blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
8f7dc4bf523e6f673b501ed09ca49010f9c20a8a
b8acea93fc53b9c6e457959dd4b5446c520af272
/2017-01-13/workshop_10.py
600c94bc93b46a1d81f6ac1764e88c6500886593
[]
no_license
MarcoFaretra93/ggpl
c35fbd5a07ee70fc6073626325d17eef84faa9e6
15066fc26c3af67d52b6670e265f9ec0e7113c42
refs/heads/master
2021-01-10T22:50:11.618623
2017-01-28T10:09:56
2017-01-28T10:09:56
70,344,616
0
0
null
null
null
null
UTF-8
Python
false
false
5,523
py
from pyplasm import * import csv import src.workshop_08 as build_floor import src.workshop_07 as windowsDoors import src.workshop_03 as quarterTurnStairs import src.workshop_09 as roof_builder XWindow = [2,3,2,3,2] YWindow = [2,3,2,3,2] occurrencyWindow = [[True, True, True, True, True], [True, False, True, False, True], [True, True, True, True, True], [True, False, True, False, True], [True, True, True, True, True]] XDoor = [.2, .2, .05, .2, .05, .2, .3, .2, .05, .2 ,.05, .2, .2] YDoor = [.2, .2, .05, .2, .05, 1, .05, .2, .05, .2, .2] occurencyDoor = [[True, True, True, True, True, True, True, True, True, True, True, True, True], [True, False, False, False, False, False, True, False, False, False, False, False, True], [True, False, True, True, True, True, True, True, True, True, True, False, True], [True, False, True, False, False, False, True, False, False, False, True, False, True], [True, False, True, False, True, True, True, True, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, True, True, True, True, False, True, False, True], [True, False, True, False, False, False, True, False, False, False, True, False, True], [True, False, True, True, True, True, True, True, True, True, True, False, True], [True, False, False, False, False, False, True, False, False, False, False, False, True], [True, True, True, True, True, True, True, True, True, True, True, True, True]] listExternalWalls = build_floor.create_walls('first_model_muri_esterni_1.lines') externalWalls = STRUCT(listExternalWalls) xfactor = 15/SIZE([1])(externalWalls)[0] yfactor = 15.1/SIZE([2])(externalWalls)[0] zfactor = xfactor listExternalWalls2 = build_floor.create_walls('second_model_muri_esterni_1.lines') externalWalls2 = STRUCT(listExternalWalls2) xfactor2 = 15/SIZE([1])(externalWalls2)[0] yfactor2 = 15.1/SIZE([2])(externalWalls2)[0] zfactor2 = xfactor2 def multistorey_house(nFloors, baseString, xfactor, yfactor, zfactor): """ multistorey_house is a function that return the function that calculate the HPC Model represent the house. @param nFloor: represent the number of floors. @param baseString: String represent the prefix of the .lines files. @param xfactor: Float represent the factor to scale and calculate height. @param yfactor: Float represent the factor to scale and calculate height. @param zfactor: Float represent the factor to scale and calculate height. @return renderWindows: Function that calculate the HPC Model. """ def renderWindows(XWindow, YWindow, occurrencyWindow): """ renderWindows is a function that return the function that calculate the HPC Model represent the house. @param XWindow: Float list of asix X of the window cells @param YWindow: Float list of asix Y of the window cells @param occurrencyWindow: Bool matrix that represent the full cell and empty cell. @return renderDoors: Function that calculate the HPC Model. """ def renderDoors(XDoor, YDoor, occurencyDoor): """ renderDoors is a function that return the function that calculate the HPC Model represent the house. @param XDoor: Float list of asix X of the door cells. @param YDoor: Float list of asix Y of the door cells. @param occurencyDoor: Bool matrix that represent the full cells and empty cells. @return renderFloor: Function that calculate the HPC Model. """ def renderFloor(verts, angle, height): """ renderFloor is a function that return the HPC Model represent the house. @param verts: list of list of integer represent the verts that define the shape of roof bottom. @param angle: integer represent the angle used to rotate the planes. @param height: integer represent the height of the roof. @return house: HPC Model represent the house. """ all_floor = [] #building roof model with open(verts) as file: reader = csv.reader(file, delimiter=",") new_verts = [] for row in reader: new_verts.append([float(row[0]), float(row[1])]) roofModel = roof_builder.buildRoof(new_verts, angle, height) roofModel = T([3])([nFloors*3/zfactor])(roofModel) roofModel = S([1,2,3])([xfactor*1.09, yfactor*1.09, zfactor])(roofModel) roofModel = T([1,2])([-SIZE([1])(roofModel)[0]*0.05, -SIZE([2])(roofModel)[0]*0.05])(roofModel) for i in range(nFloors): floor_lines = [baseString + '_muri_esterni_'+str(i+1)+'.lines', baseString + '_muri_interni_'+str(i+1)+'.lines', baseString + '_porte_'+str(i+1)+'.lines', baseString + '_finestre_'+str(i+1)+'.lines', baseString + '_scale_'+str(i)+'.lines', baseString + '_scale_'+str(i+1)+'.lines'] floor = build_floor.ggpl_building_house(floor_lines, windowsDoors.window_main(XWindow,YWindow,occurrencyWindow), windowsDoors.door_main(YDoor, XDoor, occurencyDoor), quarterTurnStairs, i, nFloors-1) all_floor.append(floor) all_floor = STRUCT(all_floor) return STRUCT([all_floor, roofModel]) return renderFloor return renderDoors return renderWindows VIEW(multistorey_house(2, 'first_model', xfactor, yfactor, zfactor)(XWindow, YWindow, occurrencyWindow)(XDoor, YDoor, occurencyDoor)('first_model_muri_esterni_1.lines', PI/5., 3/zfactor)) VIEW(multistorey_house(2, 'second_model', xfactor2, yfactor2, zfactor2)(XWindow, YWindow, occurrencyWindow)(XDoor, YDoor, occurencyDoor)('second_model_muri_esterni_1.lines', PI/5., 3/zfactor2))
[ "mar.faretra@stud.uniroma3.it" ]
mar.faretra@stud.uniroma3.it
1f33da26cd31882e2a4cbb24cd7ec3852e4adaa7
eadcdcdbe46a5208f163ef22e668e42d6fff94a6
/src/sfctl/helps/deployment.py
a4108bb340bce66fecd2aa5a036e470330ad3be3
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
yu-supersonic/service-fabric-cli
beed8c4b4d8a17a5fbcb5d0578a8e6c166dd9695
cc2838597e7d236852c6d95e1b5c54980e0fac96
refs/heads/master
2023-04-11T15:04:25.213876
2021-02-25T19:39:23
2021-02-25T19:39:23
348,077,179
0
0
NOASSERTION
2021-04-07T11:33:05
2021-03-15T18:16:11
null
UTF-8
Python
false
false
1,820
py
# ----------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ----------------------------------------------------------------------------- """Help documentation for managing Service Fabric Mesh Resources.""" from knack.help_files import helps helps['mesh deployment create'] = """ type: command short-summary: Creates a deployment of Service Fabric Mesh Resources parameters: - name: --input-yaml-files type: string short-summary: Comma separated relative/absolute file paths of all the yaml files or relative/absolute path of the directory (recursive) which contain yaml files - name: --parameters type: string short-summary: A relative/absolute path to yaml file or a json object which contains the parameters that need to be overridden examples: - name: Consolidates and deploys all the resources to cluster by overriding the parameters mentioned in the yaml file text: sfctl mesh deployment create --input-yaml-files ./app.yaml,./network.yaml --parameters ./param.yaml - name: Consolidates and deploys all the resources in a directory to cluster by overriding the parameters mentioned in the yaml file text: sfctl mesh deployment create --input-yaml-files ./resources --parameters ./param.yaml - name: Consolidates and deploys all the resources in a directory to cluster by overriding the parameters which are passed directly as json object text: > sfctl mesh deployment create --input-yaml-files ./resources --parameters "{ 'myparam' : {'value' : 'myvalue'} }" """
[ "Christina-Kang@users.noreply.github.com" ]
Christina-Kang@users.noreply.github.com
57c8c4f7a53557e403719802170a2e4a7bd660c6
9ecd7568b6e4f0f55af7fc865451ac40038be3c4
/tianlikai/hubei/enshi_zhongbiao.py
aa1eb42ebd5cbeb6d019ac1072c18bf552fa29cc
[]
no_license
jasonTLK/scrapy
f5ac6e575e902c077a07dc0eb9d228506f1a173f
2de8245fbc8731cfd868bbd91168e26271045300
refs/heads/master
2021-01-20T04:22:23.080864
2017-04-28T07:46:29
2017-04-28T07:46:29
89,681,374
1
0
null
null
null
null
UTF-8
Python
false
false
2,967
py
# -*- coding: utf-8 -*- import scrapy from scrapy import Request from scrapy.selector import Selector try: from scrapy.spiders import Spider except: from scrapy.spiders import BaseSpider as Spider import datetime from items.biding import biding_gov from utils.toDB import * # 湖北恩施招投标网站 # 中标信息 class hz_gov_Spider(scrapy.Spider): name = "enshi_zhongbiao.py" allowed_domains = ["eszggzy.cn"] custom_settings = { "DOWNLOADER_MIDDLEWARES": { 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 'middlewares.useragent_middleware.RandomUserAgent': 400, # 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': None, # 'middlewares.proxy_middleware.ProxyMiddleware': 250, # 'scrapy.downloadermiddlewares.retry.RetryMiddleware': None, # 'middlewares.retry_middleware.RetryWithProxyMiddleware': 300, # 'middlewares.timestamp_middleware.TimestampMiddleware': 120 } } def start_requests(self): urls = [ "http://www.eszggzy.cn/TPFront/jyxx/070001/070001003/?Paging=", "http://www.eszggzy.cn/TPFront/jyxx/070002/070002003/?Paging=", ] pages = [21, 20] for i in range(len(urls)): num=1 while num<=pages[i]: url =urls[i]+str(num) num+=1 # print url yield Request(url=url,callback=self.parse) # start_urls = [ # "http://www.eszggzy.cn/TPFront/jyxx/070001/070001003/?Paging=1" # ] def parse(self, response): selector = Selector(response) names = selector.xpath("//td[@align='left']//a/@title").extract() urls = selector.xpath("//td[@align='left']//a/@href").extract() print len(names),len(urls) for i in range(len(names)): url = "http://www.eszggzy.cn" + "".join(urls[i+4]) str = "".join(names[i]) + "," + url print str yield Request(url=url, callback=self.parse2, meta={"info": str}) def parse2(self, response): infos = response.meta["info"] items = biding_gov() items["url"] = response.url items["name"] = "".join(infos).split(",")[0] items["info"] = "" items["create_time"] = datetime.datetime.now() items["update_time"] = datetime.datetime.now() page_info = "".join(response.body) items["info"] = "".join(page_info).decode('gbk') db = MongodbHandle("172.20.3.10 ", 27017, "spiderBiding") db.get_insert( "bid_hubei_EnShi", { "url": items["url"], "name": items["name"], "info": items["info"], "create_time": items["create_time"], "update_time": items["update_time"] } ) print items["url"] print items["name"]
[ "18723163167@163.com" ]
18723163167@163.com
b847e5e8b658046c0bc3299f6804066cdcf0f731
3701627e94b237d3402254ca8c752ceef4a766c5
/tools/megavii/get_list_init.py
6943564966f4334e6170d0e006e8f553e37fa888
[]
no_license
shenmayufei/faceAlignment
358f5ddd3f9f4a487b3d6d4d7323a1f8b56bb876
5e7a6b01e36969d1112c5920beda8c29d70dc458
refs/heads/master
2022-09-08T18:12:48.839249
2020-06-02T11:43:04
2020-06-02T11:43:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
import os import glob path_data = '/ssd/cxzhao/data/quality_badcase/hf_sq/imgs' path_json = '/ssd/cxzhao/data/quality_badcase/hf_sq/json_530' os.makedirs(path_json, exist_ok=True) path_txt = '/ssd/cxzhao/data/quality_badcase/hf_sq/test_list_json_pairs.txt' def process(): IMAGES = glob.glob(os.path.join(path_data, '*/*.jpg')) lines = [] for k, img_path in enumerate(IMAGES): img_name = os.path.split(img_path)[-1] json_path = os.path.join(path_json, img_name[:-4] + '.txt') lines.append(img_path + ' ' + json_path + '\n') with open(path_txt, 'w') as fid: fid.writelines(lines) if __name__ == '__main__': process()
[ "1028377876@qq.com" ]
1028377876@qq.com
a077a0210a9ead65fa1545bd027f14dc8f564d61
20eac8f94ef0a59ef65670545e2f1b8fb719425f
/eventos/migrations/0002_auto_20210522_0314.py
78766c13cfa331ea9b1aefb40689a4801f28a1f3
[]
no_license
edgardo28081/gomez
fcc1c3fd9d9ce76a8a892d16c78d162556f067dc
b51f3af15d413789298488736365011acd77ee43
refs/heads/main
2023-05-31T17:39:06.234220
2021-06-10T19:54:46
2021-06-10T19:54:46
375,813,783
0
0
null
null
null
null
UTF-8
Python
false
false
527
py
# Generated by Django 3.2 on 2021-05-22 07:14 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('eventos', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='recuerdos', name='foto4', ), migrations.RemoveField( model_name='recuerdos', name='foto5', ), migrations.RemoveField( model_name='recuerdos', name='foto6', ), ]
[ "edgardomarcano04@gmail.com" ]
edgardomarcano04@gmail.com
18c073c6bc7f6d571b0b80d928dd78cb157909bf
96796658623856b13bd32d0c22ded0a2fc4647f6
/src/scheduler.py
27f8a0fc090b7f7cbebf4323857dd559c93513d4
[]
no_license
mifkoff/tgstarter_template
a0624ada0503815155c8af78efaacbac4ba7a015
9eba9d9802d7823f814c958a3ba0639bc86a62e1
refs/heads/master
2023-05-27T03:06:03.787996
2020-07-17T08:11:52
2020-07-17T08:11:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
962
py
import asyncio import calendar from datetime import datetime import logging from apscheduler.triggers.cron import CronTrigger from apscheduler.triggers.date import DateTrigger from apscheduler.triggers.interval import IntervalTrigger from src.preparation import scheduler, config timezone = config.bot.timezone def main() -> None: scheduler.start() loop = asyncio.get_event_loop() loop.run_forever() @scheduler.scheduled_job(DateTrigger(timezone=timezone, run_date=datetime.now())) async def instant_job() -> None: print('INSTANT JOB') @scheduler.scheduled_job(CronTrigger(timezone=timezone, day_of_week=calendar.MONDAY, hour=8, minute=0)) async def cron_job() -> None: print('CRON JOB') @scheduler.scheduled_job(IntervalTrigger(timezone=timezone, seconds=10)) async def interval_job() -> None: print('INTERVAL JOB: 10 SECONDS HAVE PASSED') if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) main()
[ "t.lila@list.ru" ]
t.lila@list.ru
a78ef1ec62d22b6a0115f1683a16eea2032e2160
bf834e52d25af1f59651ee5c3e0c6e5539ec3c19
/BizViz/urls.py
c435b7c213cd37d5a7be835ca2a473e13a21007b
[]
no_license
bin7665/BizViz
fe7781d80fedba027eb5a1bc4a319ca588e108e8
99a7deb1bf19ff1f7f6ee30800355e4b56d4a077
refs/heads/master
2023-08-06T07:06:41.973326
2020-08-19T05:40:25
2020-08-19T05:40:25
281,556,175
0
0
null
2021-09-22T19:28:58
2020-07-22T02:40:15
JavaScript
UTF-8
Python
false
false
318
py
from . import views from django.urls import path urlpatterns = [ path('', views.IndexView.as_view(), name='index'), path('statistics/', views.statistics, name='statistics'), path('statistics/<str:pk>/', views.department, name='department'), path('support/<int:pk>/', views.content, name='content'), ]
[ "bin7665@naver.com" ]
bin7665@naver.com
e61d248ab9d60f7194933ccc8cf31c297f485cc2
98f1a0bfa5b20a0b81e9e555d76e706c62d949c9
/examples/pytorch/dimenet/modules/envelope.py
b9d89620f674a562a255f52694e36235733374cc
[ "Apache-2.0" ]
permissive
dmlc/dgl
3a8fbca3a7f0e9adf6e69679ad62948df48dfc42
bbc8ff6261f2e0d2b5982e992b6fbe545e2a4aa1
refs/heads/master
2023-08-31T16:33:21.139163
2023-08-31T07:49:22
2023-08-31T07:49:22
130,375,797
12,631
3,482
Apache-2.0
2023-09-14T15:48:24
2018-04-20T14:49:09
Python
UTF-8
Python
false
false
610
py
import torch.nn as nn class Envelope(nn.Module): """ Envelope function that ensures a smooth cutoff """ def __init__(self, exponent): super(Envelope, self).__init__() self.p = exponent + 1 self.a = -(self.p + 1) * (self.p + 2) / 2 self.b = self.p * (self.p + 2) self.c = -self.p * (self.p + 1) / 2 def forward(self, x): # Envelope function divided by r x_p_0 = x.pow(self.p - 1) x_p_1 = x_p_0 * x x_p_2 = x_p_1 * x env_val = 1 / x + self.a * x_p_0 + self.b * x_p_1 + self.c * x_p_2 return env_val
[ "noreply@github.com" ]
dmlc.noreply@github.com
71dca6cc57779157bdded3ae3d5cc0d48ce59ab8
9c0cd6dfc174167a416055ccd3d19d536d37f139
/gym-task/gym_task/envs/InhibitoryControl.py
59f811bf9d544305bf852c5e95ceadcb2be62020
[]
no_license
emirakdere/tangled_program_graphs_research
5b0a7738cc5dfd2642a8f1e6539d7650efe0c69a
fb82247714c79156ee59f97f50171d0de178fec5
refs/heads/master
2023-02-02T05:25:12.940302
2020-12-18T14:26:28
2020-12-18T14:26:28
299,354,000
0
0
null
null
null
null
UTF-8
Python
false
false
1,581
py
import numpy as np import cv2 import gym from gym import error, spaces, utils from gym.utils import seeding from gym_task.envs.task_env import TaskEnv # Task 6: Monkey fixate on center fixation, Monkey see stimulus in target location, # Monkey see color cue (fixation's color changes), # Monkey move towards or away from target based on that color. class InhibitoryControl(TaskEnv, gym.Env): def __init__(self): super().__init__() self.reset() self.action_space = spaces.Discrete(9) def step(self, action): return _categoryStep(action) def reset(self): self.TIME = 120 self.experiment = np.zeros((self.TIME, self.DIM_Y, self.DIM_X)) halfSec = self.TIME//8 self.fixationTime = (0, 5*halfSec) self.stimulusTime = (2*halfSec, self.TIME) colorCue = (5*halfSec, self.TIME) antisaccade = np.random.random_sample() < .5 targetLoc = [self.midY, 5*(self.DIM_X//6)] self.experiment[self.fixationTime[0]:self.fixationTime[1], self.midY-1:self.midY+2, self.midX-1:self.midX+2] = 1. self.experiment[self.stimulusTime[0]:self.stimulusTime[1], targetLoc[0]-3:targetLoc[0]+4, targetLoc[1]-3:targetLoc[1]+4] = 1. self.experiment[colorCue[0]:colorCue[1], self.midY-1:self.midY+2, self.midX-1:self.midX+2] = .25 if antisaccade else .75 # 8 > aim >= 4 means antisaccade, 4 > aim means saccade (action=8 is waiting) self.aim = 7 if antisaccade else 0 self.currFrame = 0 return self.experiment[0]
[ "emirakdere@gmail.com" ]
emirakdere@gmail.com
e1dbbafc9e69b86598c57f49842afb0bfbde867f
629d3eaaaf4c83cb9d4cb863460e17d59a0bcb1c
/Skills/train_Magery.py
9695975ba533e428db506279886282f7468ab1e0
[]
no_license
Maupishon/Razor-Enhanced
a8a514ddae5e03f8ad8b795e880750afc157c2f1
f686c8bd456728311757db22a13e25551bbfc9e1
refs/heads/master
2023-03-07T22:27:58.484194
2021-02-26T03:09:33
2021-02-26T03:09:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,696
py
# Trains Magery to GM # Change resistTrain to True if you are training resist and/or # don't want to take damage # False will make it cast dmg spells on yourself, which use less regs. # but require someone healing you, or you to have healing. # By MatsaMilla resistTrain = True # ------------------------------------ self = Player.Serial pearl = 0x0F7A root = 0x0F86 shade = 0x0F88 silk = 0x0F8D moss = 0x0F7B ginseng = 0x0F85 garlic = 0x0F84 ash = 0x0F8C def trainMageryNoResist(): while Player.Hits < 45: Misc.Pause(100) if Player.GetRealSkillValue('Magery') < 35: Misc.SendMessage('Go buy Magery skill!!') Stop elif Player.GetRealSkillValue('Magery') < 65: Spells.CastMagery('Mind Blast') Target.WaitForTarget(2500) Target.TargetExecute(self) Misc.Pause(2500) elif Player.GetRealSkillValue('Magery') < 85: Spells.CastMagery('Energy Bolt') Target.WaitForTarget(2500) Target.TargetExecute(self) Misc.Pause(2500) elif Player.GetRealSkillValue('Magery') < 100: Spells.CastMagery("Flamestrike") Target.WaitForTarget(2500) Target.TargetExecute(self) Misc.Pause(2500) if Player.Mana < 40: Player.UseSkill('Meditation') while Player.Mana < Player.ManaMax: if (not Player.BuffsExist('Meditation') and not Timer.Check('skillTimer')): Player.UseSkill('Meditation') Timer.Create('skilltimer', 11000) Misc.Pause(100) def trainMage(): if Player.GetRealSkillValue('Magery') < 35: Misc.SendMessage('Go buy Magery skill!!') Stop elif Player.GetRealSkillValue('Magery') < 55: Spells.CastMagery('Mana Drain') Target.WaitForTarget(2500) Target.TargetExecute(self) Misc.Pause(2500) elif Player.GetRealSkillValue('Magery') < 75: Spells.CastMagery('Invisibility') Target.WaitForTarget(2500) Target.TargetExecute(self) Misc.Pause(2500) elif Player.GetRealSkillValue('Magery') < 100: Spells.CastMagery('Mana Vampire') Target.WaitForTarget(2500) Target.TargetExecute(self) Misc.Pause(2500) if Player.Mana < 40: Player.UseSkill('Meditation') while Player.Mana < Player.ManaMax: if (not Player.BuffsExist('Meditation') and not Timer.Check('skillTimer')): Player.UseSkill('Meditation') Timer.Create('skilltimer', 11000) Misc.Pause(100) def checkRegs(): if Items.BackpackCount(pearl, -1) < 2: Misc.SendMessage('Low on Pearl!') Stop elif Items.BackpackCount(root, -1) < 2: Misc.SendMessage('Low on Root!') Stop elif Items.BackpackCount(shade, -1) < 2: Misc.SendMessage('Low on Shade!') Stop elif Items.BackpackCount(silk, -1) < 2: Misc.SendMessage('Low on Silk!') Stop elif Items.BackpackCount(garlic, -1) < 2: Misc.SendMessage('Low on Garlic!') Stop elif Items.BackpackCount(ash, -1) < 2: Misc.SendMessage('Low on Ash!') Stop elif Items.BackpackCount(silk, -1) < 2: Misc.SendMessage('Low on Silk!') Stop elif Items.BackpackCount(ginseng, -1) < 2: Misc.SendMessage('Low on Ginseng!') Stop Journal.Clear() while Player.GetRealSkillValue('Magery') < 100: if resistTrain: trainMage() else: trainMageryNoResist() checkRegs() Player.ChatSay(33, 'GM Magery')
[ "noreply@github.com" ]
