blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
โŒ€
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
0139a90daa7aba09474a438506fda874d445904a
71df0a69bcfba49c7a5d0bff5fcd314942f10541
/viewStatsPage.py
7dc99083a1166f8666a42bbbede0f46c6385f17f
[]
no_license
linzinha/lvlUP
24afde28362e62e04ef5c41ffcbd4f44fa4c4ad8
17fca44c02c92a8a8a25520b794187c19b6c7ada
refs/heads/main
2023-05-29T12:36:53.635989
2021-06-13T13:36:22
2021-06-13T13:36:22
376,544,097
0
0
null
null
null
null
UTF-8
Python
false
false
6,358
py
######### # Imports ######### import json import time import tkinter as tk from tkinter import * ################ # Open JSON File # ############## with open('stats.json', 'r') as string: my_dict = json.load(string) string.close() #################### # Global Variables #################### p0 = my_dict['points'] p1 = my_dict['player1'] p2 = my_dict['player2'] items = list(p0.items()) bottom = len(items) + 1 timeStr = time.strftime("%Y-%m-%d_%H%M") lxVarList = [] activityList = [] # Player 1 p1JSON = list(p1.items()) p1WeekStats = p1JSON[2] p1MonthStats = p1JSON[3] p1TotalJSON = p1JSON[4] p1statListWeekScores = p1WeekStats[1] p1statListMonthScores = p1MonthStats[1] p1Totals = p1TotalJSON[1] p1TotalWeek = p1Totals['total week'] # Player 2 p2JSON = list(p2.items()) p2WeekStats = p2JSON[2] p2MonthStats = p2JSON[3] p2TotalJSON = p2JSON[4] p2statListWeekScores = p2WeekStats[1] p2statListMonthScores = p2MonthStats[1] p2Totals = p2TotalJSON[1] p2TotalWeek = p2Totals['total week'] def viewStats(): viewS = tk.Tk() viewS.configure(bg="turquoise") viewS.geometry("545x700") viewS.title("Lvl^") addPGreeting = tk.Label(text="Current Stats:", bg="mediumturquoise", fg="black", font="10", width=60, pady=20) addPGreeting.grid(row=0, columnspan=6, sticky=EW) #################### # Columns #################### # Players p1PlayerOne = tk.Label(viewS, text=p1['name'], width=6) p1PlayerOne.grid(row=1, column=1, columnspan=2, sticky=EW) p2PlayerTwo = tk.Label(viewS, text=p2['name'], width=6) p2PlayerTwo.grid(row=1, column=3, columnspan=2, sticky=EW) # Player1 p1Week = tk.Label(viewS, text="Week", width=6) p1Week.grid(row=2, column=1, sticky=EW) p1Month = tk.Label(viewS, text="Month", width=6) p1Month.grid(row=2, column=2, sticky=EW) # Player2 p2Week = tk.Label(viewS, text="Week", width=6) p2Week.grid(row=2, column=3, sticky=EW) p2Month = tk.Label(viewS, text="Month", width=6) p2Month.grid(row=2, column=4, sticky=EW) ############################# # Populates the Activity List ############################# row = 3 for category in p1statListWeekScores: labelEntry = tk.Label(viewS, text=category, width=14) labelEntry.grid(row=row, column=0, sticky=EW, pady=3, padx=18) row += 1 def changeWindow(): viewS.destroy() from main import mainPage mainPage() ################ # Player 1 Stats ################ # week row = 3 for stat in p1statListWeekScores: point = str(p1statListWeekScores[stat]) p1WeekPoints = tk.Label(viewS, text=point, width=6) p1WeekPoints.grid(row=row, column=1, sticky=EW) row += 1 # month row = 3 for stat in p1statListMonthScores: point = str(p1statListMonthScores[stat]) p1WeekPoints = tk.Label(viewS, text=point, width=6) p1WeekPoints.grid(row=row, column=2, sticky=EW) row += 1 ################ # Player 2 Stats ################ # week row = 3 for stat in p2statListWeekScores: point = str(p2statListWeekScores[stat]) p2WeekPoints = tk.Label(viewS, text=point, width=6) p2WeekPoints.grid(row=row, column=3, sticky=EW) row += 1 # month row = 3 for stat in p2statListMonthScores: point = str(p2statListMonthScores[stat]) p2WeekPoints = tk.Label(viewS, text=point, width=6) p2WeekPoints.grid(row=row, column=4, sticky=EW) row += 1 ############ # Clear Week ############ def cWeek(): row = 3 for stat in p1statListWeekScores: p1statListWeekScores[stat] = 0 p1WeekPoints = tk.Label(viewS, text=p1statListWeekScores[stat], width=6) p1WeekPoints.grid(row=row, column=1, sticky=EW) row += 1 p1Totals['total week'] = 0 row = 3 for stat in p2statListWeekScores: p2statListWeekScores[stat] = 0 p2WeekPoints = tk.Label(viewS, text=p2statListWeekScores[stat], width=6) p2WeekPoints.grid(row=row, column=3, sticky=EW) row += 1 p2Totals['total week'] = 0 a_file = open("stats.json", "w") json.dump(my_dict, a_file) a_file.close() archive = open("stats" + timeStr + ".json", "w") json.dump(my_dict, archive) archive.close() ############# # Clear Month ############# def cMonth(): row = 3 for stat in p1statListMonthScores: p1statListMonthScores[stat] = 0 p1MonthPoints = tk.Label(viewS, text=p1statListMonthScores[stat], width=6) p1MonthPoints.grid(row=row, column=2, sticky=EW) row += 1 p1Totals['total month'] = 0 row = 3 for stat in p2statListMonthScores: p2statListMonthScores[stat] = 0 p2MonthPoints = tk.Label(viewS, text=p2statListMonthScores[stat], width=6) p2MonthPoints.grid(row=row, column=4, sticky=EW) row += 1 p2Totals['total month'] = 0 a_file = open("stats.json", "w") json.dump(my_dict, a_file) a_file.close() archive = open("stats" + timeStr + ".json", "w") json.dump(my_dict, archive) archive.close() ########################## # Go Back and Quit Buttons ########################## em1 = tk.Label(viewS, text="", width=40, bg="turquoise") em1.grid(row=bottom + 1, columnspan=5, sticky=EW, pady=3, padx=18) clearWeek = Button(viewS, text="Clear Week", command=cWeek, width=12) clearWeek.grid(row=bottom + 2, column=1, columnspan=2, sticky=EW, padx=6) clearMonth = Button(viewS, text="Clear Month", command=cMonth, width=12) clearMonth.grid(row=bottom + 2, column=3, columnspan=2, sticky=EW, padx=6) em2 = tk.Label(viewS, text="", width=40, bg="turquoise") em2.grid(row=bottom + 3, columnspan=5, sticky=EW, pady=3, padx=18) goBack = Button(viewS, text="Go back", command=lambda *args: changeWindow(), width=30) goBack.grid(row=bottom + 4, column=1, columnspan=4, sticky=EW, padx=10) quitG = Button(viewS, text="Quit", command=viewS.destroy, width=30) quitG.grid(row=bottom + 5, column=1, columnspan=4, sticky=EW, padx=10) viewS.mainloop()
[ "noreply@github.com" ]
linzinha.noreply@github.com
e33487b216736e6059584d1fa1c040ace6df1cc7
5bfbc89974b7cb29e476c5c8e18d6e363019aacf
/Example/sentiment_lstm_regression.py
83642cf1479c949bec11858edf1decc1c74e671f
[ "MIT" ]
permissive
lagleki/BayesianRNN
1cec3f39bb4bc41a965d0443f7b01e1fd4186b9a
0426c503438aa9106c676e8f68e85aa9f16bd05b
refs/heads/master
2021-09-06T07:27:11.933093
2018-02-03T19:56:02
2018-02-03T19:56:02
120,124,468
0
0
null
2018-02-03T19:55:26
2018-02-03T19:55:26
null
UTF-8
Python
false
false
5,025
py
# Train a Bayesian LSTM on the IMDB sentiment classification task. # To use the GPU: # THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python imdb_lstm_regression.py # To speed up Theano, create a ram disk: # mount -t tmpfs -o size=512m tmpfs /mnt/ramdisk # Then add flag THEANO_FLAGS='base_compiledir=/mnt/ramdisk' from __future__ import absolute_import from __future__ import print_function import numpy as np import sys import theano from callbacks import ModelTest from dataset import loader from keras.optimizers import SGD, RMSprop, Adagrad from keras.models import Sequential from keras.layers.core import Dense, Dropout from keras.layers.embeddings import Embedding from keras.layers.recurrent import LSTM, GRU, SimpleRNN from keras.regularizers import l2 # Process inpus: if len(sys.argv) == 1: print("Expected args: p_W, p_U, p_dense, p_emb, weight_decay, batch_size, maxlen") print("Using default args:") # sys.argv = ["", "0.", "0.", "0.", "0.", "1e-4", "128", "200"] sys.argv = ["", "0.25", "0.25", "0.25", "0.25", "1e-4", "128", "200"] args = [float(a) for a in sys.argv[1:]] print(args) p_W, p_U, p_dense, p_emb, weight_decay, batch_size, maxlen = args batch_size = int(batch_size) maxlen = int(maxlen) folder = "/scratch/home/Projects/rnn_dropout/exps/" filename = ("sa_DropoutLSTM_pW_%.2f_pU_%.2f_pDense_%.2f_pEmb_%.2f_reg_%f_batch_size_%d_cutoff_%d_epochs" % (p_W, p_U, p_dense, p_emb, weight_decay, batch_size, maxlen)) print(filename) # Global params: nb_words = 20000 skip_top = 0 test_split = 0.2 init_seed = 0 global_seed = 0 # Load data: print("Loading data...") dataset = loader(init_seed, maxlen, nb_words, skip_top, test_split) X_train, X_test, Y_train, Y_test = dataset.X_train, dataset.X_test, dataset.Y_train, dataset.Y_test mean_y_train, std_y_train = dataset.mean_y_train, dataset.std_y_train # Set seed: np.random.seed(global_seed) # Build model: print('Build model...') model = Sequential() model.add(Embedding(nb_words + dataset.index_from, 128, W_regularizer=l2(weight_decay), dropout=p_emb, input_length=maxlen, batch_input_shape=(batch_size, maxlen))) model.add(LSTM(128, W_regularizer=l2(weight_decay), U_regularizer=l2(weight_decay), b_regularizer=l2(weight_decay), dropout_W=p_W, dropout_U=p_U)) model.add(Dropout(p_dense)) model.add(Dense(1, W_regularizer=l2(weight_decay), b_regularizer=l2(weight_decay))) #optimiser = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=False) optimiser = 'adam' model.compile(loss='mean_squared_error', optimizer=optimiser) # Potentially load weights # model.load_weights("path") # Train model print("Train...") # Theano modeltest_1 = ModelTest(X_train[:100], mean_y_train + std_y_train * np.atleast_2d(Y_train[:100]).T, test_every_X_epochs=1, verbose=0, loss='euclidean', mean_y_train=mean_y_train, std_y_train=std_y_train) modeltest_2 = ModelTest(X_test, np.atleast_2d(Y_test).T, test_every_X_epochs=1, verbose=0, loss='euclidean', mean_y_train=mean_y_train, std_y_train=std_y_train) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=250, callbacks=[modeltest_1, modeltest_2]) # # Tensorflow # modeltest_1 = ModelTest(X_train[:batch_size], # mean_y_train + std_y_train * np.atleast_2d(Y_train[:batch_size]).T, # test_every_X_epochs=1, verbose=0, loss='euclidean', # mean_y_train=mean_y_train, std_y_train=std_y_train, batch_size=batch_size) # tensorflow_test_size = batch_size * (len(X_test) / batch_size) # modeltest_2 = ModelTest(X_test[:tensorflow_test_size], np.atleast_2d(Y_test[:tensorflow_test_size]).T, # test_every_X_epochs=1, verbose=0, loss='euclidean', # mean_y_train=mean_y_train, std_y_train=std_y_train, batch_size=batch_size) # tensorflow_train_size = batch_size * (len(X_train) / batch_size) # model.fit(X_train[:tensorflow_train_size], Y_train[:tensorflow_train_size], # batch_size=batch_size, nb_epoch=250, callbacks=[modeltest_1, modeltest_2]) # Potentially save weights # model.save_weights("path", overwrite=True) # Evaluate model # Dropout approximation for training data: standard_prob = model.predict(X_train, batch_size=500, verbose=1) print(np.mean(((mean_y_train + std_y_train * np.atleast_2d(Y_train).T) - (mean_y_train + std_y_train * standard_prob))**2, 0)**0.5) # Dropout approximation for test data: standard_prob = model.predict(X_test, batch_size=500, verbose=1) print(np.mean((np.atleast_2d(Y_test).T - (mean_y_train + std_y_train * standard_prob))**2, 0)**0.5) # MC dropout for test data: T = 50 prob = np.array([modeltest_2.predict_stochastic(X_test, batch_size=500, verbose=0) for _ in xrange(T)]) prob_mean = np.mean(prob, 0) print(np.mean((np.atleast_2d(Y_test).T - (mean_y_train + std_y_train * prob_mean))**2, 0)**0.5)
[ "yaringal@gmail.com" ]
yaringal@gmail.com
2be7b229988ee87da8b2f46796797fd123be5e00
20722df255492f591b1a988c7499e1eab6c71a90
/Ch1-Image_Recognition/stacked_autoencoders_for_mnist_classification.py
b7276e8c60f5905ae6df8947b5ada8ac112426d5
[]
no_license
solaris33/TensorFlow_Examples
551f721aa4c97b4735496d5a1aecf742de081fa9
122116b268badf27b605d7a3857215474ab99e6a
refs/heads/master
2020-12-24T19:13:20.622985
2018-11-01T12:44:41
2018-11-01T12:44:41
58,610,121
4
1
null
2016-05-12T05:27:23
2016-05-12T05:20:56
null
UTF-8
Python
false
false
6,234
py
# -*- coding: utf-8 -*- # MNIST ์ˆซ์ž ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ Stacked AutoEncoder ์˜ˆ์ œ # ์ ˆ๋Œ€ ์ž„ํฌํŠธ ์„ค์ • from __future__ import division, print_function, absolute_import # ํ•„์š”ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋“ค์„ ์ž„ํฌํŠธ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # MNIST ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค์šด๋กœ๋“œ ํ•œ๋‹ค. from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ • learning_rate_RMSProp = 0.01 learning_rate_Gradient_Descent = 0.5 training_epochs = 400 # epoch ํšŸ์ˆ˜ (iteration) batch_size = 256 display_step = 1 # ๋ช‡ Step๋งˆ๋‹ค log๋ฅผ ์ถœ๋ ฅํ• ์ง€ ๊ฒฐ์ •ํ•œ๋‹ค. examples_to_show = 10 # reconstruct๋œ ์ด๋ฏธ์ง€ ์ค‘ ๋ช‡๊ฐœ๋ฅผ ๋ณด์—ฌ์ค„์ง€๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. n_hidden_1 = 200 # ์ฒซ๋ฒˆ์งธ ํžˆ๋“ ๋ ˆ์ด์–ด์˜ ๋…ธ๋“œ ๊ฐœ์ˆ˜ n_hidden_2 = 200 # ๋‘๋ฒˆ์งธ ํžˆ๋“ ๋ ˆ์ด์–ด์˜ ๋…ธ๋“œ ๊ฐœ์ˆ˜ n_input = 784 # MNIST ๋ฐ์ดํ„ฐ input (์ด๋ฏธ์ง€ ํฌ๊ธฐ: 28*28) # Stacked Autoencoder๋ฅผ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค # Input ๋ฐ์ดํ„ฐ ์„ค์ • X = tf.placeholder("float", [None, n_input]) # ํžˆ๋“  ๋ ˆ์ด์–ด 1์„ ์œ„ํ•œ Weights์™€ Biases Wh_1 = tf.Variable(tf.random_normal([n_input, n_hidden_1])) bh_1 = tf.Variable(tf.random_normal([n_hidden_1])) h_1 = tf.nn.sigmoid(tf.matmul(X, Wh_1) +bh_1) # ํžˆ๋“ ๋ ˆ์ด์–ด 1์˜ activation (sigmoid ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉ) # ํžˆ๋“  ๋ ˆ์ด์–ด 2์„ ์œ„ํ•œ Weights์™€ Biases Wh_2 = tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])) bh_2 = tf.Variable(tf.random_normal([n_hidden_2])) h_2 = tf.nn.sigmoid(tf.matmul(h_1, Wh_2) +bh_2) # ํžˆ๋“ ๋ ˆ์ด์–ด 2์˜ activation (sigmoid ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉ) # Output ๋ ˆ์ด์–ด๋ฅผ ์œ„ํ•œ Weights์™€ Biases Wo = tf.Variable(tf.random_normal([n_hidden_2, n_input])) bo = tf.Variable(tf.random_normal([n_input])) y_pred = tf.nn.sigmoid(tf.matmul(h_2,Wo) + bo) # Output ๋ ˆ์ด์–ด์˜ activation (sigmoid ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉ) # Output ๊ฐ’(True Output)์„ ์„ค์ •(=Input ๊ฐ’) y_true = X # Softmax Classifier๋ฅผ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค W = tf.Variable(tf.zeros([n_hidden_2, 10])) b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(h_2, W) + b) # ์˜ˆ์ธก๋œ Output : ๋‘๋ฒˆ์งธ ํžˆ๋“ ๋ ˆ์ด์–ด์˜ activation output์„ input์œผ๋กœ ์‚ฌ์šฉํ•œ๋‹ค. y_ = tf.placeholder(tf.float32, [None, 10]) # True Output # Optimization์„ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค # Autoencoder Optimization์„ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) # squared error loss ํ•จ์ˆ˜ optimizer = tf.train.RMSPropOptimizer(learning_rate_RMSProp).minimize(cost) # Softmax Classifier Optimization์„ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) # cross-entropy loss ํ•จ์ˆ˜ train_step = tf.train.GradientDescentOptimizer(learning_rate_Gradient_Descent).minimize(cross_entropy) # Fine Tuning Optimization์„ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค finetuning_cost = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) + tf.reduce_mean(tf.pow(y_true - y_pred, 2)) # cross-entropy loss ํ•จ์ˆ˜ + squared error loss ํ•จ์ˆ˜ finetuning_train_step = tf.train.GradientDescentOptimizer(learning_rate_Gradient_Descent).minimize(finetuning_cost) # Step 1: Stacked Autoencoder pre-training # ๋ณ€์ˆ˜๋“ค์„ ์ดˆ๊ธฐํ™”ํ•œ๋‹ค. init = tf.initialize_all_variables() # graph๋ฅผ ์‹คํ–‰ํ•œ๋‹ค. sess = tf.Session() sess.run(init) total_batch = int(mnist.train.num_examples/batch_size) # Training์„ ์‹œ์ž‘ํ•œ๋‹ค. for epoch in range(training_epochs): # ๋ชจ๋“  ๋ฐฐ์น˜๋“ค์„ ๋Œ์•„๊ฐ€๋ฉด์„œ(Loop) ํ•™์Šตํ•œ๋‹ค. for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # batch ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ ํŠธ๋ ˆ์ด๋‹์„ ์ง„ํ–‰ํ•œ๋‹ค. _, cost_value = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # ์ผ์ • epoch step๋งˆ๋‹ค ๋กœ๊ทธ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost_value)) print("Stacked Autoencoder pre-training Optimization Finished!") # Step 2: test ๋ฐ์ดํ„ฐ์…‹์„ autoencoder๋กœ reconstruction ํ•ด๋ณธ๋‹ค. reconstructed_image = sess.run(y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # ์›๋ณธ ์ด๋ฏธ์ง€์™€ ์žฌ๊ตฌ์ถ•(reconstructed)๋œ ์ด๋ฏธ์ง€๋ฅผ ๋น„๊ตํ•œ๋‹ค. f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(examples_to_show): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[1][i].imshow(np.reshape(reconstructed_image[i], (28, 28))) f.show() plt.draw() #plt.waitforbuttonpress() # ๋ฒ„ํŠผ์„ ๋ˆ„๋ฅผ๋•Œ๊นŒ์ง€ ์ž‘์—… ์ •์ง€ f.savefig('reconstructed_mnist_image.png') # reconstruction ๊ฒฐ๊ณผ๋ฅผ png๋กœ ์ €์žฅํ•œ๋‹ค. # Step 3: Softmax Classifier๋ฅผ ํ•™์Šตํ•œ๋‹ค. for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={X: batch_xs, y_: batch_ys}) print("Softmax Classifier Optimization Finished!") # Step 4: ํ•™์Šต๋œ ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํ•œ์ง€๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. (Before fine-tuning) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy(before fine-tuning): ") # Accuracy ~ 0.9282 print(sess.run(accuracy, feed_dict={X: mnist.test.images, y_: mnist.test.labels})) # Step 5: Fine-tuning softmax model # Training์„ ์‹œ์ž‘ํ•œ๋‹ค. for epoch in range(training_epochs): # ๋ชจ๋“  ๋ฐฐ์น˜๋“ค์„ ๋Œ์•„๊ฐ€๋ฉด์„œ(Loop) ํ•™์Šตํ•œ๋‹ค. for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # batch ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ ํŠธ๋ ˆ์ด๋‹์„ ์ง„ํ–‰ํ•œ๋‹ค. _, cost_value = sess.run([finetuning_train_step, finetuning_cost], feed_dict={X: batch_xs, y_: batch_ys}) # ์ผ์ • epoch step๋งˆ๋‹ค ๋กœ๊ทธ๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost_value)) print("Fine-tuning softmax model Optimization Finished!") # Step 6: ํ•™์Šต๋œ ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํ•œ์ง€๋ฅผ ์ถœ๋ ฅํ•œ๋‹ค. (After fine-tuning) print("Accuracy(after fine-tuning): ") # Accuracy ~ 0.9714 print(sess.run(accuracy, feed_dict={X: mnist.test.images, y_: mnist.test.labels}))
[ "jinhoyang@snu.ac.kr" ]
jinhoyang@snu.ac.kr
92a5da607045107bbee7fd23ac0e9e1ec54453da
0d2811497b377bc3530c3ddc10f4e948ef3ab902
/launcher/common/Keys.py
c7b1c24ad592f0a93219e61683c4b41f827cacc2
[ "BSD-3-Clause" ]
permissive
liblit/sampler
a475b44d2a257bc9a2cf93bb5d04e94abc9d15b2
eaedba51ee8367b9b355e6f85a6c677878160d49
refs/heads/master
2021-04-24T21:30:53.227637
2018-10-08T02:00:59
2018-10-08T02:00:59
117,015,273
0
1
null
null
null
null
UTF-8
Python
false
false
287
py
ASKED = 'asked' MASTER = 'enabled' def settings(): # always use "schema_id" once Fedora 20 is no longer supported import gi key = 'schema_id' if gi.version_info >= (3, 14) else 'schema' from gi.repository import Gio return Gio.Settings(**{key: 'edu.wisc.cs.cbi'})
[ "liblit@cs.wisc.edu" ]
liblit@cs.wisc.edu
ed5a1888ab5c1d3ceab8561da97ea4f49ae630dc
5f635d35ec6837142ecdd709af32646c936e36f5
/ship.py
d7267d61d06ffbec16ed248ac045bdebe3b668bd
[]
no_license
SLinShi/AlinenInvasion
e6b61fc1b40331f4eb7c38c6be5476e9463a40bc
468adcd796438cd83564ba1e4af79ed586d4f940
refs/heads/main
2023-02-25T00:22:51.156284
2021-02-03T04:24:16
2021-02-03T04:24:16
315,885,528
0
0
null
null
null
null
UTF-8
Python
false
false
1,755
py
import pygame class Ship: # ้ฃž่ˆน็ฑป def __init__(self, ai_game): # ๅˆๅง‹ๅŒ–้ฃž่ˆนๅนถๅˆๅง‹ๅŒ–ๅ…ถไฝ็ฝฎ self.screen = ai_game.screen self.screen_rect = ai_game.screen.get_rect() # ๅŠ ่ฝฝ้ฃž่ˆนๅ›พๅƒๅนถ่Žทๅ–ๅ…ถๅค–ๆŽฅ็Ÿฉๅฝข self.image = pygame.image.load( "/Users/shilin/Documents/VSCode/Python/alien_incasion/images/ship.png" ) # ๆ”นๅ˜้ฃž่ˆนๅคงๅฐ self.image = pygame.transform.scale(self.image, (50, 50)) self.rect = self.image.get_rect() # ๆ”พ็ฝฎ้ฃž่ˆนๅˆฐ็ช—ๅฃๅบ•้ƒจไธญๅคฎ self.rect.midbottom = self.screen_rect.midbottom # ็งปๅŠจๆ ‡ๅฟ— self.moving_right = False self.moving_left = False self.moving_up = False self.moving_down = False self.settings = ai_game.settings # ๅœจ้ฃž่ˆน็š„xๅฑžๆ€งไธญๅ‚จๅญ˜ๅฐๆ•ฐ self.x = float(self.rect.x) self.y = float(self.rect.y) def update(self): # ๆ นๆฎ็งปๅŠจๆ ‡ๅฟ—่ฐƒๆ•ด้ฃž่ˆนไฝ็ฝฎ # ้™ๅˆถ็งปๅŠจ่Œƒๅ›ด if self.moving_right and self.rect.right < self.screen_rect.right: self.x += self.settings.ship_speed # ๆ›ดๆ–ฐself.x็š„ๅ€ผ if self.moving_left and self.rect.left > 0: self.x -= self.settings.ship_speed if self.moving_up and self.rect.top > 0: self.y -= self.settings.ship_speed # ๆ›ดๆ–ฐself.y็š„ๅ€ผ if self.moving_down and self.rect.bottom < self.screen_rect.bottom: self.y += self.settings.ship_speed # ๆ นๆฎself.x็š„ๅ€ผๆ›ดๆ–ฐrectๅฏน่ฑก self.rect.x = self.x self.rect.y = self.y def blitme(self): # ๅœจๆŒ‡ๅฎšไฝ็ฝฎ็ป˜ๅˆถ้ฃž่ˆน self.screen.blit(self.image, self.rect)
[ "anonymity_one@outlook.com" ]
anonymity_one@outlook.com
34d1d295d4ea0e1a1589db374ba5f46c1c017507
6e922c94dc20370de2ad34cd501bdfa824d20515
/analysis/planner_2D.py
2b2768b17cc60f1162e12d1aba42f3ad169c6da1
[]
no_license
funhere/auto-medical-detection
0dc24c6e1a7ecc98cb33a37876c31c4678e17dfc
653154b338bb844e73fa2ba931144d39db6f0174
refs/heads/master
2021-08-10T11:56:22.009012
2020-06-06T00:42:32
2020-06-06T00:42:32
188,710,527
4
2
null
null
null
null
UTF-8
Python
false
false
9,737
py
import shutil, os from analysis.planner_3D import Planner from bins.analyze_and_preprocess import get_lists_of_splitted_dataset from preprocessing.preprocessor import Preprocessor2D from config.default_configs import * from utils.files_utils import * from net_architecture.generic_UNet import Generic_UNet import numpy as np from utils.analysis_utils import get_pool_and_conv_props class Planner2D(Planner): def __init__(self, folder_of_cropped_data, preprocessing_out_folder): super(Planner2D, self).__init__(folder_of_cropped_data, preprocessing_out_folder) self.data_identifier = "UNet_2D" self.transpose_forward = [0, 1, 2] self.transpose_backward = [0, 1, 2] self.plans_fname = join(self.preprocessing_out_folder, default_plans_identifier + "_plans_2D.pkl") def load_plans(self): self.plans = load_pickle(self.plans_fname) self.plans_per_stage = self.plans['plans_per_stage'] self.dataset_properties = self.plans['dataset_properties'] self.transpose_forward = self.plans['transpose_forward'] self.transpose_backward = self.plans['transpose_backward'] def plan_exps(self): def get_stage_properties(current_spacing, original_spacing, original_shape, num_cases, transpose_forward, num_modalities, num_classes): current_spacing_transposed = np.array([current_spacing[i] for i in transpose_forward])[1:] new_median_shape = np.round(original_spacing / current_spacing * original_shape).astype(int) dataset_num_voxels = np.prod(new_median_shape) * num_cases input_patch_size = new_median_shape[transpose_forward][1:] net_numpool, net_pool_kernel_sizes, net_conv_kernel_sizes, input_patch_size, \ shape_must_be_divisible_by = get_pool_and_conv_props(current_spacing_transposed, input_patch_size, FEATUREMAP_MIN_EDGE_LENGTH_BOTTLENECK, Generic_UNet.MAX_NUMPOOL_2D) estimated_gpu_ram_consumption = Generic_UNet.compute_vram_consumption(input_patch_size, net_numpool, Generic_UNet.BASE_NUM_FEATURES_2D, Generic_UNet.MAX_FILTERS_2D, num_modalities, num_classes, net_pool_kernel_sizes) batch_size = int(np.floor(Generic_UNet.use_this_for_batch_size_computation_2D / estimated_gpu_ram_consumption * Generic_UNet.DEFAULT_BATCH_SIZE_2D)) if batch_size < dataset_min_batch_size_cap: raise RuntimeError("Unsupported patches size. patch-based solution will be implemented later.") # check if batch size is too large (more than 5 % of dataset) max_batch_size = np.round(batch_size_covers_max_percent_of_dataset * dataset_num_voxels / np.prod(input_patch_size)).astype(int) batch_size = min(batch_size, max_batch_size) plan = { 'batch_size': batch_size, 'num_pool_per_axis': net_numpool, 'patch_size': input_patch_size, 'median_patient_size_in_voxels': new_median_shape, 'current_spacing': current_spacing, 'original_spacing': original_spacing, 'pool_op_kernel_sizes': net_pool_kernel_sizes, 'conv_kernel_sizes': net_conv_kernel_sizes, 'do_dummy_2D_data_aug': False } return plan use_nonzero_mask_for_normalization = self.use_norm_mask() print("Are you using the nonzero maks for normalizaion?", use_nonzero_mask_for_normalization) spacings = self.dataset_properties['all_spacings'] sizes = self.dataset_properties['all_sizes'] all_classes = self.dataset_properties['all_classes'] modalities = self.dataset_properties['modalities'] num_modalities = len(list(modalities.keys())) target_spacing = self.get_target_spacing() new_shapes = np.array([np.array(i) / target_spacing * np.array(j) for i, j in zip(spacings, sizes)]) max_spacing_axis = np.argmax(target_spacing) remaining_axes = [i for i in list(range(3)) if i != max_spacing_axis] self.transpose_forward = [max_spacing_axis] + remaining_axes self.transpose_backward = [np.argwhere(np.array(self.transpose_forward) == i)[0][0] for i in range(3)] new_shapes = new_shapes[:, self.transpose_forward] # Calculations are based on the median shape of the datasets median_shape = np.median(np.vstack(new_shapes), 0) print("the median shape of the dataset is ", median_shape) max_shape = np.max(np.vstack(new_shapes), 0) print("the max shape in the dataset is ", max_shape) min_shape = np.min(np.vstack(new_shapes), 0) print("the min shape in the dataset is ", min_shape) print("Don't want feature maps smaller than ", FEATUREMAP_MIN_EDGE_LENGTH_BOTTLENECK, " in the bottleneck") # how many stages will the image pyramid have? self.plans_per_stage = [] self.plans_per_stage.append(get_stage_properties(target_spacing, target_spacing, median_shape, num_cases=len(self.list_of_cropped_npz_files), transpose_forward=self.transpose_forward, num_modalities=num_modalities, num_classes=len(all_classes) + 1)) print(self.plans_per_stage) self.plans_per_stage = self.plans_per_stage[::-1] self.plans_per_stage = {i: self.plans_per_stage[i] for i in range(len(self.plans_per_stage))} # convert to dict normalization_schemes = self.do_normalization_scheme() store_largest_connected_component, min_size_per_class, min_region_size_per_class = \ self.do_postprocessing() # these are independent of the stage plans = {'num_stages': len(list(self.plans_per_stage.keys())), 'num_modalities': num_modalities, 'modalities': modalities, 'normalization_schemes': normalization_schemes, 'dataset_properties': self.dataset_properties, 'list_of_npz_files': self.list_of_cropped_npz_files, 'original_spacings': spacings, 'original_sizes': sizes, 'preprocessing_data_folder': self.preprocessing_out_folder, 'num_classes': len(all_classes), 'all_classes': all_classes, 'base_num_features': Generic_UNet.BASE_NUM_FEATURES_3D, 'use_mask_for_norm': use_nonzero_mask_for_normalization, 'keep_only_largest_region': store_largest_connected_component, 'min_region_size_per_class': min_region_size_per_class, 'min_size_per_class': min_size_per_class, 'transpose_forward': self.transpose_forward, 'transpose_backward': self.transpose_backward, 'data_identifier': self.data_identifier, 'plans_per_stage': self.plans_per_stage} self.plans = plans self.save_plans() def do_preprocessing(self, num_threads): if os.path.isdir(join(self.preprocessing_out_folder, "gt_segmentations")): shutil.rmtree(join(self.preprocessing_out_folder, "gt_segmentations")) shutil.copytree(join(self.folder_of_cropped_data, "gt_segmentations"), join(self.preprocessing_out_folder, "gt_segmentations")) normalization_schemes = self.plans['normalization_schemes'] use_nonzero_mask_for_normalization = self.plans['use_mask_for_norm'] intensityproperties = self.plans['dataset_properties']['intensityproperties'] preprocessor = Preprocessor2D(normalization_schemes, use_nonzero_mask_for_normalization, intensityproperties, self.transpose_forward[0]) target_spacings = [i["current_spacing"] for i in self.plans_per_stage.values()] preprocessor.run(target_spacings, self.folder_of_cropped_data, self.preprocessing_out_folder, self.plans['data_identifier'], num_threads) if __name__ == "__main__": t = "Task_BoneSeg" print("\n\n\n", t) cropped_out_dir = os.path.join(cropped_output_dir, t) preprocessing_out_dir = os.path.join(preprocessing_output_dir, t) splitted_4D_out_dir_task = os.path.join(splitted_4D_out_dir, t) lists, modalities = get_lists_of_splitted_dataset(splitted_4D_out_dir_task) # need to be careful with RAM usage if t in ["Task_LITS", "Task_Liver", "Task_BoneSegOrigs", "Task_BoneSeg"]: threads = 3 elif t in ["Task_LungIntern", "Task_FibroticLungSeg", "Task_Lung", "Task_HepaticVessel"]: threads = 6 else: threads = 8 print("number of threads: ", threads, "\n") print("\n\n\n", t) exp_planner = Planner2D(cropped_out_dir, preprocessing_out_dir, threads) exp_planner.plan_exps() exp_planner.do_preprocessing()
[ "noreply@github.com" ]
funhere.noreply@github.com
0019c8ec5dd7461f3fd5921e275c326e9f78ab39
66149a32aca9d64f08d3ba111ede8613cd1cfb25
/11-06-2020_SAMBIT_EMWAVES.py
a99ed74f578c7afa73afd522b853a49bd88672d6
[ "MIT" ]
permissive
MAVIN-07/EM-WAVES-SAMBIT
ad3180ffe6a278f5ac55fe369832f5639f26d3f3
c7c72111eed14a2aaa551306811fa1f26ea04f22
refs/heads/master
2022-12-11T08:17:21.756078
2020-06-17T22:04:04
2020-06-17T22:04:04
273,086,413
1
0
null
null
null
null
UTF-8
Python
false
false
15,778
py
#CREATED AND MAINTAINED BY: SAMBIT KUMAR MISHRA #Email-ID: sambitmishra1968@gmail.com import math import cmath import matplotlib.pyplot as plt import matplotlib.image as img #=========================================================================================================================================================== # Defining lists to use through this program Eo = [] Q = [] dp = [] #[permittivity1,permeability1,permittivity2,permeability2] n = [0,0] B = [0,0] ba = [0,0] #[perpendicular,parallel] arr_phase = [0,0] #[transmission,reflection] arr_magnitude = [0,0] #[transmission,reflection] critical_angle = 0 #=========================================================================================================================================================== #Printing on the screen- Assumptions and sign conventions to be used. print("ASSUMPTIONS-NOTE THESE BEFORE PROCEEDING") print("_________________________________________________________________________________________________________________________________________________") print("") print("Assume that the complex Electric field is given by the equation: E = ((a+jb)x^ + (c+jd)y^ + (m+jn)z^)e*exp(-j*B*(xcos(Qx)+ycos(Qy)+zcos(Qz)))") print("Where ^ means cap, eg. x^ means unit vector in direction of x") print("j = complex imaginary number analogous to i in maths") print("e = natural log base") print("a,c,m are coefficients of real part whereas b,d,n are coefficients of imaginary part of Eo") print("Qx,Qy,Qz represent the angle made by the incident electric field wrt x,y,z axes respectively") print("Qi is the incident angle of wave wrt to the normal to the plane of incidence") print("_________________________________________________________________________________________________________________________________________________") print("") #=========================================================================================================================================================== # TAKING THE INPUTS FROM THE USER try: Eo = list(map(float, input("Enter the values of a,b,c,d,m,n in this exact order separated by space= ").split())) # w = float(input("Enter the frequency of the EM Wave in Hz= "))#We dont have to use because in B value it will get cancelled Nr and Dr Q = list(map(float, input("Enter the values of Qx,Qy,Qz,Qi in this exact order separated by spaces= ").split())) # Enter 0 if degrees and 1 if radians unit = int(input("Enter the unit of angle chosen:- TYPE '0' for degrees, TYPE '1' for radians ")) if unit == 0: Q[0] = math.radians(Q[0]) Q[1] = math.radians(Q[1]) Q[2] = math.radians(Q[2]) Q[3] = math.radians(Q[3]) # If the input type is chosen as radians then leave the value as it is. #This loop will exit only if the user enters proper values of dielectric properties while 1: dp = list(map(float, input( "Enter the values of permittivity_medium1, permeability_medium1, permittivity_medium2, permeability_medium2 in " "this same order separated by space= ").split())) if dp[3]*dp[2] == dp[1]*dp[0]: print("ERROR: Enter the values as per assumptions") else: break print("") print("For the following two categories:- TYPE '1' for XY, TYPE '2' for YZ, TYPE '3' for XZ") print("") poi = int(input("Enter the plane of interface= ")) pod = int(input("Enter the plane of dielectric= ")) #=========================================================================================================================================================== #CALCULATION OF POLARISATION OF WAVE polarisation = 0 #Declaration of polarisation variable for using in program. if poi == 1: if math.cos(Q[2]) == 0: polarisation = 1 # Perpendicular polarisation elif math.sin(Q[2]) == 0: polarisation = 0 # Parallel polarisation elif poi == 2: if math.cos(Q[0]) == 0: polarisation = 1 # Perpendicular polarisation elif math.sin(Q[0]) == 0: polarisation = 0 # Parallel polarisation elif poi == 3: if math.cos(Q[1]) == 0: polarisation = 1 # Perpendicular polarisation elif math.sin(Q[1]) == 0: polarisation = 0 # Parallel polarisation #=============================================================================================================================================================== #Calculation of the magnitude of Incident Electric Field: Absolute value of Eo Ei=0 #Declaration of Ei variable for i in range(0, 6): Ei += Eo[i]**2 # We have to take square root of this value(Ei) to obtain Magnitude of incident electric field. #=============================================================================================================================================================== #CALCULATION OF BREWSTER'S ANGLE #The square root value might come out to be negative hence complex square root must be taken into account so this step can be postponed # reading png image file im = img.imread('EMWAVE_2.png') # show image plt.imshow(im) #For Perpendicular Polarisation if ((dp[3]/dp[1])*(((dp[3]*dp[0])-(dp[1]*dp[2]))/((dp[3]*dp[2])-(dp[1]*dp[0])))) >= 0: ba[0] = math.atan(math.sqrt((dp[3]/dp[1])*(((dp[3]*dp[0])-(dp[1]*dp[2]))/((dp[3]*dp[2])-(dp[1]*dp[0]))))) else: print("BREWSTER ANGLE IS NOT POSSIBLE FOR THIS CASE") #For Parallel Polarisation if ((dp[2]/dp[0])*(((dp[1]*dp[2])-(dp[3]*dp[0]))/((dp[3]*dp[2])-(dp[1]*dp[0])))) >= 0: ba[1] = math.atan(math.sqrt((dp[2]/dp[0])*(((dp[1]*dp[2])-(dp[3]*dp[0]))/((dp[3]*dp[2])-(dp[1]*dp[0]))))) else: print("BREWSTER ANGLE IS NOT POSSIBLE FOR THIS CASE") #===================================================================================================================================================================== #The case when incident wave just grazes through the plane of dielectric interface #In this case no reflection or transmission of wave is possible. This is an exceptional case. if math.cos(Q[3]) == 0: print("NO TRANSMISSION OR REFLECTION POSSIBLE IN THIS CASE: BECAUSE THE WAVE GRAZES THROUGH THE PLANE OF INTERFACE") #ACTUAL CALCULATION BEGINS HERE else: n[0] = (120*math.pi)/(math.sqrt((dp[1])/(dp[0]))) #For medium 1 n[1] = (120*math.pi)/(math.sqrt((dp[3])/(dp[2]))) #For medium 2 B[0] = math.sqrt(dp[1]*dp[0]) #For medium 1 B[1] = math.sqrt(dp[3]*dp[2]) #For medium 2 b1 = n[1] * math.cos(Q[3]) b2 = n[0] * math.cos(Q[3]) #================================================================================================================================================================== #CASE-1: When the incident wave is at an angle greater than the critical Angle and medium 2 is rarer than medium 1 if ((B[0] / B[1]) * math.sin(Q[3])) >= 1 and (dp[3]*dp[2])<=(dp[1]*dp[0]): #================================================================================================================================================================== print("THIS IS THE CASE OF TOTAL INTERNAL REFLECTION") print("") critical_angle = math.asin(B[1]/B[0]) # reading png image file im = img.imread('EMWAVE_TIR.png') # show image plt.imshow(im) if (B[0] / B[1])*math.sin(Q[3]) > 1: if polarisation == 1: reflection_coefficient = (b1 - 1j*(n[0]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) / (b1 + 1j*(n[0]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) arr_phase[1] = (-2)*math.atan((n[0]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1)) / b1) elif polarisation == 0: reflection_coefficient = (b2 - 1j*(n[1]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) / (b2 + 1j*(n[1]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) arr_phase[1] = (-2)*math.atan((n[1]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1)) / b2) #Calculation of magnitude arr_magnitude[0] = "N/A" arr_phase[0] = "N/A" arr_magnitude[1] = reflection_coefficient * math.sqrt(Ei) elif (B[0] / B[1]) * math.sin(Q[3]) == 1: try: if Q[3] == critical_angle: if polarisation == 1: reflection_coefficient = (b1 - 1j*(n[0]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) / (b1 + 1j*(n[0]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) arr_phase[1] = (-2)*math.atan((n[0]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1)) / b1) elif polarisation == 0: reflection_coefficient = (b2 - 1j*(n[1]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) / (b2 + 1j*(n[1]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1))) arr_phase[1] = (-2)*math.atan((n[1]*math.sqrt((((B[0]/B[1])*math.sin(Q[3]))**2)-1)) / b2) #Calculation of magnitude arr_magnitude[0] = "N/A" arr_phase[0] = "N/A" arr_magnitude[1] = reflection_coefficient * math.sqrt(Ei) else: print("ERROR: DISCREPANCY IN ANALYTICAL AND INPUT VALUES") except: print("ERROR!") else: print("ERROR: Please re-enter practical values in input") #================================================================================================================================================================== #CASE-2: When the wave is incident at Brewster's Angle elif Q[3]==ba[0] or Q[3]==ba[1]: #================================================================================================================================================================== #No reflection will take place in this case arr_magnitude[1] = "N/A" arr_phase[1] = "N/A" # reading png image file im = img.imread('EMWAVE_BA.png') # show image plt.imshow(im) a1 = n[0] * math.cos(transmitted_angle) a2 = n[1] * math.cos(transmitted_angle) #Case of perpendicular polarisation #-------------------------------------------------------- if polarisation == 1: transmission_coefficient = (2 * b1) / (b1 + a1) if transmission_coefficient >= 0: arr_phase[0] = (2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) else: arr_phase[0] = (-2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) # A phase change of Pi #Calculation of magnitude arr_magnitude[0] = transmission_coefficient * math.sqrt(Ei) #Case of parallel polarisation #-------------------------------------------------------- elif polarisation == 0: transmission_coefficient = (2 * b1) / (b2 + a2) if transmission_coefficient >= 0: arr_phase[0] = (2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) else: arr_phase[0] = (-2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) # A phase change of Pi #Calculation of magnitude arr_magnitude[0] = transmission_coefficient * math.sqrt(Ei) #================================================================================================================================================================== #CASE-3: The general case of reflection and transmission #if ((B[0] / B[1]) * math.sin(Q[3])) < 1: else: #================================================================================================================================================================== transmitted_angle = math.asin(B[0]/B[1]) * math.sin(Q[3]) a1 = n[0] * math.cos(transmitted_angle) a2 = n[1] * math.cos(transmitted_angle) # reading png image file im = img.imread('EMWAVE_2.png') # show image plt.imshow(im) # For the case of perpendicular polarisation if polarisation == 1: #---------------------------------------------- reflection_coefficient = (b1 - a1) / (b1 + a1) transmission_coefficient = (2 * b1) / (b1 + a1) if reflection_coefficient >= 0: #Calculation of phase of wave after reflection or transmission is a bit tricky: Need to look into that arr_phase[1] = (2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.sin(Q[3]), 2))) / (n[0] * math.cos(Q[3]))) else: arr_phase[1] = (-2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.sin(Q[3]), 2))) / (n[0] * math.cos(Q[3]))) # A phase change of Pi if transmission_coefficient >= 0: arr_phase[0] = (2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) else: arr_phase[0] = (-2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) # A phase change of Pi #Calculation of magnitude arr_magnitude[0] = transmission_coefficient * math.sqrt(Ei) arr_magnitude[1] = reflection_coefficient * math.sqrt(Ei) #---------------------------------------------------------------------------------------------------------------------------------- # For the case of parallel polarisation elif polarisation == 0: #------------------------------------------- reflection_coefficient = (b2 - a2) / (b2 + a2) transmission_coefficient = (2 * b1) / (b2 + a2) if reflection_coefficient >= 0: arr_phase[1] = (2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.sin(Q[3]), 2))) / (n[0] * math.cos(Q[3]))) else: arr_phase[1] = (-2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.sin(Q[3]), 2))) / (n[0] * math.cos(Q[3]))) # A phase change of Pi if transmission_coefficient >= 0: arr_phase[0] = (2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) else: arr_phase[0] = (-2) * math.atan((n[1] * math.sqrt(1 - math.pow((B[0] / B[1]) * math.cos(Q[3]), 2))) / (n[0] * math.sin(Q[3]))) # A phase change of Pi #Calculation of magnitude arr_magnitude[0] = transmission_coefficient * math.sqrt(Ei) arr_magnitude[1] = reflection_coefficient * math.sqrt(Ei) #====================================================================================================================================================================== # The final required values using the input values are printed below print("__________________________________________________________________________") print("The phase of transmitted wave is " + str(arr_phase[0])) print("The phase of reflected wave is " + str(arr_phase[1])) print("The magnitude of transmitted wave is " + str(arr_phase[0])) print("The magnitude of reflected wave is " + str(arr_phase[1])) print("") print("These were your final results. THANK YOU") print("__________________________________________________________________________") #====================================================================================================================================================================== except: # reading png image file im = img.imread('SORRY.png') # show image plt.imshow(im) print("__________________________________________") print("PLEASE RECHECK THE VALUES YOU HAVE ENTERED") print("__________________________________________") #THE END #FOR QUERIES/REMARKS CONTACT: SAMBIT KUMAR MISHRA (sambitmishra1968@gmail.com)
[ "noreply@github.com" ]
MAVIN-07.noreply@github.com
d8b9910b487bbb5eb2e7b49068c6d3b302e6cd43
7043eec45732b05686dd7da397f922339efad693
/TA.py
892b74546802ad34a83a52569521a4b2a44c031a
[]
no_license
rtgrimm/SpectralKineticsODE
7fd35f924ad64aac08d76dd1141cf3b38051b82f
68b3f16372a8294a714dd7df5a6029d1183fd9ae
refs/heads/master
2023-07-15T06:11:15.368814
2021-08-09T17:15:56
2021-08-09T17:15:56
392,377,367
0
0
null
null
null
null
UTF-8
Python
false
false
1,619
py
import numpy as np from dataclasses import dataclass from typing import * from scipy.constants import Planck, speed_of_light, elementary_charge from scipy.integrate import odeint, solve_ivp import matplotlib.pyplot as plt from kinetics import Scaler, Parameters, run from style import set_style @dataclass class TAParams: pump_spectrum : np.ndarray probe_spectrum : np.ndarray time : np.ndarray tau_list : np.ndarray probe_time_env : Callable[[Scaler], Callable[[Scaler], Scaler]] pump_time_env: Callable[[Scaler], Callable[[Scaler], Scaler]] make_params : Any probe_scale = 0.1 @dataclass class TAResults: spectra : np.ndarray def run_TA(TA_params : TAParams) -> TAResults: params = TA_params.make_params( lambda t: TA_params.probe_time_env( np.min(TA_params.tau_list))(t) * TA_params.probe_spectrum * 0.1) pump_spectrum = TA_params.pump_spectrum probe_spectrum = TA_params.probe_spectrum result_A_0 = run(params, TA_params.time) A_0 = np.sum(result_A_0.spectral_fluxes, axis=0) spectra = [] pump = TA_params.pump_time_env(np.min(TA_params.tau_list)) for tau in TA_params.tau_list: print(f"{(tau / np.max(TA_params.tau_list)) * 100.0}%") probe = TA_params.pump_time_env(tau) exc_total = lambda t: pump(t) * pump_spectrum + probe(t) * probe_spectrum * 0.1 params = TA_params.make_params(exc_total) results = run(params, TA_params.time) spectra.append(np.sum(results.spectral_fluxes, axis=0) - A_0 * 0) spectra = np.array(spectra) return TAResults(spectra)
[ "rygr1645@colorado.edu" ]
rygr1645@colorado.edu
4a24d53b5b6eb6b7db4ed323a7726a5e0b69cd7b
16cb142fb04798313c43a073cf1e0ddd6f4bf13b
/timing/resources/time.py
978a0750832068ee69e9c5e493fb89f1c059e468
[]
no_license
iRhonin/timing
46d3b080333fe4b169252cdb37f3d3194fc00072
91b7d86ba053cf46df6a3edbdf273947d8a37ae3
refs/heads/master
2023-04-30T21:02:26.861632
2021-05-14T20:16:12
2021-05-14T20:16:12
279,684,898
0
0
null
2021-05-14T20:16:13
2020-07-14T20:19:47
Python
UTF-8
Python
false
false
2,027
py
from datetime import datetime import falcon from sqlalchemy import func from timing.authorization import Authorization from timing.models.time import Time, DATETIME_FORMAT from timing.paginate import Paginate from timing.schemas.time import TimeInSchema class TimesResource(object): @falcon.before(Authorization()) def on_post(self, req, resp): data = TimeInSchema( user_id=req.context['user_id'], createdAt=req.params.get('t', None), hours=req.media['hours'], ) time = Time(**data.dict(exclude_unset=True)) req.context.db_session.add(time) req.context.db_session.commit() resp.media = time.to_dict() @falcon.before(Authorization()) @falcon.before(Paginate()) def on_get(self, req, resp): time_query = self._get_times(req, query_on=Time) total_count = time_query.count() time_query = time_query \ .order_by(Time.created_at) \ .limit(req.context['limit']) \ .offset(req.context['offset']) \ resp.media = [t.to_dict() for t in time_query] resp.set_header('X-COUNT', total_count) @falcon.before(Authorization()) def on_get_calculator(self, req, resp): sum_times = self._get_times(req, query_on=func.sum(Time.hours)).one() sum_times = int(sum_times[0] or 0) resp.media = Time( created_at=datetime.utcnow(), hours=sum_times, ).to_dict() def _get_times(self, req, query_on): time_query = req.context.db_session.query(query_on) \ .filter(Time.user_id == req.context.user_id) if from_ := req.params.get('from'): time_query = time_query.filter( Time.created_at >= datetime.strptime(from_, DATETIME_FORMAT) ) if to_ := req.params.get('to'): time_query = time_query.filter( Time.created_at <= datetime.strptime(to_, DATETIME_FORMAT) ) return time_query
