u ) # 2.08454202E-02 2 1000003 -3 # BR(~g -> ~s_L sb) # 2.08454202E-02 2 -1000003 3 # BR(~g -> ~s_L* s ) # 5.07075274E-02 2 2000003 -3 # BR(~g -> ~s_R sb) # 5.07075274E-02 2 -2000003 3 # BR(~g -> ~s_R* s ) # 2.89787767E-02 2 1000004 -4 # BR(~g -> ~c_L cb) # 2.89787767E-02 2 -1000004 4 # BR(~g -> ~c_L* c ) # 4.46872773E-02 2 2000004 -4 # BR(~g -> ~c_R cb) # 4.46872773E-02 2 -2000004 4 # BR(~g -> ~c_R* c ) # 1.05840237E-01 2 1000005 -5 # BR(~g -> ~b_1 bb) # 1.05840237E-01 2 -1000005 5 # BR(~g -> ~b_1* b ) # 5.56574805E-02 2 2000005 -5 # BR(~g -> ~b_2 bb) # 5.56574805E-02 2 -2000005 5 # BR(~g -> ~b_2* b ) # 4.80642793E-02 2 1000006 -6 # BR(~g -> ~t_1 tb) # 4.80642793E-02 2 -1000006 6 # BR(~g -> ~t_1* t ) # 0.00000000E+00 2 2000006 -6 # BR(~g -> ~t_2 tb) # 0.00000000E+00 2 -2000006 6 # BR(~g -> ~t_2* t ) # # PDG Width DECAY 1000006 1.97326971684839e-14 # stop1 decays # BR NDA ID1 ID2 5.0E-01 2 -5 -1 5.0E-01 2 -5 -3 # 3.33333333E-01 2 5 -11 # 3.33333333E-01 2 5 -13 # 3.33333333E-01 2 5 -15 # 1.92947616E-01 2 1000022 6 # BR(~t_1 -> ~chi_10 t ) # 1.17469211E-01 2 1000023 6 # BR(~t_1 -> ~chi_20 t ) # 0.00000000E+00 2 1000025 6 # BR(~t_1 -> ~chi_30 t ) # 0.00000000E+00 2 1000035 6 # BR(~t_1 -> ~chi_40 t ) # 6.75747693E-01 2 1000024 5 # BR(~t_1 -> ~chi_1+ b ) # 1.38354802E-02 2 1000037 5 # BR(~t_1 -> ~chi_2+ b ) # 0.00000000E+00 2 1000021 6 # BR(~t_1 -> ~g t ) # 0.00000000E+00 2 1000005 37 # BR(~t_1 -> ~b_1 H+) # 0.00000000E+00 2 2000005 37 # BR(~t_1 -> ~b_2 H+) # 0.00000000E+00 2 1000005 24 # BR(~t_1 -> ~b_1 W+) # 0.00000000E+00 2 2000005 24 # BR(~t_1 -> ~b_2 W+) # # PDG Width DECAY 2000006 7.37313275E+00 # stop2 decays # BR NDA ID1 ID2 2.96825635E-02 2 1000022 6 # BR(~t_2 -> ~chi_10 t ) 8.68035358E-02 2 1000023 6 # BR(~t_2 -> ~chi_20 t ) 4.18408351E-02 2 1000025 6 # BR(~t_2 -> ~chi_30 t ) 1.93281647E-01 2 1000035 6 # BR(~t_2 -> ~chi_40 t ) 2.19632356E-01 2 1000024 5 # BR(~t_2 -> ~chi_1+ b ) 2.02206148E-01 2 1000037 5 # BR(~t_2 -> ~chi_2+ b ) 0.00000000E+00 2 1000021 6 # BR(~t_2 -> ~g t ) 3.66397706E-02 2 1000006 25 # BR(~t_2 -> ~t_1 h ) 0.00000000E+00 2 1000006 35 # BR(~t_2 -> ~t_1 H ) 0.00000000E+00 2 1000006 36 # BR(~t_2 -> ~t_1 A ) 0.00000000E+00 2 1000005 37 # BR(~t_2 -> ~b_1 H+) 0.00000000E+00 2 2000005 37 # BR(~t_2 -> ~b_2 H+) 1.89913144E-01 2 1000006 23 # BR(~t_2 -> ~t_1 Z ) 0.00000000E+00 2 1000005 24 # BR(~t_2 -> ~b_1 W+) 0.00000000E+00 2 2000005 24 # BR(~t_2 -> ~b_2 W+) # # PDG Width DECAY 1000005 1.97326971684839e-14 # sbottom1 decays # BR NDA ID1 ID2 0.33333333 2 1 12 0.33333333 2 1 14 0.33333333 2 1 16 # 4.43307074E-02 2 1000022 5 # BR(~b_1 -> ~chi_10 b ) # 3.56319904E-01 2 1000023 5 # BR(~b_1 -> ~chi_20 b ) # 5.16083795E-03 2 1000025 5 # BR(~b_1 -> ~chi_30 b ) # 1.04105080E-02 2 1000035 5 # BR(~b_1 -> ~chi_40 b ) # 4.45830064E-01 2 -1000024 6 # BR(~b_1 -> ~chi_1- t ) # 0.00000000E+00 2 -1000037 6 # BR(~b_1 -> ~chi_2- t ) # 0.00000000E+00 2 1000021 5 # BR(~b_1 -> ~g b ) # 0.00000000E+00 2 1000006 -37 # BR(~b_1 -> ~t_1 H-) # 0.00000000E+00 2 2000006 -37 # BR(~b_1 -> ~t_2 H-) # 1.37947979E-01 2 1000006 -24 # BR(~b_1 -> ~t_1 W-) # 0.00000000E+00 2 2000006 -24 # BR(~b_1 -> ~t_2 W-) # # PDG Width DECAY 2000005 8.01566294E-01 # sbottom2 decays # BR NDA ID1 ID2 2.86200590E-01 2 1000022 5 # BR(~b_2 -> ~chi_10 b ) 1.40315912E-01 2 1000023 5 # BR(~b_2 -> ~chi_20 b ) 5.32635592E-02 2 1000025 5 # BR(~b_2 -> ~chi_30 b ) 7.48748121E-02 2 1000035 5 # BR(~b_2 -> ~chi_40 b ) 1.79734294E-01 2 -1000024 6 # BR(~b_2 -> ~chi_1- t ) 0.00000000E+00 2 -1000037 6 # BR(~b_2 -> ~chi_2- t ) 0.00000000E+00 2 1000021 5 # BR(~b_2 -> ~g b ) 0.00000000E+00 2 1000005 25 # BR(~b_2 -> ~b_1 h ) 0.00000000E+00 2 1000005 35 # BR(~b_2 -> ~b_1 H ) 0.00000000E+00 2 1000005 36 # BR(~b_2 -> ~b_1 A ) 0.00000000E+00 2 1000006 -37 # BR(~b_2 -> ~t_1 H-) 0.00000000E+00 2 2000006 -37 # BR(~b_2 -> ~t_2 H-) 0.00000000E+00 2 1000005 23 # BR(~b_2 -> ~b_1 Z ) 2.65610832E-01 2 1000006 -24 # BR(~b_2 -> ~t_1 W-) 0.00000000E+00 2 2000006 -24 # BR(~b_2 -> ~t_2 W-) # # PDG Width DECAY 1000002 5.47719539E+00 # sup_L decays # BR NDA ID1 ID2 6.65240987E-03 2 1000022 2 # BR(~u_L -> ~chi_10 u) 3.19051458E-01 2 1000023 2 # BR(~u_L -> ~chi_20 u) 8.44929059E-04 2 1000025 2 # BR(~u_L -> ~chi_30 u) 1.03485173E-02 2 1000035 2 # BR(~u_L -> ~chi_40 u) 6.49499518E-01 2 1000024 1 # BR(~u_L -> ~chi_1+ d) 1.36031676E-02 2 1000037 1 # BR(~u_L -> ~chi_2+ d) 0.00000000E+00 2 1000021 2 # BR(~u_L -> ~g u) # # PDG Width DECAY 2000002 1.15297292E+00 # sup_R decays # BR NDA ID1 ID2 9.86377420E-01 2 1000022 2 # BR(~u_R -> ~chi_10 u) 8.46640647E-03 2 1000023 2 # BR(~u_R -> ~chi_20 u) 1.23894695E-03 2 1000025 2 # BR(~u_R -> ~chi_30 u) 3.91722611E-03 2 1000035 2 # BR(~u_R -> ~chi_40 u) 0.00000000E+00 2 1000024 1 # BR(~u_R -> ~chi_1+ d) 0.00000000E+00 2 1000037 1 # BR(~u_R -> ~chi_2+ d) 0.00000000E+00 2 1000021 2 # BR(~u_R -> ~g u) # # PDG Width DECAY 1000001 5.31278772E+00 # sdown_L decays # BR NDA ID1 ID2 2.32317969E-02 2 1000022 1 # BR(~d_L -> ~chi_10 d) 3.10235077E-01 2 1000023 1 # BR(~d_L -> ~chi_20 d) 1.52334771E-03 2 1000025 1 # BR(~d_L -> ~chi_30 d) 1.48849798E-02 2 1000035 1 # BR(~d_L -> ~chi_40 d) 6.06452481E-01 2 -1000024 2 # BR(~d_L -> ~chi_1- u) 4.36723179E-02 2 -1000037 2 # BR(~d_L -> ~chi_2- u) 0.00000000E+00 2 1000021 1 # BR(~d_L -> ~g d) # # PDG Width DECAY 2000001 2.85812308E-01 # sdown_R decays # BR NDA ID1 ID2 9.86529614E-01 2 1000022 1 # BR(~d_R -> ~chi_10 d) 8.44510350E-03 2 1000023 1 # BR(~d_R -> ~chi_20 d) 1.21172119E-03 2 1000025 1 # BR(~d_R -> ~chi_30 d) 3.81356102E-03 2 1000035 1 # BR(~d_R -> ~chi_40 d) 0.00000000E+00 2 -1000024 2 # BR(~d_R -> ~chi_1- u) 0.00000000E+00 2 -1000037 2 # BR(~d_R -> ~chi_2- u) 0.00000000E+00 2 1000021 1 # BR(~d_R -> ~g d) # # PDG Width DECAY 1000004 5.47719539E+00 # scharm_L decays # BR NDA ID1 ID2 6.65240987E-03 2 1000022 4 # BR(~c_L -> ~chi_10 c) 3.19051458E-01 2 1000023 4 # BR(~c_L -> ~chi_20 c) 8.44929059E-04 2 1000025 4 # BR(~c_L -> ~chi_30 c) 1.03485173E-02 2 1000035 4 # BR(~c_L -> ~chi_40 c) 6.49499518E-01 2 1000024 3 # BR(~c_L -> ~chi_1+ s) 1.36031676E-02 2 1000037 3 # BR(~c_L -> ~chi_2+ s) 0.00000000E+00 2 1000021 4 # BR(~c_L -> ~g c) # # PDG Width DECAY 2000004 1.15297292E+00 # scharm_R decays # BR NDA ID1 ID2 9.86377420E-01 2 1000022 4 # BR(~c_R -> ~chi_10 c) 8.46640647E-03 2 1000023 4 # BR(~c_R -> ~chi_20 c) 1.23894695E-03 2 1000025 4 # BR(~c_R -> ~chi_30 c) 3.91722611E-03 2 1000035 4 # BR(~c_R -> ~chi_40 c) 0.00000000E+00 2 1000024 3 # BR(~c_R -> ~chi_1+ s) 0.00000000E+00 2 1000037 3 # BR(~c_R -> ~chi_2+ s) 0.00000000E+00 2 1000021 4 # BR(~c_R -> ~g c) # # PDG Width DECAY 1000003 5.31278772E+00 # sstrange_L decays # BR NDA ID1 ID2 2.32317969E-02 2 1000022 3 # BR(~s_L -> ~chi_10 s) 3.10235077E-01 2 1000023 3 # BR(~s_L -> ~chi_20 s) 1.52334771E-03 2 1000025 3 # BR(~s_L -> ~chi_30 s) 1.48849798E-02 2 1000035 3 # BR(~s_L -> ~chi_40 s) 6.06452481E-01 2 -1000024 4 # BR(~s_L -> ~chi_1- c) 4.36723179E-02 2 -1000037 4 # BR(~s_L -> ~chi_2- c) 0.00000000E+00 2 1000021 3 # BR(~s_L -> ~g s) # # PDG Width DECAY 2000003 2.85812308E-01 # sstrange_R decays # BR NDA ID1 ID2 9.86529614E-01 2 1000022 3 # BR(~s_R -> ~chi_10 s) 8.44510350E-03 2 1000023 3 # BR(~s_R -> ~chi_20 s) 1.21172119E-03 2 1000025 3 # BR(~s_R -> ~chi_30 s) 3.81356102E-03 2 1000035 3 # BR(~s_R -> ~chi_40 s) 0.00000000E+00 2 -1000024 4 # BR(~s_R -> ~chi_1- c) 0.00000000E+00 2 -1000037 4 # BR(~s_R -> ~chi_2- c) 0.00000000E+00 2 1000021 3 # BR(~s_R -> ~g s) # # PDG Width DECAY 1000011 2.13682161E-01 # selectron_L decays # BR NDA ID1 ID2 5.73155386E-01 2 1000022 11 # BR(~e_L -> ~chi_10 e-) 1.64522579E-01 2 1000023 11 # BR(~e_L -> ~chi_20 e-) 0.00000000E+00 2 1000025 11 # BR(~e_L -> ~chi_30 e-) 0.00000000E+00 2 1000035 11 # BR(~e_L -> ~chi_40 e-) 2.62322035E-01 2 -1000024 12 # BR(~e_L -> ~chi_1- nu_e) 0.00000000E+00 2 -1000037 12 # BR(~e_L -> ~chi_2- nu_e) # # PDG Width DECAY 2000011 2.16121626E-01 # selectron_R decays # BR NDA ID1 ID2 1.00000000E+00 2 1000022 11 # BR(~e_R -> ~chi_10 e-) 0.00000000E+00 2 1000023 11 # BR(~e_R -> ~chi_20 e-) 0.00000000E+00 2 1000025 11 # BR(~e_R -> ~chi_30 e-) 0.00000000E+00 2 1000035 11 # BR(~e_R -> ~chi_40 e-) 0.00000000E+00 2 -1000024 12 # BR(~e_R -> ~chi_1- nu_e) 0.00000000E+00 2 -1000037 12 # BR(~e_R -> ~chi_2- nu_e) # # PDG Width DECAY 1000013 2.13682161E-01 # smuon_L decays # BR NDA ID1 ID2 5.73155386E-01 2 1000022 13 # BR(~mu_L -> ~chi_10 mu-) 1.64522579E-01 2 1000023 13 # BR(~mu_L -> ~chi_20 mu-) 0.00000000E+00 2 1000025 13 # BR(~mu_L -> ~chi_30 mu-) 0.00000000E+00 2 1000035 13 # BR(~mu_L -> ~chi_40 mu-) 2.62322035E-01 2 -1000024 14 # BR(~mu_L -> ~chi_1- nu_mu) 0.00000000E+00 2 -1000037 14 # BR(~mu_L -> ~chi_2- nu_mu) # # PDG Width DECAY 2000013 2.16121626E-01 # smuon_R decays # BR NDA ID1 ID2 1.00000000E+00 2 1000022 13 # BR(~mu_R -> ~chi_10 mu-) 0.00000000E+00 2 1000023 13 # BR(~mu_R -> ~chi_20 mu-) 0.00000000E+00 2 1000025 13 # BR(~mu_R -> ~chi_30 mu-) 0.00000000E+00 2 1000035 13 # BR(~mu_R -> ~chi_40 mu-) 0.00000000E+00 2 -1000024 14 # BR(~mu_R -> ~chi_1- nu_mu) 0.00000000E+00 2 -1000037 14 # BR(~mu_R -> ~chi_2- nu_mu) # # PDG Width DECAY 1000015 1.48327268E-01 # stau_1 decays # BR NDA ID1 ID2 1.00000000E+00 2 1000022 15 # BR(~tau_1 -> ~chi_10 tau-) 0.00000000E+00 2 1000023 15 # BR(~tau_1 -> ~chi_20 tau-) 0.00000000E+00 2 1000025 15 # BR(~tau_1 -> ~chi_30 tau-) 0.00000000E+00 2 1000035 15 # BR(~tau_1 -> ~chi_40 tau-) 0.00000000E+00 2 -1000024 16 # BR(~tau_1 -> ~chi_1- nu_tau) 0.00000000E+00 2 -1000037 16 # BR(~tau_1 -> ~chi_2- nu_tau) 0.00000000E+00 2 1000016 -37 # BR(~tau_1 -> ~nu_tauL H-) 0.00000000E+00 2 1000016 -24 # BR(~tau_1 -> ~nu_tauL W-) # # PDG Width DECAY 2000015 2.69906096E-01 # stau_2 decays # BR NDA ID1 ID2 5.96653046E-01 2 1000022 15 # BR(~tau_2 -> ~chi_10 tau-) 1.54536760E-01 2 1000023 15 # BR(~tau_2 -> ~chi_20 tau-) 0.00000000E+00 2 1000025 15 # BR(~tau_2 -> ~chi_30 tau-) 0.00000000E+00 2 1000035 15 # BR(~tau_2 -> ~chi_40 tau-) 2.48810195E-01 2 -1000024 16 # BR(~tau_2 -> ~chi_1- nu_tau) 0.00000000E+00 2 -1000037 16 # BR(~tau_2 -> ~chi_2- nu_tau) 0.00000000E+00 2 1000016 -37 # BR(~tau_2 -> ~nu_tauL H-) 0.00000000E+00 2 1000016 -24 # BR(~tau_2 -> ~nu_tauL W-) 0.00000000E+00 2 1000015 25 # BR(~tau_2 -> ~tau_1 h) 0.00000000E+00 2 1000015 35 # BR(~tau_2 -> ~tau_1 H) 0.00000000E+00 2 1000015 36 # BR(~tau_2 -> ~tau_1 A) 0.00000000E+00 2 1000015 23 # BR(~tau_2 -> ~tau_1 Z) # # PDG Width DECAY 1000012 1.49881634E-01 # snu_eL decays # BR NDA ID1 ID2 9.77700764E-01 2 1000022 12 # BR(~nu_eL -> ~chi_10 nu_e) 8.11554922E-03 2 1000023 12 # BR(~nu_eL -> ~chi_20 nu_e) 0.00000000E+00 2 1000025 12 # BR(~nu_eL -> ~chi_30 nu_e) 0.00000000E+00 2 1000035 12 # BR(~nu_eL -> ~chi_40 nu_e) 1.41836867E-02 2 1000024 11 # BR(~nu_eL -> ~chi_1+ e-) 0.00000000E+00 2 1000037 11 # BR(~nu_eL -> ~chi_2+ e-) # # PDG Width DECAY 1000014 1.49881634E-01 # snu_muL decays # BR NDA ID1 ID2 9.77700764E-01 2 1000022 14 # BR(~nu_muL -> ~chi_10 nu_mu) 8.11554922E-03 2 1000023 14 # BR(~nu_muL -> ~chi_20 nu_mu) 0.00000000E+00 2 1000025 14 # BR(~nu_muL -> ~chi_30 nu_mu) 0.00000000E+00 2 1000035 14 # BR(~nu_muL -> ~chi_40 nu_mu) 1.41836867E-02 2 1000024 13 # BR(~nu_muL -> ~chi_1+ mu-) 0.00000000E+00 2 1000037 13 # BR(~nu_muL -> ~chi_2+ mu-) # # PDG Width DECAY 1000016 1.47518977E-01 # snu_tauL decays # BR NDA ID1 ID2 9.85994529E-01 2 1000022 16 # BR(~nu_tauL -> ~chi_10 nu_tau) 6.25129612E-03 2 1000023 16 # BR(~nu_tauL -> ~chi_20 nu_tau) 0.00000000E+00 2 1000025 16 # BR(~nu_tauL -> ~chi_30 nu_tau) 0.00000000E+00 2 1000035 16 # BR(~nu_tauL -> ~chi_40 nu_tau) 7.75417479E-03 2 1000024 15 # BR(~nu_tauL -> ~chi_1+ tau-) 0.00000000E+00 2 1000037 15 # BR(~nu_tauL -> ~chi_2+ tau-) 0.00000000E+00 2 -1000015 -37 # BR(~nu_tauL -> ~tau_1+ H-) 0.00000000E+00 2 -2000015 -37 # BR(~nu_tauL -> ~tau_2+ H-) 0.00000000E+00 2 -1000015 -24 # BR(~nu_tauL -> ~tau_1+ W-) 0.00000000E+00 2 -2000015 -24 # BR(~nu_tauL -> ~tau_2+ W-) # # PDG Width DECAY 1000024 1.70414503E-02 # chargino1+ decays # BR NDA ID1 ID2 0.00000000E+00 2 1000002 -1 # BR(~chi_1+ -> ~u_L db) 0.00000000E+00 2 2000002 -1 # BR(~chi_1+ -> ~u_R db) 0.00000000E+00 2 -1000001 2 # BR(~chi_1+ -> ~d_L* u ) 0.00000000E+00 2 -2000001 2 # BR(~chi_1+ -> ~d_R* u ) 0.00000000E+00 2 1000004 -3 # BR(~chi_1+ -> ~c_L sb) 0.00000000E+00 2 2000004 -3 # BR(~chi_1+ -> ~c_R sb) 0.00000000E+00 2 -1000003 4 # BR(~chi_1+ -> ~s_L* c ) 0.00000000E+00 2 -2000003 4 # BR(~chi_1+ -> ~s_R* c ) 0.00000000E+00 2 1000006 -5 # BR(~chi_1+ -> ~t_1 bb) 0.00000000E+00 2 2000006 -5 # BR(~chi_1+ -> ~t_2 bb) 0.00000000E+00 2 -1000005 6 # BR(~chi_1+ -> ~b_1* t ) 0.00000000E+00 2 -2000005 6 # BR(~chi_1+ -> ~b_2* t ) 0.00000000E+00 2 1000012 -11 # BR(~chi_1+ -> ~nu_eL e+ ) 0.00000000E+00 2 1000014 -13 # BR(~chi_1+ -> ~nu_muL mu+ ) 0.00000000E+00 2 1000016 -15 # BR(~chi_1+ -> ~nu_tau1 tau+) 0.00000000E+00 2 -1000011 12 # BR(~chi_1+ -> ~e_L+ nu_e) 0.00000000E+00 2 -2000011 12 # BR(~chi_1+ -> ~e_R+ nu_e) 0.00000000E+00 2 -1000013 14 # BR(~chi_1+ -> ~mu_L+ nu_mu) 0.00000000E+00 2 -2000013 14 # BR(~chi_1+ -> ~mu_R+ nu_mu) 9.25161117E-01 2 -1000015 16 # BR(~chi_1+ -> ~tau_1+ nu_tau) 0.00000000E+00 2 -2000015 16 # BR(~chi_1+ -> ~tau_2+ nu_tau) 7.48388828E-02 2 1000022 24 # BR(~chi_1+ -> ~chi_10 W+) 0.00000000E+00 2 1000023 24 # BR(~chi_1+ -> ~chi_20 W+) 0.00000000E+00 2 1000025 24 # BR(~chi_1+ -> ~chi_30 W+) 0.00000000E+00 2 1000035 24 # BR(~chi_1+ -> ~chi_40 W+) 0.00000000E+00 2 1000022 37 # BR(~chi_1+ -> ~chi_10 H+) 0.00000000E+00 2 1000023 37 # BR(~chi_1+ -> ~chi_20 H+) 0.00000000E+00 2 1000025 37 # BR(~chi_1+ -> ~chi_30 H+) 0.00000000E+00 2 1000035 37 # BR(~chi_1+ -> ~chi_40 H+) # # PDG Width DECAY 1000037 2.48689510E+00 # chargino2+ decays # BR NDA ID1 ID2 0.00000000E+00 2 1000002 -1 # BR(~chi_2+ -> ~u_L db) 0.00000000E+00 2 2000002 -1 # BR(~chi_2+ -> ~u_R db) 0.00000000E+00 2 -1000001 2 # BR(~chi_2+ -> ~d_L* u ) 0.00000000E+00 2 -2000001 2 # BR(~chi_2+ -> ~d_R* u ) 0.00000000E+00 2 1000004 -3 # BR(~chi_2+ -> ~c_L sb) 0.00000000E+00 2 2000004 -3 # BR(~chi_2+ -> ~c_R sb) 0.00000000E+00 2 -1000003 4 # BR(~chi_2+ -> ~s_L* c ) 0.00000000E+00 2 -2000003 4 # BR(~chi_2+ -> ~s_R* c ) 0.00000000E+00 2 1000006 -5 # BR(~chi_2+ -> ~t_1 bb) 0.00000000E+00 2 2000006 -5 # BR(~chi_2+ -> ~t_2 bb) 0.00000000E+00 2 -1000005 6 # BR(~chi_2+ -> ~b_1* t ) 0.00000000E+00 2 -2000005 6 # BR(~chi_2+ -> ~b_2* t ) 2.00968837E-02 2 1000012 -11 # BR(~chi_2+ -> ~nu_eL e+ ) 2.00968837E-02 2 1000014 -13 # BR(~chi_2+ -> ~nu_muL mu+ ) 2.74507395E-02 2 1000016 -15 # BR(~chi_2+ -> ~nu_tau1 tau+) 5.20406111E-02 2 -1000011 12 # BR(~chi_2+ -> ~e_L+ nu_e) 0.00000000E+00 2 -2000011 12 # BR(~chi_2+ -> ~e_R+ nu_e) 5.20406111E-02 2 -1000013 14 # BR(~chi_2+ -> ~mu_L+ nu_mu) 0.00000000E+00 2 -2000013 14 # BR(~chi_2+ -> ~mu_R+ nu_mu) 2.82859898E-04 2 -1000015 16 # BR(~chi_2+ -> ~tau_1+ nu_tau) 5.66729336E-02 2 -2000015 16 # BR(~chi_2+ -> ~tau_2+ nu_tau) 2.31513269E-01 2 1000024 23 # BR(~chi_2+ -> ~chi_1+ Z ) 6.76715120E-02 2 1000022 24 # BR(~chi_2+ -> ~chi_10 W+) 2.93654849E-01 2 1000023 24 # BR(~chi_2+ -> ~chi_20 W+) 0.00000000E+00 2 1000025 24 # BR(~chi_2+ -> ~chi_30 W+) 0.00000000E+00 2 1000035 24 # BR(~chi_2+ -> ~chi_40 W+) 1.78478848E-01 2 1000024 25 # BR(~chi_2+ -> ~chi_1+ h ) 0.00000000E+00 2 1000024 35 # BR(~chi_2+ -> ~chi_1+ H ) 0.00000000E+00 2 1000024 36 # BR(~chi_2+ -> ~chi_1+ A ) 0.00000000E+00 2 1000022 37 # BR(~chi_2+ -> ~chi_10 H+) 0.00000000E+00 2 1000023 37 # BR(~chi_2+ -> ~chi_20 H+) 0.00000000E+00 2 1000025 37 # BR(~chi_2+ -> ~chi_30 H+) 0.00000000E+00 2 1000035 37 # BR(~chi_2+ -> ~chi_40 H+) # # PDG Width DECAY 1000022 0.00000000E+00 # neutralino1 decays # # PDG Width DECAY 1000023 2.07770048E-02 # neutralino2 decays # BR NDA ID1 ID2 0.00000000E+00 2 1000022 23 # BR(~chi_20 -> ~chi_10 Z ) 0.00000000E+00 2 1000024 -24 # BR(~chi_20 -> ~chi_1+ W-) 0.00000000E+00 2 -1000024 24 # BR(~chi_20 -> ~chi_1- W+) 0.00000000E+00 2 1000037 -24 # BR(~chi_20 -> ~chi_2+ W-) 0.00000000E+00 2 -1000037 24 # BR(~chi_20 -> ~chi_2- W+) 0.00000000E+00 2 1000022 25 # BR(~chi_20 -> ~chi_10 h ) 0.00000000E+00 2 1000022 35 # BR(~chi_20 -> ~chi_10 H ) 0.00000000E+00 2 1000022 36 # BR(~chi_20 -> ~chi_10 A ) 0.00000000E+00 2 1000024 -37 # BR(~chi_20 -> ~chi_1+ H-) 0.00000000E+00 2 -1000024 37 # BR(~chi_20 -> ~chi_1- H+) 0.00000000E+00 2 1000037 -37 # BR(~chi_20 -> ~chi_2+ H-) 0.00000000E+00 2 -1000037 37 # BR(~chi_20 -> ~chi_2- H+) 0.00000000E+00 2 1000002 -2 # BR(~chi_20 -> ~u_L ub) 0.00000000E+00 2 -1000002 2 # BR(~chi_20 -> ~u_L* u ) 0.00000000E+00 2 2000002 -2 # BR(~chi_20 -> ~u_R ub) 0.00000000E+00 2 -2000002 2 # BR(~chi_20 -> ~u_R* u ) 0.00000000E+00 2 1000001 -1 # BR(~chi_20 -> ~d_L db) 0.00000000E+00 2 -1000001 1 # BR(~chi_20 -> ~d_L* d ) 0.00000000E+00 2 2000001 -1 # BR(~chi_20 -> ~d_R db) 0.00000000E+00 2 -2000001 1 # BR(~chi_20 -> ~d_R* d ) 0.00000000E+00 2 1000004 -4 # BR(~chi_20 -> ~c_L cb) 0.00000000E+00 2 -1000004 4 # BR(~chi_20 -> ~c_L* c ) 0.00000000E+00 2 2000004 -4 # BR(~chi_20 -> ~c_R cb) 0.00000000E+00 2 -2000004 4 # BR(~chi_20 -> ~c_R* c ) 0.00000000E+00 2 1000003 -3 # BR(~chi_20 -> ~s_L sb) 0.00000000E+00 2 -1000003 3 # BR(~chi_20 -> ~s_L* s ) 0.00000000E+00 2 2000003 -3 # BR(~chi_20 -> ~s_R sb) 0.00000000E+00 2 -2000003 3 # BR(~chi_20 -> ~s_R* s ) 0.00000000E+00 2 1000006 -6 # BR(~chi_20 -> ~t_1 tb) 0.00000000E+00 2 -1000006 6 # BR(~chi_20 -> ~t_1* t ) 0.00000000E+00 2 2000006 -6 # BR(~chi_20 -> ~t_2 tb) 0.00000000E+00 2 -2000006 6 # BR(~chi_20 -> ~t_2* t ) 0.00000000E+00 2 1000005 -5 # BR(~chi_20 -> ~b_1 bb) 0.00000000E+00 2 -1000005 5 # BR(~chi_20 -> ~b_1* b ) 0.00000000E+00 2 2000005 -5 # BR(~chi_20 -> ~b_2 bb) 0.00000000E+00 2 -2000005 5 # BR(~chi_20 -> ~b_2* b ) 0.00000000E+00 2 1000011 -11 # BR(~chi_20 -> ~e_L- e+) 0.00000000E+00 2 -1000011 11 # BR(~chi_20 -> ~e_L+ e-) 2.95071995E-02 2 2000011 -11 # BR(~chi_20 -> ~e_R- e+) 2.95071995E-02 2 -2000011 11 # BR(~chi_20 -> ~e_R+ e-) 0.00000000E+00 2 1000013 -13 # BR(~chi_20 -> ~mu_L- mu+) 0.00000000E+00 2 -1000013 13 # BR(~chi_20 -> ~mu_L+ mu-) 2.95071995E-02 2 2000013 -13 # BR(~chi_20 -> ~mu_R- mu+) 2.95071995E-02 2 -2000013 13 # BR(~chi_20 -> ~mu_R+ mu-) 4.40985601E-01 2 1000015 -15 # BR(~chi_20 -> ~tau_1- tau+) 4.40985601E-01 2 -1000015 15 # BR(~chi_20 -> ~tau_1+ tau-) 0.00000000E+00 2 2000015 -15 # BR(~chi_20 -> ~tau_2- tau+) 0.00000000E+00 2 -2000015 15 # BR(~chi_20 -> ~tau_2+ tau-) 0.00000000E+00 2 1000012 -12 # BR(~chi_20 -> ~nu_eL nu_eb) 0.00000000E+00 2 -1000012 12 # BR(~chi_20 -> ~nu_eL* nu_e ) 0.00000000E+00 2 1000014 -14 # BR(~chi_20 -> ~nu_muL nu_mub) 0.00000000E+00 2 -1000014 14 # BR(~chi_20 -> ~nu_muL* nu_mu ) 0.00000000E+00 2 1000016 -16 # BR(~chi_20 -> ~nu_tau1 nu_taub) 0.00000000E+00 2 -1000016 16 # BR(~chi_20 -> ~nu_tau1* nu_tau ) # # PDG Width DECAY 1000025 1.91598495E+00 # neutralino3 decays # BR NDA ID1 ID2 1.13226601E-01 2 1000022 23 # BR(~chi_30 -> ~chi_10 Z ) 2.11969194E-01 2 1000023 23 # BR(~chi_30 -> ~chi_20 Z ) 2.95329778E-01 2 1000024 -24 # BR(~chi_30 -> ~chi_1+ W-) 2.95329778E-01 2 -1000024 24 # BR(~chi_30 -> ~chi_1- W+) 0.00000000E+00 2 1000037 -24 # BR(~chi_30 -> ~chi_2+ W-) 0.00000000E+00 2 -1000037 24 # BR(~chi_30 -> ~chi_2- W+) 2.13076490E-02 2 1000022 25 # BR(~chi_30 -> ~chi_10 h ) 0.00000000E+00 2 1000022 35 # BR(~chi_30 -> ~chi_10 H ) 0.00000000E+00 2 1000022 36 # BR(~chi_30 -> ~chi_10 A ) 1.24538329E-02 2 1000023 25 # BR(~chi_30 -> ~chi_20 h ) 0.00000000E+00 2 1000023 35 # BR(~chi_30 -> ~chi_20 H ) 0.00000000E+00 2 1000023 36 # BR(~chi_30 -> ~chi_20 A ) 0.00000000E+00 2 1000024 -37 # BR(~chi_30 -> ~chi_1+ H-) 0.00000000E+00 2 -1000024 37 # BR(~chi_30 -> ~chi_1- H+) 0.00000000E+00 2 1000037 -37 # BR(~chi_30 -> ~chi_2+ H-) 0.00000000E+00 2 -1000037 37 # BR(~chi_30 -> ~chi_2- H+) 0.00000000E+00 2 1000002 -2 # BR(~chi_30 -> ~u_L ub) 0.00000000E+00 2 -1000002 2 # BR(~chi_30 -> ~u_L* u ) 0.00000000E+00 2 2000002 -2 # BR(~chi_30 -> ~u_R ub) 0.00000000E+00 2 -2000002 2 # BR(~chi_30 -> ~u_R* u ) 0.00000000E+00 2 1000001 -1 # BR(~chi_30 -> ~d_L db) 0.00000000E+00 2 -1000001 1 # BR(~chi_30 -> ~d_L* d ) 0.00000000E+00 2 2000001 -1 # BR(~chi_30 -> ~d_R db) 0.00000000E+00 2 -2000001 1 # BR(~chi_30 -> ~d_R* d ) 0.00000000E+00 2 1000004 -4 # BR(~chi_30 -> ~c_L cb) 0.00000000E+00 2 -1000004 4 # BR(~chi_30 -> ~c_L* c ) 0.00000000E+00 2 2000004 -4 # BR(~chi_30 -> ~c_R cb) 0.00000000E+00 2 -2000004 4 # BR(~chi_30 -> ~c_R* c ) 0.00000000E+00 2 1000003 -3 # BR(~chi_30 -> ~s_L sb) 0.00000000E+00 2 -1000003 3 # BR(~chi_30 -> ~s_L* s ) 0.00000000E+00 2 2000003 -3 # BR(~chi_30 -> ~s_R sb) 0.00000000E+00 2 -2000003 3 # BR(~chi_30 -> ~s_R* s ) 0.00000000E+00 2 1000006 -6 # BR(~chi_30 -> ~t_1 tb) 0.00000000E+00 2 -1000006 6 # BR(~chi_30 -> ~t_1* t ) 0.00000000E+00 2 2000006 -6 # BR(~chi_30 -> ~t_2 tb) 0.00000000E+00 2 -2000006 6 # BR(~chi_30 -> ~t_2* t ) 0.00000000E+00 2 1000005 -5 # BR(~chi_30 -> ~b_1 bb) 0.00000000E+00 2 -1000005 5 # BR(~chi_30 -> ~b_1* b ) 0.00000000E+00 2 2000005 -5 # BR(~chi_30 -> ~b_2 bb) 0.00000000E+00 2 -2000005 5 # BR(~chi_30 -> ~b_2* b ) 5.57220455E-04 2 1000011 -11 # BR(~chi_30 -> ~e_L- e+) 5.57220455E-04 2 -1000011 11 # BR(~chi_30 -> ~e_L+ e-) 1.25266782E-03 2 2000011 -11 # BR(~chi_30 -> ~e_R- e+) 1.25266782E-03 2 -2000011 11 # BR(~chi_30 -> ~e_R+ e-) 5.57220455E-04 2 1000013 -13 # BR(~chi_30 -> ~mu_L- mu+) 5.57220455E-04 2 -1000013 13 # BR(~chi_30 -> ~mu_L+ mu-) 1.25266782E-03 2 2000013 -13 # BR(~chi_30 -> ~mu_R- mu+) 1.25266782E-03 2 -2000013 13 # BR(~chi_30 -> ~mu_R+ mu-) 5.26279239E-03 2 1000015 -15 # BR(~chi_30 -> ~tau_1- tau+) 5.26279239E-03 2 -1000015 15 # BR(~chi_30 -> ~tau_1+ tau-) 6.72814564E-03 2 2000015 -15 # BR(~chi_30 -> ~tau_2- tau+) 6.72814564E-03 2 -2000015 15 # BR(~chi_30 -> ~tau_2+ tau-) 3.18920485E-03 2 1000012 -12 # BR(~chi_30 -> ~nu_eL nu_eb) 3.18920485E-03 2 -1000012 12 # BR(~chi_30 -> ~nu_eL* nu_e ) 3.18920485E-03 2 1000014 -14 # BR(~chi_30 -> ~nu_muL nu_mub) 3.18920485E-03 2 -1000014 14 # BR(~chi_30 -> ~nu_muL* nu_mu ) 3.20245934E-03 2 1000016 -16 # BR(~chi_30 -> ~nu_tau1 nu_taub) 3.20245934E-03 2 -1000016 16 # BR(~chi_30 -> ~nu_tau1* nu_tau ) # # PDG Width DECAY 1000035 2.58585079E+00 # neutralino4 decays # BR NDA ID1 ID2 2.15369294E-02 2 1000022 23 # BR(~chi_40 -> ~chi_10 Z ) 1.85499971E-02 2 1000023 23 # BR(~chi_40 -> ~chi_20 Z ) 0.00000000E+00 2 1000025 23 # BR(~chi_40 -> ~chi_30 Z ) 2.49541430E-01 2 1000024 -24 # BR(~chi_40 -> ~chi_1+ W-) 2.49541430E-01 2 -1000024 24 # BR(~chi_40 -> ~chi_1- W+) 0.00000000E+00 2 1000037 -24 # BR(~chi_40 -> ~chi_2+ W-) 0.00000000E+00 2 -1000037 24 # BR(~chi_40 -> ~chi_2- W+) 6.93213268E-02 2 1000022 25 # BR(~chi_40 -> ~chi_10 h ) 0.00000000E+00 2 1000022 35 # BR(~chi_40 -> ~chi_10 H ) 0.00000000E+00 2 1000022 36 # BR(~chi_40 -> ~chi_10 A ) 1.47602336E-01 2 1000023 25 # BR(~chi_40 -> ~chi_20 h ) 0.00000000E+00 2 1000023 35 # BR(~chi_40 -> ~chi_20 H ) 0.00000000E+00 2 1000023 36 # BR(~chi_40 -> ~chi_20 A ) 0.00000000E+00 2 1000025 25 # BR(~chi_40 -> ~chi_30 h ) 0.00000000E+00 2 1000025 35 # BR(~chi_40 -> ~chi_30 H ) 0.00000000E+00 2 1000025 36 # BR(~chi_40 -> ~chi_30 A ) 0.00000000E+00 2 1000024 -37 # BR(~chi_40 -> ~chi_1+ H-) 0.00000000E+00 2 -1000024 37 # BR(~chi_40 -> ~chi_1- H+) 0.00000000E+00 2 1000037 -37 # BR(~chi_40 -> ~chi_2+ H-) 0.00000000E+00 2 -1000037 37 # BR(~chi_40 -> ~chi_2- H+) 0.00000000E+00 2 1000002 -2 # BR(~chi_40 -> ~u_L ub) 0.00000000E+00 2 -1000002 2 # BR(~chi_40 -> ~u_L* u ) 0.00000000E+00 2 2000002 -2 # BR(~chi_40 -> ~u_R ub) 0.00000000E+00 2 -2000002 2 # BR(~chi_40 -> ~u_R* u ) 0.00000000E+00 2 1000001 -1 # BR(~chi_40 -> ~d_L db) 0.00000000E+00 2 -1000001 1 # BR(~chi_40 -> ~d_L* d ) 0.00000000E+00 2 2000001 -1 # BR(~chi_40 -> ~d_R db) 0.00000000E+00 2 -2000001 1 # BR(~chi_40 -> ~d_R* d ) 0.00000000E+00 2 1000004 -4 # BR(~chi_40 -> ~c_L cb) 0.00000000E+00 2 -1000004 4 # BR(~chi_40 -> ~c_L* c ) 0.00000000E+00 2 2000004 -4 # BR(~chi_40 -> ~c_R cb) 0.00000000E+00 2 -2000004 4 # BR(~chi_40 -> ~c_R* c ) 0.00000000E+00 2 1000003 -3 # BR(~chi_40 -> ~s_L sb) 0.00000000E+00 2 -1000003 3 # BR(~chi_40 -> ~s_L* s ) 0.00000000E+00 2 2000003 -3 # BR(~chi_40 -> ~s_R sb) 0.00000000E+00 2 -2000003 3 # BR(~chi_40 -> ~s_R* s ) 0.00000000E+00 2 1000006 -6 # BR(~chi_40 -> ~t_1 tb) 0.00000000E+00 2 -1000006 6 # BR(~chi_40 -> ~t_1* t ) 0.00000000E+00 2 2000006 -6 # BR(~chi_40 -> ~t_2 tb) 0.00000000E+00 2 -2000006 6 # BR(~chi_40 -> ~t_2* t ) 0.00000000E+00 2 1000005 -5 # BR(~chi_40 -> ~b_1 bb) 0.00000000E+00 2 -1000005 5 # BR(~chi_40 -> ~b_1* b ) 0.00000000E+00 2 2000005 -5 # BR(~chi_40 -> ~b_2 bb) 0.00000000E+00 2 -2000005 5 # BR(~chi_40 -> ~b_2* b ) 9.64835418E-03 2 1000011 -11 # BR(~chi_40 -> ~e_L- e+) 9.64835418E-03 2 -1000011 11 # BR(~chi_40 -> ~e_L+ e-) 3.75684470E-03 2 2000011 -11 # BR(~chi_40 -> ~e_R- e+) 3.75684470E-03 2 -2000011 11 # BR(~chi_40 -> ~e_R+ e-) 9.64835418E-03 2 1000013 -13 # BR(~chi_40 -> ~mu_L- mu+) 9.64835418E-03 2 -1000013 13 # BR(~chi_40 -> ~mu_L+ mu-) 3.75684470E-03 2 2000013 -13 # BR(~chi_40 -> ~mu_R- mu+) 3.75684470E-03 2 -2000013 13 # BR(~chi_40 -> ~mu_R+ mu-) 2.68215241E-03 2 1000015 -15 # BR(~chi_40 -> ~tau_1- tau+) 2.68215241E-03 2 -1000015 15 # BR(~chi_40 -> ~tau_1+ tau-) 1.62289809E-02 2 2000015 -15 # BR(~chi_40 -> ~tau_2- tau+) 1.62289809E-02 2 -2000015 15 # BR(~chi_40 -> ~tau_2+ tau-) 2.53796547E-02 2 1000012 -12 # BR(~chi_40 -> ~nu_eL nu_eb) 2.53796547E-02 2 -1000012 12 # BR(~chi_40 -> ~nu_eL* nu_e ) 2.53796547E-02 2 1000014 -14 # BR(~chi_40 -> ~nu_muL nu_mub) 2.53796547E-02 2 -1000014 14 # BR(~chi_40 -> ~nu_muL* nu_mu ) 2.54724352E-02 2 1000016 -16 # BR(~chi_40 -> ~nu_tau1 nu_taub) 2.54724352E-02 2 -1000016 16 # BR(~chi_40 -> ~nu_tau1* nu_tau ) """ import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import * generator = cms.EDFilter("Pythia8GeneratorFilter", pythiaPylistVerbosity = cms.untracked.int32(0), filterEfficiency = cms.untracked.double(-1), pythiaHepMCVerbosity = cms.untracked.bool(False), SLHATableForPythia8 = cms.string('%s' % SLHA_TABLE), comEnergy = cms.double(COM_ENERGY), crossSection = cms.untracked.double(CROSS_SECTION), maxEventsToPrint = cms.untracked.int32(0), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CUEP8M1SettingsBlock, processParameters = cms.vstring('Tune:pp = 5', 'SUSY:all = off', #'SUSY:gg2squarkantisquark = on', #'SUSY:qqbar2squarkantisquark= on', 'SUSY:gg2gluinogluino = on', 'SUSY:qqbar2gluinogluino = on', 'RHadrons:allow = on', 'RHadrons:allowDecay = on', 'RHadrons:setMasses = on', 'RHadrons:probGluinoball = 0.1', '1000021:tau0 = %.1f' % CTAU), parameterSets = cms.vstring( 'pythia8CommonSettings', 'pythia8CUEP8M1Settings', 'processParameters') ), ) ProductionFilterSequence = cms.Sequence(generator)
[ "ksung@cern.ch" ]
ksung@cern.ch
ee3747640d2d81beb67e38eb7bf9195041503fd6
51bdac517ec342a7a38a67e2b3c521f8bd53c5f2
/numba/tests/pointers/test_null.py
fa46e26b67aa41253b5f4b2b6e874e710d7a3aaf
[ "BSD-2-Clause" ]
permissive
cu6yu4/numba
66bc7ee751fdfaabab92b6f571dbff00cb4d7652
f64aced5a7c94a434fd2d8c678d93ff8ac3ae1fb
refs/heads/master
2020-12-25T13:45:44.629782
2013-01-25T20:28:12
2013-01-25T20:28:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
548
py
import ctypes import numba from numba import * #intp = ctypes.POINTER(ctypes.c_int) #voidp = ctypes.c_void_p intp = int_.pointer() voidp = void.pointer() @autojit def test_compare_null(): """ >>> test_compare_null() True """ return intp(Py_uintptr_t(0)) == NULL @autojit def test_compare_null_attribute(): """ >>> test_compare_null_attribute() True """ return voidp(Py_uintptr_t(0)) == numba.NULL if __name__ == '__main__': # test_compare_null() # test_compare_null_attribute() numba.testmod()
[ "markflorisson88@gmail.com" ]
markflorisson88@gmail.com
3dd23060467fe4b63a7c25228f5126fa8d571160
cc3c46bf2c6bceeb3fbfea28bec7786e7f691df3
/FORRIT/python_verkefni/byrjendanamskeid/verkefni_day_1/verkefni_07aftur.py
739b073f40a0ab079206964f46103cf5fc6aebec
[]
no_license
magnuskonrad98/max_int
8d7608978eb49c759377f4826bcdfcd59e7f1551
ba3a8bf38e90674546ca6f5d118ab37babfe0178
refs/heads/master
2020-07-20T07:42:04.678497
2019-09-05T15:48:04
2019-09-05T15:48:04
206,600,673
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
price = int(input("Enter the product price: ")) price_with_tax = price * 1.255 print(price_with_tax)
[ "magnuskonrad@gmail.com" ]
magnuskonrad@gmail.com
ae0a2f0b5b3f0590e6e1b9e931af7d3b64441bfe
635049987366fa45d03e8839f482b76414e59ee0
/web/migrations/0005_auto_20180407_2211.py
cfbbb385aaf89550c9a5db46c837ecbf8d2303df
[]
no_license
313799043/-
5ecdef19feb47d36b2f73660012184a88ede830c
353feee2ccadd8742cbdf061084224e5c41742b5
refs/heads/master
2020-03-08T11:25:23.825488
2018-04-08T07:13:30
2018-04-08T07:13:30
128,097,125
1
0
null
null
null
null
UTF-8
Python
false
false
420
py
# Generated by Django 2.0.3 on 2018-04-07 14:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('web', '0004_auto_20180407_2156'), ] operations = [ migrations.AlterField( model_name='order', name='status', field=models.IntegerField(choices=[(1, '公户'), (2, '私户')], default=1), ), ]
[ "m313799043@163.com" ]
m313799043@163.com
3ad172fe5ecd7b6deb6d78171e29b47f0aac4bf3
d013f83ac25db3cbdb87e37bda7249feaa88da1c
/code/models/user.py
946efcc86698044ec1d9633620dc4c88e91c2e07
[]
no_license
Jitesh-Khuttan/BookMyTicket
97e5685bd9f80c8edba6aab87e7f3e023d0c1d32
a6608b7d43147ba7a22e498bfb4b3385b6f4b18c
refs/heads/main
2023-08-16T02:46:43.089198
2021-10-19T07:07:30
2021-10-19T07:07:30
415,529,560
0
0
null
2021-10-19T07:01:18
2021-10-10T08:37:37
Python
UTF-8
Python
false
false
888
py
from code.db.alchemy_db import db class UserModel(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(60)) password = db.Column(db.String(100)) def to_json(self): return {'id': self.id, 'username': self.username} def register(self): db.session.add(self) db.session.commit() def delete_from_db(self): db.session.delete(self) db.session.commit() @classmethod def find_by_username(cls, username): return cls.query.filter_by(username=username).first() @classmethod def find_by_id(cls, userid): return cls.query.filter_by(id=userid).first() @classmethod def find_all(cls): return cls.query.all() if __name__ == "__main__": user = UserModel(username="jkhuttan", password="asdf") print(user.to_json())
[ "jiteshkhuttan15@gmail.com" ]
jiteshkhuttan15@gmail.com
1a6f7da3348496cfdcfd72dc5c1d6c662ac408c9
4d7e6eaf9c2a4749edd025d5b204289a01e469a2
/FlaskTest/day_01/carts/__init__.py
d9788c7c7678ef467346e24f97c22e07a933c098
[ "MIT" ]
permissive
tjhlp/FlaskProject
f5db4a020a5523516624117583aa70183dc0d520
2213060ec3ee2720d79a7a3f71fbcaf23a85d64d
refs/heads/master
2020-06-24T09:33:18.592170
2019-08-02T07:57:02
2019-08-02T07:57:02
198,929,254
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
from flask import Blueprint cart_bp = Blueprint('cart', __name__, url_prefix='/cart') from .views import *
[ "374586186@qq.com" ]
374586186@qq.com
1b340ebd2248f63c39e2921394126e7da83f5247
8a46f370477ea9fabd36249a4f6d70226917c24b
/blogdown/plugin.py
8ad745eddeda8d95b2c65f40734315b3b18705c3
[ "BSD-3-Clause" ]
permissive
blogdown/blogdown
af551991013d03e3b7b033cf45687f952eb41def
4a463d341a1fe7547a3de33f03d356e74a89569e
refs/heads/master
2022-06-09T11:53:03.728491
2022-05-17T19:26:54
2022-05-17T19:28:16
5,064,814
5
4
null
2016-03-14T02:44:58
2012-07-16T08:30:38
Python
UTF-8
Python
false
false
2,147
py
# -*- coding: utf-8 -*- """ blogdown.plugin ~~~~~~~~~~~~~~~ Utilities for a simple plugin system. :copyright: (c) 2015 by Thomas Gläßle :license: BSD, see LICENSE for more details. """ import os from importlib import import_module from pkg_resources import iter_entry_points from runpy import run_path __all__ = [ "EntryPointLoader", "PathLoader", "PackageLoader", "ChainLoader", ] class EntryPointLoader: """Load plugins from specified entrypoint group.""" def __init__(self, ep_group): self.ep_group = ep_group def __call__(self, name): for ep in iter_entry_points(self.ep_group, name): yield ep.load() class PathLoader: """Load plugins from specified folder.""" def __init__(self, search_path): self.search_path = os.path.abspath(search_path) def __call__(self, name): module_path = os.path.join(self.search_path, name + ".py") if not os.path.isfile(module_path): return module = run_path(module_path) try: yield module["setup"] except KeyError: raise AttributeError( "Module at {0!r} can't be used as a plugin, " "since it has no 'setup' function.".format(module_path) ) class PackageLoader: """Load plugins from specified package.""" def __init__(self, package_name): self.package_name = package_name def __call__(self, module_name): try: module = import_module(self.package_name + "." + module_name) except ImportError: return try: yield module.setup except AttributeError: raise AttributeError( "{0!r} can't be used as a plugin, " "since it has no 'setup' function.".format(module) ) class ChainLoader: """Load plugins from all of the sub-loaders.""" def __init__(self, loaders): self.loaders = loaders def __call__(self, name): for loader in self.loaders: for plugin in loader(name): yield plugin
[ "t_glaessle@gmx.de" ]
t_glaessle@gmx.de
c2b459c2282096b0821f5cafcca9b1d79861dd95
9619daf132259c31b31c9e23a15baa675ebc50c3
/memphis.users/memphis/users/registration.py
42d0886c2b83d4155d69ef9eca86b59d3b64b673
[]
no_license
fafhrd91/memphis-dev
ade93c427c1efc374e0e1266382faed2f8e7cd89
c82aac1ad3a180ff93370b429498dbb1c2e655b8
refs/heads/master
2016-09-05T19:32:35.109441
2011-08-22T06:30:43
2011-08-22T06:30:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
from zope import interface from memphis import controlpanel from interfaces import _, ISiteRegistration class SiteRegistration(object): interface.implements(ISiteRegistration) controlpanel.registerConfiglet( 'principals.registration', ISiteRegistration, SiteRegistration, _("Site registration"), _("Site registration configuration."))