Maupishon.noreply@github.com
23f09a5d1433dd1e6722e51b9796bd93fe04c67d
8b74027c56dfc7870787796bcf07816a868e427a
/MAE6263_CFD/HW3/Modular/poisson_solvers/trial/hybrid_poisson_solver_v2.py
9da30a260c871142375d48e414d56559da6d7292
[]
no_license
surajp92/Random_Codes
f5195a428f1aee6b6922d1170266664edc4b29d5
e928e322c88bc0b43fc3fee3d31ba3452585fdd2
refs/heads/master
2021-06-09T07:47:09.201359
2021-05-03T10:07:55
2021-05-03T10:07:55
177,000,685
0
1
null
null
null
null
UTF-8
Python
false
false
4,251
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 12 18:23:30 2021 @author: suraj """ import numpy as np from numpy.random import seed seed(1) import pyfftw from scipy import integrate from scipy import linalg import matplotlib.pyplot as plt import time as tm import matplotlib.ticker as ticker import os from numba import jit from scipy.fftpack import dst, idst from scipy.ndimage import gaussian_filter import yaml font = {'family' : 'Times New Roman', 'size' : 14} plt.rc('font', **font) #%% def tdma(a,b,c,r,s,e): a_ = np.copy(a) b_ = np.copy(b) c_ = np.copy(c) r_ = np.copy(r) un = np.zeros((np.shape(r)[0],np.shape(r)[1]), dtype='complex128') for i in range(s+1,e+1): b_[i,:] = b_[i,:] - a_[i,:]*(c_[i-1,:]/b_[i-1,:]) r_[i,:] = r_[i,:] - a_[i,:]*(r_[i-1,:]/b_[i-1,:]) un[e,:] = r_[e,:]/b_[e,:] for i in range(e-1,s-1,-1): un[i,:] = (r_[i,:] - c_[i,:]*un[i+1,:])/b_[i,:] del a_, b_, c_, r_ return un #%% nx = 16 ny = 16 x_l = 0.0 x_r = 2.0 y_b = 0.0 y_t = 2.0 dx = (x_r-x_l)/nx dy = (y_t-y_b)/ny x = np.linspace(x_l, x_r, nx+1) y = np.linspace(y_b, y_t, ny+1) xm, ym = np.meshgrid(x,y, indexing='ij') km = 16.0 c1 = (1.0/km)**2 c2 = -2.0*np.pi**2 ue = np.sin(2.0*np.pi*xm)*np.sin(2.0*np.pi*ym) + \ c1*np.sin(km*np.pi*xm)*np.sin(km*np.pi*ym) f = 4.0*c2*np.sin(2.0*np.pi*xm)*np.sin(2.0*np.pi*ym) + \ c2*np.sin(km*np.pi*xm)*np.sin(km*np.pi*ym) #%% epsilon = 1.0e-6 aa = -2.0/(dx*dx) - 2.0/(dy*dy) bb = 2.0/(dx*dx) cc = 2.0/(dy*dy) beta = dx/dy a4 = -10.0*(1.0 + beta**2) b4 = 5.0 - beta**2 c4 = 5.0*beta**2 -1.0 d4 = 0.5*(1.0 + beta**2) e4 = 0.5*(dx**2) # wave_number_coord = np.arange(-int(nx/2), int(nx/2)) #*(2.0*np.pi) # wave_number_coord = np.fft.fftfreq(nx, d = 1/nx) # Lx = nx*dx # wave_number = wave_number_coord*(2.0*np.pi/Lx) wave_number = np.arange(0,nx) kx = np.copy(wave_number) kx[0] = epsilon # cos_kx = np.cos(kx) cos_kx = np.cos(2.0*np.pi*kx/nx) data = np.empty((nx,ny-1), dtype='complex128') data1 = np.empty((nx,ny-1), dtype='complex128') data[:,:] = np.vectorize(complex)(f[0:nx,1:ny],0.0) a = pyfftw.empty_aligned((nx,ny-1),dtype= 'complex128') b = pyfftw.empty_aligned((nx,ny-1),dtype= 'complex128') fft_object = pyfftw.FFTW(a, b, axes = (0,), direction = 'FFTW_FORWARD') fft_object_inv = pyfftw.FFTW(a, b,axes = (0,), direction = 'FFTW_BACKWARD') data_f = np.fft.fft(data, axis=0) # data_f = fft_object(data) # data_f = np.abs(data_f) #e = pyfftw.interfaces.scipy_fftpack.fft2(data) # data_f[0,0] = 0.0 # j = 0 # data1[:,j] = np.zeros(nx, dtype='complex128') # j = ny # data1[:,j] = np.zeros(nx, dtype='complex128') alpha_k = c4 + 2.0*d4*cos_kx beta_k = a4 + 2.0*b4*cos_kx alpha_k = np.reshape(alpha_k,[-1,1]) beta_k = np.reshape(beta_k,[-1,1]) A = np.zeros((nx,ny)) for i in range(nx): A[i,i] = beta_k[i,0] if i > 0: A[i,i-1] = alpha_k[i,0] if i < nx-1: A[i,i+1] = alpha_k[i,0] AI = np.linalg.inv(A) for j in range(ny-2): # print(j) if j == 0: rr = e4*((8.0 + 2.0*cos_kx)*data_f[:,j] + data_f[:,j+1]) elif j == ny-2: rr = e4*(data_f[:,j-1] + (8.0 + 2.0*cos_kx)*data_f[:,j] + data_f[:,j+1]) else: rr = e4*(data_f[:,j-1] + (8.0 + 2.0*cos_kx)*data_f[:,j]) rr = np.reshape(rr,[-1,1]) # temp = AI @ rr temp = tdma(alpha_k,beta_k,alpha_k,rr,0,nx-1) data1[:,j] = temp.flatten() # data1[:,:] = data_f[:,:]/(aa + bb*kx[:,:] + cc*ky[:,:]) data2 = np.zeros((nx,ny+1), dtype='complex128') data2[:,1:ny] = data1 ut = np.real(np.fft.ifft(data2, axis=0)) # ut = np.real(fft_object_inv(data1)) #periodicity u = np.zeros((nx+1,ny+1)) u[0:nx,0:ny+1] = ut # u[:,ny] = u[:,0] u[nx,:] = u[0,:] u[nx,ny] = u[0,0] fig, axs = plt.subplots(1,2,figsize=(14,5)) cs = axs[0].contourf(xm, ym, ue, 60,cmap='jet') #cax = fig.add_axes([1.05, 0.25, 0.05, 0.5]) fig.colorbar(cs, ax=axs[0], orientation='vertical') cs = axs[1].contourf(xm, ym, u,60,cmap='jet') #cax = fig.add_axes([1.05, 0.25, 0.05, 0.5]) fig.colorbar(cs, ax=axs[1], orientation='vertical') plt.show() fig.tight_layout() print(np.linalg.norm(ue - u))
[ "pawarsuraj92@gmail.com" ]
pawarsuraj92@gmail.com
a4f2c36e4c3b0cede51f060454ace8927faf42d4
1fd180ffcaf78a8ef5029a753e8b7ebd6aa7cdc6
/todolistapp/wsgi.py
a0714e3a7cfcb7f303b675f6ec51b5eec97c91a5
[]
no_license
Ayush900/todo-list-app
05033615e7c521c16b4f840bd5401eb4c8bb7fd7
1f9c30dedab0ef1da9d08361a097bf31eec5c3f8
refs/heads/master
2022-12-25T19:53:06.353732
2020-10-01T07:04:22
2020-10-01T07:04:22
269,395,956
0
2
null
2020-10-01T07:04:23
2020-06-04T15:26:49
JavaScript
UTF-8
Python
false
false
399
py
""" WSGI config for todolistapp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'todolistapp.settings') application = get_wsgi_application()
[ "ayush.mehrotra900@gmail.com" ]
ayush.mehrotra900@gmail.com
a743f62797f79b84b388a7e62f55f385a17d8748
583fd6b6c826e2c4d23dfcff9d51fd7105b58289
/apps/user/migrations/0002_userprofile_employee_type.py
641740c4552f2045f12688a8a3e9449ecd99246b
[]
no_license
mjoyshuvo/RestaurantApp
eb47344804c8aa6caa2d3417ec174523f09b3496
b1fdc1b5c38fcb7f7239871d5e3bc80179f86f38
refs/heads/master
2023-05-18T17:05:09.048594
2021-06-12T06:24:07
2021-06-12T06:24:07
373,832,838
0
0
null
null
null
null
UTF-8
Python
false
false
468
py
# Generated by Django 3.0.7 on 2021-06-05 10:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user', '0001_initial'), ] operations = [ migrations.AddField( model_name='userprofile', name='employee_type', field=models.CharField(choices=[('Employee', 'Employee'), ('Restaurant', 'Restaurant')], default='Employee', max_length=10), ), ]
[ "mrityunjoy.das@adndiginet.com" ]
mrityunjoy.das@adndiginet.com
b5cb0f2a23fb3dc6094dfc2ed5c8ae6a36b4cacd
c23349b824849b066c6a2d68958206055b021177
/PP9.py
7900d26506b4796819faecdb3b66013383849e46
[]
no_license
veera-sivarajan/LearningPython
5f84fe0b98b6649768881fa7ff7d2d07ec75b21d
0a08c1e5f0dfe79b48ac1b4bbde7e13a0356472e
refs/heads/master
2020-05-05T04:27:17.794941
2019-07-03T04:33:43
2019-07-03T04:33:43
179,712,547
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
import random random = random.randint(1,9) guess = int(input("Enter a number:")) if random == guess: print("Your guess is right!") elif random > guess: print("Your guess is too low") elif random < guess: print("Your guess is too high")
[ "sveera.2001@gmail.com" ]
sveera.2001@gmail.com
8bf02c256d73472a61e065933f71d8e075957de5
a3d1e8a67ed43e1bea59180cc51c49f25a961a49
/scripts/dg2dotty
1aee7a8c68572dcdabdf99da9567433445ae7d8b
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
WladimirSidorenko/TextNormalization
38b076d88a2de40dae72dc8b4096e354b774f2f4
ac645fb41260b86491b17fbc50e5ea3300dc28b7
refs/heads/master
2020-04-14T16:48:42.541883
2019-09-29T23:38:28
2019-09-29T23:38:28
163,962,092
1
0
null
null
null
null
UTF-8
Python
false
false
3,209
#!/usr/bin/env python2.7 # -*- coding: utf-8; -*- """ Utility for representing DG trees in DOTTY format. Read a DG tree in CONLL-2009 format and output the read tree in GRAPHVIZ format. Input format (meaning of columns): ID FORM LEMMA PLEMMA POS PPOS FEAT PFEAT HEAD PHEAD DEPREL PDEPREL FILLPRED PRED APREDs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Output format (meaning of columns): """ ################################################################## # Importing Libraries import os import re import sys from alt_argparse import argparser from alt_fio import AltFileInput, AltFileOutput ################################################################## # Variables and Constants FIELDSEP = re.compile('\t') fields = [] FEATURESEP = re.compile('\|') features = [] QUOTE_RE = re.compile('(")') NODE_STYLE = 'color="gray",fillcolor="palegreen",style="filled"' FEAT_LABEL = ' [label="FEAT"];' FEAT_STYLE = 'shape=box,fillcolor="lightblue",style="filled,rounded",' w_id = 0 form = '' lemma = '' pos = '' p_id = 0 rel = '' edges = [] f_id = -1 ################################################################## # Methods def escape_quote(iline): """Prepend all double quotes with a backslash.""" return QUOTE_RE.sub(r"\\\1", iline) ################################################################## # Processing Arguments argparser.description="""Utility for determining sentence boundaries.""" argparser.add_argument("-c", "--esc-char", help = """escape character which should precede lines with meta-information""", nargs = 1, type = str, \ default = os.environ.get("SOCMEDIA_ESC_CHAR", "")) args = argparser.parse_args() ################################################################## # Main Body foutput = AltFileOutput(encoding = args.encoding, \ flush = args.flush) finput = AltFileInput(*args.files, \ skip_line = args.skip_line, \ print_func = foutput.fprint, \ errors = "replace") # print graph header foutput.fprint(""" graph dg {{ forcelabels=true size="14"; node [{:s}]; 0 [label="Root"]; """.format(NODE_STYLE)) for line in finput: if line and line[0] == args.esc_char: continue # interpret fields fields = line.split() if not len(fields): continue w_id, form, lemma = fields[0], fields[1], fields[3] pos, p_id, rel = fields[5], fields[9], fields[11] features = FEATURESEP.split(fields[7]) # add node to the graph foutput.fprint(w_id, ' [label="' + escape_quote(lemma) + \ "\\n(" + escape_quote(form) + ')"];') # output features as additional node which will be connected to the current # one if features: foutput.fprint(f_id, ' [{:s} label="'.format(FEAT_STYLE) + \ escape_quote(";\\n".join(features)) + ';"];') edges.append(w_id + " -- " + str(f_id) + FEAT_LABEL) f_id -= 1 # remember edge edges.append(p_id + " -- " + w_id + ' [label="' + rel + '"];') # output edges foutput.fprint('\n'.join(edges), "\n}")
[ "wlsidorenko@gmail.com" ]
wlsidorenko@gmail.com
de8358d209f0dbfcb2af469c09f0adecc9434180
8aa1203e1a1c350da16921787133014831097391
/luminardjangopgm/PythonCollection/ListDemi/listworkout2.py
3c265d38f3861a8f435cfbcd15806d5de7e7f4df
[]
no_license
ashilz/luminarpython
98fa4a87c60529d0c819e13bc5145e6f7d4ef01f
9eb834448012bd60952cbc539409768cabd66325
refs/heads/master
2022-12-03T03:36:14.229723
2020-08-25T05:07:26
2020-08-25T05:07:26
290,109,486
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
lst=[10,12,13,14,15] cnt=len(lst) p=1 for i in range(0,cnt): res=lst[i]**p p+=1 print(res)
[ "ashilantony333@gmail.com" ]
ashilantony333@gmail.com
6329a5eb0abe1699d0eb3af5a0cf08d72dda2bdb
69c2e1b106710d0018cae36fc63f56c61c859411
/test-search.py
026e1139ff18e186b63bd74e4004a72568ca44a1
[]
no_license
willmurnane/store
a8636ccad2e220942e0d0699f4176323d326db55
065453987c492faeac07e3e2cd7fd574b0776d15
refs/heads/master
2021-01-01T15:35:14.775696
2013-11-10T14:42:03
2013-11-10T14:42:03
13,876,601
1
2
null
null
null
null
UTF-8
Python
false
false
817
py
#! /usr/bin/python import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "settings") import sys sys.path.append("..") import store.models from whoosh.index import * from whoosh.query import * from whoosh.qparser import QueryParser index_path = "index" ix = open_dir(index_path) query = sys.argv[1] print sys.argv[1:] with ix.searcher() as s: # terms = map(lambda w: Or([Term("content", unicode(w)), Term("title", unicode(w))]), sys.argv[1:]) my_query = Or([Variations("content", unicode(query)), Variations("title", unicode(query))]) # qp = QueryParser("title", schema = ix.schema) # search = unicode(" ".join(sys.argv[1:])) # print search # my_query = qp.parse(search) print my_query results = s.search(my_query) print results print "%d results found\n" % len(results) for item in results: print item
[ "will.murnane@gmail.com" ]
will.murnane@gmail.com
09f7ff38257927f817ca76e38b02d8f4f94da9fd
730707fdefc2934929e1309cfbb0484d62b4bc34
/backend/home/migrations/0001_load_initial_data.py
bc0ac08ee26bc6af244f1c1862878b762c7d3a2e
[]
no_license
crowdbotics-apps/tpl-account-securty-27301
885f78b6256e3da6733c534cb85b89f797476e5f
44a580b64f14f7598b9e0c7a513976795992b15d
refs/heads/master
2023-04-26T15:38:35.791087
2021-05-23T22:55:42
2021-05-23T22:55:42
370,173,419
0
0
null
null
null
null
UTF-8
Python
false
false
561
py
from django.db import migrations def create_site(apps, schema_editor): Site = apps.get_model("sites", "Site") custom_domain = "tpl-account-securty-27301.botics.co" site_params = { "name": "tpl account securty page", } if custom_domain: site_params["domain"] = custom_domain Site.objects.update_or_create(defaults=site_params, id=1) class Migration(migrations.Migration): dependencies = [ ("sites", "0002_alter_domain_unique"), ] operations = [ migrations.RunPython(create_site), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
1314ef75281011fc68f901e3661700823f076402
2d2a513e0bde6a9f814c49f36c480af46edfadd5
/tests/__init__.py
0354f67715a51889ce4a1d3c12fb29af2070109e
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
stjordanis/rubicon-objc
591aa6960e1d8b5ba58b403ab1b8ad8aec8f9ce4
abe4f243487ab6305b12b9798ff330337f616dd7
refs/heads/master
2020-11-27T23:42:38.138686
2019-05-25T05:03:07
2019-05-25T05:03:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
412
py
import faulthandler from rubicon.objc.runtime import load_library try: import platform OSX_VERSION = tuple(int(v) for v in platform.mac_ver()[0].split('.')[:2]) except Exception: OSX_VERSION = None try: rubiconharness = load_library('rubiconharness') except ValueError: raise ValueError("Couldn't load Rubicon test harness library. Have you set DYLD_LIBRARY_PATH?") faulthandler.enable()
[ "dgelessus@users.noreply.github.com" ]
dgelessus@users.noreply.github.com
7d55e4f9b235c47896495ee39627711325cc23e6
234b14ae9bd4c8bc90b88ae84b9d0a2fd51b9fc3
/Sid/Day1/variable.py
7d056dd5b0a4e000a05d23512e0eeab2616cf560
[]
no_license
Siddhant6078/Python
a7e730ef63435b8c114782158ebadc9ec5bfde89
1f9ad00b78fe417f3702a5e6421d8fccbb9d1c8f
refs/heads/master
2021-07-11T20:09:49.369503
2017-10-14T13:40:30
2017-10-14T13:40:30
105,008,641
0
0
null
null
null
null
UTF-8
Python
false
false
275
py
counter = 100 # An integer assignment miles = 1000.0 # A floating point name = "John" # A string print counter print miles print name a = b = c = 1 print a,b,c a,b,c = 1,2,"john" print a,b,c var1 = 1 var2 = 10 print var1,var2 del var1 print var1
[ "nishant.c@indictrans.com" ]
nishant.c@indictrans.com
ef232dab5bc20bf3a6e6d2877ede262ab60bd9c8
99249dad36df26a712ae8d900041d53acf3901ea
/settings/configurations/LCLS_settings.py
0f4d71a15a5f657650c92536b3cfb5a54b7d163c
[ "MIT" ]
permissive
bopopescu/Lauecollect
f1f79c2cc5ff106df0dedbd6939ec92630d2b305
60ae2b05ea8596ba0decf426e37aeaca0bc8b6be
refs/heads/master
2022-11-29T00:40:28.384831
2019-06-05T01:21:36
2019-06-05T01:21:36
280,989,300
0
0
MIT
2020-07-20T02:03:22
2020-07-20T02:03:22
null
UTF-8
Python
false
false
1,034
py
MicroscopeCamera.ImageWindow.Center = (679.0, 512.0) MicroscopeCamera.Mirror = False MicroscopeCamera.NominalPixelSize = 0.000517 MicroscopeCamera.Orientation = -90 MicroscopeCamera.camera.IP_addr = '172.21.46.202' MicroscopeCamera.x_scale = -1.0 MicroscopeCamera.y_scale = 1.0 MicroscopeCamera.z_scale = -1.0 WideFieldCamera.ImageWindow.Center = (738.0, 486.0) WideFieldCamera.Mirror = False WideFieldCamera.NominalPixelSize = 0.002445 WideFieldCamera.Orientation = -90 WideFieldCamera.camera.IP_addr = '172.21.46.70' WideFieldCamera.x_scale = -1.0 WideFieldCamera.y_scale = 1.0 WideFieldCamera.z_scale = -1.0 laser_scope.ip_address = 'femto10.niddk.nih.gov:2000' rayonix_detector.ip_address = '172.21.46.133:2222' sample.phi_motor_name = 'SamplePhi' sample.rotation_center = (-0.7938775, -0.31677586081529113) sample.x_motor_name = 'SampleX' sample.xy_rotating = False sample.y_motor_name = 'SampleY' sample.z_motor_name = 'SampleZ' timing_system.ip_address = '172.21.46.207:2000' xray_scope.ip_address = 'pico21.niddk.nih.gov:2000'
[ "friedrich.schotte@gmail.com" ]
friedrich.schotte@gmail.com
5c36ae6fce8ec9601832a3503e9a4f0e716f1f1d
a35dadcdca748197bc400cebc180b58fe8f0735a
/constants.py
06f781bd894b739f694e6c9e5ed6447e66a2aa70
[]
no_license
RGologorsky/CS-182-final-project
ec232bb40bca4ffab935be536ca8540972be57e6
117b3159b879d07c1195204718dadf2e696469f7
refs/heads/master
2022-09-23T03:33:08.991790
2020-06-04T22:13:36
2020-06-04T22:13:36
112,677,584
0
0
null
null
null
null
UTF-8
Python
false
false
22,337
py