[ "fatahzade@gmail.com" ]
fatahzade@gmail.com
c19012af2e5fe52651cc00b9775abc1d3e4e6ea1
a71d5838e292e2c0c7371f7fc7870c7018820ae1
/day03/03_pie.py
71c8ec39a03c52234f30d2660394d2f3d37a995f
[]
no_license
skywalkerqwer/DataScience
be91541c3da383d15ee52d0101d2dbb0289c2fde
4cfd42f3a9795e295393cdb045852d46e99b6e59
refs/heads/master
2020-06-17T11:41:40.113864
2019-07-15T09:49:40
2019-07-15T09:49:40
195,913,553
0
0
null
null
null
null
UTF-8
Python
false
false
449
py
""" ็ป˜ๅˆถ้ฅผ็Šถๅ›พ """ import numpy as np import matplotlib.pyplot as mp labels = ['Python', 'JavaScript', 'C++', 'Java', 'PHP'] values = [26, 17, 21, 29, 11] spaces = [0.05, 0.01, 0.01, 0.01, 0.01] colors = ['dodgerblue', 'orangered', 'limegreen', 'violet', 'gold'] mp.figure('Pie Chart', facecolor='lightgray') mp.title('Languages PR') mp.pie(values, spaces, labels, colors, '%.1f%%', shadow=True, startangle=0, radius=1) mp.legend() mp.show()
[ "15902162780@163.com" ]
15902162780@163.com
ebcfe501255bb644caa92394017c550197a10ee4
d27d98fc322ea3b29b77fdf0a8751bc6a6e4355a
/python/20/ccc20j4.py
09d8866cfee2b5c41d870b92254d90a5edccd997
[ "MIT" ]
permissive
sadmanca/ccc-solutions
9e48279879241b94e746c7ce1c202d66ce5c46f4
1ab0d1d7a59eaf0f6b231208a5f42a5eb364caaa
refs/heads/master
2023-03-05T17:19:18.776037
2021-02-17T00:40:30
2021-02-17T00:40:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
# COMPLETE t = input() s = input() l = len(s) shifts = set() shifts.add(s) for i in range(l-1): s = s[1:]+s[0] shifts.add(s) cyc = False for string in shifts: for i in range(0, len(t)-l+1): if string == t[i:i+l]: cyc = True if cyc == True: print("yes") else: print("no")
[ "41028402+Sadman-Hossain@users.noreply.github.com" ]
41028402+Sadman-Hossain@users.noreply.github.com
0847d046a1cea08f4fceb4e24d0e9848c3efd510
e1bcef91c724a3b89f442079ab51977ce5a6bc2f
/quote/forms.py
1d803b8df3d24b45e9b8c59cb8586deddbaa426e
[]
no_license
mahdistt/CRM
48550b1bb8adbd012b254e42edefc69a572a33fc
a1aa33df4ef2e342268f8965d43bf026be61db37
refs/heads/master
2023-07-09T05:11:23.497844
2021-08-11T18:45:56
2021-08-11T18:45:56
390,491,640
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
from django import forms from . import models class QuoteCreateViewForm(forms.ModelForm): class Meta: model = models.QuoteItem fields = ( 'quote', 'product', 'price', 'quantity', 'discount', ) widgets = { 'quantity': forms.NumberInput, 'discount': forms.NumberInput, 'price': forms.NumberInput, 'quote': forms.Select, }
[ "80247767+mahdistt@users.noreply.github.com" ]
80247767+mahdistt@users.noreply.github.com
09f920dba59ee54359a4cf44bf01235cf2d05171
122779e414685ac95076f440f2809d314800e510
/src/tests/integration/test_cli.py
2f9573fd5a48bf3689f6afadd0a0a6530705bcbd
[ "BSD-2-Clause" ]
permissive
alexseitsinger/package-controller
3fb7a09d2b965630fe11203f6f5c47e664826c7d
0ee896986cfa17a96bf9fb6afff35dd97f0b1211
refs/heads/master
2022-12-11T18:00:17.922442
2019-08-21T02:24:35
2019-08-21T02:24:35
185,510,280
2
0
BSD-2-Clause
2022-12-08T05:50:25
2019-05-08T02:10:23
Python
UTF-8
Python
false
false
238
py
import pytest from click.testing import CliRunner from package_controller.cli import main def test_add(): pass def test_build(): pass def test_commit(): pass def test_release(): pass def test_version(): pass
[ "16756928+alexseitsinger@users.noreply.github.com" ]
16756928+alexseitsinger@users.noreply.github.com
6924a180ef02d2c2fcdab06a4084459706c24ff6
ed8bfb44c7d8fd2ef3d0d493d39eba6d7b729aec
/decode.py
05c18d5140f05ddeb6b1977cef37d543fe16147e
[]
no_license
omri123/text_lord
5cedeb8fb53c69977b21ec25fe77e2d598614d97
59f8095784f702891d24c771281c03ec0402e4f0
refs/heads/master
2022-04-09T11:39:20.561554
2020-03-12T22:05:04
2020-03-12T22:05:04
243,927,064
0
0
null
null
null
null
UTF-8
Python
false
false
5,893
py
import torchtext from restorant_dataset import START, END from model import NoEncoderFConvDecoderModel from archive.utils import load_checkpoint, vocab_to_dictionary from restorant_dataset import get_dataset import os import pickle import copy def gready_decode_single(model: NoEncoderFConvDecoderModel, vocab: torchtext.vocab, stars: int, sample_id: int, start_token=START, end_token=END, device='cpu'): max_length = 25 src_tokens = torch.tensor([[sample_id, stars]], dtype=torch.int64, device=device) src_lengths = torch.full((1, 1), 5, device=device) reviews = torch.tensor([[vocab.stoi[start_token]]], dtype=torch.int64, device=device) sentence = [start_token] length = 0 while end_token not in sentence: logits, _ = model(src_tokens, src_lengths, reviews) logits_for_new_token = logits[0, -1, :] # batch, seq, vocab word_index = torch.argmax(logits_for_new_token).item() sentence.append(vocab.itos[word_index]) length += 1 if length > max_length: break sentence_by_indecies = [vocab.stoi[word] for word in sentence] reviews = torch.tensor([sentence_by_indecies], dtype=torch.int64, device=device) return ' '.join(sentence) def gready_decode(model, vocab, src_tokens, src_lengths, start_token, end_token): pass import torch from queue import PriorityQueue device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class BeamSearchNode(object): def __init__(self, sentence, logProb, length): ''' :param sentence: a list of tokens!!! :param logProb: logp sum :param length: ''' self.sent = sentence self.logp = logProb self.leng = length def eval(self, alpha=1.0): reward = 0 # Add here a function for shaping a reward return - (self.logp / float(self.leng - 1 + 1e-6) + alpha * reward) def __lt__(self, other): return self.eval() <= other.eval() def beam_decode_single(model, vocab, sample_id, stars, beam_width=10, topk=1, device='cpu', SOS_token='<s>', EOS_token='</s>', MAX_LENGTH=50): """ decode single example using beam search. :param decoder: a NoEncoderFConvDecoderModel object :param vocab: :param sample_id: :param stars: :param beam_width: :param SOS_token: :param EOS_token: :param MAX_LENGTH: :return: """ src_tokens = torch.tensor([[sample_id, stars]], dtype=torch.int64, device=device) src_lengths = torch.full((1, 1), 5, device=device) review = [SOS_token] # review = torch.tensor([[vocab.stoi[SOS_token]]], dtype=torch.int64) solutions = [] nodes = PriorityQueue() node = BeamSearchNode(review, 0, 1) nodes.put(node) qsize = 1 while True: # finished if len(solutions) == topk: break # give up when decoding takes too long if qsize > 2000: for i in range(topk - len(solutions)): solutions.append(nodes.get()) break # fetch the best node node = nodes.get() review = node.sent review_int = [vocab.stoi[w] for w in review] review_torch = torch.tensor([review_int], dtype=torch.int64, device=device) if review[-1] == EOS_token: solutions.append(node) continue logits, _ = model(src_tokens, src_lengths, review_torch) predictions = torch.log_softmax(logits, dim=2) log_probs, indexes = torch.topk(predictions, beam_width) for new_k in range(beam_width): word_index = indexes[0, len(review)-1, new_k].item() word = vocab.itos[word_index] review_new = copy.deepcopy(node.sent) review_new.append(word) new_word_log_p = log_probs[0, 0, new_k].item() new_node = BeamSearchNode(review_new, node.logp + new_word_log_p, node.leng) nodes.put(new_node) qsize += 1 return [' '.join(s.sent) for s in solutions] def main(): foldername = '/cs/labs/dshahaf/omribloch/data/text_lord/restorant/train/note_tiny_no_noise_dim_32_ntokens_5_nconv_10_nsamples_102400_content_noise_0.001/' # foldername = '/cs/labs/dshahaf/omribloch/data/text_lord/restorant/train/note_EM_no_noise_dim_32_ntokens_10_nconv_4_nsamples_1024_content_noise_0.0/' vocab_path = os.path.join(foldername, 'vocab.pickle') model_ckpt_path = os.path.join(foldername, 'last_checkpoint.ckpt') with open(vocab_path, 'rb') as file: vocab = pickle.load(file) print('vocab was loaded') decoder_dictionary = vocab_to_dictionary(vocab) device = 'cpu' nsamples = 102400 ntokens = 5 dim = 32 content_noise = 0.001 dropout = 0 nconv = 10 model = load_checkpoint(model_ckpt_path, 'cpu', device, nsamples, decoder_dictionary.pad(), ntokens, dim, content_noise, dropout, decoder_dictionary, 50, nconv) print('model loaded') model.eval() dataset, vocab = get_dataset(10000, '/cs/labs/dshahaf/omribloch/data/text_lord/restorant/', vocab) for i in range(10): sid = dataset[i].id stars = dataset[i].stars # stars = 1 review_sentence = ' '.join(dataset[i].review) print(review_sentence) decoded_sentence = gready_decode_single(model, vocab, stars, sid) print(decoded_sentence) decoded_sentence = gready_decode_single(model, vocab, 1-stars, sid) print(decoded_sentence) print('-------------') decoded_sentence = beam_decode_single(model, vocab, sid, stars, topk=10, beam_width=4) for d in decoded_sentence: print(d) print('==============================') if __name__=='__main__': main()
[ "omri.bloch@mail.huji.ac.il" ]
omri.bloch@mail.huji.ac.il
1e5237044f42dfe836143cd43c09e4bc38b7033a
c12d0e0935aadc52c6ae03d901fcb52e2b8fe4d7
/task1/solution.py
f3614fd0a3446ed63f3aa00630f3e45ebe2df4f7
[]
no_license
skeleta/python-retrospective
c19ec29867ea34ff96cd86c7c69fc0e1108d7f1c
e808e007f375fccbbb0ae7082bab0d39b93189fe
refs/heads/master
2021-01-18T03:14:27.664850
2013-04-28T20:18:35
2013-04-28T20:18:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
SIGNS = ("ะšะพะทะธั€ะพะณ", "ะ’ะพะดะพะปะตะน", "ะ ะธะฑะธ", "ะžะฒะตะฝ", "ะขะตะปะตั†", "ะ‘ะปะธะทะฝะฐั†ะธ", "ะ ะฐะบ", "ะ›ัŠะฒ", "ะ”ะตะฒะฐ", "ะ’ะตะทะฝะธ", "ะกะบะพั€ะฟะธะพะฝ", "ะกั‚ั€ะตะปะตั†") RANGES = {1: 19, 2: 18, 3: 20, 4: 20, 5: 20, 6: 20, 7: 21, 8: 22, 9: 22, 10: 22, 11: 21, 12: 21} def what_is_my_sign(day, month): return SIGNS[month - 12 - (day <= RANGES[month])]
[ "ivankapukaranov@gmail.com" ]
ivankapukaranov@gmail.com
442831645ae4c6f34df075f4576fd9a948e313c2
649c930c4c5c89b48673b438c8d42f70e6b00cfd
/day 03/ไฝœไธš.py
d60c1b0df8e1db4ae550c6e5524337bfd22e6c18
[]
no_license
zhangchenghao0617/Learn
a0f1ebb9b6248c83e0c87cb756d19b2243722679
32cbaacc697d7e5992e077f368c8c80c5900f96e
refs/heads/master
2023-01-12T07:20:57.911545
2020-10-25T09:40:04
2020-10-25T09:40:04
306,071,934
1
0
null
null
null
null
UTF-8
Python
false
false
6,515
py
# # 1.ๆœ‰ๅ˜้‡name = "aleX leNb" ๅฎŒๆˆๅฆ‚ไธ‹ๆ“ไฝœ๏ผš # name = "aleX leNb" # # - ็งป้™ค name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผไธค่พน็š„็ฉบๆ ผ,ๅนถ่พ“ๅ‡บๅค„็†็ป“ๆžœ # print(name.strip()) # # - ๅˆคๆ–ญ name ๅ˜้‡ๆ˜ฏๅฆไปฅ "al" ๅผ€ๅคด,ๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.startswith('al')) # # - ๅˆคๆ–ญnameๅ˜้‡ๆ˜ฏๅฆไปฅ"Nb"็ป“ๅฐพ,ๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.endswith('Nb')) # # - ๅฐ† name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผไธญ็š„ ๆ‰€ๆœ‰็š„"l" ๆ›ฟๆขไธบ "p",ๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.replace('l','p')) # # - ๅฐ†nameๅ˜้‡ๅฏนๅบ”็š„ๅ€ผไธญ็š„็ฌฌไธ€ไธช"l"ๆ›ฟๆขๆˆ"p",ๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.replace('l','p',1)) # # - ๅฐ† name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผๆ นๆฎ ๆ‰€ๆœ‰็š„"l" ๅˆ†ๅ‰ฒ,ๅนถ่พ“ๅ‡บ็ป“ๆžœใ€‚ # print(name.split('l')) # # - ๅฐ†nameๅ˜้‡ๅฏนๅบ”็š„ๅ€ผๆ นๆฎ็ฌฌไธ€ไธช"l"ๅˆ†ๅ‰ฒ,ๅนถ่พ“ๅ‡บ็ป“ๆžœใ€‚ # print(name.split('l',1)) # # - ๅฐ† name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผๅ˜ๅคงๅ†™,ๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.upper()) # # - ๅฐ† name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผๅ˜ๅฐๅ†™,ๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.lower()) # # - ๅˆคๆ–ญnameๅ˜้‡ๅฏนๅบ”็š„ๅ€ผๅญ—ๆฏ"l"ๅ‡บ็Žฐๅ‡ ๆฌก๏ผŒๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.count('l')) # # - ๅฆ‚ๆžœๅˆคๆ–ญnameๅ˜้‡ๅฏนๅบ”็š„ๅ€ผๅ‰ๅ››ไฝ"l"ๅ‡บ็Žฐๅ‡ ๆฌก,ๅนถ่พ“ๅ‡บ็ป“ๆžœ # print(name.count('l',0,4)) # # - ่ฏท่พ“ๅ‡บ name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผ็š„็ฌฌ 2 ไธชๅญ—็ฌฆ? # print(name[1]) # # - ่ฏท่พ“ๅ‡บ name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผ็š„ๅ‰ 3 ไธชๅญ—็ฌฆ? # print(name[0:3]) # # - ่ฏท่พ“ๅ‡บ name ๅ˜้‡ๅฏนๅบ”็š„ๅ€ผ็š„ๅŽ 2 ไธชๅญ—็ฌฆ? # print(name[-2:]) # # # 2.ๆœ‰ๅญ—็ฌฆไธฒs = "123a4b5c" # s = "123a4b5c" # # - ้€š่ฟ‡ๅฏนsๅˆ‡็‰‡ๅฝขๆˆๆ–ฐ็š„ๅญ—็ฌฆไธฒs1,s1 = "123" # print(s[0:3]) # # - ้€š่ฟ‡ๅฏนsๅˆ‡็‰‡ๅฝขๆˆๆ–ฐ็š„ๅญ—็ฌฆไธฒs2,s2 = "a4b" # print(s[3:6]) # # - ้€š่ฟ‡ๅฏนsๅˆ‡็‰‡ๅฝขๆˆๆ–ฐ็š„ๅญ—็ฌฆไธฒs3,s3 = "1345" # print(s[0:7:2]) # # - ้€š่ฟ‡ๅฏนsๅˆ‡็‰‡ๅฝขๆˆๅญ—็ฌฆไธฒs4,s4 = "2ab" # print(s[1:6:2]) # # - ้€š่ฟ‡ๅฏนsๅˆ‡็‰‡ๅฝขๆˆๅญ—็ฌฆไธฒs5,s5 = "c" # print(s[-1:]) # # - ้€š่ฟ‡ๅฏนsๅˆ‡็‰‡ๅฝขๆˆๅญ—็ฌฆไธฒs6,s6 = "ba2" # print(s[-3:-8:-2]) # # # 3.ไฝฟ็”จwhileๅ’Œforๅพช็Žฏๅˆ†ๅˆซๆ‰“ๅฐๅญ—็ฌฆไธฒs="asdfer"ไธญๆฏไธชๅ…ƒ็ด ใ€‚ # s="asdfer" # while: # i = 0 # while i < len(s): # print(s[i]) # i+=1 # for # for i in s: # print(i) # # # 4.ไฝฟ็”จforๅพช็Žฏๅฏนs="asdfer"่ฟ›่กŒๅพช็Žฏ๏ผŒไฝ†ๆ˜ฏๆฏๆฌกๆ‰“ๅฐ็š„ๅ†…ๅฎน้ƒฝๆ˜ฏ"asdfer"ใ€‚ # s="asdfer" # for i in s: # print(s) # # # 5.ไฝฟ็”จforๅพช็Žฏๅฏนs="abcdefg"่ฟ›่กŒๅพช็Žฏ๏ผŒๆฏๆฌกๆ‰“ๅฐ็š„ๅ†…ๅฎนๆ˜ฏๆฏไธชๅญ—็ฌฆๅŠ ไธŠsb๏ผŒ ไพ‹ๅฆ‚๏ผšasb, bsb๏ผŒcsb,...gsbใ€‚ # s="abcdefg" # for i in s: # print(i.join('sb')) # # for i in s: # print(i + 'sb') # # # 6.ไฝฟ็”จforๅพช็Žฏๅฏนs="321"่ฟ›่กŒๅพช็Žฏ๏ผŒๆ‰“ๅฐ็š„ๅ†…ๅฎนไพๆฌกๆ˜ฏ๏ผš"ๅ€’่ฎกๆ—ถ3็ง’"๏ผŒ"ๅ€’่ฎกๆ—ถ2็ง’"๏ผŒ"ๅ€’่ฎกๆ—ถ1็ง’"๏ผŒ"ๅ‡บๅ‘๏ผ"ใ€‚ # s="321" # for i in s: # print('ๅ€’่ฎกๆ—ถ'+ i +'็ง’๏ผ') # print('ๅ‡บๅ‘๏ผ') # # # 7.ๅฎž็Žฐไธ€ไธชๆ•ดๆ•ฐๅŠ ๆณ•่ฎก็ฎ—ๅ™จ(ไธคไธชๆ•ฐ็›ธๅŠ )๏ผšๅฆ‚๏ผšcontent = input("่ฏท่พ“ๅ…ฅๅ†…ๅฎน:") ็”จๆˆท่พ“ๅ…ฅ๏ผš5+9ๆˆ–5+ 9ๆˆ–5 + 9๏ผŒ็„ถๅŽ่ฟ›่กŒๅˆ†ๅ‰ฒๅ†่ฟ›่กŒ่ฎก็ฎ—ใ€‚ # content = input("่ฏท่พ“ๅ…ฅๅ†…ๅฎน:") # content_space = content.replace(' ','') # print(content_space) # list = content_space.split('+') # print(list) # sum = 0 # for i in list: # sum = sum + int(i) # print(sum) # # # 8.ๅฎž็Žฐไธ€ไธชๆ•ดๆ•ฐๅŠ ๆณ•่ฎก็ฎ—ๅ™จ๏ผˆๅคšไธชๆ•ฐ็›ธๅŠ ๏ผ‰๏ผšๅฆ‚๏ผšcontent = input("่ฏท่พ“ๅ…ฅๅ†…ๅฎน:") ็”จๆˆท่พ“ๅ…ฅ๏ผš5+9+6 +12+ 13๏ผŒ็„ถๅŽ่ฟ›่กŒๅˆ†ๅ‰ฒๅ†่ฟ›่กŒ่ฎก็ฎ—ใ€‚ # content = input("่ฏท่พ“ๅ…ฅๅ†…ๅฎน:") # content_space = content.replace(' ','') # print(content_space) # list = content_space.split('+') # sum = 0 # for i in list: # sum = sum + int(i) # print(sum) # # 9.่ฎก็ฎ—็”จๆˆท่พ“ๅ…ฅ็š„ๅ†…ๅฎนไธญๆœ‰ๅ‡ ไธชๆ•ดๆ•ฐ๏ผˆไปฅไธชไฝๆ•ฐไธบๅ•ไฝ๏ผ‰ใ€‚ๅฆ‚๏ผšcontent = input("่ฏท่พ“ๅ…ฅๅ†…ๅฎน๏ผš") # ๅฆ‚fhdal234slfh98769fjdla # str = '1234a' # content = 0 # for i in str: # if i.isdecimal() : # content +=1 # print(content) # # # # # 10.้€‰ๅš้ข˜**๏ผšๅ†™ไปฃ็ ๏ผŒๅฎŒๆˆไธ‹ๅˆ—้œ€ๆฑ‚๏ผš็”จๆˆทๅฏๆŒ็ปญ่พ“ๅ…ฅ๏ผˆ็”จwhileๅพช็Žฏ๏ผ‰๏ผŒ็”จๆˆทไฝฟ็”จ็š„ๆƒ…ๅ†ต๏ผš # # ่พ“ๅ…ฅA๏ผŒๅˆ™ๆ˜พ็คบ่ตฐๅคง่ทฏๅ›žๅฎถ๏ผŒ็„ถๅŽๅœจ่ฎฉ็”จๆˆท่ฟ›ไธ€ๆญฅ้€‰ๆ‹ฉ๏ผš # # ๆ˜ฏ้€‰ๆ‹ฉๅ…ฌไบค่ฝฆ๏ผŒ่ฟ˜ๆ˜ฏๆญฅ่กŒ๏ผŸ # # ้€‰ๆ‹ฉๅ…ฌไบค่ฝฆ๏ผŒๆ˜พ็คบ10ๅˆ†้’Ÿๅˆฐๅฎถ๏ผŒๅนถ้€€ๅ‡บๆ•ดไธช็จ‹ๅบใ€‚ # # ้€‰ๆ‹ฉๆญฅ่กŒ๏ผŒๆ˜พ็คบ20ๅˆ†้’Ÿๅˆฐๅฎถ๏ผŒๅนถ้€€ๅ‡บๆ•ดไธช็จ‹ๅบใ€‚ # # ่พ“ๅ…ฅB๏ผŒๅˆ™ๆ˜พ็คบ่ตฐๅฐ่ทฏๅ›žๅฎถ๏ผŒๅนถ้€€ๅ‡บๆ•ดไธช็จ‹ๅบใ€‚ # # ่พ“ๅ…ฅC๏ผŒๅˆ™ๆ˜พ็คบ็ป•้“ๅ›žๅฎถ๏ผŒ็„ถๅŽๅœจ่ฎฉ็”จๆˆท่ฟ›ไธ€ๆญฅ้€‰ๆ‹ฉ๏ผš # # ๆ˜ฏ้€‰ๆ‹ฉๆธธๆˆๅŽ…็Žฉไผš๏ผŒ่ฟ˜ๆ˜ฏ็ฝ‘ๅง๏ผŸ # # ้€‰ๆ‹ฉๆธธๆˆๅŽ…๏ผŒๅˆ™ๆ˜พ็คบ โ€˜ไธ€ไธชๅŠๅฐๆ—ถๅˆฐๅฎถ๏ผŒ็ˆธ็ˆธๅœจๅฎถ๏ผŒๆ‹ฟๆฃ็ญ‰ไฝ ใ€‚โ€™ๅนถ่ฎฉๅ…ถ้‡ๆ–ฐ่พ“ๅ…ฅA๏ผŒB,C้€‰้กนใ€‚ # # ้€‰ๆ‹ฉ็ฝ‘ๅง๏ผŒๅˆ™ๆ˜พ็คบโ€˜ไธคไธชๅฐๆ—ถๅˆฐๅฎถ๏ผŒๅฆˆๅฆˆๅทฒๅšๅฅฝไบ†ๆˆ˜ๆ–—ๅ‡†ๅค‡ใ€‚โ€™ๅนถ่ฎฉๅ…ถ้‡ๆ–ฐ่พ“ๅ…ฅA๏ผŒB,C้€‰้กนใ€‚ # while 1 : # print('A:่ตฐๅคง่ทฏ๏ผŒB๏ผš่ตฐๅฐ่ทฏ,C:็ป•้“') # choice = input('่ฏท่พ“ๅ…ฅ๏ผš') # choice_upper = choice.upper() # if choice_upper == 'A': # print('ไฝ ้€‰ๆ‹ฉไบ†่ตฐๅคง่ทฏ') # choice1 = input('่ฏท้€‰ๆ‹ฉA:ๅๅ…ฌไบค๏ผŒB๏ผš่ตฐ่ทฏ:') # choice_upper1 = choice1.upper() # if choice_upper1 == 'A': # print('ๅๅ…ฌไบค๏ผŒๅๅˆ†้’ŸๅŽๅˆฐๅฎถ') # break # else: # print('่ตฐ่ทฏๅ›žๅฎถ๏ผŒไบŒๅๅˆ†้’ŸๅŽๅˆฐๅฎถ') # break # elif choice_upper == 'B': # print('ไฝ ้€‰ๆ‹ฉไบ†่ตฐๅฐ่ทฏ') # break # else: # print('ไฝ ้€‰ๆ‹ฉไบ†็ป•้“') # choice2 = input('่ฏท้€‰ๆ‹ฉA:ๅŒบๆธธๆˆๅŽ…๏ผŒB๏ผšๅŽป็ฝ‘ๅง:') # choice_upper2 = choice2.upper() # if choice_upper2 == 'A': # print('ไธ€ไธชๅŠๅฐๆ—ถๅˆฐๅฎถ๏ผŒ็ˆธ็ˆธๅœจๅฎถ๏ผŒๆ‹ฟๆฃ็ญ‰ไฝ ใ€‚') # else: # print('ไธคไธชๅฐๆ—ถๅˆฐๅฎถ๏ผŒๅฆˆๅฆˆๅทฒๅšๅฅฝไบ†ๆˆ˜ๆ–—ๅ‡†ๅค‡ใ€‚') # # # 1.ๅ†™ไปฃ็ ๏ผš่ฎก็ฎ—1 - 2 + 3 - 4 + 5 - 6... + 99ไธญ้™คไบ†88ไปฅๅค–ๆ‰€ๆœ‰ๆ•ฐ็š„ๆ€ปๅ’Œ๏ผŸ # s1 = 0 # s2 = 0 # i = 1 # while i <= 99 : # if i % 2 == 0: # if i == 88: # i += 1 # continue # else: # s1 -= i # else: # s2 += i # i += 1 # print(s1+s2) # # # 2. ** ้€‰ๅš้ข˜๏ผš ** ้€‰ๅš้ข˜๏ผšๅˆคๆ–ญไธ€ๅฅ่ฏๆ˜ฏๅฆๆ˜ฏๅ›žๆ–‡.ๅ›žๆ–‡: ๆญฃ็€ๅฟตๅ’Œๅ็€ๅฟตๆ˜ฏไธ€ๆ ท็š„.ไพ‹ๅฆ‚, ไธŠๆตท่‡ชๆฅๆฐดๆฅ่‡ชๆตทไธŠ # str = input('่ฏท่พ“ๅ…ฅ:') # if str[-1::-1] == str: # print("ๆ˜ฏ") # else: # print('ไธๆ˜ฏ') # # # 3.ๅˆถไฝœ่ถฃๅ‘ณๆจกๆฟ็จ‹ๅบ้œ€ๆฑ‚๏ผš็ญ‰ๅพ…็”จๆˆท่พ“ๅ…ฅๅๅญ—ใ€ๅœฐ็‚นใ€็ˆฑๅฅฝ๏ผŒๆ นๆฎ็”จๆˆท็š„ๅๅญ—ๅ’Œ็ˆฑๅฅฝ่ฟ›่กŒไปปๆ„็Žฐๅฎž,ๅฆ‚๏ผšๆ•ฌ็ˆฑๅฏไบฒ็š„xxx๏ผŒๆœ€ๅ–œๆฌขๅœจxxxๅœฐๆ–นๅนฒxxx # your_name = input('่ฏท่พ“ๅ…ฅๅง“ๅ') # your_place = input('่ฏท่พ“ๅ…ฅๅœฐ็‚น') # your_hobby = input('่ฏท่พ“ๅ…ฅ็ˆฑๅฅฝ') # msg = 'ๅฏไบฒ็š„{name}๏ผŒๆœ€ๅ–œๆฌขๅœจ{place}ๅœฐๆ–นๅนฒ{hobby}'.format(name = your_name,place = your_place,hobby = your_hobby) # print(msg)
[ "zhangchenghao0617@qq.com" ]
zhangchenghao0617@qq.com
49bee32f7d8ddec8715ce98a577f088ab50e9d45
a961a54e8d466b1fb98aee86d437ed6872e98d18
/shows/management/commands/get_english_names.py
403bad44964aea456ad293b48eb19dc7b5d768de
[]
no_license
akaram94/animemelody
6bcc75e2746def0f3638b0e6acf6cf5b0e2b6f7c
2adf79f232d06733bbc8af4def3778ea55838efa
refs/heads/master
2023-08-19T00:19:43.688266
2020-07-27T16:24:56
2020-07-27T16:24:56
268,275,539
0
0
null
2021-09-22T19:08:05
2020-05-31T12:29:51
Python
UTF-8
Python
false
false
1,233
py
from django.core.management.base import BaseCommand, CommandError from shows.models import Show, Theme import datetime import requests import json import time class Command(BaseCommand): help = ''' Used to import english show names from the Jikan API (rate limit of 2s) ''' def handle(self, *args, **options): feed_url = 'https://api.jikan.moe/v3/anime/' message = 'Getting english names...' shows = Show.objects.filter(english_name='') print(message) show_count = 0 # Retrieve all data from each endpoint for show in shows: current_url = feed_url + str(show.mal_id) time.sleep(2) r = requests.get(current_url) data = r.json() if data['title_english']: title_english = str(data['title_english']) else: title_english = None show.english_name = title_english show.save() show_count = show_count + 1 print(show_count) print('----------------------------------------------------------') print('Show Count: ' + str(show_count)) print('Successfully updated.')
[ "root@DESKTOP-FIFE14Q.localdomain" ]
root@DESKTOP-FIFE14Q.localdomain
ef967c7df544cf14fd81acac69d9aa53ed4449d0
9cd4bd2d3c43d14a78c4f72dd2d8c6900aec56c4
/TabuadaPython.py
7f386b00ecc7d585dacc937cfee125710246f99e
[]
no_license
paulorod07/Tabuada
937005686f0a9fb1c5b8a37dc49ae7178477c97f
14ced3e51ec0ce2c9c7c92bdf6696ce24a956a45
refs/heads/master
2020-04-27T16:22:05.703246
2019-03-08T06:41:19
2019-03-08T06:41:19
174,481,856
0
0
null
null
null
null
UTF-8
Python
false
false
152
py
print('Bem Vindo a Tabuada!') numero = int(input('Digite um numero para a tabuada: ')) for n in range(11): print(numero, 'x', n, '=', numero * n)
[ "noreply@github.com" ]
paulorod07.noreply@github.com
e714abb10599586f922ae28ac3e229eafdfbbc3b
711ca7d1996f3eab0c9f8338fd49c9067274d5e5
/image_augment-master/test_detect_multi_process.py
34ce758c0c9c30786eaa30c6bbdf0b7112d8c2c3
[]
no_license
zj463261929/tools
408ccdbe93ae00d4825b74d6e37cc2bd77208504
47545fbbb6779378ad833a7b84c89cc91848e345
refs/heads/master
2020-03-20T13:01:10.970807
2019-07-22T02:36:12
2019-07-22T02:36:12
137,446,532
0
0
null
null
null
null
UTF-8
Python
false
false
3,139
py
#coding=utf-8 import codecs import random import cv2, os import sys #sysๆ˜ฏPythonๅ†…ๅปบๆ ‡ๅ‡†ๅบ“ sys.path.append(os.getcwd()) from function import * import function as FUN import math import numpy as np import time from test_detect_single import img_aug from multiprocessing import Process image_dir = "/opt/zhangjing/Detectron/data/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/aug/img/" #ๅŽŸๅง‹ๅ›พ็‰‡่ทฏๅพ„ xml_dir = "/opt/zhangjing/Detectron/data/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/aug/xml/" #ๅ›พ็‰‡ๅฏนๅบ”xml็š„่ทฏๅพ„ image_txt1 = "/opt/zhangjing/Detectron/data/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/aug/minitruck.txt"#ๅŽŸๅง‹ๅ›พ็‰‡ ๆ ‡็ญพๅฏนๅบ”็š„txt image_txt2 = "/opt/zhangjing/Detectron/data/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/aug/forklift.txt"#ๅŽŸๅง‹ๅ›พ็‰‡ ๆ ‡็ญพๅฏนๅบ”็š„txt image_txt3 = "/opt/zhangjing/Detectron/data/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/aug/digger.txt"#ๅŽŸๅง‹ๅ›พ็‰‡ ๆ ‡็ญพๅฏนๅบ”็š„txt '''image_txt4 = "/opt/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/ImageSets_8558/Main/train_4.txt"#ๅŽŸๅง‹ๅ›พ็‰‡ ๆ ‡็ญพๅฏนๅบ”็š„txt image_txt5 = "/opt/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/ImageSets_8558/Main/train_5.txt"#ๅŽŸๅง‹ๅ›พ็‰‡ ๆ ‡็ญพๅฏนๅบ”็š„txt image_txt6 = "/opt/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/ImageSets_8558/Main/train_6.txt"#ๅŽŸๅง‹ๅ›พ็‰‡ ๆ ‡็ญพๅฏนๅบ”็š„txt ''' save_img_dir = "/opt/zhangjing/Detectron/data/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/aug/img_aug/" save_xml_dir = "/opt/zhangjing/Detectron/data/oil_vehicle_person_10cls/VOCdevkit2007/VOC2007/aug/xml_aug/" #ๅค„็†ๅŽไฟๅญ˜็š„่ทฏๅพ„๏ผŒๆฏไธชๅขžๅผบๆ–นๆณ•ไผšไฟๅญ˜ๅœจๅฏนๅบ”ๆ–‡ไปถๅคนไธ‹ if not os.path.exists(save_xml_dir): os.mkdir(save_xml_dir) if not os.path.exists(save_img_dir): os.mkdir(save_img_dir) if __name__ == "__main__": print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) print 'Parent process %s starts.' % os.getpid() #ๅˆ›ๅปบ็บฟ็จ‹ my_process1 = Process(target = img_aug, args=(image_dir,xml_dir,image_txt1,save_img_dir,save_xml_dir) , name= 'ys_process1') my_process2 = Process(target = img_aug, args=(image_dir,xml_dir,image_txt2,save_img_dir,save_xml_dir) , name= 'ys_process2') my_process3 = Process(target = img_aug, args=(image_dir,xml_dir,image_txt3,save_img_dir,save_xml_dir) , name= 'ys_process3') ''' my_process4 = Process(target = img_aug, args=(image_dir,xml_dir,image_txt4,save_img_dir,save_xml_dir) , name= 'ys_process4') my_process5 = Process(target = img_aug, args=(image_dir,xml_dir,image_txt5,save_img_dir,save_xml_dir) , name= 'ys_process5') my_process6 = Process(target = img_aug, args=(image_dir,xml_dir,image_txt6,save_img_dir,save_xml_dir) , name= 'ys_process6') ''' #็ญ‰ๅพ…2s time.sleep(2) #ๅฏๅŠจ็บฟ็จ‹ my_process1.start() my_process2.start() my_process3.start() '''my_process4.start() my_process5.start() my_process6.start()''' #็ญ‰ๅพ…็บฟ็จ‹็ป“ๆŸ my_process1.join() my_process2.join() my_process3.join() '''my_process4.join() my_process5.join() my_process6.join()''' print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) print 'process %s ends.' % os.getpid()
[ "zhagnjing1@mail.e-u.cn" ]
zhagnjing1@mail.e-u.cn
424d47cd8ca4fd8aff8087b739e35b6c874f1161
35ce7e974e1651b1031841d84bce190be73be196
/autonomous_car/system/controller/pid_controller.py
7da59857bae3bd7f590eaffa8b93d5e6a45e0ef8
[]
no_license
th-sato/py-graduate-final-project
459b515b1ba4629fb55ca0f028f0bb92ab715167
48d7afb0c0c49ed98a1263c9efdfcf26e99673cd
refs/heads/master
2022-01-25T15:46:28.268045
2019-07-07T03:48:02
2019-07-07T03:48:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,583
py
class PIDController: def __init__(self): # Constantes do controlador # Proporcional self.KP = {'angle': 250.0, 'speed': 5.0} # Integral # self.KI = {'angle': 30.0, 'speed': 1.0} # Derivative # self.KD = {'angle': 1.0, 'speed': 1.0} self.max_error = 100000.0 self.min_error = -100000.0 # self.previous_i_error = {'angle': 0.0, 'speed': 0.0} # self.previous_d_error = {'angle': 0.0, 'speed': 0.0} # self.previous_time = 0.0 def reset(self, now_time): # self.previous_i_error = {'angle': 0, 'speed': 0} # self.previous_d_error = {'angle': 0, 'speed': 0} # self.previous_time = now_time return def proportional(self, error, variable): proporcional_controller = self.KP[variable] * error return self.__set_max(proporcional_controller, self.min_error, self.max_error) # def integral(self, error, time_interval, variable): # actual_error = error * time_interval # integral_part = self.previous_i_error[variable] + actual_error # self.previous_i_error[variable] = integral_part # integral_controller = self.KI[variable] * integral_part # return self.__set_max(integral_controller, self.min_error, self.max_error) # def derivative(self, error, time_interval, variable): # derivative_part = (error - self.previous_d_error[variable]) / time_interval # self.previous_d_error[variable] = error # derivative_controller = self.KD[variable] * derivative_part # return self.__set_max(derivative_controller, self.min_error, self.max_error) def p_controller(self, error, variable, interval=0.01): p = self.proportional(error, variable) # i = self.integral(error, interval, variable) # d = self.derivative(error, interval, variable) return p def output(self, distance_center, radius_curvature, run_time): try: # interval = run_time - self.previous_time # self.previous_time = run_time angle = self.p_controller(distance_center, 'angle') # speed = self.pid_controller(radius_curvature, interval) speed = 45 return speed, angle except Exception as e: print str(e) return 0, 0 @staticmethod def __set_max(value, min_value, max_value): if value > 0 and value > max_value: return max_value if value < 0 and value < min_value: return min_value return value
[ "thiagosato22@hotmail.com" ]
thiagosato22@hotmail.com
f15414bf81d05d0860a3345a7f7b0679f6cbba74
db35cba13f89601467b4bb4553d2b648c18fc3fb
/stores/topshop.py
8e7c906ff53b33b1ba4e7916231b878688d31d1a
[]
no_license
jitsejan/outfitter
e6d73fcc2ec46c5236207c8bb8e1e72fc8929c38
53faab3e30e312bbdbc4ca0154efe35592708a8b
refs/heads/master
2023-01-02T20:15:12.519289
2016-09-15T14:07:00
2016-09-15T14:07:00
309,139,169
0
0
null
null
null
null
UTF-8
Python
false
false
6,113
py
################################################################################ # Application: Outfitter # File: topshop.py # Goal: topshop.py will retrieve specific information from a # given Topshop link and save the data to a variable # Input: url of website # Output: Target data # Example: info = crawl("http://eu.topman.com/en/tmeu/product/clothing-617800/mens-jumpers-cardigans-617811/charcoal-shawl-cardigan-4656120?bi=0&ps=20") # # History: 2015-09-28 - JJ Creation of the file # 2015-10-29 - JJ Added functionality to retrieve all images # ################################################################################ ################################################################################ # Imports ################################################################################ from product import Product ################################################################################ # Definitions ################################################################################ author = "JJ" appName = "Topshop Crawler" ################################################################################ # Functions ################################################################################ ################################################################################ # Classes ################################################################################ class TopshopProduct(Product): def __init__(self, *args, **kwargs): super(TopshopProduct,self).__init__('Topshop', *args, **kwargs) ################################################################################ # Function: _get_image # Input: tree # Output: URL of the image # Goal: Find the image URL and return it # Targets: Use a css selecter to find the image URL # Example: Find <meta property="og:image" content="http://media.topman.com/wcsstore/TopManEU/images/catalog/81F22KCHR_normal.jpg"/> def _get_images(self): images = [] try: # Use css to select image image_data = self._tree.cssselect('meta[property*=\'og:image\']') # Save the image link from the content field to the variable image images.append(image_data[0].attrib['content']) except: pass # Return the link to the image return images ################################################################################ # Function: _get_price # Input: tree # Output: Price in euro # Goal: Find the price and return it # Targets: Use a css selecter to find the price # Example: Find <span itemprop="offers"><meta itemprop="price" content="E 39,95"> def _get_price(self): price = "" try: # Use css to select the meta-tag with name equal to twitter:data1 price_meta = self._tree.cssselect('meta[property*=\'og:price:amount\']') # Save the price from the content field to the variable price price = price_meta[0].attrib['content'] except: pass # Return the price return price def _get_currency(self): currency = "" try: currency_meta = self._tree.cssselect('meta[property*=\'og:price:currency\']') currency = currency_meta[0].attrib['content'] except: pass # Return the currency return currency ################################################################################ # Function: _get_color # Input: tree # Output: Color # Goal: Find the color and return it # Targets: Use a css selecter to find the color # Example: Find <ul class="product_summary"><li class="product_colour">Colour:&nbsp;<span>GREY</span></li> def _get_color(self): color = "" try: # Use css to select to find the color color_meta = self._tree.cssselect('ul[class*=\'product_summary\'] li[class*=\'product_colour\'] span') # Save the price from the content field to the variable price color = color_meta[0].text_content().strip() except: pass # Return the color return color ################################################################################ # Function: _get_title # Input: tree # Output: Title # Goal: Find the title and return it # Targets: Use a css selecter to find the title # Example: Find <div class="title"><h1>ASOS Jumper<h1> def _get_title(self): title = "" try: # Use css to select the meta-tag with name equal to description title_data = self._tree.cssselect('meta[property*=\'og:description\']') # Retrieve the text from h1 and strip unwanted characters title = title_data[0].attrib['content'] except: pass # Return the title return title ################################################################################ # Function: _get_category # Input: self # Output: Title # Goal: Find the title and return it # Targets: Use a css selecter to find the title # Example: Find last word of description. There is no category explicitly def _get_category(self): category = "" try: # Use css to select the meta-tag with name equal to description category_data = self._tree.cssselect('meta[property*=\'og:description\']') # Retrieve the text and take the last word category = category_data[0].attrib['content'].rsplit(' ')[-1] except: pass # Return the title return category def _get_brand(self): brand = "" return brand ################################################################################ # main ################################################################################ def get_product(url): product = TopshopProduct(url) return product def get_price(url): product = TopshopProduct(url) return product.get_price()
[ "jitsejan@gmail.com" ]
jitsejan@gmail.com
f6cc157fcac65c81a3809080db0f1aac9d4e2f7d
82f40f23ea87d8ed09974a6ce87418cb7934b14b
/Logistic Regression & MultiLayer Perceptron/Code/logistic_kclass.py
83abd0da19f525bde30fef8e517fe84551510fd0
[]
no_license
priyankpshah/DataAnalysis_MachineLearning
22a69bea1426d3291461177a4ddfd67a9f19741b
68c7a27a84b341a2a19d7481410536c23750fa24
refs/heads/master
2021-06-08T14:51:05.167801
2016-12-15T21:37:28
2016-12-15T21:37:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,061
py
from __future__ import division from sklearn.datasets import load_iris, fetch_mldata from sklearn.cross_validation import KFold import numpy as np def indicator(class_fact, class_val): ind = [] for label in class_fact: if label == class_val: ind.append(1) else: ind.append(0) return np.asarray(ind) def Hypo(theta, X, thetas): den = exp_sum(thetas, X) hypo = np.exp(np.dot(X, theta)) hypo /= den return hypo def exp_sum(thetas, X): sum = 0 m, n = np.shape(thetas) for i in range(n): sum += np.exp(np.dot(X, thetas[:, i])) return sum def Find_Theta(X, Y, estimate, iterations): calssval = [0,1,2] x, y = np.shape(X) mul_theta = np.ones((y, len(calssval))) for j in range(iterations): for i, c in enumerate(calssval): theta = mul_theta[:, i] temp_hypo = Hypo(theta, X, mul_theta) ind = indicator(Y, c) theta_i = estimate * (np.sum((temp_hypo - ind).reshape(len(temp_hypo), 1) * X, axis=0)) theta_i = theta_i.reshape(theta.shape) theta = theta - theta_i mul_theta[:, i] = theta return mul_theta def confuide_mat(ytest, ypredict): cm = [] clab = [0,1,2] for i in clab: tmp = [0] * len(clab) for j in range(len(ytest)): if ytest[j] == i and ytest[j] == ypredict[j]: tmp[clab.index(i)] += 1 elif ytest[j] == i and ytest[j] != ypredict[j]: tmp[clab.index(ypredict[j])] += 1 cm.append(tmp) return np.array(cm) def predict(X_Test, thetas): Y_prediction = [] thetas = thetas.T #print thetas for x in X_Test: h = -np.inf for i, theta in enumerate(thetas): h_hat = np.dot(x, theta) #print h_hat if h_hat > h: h = h_hat label = i Y_prediction.append(label) return Y_prediction def confusion_mat(cm): precesion = np.zeros(2) recall = np.zeros(2) f1measure = np.zeros(2) accuracy = 0 tot = np.sum(confusion_mat) for i in range(0,2): for j in range(0,2): precesion[i] += cm[j][i] recall[i] += cm[i][j] if(i==j): accuracy = accuracy + cm[i][j] precesion[i] = cm[i][i]/precesion[i] recall[i] = cm[i][i]/recall[i] f1measure[i] = ((2*precesion[i]*recall[i])/(precesion[i]+recall[i])) accuracy = float(accuracy)/tot return precision,recall,f_measure,accuracy if __name__ == "__main__": mnist = fetch_mldata('MNIST original') X, Y = mnist.data / 255., mnist.target matrix = np.concatenate((X[Y == 0], X[Y == 1], X[Y == 2]), axis=0) y = np.concatenate((Y[Y == 0], Y[Y == 1], Y[Y == 2]), axis=0) kf = KFold(X.shape[0], n_folds=10, shuffle=True) accuracy = 0.0 precision = np.zeros(3) recall = np.zeros(3) f_measure = np.zeros(3) for train,test in kf: X_Train, X_Test = X[train], X[test] Y_Train, Y_Test = Y[train], Y[test] thetas = Find_Theta(X_Train, Y_Train, 0.001, 2500) Y_Prediction = predict(X_Test, thetas) cm = confuide_mat(Y_Test, Y_Prediction) pre, rec, f1, acc = confusion_mat(cm) precision = np.add(precision, pre) recall = np.add(recall, rec) f_measure = np.add(f_measure, f1) accuracy = accuracy + acc precision = map(lambda x: x/10, precision) recall = map(lambda x: x/10, recall) f1measure = map(lambda x: x/10, f_measure) accuracy /= 10 print " Confusion Matrix:"+ str(cm[0]) print "\t\t\t\t "+ str(cm[1]) print " Precesion: Recall: F-1 Measures" print "Class 0: " + str(round(precision[0],3))+" "+str(round(recall[0],3))+" "+str(round(f1measure[0],3)) print "Class 1: " + str(round(precision[1],3))+" "+str(round(recall[1],3))+" "+str(round(f1measure[1],3)) print "\nAccuracy: "+str(round(accuracy,3)*100)+ "%"
[ "priyank687@gmail.com" ]
priyank687@gmail.com
668cd341318eeaefb3cfccd3c9694710dc5d5f46
6dec3256279f73c563b116a8fa44900c4b51a4ce
/scrapy_demo/scrapy_demo/pipelines.py
736cf257e01c3b8c355daf21b7e4d34a1cf2bf32
[]
no_license
gannonk08/scrapy-demo
6802cfbe109ff428f58c5e9957ac109bfed282a0
86939c56b83c9142ac129f02769770128d1f6fc6
refs/heads/master
2020-07-05T22:50:47.026269
2016-11-17T21:09:01
2016-11-17T21:09:01
73,976,758
1
1
null
null
null
null
UTF-8
Python
false
false
1,052
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html import psycopg2 import logging from spiders.items import awayTeamRushItem from scrapy.conf import settings from scrapy.exceptions import DropItem class ScrapyDemoPipeline(object): def __init__(self): self.connection = psycopg2.connect(host='localhost', database='scraping_demo', user='Gannon') self.cursor = self.connection.cursor() def process_item(self, item, spider): try: if type(item) is awayTeamRushItem: table = """awayteamrush""" self.cursor.execute("""INSERT INTO """ + table + """ (rusher, car, yds, avg, td, longest) VALUES(%s, %s, %s, %s, %s, %s)""", (item.get('rusher'), item.get('car'), item.get('yds'), item.get('avg'), item.get('td'), item.get('longest'))) self.connection.commit() self.cursor.fetchall() except psycopg2.DatabaseError, e: print "Error: %s" % e return item
[ "gannonk08@gmail.com" ]
gannonk08@gmail.com
595635a1e4beaf535e5f7640bd2b7ca17a517b2c
b205909a015abf08dc15133797c465fd58a48352
/sdes.py
4d2868d7e9e2d273c541caee44e96f0f1bba4ee5
[]
no_license
AlexanderFrancoletti/CryptographyHW1
2648f5b52053504ac6cbceb7964a596d91c1a4bb
2d0b728046b91d099c3f6af9996c805db0df566e
refs/heads/master
2020-03-29T05:20:02.226714
2018-09-20T17:02:00
2018-09-20T17:02:00
149,577,970
0
0
null
null
null
null
UTF-8
Python
false
false
3,547
py
#Define keys initially IP = [2, 6, 3, 1, 4, 8, 5, 7] EP = [4, 1, 2, 3, 2, 3, 4, 1] IP_inverse = [4, 1, 3, 5, 7, 2, 8, 6] P10 = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] P8 = [6, 3, 7, 4, 8, 5, 10, 9] P4 = [2, 4, 3, 1] sbox0 = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] sbox1 = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] default_key = '1010000010' #Function which returns a string of bits randomized based on the key being used def permutate(original, key): return ''.join(original[i-1] for i in key) #bitList = [] #for char in bitString: # if char == '1': # bitList.append(1) # else: # bitList.append(0) #return bitList #Returns the left half of bits in any key def keyLeftHalf(bits): return bits[:(len(bits)/2)] #Returns the right half of bits in any key def keyRightHalf(bits): return bits[(len(bits)/2):] #Split the bits passed in into 2 different halves, and then perform a leftwise shift on each half #and returns the combined result def shift(bits): leftHalfShift = keyLeftHalf(bits)[1:] + keyLeftHalf(bits)[0] rightHalfShift = keyRightHalf(bits)[1:] + keyRightHalf(bits)[0] return leftHalfShift+rightHalfShift #This function generates the key from the first round of shifts def generateKey1(): return permutate(shift(permutate(default_key, P10)), P8) #This function generates the key from the second round of shifts def generateKey2(): return permutate(shift(shift(shift(permutate(default_key, P10)))), P8) #XOR function, this returns the string of bits created by applying the XOR operation between 2 bits def xor(bits, key): newBitString = '' for bit, key_bit in zip(map(int, bits), map(int, key)): if (bit != key_bit): newBitString = newBitString + '1' else: newBitString = newBitString + '0' return newBitString #This performs the non-linear sbox operations, which will transform the bits used as input #based on the sbox tables defined above def sboxLookup(bits, sbox): row = int(bits[0] + bits[3], 2) col = int(bits[1] + bits[2], 2) return '{0:02b}'.format(sbox[row][col]) #This is the function which will actually perform the DES algorithm by using the #helper functions above def fk(bits, key): #Split the bits into left and right halves left = keyLeftHalf(bits) right = keyRightHalf(bits) #Permutate the right half bits = permutate(right, EP) bits = xor(bits, key) #Transform the bits using the sbox table bits = sboxLookup(keyLeftHalf(bits), sbox0) + sboxLookup(keyRightHalf(bits), sbox1) #Permutate the resulting bits using the 4 bit key bits = permutate(bits, P4) #Perform xor operation on the return xor(bits, left) #Encryption call takes 8 bit inputs and calls the DES functions in order def encrypt(plainText): #bits = stringToBits(plainText) #Cipher the bits according to the IP key bits = permutate(plainText, IP) #Store the first key generated by the DES algorithm temp = fk(bits, generateKey1()) #Generate the second key for the DES algorithm bits = keyRightHalf(bits) + temp bits = fk(bits, generateKey2()) #Return the resulting encrypted string of bytes return permutate(bits + temp, IP_inverse) #Decryption call has identical operations as encrypt, with the exception of #calling the Key2 function first def decrypt(cipherText): bits = permutate(cipherText, IP) temp = fk(bits, generateKey2()) bits = keyRightHalf(bits) + temp bits = fk(bits, generateKey1()) return permutate(bits + temp, IP_inverse)
[ "alexander.francoletti@gmail.com" ]
alexander.francoletti@gmail.com
45deb898113df9ae83c65ce0424014c7fb729b1e
5ee088a8573a305ea30bfc6d083c4ec6a1112d1f
/doule_exit/InitialPedestrian.py
d22aa771df9f3d3e6f99b9247685e1904db665b2
[]
no_license
Poloma07/CA_Multi_Exits
f176d3c68625e6ab571b08c20229416960931659
c1736861c81a4328d9344522cc530bda7a8f67a3
refs/heads/master
2020-04-18T16:57:45.466170
2019-01-13T12:24:39
2019-01-13T12:24:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,499
py
import random import numpy as np import Data, Block import matplotlib.pyplot as plt def creatPeople(): ''' ไบง็”Ÿ้šๆœบ่กŒไบบ :return:่กŒไบบๅˆ—่กจ ''' allBlock = [] # ็”จไบŽๅญ˜ๆ”พๆ ผๅญ allPeople = [] # ็”จไบŽๅญ˜ๆ”พ่กŒไบบ # ๅฐ†ๆ‰€ๆœ‰ๆ ผๅญๅ…จ้ƒจๅญ˜ๅ…ฅๅˆ—่กจ' for i in range(1, Data.ROOM_M): for j in range(1, Data.ROOM_N): b = Block.Block() b.x = i b.y = j if random.random() > 0.5: # ้กบๆ—ถ้’ˆๅ’Œ้€†ๆ—ถ้’ˆ่กŒไบบๅ„ๅ ไธ€ๅŠ b.clock_wise = True else: b.clock_wise = False #----------ๅˆๅง‹ๅŒ–่กŒไบบๆ”ถ็›Š------------- b.income_inertia = np.zeros(9) b.income_wall = np.zeros(9) b.income_exit = np.zeros(9) b.income_memory = np.zeros(9) b.income_all = np.zeros(9) allBlock.append(b) # ๆทปๅŠ ่กŒไบบ random.shuffle(allBlock) # ้šๆœบๆŽ’ๅบ allPeople = allBlock[:Data.PEOPLE_NUMBER] # ๅ–ๅ‰Nไธช ๅฏๆœ‰ๆ•ˆ้˜ฒๆญขๆ— ้™ไบง็”Ÿ้šๆœบๆ•ฐ return allPeople def creatAppointPeo(): ''' ไบง็”ŸๆŒ‡ๅฎš่กŒไบบ :return: ่กŒไบบๅˆ—่กจ ''' allPeople = [] b3 = Block.Block() b3.x = 3 b3.y = 10 b3.type = False b3.clock_wise = False b3.income_inertia = np.zeros(9) b3.income_wall = np.zeros(9) b3.income_exit = np.zeros(9) b3.income_memory = np.zeros(9) b3.income_all = np.zeros(9) allPeople.append(b3) return allPeople
[ "1279010287@qq.com" ]
1279010287@qq.com
0da39b2b6595f0a25f70e3735197ce8c382da45b
c7522a46908dfa0556ed6e2fe584fd7124ee5cdc
/ApplicationUsers/views.py
80dd9c405729e423ad243becbd6d5c57ca1b5930
[]
no_license
stheartsachu/Eventlee
461cf35961a7f294229d6c611e58a09d9f4e1eb5
6b67dfc873203f1322c16664923ffe5a760d50ed
refs/heads/master
2022-11-13T14:48:39.097718
2020-06-30T04:54:45
2020-06-30T04:54:45
276,000,638
0
0
null
null
null
null
UTF-8
Python
false
false
1,806
py
from django.shortcuts import render,HttpResponse,redirect,HttpResponseRedirect from ApplicationUsers.form import ApplicationuserForm # Create your views here. from ApplicationUsers.models import users def home(request): return render(request,"index.html") def Contact(request): return render(request,"contact.html") def gallery(request): return render(request,"gallery.html") def signup(request): if request.method == 'POST': form = ApplicationuserForm(request.POST) f = form.save(commit=False) f.first_name = request.POST['fn'] f.last_name = request.POST['ln'] f.email = request.POST['email'] if request.POST['p1'] == request.POST['p2']: f.password = request.POST['p2'] else: return HttpResponse("<h1> Password and Confirm password is not same</h1>") f.status = True f.save() return HttpResponse("User is created sucessfully now, can login to website") return render(request, 'registration.html') def login(request): if request.method == "POST": un = request.POST["email"] up = request.POST["password"] try: data = users.objects.get(email=un) except: return render(request, "login.html", {'emailerror': True}) dp = data.password active = data.status if (active == False): return render(request, "login.html", {'activeerror': True}) else: if (dp == up): request.session['emailid'] = un request.session['Authentication'] = True return HttpResponse("You are sucessfullly login") else: return render(request, "login.html", {'passworderror': True}) return render(request, "login.html")
[ "seartsachu@gmail.com" ]
seartsachu@gmail.com
0153dcd0356625cc5eeb56abefd0fa3a6ed54d56
1f0837796a613fcf1788b2361fe4d8d5943bcc47
/Tarea Nยบ1/Ejer7.py
5bd8720ac4dfec14680de5faa08d98c167e2b592
[]
no_license
LeonardoArroba/Tarea-de-Estructura
557f47206c007dad6a7ed5ecc8e29f73c1ab895c
d37e9e9fdf1a562c8f5d29c5fee8e836d87a32c9
refs/heads/main
2023-06-02T12:36:43.153125
2021-06-30T02:53:46
2021-06-30T02:53:46
381,556,550
0
0
null
null
null
null
UTF-8
Python
false
false
1,180
py
#Determinar la cantidad de dinero que recibirรก un trabajador por concepto de las horas extras trabajadas en una empresa, # sabiendo que cuando las horas de trabajo exceden de 40, el resto se consideran horas extras y que รฉstas se pagan al doble # de una hora normal cuando no exceden de 8; si las horas extras exceden de 8 se pagan las primeras 8 al doble de lo que # se paga por una hora normal y el resto al triple """Ejercicio 7""" class Trabajador: def __init__(self): pass def calcularJornada(self): ht, he, het=0,0,0 ph, phe, pt, ph8=0,0,0,0 ht = int(input("Ingrese horas trabajadas: ")) ph = float(input("Ingrese valor hora: ")) if ht > 40: he = ht-40 if he > 8: het = he-8 ph8 = 8*ph*2 ph8 =het*ph*3 else: ph8 = he*ph*2 pt = 40*ph+phe+ph8 else: pt = ht*ph print("Sobretiempo<8:{} Sobretiempo>8:{} Jornada:{} ".format(ph8,phe,pt)) tarea = Trabajador() tarea.calcularJornada()
[ "noreply@github.com" ]
LeonardoArroba.noreply@github.com
cdcf3cbc200241606b4cc9140c33f8aa85da216f
2c332ae49c8130ab88ee9be7b092f66e4f88324a
/MyOwnSolution/compare_images2.py
91e3c8d21c645f96e8bf20b90a1abd0d7e2fdea6
[]
no_license
lalona/parking-spot-classifier
fbc34b385d3620513126c91ecc106c3727a0be63
835ae0a514daecf623ba456b2ee5cab26123f939
refs/heads/master
2020-04-07T09:44:28.396823
2019-05-02T19:51:14
2019-05-02T19:51:14
158,263,531
0
0
null
null
null
null
UTF-8
Python
false
false
6,367
py