[ "fafhrd91@gmail.com" ]
fafhrd91@gmail.com
550323588bb7c91d6f193aa3a636c51d6a3b730e
07f7e1296e528e83d570ee7f5c75ff83e331d949
/cufacesearch/cufacesearch/api/api.py
0a7465d9ef4781c7538c68ae161aa902f996b4e7
[ "Apache-2.0" ]
permissive
wuqixiaobai/ColumbiaImageSearch
e0ab1ed8ab9724b70838085a37c3cd06638e93b2
a4c4816174c522c844b08feb1c9ddcad5ca2f6db
refs/heads/master
2020-03-08T10:38:13.669538
2018-03-22T19:56:34
2018-03-22T19:56:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,861
py
import sys import time import json from datetime import datetime from flask import Markup, flash, request, render_template, make_response from flask_restful import Resource from ..imgio.imgio import ImageMIMETypes, get_SHA1_img_type_from_B64, get_SHA1_img_info_from_buffer, buffer_to_B64 from ..detector.utils import build_bbox_str_list from socket import * sock = socket() sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) global_searcher = None global_start_time = None input_type = "image" class APIResponder(Resource): def __init__(self): self.searcher = global_searcher self.start_time = global_start_time self.input_type = input_type # This could be loaded from config? self.default_no_blur = True self.default_max_height = 120 # how to blur canvas images but keep the face clean? self.valid_options = ["near_dup", "near_dup_th", "no_blur", "detect_only", "max_height", "max_returned"] def get(self, mode): query = request.args.get('data') #query = unicode(request.args.get('data'), "utf8") options = request.args.get('options') if query: print "[get] received parameters: {}".format(request.args.keys()) print "[get] received data: "+query.encode('ascii','ignore') print "[get] received options: {}".format(options) return self.process_query(mode, query, options) else: return self.process_mode(mode) def put(self, mode): return self.put_post(mode) def post(self, mode): return self.put_post(mode) def put_post(self, mode): print("[put/post] received parameters: {}".format(request.form.keys())) print("[put/post] received request: {}".format(request)) query = request.form['data'] try: options = request.form['options'] except: options = None print("[put/post] received data of length: {}".format(len(query))) print("[put/post] received options: {}".format(options)) if not query: return {'error': 'no data received'} else: return self.process_query(mode, query, options) def process_mode(self, mode): if mode == "status": return self.status() elif mode == "refresh": return self.refresh() else: return {'error': 'unknown_mode: '+str(mode)+'. Did you forget to give \'data\' parameter?'} def process_query(self, mode, query, options=None): start = time.time() if mode == "byURL": resp = self.search_byURL(query, options) elif mode == "bySHA1": resp = self.search_bySHA1(query, options) elif mode == "byPATH": resp = self.search_byPATH(query, options) elif mode == "byB64": resp = self.search_byB64(query, options) elif mode == "view_image_sha1": return self.view_image_sha1(query, options) elif mode == "view_similar_byURL": query_reponse = self.search_byURL(query, options) return self.view_similar_query_response('URL', query, query_reponse, options) elif mode == "view_similar_byB64": query_reponse = self.search_byB64(query, options) return self.view_similar_query_response('B64', query, query_reponse, options) elif mode == "view_similar_byPATH": query_reponse = self.search_byPATH(query, options) return self.view_similar_query_response('PATH', query, query_reponse, options) elif mode == "view_similar_bySHA1": query_reponse = self.search_bySHA1(query, options) return self.view_similar_query_response('SHA1', query, query_reponse, options) # elif mode == "byURL_nocache": # resp = self.search_byURL_nocache(query, options) # elif mode == "bySHA1_nocache": # resp = self.search_bySHA1_nocache(query, options) # elif mode == "byB64_nocache": # resp = self.search_byB64_nocache(query, options) else: return {'error': 'unknown_mode: '+str(mode)} resp['Timing'] = time.time()-start return resp def get_options_dict(self, options): errors = [] options_dict = dict() if options: try: options_dict = json.loads(options) except Exception as inst: err_msg = "[get_options: error] Could not load options from: {}. {}".format(options, inst) print(err_msg) errors.append(err_msg) for k in options_dict: if k not in self.valid_options: err_msg = "[get_options: error] Unknown option {}".format(k) print(err_msg) errors.append(err_msg) return options_dict, errors def append_errors(self, outp, errors=[]): if errors: e_d = dict() if 'errors' in outp: e_d = outp['errors'] for i,e in enumerate(errors): e_d['error_{}'.format(i)] = e outp['errors'] = e_d return outp def search_byURL(self, query, options=None): query_urls = self.get_clean_urls_from_query(query) options_dict, errors = self.get_options_dict(options) #outp = self.searcher.search_image_list(query_urls, options_dict) outp = self.searcher.search_imageURL_list(query_urls, options_dict) outp_we = self.append_errors(outp, errors) sys.stdout.flush() return outp_we def search_byPATH(self, query, options=None): query_paths = query.split(',') options_dict, errors = self.get_options_dict(options) outp = self.searcher.search_image_path_list(query_paths, options_dict) outp_we = self.append_errors(outp, errors) sys.stdout.flush() return outp_we def search_bySHA1(self, query, options=None): query_sha1s = query.split(',') options_dict, errors = self.get_options_dict(options) # get the image URLs/paths from HBase and search # TODO: should we actually try to get features? rows_imgs = self.searcher.indexer.get_columns_from_sha1_rows(query_sha1s, columns=[self.searcher.img_column]) # TODO: what shoudl we do if we get less rows_imgs than query_sha1s? query_imgs = [row[1][self.searcher.img_column] for row in rows_imgs] if self.searcher.file_input: outp = self.searcher.search_image_path_list(query_imgs, options_dict) else: outp = self.searcher.search_imageURL_list(query_imgs, options_dict) outp_we = self.append_errors(outp, errors) sys.stdout.flush() return outp_we def search_byB64(self, query, options=None): query_b64s = [str(x) for x in query.split(',') if not x.startswith('data:')] options_dict, errors = self.get_options_dict(options) outp = self.searcher.search_imageB64_list(query_b64s, options_dict) outp_we = self.append_errors(outp, errors) sys.stdout.flush() return outp_we def refresh(self): # Force check if new images are available in HBase # Could be called if data needs to be as up-to-date as it can be... if self.searcher: self.searcher.load_codes(full_refresh=True) return {'refresh': 'just run a full refresh'} def status(self): # prepare output status_dict = {'status': 'OK'} status_dict['API_start_time'] = self.start_time.isoformat(' ') status_dict['API_uptime'] = str(datetime.now()-self.start_time) # Try to refresh on status call but at most every 4 hours if self.searcher.last_refresh: last_refresh_time = self.searcher.last_refresh else: last_refresh_time = self.searcher.indexer.last_refresh diff_time = datetime.now()-last_refresh_time if self.searcher and diff_time.total_seconds() > 3600*4: self.searcher.load_codes() last_refresh_time = self.searcher.last_refresh status_dict['last_refresh_time'] = last_refresh_time.isoformat(' ') status_dict['nb_indexed'] = str(self.searcher.searcher.get_nb_indexed()) return status_dict #TODO: Deal with muliple query images with an array parameter request.form.getlist(key) @staticmethod def get_clean_urls_from_query(query): """ To deal with comma in URLs. """ # tmp_query_urls = ['http'+str(x) for x in query.split('http') if x] # fix issue with unicode in URL from ..common.dl import fixurl tmp_query_urls = [fixurl('http' + x) for x in query.split('http') if x] query_urls = [] for x in tmp_query_urls: if x[-1] == ',': query_urls.append(x[:-1]) else: query_urls.append(x) print "[get_clean_urls_from_query: info] {}".format(query_urls) return query_urls def get_image_str(self, row): return "<img src=\"{}\" title=\"{}\" class=\"img_blur\">".format(row[1]["info:s3_url"],row[0]) def view_image_sha1(self, query, options=None): # Not really used anymore... query_sha1s = [str(x) for x in query.split(',')] rows = self.searcher.indexer.get_columns_from_sha1_rows(query_sha1s, ["info:s3_url"]) images_str = "" # TODO: change this to actually just produce a list of images to fill a new template for row in rows: images_str += self.get_image_str(row) images = Markup(images_str) flash(images) headers = {'Content-Type': 'text/html'} return make_response(render_template('view_images.html'),200,headers) def view_similar_query_response(self, query_type, query, query_response, options=None): if query_type == 'B64': # get : # - sha1 to be able to map to query response # - image type to make sure the image is displayed properly # - embedded format for each b64 query # TODO: use array parameter query_list = query.split(',') query_b64_infos = [get_SHA1_img_type_from_B64(q) for q in query_list if not q.startswith('data:')] query_urls_map = dict() for img_id, img_info in enumerate(query_b64_infos): query_urls_map[img_info[0]] = "data:"+ImageMIMETypes[img_info[1]]+";base64,"+str(query_list[img_id]) elif query_type == "PATH" or (query_type == "SHA1" and self.searcher.file_input): # Encode query in B64 query_infos = [] query_list = query.split(',') # Get images paths from sha1s if query_type == 'SHA1' and self.searcher.file_input: rows_imgs = self.searcher.indexer.get_columns_from_sha1_rows(query_list, columns=[self.searcher.img_column]) query_list = [row[1][self.searcher.img_column] for row in rows_imgs] query_list_B64 = [] for q in query_list: with open(q,'rb') as img_buffer: query_infos.append(get_SHA1_img_info_from_buffer(img_buffer)) query_list_B64.append(buffer_to_B64(img_buffer)) query_urls_map = dict() for img_id, img_info in enumerate(query_infos): query_urls_map[img_info[0]] = "data:" + ImageMIMETypes[img_info[1]] + ";base64," + str(query_list_B64[img_id]) elif query_type == "URL" or (query_type == "SHA1" and not self.searcher.file_input): # URLs should already be in query response pass else: print "[view_similar_query_response: error] Unknown query_type: {}".format(query_type) return None # Get errors options_dict, errors_options = self.get_options_dict(options) # Parse similar faces response all_sim_faces = query_response[self.searcher.do.map['all_similar_'+self.input_type+'s']] search_results = [] print "[view_similar_query_response: log] len(sim_images): {}".format(len(all_sim_faces)) for i in range(len(all_sim_faces)): # Parse query face, and build face tuple (sha1, url/b64 img, face bounding box) query_face = all_sim_faces[i] #print "query_face [{}]: {}".format(query_face.keys(), query_face) sys.stdout.flush() query_sha1 = query_face[self.searcher.do.map['query_sha1']] if query_type == "B64" or query_type == "PATH" or (query_type == "SHA1" and self.searcher.file_input): query_face_img = query_urls_map[query_sha1] else: query_face_img = query_face[self.searcher.do.map['query_url']].decode("utf8") #query_face_img = query_face[self.searcher.do.map['query_url']] if self.searcher.do.map['query_'+self.input_type] in query_face: query_face_bbox = query_face[self.searcher.do.map['query_'+self.input_type]] query_face_bbox_compstr = build_bbox_str_list(query_face_bbox) else: query_face_bbox_compstr = [] img_size = None if self.searcher.do.map['img_info'] in query_face: img_size = query_face[self.searcher.do.map['img_info']][1:] out_query_face = (query_sha1, query_face_img, query_face_bbox_compstr, img_size) # Parse similar faces similar_faces = query_face[self.searcher.do.map['similar_'+self.input_type+'s']] #print similar_faces[self.searcher.do.map['number_faces']] out_similar_faces = [] for j in range(similar_faces[self.searcher.do.map['number_'+self.input_type+'s']]): # build face tuple (sha1, url/b64 img, face bounding box, distance) for one similar face osface_sha1 = similar_faces[self.searcher.do.map['image_sha1s']][j] #if query_type == "PATH": if self.searcher.file_input: with open(similar_faces[self.searcher.do.map['cached_image_urls']][j], 'rb') as img_buffer: img_info = get_SHA1_img_info_from_buffer(img_buffer) img_B64 = buffer_to_B64(img_buffer) osface_url = "data:" + ImageMIMETypes[img_info[1]] + ";base64," + str(img_B64) else: osface_url = similar_faces[self.searcher.do.map['cached_image_urls']][j] osface_bbox_compstr = None if self.input_type != "image": osface_bbox = similar_faces[self.searcher.do.map[self.input_type+'s']][j] osface_bbox_compstr = build_bbox_str_list(osface_bbox) osface_img_size = None if self.searcher.do.map['img_info'] in similar_faces: osface_img_size = similar_faces[self.searcher.do.map['img_info']][j][1:] osface_dist = similar_faces[self.searcher.do.map['distances']][j] out_similar_faces.append((osface_sha1, osface_url, osface_bbox_compstr, osface_dist, osface_img_size)) # build output search_results.append((out_query_face, [out_similar_faces])) # Prepare settings settings = dict() settings["no_blur"] = self.default_no_blur settings["max_height"] = self.default_max_height if "no_blur" in options_dict: settings["no_blur"] = options_dict["no_blur"] if "max_height" in options_dict: settings["max_height"] = options_dict["max_height"] headers = {'Content-Type': 'text/html'} #print search_results sys.stdout.flush() if self.input_type != "image": return make_response(render_template('view_similar_faces_wbbox.html', settings=settings, search_results=search_results), 200, headers) else: return make_response(render_template('view_similar_images.html', settings=settings, search_results=search_results), 200, headers)
[ "svebor.karaman@gmail.com" ]
svebor.karaman@gmail.com
b670f36db9b9c4d1136a27548f323e31a2c032fb
864720a85259b6c38614d715b901f0a1f166ff2b
/MainProject/newfor.py
03da98b279241608912485393a240a8bf4ab2606
[]
no_license
rhlsin/Weather-Forecast-Cum-Schedular
c0218335b5b58a14310dd89726bd9228f7c1bb5a
971d51e783757a00b2c735e69fb291acef63f26a
refs/heads/master
2021-09-18T05:39:06.565853
2018-07-10T10:03:05
2018-07-10T10:03:05
104,628,841
1
0
null
null
null
null
UTF-8
Python
false
false
3,160
py
import datetime import forecastio from forecastiopy import * from geopy.geocoders import Nominatim Lisbon=[] api_key = 'a94a682750fdb4970407428c7795efaa' def namcty(name): geolocator = Nominatim() location = geolocator.geocode(name) Lisbon.append(location.latitude) Lisbon.append(location.longitude) def curtem(): fio = ForecastIO.ForecastIO(api_key, latitude=Lisbon[0], longitude=Lisbon[1]) current = FIOCurrently.FIOCurrently(fio) return current.temperature def curpre(): fio = ForecastIO.ForecastIO(api_key, latitude=Lisbon[0], longitude=Lisbon[1]) current = FIOCurrently.FIOCurrently(fio) return current.pressure def curhumi(): fio = ForecastIO.ForecastIO(api_key, latitude=Lisbon[0], longitude=Lisbon[1]) current = FIOCurrently.FIOCurrently(fio) return current.humidity def curusm(): fio = ForecastIO.ForecastIO(api_key, latitude=Lisbon[0], longitude=Lisbon[1]) current = FIOCurrently.FIOCurrently(fio) return current.summary def curpri(): fio = ForecastIO.ForecastIO(api_key, latitude=Lisbon[0], longitude=Lisbon[1]) current = FIOCurrently.FIOCurrently(fio) return current.precipProbability def houtem(x,y,z): tem=[] time = datetime.datetime(x, y, z, 0, 0, 0) #x=year,,y=mon,,z=date forecast = forecastio.load_forecast(api_key, Lisbon[0], Lisbon[1], time=time) by_hour = forecast.hourly() byHour = forecast.hourly() for hourlyData in byHour.data: tem.append(hourlyData.temperature) return tem def houtim(x,y,z): tem=[] time = datetime.datetime(x, y, z, 0, 0, 0) forecast = forecastio.load_forecast(api_key, Lisbon[0], Lisbon[1], time=time) by_hour = forecast.hourly() byHour = forecast.hourly() for hourlyData in byHour.data: tem.append(hourlyData.time) return tem def houpre(x,y,z): tem=[] time = datetime.datetime(x, y, z, 0, 0, 0) forecast = forecastio.load_forecast(api_key, Lisbon[0], Lisbon[1], time=time) by_hour = forecast.hourly() byHour = forecast.hourly() for hourlyData in byHour.data: tem.append(hourlyData.pressure) return tem def houhumi(x,y,z): tem=[] time = datetime.datetime(x, y, z, 0, 0, 0) forecast = forecastio.load_forecast(api_key, Lisbon[0], Lisbon[1], time=time) by_hour = forecast.hourly() byHour = forecast.hourly() for hourlyData in byHour.data: tem.append(hourlyData.humidity) return tem def housum(x,y,z): tem=[] time = datetime.datetime(x, y, z, 0, 0, 0) forecast = forecastio.load_forecast(api_key, Lisbon[0], Lisbon[1], time=time) by_hour = forecast.hourly() byHour = forecast.hourly() for hourlyData in byHour.data: tem.append(hourlyData.summary) return tem def houpri(x,y,z): tem=[] time = datetime.datetime(x, y, z, 0, 0, 0) forecast = forecastio.load_forecast(api_key, Lisbon[0], Lisbon[1], time=time) by_hour = forecast.hourly() byHour = forecast.hourly() for hourlyData in byHour.data: tem.append(hourlyData.precipProbability) return tem #namcty('bhimtal') #x=houpre() #print(x)
[ "rhl_92@yahoo.com" ]
rhl_92@yahoo.com
814f23902fd16e2421040797070c339848a66750
33bddacfd54d9d85989d96298ebdd70af3a190f8
/user_profile/migrations/0002_userprofile_gender.py
2109b8db1c7e9ca3162ef92167a89401e0630d63
[]
no_license
Jagdish010/Django-API
85a64342e1de500a39b9c91247fe2c212e4d9082
90615954e5d77a0022b5ad185461bbba18a800b9
refs/heads/master
2023-02-28T19:07:06.431872
2021-01-29T09:33:02
2021-01-29T09:33:02
334,087,387
0
0
null
null
null
null
UTF-8
Python
false
false
445
py
# Generated by Django 2.0.7 on 2021-01-28 19:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user_profile', '0001_initial'), ] operations = [ migrations.AddField( model_name='userprofile', name='gender', field=models.CharField(choices=[('Male', 'Male'), ('Female', 'Female')], max_length=100, null=True), ), ]
[ "jagdishn@avu.net.in" ]
jagdishn@avu.net.in
82d49a9ea24a6ef56776243ff4a21c12b816e9f6
eab72229ae04d1160704cbf90a08a582802a739c
/put_zero_den.py
34666a2ec393a250b458da9b91999832b8c281fe
[ "MIT" ]
permissive
megatazm/Crowd-Counting
444d39b0e3d6e98995f53badf4c073829038b6b7
647a055baccee2c3b6b780f38930e2ffd14d1664
refs/heads/master
2022-04-01T04:49:16.409675
2020-01-31T21:24:02
2020-01-31T21:24:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
471
py
import cv2 import numpy as np import os import glob from paint_den import paint import params path = params.input dirs = [f for f in glob.glob(path + '/*/')] images = [] for x in dirs: images.append([f for f in glob.glob(x + '/*_pos.png')]) images.sort() images = [item for sublist in images for item in sublist] for img_path in images: #paint(img_path, 36, 1785, 393, 75, 567, 60, 951, 1776) paint(img_path, 0, 3234, 737, 198, 1034, 220, 1617, 3228)
[ "gpsunicamp016@gmail.com" ]
gpsunicamp016@gmail.com
4ec352b7fec601c5527b86e77fd11e0ead795e56
a37219a018aab5a2c0d1934056b72aee8d32b9b8
/0409/0409/ntust/Scripts/django-admin.py
9c5695d0d64deb3f67f5536dbf3876dd66d52d87
[]
no_license
Leesinbaka/JerryHW
6a573defac546740e4358837f9c390ddef395edf
6b7de91d69ae51fdc90601843ed1f46eb2ba2c3f
refs/heads/master
2022-12-25T14:05:30.745364
2018-06-09T10:17:02
2018-06-09T10:17:02
124,868,685
0
1
null
2022-12-09T08:24:52
2018-03-12T09:58:28
Python
UTF-8
Python
false
false
159
py
#!c:\users\him\desktop\0409\ntust\scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "kenneth72355700@gmail.com" ]
kenneth72355700@gmail.com
82c2659eb4d6f99896c3ba268b2a4a1384b640aa
7375c15595cd1010d87c1616c598466a413b5d41
/HW3/NeuralNet.py
a596fea80d7eb168efa899f0751b9804e6875d93
[]
no_license
gdr0ge/Fa19-ML
dfd12e8b550cdb09bce15adbfa81288e7be5e362
c65a76f59d05db46da342c57cd6a6ecdbd053c08
refs/heads/main
2023-03-31T15:58:28.409003
2021-04-02T02:44:03
2021-04-02T02:44:03
353,881,114
0
0
null
null
null
null
UTF-8
Python
false
false
3,958
py
import torch import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import matplotlib.pyplot as plt n_epochs = 6 lr = 0.01 batch_size = 32 log_interval = 100 class Net(nn.Module): def __init__(self): super(Net, self,).__init__() # self.bias = nn.Parameter(torch.ones((28*28),1)) self.fc1 = nn.Linear(1 * 28 * 28, 128,bias=True) self.fc2 = nn.Linear(128, 10,bias=False) def forward(self,x): # Flatten image # x = x + self.bias x = F.relu(self.fc1(x)) x = F.softmax(self.fc2(x), dim=0) return x train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./data', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./data', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=True) net = Net() optimizer = optim.SGD(net.parameters(), lr=lr) loss_fn = nn.CrossEntropyLoss() train_losses = [] train_accuracies = [] test_losses = [] def train(epoch): net.train() correct = 0 train_loss = 0 t_losses = [] for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = net(data.reshape(batch_size,28*28)) loss = loss_fn(output, target) train_loss += loss.item() t_losses.append(loss.item()) pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # torch.save(net.state_dict(), '/results/model.pth') # torch.save(optimizer.state_dict(), '/results/optimizer.pth') train_loss /= len(train_loader.dataset) train_losses.append(t_losses) train_accuracies.append(100. * correct / len(train_loader.dataset)) print('\nTrain set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( train_loss, correct, len(train_loader.dataset), 100. * correct / len(train_loader.dataset))) def test(): net.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = net(data.reshape(batch_size,28*28)) test_loss += loss_fn(output, target, size_average=False).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, n_epochs + 1): train(epoch) plt.figure() for i,t in enumerate(train_losses): plt.plot(range(len(t)),t,label="epoch-{}".format(i)) plt.xlabel("Iteration") plt.ylabel("Loss") plt.title("Loss functions for each epoch") plt.legend() plt.show() plt.figure() plt.plot(range(len(train_accuracies)),train_accuracies) plt.xlabel("Epoch #") plt.ylabel("Accuracy (%)") plt.title("Accuracy Over Training Epochs") plt.show()
[ "grahamdroge@gmail.com" ]
grahamdroge@gmail.com
2cffed30653acf460e4754cf7749eaf6a5e2e45b
cc0cc5268223f9c80339d1bbc2e499edc828e904
/wallets/thrifty_wallets/manage.py
e4a50db512daef9656866ea7fe7ac714993b463d
[]
no_license
deone/thrifty
0ba2b0445e7e9fd4cc378350de158dc6c89838b4
a0ee4af9447b2765f4139deb87a3c1464e7c7751
refs/heads/master
2021-01-10T12:00:00.618968
2015-11-01T23:36:36
2015-11-01T23:36:36
45,340,007
0
0
null
null
null
null
UTF-8
Python
false
false
258
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "thrifty_wallets.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "alwaysdeone@gmail.com" ]
alwaysdeone@gmail.com
9e640d5e9035eb3c390422021a2cbf28beb05318
cc2411f7ab2f743b619294e332a07aceec82ea41
/faces-train.py
9aa8b4c3695c8ad43c161b5693e944924c26f737
[ "MIT" ]
permissive
GoPerry/opencv-face-recognition
23c7a37e99d0769d0a90cacbc8ebf3763b7d09aa
53b008dff52582be909c8dd19c33d11aa79d10b7
refs/heads/main
2022-12-27T17:43:40.591684
2020-10-13T14:38:41
2020-10-13T15:27:45
303,733,218
0
0
null
null
null
null
UTF-8
Python
false
false
1,541
py
import cv2 import os import numpy as np from PIL import Image import pickle BASE_DIR = os.path.dirname(os.path.abspath(__file__)) image_dir = os.path.join(BASE_DIR, "images") face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml') recognizer = cv2.face.LBPHFaceRecognizer_create() current_id = 0 label_ids = {} y_labels = [] x_train = [] for root, dirs, files in os.walk(image_dir): for file in files: if file.endswith("png") or file.endswith("jpg"): path = os.path.join(root, file) label = os.path.basename(root).replace(" ", "-").lower() #print(label, path) if not label in label_ids: label_ids[label] = current_id current_id += 1 id_ = label_ids[label] #print(label_ids) #y_labels.append(label) # some number #x_train.append(path) # verify this image, turn into a NUMPY arrray, GRAY pil_image = Image.open(path).convert("L") # grayscale size = (550, 550) final_image = pil_image.resize(size, Image.ANTIALIAS) image_array = np.array(final_image, "uint8") #print(image_array) faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.5, minNeighbors=5) for (x,y,w,h) in faces: roi = image_array[y:y+h, x:x+w] x_train.append(roi) y_labels.append(id_) print(y_labels) print(label_ids) #print(x_train) with open("pickles/face-labels.pickle", 'wb') as f: pickle.dump(label_ids, f) recognizer.train(x_train, np.array(y_labels)) recognizer.save("recognizers/face-trainner.yml")
[ "perry_yuan@mail.com" ]
perry_yuan@mail.com
16e0ae410ab9c5056f793ef00a29456e3926cbfc
3b9bf497cd29cea9c24462e0411fa8adbfa6ba60
/leetcode/Problems/116--Populating-Next-Right-Pointers-in-Each-Node-Medium.py
2e8b81530cf65226d4d6de3352b0c75892188c4a
[]
no_license
niteesh2268/coding-prepation
918823cb7f4965bec096ec476c639a06a9dd9692
19be0766f6b9c298fb32754f66416f79567843c1
refs/heads/master
2023-01-02T05:30:59.662890
2020-10-17T13:12:34
2020-10-17T13:12:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
705
py
""" # Definition for a Node. class Node: def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None): self.val = val self.left = left self.right = right self.next = next """ class Solution: def connect(self, root: 'Node') -> 'Node': if not root: return None def assign(r1, r2): if not r1: return r1.next = r2 assign(r1.left, r1.right) if r2: assign(r1.right, r2.left) assign(r2.left, r2.right) assign(r2.right, None) assign(root.left, root.right) return root
[ "akulajayaprakash@gmail.com" ]
akulajayaprakash@gmail.com
5ef53c9e1394c1d2f92962a9f34217c5c9134413
11841e8fb1e44c69ae7e50c0b85b324c4d90abda
/chutu/exmapxx.py
5a8c550eb45031c938a4fb4f4a1d660bcf2fed3d
[]
no_license
chenlong2019/python
1d7bf6fb60229221c79538234ad2f1a91bb03c50
fc9e239754c5715a67cb6d743109800b64d74dc8
refs/heads/master
2020-12-08T11:11:49.951752
2020-01-10T04:58:29
2020-01-10T04:59:50
232,968,232
0
0
null
null
null
null
UTF-8
Python
false
false
3,386
py
# coding=utf-8 import arcpy import os,glob,time res=200 # 模板mxd文档路径,生成mxd文档路径 def createMxd(modelpath,mxdpath,symbologyLayer,jpgpath,string,lyrfile): mxd=arcpy.mapping.MapDocument(modelpath) if(os.path.exists(mxdpath)): mxd=arcpy.mapping.MapDocument(mxdpath) print("location as "+mxdpath) arcpy.AddWarning("该文件已经存在") else: mxd.saveACopy(mxdpath) print(mxdpath+" saveAs succefssful") if(os.path.exists(mxdpath)): mxd=arcpy.mapping.MapDocument(mxdpath) print("location in "+mxdpath) # 查找数据框 df = arcpy.mapping.ListDataFrames(mxd, "*")[0] # 增加底图 #symbologyLayer = "D:\\cs\\model\\lyr\\Rectangle_#1_常熟卫图_Level_16.tif.lyr" #"F:\\xinxiang\\fil\\20190817mydPM25.tif" rasLayer=arcpy.mapping.Layer(lyrfile) symbologyLayr=arcpy.mapping.Layer(symbologyLayer) # rasLayer.symbology. arcpy.ApplySymbologyFromLayer_management (rasLayer,symbologyLayr) arcpy.mapping.AddLayer(df, rasLayer, "AUTO_ARRANGE") arcpy.AddMessage(str(time.ctime())+":"+symbologyLayer+"添加成功。。。") for legend in arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT", "Legend"): print(legend.items) arcpy.RefreshActiveView() for legend in arcpy.mapping.ListLayoutElements(mxd, "LEGEND_ELEMENT", "Legend"): print(legend.items) mxd.save() arcpy.mapping.ExportToJPEG(mxd, jpgpath, resolution = res) if __name__ == '__main__': rootpath=u'F:\\xx\\中心城区' pathDir = os.listdir(rootpath) try: os.makedirs(u'F:\\xx\\AutoMap\\result\\mxd\\o3') except: pass try: os.makedirs(u'F:\\xx\\AutoMap\\result\\JpgOutput') except: pass for filename in pathDir: if filename[-4:].lower() == '.tif': # o3 if filename[-5:-4].lower() == '3': try: filepath=os.path.join(rootpath,filename) print(filename) mxdpath=u"F:\\xx\\AutoMap\\result\\mxd\\xinxiang{}.mxd".format(filename[:-4]) modelpath=u"F:\\xx\\AutoMap\\Mxd\\xinxiang_O3.mxd" # mxd模板文件路径 #modelpath=arcpy.GetParameterAsText(0) # 输出mxd文件路径 #mxdpath=arcpy.GetParameterAsText(1) # tif文件路径 symbologyLayer=u'F:\\xx\\Lyr\\C_20191111modo356.lyr' #filepath = "D:\\cs\\data\\pic3" # shp文件夹路径 #filepath=arcpy.GetParameterAsText(3) # jpg输出路径 jpgpath=u"F:\\xx\\AutoMap\\result\\JpgOutput\\{}.jpg".format(filename[:-4]) # jpgpath=arcpy.GetParameterAsText(4) arcpy.AddMessage('') arcpy.AddMessage(str(time.ctime())+"输出开始!") createMxd(modelpath,mxdpath,symbologyLayer,jpgpath,'',filepath) print('successful') arcpy.AddMessage(str(time.ctime())+"输出完成!") except Exception as e: print(e.message)
[ "1174650816@qq.com" ]
1174650816@qq.com
10c811755bbeff6b27cebbc77dbe356bb64edc11
15ed3ab4510677e6df9b11af8fd7a36fc6d826fc
/v1/og_mc_3/tau=0.01/eta=0.04/library/mc6.py
a573e2553235d58cd70aaa9530cdec9d32c14c5f
[]
no_license
pe-ge/Computational-analysis-of-memory-capacity-in-echo-state-networks
929347575538de7015190d35a7c2f5f0606235f2
85873d8847fb2876cc8a6a2073c2d1779ea1b20b
refs/heads/master
2020-04-02T08:08:38.595974
2018-01-17T08:12:26
2018-01-17T08:12:26
61,425,490
0
0
null
null
null
null
UTF-8
Python
false
false
4,280
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ mc6.py Created 21.3.2015 Based on mc5.py Goal: Measuring Memory Capacity of reservoirs. Changes: - removed correlation coefficient correction MC <- MC - q / iterations_coef_measure - added input-to-output connections """ from numpy import random, zeros, tanh, dot, linalg, \ corrcoef, average, std, sqrt, hstack from library.lyapunov import lyapunov_exp import scipy.linalg def memory_capacity(W, WI, memory_max=None, iterations=1000, iterations_skipped=None, iterations_coef_measure=1000, runs=1, input_dist=(-1., 1.), use_input=False, target_later=False, calc_lyapunov=False): """Calculates memory capacity of a NN [given by its input weights WI and reservoir weights W]. W = q x q matrix storing hidden reservoir weights WI = q x 1 vector storing input weights Returns: a non-negative real number MC MC: memory capacity sum for histories 1..MEMORY_MAX """ # matrix shape checks if len(WI.shape) != 1: raise Exception("input matrix WI must be vector-shaped!") q, = WI.shape if W.shape != (q, q): raise Exception("W and WI matrix sizes do not match") if memory_max is None: memory_max = q if iterations_skipped is None: iterations_skipped = max(memory_max, 100) + 1 iterations_measured = iterations - iterations_skipped dist_input = lambda: random.uniform(input_dist[0], input_dist[1], iterations) # vector initialization X = zeros(q) if use_input: S = zeros([q + 1, iterations_measured]) else: S = zeros([q, iterations_measured]) # generate random input u = dist_input() # all input; dimension: [iterations, 1] # run 2000 iterations and fill the matrices D and S for it in range(iterations): X = tanh(dot(W, X) + dot(WI, u[it])) if it >= iterations_skipped: # record the state of reservoir activations X into S if use_input: S[:, it - iterations_skipped] = hstack([X, u[it]]) else: S[:, it - iterations_skipped] = X # prepare matrix D of desired values (that is, shifted inputs) assert memory_max < iterations_skipped D = zeros([memory_max, iterations_measured]) if target_later: # if we allow direct input-output connections, there is no point in measuring 0-delay corr. coef. (it is always 1) for h in range(memory_max): D[h,:] = u[iterations_skipped - (h+1) : iterations - (h+1)] else: for h in range(memory_max): D[h,:] = u[iterations_skipped - h : iterations - h] # calculate pseudoinverse S+ and with it, the matrix WO S_PINV = scipy.linalg.pinv(S) WO = dot(D, S_PINV) # do a new run for an unbiased test of quality of our newly trained WO # we skip memory_max iterations to have large enough window MC = zeros([runs, memory_max]) # here we store memory capacity LE = zeros(runs) # lyapunov exponent for run in range(runs): u = random.uniform(input_dist[0], input_dist[1], iterations_coef_measure + memory_max) X = zeros(q) o = zeros([memory_max, iterations_coef_measure]) # 200 x 1000 for it in range(iterations_coef_measure + memory_max): X = tanh(dot(W, X) + dot(WI, u[it])) if it >= memory_max: # we calculate output nodes using WO if use_input: o[:, it - memory_max] = dot(WO, hstack([X, u[it]])) else: o[:, it - memory_max] = dot(WO, X) # correlate outputs with inputs (shifted) for h in range(memory_max): k = h + 1 if target_later: cc = corrcoef(u[memory_max - k : memory_max + iterations_coef_measure - k], o[h, : ]) [0, 1] else: cc = corrcoef(u[memory_max - h : memory_max + iterations_coef_measure - h], o[h, : ]) [0, 1] MC[run, h] = cc * cc # calculate lyapunov if calc_lyapunov: LE[run] = lyapunov_exp(W, WI, X) return sum(average(MC, axis=0)), LE def main(): print("I am a library. Please don't run me directly.") if __name__ == '__main__': main()
[ "gergelp@gmail.com" ]
gergelp@gmail.com
fc07e766feb0209e6a93a506e4dfd139b922334c
1c4306e8c32b05d3c61917d915da182703b473ba
/Classroom/hyperion/urls.py
71c307c218a3695f9e078dde0eb02914b5b59c0b
[]
no_license
SabbirSzl/Software-Engineering-Project-Hyperion-ClassRoom
96cec2633883d933c7586bcdf6826b8bbdb65257
b9a808c2aa64ff8aa2d845f4e68492506e1589c2
refs/heads/main
2023-02-26T14:21:32.978147
2021-01-25T16:24:20
2021-01-25T16:24:20
332,654,990
0
0
null
null
null
null
UTF-8
Python
false
false
1,045
py
from django.conf.urls import url, include from django.urls import path from hyperion import views #from hyperion.views import AccountControllerTemplate,LoginController urlpatterns = [ path("", views.classes, name = 'classes'), #this empty path will be redirect to classes path("individualclass/", views.individualclass, name = 'individualclass'), path("classes", views.classes, name = 'classes'), path("createdclass/", views.createdclass, name = 'createdclass'), path("calendar/", views.calendar, name = 'calendar'), path("setting/", views.setting, name = 'setting'), path("login/", views.login, name='login'), path("logout/", views.logout, name='logout'), path("registration/", views.registration, name = 'registration'), path("classcreating/", views.classcreating, name = 'classcreating'), path("joinclass/", views.joinclass, name='joinclass'), #path('registrationView/', RegistrationController.as_view(), name='registration'), #path('login/', LoginController.as_view(), name='login') ]
[ "sabbirsozol@gmail.com" ]
sabbirsozol@gmail.com
3624606505d2c4d32dc651e65c3f931dac1fee9d
9ba95201a8e27799f6d3de0cfca766cb42b78b61
/venv/bin/easy_install-3.7
57db12113d976c9a92700e4f0d919c0810c0dad9
[]
no_license
LuisaBarbalho/tasks-python
011b603aa15b6e0fc9aedfd8f6f164845d0020ad
fc5b75073d1021d90df4ae6b805ab9c173fdffc4
refs/heads/master
2020-05-29T16:04:56.622115
2019-05-29T14:16:32
2019-05-29T14:16:32
189,238,836
0
0
null
null
null
null
UTF-8
Python
false
false
456
7
#!/Users/luisabarbalho/PycharmProjects/python1/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
[ "luisa.barbalho@lais.huol.ufrn.br" ]
luisa.barbalho@lais.huol.ufrn.br
abdc779c2d410101111196e525ec6947439523c7
b4fee5ef70c34e161c4fd8daf19a1bc233cd5f6b
/Python/Warmup-2/codebat_wm2_front_times.py
d92f281320236eb638b1324e92a33a9b92eaf3ea
[]
no_license
Hoan1028/CodingBat-Solutions
2bf680a43cc5721f90ae731ac0996ca8f5f7f360
f64412a88345240f70c4b0f1e1461d61b310ecb7
refs/heads/master
2020-05-19T00:34:39.963638
2019-05-10T01:06:11
2019-05-10T01:06:11
184,738,864
0
0
null
null
null
null
UTF-8
Python
false
false
648
py
#CodingBat Python Warmup-2>front_times: def main(): #unit test print('Expected Values: \nChoCho, ChoChoCho, AbcAbcAbc, AbAbAbAb, AAAA, \'\', \'\' \nActual:') print(front_times('Chocolate', 2), front_times('Chocolate', 3), front_times('Abc', 3), front_times('Ab', 4), front_times('A', 4), front_times('', 4),front_times('Abc', 0)) #Problem: #Given a string and a non-negative int n, we'll say that the front of the string is the first 3 chars, #or whatever is there if the string is less than length 3. #Return n copies of the front. #Solution: def front_times(str, n): if len(str) < 3: return str*n else: return str[:3]*n main()
[ "hoannguyen1028@gmail.com" ]
hoannguyen1028@gmail.com
1e68855aee7ae6eefdb3a2f5f9190bde7e590908
0e7d6dd418f6a7617ced67ac8c8e8c2a4270f030
/py_course/1-4/test3.py
0a6bbbe5c9f7d2dc723026bc9417df976a7f1369
[]
no_license
alexoch/python_101_course
b72dfb8d0c71baf60cc8c0c62ec02bd505deb506
4f8c765c3ce7d55562c5f18f7b45d6b0199d4628
refs/heads/master
2021-01-19T04:05:20.754879
2017-03-12T20:47:34
2017-03-12T20:47:34
84,426,860
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
""" : 10 20 30 : python lab3_1.py 10 20 30 : not triangle : 1 1 1 : python lab3_1.py 1 1 1 : triangle : 5.5 5.5 -2 : python lab3_1.py 5.5 5.5 -2 : not triangle """ import sys X = int(float(sys.argv[1])) Y = int(float(sys.argv[2])) Z = int(float(sys.argv[3])) if X <= 0 or Y <= 0 or Z <= 0: print 'not triangle' elif X+Y <= Z or X+Z <= Y or X+Z <= Y: print 'not triangle' else: print 'triangle'
[ "s.ocheretyany@gmail.com" ]
s.ocheretyany@gmail.com
3e95082625682532c740b5cbbb866d6699da683e
0f9cb900b0e7b07cc7b872ccd94fa25d0ebd5f99
/section-5-lists-and-tuples/magic_adder.py
51d733b4931b7742540a8f04da831ddeb0e2107d
[]
no_license
petkonnikolov/python-masterclass
94aada4886ec808e9984059022b879079322855c
635ba0dca44661baeb73d4e3446d7e083985852f
refs/heads/main
2023-04-11T19:12:38.138602
2021-05-11T11:51:02
2021-05-11T11:51:02
359,227,495
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
string = input('Please enter three integers in format "a,b,c": ') list1 = string.split(sep=',') for index in range(len(list1)): list1[index] = int(list1[index]) # calculation = (list1[0] + list1[1]) - list1[2] a, b, c = list1 calculation = (a + b) - c print(calculation)
[ "petko.nikolov@dxc.com" ]
petko.nikolov@dxc.com
6a75a718dcc0386af8e66481b8e6baabcf4235b7
5b586be4d47d4d588e11ceb5b9213aea87b67257
/bambou/contextual/decorators.py
ea5b31b9b03a295068e324cf69bc67f85f0095ff
[ "BSD-3-Clause" ]
permissive
Dogild/bambou
47a202941e1c67eef207711538878a3e0ac0742e
a148e2b926d227b2da501910522859cf3e35d0df
refs/heads/master
2021-01-21T09:53:06.691163
2016-03-05T02:08:18
2016-03-05T02:08:18
53,224,552
1
0
null
2016-03-05T21:36:41
2016-03-05T21:36:40
null
UTF-8
Python
false
false
21,707
py