MULTIVAR = set(["AM21B","MATH21B", "MATH23B","MATH25A", "MATH55A"]) LINALG = set(["AM21A","MATH21A", "MATH23A","MATH25B", "MATH55B"]) STAT110 = "STAT110" CS050 = "CS050" CS051 = "CS051" CS061 = "CS061" CS020 = "CS020" CS121 = "CS121" CS124 = "CS124" CS181 = "CS181" CS182 = "CS182" MATH23A = "MATH23A" MATH25B = "MATH25B" MATH25A = "MATH25A" MATH25B = "MATH25B" MATH55A = "MATH55A" MATH55B = "MATH55B" courses = { 'AM106': {'CLOCKDAYS': 'MW', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'AM106', 'DAYS': set(['M', 'W']), 'END': 1559, 'ENROLLMENT': 31, 'PREREQS': [set(['AM21B', 'MATH21B', 'MATH23B', 'MATH25A', 'MATH55A']), set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B'])], 'Q': 3.7, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 6.6}, 'AM107': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'AM107', 'DAYS': set(['R', 'T']), 'END': 1129, 'ENROLLMENT': 23, 'PREREQS': [], 'Q': 4.3, 'SEMESTER': 'S', 'START': 1000, 'WORKLOAD': 8.1}, 'AM120': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'AM120', 'DAYS': set(['R', 'T']), 'END': 1129, 'ENROLLMENT': 108, 'PREREQS': [set(['AM21B', 'MATH21B', 'MATH23B', 'MATH25A', 'MATH55A']), set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B']), 'CS050'], 'Q': 4.3, 'SEMESTER': 'S', 'START': 1000, 'WORKLOAD': 6.9}, 'AM121': {'CLOCKDAYS': 'MW', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'AM121', 'DAYS': set(['M', 'W']), 'END': 1129, 'ENROLLMENT': 73, 'PREREQS': [set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B']), 'STAT110'], 'Q': 3.8, 'SEMESTER': 'F', 'START': 1000, 'WORKLOAD': 10.3}, 'AM21A': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1159AM', 'CLOCKSTART': '1100AM', 'COURSE': 'AM21A', 'DAYS': set(['F', 'M', 'W']), 'END': 1159, 'ENROLLMENT': 169, 'PREREQS': [], 'Q': 3.8, 'SEMESTER': 'F', 'START': 1100, 'WORKLOAD': 7.7}, 'AM21B': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1159AM', 'CLOCKSTART': '1100AM', 'COURSE': 'AM21B', 'DAYS': set(['F', 'M', 'W']), 'END': 1159, 'ENROLLMENT': 79, 'PREREQS': [set(['AM21A', 'MATH21B', 'MATH23B', 'MATH25A', 'MATH55A'])], 'Q': 3.3, 'SEMESTER': 'S', 'START': 1100, 'WORKLOAD': 9.2}, 'CS001': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS001', 'DAYS': set(['R', 'T']), 'END': 1129, 'ENROLLMENT': 76, 'PREREQS': [], 'Q': 3.8, 'SEMESTER': 'S', 'START': 1000, 'WORKLOAD': 7.4}, 'CS020': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1059AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS020', 'DAYS': set(['F', 'M', 'W']), 'END': 1059, 'ENROLLMENT': 58, 'PREREQS': [], 'Q': 4.4, 'SEMESTER': 'S', 'START': 1000, 'WORKLOAD': 5.0}, 'CS050': {'CLOCKDAYS': 'F', 'CLOCKEND': '1159AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS050', 'DAYS': set(['F']), 'END': 1159, 'ENROLLMENT': 750, 'PREREQS': [], 'Q': 3.5, 'SEMESTER': 'F', 'START': 1000, 'WORKLOAD': 15.2}, 'CS051': {'CLOCKDAYS': 'T', 'CLOCKEND': '229PM', 'CLOCKSTART': '100PM', 'COURSE': 'CS051', 'DAYS': set(['T']), 'END': 1429, 'ENROLLMENT': 348, 'PREREQS': ['CS050'], 'Q': 3.4, 'SEMESTER': 'S', 'START': 1300, 'WORKLOAD': 13.9}, 'CS061': {'CLOCKDAYS': 'TR', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'CS061', 'DAYS': set(['R', 'T']), 'END': 1559, 'ENROLLMENT': 129, 'PREREQS': ['CS050'], 'Q': 4.2, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 15.8}, 'CS091R': {'CLOCKDAYS': '', 'CLOCKEND': '', 'CLOCKSTART': '', 'COURSE': 'CS091R', 'DAYS': set([]), 'END': -1, 'ENROLLMENT': 5, 'PREREQS': [], 'Q': 3.879545455, 'SEMESTER': 'F', 'START': -1, 'WORKLOAD': 11.04772727}, 'CS091R': {'CLOCKDAYS': '', 'CLOCKEND': '', 'CLOCKSTART': '', 'COURSE': 'CS091R', 'DAYS': set([]), 'END': -1, 'ENROLLMENT': 5, 'PREREQS': [], 'Q': 3.879545455, 'SEMESTER': 'S', 'START': -1, 'WORKLOAD': 11.04772727}, 'CS096': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '559PM', 'CLOCKSTART': '400PM', 'COURSE': 'CS096', 'DAYS': set(['F', 'M', 'W']), 'END': 1759, 'ENROLLMENT': 2, 'PREREQS': [set(['CS051', 'CS061'])], 'Q': 4.5, 'SEMESTER': 'F', 'START': 1600, 'WORKLOAD': 3.0}, 'CS105': {'CLOCKDAYS': 'TR', 'CLOCKEND': '229PM', 'CLOCKSTART': '100PM', 'COURSE': 'CS105', 'DAYS': set(['R', 'T']), 'END': 1429, 'ENROLLMENT': 37, 'PREREQS': [], 'Q': 4.7, 'SEMESTER': 'F', 'START': 1300, 'WORKLOAD': 5.2}, 'CS108': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1259PM', 'CLOCKSTART': '1130AM', 'COURSE': 'CS108', 'DAYS': set(['R', 'T']), 'END': 1259, 'ENROLLMENT': 36, 'PREREQS': [], 'Q': 4.8, 'SEMESTER': 'F', 'START': 1130, 'WORKLOAD': 4.1}, 'CS109A': {'CLOCKDAYS': 'MW', 'CLOCKEND': '229PM', 'CLOCKSTART': '100PM', 'COURSE': 'CS109A', 'DAYS': set(['M', 'W']), 'END': 1429, 'ENROLLMENT': 131, 'PREREQS': ['CS050'], 'Q': 3.1, 'SEMESTER': 'F', 'START': 1300, 'WORKLOAD': 9.1}, 'CS109B': {'CLOCKDAYS': 'MW', 'CLOCKEND': '229PM', 'CLOCKSTART': '100PM', 'COURSE': 'CS109B', 'DAYS': set(['M', 'W']), 'END': 1429, 'ENROLLMENT': 79, 'PREREQS': ['CS109A'], 'Q': 3.5, 'SEMESTER': 'S', 'START': 1300, 'WORKLOAD': 11.9}, 'CS121': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS121', 'DAYS': set(['R', 'T']), 'END': 1129, 'ENROLLMENT': 169, 'PREREQS': [set(['CS020', 'MATH23A', 'MATH25A', 'MATH25B', 'MATH55A', 'MATH55B'])], 'Q': 3.2, 'SEMESTER': 'F', 'START': 1000, 'WORKLOAD': 9.5}, 'CS124': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1259PM', 'CLOCKSTART': '1130AM', 'COURSE': 'CS124', 'DAYS': set(['R', 'T']), 'END': 1259, 'ENROLLMENT': 217, 'PREREQS': ['CS121'], 'Q': 3.9, 'SEMESTER': 'S', 'START': 1130, 'WORKLOAD': 15.2}, 'CS126': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS126', 'DAYS': set(['R', 'T']), 'END': 1129, 'ENROLLMENT': 30, 'PREREQS': ['STAT110', 'CS124'], 'Q': 3.0, 'SEMESTER': 'F', 'START': 1000, 'WORKLOAD': 8.0}, 'CS127': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS127', 'DAYS': set(['R', 'T']), 'END': 1129, 'ENROLLMENT': 19, 'PREREQS': [set(['CS121', 'CS124'])], 'Q': 4.5, 'SEMESTER': 'S', 'START': 1000, 'WORKLOAD': 12.2}, 'CS134': {'CLOCKDAYS': 'MW', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'CS134', 'DAYS': set(['M', 'W']), 'END': 1559, 'ENROLLMENT': 167, 'PREREQS': ['STAT110', set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B']), set(['AM21B', 'MATH21B', 'MATH23B', 'MATH25A', 'MATH55A'])], 'Q': 3.5, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 9.3}, 'CS136': {'CLOCKDAYS': 'MW', 'CLOCKEND': '1259PM', 'CLOCKSTART': '1130AM', 'COURSE': 'CS136', 'DAYS': set(['M', 'W']), 'END': 1259, 'ENROLLMENT': 57, 'PREREQS': [set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B']), 'CS051', 'STAT110', set(['CS181', 'CS182'])], 'Q': 4.6, 'SEMESTER': 'F', 'START': 1130, 'WORKLOAD': 9.8}, 'CS141': {'CLOCKDAYS': 'MW', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS141', 'DAYS': set(['M', 'W']), 'END': 1129, 'ENROLLMENT': 19, 'PREREQS': ['CS050'], 'Q': 4.0, 'SEMESTER': 'F', 'START': 1000, 'WORKLOAD': 10.5}, 'CS143': {'CLOCKDAYS': 'MW', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'CS143', 'DAYS': set(['M', 'W']), 'END': 1559, 'ENROLLMENT': 43, 'PREREQS': ['CS050'], 'Q': 2.8, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 5.5}, 'CS144R': {'CLOCKDAYS': 'MW', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'CS144R', 'DAYS': set(['M', 'W']), 'END': 1559, 'ENROLLMENT': 11, 'PREREQS': [], 'Q': 4.2, 'SEMESTER': 'S', 'START': 1430, 'WORKLOAD': 5.2}, 'CS144R': {'CLOCKDAYS': 'MW', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'CS144R', 'DAYS': set(['M', 'W']), 'END': 1559, 'ENROLLMENT': 11, 'PREREQS': [], 'Q': 4.2, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 5.2}, 'CS148': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1259PM', 'CLOCKSTART': '1130AM', 'COURSE': 'CS148', 'DAYS': set(['R', 'T']), 'END': 1259, 'ENROLLMENT': 4, 'PREREQS': [], 'Q': 5.0, 'SEMESTER': 'S', 'START': 1130, 'WORKLOAD': 5.7}, 'CS152': {'CLOCKDAYS': 'TR', 'CLOCKEND': '1129AM', 'CLOCKSTART': '1000AM', 'COURSE': 'CS152', 'DAYS': set(['R', 'T']), 'END': 1129, 'ENROLLMENT': 19, 'PREREQS': ['CS051', 'CS121'], 'Q': 3.4, 'SEMESTER': 'S', 'START': 1000, 'WORKLOAD': 6.6}, 'CS165': {'CLOCKDAYS': 'MW', 'CLOCKEND': '529PM', 'CLOCKSTART': '400PM', 'COURSE': 'CS165', 'DAYS': set(['M', 'W']), 'END': 1729, 'ENROLLMENT': 32, 'PREREQS': ['CS051', 'CS061'], 'Q': 4.5, 'SEMESTER': 'F', 'START': 1600, 'WORKLOAD': 10.5}, 'CS171': {'CLOCKDAYS': 'TR', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'CS171', 'DAYS': set(['R', 'T']), 'END': 1559, 'ENROLLMENT': 97, 'PREREQS': ['CS050'], 'Q': 3.7, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 9.8}, 'CS175': {'CLOCKDAYS': 'MW', 'CLOCKEND': '229PM', 'CLOCKSTART': '100PM', 'COURSE': 'CS175', 'DAYS': set(['M', 'W']), 'END': 1429, 'ENROLLMENT': 13, 'PREREQS': [set(['CS051', 'CS061']), set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B'])], 'Q': 4.0, 'SEMESTER': 'F', 'START': 1300, 'WORKLOAD': 9.5}, 'CS179': {'CLOCKDAYS': 'TR', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'CS179', 'DAYS': set(['R', 'T']), 'END': 1559, 'ENROLLMENT': 59, 'PREREQS': ['CS050'], 'Q': 3.6, 'SEMESTER': 'S', 'START': 1430, 'WORKLOAD': 6.8}, 'CS181': {'CLOCKDAYS': 'MW', 'CLOCKEND': '1029AM', 'CLOCKSTART': '900AM', 'COURSE': 'CS181', 'DAYS': set(['M', 'W']), 'END': 1029, 'ENROLLMENT': 215, 'PREREQS': ['CS051', 'STAT110', set(['AM21B', 'MATH21B', 'MATH23B', 'MATH25A', 'MATH55A']), set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B'])], 'Q': 3.6, 'SEMESTER': 'S', 'START': 900, 'WORKLOAD': 16.8}, 'CS182': {'CLOCKDAYS': 'TR', 'CLOCKEND': '229PM', 'CLOCKSTART': '100PM', 'COURSE': 'CS182', 'DAYS': set(['R', 'T']), 'END': 1429, 'ENROLLMENT': 84, 'PREREQS': ['CS051', 'STAT110'], 'Q': 3.9, 'SEMESTER': 'F', 'START': 1300, 'WORKLOAD': 7.2}, 'CS189': {'CLOCKDAYS': 'F', 'CLOCKEND': '359PM', 'CLOCKSTART': '100PM', 'COURSE': 'CS189', 'DAYS': set(['F']), 'END': 1559, 'ENROLLMENT': 20, 'PREREQS': [set(['CS181', 'CS182'])], 'Q': 3.6, 'SEMESTER': 'S', 'START': 1300, 'WORKLOAD': 13.9}, 'CS191': {'CLOCKDAYS': 'MW', 'CLOCKEND': '1029AM', 'CLOCKSTART': '900AM', 'COURSE': 'CS191', 'DAYS': set(['M', 'W']), 'END': 1029, 'ENROLLMENT': 20, 'PREREQS': [], 'Q': 3.0, 'SEMESTER': 'S', 'START': 900, 'WORKLOAD': 8.0}, 'ES50': {'CLOCKDAYS': 'MW', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'ES50', 'DAYS': set(['M', 'W']), 'END': 1559, 'ENROLLMENT': 85, 'PREREQS': [], 'Q': 3.5, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 6.6}, 'ES52': {'CLOCKDAYS': 'MW', 'CLOCKEND': '229PM', 'CLOCKSTART': '100PM', 'COURSE': 'ES52', 'DAYS': set(['M', 'W']), 'END': 1429, 'ENROLLMENT': 53, 'PREREQS': [], 'Q': 3.9, 'SEMESTER': 'F', 'START': 1300, 'WORKLOAD': 9.8}, 'MATH154': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1259PM', 'CLOCKSTART': '1200PM', 'COURSE': 'MATH154', 'DAYS': set(['F', 'M', 'W']), 'END': 1259, 'ENROLLMENT': 30, 'PREREQS': [set(['AM21B', 'MATH21B', 'MATH23B', 'MATH25A', 'MATH55A']), set(['AM21A', 'MATH21A', 'MATH23A', 'MATH25B', 'MATH55B'])], 'Q': 4.5, 'SEMESTER': 'S', 'START': 1200, 'WORKLOAD': 10.1}, 'MATH21A': {'CLOCKDAYS': '', 'CLOCKEND': '', 'CLOCKSTART': '', 'COURSE': 'MATH21A', 'DAYS': set([]), 'END': -1, 'ENROLLMENT': 237, 'PREREQS': [], 'Q': 3.6, 'SEMESTER': 'FS', 'START': -1, 'WORKLOAD': 10.0}, 'MATH21B': {'CLOCKDAYS': '', 'CLOCKEND': '', 'CLOCKSTART': '', 'COURSE': 'MATH21B', 'DAYS': set([]), 'END': -1, 'ENROLLMENT': 320, 'PREREQS': [], 'Q': 3.5, 'SEMESTER': 'FS', 'START': -1, 'WORKLOAD': 8.4}, 'MATH23A': {'CLOCKDAYS': 'F', 'CLOCKEND': '159PM', 'CLOCKSTART': '100PM', 'COURSE': 'MATH23A', 'DAYS': set(['F']), 'END': 1359, 'ENROLLMENT': 59, 'PREREQS': [], 'Q': 3.4, 'SEMESTER': 'F', 'START': 1300, 'WORKLOAD': 10.5}, 'MATH23B': {'CLOCKDAYS': 'TR', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'MATH23B', 'DAYS': set(['R', 'T']), 'END': 1559, 'ENROLLMENT': 59, 'PREREQS': [set(['MATH23A', 'MATH25A'])], 'Q': 3.9, 'SEMESTER': 'S', 'START': 1430, 'WORKLOAD': 8.8}, 'MATH25A': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1059AM', 'CLOCKSTART': '1000AM', 'COURSE': 'MATH25A', 'DAYS': set(['F', 'M', 'W']), 'END': 1059, 'ENROLLMENT': 45, 'PREREQS': [], 'Q': 4.6, 'SEMESTER': 'F', 'START': 1000, 'WORKLOAD': 17.1}, 'MATH25B': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1059AM', 'CLOCKSTART': '1000AM', 'COURSE': 'MATH25B', 'DAYS': set(['F', 'M', 'W']), 'END': 1059, 'ENROLLMENT': 38, 'PREREQS': [set(['MATH25A','MATH55A'])], 'Q': 3.9, 'SEMESTER': 'S', 'START': 1000, 'WORKLOAD': 16.3}, 'MATH55A': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1159AM', 'CLOCKSTART': '1100AM', 'COURSE': 'MATH55A', 'DAYS': set(['F', 'M', 'W']), 'END': 1159, 'ENROLLMENT': 11, 'PREREQS': [], 'Q': 3.7, 'SEMESTER': 'F', 'START': 1100, 'WORKLOAD': 30.2}, 'MATH55B': {'CLOCKDAYS': 'MWF', 'CLOCKEND': '1159AM', 'CLOCKSTART': '1100AM', 'COURSE': 'MATH55B', 'DAYS': set(['F', 'M', 'W']), 'END': 1159, 'ENROLLMENT': 12, 'PREREQS': ['MATH55A'], 'Q': 4.0, 'SEMESTER': 'S', 'START': 1100, 'WORKLOAD': 45.2}, 'STAT110': {'CLOCKDAYS': 'TR', 'CLOCKEND': '359PM', 'CLOCKSTART': '230PM', 'COURSE': 'STAT110', 'DAYS': set(['R', 'T']), 'END': 1559, 'ENROLLMENT': 444, 'PREREQS': [set(['AM21B', 'MATH21B', 'MATH23B', 'MATH25A', 'MATH55A'])], 'Q': 4.3, 'SEMESTER': 'F', 'START': 1430, 'WORKLOAD': 10.6}, } # 'STAT121A': {'CLOCKDAYS': 'MW', # 'CLOCKEND': '229PM', # 'CLOCKSTART': '100PM', # 'COURSE': 'STAT121A', # 'DAYS': set(['M', 'W']), # 'END': 1429, # 'ENROLLMENT': 131, # 'PREREQS': [], # 'Q': 3.1, # 'SEMESTER': 'F', # 'START': 1300, # 'WORKLOAD': 9.1}, # 'STAT121B': {'CLOCKDAYS': 'MW', # 'CLOCKEND': '229PM', # 'CLOCKSTART': '100PM', # 'COURSE': 'STAT121B', # 'DAYS': set(['M', 'W']), # 'END': 1429, # 'ENROLLMENT': 25, # 'PREREQS': [], # 'Q': 3.5, # 'SEMESTER': 'S', # 'START': 1300, # 'WORKLOAD': 5}
[ "rgologorsky@college.harvard.edu" ]
rgologorsky@college.harvard.edu
39b71d964b507c6bddee391d264382ee2a09e569
aad38f959313c008af3cff6f2595c05131e0ae60
/week4/common/cloudAMQP_client_test.py
701364b71aaa2de82e1d3d121c82d7858c9f8899
[]
no_license
wansuiye09/News-Scraping-and-Recommendation
82c128e3a31df95b6d19107db969e318810695b8
a3e9149d6952fc216dd6b5f21e8ad97fafa09168
refs/heads/master
2021-05-10T13:10:55.362946
2017-06-19T15:01:57
2017-06-19T15:01:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
from cloudAMQP_client import CloudAMQPClient CLOUDAMQP_URL = 'amqp://dfrwrfgh:57HQ4sghISj3dAGA42BQbVf9AOqzrj0c@crocodile.rmq.cloudamqp.com/dfrwrfgh' QUEUE_NAME = 'test' def test_basic(): client = CloudAMQPClient(CLOUDAMQP_URL, QUEUE_NAME) sentMsg = {'test_key': 'value'} client.sendMessage(sentMsg) client.sleep(5) receivedMsg = client.getMessage() assert sentMsg == receivedMsg print 'test passed' if __name__ == "__main__": test_basic()
[ "ezhangmarvin@gmail.com" ]
ezhangmarvin@gmail.com
66b303e32158b5df66849ee037cff4b3c3ee363c
7334b65c9506f69167402fe0d473821853724250
/build/shinobot/catkin_generated/pkg.installspace.context.pc.py
7e33aafc4d08a69c52f401c038b137e2b9bfc9e1
[]
no_license
hphilamore/shinobot_ws
f5d044af587959009992f090f832279f52daf94f
153ff65f72729a2a1fd84f84305a78aae7373b73
refs/heads/master
2022-12-26T14:47:46.977468
2020-10-08T19:54:04
2020-10-08T19:54:04
267,820,699
0
0
null
null
null
null
UTF-8
Python
false
false
376
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "shinobot" PROJECT_SPACE_DIR = "/home/shinobot/shinobot_ws/install" PROJECT_VERSION = "0.0.0"
[ "hemmaphilamore@gmail.com" ]
hemmaphilamore@gmail.com
5886518f9d4354fc2e92ba2b794837444e2ce652
24aa54e27ea3aa648f1c2d898f2412a4a89678e4
/deep_glide/envs/withMap.py
888260c9a7155b378f2aab63228f4eb0059611db
[]
no_license
afaehnrich/deep-glide
44246dbb9534c75e353b6c71cef1fab141b6746b
d80c857ee83e674c1ad2fe8670fa7f621ae8bb7e
refs/heads/master
2023-08-12T11:02:42.394090
2021-09-27T13:41:10
2021-09-27T13:41:10
314,990,517
0
0
null
2021-09-27T13:14:43
2020-11-22T08:19:27
Python
UTF-8
Python
false
false
6,467
py
from abc import abstractmethod from enum import auto from deep_glide.envs.withoutMap import Scenario_A import numpy as np from deep_glide.sim import Sim, SimState, TerrainBlockworld, TerrainClass, TerrainClass90m, TerrainOcean, TerrainSingleBlocks from deep_glide.envs.abstractEnvironments import AbstractJSBSimEnv, TerminationCondition import deep_glide.envs.rewardFunctions as rewardFunctions from deep_glide.deprecated.properties import Properties, PropertylistToBox from deep_glide.utils import Normalizer, Normalizer2D from gym.envs.registration import register import logging from deep_glide.utils import angle_between from gym import spaces from matplotlib import pyplot as plt import math import os class AbstractJSBSimEnv2D(Scenario_A): metadata = {'render.modes': ['human']} OBS_WIDTH = 36 OBS_HEIGHT = 36 observation_space: spaces.Box map_mean: float map_std: float def __init__(self, terrain: str, save_trajectory = False, render_before_reset=False): super().__init__(save_trajectory, render_before_reset) self._init_terrain(terrain) self.observation_space = spaces.Box( low = -math.inf, high = math.inf, shape=(super().observation_space.shape[0]+self.OBS_HEIGHT*self.OBS_WIDTH,), dtype=np.float32) def _init_terrain(self, terrain): if terrain == 'ocean': self.terrain = TerrainOcean() elif terrain == 'oceanblock': self.terrain = TerrainBlockworld(ocean=True) elif terrain == 'alps': self.terrain = TerrainClass90m() elif terrain == 'block': self.terrain = TerrainBlockworld() elif terrain == 'singleblock': self.terrain = TerrainSingleBlocks() else: raise ValueError('Terraintype unknown: {}'.format(terrain)) print( 'using Terrain:', terrain) self.calc_map_mean_std() def calc_map_mean_std(self): self.map_mean = 5000. self.map_std = 5000. # (x1,x2), (y1,y2) = self.config.map_start_range # map_min5 = np.percentile(self.terrain.data[x1:x2, y1:y2], 5) # map_max5 = np.percentile(self.terrain.data[x1:x2, y1:y2], 95) # self.map_mean = map_min5 + (map_max5-map_min5)/2 # self.map_std = abs((map_max5-map_min5)/2) + 0.00002 # logging.debug('Map mean={:.2f} std={:.2f}'.format(self.map_mean, self.map_std)) #print('Map mean={:.2f} std={:.2f}'.format(self.map_mean, self.map_std)) def _get_state(self): state = super()._get_state() map = self.terrain.map_around_position(self.pos[0], self.pos[1], self.OBS_WIDTH, self.OBS_HEIGHT).copy() map = (map-self.map_mean)/self.map_std #map = self.mapNormalizer.normalize(map.view().reshape(1,self.OBS_WIDTH,self.OBS_HEIGHT)) if not np.isfinite(state).all(): logging.error('Infinite number detected in state. Replacing with zero') logging.error('State: {}'.format(state)) state = np.nan_to_num(state, neginf=0, posinf=0) #state = self.stateNormalizer.normalize(state.view().reshape(1,17)) if not np.isfinite(state).all(): logging.error('Infinite number after Normalization!') raise ValueError() state = np.concatenate((map.flatten(), state.flatten())) return state class Scenario_A_Terrain(AbstractJSBSimEnv2D): # stateNormalizer = Normalizer('JsbSimEnv2D_v0') # mapNormalizer = Normalizer2D('JsbSimEnv2D_v0_map') env_name = 'Scenario_A_Terrain-v0' ''' In diesem Env ist der Reward abhängig davon, wie nahe der Agent dem Ziel gekommen ist. Höhe und Anflugwinkel sind nicht entscheidend. ''' def __init__(self, terrain='ocean', save_trajectory = False, render_before_reset=False): super().__init__(terrain, save_trajectory, render_before_reset) class Scenario_B_Terrain(Scenario_A_Terrain): env_name = 'Scenario_B_Terrain-v0' ''' Wie JSBSim_v5, aber mit Map. ''' def __init__(self, terrain='ocean', save_trajectory = False, render_before_reset=False, range_dist = 500, goto_time = 5.): super().__init__(terrain, save_trajectory, render_before_reset) self.RANGE_DIST = range_dist # in m | Umkreis um das Ziel in Metern, bei dem es einen positiven Reward gibt self.goto_time = goto_time # Aktivieren, wenn mehr Logging benötigt wird: # self.log_fn = 'Log_JSBSim2D-v2_final_heights' # i=1 # while os.path.exists('{}_{}.csv'.format(self.log_fn, i)): i+=1 # self.log_fn = '{}_{}.csv'.format(self.log_fn, i) # with open(self.log_fn,'w') as fd: # fd.write('height; terrain_height\n') def step(self, action): new_state, reward, done, info = super().step(action) # Aktivieren, wenn mehr Logging benötigt wird: # if done: # with open(self.log_fn,'a') as fd: # fd.write('{:f}; {:f}\n'.format(self.pos[2],self.terrain.altitude(self.pos[0], self.pos[1])).replace('.',',')) return new_state, reward, done, info _checkFinalConditions = rewardFunctions._checkFinalConditions_v5 _reward = rewardFunctions._reward_v5 class Scenario_C_Terrain(Scenario_B_Terrain): env_name = 'Scenario_C_Terrain-v0' ''' Wie JSBSim_v6, aber mit Map. Ergebnis: Kein Lernen, selbst mit Ocean-Map. Wird der State auf den normalen State ohne Map reduziert, funktioniert alles super. ''' _checkFinalConditions = rewardFunctions._checkFinalConditions_v6 _reward = rewardFunctions._reward_v6 def __init__(self, terrain='ocean', save_trajectory = False, render_before_reset=False, range_dist=500, range_angle = math.pi/5, angle_importance=0.5): super().__init__(terrain, save_trajectory, render_before_reset, range_dist) self.RANGE_ANGLE = range_angle # in rad | Toleranz des Anflugwinkels, bei dem ein positiver Reward gegeben wird self.ANGLE_IMPORTANCE = angle_importance * 10 register( id='Scenario_A_Terrain-v0', entry_point='deep_glide.envs.withMap:Scenario_A_Terrain', max_episode_steps=999, reward_threshold=1000.0, ) register( id='Scenario_B_Terrain-v0', entry_point='deep_glide.envs.withMap:Scenario_B_Terrain', max_episode_steps=999, reward_threshold=1000.0, ) register( id='Scenario_C_Terrain-v0', entry_point='deep_glide.envs.withMap:Scenario_C_Terrain', max_episode_steps=999, reward_threshold=1000.0, )
[ "a.faehnrich.acc@gmail.com" ]
a.faehnrich.acc@gmail.com
ecc631a48f59fcc28412207e3d56e26f26d614f1
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/128/usersdata/222/33411/submittedfiles/al6.py
a4e5c49916c0a47643dc35834d5f8c7cd5aca7c0
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
303
py
# -*- coding: utf-8 -*- a=int(input('Digite a:')) contador=0 for i in range(2,a,1): if n%i==0: contador=contador+1 print(i) for i in range(2,a,1): if n%1==0: contador=contador+1 print(i) if contador==0: print('Primo') else: print('Não primo')
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
c85c091a3229318315dafe45d892f4fe27ad63c5
c8efab9c9f5cc7d6a16d319f839e14b6e5d40c34
/source/All_Solutions/0480.滑动窗口中位数/0480-滑动窗口中位数.py
b6a27a3906d116af6ae8695a4eafea53559a93c4