""" La idea es simple: con una imagen donde el espacio se encuentre vacio se compara con otra imagenes y dependiendo las diferencias se concluye si estรก ocupado o vacio """ import cv2 import os from skimage.measure import compare_ssim as ssim from skimage.measure import compare_nrmse as nrmse import pickle import argparse from operator import itemgetter from itertools import groupby import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm import ntpath import json path_pklot = 'C:\\Eduardo\\ProyectoFinal\\Datasets\\PKLot' def getGrayscaleImage(filepath): """ Read the image files and converts it to gray scale :param filepath: the path to the image :return: the image in grayscale """ image = cv2.imread(filepath) return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) def extractUniqueItemsByKey(list, key): """ This will take a list and sorted by the key and then it will return the list with just the elements from that key without duplicates :param list: :param key: :return: """ list.sort(key=lambda x: x[key]) return [k for k, v in groupby(list, key=lambda x: x[key])] def getNewImageInfo(image_info): image_info['filepath'] = os.path.join(path_pklot, image_info['filepath'], image_info['filename']) return image_info def mse(imageA, imageB): # the 'Mean Squared Error' between the two images is the # sum of the squared difference between the two images; # NOTE: the two images must have the same dimension err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) err /= float(imageA.shape[0] * imageA.shape[1]) # return the MSE, the lower the error, the more "similar" # the two images are return err def main(): parser = argparse.ArgumentParser(description='Select the type of reduced.') parser.add_argument("-f", "--filename", type=str, required=True, help='Path to the file the contains the dictionary with the info of the dataset reduced.') args = vars(parser.parse_args()) info_filename = args["filename"] # test set with open(info_filename, "rb") as fp: # Unpickling images_info = pickle.load(fp) grouper = itemgetter('parkinglot', 'space') images_info = sorted(images_info, key=grouper) parkinglots = extractUniqueItemsByKey(images_info, 'parkinglot') images_info_by_patkinglot = {} for parkinglot in parkinglots: image_info_parkinglot = [i for i in images_info if i['parkinglot'] == parkinglot] spaces_parkinglot = extractUniqueItemsByKey(image_info_parkinglot, 'space') images_info_by_spaces = {} for space in spaces_parkinglot: images_info_by_spaces[space] = [getNewImageInfo(i) for i in image_info_parkinglot if i['space'] == space] images_info_by_patkinglot[parkinglot] = images_info_by_spaces # Hasta este punto ya tengo un dictionario dividido por estacionamiento que a su vez se divide por espacios # Voy a obtener la lista de un espacio en particular de un estacionamiento, voy a obtener el primer espacio vacio que # encuentre y despues voy a compararlo con los demas # Mostrar en una ventana el espacio vacio y en la otra la comparacion y el resultado empty_space_filepath = '' errors = [] for parkinglot, images_info_by_spaces in images_info_by_patkinglot.items(): for space, images_info_of_space in images_info_by_spaces.items(): error_count_empty = 0 error_count_occupied = 0 error_empty = 0 error_occupied = 0 empty_space_filepath = '' example_list = images_info_of_space for example in tqdm(example_list): if example['state'] == '0' and len(empty_space_filepath) == 0: empty_space_filepath = example['filepath'] img_empty_space = getGrayscaleImage(empty_space_filepath) break for example in tqdm(example_list): comparision_space_filepath = example['filepath'] img_comparision_space = getGrayscaleImage(comparision_space_filepath) try: sim = ssim(img_empty_space, img_comparision_space) except: height1, width1 = img_empty_space.shape img_comparision_space = cv2.resize(img_comparision_space, (width1, height1)) sim = ssim(img_empty_space, img_comparision_space) nm = nrmse(img_empty_space, img_comparision_space) # m = mse(img_empty_space, img_comparision_space) space_comparing_name = 'state: {} sim: {} nrmse: {}'.format(example['state'], sim, nm) if sim < 0.4 and example['state'] == '0': error_count_empty += 1 error_empty += abs(0.4 - sim) if sim >= 0.4 and example['state'] == '1': error_count_occupied += 1 error_occupied += abs(sim - 0.4) if sim > 0.7: empty_space_filepath = example['filepath'] img_empty_space = img_comparision_space """ fig = plt.figure('title') plt.suptitle(space_comparing_name) # show first image ax = fig.add_subplot(1, 2, 1) plt.imshow(img_empty_space, cmap=plt.cm.gray) plt.axis("off") # show the second image ax = fig.add_subplot(1, 2, 2) plt.imshow(img_comparision_space, cmap=plt.cm.gray) plt.axis("off") # show the images plt.show() """ error_occupied = 0 if error_count_occupied == 0 else (error_occupied / error_count_occupied) error_empty = 0 if error_count_empty == 0 else (error_empty / error_count_empty) print('In the space {} in a total of {} there was an error of occupied {} {} empty {} {}'.format(space, len( example_list), error_count_occupied, error_occupied, error_count_empty, error_empty)) errors.append({'parkinglot': parkinglot, 'space': space, 'total': len(example_list), 'error_count_occupied': error_count_occupied, 'error_occupied': error_occupied, 'error_count_empty': error_count_empty, 'error_empty': error_empty}) info = {'dataset': info_filename, 'threshold': 0.4, 'comparision_method': 'sim', 'errors': errors} dataset_name = ntpath.basename(info_filename).split('.')[0] feedback_filename = '{}_{}_{}.json'.format(dataset_name, 0.4, 'sim') with open(feedback_filename, 'w') as outfile: json.dump(info, outfile) # s = ssim(grayscale_selected_image, grayscale_current_image) if __name__ == "__main__": main()
[ "sebastianxiro@gmail.com" ]
sebastianxiro@gmail.com
6846461a15b491de3c42e18d6aa4d646d87bad7a
4bd5e9b67d98bfcc9611bd8b774c9ab9f4f4d446
/PythonๅŸบ็ก€็ฌ”่ฎฐ/13/ไปฃ็ /3.ๅคš็ปงๆ‰ฟ.py
1693fc8f7b66401a95f44f287cfcb7d4c149f841
[]
no_license
zhenguo96/test1
fe21510aea7feb674e52fd7a86d4177666f841c5
0d8de7e73e7e635d26462a0bc53c773d999498be
refs/heads/master
2020-05-03T13:09:53.592103
2019-04-06T07:08:47
2019-04-06T07:08:47
178,646,627
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
# # ๅคš็ปงๆ‰ฟ # class Base1: # def __init__(self,name): # self.name = name # def t1(self): # print("Base1") # # class Base2: # def __init__(self,name): # self.name = name # def t2(self): # print("Base2") # # class Base3: # def __init__(self, name): # self.name = name # def t3(self): # print("Base3") # # # ๅคš็ปงๆ‰ฟ็š„ๅญ็ฑป # class Child(Base1,Base2,Base3): # pass # child = Child('tom') # print(child.__dict__) # child.t1() # child.t2() # # ็ปงๆ‰ฟ้กบๅบ # print(Child.mro()) # print(Child.__mro__) #
[ "1148421588@qq.com" ]
1148421588@qq.com
a9c4497452165d55ce911de902394c5c85022e33
1d1cb14e6d0b2a439348d6677eb9e8e72390d39f
/01_LiniarRegression/Live/linearRegressionWGradientDescent.py
9be2c569d79cf3a532fbfc0bbbbd1a1c066e0416
[]
no_license
EduardoFAFernandes/MyDeepLearningIntro
2c7b2278ed1cf446c9f3656ae9dd421c22648933
a35a43f0690ddfa499097335d9b8aa058d1db021
refs/heads/master
2021-09-05T06:51:33.479757
2018-01-25T01:07:54
2018-01-25T01:07:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,514
py
from numpy import * def compute_error_for_given_points(m, b, points): totalError = 0 for point in points: totalError += (point[1] - (m * point[0] + b))**2 return totalError / float(size(points)) def step_gradient(current_b, current_m, points, learning_rate): gradient_m = 0 gradient_b = 0 N = float(len(points)) for point in points: x = point[0] y = point[1] gradient_m += -(2/N) * x *(y - ((current_m * x) + current_b)) gradient_b += -(2/N) * (y - ((current_m * x) + current_b)) new_b = current_b - (learning_rate * gradient_b) new_m = current_m - (learning_rate * gradient_m) return [ new_b, new_m] def gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations ): b = initial_b m = initial_m for i in range(num_iterations): b,m = step_gradient(b, m, array(points), learning_rate) return [b, m] def run(): points = genfromtxt('data.csv', delimiter = ',') #hyperparameters learning_rate = 0.0001 #y = mx + b initial_b = 0 initial_m = 0 num_iterations = 1000 print("Starting gradient descent at b = {0}, m = {1}, error = {2}".format( initial_b, initial_m, compute_error_for_given_points(initial_b, initial_m, points))) print("Running...") [b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations ) print("After {0} iterations b = {1}, m = {2}, error = {3}".format( num_iterations, b, m, compute_error_for_given_points(b, m, points))) if __name__ == '__main__': run()
[ "nomeaocalhas3@gmail.com" ]
nomeaocalhas3@gmail.com
3a319731bfbf4784b70ae3333efef1452e0f0744
bb0af8077407b27f8c3b787d32bdd9c4b37e977a
/fitmodel_densitysplit/do_fitting/modelfitfullk.py
82cbe8d7dac400a6d8e1c6ddf94bc83a4de38ec0
[]
no_license
JulianWack/IfA-SummerStudent-2022
94948169acc830da5b2b1bb5d227fb4e782dbe1c
d1c6ebe48e0a527fe6138c73adc35464538e2e04
refs/heads/main
2023-04-15T02:51:59.098422
2022-09-10T10:52:38
2022-09-10T10:52:38
508,616,897
0
0
null
null
null
null
UTF-8
Python
false
false
9,407
py
# Fit Kaiser with FoG term over largest possible k range # Identical to modelfit.py excepet for storing paths and line 94 import numpy as np import matplotlib.pyplot as plt from scipy.special import legendre, erf from datetime import timedelta import time from os import mkdir, listdir import helper_funcs as hf from astropy.cosmology import Planck18 as Planck18_astropy import camb import zeus from nbodykit.lab import * from nbodykit import style plt.style.use(style.notebook) ### MCMC functions### def logprior(theta, i, kmax): ''' The natural logarithm of the prior probability. Assume parameters independent such that log priors add. Note that normalization is irrelevant for MCMC.''' lp = 0. b1, beta, sigma = theta sigma_min, sigma_max = 1, 5 sigma_max = 5 if kmax < 0.075 else 60 lp_sigma = 0. if sigma_min < sigma < sigma_max else -np.inf b1_min, b1_max = 0, 3 if i == 0: beta_min, beta_max = -3, 3 else: beta_min, beta_max = 0, 3 lp_b1 = 0. if b1_min < b1 < b1_max else -np.inf lp_beta = 0. if beta_min < beta < beta_max else -np.inf return lp_b1 + lp_beta + lp_sigma def loglike(theta, data_multipoles, k, C_inv): '''Return logarithm of likelihood i.e. -0.5*chi2. data_multipoles must be an array of shape (len(ells), len(k)). theta is parameter vector: [b1, beta, sigma].''' ells = [0,2] model_multipoles = np.empty((len(ells), len(k))) b1, beta, sigma = theta model_multipoles[0] = ( 1/(2*(k*sigma)**5) * (np.sqrt(2*np.pi)*erf(k*sigma/np.sqrt(2))*(3*beta**2+(k*sigma)**4+2*beta*(k*sigma)**2) + np.exp(-0.5*(k*sigma)**2)*(-2*beta*(beta+2)*(k*sigma)**3-6*beta**2*k*sigma) ) ) * b1**2 * Plin(k) model_multipoles[1] = ( -5/(4*(k*sigma)**7) * (np.sqrt(2*np.pi)*erf(k*sigma/np.sqrt(2))*(-45*beta**2+(k*sigma)**6+(2*beta-3)*(k*sigma)**4+3*(beta-6)*beta*(k*sigma)**2) + np.exp(-0.5*(k*sigma)**2)*((4*beta*(beta+2)+6)*(k*sigma)**5+12*beta*(2*beta+3)*(k*sigma)**3+90*beta**2*k*sigma) ) ) * b1**2 * Plin(k) D_M = (data_multipoles - model_multipoles).flatten() return -0.5*D_M@(C_inv @ D_M) def logpost(theta, i, data_multipoles, k, C_inv): '''Returns the logarithm of the posterior. By Bayes' theorem, this is just the sum of the log prior and log likelihood (up to a irrelavant constant). Uses values for theta from pre-analysis step to inform prior ''' return logprior(theta, i, k[-1]) + loglike(theta, data_multipoles, k, C_inv) ##################### ### Set up MCMC ### LOS = [0,0,1] redshift = 0.2 BoxSize = 2000 cosmo = cosmology.Cosmology.from_astropy(Planck18_astropy) Plin = cosmology.LinearPower(cosmo, redshift, transfer='CLASS') sigma8_lin = Plin.sigma_r(8) # load Planck18 data for CAMB and find f*sigma8 at redshift # follows https://camb.readthedocs.io/en/latest/CAMBdemo.html pars=camb.read_ini('../planck_2018.ini') _ = pars.set_matter_power(redshifts=[redshift], kmax=1.4) pars.NonLinear = camb.model.NonLinear_none results = camb.get_results(pars) fs8_true = results.get_fsigma8()[0] ptile_labels = [r'$0^{th}$', r'$1^{st}$', r'$2^{nd}$', r'$3^{rd}$', r'$4^{th}$', r'$5^{th}$', r'$6^{th}$', r'$7^{th}$', r'$8^{th}$', r'$9^{th}$'] dk = 0.01 ells = [0,2] # load computed power spectra to deduce multipoles in each bin and P(k,mu) from data # need to pass location location of folder containing stored power spectra which lies one level lower in this case k_full, shotnoise, n_ptile, Pk_ells_full = hf.load_power_data('../', ells, get_data_Pkmus=False) # for given BoxSize, k is NaN above 0.034 possible_kmax = k_full[k_full<=0.343][1:] # ignore first k bin kmax_range = possible_kmax Nkmax = len(kmax_range) b1_fits, beta_fits, sigma_fits, delta_fs8 = np.full((n_ptile, Nkmax), np.nan), np.full((n_ptile, Nkmax), np.nan), np.full((n_ptile, Nkmax), np.nan), np.full((n_ptile, Nkmax), np.nan) b1_stds, beta_stds, sigma_stds, delta_fs8_stds = np.full((n_ptile, Nkmax), np.nan), np.full((n_ptile, Nkmax), np.nan), np.full((n_ptile, Nkmax), np.nan), np.full((n_ptile, Nkmax), np.nan) reduced_chi2 = np.full((n_ptile, Nkmax), np.nan) nsteps = 2500 ndim = 3 nwalkers = 8 start_b1 = 0.5 + 1*np.random.random(nwalkers) start_beta = 0.5 + 1*np.random.random(nwalkers) start_sigma = 1 + 4*np.random.random(nwalkers) start = np.column_stack([start_b1, start_beta, start_sigma]) ################### ### Run MCMC ### root_path = '../fit_results/FoG_fullk/' print("Fitting up to kmax=%.3f"%kmax_range[-1]) for i in range(n_ptile): store_path = root_path+'chains_ptile%d/'%i if 'chains_ptile%d'%i not in listdir(root_path): mkdir(store_path) cov_mat = np.loadtxt('../bruteforce_covmat/covariance_matricies/cov_ptile_%d.txt'%i) t1 = time.time() for j,kmax in enumerate(kmax_range): if 'k%d.npy'%j in listdir(store_path): continue # slice up to increasingly large kmax and find delta_fs8 for each bin mask = np.full(len(k_full), False) mask = k_full <= kmax mask[0] = False k_sliced = k_full[mask] Pk_ells_i = Pk_ells_full[:,:,mask][i] C_inv = hf.mock_cov_mat_inv(cov_mat, k_full, kmax) sampler = zeus.EnsembleSampler(nwalkers, ndim, logpost, maxiter=1e5, verbose=False, args=[i, Pk_ells_i, k_sliced, C_inv]) sampler.run_mcmc(start, nsteps) chain = sampler.get_chain(flat=True, discard=nsteps//2) # save chain without burn-in np.save(store_path+'k%d'%j, chain) b1_fits[i][j], b1_stds[i][j] = np.mean(chain[:,0]), np.std(chain[:,0]) # parameter space is sym about b1=0 for Kaiser model. To get non negative fs8 assure that b1 and beta have the same sign if i == 0: b1_fits[i][j] *= -1 beta_fits[i][j], beta_stds[i][j] = np.mean(chain[:,1]), np.std(chain[:,1]) delta_fs8[i][j] = 1 - sigma8_lin*(beta_fits[i][j]*b1_fits[i][j])/fs8_true delta_fs8_stds[i][j] = np.abs(sigma8_lin/fs8_true*(beta_stds[i][j]*b1_fits[i][j]+beta_fits[i][j]*b1_stds[i][j])) sigma_fits[i][j], sigma_stds[i][j] = np.mean(chain[:,2]), np.std(chain[:,2]) reduced_chi2[i][j] = -2*loglike([b1_fits[i][j], beta_fits[i][j], sigma_fits[i][j]], Pk_ells_i, k_sliced, C_inv) / (len(ells)*len(k_sliced)-ndim) t2 = time.time() print('Fitted %d-th percentile in %s'%(i,str(timedelta(seconds=t2-t1)))) ################ ### Store fit result ### np.savetxt(root_path+'b1_fits.txt', b1_fits) np.savetxt(root_path+'b1_stds.txt', b1_stds) np.savetxt(root_path+'beta_fits.txt', beta_fits) np.savetxt(root_path+'beta_stds.txt', beta_stds) np.savetxt(root_path+'delta_fs8.txt', delta_fs8) np.savetxt(root_path+'delta_fs8_stds.txt', delta_fs8_stds) np.savetxt(root_path+'sigma_fits.txt', sigma_fits) np.savetxt(root_path+'sigma_stds.txt', sigma_stds) np.savetxt(root_path+'reduced_chi2.txt', reduced_chi2) ######################## ### Make fs8 plot ### fig = plt.figure(figsize=(20,8)) for i in range(n_ptile): plt.plot(kmax_range, delta_fs8[i], label=ptile_labels[i]) plt.fill_between(kmax_range, delta_fs8[i]-delta_fs8_stds[i,:], delta_fs8[i]+delta_fs8_stds[i,:], alpha=0.1) plt.title(r'$\Delta f\sigma_8$ at $z=%.3f$'%redshift) plt.xlabel(r'$k_{max}$ [$h \ \mathrm{Mpc}^{-1}$]') plt.ylabel(r'$1 - (\sigma_8^{lin}*\beta*b_1) \ / \ (f\sigma_8)^{true}$') handles, labels = plt.gca().get_legend_handles_labels() fig.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=n_ptile) fig.savefig("../plots/KaiserFoG_fullk_dfs8_vs_kmax.pdf") ##################### ### Make fit plot ### fig = plt.figure(figsize=(26,18)) ax_b1 = plt.subplot(2,3,1) ax_beta = plt.subplot(2,3,2) ax_sigma = plt.subplot(2,3,3) ax_chi2 = plt.subplot(2,3,(4,6)) for i in range(n_ptile): ax_b1.plot(kmax_range, b1_fits[i], label=ptile_labels[i]) ax_b1.fill_between(kmax_range, b1_fits[i]-b1_stds[i], b1_fits[i]+b1_stds[i], alpha=0.1) ax_beta.plot(kmax_range, beta_fits[i], label=ptile_labels[i]) ax_beta.fill_between(kmax_range, beta_fits[i]-beta_stds[i], beta_fits[i]+beta_stds[i], alpha=0.1) ax_sigma.plot(kmax_range, sigma_fits[i], label=ptile_labels[i]) ax_sigma.fill_between(kmax_range, sigma_fits[i]-sigma_stds[i], sigma_fits[i]+sigma_stds[i], alpha=0.1) ax_chi2.plot(kmax_range[1:], reduced_chi2[i][1:], label=ptile_labels[i]) # first element negative, s.t. not shown on log scale ax_b1.set_title(r'$b_1$ mean and $1\sigma$ interval') ax_b1.set_xlabel(r'$k_{max}$ [$h \ \mathrm{Mpc}^{-1}$]') ax_b1.set_ylabel(r'$b_1$') ax_beta.set_title(r'$\beta$ mean and $1\sigma$ interval') ax_beta.set_xlabel(r'$k_{max}$ [$h \ \mathrm{Mpc}^{-1}$]') ax_beta.set_ylabel(r'$\beta$') ax_sigma.set_title(r'$\sigma$ mean and $1\sigma$ interval') ax_sigma.set_xlabel(r'$k_{max}$ [$h \ \mathrm{Mpc}^{-1}$]') ax_sigma.set_ylabel(r'$\sigma$ [$h^{-1} \ \mathrm{Mpc}$]') ax_chi2.set_title(r'reduced $\chi^2$') ax_chi2.set_yscale('log') ax_chi2.set_xlabel(r'$k_{max}$ [$h \ \mathrm{Mpc}^{-1}$]') ax_chi2.set_ylabel(r'$\chi^2 / dof$') handles, labels = plt.gca().get_legend_handles_labels() fig.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, +0.05), ncol=n_ptile) fig.savefig("../plots/KaiserFoG_fullk_fits.pdf") #####################
[ "jwack@cuillin.roe.ac.uk" ]
jwack@cuillin.roe.ac.uk
964887bf2513e38eadfe80819f983c5826f676de
0b9f6534a99ff551f0006df78a24e8af30340580
/Source/BackupFiles/HDAPI/hdapi/API ๋ฌธ์„œ/python_sample.py
08a1d2e3fc1c3952637678e603a976500b276f82
[]
no_license
jayirum/ChartProjSvr
9bac49865d1e081de0cbd7559d0d2cbdd26279c2
d69edfcb3ac3698e1bdfcf5862d5e63bb305cb52
refs/heads/master
2020-03-24T03:22:18.176911
2019-07-05T01:38:03
2019-07-05T01:38:03
142,416,528
1
1
null
null
null
null
UTF-8
Python
false
false
130,254
py
#-*- coding: utf-8 -*- # Form implementation generated from reading ui file './python_sample.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! # Python version 2.7 from PyQt4 import QtCore, QtGui #from PyQt4.QAxContainer import * #from PyQt4.QtCore import * from PyQt4.QtGui import * from PyQt4.QAxContainer import * import time import os import sys reload(sys) sys.setdefaultencoding('utf-8') try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): CONST_FO_SERIES = "101L6000" CONST_FO_SISE_51 = "51" # ๊ตญ๋‚ด์„ ๋ฌผํ˜ธ๊ฐ€ CONST_FO_SISE_65 = "65" # ๊ตญ๋‚ด์„ ๋ฌผ์ฒด๊ฒฐ CONST_FO_SISE_58 = "58" # ๊ตญ๋‚ด์ƒํ’ˆ์„ ๋ฌผํ˜ธ๊ฐ€ CONST_FO_SISE_71 = "71" # ๊ตญ๋‚ด์ƒํ’ˆ์„ ๋ฌผ์ฒด๊ฒฐ CONST_FO_ORDER_181 = "181" # ๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ ‘์ˆ˜ CONST_FO_ORDER_182 = "182" # ๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ์ฒด๊ฒฐ CONST_FO_ORDER_183 = "183" # ๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ๊ฒฐ์ œ CONST_FO_ORDER_184 = "184" # ๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ž”๊ณ  CONST_FO_ORDER_185 = "185" # ๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ฒด๊ฒฐ CONST_FR_SERIES = "6AH16" CONST_FR_SISE_76 = "76" # ํ•ด์™ธ์„ ๋ฌผํ˜ธ๊ฐ€ CONST_FR_SISE_82 = "82" # ํ•ด์™ธ์„ ๋ฌผ์ฒด๊ฒฐ CONST_FR_ORDER_196 = "196" # ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ ‘์ˆ˜ CONST_FR_ORDER_186 = "186" # ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ์ฒด๊ฒฐ CONST_FR_ORDER_187 = "187" # ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ๊ฒฐ์ œ CONST_FR_ORDER_188 = "188" # ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ž”๊ณ  CONST_FR_ORDER_189 = "189" # ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ฒด๊ฒฐ CONST_FX_SERIES = "EUR/USD" CONST_FX_SISE_171 = "171" #attributes m_AccListFO = {} m_AccListFR = {} m_AccListFX = {} m_TrQueryListFO = {} # ๊ตญ๋‚ด ์กฐํšŒ m_FidQueryListFO = {} # ๊ตญ๋‚ด FID์กฐํšŒ m_TrOrderListFO = {} # ๊ตญ๋‚ด ์ฃผ๋ฌธ m_TrQueryListFR = {} m_FidQueryListFR = {} # ํ•ด์™ธ FID์กฐํšŒ m_TrOrderListFR = {} m_TrQueryListFX = {} m_FidQueryListFX = {} # ํ•ด์™ธ FID์กฐํšŒ m_TrOrderListFX = {} # ์‹ค์‹œ๊ฐ„ m_RealSiseListFO = {} m_RealOrderListFO = {} m_RealSiseListFR = {} m_RealOrderListFR = {} m_RealSiseListFX = {} m_RealOrderListFX = {} m_bUseComboTrChange = True def setupUi(self, MainWindow): _TOP_Pos = 50 MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(800, 600) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.label_6 = QtGui.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(10, 10, 56, 12)) self.label_6.setObjectName(_fromUtf8("label_6")) self.Edit_Path = QtGui.QLineEdit(self.centralwidget) self.Edit_Path.setGeometry(QtCore.QRect(70, 7, 400, 20)) self.Edit_Path.setObjectName(_fromUtf8("Edit_Path")) self.BTN_Connect = QtGui.QPushButton(self.centralwidget) self.BTN_Connect.setGeometry(QtCore.QRect(10, _TOP_Pos+10, 121, 23)) self.BTN_Connect.setObjectName(_fromUtf8("BTN_Connect")) self.BTN_DisConnect = QtGui.QPushButton(self.centralwidget) self.BTN_DisConnect.setGeometry(QtCore.QRect(150, _TOP_Pos+10, 111, 23)) self.BTN_DisConnect.setObjectName(_fromUtf8("BTN_DisConnect")) self.label = QtGui.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(10, _TOP_Pos+50, 56, 12)) self.label.setObjectName(_fromUtf8("label")) self.label_2 = QtGui.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(200, _TOP_Pos+50, 70, 12)) self.label_2.setObjectName(_fromUtf8("label_2")) self.label_3 = QtGui.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(401, _TOP_Pos+50, 111, 16)) self.label_3.setObjectName(_fromUtf8("label_3")) self.Edit_UserID = QtGui.QLineEdit(self.centralwidget) self.Edit_UserID.setGeometry(QtCore.QRect(70, _TOP_Pos+45, 113, 20)) self.Edit_UserID.setObjectName(_fromUtf8("Edit_UserID")) self.Edit_UserPW = QtGui.QLineEdit(self.centralwidget) self.Edit_UserPW.setGeometry(QtCore.QRect(280, _TOP_Pos+46, 113, 20)) self.Edit_UserPW.setEchoMode(QtGui.QLineEdit.Password) self.Edit_UserPW.setObjectName(_fromUtf8("Edit_UserPW")) self.Edit_CertPW = QtGui.QLineEdit(self.centralwidget) self.Edit_CertPW.setGeometry(QtCore.QRect(510, _TOP_Pos+47, 113, 20)) self.Edit_CertPW.setEchoMode(QtGui.QLineEdit.Password) self.Edit_CertPW.setObjectName(_fromUtf8("Edit_CertPW")) self.Btn_Login = QtGui.QPushButton(self.centralwidget) self.Btn_Login.setGeometry(QtCore.QRect(390, _TOP_Pos+80, 75, 23)) self.Btn_Login.setObjectName(_fromUtf8("Btn_Login")) self.Btn_Logout = QtGui.QPushButton(self.centralwidget) self.Btn_Logout.setGeometry(QtCore.QRect(550, _TOP_Pos+80, 75, 23)) self.Btn_Logout.setObjectName(_fromUtf8("Btn_Logout")) # ๊ตญ๋‚ด/ํ•ด์™ธ/FX self.groupBox1 = QtGui.QGroupBox(self.centralwidget) self.groupBox1.setGeometry(QtCore.QRect(10, _TOP_Pos+110, 200, 41)) self.groupBox1.setObjectName(_fromUtf8("groupBox")) self.BtnRadio1 = QtGui.QRadioButton(self.groupBox1) self.BtnRadio1.setGeometry(QtCore.QRect(10, 10, 111, 22)) self.BtnRadio1.setObjectName(_fromUtf8("BtnRadio1")) self.BtnRadio2 = QtGui.QRadioButton(self.groupBox1) self.BtnRadio2.setGeometry(QtCore.QRect(70, 10, 111, 22)) self.BtnRadio2.setObjectName(_fromUtf8("BtnRadio2")) self.BtnRadio3 = QtGui.QRadioButton(self.groupBox1) self.BtnRadio3.setGeometry(QtCore.QRect(140, 10, 111, 22)) self.BtnRadio3.setObjectName(_fromUtf8("BtnRadio3")) # Tr์กฐํšŒ, Fid์กฐํšŒ, ์ฃผ๋ฌธ self.groupBox2 = QtGui.QGroupBox(self.centralwidget) self.groupBox2.setGeometry(QtCore.QRect(251, _TOP_Pos+110, 200, 41)) self.groupBox2.setObjectName(_fromUtf8("groupBox2")) self.BtnRadioQry1 = QtGui.QRadioButton(self.groupBox2) self.BtnRadioQry1.setGeometry(QtCore.QRect(10, 10, 111, 22)) self.BtnRadioQry1.setObjectName(_fromUtf8("BtnRadioQry1")) self.BtnRadioQry2 = QtGui.QRadioButton(self.groupBox2) self.BtnRadioQry2.setGeometry(QtCore.QRect(70, 10, 111, 22)) self.BtnRadioQry2.setObjectName(_fromUtf8("BtnRadioQry2")) self.BtnRadioQry3 = QtGui.QRadioButton(self.groupBox2) self.BtnRadioQry3.setGeometry(QtCore.QRect(140, 10, 111, 22)) self.BtnRadioQry3.setObjectName(_fromUtf8("BtnRadioQry3")) #ํ•ด์™ธ ์ข…๋ชฉ์ฝ”๋“œ ์ˆ˜์‹  self.Btn_ReqJMCodeFR = QtGui.QPushButton(self.centralwidget) self.Btn_ReqJMCodeFR.setGeometry(QtCore.QRect(460, _TOP_Pos+120, 120, 23)) self.Btn_ReqJMCodeFR.setObjectName(_fromUtf8("Btn_ReqJMCodeFR")) # ๊ณ„์ขŒ ์ฝค๋ณด self.label_4 = QtGui.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(10, _TOP_Pos+165, 56, 12)) self.label_4.setObjectName(_fromUtf8("label_4")) self.ComboAcc = QtGui.QComboBox(self.centralwidget) self.ComboAcc.setGeometry(QtCore.QRect(70, _TOP_Pos+160, 111, 22)) self.ComboAcc.setObjectName(_fromUtf8("ComboAcc")) self.label_acctNm = QtGui.QLabel(self.centralwidget) self.label_acctNm.setGeometry(QtCore.QRect(450, _TOP_Pos+165, 56, 12)) self.label_acctNm.setObjectName(_fromUtf8("label_acctNm")) #๊ณ„์ขŒ๋น„๋ฒˆ self.label_7 = QtGui.QLabel(self.centralwidget) self.label_7.setGeometry(QtCore.QRect(200, _TOP_Pos+165, 56, 12)) self.label_7.setObjectName(_fromUtf8("label_7")) self.Edit_AcctPW = QtGui.QLineEdit(self.centralwidget) self.Edit_AcctPW.setGeometry(QtCore.QRect(280, _TOP_Pos+160, 113, 20)) self.Edit_AcctPW.setEchoMode(QtGui.QLineEdit.Password) self.Edit_AcctPW.setObjectName(_fromUtf8("Edit_AcctPW")) #์„œ๋น„์Šค ์ฝค๋ถ€ self.label_5 = QtGui.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(10, _TOP_Pos+200, 56, 12)) self.label_5.setObjectName(_fromUtf8("label_5")) self.ComboTr = QtGui.QComboBox(self.centralwidget) self.ComboTr.setGeometry(QtCore.QRect(70, _TOP_Pos+195, 200, 22)) self.ComboTr.setObjectName(_fromUtf8("ComboTr")) self.label_8 = QtGui.QLabel(self.centralwidget) self.label_8.setGeometry(QtCore.QRect(280, _TOP_Pos+200, 60, 12)) self.label_8.setObjectName(_fromUtf8("label_8")) self.label_tr = QtGui.QLabel(self.centralwidget) self.label_tr.setGeometry(QtCore.QRect(340, _TOP_Pos+200, 150, 12)) self.label_tr.setObjectName(_fromUtf8("label_tr")) # ์ž…๋ ฅ ๋ถ€๋ถ„ self.label_10 = QtGui.QLabel(self.centralwidget) self.label_10.setGeometry(QtCore.QRect(10, _TOP_Pos+230, 60, 12)) self.label_10.setObjectName(_fromUtf8("label_10")) self.Edit_Input = QtGui.QLineEdit(self.centralwidget) self.Edit_Input.setGeometry(QtCore.QRect(70, _TOP_Pos+225, 450, 20)) self.Edit_Input.setObjectName(_fromUtf8("Edit_Input")) self.Edit_Input_FID = QtGui.QLineEdit(self.centralwidget) self.Edit_Input_FID.setGeometry(QtCore.QRect(525, _TOP_Pos+225, 120, 20)) self.Edit_Input_FID.setObjectName(_fromUtf8("Edit_Input_FID")) self.BTN_Query = QtGui.QPushButton(self.centralwidget) self.BTN_Query.setGeometry(QtCore.QRect(650, _TOP_Pos+224, 60, 22)) self.BTN_Query.setObjectName(_fromUtf8("BTN_Query")) # ์‹ค์‹œ๊ฐ„ self.groupBox3 = QtGui.QGroupBox(self.centralwidget) self.groupBox3.setGeometry(QtCore.QRect(10, _TOP_Pos+250, 200, 41)) self.groupBox3.setObjectName(_fromUtf8("groupBox")) self.label_11 = QtGui.QLabel(self.groupBox3) self.label_11.setGeometry(QtCore.QRect(10, 10, 111, 22)) self.label_11.setObjectName(_fromUtf8("label_11")) self.BtnRadioSiseReal = QtGui.QRadioButton(self.groupBox3) self.BtnRadioSiseReal.setGeometry(QtCore.QRect(70, 10, 111, 22)) self.BtnRadioSiseReal.setObjectName(_fromUtf8("BtnRadioSiseReal")) self.BtnRadioOrderReal = QtGui.QRadioButton(self.groupBox3) self.BtnRadioOrderReal.setGeometry(QtCore.QRect(140, 10, 111, 22)) self.BtnRadioOrderReal.setObjectName(_fromUtf8("BtnRadioOrderReal")) # ์‹ค์‹œ๊ฐ„ ๋“ฑ๋ก/ํ•ด์ง€ self.groupBox4 = QtGui.QGroupBox(self.centralwidget) self.groupBox4.setGeometry(QtCore.QRect(251, _TOP_Pos+250, 150, 41)) self.groupBox4.setObjectName(_fromUtf8("groupBox")) self.BtnRadioRealRegister = QtGui.QRadioButton(self.groupBox4) self.BtnRadioRealRegister.setGeometry(QtCore.QRect(10, 10, 111, 22)) self.BtnRadioRealRegister.setObjectName(_fromUtf8("BtnRadioRealRegister")) self.BtnRadioRealUnRegister = QtGui.QRadioButton(self.groupBox4) self.BtnRadioRealUnRegister.setGeometry(QtCore.QRect(70, 10, 111, 22)) self.BtnRadioRealUnRegister.setObjectName(_fromUtf8("BtnRadioRealUnRegister")) self.ComboReal = QtGui.QComboBox(self.centralwidget) self.ComboReal.setGeometry(QtCore.QRect(420, _TOP_Pos+260, 200, 22)) self.ComboReal.setObjectName(_fromUtf8("ComboReal")) self.label_12 = QtGui.QLabel(self.centralwidget) self.label_12.setGeometry(QtCore.QRect(10, _TOP_Pos+300, 60, 12)) self.label_12.setObjectName(_fromUtf8("label_12")) self.Edit_Input_Real_Key = QtGui.QLineEdit(self.centralwidget) self.Edit_Input_Real_Key.setGeometry(QtCore.QRect(70, _TOP_Pos+295, 50, 20)) self.Edit_Input_Real_Key.setObjectName(_fromUtf8("Edit_Input_Real_Key")) self.Edit_Input_Real_Val = QtGui.QLineEdit(self.centralwidget) self.Edit_Input_Real_Val.setGeometry(QtCore.QRect(130, _TOP_Pos+295, 250, 20)) self.Edit_Input_Real_Val.setObjectName(_fromUtf8("Edit_Input_Real_Val")) self.BTN_Query_Real = QtGui.QPushButton(self.centralwidget) self.BTN_Query_Real.setGeometry(QtCore.QRect(380, _TOP_Pos+294, 60, 22)) self.BTN_Query_Real.setObjectName(_fromUtf8("BTN_Query_Real")) self.multiline = QtGui.QPlainTextEdit(self.centralwidget) self.multiline.setGeometry(QtCore.QRect(10, _TOP_Pos+330, 781, 191)) self.multiline.setObjectName(_fromUtf8("listView")) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 21)) self.menubar.setObjectName(_fromUtf8("menubar")) MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(MainWindow) self.statusbar.setObjectName(_fromUtf8("statusbar")) MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.SetupTabOrder() self.SetupSignal() def SetupSignal(self): QtCore.QObject.connect(self.BTN_Connect, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnConnect) QtCore.QObject.connect(self.BTN_DisConnect, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnDisConnect) QtCore.QObject.connect(self.Btn_Login, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnLogin) QtCore.QObject.connect(self.Btn_Logout, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnLogout) QtCore.QObject.connect(self.BtnRadio1, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioAcctTpChange) QtCore.QObject.connect(self.BtnRadio2, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioAcctTpChange) QtCore.QObject.connect(self.BtnRadio3, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioAcctTpChange) QtCore.QObject.connect(self.BtnRadioQry1, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioTrChange) QtCore.QObject.connect(self.BtnRadioQry2, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioTrChange) QtCore.QObject.connect(self.BtnRadioQry3, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioTrChange) QtCore.QObject.connect(self.Btn_ReqJMCodeFR, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnReqJmCodeFr) QtCore.QObject.connect(self.ComboAcc, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.OnComboAccChange) QtCore.QObject.connect(self.ComboTr, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.OnComboTrChange) QtCore.QObject.connect(self.BTN_Query, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnQuery) QtCore.QObject.connect(self.BtnRadioSiseReal, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioRealChange) QtCore.QObject.connect(self.BtnRadioOrderReal, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRadioRealChange) QtCore.QObject.connect(self.ComboReal, QtCore.SIGNAL(_fromUtf8("currentIndexChanged(QString)")), self.OnComboReal) QtCore.QObject.connect(self.BTN_Query_Real, QtCore.SIGNAL(_fromUtf8("clicked()")), self.OnRealRegister) def SetupTabOrder(self): QtCore.QMetaObject.connectSlotsByName(MainWindow) MainWindow.setTabOrder(self.BTN_Connect, self.Edit_UserID) MainWindow.setTabOrder(self.Edit_UserID, self.Edit_UserPW) MainWindow.setTabOrder(self.Edit_UserPW, self.Edit_CertPW) MainWindow.setTabOrder(self.Edit_CertPW, self.Btn_Login) MainWindow.setTabOrder(self.Btn_Login, self.ComboAcc) MainWindow.setTabOrder(self.ComboAcc, self.ComboTr) MainWindow.setTabOrder(self.ComboTr, self.Btn_Logout) MainWindow.setTabOrder(self.Btn_Logout, self.BTN_DisConnect) def SetupHDFOcx(self, MainWindow): self.HDF = QAxWidget("HDFCOMMAGENT.HDFCommAgentCtrl.1") self.HDF.connect(self.HDF, QtCore.SIGNAL("OnDataRecv(QString, int)"), self.OnDataRecv) self.HDF.connect(self.HDF, QtCore.SIGNAL("OnGetBroadData(QString, int)"), self.OnGetBroadData) self.HDF.connect(self.HDF, QtCore.SIGNAL("OnGetMsgWithRqId(int, QString, QString)"), self.OnGetMsgWithRqId) # ์‹คํ–‰์œ„์น˜ ์„ค์ • strPath = os.getcwd() self.Edit_Path.setText(_translate("MainWindow", strPath, None)) self.HDF.dynamicCall("CommSetOCXPath(" + strPath + ")") def HD_CommGetRepeatCnt(self, strTrCode, nRealType, strFildNm): nRqID = self.HDF.dynamicCall("CommGetRepeatCnt(QString, int, QString)", strTrCode, nRealType, strFildNm) return range(nRqID.toLongLong()[0]) def HD_CommRqData(self, strTrCode, strInputData, nInputLength, strPrevOrNext): nRqID = self.HDF.dynamicCall("CommRqData(QString, QString, LONG, QString)", strTrCode, strInputData, nInputLength, strPrevOrNext) return nRqID.toLongLong()[0] def HD_CommFIDRqData(self, strTrCode, strInputData, sReqFidList, sPrevOrNext): #BSTR sFidCode, BSTR sInputData, BSTR sReqFidList, LONG nLength, BSTR sPrevOrNext nRqID = self.HDF.dynamicCall("CommFIDRqData(QString, QString, QString, LONG, QString)", strTrCode, strInputData, sReqFidList, len(strInputData), sPrevOrNext) return nRqID.toLongLong()[0] def HD_CommJumunSvr(self, strTrCode, strInputData): nRqID = self.HDF.dynamicCall("CommJumunSvr(QString, QString)", strTrCode, strInputData) return nRqID.toLongLong()[0] def HD_CommGetData(self, strTrCode, nRealType, strRecNm, nIndex, strFieldNm): strFieldNm = unicode(str(strFieldNm).strip(), 'utf-8') strData = self.HDF.dynamicCall("CommGetData(QString, int, QString, int, QString)", strTrCode, nRealType, strRecNm, nIndex, strFieldNm) return strData.toString() def HD_RegReal(self, bReg, strValue, nKeyType): if ( bReg == True ): nRet = self.HDF.dynamicCall("CommSetBroad(QString, LONG)", strValue, nKeyType) else: nRet = self.HDF.dynamicCall("CommRemoveBroad(QString, LONG)", strValue, nKeyType) return nRet def HD_CommGetAccInfo(self): strData = self.HDF.dynamicCall("CommGetAccInfo()") return strData.toString() def HD_Login(self, strUserID, strUserWd, strCertPw): ret = self.HDF.dynamicCall("CommLogin(QString, QString, QString)", strUserID, strUserWd, strCertPw) def HD_Logout(self, strUserID): ret = self.HDF.dynamicCall("CommLogout(QString)", strUserID) def HD_CommReqMakeCod(self): ret = self.HDF.dynamicCall("CommReqMakeCod(QString, BOOL)", "JMCODE", False) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None)) self.label_6.setText(_translate("MainWindow", "์‹คํ–‰์œ„์น˜", None)) self.BTN_Connect.setText(_translate("MainWindow", "ํ†ต์‹ ๊ด€๋ฆฌ์ž ์‹คํ–‰", None)) self.BTN_DisConnect.setText(_translate("MainWindow", "ํ†ต์‹ ๊ด€๋ฆฌ์ž ์ข…๋ฃŒ", None)) self.label.setText(_translate("MainWindow", "์‚ฌ์šฉ์ž ID", None)) self.label_2.setText(_translate("MainWindow", "HTS๋น„๋ฒˆ", None)) self.label_3.setText(_translate("MainWindow", "๊ณต์ธ์ธ์ฆ ๋น„๋ฐ€๋ฒˆํ˜ธ", None)) self.Btn_Login.setText(_translate("MainWindow", "๋กœ๊ทธ์ธ", None)) self.Btn_Logout.setText(_translate("MainWindow", "๋กœ๊ทธ์•„์›ƒ", None)) self.label_4.setText(_translate("MainWindow", "๊ณ„์ขŒ๋ฒˆํ˜ธ", None)) self.label_7.setText(_translate("MainWindow", "๊ณ„์ขŒ๋น„๋ฒˆ", None)) self.label_5.setText(_translate("MainWindow", "์กฐํšŒ์œ ํ˜•", None)) self.label_8.setText(_translate("MainWindow", "TRCode : ", None)) self.label_10.setText(_translate("MainWindow", "Input : ", None)) self.BTN_Query.setText(_translate("MainWindow", "์กฐํšŒ", None)) self.BtnRadio1.setText(_translate("MainWindow", "๊ตญ๋‚ด", None)) self.BtnRadio2.setText(_translate("MainWindow", "ํ•ด์™ธ", None)) self.BtnRadio3.setText(_translate("MainWindow", "FX", None)) self.BtnRadio1.setChecked(True) self.BtnRadioQry1.setText(_translate("MainWindow", "TR", None)) self.BtnRadioQry2.setText(_translate("MainWindow", "FID", None)) self.BtnRadioQry3.setText(_translate("MainWindow", "์ฃผ๋ฌธ", None)) self.BtnRadioQry1.setChecked(True) self.Btn_ReqJMCodeFR.setText(_translate("MainWindow", "ํ•ด์™ธ์ข…๋ชฉ์ฝ”๋“œ ์ˆ˜์‹ ", None)) self.label_11.setText(_translate("MainWindow", "์‹ค์‹œ๊ฐ„", None)) self.BtnRadioSiseReal.setText(_translate("MainWindow", "์‹œ์„ธ", None)) self.BtnRadioOrderReal.setText(_translate("MainWindow", "์ฃผ๋ฌธ", None)) self.BtnRadioSiseReal.setChecked(True) self.BtnRadioRealRegister.setText(_translate("MainWindow", "๋“ฑ๋ก", None)) self.BtnRadioRealUnRegister.setText(_translate("MainWindow", "ํ•ด์ง€", None)) self.BtnRadioRealRegister.setChecked(True) self.label_12.setText(_translate("MainWindow", "์‹ค์‹œ๊ฐ„", None)) self.BTN_Query_Real.setText(_translate("MainWindow", "๋“ฑ๋ก/ํ•ด์ง€", None)) self.Edit_UserID.setText(u"sivas99") self.Edit_UserPW.setText(u"qwe123") self.Edit_AcctPW.setText(u"1234") self.SetTrToDictionary_FO() self.SetTrToDictionary_FR() self.SetTrToDictionary_FX() self.SetRealToDictionary_FO() self.SetRealToDictionary_FR() self.SetRealToDictionary_FX() self.OnRadioTrChange() self.SetComboReal() pass def SetTrToDictionary_FO(self): self.m_TrQueryListFO.update({u"01.๊ตญ๋‚ด๋ฏธ์ฒด๊ฒฐ์ฃผ๋ฌธ์กฐํšŒ" :[u"g11002.DQ0104&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๋”œ๋Ÿฌ๋ฒˆํ˜ธ,3,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFO.update({u"02.๊ตญ๋‚ด์ฒด๊ฒฐ๋‚ด์—ญ๋ฆฌ์ŠคํŠธ" :[u"g11002.DQ0107&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๋”œ๋Ÿฌ๋ฒˆํ˜ธ,3,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFO.update({u"03.๊ตญ๋‚ด๋ฏธ๊ฒฐ์ œ์•ฝ์ •์กฐํšŒ" :[u"g11002.DQ0110&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๋”œ๋Ÿฌ๋ฒˆํ˜ธ,3,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFO.update({u"04.๊ตญ๋‚ด๊ณ ๊ฐ์˜ˆํƒ๊ธˆ์กฐํšŒ" :[u"g11002.DQ0242&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๊ณ„์ขŒ๋น„๋ฒˆ,8" ]}) self.m_TrQueryListFO.update({u"05.๊ตญ๋‚ด์ข…๋ชฉ๋ช…์กฐํšŒ" :[u"g11002.DQ0622&",u"exchtp,1,exchid,2,fotp,1"]}) self.m_TrQueryListFO.update({u"06.์•ผ๊ฐ„CME๋ฏธ์ฒด๊ฒฐ์ฃผ๋ฌธ์กฐํšŒ":[u"g11002.DQ0116&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๋”œ๋Ÿฌ๋ฒˆํ˜ธ,3,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFO.update({u"07.์•ผ๊ฐ„CME์ฒด๊ฒฐ๋‚ด์—ญ๋ฆฌ์ŠคํŠธ":[u"g11002.DQ0119&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๋”œ๋Ÿฌ๋ฒˆํ˜ธ,3,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFO.update({u"08.์•ผ๊ฐ„CME๋ฏธ๊ฒฐ์ œ์•ฝ์ •์กฐํšŒ":[u"g11002.DQ0122&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๋”œ๋Ÿฌ๋ฒˆํ˜ธ,3,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_FidQueryListFO.update({u"๊ตญ๋‚ด์„ ๋ฌผ์˜ต์…˜๋งˆ์Šคํ„ฐ" :[u"s20001",u"์ข…๋ชฉ,8,์กฐํšŒ๋ชจ๋“œ,1,์กฐํšŒ๊ฑด์ˆ˜,4",u"000075051057"]}) self.m_FidQueryListFO.update({u"๊ตญ๋‚ด์ฃผ์‹์„ ๋ฌผ๋งˆ์Šคํ„ฐ" :[u"s30001",u"์ข…๋ชฉ,8,์กฐํšŒ๋ชจ๋“œ,1,์กฐํšŒ๊ฑด์ˆ˜,4",u"000075051057"]}) self.m_FidQueryListFO.update({u"์•ผ๊ฐ„CME์„ ๋ฌผ์˜ต์…˜๋งˆ์Šคํ„ฐ" :[u"s21001",u"์ข…๋ชฉ,8,์กฐํšŒ๋ชจ๋“œ,1,์กฐํšŒ๊ฑด์ˆ˜,4",u"000075051057"]}) self.m_TrOrderListFO.update({u"01.๊ตญ๋‚ด์‹ ๊ทœ์ฃผ๋ฌธ" :[u"g12001.DO1601&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,13,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,5"]}) self.m_TrOrderListFO.update({u"02.๊ตญ๋‚ด์ •์ •์ฃผ๋ฌธ" :[u"g12001.DO1901&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,13,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,5,์ฃผ๋ฌธ๋ฒˆํ˜ธ,7"]}) self.m_TrOrderListFO.update({u"03.๊ตญ๋‚ด์ทจ์†Œ์ฃผ๋ฌธ" :[u"g12001.DO1701&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,13,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,5,์ฃผ๋ฌธ๋ฒˆํ˜ธ,7"]}) self.m_TrOrderListFO.update({u"04.CME๊ตญ๋‚ด์‹ ๊ทœ์ฃผ๋ฌธ" :[u"g12001.DO2201&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,13,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,5"]}) self.m_TrOrderListFO.update({u"05.CME๊ตญ๋‚ด์ •์ •์ฃผ๋ฌธ" :[u"g12001.DO2101&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,13,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,5,์ฃผ๋ฌธ๋ฒˆํ˜ธ,7"]}) self.m_TrOrderListFO.update({u"06.CME๊ตญ๋‚ด์ทจ์†Œ์ฃผ๋ฌธ" :[u"g12001.DO2001&",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,11,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,13,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,5,์ฃผ๋ฌธ๋ฒˆํ˜ธ,7"]}) pass def SetTrToDictionary_FR(self): self.m_TrQueryListFR.update({u"01.ํ•ด์™ธ๋ฏธ์ฒด๊ฒฐ์ฃผ๋ฌธ๋‚ด์—ญ" :[u"g11004.AQ0401%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFR.update({u"02.ํ•ด์™ธ์ฒด๊ฒฐ์ฃผ๋ฌธ๋‚ด์—ญ" :[u"g11004.AQ0402%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFR.update({u"03.ํ•ด์™ธ๋ฏธ๊ฒฐ์ œ์ฃผ๋ฌธ๋‚ด์—ญ" :[u"g11004.AQ0403%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFR.update({u"04.ํ•ด์™ธ์˜ˆํƒ์ž์‚ฐ์กฐํšŒ" :[u"g11004.AQ0607%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,groupnm,20,ํ†ตํ™”์ฝ”๋“œ,3"]}) self.m_TrQueryListFR.update({u"05.ํ•ด์™ธ์ผ์ฃผ์›”๋ถ„ํ‹ฑ" :[u"o44005",u"keyvalue,18,์ฝ”๋“œ,32,์กฐํšŒ์ผ์ž,8,์กฐํšŒ์‹œ๊ฐ„,10,๋‹ค์Œ๊ตฌ๋ถ„,1,๋ฐ์ดํ„ฐ๊ตฌ๋ถ„,1,์‹œ๊ฐ„๊ตฌ๋ถ„,3,๋ฐ์ดํ„ฐ๊ฑด์ˆ˜,5,์žฅ๊ตฌ๋ถ„,1,ํ—ˆ๋ด‰์‹ค๋ด‰๊ตฌ๋ถ„,1"]}) self.m_FidQueryListFR.update({u"01.ํ•ด์™ธ์„ ๋ฌผ์˜ต์…˜๋งˆ์Šคํ„ฐ" :[u"o51000",u"์ข…๋ชฉ,32", u"000001002003004005006007008009010011012013014015016017018019020021022023024025026027028029030031032033034035036037"]}) self.m_FidQueryListFR.update({u"02.ํ•ด์™ธํ˜ธ๊ฐ€์ •๋ณด" :[u"o51010",u"์ข…๋ชฉ,32", u"000001002003004005006007"]}) self.m_FidQueryListFR.update({u"03.ํ•ด์™ธ์ข…๋ชฉ์ •๋ณด" :[u"o51210",u"์ข…๋ชฉ,32", u"000001002003004005006007008009010011012013014015016017018019020021"]}) self.m_TrOrderListFR.update({u"01.ํ•ด์™ธ์‹ ๊ทœ์ฃผ๋ฌธ" :[u"g12003.AO0401%",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,15,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,10,strtp,1,stopp,15,minqty,10"]}) self.m_TrOrderListFR.update({u"02.ํ•ด์™ธ์ •์ •์ฃผ๋ฌธ" :[u"g12003.AO0402%",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,15,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,10,์ฃผ๋ฌธ๋ฒˆํ˜ธ,10,strtp,1,stopp,15,minqty,10"]}) self.m_TrOrderListFR.update({u"03.ํ•ด์™ธ์ทจ์†Œ์ฃผ๋ฌธ" :[u"g12003.AO0403%",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,์ฒด๊ฒฐ์กฐ๊ฑด,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,15,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,10,์ฃผ๋ฌธ๋ฒˆํ˜ธ,10"]}) pass def SetTrToDictionary_FX(self): self.m_TrQueryListFX.update({u"01.FX์ž์‚ฐ๋‚ด์—ญ์กฐํšŒ" :[u"g11004.AQ0901%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFX.update({u"02.FX๋ฏธ์ฒด๊ฒฐ๋‚ด์—ญ์กฐํšŒ" :[u"g11004.AQ0904%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFX.update({u"03.FX๊ณ„์ขŒ์ •๋ณดSummary" :[u"g11004.AQ906%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFX.update({u"04.FX๋ฏธ์ฒญ์‚ฐํฌ์ง€์…˜์กฐํšŒ" :[u"g11004.AQ0908%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8"]}) self.m_TrQueryListFX.update({u"05.FX์ฒญ์‚ฐํฌ์ง€์…˜์กฐํšŒ" :[u"g11004.AQ0910%",u"์กฐํšŒ์œ ํ˜•,1,์‚ฌ์šฉ์žID,8,๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,groupnm,20,์‹œ์ž‘์ผ์ž,8,์ข…๋ฃŒ์ผ์ž,8"]}) self.m_FidQueryListFX.update({u"01.FX๋งˆ์Šคํ„ฐ" :[u"x00001",u"์ข…๋ชฉ,10", u"000001002003004005006007008009010011012013014015016017018019020021022"]}) self.m_TrOrderListFX.update({u"01.FX์‹ ๊ทœ์ฃผ๋ฌธ" :[u"g12003.AO0501%",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,๋งค๋งค๊ตฌ๋ถ„,1,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,20,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,15,ordertr,10,์ฒด๊ฒฐ๊ตฌ๋ถ„,1,strtp,1,stopp,20,limitp,20,mrktrange,5,trailingstop,10,trdno,20,trdseq,5"]}) self.m_TrOrderListFX.update({u"02.FX์ •์ •์ฃผ๋ฌธ" :[u"g12003.AO0502%",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,์ฃผ๋ฌธ๋ฒˆํ˜ธ,20,์ฃผ๋ฌธSEQ,15,์ฃผ๋ฌธ๊ฐ€๊ฒฉ,15,์ฃผ๋ฌธ์ˆ˜๋Ÿ‰,10,ordertr,10,strtp,1,stopp,15,limitp,20,trailingstop,10"]}) self.m_TrOrderListFX.update({u"03.FX์ทจ์†Œ์ฃผ๋ฌธ" :[u"g12003.AO0503%",u"๊ณ„์ขŒ๋ฒˆํ˜ธ,6,๊ณ„์ขŒ๋น„๋ฒˆ,8,์ข…๋ชฉ,32,์ฃผ๋ฌธ๋ฒˆํ˜ธ,20"]}) pass def SetRealToDictionary_FO(self): self.m_RealSiseListFO.update({u"01.๊ตญ๋‚ด์„ ๋ฌผํ˜ธ๊ฐ€" :[self.CONST_FO_SISE_51,u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"02.๊ตญ๋‚ด์„ ๋ฌผ์ฒด๊ฒฐ" :[self.CONST_FO_SISE_65,u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"03.๊ตญ๋‚ด์˜ต์…˜ํ˜ธ๊ฐ€" :["52",u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"04.๊ตญ๋‚ด์˜ต์…˜์ฒด๊ฒฐ" :["66",u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"05.๊ตญ๋‚ด์ƒํ’ˆ์„ ๋ฌผํ˜ธ๊ฐ€" :[self.CONST_FO_SISE_58,u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"06.๊ตญ๋‚ด์ƒํ’ˆ์„ ๋ฌผ์ฒด๊ฒฐ" :[self.CONST_FO_SISE_71,u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"07.๊ตญ๋‚ด์ƒํ’ˆ์˜ต์…˜ํ˜ธ๊ฐ€" :[u"59",u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"08.๊ตญ๋‚ด์ƒํ’ˆ์˜ต์…˜์ฒด๊ฒฐ" :[u"73",u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"09.๊ตญ๋‚ดCME์„ ๋ฌผํ˜ธ๊ฐ€" :[u"75",u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"10.๊ตญ๋‚ดCME์„ ๋ฌผ์ฒด๊ฒฐ" :[u"77",u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"11.๊ตญ๋‚ด์ฃผ์‹์„ ๋ฌผํ˜ธ๊ฐ€" :[u"56",u"์ข…๋ชฉ"]}) self.m_RealSiseListFO.update({u"12.๊ตญ๋‚ด์ฃผ์‹์„ ๋ฌผ์ฒด๊ฒฐ" :[u"68",u"์ข…๋ชฉ"]}) self.m_RealOrderListFO.update({u"01.๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ ‘์ˆ˜" :[self.CONST_FO_ORDER_181,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFO.update({u"02.๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ์ฒด๊ฒฐ" :[self.CONST_FO_ORDER_182,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFO.update({u"03.๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ๊ฒฐ์ œ" :[self.CONST_FO_ORDER_183,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFO.update({u"04.๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ž”๊ณ " :[self.CONST_FO_ORDER_184,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFO.update({u"05.๊ตญ๋‚ด์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ฒด๊ฒฐ" :[self.CONST_FO_ORDER_185,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) pass def SetRealToDictionary_FR(self): self.m_RealSiseListFR.update({u"01.ํ•ด์™ธ์„ ๋ฌผํ˜ธ๊ฐ€" :[self.CONST_FR_SISE_76,u"์ข…๋ชฉ"]}) self.m_RealSiseListFR.update({u"02.ํ•ด์™ธ์„ ๋ฌผ์ฒด๊ฒฐ" :[self.CONST_FR_SISE_82,u"์ข…๋ชฉ"]}) self.m_RealOrderListFR.update({u"01.ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ ‘์ˆ˜" :[self.CONST_FR_ORDER_196,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFR.update({u"02.ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ์ฒด๊ฒฐ" :[self.CONST_FR_ORDER_186,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFR.update({u"03.ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ๊ฒฐ์ œ" :[self.CONST_FR_ORDER_187,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFR.update({u"04.ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ž”๊ณ " :[self.CONST_FR_ORDER_188,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFR.update({u"05.