from types import ClassType, FunctionType import sys, os __all__ = [ 'decorate_class', 'metaclass_is_decorator', 'metaclass_for_bases', 'frameinfo', 'decorate_assignment', 'decorate', 'struct', 'classy', 'template_function', 'rewrap', 'cache_source', 'enclosing_frame', 'synchronized', ] def decorate(*decorators): """Use Python 2.4 decorators w/Python 2.3+ Example:: class Foo(object): decorate(classmethod) def something(cls,etc): \"""This is a classmethod\""" You can pass in more than one decorator, and they are applied in the same order that would be used for ``@`` decorators in Python 2.4. This function can be used to write decorator-using code that will work with both Python 2.3 and 2.4 (and up). """ if len(decorators)>1: decorators = list(decorators) decorators.reverse() def callback(frame,k,v,old_locals): for d in decorators: v = d(v) return v return decorate_assignment(callback) def enclosing_frame(frame=None, level=3): """Get an enclosing frame that skips DecoratorTools callback code""" frame = frame or sys._getframe(level) while frame.f_globals.get('__name__')==__name__: frame = frame.f_back return frame def name_and_spec(func): from inspect import formatargspec, getargspec funcname = func.__name__ if funcname=='<lambda>': funcname = "anonymous" args, varargs, kwargs, defaults = getargspec(func) return funcname, formatargspec(args, varargs, kwargs)[1:-1] def qname(func): m = func.__module__ return m and m+'.'+func.__name__ or func.__name__ class Bomb: def __str__(self): raise RuntimeError("template functions must return a static string!") bomb = Bomb() def getbody(func): from inspect import getargspec args, varargs, kwargs, defaults = getargspec(func) return func(*[bomb] * len(args)) def apply_template(wrapper, func, *args, **kw): funcname, argspec = name_and_spec(func) wrapname, wrapspec = name_and_spec(wrapper) body = wrapper.__doc__ or getbody(wrapper) if not body: raise RuntimeError( "Missing docstring or empty return value from" " %s(%s) - please switch the calling code from using docstrings" " to return values" % (wrapname, wrapspec) ) body = body.replace('%','%%').replace('$args','%(argspec)s') body = """ def %(wrapname)s(%(wrapspec)s): def %(funcname)s(%(argspec)s): """+body+""" return %(funcname)s """ body %= locals() filename = "<%s wrapping %s at 0x%08X>" % (qname(wrapper), qname(func), id(func)) d ={} exec compile(body, filename, "exec") in func.func_globals, d f = d[wrapname](func, *args, **kw) cache_source(filename, body, f) f.func_defaults = func.func_defaults f.__doc__ = func.__doc__ f.__dict__ = func.__dict__ return f def rewrap(func, wrapper): """Create a wrapper with the signature of `func` and a body of `wrapper` Example:: def before_and_after(func): def decorated(*args, **kw): print "before" try: return func(*args, **kw) finally: print "after" return rewrap(func, decorated) The above function is a normal decorator, but when users run ``help()`` or other documentation tools on the returned wrapper function, they will see a function with the original function's name, signature, module name, etc. This function is similar in use to the ``@template_function`` decorator, but rather than generating the entire decorator function in one calling layer, it simply generates an extra layer for signature compatibility. NOTE: the function returned from ``rewrap()`` will have the same attribute ``__dict__`` as the original function, so if you need to set any function attributes you should do so on the function returned from ``rewrap()`` (or on the original function), and *not* on the wrapper you're passing in to ``rewrap()``. """ def rewrap(__original, __decorated): return """return __decorated($args)""" return apply_template(rewrap, func, wrapper) if sys.version<"2.5": # We'll need this for monkeypatching linecache def checkcache(filename=None): """Discard cache entries that are out of date. (This is not checked upon each call!)""" if filename is None: filenames = linecache.cache.keys() else: if filename in linecache.cache: filenames = [filename] else: return for filename in filenames: size, mtime, lines, fullname = linecache.cache[filename] if mtime is None: continue # no-op for files loaded via a __loader__ try: stat = os.stat(fullname) except os.error: del linecache.cache[filename] continue if size != stat.st_size or mtime != stat.st_mtime: del linecache.cache[filename] def _cache_lines(filename, lines, owner=None): if owner is None: owner = filename else: from weakref import ref owner = ref(owner, lambda r: linecache and linecache.cache.__delitem__(filename)) global linecache; import linecache if sys.version<"2.5" and linecache.checkcache.__module__!=__name__: linecache.checkcache = checkcache linecache.cache[filename] = 0, None, lines, owner def cache_source(filename, source, owner=None): _cache_lines(filename, source.splitlines(True), owner) def template_function(wrapper=None): """Decorator that uses its wrapped function's docstring as a template Example:: def before_and_after(func): @template_function def wrap(__func, __message): ''' print "before", __message try: return __func($args) finally: print "after", __message ''' return wrap(func, "test") The above code will return individually-generated wrapper functions whose signature, defaults, ``__name__``, ``__module__``, and ``func_globals`` match those of the wrapped functions. You can use define any arguments you wish in the wrapping function, as long as the first argument is the function to be wrapped, and the arguments are named so as not to conflict with the arguments of the function being wrapped. (i.e., they should have relatively unique names.) Note that the function body will *not* have access to the globals of the calling module, as it is compiled with the globals of the *wrapped* function! Thus, any non-builtin values that you need in the wrapper should be passed in as arguments to the template function. """ if wrapper is None: return decorate_assignment(lambda f,k,v,o: template_function(v)) return apply_template.__get__(wrapper) def struct(*mixins, **kw): """Turn a function into a simple data structure class This decorator creates a tuple subclass with the same name and docstring as the decorated function. The class will have read-only properties with the same names as the function's arguments, and the ``repr()`` of its instances will look like a call to the original function. The function should return a tuple of values in the same order as its argument names, as it will be used by the class' constructor. The function can perform validation, add defaults, and/or do type conversions on the values. If the function takes a ``*``, argument, it should flatten this argument into the result tuple, e.g.:: @struct() def pair(first, *rest): return (first,) + rest The ``rest`` property of the resulting class will thus return a tuple for the ``*rest`` arguments, and the structure's ``repr()`` will reflect the way it was created. The ``struct()`` decorator takes optional mixin classes (as positional arguments), and dictionary entries (as keyword arguments). The mixin classes will be placed before ``tuple`` in the resulting class' bases, and the dictionary entries will be placed in the class' dictionary. These entries take precedence over any default entries (e.g. methods, properties, docstring, etc.) that are created by the ``struct()`` decorator. """ def callback(frame, name, func, old_locals): def __new__(cls, *args, **kw): result = func(*args, **kw) if type(result) is tuple: return tuple.__new__(cls, (cls,)+result) else: return result def __repr__(self): return name+tuple.__repr__(self[1:]) import inspect args, star, dstar, defaults = inspect.getargspec(func) d = dict( __new__ = __new__, __repr__ = __repr__, __doc__=func.__doc__, __module__ = func.__module__, __args__ = args, __star__ = star, __slots__ = [], ) for p,a in enumerate(args): if isinstance(a,str): d[a] = property(lambda self, p=p+1: self[p]) if star: d[star] = property(lambda self, p=len(args)+1: self[p:]) d.update(kw) return type(name, mixins+(tuple,), d) return decorate_assignment(callback) def synchronized(func=None): """Create a method synchronized by first argument's ``__lock__`` attribute If the object has no ``__lock__`` attribute at run-time, the wrapper will attempt to add one by creating a ``threading.RLock`` and adding it to the object's ``__dict__``. If ``threading`` isn't available, it will use a ``dummy_threading.RLock`` instead. Neither will be imported unless the method is called on an object that doesn't have a ``__lock__``. This decorator can be used as a standard decorator (e.g. ``@synchronized``) or as a Python 2.3-compatible decorator by calling it with no arguments (e.g. ``[synchronized()]``). """ if func is None: return decorate_assignment(lambda f,k,v,o: synchronized(v)) from inspect import getargspec first_arg = getargspec(func)[0][0] def wrap(__func): return ''' try: lock = $self.__lock__ except AttributeError: try: from threading import RLock except ImportError: from dummy_threading import RLock lock = $self.__dict__.setdefault('__lock__',RLock()) lock.acquire() try: return __func($args) finally: lock.release()'''.replace('$self', first_arg) return apply_template(wrap, func) def frameinfo(frame): """Return (kind, module, locals, globals) tuple for a frame 'kind' is one of "exec", "module", "class", "function call", or "unknown". """ f_locals = frame.f_locals f_globals = frame.f_globals sameNamespace = f_locals is f_globals hasModule = '__module__' in f_locals hasName = '__name__' in f_globals sameName = hasModule and hasName sameName = sameName and f_globals['__name__']==f_locals['__module__'] module = hasName and sys.modules.get(f_globals['__name__']) or None namespaceIsModule = module and module.__dict__ is f_globals if not namespaceIsModule: # some kind of funky exec kind = "exec" if hasModule and not sameNamespace: kind="class" elif sameNamespace and not hasModule: kind = "module" elif sameName and not sameNamespace: kind = "class" elif not sameNamespace: kind = "function call" else: # How can you have f_locals is f_globals, and have '__module__' set? # This is probably module-level code, but with a '__module__' variable. kind = "unknown" return kind,module,f_locals,f_globals def decorate_class(decorator, depth=2, frame=None, allow_duplicates=False): """Set up `decorator` to be passed the containing class upon creation This function is designed to be called by a decorator factory function executed in a class suite. The factory function supplies a decorator that it wishes to have executed when the containing class is created. The decorator will be given one argument: the newly created containing class. The return value of the decorator will be used in place of the class, so the decorator should return the input class if it does not wish to replace it. The optional `depth` argument to this function determines the number of frames between this function and the targeted class suite. `depth` defaults to 2, since this skips the caller's frame. Thus, if you call this function from a function that is called directly in the class suite, the default will be correct, otherwise you will need to determine the correct depth value yourself. Alternately, you can pass in a `frame` argument to explicitly indicate what frame is doing the class definition. This function works by installing a special class factory function in place of the ``__metaclass__`` of the containing class. Therefore, only decorators *after* the last ``__metaclass__`` assignment in the containing class will be executed. Thus, any classes using class decorators should declare their ``__metaclass__`` (if any) *before* specifying any class decorators, to ensure that all class decorators will be applied.""" frame = enclosing_frame(frame, depth+1) kind, module, caller_locals, caller_globals = frameinfo(frame) if kind != "class": raise SyntaxError( "Class decorators may only be used inside a class statement" ) elif not allow_duplicates and has_class_decorator(decorator, None, frame): return previousMetaclass = caller_locals.get('__metaclass__') defaultMetaclass = caller_globals.get('__metaclass__', ClassType) def advise(name,bases,cdict): if '__metaclass__' in cdict: del cdict['__metaclass__'] if previousMetaclass is None: if bases: # find best metaclass or use global __metaclass__ if no bases meta = metaclass_for_bases(bases) else: meta = defaultMetaclass elif metaclass_is_decorator(previousMetaclass): # special case: we can't compute the "true" metaclass here, # so we need to invoke the previous metaclass and let it # figure it out for us (and apply its own advice in the process) meta = previousMetaclass else: meta = metaclass_for_bases(bases, previousMetaclass) newClass = meta(name,bases,cdict) # this lets the decorator replace the class completely, if it wants to return decorator(newClass) # introspection data only, not used by inner function # Note: these attributes cannot be renamed or it will break compatibility # with zope.interface and any other code that uses this decoration protocol advise.previousMetaclass = previousMetaclass advise.callback = decorator # install the advisor caller_locals['__metaclass__'] = advise def metaclass_is_decorator(ob): """True if 'ob' is a class advisor function""" return isinstance(ob,FunctionType) and hasattr(ob,'previousMetaclass') def iter_class_decorators(depth=2, frame=None): frame = enclosing_frame(frame, depth+1) m = frame.f_locals.get('__metaclass__') while metaclass_is_decorator(m): yield getattr(m, 'callback', None) m = m.previousMetaclass def has_class_decorator(decorator, depth=2, frame=None): return decorator in iter_class_decorators(0, frame or sys._getframe(depth)) def metaclass_for_bases(bases, explicit_mc=None): """Determine metaclass from 1+ bases and optional explicit __metaclass__""" meta = [getattr(b,'__class__',type(b)) for b in bases] if explicit_mc is not None: # The explicit metaclass needs to be verified for compatibility # as well, and allowed to resolve the incompatible bases, if any meta.append(explicit_mc) if len(meta)==1: # easy case return meta[0] classes = [c for c in meta if c is not ClassType] candidates = [] for m in classes: for n in classes: if issubclass(n,m) and m is not n: break else: # m has no subclasses in 'classes' if m in candidates: candidates.remove(m) # ensure that we're later in the list candidates.append(m) if not candidates: # they're all "classic" classes return ClassType elif len(candidates)>1: # We could auto-combine, but for now we won't... raise TypeError("Incompatible metatypes",bases) # Just one, return it return candidates[0] def decorate_assignment(callback, depth=2, frame=None): """Invoke 'callback(frame,name,value,old_locals)' on next assign in 'frame' The frame monitored is determined by the 'depth' argument, which gets passed to 'sys._getframe()'. When 'callback' is invoked, 'old_locals' contains a copy of the frame's local variables as they were before the assignment took place, allowing the callback to access the previous value of the assigned variable, if any. The callback's return value will become the new value of the variable. 'name' is the name of the variable being created or modified, and 'value' is its value (the same as 'frame.f_locals[name]'). This function also returns a decorator function for forward-compatibility with Python 2.4 '@' syntax. Note, however, that if the returned decorator is used with Python 2.4 '@' syntax, the callback 'name' argument may be 'None' or incorrect, if the 'value' is not the original function (e.g. when multiple decorators are used). """ frame = enclosing_frame(frame, depth+1) oldtrace = [frame.f_trace] old_locals = frame.f_locals.copy() def tracer(frm,event,arg): if event=='call': # We don't want to trace into any calls if oldtrace[0]: # ...but give the previous tracer a chance to, if it wants return oldtrace[0](frm,event,arg) else: return None try: if frm is frame and event !='exception': # Aha, time to check for an assignment... for k,v in frm.f_locals.items(): if k not in old_locals or old_locals[k] is not v: break else: # No luck, keep tracing return tracer # Got it, fire the callback, then get the heck outta here... frm.f_locals[k] = callback(frm,k,v,old_locals) finally: # Give the previous tracer a chance to run before we return if oldtrace[0]: # And allow it to replace our idea of the "previous" tracer oldtrace[0] = oldtrace[0](frm,event,arg) uninstall() return oldtrace[0] def uninstall(): # Unlink ourselves from the trace chain. frame.f_trace = oldtrace[0] sys.settrace(oldtrace[0]) # Install the trace function frame.f_trace = tracer sys.settrace(tracer) def do_decorate(f): # Python 2.4 '@' compatibility; call the callback uninstall() frame = sys._getframe(1) return callback( frame, getattr(f,'__name__',None), f, frame.f_locals ) return do_decorate def super_next(cls, attr): for c in cls.__mro__: if attr in c.__dict__: yield getattr(c, attr).im_func # Python 2.6 and above mix ABCMeta into various random places :-( try: from abc import ABCMeta as base except ImportError: base = type class classy_class(base): """Metaclass that delegates selected operations back to the class""" def __new__(meta, name, bases, cdict): cls = super(classy_class, meta).__new__(meta, name, bases, cdict) supr = super_next(cls, '__class_new__').next return supr()(meta, name, bases, cdict, supr) def __init__(cls, name, bases, cdict): supr = super_next(cls, '__class_init__').next return supr()(cls, name, bases, cdict, supr) def __call__(cls, *args, **kw): return cls.__class_call__.im_func(cls, *args, **kw) if base is not type: # Our instances do not support ABC-ness def register(*args): raise NotImplementedError __instancecheck__ = type.__dict__['__instancecheck__'] __subclasscheck__ = type.__dict__['__subclasscheck__'] class classy(object): """Base class for classes that want to be their own metaclass""" __metaclass__ = classy_class __slots__ = () def __class_new__(meta, name, bases, cdict, supr): return type.__new__(meta, name, bases, cdict) def __class_init__(cls, name, bases, cdict, supr): return type.__init__(cls, name, bases, cdict) def __class_call__(cls, *args, **kw): return type.__call__(cls, *args, **kw) __class_call__ = classmethod(__class_call__)
[ "antoine.mercadal@gmail.com" ]
antoine.mercadal@gmail.com
20223d251cf7c1ee244f3ff6bda6aeac1170471e
02842943a8e8c5c53f5f8146234271446f1203ce
/102_morphological_analysis.py
eb9ada5fd4c6b12d0915f447c3a6585661eacd1e
[ "CC0-1.0" ]
permissive
utda/portal_keyword
e38856747bdd413519fe249a2bf4a7c49011bc37
b83b5a70e766235361ec34e5d5d45610d649c248
refs/heads/master
2022-12-12T07:03:34.552994
2020-06-12T08:55:56
2020-06-12T08:55:56
252,589,741
0
0
CC0-1.0
2022-09-30T19:00:11
2020-04-02T23:48:40
Python
UTF-8
Python
false
false
1,672
py
# text-mining.py # python解析器janomeをインポート - 1 from janome.tokenizer import Tokenizer from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer import json import os import requests import configparser import numpy as np import glob import csv import os.path # 形態素解析用オブジェクトの生成 - 2 text = Tokenizer() idir = "data/text" odir = "data/ma" os.makedirs(odir, exist_ok=True) files = glob.glob(odir+'/*.txt') for i in range(len(files)): if i % 100 == 0: print(i+1, len(files)) file = files[i] output = file.replace(idir, odir) # txtファイルからデータの読み込み - 3 text_file = open(file) bindata = text_file.read() txt = bindata # テキストを一行ごとに処理 - 5 word_dic = {} lines_1 = txt.split("\r\n") for line in lines_1: malist = text.tokenize(line) for w in malist: word = w.surface ps = w.part_of_speech # 品詞 - 6 if ps.find("名詞") < 0: continue # 名詞だけをカウント - 7 if not word.isalpha(): continue if not word in word_dic: word_dic[word] = 0 word_dic[word] += 1 if "『" in word: print(word) # よく使われる単語を表示 - 8 keys = sorted(word_dic.items(), key=lambda x: x[1], reverse=True) f2 = open(output, 'w') writer = csv.writer(f2, lineterminator='\n') writer.writerow(["word", "cnt"]) for word, cnt in keys: writer.writerow([word, cnt]) f2.close()
[ "na.kamura.1263@gmail.com" ]
na.kamura.1263@gmail.com
fb3ec15864cfb1866c1711d0586b7d7b0fff7090
ad13583673551857615498b9605d9dcab63bb2c3
/output/models/ms_data/particles/particles_ie013_xsd/__init__.py
e0ffd1abcba9a881fbd645379ab76771f0c5d955
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
169
py
from output.models.ms_data.particles.particles_ie013_xsd.particles_ie013 import ( Base, Doc, Testing, ) __all__ = [ "Base", "Doc", "Testing", ]
[ "tsoulloftas@gmail.com" ]
tsoulloftas@gmail.com
f5f6a28ca792b417bdb0991b2ed1d631db33abdd
87d4572262010ad6fab9a68e6fd3ffe956183f86
/SadguruProject/SadguruTeaProj/tea_app/serializer.py
778ff0cf149d3d3eecaa3aaa3c2dd2ced2190f35
[]
no_license
NikhilDeshbhratar/ThinkBridgeTest
9f4b557660c0de2227bb4e0674a8c696498e2d60
4c39b418ba324defdc33807e6292204a2b5dc36d
refs/heads/master
2023-02-12T15:47:04.628706
2020-05-21T07:04:49
2020-05-21T07:04:49
265,541,580
0
0
null
2021-01-06T03:00:25
2020-05-20T11:18:01
Python
UTF-8
Python
false
false
346
py
from rest_framework import serializers from .models import Tea class TeaSerializer(serializers.ModelSerializer): class Meta: model = Tea fields = "__all__" class TeaListSerializer(serializers.ModelSerializer): class Meta: model = Tea fields = ["id","name","price","description","created_at","image_url"]
[ "nikhil28.deshbhratar@gmail.com" ]
nikhil28.deshbhratar@gmail.com
46d5774627783aa5520575af7c9d0f2cde6b0511
eaf3c103ec2e0aaf5e3660fccc8f3dda6e55b44e
/hw2/FindBestParam_ma.py
25b2f83a25f2a8f8f7818b62a51bd1eb806799f6
[]
no_license
b06705039/FinTech
d0ca963fac3565c6de2c4de757496abe2f8034b1
f5dae8fe1ff869212f8dae4dc2b0afb2692fb234
refs/heads/master
2020-09-16T11:36:49.953237
2020-04-20T02:53:00
2020-04-20T02:53:00
257,004,972
0
0
null
null
null
null
UTF-8
Python
false
false
4,005
py
import sys import numpy as np import pandas as pd # Decision of the current day by the current price, with 3 modifiable parameters def myStrategy(pastPriceVec, currentPrice, windowSize, alpha, beta): import numpy as np action=0 # action=1(buy), -1(sell), 0(hold), with 0 as the default action dataLen=len(pastPriceVec) # Length of the data vector if dataLen==0: return action # Compute ma if dataLen<windowSize: ma=np.mean(pastPriceVec) # If given price vector is small than windowSize, compute MA by taking the average else: windowedData=pastPriceVec[-windowSize:] # Compute the normal MA using windowSize ma=np.mean(windowedData) # Determine action if (currentPrice-ma)>alpha: # If price-ma > alpha ==> buy action=1 elif (currentPrice-ma)<-beta: # If price-ma < -beta ==> sell action=-1 return action # Compute return rate over a given price vector, with 3 modifiable parameters def computeReturnRate(priceVec, windowSize, alpha, beta): capital=1000 # Initial available capital capitalOrig=capital # original capital dataCount=len(priceVec) # day size suggestedAction=np.zeros((dataCount,1)) # Vec of suggested actions stockHolding=np.zeros((dataCount,1)) # Vec of stock holdings total=np.zeros((dataCount,1)) # Vec of total asset realAction=np.zeros((dataCount,1)) # Real action, which might be different from suggested action. For instance, when the suggested action is 1 (buy) but you don't have any capital, then the real action is 0 (hold, or do nothing). # Run through each day for ic in range(dataCount): currentPrice=priceVec[ic] # current price suggestedAction[ic]=myStrategy(priceVec[0:ic], currentPrice, windowSize, alpha, beta) # Obtain the suggested action # get real action by suggested action if ic>0: stockHolding[ic]=stockHolding[ic-1] # The stock holding from the previous day if suggestedAction[ic]==1: # Suggested action is "buy" if stockHolding[ic]==0: # "buy" only if you don't have stock holding stockHolding[ic]=capital/currentPrice # Buy stock using cash capital=0 # Cash realAction[ic]=1 elif suggestedAction[ic]==-1: # Suggested action is "sell" if stockHolding[ic]>0: # "sell" only if you have stock holding capital=stockHolding[ic]*currentPrice # Sell stock to have cash stockHolding[ic]=0 # Stocking holding realAction[ic]=-1 elif suggestedAction[ic]==0: # No action realAction[ic]=0 else: assert False total[ic]=capital+stockHolding[ic]*currentPrice # Total asset, including stock holding and cash returnRate=(total[-1]-capitalOrig)/capitalOrig # Return rate of this run return returnRate if __name__=='__main__': returnRateBest=-1.00 # Initial best return rate df=pd.read_csv(sys.argv[1]) # read stock file adjClose=df["Adj Close"].values # get adj close as the price vector windowSizeMin=3; windowSizeMax=6; # Range of windowSize to explore alphaMin=5; alphaMax=10; # Range of alpha to explore betaMin=13; betaMax=18 # Range of beta to explore # Start exhaustive search for windowSize in range(windowSizeMin, windowSizeMax+1): # For-loop for windowSize print("windowSize=%d" %(windowSize)) for alpha in range(alphaMin, alphaMax+1): # For-loop for alpha print("\talpha=%d" %(alpha)) for beta in range(betaMin, betaMax+1): # For-loop for beta print("\t\tbeta=%d" %(beta), end="") # No newline returnRate=computeReturnRate(adjClose, windowSize, alpha, beta) # Start the whole run with the given parameters print(" ==> returnRate=%f " %(returnRate)) if returnRate > returnRateBest: # Keep the best parameters windowSizeBest=windowSize alphaBest=alpha betaBest=beta returnRateBest=returnRate print("Best settings: windowSize=%d, alpha=%d, beta=%d ==> returnRate=%f" %(windowSizeBest,alphaBest,betaBest,returnRateBest)) # Print the best result
[ "b06705039@ntu.edu.tw" ]
b06705039@ntu.edu.tw
353b3aac10cc74d54979bc18d4bb35675b95e170
00030a24bb6ca535240ba4c737c0b22b1b931acd
/flight_log_analyzer/flight_log_analyzer.py
92fc4733b73e8cadc7f6ccd4d0a83eb09fe3bee8
[]
no_license
UCSD-E4E/e4e-tools
80ebee514a216769e0e7d29438441f2177c90a5f
e68c8bf29814b6a746d9b384cb06f7554134ad6a
refs/heads/master
2023-05-26T18:41:30.716768
2023-05-15T15:46:58
2023-05-15T15:46:58
9,737,213
4
2
null
null
null
null
UTF-8
Python
false
false
3,854
py
#!/usr/bin/env python import numpy as np import argparse import Tkinter as tk import tkFileDialog import datetime import os def leap(date): """ Return the number of leap seconds since 6/Jan/1980 :param date: datetime instance :return: leap seconds for the date (int) """ if date < datetime.datetime(1981, 6, 30, 23, 59, 59): return 0 leap_list = [(1981, 6, 30), (1982, 6, 30), (1983, 6, 30), (1985, 6, 30), (1987, 12, 31), (1989, 12, 31), (1990, 12, 31), (1992, 6, 30), (1993, 6, 30), (1994, 6, 30), (1995, 12, 31), (1997, 6, 30), (1998, 12, 31), (2005, 12, 31), (2008, 12, 31), (2012, 6, 30), (2015, 6, 30)] leap_dates = map(lambda x: datetime.datetime(x[0], x[1], x[2], 23, 59, 59), leap_list) for j in xrange(len(leap_dates[:-1])): if leap_dates[j] < date < leap_dates[j + 1]: return j + 1 return len(leap_dates) def main(): parser = argparse.ArgumentParser(description='E4E ArduPilot Autopilot ' 'Flight Log Analyzer') parser.add_argument('-i', '--input', help = 'Input flight log', metavar = 'log', dest = 'log', default = None) parser.add_argument('-s', '--split_log', action = 'store_true', help = 'If present, split log into individual flights', dest = 'split_log') args = parser.parse_args() fileName = args.log split_log = args.split_log if fileName is None: root = tk.Tk() root.withdraw() root.update() options = {} options['filetypes'] = [('MAVLINK Log Files', '.log')] filename_tuple = tkFileDialog.askopenfilename(**options) if len(filename_tuple) == 0: return fileName = filename_tuple[0] pass else: if os.path.splitext(os.path.basename(fileName))[1] != '.log': print("Error: Input .log files only!") return timeInAir = 0; prevCurr = -1; FMT = [] PARM = [] takeoff_lineNums = [] landing_lineNums = [] lineNum = 0 with open(fileName) as file: for line in file: elements = [element.strip() for element in line.split(',')] if elements[0] == 'FMT': FMT.append(line) if elements[1] == 'PARM': PARM.append(line) if elements[0] == 'GPS': gps_time = int(elements[2]) gps_week = int(elements[3]) apm_time = int(elements[13]) offset = gps_time - apm_time; lastGPS = lineNum if elements[0] == 'CURR': if int(elements[4]) > 200: if prevCurr != -1: timeInAir = timeInAir + int(elements[1]) - prevCurr prevCurr = int(elements[1]) else: prevCurr = int(elements[1]) secs_in_week = 604800 gps_epoch = datetime.datetime(1980, 1, 6, 0, 0, 0) date_before_leaps = (gps_epoch + datetime.timedelta(seconds = gps_week * secs_in_week + (prevCurr + offset) / 1000.0)) date = (date_before_leaps - datetime.timedelta(seconds=leap(date_before_leaps))) print("Takeoff at %s UTC" % (date.strftime('%Y-%m-%d %H:%M:%S'))) takeoff_lineNums.append(lastGPS) else: if prevCurr != -1: landing_lineNums.append(lineNum) prevCurr = -1 lineNum = lineNum + 1 print('') timeInAir = timeInAir / 1000.0 / 60 / 60 print("Time In Air: %.2f" % timeInAir) if split_log: for i in xrange(len(takeoff_lineNums)): output_filename = (os.path.basename(fileName).strip('.log') + "_%d.log" % (i + 1)) output_file = open(os.path.join(os.path.dirname(fileName), output_filename), 'w') for line in FMT: output_file.write(line) for line in PARM: output_file.write(line) lineNum = 0 with open(fileName) as file: for line in file: if (lineNum >= takeoff_lineNums[i] and lineNum <= landing_lineNums[i]): output_file.write(line) lineNum = lineNum + 1 output_file.close() if __name__ == '__main__': main()
[ "ntlhui@gmail.com" ]
ntlhui@gmail.com
300bf255e57aa3bb3508afab1994003379177da8
5a5cc86b58e8f09495e5e2f9dcfae77159b4cbf6
/练习1.py
1e683124ed011e3dfb1a7c7ccc3e6538a45326d1
[]
no_license
Wangyinglihai/tijiaozuoye
b06711238d0e17a1fa2b9e0ba46d936a0a29691c
f7fa802839268a2a9d63acbccfc44b290900779a
refs/heads/master
2020-03-23T21:37:14.814676
2018-07-24T09:48:20
2018-07-24T09:48:20
142,120,174
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
# -*- coding: utf-8 -*- """ Created on Tue Jul 17 17:38:43 2018 练习1: 1.定义一个天气温度列表,写出里面每一天的温度 2.打印一周的天气,天气里面的周三打印例外:周三+温度 @author: user """ print('一周的温度') a=[21,22,23,24,25,26,27] print(a[0]) print(a[1]) print('the temp of 周三 is:'+str(a[2])) print(a[3]) print(a[4]) print(a[5])
[ "noreply@github.com" ]
Wangyinglihai.noreply@github.com
4894fa27068d286744754d2916a964a130d12341
f789170ebaef7c0dc06695e60d54981d5484de8d
/src/RSS_filter.py
ed3255b5b583099e7301d0f47b7ac6938fe8b51a
[ "MIT" ]
permissive
cega/RSS-filter
39cfc05bc753fac1922ce2d256f0f745f6919b4f
84092e74fc9dccb8c2e169f2ff27e49134107e75
refs/heads/master
2020-12-30T17:45:04.079484
2013-03-23T16:02:39
2013-03-23T16:02:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,138
py
#!/usr/bin/env python2 """ RSS Filter Usage: RSS-filter RSS-filter -e | --edit RSS-filter -l | --list RSS-filter -h | --help Options: -h --help Show this message. -e --edit Edit the filters with your default editor. -l --list List feed titles. """ import os import errno import stat from cStringIO import StringIO import subprocess import sys import re import logging from collections import OrderedDict import libgreader import requests import configobj import validate import appdirs import docopt import demjson class GoogleReader: """A partial wrapper around libgreader.""" def __init__(self, client_ID, client_secret, refresh_token): self.client_ID = client_ID self.client_secret = client_secret if refresh_token: self.refresh_token = refresh_token self.auth = self._authenticate() self.libgreader = libgreader.GoogleReader(self.auth) def _authenticate(self): payload = {"client_id": self.client_ID, "client_secret": self.client_secret, "refresh_token": self.refresh_token, "grant_type": "refresh_token"} r = requests.post("https://accounts.google.com/o/oauth2/token", data=payload) try: access_token = r.json()["access_token"] except KeyError: logging.critical("Couldn't authenticate with Google Reader.") print "Error. Couldn't authenticate with Google Reader." exit(3) auth = libgreader.OAuth2Method(self.client_ID, self.client_secret) auth.setRedirectUri("urn:ietf:wg:oauth:2.0:oob") auth.access_token = access_token return auth def get_refresh_token(self): auth = libgreader.OAuth2Method(self.client_ID, self.client_secret) auth.setRedirectUri("urn:ietf:wg:oauth:2.0:oob") auth_URL = auth.buildAuthUrl() params = {"format": "json", "url": auth_URL, "logstats": 0} r = requests.get("http://is.gd/create.php", params=params) if r.ok: auth_URL = r.json()["shorturl"] print ("To authorize access to Google Reader, visit this URL " "and follow the instructions:\n\n{}\n").format(auth_URL) auth_code = raw_input("Enter verification code: ") print payload = {"client_id": self.client_ID, "client_secret": self.client_secret, "code": auth_code, "redirect_uri": "urn:ietf:wg:oauth:2.0:oob", "grant_type": "authorization_code"} r = requests.post("https://accounts.google.com/o/oauth2/token", data=payload) return r.json()["refresh_token"] def user_info(self): return self.libgreader.getUserInfo() def subscription_list(self): """ Return an OrderedDict mapping tags to their contained feeds (sorted by tag label and feed title, respectively). Non-tagged feeds are put in a tag called "<Untagged>" in the last position. """ self.libgreader.buildSubscriptionList() categories = {cat: sorted(cat.getFeeds(), key=lambda f: f.title) for cat in self.libgreader.getCategories()} categories = sorted(categories.items(), key=lambda c: c[0].label) feeds = [feed for feed in self.libgreader.getFeeds() if not feed.getCategories()] if feeds: untagged = type("Category", (), {"label": u"<Untagged>"})() categories.append((untagged, feeds)) return OrderedDict(categories) def category_list(self): """ Return an OrderedDict mapping category labels to a list of tuples containing the unread count and title for each feed in the category. """ categories = self.subscription_list() feeds = {cat.label: [(feed.unread, feed.title) for feed in categories[cat]] for cat in categories if cat.label != u"<Untagged>"} untagged = {cat.label: [(feed.unread, feed.title) for feed in categories[cat]] for cat in categories if cat.label == u"<Untagged>"} sorted_feeds = sorted(feeds.items()) sorted_feeds.extend(untagged.items()) return OrderedDict(sorted_feeds) def get_unread_items(self, feed): items = [] while len(items) < feed.unread: if items: feed.loadMoreItems(excludeRead=True) else: feed.loadItems(excludeRead=True) items = [i for i in feed.getItems() if i.isUnread()] return items def _apply_filter(self, feed, patterns): """Apply filters to a feed. Returns the number of items marked-as-read""" items = self.get_unread_items(feed) count = 0 for pattern in patterns: regex = re.compile(pattern) for item in items: if regex.search(item.title): count += 1 item.markRead() return count def apply_filters(self, filters): feed_count = 0 item_count = 0 self.auth.setActionToken() filtered_feeds = set() categories = self.subscription_list() print u"Applying filters..." try: universal_patterns = filters[u"*"] except KeyError: universal_patterns = [] for category in categories: try: category_has_matching_feeds = False for feed in categories[category]: patterns = universal_patterns try: patterns.extend(filters[feed.title]) except KeyError: pass if not feed.id in filtered_feeds: filtered_feeds.add(feed.id) if not category_has_matching_feeds: category_has_matching_feeds = True print u"\n{}\n{}".format(category.label, u"=" * len(category.label)) print u"Searching \"{}\" for matching items...".format(feed.title), sys.stdout.flush() feed_count += 1 items_found = self._apply_filter(feed, patterns) item_count += items_found print u"found {}.".format(items_found) except KeyboardInterrupt: print "skipped." # skip to next category return feed_count, item_count def check_config(config_dir): try: os.makedirs(config_dir) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(config_dir): pass else: raise spec = """client_ID = string\nclient_secret = string\nrefresh_token = string""" config_spec = configobj.ConfigObj(StringIO(spec)) config_path = os.path.join(config_dir, "settings.ini") config = configobj.ConfigObj(config_path, configspec=config_spec) valid = config.validate(validate.Validator()) if valid is True: try: with open(os.path.join(config_dir, "filters.json")) as filters_file: filters_json = filters_file.read() try: filters = demjson.decode(filters_json, encoding="utf8", strict=True, allow_comments=True) except demjson.JSONDecodeError as e: filters = (False, e.pretty_description()) return config, filters except IOError as e: if e.errno == errno.ENOENT: f = open(os.path.join(config_dir, "filters.json"), "w") f.write('{\n' ' // comment\n' ' "feed name": ["filter regexp", "another filter regexp"]\n' '}\n') f.close() else: raise elif valid is False: config["client_ID"] = raw_input("Google OAuth Client ID\n: ") config["client_secret"] = raw_input("Google OAuth Client Secret\n: ") GR = GoogleReader(config["client_ID"], config["client_secret"], None) config["refresh_token"] = GR.get_refresh_token() try: config.write() os.chmod(config_path, stat.S_IRUSR | stat.S_IWUSR) # mode -rw------- print "Config written successfully." exit(1) except Exception as e: print "{}\nConfig file was not written.".format(e) exit(2) def edit_filters(filters, config_dir): """open the filters file with the default editor""" if filters is None: print "No filters specified." elif isinstance(filters, tuple) and filters[0] is False: print "Filters file is invalid: {}\n".format(filters[1]) # else: "--edit" option was passed filters_path = os.path.join(config_dir, "filters.json") print "Opening filters file (\"{}\")...".format(filters_path) if sys.platform.startswith("darwin"): # OSX subprocess.call(("open", filters_path)) elif os.name == "nt": # Windows os.startfile(filters_path) elif os.name == "posix": # other *nix try: with open(os.devnull, "w") as fnull: retcode = subprocess.call(("xdg-open", filters_path), stderr=fnull) if retcode != 0: raise OSError except OSError: editor = os.environ["EDITOR"] subprocess.call((editor, filters_path)) def list_feeds(reader): """ Print the user's subscribed feeds and their respective unread counts, separated by category name and ordered alphabetically. """ categories = reader.category_list() col_width = max(len(str(unread_count)) for unread_count in [feed[0] for cat in categories for feed in categories[cat]]) + 4 for cat in categories: try: print "\n{}\n{}".format(cat, "=" * len(cat)) except UnicodeEncodeError: print "\n{}\n{}".format(cat, "=" * len(cat)).encode("cp850", "backslashreplace") for feed in categories[cat]: try: print "".join(unicode(column).ljust(col_width) for column in feed) except UnicodeEncodeError: print "".join(unicode(column).ljust(col_width) for column in feed).encode("cp850", "backslashreplace") def main(): args = docopt.docopt(__doc__) config_dir = appdirs.user_data_dir("RSS-filter", "U2Ft") config, filters = check_config(config_dir) logging.basicConfig(filename=os.path.join(config_dir, "RSS-filter.log"), level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S", format="%(asctime)s: %(message)s") # silence requests.packages.urllib3's logging of every connection at level INFO requests_logger = logging.getLogger("requests.packages.urllib3") requests_logger.setLevel(logging.WARNING) if isinstance(filters, tuple) or args["--edit"]: edit_filters(filters, config_dir) exit(4) reader = GoogleReader(config["client_ID"], config["client_secret"], config["refresh_token"]) if args["--list"]: list_feeds(reader) exit(0) feed_count, item_count = reader.apply_filters(filters) if feed_count == 1: if item_count == 1: logging.info("1 matching item was found in 1 matching feed.") print "\n1 matching item was found in 1 matching feed." else: logging.info("{} matching items were found in 1 matching feed.".format(item_count)) print "\n{} matching items were found in 1 matching feed.".format(item_count) else: if item_count == 1: logging.info("1 matching item was found in {} matching feeds.".format(feed_count)) print "\n1 matching item was found in {} matching feeds.".format(feed_count) else: logging.info("{} matching items were found in {} matching feeds.".format(item_count, feed_count)) print "\n{} matching items were found in {} matching feeds.".format(item_count, feed_count) if __name__ == "__main__": main()
[ "github@u2ft.me" ]
github@u2ft.me
8a06cc0bb2e553d32d22186fb3d417bad7e6eca4
62e8affbac7b31f0075f67a12391031132ea42f6
/code/excluded/our/deepgrudgy1.py
6b8ce4ae8a8b8e33554f58c6661429349f5be55f
[ "MIT" ]
permissive
CompetitiveMazeSolutions/PrisonersDilemmaTournament
0bab13ec9fc0963b2acb58791ec84e47897ed155
c8422af02d434399db8a7db05a8b944d76f0afaf
refs/heads/main
2023-05-05T19:14:16.525405
2021-05-27T01:28:58
2021-05-27T01:28:58
369,590,104
0
0
null
2021-05-21T16:12:00
2021-05-21T16:11:59
null
UTF-8
Python
false
false
450
py
import random import numpy as np def strategy(history, memory): if memory is None: MAX = 0 MIN = -2 coop_level = 0 else: MAX, MIN, coop_level = memory n = history.shape[1] if n >= 1: coop_level += 1 if history[1,-1] else -1.5 if n >= 1: MAX += 0; MIN -= 1/n if coop_level > MAX: coop_level = MAX if coop_level < MIN: coop_level = MIN choice = coop_level >= 0 return choice, (MAX,MIN,coop_level)
[ "greenlee04@gmail.com" ]
greenlee04@gmail.com