[ "MIT" ]
permissive
zhangwang0537/LeetCode-Notebook
73e4a4f2c90738dea4a8b77883b6f2c59e02e9c1
1dbd18114ed688ddeaa3ee83181d373dcc1429e5
refs/heads/master
2022-11-13T21:08:20.343562
2020-04-09T03:11:51
2020-04-09T03:11:51
277,572,643
0
0
MIT
2020-07-06T14:59:57
2020-07-06T14:59:56
null
UTF-8
Python
false
false
940
py
import bisect class Solution: def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]: """ My solution, using sorted list Time: O(nlog(k)) Space: O(n+k) """ res = [] if not nums or not k: return res def append_median(): median = sorted_list[k//2] if k%2==1 else (sorted_list[k//2] + sorted_list[k//2-1])/2 res.append(median) n = len(nums) p1, p2 = 0, k sorted_list = sorted(nums[p1:p2]) append_median() while p2 != n: bisect.insort(sorted_list, nums[p2]) del_index = bisect.bisect(sorted_list, nums[p1]) # remember that the index of bisect and list are not same! del sorted_list[del_index - 1] append_median() p1 += 1 p2 += 1 return res
[ "mzm@mail.dlut.edu.cn" ]
mzm@mail.dlut.edu.cn
1eb38977bcd60dc2b44b88bac65269a4e1e247a7
5d441b10415e452113e395681e4b80e2c8f2bf8c
/commands/por_ano_melhorado.py
e3bb05ab68ee1599a532f6e45868a5c9938b80b4
[]
no_license
diegobaron2612/copa_transparente
5fe49fe2c1785e8cd3808fe95c305a8a18dbab3f
e74663224012249d0c4c7688704d2659771ab350
refs/heads/master
2021-07-11T03:24:12.861363
2021-03-28T19:39:51
2021-03-28T19:39:51
242,865,154
0
0
null
2020-02-24T23:21:09
2020-02-24T23:21:08
null
UTF-8
Python
false
false
478
py
def contar_execucoes(caminho): totals = {} with open(caminho, "r") as data: for line in data: info = line.strip().split(";") year = int(info[8][-4:]) totals.setdefault(year, 0) totals[year] += 1 sorted_totals = sorted(totals) for year in sorted_totals: print(f"{totals[year]} execuções assinadas em {year}") if __name__ == "__main__": contar_execucoes("data/data/ExecucaoFinanceira.csv")
[ "viniciusdesk@icloud.com" ]
viniciusdesk@icloud.com
35b8a0e073fe1e4ace98a7f1bbf543673ee3905f
f648b8263f130f3be7fd07e87d1b9c12a3e94ffb
/webScraper.py
928df5de15ff32eb750e40ef671fc31069bbd81a
[]
no_license
StaaleA/FinnScraper
43777ca9fbb16ae3b526a9fa2a8a5c2e16abaaf1
5c2c7d7cbeda392f92931c026b4ea265b913afb5
refs/heads/master
2021-01-01T04:40:23.819003
2016-05-08T11:21:15
2016-05-08T11:21:15
56,928,471
2
2
null
null
null
null
UTF-8
Python
false
false
1,976
py
from lxml import html from datetime import datetime import requests import boto3 import sys # Gets info about two search terms; "datavarehus" and "business intelligence" datavarehus = requests.get('http://m.finn.no/job/fulltime/search.html?q=datavarehus&industry=65&industry=8&industry=34&sort=1') businessIntelligence = requests.get('http://m.finn.no/job/fulltime/search.html?q=business+intelligence&industry=65&industry=8&industry=34&sort=1') # Extracts the number of jobs and ads tree = html.fromstring(datavarehus.content) datavarehus_count = tree.xpath('//span[@class="current-hit-count"]/b[@data-count]/text()') #['Stillinger', 'Annonser'] tree = html.fromstring(businessIntelligence.content) businessIntelligence_count = tree.xpath('//span[@class="current-hit-count"]/b[@data-count]/text()') #['Stillinger', 'Annonser'] # Sets the date date = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Builds the output text datavarehus_stillinger = datavarehus_count[0]; datavarehus_annonser = datavarehus_count[1]; datavarehusTekst = "datavarehus,"+datavarehus_stillinger+","+datavarehus_annonser+","+date businessIntelligence_stillinger = businessIntelligence_count[0]; businessIntelligence_annonser = businessIntelligence_count[1]; businessIntelligenceTekst = "business intelligence,"+businessIntelligence_stillinger+","+businessIntelligence_annonser+","+date # Gets the file location as an argument if len(sys.argv) != 2: sys.exit('Usage: .../webScraper.py fileLocation') # If a file location hasent been passed as an argument else: fileLocation = sys.argv[1] # Appends the file with the new data try: file = open(fileLocation,"a") except IOError: print('Cannot open file. Check the that you have the correct file location', arg) else: file.write(datavarehusTekst +"\r\n") file.write(businessIntelligenceTekst+"\r\n") file.close() # Upload the file to S3 s3_client = boto3.client('s3') s3_client.upload_file(fileLocation, 'samedia', 'stillinger.csv')
[ "staaleas@gmail.com" ]
staaleas@gmail.com
1dbd941eaa595923b6c8f889ba43df856f7e2df6
565892be77daffe1250229fbd1a8ed94819bff56
/src/basic_syntax_python.py
b97527ebe07af6e6ed81ea3f96a1e5fe4b807447
[]
no_license
Romzzes/basic_python_selenium_test
6a05b9ba578d8254faadc43ea5056cd9c6b3d26a
4a21f06fec20b76c14c7fa7768f05dada81ebd8c
refs/heads/master
2020-08-15T09:42:35.275398
2019-10-21T14:36:58
2019-10-21T14:36:58
215,319,049
0
0
null
null
null
null
UTF-8
Python
false
false
1,418
py
from selenium import webdriver name = "Roman" height = 180 weight = 83.5 married = False age = 65 height = height + 6 height += 6 a = 4 b = 6.5 c = "2.5" print (weight + height) print (name + str(height)) print (name + " is " + str(height) + " cm and " + str(weight) + " kg") print ("My name is " + name) print ("name is {} and height is {}". format(name, height)) print (a+b) print(b + float(c)) print(str(b) +c) if (age < 10): print("child") elif (age <= 19): if (age < 13): print ("small") print("teenager") elif (age < 65): print ("old") else: print("retiree") lis = [12, 44.3, 'a', ['h', 'i']] lis.append('new') lis.insert(1, 14) lis.remove(44.3) print(lis) print(lis[3]) print(lis[3][0]) set = {'Alex', 12, 12, 'Peter', 'Nick'} print(set) set = ('Alex', 12, 12, 'Peter', 'Nick' print(set) for element in lis: print(element) d = {'name': name, 'profession': {3, 2, 3}, 'name1': 'bcd', 'name2': 'hi', 'name3': 'hi'} print(d['name']) print(d['profession']) def sum(a, b): # a = 4 # b = 3 print(a + b) sum(weight, height) sum(weight+height, height-weight) import math pi = math.pi c = math.cos(60/pi) print(c) print(pi) #about xpath #//input[@name='username'] # contains text: //button[contains(test(),"Submit")] //div[contains(test(),"Submit")] # #for element in set: # print(element) print(len(set)) print(set) print(len(lis)) print(lis)
[ "Romanpopov120793@gmail.com" ]
Romanpopov120793@gmail.com
a49c16b1780e0f525fcaef9f2316c830deb44dd2
4cabdcc3cdf929fa7cf761a42cd3012d01494336
/pipeline/mongodb/connector.py
02c440be290a00f350da0205b88def477f43851c
[]
no_license
pjt3591oo/python-boilerplate
660e3234aa45f18ed553f499674c54e3226bfaf4
1ea8d84cfc06c84bab934f779ead309e8e4e7c14
refs/heads/master
2021-01-01T06:53:18.184728
2017-07-19T01:06:54
2017-07-19T01:06:54
97,542,368
0
0
null
null
null
null
UTF-8
Python
false
false
63
py
from config.DB import CONNECTOR_INFO CONNECTOR_INFO['mongodb']
[ "pjt3591oo@gmail.com" ]
pjt3591oo@gmail.com
321bd9b50369d94963a04a588e9292a874dd1c3b
d2a88f8decc3c101c3a029d1ea269dab95e3d98a
/pages/product_page.py
308b844b0a5d8b9684dc48b7983657fb76fb4be6
[]
no_license
arinablake/new_python-selenium-automation
6841c6ef434671dcb9912d76a55b4c0c2c5cad0b
771eb7579918bcbbe4605962f3c1eda03c4993ff
refs/heads/master
2022-11-26T08:38:31.016555
2020-08-02T00:08:23
2020-08-02T00:08:23
267,146,563
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
from pages.base_page import Page from selenium.webdriver.common.by import By from time import sleep class Product(Page): NEW_ARRIVALS = (By.CSS_SELECTOR, '#nav-subnav > a:nth-child(7)') DEALS = (By.CSS_SELECTOR, '.mega-menu') def hover_new_arvls(self): new_arvls_btn = self.find_element(*self.NEW_ARRIVALS) self.actions.move_to_element(new_arvls_btn).perform() def verify_deals_tooltip(self): self.wait_for_element_appear(*self.DEALS)
[ "arinafilippova@gmail.com" ]
arinafilippova@gmail.com
4476af7a141bf5d8e5169068416e88b445882d90
e7759f8c701f7fc983c64280a21d6d0c59398e57
/Labs/lab07_08_featherbear/src/booking.py
700d5eec96120132d3b0c1f6b518786bf030926d
[]
no_license
featherbear/UNSW-COMP1531
3fbe33986065f464fa2ce4615588220b57cb55ad
3fff3663972034e9f6ce621fb06531b06a8d488f
refs/heads/master
2021-06-26T17:16:03.321442
2021-06-12T09:00:39
2021-06-12T09:00:39
170,249,325
2
2
null
null
null
null
UTF-8
Python
false
false
713
py
class Booking(object): def __init__(self, customer, period, car, location): self._customer = customer self._period = period self._car = car self._location = location @property def fee(self): return self._car.get_fee(self._period) @property def location(self): return self._location @property def car_rego(self): return self._car.rego def __str__(self): output = '' output += f'Made by {self._customer}\n' output += f'Reserve {self._car} for {self._period} days\n' output += f'Locations: {self._location}\n' output += f'Total fee: ${self.fee:.2f}' return output
[ "ian.isu.park@gmail.com" ]
ian.isu.park@gmail.com
2e8c16e2e289f06947cb7b4b8a393ad42740713b
d08a0812d783fc72ca0d52b2c0172b846a1c0ffe
/helper_functions.py
60662f0950000f526dbcc6f032fcdfe433f1c4cf
[]
no_license
NathanVenos/Electricity_Price_Forecasting
7ca18ec77bbf06e865b77161f3973fa0218468de
17495baf62bfe99d76b42dac24f76e93f11f0925
refs/heads/master
2020-09-11T06:19:19.102654
2020-01-21T17:58:44
2020-01-21T17:58:44
221,967,901
1
0
null
null
null
null
UTF-8
Python
false
false
9,244
py
import numpy as np import pandas as pd import json import requests from fbprophet import Prophet from sklearn.metrics import mean_squared_error, mean_absolute_error from datetime import date def generate_api_call_times(start_time, interval_length, intervals): """ Generates a list of times for which api calls can be requested based on a given start time, interval length and number of intervals. """ api_times = [start_time] for interval in range(0, intervals): sample_time = api_times[-1] + interval_length api_times.append(sample_time) return api_times def label_historicalType_and_precipType(api_json_data): """ Function loops through the hourly records in the input json data to label the data as a historical 'type', and to populate the 'precipType' with 'none' if this key-value pair is not present, which occurs when there was no precipitation at that time. """ data_records = api_json_data['hourly']['data'] for record in data_records: record.update({'type': 'historical'}) try: record.update({'precipType': record['precipType']}) except: record.update({'precipType': 'none'}) return data_records def label_forecastType_and_precipType(api_json_data): """ Function loops through the hourly records in the input json data to label the data as a historical 'type', and to populate the 'precipType' with 'none' if this key-value pair is not present, which occurs when there was no precipitation at that time. """ data_records = api_json_data['hourly']['data'] for record in data_records: record.update({'type': 'forecast'}) try: record.update({'precipType': record['precipType']}) except: record.update({'precipType': 'none'}) return data_records def api_dataframe_conversion(json_data, hourly_records, column_headers): """ Function generates a dataframe from the hourly historical weather records for the given day and also provides locational and type (e.g. historical or forecast) designations. """ data_frame = pd.DataFrame(hourly_records) data_frame['time'] = pd.to_datetime(data_frame['time'],unit='s') data_frame['latitude'] = json_data['latitude'] data_frame['longitude'] = json_data['longitude'] data_frame['timezone'] = json_data['timezone'] data_frame = data_frame[column_headers] data_frame.set_index('time', inplace=True) return data_frame def historical_dataframe_from_api_calls(list_of_times, url_base, api_key, location): """ Function loops through the list of times provided and returns a dataframe with hourly data from the date when each time occurs. """ # initializing the final dataframe column_headers = ['time', 'latitude', 'longitude', 'timezone', 'type', 'summary', 'icon', 'precipIntensity', 'precipProbability', 'precipType', 'temperature', 'apparentTemperature', 'dewPoint', 'humidity', 'pressure', 'windSpeed', 'windGust', 'windBearing', 'cloudCover', 'uvIndex', 'visibility'] historical_data_frame = pd.DataFrame(columns=column_headers) historical_data_frame.set_index('time', inplace=True) # looping through the list of times for time in list_of_times: url = url_base+api_key+'/'+location+','+str(time)+'?exclude=currently,minutely,daily,alerts,flags' response = requests.get(url) data = response.json() hourly_data = label_historicalType_and_precipType(data) time_data_frame = api_dataframe_conversion(data, hourly_data, column_headers) historical_data_frame = historical_data_frame.append(time_data_frame, sort=False) return historical_data_frame def forecast_dataframe_from_api_calls(list_of_times): """ Function loops through the list of times provided and returns a dataframe with hourly data from the date when each time occurs. """ # initializing the final dataframe column_headers = ['time', 'latitude', 'longitude', 'timezone', 'type', 'summary', 'icon', 'precipIntensity', 'precipProbability', 'precipType', 'temperature', 'apparentTemperature', 'dewPoint', 'humidity', 'pressure', 'windSpeed', 'windGust', 'windBearing', 'cloudCover', 'uvIndex', 'visibility'] forecast_data_frame = pd.DataFrame(columns=column_headers) forecast_data_frame.set_index('time', inplace=True) # looping through the list of times for time in list_of_times: url = url_base+api_key+'/'+location+','+str(time)+'?exclude=currently,minutely,daily,alerts,flags' response = requests.get(url) data = response.json() hourly_data = label_forecastType_and_precipType(data) time_data_frame = api_dataframe_conversion(data, hourly_data, column_headers) forecast_data_frame = forecast_data_frame.append(time_data_frame, sort=False) return forecast_data_frame def is_peak(time_info_row): """ Encodes a given hour as Peak or Off-Peak per PJM/NERC published standards. Per published standards: weekdays from hour 7 through 22 are Peak and all others are Off-Peak with specific NERC holidays treated as entirely Off-Peak as well. Row of data must be from a DataFrame that includes these datetime columns: 'date', 'dayofweek', 'hour'. """ nerc_holidays = [date(2017, 1, 2), date(2017, 5, 29), date(2017, 7, 4), date(2017, 9, 4), date(2017, 11, 23), date(2017, 12, 25), date(2018, 1, 1), date(2018, 5, 28), date(2018, 7, 4), date(2018, 9, 3), date(2018, 11, 22), date(2018, 12, 25), date(2019, 1, 1), date(2019, 5, 27), date(2019, 7, 4), date(2019, 9, 2), date(2019, 11, 28), date(2019, 12, 25), date(2020, 1, 1), date(2020, 5, 25), date(2020, 7, 4), date(2020, 9, 7), date(2020, 11, 26), date(2020, 12, 25)] if time_info_row['date'] in nerc_holidays: return 0 elif time_info_row['dayofweek'] >= 5: return 0 elif (time_info_row['hour'] == 23) or (time_info_row['hour'] <= 6): return 0 else: return 1 def encode_circular_time(data, col): """ Creates sin/cos circular time for a given type of time (hour, day of week, etc) to allow for regression on time metrics using Linear Regression or Decision Tree models as opposed to Prophet. """ max_val = data[col].max() data[col + '_sin'] = round(np.sin(2 * np.pi * data[col]/max_val),6) data[col + '_cos'] = round(np.cos(2 * np.pi * data[col]/max_val),6) return data def mean_abs_pct_err(y_true, y_pred): """ Calculates Mean Absolute Percent Error (MAPE) given actual target values (y_true) and predicted values (y_pred) """ y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 def print_metrics(y_true, y_pred): """ Prints mean squared error, mean absolute error and MAPE given actual target values (y_true) and predicted values (y_pred) """ print('MSE: ', round(mean_squared_error(y_true, y_pred),2)) print('MAE: ', round(mean_absolute_error(y_true, y_pred),2)) print('MAPE: ', round(mean_abs_pct_err(y_true, y_pred),2),'%') def init_prophet_model(regressors=[], holidays=False, model=Prophet()): """ Initializes a prophet model. Adds regressors from a list of column names to be used as regressors. Includes holidays if holidays=True """ # m = model if len(regressors) > 0: for reg in regressors: model.add_regressor(reg) if holidays == True: model.add_country_holidays(country_name='US') return model def prophet_df(df, time, target, regressors=[]): """ Prepares dataframe of the time series, target and regressors in the format required by Prophet. """ df_prep = df.rename(columns={time: 'ds', target: 'y'}) df_prep = df_prep[['ds', 'y']+regressors] return df_prep def create_poly_feat(data, list_of_cols, poly_names): """ Adds a polynomial feature to the data for each column in the provided list of columns. Names of resulting polynomial columns must be passed. """ for ix, col in enumerate(list_of_cols): data[poly_names[ix]] = data[col] * data[col] return data def create_interact_feat(data, list_of_tuples, interact_names): """ Adds an interaction feature to the data for each tuple of columns in the provided list of tuples. Names of resulting interaction columns must be passed. """ for ix, tup in enumerate(list_of_tuples): data[interact_names[ix]] = data[tup[0]] * data[tup[1]] return data
[ "nathanvenos@gmail.com" ]
nathanvenos@gmail.com
557dc77ea9e99dbf933860debf7334305d13e6aa
eff5f0a2470c7023f16f6962cfea35518ec0b89c
/Storage_Xs and Os Champion.py
7d81e185c2aae6377e67314d2e8577330d0932e8
[]
no_license
olegJF/Checkio
94ea70b9ee8547e3b3991d17c4f75aed2c2bab2f
fc51a7244e16d8d0a97d3bb01218778db1d946aa
refs/heads/master
2021-01-11T00:46:42.564688
2020-03-02T13:36:02
2020-03-02T13:36:02
70,490,008
0
1
null
null
null
null
UTF-8
Python
false
false
2,829
py
# -*- coding: utf-8 -*- def x_and_o(grid, mark): X_vs_O = {'X':'O', 'O':'X'} def winner(grid, mark): WINNER_WAYS = ((0, 1, 2), (3, 4, 5), (6, 7, 8), (0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 4, 8), (2, 4, 6) ) for row in WINNER_WAYS: line = grid[row[0]]+grid[row[1]]+grid[row[2]] if line.count('.') == 1: if line.count(mark) == 2 or line.count(X_vs_O[mark]) == 2: return row[line.find('.')] return False BEST_MOVES = [4, 0, 2, 6, 8, 1, 3, 5, 7] FIELD = {0:(0, 0), 1:(0, 1), 2:(0, 2), 3:(1, 0), 4:(1, 1), 5:(1, 2), 6:(2, 0), 7:(2, 1), 8:(2, 2) } grid = ''.join(grid) dot_cnt = grid.count('.') is_first_move = True if dot_cnt == 9 else False if is_first_move: return FIELD[4] is_second_move = True if dot_cnt == 8 else False is_center_free = True if grid[4] =='.' else False if is_second_move and is_center_free: return FIELD[4] elif is_second_move: for i in BEST_MOVES: if grid[i] == '.': return FIELD[i] cnt_my_mark = grid.count(mark) cnt_enemy_mark = grid.count(X_vs_O[mark]) was_my_first_move = True if cnt_my_mark == cnt_enemy_mark else False legal_moves = [ i for i in range(9) if grid[i] =='.'] if was_my_first_move: if dot_cnt == 7: for i in (0, 2, 8, 6): if grid[i] == '.': return FIELD[i] is_winner = winner(grid, mark) if is_winner is not False: return FIELD[is_winner] if dot_cnt == 5: lines = ((0, 1, 2), (6, 7, 8), (0, 3, 6), (2, 5, 8)) for x, y in ([0, 8], [2, 6]): if x in legal_moves and y in legal_moves: for corner in (x,y): for line in lines: if corner in line: row = grid[line[0]]+grid[line[1]]+grid[line[2]] cnt_mark = row.count(mark) cnt_dot = row.count('.') if cnt_mark ==1 and cnt_dot ==2: return FIELD[corner] for move in BEST_MOVES: if move in legal_moves: return FIELD[move] else: is_winner = winner(grid, mark) if is_winner is not False: return FIELD[is_winner] if dot_cnt == 6 and grid[4] == mark: for i in (1, 3, 5, 7): if i in legal_moves: return FIELD[i] for move in BEST_MOVES: if move in legal_moves: return FIELD[move] print(x_and_o(( "XO.", ".X.", "..O"), "X")) #print(winner("XO..X....", 'X'))
[ "jf2@ua.fm" ]
jf2@ua.fm
bd47d3f1d21fd2a4603924825d0945b67780bbf8
0daa4596579a40c4148b379bda3949579adc9789
/csvimporter.py
17ff05943f8cf291435299b2c8c7d3e7fa53c52b
[]
no_license
JustinHodge/C950
20c1bcbfcbf33303f2a059ba805c08dc4fdc6aee
4c0de4aaeb4d14e1a9327771d0758ce06a2d7e42
refs/heads/master
2023-02-08T22:45:54.880405
2021-01-05T02:16:13
2021-01-05T02:16:13
314,898,881
0
0
null
null
null
null
UTF-8
Python
false
false
1,377
py