ํ•ด์™ธ์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ฒด๊ฒฐ" :[self.CONST_FR_ORDER_189,u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) pass def SetRealToDictionary_FX(self): self.m_RealSiseListFX.update({u"01.FX์ฒด๊ฒฐ" :[self.CONST_FX_SISE_171,u"์ข…๋ชฉ"]}) self.m_RealOrderListFX.update({u"01.FX์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ ‘์ˆ˜" :[u"197",u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFX.update({u"02.FX์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ์ฒด๊ฒฐ" :[u"191",u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFX.update({u"03.FX์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„๋ฏธ์ฒญ์‚ฐ" :[u"192",u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFX.update({u"04.FX์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ฒญ์‚ฐ" :[u"193",u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFX.update({u"05.FX์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์ž์‚ฐ" :[u"194",u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) self.m_RealOrderListFX.update({u"06.FX์ฃผ๋ฌธ์‹ค์‹œ๊ฐ„์š”์•ฝ" :[u"195",u"๊ณ„์ขŒ๋ฒˆํ˜ธ"]}) pass def Util_WriteLog(self, strMsg): now = time.localtime(time.time()) strHead = time.strftime("[%H:%M:%S]", now) self.multiline.insertPlainText( strHead + strMsg + "\n") self.multiline.moveCursor(QTextCursor.End) def Util_GetCurDate(self): now = time.localtime(time.time()) strDate = time.strftime("%Y%m%d", now) return strDate def Util_FillStr(self, strSrc, nTotLen, chPad): nPadLen = nTotLen - len(strSrc) strPad = strSrc + chPad * nPadLen return strPad def OnConnect(self): self.Util_WriteLog("Connect") ret = self.HDF.dynamicCall("CommInit(1)") def OnDisConnect(self): self.OnLogout() self.HDF.dynamicCall("CommTerminate(1)") def OnLogin(self): self.Util_WriteLog("Login") strUserID = self.Edit_UserID.text() strUserPW = self.Edit_UserPW.text() strCertPW = self.Edit_CertPW.text() nRet = self.HD_Login(strUserID, strUserPW, strCertPW) pass def OnLogout(self): self.Util_WriteLog("Logout") strUserID = self.Edit_UserID.text() self.HD_Logout(strUserID) pass def OnReqJmCodeFr(self): self.Util_WriteLog("ํ•ด์™ธ์ข…๋ชฉ์š”์ฒญ") self.HD_CommReqMakeCod() pass def GetAccOrTrDic(self, strQryTp): tmpList = [] tmpAccDic = {} tmpTrDic = {} tmpFidDic = {} if ( self.BtnRadio1.isChecked() == True ): #๊ตญ๋‚ด tmpAccDic = self.m_AccListFO if ( self.BtnRadioQry1.isChecked() == True ): #TR์กฐํšŒ tmpTrDic = self.m_TrQueryListFO elif ( self.BtnRadioQry2.isChecked() == True ): #FID์กฐํšŒ tmpTrDic = self.m_FidQueryListFO elif ( self.BtnRadioQry3.isChecked() == True ): #์ฃผ๋ฌธ tmpTrDic = self.m_TrOrderListFO elif ( self.BtnRadio2.isChecked() == True ): #ํ•ด์™ธ tmpAccDic = self.m_AccListFR if ( self.BtnRadioQry1.isChecked() == True ): #TR์กฐํšŒ tmpTrDic = self.m_TrQueryListFR elif ( self.BtnRadioQry2.isChecked() == True ): #FID์กฐํšŒ tmpTrDic = self.m_FidQueryListFR elif ( self.BtnRadioQry3.isChecked() == True ): #์ฃผ๋ฌธ tmpTrDic = self.m_TrOrderListFR elif ( self.BtnRadio3.isChecked() == True ): #FX tmpAccDic = self.m_AccListFX if ( self.BtnRadioQry1.isChecked() == True ): #TR์กฐํšŒ tmpTrDic = self.m_TrQueryListFX elif ( self.BtnRadioQry2.isChecked() == True ): #FID์กฐํšŒ tmpTrDic = self.m_FidQueryListFX elif ( self.BtnRadioQry3.isChecked() == True ): #์ฃผ๋ฌธ tmpTrDic = self.m_TrOrderListFX if ( strQryTp == "ACC"): return tmpAccDic elif (strQryTp == "TR"): return tmpTrDic pass pass def GetRealDic(self): tmpRealDic = {} if ( self.BtnRadio1.isChecked() == True ): # ๊ตญ๋‚ด if ( self.BtnRadioSiseReal.isChecked() == True ): # ์‹œ์„ธ ๋กœ๋“œ tmpRealDic = self.m_RealSiseListFO else: #์ฃผ๋ฌธ ๋กœ๋“œ tmpRealDic = self.m_RealOrderListFO pass elif ( self.BtnRadio2.isChecked() == True ): if ( self.BtnRadioSiseReal.isChecked() == True ): # ์‹œ์„ธ ๋กœ๋“œ tmpRealDic = self.m_RealSiseListFR else: #์ฃผ๋ฌธ ๋กœ๋“œ tmpRealDic = self.m_RealOrderListFR pass elif ( self.BtnRadio3.isChecked() == True ): if ( self.BtnRadioSiseReal.isChecked() == True ): # ์‹œ์„ธ ๋กœ๋“œ tmpRealDic = self.m_RealSiseListFX else: #์ฃผ๋ฌธ ๋กœ๋“œ tmpRealDic = self.m_RealOrderListFX pass return tmpRealDic pass def OnRadioAcctTpChange(self): self.ComboAcc.clear() tmpAccDic = self.GetAccOrTrDic("ACC") tmpList = list(tmpAccDic.keys()) for i in range(len(tmpList)): strAcctNo = tmpList[i] self.ComboAcc.addItem(strAcctNo) pass self.OnRadioTrChange() self.OnRadioRealChange() pass def OnRadioTrChange(self): self.ComboTr.clear() tmpTrDic = self.GetAccOrTrDic("TR") tmpList = list(tmpTrDic.keys()) for i in range(len(tmpList)): strServiceNm = tmpList[i] self.ComboTr.addItem(strServiceNm) self.ComboTr.model().sort(0) bShow = False if ( self.BtnRadioQry2.isChecked() == True ): bShow = True self.Edit_Input_FID.setVisible(bShow) self.m_bUseComboTrChange = True pass def OnComboAccChange(self, strSelData): strInData = unicode(strSelData, 'utf-8') tmpAccDic = self.GetAccOrTrDic("ACC") strAcctNm = tmpAccDic.get(strInData) self.label_acctNm.setText(_fromUtf8(strAcctNm)) self.OnComboTrChange(self.ComboTr.currentText()) pass def OnComboTrChange(self, strSelData): strInData = unicode(strSelData, 'utf-8') tmpList = [] tmpTrDic = {} tmpTrDic = self.GetAccOrTrDic("TR") tmpList = tmpTrDic.get(strInData) if ( tmpList is None ): return None strTrCode = tmpList[0] self.label_tr.setText(strTrCode) #data parsing strData = str(tmpList[1]) commaArr = strData.split(",") strInput = "" self.Edit_Input.setText(strInput) for strItem in commaArr: if ( strItem == "๊ณ„์ขŒ๋ฒˆํ˜ธ" ): strAcctNo = self.ComboAcc.currentText() strAcctNo = str(strAcctNo).strip() if ( self.BtnRadio1.isChecked() == True ): #๊ตญ๋‚ด strInput += self.Util_FillStr(strAcctNo, 11, ' ') else: strInput += self.Util_FillStr(strAcctNo, 6, ' ') elif ( strItem == "๊ณ„์ขŒ๋น„๋ฒˆ" ): strInput += self.Util_FillStr(self.Edit_AcctPW.text(), 8, ' ') elif ( strItem == "๋”œ๋Ÿฌ๋ฒˆํ˜ธ" ): strInput += self.Util_FillStr("001", 3, ' ') #๋ฌด์กฐ๊ฑด "001" elif ( strItem == "์กฐํšŒ์ผ์ž" or strItem == "์‹œ์ž‘์ผ์ž" or strItem == "์ข…๋ฃŒ์ผ์ž"): strInput += self.Util_FillStr(self.Util_GetCurDate(), 8, ' ') elif ( strItem == "exchtp" ): strInput += self.Util_FillStr("1", 1, ' ') #1:KRX elif ( strItem == "exchid" ): strInput += self.Util_FillStr("01", 2, ' ') #์ข…๋ชฉ๋ช…์˜ 2,3๋ฒˆ์งธ์ž๋ฆฌ ex)101FC000 -> 01 elif ( strItem == "fotp" ): strInput += self.Util_FillStr("F", 1, ' ') #F:์„ ๋ฌผ, O:์˜ต์…˜ elif ( strItem == "์ข…๋ชฉ" ): if ( self.BtnRadio1.isChecked() == True ): #๊ตญ๋‚ด if ( self.BtnRadioQry2.isChecked() == True ): strInput += self.Util_FillStr(self.CONST_FO_SERIES, 8, ' ') #F:์„ ๋ฌผ, O:์˜ต์…˜ else: strInput += self.Util_FillStr(self.CONST_FO_SERIES, 32, ' ') #F:์„ ๋ฌผ, O:์˜ต์…˜ elif ( self.BtnRadio2.isChecked() == True ): strInput += self.Util_FillStr(self.CONST_FR_SERIES, 32, ' ') elif ( self.BtnRadio3.isChecked() == True ): strInput += self.Util_FillStr(self.CONST_FX_SERIES, 32, ' ') elif ( strItem == "๋งค๋งค๊ตฌ๋ถ„" ): strInput += self.Util_FillStr("1", 1, ' ') #1:๋งค์ˆ˜, 2:๋งค๋„ elif ( strItem == "์ฒด๊ฒฐ๊ตฌ๋ถ„" ): strInput += self.Util_FillStr("1", 1, ' ') #1:์ง€์ •๊ฐ€, 2:์‹œ์žฅ๊ฐ€ elif ( strItem == "์ฒด๊ฒฐ์กฐ๊ฑด" ): if ( self.BtnRadio1.isChecked() == True ): #๊ตญ๋‚ด strInput += self.Util_FillStr("1", 1, ' ') #1:FAS, 2:FOK, 3:FAK else: strInput += self.Util_FillStr("1", 1, ' ') #0:DAY, 1:GTC, 3:IOC FAK 4:FOK elif ( strItem == "์ฃผ๋ฌธ๊ฐ€๊ฒฉ" ): if ( self.BtnRadio1.isChecked() == True ): #๊ตญ๋‚ด strInput += self.Util_FillStr("23055", 13, ' ') #์ฃผ๋ฌธ๊ฐ€๊ฒฉ, ์†Œ์ˆ˜์  ์—†์Œ else: strInput += self.Util_FillStr("8808", 15, ' ') #์ฃผ๋ฌธ๊ฐ€๊ฒฉ, ์†Œ์ˆ˜์  ์—†์Œ elif ( strItem == "์ฃผ๋ฌธ์ˆ˜๋Ÿ‰" ): strInput += self.Util_FillStr("1", 5, ' ') #์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ elif ( strItem == "์ฃผ๋ฌธ๋ฒˆํ˜ธ" ): if ( self.BtnRadio1.isChecked() == True ): #๊ตญ๋‚ด strInput += self.Util_FillStr("1111111", 7, ' ') else: strInput += self.Util_FillStr("0000000000", 10, ' ') elif ( strItem == "์‚ฌ์šฉ์žID" ): strInput += self.Util_FillStr(self.Edit_UserID.text(), 8, ' ') elif ( strItem == "์กฐํšŒ์œ ํ˜•" ): #๋ฌด์กฐ๊ฑด 1 strInput += self.Util_FillStr("1", 1, ' ') elif ( strItem == "groupnm" ): strInput += self.Util_FillStr(" ", 20, ' ') elif ( strItem == "ํ†ตํ™”์ฝ”๋“œ" ): strInput += self.Util_FillStr("USD", 3, ' ') #USD(๋ฏธ๊ตญ๋‹ฌ๋Ÿฌ),EUR(์œ ๋กœํ™”),JPY(์ผ๋ณธ์—”ํ™”),KRW(ํ•œ๊ตญ์›ํ™”) elif ( strItem == "๋ถ€์„œ์ฝ”๋“œ" ): strInput += self.Util_FillStr("001", 3, ' ') elif ( strItem == "์ ์š”๊ตฌ๋ถ„" ): strInput += self.Util_FillStr("1", 1, ' ') # 0(์ „์ฒด), 1(์†์ต), 2(์ด์ž), 3(์ˆ˜์ˆ˜๋ฃŒ), 4(์ž…๊ธˆ), 5(์ถœ๊ธˆ), 6(๊ธฐํƒ€) elif ( strItem == "์กฐํšŒ๋ชจ๋“œ" ): strInput += self.Util_FillStr("3", 1, ' ') #(1:LT 2:LE 3:EQ 4:GE 5:GT) elif ( strItem == "์กฐํšŒ๊ฑด์ˆ˜" ): strInput += self.Util_FillStr("0001", 4, ' ') elif ( strItem == "keyvalue"): strInput += self.Util_FillStr(" ", 18, ' ') elif ( strItem == "์กฐํšŒ์‹œ๊ฐ„"): strInput += self.Util_FillStr("9999999999", 10, ' ') elif ( strItem == "๋‹ค์Œ๊ตฌ๋ถ„"): strInput += self.Util_FillStr("0", 1, ' ') # 0:๊ธฐ๋ณธ elif ( strItem == "๋ฐ์ดํ„ฐ๊ตฌ๋ถ„"): strInput += self.Util_FillStr("1", 1, ' ') # 3:์ผ, 4:์ฃผ, 5:์›”, 2:๋ถ„, 6:ํ‹ฑ elif ( strItem == "์‹œ๊ฐ„๊ตฌ๋ถ„"): strInput += self.Util_FillStr("001", 3, ' ') # N๋ถ„/ํ‹ฑ elif ( strItem == "๋ฐ์ดํ„ฐ๊ฑด์ˆ˜"): strInput += self.Util_FillStr("00010", 5, ' ') # ์กฐํšŒ์š”์ฒญ๊ฐœ์ˆ˜ elif ( strItem == "์žฅ๊ตฌ๋ถ„"): strInput += self.Util_FillStr("1", 1, ' ') # 1:์ „์‚ฐ์žฅ, 0:๋ณธ์žฅ elif ( strItem == "ํ—ˆ๋ด‰์‹ค๋ด‰๊ตฌ๋ถ„"): strInput += self.Util_FillStr("0", 1, ' ') # 0:์‹ค๋ด‰๋งŒ, 1:ํ—ˆ๋ด‰+์‹ค๋ด‰ else: try: nFieldLen = int(strItem) if ( type(nFieldLen) is int ): #์ž…๋ ฅํ•„๋“œ ๊ธธ์ด ์ด๋ฏ€๋กœ pass pass else: self.Util_WriteLog("UnKnown FieldNm : " + strItem) except ValueError: pass self.Edit_Input.setText( "[" + strInput + "]") if ( self.BtnRadioQry2.isChecked() == True ): strFidInput = str(tmpList[2]) self.Edit_Input_FID.setText("[" + strFidInput + "]") pass def OnQuery(self): strTr = self.label_tr.text() strInput = self.Edit_Input.text() strInput.replace("[", "") strInput.replace("]", "") strInputFid = self.Edit_Input_FID.text() strInputFid.replace("[", "") strInputFid.replace("]", "") nRqID = 0 strMsg = "" if ( self.BtnRadioQry3.isChecked() == True ): nRqID = self.HD_CommJumunSvr(strTr, strInput) strMsg = u"์ฃผ๋ฌธ์ „์†ก UniqueID : " + str(nRqID) elif ( self.BtnRadioQry2.isChecked() == True ): nRqID = self.HD_CommFIDRqData(strTr, strInput, strInputFid, "") strMsg = u"์กฐํšŒ์š”์ฒญ(FID) UniqueID : " + str(nRqID) else: nRqID = self.HD_CommRqData(strTr, strInput, len(strInput), u"") strMsg = u"์กฐํšŒ์š”์ฒญ(TR) UniqueID : " + str(nRqID) self.Util_WriteLog( strMsg ) pass def OnRadioRealChange(self): self.ComboReal.clear() self.SetComboReal() strSelData = self.ComboReal.currentText() self.OnComboReal(strSelData) pass def SetComboReal(self): tmpRealDic = {} tmpRealDic = self.GetRealDic() tmpList = [] tmpList = list(tmpRealDic.keys()) for i in range(len(tmpList)): strRealServNo = tmpList[i] self.ComboReal.addItem(strRealServNo) self.ComboReal.model().sort(0) pass def OnComboReal(self, strSelData): strInData = unicode(strSelData, 'utf-8') tmpList = [] tmpRealDic = {} tmpRealDic = self.GetRealDic() tmpList = tmpRealDic.get(strInData) strInput = "" try: strItem = tmpList[0] self.Edit_Input_Real_Key.setText(tmpList[0]) strItem = tmpList[1] if ( strItem == "์ข…๋ชฉ" ): if ( self.BtnRadio1.isChecked() == True ): strInput = self.Util_FillStr(self.CONST_FO_SERIES, 32, ' ') elif ( self.BtnRadio2.isChecked() == True ): strInput += self.Util_FillStr(self.CONST_FR_SERIES, 32, ' ') elif ( self.BtnRadio3.isChecked() == True ): strInput += self.Util_FillStr(self.CONST_FX_SERIES, 10, ' ') pass elif (strItem == "๊ณ„์ขŒ๋ฒˆํ˜ธ" ): strAcctNo = self.ComboAcc.currentText() strInput = self.Util_FillStr(strAcctNo, 11, ' ') pass except TypeError: pass self.Edit_Input_Real_Val.setText( "[" + strInput + "]" ) pass def OnRealRegister(self): bReg = True strMsg = "" strValue = self.Edit_Input_Real_Val.text() nKeyType = int(self.Edit_Input_Real_Key.text()) strValue.replace("[", "") strValue.replace("]", "") if ( self.BtnRadioRealRegister.isChecked() == True ): bReg = True strMsg = u"์‹ค์‹œ๊ฐ„ ๋“ฑ๋ก ์š”์ฒญ Value[%s] Key[%d]" %(strValue, nKeyType) elif ( self.BtnRadioRealUnRegister.isChecked() == True ): bReg = False strMsg = u"์‹ค์‹œ๊ฐ„ ํ•ด์ง€ ์š”์ฒญ Value[%s] Key[%d]" %(strValue, nKeyType) self.Util_WriteLog( strMsg ) self.HD_RegReal(bReg, strValue, nKeyType) pass def OnDataRecv(self, sTrCode, nRqID): strRecv = u"์กฐํšŒ์‘๋‹ต Tr = [%s] UniqueID = [%d]" %(sTrCode, nRqID) self.Util_WriteLog( strRecv ) i = 0 if ( sTrCode == "o44020"): #MRKT.cod pass elif ( sTrCode == "o44021"): #PMCode.cod pass elif ( sTrCode == "o44022" ): #JMCode.cod(ํ•ด์™ธ) nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"์ˆ˜์‹ ๊ฐœ์ˆ˜ : " + str(nRptCnt)) for i in nRptCnt: strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(strData) pass elif (sTrCode == "g11002.DQ0104&" ): #๊ตญ๋‚ด๋ฏธ์ฒด๊ฒฐ์กฐํšŒ self.procDQ0104(sTrCode) pass elif (sTrCode == "g11002.DQ0107&" ): #๊ตญ๋‚ด์ฒด๊ฒฐ์กฐํšŒ self.procDQ0107(sTrCode) pass elif (sTrCode == "g11002.DQ0110&" ): #๊ตญ๋‚ด๋ฏธ์ฒด๊ฒฐ์กฐํšŒ self.procDQ0110(sTrCode) pass elif (sTrCode == "g11002.DQ0242&" ): #๊ตญ๋‚ด๊ณ ๊ฐ์˜ˆํƒ๊ธˆ์กฐํšŒ self.procDQ0242(sTrCode) pass elif sTrCode == "g11002.DQ0622&":#์ข…๋ชฉ์ฝ”๋“œ(๊ตญ๋‚ด) nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") for i in nRptCnt: strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(strData) pass elif (sTrCode == "g11002.DQ0116&"): pass elif (sTrCode == "g11002.DQ0119&"): #์•ผ๊ฐ„CME์ฒด๊ฒฐ๋‚ด์—ญ๋ฆฌ์ŠคํŠธ pass elif (sTrCode == "g11002.DQ0122&"): #์•ผ๊ฐ„CME๋ฏธ๊ฒฐ์ œ์•ฝ์ •์กฐํšŒ pass elif (sTrCode == "s20001" ): #๊ตญ๋‚ด์„ ๋ฌผ์˜ต์…˜๋งˆ์Šคํ„ฐ self.procs20001(sTrCode) pass elif (sTrCode == "s30001" ): #๊ตญ๋‚ด์ฃผ์‹์„ ๋ฌผ๋งˆ์Šคํ„ฐ pass elif (sTrCode == "s21001" ): #์•ผ๊ฐ„CME์„ ๋ฌผ์˜ต์…˜๋งˆ์Šคํ„ฐ pass elif (sTrCode == "g12001.DO1601&" ): #๊ตญ๋‚ด์‹ ๊ทœ์ฃผ๋ฌธ self.procDO1000(sTrCode) pass elif (sTrCode == "g12001.DO1901&" ): #๊ตญ๋‚ด์ •์ •์ฃผ๋ฌธ self.procDO1000(sTrCode) pass elif (sTrCode == "g12001.DO1701&" ): #๊ตญ๋‚ด์ทจ์†Œ์ฃผ๋ฌธ self.procDO1000(sTrCode) pass elif (sTrCode == "g12001.DO2201&" ): #CME๊ตญ๋‚ด์‹ ๊ทœ์ฃผ๋ฌธ self.procDO2000(sTrCode) pass elif (sTrCode == "g12001.DO2101&" ): #CME๊ตญ๋‚ด์ •์ •์ฃผ๋ฌธ self.procDO2000(sTrCode) pass elif (sTrCode == "g12001.DO2001&" ): #CME๊ตญ๋‚ด์ทจ์†Œ์ฃผ๋ฌธ self.procDO2000(sTrCode) pass elif (sTrCode == "g11004.AQ0401%"): #ํ•ด์™ธ๋ฏธ์ฒด๊ฒฐ์ฃผ๋ฌธ๋‚ด์—ญ self.procAQ0401(sTrCode) pass elif (sTrCode == "g11004.AQ0402%"): #ํ•ด์™ธ๋ฏธ์ฒด๊ฒฐ์ฃผ๋ฌธ๋‚ด์—ญ self.procAQ0402(sTrCode) pass elif (sTrCode == "g11004.AQ0403%"): self.procAQ0403(sTrCode) pass elif (sTrCode == "g11004.AQ0607%"): self.procAQ0607(sTrCode) pass elif (sTrCode == "o51000" ): #ํ•ด์™ธ์ฒด๊ฒฐ์ •๋ณด self.proco51000(sTrCode) pass elif (sTrCode == "o51010" ): #ํ•ด์™ธํ˜ธ๊ฐ€์ •๋ณด self.proco51010(sTrCode) pass elif (sTrCode == "o51210" ): #ํ•ด์™ธ์ข…๋ชฉ์ •๋ณด self.proco51210(sTrCode) pass elif (sTrCode == "g12003.AO0401" ): #ํ•ด์™ธ์‹ ๊ทœ์ฃผ๋ฌธ self.procAO0400(sTrCode) pass elif (sTrCode == "g12003.AO0402" ): #ํ•ด์™ธ์ •์ •์ฃผ๋ฌธ self.procAO0400(sTrCode) pass elif (sTrCode == "g12003.AO0403" ): #ํ•ด์™ธ์ทจ์†Œ์ฃผ๋ฌธ self.procAO0400(sTrCode) pass elif sTrCode == "g11004.AQ0101%": #ใ…–์ขŒ๋ชฉ๋ก ์ˆ˜์‹  self.Util_WriteLog(u"Recv Account List") self.procAQ0101(sTrCode) pass elif sTrCode == "g11004.AQ0450%": #ํ•ด์™ธ๋ฏธ์ฒด๊ฒฐ์ฃผ๋ฌธ๋‚ด์—ญ self.procAQ0450(sTrCode) pass def OnGetBroadData(self, sTrCode, nRealType): strRealType = unicode(str(nRealType), 'utf-8') self.Util_WriteLog (u"์‹ค์‹œ๊ฐ„ ์ˆ˜์‹  [%s] [%s]" % (sTrCode, strRealType)) if ( strRealType == self.CONST_FO_SISE_51 ): self.procReal51(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_SISE_65 ): self.procReal65(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_SISE_58 ): self.procReal58(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_SISE_71 ): self.procReal71(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_ORDER_181 ): self.procReal181(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_ORDER_182 ): self.procReal182(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_ORDER_183 ): self.procReal183(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_ORDER_184 ): self.procReal184(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FO_ORDER_185 ): self.procReal185(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FR_SISE_76 ): self.procReal76(sTrCode, nRealType) pass elif ( strRealType == self.CONST_FR_SISE_82 ): # ํ•ด์™ธ ์‹œ์„ธ ์ฒด๊ฒฐ strCode = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ธฐ์ค€์ฒด๊ฒฐ์‹œ๊ฐ„") strPric = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ๊ฐ€") self.Util_WriteLog("[" + strCode + "][" + strData + "][" + strPric + "]") pass elif (strRealType == self.CONST_FR_ORDER_196 ): self.procReal196(sTrCode, nRealType) pass elif (strRealType == self.CONST_FR_ORDER_186 ): self.procReal186(sTrCode, nRealType) pass elif (strRealType == self.CONST_FR_ORDER_187 ): self.procReal187(sTrCode, nRealType) pass elif (strRealType == self.CONST_FR_ORDER_188 ): self.procReal188(sTrCode, nRealType) pass elif (strRealType == self.CONST_FR_ORDER_189 ): self.procReal189(sTrCode, nRealType) pass elif (strRealType == self.CONST_FX_SISE_171): self.procReal171(sTrCode, nRealType) pass pass def procReal171(self, sTrCode, nRealType): strTime = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ˜ธ๊ฐ€์‹œ๊ฐ„ ") strBid = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€ ") strData = strTime + " " + strBid self.Util_WriteLog(strData) pass def procReal189(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ ") self.Util_WriteLog(u"์ข…๋ชฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„ ") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ ") self.Util_WriteLog(u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"STOP๊ฐ€๊ฒฉ ") self.Util_WriteLog(u"STOP๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์•ฝ์ •๊ธˆ์•ก ") self.Util_WriteLog(u"์•ฝ์ •๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์œ ํ˜• ") self.Util_WriteLog(u"์ฃผ๋ฌธ์œ ํ˜• : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ˆ˜์ˆ˜๋ฃŒ ") self.Util_WriteLog(u"์ˆ˜์ˆ˜๋ฃŒ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ผ์ž ") self.Util_WriteLog(u"์ฃผ๋ฌธ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์‹œ๊ฐ„ ") self.Util_WriteLog(u"์ฃผ๋ฌธ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ž ") self.Util_WriteLog(u"์ฃผ๋ฌธ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์ผ์ž ") self.Util_WriteLog(u"์ฒด๊ฒฐ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์‹œ๊ฐ„ ") self.Util_WriteLog(u"์ฒด๊ฒฐ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ฑฐ๋ž˜์†Œ์ผ์ž ") self.Util_WriteLog(u"๊ฑฐ๋ž˜์†Œ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ฑฐ๋ž˜์†Œ์‹œ๊ฐ„ ") self.Util_WriteLog(u"๊ฑฐ๋ž˜์†Œ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ†ตํ™”์ฝ”๋“œ ") self.Util_WriteLog(u"ํ†ตํ™”์ฝ”๋“œ : " + strData) pass def procReal188(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ฐ€๋Šฅ๊ธˆ์•ก") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๋Šฅ๊ธˆ์•ก: " + strData) pass def procReal187(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ ") self.Util_WriteLog(u"์ข…๋ชฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„ ") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ‰๊ท ๋‹จ๊ฐ€ ") self.Util_WriteLog(u"ํ‰๊ท ๋‹จ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋ฏธ๊ฒฐ์ œ์•ฝ์ •๊ธˆ์•ก ") self.Util_WriteLog(u"๋ฏธ๊ฒฐ์ œ์•ฝ์ •๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์‹ ๊ทœ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์‹ ๊ทœ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์‹ ๊ทœ์ฒด๊ฒฐ๊ธˆ์•ก ") self.Util_WriteLog(u"์‹ ๊ทœ์ฒด๊ฒฐ๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „ํ™˜๋งค์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์ „ํ™˜๋งค์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „ํ™˜๋งค์ฒด๊ฒฐ๊ธˆ์•ก ") self.Util_WriteLog(u"์ „ํ™˜๋งค์ฒด๊ฒฐ๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „ํ™˜๋งคHold์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์ „ํ™˜๋งคHold์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ˆ˜๋™์ฒญ์‚ฐHold์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์ˆ˜๋™์ฒญ์‚ฐHold์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์œ„ํƒ์ฆ๊ฑฐ๊ธˆ ") self.Util_WriteLog(u"์œ„ํƒ์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ†ตํ™”์ฝ”๋“œ ") self.Util_WriteLog(u"ํ†ตํ™”์ฝ”๋“œ : " + strData) pass def procReal186(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ธฐ์ค€์ผ์ž ") self.Util_WriteLog(u"๊ธฐ์ค€์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ ") self.Util_WriteLog(u"์ข…๋ชฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„ ") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ž”๋Ÿ‰ ") self.Util_WriteLog(u"์ž”๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"STOP ๊ฐ€๊ฒฉ ") self.Util_WriteLog(u"STOP ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์‹œ๊ฐ„ ") self.Util_WriteLog(u"์ฃผ๋ฌธ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ฑฐ๋ž˜์†Œ์‹œ๊ฐ„ ") self.Util_WriteLog(u"๊ฑฐ๋ž˜์†Œ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ž ") self.Util_WriteLog(u"์ฃผ๋ฌธ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ตฌ๋ถ„ ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „๋žต๊ตฌ๋ถ„ ") self.Util_WriteLog(u"์ „๋žต๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"๋งค์ˆ˜์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋„์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"๋งค๋„์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์œ ํ˜• ") self.Util_WriteLog(u"์ฃผ๋ฌธ์œ ํ˜• : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ฐ€๊ฒฉ์กฐ๊ฑด ") self.Util_WriteLog(u"๊ฐ€๊ฒฉ์กฐ๊ฑด : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์กฐ๊ฑด ") self.Util_WriteLog(u"์ฒด๊ฒฐ์กฐ๊ฑด : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"GTD์ผ์ž ") self.Util_WriteLog(u"GTD์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"IOC์ตœ์†Œ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog(u"IOC์ตœ์†Œ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog(u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ˆœ์„œ ") self.Util_WriteLog(u"์ฃผ๋ฌธ์ˆœ์„œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ†ตํ™”์ฝ”๋“œ ") self.Util_WriteLog(u"ํ†ตํ™”์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ธˆ์•ก ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์‹œ์ž‘์ผ์ž ") self.Util_WriteLog(u"์ฃผ๋ฌธ์‹œ์ž‘์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์˜ต์…˜ํ–‰์‚ฌ์˜ˆ์•ฝ์—ฌ๋ถ€ ") self.Util_WriteLog(u"์˜ต์…˜ํ–‰์‚ฌ์˜ˆ์•ฝ์—ฌ๋ถ€ : " + strData) pass def procReal196(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์‹œ๊ฐ„") self.Util_WriteLog(u"์ฃผ๋ฌธ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ตฌ๋ถ„") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ตฌ๋ถ„(1:์‹ ๊ทœ, 2:์ •์ •, 3:์ทจ์†Œ) : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒ˜๋ฆฌ๊ตฌ๋ถ„") self.Util_WriteLog(u"์ฒ˜๋ฆฌ๊ตฌ๋ถ„(0:์ •์ƒ, 1:๊ฑฐ๋ถ€) : " + strData) pass def procReal181(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ ‘์ˆ˜์‹œ๊ฐ„") self.Util_WriteLog(u"์ ‘์ˆ˜์‹œ๊ฐ„ : " + strData) pass def procReal182(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"key") self.Util_WriteLog(u"key : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ช…") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ •์ •์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ •์ •์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ทจ์†Œ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ทจ์†Œ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ž”๋Ÿ‰") self.Util_WriteLog(u"์ž”๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ†ต์‹ ์ฃผ๋ฌธ๊ตฌ๋ถ„") self.Util_WriteLog(u"ํ†ต์‹ ์ฃผ๋ฌธ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์ „๋žต๊ตฌ๋ถ„") self.Util_WriteLog(u"์ฃผ๋ฌธ์ „๋žต๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ์กฐ์ž‘๊ตฌ๋ถ„") self.Util_WriteLog(u"์ฃผ๋ฌธ์กฐ์ž‘๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ฑฐ๋ž˜์†Œ์ ‘์ˆ˜์‹œ๊ฐ„") self.Util_WriteLog(u"๊ฑฐ๋ž˜์†Œ์ ‘์ˆ˜์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ž‘์—…์‚ฌ์›") self.Util_WriteLog(u"์ž‘์—…์‚ฌ์› : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) pass def procReal183(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"key") self.Util_WriteLog(u"key : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ช…") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ") self.Util_WriteLog(u"์ข…๋ชฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „์ผ ๋ฏธ๊ฒฐ์ œ ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ „์ผ ๋ฏธ๊ฒฐ์ œ ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋‹น์ผ ๋ฏธ๊ฒฐ์ œ ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"๋‹น์ผ ๋ฏธ๊ฒฐ์ œ ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋ฏธ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"๋ฏธ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ‰๊ท  ๋‹จ๊ฐ€") self.Util_WriteLog(u"ํ‰๊ท  ๋‹จ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์•ฝ์ •๊ธˆ์•ก") self.Util_WriteLog(u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์•ฝ์ •๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์‹ ๊ทœ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์‹ ๊ทœ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์‹ ๊ทœ์ฒด๊ฒฐ๊ธˆ์•ก") self.Util_WriteLog(u"์‹ ๊ทœ์ฒด๊ฒฐ๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „ํ™˜๋งค ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ „ํ™˜๋งค ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „ํ™˜๋งค ์ฒด๊ฒฐ๊ธˆ์•ก") self.Util_WriteLog(u"์ „ํ™˜๋งค ์ฒด๊ฒฐ๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ–‰์‚ฌ ์‹ ์ฒญ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"ํ–‰์‚ฌ ์‹ ์ฒญ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ–‰์‚ฌ ๋ฐฐ์ •์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"ํ–‰์‚ฌ ๋ฐฐ์ •์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ–‰์‚ฌ ๊ฑฐ๋ถ€์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"ํ–‰์‚ฌ ๊ฑฐ๋ถ€์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งŒ๊ธฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"ํ–‰์‚ฌ ๋งŒ๊ธฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์žฅ๋ถ€๋‹จ๊ฐ€") self.Util_WriteLog(u"์žฅ๋ถ€๋‹จ๊ฐ€ : " + strData) pass def procReal184(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ช…") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๊ฐ€๋Šฅ๊ธˆ์•ก") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๋Šฅ๊ธˆ์•ก : " + strData) pass def procReal185(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"key") self.Util_WriteLog(u"key : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋”œ๋Ÿฌ๋ช…") self.Util_WriteLog(u"๋”œ๋Ÿฌ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ") self.Util_WriteLog(u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์‹œ๊ฐ„") self.Util_WriteLog(u"์ฒด๊ฒฐ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „๋žต๊ตฌ๋ถ„") self.Util_WriteLog(u"์ „๋žต๊ตฌ๋ถ„ : " + strData) pass def procReal76(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ˜ธ๊ฐ€์‹œ๊ฐ„") self.Util_WriteLog(u"ํ˜ธ๊ฐ€์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€๊ฑด์ˆ˜1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€๊ฑด์ˆ˜1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) pass def procReal71(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์‹œ๊ฐ„") self.Util_WriteLog(u"์ฒด๊ฒฐ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"change") self.Util_WriteLog(u"์ „์ผ๋Œ€๋น„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ˜„์žฌ๊ฐ€") self.Util_WriteLog(u"ํ˜„์žฌ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"cvolume") self.Util_WriteLog(u"์ฒด๊ฒฐ๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋ˆ„์ ๊ฑฐ๋ž˜๋Ÿ‰") self.Util_WriteLog(u"๋ˆ„์ ๊ฑฐ๋ž˜๋Ÿ‰ : " + strData) pass def procReal58(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"kfutcode") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"hotime") self.Util_WriteLog(u"ํ˜ธ๊ฐ€์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"offerho1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"bidho1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"offerrem1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"bidrem1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"offercnt1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"bidcnt1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) pass def procReal51(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ˜ธ๊ฐ€์‹œ๊ฐ„") self.Util_WriteLog(u"ํ˜ธ๊ฐ€์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€์ˆ˜๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€๊ฑด์ˆ˜1") self.Util_WriteLog(u"๋งค๋„ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€๊ฑด์ˆ˜1") self.Util_WriteLog(u"๋งค์ˆ˜ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) pass def procReal65(self, sTrCode, nRealType): strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ์‹œ๊ฐ„") self.Util_WriteLog(u"์ฒด๊ฒฐ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ „์ผ๋Œ€๋น„") self.Util_WriteLog(u"์ „์ผ๋Œ€๋น„ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"ํ˜„์žฌ๊ฐ€") self.Util_WriteLog(u"ํ˜„์žฌ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"์ฒด๊ฒฐ๋Ÿ‰") self.Util_WriteLog(u"์ฒด๊ฒฐ๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, nRealType, u"OutRec1", 0, u"๋ˆ„์ ๊ฑฐ๋ž˜๋Ÿ‰") self.Util_WriteLog(u"๋ˆ„์ ๊ฑฐ๋ž˜๋Ÿ‰ : " + strData) pass def procDO1000(self, sTrCode): strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ ‘์ˆ˜๊ตฌ๋ถ„") self.Util_WriteLog( u"์ ‘์ˆ˜๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฒ˜๋ฆฌ๊ตฌ๋ถ„") self.Util_WriteLog( u"์ฒ˜๋ฆฌ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) pass def procDO2000(self, sTrCode): strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ ‘์ˆ˜๊ตฌ๋ถ„") self.Util_WriteLog( u"์ ‘์ˆ˜๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฒ˜๋ฆฌ๊ตฌ๋ถ„") self.Util_WriteLog( u"์ฒ˜๋ฆฌ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) pass def procAO0400(self, sTrCode): strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ ‘์ˆ˜๊ตฌ๋ถ„") self.Util_WriteLog( u"์ ‘์ˆ˜๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฒ˜๋ฆฌ์ฝ”๋“œ") self.Util_WriteLog( u"์ฒ˜๋ฆฌ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฒ˜๋ฆฌ๋ฉ”์‹œ์ง€") self.Util_WriteLog( u"์ฒ˜๋ฆฌ๋ฉ”์‹œ์ง€ : " + strData) pass def procAQ0401(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"AQ0401 ๋ฐ˜๋ณตํšŒ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ์ฝ”๋“œ ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งค๋งค๊ตฌ๋ถ„ ") self.Util_WriteLog( u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ ") self.Util_WriteLog( u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog( u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ž”๋Ÿ‰ ") self.Util_WriteLog( u"์ž”๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์œ ํ˜• ") self.Util_WriteLog( u"์ฃผ๋ฌธ์œ ํ˜• : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"STOP ๊ฐ€๊ฒฉ ") self.Util_WriteLog( u"STOP ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์‹œ๊ฐ„ ") self.Util_WriteLog( u"์ฃผ๋ฌธ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ž ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ต์‹ ๊ตฌ๋ถ„ ") self.Util_WriteLog( u"ํ†ต์‹ ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ „๋žต๊ตฌ๋ถ„ ") self.Util_WriteLog( u"์ „๋žต๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ผ์ž ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ทธ๋ฃน ์ฃผ๋ฌธ ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"๊ทธ๋ฃน ์ฃผ๋ฌธ ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ฐ€๊ฒฉ์กฐ๊ฑด ") self.Util_WriteLog( u"๊ฐ€๊ฒฉ์กฐ๊ฑด : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์กฐ๊ฑด ") self.Util_WriteLog( u"์ฒด๊ฒฐ์กฐ๊ฑด : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ข…๋ฃŒ์ผ์ž ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ข…๋ฃŒ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"IOC ์ตœ์†Œ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog( u"IOC ์ตœ์†Œ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ตํ™”์ฝ”๋“œ ") self.Util_WriteLog( u"ํ†ตํ™”์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๊ธˆ์•ก ") self.Util_WriteLog( u"์ฃผ๋ฌธ๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์‹œ์ž‘์ผ์ž ") self.Util_WriteLog( u"์ฃผ๋ฌธ์‹œ์ž‘์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์˜ต์…˜ํ–‰์‚ฌ์˜ˆ์•ฝ์—ฌ๋ถ€ ") self.Util_WriteLog( u"์˜ต์…˜ํ–‰์‚ฌ์˜ˆ์•ฝ์—ฌ๋ถ€ : " + strData) pass def procAQ0402(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"AQ0402 ๋ฐ˜๋ณตํšŒ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ ") self.Util_WriteLog( u"์ข…๋ชฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งค๋งค๊ตฌ๋ถ„ ") self.Util_WriteLog( u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ ") self.Util_WriteLog( u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ ") self.Util_WriteLog( u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog( u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"STOP๊ฐ€๊ฒฉ ") self.Util_WriteLog( u"STOP๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์•ฝ์ •๊ธˆ์•ก ") self.Util_WriteLog( u"์•ฝ์ •๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์œ ํ˜• ") self.Util_WriteLog( u"์ฃผ๋ฌธ์œ ํ˜• : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ˆ˜์ˆ˜๋ฃŒ ") self.Util_WriteLog( u"์ˆ˜์ˆ˜๋ฃŒ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ผ์ž ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์‹œ๊ฐ„ ") self.Util_WriteLog( u"์ฃผ๋ฌธ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ž ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์ผ์ž ") self.Util_WriteLog( u"์ฒด๊ฒฐ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์‹œ๊ฐ„ ") self.Util_WriteLog( u"์ฒด๊ฒฐ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ฑฐ๋ž˜์†Œ์ผ์ž ") self.Util_WriteLog( u"๊ฑฐ๋ž˜์†Œ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ฑฐ๋ž˜์†Œ์‹œ๊ฐ„ ") self.Util_WriteLog( u"๊ฑฐ๋ž˜์†Œ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ตํ™”์ฝ”๋“œ ") self.Util_WriteLog( u"ํ†ตํ™”์ฝ”๋“œ : " + strData) pass def procAQ0403(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") print(nRptCnt) self.Util_WriteLog( u"AQ0403 ๋ฐ˜๋ณตํšŒ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ ") self.Util_WriteLog( u"์ข…๋ชฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งค๋งค๊ตฌ๋ถ„ ") self.Util_WriteLog( u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋‹น์ผ์ˆœ ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰ ") self.Util_WriteLog( u"๋‹น์ผ์ˆœ ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ‰๊ท ๋‹จ๊ฐ€(์†Œ์ˆ˜์ ๋ฐ˜์˜) ") self.Util_WriteLog( u"ํ‰๊ท ๋‹จ๊ฐ€(์†Œ์ˆ˜์ ๋ฐ˜์˜) : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ‰๊ท ๋‹จ๊ฐ€ ") self.Util_WriteLog( u"ํ‰๊ท ๋‹จ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ˜„์žฌ๊ฐ€ ") self.Util_WriteLog( u"ํ˜„์žฌ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ‰๊ฐ€์†์ต ") self.Util_WriteLog( u"ํ‰๊ฐ€์†์ต : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์œ„ํƒ์ฆ๊ฑฐ๊ธˆ ") self.Util_WriteLog( u"์œ„ํƒ์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์‹ ๊ทœ์ œํ•œ์ผ ") self.Util_WriteLog( u"์‹ ๊ทœ์ œํ•œ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ตœ์ข…๊ฑฐ๋ž˜์ผ ") self.Util_WriteLog( u"์ตœ์ข…๊ฑฐ๋ž˜์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ตํ™”์ฝ”๋“œ ") self.Util_WriteLog( u"ํ†ตํ™”์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์˜ต์…˜์‹œ์žฅ๊ฐ€์น˜ ") self.Util_WriteLog( u"์˜ต์…˜์‹œ์žฅ๊ฐ€์น˜ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์˜ต์…˜ํ–‰์‚ฌ์˜ˆ์•ฝ์—ฌ๋ถ€ ") self.Util_WriteLog( u"์˜ต์…˜ํ–‰์‚ฌ์˜ˆ์•ฝ์—ฌ๋ถ€ : " + strData) pass def procAQ0607(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"AQ0607 ๋ฐ˜๋ณตํšŒ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช… ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ตํ™”์ฝ”๋“œ ") self.Util_WriteLog( u"ํ†ตํ™”์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์˜ˆํƒ๊ธˆ์ด์•ก ") self.Util_WriteLog( u"์˜ˆํƒ๊ธˆ์ด์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์˜ˆํƒ๊ธˆ์ž”์•ก ") self.Util_WriteLog( u"์˜ˆํƒ๊ธˆ์ž”์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ‰๊ฐ€๊ธˆ์•ก ") self.Util_WriteLog( u"ํ‰๊ฐ€๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋ฏธ์ˆ˜๊ธˆ์•ก ") self.Util_WriteLog( u"๋ฏธ์ˆ˜๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ฒฐ์ œ๊ธˆ์•ก๋ถ€์กฑ ") self.Util_WriteLog( u"๊ฒฐ์ œ๊ธˆ์•ก๋ถ€์กฑ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋ฏธ๊ฒฐ์ œ์•ฝ์ •์ฆ๊ฑฐ๊ธˆ ") self.Util_WriteLog( u"๋ฏธ๊ฒฐ์ œ์•ฝ์ •์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ธ์ถœ๊ฐ€๋Šฅ๊ธˆ ") self.Util_WriteLog( u"์ธ์ถœ๊ฐ€๋Šฅ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๊ฐ€๋Šฅ๊ธˆ ") self.Util_WriteLog( u"์ฃผ๋ฌธ๊ฐ€๋Šฅ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์œ ์ง€์ฆ๊ฑฐ๊ธˆ ") self.Util_WriteLog( u"์œ ์ง€์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ฆ๊ฑฐ๊ธˆ ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์œ„ํƒ์ฆ๊ฑฐ๊ธˆ ") self.Util_WriteLog( u"์œ„ํƒ์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ฑฐ๋ž˜์ˆ˜์ˆ˜๋ฃŒ ") self.Util_WriteLog( u"๊ฑฐ๋ž˜์ˆ˜์ˆ˜๋ฃŒ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒญ์‚ฐ์†์ต ") self.Util_WriteLog( u"์ฒญ์‚ฐ์†์ต : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ‰๊ฐ€์†์ต ") self.Util_WriteLog( u"ํ‰๊ฐ€์†์ต : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋ฏธ๋ฐœ์ƒ ") self.Util_WriteLog( u"๋ฏธ๋ฐœ์ƒ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ถ”๊ฐ€์ฆ๊ฑฐ๊ธˆ ") self.Util_WriteLog( u"์ถ”๊ฐ€์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ด๊ณ„์ •์ž์‚ฐ๊ฐ€์น˜ ") self.Util_WriteLog( u"์ด๊ณ„์ •์ž์‚ฐ๊ฐ€์น˜ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์™ธํ™˜๊ณ ์‹œํ™˜์œจ ") self.Util_WriteLog( u"์™ธํ™˜๊ณ ์‹œํ™˜์œจ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์˜ต์…˜๋งค๋งค๋Œ€๊ธˆ ") self.Util_WriteLog( u"์˜ต์…˜๋งค๋งค๋Œ€๊ธˆ : " + strData) pass def proco51000(self, sTrCode): strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ํ•œ๊ธ€์ข…๋ชฉ๋ช… ") self.Util_WriteLog( u"ํ•œ๊ธ€์ข…๋ชฉ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ํ˜„์žฌ๊ฐ€ ") self.Util_WriteLog( u"ํ˜„์žฌ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ „์ผ๋Œ€๋น„๊ตฌ๋ถ„ ") self.Util_WriteLog( u"์ „์ผ๋Œ€๋น„๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ „์ผ๋Œ€๋น„ ") self.Util_WriteLog( u"์ „์ผ๋Œ€๋น„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ „์ผ๋Œ€๋น„๋“ฑ๋ฝ์œจ ") self.Util_WriteLog( u"์ „์ผ๋Œ€๋น„๋“ฑ๋ฝ์œจ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ง์ „๋Œ€๋น„๊ตฌ๋ถ„ ") self.Util_WriteLog( u"์ง์ „๋Œ€๋น„๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์‹œ๊ฐ€ ") self.Util_WriteLog( u"์‹œ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ณ ๊ฐ€ ") self.Util_WriteLog( u"๊ณ ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ €๊ฐ€ ") self.Util_WriteLog( u"์ €๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"LT๊ณ ๊ฐ€ ") self.Util_WriteLog( u"LT๊ณ ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"LT๊ณ ๊ฐ€์ผ ") self.Util_WriteLog( u"LT๊ณ ๊ฐ€์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"LT์ €๊ฐ€ ") self.Util_WriteLog( u"LT์ €๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"LT์ €๊ฐ€์ผ ") self.Util_WriteLog( u"LT์ €๊ฐ€์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์˜์—…์ผ ") self.Util_WriteLog( u"์˜์—…์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ƒ์Šน๊ฑฐ๋ž˜๋Ÿ‰ ") self.Util_WriteLog( u"์ƒ์Šน๊ฑฐ๋ž˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ํ•˜๋ฝ๊ฑฐ๋ž˜๋Ÿ‰ ") self.Util_WriteLog( u"ํ•˜๋ฝ๊ฑฐ๋ž˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋ˆ„์ ๊ฑฐ๋ž˜๋Ÿ‰ ") self.Util_WriteLog( u"๋ˆ„์ ๊ฑฐ๋ž˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งŒ๊ธฐ์ผ ") self.Util_WriteLog( u"๋งŒ๊ธฐ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ •์‚ฐ๊ฐ€ ") self.Util_WriteLog( u"์ •์‚ฐ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ •์‚ฐ์ผ ") self.Util_WriteLog( u"์ •์‚ฐ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ž”์กด์ผ์ˆ˜ ") self.Util_WriteLog( u"์ž”์กด์ผ์ˆ˜ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€ ") self.Util_WriteLog( u"๋งค๋„ํ˜ธ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€ ") self.Util_WriteLog( u"๋งค์ˆ˜ํ˜ธ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ธฐ์ค€๊ฐ€ ") self.Util_WriteLog( u"๊ธฐ์ค€๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ „์ผ๊ฑฐ๋ž˜๋Ÿ‰ ") self.Util_WriteLog( u"์ „์ผ๊ฑฐ๋ž˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ „์ผ๊ฑฐ๋ž˜๋Ÿ‰๋Œ€๋น„์œจ ") self.Util_WriteLog( u"์ „์ผ๊ฑฐ๋ž˜๋Ÿ‰๋Œ€๋น„์œจ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฒด๊ฒฐ์‹œ๊ฐ„ ") self.Util_WriteLog( u"์ฒด๊ฒฐ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ตญ๋‚ด์‹œ๊ฐ„ ") self.Util_WriteLog( u"๊ตญ๋‚ด์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ฑฐ๋ž˜์†Œ๊ตฌ๋ถ„ ") self.Util_WriteLog( u"๊ฑฐ๋ž˜์†Œ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ETH์‹œ์ž‘ ") self.Util_WriteLog( u"ETH์‹œ์ž‘ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ETH์ข…๋ฃŒ ") self.Util_WriteLog( u"ETH์ข…๋ฃŒ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์˜๋ฌธ์ข…๋ชฉ๋ช… ") self.Util_WriteLog( u"์˜๋ฌธ์ข…๋ชฉ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์‹ ๊ทœ๊ฑฐ๋ž˜์ œํ•œ์ผ ") self.Util_WriteLog( u"์‹ ๊ทœ๊ฑฐ๋ž˜์ œํ•œ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ตœ์ข…๊ฑฐ๋ž˜์ผ ") self.Util_WriteLog( u"์ตœ์ข…๊ฑฐ๋ž˜์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ํ˜ธ๊ฐ€๋ฐฉ์‹ ") self.Util_WriteLog( u"ํ˜ธ๊ฐ€๋ฐฉ์‹ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฃผ๋ฌธ์ œํ•œํญ ") self.Util_WriteLog( u"์ฃผ๋ฌธ์ œํ•œํญ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์‹ค๋ฌผ์ธ์ˆ˜๋„์‹œ์ž‘์ผ์ž") self.Util_WriteLog( u"์‹ค๋ฌผ์ธ์ˆ˜๋„์‹œ์ž‘์ผ์ž: " + strData) pass def proco51010(self, sTrCode): strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ํ˜ธ๊ฐ€์‹œ๊ฐ„") self.Util_WriteLog( u"ํ˜ธ๊ฐ€์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€1") self.Util_WriteLog( u"๋งค๋„ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€1") self.Util_WriteLog( u"๋งค์ˆ˜ํ˜ธ๊ฐ€1 : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€์ž”๋Ÿ‰1") self.Util_WriteLog( u"๋งค๋„ํ˜ธ๊ฐ€์ž”๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€์ž”๋Ÿ‰1") self.Util_WriteLog( u"๋งค์ˆ˜ํ˜ธ๊ฐ€์ž”๋Ÿ‰1 : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค๋„ํ˜ธ๊ฐ€๊ฑด์ˆ˜1") self.Util_WriteLog( u"๋งค๋„ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค์ˆ˜ํ˜ธ๊ฐ€๊ฑด์ˆ˜1") self.Util_WriteLog( u"๋งค์ˆ˜ํ˜ธ๊ฐ€๊ฑด์ˆ˜1 : " + strData) pass def proco51210(self, sTrCode): strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ตœ์ข…๊ฑฐ๋ž˜์ผ") self.Util_WriteLog( u"์ตœ์ข…๊ฑฐ๋ž˜์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ฑฐ๋ž˜์†Œ") self.Util_WriteLog( u"๊ฑฐ๋ž˜์†Œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ƒ์žฅ์ผ") self.Util_WriteLog( u"์ƒ์žฅ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งŒ๊ธฐ์ผ") self.Util_WriteLog( u"๋งŒ๊ธฐ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์‚ญ์ œ์ผ") self.Util_WriteLog( u"์‚ญ์ œ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ •์‚ฐ๊ฐ€") self.Util_WriteLog( u"์ •์‚ฐ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ •์‚ฐ์ผ") self.Util_WriteLog( u"์ •์‚ฐ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ฐ€๊ฒฉํ‘œ์‹œ") self.Util_WriteLog( u"๊ฐ€๊ฒฉํ‘œ์‹œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์žฅ์‹œ์ž‘์‹œ๊ฐ„(CME)") self.Util_WriteLog( u"์žฅ์‹œ์ž‘์‹œ๊ฐ„(CME) : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์žฅ์ข…๋ฃŒ์‹œ๊ฐ„(CME)") self.Util_WriteLog( u"์žฅ์ข…๋ฃŒ์‹œ๊ฐ„(CME) : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์žฅ์‹œ์ž‘์‹œ๊ฐ„(ํ•œ๊ตญ)") self.Util_WriteLog( u"์žฅ์‹œ์ž‘์‹œ๊ฐ„(ํ•œ๊ตญ) : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์žฅ์ข…๋ฃŒ์‹œ๊ฐ„(ํ•œ๊ตญ)") self.Util_WriteLog( u"์žฅ์ข…๋ฃŒ์‹œ๊ฐ„(ํ•œ๊ตญ) : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ฑฐ๋ž˜ํ†ตํ™”") self.Util_WriteLog( u"๊ฑฐ๋ž˜ํ†ตํ™” : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ƒํ’ˆ๊ตฌ๋ถ„") self.Util_WriteLog( u"์ƒํ’ˆ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋งค๋งค์—ฌ๋ถ€") self.Util_WriteLog( u"๋งค๋งค์—ฌ๋ถ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ž”์กด์ผ์ˆ˜") self.Util_WriteLog( u"์ž”์กด์ผ์ˆ˜ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ticksize") self.Util_WriteLog( u"ticksize : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"tickvalue") self.Util_WriteLog( u"tickvalue : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ตœ์ข…๊ฒฐ์ œ์ผ") self.Util_WriteLog( u"์ตœ์ข…๊ฒฐ์ œ์ผ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ฆ๊ฑฐ๊ธˆ") self.Util_WriteLog( u"์ฆ๊ฑฐ๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ณ„์•ฝ๋‹จ์œ„") self.Util_WriteLog( u"๊ณ„์•ฝ๋‹จ์œ„ : " + strData) pass def procs20001(self, sTrCode): i = 0 strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋‹จ์ถ•์ฝ”๋“œ") self.Util_WriteLog(strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ˜ธ๊ฐ€์ˆ˜์‹ ์‹œ๊ฐ„") self.Util_WriteLog(strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ˜„์žฌ๊ฐ€") self.Util_WriteLog(strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋ˆ„์ ๊ฑฐ๋ž˜๋Ÿ‰") self.Util_WriteLog(strData) pass def procAQ0101(self, sTrCode): strData = self.HD_CommGetAccInfo() nAcctCnt = int(strData[0:5]) nLenAcctNo = 11 nLenAcctNm = 30 nLenAcctGb = 1 strAcctInfo = str(strData[5:]).encode('cp949') nLenAccInfo = nLenAcctNo + nLenAcctNm + nLenAcctGb #strSelAccGb = "1" #1:ํ•ด์™ธ, 2:FX, 9:๊ตญ๋‚ด #if ( self.BtnRadio1.isChecked() == True ): # strSelAccGb = "9" #๊ตญ๋‚ด #elif ( self.BtnRadio2.isChecked() == True ): # strSelAccGb = "1" #ํ•ด์™ธ #elif ( self.BtnRadio3.isChecked() == True ): # strSelAccGb = "2" #FX for i in range(0, nAcctCnt): nStPos = (i*nLenAccInfo) strAcctNo = strAcctInfo[nStPos :nStPos+nLenAcctNo] strAcctNm = strAcctInfo[nStPos+(nLenAcctNo) :nStPos+nLenAcctNo+nLenAcctNm] strAcctGb = strAcctInfo[nStPos+(nLenAcctNo+nLenAcctNm):nStPos+nLenAcctNo+nLenAcctNm+nLenAcctGb] strAcctNm = unicode(strAcctNm, 'cp949') strAcctNo = unicode(strAcctNo.strip(), 'utf-8') strAcctNm = str(strAcctNm.strip()) tmpDic = {strAcctNo:strAcctNm} if ( strAcctGb == "9" ): self.m_AccListFO.update(tmpDic) elif(strAcctGb == "1" ): self.m_AccListFR.update(tmpDic) elif(strAcctGb == "2" ): self.m_AccListFX.update(tmpDic) self.Util_WriteLog(strAcctNo + "," + strAcctNm + "," + strAcctGb) self.OnRadioAcctTpChange() pass def procDQ0242(self, sTrCode): strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์˜ˆํƒ๊ธˆ์•ก-์ด์•ก") self.Util_WriteLog( u"์˜ˆํƒ๊ธˆ์•ก-์ด์•ก :" + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์˜ˆํƒ๊ธˆ์•ก-ํ˜„๊ธˆ") self.Util_WriteLog( u"์˜ˆํƒ๊ธˆ์•ก-ํ˜„๊ธˆ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์˜ˆํƒ๊ธˆ์•ก-๋Œ€์šฉ") self.Util_WriteLog( u"์˜ˆํƒ๊ธˆ์•ก-๋Œ€์šฉ :" + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์˜ˆํƒ์™ธํ™”") self.Util_WriteLog( u"์˜ˆํƒ์™ธํ™” : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋‹น์ผ์†์ต") self.Util_WriteLog( u"๋‹น์ผ์†์ต : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์œ„ํƒ์ˆ˜์ˆ˜๋ฃŒ") self.Util_WriteLog( u"์œ„ํƒ์ˆ˜์ˆ˜๋ฃŒ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"๋‹น์ผ์ˆœ์†์ต") self.Util_WriteLog( u"๋‹น์ผ์ˆœ์†์ต : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"ํ‰๊ฐ€์˜ˆํƒ์ด์•ก") self.Util_WriteLog( u"ํ‰๊ฐ€์˜ˆํƒ์ด์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", 0, u"์ˆœ์ž์‚ฐ-์ดํ‰๊ฐ€์•ก") self.Util_WriteLog( u"์ˆœ์ž์‚ฐ-์ดํ‰๊ฐ€์•ก : " + strData) pass def procAQ0450(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"AQ0450 ์กฐํšŒ๊ฐœ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog(u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog(u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog(u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ") self.Util_WriteLog(u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ž”๋Ÿ‰") self.Util_WriteLog(u"์ž”๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์œ ํ˜•") self.Util_WriteLog(u"์ฃผ๋ฌธ์œ ํ˜• : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"STOP ๊ฐ€๊ฒฉ") self.Util_WriteLog(u"STOP ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์‹œ๊ฐ„") self.Util_WriteLog(u"์ฃผ๋ฌธ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ž ") self.Util_WriteLog(u"์ฃผ๋ฌธ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ต์‹ ๊ตฌ๋ถ„") self.Util_WriteLog(u"ํ†ต์‹ ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ „๋žต๊ตฌ๋ถ„") self.Util_WriteLog(u"์ „๋žต๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ผ์ž") self.Util_WriteLog(u"์ฃผ๋ฌธ์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ฐ€๊ฒฉ์กฐ๊ฑด") self.Util_WriteLog(u"๊ฐ€๊ฒฉ์กฐ๊ฑด : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์กฐ๊ฑด") self.Util_WriteLog(u"์ฒด๊ฒฐ์กฐ๊ฑด : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"GTD์ผ์ž") self.Util_WriteLog(u"GTD์ผ์ž : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"IOC์ตœ์†Œ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog(u"IOC์ตœ์†Œ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog(u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) pass def procDQ0104(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"DQ0104 ์กฐํšŒ๊ฐœ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog( u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog( u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ") self.Util_WriteLog( u"์ฃผ๋ฌธ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"์ฃผ๋ฌธ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ •์ •์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"์ •์ •์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ทจ์†Œ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"์ทจ์†Œ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ž”๋Ÿ‰") self.Util_WriteLog( u"์ž”๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"์ตœ์ดˆ์›์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ต์‹ ์ฃผ๋ฌธ๊ตฌ๋ถ„") self.Util_WriteLog( u"ํ†ต์‹ ์ฃผ๋ฌธ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์ „๋žต๊ตฌ๋ถ„") self.Util_WriteLog( u"์ฃผ๋ฌธ์ „๋žต๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ์กฐ์ž‘๊ตฌ๋ถ„") self.Util_WriteLog( u"์ฃผ๋ฌธ์กฐ์ž‘๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ฑฐ๋ž˜์†Œ์ ‘์ˆ˜์‹œ๊ฐ„") self.Util_WriteLog( u"๊ฑฐ๋ž˜์†Œ์ ‘์ˆ˜์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ž‘์—…์‚ฌ์›") self.Util_WriteLog( u"์ž‘์—…์‚ฌ์› : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๊ทธ๋ฃน์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋”œ๋Ÿฌ๋ช…") self.Util_WriteLog( u"๋”œ๋Ÿฌ๋ช… : " + strData) pass def procDQ0107(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"DQ0107 ์กฐํšŒ๊ฐœ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog( u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฃผ๋ฌธ๋ฒˆํ˜ธ") self.Util_WriteLog( u"์ฃผ๋ฌธ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ์ฝ”๋“œ") self.Util_WriteLog( u"์ข…๋ชฉ์ฝ”๋“œ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog( u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ") self.Util_WriteLog( u"์ฒด๊ฒฐ๊ฐ€๊ฒฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ฒด๊ฒฐ์‹œ๊ฐ„") self.Util_WriteLog( u"์ฒด๊ฒฐ์‹œ๊ฐ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ „๋žต๊ตฌ๋ถ„") self.Util_WriteLog( u"์ „๋žต๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ†ต์‹ ๊ตฌ๋ถ„") self.Util_WriteLog( u"ํ†ต์‹ ๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋”œ๋Ÿฌ์ขŒ๋ช…") self.Util_WriteLog( u"๋”œ๋Ÿฌ์ขŒ๋ช… : " + strData) pass def procDQ0110(self, sTrCode): nRptCnt = self.HD_CommGetRepeatCnt(sTrCode, -1, u"OutRec1") self.Util_WriteLog( u"DQ0110 ์กฐํšŒ๊ฐœ์ˆ˜ : " + str(nRptCnt) ) for i in nRptCnt: self.Util_WriteLog( u"===============================================" ) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๊ณ„์ขŒ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๊ณ„์ขŒ๋ช…") self.Util_WriteLog( u"๊ณ„์ขŒ๋ช… : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ข…๋ชฉ") self.Util_WriteLog( u"์ข…๋ชฉ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งค๋งค๊ตฌ๋ถ„") self.Util_WriteLog( u"๋งค๋งค๊ตฌ๋ถ„ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์ „์ผ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"์ „์ผ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋ฏธ์ฒด๊ฒฐ ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"๋ฏธ์ฒด๊ฒฐ ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ‰๊ท ๋‹จ๊ฐ€") self.Util_WriteLog( u"ํ‰๊ท ๋‹จ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"์žฅ๋ถ€๋‹จ๊ฐ€") self.Util_WriteLog( u"์žฅ๋ถ€๋‹จ๊ฐ€ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์•ฝ์ •๊ธˆ์•ก") self.Util_WriteLog( u"๋‹น์ผ๋ฏธ๊ฒฐ์ œ์•ฝ์ •๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋‹น์ผ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"๋‹น์ผ์ฒด๊ฒฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋‹น์ผ์ฒด๊ฒฐ๊ธˆ์•ก") self.Util_WriteLog( u"๋‹น์ผ์ฒด๊ฒฐ๊ธˆ์•ก : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ–‰์‚ฌ์‹ ์ฒญ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"ํ–‰์‚ฌ์‹ ์ฒญ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ–‰์‚ฌ๋ฐฐ์ •์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"ํ–‰์‚ฌ๋ฐฐ์ •์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"ํ–‰์‚ฌ๊ฑฐ๋ถ€์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"ํ–‰์‚ฌ๊ฑฐ๋ถ€์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋งŒ๊ธฐ์ˆ˜๋Ÿ‰") self.Util_WriteLog( u"๋งŒ๊ธฐ์ˆ˜๋Ÿ‰ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ") self.Util_WriteLog( u"๋”œ๋Ÿฌ๋ฒˆํ˜ธ : " + strData) strData = self.HD_CommGetData(sTrCode, -1, u"OutRec1", i, u"๋”œ๋Ÿฌ๋ช…") self.Util_WriteLog( u"๋”œ๋Ÿฌ๋ช… : " + strData) pass def OnGetMsgWithRqId(self, nRqID, strErrCode, strErrMsg): strRecv = "์กฐํšŒ์‘๋‹ต Tr = [%s] UniqueID = [%d]" %(strErrCode, nRqID) strRecvMsg = "๋ฉ”์‹œ์ง€์ˆ˜์‹  UniqueID = [%s] ErrorCode=[%s] ErrorMessage=[%s]" % (str(nRqID), unicode(strErrCode), unicode(strErrMsg)) self.Util_WriteLog( strRecvMsg ) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) MainWindow = QtGui.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) ui.SetupHDFOcx(MainWindow) MainWindow.show() sys.exit(app.exec_())