24351931a129027ae9d1350e8f467ed17eb4a146
3773bc425b338cf6b73451885a378ed5563d27c2
/char/ascii.py
125f9ca24c7ebe5f915de14a630944a53c70970f
[]
no_license
xiangunremarkable/hiyanlou-code
009b2bf5bb23ef562892de9949b1dec424e9ecbe
13e5805727e37a080b460491f06f49cbafa50432
refs/heads/master
2023-01-21T03:06:58.698008
2020-11-27T03:22:39
2020-11-27T03:22:39
314,746,694
0
0
null
null
null
null
UTF-8
Python
false
false
2,141
py
from PIL import Image #图像处理库 import argparse #管理命令行参数输入 #首先,构建命令行输入参数处理ArgumentParser实例 parser = argparse.ArgumentParser() #定义输入文件、输出文件、输出字符画的宽和高 parser.add_argument('file') #输入文件 parser.add_argument('-o','--output') #输出文件 parser.add_argument('--width',type = int, default = 80) #输出字符画宽 parser.add_argument('--height', type = int, default = 80) #输出字符画高 #解析并获取参数 args = parser.parse_args() #输入的图片路径 IMG = args.file #输出字符画的宽度 WIDTH = args.width #输出字符画的高度 HEIGHT = args.height #输出字符画的路径 OUTPUT = args.output #字符画所用字符集 ascii_char = list("$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^`'. ") #RGB值转字符函数 def get_char(r,g,b,alpha = 256): #判断alpha值 if alpha == 0: return ' ' #获取字符集的长度,这里为70 length = len(ascii_char) #将RGB值转为灰度值gray,灰度值范围为0-255 gray = int(0.2126*r+0.7152*g+0.0722*b) #灰度值范围为0-255,而字符集只有70 #需要进行如下操作才能将灰度值映射到指定的字符上 unit = (256.0+1)/length #返回灰度值对应的字符 return ascii_char[int(gray/unit)] if __name__ == '__main__': # 打开并调整图片的宽和高 im = Image.open(IMG) im = im.resize((WIDTH,HEIGHT), Image.NEAREST) # 初始化输出的字符串 txt = "" # 遍历图片中的每一行 for i in range(HEIGHT): #遍历该行中的每一列 for j in range(WIDTH): # 将 (j,i) 坐标的 RGB 像素转为字符后添加到 txt 字符串 txt += get_char(*im.getpixel((j,i))) # 遍历完一行后需要增加换行符 txt += '\n' # 输出到屏幕 print(txt) # 字符画输出到文件 if OUTPUT: with open(OUTPUT,'w') as f: f.write(txt) else: with open("output.txt",'w') as f: f.write(txt)
[ "3553667047@qq.com" ]
3553667047@qq.com
4ff812638778fa97edd09c504ffcd6dd6cdc11fa
239ea6447abfc78571a64e1f7e0014e8d6258381
/novice/02-02/unit_test_soring.py
e623454d5075aaee0a9f8f27b9585d14d703459d
[]
no_license
faizal-alkaff/praxis-academy
b6110661968f94d2cfaff56ac6220ef38da05da6
9c3069999ffaecd39016a015cbe6e9ec031991bc
refs/heads/master
2020-09-21T05:33:25.644890
2019-12-20T08:53:22
2019-12-20T08:53:22
224,646,137
0
0
null
null
null
null
UTF-8
Python
false
false
945
py
import unittest from sorting_method import * class TestMethods(unittest.TestCase): def test_bubblesort(self): bbllist = [8, 11, 3, 22, 16] bubbleSort(bbllist) self.assertEqual(bbllist, [3, 8, 11, 16, 22]) def test_quick_sort(self): quickSort = [22, 5, 1, 18, 99] quick_sort(quickSort) self.assertEqual(quickSort, [1, 5, 18, 22, 99]) def test_insertion_sort(self): insertionSort = [9, 8, 19, 0, 34] insertion_sort(insertionSort) self.assertEqual(insertionSort, [0, 8, 9, 19, 34]) def test_heap_sort(self): heapSort = [35, 12, 43, 8, 51] heap_sort(heapSort) self.assertEqual(heapSort, [8, 12, 35, 43, 51]) def test_selection_sort(self): selectionSort = [12, 8, 3, 20, 11] selection_sort(selectionSort) self.assertEqual(selectionSort, [3, 8, 11, 12, 20]) if __name__ == '__main__': unittest.main()
[ "alkaff.faizal@gmail.com" ]
alkaff.faizal@gmail.com
0cd0e4e8ac5f482d0c574c61b50f82a0ddd477af
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-1/f30589c91d8946586faff2c994e99395239bd50b-<main>-fix.py
1d51b1b9cb0c17280c516c955697eab9c96e41df
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
def main(): argument_spec = purefa_argument_spec() argument_spec.update(dict(name=dict(required=True), eradicate=dict(default='false', type='bool'), state=dict(default='present', choices=['present', 'absent']), size=dict())) required_if = [('state', 'present', ['size'])] module = AnsibleModule(argument_spec, required_if=required_if, supports_check_mode=True) if (not HAS_PURESTORAGE): module.fail_json(msg='purestorage sdk is required for this module in volume') state = module.params['state'] array = get_system(module) volume = get_volume(module, array) if ((state == 'present') and (not volume)): create_volume(module, array) elif ((state == 'present') and volume): update_volume(module, array) elif ((state == 'absent') and volume): delete_volume(module, array) elif ((state == 'absent') and (not volume)): module.exit_json(changed=False)
[ "dg1732004@smail.nju.edu.cn" ]
dg1732004@smail.nju.edu.cn
69b79f560be12c0e9e42677a4b97215c43d4af93
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_cuneiform.py
aa5197e96b7bd8efc91b06c79ac4112f74a72e7c
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
523
py
#calss header class _CUNEIFORM(): def __init__(self,): self.name = "CUNEIFORM" self.definitions = [u'of a form of writing used for over 3,000 years until the 1st century BC in the ancient countries of Western Asia', u'pointed at one end and wide at the other: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
9a4e9897475ce33d6365819dd1de00ebac7154ee
16e54286bb66e4173f746936c829dda2c280ce68
/python/13369.世界时钟(时区处理).py
709107d93e28b099cd3926247907b96ea60c0dcf
[]
no_license
569985011/Work-Space
653b932ada697d29178c2211a40d7de7650f9421
9afeb1846433d22514a0997b7a48254ce85f5009
refs/heads/master
2021-05-04T00:28:23.098655
2020-09-30T11:32:57
2020-09-30T11:32:57
71,839,693
0
0
null
null
null
null
UTF-8
Python
false
false
602
py
import datetime moscow_time = datetime.datetime(2019, 3, 18, 18, 13, 27) lundon_time = moscow_time-datetime.timedelta(hours=+3) beijing_time =lundon_time+datetime.timedelta(hours=+8) tokyo_time =lundon_time+datetime.timedelta(hours=+9) newyork_time =lundon_time+datetime.timedelta(hours=-4) print("伦敦 "+datetime.datetime.strftime(lundon_time,"%Y-%m-%d %H:%M:%S")) print("北京 "+datetime.datetime.strftime(beijing_time,"%Y-%m-%d %H:%M:%S")) print("东京 "+datetime.datetime.strftime(tokyo_time,"%Y-%m-%d %H:%M:%S")) print("纽约 "+datetime.datetime.strftime(newyork_time,"%Y-%m-%d %H:%M:%S"))
[ "Chauncy523@gmail.com" ]
Chauncy523@gmail.com
25b0faff57a134389ac668ba40d1d3421f140816
08ee36e0bb1c250f7f2dfda12c1a73d1984cd2bc
/src/mnistk/networks/conv1dtanh_24.py
c8888a08e65cd985171dd5b7947bf12cd3c0dedf
[]
no_license
ahgamut/mnistk
58dadffad204602d425b18549e9b3d245dbf5486
19a661185e6d82996624fc6fcc03de7ad9213eb0
refs/heads/master
2021-11-04T07:36:07.394100
2021-10-27T18:37:12
2021-10-27T18:37:12
227,103,881
2
1
null
2020-02-19T22:07:24
2019-12-10T11:33:09
Python
UTF-8
Python
false
false
1,688
py
# -*- coding: utf-8 -*- """ conv1dtanh_24.py :copyright: (c) 2019 by Gautham Venkatasubramanian. :license: MIT """ import torch from torch import nn class Conv1dTanh_24(nn.Module): def __init__(self): nn.Module.__init__(self) self.f0 = nn.Conv1d(in_channels=16, out_channels=22, kernel_size=(11,), stride=(1,), padding=(0,), dilation=(1,), groups=1, bias=True, padding_mode='zeros') self.f1 = nn.Conv1d(in_channels=22, out_channels=16, kernel_size=(38,), stride=(1,), padding=(0,), dilation=(1,), groups=1, bias=False, padding_mode='zeros') self.f2 = nn.Conv1d(in_channels=16, out_channels=27, kernel_size=(2,), stride=(1,), padding=(0,), dilation=(1,), groups=1, bias=False, padding_mode='zeros') self.f3 = nn.Tanh() self.f4 = nn.Conv1d(in_channels=27, out_channels=35, kernel_size=(1,), stride=(1,), padding=(0,), dilation=(1,), groups=1, bias=False, padding_mode='zeros') self.f5 = nn.Tanh() self.f6 = nn.Conv1d(in_channels=35, out_channels=30, kernel_size=(1,), stride=(1,), padding=(0,), dilation=(1,), groups=1, bias=False, padding_mode='zeros') self.f7 = nn.Conv1d(in_channels=30, out_channels=10, kernel_size=(1,), stride=(1,), padding=(0,), dilation=(1,), groups=1, bias=False, padding_mode='zeros') self.f8 = nn.LogSoftmax(dim=1) def forward(self, *inputs): x = inputs[0] x = x.view(x.shape[0],16,49) x = self.f0(x) x = self.f1(x) x = self.f2(x) x = self.f3(x) x = self.f4(x) x = self.f5(x) x = self.f6(x) x = self.f7(x) x = x.view(x.shape[0],10) x = self.f8(x) return x
[ "41098605+ahgamut@users.noreply.github.com" ]
41098605+ahgamut@users.noreply.github.com
941023f561d7407ed3b0bee51288d9010a9e728c
cd22c49ca8e322ba91fa9688b144034a7711dc47
/defi_streaming/token_activity.py
dfed24ef7c641fddc25cf33f50d63591f9a3bbf4
[ "MIT" ]
permissive
howardpen9/eth_analytics
ef5f306da973289dd3c17781bacdf5457797d2ea
cf9f35f867c88cd3ec11836253861908a9bc3d92
refs/heads/main
2023-06-21T07:15:03.168679
2021-08-09T04:43:32
2021-08-09T04:43:32
387,317,327
0
0
MIT
2021-07-23T06:37:25
2021-07-19T02:34:36
null
UTF-8
Python
false
false
3,639
py
# This script can be used to view all the transactions from a specific ERC-20 token over a defined # of blocks. # This is useful for counting volume of transfers, viewing where it's being used, etc. from web3 import Web3 # Import Alchemy API Key from dotenv import dotenv_values config = dotenv_values("../.env") # I prefer Alchemy as the pricing plans are friendly for people who aren't loaded : ) w3 = Web3(Web3.HTTPProvider('https://eth-mainnet.alchemyapi.io/v2/' + config['API_KEY'])) # Get the block number for the latest block latest_block = w3.eth.block_number # Get this block number in another variable we will increment block = latest_block # Read data from last 270 blocks to get ~1 hour of data, change number to change historical length num_blocks_to_scan = 1 # ERC-20 token you want to track transfers for, change address to view different token erc_20_address = '0x1f9840a85d5af5bf1d1762f925bdaddc4201f984' erc_20_history = [] # add the contract addresses you care about as well as the logic below to add additional contracts # if you do not add this logic the number of transfers will still be tracked but not the protocols to which it is sent uni_v2_history = [] uni_v2_address = '0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D' uni_v2_30_address = '' #uni_v3_history = [] #metamask_router_history = [] #sushiswap_history = [] #compound_history = [] #aave_history = [] # Loop over num_blocks_to_scan starting from the latest mined block while block > (latest_block - num_blocks_to_scan): # Read data from the latest block print(latest_block - num_blocks_to_scan) print(block) current_block = w3.eth.getBlock(block) # Read transactions from this block block_transactions = current_block['transactions'] print(len(block_transactions)) # Loop over all transactions in this block for x in block_transactions: # Get the data we need for each individual transaction #print(x.hex()) block_receipt = w3.eth.getTransactionReceipt(x.hex()) try: # Check if our ERC_20 of interest is being used if str(block_receipt['logs'][0]['address']).lower() == erc_20_address: # track number of transfers print('yes') erc_20_history.append("Uniswap Token Transfer") looping = True # view a list of all the EOAs and contracts the token goes through in this transaction # these nested loops are inefficient and can be improved, consider using checksum addresses instead of lowercasing everything, and fix these disasterous breaks xD for x in block_receipt['logs']: for y in x['topics']: contract_address = str(y.hex())[-40:] contract_address = '0x' + contract_address if contract_address.lower() == uni_v2_address.lower(): uni_v2_history.append('Uniswap Token Traded Through Uniswap V2') print('yes') looping = False break if not looping: break except: print('no erc-20 transfer') print('subtract') # increment block - 1 to move on to the next block and scan for transactions block -= 1 # print how many times the ERC_20 in question was transferred over the last num_blocks_to_scan print(len(erc_20_history)) # print how many of those ERC_20 transactions were transactions through Uniswap v2 print(len(uni_v2_history))
[ "lpose22@gmail.com" ]
lpose22@gmail.com
fede356b76cd95095561b4fdc7bba90441403527
bfb28ec9c6504c08f874ea3f7fb069d29b47fd51
/testing/products/tests/test_urls.py
0198ea583bc5ef1f99ff38ee1d2a41b3c98915bd
[]
no_license
anantonyk/python
c15d00108a1db0602f6ebd6ea1d8ec84e7858b8c
9b3a15984e810e6ea0e7116f30d89e95b84a2ffa
refs/heads/master
2020-04-01T16:53:26.677779
2018-12-05T08:16:29
2018-12-05T08:16:29
153,402,689
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
from django.urls import reverse, resolve class TestUrls: def test_url(self): path = reverse('detail', kwargs={'pk':1}) assert resolve(path).view_name=='detail'
[ "nastiaantonyk14@gmail.com" ]
nastiaantonyk14@gmail.com
c695fddcefdc0efae0816934bae5aaba3b17ab7c
54ddb3f38cd09ac25213a7eb8743376fe778fee8
/topic_02_syntax/hw/tests/logic_1_arithmetic_test.py
24a92c5b8bec9f07cd079054c5fbfa6afd539e1c
[]
no_license
ryndovaira/leveluppythonlevel1_300321
dbfd4ee41485870097ee490f652751776ccbd7ab
0877226e6fdb8945531775c42193a90ddb9c8a8b
refs/heads/master
2023-06-06T07:44:15.157913
2021-06-18T11:53:35
2021-06-18T11:53:35
376,595,962
0
0
null
null
null
null
UTF-8
Python
false
false
1,327
py
import pytest from topic_02_syntax.hw.logic_1_arithmetic import arithmetic params = [ (0, 0, '+', 0), (1, 0, '+', 1), (0, 1, '+', 1), (100, 100, '+', 200), (100, -100, '+', 0), (-100, 100, '+', 0), (-100, -100, '+', -200), (0, 0, '-', 0), (1, 0, '-', 1), (0, 1, '-', -1), (100, 100, '-', 0), (100, -100, '-', 200), (-100, 100, '-', -200), (-100, -100, '-', 0), (0, 0, '*', 0), (1, 0, '*', 0), (0, 1, '*', 0), (100, 100, '*', 10000), (100, -100, '*', -10000), (-100, 100, '*', -10000), (-100, -100, '*', 10000), (0, 1, '/', 0), (1, 1, '/', 1), (100, 100, '/', 1), (100, -100, '/', -1), (-100, 100, '/', -1), (-100, -100, '/', 1), (0, 1, '=', "Unknown operator"), (1, 1, '%', "Unknown operator"), (100, 100, '#', "Unknown operator"), (100, -100, '.', "Unknown operator"), (-100, 100, '0', "Unknown operator"), (-100, -100, '&', "Unknown operator"), ] ids = ["(%s) %s (%s) == (%s)" % (num1, op, num2, expected) for (num1, num2, op, expected) in params] @pytest.mark.parametrize(argnames="num1, num2, op, expected", argvalues=params, ids=ids) def test_arithmetic(num1, num2, op, expected): assert arithmetic(num1, num2, op) == expected
[ "ryndovaira@gmail.com" ]
ryndovaira@gmail.com
90b782501b6f2a82869a0606c0c34ed8fdefb653
228cf193205005b8057bfcc11cfe59a2cce99e25
/xianfengsg/online/V_1.3/XGBOOST_forecast_engineer.py
c79d9fc05b5d55310820164fd1b08f6542939a20
[]
no_license
jimmyeva/AI-predict
a4b7a0adb4bf40497324332cbfe9106a78078403
2d7783ee0008e60bd04d27219b542b8abea235bd
refs/heads/master
2022-04-11T06:11:36.332609
2020-04-08T08:23:10
2020-04-08T08:23:10
250,241,027
0
0
null
null
null
null
UTF-8
Python
false
false
23,756
py
# -*- coding: utf-8 -*- # @Time : 2019/9/13 11:16 # @Author : Ye Jinyu__jimmy # @File : XGBOOST_foreacst import pandas as pd # 显示所有列 pd.set_option('display.max_columns', None) # 显示所有行 pd.set_option('display.max_rows', 500) # 设置value的显示长度为100,默认为50 pd.set_option('max_colwidth', 100) from sklearn import preprocessing import numpy as np import time import xgboost as xgb from sklearn.model_selection import GridSearchCV,train_test_split import features_engineering import cx_Oracle import datetime import pymysql import tqdm import os from statsmodels.tsa.holtwinters import ExponentialSmoothing, SimpleExpSmoothing, Holt import psycopg2 import multiprocessing import math # # def mkdir(path): # folder = os.path.exists('/root/ai/wh_repl/program/prediction/'+path) # if not folder: # 判断是否存在文件夹如果不存在则创建为文件夹 # os.makedirs('/root/ai/wh_repl/program/prediction/'+path) # makedirs 创建文件时如果路径不存在会创建这个路径 # print( # "----生成新的文件目录----") # else: # print("当前文件夹已经存在") # # # def print_in_log(string): # print(string) # date_1 = datetime.datetime.now() # str_10 = datetime.datetime.strftime(date_1, '%Y%m%d') # file = open('/root/ai/wh_repl/program/prediction/' + str(str_10) + '/' + 'log' + str(str_10) + '.txt', 'a') # file.write(str(string) + '\n') def mkdir(path): folder = os.path.exists('./'+path) if not folder: # 判断是否存在文件夹如果不存在则创建为文件夹 os.makedirs('./'+path) # makedirs 创建文件时如果路径不存在会创建这个路径 print( "----生成新的文件目录----") else: print("当前文件夹已经存在") def print_in_log(string): print(string) date_1 = datetime.datetime.now() str_10 = datetime.datetime.strftime(date_1, '%Y%m%d') file = open('./' + 'log_decision' + str(str_10) + '.txt', 'a') file.write(str(string) + '\n') #==================================================================== #------------------------------>根据SKU 的id来获取每个SKU的具体的销售明细数据 def get_detail_sales_data(wh_code,sku_code,start_date,end_date): conn = psycopg2.connect(database="dc_rpt", user="ads", password="ads@xfsg2019", host="192.168.1.205", port="3433") print_in_log("Opened database successfully,connected with PG DB") ads_rpt_ai_wh_d_sql = """SELECT * FROM ads_aig_supply_chain.ads_rpt_ai_wh_d WHERE wh_code ='%s' AND sty_code = '%s' AND stat_date >'%s' AND stat_date <= '%s' """ % \ (wh_code,sku_code,start_date,end_date) try: wh_sales = pd.read_sql(ads_rpt_ai_wh_d_sql,conn) except: print("load data from postgres failure !") wh_sales = pd.DataFrame() exit() conn.close() wh_sales['stat_date'] = pd.to_datetime(wh_sales['stat_date']) wh_sales = wh_sales.rename(index = str, columns = {'stat_date': 'Account_date'}) # print(wh_sales) # wh_sales.columns = ['SENDER','DC_NAME','WRH','WAREHOUSE_NAME','NUM','GDGID','SKU_NAME', # 'OCRDATE','CRTOTAL','MUNIT','QTY','QTYSTR','TOTAL','PRICE','QPC','RTOTAL'] print_in_log(str(sku_code)+'销售数据读取完成') return wh_sales #------------------------------------------------------------------------------->以日期作为分组内容查看每天每个SKU的具体的销量 def data_group(data): #以下是用来保存分组后的数据 sales_data = pd.DataFrame(columns = ["Account_date","Sku_code",'Dc_name',"Sales_qty",'Price','Dc_code', 'Wrh','Warehouse_name','Sku_name']) sales_data["Sales_qty"]=data.groupby(["Account_date"],as_index = False).sum()["sal_qty_1d"] sales_data["Price"] = data.groupby(["Account_date"],as_index = False).mean()["sal_amt_1d"] sales_data["Account_date"]= data.groupby(['Account_date']).sum().index sales_data["Sku_code"] = [data["sty_code"].iloc[0]]*len(sales_data["Sales_qty"]) sales_data["Dc_name"] = [data["wh_name"].iloc[0]] * len(sales_data["Sku_code"]) sales_data["Dc_code"] = [data["wh_code"].iloc[0]] * len(sales_data["Sku_code"]) sales_data["Sku_id"] = [data["sty_id"].iloc[0]] * len(sales_data["Sku_code"]) sales_data["Wrh"] = sales_data["Dc_code"] sales_data["Warehouse_name"] = sales_data["Dc_name"] sales_data["Sku_name"] = [data["sty_name"].iloc[0]] * len(sales_data["Sales_qty"]) sales_data = sales_data.sort_values( by = ['Account_date'], ascending = False) return sales_data #--------------------------------------------------------------------------------->对日期进行转化返回string前一天的日期 def date_convert(end): datetime_forma= datetime.datetime.strptime(end, "%Y%m%d") yesterday = datetime_forma - datetime.timedelta(days=1) yesterday = yesterday.strftime("%Y%m%d") return yesterday #---------------------------------设置函数用于对异常点的处理 def process_abnormal(data): mid_data = data Q1 = mid_data['Sales_qty'].quantile(q=0.25) Q3 = mid_data['Sales_qty'].quantile(q=0.75) IQR = Q3 - Q1 mid_data["Sales_qty"].iloc[np.where(mid_data["Sales_qty"] > Q3 + 1.5 * IQR)] = np.median(mid_data['Sales_qty']) mid_data["Sales_qty"].iloc[np.where(mid_data["Sales_qty"] < Q1 - 1.5 * IQR)] = np.median(mid_data['Sales_qty']) return mid_data '''采用三次指数平滑的方式进行数据噪声处理''' def sigle_holt_winters(data): #先修正那些明显的错误的数据 # data["Sales_qty"].iloc[np.where(data["Sales_qty"] < 0) ] = 0 sales = data.drop(data[data.Sales_qty <= 0].index) # sales.to_csv('D:/AI/xianfengsg/online/V_1.2/data/sale.csv', encoding='utf_8_sig') y = pd.Series(sales['Sales_qty'].values) date = pd.Series(sales['Account_date'].values) seaonal = round(len(sales) / 4) ets3 = ExponentialSmoothing(y, trend='add', seasonal='add',seasonal_periods=seaonal) r3 = ets3.fit() anomaly_data = pd.DataFrame({ 'Account_date': date, 'fitted': r3.fittedvalues, }) merge_data = pd.merge(data,anomaly_data,on='Account_date',how='inner') # merge_data.to_csv('D:/AI/xianfengsg/online/V_1.2/data/merge_data.csv', encoding='utf_8_sig') merge_data.drop('Sales_qty',axis=1, inplace=True) merge_data = merge_data.rename(columns={'fitted':'Sales_qty'}) # except OSError as reason: # print('出错原因是:' +str(reason)) # pass # merge_data = pd.DataFrame() return merge_data #----------------------------------------------------->对日期没有销量和价格等信息进行补齐操作,并做异常值的处理 def date_fill(start_date, end, data): yesterday = date_convert(end) date_range_sku = pd.date_range(start = start_date, end=yesterday) data_sku = pd.DataFrame({'Account_date': date_range_sku}) #采用三阶指数平滑的方式处理 '''此处需要设置判断的采用两种噪声处理方式''' if len(data) >= 150: print('使用三阶指数平滑处理') process_data = sigle_holt_winters(data) else: print('基于统计学处理') process_data = process_abnormal(data) process_data['Sales_qty'] = process_data['Sales_qty'].astype(int) result = pd.merge(process_data, data_sku, on=['Account_date'], how='right') # 如果在某一天没有销量的话,采取补零的操作 result["Sales_qty"].iloc[np.where(np.isnan(result["Sales_qty"]))] = 0 result["Sales_qty"].iloc[np.where(result["Sales_qty"] < 0)] = 0 result = result.fillna(method='ffill') result = result.sort_values(["Account_date"], ascending=1) return result # 获取所有的SKU的的gid def get_all_sku(data): data.to_csv('./data.csv',encoding='utf_8_sig') sku_colomn = set(data["Sku_code"]) sku_list = list(sku_colomn) return sku_list def get_features_target(data): data_array = pd.np.array(data) # 传入dataframe,为了遍历,先转为array features_list = [] target_list = [] columns = [column for column in data] print_in_log('该资源的长度是:'+str(len(columns))) if 'Sales_qty' in columns: for line in data_array: temp_list = [] for i in range(2, int(data.shape[1])): # 一共有107个特征 if i == 2: # index=2对应的当前的目标值,也就是当下的销售量 target_temp = int(line[i]) target_list.append(target_temp) else: temp_list.append(int(line[i])) features_list.append(temp_list) else: for line in data_array: temp_list = [] target_list =[] #因为第二个数会存在是商品code的情况,而商品code第一位有可能是0所以需要单独出来 for i in range(2, int(data.shape[1])): # 一共有107个特征 if i == 1: temp_list.append(str(line[i])) else: temp_list.append(int(line[i])) features_list.append(temp_list) features_data = pd.DataFrame(features_list) target_data = pd.DataFrame(target_list) return features_data, target_data def get_sku_number_dict(data): data_array = pd.np.array(data) max_dict = {} min_dict = {} ave_dict = {} sum_dict = {} count_dict = {} all_sku_list = [] for line in data_array: all_sku_list.append(line[1]) all_sku_code_set = set(all_sku_list) for sku in all_sku_code_set: max_dict[sku] = 0 min_dict[sku] = 0 ave_dict[sku] = 0 sum_dict[sku] = 0 count_dict[sku] = 0 for line in data_array: sales_qty = line[2] sku = line[1] sum_dict[sku] += sales_qty count_dict[sku] += 1 #获取最大最小的销量 if max_dict[sku] < sales_qty: max_dict[sku] = sales_qty if min_dict[sku] > sales_qty: min_dict[sku] = sales_qty for sku in all_sku_code_set: ave_dict[sku] = sum_dict[sku] / count_dict[sku] return max_dict, min_dict, ave_dict # 得到评价指标rmspe_xg训练模型 def rmspe_xg(yhat, y): # y DMatrix对象 y = y.get_label() # y.get_label 二维数组 y = np.exp(y) # 二维数组 yhat = np.exp(yhat) # 一维数组 rmspe = np.sqrt(np.mean((y - yhat) ** 2)) return "rmspe", rmspe # 该评价指标用来评价模型好坏 def rmspe(zip_list): sum_value = 0.0 count = len(list(zip_list)) for real, predict in zip_list: v1 = (real - predict) ** 2 sum_value += v1 v2 = sum_value / count v3 = np.sqrt(v2) return v3 def predict_with_XGBoosting(sku_code,data,test_data): data_process = data data_process.ix[data_process['Sales_qty'] == 0, 'Sales_qty'] = 1 train_and_valid, test = train_test_split(data_process, test_size=0.2, random_state=10) # train, valid = train_test_split(train_and_valid, test_size=0.1, random_state=10) train_feature, train_target = get_features_target(train_and_valid) # test_feature, test_target = get_features_target(test) valid_feature, valid_target = get_features_target(test) #-------------------------------------------------- dtrain = xgb.DMatrix(train_feature, np.log(train_target)) # 取log是为了数据更稳定 dvalid = xgb.DMatrix(valid_feature, np.log(valid_target)) watchlist = [(dvalid, 'eval'), (dtrain, 'train')] # 设置参数 num_trees = 450 params = {"objective": "reg:linear", "eta": 0.15, "max_depth": 8, "subsample": 0.8, "colsample_bytree": 0.7, "silent": 1 } # 训练模型 gbm = xgb.train(params, dtrain, num_trees, evals=watchlist, early_stopping_rounds=60, feval=rmspe_xg, verbose_eval=True) #--------------------------------------------------- #用于最后的输出结果进行切分 print_in_log('test_data:length'+str(len(test_data))) predict_feature,target_empty = get_features_target(test_data) # 将测试集代入模型进行预测 print("Make predictions on the future set") # print(predict_feature.columns) # print('predict_feature',predict_feature) predict_probs = gbm.predict(xgb.DMatrix(predict_feature)) predict_qty = list(np.exp(predict_probs)) # 对预测结果进行矫正 max_dict, min_dict, ave_dict = get_sku_number_dict(data_process) predict_qty_improve = [] for predict in predict_qty: sku_code = str(sku_code) print_in_log('predict'+'\n'+str(predict)) print_in_log('sku_code'+str(sku_code)) print_in_log('max_dict'+str(max_dict)) print_in_log('min_dict' + str(min_dict)) if predict > max_dict[sku_code]: predict = ave_dict[sku_code] if predict < min_dict[sku_code]: predict = ave_dict[sku_code] predict_qty_improve.append(predict) # 计算误差 # list_zip_real_predict_improve = zip(test_target_list, predict_qty_improve) # error = rmspe(list_zip_real_predict_improve) # print('error', error) return predict_qty_improve #定义一个函数用来切构建用于训练的数据集 def separate_data(sales_data,feature_data): # 以下这部操作是配送中心和sku进行区分,同时将特征信息加入进行合并 sales_data = sales_data[['Account_date', 'Sku_code', 'Sales_qty']] merge_data = sales_data.merge(feature_data, on='Account_date', how='inner') merge_data = merge_data.reset_index(drop=True) return merge_data #构建一个用来预测的数据集 def create_future(sku_code,features_data,end_date,date_7days_after): sku_feature_data = features_data[features_data['Account_date'] >= end_date] sku_feature_data = sku_feature_data[sku_feature_data['Account_date'] <= date_7days_after] # sku_feature_data = sku_feature_data.drop(['index'],axis=1) # sku_feature_data = sku_feature_data[sku_feature_data['Account_date'] < '2019-06-22'] sku_feature_data.insert(1,'Sku_code',pd.np.array(sku_code)) return sku_feature_data #结果计算后再定义一个函数用来将信息不全 def fill_data(predict_data,sales_data,sku_code): mid_sales_data = sales_data[sales_data['Sku_code'] == sku_code] mid_predict = predict_data mid_predict["Price"] = pd.np.array(mid_sales_data["Price"].iloc[0]) # mid_predict["Gross_profit_rate"] = pd.np.array(mid_sales_data["Gross_profit_rate"].iloc[0]) mid_predict["Dc_name"] = pd.np.array(mid_sales_data["Dc_name"].iloc[0]) mid_predict["Dc_code"] = pd.np.array(mid_sales_data["Dc_code"].iloc[0]) mid_predict["Sku_id"] = pd.np.array(mid_sales_data["Sku_id"].iloc[0]) mid_predict["Wrh"] = pd.np.array(mid_sales_data["Wrh"].iloc[0]) mid_predict["Warehouse_name"] = pd.np.array(mid_sales_data["Warehouse_name"].iloc[0]) mid_predict["Sku_name"] = pd.np.array(mid_sales_data["Sku_name"].iloc[0]) return mid_predict #设置预测的主函数 #这是从库存表中进行商品的选择,选择需要预测的sku的code #-------------最新的逻辑是从叫货目录进行选择 def get_order_code(wh_code): print_in_log('正在读取叫货目录的数据') dbconn = pymysql.connect(host="rm-bp1jfj82u002onh2t.mysql.rds.aliyuncs.com", database="purchare_sys", user="purchare_sys", password="purchare_sys@123", port=3306, charset='utf8') get_orders = """SELECT pcr.goods_code GOODS_CODE FROM p_call_record pcr WHERE pcr.warehouse_code LIKE '%s%%'"""%\ (wh_code) orders = pd.read_sql(get_orders, dbconn) orders['GOODS_CODE'] = orders['GOODS_CODE'].astype(str) print_in_log('叫货目录读取完成') dbconn.close() return orders #设置多进程来读取原始销售数据和数据的平滑处理 def format_multi(data,start_date,end_date,wh_code): sku_code = data[['GOODS_CODE']] '''只用于测试使用''' # sku_code = sku_code.loc[0:24] sku_code = sku_code.dropna(axis=0,how='any') sku_code_list = sku_code['GOODS_CODE'].to_list() length_res = len(sku_code_list) n = 8 # 这里计划设置8个进程进行计算 step = int(math.ceil(length_res / n)) pool = multiprocessing.Pool(processes=8) # 创建8个进程 results = [] for i in range(0, 8): mid_sku_code = sku_code_list[(i*step) : ((i+1)*step)] print('mid_sku_code',mid_sku_code) results.append(pool.apply_async(get_his_sales, args =(mid_sku_code,start_date,end_date,wh_code,))) pool.close() # 关闭进程池,表示不能再往进程池中添加进程,需要在join之前调用 pool.join() # 等待进程池中的所有进程执行完毕 final_data= pd.DataFrame(columns=['Account_date','Sku_code','Dc_name','Price','Dc_code','Wrh','Warehouse_name','Sku_name', 'Sku_id','Sales_qty']) for i in results: a = i.get() final_data = final_data.append(a, ignore_index=True) final_data = final_data.dropna(axis=0, how='any') return final_data #输入叫货目录的code,配送中心对应的仓位号,进行每个code的销量读取信息 def get_his_sales(sku_code_list,start_date,end_date,wh_code): # sku_code = df[['GOODS_CODE']] # '''只用于测试使用''' # sku_code = sku_code.loc[0:5] # # sku_code = sku_code.dropna(axis=0,how='any') # sku_code_list = sku_code['GOODS_CODE'].to_list() #data为获取的所有需要预测的sku的历史销售数据 data = pd.DataFrame() for code in sku_code_list: wh_sales = get_detail_sales_data(wh_code,code,start_date,end_date) print_in_log('sku的CODE:'+str(code)) if wh_sales.empty == True: print_in_log('sku的code:'+str(code)+'未获取到销售数据') pass else: result_mid = data_group(wh_sales) result = date_fill(start_date,end_date,result_mid) data = data.append(result) return data #主计算函数, def main_forecast(start_date,end_date,date_7days,wh_code,date_7days_after): print_in_log(start_date+end_date+date_7days+wh_code) df = get_order_code(wh_code) # sales_data = get_his_sales(df,start_date,end_date,wh_code)format_multi sales_data = format_multi(df, start_date, end_date, wh_code) # print('sales_data',sales_data) '''这里需要对读取的销售信息再进行一次数据清洗,''' features_data = features_engineering.made_feature() train_data = separate_data(sales_data,features_data) sku_list =get_all_sku(sales_data) result = pd.DataFrame() #分别对每个sku进行学习预测 print_in_log('分别对每个sku进行学习预测:'+str(set(sku_list))) for sku_code in sku_list: test_data = create_future(sku_code, features_data, end_date,date_7days_after) train_data_mid = train_data[train_data['Sku_code'] == sku_code] print_in_log('sku_code:' + str(sku_code)) print_in_log('数据长度是:%d' % len(train_data_mid)) if len(train_data_mid) > 45: train_data_mid = train_data_mid.reset_index(drop=True) test_data = test_data.reset_index(drop=True) predict_qty_improve = predict_with_XGBoosting(sku_code,train_data_mid,test_data) test_data['Forecast_qty'] = pd.Series(predict_qty_improve) predict_data = test_data[['Account_date','Sku_code','Forecast_qty']] result_data = fill_data(predict_data,sales_data,sku_code) print('predict_qty_improve',predict_qty_improve) result = result.append(result_data) else: print_in_log('%s,因为学习数据较少,因此采用逻辑进行预测'%sku_code) train_data_mid = train_data[train_data['Account_date'] > date_7days] predict_qty_improve = train_data_mid['Sales_qty'].mean() test_data['Forecast_qty'] = predict_qty_improve predict_data = test_data[['Account_date','Sku_code','Forecast_qty']] # print('predict_data',predict_data) result_data = fill_data(predict_data, sales_data, sku_code) # print('result_data',result_data) result = result.append(result_data) result['Update_time'] = pd.to_datetime(end_date).strftime('%Y-%m-%d') # result['Update_time'] = datetime.date.today().strftime('%Y-%m-%d') result['Account_date']= pd.to_datetime(result['Account_date'], unit='s').dt.strftime('%Y-%m-%d') result = result.replace([np.inf, -np.inf], np.nan) result = result.fillna(0) return result #-----------------------------------连接mysql数据库 def connectdb(): print_in_log('连接到mysql服务器...') db = pymysql.connect(host="rm-bp1jfj82u002onh2t.mysql.rds.aliyuncs.com", database="purchare_sys", user="purchare_sys", password="purchare_sys@123",port=3306, charset='utf8') print_in_log('连接成功') return db #《----------------------------------------------------------------------删除重复日期数据 def drop_data(wh_code,end_date,db): cursor = db.cursor() sql = """delete from dc_forecast where Update_time = DATE ('%s') and Dc_code = '%s'"""%(end_date,wh_code) cursor.execute(sql) #<===========================================插入数据 def insertdb(db,data): cursor = db.cursor() # param = list(map(tuple, np.array(data).tolist())) data_list = data.values.tolist() print_in_log('data_list:len'+str(len(data_list))) sql = """INSERT INTO dc_forecast (Account_date,Sku_code,Forecast_qty,Price,Dc_name,Dc_code, Sku_id,Wrh,Warehouse_name,Sku_name,Update_time) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)""" try: cursor.executemany(sql, data_list) print_in_log("所有品牌的sku数据插入数据库成功") db.commit() except OSError as reason: print_in_log('出错原因是%s' % str(reason)) db.rollback() #<================================================== def closedb(db): db.close() #<============================================================================= def main(start_date,end_date,date_7days,wh_code,date_7days_after): mkdir(end_date) print_in_log(start_date+end_date+date_7days+wh_code) result_forecast = main_forecast(start_date,end_date,date_7days,wh_code,date_7days_after) print_in_log('result_forecast:len'+str(len(result_forecast))) result_forecast.to_csv('./'+str(wh_code)+'result_forecast'+str(end_date)+'.csv',encoding='utf_8_sig') db = connectdb() drop_data(wh_code,end_date,db) if result_forecast.empty: print_in_log("The data frame is empty") print_in_log("result:1") closedb(db) else: insertdb(db,result_forecast) closedb(db) print_in_log("result:1") #《============================================================================主函数入口 if __name__ == '__main__': today = datetime.date.today()- datetime.timedelta(45) end_date = today.strftime('%Y%m%d') date_7days = (today - datetime.timedelta(7)).strftime('%Y%m%d') wh_code = '001' start_date = '20180101' print(start_date,end_date,date_7days,wh_code) try: main(start_date,end_date,date_7days,wh_code) except OSError as reason: print_in_log('出错原因是%s'%str(reason)) print_in_log ("result:0")
[ "usstyjy@163.com" ]
usstyjy@163.com
e7b14c0367b594b8adebfd94bd611149cf852b69
bec7cb71348269467e720876d1b262379129e138
/ask/ask/urls.py
113ba92f8651397964e4890672e116f908d80ddc
[]
no_license
aftana/st-web31
6b18548891135454f6e5c822a92203feec04be2e
862a73e0b576f1a611232aac4afec504a909c0af
refs/heads/master
2020-04-05T12:38:04.863561
2017-07-12T13:40:13
2017-07-12T13:40:13
95,201,667
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
"""ask URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^', include('qa.urls')), ]
[ "art-xub@xubuntu.com" ]
art-xub@xubuntu.com
52df8a6e0f658bda2e297a144ee28205503152b5
51a5c2772232690a34ba2030c643ffcb8d41023d
/cloudy-scripts/grid-density/plot-electron-temp.py
db0cff264676e6631603b21f62d7347a1f04e9d6
[]
no_license
calvin-sykes/mmas-project
000e456f83f97c001d196721c2b3bcad7bf64f99
4a57334fd7036d49760811373ef2bc8c4fc9a89f
refs/heads/master
2021-09-05T19:18:24.325590
2018-01-30T13:49:00
2018-01-30T13:49:00
106,418,893
0
0
null
null
null
null
UTF-8
Python
false
false
1,047
py
#!/usr/bin/python3 import numpy as np import matplotlib, matplotlib.pyplot as plt import cloudy_plots as clplt if __name__ == '__main__': fn_base = 'grid-density' cp = clplt.CloudyPlotter(fn_base) colourvals = np.linspace(1., 0., cp.nfiles()) colours = [matplotlib.cm.jet(x) for x in colourvals] # Plot of HI fraction vs radius for each H density plt.figure() ax = plt.gca() ax.set_xscale('log') ax.set_xlabel('$\log(\mathrm{depth/[cm]})$') ax.set_ylabel('$x_\mathrm{HI}$') ax.set_title('$x_\mathrm{HI}$ as a function of depth') ax.xaxis.set_major_formatter(matplotlib.ticker.LogFormatterExponent()) for idx in range(cp.nfiles()): # find value of parameter with this index hden = cp.get_grid_param(idx, 'hden') depth = cp.get_col(idx, 'depth') etemp = cp.get_col(idx, 'Te') plt.plot(depth, etemp, label='$\log(n_H)={}$'.format(hden), color=colours[idx], marker='.', linestyle='') plt.legend() plt.show()
[ "sykescalvin09@gmail.com" ]
sykescalvin09@gmail.com
3f83f46f9d7f4babfa8c81312e6fd61edc7c8c9a
cc52011cb420651cdd9d37af1ffbad68f935c7be
/junk/face_test.py
02765a052dfcd7d9789560f7bae2bde65f24a6ca
[]
no_license
fatpat314/mask_detection
0988a341fd47849977bbb7babdc0ed2fce928a6d
025b420014e8aac71d867e06ef9202a473e5357c
refs/heads/master
2022-12-20T05:43:44.700740
2020-09-28T08:19:56
2020-09-28T08:19:56
290,686,539
0
0
null
null
null
null
UTF-8
Python
false
false
13,137
py