import csv from hash_table import HashMap from wgupspackage import WGUPSPackage distance_table = "WGUPS Distance Table.csv" package_table = "WGUPS Package File.csv" # this method will open the csv file passed in and parse it returning a usable list format # O(1) def csv_import(file_name): csv_as_list = [] with open(file_name, "r") as raw_CSV: iterable_CSV = csv.reader(raw_CSV) for i in iterable_CSV: csv_as_list.append(i) return csv_as_list # this method creates an instance of the custom HashMap containing packages from the package_table # O(N) def get_packages(): hash_table = HashMap(len(csv_import(package_table))) for i in csv_import(package_table): package = WGUPSPackage(i) hash_table.insert_item(int(package.package_id), package) return hash_table # O(N) def get_distances(): # this returns a tuple. [0] is a 2 dimensional list of distances # [1] is a dictionary assigning each key(address) to it's index for use # in the 2 dimensional list lists_of_distances = [] key_dict = {} raw_data = csv_import(distance_table) keys_list = [] raw_data.pop(0) for line in raw_data: keys_list.append(line.pop(0)) lists_of_distances.append(line) for key in keys_list: key_dict[key] = len(key_dict) return lists_of_distances, key_dict
[ "51083905+JustinHodge@users.noreply.github.com" ]
51083905+JustinHodge@users.noreply.github.com
ab81ba9e96858582ad8b65f4288a0df3ba0e34f5
f9f4b4ea4c8b51e0b5cba79f72745bce0564185b
/56tingshu/pipelines.py
e39409e084d31ce4591c80713990ff7b00ff6d03
[]
no_license
nightBuger/ting89Catch
c01ed02ee5acb2621e10b981b04e98e6ed12c6fe
55f2964b5ec774d48f05e3bbf14d41734b70bb0b
refs/heads/main
2023-07-28T01:38:27.431230
2021-08-29T16:48:44
2021-08-29T16:48:44
387,152,350
0
0
null
null
null
null
UTF-8
Python
false
false
4,086
py
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html # useful for handling different item types with a single interface from itemadapter import ItemAdapter from scrapy.pipelines.files import FilesPipeline from urllib.parse import urlparse import logging def ConstractHeader(request): user_agenta = ["Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; AcooBrowser; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; Acoo Browser; SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506)", "Mozilla/4.0 (compatible; MSIE 7.0; AOL 9.5; AOLBuild 4337.35; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR 2.0.50727)", "Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Win64; x64; Trident/5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 2.0.50727; Media Center PC 6.0)", "Mozilla/5.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; .NET CLR 1.0.3705; .NET CLR 1.1.4322)", "Mozilla/4.0 (compatible; MSIE 7.0b; Windows NT 5.2; .NET CLR 1.1.4322; .NET CLR 2.0.50727; InfoPath.2; .NET CLR 3.0.04506.30)", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN) AppleWebKit/523.15 (KHTML, like Gecko, Safari/419.3) Arora/0.3 (Change: 287 c9dfb30)", "Mozilla/5.0 (X11; U; Linux; en-US) AppleWebKit/527+ (KHTML, like Gecko, Safari/419.3) Arora/0.6", "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.2pre) Gecko/20070215 K-Ninja/2.1.1", "Mozilla/5.0 (Windows; U; Windows NT 5.1; zh-CN; rv:1.9) Gecko/20080705 Firefox/3.0 Kapiko/3.0", "Mozilla/5.0 (X11; Linux i686; U;) Gecko/20070322 Kazehakase/0.4.5", "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.8) Gecko Fedora/1.9.0.8-1.fc10 Kazehakase/0.5.6", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; fr) Presto/2.9.168 Version/11.52", "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36", ] import re import random aaop = random.choice(user_agenta) refer = re.search('(http|https)://(www.)?(\w+(\.)?)+', request.url).group() header = { 'User-Agent': random.choice(user_agenta), # 'Referer' : refer, 'Host' : refer[refer.find('//')+2:], 'Accept' : 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Encoding' : 'gzip, deflate', 'Accept-Language' : 'zh-CN,zh;q=0.9', 'Connection' : 'keep-alive', 'Upgrade-Insecure-Requests' : '1', } print(header) class ListenPipeline(FilesPipeline): def file_path(self, request, response=None, info=None, *, item=None): header = ConstractHeader(request) request.headers.update(header) return '{}/{}/{}.{}'.format(item['web_name'], item['book_name'], item['title'], item['file_urls'][0].split('.')[-1]) def item_completed(self, results, item, info): for ok, x in results: if ok: info.spider.log("下载完成: 文件={}/{}, 文件url={}".format(self.store.basedir, x['path'], item['title'])) else: info.spider.log("下载失败:文件={}, url={}".format(item['title'], item['file_urls'][0]), level=logging.ERROR) return super().item_completed(results, item, info)
[ "4788665@qq.com" ]
4788665@qq.com
e70fb6cd614e83147c29b14ad1473ff1362210a3
9fb6f860bc4050add478c92bb1110fcf5047680e
/functions/inference_fcns.py
7cd5a19b70006010065048423f9e5ccaa34db95d
[ "Apache-2.0" ]
permissive
UCLA-StarAI/HwAwareProb
9255202c90d67d6dcfe558e11394e27dbe95fe14
972e7924616f96cdbbeeec140c191e0fb5860632
refs/heads/master
2021-06-28T02:52:24.719997
2021-03-18T02:39:00
2021-03-18T02:39:00
217,924,553
0
0
Apache-2.0
2021-03-18T02:39:00
2019-10-27T22:23:38
null
UTF-8
Python
false
false
3,256
py
import operator def prod(factors): return reduce(operator.mul, factors, 1) def init_weight(content_ac,content_lmap_parsed_indeces,content_lmap_parsed_weights): weight_ac = [None] * len(content_ac) for i, ac in enumerate(content_ac): if ac[0] == 'L': index = int(ac[2:len(ac)]) # index_weight = indices(content_lmap_parsed_indeces, lambda x: x == index) index_weight=[ii for ii,con in enumerate(content_lmap_parsed_indeces) if con==index] weight_ac[i] = content_lmap_parsed_weights[index_weight[0]] else: weight_ac[i] = 0 return (weight_ac) def extract_operation_numbers(content): # spaces = indices(content, lambda x: x.isspace()) spaces=[ii for ii,con in enumerate(content) if con.isspace()] ex_op=[] if content[0] == 'A': for sp in range(len(spaces) - 1): if sp == len(spaces) - 2: ex_op.append(content[spaces[sp + 1] + 1:]) else: ex_op.append(content[spaces[sp + 1] + 1:spaces[sp + 2]]) else: for sp in range(len(spaces) - 2): if sp == len(spaces) - 3: ex_op.append(content[spaces[sp + 2] + 1:]) else: ex_op.append(content[spaces[sp + 2] + 1:spaces[sp + 3]]) return ex_op,spaces def generate_operation_set(operations_index,content_ac): operation = [[] for _ in range(len(operations_index))] for i, op in enumerate(operations_index): content=content_ac[operations_index[i]] (extracted_op,sp)=extract_operation_numbers(content) operation[i]=extracted_op return operation def extract_operations(args): k=1 for i, ac in enumerate(args): if ac[0]=='L': k=k+1 operations_index=[0]*(len(args)-k+1) operation_wmc=[0]*(len(args)) j=0 for i, ac in enumerate(args): res=[] if ac[0] != 'L': operations_index[j]=i j=j+1 (op_ex, spaces) = extract_operation_numbers(ac) if ac[0]=='O': res.append(ac[0:spaces[2]]) if ac[0]=='A': res.append(ac[0:spaces[1]]) lis=list(map(int, op_ex)) for l in lis: res.append(l) operation_wmc[i]=res else: operation_wmc[i]=ac operation=generate_operation_set(operations_index,args) return operations_index, operation def performWMC(operations_index, operation, weight_ac_original, content_ac): weight_ac=[w for w in weight_ac_original] for i, op in enumerate(operations_index): temp = [] for j in range(len(operation[i])): temp.append(weight_ac[int(operation[i][j])]) if 'A' in content_ac[operations_index[i]][0]: weight_ac[operations_index[i]] = prod(temp) elif 'O' in content_ac[operations_index[i]][0]: weight_ac[operations_index[i]] = sum(temp) if content_ac[len(content_ac) - 1][0] != 'L': wc = weight_ac[len(content_ac) - 1] else: for w in range(len(content_ac) - 1, -1, -1): if content_ac[w][0] != 'L': wc = weight_ac[w] break return (weight_ac, wc)
[ "laura.galindez@esat.kuleuven.be" ]
laura.galindez@esat.kuleuven.be
4ba8ab1fb6488c448855d281c6cf1a00684f4f3d
3572182a76026b2ff1afcb9cb4fe1e8b138b2edc
/scripts/lightsensors2.py
05976595bed876b6484ba2912f184798006d9486
[]
no_license
tak-mahal/pimouse_ros
489d8785360d5dbc688346e31d013a81e888ed44
234e939b1d739634db7a7efe67111190baf1efcd
refs/heads/master
2020-04-02T03:34:59.306485
2019-01-01T12:44:06
2019-01-01T12:44:06
153,973,771
0
0
null
null
null
null
UTF-8
Python
false
false
890
py
#!/usr/bin/env python import sys, rospy from pimouse_ros.msg import LightSensorValues if __name__ == '__main__': devfile = '/dev/rtlightsensor0' rospy.init_node('lightsensors') pub = rospy.Publisher('lightsensors', LightSensorValues, queue_size=1) rate = rospy.Rate(10) while not rospy.is_shutdown(): try: with open(devfile, 'r') as f: data = f.readline().split() data = [ int(e) for e in data ] d = LightSensorValues() d.right_forward = data[0] d.right_side = data[1] d.left_side = data[2] d.left_forward = data[3] d.sum_all = sum(data) d.sum_forward = data[0] + data[3] pub.publish(d) except IOError: rospy.logger("cannot write to " + devfile) rate.sleep()
[ "kawakami.takuma@takenaka.co.jp" ]
kawakami.takuma@takenaka.co.jp
38ec59fe7a2b66fa41df94fca1b20e945f6c612e
7c7fab5672f2ca5956474908e50cae448e3b4359
/tools/lib/template_parser.py
0d38e7cfa4165feb196b1f469af0dec02a28f5cc
[ "Apache-2.0", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-free-unknown" ]
permissive
tobby2002/localzulip
b7656fd06e66c0817c3f9803fbafde5dcdf60d1a
bfedd3f5686b91a5e332c96b4102b16c4e1b6fa9
refs/heads/master
2022-12-10T18:20:42.823580
2016-09-30T00:28:18
2016-09-30T00:28:18
69,618,407
1
0
Apache-2.0
2022-12-07T23:39:23
2016-09-30T00:18:26
Python
UTF-8
Python
false
false
7,483
py
from __future__ import absolute_import from __future__ import print_function from typing import Callable, Optional from six.moves import range import re class TemplateParserException(Exception): # TODO: Have callers pass in line numbers. pass class TokenizerState(object): def __init__(self): # type: () -> None self.i = 0 self.line = 1 self.col = 1 class Token(object): def __init__(self, kind, s, tag, line, col): # type: (str, str, str, int, int) -> None self.kind = kind self.s = s self.tag = tag self.line = line self.col = col def tokenize(text): # type: (str) -> List[Token] def advance(n): # type: (int) -> None for _ in range(n): state.i += 1 if state.i >= 0 and text[state.i - 1] == '\n': state.line += 1 state.col = 1 else: state.col += 1 def looking_at(s): # type: (str) -> bool return text[state.i:state.i+len(s)] == s def looking_at_html_start(): # type: () -> bool return looking_at("<") and not looking_at("</") def looking_at_html_end(): # type: () -> bool return looking_at("</") def looking_at_handlebars_start(): # type: () -> bool return looking_at("{{#") or looking_at("{{^") def looking_at_handlebars_end(): # type: () -> bool return looking_at("{{/") def looking_at_django_start(): # type: () -> bool return looking_at("{% ") and not looking_at("{% end") def looking_at_django_end(): # type: () -> bool return looking_at("{% end") state = TokenizerState() tokens = [] while state.i < len(text): if looking_at_html_start(): s = get_html_tag(text, state.i) tag_parts = s[1:-1].split() if not tag_parts: raise TemplateParserException("Tag name missing") tag = tag_parts[0] if is_special_html_tag(s, tag): kind = 'html_special' elif s.endswith('/>'): kind = 'html_singleton' else: kind = 'html_start' elif looking_at_html_end(): s = get_html_tag(text, state.i) tag = s[2:-1] kind = 'html_end' elif looking_at_handlebars_start(): s = get_handlebars_tag(text, state.i) tag = s[3:-2].split()[0] kind = 'handlebars_start' elif looking_at_handlebars_end(): s = get_handlebars_tag(text, state.i) tag = s[3:-2] kind = 'handlebars_end' elif looking_at_django_start(): s = get_django_tag(text, state.i) tag = s[3:-2].split()[0] kind = 'django_start' elif looking_at_django_end(): s = get_django_tag(text, state.i) tag = s[6:-3] kind = 'django_end' else: advance(1) continue token = Token( kind=kind, s=s, tag=tag, line=state.line, col=state.col, ) tokens.append(token) advance(len(s)) return tokens def validate(fn=None, text=None, check_indent=True): # type: (Optional[str], Optional[str], bool) -> None assert fn or text if fn is None: fn = '<in memory file>' if text is None: text = open(fn).read() tokens = tokenize(text) class State(object): def __init__(self, func): # type: (Callable[[Token], None]) -> None self.depth = 0 self.matcher = func def no_start_tag(token): # type: (Token) -> None raise TemplateParserException(''' No start tag fn: %s end tag: %s line %d, col %d ''' % (fn, token.tag, token.line, token.col)) state = State(no_start_tag) def start_tag_matcher(start_token): # type: (Token) -> None state.depth += 1 start_tag = start_token.tag start_line = start_token.line start_col = start_token.col old_matcher = state.matcher def f(end_token): # type: (Token) -> None end_tag = end_token.tag end_line = end_token.line end_col = end_token.col if start_tag == 'a': max_lines = 3 else: max_lines = 1 problem = None if (start_tag == 'code') and (end_line == start_line + 1): problem = 'Code tag is split across two lines.' if start_tag != end_tag: problem = 'Mismatched tag.' elif check_indent and (end_line > start_line + max_lines): if end_col != start_col: problem = 'Bad indentation.' if problem: raise TemplateParserException(''' fn: %s %s start: %s line %d, col %d end tag: %s line %d, col %d ''' % (fn, problem, start_token.s, start_line, start_col, end_tag, end_line, end_col)) state.matcher = old_matcher state.depth -= 1 state.matcher = f for token in tokens: kind = token.kind tag = token.tag if kind == 'html_start': start_tag_matcher(token) elif kind == 'html_end': state.matcher(token) elif kind == 'handlebars_start': start_tag_matcher(token) elif kind == 'handlebars_end': state.matcher(token) elif kind == 'django_start': if is_django_block_tag(tag): start_tag_matcher(token) elif kind == 'django_end': state.matcher(token) if state.depth != 0: raise TemplateParserException('Missing end tag') def is_special_html_tag(s, tag): # type: (str, str) -> bool return (s.startswith('<!--') or tag in ['link', 'meta', '!DOCTYPE']) def is_django_block_tag(tag): # type: (str) -> bool return tag in [ 'autoescape', 'block', 'comment', 'for', 'if', 'ifequal', 'verbatim', 'blocktrans', 'trans', 'raw', ] def get_handlebars_tag(text, i): # type: (str, int) -> str end = i + 2 while end < len(text) -1 and text[end] != '}': end += 1 if text[end] != '}' or text[end+1] != '}': raise TemplateParserException('Tag missing }}') s = text[i:end+2] return s def get_django_tag(text, i): # type: (str, int) -> str end = i + 2 while end < len(text) -1 and text[end] != '%': end += 1 if text[end] != '%' or text[end+1] != '}': raise TemplateParserException('Tag missing %}') s = text[i:end+2] return s def get_html_tag(text, i): # type: (str, int) -> str quote_count = 0 end = i + 1 while end < len(text) and (text[end] != '>' or quote_count % 2 != 0): if text[end] == '"': quote_count += 1 end += 1 if end == len(text) or text[end] != '>': raise TemplateParserException('Tag missing >') s = text[i:end+1] return s
[ "tobby2002@gmail.com" ]
tobby2002@gmail.com
bc38069aef7b32c7c351685d0b2122f0d604529e
2f5d221d5cd423f07da50ed8be9668d811e550b4
/airtest/core/ios/fake_minitouch.py
b5eb7986af962fc31648c001e4259ad16c8af15a
[ "Apache-2.0" ]
permissive
Pactortester/Airtest
d1db25498591992dee525b2ceeb45de9239b319f
18e57ae2bbde3f2b95c32f09e214fdf4aec41330
refs/heads/master
2022-06-03T22:52:54.939200
2020-06-29T01:01:30
2020-06-29T01:01:30
275,080,743
1
0
Apache-2.0
2020-06-26T05:28:02
2020-06-26T05:28:02
null
UTF-8
Python
false
false
1,979
py
# coding=utf-8 import subprocess import os import re import struct import logging from airtest.utils.logger import get_logger from airtest.utils.nbsp import NonBlockingStreamReader from airtest.utils.safesocket import SafeSocket LOGGING = get_logger(__name__) class fakeMiniTouch(object): lastDown = {'x': None, 'y': None} recentPoint = {'x': None, 'y': None} def __init__(self, dev): self.dev = dev self.swipe_threshold = 10 def setup(self): pass def operate(self, operate_arg): # TODO FIX IPHONT TOUCH # start down if operate_arg['type'] == 'down': self.lastDown['x'] = operate_arg['x'] self.lastDown['y'] = operate_arg['y'] # mouse up if operate_arg['type'] == 'up': # in case they may be None if self.lastDown['x'] is None or self.lastDown['y'] is None: return # has recent point if self.recentPoint['x'] and self.recentPoint['y']: # swipe need to move longer # TODO:设定滑动和点击的阈值,目前为10 if abs(self.recentPoint['x'] - self.lastDown['x']) > self.swipe_threshold \ or abs(self.recentPoint['y'] - self.lastDown['y']) > self.swipe_threshold: self.dev.swipe((self.lastDown['x'], self.lastDown['y']), (self.recentPoint['x'], self.recentPoint['y'])) else: self.dev.touch((self.lastDown['x'], self.lastDown['y'])) else: self.dev.touch((self.lastDown['x'], self.lastDown['y'])) # clear infos self.lastDown = {'x': None, 'y': None} self.recentPoint = {'x': None, 'y': None} if operate_arg['type'] == 'move': self.recentPoint['x'] = operate_arg['x'] self.recentPoint['y'] = operate_arg['y'] if __name__ == '__main__': pass
[ "lxn3032@corp.netease.com" ]
lxn3032@corp.netease.com
7066f6fd5882ec68a145a9b5116e7c5eff2d33f2
a854f81f3ca0d6e6d6cf60662d05bc301465e28c
/backend/booking/migrations/0001_initial.py
4d479654287d6f6f7b495a5050811e171d37cb04
[]
no_license
crowdbotics-apps/lavadoras-19637
7f99e2046a6a92cdcfaec052eb9eadfd807193fd
577d0da2626867a8a1b27d2df386c8598e4adc6d
refs/heads/master
2022-12-02T21:15:17.103593
2020-08-18T08:28:47
2020-08-18T08:28:47
288,397,803
0
0
null
null
null
null
UTF-8
Python
false
false
3,317
py
# Generated by Django 2.2.15 on 2020-08-18 08:26 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('location', '0001_initial'), ('taxi_profile', '0001_initial'), ] operations = [ migrations.CreateModel( name='BookingTransaction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('distance', models.FloatField()), ('price', models.FloatField()), ('status', models.CharField(max_length=10)), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('timestamp_depart', models.DateTimeField()), ('timestamp_arrive', models.DateTimeField()), ('tip', models.FloatField(blank=True, null=True)), ('driver', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bookingtransaction_driver', to='taxi_profile.DriverProfile')), ('dropoff', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bookingtransaction_dropoff', to='location.MapLocation')), ('pickup', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bookingtransaction_pickup', to='location.MapLocation')), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='bookingtransaction_user', to='taxi_profile.UserProfile')), ], ), migrations.CreateModel( name='Rating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('rating', models.FloatField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('review', models.TextField(blank=True, null=True)), ('driver', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='rating_driver', to='taxi_profile.DriverProfile')), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='rating_user', to='taxi_profile.UserProfile')), ], ), migrations.CreateModel( name='Message', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('message', models.TextField()), ('timestamp_created', models.DateTimeField(auto_now_add=True)), ('booking', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='message_booking', to='booking.BookingTransaction')), ('driver', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='message_driver', to='taxi_profile.DriverProfile')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='message_user', to='taxi_profile.UserProfile')), ], ), ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
b868e52bfe4f8289a0b4ee764a4cdd78272d6019
c0d30680d859506be19468d4d42df3f930f97bed
/django/dabiao_new/dabiao/data/views.py
cc50d4e3bb264f7b9ea78846d9c1430245ee894b
[]
no_license
glennneiger/deepdraw
bf2aca0acdc6ab6a57731e872f7287497428c280
52c4a50df3c1890499b0c42a3a02f6d418d31f40
refs/heads/master
2020-12-03T22:48:05.166524
2020-01-03T01:36:05