[ "jay.bwkim@gmail.com" ]
jay.bwkim@gmail.com
b19eb4c4a4c8e2182848c6efdc592bdd73bafd78
7f004635957d252b7e8d7d6e0aee47e24aca0b82
/catkin_ws/src/sound_play/src/sound_play/libsoundplay.py
12c62a885fc10f5d991711f131baaf324d3e99cd
[]
no_license
Pontusun/CIS700_Team2
75bef2305f5ccb7992f152b9fca20ea475077833
17b125b652d3be41884d6f625b7424b00ca0a6dd
refs/heads/master
2021-01-10T16:02:19.327233
2016-02-11T22:20:46
2016-02-11T22:20:46
44,488,662
1
3
null
2015-11-29T19:54:32
2015-10-18T17:35:24
CMake
UTF-8
Python
false
false
13,215
py
#!/usr/bin/env python #*********************************************************** #* Software License Agreement (BSD License) #* #* Copyright (c) 2009, Willow Garage, Inc. #* All rights reserved. #* #* Redistribution and use in source and binary forms, with or without #* modification, are permitted provided that the following conditions #* are met: #* #* * Redistributions of source code must retain the above copyright #* notice, this list of conditions and the following disclaimer. #* * Redistributions in binary form must reproduce the above #* copyright notice, this list of conditions and the following #* disclaimer in the documentation and/or other materials provided #* with the distribution. #* * Neither the name of the Willow Garage nor the names of its #* contributors may be used to endorse or promote products derived #* from this software without specific prior written permission. #* #* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS #* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS #* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE #* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, #* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, #* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; #* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT #* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN #* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #* POSSIBILITY OF SUCH DAMAGE. #*********************************************************** # Author: Blaise Gassend import rospy import roslib import actionlib import os, sys from sound_play.msg import SoundRequest from sound_play.msg import SoundRequestGoal from sound_play.msg import SoundRequestAction ## \brief Class that publishes messages to the sound_play node. ## ## This class is a helper class for communicating with the sound_play node ## via the \ref sound_play.SoundRequest message. It has two ways of being used: ## ## - It can create Sound classes that represent a particular sound which ## can be played, repeated or stopped. ## ## - It provides methods for each way in which the sound_play.SoundRequest ## message can be invoked. class Sound(object): def __init__(self, client, snd, arg, volume=1.0): self.client = client self.snd = snd self.arg = arg self.vol = volume ## \brief Play the Sound. ## ## This method causes the Sound to be played once. def play(self, **kwargs): self.client.sendMsg(self.snd, SoundRequest.PLAY_ONCE, self.arg, vol=self.vol, **kwargs) ## \brief Play the Sound repeatedly. ## ## This method causes the Sound to be played repeatedly until stop() is ## called. def repeat(self, **kwargs): self.client.sendMsg(self.snd, SoundRequest.PLAY_START, self.arg, vol=self.vol, **kwargs) ## \brief Stop Sound playback. ## ## This method causes the Sound to stop playing. def stop(self): self.client.sendMsg(self.snd, SoundRequest.PLAY_STOP, self.arg) ## This class is a helper class for communicating with the sound_play node ## via the \ref sound_play.SoundRequest message. There is a one-to-one mapping ## between methods and invocations of the \ref sound_play.SoundRequest message. class SoundClient(object): def __init__(self, blocking=False): """ The SoundClient can send SoundRequests in two modes: non-blocking mode (by publishing a message to the soundplay_node directly) which will return as soon as the sound request has been sent, or blocking mode (by using the actionlib interface) which will wait until the sound has finished playing completely. The blocking parameter here is the standard behavior, but can be over-ridden. Each say/play/start/repeat method can take in an optional `blocking=True|False` argument that will over-ride the class-wide behavior. See soundclient_example.py for an example of this behavior. :param blocking: Used as the default behavior unless over-ridden, (default = false) """ self._blocking = blocking # NOTE: only one of these will be used at once, but we need to create # both the publisher and actionlib client here. self.actionclient = actionlib.SimpleActionClient( 'sound_play', SoundRequestAction) self.pub = rospy.Publisher('robotsound', SoundRequest, queue_size=5) ## \brief Create a voice Sound. ## ## Creates a Sound corresponding to saying the indicated text. ## ## \param s Text to say def voiceSound(self, s, volume=1.0): return Sound(self, SoundRequest.SAY, s, volume=volume) ## \brief Create a wave Sound. ## ## Creates a Sound corresponding to indicated file. ## ## \param s File to play. Should be an absolute path that exists on the ## machine running the sound_play node. def waveSound(self, sound, volume=1.0): if sound[0] != "/": rootdir = os.path.join(roslib.packages.get_pkg_dir('sound_play'),'sounds') sound = rootdir + "/" + sound return Sound(self, SoundRequest.PLAY_FILE, sound, volume=volume) ## \brief Create a builtin Sound. ## ## Creates a Sound corresponding to indicated builtin wave. ## ## \param id Identifier of the sound to play. def builtinSound(self, id, volume=1.0): return Sound(self, id, "", volume) ## \brief Say a string ## ## Send a string to be said by the sound_node. The vocalization can be ## stopped using stopSaying or stopAll. ## ## \param text String to say def say(self,text, voice='', volume=1.0, **kwargs): self.sendMsg(SoundRequest.SAY, SoundRequest.PLAY_ONCE, text, voice, volume, **kwargs) ## \brief Say a string repeatedly ## ## The string is said repeatedly until stopSaying or stopAll is used. ## ## \param text String to say repeatedly def repeat(self,text, volume=1.0, **kwargs): self.sendMsg(SoundRequest.SAY, SoundRequest.PLAY_START, text, vol=volume, **kwargs) ## \brief Stop saying a string ## ## Stops saying a string that was previously started by say or repeat. The ## argument indicates which string to stop saying. ## ## \param text Same string as in the say or repeat command def stopSaying(self,text): self.sendMsg(SoundRequest.SAY, SoundRequest.PLAY_STOP, text) ## \brief Plays a WAV or OGG file ## ## Plays a WAV or OGG file once. The playback can be stopped by stopWave or ## stopAll. ## ## \param sound Filename of the WAV or OGG file. Must be an absolute path valid ## on the computer on which the sound_play node is running def playWave(self, sound, volume=1.0, **kwargs): if sound[0] != "/": rootdir = os.path.join(roslib.packages.get_pkg_dir('sound_play'),'sounds') sound = rootdir + "/" + sound self.sendMsg(SoundRequest.PLAY_FILE, SoundRequest.PLAY_ONCE, sound, vol=volume, **kwargs) ## \brief Plays a WAV or OGG file repeatedly ## ## Plays a WAV or OGG file repeatedly until stopWave or stopAll is used. ## ## \param sound Filename of the WAV or OGG file. Must be an absolute path valid ## on the computer on which the sound_play node is running. def startWave(self, sound, volume=1.0, **kwargs): if sound[0] != "/": rootdir = os.path.join(roslib.packages.get_pkg_dir('sound_play'),'sounds') sound = rootdir + "/" + sound self.sendMsg(SoundRequest.PLAY_FILE, SoundRequest.PLAY_START, sound, vol=volume, **kwargs) ## \brief Stop playing a WAV or OGG file ## ## Stops playing a file that was previously started by playWave or ## startWave. ## ## \param sound Same string as in the playWave or startWave command def stopWave(self,sound): if sound[0] != "/": rootdir = os.path.join(roslib.package.get_pkg_dir('sound_play'),'sounds') sound = rootdir + "/" + sound self.sendMsg(SoundRequest.PLAY_FILE, SoundRequest.PLAY_STOP, sound) ## \brief Plays a WAV or OGG file ## ## Plays a WAV or OGG file once. The playback can be stopped by stopWaveFromPkg or ## stopAll. ## ## \param package Package name containing the sound file. ## \param sound Filename of the WAV or OGG file. Must be an path relative to the package valid ## on the computer on which the sound_play node is running def playWaveFromPkg(self, package, sound, volume=1.0, **kwargs): self.sendMsg(SoundRequest.PLAY_FILE, SoundRequest.PLAY_ONCE, sound, package, volume, **kwargs) ## \brief Plays a WAV or OGG file repeatedly ## ## Plays a WAV or OGG file repeatedly until stopWaveFromPkg or stopAll is used. ## ## \param package Package name containing the sound file. ## \param sound Filename of the WAV or OGG file. Must be an path relative to the package valid ## on the computer on which the sound_play node is running def startWaveFromPkg(self, package, sound, volume=1.0, **kwargs): self.sendMsg(SoundRequest.PLAY_FILE, SoundRequest.PLAY_START, sound, package, volume, **kwargs) ## \brief Stop playing a WAV or OGG file ## ## Stops playing a file that was previously started by playWaveFromPkg or ## startWaveFromPkg. ## ## \param package Package name containing the sound file. ## \param sound Filename of the WAV or OGG file. Must be an path relative to the package valid ## on the computer on which the sound_play node is running def stopWaveFromPkg(self,sound, package): self.sendMsg(SoundRequest.PLAY_FILE, SoundRequest.PLAY_STOP, sound, package) ## \brief Play a buildin sound ## ## Starts playing one of the built-in sounds. built-ing sounds are documented ## in \ref SoundRequest.msg. Playback can be stopped by stopall. ## ## \param sound Identifier of the sound to play. def play(self,sound, volume=1.0, **kwargs): self.sendMsg(sound, SoundRequest.PLAY_ONCE, "", vol=volume, **kwargs) ## \brief Play a buildin sound repeatedly ## ## Starts playing one of the built-in sounds repeatedly until stop or ## stopall is used. Built-in sounds are documented in \ref SoundRequest.msg. ## ## \param sound Identifier of the sound to play. def start(self,sound, volume=1.0, **kwargs): self.sendMsg(sound, SoundRequest.PLAY_START, "", vol=volume, **kwargs) ## \brief Stop playing a built-in sound ## ## Stops playing a built-in sound started with play or start. ## ## \param sound Same sound that was used to start playback def stop(self,sound): self.sendMsg(sound, SoundRequest.PLAY_STOP, "") ## \brief Stop all currently playing sounds ## ## This method stops all speech, wave file, and built-in sound playback. def stopAll(self): self.stop(SoundRequest.ALL) def sendMsg(self, snd, cmd, s, arg2="", vol=1.0, **kwargs): """ Internal method that publishes the sound request, either directly as a SoundRequest to the soundplay_node or through the actionlib interface (which blocks until the sound has finished playing). The blocking behavior is nominally the class-wide setting unless it has been explicitly specified in the play call. """ # Use the passed-in argument if it exists, otherwise fall back to the # class-wide setting. blocking = kwargs.get('blocking', self._blocking) msg = SoundRequest() msg.sound = snd # Threshold volume between 0 and 1. msg.volume = max(0, min(1, vol)) msg.command = cmd msg.arg = s msg.arg2 = arg2 rospy.logdebug('Sending sound request with volume = {}' ' and blocking = {}'.format(msg.volume, blocking)) # Defensive check for the existence of the correct communicator. if blocking and not self.pub: rospy.logerr('Publisher for SoundRequest must exist') return if not blocking and not self.actionclient: rospy.logerr('Action client for SoundRequest does not exist.') return if not blocking: # Publish message directly and return immediately self.pub.publish(msg) if self.pub.get_num_connections() < 1: rospy.logwarn("Sound command issued, but no node is subscribed" " to the topic. Perhaps you forgot to run" " soundplay_node.py?") else: # Block until result comes back. assert self.actionclient, 'Actionclient must exist' rospy.logdebug('Sending action client sound request [blocking]') self.actionclient.wait_for_server() goal = SoundRequestGoal() goal.sound_request = msg self.actionclient.send_goal(goal) self.actionclient.wait_for_result() rospy.logdebug('sound request response received') return
[ "genesis@nuc" ]
genesis@nuc
96f4d811c08062451b1b929e346ee171461170de
18aee5d93a63eab684fe69e3aa0abd1372dd5d08
/test/legacy_test/test_poisson_op.py
ee66d578014c70395ec3525f8118d2780886458c
[ "Apache-2.0" ]
permissive
Shixiaowei02/Paddle
8d049f4f29e281de2fb1ffcd143997c88078eadb
3d4d995f26c48f7792b325806ec3d110fc59f6fc
refs/heads/develop
2023-06-26T06:25:48.074273
2023-06-14T06:40:21
2023-06-14T06:40:21
174,320,213
2
1
Apache-2.0
2022-12-28T05:14:30
2019-03-07T10:09:34
C++
UTF-8
Python
false
false
8,481
py
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest import numpy as np from eager_op_test import OpTest import paddle paddle.enable_static() paddle.seed(100) def output_hist(out, lam, a, b): prob = [] bin = [] for i in range(a, b + 1): prob.append((lam**i) * math.exp(-lam) / math.factorial(i)) bin.append(i) bin.append(b + 0.1) hist, _ = np.histogram(out, bin) hist = hist.astype("float32") hist = hist / float(out.size) return hist, prob class TestPoissonOp1(OpTest): def setUp(self): self.op_type = "poisson" self.python_api = paddle.tensor.poisson self.config() self.attrs = {} self.inputs = {'X': np.full([2048, 1024], self.lam, dtype=self.dtype)} self.outputs = {'Out': np.ones([2048, 1024], dtype=self.dtype)} def config(self): self.lam = 10 self.a = 5 self.b = 15 self.dtype = "float64" def verify_output(self, outs): hist, prob = output_hist(np.array(outs[0]), self.lam, self.a, self.b) np.testing.assert_allclose(hist, prob, rtol=0.01) def test_check_output(self): self.check_output_customized(self.verify_output) def test_check_grad_normal(self): self.check_grad( ['X'], 'Out', user_defined_grads=[np.zeros([2048, 1024], dtype=self.dtype)], user_defined_grad_outputs=[ np.random.rand(2048, 1024).astype(self.dtype) ], ) class TestPoissonOp2(TestPoissonOp1): def config(self): self.lam = 5 self.a = 1 self.b = 8 self.dtype = "float32" class TestPoissonAPI(unittest.TestCase): def test_static(self): with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): x_np = np.random.rand(10, 10) x = paddle.static.data(name="x", shape=[10, 10], dtype='float64') y = paddle.poisson(x) exe = paddle.static.Executor() y_np = exe.run( paddle.static.default_main_program(), feed={"x": x_np}, fetch_list=[y], ) self.assertTrue(np.min(y_np) >= 0) def test_dygraph(self): with paddle.fluid.dygraph.base.guard(): x = paddle.randn([10, 10], dtype='float32') y = paddle.poisson(x) self.assertTrue(np.min(y.numpy()) >= 0) x = paddle.randn([10, 10], dtype='float32') x.stop_gradient = False y = paddle.poisson(x) y.backward() self.assertTrue(np.min(y.numpy()) >= 0) np.testing.assert_array_equal(np.zeros_like(x), x.gradient()) def test_fixed_random_number(self): # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t' if not paddle.is_compiled_with_cuda(): return print("Test Fixed Random number on GPU------>") paddle.disable_static() paddle.set_device('gpu') paddle.seed(2021) x = paddle.full([32, 3, 1024, 768], 10.0, dtype="float32") y = paddle.poisson(x) y_np = y.numpy() expect = [ 13.0, 13.0, 11.0, 8.0, 12.0, 6.0, 9.0, 15.0, 16.0, 6.0, 13.0, 12.0, 9.0, 15.0, 17.0, 8.0, 11.0, 16.0, 11.0, 10.0, ] np.testing.assert_array_equal(y_np[0, 0, 0, 0:20], expect) expect = [ 15.0, 7.0, 12.0, 8.0, 14.0, 10.0, 10.0, 11.0, 11.0, 11.0, 21.0, 6.0, 9.0, 13.0, 13.0, 11.0, 6.0, 9.0, 12.0, 12.0, ] np.testing.assert_array_equal(y_np[8, 1, 300, 200:220], expect) expect = [ 10.0, 15.0, 9.0, 6.0, 4.0, 13.0, 10.0, 10.0, 13.0, 12.0, 9.0, 7.0, 10.0, 14.0, 7.0, 10.0, 8.0, 5.0, 10.0, 14.0, ] np.testing.assert_array_equal(y_np[16, 1, 600, 400:420], expect) expect = [ 10.0, 9.0, 14.0, 12.0, 8.0, 9.0, 7.0, 8.0, 11.0, 10.0, 13.0, 8.0, 12.0, 9.0, 7.0, 8.0, 11.0, 11.0, 12.0, 5.0, ] np.testing.assert_array_equal(y_np[24, 2, 900, 600:620], expect) expect = [ 15.0, 5.0, 11.0, 13.0, 12.0, 12.0, 13.0, 16.0, 9.0, 9.0, 7.0, 9.0, 13.0, 11.0, 15.0, 6.0, 11.0, 9.0, 10.0, 10.0, ] np.testing.assert_array_equal(y_np[31, 2, 1023, 748:768], expect) x = paddle.full([16, 1024, 1024], 5.0, dtype="float32") y = paddle.poisson(x) y_np = y.numpy() expect = [ 4.0, 5.0, 2.0, 9.0, 8.0, 7.0, 4.0, 7.0, 4.0, 7.0, 6.0, 3.0, 10.0, 7.0, 5.0, 7.0, 2.0, 5.0, 5.0, 6.0, ] np.testing.assert_array_equal(y_np[0, 0, 100:120], expect) expect = [ 1.0, 4.0, 8.0, 11.0, 6.0, 5.0, 4.0, 4.0, 7.0, 4.0, 4.0, 7.0, 11.0, 6.0, 5.0, 3.0, 4.0, 6.0, 3.0, 3.0, ] np.testing.assert_array_equal(y_np[4, 300, 300:320], expect) expect = [ 7.0, 5.0, 4.0, 6.0, 8.0, 5.0, 6.0, 7.0, 7.0, 7.0, 3.0, 10.0, 5.0, 10.0, 4.0, 5.0, 8.0, 7.0, 5.0, 7.0, ] np.testing.assert_array_equal(y_np[8, 600, 600:620], expect) expect = [ 8.0, 6.0, 7.0, 4.0, 3.0, 0.0, 4.0, 6.0, 6.0, 4.0, 3.0, 10.0, 5.0, 1.0, 3.0, 8.0, 8.0, 2.0, 1.0, 4.0, ] np.testing.assert_array_equal(y_np[12, 900, 900:920], expect) expect = [ 2.0, 1.0, 14.0, 3.0, 6.0, 5.0, 2.0, 2.0, 6.0, 5.0, 7.0, 4.0, 8.0, 4.0, 8.0, 4.0, 5.0, 7.0, 1.0, 7.0, ] np.testing.assert_array_equal(y_np[15, 1023, 1000:1020], expect) paddle.enable_static() if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
Shixiaowei02.noreply@github.com
7bed90a14fc2ce416d14e56c5bf265e8b646487f
7d3b096f803d1a47ad71a5c8aab30ba3aa67828c
/chibi_file/__init__.py
fe22184683cfdc5c75ca908282fad7a086a9d2bc
[]
no_license
dem4ply/chibi_file
462244dac712d88915f2b931c5f0822f6d1fa937
d27cef794512014b1602486edd0235052b38087a
refs/heads/master
2020-12-03T05:09:15.825690
2017-08-23T09:36:57
2017-08-23T09:36:57
95,737,905
0
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
import mmap import os import shutil def current_dir(): return os.getcwd() def inflate_dir( src ): if '~' in src: return os.path.expanduser( src ) else: return os.path.abspath( src ) def is_dir( src ): return os.path.isdir( src ) def is_file( src ): return os.path.isfile( src ) def ls( src=None ): if src is None: src = current_dir() return ( name for name in os.listdir( src ) ) def ls_only_dir( src=None ): return ( name for name in ls( src ) if is_dir( name ) ) def join( *patch ): return os.path.join( *patch ) def exists( file_name ): return os.path.exists( file_name ) def copy( source, dest ): shutil.copy( source, dest ) class Chibi_file: def __init__( self, file_name ): self._file_name = file_name if not self.exists: self.touch() self.reread() @property def file_name( self ): return self._file_name def __del__( self ): self._file_content.close() def find( self, string_to_find ): if isinstance( string_to_find, str ): string_to_find = string_to_find.encode() return self._file_content.find( string_to_find ) def reread( self ): with open( self._file_name, 'r' ) as f: self._file_content = mmap.mmap( f.fileno(), 0, prot=mmap.PROT_READ ) def __contains__( self, string ): return self.find( string ) >= 0 def append( self, string ): with open( self._file_name, 'a' ) as f: f.write( string ) self.reread() @property def exists( self ): return exists( self.file_name ) def touch( self ): open( self.file_name, 'a' ).close() def copy( self, dest ): copy( self.file_name, dest )
[ "dem4ply@gmail.com" ]
dem4ply@gmail.com
d6e8faee78b555a964bcdabf9d7b434fba09a3c0
b96f1bad8a74d31d8ff79bc955813bfcd17d7b26
/24. Swap Nodes in Pairs.py
75e6d9a0451fd14aadd62f665ddbd922cfa44910
[]
no_license
brianhu0716/LeetCode-Solution
e7177af15e84e833ce8ab05027683ed4ac489643
158a4359c90b723545b22c4898047274cc1b80a6
refs/heads/main
2023-07-11T05:29:56.783795
2021-08-28T12:53:14
2021-08-28T12:53:14
374,991,658
0
0
null
null
null
null
UTF-8
Python
false
false
444
py
# -*- coding: utf-8 -*- """ Created on Sun Apr 11 15:06:14 2021 @author: Brian """ ''' ไบคๆ›็›ธ้„ฐๅ…ฉnode็š„ๅ€ผๅณๅฏ ''' class Solution: def swapPairs(self, head: ListNode) -> ListNode: while not head or not head.next : return head ptr = head while ptr and ptr.next: temp = ptr.val ptr.val = ptr.next.val ptr.next.val = temp ptr = ptr.next.next return head
[ "85205343+brianhu0716@users.noreply.github.com" ]
85205343+brianhu0716@users.noreply.github.com
b7e89b7513c6151d39dc8adad4fee33e8afcf8f1
09cc8367edb92c2f02a0cc1c95a8290ff0f52646
/ipypublish_plugins/example_new_plugin.py
2fe177802ec9fd3259ca9ac9ac002ef160f3c1f2
[ "BSD-3-Clause" ]
permissive
annefou/ipypublish
7e80153316ab572a348afe26d309c2a9ee0fb52b
917c7f2e84be006605de1cf8851ec13d1a163b24
refs/heads/master
2020-04-13T16:08:59.845707
2018-07-30T18:26:12
2018-07-30T18:26:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,612
py
"""html in standard nbconvert format, but with - a table of contents - toggle buttons for showing/hiding code & output cells - converts or removes (if no converter) latex tags (like \cite{abc}, \ref{}) """ from ipypublish.filters.replace_string import replace_string from ipypublish.html.create_tpl import create_tpl from ipypublish.html.ipypublish import latex_doc # from ipypublish.html.standard import inout_prompt from ipypublish.html.ipypublish import toc_sidebar from ipypublish.html.ipypublish import toggle_buttons from ipypublish.html.standard import content from ipypublish.html.standard import content_tagging from ipypublish.html.standard import document from ipypublish.html.standard import mathjax from ipypublish.html.standard import widgets from ipypublish.preprocessors.latex_doc_captions import LatexCaptions from ipypublish.preprocessors.latex_doc_html import LatexDocHTML from ipypublish.preprocessors.latex_doc_links import LatexDocLinks from ipypublish.preprocessors.latextags_to_html import LatexTagsToHTML from ipypublish.preprocessors.split_outputs import SplitOutputs oformat = 'HTML' config = {'TemplateExporter.filters': {'replace_string': replace_string}, 'Exporter.filters': {'replace_string': replace_string}, 'Exporter.preprocessors': [SplitOutputs, LatexDocLinks, LatexDocHTML, LatexTagsToHTML, LatexCaptions]} template = create_tpl([ document.tpl_dict, content.tpl_dict, content_tagging.tpl_dict, mathjax.tpl_dict, widgets.tpl_dict, # inout_prompt.tpl_dict, toggle_buttons.tpl_dict, toc_sidebar.tpl_dict, latex_doc.tpl_dict ])
[ "chrisj_sewell@hotmail.com" ]
chrisj_sewell@hotmail.com
003e7a2f14683e4f88eca45a7c30f8fd449eba92
aafedf44cbb6a2fd0616f01311e59bc55d19a87a
/todo/notes.py
42ee723a6e0d7170fed945cff77a7390a0c070dc
[ "MIT" ]
permissive
rakeshsingh/todo.txt
57ae6b86a9815945eebe9a2f25894ae5df060326
6d9d13aae99a4714bfa67c1c7b9d7d11b1ce6460
refs/heads/master
2021-08-16T22:13:24.960790
2021-06-30T20:37:53
2021-06-30T20:37:53
144,942,401
1
0
null
null
null
null
UTF-8
Python
false
false
4,986
py
import argparse from datetime import datetime import os import re import logging from .log import setup_logging from .exceptions import ( InvalidNotesFile, ) from .utils import( print_colorful, set_file, get_file, ) from .constants import ( DEFAULT_FILE_SEPERATOR, DEFAULT_FILE_SUFFIX, DEFAULT_NOTES_PREFIX, DEFAULT_NOTES_CATEGORY ) logger = logging.getLogger(__name__) ''' - Label it with the current month (it's best to start this at the beginning of a month if you can). Put contact information on the inside cover in case you lose it. - Start a new page every day. Put the date at the top of the page. - Metadata about the day goes in the margins. I use this to keep a log of who is front as well as taking medicine. - Write prose freely. - TODO items start with a -. Those represent things you need to do but haven't done yet. - When the item is finished, put a vertical line through the - to make it a +. - If the item either can't or won't be done, cross out the - to make it into a *. - If you have to put off a task to a later date, turn the - into a ->. If there is room, put a brief description of why it needs to be moved or when it is moved to. If there's no room feel free to write it out in prose form at the end of your page. - Notes start with a middot (ยท). They differ from prose as they are not complete sentences. If you need to, you can always turn them into TODO items later. - Write in pencil so you can erase mistakes. Erase carefully to avoid ripping the paper, You hardly need to use any force to erase things. - There is only one action, appending. Don't try and organize things by topic as you would on a computer. This is not a computer, this is paper. Paper works best when you append only. There is only one direction, forward. - If you need to relate a bunch of notes or todo items with a topic, skip a line and write out the topic ending with a colon. When ending the topical notes, skip another line. - Don't be afraid to write in it. If you end up using a whole notebook before the month is up, that is a success. Record insights, thoughts, feelings and things that come to your mind. You never know what will end up being useful later. - At the end of the month, look back at the things you did and summarize/index them in the remaining pages. Discover any leftover items that you haven't completed yet so you can either transfer them over to next month or discard them. It's okay to not get everything done. You may also want to scan it to back it up into the cloud. You may never reference these scans, but backups never hurt. ''' class NotesManager: """ Note file format: YYYYMMDD_[notes].txt examples: 20210101_notes.txt(default) 20180101-meeting-generic.txt 20180102_one-on-one_rohit.txt 20180102_interview_shiva-sundaram.txt """ def __init__(self): self.BASEDIR='./data/' def list(self, category=None): if category is None: category = '' for filename in os.listdir(self.BASEDIR): if category in filename: print(filename) class Note: """ Note file format: YYYYMMDD_[notes].txt examples: 20210101_notes.txt(default) 20180101-meeting-generic.txt 20180102_one-on-one_rohit.txt 20180102_interview_shiva-sundaram.txt """ def __init__(self, notes_date:str=datetime.today().strftime('%Y%m%d'),notes_prefix:str=DEFAULT_NOTES_PREFIX, notes_category:str=DEFAULT_NOTES_CATEGORY): self.notes_date = notes_date self.notes_category = notes_category self.notes_file_name = DEAFULT_FILE_SEPERATOR.join(notes_date, notes_prefix, notes_category,DEFAULT_FILE_SUFFIX) if get_file(self.notes_file_name): pass else: set_file(notes_file_name) def edit(line:int): pass def list_todos(): pass def list_notes(): pass def list_categories(): pass def list_people(): pass def get_context(): '''Provides summary of the note. What all people are mentioned in the note, what are the action items, and their statuses, what are the related topics''' pass if __name__ =='__main__': nm = NotesManager() parser = argparse.ArgumentParser() parser.add_argument("-n", "--new", action="store_true", help="create a new note\n usage: notes.py -c category detail") parser.add_argument("-l", "--list", action="store_true", help="list most recent notes") parser.add_argument("-c", "--category", help="category of the notes, e.g. meeting, todo, oneonone") parser.add_argument("-d", "--detail", help="additional details for the notes e.g. meeting subject, 1_1 person") args = parser.parse_args() if args.list: nm.list(args.category) elif args.new: nm.create(args.category, args.detail) nm.list(args.category) else: nm.list(args.category)
[ "kumar.rakesh@gmail.com" ]
kumar.rakesh@gmail.com
c02698bcbb5677d5aa1cdf687d66869a34eea59c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02742/s024664971.py
37251941a04a71608f69d756b2f8eb6bf24e8a52
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
259
py
H, W = [int(_) for _ in input().split()] if H == 1 or W == 1: ans = 1 else: ans = (H // 2) * (W // 2) * 2 if H % 2 == 1: ans += W // 2 if W % 2 == 1: ans += H // 2 if H % 2 == 1 and W % 2 == 1: ans += 1 print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
7374ce7e683ccf1d4913b6f64fb04fb50b016df7
6c686d118e6d3072b3694c02c684a6619d4dd03e
/rsdns/tests/test_client.py
cb34bcfaef1aa74df689f00debfbff8959f697df
[ "Apache-2.0" ]
permissive
masthalter/reddwarf
02e7b78e1e61178647fe8d98ab53eadfabe66e7f
72cf41d573cd7c35a222d9b7a8bfaad937f17754
HEAD
2016-11-08T16:12:16.783829
2012-04-26T22:26:56
2012-04-26T22:26:56
2,387,563
0
0
null
null
null
null
UTF-8
Python
false
false
3,033
py
import httplib2 import mox import unittest from eventlet import pools from novaclient.client import HTTPClient from novaclient import exceptions from rsdns.client.dns_client import DNSaasClient ACCOUNT_ID = 1155 USERNAME = "test_user" API_KEY="key" AUTH_URL="urly" MANAGEMENT_BASE_URL="mgmter" class FakeResponse(object): def __init__(self, status): self.status = status class WhenDNSaasClientConnectsSuccessfully(unittest.TestCase): def setUp(self): self.mox = mox.Mox() def tearDown(self): self.mox.VerifyAll() def fake_auth(self, *args, **kwargs): self.auth_called = True def create_mock_client(self, fake_request_method): """ Creates a mocked DNSaasClient object, which calls "fake_request_method" instead of httplib2.request. """ class FakeHttpLib2(object): pass FakeHttpLib2.request = fake_request_method mock_client = self.mox.CreateMock(DNSaasClient) mock_client.http_pool = pools.Pool() mock_client.http_pool.create = FakeHttpLib2 mock_client.auth_token = 'token' return mock_client def test_make_request(self): kwargs = { 'headers': {}, 'body': "{}" } def fake_request(self, *args, **kwargs): return FakeResponse(200), '{"hi":"hello"}' mock_client = self.create_mock_client(fake_request) resp, body = DNSaasClient.request(mock_client, **kwargs) self.assertEqual(200, resp.status) self.assertEqual({"hi":"hello"}, body) def test_make_request_with_old_token(self): kwargs = { 'headers': {}, 'body': '{"message":"Invalid authentication token. Please renew."}' } def fake_request(self, *args, **kwargs): return FakeResponse(401), \ '{"message":"Invalid authentication token. Please renew."}' mock_client = self.create_mock_client(fake_request) mock_client.authenticate() mock_client.authenticate() mock_client.authenticate() self.mox.ReplayAll() self.assertRaises(exceptions.Unauthorized, DNSaasClient.request, mock_client, **kwargs) def test_make_request_with_old_token_2(self): kwargs = { 'headers': {}, 'body': "{}" } self.count = 0 def fake_request(_self, *args, **kwargs): self.count += 1 if self.count > 1: return FakeResponse(200), '{"hi":"hello"}' else: return FakeResponse(401), \ '{"message":"Invalid authentication token. ' \ 'Please renew."}' mock_client = self.create_mock_client(fake_request) mock_client.authenticate() self.mox.ReplayAll() resp, body = DNSaasClient.request(mock_client, **kwargs) self.assertEqual(200, resp.status) self.assertEqual({"hi":"hello"}, body)
[ "tim.simpson@rackspace.com" ]
tim.simpson@rackspace.com
89b926a667374d24e238ffecadfdddc4cc558e8b
79164d3ac85ab44b8b29dbea8ff7395b1bf15cba
/configurations/configurations.py
8b3390c66948a3f2bb2856b3d26bbda53e6ce345
[]
no_license
ReubenBagtas/pytestFramework
60cb3daa5a8613ef0bca4f21d3282cdfa2cfd6a0
cceca23007aab71447949d54949a0c306a4281f1
refs/heads/master
2020-06-02T04:06:45.139851
2019-06-09T16:34:38
2019-06-09T16:34:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
ALPHA = {} DELTA = {} PROD = {} DEMO = { 'google-homepage': 'https://www.google.com' } DEFAULT = {}
[ "reubenbagtas.com" ]
reubenbagtas.com
919cfaed50624e9fb97a068432bd5441d59ed4a1
ff9c646af161bc4d1d38093380d8e2deb54f42d1
/MiniAODAnalysis2/MiniAODAnalysis2/python/ConfFile_cfg.py
e4fe4e7ad2a2e67f021cd0c065696543022fb7a7
[]
no_license
MatthiasHamer/CMS
3ab99a9008324e104913c03c2aa322a816a2d582
3594ba61e5d794917cf5e0136da743fd5e6190f9
refs/heads/master
2016-09-10T03:55:30.810030
2015-07-27T16:45:40
2015-07-27T16:45:40
22,997,971
0
2
null
null
null
null
UTF-8
Python
false
false
475
py
import FWCore.ParameterSet.Config as cms process = cms.Process("Demo") process.load("FWCore.MessageService.MessageLogger_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) process.source = cms.Source("PoolSource", # replace 'myfile.root' with the source file you want to use fileNames = cms.untracked.vstring( 'file:myfile.root' ) ) process.demo = cms.EDAnalyzer('MiniAODAnalysis2' ) process.p = cms.Path(process.demo)
[ "Matthias.Hamer@cern.ch" ]
Matthias.Hamer@cern.ch
5fb4b852b0812c437735609954ef8693db355baf
75802efe7ac5e39d12c90b1ab91028f7a83f3623
/ex3_2_nonlinear_model.py
5527d8f1c41efad01b46792a6808fa3434ad63ef
[]
no_license
AOE-khkhan/PytorchZeroToAll
fbd5ecba967a4d7316667c028af37340518c451d
f8d9a392e44197de6c593dfd4b32cb192d3a6ba9
refs/heads/master
2020-09-02T12:21:32.800832
2018-05-09T12:38:52
2018-05-09T12:38:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
x_data = [1.0, 2.0, 3.0] y_data = [6.0, 17.0, 34.0] w2, w1, b = 1.0, 1.0, 0.0 # a random guess: random value lr = 1e-2 # a learning rate num_epochs = 100 # numbe rof epochs # our model forward pass def forward(x): return x * x * w2 + x * w1 + b # Loss function def loss(x, y): y_pred = forward(x) return (y_pred - y) * (y_pred - y) # compute gradient def gradient(x, y): dw2 = 2 * x ** 2 * (forward(x) - y) dw1 = 2 * x * (forward(x) - y) db = 1 * (forward(x) - y) return dw2, dw1, db # Before training print('predict (before training):', 4, forward(4)) # Training loop for epoch in range(num_epochs): l_ = None for x_val, y_val in zip(x_data, y_data): dw2, dw1, db = gradient(x_val, y_val) w2 += -lr * dw2 w1 += -lr * dw1 b += -lr * db l_ = loss(x_val, y_val) print("probress: {}, w2 = {}, w1 = {}, b = {}, loss = {}".format(epoch, w2, w1, b, l_)) # After training print("predict (after training)", "4 hours:", forward(4))
[ "sbkim0407@gmail.com" ]
sbkim0407@gmail.com
a911b9df049a048325fc20b414321d00fb1d10f4
64d36f801ff52465bb04b6783fab26359ffc6177
/python-basic/meta10.4.py
27ee8518f5623e3e896ed81b39d4010990855314
[]
no_license
asiachrispy/tensor
3ee3257e4c7cc518677395f81158a92339d410a2
29bbcd6350d3e4ce8363b25e86d708bce6612eac
refs/heads/master
2021-01-11T20:19:14.381846
2018-05-15T09:33:13
2018-05-15T09:33:13
79,088,526
0
0
null
null
null
null
UTF-8
Python
false
false
919
py
# early stopping from numpy import loadtxt from xgboost import XGBClassifier from sklearn.cross_validation import train_test_split from sklearn.metrics import accuracy_score # load data dataset = loadtxt('pima-indians-diabetes.csv', delimiter=",") # split data into X and y X = dataset[:,0:8] Y = dataset[:,8] # split data into train and test sets seed = 7 test_size = 0.33 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size, random_state=seed) # fit model no training data model = XGBClassifier() eval_set = [(X_test, y_test)] model.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="logloss", eval_set=eval_set, verbose=True) # make predictions for test data y_pred = model.predict(X_test) predictions = [round(value) for value in y_pred] # evaluate predictions accuracy = accuracy_score(y_test, predictions) print("Accuracy: %.2f%%" % (accuracy * 100.0))
[ "huangzhong@jd.com" ]
huangzhong@jd.com
10a0f0560d4f34d9937c65d9b6b1f0b3ba125dcb
4d8a66ebd98d18e407c20c93d4268b85f5548ed4
/public/http_request.py
9c15a12525a537248fd19e00abbaff92638d1ed6
[]
no_license
2295256562/API_Project
57cc40a9c79e855aa30a25db820bbffb0add6410
66b72690d765ed96a9d8ae72debeaba4fe7a5073
refs/heads/master
2022-12-14T10:20:32.753852
2019-10-10T13:40:22
2019-10-10T13:40:22
213,394,060
0
0
null
2022-12-08T06:42:03
2019-10-07T13:42:25
Python
UTF-8
Python
false
false
1,913
py
import copy import requests from config.globals import headers from config.globals import login_url from functools import lru_cache class HttpRequest: def __init__(self): self.headers_teml = { 'content-type': 'application/json', 'token': None } @lru_cache() def _login(self): """ :return: ่ฟ”ๅ›žtoken """ data = { "username": "", "password": "" } # url = login_url # r = requests.post(url=url, json=data, headers=headers) x = "ldddwlfwfwelof" return x def headers(self): headers = copy.deepcopy(self.headers_teml) headers.update({'token': self._login()}) return headers def http_request(self, url, data, http_method, header): """ http ่ฏทๆฑ‚ๅŸบ็ก€็ฑป :param url: ่ฏทๆฑ‚็š„url :param data: ่ฏทๆฑ‚ๆ•ฐๆฎ :param http_method: ่ฏทๆฑ‚ๆ–นๅผ GETใ€POST :return: res """ # headers = self.headers() try: if http_method.upper() == 'GET': if data != None: res = requests.get(url, eval(data)) else: res = requests.get(url) elif http_method.upper() == 'POST': if data != None: res = requests.post(url, eval(data)) else: res = requests.post(url) else: raise NameError("ไฝ ่พ“ๅ…ฅ็š„่ฏทๆฑ‚ๆ–นๅผไธๅฏน๏ผŒ ่ฏทไฝ ่พ“ๅ…ฅGETๆˆ–POST") except Exception as e: raise e return res if __name__ == '__main__': C = HttpRequest().http_request('http://127.0.0.1:8000/api/reg', '{"username":"123425653","password":"1111"}', 'POST') print(C.headers)
[ "xinman.kuang@daddylab.com" ]
xinman.kuang@daddylab.com
5b6ae4546dda852369334665c79612273e580227
0eaf0d3f0e96a839f2ef37b92d4db5eddf4b5e02
/past3/e.py
6a5af7eb3744903d23f04c0de4ad30e373c33a27
[]
no_license
silphire/atcoder
b7b02798a87048757745d99e8564397d1ca20169
f214ef92f13bc5d6b290746d5a94e2faad20d8b0
refs/heads/master
2023-09-03T17:56:30.885166
2023-09-02T14:16:24
2023-09-02T14:16:24
245,110,029
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
n, m, q = map(int, input().split()) e = [set() for _ in range(n)] for i in range(m): u, v = map(int, input().split()) u -= 1 v -= 1 e[u].add(v) e[v].add(u) c = list(map(int, input().split())) for i in range(q): s = tuple(map(int, input().split())) vv = s[1] - 1 print(c[vv]) if s[0] == 1: for ee in e[vv]: c[ee] = c[vv] else: c[vv] = s[2]
[ "silphire@gmail.com" ]
silphire@gmail.com
9378b601770bd4c71b6a616ad9a7a895ad48a7b2
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_5658571765186560_1/Python/StefanPochmann/D.py
feca86f2ed13ba681c7c3230c60ce03f3e2c21f7
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
500
py
#f = open('D.in') #def input(): # return next(f) T = int(input()) for x in range(1, T + 1): X, R, C = map(int, input().split()) A = R * C s, S = sorted((R, C)) gabriel = A % X == 0 and \ (X == 1 or X == 2 or X == 3 and s >= 2 or X == 4 and s >= 3 or X == 5 and s >= 3 and A > 15 or X == 6 and s >= 4) print('Case #{}: {}'.format(x, 'GABRIEL' if gabriel else 'RICHARD'))
[ "eewestman@gmail.com" ]
eewestman@gmail.com
1537c16957f6dab218fa76a979c37a5ba45f9468
0b4b1dd3e5652572571128750f31d088b28b19ad
/blog/views.py
926c879a7599aea1421bbf3987c9a362189fe6b7
[]
no_license
cozynn/djangoProject
66d74d70efb8e0efeb4a2a21146e4a4473ab50e0
1bf95b7b906ce030616e994c091c9693e34c30ab
refs/heads/master
2023-02-02T19:07:37.276396
2020-12-20T19:23:02
2020-12-20T19:23:02
323,114,124
0
0
null
null
null
null
UTF-8
Python
false
false
1,615
py
from django.shortcuts import render, get_object_or_404, redirect from django.utils import timezone from .models import Post from .forms import PostForm # Create your views here. def post_list(request): posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('-published_date') return render(request, 'blog/post_list.html', {'posts': posts}) def post_detail(request, pk): post = get_object_or_404(Post, pk=pk) return render(request, 'blog/post_detail.html', {'post': post}) def post_new(request): if request.method == "POST": form = PostForm(request.POST) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.published_date = timezone.now() post.save() return redirect('blog:post_detail', pk=post.pk) else: form = PostForm() return render(request, 'blog/post_edit.html', {'form': form}) def post_edit(request, pk): post = get_object_or_404(Post, pk=pk) if request.method == "POST": form = PostForm(request.POST, instance=post) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.published_date = timezone.now() post.save() return redirect('blog:post_detail', pk=post.pk) else: form = PostForm(instance=post) return render(request, 'blog/post_edit.html', {'form': form}) def post_delete(request, pk): post = Post.objects.get(id=pk) post.author = request.user post.delete() return redirect('blog:post_list')
[ "cozynn@naver.com" ]
cozynn@naver.com
3c3d8847ece82de5f4ddb2fa122ea976e7da211e
2ee3a2b8971118b1a1e8c101382702d698021ad5
/weather/models.py
8372f28956277f086c9e5f53ff17faa6a968168c
[]
no_license
manikshahkataria/weather
29a34264fd281cf26758be06d19dd19bbd226cfc
1bb5160caab2dc287118ab7ed4a25cf575453ee4
refs/heads/master
2022-12-11T07:50:28.988645
2019-01-19T10:22:10
2019-01-19T10:22:10
163,946,933
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
from django.db import models class City(models.Model): name= models.CharField(max_length=25) def __str__(self): return self.name class Meta: verbose_name_plural='cities' # Create your models here.