import face_recognition import cv2 import numpy as np import os import glob # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the # other example, but it includes some basic performance tweaks to make things run a lot faster: # 1. Process each video frame at 1/4 resolution (though still display it at full resolution) # 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam. # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one) video_capture = cv2.VideoCapture(0) """img_dir = "images" data_path = os.path.join(img_dir, '*g') files = glob.glob(data_path) data = [] masked_faces_encodings = [] for fl in files: data.append(fl) masked_faces_images = face_recognition.load_image_file(fl) masked_faces_encoding = face_recognition.face_encodings(masked_faces_images) masked_faces_encodings.append(masked_faces_encoding) masked_faces = ["Masked"] face_locations = [] face_encodings = [] face_names = [] process_this_frame = True print(masked_faces_encodings) while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame,(0,0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) # matches = face_recognition.compare_faces(masked_faces_encodings, face_encoding) name = "Unmasked" if name == "Unmasked": print("ALERT!!!!", "\a") # # If a match was found in known_face_encodings, just use the first one. if True in matches: first_match_index = matches.index(True) name = masked_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(masked_faces_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = masked_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows() print("IMG DATA: ", data)""" # Load a sample picture and learn how to recognize it. obama_image = face_recognition.load_image_file("face.jpeg") obama_face_encoding = face_recognition.face_encodings(obama_image)[0] # Load a second sample picture and learn how to recognize it. biden_image = face_recognition.load_image_file("face2.jpg") biden_face_encoding = face_recognition.face_encodings(biden_image)[0] # Create arrays of known face encodings and their names known_face_encodings = [ obama_face_encoding, biden_face_encoding ] known_face_names = [ "Barack Obama", "Joe Biden" ] # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: # tolerance=0.0 # Grab a single frame of video ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time if process_this_frame: # Find all the faces and face encodings in the current frame of video face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: # See if the face is a match for the known face(s) matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unmasked" if name == "Unmasked": print("ALERT!!!!", "\a") # # If a match was found in known_face_encodings, just use the first one. if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results for (top, right, bottom, left), name in zip(face_locations, face_names): # Scale back up face locations since the frame we detected in was scaled to 1/4 size top *= 4 right *= 4 bottom *= 4 left *= 4 # Draw a box around the face cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit! if cv2.waitKey(1) & 0xFF == ord('q'): break # Release handle to the webcam video_capture.release() cv2.destroyAllWindows() # import face_recognition # import cv2 # import numpy as np # # """Does this only need to trigger when it sees a face? Otherwise just keep looping through frames until a face a found. # Because the facial recognition is not able to recognized masked faces""" # # video_capture = cv2.VideoCapture(0) # # # Initialize some variables # face_locations = [] # face_encodings = [] # face_names = [] # process_this_frame = True # # while True: # # Grab a single frame of video # ret, frame = video_capture.read() # # # Resize frame of video to 1/4 size for faster face recognition processing # small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # # # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) # rgb_small_frame = small_frame[:, :, ::-1] # # # Only process every other frame of video to save time # if process_this_frame: # # Find all the faces and face encodings in the current frame of video # face_locations = face_recognition.face_locations(rgb_small_frame) # face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) # # face_names = [] # for face_encoding in face_encodings: # name = "Unmasked" # if name == "Unmasked": # print("ALERT!!!", '\a') # # process_this_frame = not process_this_frame # # # # Display the results # for (top, right, bottom, left), name in zip(face_locations, face_names): # # Scale back up face locations since the frame we detected in was scaled to 1/4 size # top *= 4 # right *= 4 # bottom *= 4 # left *= 4 # # # Draw a box around the face # cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # # # Draw a label with a name below the face # cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) # font = cv2.FONT_HERSHEY_DUPLEX # cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # # # Display the resulting image # cv2.imshow('Video', frame) # # # Hit 'q' on the keyboard to quit! # if cv2.waitKey(1) & 0xFF == ord('q'): # break # # # Release handle to the webcam # video_capture.release() # cv2.destroyAllWindows() # # # # # # # # # # # # from PIL import Image # # import face_recognition # # import cv2 # # import sys # # # faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # # # # video_capture = cv2.VideoCapture(0) # # # # while True: # # ret, frame = video_capture.read() # # # # gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # # faces = faceCascade.detectMultiScale( # # gray, # # scaleFactor=1.5, # # minNeighbors=5, # # minSize=(30, 30), # # flags=cv2.CASCADE_SCALE_IMAGE # # ) # # # # for (x, y, w, h) in faces: # # cv2.rectangle(frame, (x, y), (x+w, y+h), (0 ,255, 0), 2) # # # # cv2.imshow('FaceDetections', frame) # # # # if k%256 == 27: # # break # # # # elif k%256 -- 32: # # img_name = "facedetect_webcam_{}.png".format(img_counter) # # cv2.imwrite(img_name, frame) # # print("{} written!".format(img_name)) # # img_counter += 1 # # # # video_capture.release() # # cv2.destroyAllWindows() # # # # # # # cascPath = sys.argv[1] # # faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # # # # video_capture = cv2.VideoCapture(0) # # # # while True: # # # Capture frame-by-frame # # ret, frame = video_capture.read() # # # # gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # # # # faces = faceCascade.detectMultiScale( # # gray, # # scaleFactor=1.1, # # minNeighbors=5, # # minSize=(30, 30), # # # flags=cv2.cv2.CV_HAAR_SCALE_IMAGE # # ) # # # # # Draw a rectangle around the faces # # for (x, y, w, h) in faces: # # cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) # # # # # Display the resulting frame # # cv2.imshow('Video', frame) # # # # if cv2.waitKey(1) & 0xFF == ord('q'): # # break # # # # # When everything is done, release the capture # # video_capture.release() # # cv2.destroyAllWindows() # # # # # # # # # # # # # # # # # # # # masked_faces = face_recognition # # # # known_image = face_recognition.load_image_file("mask.jpeg") # # unknown_image = face_recognition.load_image_file("face.jpeg") # # # # try: # # known_image_encoding = face_recognition.face_encodings(known_image)[0] # # unknown_image_encoding = face_recognition.face_encodings(unknown_image)[0] # # except IndexError: # # print("I was not able to locate any faces in at least one of the images. Check the image files. Aborting...") # # quit() # # # # known_faces = [ # # known_image_encoding # # ] # # # # results = face_recognition.compare_faces(known_faces, unknown_image_encoding) # # # # print("Is the unknown face face.jpg {}".format(results[0])) # # print("Is the unknown face a new person that we have never seen before? {}".format(not True in results)) # # # # # # # # # # def face_rec(): # # # known_image = face_recognition.load_image_file("face.jpg") # # # unknown_image = face_recognition.load_image_file("face.jpeg") # # # # # # known_encoding = face_recognition.face_encodings(known_image)[0] # # # unknown_encoding = face_recognition.face_encodings(unknown_image)[0] # # # # # # results = face_recognition.compare_faces([known_encoding], unknown_encoding) # # # print(results) # # # return results # # # # # # # # # # image = face_recognition.load_image_file("group.jpg") # # face_locations = face_recognition.face_locations(image) # # print("I found {} face(s) in this photograth.".format(len(face_locations))) # # for face_location in face_locations: # # top, right, bottom, left = face_location # # print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) # # face_image = image[top:bottom, left:right] # # pil_image = Image.fromarray(face_image) # # pil_image.show()
[ "w.patrick.kelly@gmail.com" ]
w.patrick.kelly@gmail.com
02a65f8279d97c74d7a8b059a3e2e39c3ed462f9
f00ee3b1d271741ddd5d07e490cc300f4b468964
/nNums.py
383324688a5a32b7b4c0cb01318e42978adee673
[]
no_license
HyungjinLee/codingtest_programmers_Nnums
a353f9c6ee14e8c34afb5fd0858b115db3468ece
127f193261eda6da1947e3b6695d5f71caf91bd9
refs/heads/master
2022-04-19T10:22:08.083652
2020-04-17T14:56:10
2020-04-17T14:56:10
256,531,697
0
0
null
null
null
null
UHC
Python
false
false
933
py
import copy # copy를 이용 안하는 법은 없을까? 고민중 def solution(N, number): candidates = [set() for _ in range (8)] for i in range (8) : candidates[i].add(int(str(N) * (i+1))) def search(count) : global answer if count >= 8 : answer = -1 return False for i in range (count) : j = count-i-1 for x in copy.deepcopy(candidates[i]) : for y in copy.deepcopy(candidates[j]) : candidates[count].add(x+y) candidates[count].add(x-y) candidates[count].add(x*y) if x != 0 : candidates[count].add(y//x) if number in candidates[count] : answer = count+1 return True search(count+1) search(1) return answer
[ "2014104136@khu.ac.kr" ]
2014104136@khu.ac.kr
974489579d1b3a01da4b771465ba222ddba4a144
d42bf95794c9c2ba90d5484c5760181f3f810a91
/my_answers.py
725b1bfc73279a32421531808fdb174c370c8360
[]
no_license
shokir85/DLML_Bike_Sharing_project
61e1f239488f57a4835135ca3ebb677528956088
ec704287ebe5975df5e5c63cbcb0dd7db492f2dd
refs/heads/main
2023-03-09T23:30:04.096818
2021-02-24T22:17:14
2021-02-24T22:17:14
342,050,657
0
0
null
null
null
null
UTF-8
Python
false
false
6,464
py
import numpy as np class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in input, hidden and output layers. self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate #### TODO: Set self.activation_function to your implemented sigmoid function #### # # Note: in Python, you can define a function with a lambda expression, # as shown below. #self.activation_function = lambda x : sigmoid(x) # Replace 0 with your sigmoid calculation. ### If the lambda code above is not something you're familiar with, # You can uncomment out the following three lines and put your # implementation there instead. # def sigmoid(x): return 1/(1+ np.exp(-x)) # Replace 0 with your sigmoid calculation here self.activation_function = sigmoid def train(self, features, targets): n_records = features.shape[0] ''' Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values ''' #n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): # Implement the forward pass function below final_outputs, hidden_outputs = self.forward_pass_train(X) # Implement the backproagation function below delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o) self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records) def forward_pass_train(self, X): ''' Implement forward pass here Arguments --------- X: features batch ''' #### Implement the forward pass here #### ### Forward pass ### # TODO: Hidden layer - Replace these values with your calculations. hidden_inputs = np.dot(X,self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with your calculations. final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs, hidden_outputs def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o): ''' Implement backpropagation Arguments --------- final_outputs: output from forward pass y: target (i.e. label) batch delta_weights_i_h: change in weights from input to hidden layers delta_weights_h_o: change in weights from hidden to output layers ''' #### Implement the backward pass here #### ### Backward pass ### # TODO: Output error - Replace this value with your calculations. error = y - final_outputs # Output layer error is the difference between desired target and actual output. output_error_term = error # TODO: Calculate the hidden layer's contribution to the error hidden_error = self.weights_hidden_to_output * output_error_term # TODO: Backpropagated error terms - Replace these values with your calculations. hidden_error_term = hidden_error.T * hidden_outputs *(1 - hidden_outputs) # Weight step (input to hidden) delta_weights_i_h += hidden_error_term * X.T[:, None] # Weight step (hidden to output) delta_weights_h_o += output_error_term * hidden_outputs.T[:,None] return delta_weights_i_h, delta_weights_h_o def update_weights(self, delta_weights_i_h, delta_weights_h_o, n_records): ''' Update weights on gradient descent step Arguments --------- delta_weights_i_h: change in weights from input to hidden layers delta_weights_h_o: change in weights from hidden to output layers n_records: number of records ''' self.weights_hidden_to_output += self.lr * delta_weights_h_o/n_records # update hidden-to-output weights with gradient descent step self.weights_input_to_hidden += self.lr * delta_weights_i_h/n_records # update input-to-hidden weights with gradient descent step def run(self, features): ''' Run a forward pass through the network with input features Arguments --------- features: 1D array of feature values ''' #### Implement the forward pass here #### # TODO: Hidden layer - replace these values with the appropriate calculations. hidden_inputs = np.dot(features , self.weights_input_to_hidden) # signals into hidden layer hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer # TODO: Output layer - Replace these values with the appropriate calculations. final_inputs = np.dot(hidden_outputs,self.weights_hidden_to_output) # signals into final output layer final_outputs = final_inputs # signals from final output layer return final_outputs ######################################################### # Set your hyperparameters here ########################################################## iterations = 2000 learning_rate = 1 hidden_nodes = 10 output_nodes = 1
[ "57154234+shokir85@users.noreply.github.com" ]
57154234+shokir85@users.noreply.github.com
8e3f79372433e9b9c6eb7aa9fd960c6a2ff2d754
8edbd1bf5c7cd8e42926596445fd0470ad942795
/model/Biller.py
b47bcf3ffc29bd61cdc403e96543422fb264a47c
[]
no_license
Luca-Guettinger/122-LB2
3d14f81f432b0569db63350dd80e96bae1432a8b
c89094d9af3516389b8ca44ed8ed963be842ffd8
refs/heads/master
2023-06-19T19:48:14.180694
2021-06-16T09:44:08
2021-06-16T09:44:08
377,446,237
0
0
null
null
null
null
UTF-8
Python
false
false
1,085
py
class Biller: def __init__( self, client_id, name, street, zip, location, company_id, mail, ): self.client_id = client_id self.name = name self.street = street self.zip = zip self.location = location self.company_id = company_id self.mail = mail def __repr__(self): return f'Client_id: {self.client_id};\n' \ f'Name: {self.name};\n' \ f'Street: {self.street};\n' \ f'Zip: {self.zip};\n' \ f'Location: {self.location};\n' \ f'Company_id: {self.company_id};\n' \ f'Mail: {self.mail};' def __str__(self): return f'Client_id: {self.client_id};\n' \ f'Name: {self.name};\n' \ f'Street: {self.street};\n' \ f'Zip: {self.zip};\n' \ f'Location: {self.location};\n' \ f'Company_id: {self.company_id};\n' \ f'Mail: {self.mail};'
[ "luca.guettinger@cmiag.ch" ]
luca.guettinger@cmiag.ch
7ee6dfd65f6902adeb07ab3e77ae072964561905
b15d2787a1eeb56dfa700480364337216d2b1eb9
/samples/cli/accelbyte_py_sdk_cli/iam/_admin_get_list_country_age_restriction_v3.py
74d2f077e0a0ec3dedd98d7a8e75cccd7aeadc41
[ "MIT" ]
permissive
AccelByte/accelbyte-python-sdk
dedf3b8a592beef5fcf86b4245678ee3277f953d
539c617c7e6938892fa49f95585b2a45c97a59e0
refs/heads/main
2023-08-24T14:38:04.370340
2023-08-22T01:08:03
2023-08-22T01:08:03
410,735,805
2
1
MIT
2022-08-02T03:54:11
2021-09-27T04:00:10
Python
UTF-8
Python
false
false
2,385
py
# Copyright (c) 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # # Code generated. DO NOT EDIT! # template_file: python-cli-command.j2 # AGS Iam Service (6.2.0) # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import import json import yaml from typing import Optional import click from .._utils import login_as as login_as_internal from .._utils import to_dict from accelbyte_py_sdk.api.iam import ( admin_get_list_country_age_restriction_v3 as admin_get_list_country_age_restriction_v3_internal, ) from accelbyte_py_sdk.api.iam.models import ModelCountryV3Response from accelbyte_py_sdk.api.iam.models import RestErrorResponse @click.command() @click.option("--namespace", type=str) @click.option("--login_as", type=click.Choice(["client", "user"], case_sensitive=False)) @click.option("--login_with_auth", type=str) @click.option("--doc", type=bool) def admin_get_list_country_age_restriction_v3( namespace: Optional[str] = None, login_as: Optional[str] = None, login_with_auth: Optional[str] = None, doc: Optional[bool] = None, ): if doc: click.echo(admin_get_list_country_age_restriction_v3_internal.__doc__) return x_additional_headers = None if login_with_auth: x_additional_headers = {"Authorization": login_with_auth} else: login_as_internal(login_as) result, error = admin_get_list_country_age_restriction_v3_internal( namespace=namespace, x_additional_headers=x_additional_headers, ) if error: raise Exception(f"AdminGetListCountryAgeRestrictionV3 failed: {str(error)}") click.echo(yaml.safe_dump(to_dict(result), sort_keys=False)) admin_get_list_country_age_restriction_v3.operation_id = ( "AdminGetListCountryAgeRestrictionV3" ) admin_get_list_country_age_restriction_v3.is_deprecated = False
[ "elmernocon@gmail.com" ]
elmernocon@gmail.com
a0a7a472bbf79b3afa0328c6e60d3805b1c3f573
d63633a0370581fa9a4a603c9c3a6e05677846bf
/data_loader_val.py
f234185bd2ba3d564f2ef3fd69cae6f710f8b013
[]
no_license
aazabal1/image-captioning-project
92393cf5f5cf3201f3d7f514ddbba851a4289624
a92922be1c0223d647c4d5b4d69d00dd6498f138
refs/heads/master
2022-11-26T14:51:29.210475
2020-07-29T08:40:31
2020-07-29T08:40:31
283,444,719
0
0
null
null
null
null
UTF-8
Python
false
false
7,496
py
import nltk import os import torch import torch.utils.data as data from vocabulary import Vocabulary from PIL import Image from pycocotools.coco import COCO import numpy as np from tqdm import tqdm import random import json def get_loader_val(transform, mode='val', batch_size=1, vocab_threshold=None, vocab_file='./vocab.pkl', start_word="<start>", end_word="<end>", unk_word="<unk>", vocab_from_file=True, num_workers=0, cocoapi_loc='/opt'): """Returns the data loader. Args: transform: Image transform. mode: One of 'train' or 'test'. batch_size: Batch size (if in testing mode, must have batch_size=1). vocab_threshold: Minimum word count threshold. vocab_file: File containing the vocabulary. start_word: Special word denoting sentence start. end_word: Special word denoting sentence end. unk_word: Special word denoting unknown words. vocab_from_file: If False, create vocab from scratch & override any existing vocab_file. If True, load vocab from from existing vocab_file, if it exists. num_workers: Number of subprocesses to use for data loading cocoapi_loc: The location of the folder containing the COCO API: https://github.com/cocodataset/cocoapi """ assert mode in ['train', 'test',"val"], "mode must be one of 'train' or 'test'." if vocab_from_file==False: assert mode=='train', "To generate vocab from captions file, must be in training mode (mode='train')." # Based on mode (train, val, test), obtain img_folder and annotations_file. if mode == 'train': if vocab_from_file==True: assert os.path.exists(vocab_file), "vocab_file does not exist. Change vocab_from_file to False to create vocab_file." img_folder = os.path.join(cocoapi_loc, 'cocoapi/images/train2014/') annotations_file = os.path.join(cocoapi_loc, 'cocoapi/annotations/captions_train2014.json') if mode == 'test': assert batch_size==1, "Please change batch_size to 1 if testing your model." assert os.path.exists(vocab_file), "Must first generate vocab.pkl from training data." assert vocab_from_file==True, "Change vocab_from_file to True." img_folder = os.path.join(cocoapi_loc, 'cocoapi/images/test2014/') annotations_file = os.path.join(cocoapi_loc, 'cocoapi/annotations/image_info_test2014.json') if mode == 'val': assert os.path.exists(vocab_file), "Must first generate vocab.pkl from training data." assert vocab_from_file==True, "Change vocab_from_file to True." img_folder = os.path.join(cocoapi_loc, 'cocoapi/images/train2014/') annotations_file = os.path.join(cocoapi_loc, 'cocoapi/annotations/captions_val2014.json') # COCO caption dataset. dataset = CoCoDataset(transform=transform, mode=mode, batch_size=batch_size, vocab_threshold=vocab_threshold, vocab_file=vocab_file, start_word=start_word, end_word=end_word, unk_word=unk_word, annotations_file=annotations_file, vocab_from_file=vocab_from_file, img_folder=img_folder) if mode == 'train': # Randomly sample a caption length, and sample indices with that length. indices = dataset.get_train_indices() # Create and assign a batch sampler to retrieve a batch with the sampled indices. initial_sampler = data.sampler.SubsetRandomSampler(indices=indices) # data loader for COCO dataset. data_loader = data.DataLoader(dataset=dataset, num_workers=num_workers, batch_sampler=data.sampler.BatchSampler(sampler=initial_sampler, batch_size=dataset.batch_size, drop_last=False)) else: data_loader = data.DataLoader(dataset=dataset, batch_size=dataset.batch_size, shuffle=True, num_workers=num_workers) return data_loader class CoCoDataset(data.Dataset): def __init__(self, transform, mode, batch_size, vocab_threshold, vocab_file, start_word, end_word, unk_word, annotations_file, vocab_from_file, img_folder): self.transform = transform self.mode = mode self.batch_size = batch_size self.vocab = Vocabulary(vocab_threshold, vocab_file, start_word, end_word, unk_word, annotations_file, vocab_from_file) self.img_folder = img_folder if self.mode == 'train': self.coco = COCO(annotations_file) self.ids = list(self.coco.anns.keys()) print('Obtaining caption lengths...') all_tokens = [nltk.tokenize.word_tokenize(str(self.coco.anns[self.ids[index]]['caption']).lower()) for index in tqdm(np.arange(len(self.ids)))] self.caption_lengths = [len(token) for token in all_tokens] else: test_info = json.loads(open(annotations_file).read()) self.paths = [item['file_name'] for item in test_info['images']] def __getitem__(self, index): # obtain image and caption if in training mode if self.mode == 'train': ann_id = self.ids[index] caption = self.coco.anns[ann_id]['caption'] img_id = self.coco.anns[ann_id]['image_id'] path = self.coco.loadImgs(img_id)[0]['file_name'] # Convert image to tensor and pre-process using transform image = Image.open(os.path.join(self.img_folder, path)).convert('RGB') image = self.transform(image) # Convert caption to tensor of word ids. tokens = nltk.tokenize.word_tokenize(str(caption).lower()) caption = [] caption.append(self.vocab(self.vocab.start_word)) caption.extend([self.vocab(token) for token in tokens]) caption.append(self.vocab(self.vocab.end_word)) caption = torch.Tensor(caption).long() # return pre-processed image and caption tensors return image, caption # obtain image if in test mode else: path = self.paths[index] # Convert image to tensor and pre-process using transform PIL_image = Image.open(os.path.join(self.img_folder, path)).convert('RGB') orig_image = np.array(PIL_image) image = self.transform(PIL_image) # return original image and pre-processed image tensor return orig_image, image def get_train_indices(self): sel_length = np.random.choice(self.caption_lengths) all_indices = np.where([self.caption_lengths[i] == sel_length for i in np.arange(len(self.caption_lengths))])[0] indices = list(np.random.choice(all_indices, size=self.batch_size)) return indices def __len__(self): if self.mode == 'train': return len(self.ids) else: return len(self.paths)
[ "alvaro.azabal95@gmail.com" ]
alvaro.azabal95@gmail.com
a6deb99f06f534c972c5a08262ff9b30c27b248f
980f502d17e27339a3906b0877abac7e03c34538
/flask/bin/python-config
28d131869f2d77b140c84709d5a277e6de27a6b9
[]
no_license
ben-holland-young/learning-flask
25e5f437bcbc835120578e5380ac91947141a18f
0fe4a3b9c43e1615b080cae7eed31b350337b79f
refs/heads/master
2021-01-12T06:37:11.377838
2016-12-29T15:46:09
2016-12-29T15:46:09
77,396,291
0
0
null
null
null
null
UTF-8
Python
false
false
2,360
#!/Users/benholland/Desktop/flask_proj/flask/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
[ "bbne45@icloud.com" ]
bbne45@icloud.com
cd7ca0848790ab8b6fa8f0a2dca430f44d1e1aea
362224f8a23387e8b369b02a6ff8690c200a2bce
/django/django_orm/courses/courses_app/migrations/0004_auto_20210507_1257.py
44b3c5750ec2e09c2a574516f4e4ef23d781992c
[]
no_license
Helenyixuanwang/python_stack
ac94c7c532655bf47592a8453738daac10f220ad
97fbc77e3971b5df1fe3e79652b294facf8d6cee
refs/heads/main
2023-06-11T02:17:27.277551
2021-06-21T17:01:09
2021-06-21T17:01:09
364,336,066
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
# Generated by Django 2.2 on 2021-05-07 19:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('courses_app', '0003_auto_20210507_1107'), ] operations = [ migrations.RemoveField( model_name='description', name='course', ), migrations.AddField( model_name='course', name='description', field=models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='course', to='courses_app.Description'), ), ]
[ "wangyixuan@msn.com" ]
wangyixuan@msn.com
ca35561181fc69e2265ec83fc9065543dcf1bc0c
0e23d367851e002e706c5fff996cbaf921ee78cb
/problem_algorithms/python3/Offer/53-I.py
d9c3b7c33b71653aaff71189bbcf5b82b90515e2
[]
no_license
SpenceGuo/my_leetcode
56d62650e96d26ee665a75dcb81109a2ffd854ba
3d2c61ef245d83a818b05614ff1306a42823110f
refs/heads/main
2023-04-15T15:11:03.766150
2021-04-09T10:33:01
2021-04-09T10:33:01
307,364,023
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
from typing import List class Solution: def search(self, nums: List[int], target: int) -> int: return nums.count(target)
[ "spence@sjtu.edu.cn" ]
spence@sjtu.edu.cn
c9e0dbd320e21b8f48a680fafbcf65f86dc2b503
8541f96e5f48780050a7995ed735c70d4f3c2642
/dedupe/merge.py
1a8143458547b86d4f06c3387b56a2f067410d9b
[ "LicenseRef-scancode-public-domain", "CC0-1.0" ]
permissive
influence-usa/lobbying_federal_domestic
ede64752f81b6a8496a9f6b31b3f2a6c3a5f485e
117a1991e01a203c2c181c1c6163b044c4d5c56f
refs/heads/master
2021-01-02T23:02:57.140303
2016-11-30T22:47:46
2016-11-30T22:47:46
17,500,504
7
2
null
2014-05-08T21:32:29
2014-03-07T02:39:15
Python
UTF-8
Python
false
false
608
py
#!/usr/bin/python # -*- coding: utf-8 -*- import os, pickle, sys import simplejson as json import dedupe.serializer as serializer def merger(): def load(filename): return json.load(open(filename,"r"), cls=serializer.dedupe_decoder) input1 = load(sys.argv[1]) input2 = load(sys.argv[2]) output = open(sys.argv[3],"w") outdict = {"distinct": input1["distinct"]+input2["distinct"], "match": input1["match"]+input2["match"]} json.dump(outdict,output,default=serializer._to_json) if __name__ == "__main__": merger()
[ "zmaril@sunlightfoundation.com" ]
zmaril@sunlightfoundation.com
c26cdbd6de229d90cf71d67bf49f6a27ab68512f
2d0bada349646b801a69c542407279cc7bc25013
/src/vai_optimizer/tensorflow/tf_nndct/utils/__init__.py
3274ff4b5eecc566b7b6ab5c8e5fb76d2336b986
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSD-3-Clause-Open-MPI", "LicenseRef-scancode-free-unknown", "Libtool-exception", "GCC-exception-3.1", "LicenseRef-scancode-mit-old-style", "OFL-1.1", "JSON", "LGPL-2.1-only", "LGPL-2.0-or-later", "ICU", "LicenseRef-scancode-other-permissive", "GPL-2.0-or-later", "GPL-3.0-only", "LicenseRef-scancode-issl-2018", "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-unicode", "LGPL-3.0-only", "LicenseRef-scancode-warranty-disclaimer", "GPL-3.0-or-later", "Zlib", "BSD-Source-Code", "ClArtistic", "LicenseRef-scancode-unknown-license-reference", "ISC", "NCSA", "LicenseRef-scancode-proprietary-license", "GPL-2.0-only", "CC-BY-4.0", "FSFULLR", "Minpack", "Unlicense", "BSL-1.0", "NAIST-2003", "LicenseRef-scancode-protobuf", "LicenseRef-scancode-public-domain", "Libpng", "Spencer-94", "BSD-2-Clause", "Intel", "GPL-1.0-or-later", "MPL-2.0" ]
permissive
Xilinx/Vitis-AI
31e664f7adff0958bb7d149883ab9c231efb3541
f74ddc6ed086ba949b791626638717e21505dba2
refs/heads/master
2023-08-31T02:44:51.029166
2023-07-27T06:50:28
2023-07-27T06:50:28
215,649,623
1,283
683
Apache-2.0
2023-08-17T09:24:55
2019-10-16T21:41:54
Python
UTF-8
Python
false
false
616
py
# Copyright 2019 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nndct_shared.utils import registry
[ "do-not-reply@gitenterprise.xilinx.com" ]
do-not-reply@gitenterprise.xilinx.com
46d653f0ab2161be1b5b3920db66f39cf1230998
5321a9ec4589860d0f3ea803b54ea318c3c1cddf
/workplace/通光检验/Moudle/PreConfiguration.py
d1cba28bb1a6a4e11bbf643de9e585ef159fa458
[]
no_license
Aphranda/PythonCode
7859b40d394dd9568823f120bcdb417fb256f312
3e2dfd2254b4051b9b408d5c661c0083af6e4c94
refs/heads/master
2021-07-13T13:31:29.866007
2021-03-01T16:13:41
2021-03-01T16:13:41
238,137,214
0
0
null
null
null
null
UTF-8
Python
false
false
2,805
py
import configparser from ErrorConfiguration import Logits Logits = Logits() class Configuration(object): def __init__(self): self.config = configparser.ConfigParser() def check_section(self, value): try: result = self.config.has_section(value[1]) return result except Exception as e: print(e) def add_section(self, value): try: self.config.read(f"{value[0]}.ini", encoding="gbk") if self.check_section(value): receive = f"[{value[1]}]已经存在,请更换名称" else: self.config.add_section(f"{value[1]}") for i in value[2]: self.config.set(value[1], i, value[2][i]) receive = f"[{value[1]}]已经添加进入配置" self.write_config(value) return receive except Exception as e: print(e) def delete_section(self, value): try: self.config.read(f"{value[0]}.ini", encoding="gbk") self.config.remove_section(value[1]) receive = f"[{value[1]}]已经删除" self.write_config(value) return receive except Exception as e: print(e) def modify_section(self, value): try: self.config.read(f"{value[0]}.ini", encoding="gbk") if self.check_section(value): for i in value[2]: self.config.set(value[1], i, value[2][i]) receive = f"[{value[1]}]修改完成" else: receive = f"[{value[1]}]不存在,请更换配置名称" self.write_config(value) return receive except Exception as e: print(e) def count_section(self, value): try: receive = {} self.config.read(f"{value}.ini", encoding="gbk") data = self.config.sections() for i in data: options = self.config.items(i) receive[i] = options return receive except Exception as e: print(e) def search_option(self, value, section): try: self.config.read(f"{value}.ini", encoding="gbk") data = self.config.items(section) return data except Exception as e: print(e) def write_config(self, value): try: self.config.write(open(f"{value[0]}.ini", "w")) except Exception as e: print(e) # def main(): # data = ["111", "section", {"item01":"123", "item02":"456"}] # data01 = ["111", "section", {"item01":"1", "item02":"4"}] # con = Configuration() # con.add_section(data) # if __name__ == "__main__": # main()
[ "1044770247@qq.com" ]
1044770247@qq.com
8842513fbd0945b4aed9b8dbd6d3dd035a7e02d5
6a6b56b86967e0ff0ab123b74e19b38af5fd74cc
/Bruteforce/bruteforcetest.py
9b96d8b07669b10de16fc2ba247803882629555a
[]
no_license
Lucas-Jollie/Heuristieken
bcd3a7e3bd011f2051105859d7be0b04d01c6353
561493bd58eec8ea21f79897eb0fa9c788663191
refs/heads/master
2021-01-10T16:56:00.366848
2015-12-16T21:37:13
2015-12-16T21:37:13
45,121,623
0
0
null
null
null
null
UTF-8
Python
false
false
3,671
py
# def sort(ins, i): # if i == 0: return # sort(ins, i-1) # j = i # while j > 0 and ins[j-1] > ins[j]: # ins[j-1], ins[j] = ins[j], ins[j-1] # j -= 1 # return ins # # a = [3,4,5,2,1] # i = 1 # print sort(a,i) # def sort2(ins): # for i in range(1, len(ins)): # j = i # while j > 0 and ins[j-1] > ins[j]: # ins[j-1], ins[j] = ins[j], ins[j-1] # j -= 1 # # print sort2(a) # def combinations(iterable, r) van der sende: # # combinations('ABCD', 2) --> AB AC AD BC BD CD # pool = tuple(iterable) # n = len(pool) # if r > n: # return # indices = range(r) # yield tuple(pool[i] for i in indices) # while True: # for i in reversed(range(r)): # if indices[i] != i + n - r: # break # else: # return # indices[i] += 1 # for j in range(i+1, r): # indices[j] = indices[j-1] + 1 # yield tuple(pool[i] for i in indices) # # print combinations(range(4), 3) import itertools genomes = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] # test = list(itertools.combinations(range(1,26), 25)) # print test == genomes # # bla = list(range(1,10)) # print bla import random # trial = ' ' # while trial != genomes: # trial = str(random.randint(1,25)) # print trial # if trial == genomes: # print('Forced match found:' + trial) # input() # bforce = [] # while bforce != genomes: # while len(bforce) != 25: # gene = random.randint(1,25) # if gene not in bforce: # bforce.append(gene) # print bforce import logging import time # BRUTE FORCE SHORT # genomes = [1,2,3,4,5] # random_list = [] loops = 0 # while random_list != genomes: # random_list = random.sample(xrange(1,6),5) # print random_list # loops += 1 # if random_list == genomes: # print 'SUCCCES, number of loops: ', loops # logger # create logger # logger = logging.getLogger("logging_tryout2") # logger.setLevel(logging.DEBUG) # # # create console handler and set level to debug # ch = logging.StreamHandler() # ch.setLevel(logging.DEBUG) # # # create formatter # formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s") # # # add formatter to ch # ch.setFormatter(formatter) # # # add ch to logger # logger.addHandler(ch) # BRUTE FORCE LONG random_list = [] solved_list = [] # begin = logger.info("Started") # while random_list != genomes: # random_list = random.sample(xrange(1,26),25) # print random_list # loops += 1 # if random_list == genomes: # print 'SUCCCES, number of loops: ', loops # break # # "application" code # print 'FINISHED: ' , logger.info('done') # Brute force test 2 # random_list = random.sample(xrange(1,26),25) # for i in genomes: # while genomes[i] != random_list[i]: # if i == len(random_list): # i = 0 # temp = random_list[i] # random_list[i] = random_list[i+1] # random_list[i+1] = temp # i += 1 # print i # Extreem brute force test ----------------------------------------------------- # maakt een random list en shuffelt deze totdat hij klopt from random import shuffle random_list = random.sample(xrange(1,6),5) start_time = time.time() while random_list != genomes: if random_list != solved_list: shuffle(random_list) solved_list.append(random_list) print random_list if random_list == genomes: elapsed_time = time.time() - start_time print elapsed_time, ' seconds' # breadth first breadth_list = []
[ "lucas_jollie@outlook.com" ]
lucas_jollie@outlook.com
286164908e84c5092d847553da2a904fea968b9a
905068636fd1e771f4cd2f4b3b57b7e1fac2686b
/python_code
2290fdd41c713e8767e8255de77bdfea8cf4e9bb
[]
no_license
KinloongTiao/deribitconnection
0595ba6dcd95880471729234423b11da858692bd
f402ee56105d1a3d087556ed7b4abfbc20cec58f
refs/heads/master
2020-03-26T13:03:36.172971
2018-08-16T01:30:52
2018-08-16T01:30:52
144,920,963
0
0
null
null
null
null
UTF-8
Python
false
false
4,232
#!/usr/bin/python # -*- coding:utf8 -*- import psycopg2 as psy from deribit_api import RestClient import time import ssl from threading import Timer from datetime import datetime class Deribit: context = ssl._create_unverified_context() # 用户名:3RkEWsw1wFTkG,密码:ES2AVXHWB5QOOWBWMHYXHSJDUBOQAZSB) # 连接deribit数据库 # 测试数据库:172.19.2.151 # 香港数据库:47.75.174.88 deribit = RestClient('3RkEWsw1wFTkG', 'ES2AVXHWB5QOOWBWMHYXHSJDUBOQAZSB', 'https://www.deribit.com') def insert_orderbook(self, tim): # 创建数据库deribit实例 try: conn = psy.connect(database="pdt", user="user1", password="pass1", host="172.31.93.18", port="5432") print('Opened database successfully') except: print('连接数据库出错') print('正在尝试重新连接') self.insert_orderbook(300) # 创建cursor对象,用来在数据库里执行PostgreSQL命令。 try: cur = conn.cursor() except: print('创建cursor对象出错') print('正在重新尝试连接') self.insert_orderbook(300) # 调用changeorderbook函数,调整orderbook的格式 # 获取instrument instrument = self.deribit.getinstruments() # 获取所有instrument的名称 instrument_namelist = [] for i in range(len(instrument)): instrument_namelist.append(instrument[i].get('instrumentName')) # 获取定单薄 try: for n in instrument_namelist: orderbook, updatedtime = self.change_orderbook(self.deribit.getorderbook(n)) summary = self.deribit.getsummary(self.deribit.getorderbook(n)['instrument']) # timestamp = ''.join(list(filter(lambda ch: ch in '0123456789', updatedtime))) # 写入数据库 cur.execute("""INSERT INTO deribit (contract_type, data_type, exchange, order_meta_data, symbol, updated_time, summary_meta_data) VALUES(%s, %s, %s, %s, %s, %s, %s);""", (orderbook['contract_type'], orderbook['data_type'], orderbook['exchange'], str(orderbook), orderbook['symbol'], updatedtime, str(summary))) conn.commit() del summary del orderbook del updatedtime del instrument del instrument_namelist del cur except: print('写入数据出错。') self.insert_orderbook(300) else: conn.close() timenow = time.ctime(time.time()) print("loop at", timenow) global t t = Timer(tim, self.insert_orderbook, (tim,)) t.start() def change_orderbook(self, orderbook): # 获取contract type if len(orderbook['instrument'].split('-')) == 2: contract = 'future' else: contract = 'option' # 获取symbol symbol = orderbook['instrument'] # 时间戳转时间 timeStamp = orderbook['tstamp'] updatedTime = datetime.fromtimestamp(timeStamp / 1000.0).strftime('%Y-%m-%d %H:%M:%S.%f') timestamp = ''.join(list(filter(lambda ch: ch in '0123456789', updatedTime))) # 获取ask数据 ask = [] for n in orderbook['asks']: ask1 = [n['price'], n['quantity']] ask.append(ask1) # 获取bid数据 bid = [] for n in orderbook['bids']: bid1 = [n['price'], n['quantity']] bid.append(bid1) # 构成meta_data数据 meta_data = orderbook # 构成orderbook返回值 orderbook = {"contract_type": contract, "data_type": "contract", "exchange": "deribit", "updated_time": timestamp, "symbol": symbol, "meta_data": meta_data} return orderbook, updatedTime def close_database_connection(self): self.conn.close() print('Closed database successfully') if __name__ == '__main__': D = Deribit() D.insert_orderbook(300)
[ "noreply@github.com" ]
KinloongTiao.noreply@github.com
e823daeff120484c8d0edc305d5b065826e3dc10
5f2178281d7bab664df29177307bbac1f00106b7
/settings/adx_config.py
5ab7911467d1f11758e1e4391902da09f180d3e1
[]
no_license
pablin87/rtb_exchange_sim
f5da98edd35f88b5e36d125cbd27c5c5ba76281a
c579e4a7e257cda496724720da0821c2dd01d3bd
refs/heads/master
2020-05-26T00:35:55.361745
2017-01-31T18:08:57
2017-01-31T18:08:57
18,372,564
2
2
null
null
null
null
UTF-8
Python
false
false
1,903
py
conf = { # Definde what resource of the exchange connector endpoint is hitted # in order to place a bid request. 'http_resource' : 'adx', # Keys for price encryption in string hex 'encryption_key' : "b08c70cfbcb0eb6cab7e82c6b75da52072ae62b2bf4b990bb80a48d8141eec07", 'integrity_key' : "bf77ec55c30130c1d8cd1862ed2a4cd2c76ac33bc0c4ce8a3d3bbd3ad5687792", 'initialization_vector' : "4a3a6f470001e2407b8c4a605b9200f2", # BE CAREFUL when using this parameter set to true. When it is set to # true, the requester will ignore the event template parameters below # and the EVENT_ENDPOINT from the general settings. # It will use directly the impression url that came in the html_snipet # from the adx bid response. 'use_html_snippet' : True, # Define the url where the notifications of impressions and clicks will # be send. By this, the adm field is not have in count. The ip and # port set it here are replaced by global parameters of the endpoint # settings. 'adserver_endpt_imp_tmpl' : "http://localhost:8080/events?ev=imp&aid=%%AUCTION_ID%%&apr=%%WINNING_PRICE%%&sptid=%%AUCTION_IMP_ID%%", 'adserver_endpt_click_tmpl' : "http://localhost:8080/events?ev=cli&aid=%%AUCTION_ID%%&sptid=%%AUCTION_IMP_ID%%", # If set to true, instead of using the 'adserver_endpt_imp_tmpl' and # 'adserver_endpt_click_tmpl', it will use the following heh templates # in order to hit heh instead of the ad server connector directly. 'use_heh_endpoint' : False, 'heh_endpt_imp_tmpl' : "http://localhost:8080/impression/adx/%%AUCTION_ID%%/%%WINNING_PRICE%%?impid=%%AUCTION_IMP_ID%%", 'heh_endpt_click_tmpl' : "http://localhost:8080/click/adx/%%AUCTION_ID%%?impid=%%AUCTION_IMP_ID%%" }
[ "pabloberrilio@gmail.com" ]
pabloberrilio@gmail.com
da6cdfe9ab180d0e96dc02d884b46c6a2f8a3e88
6e8f2e28479566dbaa338300b2d61f784ff83f97
/.history/code/preprocess_20210421153926.py
328dd81758da2a656921e2d8033defa2f29c1d4b
[]
no_license
eeng5/CV-final-project
55a7d736f75602858233ebc380c4e1d67ab2b866
580e28819560b86f6974959efb1d31ef138198fc
refs/heads/main
2023-04-09T21:28:21.531293
2021-04-21T19:57:22
2021-04-21T19:57:22
352,703,734
0
0
null
null
null
null
UTF-8
Python
false
false
7,518
py