2020-01-03T01:36:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
915
py
from django.shortcuts import render from django.http import HttpResponse, JsonResponse from rest_framework.views import APIView import requests import json from string import digits from data.models import Tripletmark # Create your views here. class Test_Base(APIView): def get(self, request): print('ok'); return HttpResponse('成功') class testdb(APIView): def get(self, request): test1 = Tripletmark(uuid1='1', uuid2='2', bbox1='3', bbox2='4', mark='5', fix='6') test1.save() return HttpResponse('成功') class getAll(APIView): def get(self, request): test = Tripletmark.objects.all() print(test) for i in test: print(i.uuid1) return HttpResponse('success') class LoginView(APIView): def get(self, request, *args, **kwargs): return HttpResponse(content=open("../templates/login.html").read())
[ "laipan@deepdraw.cn" ]
laipan@deepdraw.cn
75d146601fcfb74873d0571bc7d1e05b92491d12
8f0b0ec0a0a2db00e2134b62a1515f0777d69060
/scripts/study_case/ID_32/0504_softmax_regression.py
5d1daab24d438285e89be0a81cd2092dde31f122
[ "Apache-2.0" ]
permissive
Liang813/GRIST
2add5b4620c3d4207e7661eba20a79cfcb0022b5
544e843c5430abdd58138cdf1c79dcf240168a5f
refs/heads/main
2023-06-09T19:07:03.995094
2021-06-30T05:12:19
2021-06-30T05:12:19
429,016,034
0
0
Apache-2.0
2021-11-17T11:19:48
2021-11-17T11:19:47
null
UTF-8
Python
false
false
1,389
py
import myutil as mu import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import sys sys.path.append("/data") torch.manual_seed(1) x_train = [[1, 2, 1, 1], [2, 1, 3, 2], [3, 1, 3, 4], [4, 1, 5, 5], [1, 7, 5, 5], [1, 2, 5, 6], [1, 6, 6, 6], [1, 7, 7, 7]] y_train = [2, 2, 2, 1, 1, 1, 0, 0] x_train = torch.FloatTensor(x_train) y_train = torch.LongTensor(y_train) mu.log("x_train", x_train) mu.log("y_train", y_train) y_one_hot = torch.zeros(8, 3) y_one_hot.scatter_(dim=1, index=y_train.unsqueeze(dim=1), value=1) mu.log("y_one_hot", y_one_hot) W = torch.zeros((4, 3), requires_grad=True) b = torch.zeros(1, requires_grad=True) optimizer = optim.SGD([W, b], lr=0.1) nb_epoches = 2000 mu.plt_init() '''inserted code''' import sys sys.path.append("/data") from scripts.utils.torch_utils import TorchScheduler scheduler = TorchScheduler(name="PyTorchDeepLearningStart.0504_softmax_regression") '''inserted code''' while True: hypothesis = F.softmax(x_train.matmul(W) + b, dim=1) cost = (y_one_hot * -torch.log(hypothesis)).sum().mean() optimizer.zero_grad() cost.backward() optimizer.step() '''inserted code''' scheduler.loss_checker(cost) scheduler.check_time() '''inserted code''' mu.plt_show() mu.log("W", W) mu.log("b", b)
[ "793679547@qq.com" ]
793679547@qq.com
0cb54dfdd0286d6326cf13ee4b734b2e4564e0f8
627ac9ef7baefa817f5824c3e5a306d46304e2eb
/Lagrange Polynomial.py
79ee5db1cd1a4f68f0b76c9d73d6f4654f0168d3
[]
no_license
sieginglion/Numerical-Analysis
b23a1abd3498f182880de8e0378d68d8d824ea68
54247db2ea1180894bf8320014587c491dac9695
refs/heads/master
2021-06-13T07:43:49.808886
2017-03-20T21:44:21
2017-03-20T21:44:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
189
py
# Pn(x) = Sigma[f(xk) * Lk(x)] from 0 to n # Lk(x) = Pi[(x – xi) / (xk – xi)] from 0 to n and n != k # f(x0) = 1, f(x1) = 2, f(x3) = 3 # P(x) = 1 * (x - 2)(x - 3) / (1 - 2)(1 - 3) + ...
[ "s103031111@outlook.com" ]
s103031111@outlook.com
33277af45dfcc7f2343a16e2514aff499af5abea
5869fa875a0070b49f2a5c14861b3f4a72c75ddc
/Coollibrary_tutorial/LibraryApp/models.py
a2b63d088d84706ccc8dd456e87b9701d738c15c
[]
no_license
IzhykOleh/Coollibrary-tutorial
0c02a9cd4c7fc5d4619c431abbc43a67b432009e
ab5d588fdd78e2051e2a1aafbeec1202b3f42826
refs/heads/master
2020-04-29T07:39:51.474086
2019-03-16T11:25:37
2019-03-16T11:25:37
175,961,047
0
0
null
null
null
null
UTF-8
Python
false
false
4,246
py
from django.db import models class Team(models.Model): char_field = models.CharField(max_length=40) choices = ( ('U09', 'Under 09s'), ('U10', 'Under 10s'), ('U11', 'Under 11s'), ) charfield_choices = models.CharField(max_length=3, choices=choices, default='U11') class Genre(models.Model): """ Model representing a book genre (e.g. Science Fiction, Non Fiction). """ name = models.CharField(max_length=200, help_text="Enter a book genre \ (e.g. Science Fiction, French Poetry etc.)") def __str__(self): """ String for representing the Model object (in Admin site etc.) """ return self.name from django.urls import reverse #Used to generate URLs by reversing the URL patterns class Book(models.Model): """ Model representing a book (but not a specific copy of a book). """ title = models.CharField(max_length=200) author = models.ForeignKey('Author', on_delete=models.SET_NULL, null=True) # Foreign Key used because book can only have one author, but authors can have multiple books # Author as a string rather than object because it hasn't been declared yet in the file. summary = models.TextField(max_length=1000, help_text='Enter a brief description of the book') isbn = models.CharField('ISBN',max_length=13, help_text='13 Character \ <a href="https://www.isbn-international.org/content/what-isbn">ISBN number</a>') genre = models.ManyToManyField(Genre, help_text='Select a genre for this book') # ManyToManyField used because genre can contain many books. Books can cover many genres. # Genre class has already been defined so we can specify the object above. def __str__(self): """ String for representing the Model object. """ return self.title def get_absolute_url(self): """ Returns the url to access a detail record for this book. """ return reverse('book-detail', args=[str(self.id)]) def display_genre(self): """ Creates a string for the Genre. This is required to display genre in Admin. """ return ', '.join([ genre.name for genre in self.genre.all()[:3] ]) display_genre.short_description = 'Genre' import uuid # Required for unique book instances class BookInstance(models.Model): """ Model representing a specific copy of a book (i.e. that can be borrowed from the library). """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, help_text="Unique ID for this particular book across whole library") book = models.ForeignKey('Book', on_delete=models.SET_NULL, null=True) imprint = models.CharField(max_length=200) due_back = models.DateField(null=True, blank=True) LOAN_STATUS = ( ('m', 'Maintenance'), ('o', 'On loan'), ('a', 'Available'), ('r', 'Reserved'), ) status = models.CharField(max_length=1, choices=LOAN_STATUS, blank=True, default='m', help_text='Book availability') class Meta: ordering = ["due_back"] def __str__(self): """ String for representing the Model object """ return '{0} ({1})'.format(self.id,self.book.title) class Author(models.Model): """ Model representing an author. """ first_name = models.CharField(max_length=100) last_name = models.CharField(max_length=100, null=True) date_of_birth = models.DateField(null=True, blank=True) date_of_death = models.DateField('Died', null=True, blank=True) class Meta: ordering = ["last_name","first_name"] def get_absolute_url(self): """ Returns the url to access a particular author instance. """ return reverse('author-detail', args=[str(self.id)]) def __str__(self): """ String for representing the Model object. """ return '{0}, {1}'.format(self.last_name,self.first_name)
[ "izhykoleh18@gmail.com" ]
izhykoleh18@gmail.com
0259840c4fbc274cb2b4428c31cf763cbd64e996
b74eb41b660fe49320ba9f1c8aeb0f3f260e17ff
/easy_rosetta/session.py
42045f3f4864255f6fabb900cbe056a5373072c1
[]
no_license
walterwu/easy_rosetta
605abebf8940060b53f928179c54fd305e581d41
a639c9751cb9c1cf678c0abfc2104578f4b086ce
refs/heads/master
2020-03-30T08:23:27.579395
2019-02-18T07:49:34
2019-02-18T07:49:34
151,011,455
0
0
null
null
null
null
UTF-8
Python
false
false
3,749
py
import pickle import sys import os from .utils import * from .constants import * from .config import EasyRosettaConfig, ProtocolConfig class Session(): def __init__(self, session_name=None, working_dir=None, protein_name=None, progress_dict=None, protocol_configs=None): self.session_name = session_name self.working_dir = working_dir self.protein_name = protein_name self.progress_dict = progress_dict if self.progress_dict == None: self.progress_dict = { "frags_generated":False, "decoys_generated":False, "scored":False, "clustered":False, } self.easyrosetta_config = EasyRosettaConfig.load() self.protocol_configs = protocol_configs if self.protocol_settings == None: self.protocol_settings = [] def save_session(self): yes = ["yes", "y"] no = ["no", "n"] overwrite = True is self.session_name == None: return while Session.session_exists(self.session_name) and not overwrite: status = input("A session with that name already exists. Do you want to overwrite that session? (Y/n)").lower() while status not in yes and status not in no: status = input("Please enter (Y/n) ") if status in no: session_name = input("Enter a new session name, or (q) to quit: ") if session_name == 'q': sys.exit() else: self.set_session_name(session_name) else: overwrite = True with open(self.get_session_file(), 'w') as fp: pickle.dump(self, fp, pickle.HIGHEST_PROTOCOL) def set_session_name(self, session_name): self.session_name = session_name def set_working_dir(self, working_dir): self.working_dir = working_dir def set_protein_name(self, protein_name): self.protein_name = protein_name def set_progress_dict(self, progress_dict): self.progress_dict = progress_dict def change_progress_dict(self, key, value): if key not in self.progress_dict: return else: self.progress_dict[key] = value def print_session_info(self): print("Session name: " + self.session_name) print("Protein name: " + self.protein_name) print("Working directory: " + self.working_dir) print("Progress:" + str(self.progress_dict)) @staticmethod def load_session(session_name): if not Session.session_exists(session_name): print("No such session exists. To list all sessions, try easy-rosetta-sessions -l") sys.exit() session = None with open(os.path.join(SESSIONS_PATH, Session.get_session_file(session_name)), 'r') as fp: session = pickle.load(fp) if session == None: print("Error loading session " + session_name + ". Check logs for more details.") sys.exit() return session @staticmethod def remove_session(session_name): if not Session.session_exists(session_name): print("No such session exists. To list all sessions, try easy-rosetta-sessions -l") sys.exit() os.remove(Session.get_session_file(session_name)) @staticmethod def clear_sessions(): for file in os.listdir(SESSIONS_PATH): os.remove(file) @staticmethod def session_exists(session_name): return Session.get_session_file(session_name) in os.listdir(SESSIONS_PATH) @staticmethod def get_session_file(session_name): return session_name + ".session"
[ "walter.wu@berkeley.edu" ]
walter.wu@berkeley.edu
10cffa971d36c5098b5eeb3386cca4463986e19c
1dfada4543ffe314ba0077a3446675de2ee6076b
/users/signals.py
faa82e95328912bfaa2c5249afbf185fb590a53d
[]
no_license
michaelkamande/blissfulhomes
a1c19ab23c5ba8eb5fb9e229d6867dcbebdf857d
d711de53a313ea952e80652b48260ff5d8b94c9a
refs/heads/master
2022-11-11T15:57:03.247798
2020-07-06T08:20:55
2020-07-06T08:20:55
277,481,812
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
from django.db.models.signals import post_save from django.contrib.auth.models import User from django.dispatch import receiver from .models import Profile @receiver(post_save, sender = User) def create_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user = instance) @receiver(post_save, sender = User) def save_profile(sender, instance, **kwargs): instance.profile.save()
[ "mike@hotmail.com" ]
mike@hotmail.com
66ee42bf083364ea3975225cfe14efbc76c1c287
8760f182049d4caf554c02b935684f56f6a0b39a
/boar/facebook_connect/migrations/0002_profile_onetoone_to_user.py
ed79636574a8ae85a20dfee1a85138d28e7f7b15
[ "BSD-3-Clause" ]
permissive
boar/boar
c674bc65623ee361af31c7569dd16c6eb8da3b03
6772ad31ee5bb910e56e650cc201a476adf216bc
refs/heads/master
2020-06-09T06:59:31.658154
2012-02-28T19:28:58
2012-02-28T19:28:58
1,734,103
1
2
null
null
null
null
UTF-8
Python
false
false
4,352
py
from south.db import db from django.db import models from boar.facebook_connect.models import * class Migration: def forwards(self, orm): # Changing field 'FacebookProfile.user' # (to signature: django.db.models.fields.related.OneToOneField(to=orm['auth.User'], unique=True)) db.alter_column('facebook_connect_facebookprofile', 'user_id', orm['facebook_connect.facebookprofile:user']) # Creating unique_together for [user] on FacebookProfile. db.create_unique('facebook_connect_facebookprofile', ['user_id']) def backwards(self, orm): # Deleting unique_together for [user] on FacebookProfile. db.delete_unique('facebook_connect_facebookprofile', ['user_id']) # Changing field 'FacebookProfile.user' # (to signature: django.db.models.fields.related.ForeignKey(to=orm['auth.User'])) db.alter_column('facebook_connect_facebookprofile', 'user_id', orm['facebook_connect.facebookprofile:user']) models = { 'auth.group': { 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80', 'unique': 'True'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'unique_together': "(('content_type', 'codename'),)"}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'blank': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'blank': 'True'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '30', 'unique': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'unique_together': "(('app_label', 'model'),)", 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'facebook_connect.facebookprofile': { 'Meta': {'unique_together': "(('user', 'uid'),)"}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'uid': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['facebook_connect']
[ "ben@firshman.co.uk" ]
ben@firshman.co.uk
82b29211a6b91229fbd09b657dc3d5bd09b371d1
15f438d029528a978383f24f85035c911e314b72
/scripts/view.py
fb6535e75554b37be86f943e960d3f272dce0ff1
[ "MIT" ]
permissive
rg314/autoballs
91d11315a61d4c088b099744301b3f1b68eecc93
21fab5c810f18c0d50c23051928d3bb86fbc6941
refs/heads/main
2023-05-30T11:48:52.901933
2021-06-23T14:48:27
2021-06-23T14:48:27
341,683,921
1
0
MIT
2021-03-18T23:28:23
2021-02-23T20:39:55
Python
UTF-8
Python
false
false
760
py
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import statsmodels.stats.multicomp as multi data = pd.read_csv('results/20210226 Cam Franze_results/res.csv') sns.set_style("white") sns.set_style("ticks") ax = sns.boxplot(y='Median axon', x='Gel type', data=data, palette="Blues") ax = sns.swarmplot(y='Median axon', x='Gel type', data=data, color=".25", size=10) ax.set_ylabel('Axon length [um]') ax.set_xlabel('Gel type [kPa]') test = multi.MultiComparison(data['Median axon'], data['Gel type']) res = test.tukeyhsd() res_table1 = res.summary() print(res_table1) test = multi.pairwise_tukeyhsd(data['Median axon'], data['Gel type'], alpha=0.05) res_table2 = test.summary() print(res_table2) plt.show()
[ "ryan.greenhalgh@hotmail.co.uk" ]
ryan.greenhalgh@hotmail.co.uk
f5519d705ed4169137add38ab789ba5a84d47bf8
5684c015980cc9bb86844345c33e0d50283d617f
/test/test_replace.py
2ab0015dce65a2d9bbc4f4bc3735084df0ba3859
[ "MIT" ]
permissive
JIYANG-PLUS/ustjson
5da0b3ab7c18ba0a8565ea7e91389e8f00e8cfc9
f96fe00d0c23575c22aca8075dd544c1a460287f
refs/heads/master
2021-07-09T01:35:46.545806
2020-11-25T02:59:11
2020-11-25T02:59:11
216,016,400
0
0
null
null
null
null
UTF-8
Python
false
false
1,680
py
from ustjson.Capture import Capturer from ustjson import TreeBuilder,SpecialText,read_txt,replace_id_feature from ustjson.read_pdf import read_pdf import re,datetime,os,pprint os.chdir('/Users/jiyang/Desktop/') file_name = 'test.pdf' flag = '0123456789$' now_id_split_char = '.' patt = re.compile(r'^第(.{1,5}?)条') text, tables = read_txt('test.txt'), None text = replace_id_feature(text,patt,'0','$') # 第一个替换表,使用$区分其它标题编号。 try: catalog, text, _ = Capturer.capture_catalog_and_body_text(text) # 抓取全文信息,并分类清理。 pdf = TreeBuilder(catalog=catalog) # 初始化文档树结构。 except: pdf = TreeBuilder() # 初始化空树 text_end = '$99999 END' temp_ids = pdf.allocate_text_for_eachNode( text, standard_flag=flag+now_id_split_char, standard_flag_wosc=flag, id_split_char = now_id_split_char, initials = '$', text_end=text_end ) # 分配各个节点的TEMP域。使解析更准确。temp_ids为分配过TEMP域的节点。 pdf.build_data_and_sub_tree_node( temp_ids, standard_flag=flag+now_id_split_char, id_split_char = now_id_split_char ) # 扩张子节点,完善DATA域。 if bool(tables): pass # 处理表格的语句,参照前一个样式。 ST = SpecialText(pdf.tree) # 获取特殊文本对象进行再处理 now = datetime.datetime.today() # 获取当前时间 ST.perfect_tree(f'{now:%Y-%m-%d %H:%M:%S}', f'{file_name}') # 这里传入的参数,只用于修饰,不作其他用途。主要用来彰显时效性。 ST.to_json(path=os.getcwd(),file_name=f'{file_name[:-4]}.json') # 保存为json文件,其他参数的使用参见官方的json文档。
[ "jiyangj@foxmail.com" ]
jiyangj@foxmail.com
47693d0710e9c072cad944e857787701b982ce3d
0ea12ae71b3863a8279fd7200e61f5c40dc3dcb6
/image_bosch_detect_ssd_mobile.py
92fd277b6022c6d929dd37d5dae50ebf4863411d
[ "MIT" ]
permissive
scrambleegg7/Traffic-Light-Classification
7dafb32f43bf1c73d62c645105cdc414ebb0cf44
2a9f6b8272866f289963905b162c35058ce6a234
refs/heads/master
2020-04-03T02:58:44.729521
2018-10-28T14:57:44
2018-10-28T14:57:44
154,973,271
0
0
null
null
null
null
UTF-8
Python
false
false
5,201
py
import tensorflow as tf import numpy as np import datetime import time import os, sys import cv2 from PIL import Image import yaml from glob import glob try: import matplotlib matplotlib.use('TkAgg') finally: from matplotlib import pyplot as plt from object_detection.utils import visualization_utils as vis_util from object_detection.utils import label_map_util class TrafficLightClassifier(object): def __init__(self, frozen_model_file): PATH_TO_MODEL = frozen_model_file self.detection_graph = tf.Graph() with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() # Works up to here. with tf.gfile.GFile(PATH_TO_MODEL, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') self.d_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') self.d_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.d_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') self.num_d = self.detection_graph.get_tensor_by_name('num_detections:0') self.sess = tf.Session(graph=self.detection_graph) def get_classification(self, img): # Bounding Box Detection. with self.detection_graph.as_default(): # Expand dimension since the model expects image to have shape [1, None, None, 3]. img_expanded = np.expand_dims(img, axis=0) (boxes, scores, classes, num) = self.sess.run( [self.d_boxes, self.d_scores, self.d_classes, self.num_d], feed_dict={self.image_tensor: img_expanded}) return boxes, scores, classes, num def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8) def get_all_labels(input_yaml, riib=False): """ Gets all labels within label file Note that RGB images are 1280x720 and RIIB images are 1280x736. :param input_yaml: Path to yaml file :param riib: If True, change path to labeled pictures :return: images: Labels for traffic lights """ images = yaml.load(open(input_yaml, 'rb').read()) for i in range(len(images)): images[i]['path'] = os.path.abspath(os.path.join(os.path.dirname(input_yaml), images[i]['path'])) if riib: images[i]['path'] = images[i]['path'].replace('.png', '.pgm') images[i]['path'] = images[i]['path'].replace('rgb/train', 'riib/train') images[i]['path'] = images[i]['path'].replace('rgb/test', 'riib/test') for box in images[i]['boxes']: box['y_max'] = box['y_max'] + 8 box['y_min'] = box['y_min'] + 8 return images def detect_label_images(input_yaml, output_folder=None): """ Shows and draws pictures with labeled traffic lights. Can save pictures. :param input_yaml: Path to yaml file :param output_folder: If None, do not save picture. Else enter path to folder """ PATH_TO_LABELS = r'data/bosch_label_map.pbtxt' NUM_CLASSES = 14 frozen_model_file = "./models/bosch_freeze_tf1.3/frozen_inference_graph.pb" label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) print(category_index) # loading models tfc = TrafficLightClassifier(frozen_model_file) images = get_all_labels(input_yaml) if output_folder is not None: if not os.path.exists(output_folder): os.makedirs(output_folder) for idx, image_dict in enumerate(images[:10]): image_path = image_dict['path'] image_np = cv2.imread( image_path ) if idx == 0: print(image_path) timestr = time.strftime("%Y%m%d-%H%M%S") boxes, scores, classes, num = tfc.get_classification(image_np) vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, max_boxes_to_draw=5, min_score_thresh=0.3, line_thickness=8) if idx % 10 == 0 and idx > 0: print("%d images processed. %s" % ( (idx + 1), image_path ) ) image_file = image_path.split("/")[-1] cv2.imwrite( os.path.join( output_folder, image_file ) , image_np ) if __name__ == '__main__': if len(sys.argv) < 2: print(__doc__) sys.exit(-1) label_file = sys.argv[1] output_folder = None if len(sys.argv) < 3 else sys.argv[2] detect_label_images(label_file, output_folder)