[ "manikshah1998@gmail.com" ]
manikshah1998@gmail.com
170427ab7a1e4482bd8912d41bdaa5ebbaf1c595
fe969d059327d767c9eb442a441395fd5e389d6a
/OriginalCode-v1/create_graphs.py
09812b2133780e5e29a5211411aabf3c7a09eb36
[ "MIT" ]
permissive
Wayne-Bai/Graph
ba514418261189a89801ff10839fbfb651d98dc7
4b563c824d946471393a1c404810d6f39a49f7fb
refs/heads/master
2022-12-18T20:32:06.797842
2020-09-16T14:12:50
2020-09-16T14:12:50
277,702,901
3
0
null
null
null
null
UTF-8
Python
false
false
6,766
py
import networkx as nx import numpy as np from utils import * from data import * from data_process import Graph_load_batch as ast_graph_load_batch def create(args): ### load datasets graphs=[] # synthetic graphs if args.graph_type=='ladder': graphs = [] for i in range(100, 201): graphs.append(nx.ladder_graph(i)) args.max_prev_node = 10 elif args.graph_type=='ladder_small': graphs = [] for i in range(2, 11): graphs.append(nx.ladder_graph(i)) args.max_prev_node = 10 elif args.graph_type=='tree': graphs = [] for i in range(2,5): for j in range(3,5): graphs.append(nx.balanced_tree(i,j)) args.max_prev_node = 256 elif args.graph_type=='caveman': # graphs = [] # for i in range(5,10): # for j in range(5,25): # for k in range(5): # graphs.append(nx.relaxed_caveman_graph(i, j, p=0.1)) graphs = [] for i in range(2, 3): for j in range(30, 81): for k in range(10): graphs.append(caveman_special(i,j, p_edge=0.3)) args.max_prev_node = 100 elif args.graph_type=='caveman_small': # graphs = [] # for i in range(2,5): # for j in range(2,6): # for k in range(10): # graphs.append(nx.relaxed_caveman_graph(i, j, p=0.1)) graphs = [] for i in range(2, 3): for j in range(6, 11): for k in range(20): graphs.append(caveman_special(i, j, p_edge=0.8)) # default 0.8 args.max_prev_node = 20 elif args.graph_type=='caveman_small_single': # graphs = [] # for i in range(2,5): # for j in range(2,6): # for k in range(10): # graphs.append(nx.relaxed_caveman_graph(i, j, p=0.1)) graphs = [] for i in range(2, 3): for j in range(8, 9): for k in range(100): graphs.append(caveman_special(i, j, p_edge=0.5)) args.max_prev_node = 20 elif args.graph_type.startswith('community'): num_communities = int(args.graph_type[-1]) print('Creating dataset with ', num_communities, ' communities') c_sizes = np.random.choice([12, 13, 14, 15, 16, 17], num_communities) #c_sizes = [15] * num_communities for k in range(3000): graphs.append(n_community(c_sizes, p_inter=0.01)) args.max_prev_node = 80 elif args.graph_type=='grid': graphs = [] for i in range(10,20): for j in range(10,20): graphs.append(nx.grid_2d_graph(i,j)) args.max_prev_node = 40 elif args.graph_type=='grid_small': graphs = [] for i in range(2,5): for j in range(2,6): graphs.append(nx.grid_2d_graph(i,j)) args.max_prev_node = 15 elif args.graph_type=='barabasi': graphs = [] for i in range(100,200): for j in range(4,5): for k in range(5): graphs.append(nx.barabasi_albert_graph(i,j)) args.max_prev_node = 130 elif args.graph_type=='barabasi_small': graphs = [] for i in range(4,21): for j in range(3,4): for k in range(10): graphs.append(nx.barabasi_albert_graph(i,j)) args.max_prev_node = 20 elif args.graph_type=='grid_big': graphs = [] for i in range(36, 46): for j in range(36, 46): graphs.append(nx.grid_2d_graph(i, j)) args.max_prev_node = 90 elif 'barabasi_noise' in args.graph_type: graphs = [] for i in range(100,101): for j in range(4,5): for k in range(500): graphs.append(nx.barabasi_albert_graph(i,j)) graphs = perturb_new(graphs,p=args.noise/10.0) args.max_prev_node = 99 # real graphs elif args.graph_type == 'enzymes': graphs= Graph_load_batch(min_num_nodes=10, name='ENZYMES') args.max_prev_node = 25 elif args.graph_type == 'enzymes_small': graphs_raw = Graph_load_batch(min_num_nodes=10, name='ENZYMES') graphs = [] for G in graphs_raw: if G.number_of_nodes()<=20: graphs.append(G) args.max_prev_node = 15 elif args.graph_type == 'protein': graphs = Graph_load_batch(min_num_nodes=20, name='PROTEINS_full') args.max_prev_node = 80 elif args.graph_type == 'DD': graphs = Graph_load_batch(min_num_nodes=100, max_num_nodes=500, name='DD',node_attributes=False,graph_labels=True) args.max_prev_node = 230 elif args.graph_type == 'citeseer': _, _, G = Graph_load(dataset='citeseer') G = max(nx.connected_component_subgraphs(G), key=len) G = nx.convert_node_labels_to_integers(G) graphs = [] for i in range(G.number_of_nodes()): G_ego = nx.ego_graph(G, i, radius=3) if G_ego.number_of_nodes() >= 50 and (G_ego.number_of_nodes() <= 400): graphs.append(G_ego) args.max_prev_node = 250 elif args.graph_type == 'citeseer_small': _, _, G = Graph_load(dataset='citeseer') G = max(nx.connected_component_subgraphs(G), key=len) G = nx.convert_node_labels_to_integers(G) graphs = [] for i in range(G.number_of_nodes()): G_ego = nx.ego_graph(G, i, radius=1) if (G_ego.number_of_nodes() >= 4) and (G_ego.number_of_nodes() <= 20): graphs.append(G_ego) shuffle(graphs) graphs = graphs[0:200] args.max_prev_node = 15 elif args.graph_type == 'AST' or args.graph_type == '200Graphs': graphs = ast_graph_load_batch(min_num_nodes=10, name=args.graph_type) # update edge_feature_output_dim if not args.max_node_feature_num: # print(type(graphs[1].nodes._nodes), graphs[1].nodes._nodes.keys()) args.max_node_feature_num = len(list(graphs[1].nodes._nodes._atlas[1].keys())) # now equals to 28 args.max_prev_node = 120 # TODO: args.max_edge_feature_num update if not args.edge_feature_output_dim: args.edge_feature_output_dim = args.max_edge_feature_num + 2 #int(args.max_prev_node * args.max_edge_feature_num) # 2 indicates two directions of edges if not args.node_feature_input_dim: args.node_feature_input_dim = args.max_node_feature_num + args.max_prev_node + args.edge_feature_output_dim # args.node_feature_input_dim = args.max_prev_node return graphs
[ "bwh.buaa@gmail.com" ]
bwh.buaa@gmail.com
8f296f11eca9ea2bac005150d59334d961aca574
2e423a357321278e08fb009812f5fd2f794f66e5
/users/migrations/0001_initial.py
44c4896eefc330924229af13f6fc98432e429d7d
[]
no_license
rafnixg/platzigram
2a0f5d4c5994be31401408fd3176f57beb1da98e
e51a9d92c14c23d0de24cdda78ce9683955c43e3
refs/heads/master
2022-04-27T12:04:21.549548
2020-01-17T21:26:18
2020-01-17T21:26:18
206,177,266
0
0
null
2022-04-22T22:25:27
2019-09-03T21:41:51
Python
UTF-8
Python
false
false
1,116
py
# Generated by Django 2.2.5 on 2019-09-04 17:42 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('website', models.URLField(blank=True)), ('biography', models.TextField(blank=True)), ('phone_number', models.CharField(blank=True, max_length=20)), ('picture', models.ImageField(blank=True, null=True, upload_to='users/pictures')), ('created', models.DateTimeField(auto_now_add=True)), ('modified', models.DateTimeField(auto_now=True)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "rafnixg@gmail.com" ]
rafnixg@gmail.com
c7293eeb3014b78e8398f1c4818bd0ae1e72f0a8
7ddae3bb754cadccae7bb9a9e11986c5d3bc06b2
/sample/getweather.py
d99bd9b98f4d400b82dc3ae5c90f9567613ae096
[ "MIT" ]
permissive
joembis/weather_texter
b9fa1449ad9097a292362556c26e4d2700713ed2
046fdf6811847072662b52e3873fae8bd45a8e85
refs/heads/main
2023-03-04T09:16:44.055293
2021-02-15T10:42:17
2021-02-15T10:42:17
339,039,341
0
0
null
null
null
null
UTF-8
Python
false
false
1,469
py
import requests from datetime import datetime as dt from datetime import timedelta def request_weather(url): """request the weather from openweathermap.org API. Returns a dict of the json file""" response = requests.get(url) response_dict = response.json() return response_dict def parse_weather(weather_data_raw): """parse the useful weather data from dict of the openweathermap.org json data. returns another, slimmed down dict with the chosen elements""" parsed_weather = {} parsed_weather['sunrise'] = dt.fromtimestamp(weather_data_raw.get("city").get("sunrise")).time() parsed_weather['sunset'] = dt.fromtimestamp(weather_data_raw.get("city").get("sunset")).time() for period in weather_data_raw['list']: # limiting the parsed weather data to weather for the next day if dt.fromtimestamp(period.get("dt")).date() == dt.today().date() + timedelta(days=1): time_period = dt.fromtimestamp(period.get("dt")) # the dict key for each period is a 2-dight 24-hour time, e.g 15 for 3.00pm parsed_weather[str(time_period.time())[:2]] = [ str(time_period.time())[:2], round(period.get("main").get("temp")), period.get("weather")[0].get("main").center(15), str(period.get("clouds").get("all")).zfill(3), str(round(period.get("wind").get("speed"))).zfill(3) ] return parsed_weather
[ "76848685+jobororo@users.noreply.github.com" ]
76848685+jobororo@users.noreply.github.com
7587bb7173fe75660b164c360fe327e5f35df3c5
6e8b2c9cd80af70fc070085a07d8f34216d16ec1
/Task 25/main.py
7e8a4623cd9610f3db37fea47aca067d85871129
[]
no_license
tregubchenko-dima/modern_tech_programming
65957a8da63903e17f8421c84379d3312ece3521
1aa824f9f5ef32772cfc61fa4d53ab1f898594fb
refs/heads/master
2023-04-09T04:54:23.166673
2021-04-27T18:51:28
2021-04-27T18:51:28
352,748,720
0
0
null
null
null
null
UTF-8
Python
false
false
1,567
py
from random import randint from math import sqrt def BozoSort(values, asc=True): if isinstance(values[0], list): list_temp = [] for i in values: for j in i: list_temp.append(j) values = list_temp num1 = randint(0, len(values)-1) num2 = randint(0, len(values)-1) temp = values[num1] values[num1] = values[num2] values[num2] = temp for i in range(0, len(values)): if i >= len(values) - 1: return values elif asc: if values[i] > values[i+1]: return BozoSort(values, asc) else: if values[i] < values[i+1]: return BozoSort(values, asc) try: n = int(input('ะ’ะฒะตะดะธั‚ะต ะบะพะปะธั‡ะตัั‚ะฒะพ ั‡ะธัะตะป n: ')) if 3 < n <= 100: values = list(map(int, input(f'ะ’ะฒะตะดะธั‚ะต ั‡ะธัะปะฐ: ').split(' '))) if n != len(values): print('ะะตะฒะตั€ะฝะพะต ะบะพะปะธั‡ะตัั‚ะฒะพ ั‡ะธัะตะป') exit(1) print(*BozoSort(values)) print(*BozoSort(values, False)) size = int(sqrt(n)) arr = [] for i in range(0, size): arr.append(values[i*size:(i*size)+size]) print(*BozoSort(arr)) print(*BozoSort(arr, False)) print(*BozoSort(values[0:3])) print(*BozoSort(values[0:3], False)) else: print('ะะตะฒะตั€ะฝะพะต ะบะพะปะธั‡ะตัั‚ะฒะพ ั‡ะธัะตะป') exit(1) except ValueError: print("ะ’ั‹ ะฒะฒะตะปะธ ะฝะตะดะพะฟัƒัั‚ะธะผะพะต ะทะฝะฐั‡ะตะฝะธะต") exit(1)
[ "tregubchenko2@yandex.ru" ]
tregubchenko2@yandex.ru
ab881c94078041feb7fe0fefd3fb0913233feb4b
e715be7aef31a307d2cf09d8a4ecf46ea662826f
/device_simulator/src/orchestator.py
e88831369f171c3e6acd4859ce8da628125314b0
[]
no_license
GabrielMartinMoran/TFI_UNTREF
0dcfd0d5b4d69c282ce732a21039c4a69a6530af
e4abc9bc93b840627a008e3af5f4d86b7cd30732
refs/heads/main
2023-06-23T11:06:35.138785
2021-07-14T13:21:14
2021-07-14T13:21:14
358,573,316
0
0
null
null
null
null
UTF-8
Python
false
false
1,489
py
import time from datetime import datetime from src.models.energy_sensor import EnergySensor from src.models.console_display import ConsoleDisplay from src.models.measure import Measure from src.repositories.user_repository import UserRepository from src.repositories.device_repository import DeviceRepository import config class Orchestator: def __init__(self, device, ref_voltage, ref_current, user_secret): self.sensor = EnergySensor(ref_voltage, ref_current) self.display = ConsoleDisplay() self.device = device self.user_repository = UserRepository(user_secret) self.device_repository = DeviceRepository(user_secret) self.user = self.user_repository.get_user_data() self.message = '' def loop(self): while(True): measure = Measure( self.sensor.get_voltage(), self.sensor.get_current(), self.__get_timestamp() ) try: self.device_repository.add_measure(self.device.ble_id, measure) self.message = 'Muestra enviada al servidor' except Exception as e: self.message = f'Error: {e}' self.device.set_last_measure(measure) self.display.set_ui(self.device, self.user, self.message) self.display.draw() time.sleep(config.TIME_BETWEEN_MEASUREMENTS) def __get_timestamp(self): return int(datetime.now().timestamp())
[ "moran.gabriel.95@gmail.com" ]
moran.gabriel.95@gmail.com
5fc93f5180bbbf9d6e8482073bcb89bf2d923892
2c68f9156087d6d338373f9737fee1a014e4546b
/src/connectedk8s/azext_connectedk8s/vendored_sdks/models/authentication_details_value.py
982b4554803e85c978165d7b651f09cd77ff0c69
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
anpaz/azure-cli-extensions
8b0d4071c49840da9883f13cb0fd1f4515246ee0
847fd487fe61e83f2a4163a9393edc9555267bc2
refs/heads/master
2023-04-23T17:22:53.427404
2021-01-29T17:48:28
2021-01-29T18:01:33
257,394,204
2
0
MIT
2021-01-28T10:31:07
2020-04-20T20:19:43
Python
UTF-8
Python
false
false
890
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class AuthenticationDetailsValue(Model): """Authentication token value. :param token: Authentication token. :type token: str """ _attribute_map = { 'token': {'key': 'token', 'type': 'str'}, } def __init__(self, **kwargs): super(AuthenticationDetailsValue, self).__init__(**kwargs) self.token = kwargs.get('token', None)
[ "noreply@github.com" ]
anpaz.noreply@github.com
2b152bec1bfa703b5df15c67f5fc0e3aa9ab815e
432a58b3bad9eb008ea332c06f22700172c660ac
/admin/client.py
19d4b3ccd622ebea00d2084316019e164af6a53a
[ "Apache-2.0" ]
permissive
achanda/flocker
7b5c5264b52489e9da774ff011699c6b62a4bddd
ac822c3d6687ea63cad2aea81334a86100bfda0e
refs/heads/master
2020-12-11T01:40:20.625304
2015-08-01T05:47:10
2015-08-01T05:47:10
37,820,406
0
0
null
2015-06-21T18:24:07
2015-06-21T18:24:06
null
UTF-8
Python
false
false
9,859
py
# Copyright Hybrid Logic Ltd. See LICENSE file for details. """ Run the acceptance tests. """ import sys import yaml from zope.interface import Interface, implementer from characteristic import attributes from eliot import add_destination from twisted.internet.error import ProcessTerminated from twisted.python.usage import Options, UsageError from twisted.python.filepath import FilePath from twisted.internet.defer import inlineCallbacks, returnValue from flocker.common.version import make_rpm_version from flocker.provision import PackageSource, CLOUD_PROVIDERS import flocker from flocker.provision._ssh import ( run_remotely) from flocker.provision._install import ( task_client_installation_test, install_cli, ) from effect.twisted import perform from flocker.provision._ssh._conch import make_dispatcher from .runner import run def remove_known_host(reactor, hostname): """ Remove all keys belonging to hostname from a known_hosts file. :param reactor: Reactor to use. :param bytes hostname: Remove all keys belonging to this hostname from known_hosts. """ return run(reactor, ['ssh-keygen', '-R', hostname]) def run_client_tests(reactor, node): """ Run the client acceptance tests. :param INode node: The node to run client acceptance tests against. :return int: The exit-code of trial. """ def check_result(f): f.trap(ProcessTerminated) if f.value.exitCode is not None: return f.value.exitCode else: return f return perform(make_dispatcher(reactor), run_remotely( username=node.get_default_username(), address=node.address, commands=task_client_installation_test() )).addCallbacks( callback=lambda _: 0, errback=check_result, ) class INodeRunner(Interface): """ Interface for starting and stopping nodes for acceptance testing. """ def start_nodes(reactor): """ Start nodes for running acceptance tests. :param reactor: Reactor to use. :return Deferred: Deferred which fires with a list of nodes to run tests against. """ def stop_nodes(reactor): """ Stop the nodes started by `start_nodes`. :param reactor: Reactor to use. :return Deferred: Deferred which fires when the nodes have been stopped. """ RUNNER_ATTRIBUTES = [ 'distribution', 'top_level', 'config', 'package_source' ] @implementer(INodeRunner) @attributes(RUNNER_ATTRIBUTES + [ 'provisioner', ], apply_immutable=True) class LibcloudRunner(object): """ Start and stop cloud nodes for acceptance testing. :ivar LibcloudProvioner provisioner: The provisioner to use to create the nodes. :ivar VolumeBackend volume_backend: The volume backend the nodes are configured with. """ def __init__(self): self.nodes = [] self.metadata = self.config.get('metadata', {}) try: creator = self.metadata['creator'] except KeyError: raise UsageError("Must specify creator metadata.") if not creator.isalnum(): raise UsageError( "Creator must be alphanumeric. Found {!r}".format(creator) ) self.creator = creator @inlineCallbacks def start_nodes(self, reactor, node_count): """ Start cloud nodes for client tests. :return list: List of addresses of nodes to connect to, for client tests. """ metadata = { 'purpose': 'client-testing', 'distribution': self.distribution, } metadata.update(self.metadata) for index in range(node_count): name = "client-test-%s-%d" % (self.creator, index) try: print "Creating node %d: %s" % (index, name) node = self.provisioner.create_node( name=name, distribution=self.distribution, metadata=metadata, ) except: print "Error creating node %d: %s" % (index, name) print "It may have leaked into the cloud." raise yield remove_known_host(reactor, node.address) self.nodes.append(node) del node returnValue(self.nodes) def stop_nodes(self, reactor): """ Deprovision the nodes provisioned by ``start_nodes``. """ for node in self.nodes: try: print "Destroying %s" % (node.name,) node.destroy() except Exception as e: print "Failed to destroy %s: %s" % (node.name, e) DISTRIBUTIONS = ('centos-7', 'ubuntu-14.04', 'ubuntu-15.04') PROVIDERS = tuple(sorted(CLOUD_PROVIDERS.keys())) class RunOptions(Options): description = "Run the client tests." optParameters = [ ['distribution', None, None, 'The target distribution. ' 'One of {}.'.format(', '.join(DISTRIBUTIONS))], ['provider', None, 'rackspace', 'The target provider to test against. ' 'One of {}.'.format(', '.join(PROVIDERS))], ['config-file', None, None, 'Configuration for providers.'], ['branch', None, None, 'Branch to grab packages from'], ['flocker-version', None, flocker.__version__, 'Version of flocker to install'], ['flocker-version', None, flocker.__version__, 'Version of flocker to install'], ['build-server', None, 'http://build.clusterhq.com/', 'Base URL of build server for package downloads'], ] optFlags = [ ["keep", "k", "Keep VMs around, if the tests fail."], ] synopsis = ('Usage: run-client-tests --distribution <distribution> ' '[--provider <provider>]') def __init__(self, top_level): """ :param FilePath top_level: The top-level of the flocker repository. """ Options.__init__(self) self.top_level = top_level def postOptions(self): if self['distribution'] is None: raise UsageError("Distribution required.") if self['config-file'] is not None: config_file = FilePath(self['config-file']) self['config'] = yaml.safe_load(config_file.getContent()) else: self['config'] = {} if self['flocker-version']: rpm_version = make_rpm_version(self['flocker-version']) os_version = "%s-%s" % (rpm_version.version, rpm_version.release) if os_version.endswith('.dirty'): os_version = os_version[:-len('.dirty')] else: os_version = None package_source = PackageSource( version=self['flocker-version'], os_version=os_version, branch=self['branch'], build_server=self['build-server'], ) if self['distribution'] not in DISTRIBUTIONS: raise UsageError( "Distribution %r not supported. Available distributions: %s" % (self['distribution'], ', '.join(DISTRIBUTIONS))) if self['provider'] not in PROVIDERS: raise UsageError( "Provider %r not supported. Available providers: %s" % (self['provider'], ', '.join(PROVIDERS))) if self['provider'] in CLOUD_PROVIDERS: # Configuration must include credentials etc for cloud providers. try: provider_config = self['config'][self['provider']] except KeyError: raise UsageError( "Configuration file must include a " "{!r} config stanza.".format(self['provider']) ) provisioner = CLOUD_PROVIDERS[self['provider']](**provider_config) self.runner = LibcloudRunner( config=self['config'], top_level=self.top_level, distribution=self['distribution'], package_source=package_source, provisioner=provisioner, ) from .acceptance import eliot_output @inlineCallbacks def main(reactor, args, base_path, top_level): """ :param reactor: Reactor to use. :param list args: The arguments passed to the script. :param FilePath base_path: The executable being run. :param FilePath top_level: The top-level of the flocker repository. """ options = RunOptions(top_level=top_level) add_destination(eliot_output) try: options.parseOptions(args) except UsageError as e: sys.stderr.write("%s: %s\n" % (base_path.basename(), e)) raise SystemExit(1) runner = options.runner from flocker.common.script import eliot_logging_service log_file = open("%s.log" % base_path.basename(), "a") log_writer = eliot_logging_service( log_file=log_file, reactor=reactor, capture_stdout=False) log_writer.startService() reactor.addSystemEventTrigger( 'before', 'shutdown', log_writer.stopService) try: nodes = yield runner.start_nodes(reactor, node_count=1) yield perform( make_dispatcher(reactor), install_cli(runner.package_source, nodes[0])) result = yield run_client_tests(reactor=reactor, node=nodes[0]) except: result = 1 raise finally: # Unless the tests failed, and the user asked to keep the nodes, we # delete them. if not (result != 0 and options['keep']): runner.stop_nodes(reactor) elif options['keep']: print "--keep specified, not destroying nodes." raise SystemExit(result)
[ "jon.giddy@clusterhq.com" ]
jon.giddy@clusterhq.com
b5f8da9a720fc87c6d511ba662b7005be382c8eb
da93b0746d5b12899c17db53839cd3055d6e8267
/bin/dcn2.py
111d73937abee3c2b859718d0ddab6fd1c745ffd
[ "Apache-2.0" ]
permissive
mattmoehr/rtdl
01228261739dcc3cf3fb0e47f3a9d987c8e322eb
44cdf56fd958bc60609ae595911d272afa998d67
refs/heads/main
2023-08-08T10:05:01.482980
2021-09-02T14:33:13
2021-09-02T14:33:13
408,602,108
0
0
Apache-2.0
2021-09-20T21:14:04
2021-09-20T21:14:03
null
UTF-8
Python
false
false
8,536
py
# %% import math import typing as ty from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import zero import lib # %% class CrossLayer(nn.Module): def __init__(self, d, dropout): super().__init__() self.linear = nn.Linear(d, d) self.dropout = nn.Dropout(dropout) def forward(self, x0, x): return self.dropout(x0 * self.linear(x)) + x class DCNv2(nn.Module): def __init__( self, *, d_in: int, d: int, n_hidden_layers: int, n_cross_layers: int, hidden_dropout: float, cross_dropout: float, d_out: int, stacked: bool, categories: ty.Optional[ty.List[int]], d_embedding: int, ) -> None: super().__init__() if categories is not None: d_in += len(categories) * d_embedding category_offsets = torch.tensor([0] + categories[:-1]).cumsum(0) self.register_buffer('category_offsets', category_offsets) self.category_embeddings = nn.Embedding(sum(categories), d_embedding) nn.init.kaiming_uniform_(self.category_embeddings.weight, a=math.sqrt(5)) print(f'{self.category_embeddings.weight.shape=}') self.first_linear = nn.Linear(d_in, d) self.last_linear = nn.Linear(d if stacked else 2 * d, d_out) deep_layers = sum( [ [nn.Linear(d, d), nn.ReLU(True), nn.Dropout(hidden_dropout)] for _ in range(n_hidden_layers) ], [], ) cross_layers = [CrossLayer(d, cross_dropout) for _ in range(n_cross_layers)] self.deep_layers = nn.Sequential(*deep_layers) self.cross_layers = nn.ModuleList(cross_layers) self.stacked = stacked def forward(self, x_num, x_cat): if x_cat is not None: x_cat = self.category_embeddings(x_cat + self.category_offsets[None]) x = torch.cat([x_num, x_cat.view(x_cat.size(0), -1)], dim=-1) else: x = x_num x = self.first_linear(x) x_cross = x for cross_layer in self.cross_layers: x_cross = cross_layer(x, x_cross) if self.stacked: return self.last_linear(self.deep_layers(x_cross)).squeeze(1) else: return self.last_linear( torch.cat([x_cross, self.deep_layers(x)], dim=1) ).squeeze(1) # %% args, output = lib.load_config() # %% zero.set_randomness(args['seed']) dataset_dir = lib.get_path(args['data']['path']) stats: ty.Dict[str, ty.Any] = { 'dataset': dataset_dir.name, 'algorithm': Path(__file__).stem, **lib.load_json(output / 'stats.json'), } timer = zero.Timer() timer.run() D = lib.Dataset.from_dir(dataset_dir) X = D.build_X( normalization=args['data'].get('normalization'), num_nan_policy='mean', cat_nan_policy='new', cat_policy=args['data'].get('cat_policy', 'counter'), cat_min_frequency=args['data'].get('cat_min_frequency', 0.0), seed=args['seed'], ) if not isinstance(X, tuple): X = (X, None) zero.set_randomness(args['seed']) Y, y_info = D.build_y(args['data'].get('y_policy')) lib.dump_pickle(y_info, output / 'y_info.pickle') X = tuple(None if x is None else lib.to_tensors(x) for x in X) Y = lib.to_tensors(Y) device = lib.get_device() if device.type != 'cpu': X = tuple(None if x is None else {k: v.to(device) for k, v in x.items()} for x in X) Y_device = {k: v.to(device) for k, v in Y.items()} else: Y_device = Y X_num, X_cat = X if not D.is_multiclass: Y_device = {k: v.float() for k, v in Y_device.items()} train_size = len(X_num[lib.TRAIN]) batch_size = args['training']['batch_size'] epoch_size = stats['epoch_size'] = math.ceil(train_size / batch_size) loss_fn = ( F.binary_cross_entropy_with_logits if D.is_binclass else F.cross_entropy if D.is_multiclass else F.mse_loss ) args['model'].setdefault('d_embedding', None) model = DCNv2( d_in=X_num[lib.TRAIN].shape[1], d_out=D.info['n_classes'] if D.is_multiclass else 1, categories=lib.get_categories(X_cat), **args['model'], ).to(device) stats['n_parameters'] = lib.get_n_parameters(model) optimizer = lib.make_optimizer( args['training']['optimizer'], model.parameters(), args['training']['lr'], args['training']['weight_decay'], ) stream = zero.Stream(lib.IndexLoader(train_size, batch_size, True, device)) progress = zero.ProgressTracker(args['training']['patience']) training_log = {lib.TRAIN: [], lib.VAL: [], lib.TEST: []} timer = zero.Timer() checkpoint_path = output / 'checkpoint.pt' def print_epoch_info(): print(f'\n>>> Epoch {stream.epoch} | {lib.format_seconds(timer())} | {output}') print( ' | '.join( f'{k} = {v}' for k, v in { 'lr': lib.get_lr(optimizer), 'batch_size': batch_size, 'epoch_size': stats['epoch_size'], 'n_parameters': stats['n_parameters'], }.items() ) ) @torch.no_grad() def evaluate(parts): model.eval() metrics = {} predictions = {} for part in parts: predictions[part] = ( torch.cat( [ model(X_num[part][idx], None if X_cat is None else X_cat[part][idx]) for idx in lib.IndexLoader( len(X_num[part]), args['training']['eval_batch_size'], False, device, ) ] ) .cpu() .numpy() ) try: metrics[part] = lib.calculate_metrics( D.info['task_type'], Y[part].numpy(), # type: ignore[code] predictions[part], # type: ignore[code] 'logits', y_info, ) except ValueError as err: assert ( 'Target scores need to be probabilities for multiclass roc_auc' in str(err) ) metrics[part] = {'score': -999999999.0} for part, part_metrics in metrics.items(): print(f'[{part:<5}]', lib.make_summary(part_metrics)) return metrics, predictions def save_checkpoint(final): torch.save( { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'stream': stream.state_dict(), 'random_state': zero.get_random_state(), **{ x: globals()[x] for x in [ 'progress', 'stats', 'timer', 'training_log', ] }, }, checkpoint_path, ) lib.dump_stats(stats, output, final) lib.backup_output(output) # %% timer.run() for epoch in stream.epochs(args['training']['n_epochs']): print_epoch_info() model.train() epoch_losses = [] for batch_idx in epoch: optimizer.zero_grad() loss = loss_fn( model( X_num[lib.TRAIN][batch_idx], None if X_cat is None else X_cat[lib.TRAIN][batch_idx], ), Y_device[lib.TRAIN][batch_idx], ) if loss.isnan(): print('Loss is nan!') break loss.backward() optimizer.step() epoch_losses.append(loss.detach()) if loss.isnan(): break epoch_losses = torch.stack(epoch_losses).tolist() training_log[lib.TRAIN].extend(epoch_losses) print(f'[{lib.TRAIN}] loss = {round(sum(epoch_losses) / len(epoch_losses), 3)}') metrics, predictions = evaluate(lib.PARTS) for k, v in metrics.items(): training_log[k].append(v) progress.update(metrics[lib.VAL]['score']) if progress.success: print('New best epoch!') stats['best_epoch'] = stream.epoch stats['metrics'] = metrics save_checkpoint(False) for k, v in predictions.items(): np.save(output / f'p_{k}.npy', v) elif progress.fail: break # %% print('\nRunning the final evaluation...') model.load_state_dict(torch.load(checkpoint_path)['model']) stats['metrics'], predictions = evaluate(lib.PARTS) for k, v in predictions.items(): np.save(output / f'p_{k}.npy', v) stats['time'] = lib.format_seconds(timer()) save_checkpoint(True) print('Done!')
[ "strausmg@gmail.com" ]
strausmg@gmail.com
b1f2496ebe49df46a46292c6d998c4fbb52a383b
a10b0c634e83a652b02db4e6a24ba7d0429dfa05
/main.py
1caa556c793abd75cfe2dcbcde0ba8e6167be17a
[]
no_license
Diptasri/Intro-to-Ai-ML-5600
9f822327d5825e0e9c4cf7b446b61eaa9ee39a55
05efaa4f973f8c55bb12cb0b65407c3f9ce9bb50
refs/heads/main
2023-07-27T03:47:36.049328
2021-09-12T03:33:41
2021-09-12T03:33:41
399,465,959
0
0
null
null
null
null
UTF-8
Python
false
false
1,388
py
import matplotlib.pyplot as plt # inputs a = float (input ("Enter a value: ")) b = float (input ("Enter b value: ")) ax = a + b ay = a - b bx = a - b by = a + b # Internal division section formula Px = ((a * a) + (b * b)) / (a + b) Py = ((a * a) + (2 * a * b) - (b * b)) / (a + b) # External division section formula Qx = ((a * a) - (2 * a * b) - (b * b)) / (a - b) Qy = ((a * a) + (b * b)) / (a - b) plt.figure(1) plt.scatter([ax, bx, Px], [ay, by, Py], color= 'r') plt.text(ax, ay + 0.5, '({},{})'.format(ax, ay)) plt.text(bx, by + 0.5, '({},{})'.format(bx, by)) plt.text(Px, Py + 0.5, '({},{})'.format(Px, Py)) plt.plot([ax, bx, Px], [ay, by, Py]) plt.title("Internal Division Section") plt.xlabel("X- Axis") plt.ylabel("Y- Axis") plt.grid(True) plt.show() plt.figure(2) plt.scatter([ax, bx, Qx], [ay, by, Qy], color= 'r') plt.text(ax, ay + 0.5, '({},{})'.format(ax, ay)) plt.text(bx, by + 0.5, '({},{})'.format(bx, by)) plt.text(Qx, Qy + 0.5, '({},{})'.format(Qx, Qy)) plt.plot([ax, bx, Qx], [ay, by, Qy]) plt.title("External Division Section") plt.xlabel("X- Axis") plt.ylabel("Y- Axis") plt.grid(True) plt.show() # Final coordinates internal_coordinates = (Px, Py) external_coordinates = (Qx, Qy) # Printing outputs print ("(Px, Py) = " + str (internal_coordinates)) print ("(Qx, Qy) = " + str (external_coordinates))
[ "noreply@github.com" ]
Diptasri.noreply@github.com
1ee56e00fc1f6518207dde8d7e2c4ad70939ccb7
62b90959763f40954a7c6270bfb0529b536b2888
/user/forms.py
e3f2e1e1a1c2c677d176cbff33084fa0620bcb3a
[ "MIT" ]
permissive
thiagosouzalink/blogphoto_Django
68698c4fc684f0ba1d9dde795a07f72df32ead38
7d09f44b196897c4d31fff2eff8d2a164e44db27
refs/heads/master
2023-02-20T20:32:00.527084
2021-01-25T15:16:07
2021-01-25T15:16:07
332,782,817
3
0
null
null
null
null
UTF-8
Python
false
false
4,226
py
from django import forms from django.contrib.auth.forms import UserCreationForm, UserChangeForm from .models import CustomUser class UserForm(forms.ModelForm): """ Formulรกrio para cadastrar usuรกrio""" username = forms.CharField( label='Usuรกrio', error_messages= { 'invalid': 'Nome de usuรกrio invรกlido, informe apenas letras, nรบmeros ou @, ., +, -, _', 'max_length': 'Vocรช excedeu o limite de caracteres.', 'unique': 'Nome de usuรกrio jรก existe.' }, help_text= "Requeridos 150 caracteres ou menos. Letras, dรญgitos e @ /. / + / - / _ apenas", widget=forms.TextInput(attrs={'placeholder':'Username'}) ) email = forms.EmailField( label='E-mail', error_messages={'invalid': 'E-mail invรกlido.'}, help_text='user@dominio.com', widget=forms.TextInput(attrs={'placeholder':'E-mail'}) ) first_name = forms.CharField( label='Nome', error_messages={'max_length': 'Nome nรฃo pode ter mais de 30 caracteres'}, widget=forms.TextInput(attrs={'placeholder':'Nome'}) ) last_name = forms.CharField( label='Sobrenome', error_messages={'max_length': 'Sobrenome nรฃo pode ter mais de 150 caracteres'}, widget=forms.TextInput(attrs={'placeholder':'Sobrenome'}) ) telefone = forms.CharField( label='Telefone', help_text='(xx) xxxxx-xxxx', widget=forms.TextInput(attrs={'placeholder':'Telefone...'}) ) password = forms.CharField( label='Senha', help_text="Digite uma senha segura", widget=forms.PasswordInput(attrs={'placeholder':'Senha'}) ) password2 = forms.CharField( label='Confirmar senha', widget=forms.PasswordInput(attrs={'placeholder':'Repetir senha'}) ) class Meta: model = CustomUser fields = ( 'username', 'email', 'first_name', 'last_name', 'telefone' ) def clean_password2(self): passwords = self.cleaned_data if passwords['password2'] != passwords['password']: raise forms.ValidationError("Senhas diferentes") return passwords['password2'] def save(self, commit=True): user = CustomUser.objects.create_user( username=self.cleaned_data['username'], email=self.cleaned_data['email'], password=self.cleaned_data['password'], first_name=self.cleaned_data['first_name'], last_name=self.cleaned_data['last_name'], telefone=self.cleaned_data['telefone'] ) return user class UserProfileForm(forms.ModelForm): """ Formulรกrio para atualizar dados do usuรกrio""" facebook = forms.CharField(widget=forms.TextInput(attrs={'placeholder': 'https://www.facebook.com/seu_username'}), required=False) instagram = forms.CharField(widget=forms.TextInput(attrs={'placeholder': 'https://www.instagram.com/seu_username'}), required=False) twitter = forms.CharField(widget=forms.TextInput(attrs={'placeholder': 'https://www.twitter.com/seu_username'}), required=False) class Meta: model = CustomUser fields = fields = ( 'username', 'email', 'first_name', 'last_name', 'telefone', 'facebook', 'instagram', 'twitter', 'bio' ) class CustomUserCreateForm(UserCreationForm): """ Formulรกrio para criar usuรกrio no painel administrativo""" class Meta: model = CustomUser fields = ('first_name', 'last_name', 'telefone') labels = {'username': 'Username/E-mail'} def save(self, commit=True): user = super().save(commit=False) user.set_password(self.cleaned_data["password1"]) user.username = self.cleaned_data["username"] if commit: user.save() return user class CustomUserChangeForm(UserChangeForm): """ Atualizar usuรกrio no painel administrativo""" class Meta: model = CustomUser fields = ('email', 'first_name', 'last_name', 'telefone')
[ "thiagolsmail@gmail.com" ]
thiagolsmail@gmail.com
21d962029b74b4eafe0c5b512082596bdf3800f2
95e7cf518b8d71270a7de6e7c7254861010f5035
/garage/tf/algos/batch_polopt.py
4245380d53581a9a7d6e72637049760557283eaf
[ "MIT" ]
permissive
reslthrowaway/garage
aaeadf7e918d80d467b2fcce61c50e8404480f83
e921119434d205b6f644f139f6075516fb9ece74
refs/heads/master
2020-03-28T08:32:58.835060
2018-09-08T21:55:41
2018-09-08T21:55:41
147,972,769
2
2
null
null
null
null
UTF-8
Python
false
false
6,354
py
import time import tensorflow as tf from garage.algos import RLAlgorithm import garage.misc.logger as logger from garage.tf.plotter import Plotter from garage.tf.samplers import BatchSampler from garage.tf.samplers import VectorizedSampler class BatchPolopt(RLAlgorithm): """ Base class for batch sampling-based policy optimization methods. This includes various policy gradient methods like vpg, npg, ppo, trpo, etc. """ def __init__(self, env, policy, baseline, scope=None, n_itr=500, start_itr=0, batch_size=5000, max_path_length=500, discount=0.99, gae_lambda=1, plot=False, pause_for_plot=False, center_adv=True, positive_adv=False, store_paths=False, whole_paths=True, fixed_horizon=False, sampler_cls=None, sampler_args=None, force_batch_sampler=False, **kwargs): """ :param env: Environment :param policy: Policy :type policy: Policy :param baseline: Baseline :param scope: Scope for identifying the algorithm. Must be specified if running multiple algorithms simultaneously, each using different environments and policies :param n_itr: Number of iterations. :param start_itr: Starting iteration. :param batch_size: Number of samples per iteration. :param max_path_length: Maximum length of a single rollout. :param discount: Discount. :param gae_lambda: Lambda used for generalized advantage estimation. :param plot: Plot evaluation run after each iteration. :param pause_for_plot: Whether to pause before contiuing when plotting. :param center_adv: Whether to rescale the advantages so that they have mean 0 and standard deviation 1. :param positive_adv: Whether to shift the advantages so that they are always positive. When used in conjunction with center_adv the advantages will be standardized before shifting. :param store_paths: Whether to save all paths data to the snapshot. :return: """ self.env = env self.policy = policy self.baseline = baseline self.scope = scope self.n_itr = n_itr self.start_itr = start_itr self.batch_size = batch_size self.max_path_length = max_path_length self.discount = discount self.gae_lambda = gae_lambda self.plot = plot self.pause_for_plot = pause_for_plot self.center_adv = center_adv self.positive_adv = positive_adv self.store_paths = store_paths self.whole_paths = whole_paths self.fixed_horizon = fixed_horizon if sampler_cls is None: if self.policy.vectorized and not force_batch_sampler: sampler_cls = VectorizedSampler else: sampler_cls = BatchSampler if sampler_args is None: sampler_args = dict() self.sampler = sampler_cls(self, **sampler_args) self.init_opt() def start_worker(self, sess): self.sampler.start_worker() if self.plot: self.plotter = Plotter(self.env, self.policy, sess) self.plotter.start() def shutdown_worker(self): self.sampler.shutdown_worker() if self.plot: self.plotter.shutdown() def obtain_samples(self, itr): return self.sampler.obtain_samples(itr) def process_samples(self, itr, paths): return self.sampler.process_samples(itr, paths) def train(self, sess=None): created_session = True if (sess is None) else False if sess is None: sess = tf.Session() sess.__enter__() sess.run(tf.global_variables_initializer()) self.start_worker(sess) start_time = time.time() last_average_return = None for itr in range(self.start_itr, self.n_itr): itr_start_time = time.time() with logger.prefix('itr #%d | ' % itr): logger.log("Obtaining samples...") paths = self.obtain_samples(itr) logger.log("Processing samples...") samples_data = self.process_samples(itr, paths) last_average_return = samples_data["average_return"] logger.log("Logging diagnostics...") self.log_diagnostics(paths) logger.log("Optimizing policy...") self.optimize_policy(itr, samples_data) logger.log("Saving snapshot...") params = self.get_itr_snapshot(itr, samples_data) if self.store_paths: params["paths"] = samples_data["paths"] logger.save_itr_params(itr, params) logger.log("Saved") logger.record_tabular('Time', time.time() - start_time) logger.record_tabular('ItrTime', time.time() - itr_start_time) logger.dump_tabular(with_prefix=False) if self.plot: self.plotter.update_plot(self.policy, self.max_path_length) if self.pause_for_plot: input("Plotting evaluation run: Press Enter to " "continue...") self.shutdown_worker() if created_session: sess.close() return last_average_return def log_diagnostics(self, paths): self.policy.log_diagnostics(paths) self.baseline.log_diagnostics(paths) def init_opt(self): """ Initialize the optimization procedure. If using tensorflow, this may include declaring all the variables and compiling functions """ raise NotImplementedError def get_itr_snapshot(self, itr, samples_data): """ Returns all the data that should be saved in the snapshot for this iteration. """ raise NotImplementedError def optimize_policy(self, itr, samples_data): raise NotImplementedError
[ "reslthrowaway@yandex.com" ]
reslthrowaway@yandex.com
8602e4c68c80a37d2046a827fca331f3acf97906
c1cad053e9fbfe536722c13338fff63e471ff252
/Next.tech/Analyzing-Text-Data/solution/chunking.py
58c9c3ededb97de3f1ce991ac04f48ebe62345aa
[]
no_license
adataholic/Datascience
9bedfda47c3b84e72e9833b293ce2f602ca2ec9f
766a34c480eec61afdd0f485a4e77428cf3eba95
refs/heads/master
2020-12-27T01:33:55.458858
2020-01-06T23:48:28
2020-01-06T23:48:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
803
py
import nltk nltk.download('brown') import numpy as np from nltk.corpus import brown # Split a text into chunks def splitter(data, num_words): words = data.split(' ') output = [] cur_count = 0 cur_words = [] for word in words: cur_words.append(word) cur_count += 1 if cur_count == num_words: output.append(' '.join(cur_words)) cur_words = [] cur_count = 0 output.append(' '.join(cur_words) ) return output if __name__=='__main__': # Read the data from the Brown corpus data = ' '.join(brown.words()[:10000]) # Number of words in each chunk num_words = 1700 chunks = [] counter = 0 text_chunks = splitter(data, num_words) print "Number of text chunks =", len(text_chunks)
[ "akshaymm13b034@gmail.com" ]
akshaymm13b034@gmail.com
7c07de17053aa19697fa3b8ec39bfe5a624ff542
feca84ca57eee5045a1235006e472b4766ca3b06
/flaskapi/graphapp01.py
083c083606a6b6a7422cad37d931d98e190b6d4e
[]
no_license
Chasbott182/mycode
1b89fa5d1d94a4ff39c8ce98b046189a2d9df10f
5afcd3cc32feee16e0fecc85a6165aaa01f60774
refs/heads/main
2023-07-14T17:06:34.618830
2021-08-13T20:46:59
2021-08-13T20:46:59
392,015,327
0
0
null
null
null
null
UTF-8
Python
false
false
1,815
py
#!/usr/bin/python3 import numpy as np # number operations import yaml # pyyaml for yaml import re # regex import paramiko # ssh into servers from flask import Flask, render_template import matplotlib.pyplot as plt def sshlogin(ip, un, passw): sshsession = paramiko.SSHClient() sshsession.set_missing_host_key_policy(paramiko.AutoAddPolicy()) sshsession.connect(hostname=ip, username=un, password=passw) ssh_stdin, ssh_stdout, ssh_stderr = sshsession.exec_command("cat /proc/uptime") sshresult = ssh_stdout.read().decode('utf-8').split()[0] with open("sshresult", "w") as myfile: myfile.write(sshresult) days = (int(float(sshresult)) / 86400) # convert uptime in sec to days sshsession.close() print(days) return days app = Flask(__name__) @app.route("/graphin") def graphin(): with open("C:\mycode\sshpass.yml") as sshpass: # creds for our servers creds = yaml.load(sshpass) svruptime = [] xtick = [] for cred in creds: xtick.append(cred['ip']) resp = sshlogin(cred['ip'], cred['un'], cred['passw']) svruptime.append(resp) xtick = tuple(xtick) # create a tuple svruptime = tuple(svruptime) # graphin N = 2 # total number of bars ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence p1 = plt.bar(ind, svruptime, width) plt.ylabel('Uptime in Days') plt.title('Uptime of Servers in Days') plt.xticks(ind, xtick) plt.yticks(np.arange(0, 20, 1)) # prob want to turn this into a log scale plt.savefig('static/status.png') # might want to save this with timestamp for history purposes return render_template("graph.html") if __name__ == "__main__": app.run(host="0.0.0.0", port=3000)
[ "chasbott182@gmail.com" ]
chasbott182@gmail.com
3ffd2a81defe2dd17e7c4f0ee0d2e75c6f233e90
b481964a107b7a1afd5997e2736235ffb2c17138
/hud.py
86a51accc3edf2f32b32261581f9c30e58e9030f
[ "MIT" ]
permissive
marax27/pyNoid
06503b576e97e839bcfa8d132bf8855769db7777
c988db7ef6750352ecb6e3749f73302da4b71488
refs/heads/master
2021-09-04T11:19:22.625982
2018-01-18T07:03:43
2018-01-18T07:08:23
111,729,907
0
0
null
null
null
null
UTF-8
Python
false
false
3,505
py
#!/usr/bin/python3 from constants import Constants from vec2 import vec2 import sdl2.sdlttf import sdl2.ext import sdl2 import misc class UIElement: def __init__(self): self.position = vec2(0,0) self.size = vec2(0,0) def centerHorizontally(self): self.position.x = (Constants.WINDOW_SIZE.x - self.size[0])//2 def centerVertically(self): self.position.y = (Constants.WINDOW_SIZE.y - self.size[1])//2 def center(self): self.centerHorizontally() self.centerVertically() class Text(UIElement): """Single piece of text.""" font_manager = sdl2.ext.FontManager('resources/vga_437.ttf', size=24) def __init__(self, text, renderer, size=None, color=None): self.position = vec2(0,0) self.texture = None self.load(text, renderer, size, color) def render(self, renderer, pos=None): """Render the text, using the renderer.""" r = sdl2.SDL_Rect(self.position[0] if not pos else pos[0], self.position[1] if not pos else pos[1], self.size[0], self.size[1]) sdl2.SDL_RenderCopy(renderer.renderer, self.texture, None, r) def load(self, text, renderer, size=None, color=None): """Update a Text object.""" if self.texture: sdl2.SDL_DestroyTexture(self.texture) #That does the trick. surf = Text.font_manager.render(text, size=size, color=color) sprite = sdl2.ext.SoftwareSprite(surf, True) self.size = (surf.w, surf.h) self.texture = sdl2.SDL_CreateTextureFromSurface(renderer.renderer, sprite.surface) class Button(UIElement): """Button class.""" IDLE, HOVER, PRESSED = 0x1001, 0x1002, 0x1003 @staticmethod def buildClickableText(message, renderer, idle_color, pressed_color, hover_color, size, pos=None): """Generates a text label that will change color according to whether it's pressed or not.""" return Button( Text(message, renderer, size, idle_color), Text(message, renderer, size, pressed_color), Text(message, renderer, size, hover_color), pos ) def __init__(self, idle_state, pressed_state, hover_state=None, pos=None): self.states = {} self.states[self.IDLE] = idle_state self.states[self.HOVER] = hover_state if hover_state is not None else idle_state self.states[self.PRESSED] = pressed_state self.state = self.IDLE self.position = pos if pos else vec2(0, 0) # Size restriction. if self.states[self.IDLE].size != self.states[self.HOVER].size or self.states[self.IDLE].size != self.states[self.PRESSED].size: raise ValueError() self.size = self.states[self.IDLE].size def render(self, renderer): self.states[self.state].render(renderer, self.position) def handleEvent(self, event): """Handle mouse events.""" mx, my = misc.getMousePos() if ((self.position[0] <= mx < self.position[0] + self.size[0]) and (self.position[1] <= my < self.position[1] + self.size[1])): if event.type == sdl2.SDL_MOUSEBUTTONDOWN: self.state = self.PRESSED else: self.state = self.HOVER else: self.state = self.IDLE def isPressed(self): return self.state == self.PRESSED class VerticalContainer: def __init__(self, elements=[], y_pos=0): self.elem = elements self.y_pos = y_pos self.adjust() def adjust(self): if len(self.elem): self.elem[0].position.y = self.y_pos for i in range(1, len(self.elem)): self.elem[i].position.y = self.elem[i-1].position.y+self.elem[i-1].size[1] for i in self.elem: i.centerHorizontally() def render(self, renderer): for i in self.elem: i.render(renderer)
[ "kacpert314@gmail.com" ]
kacpert314@gmail.com
6919b3a14f65b0c108aa619c12b7e531c0c04e51
6328387281d1b2b0bec13d51916d916fea1e7351
/myvenv/bin/easy_install-3.7
185061d76e1848a152ec8b720265f7b58b47dc6b
[]
no_license
MedApplive/my-first-blog
81e40789efe28cf99c7a342f7b8c48e879e70b4c
0268eb6a64aa2733552b285accceba8cb82cd64d
refs/heads/master
2020-05-01T11:58:28.305631
2020-01-20T17:04:57
2020-01-20T17:04:57
177,456,209
0
0
null
2019-09-30T14:45:40
2019-03-24T18:57:54
Python
UTF-8
Python
false
false
272
7
#!/home/maurice/Documents/djangogirls/myvenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "msourir@gmail.com" ]
msourir@gmail.com
339b6652e6902305375b21f8ec23ad0e0f230c76
6ddd0cfdbaca412ee2b3a7a01e7fcaad63550ac2
/Python GUI/GUI window with various label,buttons,colors,font.py
b0274813b6a312766b548cf1260d2688c7d120c0
[]
no_license
pranshu798/Python-programs
b302be9c9fd3aaf66824857bdb8bb2d9b8a9b5de
fb6e712594c72d8ea0be1026e6fb26c7fdd639ba
refs/heads/master
2022-12-08T15:52:21.625098
2020-09-14T11:57:26
2020-09-14T11:57:26
281,318,764
0
1
null
null
null
null
UTF-8
Python
false
false
721
py
#Python program to demontrate complete details of GUI window from tkinter import * gui = Tk() def hello(): c = a.get() guil3 = Label(text=c, fg='red', bg='yellow', font=10).pack() def delete(): guil4 = Label(text='Delete', fg='red', bg='yellow', font=10).pack() a = StringVar() gui.title("Aliyas Shaik Button Program") gui.geometry("500x500+100+100") guil1 = Label(text='Label One', fg='red', bg='yellow', font=10).pack() button1 = Button(text='Enter', fg='red', bg='yellow', command=hello, font=10).pack() button2 = Button(text='Delete', fg='red', bg='yellow', command=delete, font=10).pack() # Place method places label @ specified place within the window text = Entry(textvariable=a).pack() gui.mainloop()
[ "pranshuverma798@gmail.com" ]