import os import random import numpy as np from PIL import Image import tensorflow as tf import hyperparameters as hp class Datasets(): """ Class for containing the training and test sets as well as other useful data-related information. Contains the functions for preprocessing. """ def __init__(self, data_path, task, aug, generate): self.data_path = data_path self.emotions = ['angry', 'happy', 'disgust', 'sad', 'neutral', 'surprise', 'fear'] self.emotion_dict = self.createEmotionDict() self.task = task self.aug = aug if generate == 1: if self.aug == '1': self.createSimpleData() else: self.createComplexData() # Dictionaries for (label index) <--> (class name) self.idx_to_class = {} self.class_to_idx = {} # For storing list of classes self.classes = [""] * hp.num_classes # Setup data generators self.train_data = self.get_data( os.path.join(self.data_path, "train/"), False) self.test_data = self.get_data( os.path.join(self.data_path, "test/"), False) def cleanTestDirs(self,): for e in self.emotions: pathy = self.data_path+'test/'+e pics = 1 for f in Path(pathy).glob('*.jpg'): try: #f.unlink() os.remove(f) except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanTrainDirs(self,): for e in self.emotions: pathy = self.data_path+'train/'+e for f in Path(pathy).glob('*.jpg'): try: #f.unlink() os.remove(f) except OSError as e: print("Error: %s : %s" % (f, e.strerror)) def cleanAll(self,): self.cleanTestDirs() self.cleanTrainDirs() def createPixelArray(self, arr): arr = list(map(int, arr.split())) array = np.array(arr, dtype=np.uint8) array = array.reshape((48, 48)) return array def equalize_hist(self, img): img = cv2.equalizeHist(img) return img def showImages(self, imgs): _, axs = plt.subplots(1, len(imgs), figsize=(20, 20)) axs = axs.flatten() for img, ax in zip(imgs, axs): ax.imshow(img,cmap=plt.get_cmap('gray')) plt.show() def augmentIMG(self, img, task): imgs = [img] img1 = self.equalize_hist(img) imgs.append(img1) img2 = cv2.bilateralFilter(img1, d=9, sigmaColor=75, sigmaSpace=75) imgs.append(img2) if task == 3: kernel = np.array([[-1.0, -1.0, -1.0], [-1.0, 9, -1.0], [-1.0, -1.0, -1.0]]) img3 = cv2.filter2D(img2,-1,kernel) imgs.append(img3) img4 = self.equalize_hist(img3) imgs.append(img4) img5 = cv2.bilateralFilter(img4, d=9, sigmaColor=100, sigmaSpace=100) imgs.append(img5) img6 = cv2.flip(img, 1) # flip horizontally imgs.append(img6) return imgs def saveIMG(self, arr, num, folderLoc): im = Image.fromarray(arr) filename = folderLoc + "image_"+ num+".jpg" im.save(filename) def createTrain(self, task): path1 = self.data_path+"train.csv" df = pd.read_csv(path1) # CHANGE ME base_filename = data_path+"train/" # CHANGE ME for index, row in df.iterrows(): px = row['pixels'] emot = int(row['emotion']) emot_loc = self.emotion_dict[emot] filename = base_filename + emot_loc img = self.createPixelArray(px) img_arr = self.augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 self.saveIMG(i, num, filename) def createTest(self, task): path1 = data_path +"icml_face_data.csv" df = pd.read_csv(path1) # CHANGE ME base_filename = data_path + "test/" # CHANGE ME for index, row in df.iterrows(): if (row[' Usage'] == "PublicTest"): px = row[' pixels'] emot = int(row['emotion']) emot_loc = self.emotion_dict[emot] filename = base_filename + emot_loc img = self.createPixelArray(px) img_arr = self.augmentIMG(img, task) idx = 0 for i in img_arr: num = str(index) + "_" + str(idx) idx +=1 saveIMG(i, num, filename) def createEmotionDict(self,): emotionDict = {} emotionDict[0]="angry/" emotionDict[1]="disgust/" emotionDict[2]="fear/" emotionDict[3]="happy/" emotionDict[4]="sad/" emotionDict[5]="surprise/" emotionDict[6] = "neutral/" return emotionDict def createSimpleData(self,): self.cleanAll() print("Cleaning done") self.createTrain(1) print("Training Data Generation done") self.createTest(1) print("Testing Data Generation done") def createComplexData(self,): self.cleanAll() self.createTrain(3) self.createTest(3) def preprocess_fn(self, img): """ Preprocess function for ImageDataGenerator. """ img = img / 255. return img def get_data(self, path, shuffle): """ Returns an image data generator which can be iterated through for images and corresponding class labels. Arguments: path - Filepath of the data being imported, such as "../data/train" or "../data/test" shuffle - Boolean value indicating whether the data should be randomly shuffled. Returns: An iterable image-batch generator """ data_gen = tf.keras.preprocessing.image.ImageDataGenerator(preprocessing_function=self.preprocess_fn) # VGG must take images of size 224x224 img_size = hp.img_size classes_for_flow = None # Make sure all data generators are aligned in label indices if bool(self.idx_to_class): classes_for_flow = self.classes # Form image data generator from directory structure data_gen = data_gen.flow_from_directory( path, target_size=(img_size, img_size), class_mode='sparse', batch_size=hp.batch_size, shuffle=shuffle, classes=classes_for_flow) # Setup the dictionaries if not already done if not bool(self.idx_to_class): unordered_classes = [] for dir_name in os.listdir(path): if os.path.isdir(os.path.join(path, dir_name)): unordered_classes.append(dir_name) for img_class in unordered_classes: self.idx_to_class[data_gen.class_indices[img_class]] = img_class self.class_to_idx[img_class] = int(data_gen.class_indices[img_class]) self.classes[int(data_gen.class_indices[img_class])] = img_class return data_gen
[ "natalie_rshaidat@brown.edu" ]
natalie_rshaidat@brown.edu
729109b79364e3f3d02773c0155d279de1716fcf
185d401e9e6ab7e2bb59ed022ede1b25ead7c8bc
/gen_data.py
2dfd7d978660eacfeacf488fea5143d690209a3e
[]
no_license
ShanghaitechGeekPie/StartHack
6cd857b6f0b82a3295c8817704dfea9708a10135
9a166128ca3d80a9952c8fd3f1464625a83222d2
refs/heads/master
2023-03-24T06:06:30.156563
2021-03-21T07:42:30
2021-03-21T07:42:30
349,931,155
2
0
null
null
null
null
UTF-8
Python
false
false
1,005
py
import h5py import pandas as pd import numpy as np import os import glob def readH5(filename, save_dir_name): f = h5py.File(filename, 'r') def visitandsave(name): ele = f[name] if isinstance(ele, h5py.Dataset): data = pd.DataFrame(np.array(ele)) data.to_pickle(os.path.join(save_dir_name, name.replace('/', '_'))) print(data.keys()) f.visit(visitandsave) readH5('data/overhang/bae8f52c-407e-5f89-a8e3-61fcca51ee0a.h5','data/overhang_exported') readH5('data/overhang/bae8f52c-407e-5f89-a8e3-61fcca51ee0a_raw.h5','data/overhang_exported') readH5('data/traverse/e897d166-1618-5bd3-ba3a-cb7577c64647.h5','data/traverse_exported') readH5('data/traverse/e897d166-1618-5bd3-ba3a-cb7577c64647_raw.h5','data/traverse_exported') # filelist = ['data/overhang', 'data/traverse'] # for ff in filelist: # for q in glob.glob(os.path.join(ff, '*.h5')): # print(q) # os.mkdir(ff + "_exported") # readH5(q, ff + "_exported")
[ "leomundspedoske@gmail.com" ]
leomundspedoske@gmail.com
5d0f4cb826491c6d60bd55e2f82ff687aad64d45
9acbf0279c38d11e89f16831e9c43b49badabb00
/IPTVPlayer/tsiplayer/addons/resources/sites/hds_stream.py
9875340d9a861185488cd59312f8b1383ca23e95
[]
no_license
dgbkn/e2iPlayer
4f101b87bc5f67bf14690d012a62cbe8755ab82c
e5f413ea032eb9012569d9d149a368a3e73d9579
refs/heads/master
2023-05-15T05:01:18.204256
2021-06-06T18:03:42
2021-06-06T18:03:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,881
py
# -*- coding: utf-8 -*- # vStream https://github.com/Kodi-vStream/venom-xbmc-addons import re from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.gui.hoster import cHosterGui from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.gui.gui import cGui from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.inputParameterHandler import cInputParameterHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.outputParameterHandler import cOutputParameterHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.handler.requestHandler import cRequestHandler from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.parser import cParser from Plugins.Extensions.IPTVPlayer.tsiplayer.addons.resources.lib.comaddon import progress # from resources.lib.util import cUtil # outils pouvant etre utiles SITE_IDENTIFIER = 'hds_stream' SITE_NAME = 'Hds-stream' SITE_DESC = 'Film streaming HD complet en vf. Des films et séries pour les fan de streaming hds.' URL_MAIN = 'https://hds.club/' MOVIE_MOVIES = (True, 'showMenuMovies') MOVIE_NEWS = (URL_MAIN + 'films/', 'showMovies') MOVIE_GENRES = (URL_MAIN, 'showGenres') MOVIE_EXCLUS = (URL_MAIN + 'tendance/', 'showMovies') # MOVIE_ANNEES = (True, 'showMovieYears') SERIE_SERIES = (True, 'showMenuTvShows') SERIE_NEWS = (URL_MAIN + 'series/', 'showMovies') URL_SEARCH = (URL_MAIN + '?s=', 'showMovies') URL_SEARCH_MOVIES = (URL_SEARCH[0], 'showMovies') URL_SEARCH_SERIES = (URL_SEARCH[0], 'showMovies') FUNCTION_SEARCH = 'showMovies' def load(): oGui = cGui() oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', URL_SEARCH[0]) oGui.addDir(SITE_IDENTIFIER, 'showSearch', 'Recherche', 'search.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_EXCLUS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_EXCLUS[1], 'Films (Populaire)', 'news.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_NEWS[1], 'Films (Derniers ajouts)', 'news.png', oOutputParameterHandler) # oOutputParameterHandler.addParameter('siteUrl', MOVIE_ANNEES[0]) # oGui.addDir(SITE_IDENTIFIER, MOVIE_ANNEES[1], 'Films (Par années)', 'annees.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_GENRES[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_GENRES[1], 'Films (Genres)', 'genres.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', SERIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, SERIE_NEWS[1], 'Séries (Derniers ajouts)', 'news.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMenuMovies(): oGui = cGui() oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', URL_SEARCH_MOVIES[0]) oGui.addDir(SITE_IDENTIFIER, URL_SEARCH_MOVIES[1], 'Recherche Films', 'search.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_EXCLUS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_EXCLUS[1], 'Films (Populaire)', 'news.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_NEWS[1], 'Films (Derniers ajouts)', 'news.png', oOutputParameterHandler) # oOutputParameterHandler.addParameter('siteUrl', MOVIE_ANNEES[0]) # oGui.addDir(SITE_IDENTIFIER, MOVIE_ANNEES[1], 'Films (Par années)', 'annees.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', MOVIE_GENRES[0]) oGui.addDir(SITE_IDENTIFIER, MOVIE_GENRES[1], 'Films (Genres)', 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMenuTvShows(): oGui = cGui() oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', URL_SEARCH_SERIES[0]) oGui.addDir(SITE_IDENTIFIER, URL_SEARCH_SERIES[1], 'Recherche Séries ', 'search.png', oOutputParameterHandler) oOutputParameterHandler.addParameter('siteUrl', SERIE_NEWS[0]) oGui.addDir(SITE_IDENTIFIER, SERIE_NEWS[1], 'Séries (Derniers ajouts)', 'news.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showSearch(): oGui = cGui() sSearchText = oGui.showKeyBoard() if (sSearchText != False): sUrl = URL_SEARCH[0] + sSearchText.replace(' ', '+') showMovies(sUrl) oGui.setEndOfDirectory() return def showGenres(): oGui = cGui() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') oParser = cParser() oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() sPattern = 'menu-item-object-genres.+?<a href="([^"]+)".*?>(.+?)<' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): genres = set(aResult[1]) genres = sorted(genres, key=lambda genre: genre[1]) oOutputParameterHandler = cOutputParameterHandler() for aEntry in genres: sUrl = aEntry[0] sTitle = aEntry[1] oOutputParameterHandler.addParameter('siteUrl', sUrl) oGui.addDir(SITE_IDENTIFIER, 'showMovies', sTitle, 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMovieYears(): oGui = cGui() oParser = cParser() oRequestHandler = cRequestHandler(URL_MAIN) sHtmlContent = oRequestHandler.request() sHtmlContent = oParser.abParse(sHtmlContent, '<h2>Films Par Années</h2>', '<h2>Films Par Genres</h2>') sPattern = '<li><a href="([^"]+)">([^<]+)<' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: sUrl = aEntry[0] sYear = aEntry[1] oOutputParameterHandler.addParameter('siteUrl', sUrl) oGui.addDir(SITE_IDENTIFIER, 'showMovies', sYear, 'genres.png', oOutputParameterHandler) oGui.setEndOfDirectory() def showMovies(sSearch=''): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') if sSearch: sUrl = sSearch sPattern = 'class="result-item">.*?href="([^"]+)"><img src="([^"]+).*?class="title"><a.*?>([^<]+).*?class="year">([^<]+).*?class="contenido"><p>([^<]+)</p>' elif 'tendance/' in sUrl: sPattern = 'id="post-[0-9].+?<img src="([^"]+)".+?class="data".+?href="([^"]+)">([^<]+).*?, ([^<]+)</span>' else: sPattern = 'id="post-[0-9].+?<img src="([^"]+)".+?class="data".+?href="([^"]+)">([^<]+).*?, ([^<]+)</span>.*?<div class="texto">([^<]*)</div>' oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == False): oGui.addText(SITE_IDENTIFIER) if (aResult[0] == True): total = len(aResult[1]) progress_ = progress().VScreate(SITE_NAME) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: progress_.VSupdate(progress_, total) if progress_.iscanceled(): break if sSearch: sUrl2 = aEntry[0] sThumb = aEntry[1] sTitle = aEntry[2] sYear = aEntry[3] sDesc = aEntry[4] else: sThumb = aEntry[0] if sThumb.startswith('//'): sThumb = 'https:' + sThumb sUrl2 = aEntry[1] sTitle = aEntry[2] sYear = aEntry[3] if 'tendance/' in sUrl: sDesc = '' else: sDesc = aEntry[4] sDisplayTitle = ('%s (%s)') % (sTitle, sYear) oOutputParameterHandler.addParameter('siteUrl', sUrl2) oOutputParameterHandler.addParameter('sMovieTitle', sTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('sDesc', sDesc) oOutputParameterHandler.addParameter('sYear', sYear) if '/series' in sUrl2: oGui.addTV(SITE_IDENTIFIER, 'showSxE', sTitle, '', sThumb, sDesc, oOutputParameterHandler) else: oGui.addMovie(SITE_IDENTIFIER, 'showHosters', sDisplayTitle, '', sThumb, sDesc, oOutputParameterHandler) progress_.VSclose(progress_) if not sSearch: sNextPage, sPaging = __checkForNextPage(sHtmlContent) if (sNextPage != False): oOutputParameterHandler = cOutputParameterHandler() oOutputParameterHandler.addParameter('siteUrl', sNextPage) oGui.addNext(SITE_IDENTIFIER, 'showMovies', 'Page ' + sPaging, oOutputParameterHandler) oGui.setEndOfDirectory() def __checkForNextPage(sHtmlContent): oParser = cParser() sPattern = '>Page \d+ de (\d+)</span>.*?<span class="current.+?href=["\']([^"\']+/page/\d+)/["\'] class="inactive' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): sNumberMax = aResult[1][0][0] sNextPage = aResult[1][0][1] sNumberNext = re.search('page/([0-9]+)', sNextPage).group(1) sPaging = sNumberNext + '/' + sNumberMax return sNextPage, sPaging return False, 'none' def showSxE(): oGui = cGui() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sThumb = oInputParameterHandler.getValue('sThumb') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sDesc = oInputParameterHandler.getValue('sDesc') oRequestHandler = cRequestHandler(sUrl) sHtmlContent = oRequestHandler.request() sPattern = '<span class=\'title\'>([^<]+)|class=\'numerando\'>\d - ([^<]+).+?class=\'episodiotitle\'><a href=\'([^\']+)\'>([^<]+)' oParser = cParser() aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: if aEntry[0]: oGui.addText(SITE_IDENTIFIER, '[COLOR crimson]' + aEntry[0] + '[/COLOR]') else: sUrl = aEntry[2] EpTitle = aEntry[3] Ep = aEntry[1] sTitle = sMovieTitle + ' Episode' + Ep + EpTitle oOutputParameterHandler.addParameter('siteUrl', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('sDesc', sDesc) oGui.addEpisode(SITE_IDENTIFIER, 'showSeriesHosters', sTitle, '', sThumb, sDesc, oOutputParameterHandler) oGui.setEndOfDirectory() def showHosters(): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sThumb = oInputParameterHandler.getValue('sThumb') sDesc = oInputParameterHandler.getValue('sDesc') oRequest = cRequestHandler(sUrl) sHtmlContent = oRequest.request() sPattern = "class='dooplay_player_option' data-type='([^']+)' data-post='([^']+)' data-nume='([^']+)'" aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): url_main = GET_REAL_URLMAIN(sUrl) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: sUrl2 = url_main + 'wp-admin/admin-ajax.php' dType = aEntry[0] dPost = aEntry[1] dNum = aEntry[2] pdata = 'action=doo_player_ajax&post=' + dPost + '&nume=' + dNum + '&type=' + dType sHost = 'Serveur ' + dNum sTitle = ('%s [COLOR coral]%s[/COLOR]') % (sMovieTitle, sHost) oOutputParameterHandler.addParameter('siteUrl', sUrl2) oOutputParameterHandler.addParameter('referer', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sMovieTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('pdata', pdata) oGui.addLink(SITE_IDENTIFIER, 'showLink', sTitle, sThumb, sDesc, oOutputParameterHandler) oGui.setEndOfDirectory() def showSeriesHosters(): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sThumb = oInputParameterHandler.getValue('sThumb') sDesc = oInputParameterHandler.getValue('sDesc') oRequest = cRequestHandler(sUrl) sHtmlContent = oRequest.request() sPattern = "id='player-option-.+?data-type='([^']+)'.+?data-post='([^']+)'.+?data-nume='([^']+)'.+?'server'>([^.|^<]+)" aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): url_main = GET_REAL_URLMAIN(sUrl) oOutputParameterHandler = cOutputParameterHandler() for aEntry in aResult[1]: sUrl2 = url_main + 'wp-admin/admin-ajax.php' dType = aEntry[0] dPost = aEntry[1] dNum = aEntry[2] pdata = 'action=doo_player_ajax&post=' + dPost + '&nume=' + dNum + '&type=' + dType if (aEntry[3]).startswith('Unknown'): sHost = 'Serveur ' + dNum else: sHost = aEntry[3].capitalize() sTitle = ('%s [COLOR coral]%s[/COLOR]') % (sMovieTitle, sHost) oOutputParameterHandler.addParameter('siteUrl', sUrl2) oOutputParameterHandler.addParameter('referer', sUrl) oOutputParameterHandler.addParameter('sMovieTitle', sMovieTitle) oOutputParameterHandler.addParameter('sThumb', sThumb) oOutputParameterHandler.addParameter('pdata', pdata) oGui.addLink(SITE_IDENTIFIER, 'showLink', sTitle, sThumb, sDesc, oOutputParameterHandler) oGui.setEndOfDirectory() def showLink(): oGui = cGui() oParser = cParser() oInputParameterHandler = cInputParameterHandler() sUrl = oInputParameterHandler.getValue('siteUrl') sMovieTitle = oInputParameterHandler.getValue('sMovieTitle') sThumb = oInputParameterHandler.getValue('sThumb') referer = oInputParameterHandler.getValue('referer') pdata = oInputParameterHandler.getValue('pdata') oRequest = cRequestHandler(sUrl) oRequest.setRequestType(1) oRequest.addHeaderEntry('User-Agent', 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:70.0) Gecko/20100101 Firefox/70.0') oRequest.addHeaderEntry('Referer', referer) oRequest.addHeaderEntry('Accept', '*/*') oRequest.addHeaderEntry('Accept-Language', 'fr-FR,fr;q=0.9,en-US;q=0.8,en;q=0.7') oRequest.addHeaderEntry('Content-Type', 'application/x-www-form-urlencoded') oRequest.addParametersLine(pdata) sHtmlContent = oRequest.request().replace('\\', '') sPattern = '(http[^"]+)' aResult = oParser.parse(sHtmlContent, sPattern) if (aResult[0] == True): for aEntry in aResult[1]: sHosterUrl = aEntry oHoster = cHosterGui().checkHoster(sHosterUrl) if (oHoster != False): oHoster.setDisplayName(sMovieTitle) oHoster.setFileName(sMovieTitle) cHosterGui().showHoster(oGui, oHoster, sHosterUrl, sThumb) oGui.setEndOfDirectory() def GET_REAL_URLMAIN(url): sd = url.split('.') sdm = URL_MAIN.split('.') return URL_MAIN.replace(sdm[0], sd[0])
[ "echosmart76@gmail.com" ]
echosmart76@gmail.com
1771d6d530278607822e15854013169af3b2e70d
f5183c0cd7fe2ef16edccb32e3d1aafe06c77c9c
/tests/08.py
c1f47c281c5a70b73605736c28b1e3ec7e89d7a7
[]
no_license
sayan-rc/ants-vs-somebees
0b6452d21dd68301865efb54f368a52e9b8ff113
3948a834bff25879eb4904fe8ddc33e39855a16e
refs/heads/master
2022-10-26T07:21:15.297425
2020-06-12T21:45:50
2020-06-12T21:45:50
111,988,966
0
0
null
null
null
null
UTF-8
Python
false
false
5,596
py
test = { 'name': 'Problem 8', 'points': 1, 'suites': [ { 'cases': [ { 'code': r""" >>> # Testing TankAnt parameters >>> TankAnt.food_cost 6 >>> TankAnt.damage 1 >>> TankAnt.container True >>> tank = TankAnt() >>> tank.armor 2 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> # Testing TankAnt action >>> tank = TankAnt() >>> place = colony.places['tunnel_0_1'] >>> place.add_insect(tank) >>> for _ in range(3): ... place.add_insect(Bee(3)) >>> tank.action(colony) >>> [bee.armor for bee in place.bees] [2, 2, 2] """, 'hidden': False, 'locked': False }, { 'code': r""" >>> # Testing TankAnt container methods >>> tank = TankAnt() >>> thrower = ThrowerAnt() >>> place = colony.places['tunnel_0_1'] >>> place.add_insect(thrower) >>> place.add_insect(tank) >>> place.ant is tank True >>> bee = Bee(3) >>> place.add_insect(bee) >>> tank.action(colony) # Both ants attack bee >>> bee.armor 1 """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> from ants import * >>> hive, layout = Hive(make_test_assault_plan()), dry_layout >>> dimensions = (1, 9) >>> colony = AntColony(None, hive, ant_types(), layout, dimensions) """, 'teardown': '', 'type': 'doctest' }, { 'cases': [ { 'code': r""" >>> # Testing TankAnt action >>> tank = TankAnt() >>> place = colony.places['tunnel_0_1'] >>> place.add_insect(tank) >>> for _ in range(3): ... place.add_insect(Bee(1)) >>> tank.action(colony) >>> len(place.bees) 0 """, 'hidden': False, 'locked': False }, { 'code': r""" >>> # Placement of ants >>> tank0 = TankAnt() >>> tank1 = TankAnt() >>> harvester0 = HarvesterAnt() >>> harvester1 = HarvesterAnt() >>> place0 = colony.places['tunnel_0_0'] >>> place1 = colony.places['tunnel_0_1'] >>> # Add tank before harvester >>> place0.add_insect(tank0) >>> place0.add_insect(harvester0) >>> colony.food = 0 >>> tank0.action(colony) >>> colony.food 1 >>> for ant in [TankAnt(), HarvesterAnt()]: ... try: ... place0.add_insect(ant) ... except AssertionError: ... assert place0.ant is tank0,\ ... 'Tank was kicked out by {0}'.format(ant) ... assert tank0.ant is harvester0,\ ... 'Contained ant was kicked out by {0}'.format(ant) ... continue ... assert False, 'No AssertionError raised when adding {0}'.format(ant) >>> # Add harvester before tank >>> place1.add_insect(harvester1) >>> place1.add_insect(tank1) >>> tank1.action(colony) >>> colony.food 2 >>> for ant in [TankAnt(), HarvesterAnt()]: ... try: ... place1.add_insect(ant) ... except AssertionError: ... assert place1.ant is tank1,\ ... 'Tank was kicked out by {0}'.format(ant) ... assert tank1.ant is harvester1,\ ... 'Contained ant was kicked out by {0}'.format(ant) ... continue ... assert False, 'No AssertionError raised when adding {0}'.format(ant) >>> tank0.reduce_armor(tank0.armor) >>> place0.ant is harvester0 True """, 'hidden': False, 'locked': False }, { 'code': r""" >>> # Removing ants >>> tank = TankAnt() >>> test_ant = Ant() >>> place = Place('Test') >>> place.add_insect(tank) >>> place.add_insect(test_ant) >>> place.remove_insect(test_ant) >>> tank.ant is None True >>> test_ant.place is None True >>> place.remove_insect(tank) >>> place.ant is None True >>> tank.place is None True """, 'hidden': False, 'locked': False }, { 'code': r""" >>> tank = TankAnt() >>> place = Place('Test') >>> place.add_insect(tank) >>> tank.action(colony) # Action without contained ant should not error """, 'hidden': False, 'locked': False } ], 'scored': True, 'setup': r""" >>> from ants import * >>> hive, layout = Hive(make_test_assault_plan()), dry_layout >>> dimensions = (1, 9) >>> colony = AntColony(None, hive, ant_types(), layout, dimensions) """, 'teardown': '', 'type': 'doctest' } ] }
[ "sayanrayc@gmail.com" ]
sayanrayc@gmail.com
e21691cac022d724653dc85d124ac0682dbbfdfa
ce85013a3041cd90dc820aa3a577acd07c9178f1
/opgo/data/parallel_processor.py
aff1aff37700acf2651175227e56ae3a50b1ee45
[]
no_license
pranav1416/opc_go_engine
c9cfa009571e1297f2b7dd9863efbfc086b727f6
34fc9946831144be90910edbeaddfe9352ea131c
refs/heads/master
2020-08-14T11:40:24.870873
2019-10-21T03:00:09
2019-10-21T03:00:09
215,161,532
1
0
null
null
null
null
UTF-8
Python
false
false
8,435
py
from __future__ import print_function from __future__ import absolute_import import os import glob import os.path import tarfile import gzip import shutil import numpy as np import multiprocessing from os import sys from keras.utils import to_categorical from opgo.gosgf import Sgf_game from opgo.goboard_fast import Board, GameState, Move from opgo.gotypes import Player, Point from opgo.data.index_processor import KGSIndex from opgo.data.sampling import Sampler from opgo.data.generator import DataGenerator from opgo.encoders.base import get_encoder_by_name def worker(jobinfo): try: clazz, encoder, zip_file, data_file_name, game_list = jobinfo clazz(encoder=encoder).process_zip(zip_file, data_file_name, game_list) except (KeyboardInterrupt, SystemExit): raise Exception('>>> Exiting child process.') class GoDataProcessor: def __init__(self, encoder='simple', data_directory='data'): self.encoder_string = encoder self.encoder = get_encoder_by_name(encoder, 19) self.data_dir = data_directory # tag::load_generator[] def load_go_data(self, data_type='train', num_samples=1000, use_generator=False): index = KGSIndex(data_directory=self.data_dir) index.download_files() sampler = Sampler(data_dir=self.data_dir) data = sampler.draw_data(data_type, num_samples) self.map_to_workers(data_type, data) # <1> if use_generator: generator = DataGenerator(self.data_dir, data) return generator # <2> else: features_and_labels = self.consolidate_games(data_type, data) return features_and_labels # <3> # <1> Map workload to CPUs # <2> Either return a Go data generator... # <3> ... or return consolidated data as before. # end::load_generator[] def unzip_data(self, zip_file_name): this_gz = gzip.open(self.data_dir + '/' + zip_file_name) tar_file = zip_file_name[0:-3] this_tar = open(self.data_dir + '/' + tar_file, 'wb') shutil.copyfileobj(this_gz, this_tar) this_tar.close() return tar_file def process_zip(self, zip_file_name, data_file_name, game_list): tar_file = self.unzip_data(zip_file_name) zip_file = tarfile.open(self.data_dir + '/' + tar_file) name_list = zip_file.getnames() total_examples = self.num_total_examples(zip_file, game_list, name_list) shape = self.encoder.shape() feature_shape = np.insert(shape, 0, np.asarray([total_examples])) features = np.zeros(feature_shape) labels = np.zeros((total_examples,)) counter = 0 for index in game_list: name = name_list[index + 1] if not name.endswith('.sgf'): raise ValueError(name + ' is not a valid sgf') sgf_content = zip_file.extractfile(name).read() sgf = Sgf_game.from_string(sgf_content) game_state, first_move_done = self.get_handicap(sgf) for item in sgf.main_sequence_iter(): color, move_tuple = item.get_move() point = None if color is not None: if move_tuple is not None: row, col = move_tuple point = Point(row + 1, col + 1) move = Move.play(point) else: move = Move.pass_turn() if first_move_done and point is not None: features[counter] = self.encoder.encode(game_state) labels[counter] = self.encoder.encode_point(point) counter += 1 game_state = game_state.apply_move(move) first_move_done = True feature_file_base = self.data_dir + '/' + data_file_name + '_features_%d' label_file_base = self.data_dir + '/' + data_file_name + '_labels_%d' chunk = 0 # Due to files with large content, split up after chunksize chunksize = 1024 while features.shape >= chunksize: feature_file = feature_file_base % chunk label_file = label_file_base % chunk chunk += 1 current_features, features = features[:chunksize], features[chunksize:] current_labels, labels = labels[:chunksize], labels[chunksize:] np.save(feature_file, current_features) np.save(label_file, current_labels) def consolidate_games(self, name, samples): files_needed = set(file_name for file_name, index in samples) file_names = [] for zip_file_name in files_needed: file_name = zip_file_name.replace('.tar.gz', '') + name file_names.append(file_name) feature_list = [] label_list = [] for file_name in file_names: file_prefix = file_name.replace('.tar.gz', '') base = self.data_dir + '/' + file_prefix + '_features_*.npy' for feature_file in glob.glob(base): label_file = feature_file.replace('features', 'labels') x = np.load(feature_file) y = np.load(label_file) x = x.astype('float32') y = to_categorical(y.astype(int), 19 * 19) feature_list.append(x) label_list.append(y) features = np.concatenate(feature_list, axis=0) labels = np.concatenate(label_list, axis=0) feature_file = self.data_dir + '/' + name label_file = self.data_dir + '/' + name np.save(feature_file, features) np.save(label_file, labels) return features, labels @staticmethod def get_handicap(sgf): # Get handicap stones go_board = Board(19, 19) first_move_done = False move = None game_state = GameState.new_game(19) if sgf.get_handicap() is not None and sgf.get_handicap() != 0: for setup in sgf.get_root().get_setup_stones(): for move in setup: row, col = move go_board.place_stone(Player.black, Point(row + 1, col + 1)) # black gets handicap first_move_done = True game_state = GameState(go_board, Player.white, None, move) return game_state, first_move_done def map_to_workers(self, data_type, samples): zip_names = set() indices_by_zip_name = {} for filename, index in samples: zip_names.add(filename) if filename not in indices_by_zip_name: indices_by_zip_name[filename] = [] indices_by_zip_name[filename].append(index) zips_to_process = [] for zip_name in zip_names: base_name = zip_name.replace('.tar.gz', '') data_file_name = base_name + data_type if not os.path.isfile(self.data_dir + '/' + data_file_name): zips_to_process.append((self.__class__, self.encoder_string, zip_name, data_file_name, indices_by_zip_name[zip_name])) cores = multiprocessing.cpu_count() # Determine number of CPU cores and split work load among them pool = multiprocessing.Pool(processes=cores) p = pool.map_async(worker, zips_to_process) try: _ = p.get() except KeyboardInterrupt: # Caught keyboard interrupt, terminating workers pool.terminate() pool.join() sys.exit(-1) def num_total_examples(self, zip_file, game_list, name_list): total_examples = 0 for index in game_list: name = name_list[index + 1] if name.endswith('.sgf'): sgf_content = zip_file.extractfile(name).read() sgf = Sgf_game.from_string(sgf_content) game_state, first_move_done = self.get_handicap(sgf) num_moves = 0 for item in sgf.main_sequence_iter(): color, move = item.get_move() if color is not None: if first_move_done: num_moves += 1 first_move_done = True total_examples = total_examples + num_moves else: raise ValueError(name + ' is not a valid sgf') return total_examples
[ "pranav.borole@gmail.com" ]
pranav.borole@gmail.com
0060ceda36e78cb67618690effb675d9a7041d38
28887a9bfd18f64a045c419037e9aba2cfd1bf50
/typed/for/sw.py
46ac83c715ce619f759e6f1d7cf5e92de57aa3e1
[]
no_license
Coobeliues/pp2_py
18ba46bc82edc3f0c189f5e51ec6950af5269751
89cffd04499691e72e9dbbf9626a84ad27fddf79
refs/heads/main
2023-06-28T01:13:12.602998
2021-07-29T05:43:17
2021-07-29T05:43:17
380,136,849
0
0
null
null
null
null
UTF-8
Python
false
false
147
py
a, b=int(input()), int(input()) while a!=b: if a//2>=b and a%2==0: a//=2 print(":2") else: a-=1 print('-1')
[ "70967044+Coobeliues@users.noreply.github.com" ]
70967044+Coobeliues@users.noreply.github.com
4db1b6a570c6c09cb4abbde4d2d5b91439464880
86a563e6eff56cf96bfa3c6dcdfb706e68114530
/ch05/layer_naive.py
f4262f3f86dabc938f835840d0e9ffd66c61601c
[]
no_license
mingrammer/deep-learning-from-scratch
be322ee82fe5c8d2bcde3ac3e7d35792c5314d1f
4e158aa3f773ac7c60585f3f1627e94dac7a05ba
refs/heads/master
2021-01-01T06:36:44.414300
2017-08-10T17:15:55
2017-08-10T17:15:55
97,468,838
2
2
null
null
null
null
UTF-8
Python
false
false
519
py
class MulLayer: def __init__(self): self.x = None self.y = None def forward(self, x, y): self.x = x self.y = y out = x * y return out def backward(self, dout): dx = dout * self.y dy = dout * self.x return dx, dy class AddLayer: def __init__(self): pass def forward(self, x, y): out = x + y return out def backward(self, dout): dx = dout * 1 dy = dout * 1 return dx, dy
[ "k239507@gmail.com" ]
k239507@gmail.com
47ae5977cf0f5aac3687f9b062a692f09c6f5c78
3b034c36c383af330f765c063d13537692f7361c
/alien_invasion/settings.py
1f168a0249e7b01d1a64a5ae79a2142ac5389f6c
[]
no_license
ctestabu/python
87ba39a588afb3a88d738fac7743015e02c9e1a7
3d92c4ea161b32060757e5781cfb5688ecfab9b9
refs/heads/master
2020-08-30T04:23:28.229889
2019-11-28T15:11:40
2019-11-28T15:11:40
218,261,986
1
0
null
null
null
null
UTF-8
Python
false
false
1,152
py
class Settings(): # Class for settings def __init__(self): # settings init self.screen_width = 1200 self.screen_height = 800 self.bg_color = (230, 230, 230) # ship settings # self.ship_speed_factor = 25 self.ship_limit = 3 # bullet # self.bullet_speed_factor = 10 self.bullet_width = 300 self.bullet_height = 15 self.bullet_color = (255, 0, 0) self.bullets_allowed = 10 # alien # self.alien_speed_factor = 50 self.fleet_drop_speed = 10 # 1 -left -1 -right self.fleet_direction = 1 # change settings self.speedup_scale = 1.1 self.initialize_dynamic_settings() def increase_speed(self): self.ship_speed_factor *= self.speedup_scale self.bullet_speed_factor *= self.speedup_scale self.alien_speed_factor *= self.speedup_scale def initialize_dynamic_settings(self): self.ship_speed_factor = 10 self.bullet_speed_factor = 10 self.alien_speed_factor = 1 self.fleet_direction = 1 self.alien_points = 50
[ "noreply@github.com" ]
ctestabu.noreply@github.com
e91eee6139b204ca38f3a5eead878773fbaea690
07ba86aee8532f6a5b2bfcdc30f8c2e8234751bc
/LeetCode/Problems/Python/347. Top K Frequent Elements.py
4c8aaff201e9876cbd75d872e2e2be462a8fc479
[]
no_license
yukai-chiu/CodingPractice
1b7d4b0ffe9a8583091a8165976f71c7b3df41b5
3390a0ca4eceff72c69721bdc425a3099670faff
refs/heads/master
2022-12-14T05:35:38.336552
2020-08-30T22:56:20
2020-08-30T22:56:20
263,502,418
0
0
null
null
null
null
UTF-8
Python
false
false
1,849
py
#Heap #Time: O(n+klogn) #Space: O(n) class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: n = Counter(nums) n = [(-value, key) for key,value in n.items()] heapq.heapify(n) return [heapq.heappop(n)[1] for _ in range(k)] #quick select #Time: O(n) average, worst O(n^2) #Space: O(n) for hash map and unique elements array class Solution: def topKFrequent(self, nums: List[int], k: int) -> List[int]: count = Counter(nums) unique = list(count.keys()) def partition(l, r, pivot): pivot_freq = count[unique[pivot]] #move pivot to end unique[pivot], unique[r] = unique[r], unique[pivot] #move all larger to left store_idx = l for i in range(l,r): if count[unique[i]] > pivot_freq: unique[store_idx], unique[i] = unique[i], unique[store_idx] store_idx+=1 #put pivot to the correct idx unique[store_idx], unique[r] = unique[r], unique[store_idx] return store_idx def quickSelect(left, right, k): #base case: only one element if left == right: return #select a pivot pivot_idx = random.randint(left, right) #find the pivot position in a sorted list pivot_idx= partition(left, right, pivot_idx) if pivot_idx == k: return elif pivot_idx > k: quickSelect(left, pivot_idx-1, k) else: quickSelect(pivot_idx+1, right, k) n = len(unique) quickSelect(0, n-1, k) return unique[:k]
[ "48868656+kevinyukaic@users.noreply.github.com" ]
48868656+kevinyukaic@users.noreply.github.com
a6d693cdcbe37656bb5535ac4a05fe5cc9372d37
41d0bd94bbaec0299e6be6fc56a726545c1894cb
/sources/nytimes/__init__.py
6b17755df17000bfee582d94d3ef7ceaa7c83853
[ "Unlicense" ]
permissive
AB9IL/stream-sources
f86eec0552d0992e7ee02a39076e0a1042ebfe27
ede8bd3ad7d51723d489192d0a6c5b2ea31ffe56
refs/heads/master
2023-02-03T23:09:25.582012
2020-12-23T08:12:42
2020-12-23T08:12:42
319,333,418
0
0
Unlicense
2020-12-07T13:47:06
2020-12-07T13:47:05
null
UTF-8
Python
false
false
244
py
from sources.generic import FeedSource class Source(FeedSource): SOURCE = { 'name': 'The New York Times', 'url': 'https://www.nytimes.com', } FEED_URL = 'http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml'
[ "davy.wybiral@gmail.com" ]
davy.wybiral@gmail.com
c21c0892e84b6e23f693f6f8b3b2a019f0daca3d
bbe9000b56086b7f8f52fcc3b49702c9045166a4
/timestamp_graphs.py
06dcc0944264bea2d4ed7625deca629e2f299cdf
[]
no_license
galexa05/Thesis-Subject---Event-Detection-in-micro-blocks
7abd124f1f1d34b1d9062c96903ef56acb59a7a0
dd25f7ea27ab9773106039a7624875c9b86e1479
refs/heads/master
2022-08-30T00:57:49.142048
2020-05-22T17:00:03
2020-05-22T17:00:03
235,589,873
0
0
null
null
null
null
UTF-8
Python
false
false
3,475
py
import datetime from time import strptime import pandas as pd import numpy as np import matplotlib.pyplot as plt def getList(df,name): tableFlag=[] data_sorted = df.sort_values(by=['date'],inplace=False) data_sorted = data_sorted.reset_index(drop=True) list_date = [] for temp in data_sorted[name]: list_date.append(temp) list_date = list(dict.fromkeys(list_date)) list_date = sorted(list_date) return list_date def create_date(text): temp = text.split(" ") x = str(datetime.datetime(int(temp[5]),int(strptime(temp[1],'%b').tm_mon),int(temp[2]))).split()[0] return x def createTimestamps(df): df['date'] = df['created_at'].apply(lambda x: create_date(x)) df['time'] = np.array([tweet.split()[3] for tweet in df["created_at"]]) df['Datetime']= pd.to_datetime(df['date'].apply(str)+' '+df['time'].apply(lambda x: x.split(':')[0]) + df['time'].apply(lambda x: x.split(':')[1])) df['DateHour'] = pd.to_datetime(df['date'].apply(str)+' '+df['time'].apply(lambda x: x.split(':')[0])+':00') df['Date_Ten_Minutes'] = pd.to_datetime(df['date'].apply(str)+' '+df['time'].apply(lambda x: x.split(':')[0])+':'+df["time"].apply(lambda x: x.split(":")[1][0]+'0')) return df def monitorGraphPerTenMinutes(df_relevant,df_irrelevant): # graphing the threshold vs hourly tweet occurences dfchange = df_irrelevant.loc[df_irrelevant['date'] != -1] ts = dfchange.set_index('Date_Ten_Minutes') vc = ts.groupby('Date_Ten_Minutes').count() col = ['id'] vc2 = vc[col] vc3 = vc2.copy() dfchange1 = df_relevant.loc[df_relevant["date"]!=-1] rs = dfchange1.set_index('Date_Ten_Minutes') rc = rs.groupby('Date_Ten_Minutes').count() col = ['id'] rc2 = rc[col] rc3 = rc2.copy() vc3.rename(columns={'id':'Irrelevant Tweets'},inplace=True) rc3.rename(columns={'id':'Relevant Tweets'},inplace=True) ax = vc3.plot() rc3.plot(ax = ax) def monitorGraphPerMinute(df_relevant,df_irrelevant): # gca stands for 'get current axis' # graphing the threshold vs hourly tweet occurences dfchange = df_irrelevant.loc[df_irrelevant['date'] != -1] ts = dfchange.set_index('Datetime') vc = ts.groupby('Datetime').count() col = ['id'] vc2 = vc[col] vc3 = vc2.copy() dfchange1 = df_relevant.loc[df_relevant["date"]!=-1] rs = dfchange1.set_index('Datetime') rc = rs.groupby('Datetime').count() col1 = ['id'] rc2 = rc[col1] rc3 = rc2.copy() vc3.rename(columns={'id':'Noise Tweets'},inplace=True) rc3.rename(columns={'id':'Relevant Tweets'},inplace=True) ax = vc3.plot() rc3.plot(ax = ax) def monitorGraphPerHour(df_relevant,df_irrelevant): # gca stands for 'get current axis' # graphing the threshold vs hourly tweet occurences dfchange = df_irrelevant.loc[df_irrelevant['date'] != -1] ts = dfchange.set_index('DateHour') vc = ts.groupby('DateHour').count() col = ['id'] vc2 = vc[col] vc3 = vc2.copy() dfchange1 = df_relevant.loc[df_relevant["date"]!=-1] rs = dfchange1.set_index('DateHour') rc = rs.groupby('DateHour').count() col1 = ['id'] rc2 = rc[col1] rc3 = rc2.copy() vc3.rename(columns={'id':'Noise Tweets'},inplace=True) rc3.rename(columns={'id':'Relevant Tweets'},inplace=True) ax = vc3.plot() rc3.plot(ax = ax)
[ "noreply@github.com" ]
galexa05.noreply@github.com
eb61ed6b4228b822dcbf63b841b03b4644006653
1f52594461c78eda903f76e03aaf966ad15afaec
/iftest/condition03.py
aa16e57b2b8b347575c8db59d9710aa3bcb31e64
[]
no_license
TDOGX86/mycode
9b3c3a8a9a3c796ec00d1698f9bb20a0364a333e
b0d85b89636d88447f123a5a71294ccb080f0f55
refs/heads/main
2023-04-06T20:12:42.999480
2021-04-08T16:44:11
2021-04-08T16:44:11
352,703,400
0
0
null
null
null
null
UTF-8
Python
false
false
530
py
#!/usr/bin/env python3 hostname = input("What value should we set for hostname?") ## Notice how the next line has changed ## here we use the str.lower() method to return a lowercase string if hostname.lower() == "mtg": print("The hostname was found to be mtg") print("hostname matches expected config") elif hostname.lower() == "": print("You didn't type anything in, dummy") ## Always print out to the user print("Exiting the script") ##if hostname.lower() == "": ## print("You didn't type anything in, dummy")
[ "tamarris.jenkins@gmail.com" ]
tamarris.jenkins@gmail.com
0684829db7c9258607788fa7ea09f77338d7d555
029cb41afd2b757fb9b80162259dc29d090e1d48
/Chapter_3_Working_with_the_Command_Line/Creating_Command_Line_Tools/implementing_plugins/plugin_a.py
c2cb31a42779e5ba3254a6cfaab9839f6a1bebe4
[]
no_license
mdorante/Python_For_Devops
983ff667b20bbcba652930bcbed75f34fa1212de
570d80586e1c6ba26951d02d68daf84bb3f086a6
refs/heads/master
2023-02-18T00:12:49.423777
2021-01-18T12:38:55
2021-01-18T12:38:55
269,327,517
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
''' simple plugin for plugin system example ''' def run(): print('Plugin A doing some stuff!')