[ "donchan@milano.local" ]
donchan@milano.local
a6ed2f7ef8aa2918d09efb0206500abcbc374bb2
c762d74617d816e989ce86780e414bd6fed40157
/code/auxiliary/SupervisedModels.py
1d77eb575776a9ca381f798378e79ac6d71a7725
[]
no_license
sfwatergit/IO-HMM
293f5adc7ed14780d7ce0d2d4298b0d65b1c7c24
13ae526e6fe289fdfb34679ffd8bd497f62e2b9c
refs/heads/master
2021-01-11T12:16:00.619550
2016-09-28T23:03:00
2016-09-28T23:03:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
31,893
py
from __future__ import division import numpy as np from scipy import linalg, special from numpy.linalg import norm import statsmodels.api as st import family from scipy.sparse import linalg as sp_linalg from sklearn import linear_model from sklearn.preprocessing import LabelBinarizer from sklearn.utils.optimize import newton_cg from scipy import optimize from scipy.misc import logsumexp import statsmodels.regression.linear_model as lim import sys import warnings warnings.simplefilter("ignore") def _rescale_data(X, Y, sample_weight): """Rescale data so as to support sample_weight""" n_samples = X.shape[0] sqrtW = np.sqrt(sample_weight) newX = X * sqrtW.reshape(-1,1) newY = Y * sqrtW.reshape(-1,1) return newX, newY def addIntercept(X): t = X.shape[0] X_with_bias = np.hstack((np.ones((t, 1)), X)) return X_with_bias class BaseModel(object): """ A generic supervised model for data with input and output. BaseModel does nothing, but lays out the methods expected of any subclass. """ def __init__(self, fam, solver, fit_intercept = True, est_sd = False, penalty = None, reg = 0, l1_ratio = 0, tol = 1e-4, max_iter = 100): """ Constructor Parameters ---------- fam: family of the GLM, LM or MNL solver: family specific solver penalty: penalty to regularize the model reg: regularization strenth l1_ratio: if elastic net, the l1 reg ratio tol: tol in the optimization procedure max_iter: max_iter in the optimization procedure ------- """ self.fit_intercept = fit_intercept self.penalty = penalty self.reg = reg self.l1_ratio = l1_ratio self.fam = fam self.solver = solver self.tol = tol self.max_iter = max_iter self.est_sd = est_sd def fit(self, X, Y, sample_weight = None): """ fit the weighted model Parameters ---------- X : design matrix Y : response matrix sample_weight: sample weight vector """ raise NotImplementedError def predict(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ return NotImplementedError def probability(self, X, Y): """ Given a set of X and Y, calculate the probability of observing Y value """ logP = self.log_probability(X, Y) if logP is not None: return np.exp(self.log_probability(X, Y)) else: return None def log_probability(self, X, Y): """ Given a set of X and Y, calculate the log probability of observing each of Y value given each X value should return a vector """ return NotImplementedError def estimate_dispersion(self): raise NotImplementedError def estimate_sd(self): raise NotImplementedError def estimate_loglikelihood(self): raise NotImplementedError class GLM(BaseModel): """ A Generalized linear model for data with input and output. """ def __init__(self, fam, solver = 'pinv', fit_intercept = True, est_sd = False, penalty = None, reg = 0, l1_ratio = 0, tol = 1e-4, max_iter = 100): super(GLM, self).__init__(fam = fam, solver = solver, fit_intercept = fit_intercept, est_sd = est_sd, penalty = penalty, reg = reg, l1_ratio = l1_ratio, tol = tol, max_iter = max_iter) def fit(self, X, Y, sample_weight = None): """ fit the weighted model Parameters ---------- X : design matrix Y : response matrix sample_weight: sample weight vector """ # family is the glm family with link, the family is the same as in the statsmodel if sample_weight is None: sample_weight = np.ones((X.shape[0],)) assert X.shape[0] == sample_weight.shape[0] assert X.shape[0] == Y.shape[0] assert Y.ndim == 1 or Y.shape[1] == 1 Y = Y.reshape(-1,) sum_w = np.sum(sample_weight) assert sum_w > 0 if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) self.n_samples = X.shape[0] self.n_features = X.shape[1] self.n_targets = 1 # start fitting using irls mu = self.fam.starting_mu(Y) lin_pred = self.fam.predict(mu) dev = self.fam.deviance_weighted(Y, mu, sample_weight) if np.isnan(dev): raise ValueError("The first guess on the deviance function " "returned a nan. This could be a boundary " " problem and should be reported.") # This special case is used to get the likelihood for a specific # params vector. for iteration in range(self.max_iter): weights = sample_weight * self.fam.weights(mu) wlsendog = lin_pred + self.fam.link.deriv(mu) * (Y-mu) if self.penalty is None: wls_results = lim.WLS(wlsendog, X, weights).fit(method = self.solver) if self.penalty == 'elasticnet': wls_results = lim.WLS(wlsendog, X, weights).fit_regularized(alpha = self.reg, L1_wt = self.l1_ratio) lin_pred = np.dot(X, wls_results.params) mu = self.fam.fitted(lin_pred) if Y.squeeze().ndim == 1 and np.allclose(mu - Y, 0): msg = "Perfect separation detected, results not available" raise Error(msg) dev_new = self.fam.deviance_weighted(Y, mu, sample_weight) converged = np.fabs(dev - dev_new) <= self.tol dev = dev_new if converged: break self.converged = converged self.coef = wls_results.params self.dispersion = self.estimate_dispersion(X, Y, mu, sample_weight) if self.est_sd: self.sd = self.estimate_sd(X, Y, mu, sample_weight, weights) self.ll = self.estimate_loglikelihood(Y, mu, sample_weight) def predict(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) lin_pred = np.dot(X, self.coef) mu = self.fam.fitted(lin_pred) return mu def log_probability(self, X, Y): """ Given a set of X and Y, calculate the probability of observing Y value """ mu = self.predict(X) return self.fam.log_probability(Y.reshape(-1,), mu, scale=self.dispersion) def estimate_dispersion(self, X, Y, mu, w): if isinstance(self.fam, (family.Binomial, family.Poisson)): return 1 else: resid = (Y - mu) return (resid ** 2 * w / self.fam.variance(mu)).sum()/ np.sum(w) def estimate_sd(self, X, Y, mu, w, weights): if self.penalty is None and self.dispersion is not None: newX, newY = _rescale_data(X, Y, weights) wX, wY = _rescale_data(X, Y, w * weights) if X.shape[1] == 1: try: cov = 1 / np.dot(newX.T, newX) temp = np.dot(wX.T, wX) sd = (np.sqrt(cov ** 2 * temp) * np.sqrt(self.dispersion)).reshape(-1,) except: sd = None else: try: cov = np.linalg.inv(np.dot(newX.T, newX)) temp = np.dot(cov, wX.T) sd = np.sqrt(np.diag(np.dot(temp,temp.T))) * np.sqrt(self.dispersion) except: sd = None else: sd = None return sd def estimate_loglikelihood(self, Y, mu, w): if self.dispersion is None: return None else: return self.fam.loglike_weighted(Y, mu, w, scale=self.dispersion) class LM(BaseModel): """ A Generalized linear model for data with input and output. """ def __init__(self, solver = 'svd', fit_intercept = True, penalty = None, est_sd = False, reg = 0, l1_ratio = 0, tol = 1e-4, max_iter = 100): super(LM, self).__init__(fam = 'LM', solver = solver, fit_intercept = fit_intercept, est_sd = est_sd, penalty = penalty, reg = reg, l1_ratio = l1_ratio, tol = tol, max_iter = max_iter) def fit(self, X, Y, sample_weight = None): """ fit the weighted model Parameters ---------- X : design matrix Y : response matrix sample_weight: sample weight vector """ if sample_weight is None: sample_weight = np.ones((X.shape[0],)) assert X.shape[0] == sample_weight.shape[0] assert X.shape[0] == Y.shape[0] sum_w = np.sum(sample_weight) assert sum_w > 0 if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) if Y.ndim == 1: Y = Y.reshape(-1,1) self.n_samples = X.shape[0] self.n_features = X.shape[1] self.n_targets = Y.shape[1] newX, newY = _rescale_data(X, Y, sample_weight) if self.penalty is None: model = linear_model.LinearRegression(fit_intercept=False) if self.penalty == 'l1': model = linear_model.Lasso(fit_intercept=False, alpha = self.reg, tol = self.tol, max_iter = self.max_iter) if self.penalty == 'l2': model = linear_model.Ridge(fit_intercept=False, alpha = self.reg, tol = self.tol, max_iter = self.max_iter, solver = self.solver) if self.penalty == 'elasticnet': model = linear_model.ElasticNet(fit_intercept=False, alpha = self.reg, l1_ratio = self.l1_ratio, tol = self.tol, max_iter = self.max_iter) model.fit(newX, newY) self.coef = model.coef_.T if Y.shape[1] == 1: self.coef = self.coef.reshape(-1,) if self.penalty is not None: self.converged = model.n_iter_ < self.max_iter else: self.converged = None self.dispersion = self.estimate_dispersion(X, Y, sample_weight) if self.est_sd: self.sd = self.estimate_sd(X, Y, sample_weight) self.ll = self.estimate_loglikelihood(sample_weight) def predict(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) mu = np.dot(X, self.coef) return mu def log_probability(self, X, Y): """ Given a set of X and Y, calculate the probability of observing Y value """ if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) if Y.ndim == 1: Y = Y.reshape(-1,1) pred = np.dot(X, self.coef) if pred.ndim == 1: pred = pred.reshape(-1,1) if Y.shape[1] == 1: if self.dispersion > 0: logP = (Y * pred - pred**2/2)/self.dispersion - Y**2/(2 * self.dispersion) - .5*np.log(2 * np.pi * self.dispersion) logP = logP.reshape(-1,) else: logP = np.zeros((Y.shape[0],)) logP[Y.reshape(-1,)!=pred.reshape(-1,)] = -np.Infinity logP = logP.reshape(-1,) else: if np.linalg.det(self.dispersion) > 0: logP = -1/2*((Y.shape[1] * np.log(2 * np.pi) + np.log(np.linalg.det(self.dispersion))) + np.diag(np.dot(np.dot(Y-pred, np.linalg.inv(self.dispersion)), (Y-pred).T))) logP = logP.reshape(-1,) else: if (np.diag(self.dispersion) > 0).all(): new_dispersion = np.diag(np.diag(self.dispersion)) logP = -1/2*((Y.shape[1] * np.log(2 * np.pi) + np.log(np.linalg.det(self.dispersion))) + np.diag(np.dot(np.dot(Y-pred, np.linalg.inv(new_dispersion)), (Y-pred).T))) logP = logP.reshape(-1,) else: logP = np.zeros((Y.shape[0],)) logP[np.linalg.norm(Y-pred, axis = 1)!=0] = -np.Infinity logP = logP.reshape(-1,) return logP def estimate_dispersion(self, X, Y, sample_weight): newX, newY = _rescale_data(X, Y, sample_weight) newPred = np.dot(newX, self.coef) if newPred.ndim == 1: newPred = newPred.reshape(-1,1) wresid = newY - newPred ssr = np.dot(wresid.T, wresid) sigma2 = ssr / np.sum(sample_weight) if sigma2.shape == (1,1): sigma2 = sigma2[0,0] return sigma2 def estimate_sd(self, X, Y, sample_weight): newX, newY = _rescale_data(X, Y, sample_weight) if self.penalty is None: wX, wY = _rescale_data(X, Y, sample_weight ** 2) if newX.shape[1] == 1: try: cov = 1 / np.dot(newX.T, newX) temp = np.dot(wX.T, wX) if newY.shape[1] == 1: sd = np.sqrt(cov ** 2 * temp * self.dispersion).reshape(-1,) else: sd = np.sqrt(cov ** 2 * temp * np.diag(self.dispersion)) except: sd = None else: try: cov = np.linalg.inv(np.dot(newX.T, newX)) temp = np.dot(cov, wX.T) if newY.shape[1] == 1: sd = np.sqrt(np.diag(np.dot(temp,temp.T)) * self.dispersion).reshape(-1,) else: sd = np.sqrt(np.outer(np.diag(np.dot(temp,temp.T)), np.diag(self.dispersion))) except: sd = None else: sd = None return sd def estimate_loglikelihood(self, sample_weight): q = self.n_targets sum_w = np.sum(sample_weight) if q == 1: if self.dispersion > 0: ll = - q * sum_w / 2 * np.log(2 * np.pi) - sum_w / 2 * np.log(self.dispersion) - q * sum_w / 2 else: ll = None else: if np.linalg.det(self.dispersion) > 0: ll = - q * sum_w / 2 * np.log(2 * np.pi) - sum_w / 2 * np.log(np.linalg.det(self.dispersion)) - q * sum_w / 2 else: if (np.diag(self.dispersion) > 0).all(): ll = - q * sum_w / 2 * np.log(2 * np.pi) - np.sum(sum_w / 2 * np.log(np.diag(self.dispersion))) - q * sum_w / 2 else: ll = None return ll class MNL(BaseModel): """ A MNL for data with input and output. """ def fit(self, X, Y, sample_weight = None): """ fit the weighted model Parameters ---------- X : design matrix Y : response matrix sample_weight: sample weight vector """ raise NotImplementedError def predict_probability(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ return np.exp(self.predict_log_probability(X)) def predict_log_probability(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) p = np.dot(X, self.coef) if p.ndim == 1: p = p.reshape(-1,1) p -= logsumexp(p, axis = 1)[:, np.newaxis] return p def predict(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ return NotImplementedError def log_probability(self, X, Y): """ Given a set of X and Y, calculate the probability of observing Y value """ return NotImplementedError def estimate_dispersion(self): return 1 def estimate_sd(self, X, sample_weight): if self.penalty == None: o_normalized = np.dot(X, self.coef) if o_normalized.ndim == 1: o_normalized = o_normalized.reshape(-1,1) o_normalized -= logsumexp(o_normalized, axis = 1)[:, np.newaxis] o_normalized = np.exp(o_normalized) # calculate hessian p = self.n_features q = self.n_targets h = np.zeros((p*(q-1), p*(q-1))) for e in range(q-1): for f in range(q-1): h[e*p: (e+1)*p, f*p: (f+1)*p] = -np.dot(np.dot(X.T, np.diag(np.multiply(np.multiply(o_normalized[:, f+1], (e==f) - o_normalized[:, e+1]), sample_weight))), X) if np.sum(sample_weight) > 0: h = h / np.sum(sample_weight) * X.shape[0] if np.all(np.linalg.eigvals(-h) > 0) and np.linalg.cond(-h) < 1/sys.float_info.epsilon: sd = np.sqrt(np.diag(np.linalg.inv(-h))).reshape(p,q-1, order = 'F') sd = np.hstack((np.zeros((p, 1)), sd)) else: sd = None else: sd = None return sd def estimate_loglikelihood(self, X, Y, sample_weight): return NotImplementedError class MNLD(MNL): """ A MNL for discrete data with input and output. """ def __init__(self, solver='newton-cg', fit_intercept = True, est_sd = False, penalty = None, reg = 0, l1_ratio = 0, tol = 1e-4, max_iter = 100): super(MNLD, self).__init__(fam = 'MNLD', solver = solver, fit_intercept = fit_intercept, est_sd = est_sd, penalty = penalty, reg = reg, l1_ratio = l1_ratio, tol = tol, max_iter = max_iter) def fit(self, X, Y, sample_weight = None): """ fit the weighted model Parameters ---------- X : design matrix Y : response matrix sample_weight: sample weight vector """ if sample_weight is None: sample_weight = np.ones((X.shape[0],)) assert Y.ndim == 1 or Y.shape[1] == 1 assert X.shape[0] == Y.shape[0] assert X.shape[0] == sample_weight.shape[0] if self.reg == 0 or (self.penalty is None): penalty1 = 'l2' c = 1e200 else: penalty1 = self.penalty c = 1/self.reg if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) self.n_samples = X.shape[0] self.n_features = X.shape[1] self.n_targets = len(np.unique(Y)) if self.n_targets < 2: raise ValueError('n_targets < 2') self.lb = LabelBinarizer().fit(Y) model = linear_model.LogisticRegression(fit_intercept = False, penalty = penalty1, C = c, multi_class = 'multinomial', solver = self.solver, tol = self.tol, max_iter = self.max_iter) Y_fit = self.lb.transform(Y) model.fit(X, Y, sample_weight = sample_weight) w0 = model.coef_ if self.n_targets == 2: w0 = np.vstack((np.zeros((1, self.n_features)), w0*2)) w1 = w0.reshape(self.n_targets, -1) w1 = w1.T - w1.T[:,0].reshape(-1,1) self.coef = w1 self.converged = model.n_iter_ < self.max_iter self.dispersion = self.estimate_dispersion() if self.est_sd: self.sd = self.estimate_sd(X, sample_weight) self.ll = self.estimate_loglikelihood(X, Y, sample_weight) def predict(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ index = np.argmax(self.predict_log_probability(X), axis = 1) zero = np.zeros((X.shape[0], self.n_targets)) zero[np.arange(X.shape[0]), index] = 1 return self.lb.inverse_transform(zero) def log_probability(self, X, Y): """ Given a set of X and Y, calculate the probability of observing Y value """ if X.ndim == 1: X = X.reshape(-1,1) assert Y.ndim == 1 or Y.shape[1] == 1 assert X.shape[0] == Y.shape[0] p = self.predict_log_probability(X) Y_transformed = self.lb.transform(Y) if Y_transformed.shape[1] == 1: Y_aug = np.zeros((X.shape[0],2)) Y_aug[np.arange(X.shape[0]),Y_transformed.reshape(-1,)] = 1 else: Y_aug = Y_transformed logP = np.sum(p*Y_aug, axis = 1) return logP def estimate_loglikelihood(self, X, Y, sample_weight): o_normalized_log = np.dot(X, self.coef) if o_normalized_log.ndim == 1: o_normalized_log = o_normalized_log.reshape(-1,1) o_normalized_log -= logsumexp(o_normalized_log, axis = 1)[:, np.newaxis] Y_aug = self.lb.transform(Y) ll = (sample_weight[:, np.newaxis] * Y_aug * o_normalized_log).sum() return ll class MNLP(MNL): """ A MNL with probability response for data with input and output. """ def __init__(self, solver = 'newton-cg', fit_intercept = True, est_sd = False, penalty = None, reg = 0, l1_ratio = 0, tol = 1e-4, max_iter = 100): super(MNL, self).__init__(fam = 'MNLP', solver = solver, fit_intercept = fit_intercept, est_sd = est_sd, penalty = penalty, reg = reg, l1_ratio = l1_ratio, tol = tol, max_iter = max_iter) def fit(self, X, Y, sample_weight = None): """ fit the weighted model Parameters ---------- X : design matrix Y : response matrix sample_weight: sample weight vector """ if sample_weight is None: sample_weight = np.ones((X.shape[0],)) assert X.shape[0] == Y.shape[0] assert X.shape[0] == sample_weight.shape[0] if X.ndim == 1: X = X.reshape(-1,1) if self.fit_intercept: X = addIntercept(X) self.n_samples = X.shape[0] self.n_features = X.shape[1] self.n_targets = Y.shape[1] if self.n_targets < 2: raise ValueError('n_targets < 2') w0 = np.zeros((self.n_targets*self.n_features, )) if self.solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] else: func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess if self.solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, Y, self.reg, sample_weight), iprint=0, pgtol=self.tol, maxiter=self.max_iter) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, Y, self.reg, sample_weight), iprint=0, pgtol=self.tol) if info["warnflag"] == 1: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") try: n_iter_i = info['nit'] - 1 except: n_iter_i = info['funcalls'] - 1 else: args = (X, Y, self.reg, sample_weight) w0, n_iter_i = newton_cg(hess, func, grad, w0, args=args, maxiter=self.max_iter, tol=self.tol) w1 = w0.reshape(self.n_targets, -1) w1 = w1.T - w1.T[:,0].reshape(-1,1) self.coef = w1 self.converged = n_iter_i < self.max_iter self.dispersion = self.estimate_dispersion() if self.est_sd: self.sd = self.estimate_sd(X, sample_weight) self.ll = self.estimate_loglikelihood(X, Y, sample_weight) def predict(self, X): """ predict the Y value based on the model ---------- X : design matrix Returns ------- predicted value """ index = np.argmax(self.predict_log_probability(X), axis = 1) return index def log_probability(self, X, Y): """ Given a set of X and Y, calculate the probability of observing Y value """ if X.ndim == 1: X = X.reshape(-1,1) assert Y.ndim == 2 assert X.shape[0] == Y.shape[0] p = self.predict_log_probability(X) logP = np.sum(p*Y, axis = 1) return logP def estimate_loglikelihood(self, X, Y, sample_weight): o_normalized_log = np.dot(X, self.coef) if o_normalized_log.ndim == 1: o_normalized_log = o_normalized_log.reshape(-1,1) o_normalized_log -= logsumexp(o_normalized_log, axis = 1)[:, np.newaxis] ll = (sample_weight[:, np.newaxis] * Y * o_normalized_log).sum() return ll def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] p = np.dot(X, w.T) p -= logsumexp(p, axis = 1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * np.sum(w * w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] grad = np.zeros((n_classes, n_features)) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = np.dot(diff.T, X) grad[:, :n_features] += alpha * w return loss, grad.ravel(), p def _multinomial_grad_hess(w, X, Y, alpha, sample_weight): """ Computes the gradient and the Hessian, in the case of a multinomial loss. Parameters ---------- w : ndarray, shape (n_classes * n_features,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] # `loss` is unused. Refactoring to avoid computing it does not # significantly speed up the computation and decreases readability loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = np.dot(X, v.T) r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features)) hessProd[:, :n_features] = np.dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha return hessProd.ravel() return grad, hessp