pranshuverma798@gmail.com
8402be75cce1ddbd62ff54e6ca1af746d547ba7e
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p04044/s043863854.py
77675a21e84977960d992326c6742602cc68d034
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
172
py
N, L = map(int,input().split()) word = [] count = 0 while N > count: S = input() word.append(S) count += 1 word = sorted(word) ans = ''.join(word) print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
a799262d26ff055133010df02e61e893ddf72751
97ebc5e257d68eb9f46551d1897f3901e4faca41
/poketypes/basic.py
3037cd29cb0fec3108555337432f07f2ec491987
[ "BSD-2-Clause" ]
permissive
GrenderG/PokeDuino
16f6ab982c447d15ff5ed9ec55a9fd35551d3fcd
5b2d7f8fa64edb52d68b647e723f513405b391d4
refs/heads/master
2021-06-01T02:33:46.419676
2016-06-29T09:57:47
2016-06-29T09:57:47
285,349,854
1
0
NOASSERTION
2020-08-05T16:44:29
2020-08-05T16:44:28
null
UTF-8
Python
false
false
1,941
py
import ctypes from . import encoding class PokeMetaStructure(type(ctypes.BigEndianStructure)): def __new__(metacls, name, bases, dct): cls = super().__new__(metacls, name, bases, dct) for member, adapter_type in cls._adapters_: cls.buildProperty(member, adapter_type) return cls def buildProperty(cls, member, adapter_type): def get(self): return adapter_type(getattr(self, member)) def set(self, value): if isinstance(value, adapter_type): setattr(self, member, value.value) else: setattr(self, member, value) if member.startswith("_"): property_name = member[1:] else: property_name = member + "_adapter" setattr(cls, property_name, property(fget=get, fset=set, doc="%s adapter to member %s" % (adapter_type.__name__, member))) class PokeStructure(ctypes.BigEndianStructure, metaclass=PokeMetaStructure): _pack_ = 1 _adapters_ = [] @classmethod def fromBytes(cls, data): return cls.from_buffer_copy(data) def bytes(self): return ctypes.string_at(ctypes.byref(self), ctypes.sizeof(self)) def bytecount(self): return ctypes.sizeof(self) def Pokearray(length): # okay, I learned. # It's not possible to use a custom base class # in a ctypes.Structure field. Forget about it @classmethod def fromBytes(cls, data): return cls(*data) def asBytes(self): return bytes(iter(self)) t = ctypes.c_uint8 * length t.fromBytes = fromBytes t.bytes = asBytes return t def Pokestring(length): @classmethod def fromString(cls, data, fillUp=False): encoded = encoding.encode(data) + encoding.ENDCHAR if fillUp: encoded = encoded.ljust(length, encoding.ENDCHAR) return cls(*encoded[:length]) def toString(self): encoded = self.bytes().partition(encoding.ENDCHAR)[0] return encoding.decode(encoded) t = Pokearray(length) t.fromString = fromString t.toString = toString return t def PaddingBytes(length): return ("padding", Pokearray(length))
[ "sven.koehler@student.hpi.uni-potsdam.de" ]
sven.koehler@student.hpi.uni-potsdam.de
e18bf50cd5e5c0cee6e3670840430470da5195de
f1e4a8ab1ce478b3a95e8e8a74faa16409ac86e2
/lambdas/InitializeDBCustomLambda/index.py
7d26789efb9fa031b09f6bbee5909f5d6e904771
[]
no_license
Ryanjlowe/pinpoint-engagement-scoring
6b761fd7ada905db251d42ec1d4b47c0e27ad810
a75f29f687c799ed6e0125c3c0044cc39c9dd2d5
refs/heads/master
2020-09-30T05:02:39.204421
2019-12-13T17:41:44
2019-12-13T17:41:44
227,209,468
1
0
null
null
null
null
UTF-8
Python
false
false
3,868
py
import json import boto3 import logging import os from botocore.vendored import requests dynamodb = boto3.resource('dynamodb') PINPOINT_PROJECT_ID = os.environ.get('PINPOINT_PROJECT_ID') scoring_definition_table = dynamodb.Table(os.environ.get('SCORING_DEFINITION_TABLE')) def lambda_handler(event, context): global log_level log_level = str(os.environ.get('LOG_LEVEL')).upper() if log_level not in [ 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL' ]: log_level = 'ERROR' logging.getLogger().setLevel(log_level) logging.info(event) try: populate_score_definition('_email.click', 50) populate_score_definition('_email.open', 10) populate_score_definition('_email.delivered', 2) populate_score_definition('_email.hardbounce', -1000) populate_score_definition('_email.complaint', -1000) populate_score_definition('_email.unsubscribe', -500) populate_score_definition('_SMS.SUCCESS', 2) populate_score_definition('_SMS.OPTOUT', -500) populate_score_definition('_campaign.send', 2) populate_score_definition('_campaign.opened_notification', 50) populate_score_definition('_campaign.received_foreground', 2) populate_score_definition('_campaign.received_background', 2) populate_score_definition('_session.start', 2) populate_score_definition('_userauth.sign_up', 50) populate_score_definition('_monetization.purchase', 100) except Exception as e: logging.error('Received Error while populating default values: %s', e) send(event, context, 'FAILED', {}) else: send(event, context, 'SUCCESS', {}) def populate_score_definition(event_type, score_offset): try: scoring_definition_table.put_item( Item={ 'EventType': event_type, 'PinpointProjectId': PINPOINT_PROJECT_ID, 'ScoreOffset':score_offset } ) except Exception as e: logging.error('Received Error while populate_score_definition: %s', e) raise e ###### # Following taken from: https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-lambda-function-code-cfnresponsemodule.html#w2ab1c20c25c14b9c15 ###### # Copyright 2016 Amazon Web Services, Inc. or its affiliates. All Rights Reserved. # This file is licensed to you under the AWS Customer Agreement (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at http://aws.amazon.com/agreement/ . # This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, express or implied. # See the License for the specific language governing permissions and limitations under the License. def send(event, context, responseStatus, responseData, physicalResourceId=None, noEcho=False): responseUrl = event['ResponseURL'] print(responseUrl) responseBody = {} responseBody['Status'] = responseStatus responseBody['Reason'] = 'See the details in CloudWatch Log Stream: ' + context.log_stream_name responseBody['PhysicalResourceId'] = physicalResourceId or context.log_stream_name responseBody['StackId'] = event['StackId'] responseBody['RequestId'] = event['RequestId'] responseBody['LogicalResourceId'] = event['LogicalResourceId'] responseBody['NoEcho'] = noEcho responseBody['Data'] = responseData json_responseBody = json.dumps(responseBody) print("Response body:\n" + json_responseBody) headers = { 'content-type' : '', 'content-length' : str(len(json_responseBody)) } try: response = requests.put(responseUrl, data=json_responseBody, headers=headers) print("Status code: " + response.reason) except Exception as e: print("send(..) failed executing requests.put(..): " + str(e))
[ "rjlowe@amazon.com" ]
rjlowe@amazon.com
e9dfc09020ce8682f64b107a1c8ad0d41d060345
b1b520c9bae5b241405dbc1a6b25ef928877c317
/defangIpAddress.py
7bed80a95e1468a02ca4701cc4900f4fa9552b8a
[]
no_license
TBobcat/Leetcode
0ee5d06be3f7f10077961a8e3aedcd28fe4cb85a
3b6e3d38ac2d5158329a9444ad7e7e7ee9d07176
refs/heads/main
2023-06-04T10:40:00.275728
2021-06-16T23:05:35
2021-06-16T23:05:35
375,470,361
0
0
null
null
null
null
UTF-8
Python
false
false
660
py
def defangIPaddr(address): """ :type address: str :rtype: str """ ## use list(str) and str.join(list_str) ## join can also be used like this ## 'abc'.join(address1.split('.')) -> '1abc1abc1abc1' ## str.replace() would also be useful res = "" list_address = list(address) for i,char in enumerate(list_address): if char == ".": list_address[i] = "[.]" res = res.join(list_address) return res if __name__ == '__main__': address1 = "1.1.1.1" address2 = "255.100.50.0" print(defangIPaddr(address1)) print(defangIPaddr(address2)) else: pass
[ "xiangyuantech@gmail.com" ]
xiangyuantech@gmail.com
37dafa17ed9dc319a258358248dd28b2bbf33390
ee8c4c954b7c1711899b6d2527bdb12b5c79c9be
/assessment2/amazon/run/core/controllers/old.py
b834b8f7e61106d74a5d8d14bccffde5155b3848
[]
no_license
sqlconsult/byte
02ac9899aebea4475614969b594bfe2992ffe29a
548f6cb5038e927b54adca29caf02c981fdcecfc
refs/heads/master
2021-01-25T14:45:42.120220
2018-08-11T23:45:31
2018-08-11T23:45:31
117,135,069
0
0
null
null
null
null
UTF-8
Python
false
false
360
py
#!/usr/bin/env python3 from flask import Blueprint, Flask, render_template, request, url_for controller = Blueprint('old', __name__, url_prefix='/old') # @controller.route('/<string:title>', methods=['GET']) # def lookup(title): # if title == 'Republic': # TODO 2 # return render_template('republic.html') # TODO 2 # else: # pass
[ "sqlconsult@hotmail.com" ]
sqlconsult@hotmail.com
4106443cb73c63c91456d1feb0e571e206168629
0ad1a9530f0765b07d568095cb1534babc4432f5
/utils/db.py
0391f7d7acc6be817a2340825b6016c54fba89ab
[ "MIT" ]
permissive
bryceweiner/Infiniti
18acc471b5882bd676e61b840bff793c22d6c272
5ea829dfa26c0948970329651d3cacff7788d116
refs/heads/master
2022-12-15T06:10:10.981048
2018-09-25T20:03:02
2018-09-25T20:03:02
147,550,307
1
2
MIT
2022-12-07T23:52:23
2018-09-05T16:47:43
Python
UTF-8
Python
false
false
2,781
py
import rocksdb,time,ast from infiniti.params import * MAX_RETRY_CREATE_DB = 100 def writebatch(): return rocksdb.WriteBatch() def open_db(filename, logger=None, read_only=False): db_default_path = (filename, "wallet_test")[filename == ""] db_path = db_default_path retry_count = 0 db = None save_err=None while db is None and retry_count < MAX_RETRY_CREATE_DB: opts = rocksdb.Options() opts.create_if_missing = True opts.max_open_files = -1 opts.write_buffer_size = 67108864 opts.max_write_buffer_number = 3 opts.target_file_size_base = 67108864 opts.table_factory = rocksdb.BlockBasedTableFactory( filter_policy=rocksdb.BloomFilterPolicy(10), block_cache=rocksdb.LRUCache(2 * (1024 ** 3)), block_cache_compressed=rocksdb.LRUCache(500 * (1024 ** 2))) try: db = rocksdb.DB(db_path, opts, read_only) except Exception as err: save_err=err time.sleep(.1) retry_count += 1 if retry_count == MAX_RETRY_CREATE_DB: raise save_err return db def uuid_exists(object_db,uuid): try: _db = open_db(join_path(DATA_PATH,object_db)) it = _db.iteritems() it.seek(uuid) items = dict(itertools.takewhile(lambda item: item[0].startswith(uuid), it)) return len(items) == 0 except Exception as err: raise err def get_infiniti_object(object_db,uuid): """ All Inifiniti objects have a unique UUID, so just dump the object """ try: _db = open_db(join_path(DATA_PATH,object_db)) it = _db.iteritems() it.seek(uuid) result = {} for key,value in dict(itertools.takewhile(lambda item: item[0].startswith(uuid), it)): _uuid,_field = key.split('.') _value = value result.update = { _field : _value } return result except Exception as err: raise err def put_infiniti_object(object_db,obj): try: _db = open_db(join_path(DATA_PATH,object_db)) wb = writebatch() for attr in dir(obj): if attr.startswith('_') and not attr.startswith('__'): wb.put("{0}.{1}".format(obj.uuid,attr),getattr(obj,attr)) db.write(wb) return True except Exception as err: raise err def utxo_by_address(address,network,block_height): db = open_db(join_path(join_path(DATA_PATH,network),'utxo')) it = db.iteritems() it.seek_to_first() total = 0 utxo = [] for k,v in it: addr,amt = v.split('|') height,tx_hash = k.split('.') if address == addr: utxo.append({ 'amount':Decimal(amt), 'confirmations':int(int(block_height)-int(height)), 'tx_hash':tx_hash }) if len(utxo) > 0: return utxo else: return None def balance_by_address(address,network): db = open_db(join_path(join_path(DATA_PATH,network),'utxo')) it = db.iteritems() it.seek_to_first() total = 0 for k,v in it: addr,amt = v.split('|') if address == addr: total += Decimal(amt) return total
[ "bryce@altsystem.io" ]
bryce@altsystem.io
7436c86cf9c2ad83dacb6291b7f64493ca90f126
56e17984c230be6ee841264d65d7ba6ce949ceb1
/DateAndTime/Calendar_Module.py
a2a0fd44eca638970bd921c1fc7b96f6358a26ef
[]
no_license
Shamsullo/HackerRank_Python-
203b4277d7eb1de2236ff983415344a1409277d7
1f231f04cdd1cb0cd4e6a65318113ed15f1e47bc
refs/heads/master
2021-05-15T05:45:58.885667
2018-01-11T18:36:28
2018-01-11T18:36:28
115,595,144
0
0
null
null
null
null
UTF-8
Python
false
false
262
py
import calendar, datetime input_date = input() month,day,year = map(int,input_date.split()) day_of_the_week = datetime.date(year,month,day) print calendar.day_name[day_of_the_week.weekday()].upper() #the code isn't giving an expected result, i wonder why?
[ "noreply@github.com" ]
Shamsullo.noreply@github.com
cdbf1c4051359a9d4660b03166c1b23f3c05428f
bb097a986d37c5b6d49bf6d1f9df17960e32e36e
/final_project/poi_id.py
9f2d37fc735529d2c4baaf05ebe14afbc6c019da
[]
no_license
noslav/enron_analysis
84e32fa2060c35d18e921cdb6647fd04019e7f57
9c98dfe8dcf71728cf8a8d75ab4b0c8468bd2d1e
refs/heads/master
2021-03-22T04:42:56.034087
2017-12-07T15:15:55
2017-12-07T15:15:55
96,874,843
0
0
null
null
null
null
UTF-8
Python
false
false
20,872
py
#!/usr/bin/python import sys import pickle sys.path.append("../tools/") from feature_format import featureFormat, targetFeatureSplit from tester import dump_classifier_and_data import pandas import numpy as np from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2, f_classif, mutual_info_classif from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.feature_selection import RFECV import matplotlib.pyplot from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.model_selection import cross_val_score #from sklearn.datasets import make_classification #=================================================================================# ### Task 1: Select what features you'll use. ### features_list is a list of strings, each of which is a feature name. ### The first feature must be "poi". ### for feature selection we run the selectKbest on the data set. enron_data = pickle.load(open("../final_project/final_project_dataset.pkl", "r")) #names of the columns in the 'enron_pickle_features.csv' data set. names = ["salary" , "to_messages" , "deferral_payments" , "total_payments" , "exercised_stock_options", "bonus" , "restricted_stock" , "shared_receipt_with_poi" , "restricted_stock_deferred", "total_stock_value", "expenses" , "loan_advances" , "from_messages" , "other" , "from_this_person_to_poi", "director_fees" , "deferred_income" , "long_term_incentive", "from_poi_to_this_person"] #getting the data and then reading them into dataframes for manipulation and feature #selection def makeDataFramesFeature(): enron_dataframe = pandas.read_csv('enron_pickle_features.csv') enron_poi = pandas.read_csv('enron_poi.csv') del enron_dataframe['Unnamed: 0'] del enron_poi['Unnamed: 0'] array_data = enron_dataframe.values X = array_data[:,0:19] array_poi = enron_poi.values.ravel() Y = array_poi return X, Y #X, Y = makeDataFramesFeature() def featureSelectKbest(X,Y): #Cannot be used since we have negative values test = SelectKBest(score_func= chi2, k=4) fit = test.fit(X, Y) # summarize scores np.set_printoptions(precision=3) print(fit.scores_) features = fit.transform(X) # summarize selected features print(features[0:6,:]) def featureRFE(X,Y): #recursive feature elimination using a random forest cl from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=200) rfe = RFE(model, 4) fit = rfe.fit(X, Y) print("Num Features: %d") % fit.n_features_ print("Selected Features: %s") % fit.support_ print("Feature Ranking: %s") % fit.ranking_ #print names i = 0 namesdict = {} for values in names: namesdict[values] = fit.support_[i] i +=1 print namesdict #============================================================================== # featureRFEout = { 'salary': False, 'to_messages': False, \ # 'deferral_payments': False, 'total_payments': False, 'loan_advances': False, \ # 'bonus': True, 'restricted_stock_deferred': False, 'total_stock_value': True, \ # 'shared_receipt_with_poi': False, 'long_term_incentive': False, \ # 'exercised_stock_options': False, 'from_messages': False, 'other': True, \ # 'from_poi_to_this_person': False, 'from_this_person_to_poi': False, \ # 'deferred_income': False, 'expenses': True, 'restricted_stock': False, \ # 'director_fees': False } #============================================================================== #Recursive feature elimination using random forests suggest I should use #Bonus, total_stock_value, expenses and other (we can ignore this for now) def featureRFECross(X,Y): #recursive feature elimination super nice methoed to automatically #select good feature using a cross validation for classification svc = SVC(kernel="rbf") #taking too much time. #model = LogisticRegression() # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2), scoring='accuracy') rfecv.fit(X, Y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show() i = 0 namesdict = {} for values in names: namesdict[values] = rfecv.support_[i] i +=1 print namesdict def featurePCA(X,Y): #also tried this but I could not figure out how to name the features # for feature extraction feature extraction pca = PCA(n_components=4) fit = pca.fit(X) # summarize components print("Explained Variance: %s") % fit.explained_variance_ratio_ print(fit.components_) def featureETC(X,Y): #extra method learnt to select features # feature extraction using bagged trees namesdict = {} model = ExtraTreesClassifier() model.fit(X, Y) #print(model.feature_importances_) #print names i = 0 for values in names: namesdict[values] = model.feature_importances_[i] i +=1 print namesdict #============================================================================== # featureETCoutput = {'salary': 0.041632257710185139, 'to_messages': 0.039859107742246484,\ # 'deferral_payments': 0.024074150367185947, \ # 'total_payments': 0.064555518959854619, \ # 'loan_advances': 0.0093116015112734048, \ # 'bonus': 0.073052292449863596, \ # 'restricted_stock_deferred': 0.0042245370370370353,\ # 'total_stock_value': 0.09369028839725424, \ # 'shared_receipt_with_poi': 0.071123487226284629, \ # 'long_term_incentive': 0.04046480320342271, \ # 'exercised_stock_options': 0.1129150917901071, \ # 'from_messages': 0.024095798427395669, \ # 'other': 0.054538316103403574, \ # 'from_poi_to_this_person': 0.036628178381556319, \ # 'from_this_person_to_poi': 0.052257500165677206, \ # 'deferred_income': 0.10772890822303453, \ # 'expenses': 0.10845624961908869,\ # 'restricted_stock': 0.038109225603169372, \ # 'director_fees': 0.0032826870819597218} #============================================================================== #the results from feature RFE selection recommended using , exercised stock value, total_stock_value, expenses #===================================================================================# features_list = ['poi','salary', 'total_stock_value', 'expenses', 'bonus'] # You will need to use more features + your feature ### Load the dictionary containing the dataset with open("final_project_dataset.pkl", "r") as data_file: data_dict = pickle.load(data_file) #===================================================================================# ##plotting for outlier removal ### Task 2: Remove outliers #done in .rmd file data1 = featureFormat(data_dict, features_list) def plotSalaryStock(data): for point in data : salary = point[1] total_stock_value = point[2] matplotlib.pyplot.scatter(salary, total_stock_value) matplotlib.pyplot.xlabel("salary") matplotlib.pyplot.ylabel("total_stock_value") matplotlib.pyplot.show() def plotSalaryExpenses(data): for point in data : salary = point[1] expenses = point[3] matplotlib.pyplot.scatter(salary, expenses) matplotlib.pyplot.xlabel("salary") matplotlib.pyplot.ylabel("expenses") matplotlib.pyplot.show() def plotStockExpenses(data): for point in data : total_stock_value = point[2] expenses = point[3] matplotlib.pyplot.scatter(total_stock_value, expenses) matplotlib.pyplot.xlabel("total_stock_value") matplotlib.pyplot.ylabel("expenses") matplotlib.pyplot.show() def plotSalaryBonus(data): for point in data : salary = point[1] bonus = point[4] matplotlib.pyplot.scatter(salary, bonus) matplotlib.pyplot.xlabel("salary") matplotlib.pyplot.ylabel("bonus") matplotlib.pyplot.show() plotSalaryStock(data1) plotSalaryExpenses(data1) plotStockExpenses(data1) plotSalaryBonus(data1) #outliers were noticed in data in salary, bonus and total stock value #===================================================================================# #outlier removal functions def salaryOut(): outlierlist = [] for keys in data_dict : if type(data_dict[keys]["salary"]) == int or keys == "TRAVEL AGENCY IN THE PARK" or keys == "LOCKHART EUGENE E": if data_dict[keys]["salary"] > 2.5e7: data_dict[keys]["salary"] = "NaN" outlierlist.append(keys) elif data_dict[keys]["salary"] < 0: data_dict[keys]["salary"] = "NaN" outlierlist.append(keys) else: pass else: pass print "Salary outliers removed :", outlierlist, "\n" def totalStockValueOut(): outlierlist = [] for keys in data_dict : if type(data_dict[keys]["total_stock_value"]) == int or keys == "TRAVEL AGENCY IN THE PARK" or keys == "LOCKHART EUGENE E" : if data_dict[keys]["total_stock_value"] > 4.0e8: data_dict[keys]["total_stock_value"] = "NaN" outlierlist.append(keys) elif data_dict[keys]["total_stock_value"] < 0: data_dict[keys]["total_stock_value"] = "NaN" outlierlist.append(keys) else: pass else: pass print "Total stock value outliers removed :",outlierlist, "\n" def bonusOut(): outlierlist = [] for keys in data_dict : if type(data_dict[keys]["bonus"]) == int or keys == "TRAVEL AGENCY IN THE PARK" or keys == "LOCKHART EUGENE E": if data_dict[keys]["bonus"] > 0.8e8: data_dict[keys]["bonus"] = "NaN" outlierlist.append(keys) elif data_dict[keys]["bonus"]< 0: data_dict[keys]["bonus"] = "NaN" outlierlist.append(keys) else: pass else: pass print "Bonus outliers removed :" , outlierlist, "\n" def expenseOut(): outlierlist = [] for keys in data_dict : if type(data_dict[keys]["expenses"]) == int or keys == "TRAVEL AGENCY IN THE PARK" or keys == "LOCKHART EUGENE E": if data_dict[keys]["expenses"] > 5.0e6: data_dict[keys]["expenses"] = "NaN" outlierlist.append(keys) elif data_dict[keys]["expenses"]< 0: data_dict[keys]["expenses"] = "NaN" outlierlist.append(keys) else: pass else: pass print "Expenses outliers removed ", outlierlist, "\n" #removing salary outliers #removing total_stock_value outliers #removing bonus outliers #removing expense outliers salaryOut() totalStockValueOut() bonusOut() expenseOut() #===================================================================================# #replotting removed outliers print "Take a look at outlier removed graphs :" #reassinging data to new mat for looking at plots from new modified dictionaires data2 = featureFormat(data_dict, features_list) #plotting to see the effect of having removed outliers plotSalaryStock(data2) plotSalaryExpenses(data2) plotStockExpenses(data2) plotSalaryBonus(data2) ### Task 3: Create new feature(s) #===================================================================================# #making the new feature #Total number of "to emails" to this person - shared_receipt_with_poi - sent_by_poi_to_this_person. #The lower this number greater the relative importance since it means that most \ #of the communication to this person involved conversation with a poi or in the \ #same conversation with a poi. The number of emails from other people to this \ #person was low. def newFeature(): for keys in data_dict : if data_dict[keys].get("to_messages") and data_dict[keys].get("shared_receipt_with_poi") and data_dict[keys].get("from_poi_to_this_person") != 'NaN' : to = data_dict[keys].get("to_messages") shared = data_dict[keys].get("shared_receipt_with_poi") from_poi = data_dict[keys].get("from_poi_to_this_person") data_dict[keys]["relative_importance"] = to - (shared + from_poi) else: data_dict[keys]["relative_importance"] = "NaN" #print "relative_importance :", data_dict[keys].get("relative_importance") #print enron_data[keys].get("relative_importance") newFeature() def extractRelativeImportance(): #funtion to see the values of relative importance i = [] j = [] for keys in data_dict: if data_dict[keys]["relative_importance"] != 'NaN': i.append(data_dict[keys].get("relative_importance")) j.append(keys) else: pass return i, j ### Store to my_dataset for easy export below. #enron_dataframe.insert( my_dataset = data_dict #including the new features in the feature list features_list2 = ['poi','salary', 'total_stock_value', 'expenses', 'bonus', 'relative_importance'] ### Extract features and labels from dataset for local testing data3 = featureFormat(my_dataset, features_list2, sort_keys = True) labels, features = targetFeatureSplit(data3) ## done for finding out number of features to use. features_list4 = ["poi", "salary" , "to_messages" , "deferral_payments" , "total_payments" , "exercised_stock_options", "bonus" , "restricted_stock" , "shared_receipt_with_poi" , "restricted_stock_deferred", "total_stock_value", "expenses" , "loan_advances" , "from_messages" , "other" , "from_this_person_to_poi", "director_fees" , "deferred_income" , "long_term_incentive", "from_poi_to_this_person"] data4 = featureFormat(my_dataset, features_list4, sort_keys = True) labels4, features4 = targetFeatureSplit(data4) labels4 = np.array(labels4) features4 = np.array(features4) #===================================================================================# #trying the classifiers ### Task 4: Try a varity of classifiers ### Please name your classifier clf for easy export below. ### Note that if you want to do PCA or other multi-stage operations, ### you'll need to use Pipelines. For more info: ### http://scikit-learn.org/stable/modules/pipeline.html # Provided to give you a starting point. Try a variety of classifiers. def classifyNB(): from sklearn.naive_bayes import GaussianNB clf = GaussianNB() clf.fit(features_train, labels_train) pred = clf.predict(features_test) acc = accuracy_score(labels_test, pred) pres = precision_score(labels_test, pred) print acc , "NB Accuracy" , pres, "NB precision","\n" return clf , acc, pres def classifyDT(): from sklearn import tree clf = tree.DecisionTreeClassifier(criterion='gini', splitter='best', \ max_depth=None, min_samples_split=2, \ min_samples_leaf=1, min_weight_fraction_leaf=0.0,\ max_features=None, random_state=8, \ max_leaf_nodes=None, min_impurity_split=1e-07,\ class_weight=None, presort=False) clf.fit(features_train, labels_train) pred = clf.predict(features_test) acc = accuracy_score(labels_test, pred) pres = precision_score(labels_test, pred) print acc , "DT Accuracy" , pres, "DT precision", "\n" return clf , acc, pres def classifySVM(): from sklearn.svm import SVC clf = SVC(C=0.9, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='poly') clf.fit(features_train, labels_train) pred = clf.predict(features_test) acc = accuracy_score(labels_test, pred) pres = precision_score(labels_test, pred) print acc , "SVM Accuracy" , pres, "SVM precision" , "\n" return clf , acc, pres def classifyRF(): from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_estimators=200) clf.fit(features_train, labels_train) pred = clf.predict(features_test) acc = accuracy_score(labels_test, pred) pres = precision_score(labels_test, pred) print acc , "RF Accuracy" , pres, "RF precision" , "\n" return clf , acc, pres def classifyAB(): from sklearn.ensemble import AdaBoostClassifier clf = AdaBoostClassifier(base_estimator=None, n_estimators=200, \ learning_rate=0.5, algorithm='SAMME', random_state=None) clf.fit(features_train, labels_train) pred = clf.predict(features_test) acc = accuracy_score(labels_test, pred) pres = precision_score(labels_test, pred) print acc , "AB Accuracy" , pres, "AB precision" scores = cross_val_score(clf,features_test,pred ) print scores.mean() , "AB Cross val score" , "\n" return clf , acc, pres #give the number of splits on the validation step n_splits = 5 SSS = StratifiedShuffleSplit(n_splits, test_size=0.5, random_state=0) SSS.get_n_splits(features, labels) print SSS ,"\n" print "performing a stratified shuffle split for the validation process \ to ensure that an equal ratio of POIs to non-POIs are present in the training and \ test set", "\n" accuracyNB = [] precisionNB = [] accuracyRF = [] precisionRF = [] accuracyAB = [] precisionAB = [] accuracyDT = [] precisionDT = [] for train_index, test_index in SSS.split(features, labels): print "==================================================================" print "TRAIN:", train_index, "\n" "TEST:", test_index, "\n" features = np.array(features) labels = np.array(labels) features_train, features_test = features[train_index], features[test_index] labels_train, labels_test = labels[train_index], labels[test_index] clf1, acc1, prec1 = classifyNB() clf2, acc2, prec2 = classifyRF() clf3, acc3, prec3 = classifyAB() clf4, acc4, prec4 = classifyDT() accuracyNB.append(acc1) precisionNB.append(prec1) accuracyRF.append(acc2) precisionRF.append(prec2) accuracyAB.append(acc3) precisionAB.append(prec3) accuracyDT.append(acc4) precisionDT.append(prec4) print "==================================================================" print "average accuracy NB : " , float(sum(accuracyNB))/n_splits print "precision accuracy NB : " , float(sum(precisionNB))/n_splits print "average accuracy RF : " , float(sum(accuracyRF))/n_splits print "precision accuracy RF : " , float(sum(precisionRF))/n_splits print "average accuracy AB : " , float(sum(accuracyAB))/n_splits print "precision accuracy AB : " , float(sum(precisionAB))/n_splits print "average accuracy DT : " , float(sum(accuracyDT))/n_splits print "precision accuracy DT : " , float(sum(precisionDT))/n_splits #===================================================================================# #exporting features my_dataset = my_dataset features_list = features_list clf, acc, prec = classifyDT() #clf = classifyAB() #clf = classifySVM() #clf = classifyDT() dump_classifier_and_data(clf, my_dataset, features_list) #============================================================================== #============================================================================== # GaussianNB(priors=None) # Accuracy: 0.85629 Precision: 0.49612 Recall: 0.38400 F1: 0.43292 F2: 0.40218 # Total predictions: 14000 True positives: 768 False positives: 780 False negatives: 1232 True negatives: 11220 # #============================================================================== #==============================================================================
[ "pranay.valson@gmail.com" ]
pranay.valson@gmail.com
6645d5a6dce03632ee27b25baedaec0596e6733e
4eb32b229dffcfc19cc28189e12602e63a3799cc
/tests/conftest.py
b4628e9431f31f66807cbb01daa476159a7e75b7
[ "MIT" ]
permissive
karlneco/kanji-test-maker
4fc09e31a80fdb47e176ba7f69daaa36790dc412
6d3c855718971cb0061b4c238ebb8329328018bf
refs/heads/master
2023-03-31T00:45:59.830161
2023-03-27T04:29:10
2023-03-27T04:29:10
227,032,872
2
0
MIT
2023-02-15T23:08:52
2019-12-10T05:00:46
Python
UTF-8
Python
false
false
3,456
py
import pytest from flask_login import login_user, login_manager, LoginManager from hktm import create_app, db from hktm.models import User, Lesson, LessonMaterial, MaterialType @pytest.fixture() def app(): app = create_app('test.cfg') return app @pytest.fixture() def auth_user(app): @app.login_manager.request_loader def load_user_from_request(request): return User.query.first() @pytest.fixture(scope='module') def test_client(): app = create_app('test.cfg') client = app.test_client() ctx = app.app_context() ctx.push() yield client ctx.pop() @pytest.fixture() def init_database(): db.create_all() db.session.commit() yield db db.drop_all() @pytest.fixture() def add_data(init_database): material_type1 = MaterialType('KJTS','Kanji Test','Instruction for Kanji Test') material_type2 = MaterialType('TRCP','Tracing','Instruction for Tracing') material_type3 = MaterialType('KJWR','Kanji Writing','Instruction for Kanji Writing') material_type4 = MaterialType('KJRD','Kanji Reading','Instruction for Kanji Reading') material_type5 = MaterialType('NWRD','New Reading','Instruction for New Reading') material_type6 = MaterialType('KT36','Kanji Test 3-6','Instruction for Kanji Test grades 3-6') user1 = User('user1@gmail.com','password') user1.grades = '1' user2 = User('user26@gmail.com','password') user2.grades = '2,6' user3 = User('userempty@gmail.com','password') user3.grades = '3' user4 = User('usernoteset@gmail.com','password') userAdmin = User('admin@hoshuko.com','password') userAdmin.grades = 'A123456789' lesson11 = Lesson('Grade 1 - Lesson 1','1') lesson12 = Lesson('Grade 1 - Lesson 2','1') lesson21 = Lesson('Grade 2 - Lesson 1','2') lesson22 = Lesson('Grade 2 - Lesson 2','2') lesson61 = Lesson('Grade 6 - Lesson 1','6') db.session.add_all([material_type1,material_type2,material_type3,material_type4,material_type5,material_type6]) db.session.add_all([user1, user2, user3, user4, userAdmin]) db.session.add_all([lesson11, lesson12, lesson21, lesson22, lesson61]) db.session.commit() lesson_mat_11_1 = LessonMaterial('Lesson 1 Material 1','something',lesson11.id,'KJTS') db.session.add(lesson_mat_11_1) db.session.commit() @pytest.fixture() def existing_user(): user = User('testuser@gmail.com','password') user.grades = '1' db.session.add(user) db.session.commit() @pytest.fixture def authenticated_request(test_client): user = User('testuser@gmail.com','password') user.grades = '1' db.session.add(user) db.session.commit() # with flask_app.test_request_context(): # yield login_user(User('testuser@gmail.com','password')) ######################################## fix for Live_server fixture and windows # @pytest.fixture(scope="session") # def flask_port(): # ## Ask OS for a free port. # # # with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: # s.bind(("", 0)) # addr = s.getsockname() # port = addr[1] # return port # # @pytest.fixture(scope="session", autouse=True) # def live_server(flask_port): # env = os.environ.copy() # env["FLASK_APP"] = "main.py" # server = subprocess.Popen(['flask', 'run', '--port', str(flask_port)], env=env) # try: # yield server # finally: # server.terminate()
[ "karl1112@gmail.com" ]
karl1112@gmail.com
16ca7bb88839c3a6b72181762a2ffaa3aac44251
f4062989a2b3cab117ac18a1e5408b521f69bf76
/users/validators.py
d7e65c36f869f9ac0cf31fc4c5ebfb0141d88c2e
[]
no_license
saeedhassan/CHQ_Backend
4e07bd5d95251e6bcd472d320e92f092d64bf071
3798a2b8c4e5bfbb4f4826ee22d9574316a18a90
refs/heads/main
2023-02-26T02:36:59.478206
2021-01-25T17:07:53
2021-01-25T17:07:53
467,846,247
1
0
null
2022-03-09T08:49:02
2022-03-09T08:49:02
null
UTF-8
Python
false
false
1,732
py
""" Custom model validators """ import re import django import jsonschema from django.core.exceptions import ValidationError from django.core.validators import BaseValidator from django.utils.translation import gettext_lazy as _ from users.CHQ_Scoring.github_score import CHQScore from django.conf import settings from users.utils import get_github_username from users import news class JSONSchemaValidator(BaseValidator): """validate json schemas against templates""" def compare(self, input, schema): try: jsonschema.validate(input, schema) except jsonschema.exceptions.ValidationError: raise django.core.exceptions.ValidationError( '%(value)s failed JSON schema check', params={'value': input}) def validate_no_news_source(value): """news needs to be part of news source""" if value not in news.NEWS_SITES: raise ValidationError( _('%(value)s is not an available news source'), params={'value': value}, ) def validate_github_url(value): """validate github profile""" pattern = r'github.com\/[a-zA-Z0-9]+(?:-[a-zA-Z0-9]+)*\/?$' if re.search(pattern, value) is None: raise ValidationError( _('%(value)s is not a valid github profile.'), params={'value': value}, ) def validate_github_user(value): """make sure github user is an actual user, consumes one api call""" user_name = get_github_username(value) chq_score = CHQScore(settings.GITHUB_TOKEN) if chq_score.check_user_exists(user_name) == False: raise ValidationError(_('github username %(value)s doesnt exist'), params={'value': user_name},)
[ "x.suwaidi@gmail.com" ]
x.suwaidi@gmail.com
64f1c7bd8f0f8bab932d8e95efb828f317b84145
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/438806_catenateFilesFactory/recipe-438806.py
59a8c77281e6b148e80c4e006fc5987455451ecf
[ "Python-2.0", "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
2,449
py
import os def catenateFilesFactory(isTextFiles=True, isClearTgt=True, isCreateTgt=True): """return a catenateFiles function parameterized by the factory arguments. isTextFiles: Catenate text files. If the last line of a non-empty file is not terminated by an EOL, append an EOL to it. isClearTgt If the target file already exists, clear its original contents before appending the source files. isCreateTgt If the target file does not already exist, and this parameter is True, create the target file; otherwise raise an IOError. """ eol = os.linesep lenEol = len(eol) def catenateFiles(tgtFile, *srcFiles): isTgtAppendEol = False if os.path.isfile(tgtFile): if isClearTgt: tgt = open(tgtFile, 'wb') tgt.close() elif isTextFiles: tgt = open(tgtFile, 'rb') data = tgt.read() tgt.close() if len(data) and (len(data) < lenEol or data[-lenEol:] != eol): isTgtAppendEol = True elif not isCreateTgt: raise IOError, "catenateFiles target file '%s' not found" % ( tgtFile) tgt = open(tgtFile, 'ab') if isTgtAppendEol: tgt.write(eol) for srcFile in srcFiles: src = open(srcFile, 'rb') data = src.read() src.close() tgt.write(data) if (isTextFiles and len(data) and (len(data) < lenEol or data[-lenEol:] != eol)): tgt.write(eol) tgt.close() return # Support reflection and doc string. catenateFiles.isTextFiles = isTextFiles catenateFiles.isClearTgt = isClearTgt catenateFiles.isCreateTgt = isCreateTgt if isTextFiles: docFileType = "text" else: docFileType = "binary" if isCreateTgt: docCreate = "Create tgtFile if it does not already exist." else: docCreate = "Require that tgtFile already exists." if isClearTgt: docClear = "replace" else: docClear = "append to" catenateFiles.__doc__ = """Catenate %s srcFiles to %s the tgtFile. %s All of the srcFiles must exist; otherwise raise an IOError. """ % (docFileType, docClear, docCreate) return catenateFiles
[ "betty@qburst.com" ]
betty@qburst.com
35b33536fa724c6e8c12b3a831280b5ef91b1f3e
336f6cbc2fa3821ad07c702c136bd55034cd2780
/api/views.py
5f4dc1ce2afdd034d87e15aa2e72ff373803d22c
[]
no_license
wucg-python/dry1
2521bccfa23c84d4d93e28c9a4a19c4eb0c6b6ec
e68ebc5e6f65ee3ca5850223a61574b40837feba
refs/heads/master
2023-01-05T19:28:02.699639
2020-11-02T02:16:08
2020-11-02T02:16:08
309,234,902
0
0
null
null
null
null
UTF-8
Python
false
false
7,390
py
from django.shortcuts import render # Create your views here. from rest_framework import mixins from rest_framework.generics import GenericAPIView from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import generics from api.models import Book, User from api.serializers import BookModelSerializer, UserModelSerializer from rest_framework import viewsets class BookAPIView(APIView): def get(self,request,*args,**kwargs): book_id = kwargs.get('id') if book_id: book = Book.objects.filter(id=book_id,is_delete=False) serialize = BookModelSerializer(book,many=True).data # print(serialize) return Response({ 'status':200, "message":"ๆŸฅ่ฏขไธ€ไธชไนฆ็ฑ", "result":serialize, }) else: books = Book.objects.filter(is_delete=False) serialize = BookModelSerializer(books,many=True).data return Response({ 'status': 200, "message": "ๆŸฅ่ฏขๆ‰€ๆœ‰ไนฆ็ฑ", "result": serialize, }) def post(self,request,*args,**kwargs): request_data = request.data print(request_data) if isinstance(request_data,dict): many = False elif isinstance(request_data,list): many = True else: return Response({ "status":400, "message":"ๆทปๅŠ ๅคฑ่ดฅ" }) serialize = BookModelSerializer(data=request_data,many=many) serialize.is_valid(raise_exception=True) book = serialize.save() return Response({ 'status': 200, "message": "ๆทปๅŠ ไนฆ็ฑ", "result": BookModelSerializer(book,many=many).data, }) def delete(self,request,*args,**kwargs): id = kwargs.get('id') if id: # ๅˆ ้™คๅ•ไธช ids = [id] else: ids = request.data response = Book.objects.filter(id__in=ids,is_delete=False).update(is_delete=True) if response: return Response({ "status":200, "message":"ๅˆ ้™คๆˆๅŠŸ", }) else: return Response({ "status": 400, "message": "ๅˆ ้™คๅคฑ่ดฅๆˆ–ๅทฒ่ขซๅˆ ้™ค", }) # ๆ›ดๆ–ฐๅ•ไธชๆ•ดไฝ“ def put(self,request,*args,**kwargs): # ่Žทๅ–ๅˆฐไฟฎๆ”น็š„ๅ€ผ request_data = request.data # ่Žทๅ–ๅˆฐ่ขซไฟฎๆ”น็š„ๅฏน่ฑก book_id = kwargs.get('id') try: book_obj = Book.objects.get(id=book_id) except: return Response({ "status":400, "message":"ๅฏน่ฑกไธๅญ˜ๅœจ" }) serializer = BookModelSerializer(data=request_data,instance=book_obj,partial=True) serializer.is_valid(raise_exception=True) book = serializer.save() return Response({ "status":200, "message":"ไฟฎๆ”นๆˆๅŠŸ", "result":BookModelSerializer(book).data }) # def patch(self,request,*args,**kwargs): # # ่Žทๅ–ๅˆฐไฟฎๆ”น็š„ๅ€ผ # request_data = request.data # # ่Žทๅ–ๅˆฐ่ขซไฟฎๆ”น็š„ๅฏน่ฑก # book_id = kwargs.get('id') # try: # book_obj = Book.objects.get(id=book_id) # except: # return Response({ # "status": 400, # "message": "ๅฏน่ฑกไธๅญ˜ๅœจ" # }) # serializer = BookModelSerializer(data=request_data, instance=book_obj,partial=True) # serializer.is_valid(raise_exception=True) # book = serializer.save() # return Response({ # "status": 200, # "message": "ไฟฎๆ”นๆˆๅŠŸ", # "result": BookModelSerializer(book).data # }) def patch(self,request,*args,**kwargs): ''' ๆ›ดๆ–ฐๅ•ไธช id kwargs.get('id') ๆ›ดๆ–ฐๅคšไธช [{},{},{}] :param request: :param args: :param kwargs: :return: ''' book_id = kwargs.get('id') request_data = request.data # ไฟฎๆ”นๅ•ไธช if book_id and isinstance(request_data,dict): ids = [book_id] request_data = [request_data] elif not book_id and isinstance(request_data,list): ids = [] for i in request_data: id = i.pop('id',None) if id: ids.append(id) else: return Response({ 'status':400, "message":"idไธๅญ˜ๅœจ" }) else: return Response({ "status":400, "message":"ๆ ผๅผ้”™่ฏฏ" }) books_obj = [] new_data = [] for index,id in enumerate(ids): print(index,id) try: book_obj = Book.objects.get(id) print(book_obj) books_obj.append(book_obj) new_data.append(request_data[index]) except: continue serializer = BookModelSerializer(data=new_data,instance=books_obj,partial=True,many=True) serializer.is_valid(raise_exception=True) datas = serializer.save() return Response({ "status":200, "message":"ๆˆๅŠŸ", "result": BookModelSerializer(datas).data }) class BookGenericAPIView(GenericAPIView, mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.DestroyModelMixin, mixins.CreateModelMixin, mixins.UpdateModelMixin, ): queryset = Book.objects.filter(is_delete=False) serializer_class = BookModelSerializer lookup_field = "id" def get(self,request,*args,**kwargs): if "id" in kwargs: return self.retrieve(request,*args,**kwargs) return self.list(request,*args,**kwargs) def post(self,request,*args,**kwargs): return self.create(request,*args,**kwargs) def delete(self,request,*args,**kwargs): return self.destroy(request,*args,**kwargs) def put(self,request,*args,**kwargs): return self.partial_update(request,*args,**kwargs) class BookGenerics(generics.ListAPIView, generics.ListCreateAPIView): queryset = Book.objects.filter() serializer_class = BookModelSerializer lookup_field = "id" class UserAPIView(viewsets.GenericViewSet, mixins.CreateModelMixin): queryset = User.objects.all() serializer_class = UserModelSerializer lookup_field = "id" def register(self,request,*args,**kwargs): return self.create(request,*args,**kwargs) def login(self,request,*args,**kwargs): request_data = request.data print(request_data) user= User.objects.filter(username=request_data.get('username'),password=request_data.get('password')) if user: return Response({ "status":200, "message":"็™ป้™†ๆˆๅŠŸ" }) return Response({ "status":400, "message":"็™ป้™†ๅคฑ่ดฅ" })
[ "1490168051@qq.com" ]
1490168051@qq.com
db6db0e486babf550b51b49de237a138ddc8b6ff
960a8f1bec84563680271d10e2b9dfd296599d86
/python/kyu_6/replace_with_alphabet_position.py
d24aef52d6acd7655c9d3a2f654f25666d09e95a
[]
no_license
Sqvall/codewars
42bcbfad99cd6c34fd3ec5fd903010d255e5d8e9
4f102d89ff86cd544eed362a232cbc1f4afea77c
refs/heads/master
2021-11-18T22:35:38.717604
2021-09-27T10:54:10
2021-09-27T10:54:10
204,555,403
1
0
null
null
null
null
UTF-8
Python
false
false
606
py
""" https://www.codewars.com/kata/546f922b54af40e1e90001da """ from string import ascii_lowercase def alphabet_position(text): score = 1 score_dict = {} for i in ascii_lowercase: score_dict[i] = score score += 1 t = text.lower() out = '' for i in t: if i in score_dict: out += repr(score_dict[i]) + " " return out[0:-1] print(alphabet_position("The sunset sets at twelve o' clock.")) # '20 8 5 19 21 14 19 5 20 19 5 20 19 1 20 20 23 5 12 22 5 15 3 12 15 3 11' # '20 8 5 19 21 14 19 5 20 19 5 20 19 1 20 20 23 5 12 22 5 15 3 12 15 3 11'
[ "masster1987@inbox.ru" ]
masster1987@inbox.ru
b003fe59cd7510a33a775dff69cf99d6c0c439fb
c21b64617d440a2b70b75ecdb756607044b1b797
/todo/views.py
c135c8223640593189972880eb382f5f623da91c
[ "Apache-2.0" ]
permissive
foxy4096/DjangoToDo
cfe8d6151ba2f32f922777f7d4646dd11d6b36cb
f19d1a6d0d953354245cb4e3dedd2ad8710b4ec0
refs/heads/main
2023-09-02T03:34:33.144510
2021-11-12T10:21:17
2021-11-12T10:21:17
427,317,178
1
0
null
null
null
null
UTF-8
Python
false
false
850
py
from django.views.generic import * from django.shortcuts import redirect from .models import ToDo class ToDoListView(ListView): model = ToDo context_object_name = "todos" class ToDoCreateView(CreateView): model = ToDo success_url = '/' fields = '__all__' def form_valid(self, form): form.save() return super().form_valid(form) class ToDoUpdateView(UpdateView): model = ToDo success_url = '/' fields = '__all__' def form_valid(self, form): form.save() return super().form_valid(form) class ToDoDeleteView(DeleteView): model = ToDo success_url = '/' def get_context_data(self, **kwargs): context = super(ToDoDeleteView, self).get_context_data(**kwargs) context['todo'] = ToDo.objects.get(pk=self.object.pk) return context
[ "54215788+foxy4096@users.noreply.github.com" ]
54215788+foxy4096@users.noreply.github.com
d1fdbec314276a6ab8c6ad6bf9fb6fc536447263
09756a11e9c1e7c771a1ee7afaafff2bee28c9aa
/pyReadFileEx.py
30682bc1a8cadb34471a27fbe7b7c67e3103ea17
[]
no_license
mgupte7/python-examples1
74c1038ce0973ea6c668adec064c64ad59341073
cfa903f3a6e021a408013f2fd45d3cb281a094ab
refs/heads/main
2023-08-27T10:06:24.681075
2021-11-11T02:56:28
2021-11-11T02:56:28
405,139,727
0
0
null
null
null
null
UTF-8
Python
false
false
949
py
# ------------------------------------------------ # ----------------Python Read Files--------------- # ------------------------------------------------ # ex 1 - The open() function returns a file object, which has a read() method for reading the content of the file: f = open("demofile.txt", "r") print(f.read()) # ex 2 - Open a file on a different location: f = open("D:\\myfiles\welcome.txt", "r") print(f.read()) # ex 3 - Return the 5 first characters of the file: f = open("demofile.txt", "r") print(f.read(5)) # ex 4 - Read one line of the file: f = open("demofile.txt", "r") print(f.readline()) # ex 5 - Read two lines of the file: f = open("demofile.txt", "r") print(f.readline()) print(f.readline()) # ex 6 - Loop through the file line by line: f = open("demofile.txt", "r") for x in f: print(x) # ex 7 - Close the file when you are finish with it: f = open("demofile.txt", "r") print(f.readline()) f.close() # ex 8 # ex 9 # ex 10
[ "noreply@github.com" ]
mgupte7.noreply@github.com
0384ff350e0c11acd5694d601dd75ef9f8c1794b
0e0254ead600d156e96b6a3a814806156f0d807d
/users/urls.py
a54f169d91f50903e4223765ed8dae5f79e9e341
[]
no_license
catding/trainserver
1ade4b9b53995ba93d290f19d74c7981ecc1a9bf
3d0dbcf92642fe42293736f8bdf812d43e0cb67b
refs/heads/master
2022-04-08T05:03:33.773819
2020-03-07T13:13:08
2020-03-07T13:13:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,611
py