[ "mdorante10@gmail.com" ]
mdorante10@gmail.com
23531571afd810ca8392d8346a552f92c595e5c2
51c3fc9ebdf2a0b990e645810cbf8fce2f34c2b3
/pricelist_test/__manifest__.py
3c4b857c77cfacc73b51f9296c208edcabb2ae2a
[]
no_license
boming0529/pricelist_demo
6e985fc39e1273af8f6c2fa087a44b2a97652357
fd60f5b7057924aca5ca1b0715e6bc419e65f9af
refs/heads/master
2020-05-07T21:50:53.067981
2019-04-12T02:59:44
2019-04-12T02:59:44
180,919,263
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
# -*- coding: utf-8 -*- { 'name': "pricelist_test", 'summary': """ Short (1 phrase/line) summary of the module's purpose, used as subtitle on modules listing or apps.openerp.com""", 'description': """ Long description of module's purpose """, 'author': "My Company", 'website': "http://www.yourcompany.com", # Categories can be used to filter modules in modules listing # Check https://github.com/odoo/odoo/blob/12.0/odoo/addons/base/data/ir_module_category_data.xml # for the full list 'category': 'Uncategorized', 'version': '0.1', # any module necessary for this one to work correctly 'depends': [ 'base', 'product', 'sale', ], # always loaded 'data': [ # 'security/ir.model.access.csv', 'data/product.xml', 'views/views.xml', 'views/templates.xml', ], # only loaded in demonstration mode 'demo': [ 'demo/demo.xml', ], }
[ "boming0529@gmail.com" ]
boming0529@gmail.com
8922342ba5b5f8e04704a9baea1599907bccb947
91c6806fc5ae20dcc26308b58cd5ca52b22bc16d
/payment.py
f516bd27571a583cc697c2987987a408a1ea88f4
[]
no_license
samarthgupta29/Python-Based-Wallet
c2e330c3ef322e71a63cfe5f517fdf33c4f87ecf
1ea3c92385f9b66fa4f69395c2a4a3ee65f04229
refs/heads/master
2021-05-07T18:35:42.445053
2017-12-13T04:55:07
2017-12-13T04:55:07
108,803,672
0
0
null
null
null
null
UTF-8
Python
false
false
3,845
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'payment.ui' # # Created by: PyQt5 UI code generator 5.6 # # WARNING! All changes made in this file will be lost! import sqlite3 from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow3(object): def paymentreg(self): semail = self.lineEdit.text() remail = self.lineEdit_2.text() amt = self.lineEdit_3.text() amt2 = int(amt) connection = sqlite3.connect("login.db") connection.execute("INSERT INTO TRANSACTIONTABLE3 VALUES(?,?,?)", (semail, remail, amt2)) connection.execute("UPDATE USERS2 SET BALANCE=BALANCE-(?) WHERE EMAIL=(?)", (amt2, semail)) connection.execute("UPDATE USERS2 SET BALANCE=BALANCE+(?) WHERE EMAIL=(?)", (amt2, remail)) connection.commit() connection.close() def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(549, 425) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(10, 80, 101, 16)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(10, 150, 81, 16)) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(10, 210, 81, 16)) self.label_3.setObjectName("label_3") self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(140, 80, 113, 20)) self.lineEdit.setObjectName("lineEdit") self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_2.setGeometry(QtCore.QRect(140, 150, 113, 20)) self.lineEdit_2.setObjectName("lineEdit_2") self.lineEdit_3 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_3.setGeometry(QtCore.QRect(140, 210, 113, 20)) self.lineEdit_3.setObjectName("lineEdit_3") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(250, 280, 75, 23)) self.pushButton.setObjectName("pushButton") self.pushButton.clicked.connect(self.paymentreg) self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(460, 340, 75, 23)) self.pushButton_2.setObjectName("pushButton_2") MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 549, 21)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.label.setText(_translate("MainWindow", "Sender\'s E-Mail")) self.label_2.setText(_translate("MainWindow", "Reciever\'s E-Mail")) self.label_3.setText(_translate("MainWindow", "Amount")) self.pushButton.setText(_translate("MainWindow", "Pay")) self.pushButton_2.setText(_translate("MainWindow", "Home")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow3() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
[ "samarthgupta29@gmail.com" ]
samarthgupta29@gmail.com
42edb48f292eb66a4d4f302b8e4a79b7eac25f28
7834fd5292ab1678c129f92018cf9617f15c19dd
/hatboard/__init__.py
3df786d07a9e49308d01d07659cb7fd796bd50fe
[]
no_license
3453-315h/HatBoard
f642ef9cf453dbc5bd8a52a1f43a198c9157b631
643df6535399e105c1c2a98e476f168bf122337b
refs/heads/main
2023-06-27T16:04:35.041007
2021-08-02T13:37:06
2021-08-02T13:37:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,134
py
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020-2021 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #
[ "noreply@github.com" ]
3453-315h.noreply@github.com
e28e29aba2f8f7f326b946462b4c962e23748f95
688e5a53f5f8a6760e499fc24ab0cbb20edbb4cc
/final/src/lidar_test.py
f82be0985e7f84875ac700dd4d2665fe38879d62
[]
no_license
gravity101/Final_Project_TeamC
2f429065d54b1f6766da7aa6975e9f75c007ae66
5ffbc1397061cd1d3afe23e347cd6225408d560e
refs/heads/main
2023-08-30T19:01:43.130437
2021-09-24T07:50:56
2021-09-24T07:50:56
400,028,091
0
0
null
2021-08-30T02:40:21
2021-08-26T03:26:39
Lua
UTF-8
Python
false
false
1,090
py
#!/usr/bin/env python # -*- coding:utf-8 -*- import rospy import time from sensor_msgs.msg import LaserScan from std_msgs.msg import Int32MultiArray from xycar_msgs.msg import xycar_motor class test() : def __init__(self): rospy.Subscriber("/scan", LaserScan, self.callback_lidar, queue_size=1) self.pub = rospy.Publisher('xycar_motor', xycar_motor, queue_size=1) self.msg = xycar_motor() self.lidar_points = None self.fr_list = None self.lidar_count = 0 self.inter_flag = False def callback_lidar(self, data): self.lidar_points = data.ranges def Detect(self): print("==================================================================================") if self.lidar_points == None: return self.fr_list = self.lidar_points[-75:-60] self.fr_list = list(self.fr_list) for i in range(len(self.fr_list)): print("index: ", i+430, ", lidar: ", self.fr_list[i]) # self.fr_list[:] = [value for value in self.fr_list if value != 0]
[ "khoram@ajou.ac.kr" ]
khoram@ajou.ac.kr
9f174734342379109b5d2e786c230191b683d8dd
d49f1a4b64c33c024001306f1337c39ab09d88ee
/ncr/db.py
a9d50fc5e931e61fb52c5a4de8575837020062f5
[]
no_license
nathanjordan/ncr
d1f299c8fc03db2bfa6c8b63d8ecb5fa1eb3f6ea
b8e7b94579a4c5721f5850d53fc91e0ebe592ad2
refs/heads/master
2020-12-26T02:23:01.564803
2014-06-15T03:41:05
2014-06-15T03:41:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,801
py
from __future__ import unicode_literals from mongokit import Document, Connection import datetime from crypt import Crypt class Controller(object): def __init__(self): self.conn = Connection() self.conn.register([User, Session, Neuron]) # 12 hours? self.conn['ncr']['session'].ensure_index('created', expireAfterSeconds=43200) def login(self, username, password): u = User.find({"username": username}) hashed_pass = Crypt.hash_pw(password, u['salt']) if hashed_pass != u['password']: return None ses = Session.find({"username": username}) if ses: return ses['token'] token = Crypt.gen_token() created = datetime.datetime.now() ses = Session({"username": username, "token": token, "created": created}) ses.save() return token def verify_token(self, token): ses = Session.find({"token": token}) return True if ses else False class User(Document): __database__ = "ncr" __collection__ = "user" structure = { "username": str, "password": str, "salt": str, "first_name": str, "last_name": str, "institution": str, "email": str } class Session(Document): __database__ = "ncr" __collection__ = "session" structure = { "username": str, "token": str, "created": datetime.Datetime } class Entity(Document): __database__ = "ncr" structure = { "_id": str, "entity_type": str, "entity_name": str, "description": str, "author": str, "author_email": str, "specification": dict } class Neuron(Entity): __collection__ = "neuron"
[ "natedagreat27274@gmail.com" ]
natedagreat27274@gmail.com
33ce6b4e0bf8cebf3b43a04e20f421954223437d
0fdabf061564cb809889eead9dce3efea16bf7b5
/test_regsiter.py
cde3f29bfd5bf390533b53317720ea21d8513d9c
[]
no_license
huangyanping128/-
6662b56567fb6f4392aceaff1f3d44b04523fa5f
7aa315e18f821f7b083f735c953ebbdc83474319
refs/heads/master
2021-01-02T16:52:35.652646
2020-02-11T08:13:25
2020-02-11T08:13:25
239,710,134
0
0
null
null
null
null
UTF-8
Python
false
false
654
py
import requests from common.connect_mysql import execute_sql import pytest s = requests.session() @pytest.fixture(scope="function") def delete_user(): """先删除已经注册的用户数据""" delete_sql = 'DELETE from auth_user where username="小晓的筱";' execute_sql(delete_sql) def test_regsiter(delete_user): """注册登录接口""" url = 'http://49.235.92.12:9000/api/v1/register' body = { "username": "小晓的筱", "password": "123456", "mail": "xiaoxiao@qq.com" } r = s.post(url, json=body) # print(r.text) print(r.json()) assert r.json()['msg'] == '注册成功!'
[ "wanglei_g@aspirecn.com" ]
wanglei_g@aspirecn.com
e05c8b6335f2a71af28e423b1002904eee1db3b1
aad4370c12f4d7ca13b348eec5131840695956f8
/margin/ArcMarginProduct.py
8e233348fbc9a4c1573ff875a8f5184163b41225
[]
no_license
onurcaydere/ArcFaceTrain
732051065135ced45746b26dc98a7f0d8f4bd764
2a49ad52d1f7596aefa68d952e1124ef7d187c3d
refs/heads/main
2023-08-21T21:57:22.326706
2021-10-13T11:35:16
2021-10-13T11:35:16
416,712,694
0
0
null
null
null
null
UTF-8
Python
false
false
1,580
py
import math import torch from torch import nn from torch.nn import Parameter import torch.nn.functional as F class ArcMarginProduct(nn.Module): def __init__(self, in_feature=128, out_feature=10575, s=32.0, m=0.50, easy_margin=False): super(ArcMarginProduct, self).__init__() self.in_feature = in_feature self.out_feature = out_feature self.s = s self.m = m self.weight = Parameter(torch.Tensor(out_feature, in_feature)) nn.init.xavier_uniform_(self.weight) self.easy_margin = easy_margin self.cos_m = math.cos(m) self.sin_m = math.sin(m) # make the function cos(theta+m) monotonic decreasing while theta in [0°,180°] self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m def forward(self, x, label): # cos(theta) cosine = F.linear(F.normalize(x), F.normalize(self.weight)) # cos(theta + m) sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) phi = cosine * self.cos_m - sine * self.sin_m if self.easy_margin: phi = torch.where(cosine > 0, phi, cosine) else: phi = torch.where((cosine - self.th) > 0, phi, cosine - self.mm) #one_hot = torch.zeros(cosine.size(), device='cuda' if torch.cuda.is_available() else 'cpu') one_hot = torch.zeros_like(cosine) one_hot.scatter_(1, label.view(-1, 1), 1) output = (one_hot * phi) + ((1.0 - one_hot) * cosine) output = output * self.s return output if __name__ == '__main__': pass
[ "noreply@github.com" ]
onurcaydere.noreply@github.com
56be18a63c0d30a9e4ba2dae5d07aad985c61656
40c4b8b618d67fc48b862809b6e2835bb7cf76eb
/leetcode/65.py
e19e991fccbe8881504df78c7650cbe96eaad2ad
[]
no_license
berquist/ctci
9fa08ac724990eee32f8ad7cffc3517491570d41
f0a69d3e4dd1b73a43c96dcb7a9c7b9955c04c39
refs/heads/master
2022-08-18T01:53:16.994300
2022-08-15T00:36:07
2022-08-15T00:36:07
120,108,966
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
class Solution(object): def isNumber(self, s): """ :type s: str :rtype: bool """ # assert Solution().isNumber("0") == True # assert Solution().isNumber(" 0.1 ") == True # assert Solution().isNumber("abc") == False # assert Solution().isNumber("1 a") == False # assert Solution().isNumber("2e10") == True
[ "eric.berquist@gmail.com" ]
eric.berquist@gmail.com
57058094d1fac2a6430800baef3bfb044fb40353
786027545626c24486753351d6e19093b261cd7d
/ghidra9.2.1_pyi/ghidra/app/plugin/core/searchtext/iterators/InstructionSearchAddressIterator.pyi
714c2a10a62f4d6f5eb1d692fba25f1bfdbdb764
[ "MIT" ]
permissive
kohnakagawa/ghidra_scripts
51cede1874ef2b1fed901b802316449b4bf25661
5afed1234a7266c0624ec445133280993077c376
refs/heads/main
2023-03-25T08:25:16.842142
2021-03-18T13:31:40
2021-03-18T13:31:40
338,577,905
14
1
null
null
null
null
UTF-8
Python
false
false
1,144
pyi
from typing import Iterator import ghidra.program.model.address import java.lang import java.util import java.util.function class InstructionSearchAddressIterator(object, ghidra.program.model.address.AddressIterator): def __init__(self, __a0: ghidra.program.model.listing.InstructionIterator): ... def __iter__(self) -> Iterator[object]: ... def equals(self, __a0: object) -> bool: ... def forEach(self, __a0: java.util.function.Consumer) -> None: ... def forEachRemaining(self, __a0: java.util.function.Consumer) -> None: ... def getClass(self) -> java.lang.Class: ... def hasNext(self) -> bool: ... def hashCode(self) -> int: ... def iterator(self) -> java.util.Iterator: ... def next(self) -> object: ... def notify(self) -> None: ... def notifyAll(self) -> None: ... def remove(self) -> None: ... def spliterator(self) -> java.util.Spliterator: ... def toString(self) -> unicode: ... @overload def wait(self) -> None: ... @overload def wait(self, __a0: long) -> None: ... @overload def wait(self, __a0: long, __a1: int) -> None: ...
[ "tsunekou1019@gmail.com" ]
tsunekou1019@gmail.com
dd05a3286f39ae892ec0ac84a9eb8ba21a202787
5905c1dbcbec6c2748e92b6464e82505bae0d9b8
/sensor_utils/sensor_manager.py
fda91403c888257ebd809c4db625d2f55400f0ef
[]
no_license
trevormcinroe/auto_garden
791dc9186e2a655229415264082309c7a02cf744
da19f34d0c311da6c741b21a1ad6c4b2cec4f77d
refs/heads/master
2020-12-05T01:55:48.781067
2020-01-06T00:51:20
2020-01-06T00:51:20
231,974,532
0
0
null
null
null
null
UTF-8
Python
false
false
312
py
""" """ import numpy as np import pandas as pd class SensorManager: def __init__(self, camera): self.camera = camera def take_timelapse(self): """""" self.camera.take_timelapse() def take_video(self): """""" self.camera.take_video()
[ "ThomasBayes69!" ]
ThomasBayes69!
bd348ac6e8fc24a4b1ef4555fbb10763fc02b7da
4cc6e438966b983c0f1e85cc093bd90bcd685953
/prob2.py
7d02753855377050cabc6c9daf4cf8ef195cfd95
[]
no_license
eskguptha/assignments
e96eab1cea904895f00372c4a87e6a7d1f4b1772
66998bce363ad4c64eefd812562af1d5db4f3458
refs/heads/master
2020-07-04T16:39:31.987477
2019-11-04T09:30:03
2019-11-04T09:30:03
74,152,645
0
3
null
null
null
null
UTF-8
Python
false
false
2,637
py
""" Problem #2 Fill in the Blanks You are given a puzzle like this: 7 __ 10 __ 2 Each blank may be filled with a '+' (plus) or '-' (minus), producing a value k. For all combinations of plus and minus, find the value of k that is closest to 0. In the above case, there are 4 combinations, each producing a different value: 7 + 10 + 2 = 19 7 + 10 - 2 = 15 7 - 10 + 2 = -1 7 - 10 - 2 = -5 Of all these combinations, the value that is closest to zero is ​ -1​ . So the answer is - 1​ . If there are more than one number that is closest, print the absolute value. Sample Input/Output: Enter digits: 7,10,2 Value close to zero is -1 Enter digits: 1,2,3,4 Value close to zero is 0 """ INPUT_DIGITS = input("Enter digits: ") OUTPUT_DIGIT = None OUTPUT_DIGIT_LIST = [] # Split input string by comma seperated input_digit_list = INPUT_DIGITS.split(',') # Input Numbers should be greter than 2 if len(input_digit_list) > 2: # Get First Three Numbers input_digit_list = input_digit_list[:3] try: # Convert string to number and remove space if exist first_number, second_number, thrid_number = [int(each_num.strip()) for each_num in input_digit_list] # Apply four combinations on give three numbers combination_result_1 = first_number + second_number + thrid_number combination_result_2 = first_number + second_number - thrid_number combination_result_3 = first_number - second_number + thrid_number combination_result_4 = first_number - second_number - thrid_number # Append each combination result into an array OUTPUT_DIGIT_LIST.append(combination_result_1) OUTPUT_DIGIT_LIST.append(combination_result_2) OUTPUT_DIGIT_LIST.append(combination_result_3) OUTPUT_DIGIT_LIST.append(combination_result_4) # Sort array from small to large OUTPUT_DIGIT_LIST.sort() # get all <= 0 values from resultset sorted_result_set = [each_num for each_num in OUTPUT_DIGIT_LIST if each_num <= 0] # if sorted result set is empty than get list minimum value from >= 0 valueset if not sorted_result_set: sorted_result_set = [each_num for each_num in OUTPUT_DIGIT_LIST if each_num >= 0] sorted_result_set.sort(reverse=True) # get least element from resultset OUTPUT_DIGIT = sorted_result_set.pop() print ("Value close to zero is {}".format(OUTPUT_DIGIT)) except TypeError as e: print ("Please Enter Numbers Only. Ex:7,10,2") pass else: print ("Please Enter any three numbers by comma sperated Ex:7,10,2")
[ "noreply@github.com" ]
eskguptha.noreply@github.com
97bc6fd7abdac7d0908aa7cdf1c52f8472cf91f6
dc8d6d4297a004fc98c0c998a0dc251565c1fb9d
/pythonScripts/redditbot/wordFinder.py
a2e5e078837c3f7c96f5ed4c7736f1fa51194955
[]
no_license
CodingDonky/python_misc
a4a5c9e9bf89cbf4327e3c6ba9c3703d6d26a9f7
08aaecb150e55e90a2782b624a516183ce608ec1
refs/heads/master
2020-03-25T06:03:16.038747
2018-12-18T00:43:14
2018-12-18T00:43:14
143,480,867
0
0
null
null
null
null
UTF-8
Python
false
false
1,050
py
# First Reddit Bot import praw import config def bot_login(): r = praw.Reddit(username = config.username, password = config.password, client_id = config.client_id, client_secret = config.client_secret, user_agent = "My first python bot v0.1") return r def run_bot(r): word = "Rick" word2 = "Morty" word_users = set() # to avoid duplicates word_users2 = set() for comment in r.subreddit('rickandmorty').comments(limit=250): if word in comment.body: word_users.add(comment.author) if word2 in comment.body: word_users2.add(comment.author) print "The users that mentioned "+ word +" are :" for user in word_users: print " " + str(user) print "The users that mentioned "+ word2 +" are :" for user in word_users2: print " " + str(user) print str(len(word_users)) + " users mentioned "+ word print str(len(word_users2)) + " users mentioned "+ word2 r = bot_login() run_bot(r)
[ "saintdane75@gmail.com" ]
saintdane75@gmail.com
61743775cdfc1f99eb0f4f97a39cac5ad4a23f9b
58b27192c8f83297666796e2ae81549abffc5061
/first.py
7e380193a03d362bb5e2cbf469bb938be6b81c83
[]
no_license
echapma3/test
191c8891069660151df0dbae23b9c8281d553833
951816f8bdea4cea167f9630ed367735aaea5661
refs/heads/master
2022-09-05T08:11:09.118354
2020-06-01T09:29:33
2020-06-01T09:29:33
265,587,784
0
0
null
2020-06-01T09:29:34
2020-05-20T14:16:08
Python
UTF-8
Python
false
false
123
py
print("test the second time") print("hello") print("12345") number = 4 if number > 0: print('number is positive')
[ "echapma3@jaguarlandrover.com" ]
echapma3@jaguarlandrover.com
6edd212f8ff5d8dc3dbcc92e23d29dc81c6da083
1b4f196d2e7ee7c0aab43c0b75cce7f3aeba87a7
/phase4/model.py
0f056c58ce3e7dec0e3803d844248588ef12b389
[]
no_license
raphael-cohen/facial_recognition_CS584
4cb2fc0120c3abccc108eec2e9e96d16fddedfb6
14dd5cd1cd006d27f5d30c02a445877f80a278da
refs/heads/master
2020-06-21T09:48:49.737806
2019-07-17T15:26:53
2019-07-17T15:26:53
197,413,417
1
0
null
null
null
null
UTF-8
Python
false
false
6,500
py
from keras.models import Sequential, Model from keras.layers import Dense, Input, Conv2D, MaxPooling2D, UpSampling2D, Flatten, Dropout from keras import backend as K from keras import regularizers import numpy as np import pickle as pkl from sklearn.model_selection import train_test_split from keras import backend as K from keras.utils import to_categorical from keras import optimizers from keras.utils.vis_utils import plot_model from keras_sequential_ascii import sequential_model_to_ascii_printout from os import listdir import os from os.path import isfile, join import matplotlib.pyplot as plt import cv2 #pip install keras_sequential_ascii def main(): name = 'williams' # data = np.array(pkl.load(open('../X.pkl', 'rb'))) npath = 'np_faces' onlyfiles = [ p for p in listdir('np_faces') if isfile(join('np_faces',p)) ] total = len(onlyfiles) total_img = 0 # for n, f in enumerate(onlyfiles): # # imgs = np.load(join(npath,f)) # total_img += imgs.shape[0] # if n%20 == 0: # print("{0}/{1}\n{2}".format(n,total, total_img)) #What is xxx ? total_img = 63564 #beurk but no choice print(total_img) data = np.empty((total_img, 64,64,1)) names = np.empty(total_img, dtype=object) start = 0 sp = 0 for n, f in enumerate(onlyfiles): imgs = np.load(join(npath,f)).astype(np.float32) nimg = imgs.shape[0] space = np.prod(imgs.shape) # print(imgs) np.put(data, range(sp, sp+space), imgs) np.put(names, range(start, start+nimg), [f]*nimg) start += nimg sp += space if n%10 == 0: print("{0}/{1}".format(n,total)) print(names.shape) # celebrities = np.array(['Anthony_Hopkins.npy', 'Burt_Reynolds.npy', # 'Jack_Nicholson.npy', 'John_Cusack.npy', # 'Jeffrey_Tambor.npy', 'Leslie_Neilsen.npy', # 'Mark_Wahlberg.npy', 'Richard_E._Grant.npy']) celebrities = np.array(['Lourdes_Benedicto.npy', 'Lisa_Bonet.npy', 'Samuel_L._Jackson.npy', 'Tatyana_M._Ali.npy', 'Tempestt_Bledsoe.npy', 'Wanda_De_Jesus.npy', 'Shannon_Kane.npy','Jasmine_Guy.npy']) # print(celebrities.shape) labels = np.zeros(names.shape[0]) for cel in celebrities: print(cel) labels += np.where(names == cel, 1, 0) # print(names[0:30]) # print(labels) print(sum(labels)) print(data.shape) print(data[0].shape) # # plt.imshow((data[1]).reshape((64,64))) # plt.show() # print(data[0]) # labels = np.array(pkl.load(open('../y_bush_vs_others.pkl', 'rb'))).flatten() # labels = np.array(pkl.load(open('../y_{0}_vs_others.pkl'.format(name), 'rb'))).flatten() # one = np.ones(500) # labels = np.hstack((one, np.zeros(data.shape[0]-500))) # print(np.asarray(data[0] ,dtype=np.float32)) # for d # print((data[0]).reshape(64,64,1).shape) x_train, x_test, y_train, y_test = train_test_split( data, labels, test_size=1. / 3, random_state=2518, stratify = labels, shuffle = True) num_positive = np.sum(labels) class_weight = {0: 1., 1: len(labels)/num_positive*2} # class_weight = {0:1, 1:1} print(class_weight) model = conv_predict_model(acthidden='tanh', actoutput='sigmoid') opt = optimizers.adadelta() # opt = optimizers.nadam() # Revenir là dessus # plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) # model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])#, precision, recall, f1]) model.fit(x_train, y_train, validation_data=( x_test, y_test), shuffle=True, epochs=350, batch_size=256, class_weight=class_weight) # sequential_model_to_ascii_printout(model) #400 name ='initial-model-williams' model.save("{0}.model".format(name)) # # with open("{0}_history.pkl".format(name), 'wb') as file_pi: # pkl.dump(model.history, file_pi) def conv_predict_model(acthidden='tanh', actoutput='sigmoid'): input_img = Input(shape=(64, 64, 1)) model = Sequential() model.add(Conv2D(32, (3, 3), activation=acthidden, padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add(Conv2D(32, (3, 3), activation=acthidden, padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add(Dropout(0.3)) model.add(Conv2D(32, (3, 3), activation=acthidden, padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add(Conv2D(64, (3, 3), activation=acthidden, padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add(Dropout(0.3)) model.add(Conv2D(64, (3, 3), activation=acthidden, padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add(Flatten()) model.add(Dropout(0.3)) model.add(Dense(40, activation=acthidden))#, kernel_regularizer=regularizers.l2(0.01))) model.add(Dense(20, activation=acthidden)) model.add(Dropout(0.3)) model.add(Dense(10, activation=acthidden)) model.add(Dense(1, activation=actoutput)) return model def recall(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1(y_true, y_pred): def recall(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision precision = precision(y_true, y_pred) recall = recall(y_true, y_pred) return 2 * ((precision * recall) / (precision + recall + K.epsilon())) if __name__ == '__main__': main()
[ "noreply@github.com" ]
raphael-cohen.noreply@github.com
1f66d2f362e53b3976edac547b79f60c4e925f1b
fbd6c98a999d558f28a3cea0e8a2c43dbc095d6c
/tests/unit/tabular/test_copulas.py
bca913a4ca506fc6fb0afc3f52c0d27d30ce30fc
[ "MIT" ]
permissive
daanknoors/SDV
702859d39506b1245f48dc08161a62eadb1a3bf8
c9234aa6fba2c6c23fa439736efd19fd06f19770
refs/heads/master
2023-01-12T11:30:57.003936
2020-11-19T09:10:42
2020-11-19T09:10:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,358
py
from unittest.mock import Mock, patch import numpy as np import pandas as pd import pytest from copulas.multivariate.gaussian import GaussianMultivariate from copulas.univariate import GaussianKDE from sdv.tabular.base import NonParametricError from sdv.tabular.copulas import GaussianCopula class TestGaussianCopula: @patch('sdv.tabular.copulas.BaseTabularModel.__init__') def test___init__no_metadata(self, init_mock): """Test ``__init__`` without passing a table_metadata. In this case, the parent __init__ will be called and the metadata will be created based on the given arguments Input: - field_names - field_types - field_transformers - anonymize_fields - primary_key - constraints - distribution - default_distribution - categorical_transformer Side Effects - attributes are set to the right values - super().__init__ is called with the right arguments """ gc = GaussianCopula( field_names=['a_field'], field_types={ 'a_field': { 'type': 'categorical', } }, field_transformers={'a_field': 'categorical'}, anonymize_fields={'a_field': 'name'}, primary_key=['a_field'], constraints=['a_constraint'], distribution={'a_field': 'gaussian'}, default_distribution='bounded', categorical_transformer='categorical_fuzzy' ) assert gc._distribution == {'a_field': 'gaussian'} assert gc._default_distribution == 'bounded' assert gc._categorical_transformer == 'categorical_fuzzy' assert gc._DTYPE_TRANSFORMERS == {'O': 'categorical_fuzzy'} init_mock.assert_called_once_with( field_names=['a_field'], primary_key=['a_field'], field_types={ 'a_field': { 'type': 'categorical', } }, field_transformers={'a_field': 'categorical'}, anonymize_fields={'a_field': 'name'}, constraints=['a_constraint'], table_metadata=None, ) @patch('sdv.tabular.copulas.Table.from_dict') @patch('sdv.tabular.copulas.BaseTabularModel.__init__') def test___init__metadata_dict(self, init_mock, from_dict_mock): """Test ``__init__`` without passing a table_metadata dict. In this case, metadata will be loaded from the dict and passed to the parent. Input: - table_metadata - distribution - default_distribution - categorical_transformer Side Effects - attributes are set to the right values - super().__init__ is called with the loaded metadata """ table_metadata = { 'fields': { 'a_field': { 'type': 'categorical' }, }, 'model_kwargs': { 'GaussianCopula': { 'distribution': { 'a_field': 'gaussian', }, 'categorical_transformer': 'categorical_fuzzy', } } } gc = GaussianCopula( distribution={'a_field': 'gaussian'}, categorical_transformer='categorical_fuzzy', table_metadata=table_metadata, ) assert gc._distribution == {'a_field': 'gaussian'} assert gc._categorical_transformer == 'categorical_fuzzy' assert gc._DTYPE_TRANSFORMERS == {'O': 'categorical_fuzzy'} init_mock.assert_called_once_with( field_names=None, primary_key=None, field_types=None, field_transformers=None, anonymize_fields=None, constraints=None, table_metadata=from_dict_mock.return_value, ) def test__update_metadata_existing_model_kargs(self): """Test ``_update_metadata`` if metadata already has model_kwargs. If ``self._metadata`` already has ``model_kwargs`` in it, this method should do nothing. Setup: - self._metadata.get_model_kwargs that returns a kwargs dict Expected Output - None Side Effects - ``self._metadata.set_model_kwargs`` is not called. """ # Setup gaussian_copula = Mock(spec_set=GaussianCopula) # Run out = GaussianCopula._update_metadata(gaussian_copula) # Asserts assert out is None assert not gaussian_copula._metadata.set_model_kwargs.called def test__update_metadata_no_model_kwargs(self): """Test ``_update_metadata`` if metadata has no model_kwargs. If ``self._metadata`` has no ``model_kwargs`` in it, this method should prepare the ``model_kwargs`` dict and call ``self._metadata.set_model_kwargs`` with it. Setup: - self._metadata.get_model_kwargs that returns None. - self.get_distributions that returns a distribution dict. Expected Output - None Side Effects - ``self._metadata.set_model_kwargs`` is called with the expected dict. """ # Setup gaussian_copula = Mock(spec_set=GaussianCopula) gaussian_copula._metadata.get_model_kwargs.return_value = dict() gaussian_copula._categorical_transformer = 'a_categorical_transformer_value' gaussian_copula.get_distributions.return_value = { 'foo': 'copulas.univariate.gaussian.GaussianUnivariate' } # Run out = GaussianCopula._update_metadata(gaussian_copula) # Asserts assert out is None expected_kwargs = { 'distribution': {'foo': 'copulas.univariate.gaussian.GaussianUnivariate'}, 'categorical_transformer': 'a_categorical_transformer_value', } gaussian_copula._metadata.set_model_kwargs.assert_called_once_with( 'GaussianCopula', expected_kwargs) @patch('sdv.tabular.copulas.copulas.multivariate.GaussianMultivariate', spec_set=GaussianMultivariate) def test__fit(self, gm_mock): """Test the ``GaussianCopula._fit`` method. The ``_fit`` method is expected to: - Call the _get_distribution method to build the distributions dict. - Set the output from _get_distribution method as self._distribution. - Create a GaussianMultivriate object with the self._distribution value. - Store the GaussianMultivariate instance in the self._model attribute. - Fit the GaussianMultivariate instance with the given table data, unmodified. - Call the _update_metadata method. Setup: - mock _get_distribution to return a distribution dict Input: - pandas.DataFrame Expected Output: - None Side Effects: - self._distribution is set to the output from _get_distribution - GaussianMultivariate is called with self._distribution as input - GaussianMultivariate output is stored as self._model - self._model.fit is called with the input dataframe - self._update_metadata is called without arguments """ # Setup gaussian_copula = Mock(spec_set=GaussianCopula) gaussian_copula._get_distribution.return_value = {'a': 'a_distribution'} # Run data = pd.DataFrame({ 'a': [1, 2, 3] }) out = GaussianCopula._fit(gaussian_copula, data) # asserts assert out is None assert gaussian_copula._distribution == {'a': 'a_distribution'} gm_mock.assert_called_once_with(distribution={'a': 'a_distribution'}) assert gaussian_copula._model == gm_mock.return_value expected_data = pd.DataFrame({ 'a': [1, 2, 3] }) call_args = gaussian_copula._model.fit.call_args_list passed_table_data = call_args[0][0][0] pd.testing.assert_frame_equal(expected_data, passed_table_data) gaussian_copula._update_metadata.assert_called_once_with() def test__sample(self): """Test the ``GaussianCopula._sample`` method. The GaussianCopula._sample method is expected to: - call ``self._model.sample`` method passing the given num_rows. - Return the output from the ``self._model.sample call``. Input: - Integer Expected Output: - ``self._model.sample.return_value`` Side Effects: - ``self._model.sample`` is called with the given integer as input """ # Setup n_rows = 2 gaussian_copula = Mock(spec_set=GaussianCopula) expected = pd.DataFrame([1, 2, 3]) gaussian_copula._model.sample.return_value = expected # Run out = GaussianCopula._sample(gaussian_copula, n_rows) # Asserts gaussian_copula._model.sample.assert_called_once_with(n_rows) assert expected.equals(out) def test_get_parameters(self): """Test the ``get_parameters`` method when model is parametric. If all the distributions are parametric, ``get_parameters`` should return a flattened version of the parameters returned by the ``GaussianMultivariate`` instance. Setup: - ``self._model`` will be set to a REAL GaussianMultivarite instance with the following properties: - Uses the following distributions: - GaussianUnivariate - Univariate(parametric=PARAMETRIC) - Is fitted with a two column dataframe where the column of the ``GaussianMultivariate`` is constant (to force ``scale==0``) and the other one is not constant (to force ``scale!=0``). The dataframe can contain only three rows: gm = GaussianMultivariate(distribution={ 'a': GaussianUnivariate, 'b': Univariate(parametric=PARAMETRIC) }) pd.DataFrame({ 'a': [1, 1, 1], 'b': [1, 2, 3], }) Output: - Flattened parameter dictionary with the right values in it: - triangular covariance matrix - ``np.log`` applied to the ``EPSILON`` value for the univariate that had ``scale==0``. - ``np.log`` applied to the other ``scale`` parameter. """ def test_get_parameters_non_parametric(self): """Test the ``get_parameters`` method when model is parametric. If there is at least one distributions in the model that is not parametric, a NonParametricError should be raised. Setup: - ``self._model`` is set to a ``GaussianMultivariate`` that uses ``GaussianKDE`` as its ``distribution``. Side Effects: - A NonParametricError is raised. """ # Setup gm = GaussianMultivariate(distribution=GaussianKDE()) data = pd.DataFrame([1, 1, 1]) gm.fit(data) gc = Mock() gc._model = gm # Run, Assert with pytest.raises(NonParametricError): GaussianCopula.get_parameters(gc) def test__rebuild_covariance_matrix_positive_definite(self): """Test the ``_rebuild_covariance_matrix`` method for a positive definide covariance matrix. The _rebuild_covariance_matrix method is expected to: - Rebuild a square covariance matrix out of a triangular one. - Call ``make_positive_definite`` if input matrix is not positive definite, Input - numpy array, Symmetric positive definite matrix triangular format output - numpy array, Square matrix positive definite Side Effects: - ``make_positive_definite`` is not called. """ # Run covariance = [[1], [0, 1]] result = GaussianCopula._rebuild_covariance_matrix(Mock(), covariance) # Asserts expected = np.array([[1., 0.], [0., 1.0]]) np.testing.assert_almost_equal(result, expected) def test__rebuild_covariance_matrix_not_positive_definite(self): """Test the ``_rebuild_covariance_matrix`` method for a not positive definide covariance matrix. The _rebuild_covariance_matrix method is expected to: - Rebuild a square covariance matrix out of a triangular one. - Call ``make_positive_definite`` if input matrix is not positive definite, Input - numpy array, Symmetric no positive definite matrix triangular format output - numpy array, Square matrix positive definite Side Effects: - ``make_positive_definite`` is called. """ # Run covariance = [[1], [-1, 1]] result = GaussianCopula._rebuild_covariance_matrix(Mock(), covariance) # Asserts expected = np.array([[1, -1.0], [-1.0, 1.0]]) np.testing.assert_almost_equal(result, expected) def test__rebuild_gaussian_copula(self): """Test the ``GaussianCopula._rebuild_gaussian_copula`` method. The ``test__rebuild_gaussian_copula`` method is expected to: - Rebuild a square covariance matrix out of a triangular one. Input: - numpy array, Triangular covariance matrix Expected Output: - numpy array, Square covariance matrix """ # Setup gaussian_copula = Mock(autospec=GaussianCopula) gaussian_copula._rebuild_covariance_matrix.return_value = [[0.4, 0.17], [0.17, 0.07]] gaussian_copula._distribution = {'foo': 'GaussianUnivariate'} # Run model_parameters = { 'univariates': { 'foo': { 'scale': 0.0, 'loc': 5 }, }, 'covariance': [[0.1], [0.4, 0.1]], 'distribution': 'GaussianUnivariate', } result = GaussianCopula._rebuild_gaussian_copula(gaussian_copula, model_parameters) # Asserts expected = { 'univariates': [ { 'scale': 1.0, 'loc': 5, 'type': 'GaussianUnivariate' } ], 'columns': ['foo'], 'distribution': 'GaussianUnivariate', 'covariance': [[0.4, 0.17], [0.17, 0.07]] } assert result == expected def test_set_parameters(self): """Test the ``set_parameters`` method with positive num_rows. The ``GaussianCopula.set_parameters`` method is expected to: - Transform a flattened dict into its original form with the unflatten_dict function. - pass the unflattended dict to the ``self._rebuild_gaussian_copula`` method. - Store the number of rows in the `self._num_rows` attribute. - Create a GaussianMultivariate instance from the params dict and store it in the 'self._model' attribute. Input: - flat parameters dict Output: - None Side Effects: - Call ``_rebuild_gaussian_copula`` with the unflatted dict. - ``self._num_rows`` gets the given value. - ``GaussianMultivariate`` is called - ``GaussianMultivariate`` return value is stored as `self._model` """ # Setup gaussian_copula = Mock(autospec=GaussianCopula) returned = { 'univariates': [ { 'scale': 1.0, 'loc': 5, 'type': 'copulas.univariate.gaussian.GaussianUnivariate' } ], 'columns': ['foo'], 'num_rows': 3, 'covariance': [[0.4, 0.17], [0.17, 0.07]] } gaussian_copula._rebuild_gaussian_copula.return_value = returned # Run flatten_parameters = { 'univariates__foo__scale': 0.0, 'univariates__foo__loc': 5, 'covariance__0__0': 0.1, 'covariance__1__0': 0.4, 'covariance__1__1': 0.1, 'num_rows': 3 } GaussianCopula.set_parameters(gaussian_copula, flatten_parameters) # Asserts expected = { 'covariance': [[0.1], [0.4, 0.1]], 'num_rows': 3, 'univariates': { 'foo': { 'loc': 5, 'scale': 0.0 } } } gaussian_copula._rebuild_gaussian_copula.assert_called_once_with(expected) assert gaussian_copula._num_rows == 3 assert isinstance(gaussian_copula._model, GaussianMultivariate) def test_set_parameters_negative_max_rows(self): """Test the ``set_parameters`` method with negative num_rows. If the max rows value is negative, it is expected to be set to zero. The ``GaussianCopula.set_parameters`` method is expected to: - Transform a flattened dict into its original form with the unflatten_dict function. - pass the unflattended dict to the ``self._rebuild_gaussian_copula`` method. - Store ``0`` in the `self._num_rows` attribute. - Create a GaussianMultivariate instance from the params dict and store it in the 'self._model' attribute. Input: - flat parameters dict Output: - None Side Effects: - Call ``_rebuild_gaussian_copula`` with the unflatted dict. - ``self._num_rows`` is set to ``0``. - ``GaussianMultivariate`` is called - ``GaussianMultivariate`` return value is stored as `self._model` """ # Setup gaussian_copula = Mock(autospec=GaussianCopula) returned = { 'univariates': [ { 'scale': 1.0, 'loc': 5, 'type': 'copulas.univariate.gaussian.GaussianUnivariate' } ], 'columns': ['foo'], 'num_rows': -3, 'covariance': [[0.4, 0.17], [0.17, 0.07]] } gaussian_copula._rebuild_gaussian_copula.return_value = returned # Run flatten_parameters = { 'univariates__foo__scale': 0.0, 'univariates__foo__loc': 5, 'covariance__0__0': 0.1, 'covariance__1__0': 0.4, 'covariance__1__1': 0.1, 'num_rows': -3 } GaussianCopula.set_parameters(gaussian_copula, flatten_parameters) # Asserts expected = { 'covariance': [[0.1], [0.4, 0.1]], 'num_rows': -3, 'univariates': { 'foo': { 'loc': 5, 'scale': 0.0 } } } gaussian_copula._rebuild_gaussian_copula.assert_called_once_with(expected) assert gaussian_copula._num_rows == 0 assert isinstance(gaussian_copula._model, GaussianMultivariate)
[ "noreply@github.com" ]
daanknoors.noreply@github.com
046c3669d38f4376af10f67bab79eef3d7c72f08
6633f57a55159651b1af03c60bed93fc077b49c5
/transfer.py
4f140df66f64c208bfcf38bb087737f28830c9e8
[]
no_license
msfeldstein/airdrop-script
8e72fab5ea7a5aa7e30a882c88cdafa1696ac016
18099be2f122d49d2db41884918b390087d93ecb
refs/heads/master
2022-07-27T22:26:15.902208
2019-09-13T05:02:47
2019-09-13T05:02:47
208,136,560
1
1
null
2022-06-25T08:01:48
2019-09-12T20:02:47
JavaScript
UTF-8
Python
false
false
8,775
py
#!/usr/bin/python3 import pickle import pprint import requests import stellar_base from stellar_base.keypair import Keypair from stellar_base.address import Address from stellar_base.asset import Asset from stellar_base.operation import Payment, CreateAccount, ChangeTrust, SetOptions, AccountMerge from stellar_base.transaction import Transaction from stellar_base.transaction_envelope import TransactionEnvelope as Te from stellar_base.memo import TextMemo from stellar_base.horizon import horizon_testnet horizon = horizon_testnet() def setup_account(ID): """ Setup and cache some account from friendbot """ try: return pickle.load(open(ID, "rb")) except: kp = Keypair.random() publickey = kp.address().decode() url = 'https://friendbot.stellar.org' r = requests.get(url, params={'addr': publickey}) pickle.dump(kp, open(ID, "wb")) return setup_account(ID) def create_empty_acct(r_kp): """ Creates a tmp account which is empty except for min balance (no fees even) """ r = Address(address=r_kp.address().decode()) r.get() kp = Keypair.random() dest = kp.address().decode() tx = Transaction( source=r.address, sequence=r.sequence, fee=100, operations=[ CreateAccount(destination=dest, starting_balance="1") ] ) env = Te(tx=tx, network_id="TESTNET") env.sign(r_kp) horizon.submit(env.xdr()) return kp def balance_to_asset(b): if b['asset_type'] == 'native': return Asset.native() return Asset(b['asset_code'], b['asset_issuer']) def transfer_send(sender_kp, receiver_address, asset, amount): """ Execute the send portion of a transfer. This is used by the issuer, airdropper, or sender of an asset. When this is done, a new temporary account exists, which contains the transferred asset and enough XLM to merge it into the receiving account. Args: sender_kp (Keypair): keypair of sending account receiver_address (string): address of account to receive asset asset (Asset): asset to send amount (string): amount to transfer, float encoded as string Returns: response, tmp_dest: the Horizon response and the newly created account holding the transfer """ sender = Address(sender_kp.address()) sender.get() # Generate a tmp keypair tmp_kp = Keypair.random() tmp_dest = tmp_kp.address().decode() # This is a speculative transaction! # It may fail if someone pre-empts the CreateAccount -- in which case, it # should be either re-run with a new kp or it should be attempted again with # a payment to ensure at least 2.00006 native instead of create account # This has been left out of this demo for simplicity txn = Transaction( source=sender.address, sequence=sender.sequence, fee=400, operations=[ CreateAccount(destination=tmp_dest, starting_balance="4.1"), ChangeTrust(asset, amount, tmp_dest), Payment(tmp_dest, asset, amount), SetOptions(master_weight=0, signer_weight=1, source=tmp_dest, signer_address=receiver_address) ] ) txe = Te(tx=txn, network_id="TESTNET") txe.sign(sender_kp) txe.sign(tmp_kp) xdr = txe.xdr() response = horizon.submit(xdr) return response, tmp_dest def transfer_receive(tmp_address, receiver_kp, asset): """ Receive a transfer. This is used by a wallet on behalf of the receiving user to pull the new asset in. When it's done the receiving account has all of the asset from tmp_address, and all of the XLM reserve required to perform the transfer. Args: tmp_address (string): address of temporary account containing the transfer asset receiver_kp (Keypair): Keypair for the (optionally created) receiving account asset (Asset): asset to receive Returns: response: the Horizon response """ account_exists = False receiver_address = receiver_kp.address() receiver_acct = Address(receiver_address) try: receiver_acct.get() account_exists = True except stellar_base.exceptions.HorizonError: pass needs_trustline = True if account_exists: for b in receiver_acct.balances: if balance_to_asset(b) == asset: needs_trustline = False break tmp_acct = Address(tmp_address) tmp_acct.get() # assumes that the temp account cointains the specified asset amount = [b['balance'] for b in tmp_acct.balances if balance_to_asset(b) == asset][0] operations = [] if not account_exists: operations.append(CreateAccount(receiver_address, "1")) if needs_trustline: operations.extend([ # enough for trustline and one offer Payment(receiver_address, Asset.native(), "1"), ChangeTrust(asset, source=receiver_kp.address()) ]) else: operations.append( # enough for one offer Payment(receiver_address, Asset.native(), "0.5"), ) operations.extend([ # Send Asset Payment(receiver_address, asset, amount), # Clear signers SetOptions(signer_weight=0, signer_address=receiver_address), # Clear trustlines ChangeTrust(asset, "0"), # Merge Account AccountMerge(receiver_address) ]) txn = Transaction( source=tmp_acct.address, sequence=tmp_acct.sequence, fee=100 * len(operations), operations=operations ) txe = Te(tx=txn, network_id="TESTNET") txe.sign(receiver_kp) # Potentially the issuer needs to sign this too with an allow trust -- # depends on the asset in question! response = horizon.submit(txe.xdr()) return response def print_acct(name, acct): print("{} Has:".format(name)) print_table(acct.balances, cols=['asset_code', 'balance', 'limit'], defaults={ 'asset_code': 'XLM'}) print() def print_table(dicts, cols=None, defaults={}): """ Pretty print a list of dictionaries (myDict) as a dynamically sized table. If column names (colList) aren't specified, they will show in random order. Author: Thierry Husson - Use it as you want but don't blame me. """ if not dicts: print('-') return if not cols: cols = list(dicts[0].keys() if dicts else []) table_list = [cols] # 1st row = header for item in dicts: table_list.append( [str(item.get(col, defaults.get(col, ''))) for col in cols]) colSize = [max(map(len, col)) for col in zip(*table_list)] formatStr = ' | '.join(["{{:<{}}}".format(i) for i in colSize]) table_list.insert(1, ['-' * i for i in colSize]) # Seperating line for item in table_list: print(formatStr.format(*item)) def main(): alice = (setup_account("key.dat")) bob = setup_account("bob.dat") carol = create_empty_acct(bob) alice_addr = Address(address=alice.address()) bob_addr = Address(address=bob.address()) carol_addr = Address(address=carol.address()) dave = Keypair.random() dave_addr = Address(address=dave.address()) alice_addr.get() bob_addr.get() carol_addr.get() print("PRECONDITIONS\n") print_acct("Alice", alice_addr) print_acct("Bob", bob_addr) print_acct("Carol", carol_addr) print_acct("Dave", dave_addr) print("========================") fakeusd = Asset("USD", alice_addr.address) # Transfer Funds to Bob, who has an account (and a prior trustline) _, tmp_addr = transfer_send( sender_kp=alice, receiver_address=bob_addr.address, asset=fakeusd, amount="10") transfer_receive(tmp_address=tmp_addr, receiver_kp=bob, asset=fakeusd) # Transfer funds to Carol who has a bare-bones account (no funds, no trustline) _, tmp_addr = transfer_send( sender_kp=alice, receiver_address=carol_addr.address, asset=fakeusd, amount="10") transfer_receive(tmp_address=tmp_addr, receiver_kp=carol, asset=fakeusd) # Transfer Funds to Dave, who has no account _, tmp_addr = transfer_send( sender_kp=alice, receiver_address=dave_addr.address, asset=fakeusd, amount="10") transfer_receive(tmp_address=tmp_addr, receiver_kp=dave, asset=fakeusd) alice_addr.get() bob_addr.get() carol_addr.get() dave_addr.get() print("POSTCONDITIONS\n") print_acct("Alice", alice_addr) print_acct("Bob", bob_addr) print_acct("Carol", carol_addr) print_acct("Dave", dave_addr) if __name__ == "__main__": main()
[ "msfeldstein@gmail.com" ]
msfeldstein@gmail.com
07efd69bf4a0ce7a3e803a67475882a21e223353
c8896d14a56680217941f48dcc93468a134977ab
/devel/lib/python2.7/dist-packages/package/msg/_xx.py
c7ac51e4707f5150fa5d7bc6a815eaf2a2186a1c
[]
no_license
masterwei1024/-
afa69dd3502ab18cbb5a3971e80ef40d60683969
1a177ee2b133011fc3210c76291cf56ac728eaac
refs/heads/master
2020-06-14T15:42:47.735972
2019-07-03T11:58:35
2019-07-03T11:58:35
195,044,986
0
0
null
null
null
null
UTF-8
Python
false
false
3,452
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from package/xx.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class xx(genpy.Message): _md5sum = "b3087778e93fcd34cc8d65bc54e850d1" _type = "package/xx" _has_header = False #flag to mark the presence of a Header object _full_text = """int32 value """ __slots__ = ['value'] _slot_types = ['int32'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: value :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(xx, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.value is None: self.value = 0 else: self.value = 0 def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_get_struct_i().pack(self.value)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 4 (self.value,) = _get_struct_i().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_i().pack(self.value)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 4 (self.value,) = _get_struct_i().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_i = None def _get_struct_i(): global _struct_i if _struct_i is None: _struct_i = struct.Struct("<i") return _struct_i
[ "1520247204@qq.com" ]
1520247204@qq.com
e639bb543b86f6c690e50ff7109bb4d460094e0d
d04403f2d3f49e0ce6141f7aa67dddd8bfdec0f8
/Configuration/CMSTotemStandardSequences/test/TOTEMCMS/separate/geometryRPT1T2CMS_cfi.py
8b14b4d08389bf60e6b08b9aadce5f4bec3ae0e2
[]
no_license
developerpedroivo/src
2eefc792c7652c7116c83121722c6228ae81e00d
01506c383b389faa97dcd7f269daab724a2baf24
refs/heads/master
2021-01-23T21:38:21.330660
2015-12-07T06:49:12
2015-12-07T06:49:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
21,685
py
import FWCore.ParameterSet.Config as cms XMLIdealGeometryESSource = cms.ESSource("XMLIdealGeometryESSource", geomXMLFiles = cms.vstring(* ('Geometry/CMSCommonData/data/materials.xml', 'Geometry/CMSCommonData/data/rotations.xml', 'Geometry/CMSCommonData/data/normal/cmsextent.xml', # DIFF: TOTEM uses normal, CMS uses extend 'Geometry/CMSCommonData/data/cms.xml', 'Geometry/CMSCommonData/data/cmsMother.xml', # 'Geometry/CMSCommonData/data/cmsTracker.xml', # 'Geometry/CMSCommonData/data/caloBase.xml', # 'Geometry/CMSCommonData/data/cmsCalo.xml', # 'Geometry/CMSCommonData/data/muonBase.xml', 'Geometry/CMSCommonData/data/cmsMuon.xml', 'Geometry/CMSCommonData/data/mgnt.xml', 'Geometry/CMSCommonData/data/PhaseI/beampipe.xml', 'Geometry/CMSCommonData/data/cmsBeam.xml', 'Geometry/CMSCommonData/data/muonMB.xml', 'Geometry/CMSCommonData/data/muonMagnet.xml', 'Geometry/CMSCommonData/data/cavern.xml', 'Geometry/TrackerCommonData/data/pixfwdMaterials.xml', 'Geometry/TrackerCommonData/data/pixfwdCommon.xml', 'Geometry/TrackerCommonData/data/pixfwdPlaq.xml', 'Geometry/TrackerCommonData/data/pixfwdPlaq1x2.xml', 'Geometry/TrackerCommonData/data/pixfwdPlaq1x5.xml', 'Geometry/TrackerCommonData/data/pixfwdPlaq2x3.xml', 'Geometry/TrackerCommonData/data/pixfwdPlaq2x4.xml', 'Geometry/TrackerCommonData/data/pixfwdPlaq2x5.xml', 'Geometry/TrackerCommonData/data/pixfwdPanelBase.xml', 'Geometry/TrackerCommonData/data/pixfwdPanel.xml', 'Geometry/TrackerCommonData/data/pixfwdBlade.xml', 'Geometry/TrackerCommonData/data/pixfwdNipple.xml', 'Geometry/TrackerCommonData/data/pixfwdDisk.xml', 'Geometry/TrackerCommonData/data/pixfwdCylinder.xml', 'Geometry/TrackerCommonData/data/pixfwd.xml', 'Geometry/TrackerCommonData/data/pixbarmaterial.xml', 'Geometry/TrackerCommonData/data/pixbarladder.xml', 'Geometry/TrackerCommonData/data/pixbarladderfull.xml', 'Geometry/TrackerCommonData/data/pixbarladderhalf.xml', 'Geometry/TrackerCommonData/data/pixbarlayer.xml', 'Geometry/TrackerCommonData/data/pixbarlayer0.xml', 'Geometry/TrackerCommonData/data/pixbarlayer1.xml', 'Geometry/TrackerCommonData/data/pixbarlayer2.xml', 'Geometry/TrackerCommonData/data/pixbar.xml', 'Geometry/TrackerCommonData/data/tibtidcommonmaterial.xml', 'Geometry/TrackerCommonData/data/tibmaterial.xml', 'Geometry/TrackerCommonData/data/tibmodpar.xml', 'Geometry/TrackerCommonData/data/tibmodule0.xml', 'Geometry/TrackerCommonData/data/tibmodule0a.xml', 'Geometry/TrackerCommonData/data/tibmodule0b.xml', 'Geometry/TrackerCommonData/data/tibmodule2.xml', 'Geometry/TrackerCommonData/data/tibstringpar.xml', 'Geometry/TrackerCommonData/data/tibstring0ll.xml', 'Geometry/TrackerCommonData/data/tibstring0lr.xml', 'Geometry/TrackerCommonData/data/tibstring0ul.xml', 'Geometry/TrackerCommonData/data/tibstring0ur.xml', 'Geometry/TrackerCommonData/data/tibstring0.xml', 'Geometry/TrackerCommonData/data/tibstring1ll.xml', 'Geometry/TrackerCommonData/data/tibstring1lr.xml', 'Geometry/TrackerCommonData/data/tibstring1ul.xml', 'Geometry/TrackerCommonData/data/tibstring1ur.xml', 'Geometry/TrackerCommonData/data/tibstring1.xml', 'Geometry/TrackerCommonData/data/tibstring2ll.xml', 'Geometry/TrackerCommonData/data/tibstring2lr.xml', 'Geometry/TrackerCommonData/data/tibstring2ul.xml', 'Geometry/TrackerCommonData/data/tibstring2ur.xml', 'Geometry/TrackerCommonData/data/tibstring2.xml', 'Geometry/TrackerCommonData/data/tibstring3ll.xml', 'Geometry/TrackerCommonData/data/tibstring3lr.xml', 'Geometry/TrackerCommonData/data/tibstring3ul.xml', 'Geometry/TrackerCommonData/data/tibstring3ur.xml', 'Geometry/TrackerCommonData/data/tibstring3.xml', 'Geometry/TrackerCommonData/data/tiblayerpar.xml', 'Geometry/TrackerCommonData/data/tiblayer0.xml', 'Geometry/TrackerCommonData/data/tiblayer1.xml', 'Geometry/TrackerCommonData/data/tiblayer2.xml', 'Geometry/TrackerCommonData/data/tiblayer3.xml', 'Geometry/TrackerCommonData/data/tib.xml', 'Geometry/TrackerCommonData/data/tidmaterial.xml', 'Geometry/TrackerCommonData/data/tidmodpar.xml', 'Geometry/TrackerCommonData/data/tidmodule0.xml', 'Geometry/TrackerCommonData/data/tidmodule0r.xml', 'Geometry/TrackerCommonData/data/tidmodule0l.xml', 'Geometry/TrackerCommonData/data/tidmodule1.xml', 'Geometry/TrackerCommonData/data/tidmodule1r.xml', 'Geometry/TrackerCommonData/data/tidmodule1l.xml', 'Geometry/TrackerCommonData/data/tidmodule2.xml', 'Geometry/TrackerCommonData/data/tidringpar.xml', 'Geometry/TrackerCommonData/data/tidring0.xml', 'Geometry/TrackerCommonData/data/tidring0f.xml', 'Geometry/TrackerCommonData/data/tidring0b.xml', 'Geometry/TrackerCommonData/data/tidring1.xml', 'Geometry/TrackerCommonData/data/tidring1f.xml', 'Geometry/TrackerCommonData/data/tidring1b.xml', 'Geometry/TrackerCommonData/data/tidring2.xml', 'Geometry/TrackerCommonData/data/tid.xml', 'Geometry/TrackerCommonData/data/tidf.xml', 'Geometry/TrackerCommonData/data/tidb.xml', 'Geometry/TrackerCommonData/data/tibtidservices.xml', 'Geometry/TrackerCommonData/data/tibtidservicesf.xml', 'Geometry/TrackerCommonData/data/tibtidservicesb.xml', 'Geometry/TrackerCommonData/data/tobmaterial.xml', 'Geometry/TrackerCommonData/data/tobmodpar.xml', 'Geometry/TrackerCommonData/data/tobmodule0.xml', 'Geometry/TrackerCommonData/data/tobmodule2.xml', 'Geometry/TrackerCommonData/data/tobmodule4.xml', 'Geometry/TrackerCommonData/data/tobrodpar.xml', 'Geometry/TrackerCommonData/data/tobrod0c.xml', 'Geometry/TrackerCommonData/data/tobrod0l.xml', 'Geometry/TrackerCommonData/data/tobrod0h.xml', 'Geometry/TrackerCommonData/data/tobrod0.xml', 'Geometry/TrackerCommonData/data/tobrod1l.xml', 'Geometry/TrackerCommonData/data/tobrod1h.xml', 'Geometry/TrackerCommonData/data/tobrod1.xml', 'Geometry/TrackerCommonData/data/tobrod2c.xml', 'Geometry/TrackerCommonData/data/tobrod2l.xml', 'Geometry/TrackerCommonData/data/tobrod2h.xml', 'Geometry/TrackerCommonData/data/tobrod2.xml', 'Geometry/TrackerCommonData/data/tobrod3l.xml', 'Geometry/TrackerCommonData/data/tobrod3h.xml', 'Geometry/TrackerCommonData/data/tobrod3.xml', 'Geometry/TrackerCommonData/data/tobrod4c.xml', 'Geometry/TrackerCommonData/data/tobrod4l.xml', 'Geometry/TrackerCommonData/data/tobrod4h.xml', 'Geometry/TrackerCommonData/data/tobrod4.xml', 'Geometry/TrackerCommonData/data/tobrod5l.xml', 'Geometry/TrackerCommonData/data/tobrod5h.xml', 'Geometry/TrackerCommonData/data/tobrod5.xml', 'Geometry/TrackerCommonData/data/tob.xml', 'Geometry/TrackerCommonData/data/tecmaterial.xml', 'Geometry/TrackerCommonData/data/tecmodpar.xml', 'Geometry/TrackerCommonData/data/tecmodule0.xml', 'Geometry/TrackerCommonData/data/tecmodule0r.xml', 'Geometry/TrackerCommonData/data/tecmodule0s.xml', 'Geometry/TrackerCommonData/data/tecmodule1.xml', 'Geometry/TrackerCommonData/data/tecmodule1r.xml', 'Geometry/TrackerCommonData/data/tecmodule1s.xml', 'Geometry/TrackerCommonData/data/tecmodule2.xml', 'Geometry/TrackerCommonData/data/tecmodule3.xml', 'Geometry/TrackerCommonData/data/tecmodule4.xml', 'Geometry/TrackerCommonData/data/tecmodule4r.xml', 'Geometry/TrackerCommonData/data/tecmodule4s.xml', 'Geometry/TrackerCommonData/data/tecmodule5.xml', 'Geometry/TrackerCommonData/data/tecmodule6.xml', 'Geometry/TrackerCommonData/data/tecpetpar.xml', 'Geometry/TrackerCommonData/data/tecring0.xml', 'Geometry/TrackerCommonData/data/tecring1.xml', 'Geometry/TrackerCommonData/data/tecring2.xml', 'Geometry/TrackerCommonData/data/tecring3.xml', 'Geometry/TrackerCommonData/data/tecring4.xml', 'Geometry/TrackerCommonData/data/tecring5.xml', 'Geometry/TrackerCommonData/data/tecring6.xml', 'Geometry/TrackerCommonData/data/tecring0f.xml', 'Geometry/TrackerCommonData/data/tecring1f.xml', 'Geometry/TrackerCommonData/data/tecring2f.xml', 'Geometry/TrackerCommonData/data/tecring3f.xml', 'Geometry/TrackerCommonData/data/tecring4f.xml', 'Geometry/TrackerCommonData/data/tecring5f.xml', 'Geometry/TrackerCommonData/data/tecring6f.xml', 'Geometry/TrackerCommonData/data/tecring0b.xml', 'Geometry/TrackerCommonData/data/tecring1b.xml', 'Geometry/TrackerCommonData/data/tecring2b.xml', 'Geometry/TrackerCommonData/data/tecring3b.xml', 'Geometry/TrackerCommonData/data/tecring4b.xml', 'Geometry/TrackerCommonData/data/tecring5b.xml', 'Geometry/TrackerCommonData/data/tecring6b.xml', 'Geometry/TrackerCommonData/data/tecpetalf.xml', 'Geometry/TrackerCommonData/data/tecpetalb.xml', 'Geometry/TrackerCommonData/data/tecpetal0.xml', 'Geometry/TrackerCommonData/data/tecpetal0f.xml', 'Geometry/TrackerCommonData/data/tecpetal0b.xml', 'Geometry/TrackerCommonData/data/tecpetal3.xml', 'Geometry/TrackerCommonData/data/tecpetal3f.xml', 'Geometry/TrackerCommonData/data/tecpetal3b.xml', 'Geometry/TrackerCommonData/data/tecpetal6f.xml', 'Geometry/TrackerCommonData/data/tecpetal6b.xml', 'Geometry/TrackerCommonData/data/tecpetal8f.xml', 'Geometry/TrackerCommonData/data/tecpetal8b.xml', 'Geometry/TrackerCommonData/data/tecwheel.xml', 'Geometry/TrackerCommonData/data/tecwheela.xml', 'Geometry/TrackerCommonData/data/tecwheelb.xml', 'Geometry/TrackerCommonData/data/tecwheelc.xml', 'Geometry/TrackerCommonData/data/tecwheeld.xml', 'Geometry/TrackerCommonData/data/tecwheel6.xml', 'Geometry/TrackerCommonData/data/tecservices.xml', 'Geometry/TrackerCommonData/data/tecbackplate.xml', 'Geometry/TrackerCommonData/data/tec.xml', 'Geometry/TrackerCommonData/data/trackermaterial.xml', 'Geometry/TrackerCommonData/data/tracker.xml', 'Geometry/TrackerCommonData/data/trackerpixbar.xml', 'Geometry/TrackerCommonData/data/trackerpixfwd.xml', 'Geometry/TrackerCommonData/data/trackertibtidservices.xml', 'Geometry/TrackerCommonData/data/trackertib.xml', 'Geometry/TrackerCommonData/data/trackertid.xml', 'Geometry/TrackerCommonData/data/trackertob.xml', 'Geometry/TrackerCommonData/data/trackertec.xml', 'Geometry/TrackerCommonData/data/trackerbulkhead.xml', 'Geometry/TrackerCommonData/data/trackerother.xml', 'Geometry/EcalCommonData/data/eregalgo.xml', 'Geometry/EcalCommonData/data/ebalgo.xml', 'Geometry/EcalCommonData/data/ebcon.xml', 'Geometry/EcalCommonData/data/ebrot.xml', 'Geometry/EcalCommonData/data/eecon.xml', 'Geometry/EcalCommonData/data/eefixed.xml', 'Geometry/EcalCommonData/data/eehier.xml', 'Geometry/EcalCommonData/data/eealgo.xml', 'Geometry/EcalCommonData/data/escon.xml', 'Geometry/EcalCommonData/data/esalgo.xml', 'Geometry/EcalCommonData/data/eeF.xml', 'Geometry/EcalCommonData/data/eeB.xml', 'Geometry/HcalCommonData/data/hcalrotations.xml', 'Geometry/HcalCommonData/data/hcalalgo.xml', 'Geometry/HcalCommonData/data/hcalbarrelalgo.xml', 'Geometry/HcalCommonData/data/hcalendcapalgo.xml', 'Geometry/HcalCommonData/data/hcalouteralgo.xml', 'Geometry/HcalCommonData/data/hcalforwardalgo.xml', 'Geometry/HcalCommonData/data/average/hcalforwardmaterial.xml', 'Geometry/MuonCommonData/data/v1/mbCommon.xml', 'Geometry/MuonCommonData/data/v1/mb1.xml', 'Geometry/MuonCommonData/data/v1/mb2.xml', 'Geometry/MuonCommonData/data/v1/mb3.xml', 'Geometry/MuonCommonData/data/v1/mb4.xml', 'Geometry/MuonCommonData/data/design/muonYoke.xml', 'Geometry/MuonCommonData/data/v2/mf.xml', 'Geometry/MuonCommonData/data/v2/rpcf.xml', 'Geometry/MuonCommonData/data/v2/csc.xml', 'Geometry/MuonCommonData/data/v2/mfshield.xml', 'Geometry/ForwardCommonData/data/forward.xml', 'Geometry/ForwardCommonData/data/v2/forwardshield.xml', 'Geometry/ForwardCommonData/data/brmrotations.xml', 'Geometry/ForwardCommonData/data/brm.xml', 'Geometry/ForwardCommonData/data/totemMaterials.xml', 'Geometry/ForwardCommonData/data/totemRotations.xml', 'Geometry/ForwardCommonData/data/totemt1.xml', 'Geometry/ForwardCommonData/data/totemt2.xml', 'Geometry/ForwardCommonData/data/ionpump.xml', 'Geometry/ForwardCommonData/data/castor.xml', 'Geometry/ForwardSimData/data/totemsensGem.xml', # DIFF: TOTEM only #'Geometry/ForwardCommonData/data/zdcmaterials.xml', 'Geometry/ForwardCommonData/data/lumimaterials.xml', #'Geometry/ForwardCommonData/data/zdcrotations.xml', 'Geometry/ForwardCommonData/data/lumirotations.xml', #'Geometry/ForwardCommonData/data/zdc.xml', #'Geometry/ForwardCommonData/data/zdclumi.xml', #'Geometry/ForwardCommonData/data/cmszdc.xml', 'Geometry/MuonCommonData/data/v2/muonNumbering.xml', 'Geometry/TrackerCommonData/data/trackerStructureTopology.xml', 'Geometry/TrackerSimData/data/trackersens.xml', 'Geometry/TrackerRecoData/data/trackerRecoMaterial.xml', 'Geometry/EcalSimData/data/ecalsens.xml', 'Geometry/HcalCommonData/data/hcalsenspmf.xml', 'Geometry/HcalSimData/data/hf.xml', 'Geometry/HcalSimData/data/hfpmt.xml', 'Geometry/HcalSimData/data/hffibrebundle.xml', 'Geometry/HcalSimData/data/CaloUtil.xml', 'Geometry/MuonSimData/data/muonSens.xml', 'Geometry/DTGeometryBuilder/data/dtSpecsFilter.xml', 'Geometry/CSCGeometryBuilder/data/cscSpecsFilter.xml', 'Geometry/CSCGeometryBuilder/data/cscSpecs.xml', 'Geometry/RPCGeometryBuilder/data/RPCSpecs.xml', 'Geometry/ForwardCommonData/data/brmsens.xml', 'Geometry/ForwardSimData/data/castorsens.xml', #'Geometry/ForwardSimData/data/zdcsens.xml', 'Geometry/HcalSimData/data/HcalProdCuts.xml', 'Geometry/EcalSimData/data/EcalProdCuts.xml', 'Geometry/EcalSimData/data/ESProdCuts.xml', 'Geometry/TrackerSimData/data/trackerProdCuts.xml', 'Geometry/TrackerSimData/data/trackerProdCutsBEAM.xml', 'Geometry/MuonSimData/data/muonProdCuts.xml', 'Geometry/ForwardSimData/data/CastorProdCuts.xml', 'Geometry/ForwardSimData/data/zdcProdCuts.xml', 'Geometry/ForwardSimData/data/ForwardShieldProdCuts.xml', 'Geometry/CMSCommonData/data/FieldParameters.xml', 'Geometry/ForwardSimData/data/TotemProdCuts.xml', 'Geometry/TotemRPData/data/RP_Box.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_000.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_001.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_002.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_003.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_004.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_005.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_020.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_021.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_022.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_023.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_024.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_025.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_100.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_101.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_102.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_103.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_104.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_105.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_120.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_121.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_122.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_123.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_124.xml', 'Geometry/TotemRPData/data/RP_Box/RP_Box_125.xml', 'Geometry/TotemRPData/data/RP_Hybrid.xml', 'Geometry/TotemRPData/data/RP_Materials.xml', 'Geometry/TotemRPData/data/RP_Transformations.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_000.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_001.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_002.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_003.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_004.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_005.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_020.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_021.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_022.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_023.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_024.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_025.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_100.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_101.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_102.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_103.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_104.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_105.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_120.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_121.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_122.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_123.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_124.xml', 'Geometry/TotemRPData/data/RP_Detectors_Assembly/RP_Detectors_Assembly_125.xml', 'Geometry/TotemRPData/data/RP_Device.xml', 'Geometry/TotemRPData/data/RP_Vertical_Device.xml', 'Geometry/TotemRPData/data/RP_Horizontal_Device.xml', 'Geometry/TotemRPData/data/RP_220_Right_Station.xml', 'Geometry/TotemRPData/data/RP_220_Left_Station.xml', 'Geometry/TotemRPData/data/RP_147_Right_Station.xml', 'Geometry/TotemRPData/data/RP_147_Left_Station.xml', 'Geometry/TotemRPData/data/RP_Stations_Assembly.xml', 'Geometry/TotemRPData/data/RP_Sensitive_Dets.xml', 'Geometry/TotemRPData/data/RP_Cuts_Per_Region.xml', 'Geometry/TotemRPData/data/TotemRPGlobal.xml', 'Geometry/TotemRPData/data/RP_Param_Beam_Region.xml', 'Geometry/TotemRPData/data/RP_Beta_90/RP_Dist_Beam_Cent.xml', 'Geometry/PPSCommonData/data/PPS_Transformations.xml', 'Geometry/PPSCommonData/data/Cylindrical_pot.xml', 'Geometry/PPSCommonData/data/RP_Timing_Lbar.xml', 'Geometry/PPSCommonData/data/RP_Timing_Box_Left.xml', 'Geometry/PPSCommonData/data/RP_Timing_Box_Right.xml', 'Geometry/PPSCommonData/data/RP_215_Left_Detector_Assembly.xml', 'Geometry/PPSCommonData/data/RP_215_Right_Detector_Assembly.xml', 'Geometry/PPSCommonData/data/RP_215_Right_Station.xml', 'Geometry/PPSCommonData/data/RP_215_Left_Station.xml', 'Geometry/PPSCommonData/data/PPS_Stations_Assembly.xml', 'Geometry/PPSCommonData/data/PPS_timing_Sensitive_Dets.xml' )), # DIFF: TOTEM only # rootNodeName = cms.string('cms:OCMS') rootNodeName = cms.string('TotemRPGlobal:OTOTEM') ) # real geometry TotemRPGeometryESModule = cms.ESProducer("TotemRPGeometryESModule", verbosity = cms.untracked.uint32(1) )
[ "setesami@cern.ch" ]
setesami@cern.ch