from django.urls import include, path, re_path from rest_framework import routers from .api import ( LoginView, LogoutView, AccountDetailView, PasswordChangeView, PasswordResetView, PasswordResetConfirmView, ExcelfileUploadView, UserAvatarView, UserView ) router = routers.SimpleRouter(trailing_slash=False) router.register(r'user', UserView) urlpatterns = [ # URLs that do not require a session or valid token path('auth/password/reset', PasswordResetView.as_view(), name='user_password_reset'), path('auth/password/reset/confirm', PasswordResetConfirmView.as_view(), name='user_password_reset_confirm'), path('auth/password/change', PasswordChangeView.as_view(), name='user_password_change'), path('auth/login', LoginView.as_view(), name='user_login'), # URLs that require a user to be logged in with a valid session / token. path('auth/logout', LogoutView.as_view(), name='auth_logout'), path('account/info', AccountDetailView.as_view(), name='account_details'), path('account/avatar', UserAvatarView.as_view(), name='account_avatar'), # path('user/list/trainmanager', UserListView.as_view(), name='user_list'), path('user/upload', ExcelfileUploadView.as_view(), name='user_upload'), # path('user/list/trainmanager', UserListView.as_view({'get': 'list'}), name='user_trainmanagerlist'), # path('user/list', UserListView.as_view({'get': 'list', 'patch': 'bulkdelete'}), name='user_list'), # path('user/list/<str:roles>', UserListView.as_view({'get': 'list'}), name='user_listrole'), ] urlpatterns += router.urls
[ "36583983@qq.com" ]
36583983@qq.com
3e1077c0c7f104ca8e5cff93ad223d48c668bb26
d04975c798ad43c8fadc8cf7b0b3742bbbdbc632
/dashboard/consumption/queries.py
402f2756edeaf320d860670f4f342dbda480aacc
[]
no_license
yuki0417/smap-coding-challenge
331e99a980adcf561338ec539631c78e33b251d0
6041d895f6088d8d19c12cd0ec7a44c3bb15d04c
refs/heads/master
2023-03-13T14:48:44.443640
2021-03-02T13:07:59
2021-03-02T13:07:59
339,998,433
0
0
null
2021-03-02T13:08:00
2021-02-18T09:28:08
Python
UTF-8
Python
false
false
2,451
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db.models import Avg, Sum from .models import Consumption, User class ConsumptionQueryset(): """queryset for consumption data """ def get_consumption_avg_and_sum(): """get average and sum of consumption Get average and sum of consumption all time Returns: QuerySet (dict): consumption data for each user Raises: Consumption.DoesNotExist: if Consumption is not found """ consum_data = Consumption.objects.values('datetime').annotate( Avg('consumption'), Sum('consumption')).order_by('datetime') if consum_data.exists(): return consum_data else: raise Consumption.DoesNotExist def get_each_user_average_consumption(): """get user's average consumption Get user's average comsumption Returns: QuerySet (dict): consumption data for each user Raises: Consumption.DoesNotExist: if Consumption is not found """ consum_data = Consumption.objects.values('user_id').annotate( Avg('consumption')) if consum_data.exists(): return consum_data else: raise Consumption.DoesNotExist def get_user_consumption_order_by_date(user_id): """get user's consumption data order by datetime Get specified user's comsumption. Args: user_id (int): user id Returns: QuerySet (Consumption): consumption data for each user Raises: Consumption.DoesNotExist: if user is not found """ user = User.objects.get(id=user_id) consum_data = Consumption.objects.filter( user_id=user).order_by('datetime') if consum_data.exists(): return consum_data else: raise Consumption.DoesNotExist class UserQueryset(): """queryset for user data """ def get_all_user(): """get all user Get All user data. Args: user (User object): user model object Returns: QuerySet (User): all user data Raises: User.DoesNotExist: if user is not found """ user_data = User.objects.all() if user_data.exists(): return user_data else: raise User.DoesNotExist
[ "nicorasuster@gmail.com" ]
nicorasuster@gmail.com
34ffe8b08928d8766903d48e45e665ebdbb0834e
8f90482e83eaac3af8b8acf019a232ec92fc878d
/assignment1/q2_neural.py
5c6f31e1da37706d0dfe27371bfba3de63ff1230
[]
no_license
aoussou/cs224n
72413ec35ad0c760127703da2ff0d6753d3a3559
1a27d8d359c920013424a5e3376fa734c20ac10c
refs/heads/master
2021-10-23T16:08:50.336982
2019-03-18T17:31:39
2019-03-18T17:31:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,627
py
#!/usr/bin/env python import numpy as np import random from q1_softmax import softmax from q2_sigmoid import sigmoid, sigmoid_grad from q2_gradcheck import gradcheck_naive def forward_backward_prop(data, labels, params, dimensions): """ Forward and backward propagation for a two-layer sigmoidal network Compute the forward propagation and for the cross entropy cost, and backward propagation for the gradients for all parameters. Arguments: data -- M x Dx matrix, where each row is a training example. labels -- M x Dy matrix, where each row is a one-hot vector. params -- Model parameters, these are unpacked for you. dimensions -- A tuple of input dimension, number of hidden units and output dimension """ ### Unpack network parameters (do not modify) ofs = 0 Dx, H, Dy = (dimensions[0], dimensions[1], dimensions[2]) W1 = np.reshape(params[ofs:ofs+ Dx * H], (Dx, H)) ofs += Dx * H b1 = np.reshape(params[ofs:ofs + H], (1, H)) ofs += H W2 = np.reshape(params[ofs:ofs + H * Dy], (H, Dy)) ofs += H * Dy b2 = np.reshape(params[ofs:ofs + Dy], (1, Dy)) z1 = np.dot(data,W1) + b1 h = sigmoid(z1) z2 = np.dot(h,W2) + b2 yhat = softmax(z2) cost = -np.sum(labels*np.log(yhat)) d1 = yhat - labels d2 = d1.dot(W2.T) d3 = d2*sigmoid_grad(h) gradW2 = np.dot(h.T,d1) gradb2 = np.sum(d1,axis = 0) gradW1 = np.dot(data.T,d3) gradb1 = np.sum(d3,axis = 0) ### Stack gradients (do not modify) grad = np.concatenate((gradW1.flatten(), gradb1.flatten(), gradW2.flatten(), gradb2.flatten())) return cost, grad def sanity_check(): """ Set up fake data and parameters for the neural network, and test using gradcheck. """ print "Running sanity check..." N = 20 dimensions = [10, 5, 10] data = np.random.randn(N, dimensions[0]) # each row will be a datum labels = np.zeros((N, dimensions[2])) for i in xrange(N): labels[i, random.randint(0,dimensions[2]-1)] = 1 params = np.random.randn((dimensions[0] + 1) * dimensions[1] + ( dimensions[1] + 1) * dimensions[2], ) gradcheck_naive(lambda params: forward_backward_prop(data, labels, params, dimensions), params) def your_sanity_checks(): """ Use this space add any additional sanity checks by running: python q2_neural.py This function will not be called by the autograder, nor will your additional tests be graded. """ if __name__ == "__main__": sanity_check() your_sanity_checks()
[ "noreply@github.com" ]
aoussou.noreply@github.com
f2f5ef38ae9682ff7b25a938c4bedefddb4f355e
51a38a3b7d90bae3b8d137decb681eea5264c1d6
/i_scene_cp77_gltf/material_types/glass.py
188e0a71a10560152bd25f176c3e8fc445ba17c1
[]
no_license
Walrus159/cp77research
8ece0de4fec7ab9a61c43dbafc38350ee1f6d0ef
4612c86245f874dec3fbf5c2deff9cbf998d23ce
refs/heads/main
2023-07-19T12:32:59.968590
2021-08-31T23:56:42
2021-08-31T23:56:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,285
py
import bpy import os from ..main.common import imageFromPath class Glass: def __init__(self, BasePath,image_format): self.BasePath = BasePath self.image_format = image_format def create(self,Glass,Mat): CurMat = Mat.node_tree CurMat.nodes['Principled BSDF'].inputs['Transmission'].default_value = 1 Color = CurMat.nodes.new("ShaderNodeRGB") Color.location = (-400,200) Color.hide = True Color.label = "TintColor" Color.outputs[0].default_value = (float(Glass["TintColor"]["Red"])/255,float(Glass["TintColor"]["Green"])/255,float(Glass["TintColor"]["Blue"])/255,float(Glass["TintColor"]["Alpha"])/255) CurMat.links.new(Color.outputs[0],CurMat.nodes['Principled BSDF'].inputs['Base Color']) IOR = CurMat.nodes.new("ShaderNodeValue") IOR.location = (-400,-150) IOR.outputs[0].default_value = float(Glass["IOR"]) IOR.hide = True IOR.label = "IOR" CurMat.links.new(IOR.outputs[0],CurMat.nodes['Principled BSDF'].inputs['IOR']) rImg = imageFromPath(self.BasePath + Glass["Roughness"],self.image_format,True) rImgNode = CurMat.nodes.new("ShaderNodeTexImage") rImgNode.location = (-800,50) rImgNode.image = rImg rImgNode.label = "Roughness" CurMat.links.new(rImgNode.outputs[0],CurMat.nodes['Principled BSDF'].inputs['Roughness']) nImg = imageFromPath(self.BasePath + Glass["Normal"],self.image_format,True) nImgNode = CurMat.nodes.new("ShaderNodeTexImage") nImgNode.location = (-800,-300) nImgNode.image = nImg nImgNode.label = "Normal" nRgbCurve = CurMat.nodes.new("ShaderNodeRGBCurve") nRgbCurve.location = (-500,-300) nRgbCurve.hide = True nRgbCurve.mapping.curves[2].points[0].location = (0,1) nRgbCurve.mapping.curves[2].points[1].location = (1,1) nMap = CurMat.nodes.new("ShaderNodeNormalMap") nMap.location = (-200,-300) nMap.hide = True CurMat.links.new(nImgNode.outputs[0],nRgbCurve.inputs[1]) CurMat.links.new(nRgbCurve.outputs[0],nMap.inputs[1]) CurMat.links.new(nMap.outputs[0],CurMat.nodes['Principled BSDF'].inputs['Normal'])
[ "65016231+ja-to@users.noreply.github.com" ]
65016231+ja-to@users.noreply.github.com
c15c181958bc2aea8abc6b30ac520658a40dd56e
5a903f3d295b9942224e5f01bce388a25a788f35
/Q_learning_Games_v2/Q_Learning_Games_v2_/Sarsa_vs_Q_Learning/Taxi_Game/Taxi_Analysis/print_taxi_comparison_plots.py
dc4dd5c1b825083bece4a64ebfcd723565d9adaa
[ "MIT" ]
permissive
GiacomoFerro/Bachelor-Thesis
0382e6b36c5b890e72028a97e59e80b5563d0f0f
a9ac91a208dfc175084cf22673f88add6ec15281
refs/heads/master
2020-04-06T18:00:16.103447
2019-10-09T15:11:29
2019-10-09T15:11:29
157,681,361
0
0
null
null
null
null
UTF-8
Python
false
false
1,723
py
#libreria per generare grafici import matplotlib.pyplot as plt import matplotlib.patches as mpatches #lib to remove files import os print("Make the comparison Plots") plt.rc('xtick', labelsize=8) plt.rc('ytick', labelsize=8) plt.figure(figsize=(10, 5)) f=open("rewards_taxi_qlearning.txt","r") stringa=f.readline() n=0 while stringa!="":#count the number of rewards n+=1 stringa=f.readline() newRewards=[ 0 for i in range(n)] newRewardsSarsa=[ 0 for i in range(n)] #read q-learning rewards f=open("rewards_taxi_qlearning.txt","r") stringa=f.readline() n=0 while stringa!="":#make the rewards list newRewards[n]=stringa n+=1 stringa=f.readline() f.close() #read sarsa rewards f=open("rewards_taxi_sarsa.txt","r") stringa=f.readline() n=0 while stringa!="":#make the rewards list newRewardsSarsa[n]=stringa n+=1 stringa=f.readline() f.close() #eps list with numRewards slots eps=range(0,1000) plt.plot(eps,newRewards,'r',eps,newRewardsSarsa,'b') plt.title("Rewards collected over the time for Taxi game") plt.xlabel("Trials") plt.ylabel("Rewards") plt.grid()#put the grid qlearningLegend = mpatches.Patch(color='red', label='Q-learning') SarsaLegend = mpatches.Patch(color='blue', label='Sarsa') plt.legend(handles=[qlearningLegend,SarsaLegend]) plt.show()#print in output the plot and give the possibility to save it on your computer plt.savefig('taxi_sarsa_vs_Q_learning.png') os.remove("/home/giacomo/Scrivania/Q_Learning_Games_v2_/Sarsa_vs_Q_Learning/Taxi_Game/Taxi_Analysis/rewards_taxi_sarsa.txt") os.remove("/home/giacomo/Scrivania/Q_Learning_Games_v2_/Sarsa_vs_Q_Learning/Taxi_Game/Taxi_Analysis/rewards_taxi_qlearning.txt")#to remove the file
[ "noreply@github.com" ]
GiacomoFerro.noreply@github.com
1da061864c1b1847e3f5e231440d129e3e4feb12
a489362349b6c5b7eaa6b0be0a721e295d25b98b
/Gan.py
50e05e54bef6fd823c8f0287aedc6382c45774aa
[]
no_license
gmc112/Synthesising-Images-Via-Imagination
6de97ee71a321b203ed9a33094e2d7dbb51d45ae
d32fb800125b8fb8230a3e712ef287624098d5b0
refs/heads/master
2020-06-28T00:29:46.680922
2019-08-01T17:39:20
2019-08-01T17:39:20
200,092,288
0
0
null
null
null
null
UTF-8
Python
false
false
9,951
py
import tensorflow as tf import tensorflow.contrib.layers as tfcl import os import numpy as np import imageio import datetime import Utilities as util import Layers_gan as lay LEARNING_RATE = 2e-4 BATCH_SIZE = 64 HEIGHT = 128 WIDTH = 128 CHANNEL = 3 DATA_REPEATS = 4 EPOCHS = 1000 VERSION = "GAN_1" DATE = datetime.datetime.now().strftime("%d-%m-%H-%M-%S") SAVE_PATH = "./Project Out/" + VERSION + "/saved/" MODE = 1 # 0 For PNG, 1 for JPEG DROPOUT_RATE = 0.9 DISTORTED = False RESTORE = True # MODELS ARE TAKEN FROM EXAMPLE https://www.youtube.com/watch?v=yz6dNf7X7SA # The generator and discriminator functions are in theory the same layers though they have been heavily refactored to # improve modularity and reduce the repeated code across # Comments in the train function mark code sourced from the above link # These comments are relevant across all three GAN models def generator(input, random_dim, is_train, reuse=False): c4, c8, c16, c32, c64 = 512, 256, 128, 64, 32 # channel num s4 = 4 output_dim = CHANNEL # RGB image with tf.variable_scope('gen') as scope: if reuse: scope.reuse_variables() w1 = tf.get_variable('w1', shape=[random_dim, s4 * s4 * c4], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.02)) b1 = tf.get_variable('b1', shape=[c4 * s4 * s4], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) flat_conv1 = tf.add(tf.matmul(input, w1), b1, name='flat_conv1') # Convolution, bias, activation, repeat! with tf.name_scope("gen1"): conv1 = tf.reshape(flat_conv1, shape=[-1, s4, s4, c4], name='conv1') bn1 = tfcl.batch_norm(conv1, is_training=is_train, epsilon=1e-5, decay=0.9, updates_collections=None, scope='bn1') act1 = tf.nn.relu(bn1, name='act1') tf.summary.histogram("conv_t_act", act1) # 8*8*256 # Convolution, bias, activation, repeat! act2 = lay.conv_t(act1, c8, "gen2", is_train, False) # 16*16*128 act3 = lay.conv_t(act2, c16, "gen3", is_train, False) # 32*32*64 act4 = lay.conv_t(act3, c32, "gen4", is_train, False) # 64*64*32 act5 = lay.conv_t(act4, c64, "gen5", is_train, False) # 128*128*3 return lay.conv_t(act5, output_dim, "gen6", is_train, True) def discriminator(input, is_train, reuse=False): c2, c4, c8, c16 = 64, 128, 256, 512 # channel num: 64, 128, 256, 512 with tf.variable_scope('dis') as scope: if reuse: scope.reuse_variables() act1 = lay.conv(input, c2, "dis1", is_train) act2 = lay.conv(act1, c4, "dis2", is_train) act3 = lay.conv(act2, c8, "dis3", is_train) act4 = lay.conv(act3, c16, "dis4", is_train) dim = int(np.prod(act4.get_shape()[1:])) fc1 = tf.reshape(act4, shape=[-1, dim], name='fc1') w2 = tf.get_variable('w2', shape=[fc1.shape[-1], 1], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.02)) b2 = tf.get_variable('b2', shape=[1], dtype=tf.float32, initializer=tf.constant_initializer(0.0)) logits = tf.add(tf.matmul(fc1, w2), b2, name='logits') return logits def train(output, restore): dataset, size = util.read_images(DATA_REPEATS, MODE) size = size * EPOCHS dataset = dataset.map(lambda path: util.parse_image(path, MODE, HEIGHT, WIDTH, CHANNEL, DISTORTED)) dataset = dataset.shuffle(buffer_size=10000) dataset = dataset.repeat(EPOCHS) dataset = dataset.batch(BATCH_SIZE) iterator = dataset.make_one_shot_iterator() image_batch = iterator.get_next() iterator_sum = dataset.make_one_shot_iterator() im_sum_batch = iterator_sum.get_next() # The following section is sourced as is from the above link random_dim = 100 with tf.variable_scope('input'): real_image = tf.placeholder('float', shape=[None, HEIGHT, WIDTH, CHANNEL], name='real_img') random_input = tf.placeholder('float', shape=[None, random_dim], name='rand_input') is_train = tf.placeholder('bool', name='is_train') fake_image = generator(random_input, random_dim, is_train) real_result = discriminator(real_image, is_train) fake_result = discriminator(fake_image, is_train, reuse=True) d_loss = tf.reduce_mean(fake_result) - tf.reduce_mean(real_result) # This optimizes the discriminator. dloss_summary = tf.summary.scalar("dis loss", d_loss) g_loss = -tf.reduce_mean(fake_result) # This optimizes the generator. gloss_summary = tf.summary.scalar("gen loss", g_loss) t_vars = tf.trainable_variables() d_vars = [var for var in t_vars if 'dis' in var.name] g_vars = [var for var in t_vars if 'gen' in var.name] trainer_d = tf.train.RMSPropOptimizer(learning_rate=LEARNING_RATE).minimize(d_loss, var_list=d_vars) trainer_g = tf.train.RMSPropOptimizer(learning_rate=LEARNING_RATE).minimize(g_loss, var_list=g_vars) d_clip = [v.assign(tf.clip_by_value(v, -0.01, 0.01)) for v in d_vars] # End of sourced section sess = tf.Session() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) if not os.path.exists("./log/" + VERSION + DATE): os.makedirs("./log/" + VERSION + DATE) writer = tf.summary.FileWriter("./log/" + VERSION + " " + DATE) writer.add_graph(sess.graph) merged = tf.summary.merge_all() i = 0 while True: try: # The following section is sourced as is from the above link except the Tensorboard summaries print("Running iteration {}/{}...".format(i, (size // BATCH_SIZE + 1)//6)) if restore: checkpoint = tf.train.latest_checkpoint(SAVE_PATH) if checkpoint is not None: saver.restore(sess=sess, save_path=checkpoint) restore = False d_iters = 5 g_iters = 1 for k in range(d_iters): train_noise = np.random.uniform(-1.0, 1.0, size=[BATCH_SIZE, random_dim]).astype(np.float32) # sess.run(iterator.initializer) train_image = sess.run(image_batch) # wgan clip weights sess.run(d_clip) # Update the discriminator _, dloss, m = sess.run([trainer_d, d_loss, merged], feed_dict={random_input: train_noise, real_image: train_image, is_train: True}) writer.add_summary(m, i) # Update the generator for k in range(g_iters): train_noise = np.random.uniform(-1.0, 1.0, size=[BATCH_SIZE, random_dim]).astype(np.float32) img = sess.run(im_sum_batch) _, gloss, m = sess.run([trainer_g, g_loss, merged], feed_dict={random_input: train_noise, real_image: img, is_train: True}) writer.add_summary(m, i) #End of Sourced section if i % 50 == 0: # save images print("saving samples") if not os.path.exists(output): os.makedirs(output) sample_noise = np.random.uniform(-1.0, 1.0, size=[BATCH_SIZE, random_dim]).astype(np.float32) imgtest = sess.run(fake_image, feed_dict={random_input: sample_noise, is_train: False}) imgtest = ((imgtest + 1.) / 2.) # Keep same scale and floats but remove negatives imgtest = imgtest * 255 imgtest = tf.cast(imgtest, dtype=tf.uint8) imgtest = sess.run(imgtest) n = 0 for img in imgtest: path = output + "/" + str(i) + "-" + str(n) + ".png" imageio.imwrite(path, img) n += 1 if not os.path.exists(output + "/grid"): os.makedirs(output + "/grid") path = output + "/grid/" + str(i) + ".png" imageio.imwrite(path, util.create_grid(imgtest, HEIGHT, WIDTH, BATCH_SIZE)) if i % 250 == 0: if not os.path.exists(SAVE_PATH): os.makedirs(SAVE_PATH) saver.save(sess=sess, save_path=SAVE_PATH + "VAE", global_step=i) i += 1 except tf.errors.OutOfRangeError: print("Training Complete") break print("Generating Final Output") output = output + "/final_" + VERSION if not os.path.exists(output): os.makedirs(output) for x in range(5): try: out_enc = np.random.standard_normal(size=(64, 128, 128, 3)) final_out = sess.run(fake_image, feed_dict={input: out_enc, is_train: False}) final_out = ((final_out + 1.) / 2.) # Keep same scale and floats but remove negatives final_out = final_out * 255 final_out = tf.cast(final_out, dtype=tf.uint8) final_out = sess.run(final_out) n = 0 for img in final_out: path = output + "/" + str(i) + "-" + str(n) + ".png" imageio.imwrite(path, img) n += 1 if not os.path.exists(output + "/grid"): os.makedirs(output + "/grid") path = output + "/grid/" + str(i) + ".png" imageio.imwrite(path, util.create_grid(imgtest, HEIGHT, WIDTH, BATCH_SIZE)) except tf.errors.OutOfRangeError: print("Finished Generating output") break if __name__ == "__main__": output = "./Project Out/" + VERSION + "/" + DATE util.save_params(output, LEARNING_RATE, BATCH_SIZE, DATA_REPEATS, DROPOUT_RATE, EPOCHS, DISTORTED) train(output, RESTORE)
[ "ntb15144@uni.strath.ac.uk" ]
ntb15144@uni.strath.ac.uk
323ae2986aeb577ac7207ed8bc111206556ec27d
fbf7929ede740a416362e40b3b0d44d2b823c14e
/distinct_occure_helpers.py
f1b794b0ee5a00fe9dcf5314be1f2033a3856710
[ "MIT" ]
permissive
martynaut/mirnaome_somatic_mutations
f588545c57871c0125656445cc66198f04c98895
b7e332d56ee17c0b54969db8e515001bf23300f8
refs/heads/master
2020-04-24T22:33:20.446928
2019-08-08T20:14:56
2019-08-08T20:14:56
172,315,673
1
1
null
null
null
null
UTF-8
Python
false
false
5,968
py
import numpy as np def set_balance(row, ratio): if row['ratio 3/(3+5)'] >= ratio: return '3p' elif row['ratio 5/(3+5)'] >= ratio: return '5p' elif np.isnan(row['reads_3p']) and np.isnan(row['reads_5p']): return 'unknown' elif np.isnan(row['reads_3p']): return '5p' elif np.isnan(row['reads_5p']): return '3p' else: return 'both' def find_in_mirna(row, df_loc): if df_loc[ (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['orientation'] == row['orient_loc']) & (df_loc['stop'] >= row['pos'])].shape[0] != 0: temp = df_loc[ (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['orientation'] == row['orient_loc']) & (df_loc['stop'] >= row['pos'])].values[0] if row['orient_loc'] == '+': start = row['pos'] - temp[2] + 1 stop = row['pos'] - temp[3] - 1 else: start = -(row['pos'] - temp[3] - 1) stop = -(row['pos'] - temp[2] + 1) localiz = [start, stop] else: localiz = [np.nan, np.nan] return localiz def find_arm(row): if row['-/+'] == '+': if row['start'] - row['start_pre'] < row['stop_pre'] - row['stop']: return '5p' else: return '3p' if row['-/+'] == '-': if row['start'] - row['start_pre'] < row['stop_pre'] - row['stop']: return '3p' else: return '5p' def from_start(row, column_start, column_stop): if row['orient_loc'] == '+': return row['pos'] - row[column_start] + 1 else: return row[column_stop] - row['pos'] + 1 def from_end(row, column_stop, column_start): if row['orient_loc'] == '+': return row['pos'] - row[column_stop] - 1 else: return row[column_start] - row['pos'] - 1 def find_localization(row, df_loc): # fix values that were not in reference if row['name'].lower() == 'hsa-mir-4477b' and \ row['start'] == 63819560 and \ row['stop'] == 63819669: row['Strand'] = '+' elif row['name'].lower() == 'hsa-mir-6723': row['Strand'] = '-' elif row['name'].lower() == 'hsa-mir-3656': row['Strand'] = '+' if (type(row['Strand']) != str and df_loc[(df_loc['name'].str.contains(row['name'].lower())) & (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['stop'] >= row['pos'])].shape[0] != 0): localiz = df_loc[(df_loc['name'].str.contains(row['name'].lower())) & (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['stop'] >= row['pos'])].values[0] elif df_loc[(df_loc['name'].str.contains(row['name'].lower())) & (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['stop'] >= row['pos']) & (df_loc['orientation'] == row['Strand'])].shape[0] != 0: localiz = df_loc[(df_loc['name'].str.contains(row['name'].lower())) & (df_loc['chrom'] == row['chrom']) & (df_loc['start'] <= row['pos']) & (df_loc['stop'] >= row['pos']) & (df_loc['orientation'] == row['Strand'])].values[0] else: localiz = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] return localiz def if_complex(row, complex_df): if complex_df[(complex_df['chrom'] == row['chrom']) & (complex_df['start'] == row['start']) & (complex_df['stop'] == row['stop']) & (complex_df['gene'] == row['gene']) & (complex_df['seq_type'] == row['seq_type'])].shape[0] != 0: values = complex_df[(complex_df['chrom'] == row['chrom']) & (complex_df['start'] == row['start']) & (complex_df['stop'] == row['stop']) & (complex_df['gene'] == row['gene']) & (complex_df['seq_type'] == row['seq_type'])]['complex'].unique() if 1 in values: return 1 else: return 0 else: return 0 def concat_ints(col): row = list(col.values) new_row = [] for x in row: new_row.append(str(x)) return '"' + ':'.join(new_row) + '"' def concat_alg(col): row = list(col.values) new_row = [] for x in row: new_row.append(str(x)) new_row = sorted(set(new_row)) return '"' + ':'.join(new_row) + '"' def type_of_mutation(row): if len(row['ref']) > len(row['alt']): return 'del' elif len(row['ref']) == len(row['alt']): return 'subst' elif ',' in row['alt']: return 'subst' else: return 'ins' def take_from_coord(coordinates, column_name, row): return coordinates[(coordinates['chr'] == row['chrom']) & (coordinates['start'] < int(row['pos'])) & (coordinates['stop'] > int(row['pos']))][column_name].values[0] def seq_type(value, list_df): if 'hsa-' in value: return 'mirna' elif value in list_df: return 'cancer_exome' else: return 'not_defined' def subst_type(row): if row['mutation_type'] == 'subst': if (((row['ref'] in ['A', 'G']) and (row['alt'] in ['A', 'G'])) or ((row['ref'] in ['C', 'T']) and (row['alt'] in ['C', 'T']))): return 'transition' else: return 'transversion' else: return 'n.a.'
[ "martyna.urbanek@gmail.com" ]
martyna.urbanek@gmail.com
b4c799535b5e0995f3c1d6c81b0b0eaede036e40
19200bc6b36e33f9dec1394b90ff41272601b16d
/gistApi/asgi.py
d22173ac28e314752aaea0d52dc74a9b1c28f963
[]
no_license
AnoshaRehan/github-gist-api-django
103c8f0656899cd6cf068ea7945f29a51eb90e56
4c0a97f7eebca276de050ae071aabe40331806e1
refs/heads/main
2023-03-02T09:48:38.647915
2021-02-14T08:19:04
2021-02-14T08:19:04
338,624,345
0
0
null
null
null
null
UTF-8
Python
false
false
391
py
""" ASGI config for gistApi project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'gistApi.settings') application = get_asgi_application()
[ "anosha.rehan@lovefordata.com" ]
anosha.rehan@lovefordata.com
5f2b378d006e7aa2e46251661e0d4e03d3b9810f
d452e34253561a47b974e260dabd8dcda6e750a2
/supervised_learning/0x0B-face_verification/5-main.py
0859b3e7ecf4dc518afbab30ba555f77a521f265
[]
no_license
JohnCook17/holbertonschool-machine_learning
57fcb5b9d351826c3e3d5478b3b4fbe16cdfac9f
4200798bdbbe828db94e5585b62a595e3a96c3e6
refs/heads/master
2021-07-07T10:16:21.583107
2021-04-11T20:38:33
2021-04-11T20:38:33
255,424,823
3
2
null
null
null
null
UTF-8
Python
false
false
554
py
#!/usr/bin/env python3 from align import FaceAlign import matplotlib.image as mpimg import matplotlib.pyplot as plt from matplotlib.patches import Circle import numpy as np fa = FaceAlign('models/landmarks.dat') test_img = mpimg.imread('HBTN/KirenSrinivasan.jpg') anchors = np.array([[0.194157, 0.16926692], [0.7888591, 0.15817115], [0.4949509, 0.5144414]], dtype=np.float32) aligned = fa.align(test_img, np.array([36, 45, 33]), anchors, 96) plt.imshow(aligned) ax = plt.gca() for anchor in anchors: ax.add_patch(Circle(anchor * 96, 1)) plt.show()
[ "jcook0017@gmail.com" ]
jcook0017@gmail.com
d5b8181aea069440370a3630b8e9b4e47a43870f
72c9e235b19b80d9e332c1f19e1c4e1e28ff2cac
/craw/spider/LJ_parser.py
c2d8b50614943d46663ac37ac69ad4d2e39a7455
[]
no_license
VinceLim68/python-craw
56a1299b4e3ac55a3690946a6f4ff8c2c1ef5b04
37d1570ee10d080e55b5b8cf885b7e7a3b00c81d
refs/heads/master
2021-01-20T06:12:10.753799
2017-10-28T13:56:30
2017-10-28T13:56:30
89,851,102
1
0
null
null
null
null
UTF-8
Python
false
false
3,521
py
#coding:utf-8 from html_parser import HtmlParser import mytools import urllib2 from bs4 import BeautifulSoup import re class LjParser(HtmlParser): # ่ฟ™ไบ›ๆ˜ฏ2016.11.17้‡ๅ†™็š„๏ผŒๅŽŸๆฅ้‚ฃไธชๅ‡บ็Žฐไบ†่งฃๆž้”™่ฏฏ def _get_new_datas(self,soup): page_datas = [] titles = soup.select("div.title > a") houseinfo = soup.select("div.houseInfo") positionInfo = soup.select("div.positionInfo") totalprices = soup.select("div.totalPrice") for title,info,position,totalPrice in zip(titles,houseinfo,positionInfo,totalprices): # each_dataๆœ‰ไบ›้œ€่ฆ่ฎพ็ฝฎๅˆๅง‹ๅ€ผ each_data = {'builded_year':0,'spatial_arrangement':'','floor_index':0,'total_floor':0} each_data['title'] = title.get_text() each_data['details_url'] = title.get('href') each_data['total_price'] = int(round(float(re.search('(\d+.?\d+)ไธ‡'.decode('utf8'),totalPrice.get_text()).groups(0)[0]),0)) info_item = (info.get_text().split('|')) each_data['community_name'] = info_item[0].strip() # ็ฌฌ1ไธชๆ€ปๆ˜ฏๅฐๅŒบๅ็งฐ for i in range(1,len(info_item)): d1 = {} d1 = self.parse_item(info_item[i].strip()) if d1.has_key('advantage') and each_data.has_key('advantage'): d1['advantage'] = each_data['advantage'] + ',' + d1['advantage'] each_data = dict(each_data, **d1) position = position.get_text().replace('\t','').replace('\n','').split() each_data['block'] = position[-1] if ')' not in position[0]: #้“พๅ‰็š„ๅˆซๅข…ไผš็”จ'4ๅฑ‚2008ๅนดๅปบ'็š„ๅฝขๅผ๏ผŒๅŠ ๅ…ฅ')'๏ผŒไปฅไพฟๅˆ†้š” position[0] = position[0].replace('ๅฑ‚', 'ๅฑ‚)') for item in position[0].split(')'): #2017.4.1้“พๅฎถๆ ผๅผๆœ‰ๆ”น d1 = {} # d1 = self.parse_item(position[i].strip()) d1 = self.parse_item(item.strip()) #2017.4.1้“พๅฎถๆ ผๅผๆœ‰ๆ”น each_data = dict(each_data, **d1) each_data['price'] = float(each_data['total_price']*10000/each_data['area']) each_data['from'] = "lianjia" each_data = self.pipe(each_data) if each_data.has_key('total_floor') and each_data.has_key('total_price') and each_data.has_key('area') and each_data.has_key('community_name'): page_datas.append(each_data) else: if mytools.ShowInvalideData(each_data):page_datas.append(each_data) return page_datas def _get_new_urls(self , soup): new_urls = set() # links = soup.select("div.page-box") links = soup.select("div.house-lst-page-box") #2016.11.11ไฟฎๆ”น๏ผŒ็ฝ‘้กตๆ”นไบ† if len(links) == 0 : print "Only 1 page!!" else: t_page = eval(links[0].get('page-data'))['totalPage'] url = links[0].get('page-url') for i in range(1,t_page+1): new_urls.add("http://xm.lianjia.com" + url.replace("{page}",str(i))) return new_urls def _ischeck(self,soup): # ๅˆคๆ–ญๆ˜ฏๅฆๆ˜ฏ้ชŒ่ฏ็•Œ้ข ischeck = soup.select("title") if len(ischeck) > 0: #ๅฆ‚ๆžœๆ‰พไธๅˆฐtitle,ๅฐฑ่ฎคไธบไธๆ˜ฏ้ชŒ่ฏ็•Œ้ข iscode = ischeck[0].get_text().strip() == "้ชŒ่ฏๅผ‚ๅธธๆต้‡-้“พๅฎถ็ฝ‘" else: iscode = False return iscode
[ "1500725439@qq.com" ]
1500725439@qq.com
7508ed13cb989f8e06150d4a366684e8cb626f4c
890c8b8e90e516a5a3880eca9b2d217662fe7d84
/armulator/armv6/opcodes/abstract_opcodes/usad8.py
6568222b03d6464463dd16b171bf86a89484d155
[ "MIT" ]
permissive
doronz88/armulator
b864135996f876c7857b79a314d4aa06cc19c549
0294feac2785c8947e5943ac0c34f941ee4b5fff
refs/heads/master
2022-11-05T08:14:42.405335
2020-06-18T23:53:17
2020-06-18T23:53:17
273,363,061
2
0
null
2020-06-18T23:51:03
2020-06-18T23:51:02
null
UTF-8
Python
false
false
1,008
py
from armulator.armv6.opcodes.abstract_opcode import AbstractOpcode from bitstring import BitArray class Usad8(AbstractOpcode): def __init__(self, m, d, n): super(Usad8, self).__init__() self.m = m self.d = d self.n = n def execute(self, processor): if processor.condition_passed(): absdiff1 = abs( processor.registers.get(self.n)[24:32].uint - processor.registers.get(self.m)[24:32].uint) absdiff2 = abs( processor.registers.get(self.n)[16:24].uint - processor.registers.get(self.m)[16:24].uint) absdiff3 = abs( processor.registers.get(self.n)[8:16].uint - processor.registers.get(self.m)[8:16].uint) absdiff4 = abs( processor.registers.get(self.n)[0:8].uint - processor.registers.get(self.m)[0:8].uint) result = absdiff1 + absdiff2 + absdiff3 + absdiff4 processor.registers.set(self.d, BitArray(uint=result, length=32))
[ "matan1008@gmail.com" ]
matan1008@gmail.com
8b5c5c6b77660de1cffa41c624fe3f6e1c9a7840
fa88ee925ec2a3ca1def17f1518d6b3e59cab197
/Database Preprocessing/prepare_protein_data.py
f8ba54116deca63a435cf94336b6c7590a31e788
[]
no_license
asadahmedtech/DEELIG
20d915851bc053db7647d94e3ee61570524339d7
3a3993fc903c40f1ce904111c8e085c79fb45df6
refs/heads/master
2023-05-19T21:53:18.196879
2021-06-09T14:15:18
2021-06-09T14:15:18
264,231,113
9
5
null
null
null
null
UTF-8
Python
false
false
4,353
py
from Bio import * import os #PDB Parser from Bio.PDB.PDBParser import PDBParser from Bio.PDB.DSSP import DSSP from Bio.PDB.NACCESS import run_naccess, process_rsa_data import pickle #Labels for files """Secondary Structure in Millers Format H - Alpha Helix (4-12) = 1 B - Isolated Beta Bridge residue = 2 E - Strand = 3 G - 3-10 helix = 4 I - Pi Helix = 5 T - Turn = 6 S - bend = 7 - - None = 0 """ SS_Labels = {'H' : 1, 'B' : 2, 'E' : 3, 'G' : 4, 'I' : 5, 'T' : 6, 'S' : 7, '-' : 0} """Relactive Solvent Accessiblity (RSA) Threshold = 25 Exposed (> Threshold) = 1 Burried (<= Threshold) = 0 """ RSA_Threshold = 25 def parse_PSSM(file, path = '/home/binnu/Asad/dataset/new_db/pssm/'): pssm = {} with open(os.path.join(path, file), 'r') as f: lines = f.readlines() # lines = [i.split() if(len(i.split()) == 44) for i in lines] lines_new = [] for i in lines: i = i.split() if(len(i) == 44): lines_new.append(i) lines_new = [i[:22] for i in lines_new] for i in lines_new: scores = i[2:] scores = [int(temp_i) for temp_i in scores] pssm[i[0]] = scores # print(pssm) return pssm def calc_features(PATH, pdb_ligand_ID, OUTPATH): #Loading the files parser = PDBParser(PERMISSIVE = 1) PDB_id = pdb_ligand_ID[:4].lower() #+ '_pocket' filename = os.path.join(PATH, PDB_id + ".pdb") structure = parser.get_structure(PDB_id, filename) model = structure[0] #DSSP Analysis for SS, PHI, PSI dssp = DSSP(model, filename) #NACCESS Analysis for SASA rsa, asa = run_naccess(model, filename) rsa = process_rsa_data(rsa) # print(rsa) #Feature mapping to each atomic coordinate dssp_present, dssp_not_present = 0, 0 feature = dict() #The feature dictionary for model in structure: for chain in model: if(chain.get_full_id()[2] == pdb_ligand_ID.split('_')[2]): pssm_ID = chain.get_full_id()[0][:4].upper() + '_' + chain.get_full_id()[2] pssm = parse_PSSM(pssm_ID) start = True gap = 0 idx_prev = 0 for residue in chain: # if(start): # start_idx =residue.get_full_id()[3][1] # idx_prev = 0 idx = residue.get_full_id()[3][1] if(idx < 1): print(idx) a = 0 pass elif(idx - idx_prev >= 1): print(idx) a = 1 gap += idx - idx_prev -1 # elif(start): # gap += -1 # start = False for atom in residue: # print(atom.get_full_id()) ID = (atom.get_full_id()[2], atom.get_full_id()[3]) if(ID in list(dssp.keys())): if(rsa[ID]["all_atoms_abs"] > RSA_Threshold): rsa_label = 1 else: rsa_label = 0 print(gap, atom.get_full_id()[3][1], a) feat = (SS_Labels[dssp[ID][2]], dssp[ID][4]/360, dssp[ID][5]/360, rsa_label) + tuple(pssm[str(atom.get_full_id()[3][1] - gap)]) feature[tuple(atom.get_coord())] = feat print(pdb_ligand_ID[:4], ID, atom.get_coord(), feat) dssp_present += 1 else: print(">>> ID not present : ", atom.get_full_id()) dssp_not_present += 1 idx_prev = idx #Printing the Stats print("===> STATS : PDBID : %s , DSSP PRESENT : %s , DSSP NOT PRESENT : %s"%(PDB_id, dssp_present, dssp_not_present)) #Saving the feature to each PDB file with open(os.path.join(OUTPATH, pdb_ligand_ID + ".dat"), "wb+") as f: pickle.dump(feature, f) print("====> Dump completed") if __name__ == '__main__': input_dir = '/home/binnu/Asad/dataset/new_db/protein_pdb/' output_dir = "/home/binnu/Asad/dataset/new_db/protein_pdb_featurized/" IDs = '/home/binnu/Asad/dataset/new_db/PDB_ligands_chain_ID_pssm_Admet_padel.txt' files = open(IDs, 'r') files = files.readlines() files = [i[:-1] for i in files] files_done = os.listdir(output_dir) files_done = [i[:-4] for i in files_done] print(files_done) naccess_error = ['5FQD_LVY', '4EJG_NCT', '3N7A_FA1' , '2IJ7_TPF', '4EJH_0QA','2QJY_SMA','1WPG_TG1', '2A06_SMA','4UHL_VFV','3N8K_D1X','5FV9_Y6W','3N75_G4P','3B8H_NAD','3B82_NAD','3B78_NAD'] for file in files: if(file not in files_done) and file.split('_')[0] + '_' + file.split('_')[1] not in naccess_error: print("==> Featurizing : ", file) calc_features(input_dir, file, output_dir)
[ "aahmed3@student.nitw.ac.in" ]
aahmed3@student.nitw.ac.in
844abc176cf2c1ec5d48f1e98a0747b94eccebec
004b7726cfbedd6ecb6a1dec455211f1b1635919
/OCR_Test/gendata.py
8b5a276f17c703b35952b97c6ac1e980d94f708b
[]
no_license
bluedott/p3_fuckup
e1cafabeda43b2d190836bd994c4af5d5b8c2379
6ff119cded8c30ef3acfc02c5ecefaa4d9178520
refs/heads/main
2023-01-22T00:16:01.252835
2020-12-07T03:00:45
2020-12-07T03:00:45
319,187,963
0
1
null
null
null
null
UTF-8
Python
false
false
6,790
py
# GenData.py import sys import numpy as np import cv2 import os # module level variables ########################################################################## MIN_CONTOUR_AREA = 100 RESIZED_IMAGE_WIDTH = 20 RESIZED_IMAGE_HEIGHT = 30 ################################################################################################### def main(): imgTrainingNumbers = cv2.imread("training_chars_small_test.png") # read in training numbers image if imgTrainingNumbers is None: # if image was not read successfully print ("error: image not read from file \n\n") # print error message to std out os.system("pause") # pause so user can see error message return # and exit function (which exits program) # end if imgGray = cv2.cvtColor(imgTrainingNumbers, cv2.COLOR_BGR2GRAY) # get grayscale image imgBlurred = cv2.GaussianBlur(imgGray, (5,5), 0) # blur # filter image from grayscale to black and white imgThresh = cv2.adaptiveThreshold(imgBlurred, # input image 255, # make pixels that pass the threshold full white cv2.ADAPTIVE_THRESH_GAUSSIAN_C, # use gaussian rather than mean, seems to give better results cv2.THRESH_BINARY_INV, # invert so foreground will be white, background will be black 11, # size of a pixel neighborhood used to calculate threshold value 2) # constant subtracted from the mean or weighted mean cv2.imshow("imgThresh", imgThresh) # show threshold image for reference imgThreshCopy = imgThresh.copy() # make a copy of the thresh image, this in necessary b/c findContours modifies the image imgContours, npaContours, npaHierarchy = cv2.findContours(imgThreshCopy, # input image, make sure to use a copy since the function will modify this image in the course of finding contours cv2.RETR_EXTERNAL, # retrieve the outermost contours only cv2.CHAIN_APPROX_SIMPLE) # compress horizontal, vertical, and diagonal segments and leave only their end points # declare empty numpy array, we will use this to write to file later # zero rows, enough cols to hold all image data npaFlattenedImages = np.empty((0, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT)) intClassifications = [] # declare empty classifications list, this will be our list of how we are classifying our chars from user input, we will write to file at the end # possible chars we are interested in are digits 0 through 9, put these in list intValidChars intValidChars = [ord('0'), ord('1'), ord('2'), ord('3'), ord('4'), ord('5'), ord('6'), ord('7'), ord('8'), ord('9'), ord('A'), ord('B'), ord('C'), ord('D'), ord('E'), ord('F'), ord('G'), ord('H'), ord('I'), ord('J'), ord('K'), ord('L'), ord('M'), ord('N'), ord('O'), ord('P'), ord('Q'), ord('R'), ord('S'), ord('T'), ord('U'), ord('V'), ord('W'), ord('X'), ord('Y'), ord('Z')] for npaContour in npaContours: # for each contour if cv2.contourArea(npaContour) > MIN_CONTOUR_AREA: # if contour is big enough to consider [intX, intY, intW, intH] = cv2.boundingRect(npaContour) # get and break out bounding rect # draw rectangle around each contour as we ask user for input cv2.rectangle(imgTrainingNumbers, # draw rectangle on original training image (intX, intY), # upper left corner (intX+intW,intY+intH), # lower right corner (0, 0, 255), # red 2) # thickness imgROI = imgThresh[intY:intY+intH, intX:intX+intW] # crop char out of threshold image imgROIResized = cv2.resize(imgROI, (RESIZED_IMAGE_WIDTH, RESIZED_IMAGE_HEIGHT)) # resize image, this will be more consistent for recognition and storage cv2.imshow("imgROI", imgROI) # show cropped out char for reference cv2.imshow("imgROIResized", imgROIResized) # show resized image for reference cv2.imshow("training_numbers.png", imgTrainingNumbers) # show training numbers image, this will now have red rectangles drawn on it intChar = cv2.waitKey(0) # get key press if intChar == 27: # if esc key was pressed sys.exit() # exit program elif intChar in intValidChars: # else if the char is in the list of chars we are looking for . . . intClassifications.append(intChar) # append classification char to integer list of chars (we will convert to float later before writing to file) npaFlattenedImage = imgROIResized.reshape((1, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT)) # flatten image to 1d numpy array so we can write to file later npaFlattenedImages = np.append(npaFlattenedImages, npaFlattenedImage, 0) # add current flattened impage numpy array to list of flattened image numpy arrays # end if # end if # end for fltClassifications = np.array(intClassifications, np.float32) # convert classifications list of ints to numpy array of floats npaClassifications = fltClassifications.reshape((fltClassifications.size, 1)) # flatten numpy array of floats to 1d so we can write to file later print ("\n\ntraining complete !!\n") np.savetxt("classifications2.txt", npaClassifications) # write flattened images to file np.savetxt("flattened_images2.txt", npaFlattenedImages) # cv2.destroyAllWindows() # remove windows from memory return ################################################################################################### if __name__ == "__main__": main() # end if
[ "34089891+bluedott@users.noreply.github.com" ]
34089891+bluedott@users.noreply.github.com
84670e385fe2ed6a8e0c8a66732d455455589e1c
5b5bac2aa1104bd7afe27527dc53c260667b4de1
/spotify_convert/migrations/0011_remove_addedsong_spotify_name.py
555b6a34320e1e011c126db41348d3376c956b96
[]
no_license
mvasiliou/spotify-convert-app
4bf86443ce9c216dc8a9bcbf3f7c81ff01828175
876e456c956fd0aeae65dc1db9f683373bfa9c9e
refs/heads/master
2021-01-19T13:37:19.060429
2017-02-18T17:25:00
2017-02-18T17:25:00
82,402,537
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2017-02-15 22:01 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('spotify_convert', '0010_auto_20170215_1712'), ] operations = [ migrations.RemoveField( model_name='addedsong', name='spotify_name', ), ]
[ "mvasiliou94@gmail.com" ]
mvasiliou94@gmail.com
ce9f9a67e6de02ba78da7819553047f0a148bb68
9bcb054fa53e1ff749f2ba06c7477b60c0a1dccf
/internet connection check.py
025e54ba14c6fdfcd2dcc55e5a6b72e06dbf6956
[]
no_license
thatscoding/Hacktoberfest-2023
e67594420d39340095dde77e02bcf20353a5f645
40cfc950487e040b192a304a9d387dda2988845b
refs/heads/main
2023-08-28T07:28:41.110272
2021-10-30T11:48:00
2021-10-30T11:48:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
596
py
import requests from requests.exceptions import ConnectionError def internet_connection_test(): url = 'https://www.google.com/' print(f'Attempting to connect to {url} to determine internet connection status.') try: print(url) resp = requests.get(url, timeout = 10) resp.text resp.status_code print(f'Connection to {url} was successful.') return True except ConnectionError as e: requests.ConnectionError print(f'Failed to connect to {url}.') return False except: print(f'Failed with unparsed reason.') return False internet_connection_test()
[ "noreply@github.com" ]
thatscoding.noreply@github.com
cfbc73e87a1f617dd5d05185217fead9b365b1cd
8c0e6de3a106ef148dd2994973f3f5cb807c70eb
/General Programing/Documentation Hub/imageviewer.py
ac39a35f9c94c5dffe56d0b6d169a8e29ad2f0fd
[]
no_license
TKprotich/Practices-and-Experimenting
8f8928cc43e6cb9996b064d66dc6783fc8edf362
211e11f3f52b36dd6dc944d3b503c81d412acb4b
refs/heads/main
2023-01-11T00:12:14.404189
2020-11-15T13:41:24
2020-11-15T13:41:24
304,259,482
0
0
null
null
null
null
UTF-8
Python
false
false
180
py
import pyglet window = pyglet.window.Window() image = pyglet.resource.image('workout.JPG') @window.event def on_draw(): window.clear() image.blit(0, 0) pyglet.app.run()
[ "marchemjor@gmail.com" ]
marchemjor@gmail.com
4e1ab212e6ce46a3bc3a610e4685b7449006b6ef
ad9a1711ec2d36b57576b30a5550a481bc07452a
/PANDAS/ser_02.py
f5d076631ff20dc4605d988fb89dd07e2abd6ebf
[]
no_license
Harshad06/Python_programs
5ca0ba3ba8cbccbd39215efec96fb7b68307aa5a
ad908e59425b41c1bed032aaf9a115e123fd46c4
refs/heads/master
2023-06-22T07:44:45.435258
2021-07-26T08:16:22
2021-07-26T08:16:22
347,367,223
0
0
null
null
null
null
UTF-8
Python
false
false
504
py
# porgam to depict deep copy # in pandas series # import module import pandas as pd # assign series ser = pd.Series(['Mandy', 'Ron', 'Jacob', 'Bayek']) # shallow copy copyser = ser.copy(deep=True) # comparing deep copied series # and original series print('\nBefore Operation:\n', copyser == ser) # assignmnet operation copyser[2] = 'Geeks' # comparing deep copied series # and original series print('\nAfter Operation:\n', copyser == ser) print('\nOriginal Dataframe after operation:\n', ser)
[ "harshad.shringi@gmail.com" ]
harshad.shringi@gmail.com
3f45f7cee6d8468efa1e1fb46e91f0292b773b93
22295cda10cf11472fee987093e0b245f6f96ef3
/common/infohistology/band073_tracks.py
bd72af8bb7165ed2ca221d979e82efa7299e791e
[]
no_license
sjara/jaratest
aecb9e3bcc1ff91db35e7cd551c0f4f3da0b690a
09bf2c76bd5bf45191a2c37c14171ae1e8902c4b
refs/heads/master
2023-08-11T09:55:17.684814
2023-08-03T22:03:31
2023-08-03T22:03:31
63,100,718
2
5
null
2023-04-11T18:14:08
2016-07-11T20:43:04
Python
UTF-8
Python
false
false
1,697
py
''' TODO: - add reference to type of recording device used? e.g. tetrode vs silicon probe, probe geometry, etc. - 'shank' is very specific to silicon probes, replace with more generic info key? ''' subject = 'band073' tracks = [ {'subject':subject, 'brainArea':'LeftAC', 'histImage':'p1-C5-03', 'recordingTrack':'midlateralDiO', 'shank':1, 'atlasZ':180}, {'subject':subject, 'brainArea':'LeftAC', 'histImage':'p1_D1-03', 'recordingTrack':'medialDiD', 'shank':1, 'atlasZ':185}, {'subject':subject, 'brainArea':'LeftAC', 'histImage':'p1_D5-03', 'recordingTrack':'medialDiD', 'shank':2, 'atlasZ':193}, {'subject':subject, 'brainArea':'LeftAC', 'histImage':'p1-D2-03', 'recordingTrack':'midlateralDiO', 'shank':2, 'atlasZ':188}, {'subject':subject, 'brainArea':'LeftAC', 'histImage':'p2_A1-03', 'recordingTrack':'medialDiD', 'shank':3, 'atlasZ':200}, {'subject':subject, 'brainArea':'LeftAC', 'histImage':'p2_A5-03', 'recordingTrack':'medialDiD', 'shank':4, 'atlasZ':208}, {'subject':subject, 'brainArea':'RightAC', 'histImage':'p2-A2-02', 'recordingTrack':'middleDiO', 'shank':4, 'atlasZ':201}, {'subject':subject, 'brainArea':'RightAC', 'histImage':'p2-A5-02', 'recordingTrack':'middleDiO', 'shank':3, 'atlasZ':206}, {'subject':subject, 'brainArea':'RightAC', 'histImage':'p2-B3-02', 'recordingTrack':'middleDiO', 'shank':2, 'atlasZ':212}, {'subject':subject, 'brainArea':'RightAC', 'histImage':'p2-B5-02', 'recordingTrack':'medialDiD', 'shank':1, 'atlasZ':219}, {'subject':subject, 'brainArea':'RightAC', 'histImage':'p2-C2-02', 'recordingTrack':'middleDiO', 'shank':1, 'atlasZ':225}, ]
[ "jarauser@jararigtest" ]
jarauser@jararigtest
664fd5e22572825ff02d5842fce584a415d850a8
62bdde43ce88507530610a2b77d2ce0859eebc8b
/SWEA/queue/L5105-๋ฏธ๋กœ์˜_๊ฑฐ๋ฆฌ/L5105-๋ฏธ๋กœ์˜_๊ฑฐ๋ฆฌ-jiwoong.py
9ca4aecca30d1d8a77e4b2053a655343efd4a697
[]
no_license
j2woong1/algo-itzy
6810f688654105cf4aefda3b0876f714ca8cbd08
7cf6cd8383dd8e9ca63f605609aab003790e1565
refs/heads/master
2023-08-21T12:51:54.874102
2021-10-03T04:35:21
2021-10-03T04:35:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
def bfs(x, y, z, visited): # ์ƒํ•˜์ขŒ์šฐ dx = [0, 1, 0, -1] dy = [-1, 0, 1, 0] # ํ˜„์žฌ ์œ„์น˜ queue q = [(x, y, z)] # ํ๊ฐ€ ๋นŒ ๋•Œ๊นŒ์ง€ while q: curr_x, curr_y, curr_z = q.pop(0) visited[curr_y][curr_x] = 1 for i in range(4): # ๋‚˜๊ฐ€์ง€ ์•Š์œผ๋ฉด if 0 <= curr_y + dy[i] < N and 0 <= curr_x + dx[i] < N: new_x = curr_x + dx[i] new_y = curr_y + dy[i] if arr[new_y][new_x] == 3: return curr_z if not arr[new_y][new_x] and not visited[new_y][new_x]: q.append((new_x, new_y, curr_z + 1)) return 0 T = int(input()) for tc in range(1, T + 1): N = int(input()) arr = [] for i in range(N): arr.append(list(map(int, input()))) visited = [[0] * N for _ in range(N)] for i in range(N): for j in range(N): if arr[i][j] == 2: print(f'#{tc} {bfs(j, i, 0, visited)}')
[ "j2woong1@gmail.com" ]
j2woong1@gmail.com
78abb25a1c9ddc2546892cffbfa7b04ce2ad80ee
2298959b25d93360be8dc45f00e989cac96b5c5d
/ex40.py
6f7443d7d3dc28ec948c6a9106ff589391e9d7f1
[]
no_license
VigneshMcity/Python
6e7cdef7e4cb09eec587ca85073f8171aa9492ec
8970368210d6e8c3f6ab1f6e6cf3213dd51b004a
refs/heads/master
2020-04-14T20:08:27.298067
2019-12-13T07:17:04
2019-12-13T07:17:04
164,083,462
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
class Song(object): def __init__(self, lyrics): self.lyrics = lyrics def sing_me_a_song(self): for line in self.lyrics: print(line) happy_bday = Song([ "Happy birthday to you", "I dont want to get sued", "So I'll stop right here" ]) bulls_on_parade = Song([ "They rally around the family", "With pocket full of sheels" ]) happy_bday.sing_me_a_song() bulls_on_parade.sing_me_a_song()
[ "vignesh.rajendran01@infosys.com" ]
vignesh.rajendran01@infosys.com