[ "yinmogeng@gmail.com" ]
yinmogeng@gmail.com
84d43864ef2048b246ffb95eeccc37cd8ec22c52
97c2b0a57f6bb07a0b71641dd8bb81ae4f333515
/191217/main.py
6edb608c58f66b011215492e297c753314597abb
[]
no_license
miyabi625/kaggle-pfs
cedbf29abde9d129d22f919605c01f60d878a305
72137cc8587cd00e9a8ab49648c74cb0a26cc728
refs/heads/master
2020-10-01T06:21:42.388085
2020-01-15T23:19:05
2020-01-15T23:19:05
227,477,436
1
0
null
null
null
null
UTF-8
Python
false
false
2,571
py
#################################################### # インポート #################################################### import data_load import model as model import logger import logging import numpy as np import pandas as pd #################################################### # 定数宣言 #################################################### # Windowサイズ WINDOW_SIZE = 7 # testデータの11月も含めた期間 #################################################### # ログ宣言 #################################################### log = logging.getLogger(__name__) logger.setLogger(log) #################################################### # データ読み込み #################################################### log.info('start read data') #csvデータの読み込み dl = data_load.DataLoad(WINDOW_SIZE) log.info('end read data') #################################################### # 分析 #################################################### log.info('start analysis') ### トレーニングデータ用意 ################### # トレーニングデータを取得する train = dl.getTrainValues() train_ = train[((34-WINDOW_SIZE+1) <= train.date_block_num) & (train.date_block_num <= 33)].reset_index(drop=True) train_y = train_['item_cnt_month'] train_x = train_.drop(columns=['date_block_num','item_cnt_month']) #log.info(train_y.head()) log.info(train_y.count()) #log.info(train_x.head()) log.info(train_x.count()) model = model.Model() model.fit(train_x.values,train_y.values) log.info('feature_importances') log.info(model.get_feature_importances(train_x)) pred = model.predict(train_x) score = model.predictScore(train_y.values,pred) log.info('predictScore') log.info(score) #テストデータに適用 test = dl.getTestValues() test_ = train[(train.date_block_num == 34)].reset_index(drop=True) test_x = test_.drop(columns=['date_block_num','item_cnt_month']) #log.info(test_x.head()) pred = model.predict(test_x) log.info('end analysis') #################################################### # アウトプットファイル出力 #################################################### log.info('start output data') test_x['item_cnt_month'] = pred test_x['shop_id'] = test_x['unique_no'] % 100 test_x['item_id'] = test_x['unique_no'] // 100 submission = pd.merge( test, test_x[['shop_id','item_id','item_cnt_month']], on=['shop_id','item_id'], how='left' ) # 提出ファイル作成 submission[['ID','item_cnt_month']].to_csv('./output/submission.csv', index=False) log.info('end output data')
[ "miyabi625@gmail.com" ]
miyabi625@gmail.com
f3342ae253a6c3ea4cdf0a8b6733c66468df32a0
b47a907e824b52a6ee02dfb6387d24fa4d7fe88f
/config/settings.py
711faa6f8b40f97ba26f9110ae9b2a5e620c989a
[]
no_license
hiroshi-higashiyama/DJANGO-KAKEIBO
413a883fdef2571cacbd6c8679e63a6aecab7ae9
564c6047fcc6f6bb4a45b2eec121df619d158952
refs/heads/master
2022-12-29T19:53:15.186934
2020-09-21T01:04:10
2020-09-21T01:04:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,180
py
""" Django settings for config project. Generated by 'django-admin startproject' using Django 3.0.5. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '3!7$0+ew+1s-)tt%ex9gwqtf_(oq==%7celkb+i7g01_ehy&im' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'kakeibo', 'bootstrapform', 'django.contrib.humanize', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'ja' TIME_ZONE = 'Asia/Tokyo' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' NUMBER_GROUPING = 3
[ "s20840011@gmail.com" ]
s20840011@gmail.com
a3250628cfe4b7bd81a0cfd021620ea7fa5102e3
e5dafd36bb8ceaf8d68fd38188bdf2e80136d9ab
/helloworld.py
2e36877658e09f2cb17e264defa770af9a61f62d
[]
no_license
arsalanahmad4/github-repo
e09ceeb1f90f87c61cdf9bb9d15f4794fc3fc012
e506f198421d8b9002fa222afdde307eb3edb68e
refs/heads/master
2023-01-23T06:33:02.737916
2020-11-12T16:44:54
2020-11-12T16:44:54
312,322,775
0
0
null
2020-11-12T16:29:06
2020-11-12T15:47:10
Python
UTF-8
Python
false
false
76
py
print('hello world') print('dev branch') print('new change in dev branch')
[ "arsalanahmad0407@gmail.com" ]
arsalanahmad0407@gmail.com
271e0a82482eb25eaca4b7f12e7efeb08508fb7a
9206e405e9be5f80a08e78b59d1cb79c519ae515
/algorithms/codeforces/the_number_of_even_pairs/main.py
7b7aac218751e1de472854d40e92a53218a4c619
[]
no_license
mfbx9da4/mfbx9da4.github.io
ac4e34f0e269fb285e4fc4e727b8564b5db1ce3b
0ea1a0d56a649de3ca7fde2d81b626aee0595b2c
refs/heads/master
2023-04-13T22:15:19.426967
2023-04-12T12:14:40
2023-04-12T12:14:40
16,823,428
2
0
null
2022-12-12T04:36:08
2014-02-14T01:30:20
SCSS
UTF-8
Python
false
false
738
py
""" """ from math import factorial def int_as_array(num): return list(map(int, [y for y in str(num)])) def array_as_int(arr): return int(''.join(map(str, arr))) def read_int(): return int(input()) def read_array(): return list(map(int, input().split(' '))) def array_to_string(arr, sep=' '): return sep.join(map(str, arr)) def matrix_to_string(arr, sep=' '): return '[\n' + '\n'.join( [sep.join(map(str, row)) for row in arr]) + '\n]' def combine(n, r): try: return (factorial(n) / factorial(n - r)) * (1 / r) except: return 0 def solve(N, M): choose_evens = combine(N, 2) choose_odds = combine(M, 2) return int(choose_evens + choose_odds) N, M = read_array() print(solve(N, M))
[ "dalberto.adler@gmail.com" ]
dalberto.adler@gmail.com
9a357773dc9557d0d326bc7c9bc1a1e5cdb927ce
91c5391b6960cad5ca476bce685a73918568fcaf
/Assets/XLua/Tutorial/TODOTest/Resources/xls2lua/Lib/email/message.py
409721e6cf3e920eee833a62f1f4a1ec018f7874
[ "LicenseRef-scancode-unknown-license-reference", "MIT", "BSD-3-Clause" ]
permissive
ljz/xLua
a6fa7cda38e609946633a99310c7d082afc116b6
44d484208fce409d87b3353e1441c52576b561bf
refs/heads/master
2021-04-30T10:50:07.816281
2018-06-24T05:19:42
2018-06-24T05:19:42
121,334,404
0
0
null
2018-02-13T03:31:19
2018-02-13T03:31:19
null
UTF-8
Python
false
false
46,510
py
# Copyright (C) 2001-2007 Python Software Foundation # Author: Barry Warsaw # Contact: email-sig@python.org """Basic message object for the email package object model.""" __all__ = ['Message'] import re import uu import quopri from io import BytesIO, StringIO # Intrapackage imports from email import utils from email import errors from email._policybase import compat32 from email import charset as _charset from email._encoded_words import decode_b Charset = _charset.Charset SEMISPACE = '; ' # Regular expression that matches `special' characters in parameters, the # existence of which force quoting of the parameter value. tspecials = re.compile(r'[ \(\)<>@,;:\\"/\[\]\?=]') def _splitparam(param): # Split header parameters. BAW: this may be too simple. It isn't # strictly RFC 2045 (section 5.1) compliant, but it catches most headers # found in the wild. We may eventually need a full fledged parser. # RDM: we might have a Header here; for now just stringify it. a, sep, b = str(param).partition(';') if not sep: return a.strip(), None return a.strip(), b.strip() def _formatparam(param, value=None, quote=True): """Convenience function to format and return a key=value pair. This will quote the value if needed or if quote is true. If value is a three tuple (charset, language, value), it will be encoded according to RFC2231 rules. If it contains non-ascii characters it will likewise be encoded according to RFC2231 rules, using the utf-8 charset and a null language. """ if value is not None and len(value) > 0: # A tuple is used for RFC 2231 encoded parameter values where items # are (charset, language, value). charset is a string, not a Charset # instance. RFC 2231 encoded values are never quoted, per RFC. if isinstance(value, tuple): # Encode as per RFC 2231 param += '*' value = utils.encode_rfc2231(value[2], value[0], value[1]) return '%s=%s' % (param, value) else: try: value.encode('ascii') except UnicodeEncodeError: param += '*' value = utils.encode_rfc2231(value, 'utf-8', '') return '%s=%s' % (param, value) # BAW: Please check this. I think that if quote is set it should # force quoting even if not necessary. if quote or tspecials.search(value): return '%s="%s"' % (param, utils.quote(value)) else: return '%s=%s' % (param, value) else: return param def _parseparam(s): # RDM This might be a Header, so for now stringify it. s = ';' + str(s) plist = [] while s[:1] == ';': s = s[1:] end = s.find(';') while end > 0 and (s.count('"', 0, end) - s.count('\\"', 0, end)) % 2: end = s.find(';', end + 1) if end < 0: end = len(s) f = s[:end] if '=' in f: i = f.index('=') f = f[:i].strip().lower() + '=' + f[i+1:].strip() plist.append(f.strip()) s = s[end:] return plist def _unquotevalue(value): # This is different than utils.collapse_rfc2231_value() because it doesn't # try to convert the value to a unicode. Message.get_param() and # Message.get_params() are both currently defined to return the tuple in # the face of RFC 2231 parameters. if isinstance(value, tuple): return value[0], value[1], utils.unquote(value[2]) else: return utils.unquote(value) class Message: """Basic message object. A message object is defined as something that has a bunch of RFC 2822 headers and a payload. It may optionally have an envelope header (a.k.a. Unix-From or From_ header). If the message is a container (i.e. a multipart or a message/rfc822), then the payload is a list of Message objects, otherwise it is a string. Message objects implement part of the `mapping' interface, which assumes there is exactly one occurrence of the header per message. Some headers do in fact appear multiple times (e.g. Received) and for those headers, you must use the explicit API to set or get all the headers. Not all of the mapping methods are implemented. """ def __init__(self, policy=compat32): self.policy = policy self._headers = [] self._unixfrom = None self._payload = None self._charset = None # Defaults for multipart messages self.preamble = self.epilogue = None self.defects = [] # Default content type self._default_type = 'text/plain' def __str__(self): """Return the entire formatted message as a string. """ return self.as_string() def as_string(self, unixfrom=False, maxheaderlen=0, policy=None): """Return the entire formatted message as a string. Optional 'unixfrom', when true, means include the Unix From_ envelope header. For backward compatibility reasons, if maxheaderlen is not specified it defaults to 0, so you must override it explicitly if you want a different maxheaderlen. 'policy' is passed to the Generator instance used to serialize the mesasge; if it is not specified the policy associated with the message instance is used. If the message object contains binary data that is not encoded according to RFC standards, the non-compliant data will be replaced by unicode "unknown character" code points. """ from email.generator import Generator policy = self.policy if policy is None else policy fp = StringIO() g = Generator(fp, mangle_from_=False, maxheaderlen=maxheaderlen, policy=policy) g.flatten(self, unixfrom=unixfrom) return fp.getvalue() def __bytes__(self): """Return the entire formatted message as a bytes object. """ return self.as_bytes() def as_bytes(self, unixfrom=False, policy=None): """Return the entire formatted message as a bytes object. Optional 'unixfrom', when true, means include the Unix From_ envelope header. 'policy' is passed to the BytesGenerator instance used to serialize the message; if not specified the policy associated with the message instance is used. """ from email.generator import BytesGenerator policy = self.policy if policy is None else policy fp = BytesIO() g = BytesGenerator(fp, mangle_from_=False, policy=policy) g.flatten(self, unixfrom=unixfrom) return fp.getvalue() def is_multipart(self): """Return True if the message consists of multiple parts.""" return isinstance(self._payload, list) # # Unix From_ line # def set_unixfrom(self, unixfrom): self._unixfrom = unixfrom def get_unixfrom(self): return self._unixfrom # # Payload manipulation. # def attach(self, payload): """Add the given payload to the current payload. The current payload will always be a list of objects after this method is called. If you want to set the payload to a scalar object, use set_payload() instead. """ if self._payload is None: self._payload = [payload] else: try: self._payload.append(payload) except AttributeError: raise TypeError("Attach is not valid on a message with a" " non-multipart payload") def get_payload(self, i=None, decode=False): """Return a reference to the payload. The payload will either be a list object or a string. If you mutate the list object, you modify the message's payload in place. Optional i returns that index into the payload. Optional decode is a flag indicating whether the payload should be decoded or not, according to the Content-Transfer-Encoding header (default is False). When True and the message is not a multipart, the payload will be decoded if this header's value is `quoted-printable' or `base64'. If some other encoding is used, or the header is missing, or if the payload has bogus data (i.e. bogus base64 or uuencoded data), the payload is returned as-is. If the message is a multipart and the decode flag is True, then None is returned. """ # Here is the logic table for this code, based on the email5.0.0 code: # i decode is_multipart result # ------ ------ ------------ ------------------------------ # None True True None # i True True None # None False True _payload (a list) # i False True _payload element i (a Message) # i False False error (not a list) # i True False error (not a list) # None False False _payload # None True False _payload decoded (bytes) # Note that Barry planned to factor out the 'decode' case, but that # isn't so easy now that we handle the 8 bit data, which needs to be # converted in both the decode and non-decode path. if self.is_multipart(): if decode: return None if i is None: return self._payload else: return self._payload[i] # For backward compatibility, Use isinstance and this error message # instead of the more logical is_multipart test. if i is not None and not isinstance(self._payload, list): raise TypeError('Expected list, got %s' % type(self._payload)) payload = self._payload # cte might be a Header, so for now stringify it. cte = str(self.get('content-transfer-encoding', '')).lower() # payload may be bytes here. if isinstance(payload, str): if utils._has_surrogates(payload): bpayload = payload.encode('ascii', 'surrogateescape') if not decode: try: payload = bpayload.decode(self.get_param('charset', 'ascii'), 'replace') except LookupError: payload = bpayload.decode('ascii', 'replace') elif decode: try: bpayload = payload.encode('ascii') except UnicodeError: # This won't happen for RFC compliant messages (messages # containing only ASCII codepoints in the unicode input). # If it does happen, turn the string into bytes in a way # guaranteed not to fail. bpayload = payload.encode('raw-unicode-escape') if not decode: return payload if cte == 'quoted-printable': return quopri.decodestring(bpayload) elif cte == 'base64': # XXX: this is a bit of a hack; decode_b should probably be factored # out somewhere, but I haven't figured out where yet. value, defects = decode_b(b''.join(bpayload.splitlines())) for defect in defects: self.policy.handle_defect(self, defect) return value elif cte in ('x-uuencode', 'uuencode', 'uue', 'x-uue'): in_file = BytesIO(bpayload) out_file = BytesIO() try: uu.decode(in_file, out_file, quiet=True) return out_file.getvalue() except uu.Error: # Some decoding problem return bpayload if isinstance(payload, str): return bpayload return payload def set_payload(self, payload, charset=None): """Set the payload to the given value. Optional charset sets the message's default character set. See set_charset() for details. """ if hasattr(payload, 'encode'): if charset is None: self._payload = payload return if not isinstance(charset, Charset): charset = Charset(charset) payload = payload.encode(charset.output_charset) if hasattr(payload, 'decode'): self._payload = payload.decode('ascii', 'surrogateescape') else: self._payload = payload if charset is not None: self.set_charset(charset) def set_charset(self, charset): """Set the charset of the payload to a given character set. charset can be a Charset instance, a string naming a character set, or None. If it is a string it will be converted to a Charset instance. If charset is None, the charset parameter will be removed from the Content-Type field. Anything else will generate a TypeError. The message will be assumed to be of type text/* encoded with charset.input_charset. It will be converted to charset.output_charset and encoded properly, if needed, when generating the plain text representation of the message. MIME headers (MIME-Version, Content-Type, Content-Transfer-Encoding) will be added as needed. """ if charset is None: self.del_param('charset') self._charset = None return if not isinstance(charset, Charset): charset = Charset(charset) self._charset = charset if 'MIME-Version' not in self: self.add_header('MIME-Version', '1.0') if 'Content-Type' not in self: self.add_header('Content-Type', 'text/plain', charset=charset.get_output_charset()) else: self.set_param('charset', charset.get_output_charset()) if charset != charset.get_output_charset(): self._payload = charset.body_encode(self._payload) if 'Content-Transfer-Encoding' not in self: cte = charset.get_body_encoding() try: cte(self) except TypeError: # This 'if' is for backward compatibility, it allows unicode # through even though that won't work correctly if the # message is serialized. payload = self._payload if payload: try: payload = payload.encode('ascii', 'surrogateescape') except UnicodeError: payload = payload.encode(charset.output_charset) self._payload = charset.body_encode(payload) self.add_header('Content-Transfer-Encoding', cte) def get_charset(self): """Return the Charset instance associated with the message's payload. """ return self._charset # # MAPPING INTERFACE (partial) # def __len__(self): """Return the total number of headers, including duplicates.""" return len(self._headers) def __getitem__(self, name): """Get a header value. Return None if the header is missing instead of raising an exception. Note that if the header appeared multiple times, exactly which occurrence gets returned is undefined. Use get_all() to get all the values matching a header field name. """ return self.get(name) def __setitem__(self, name, val): """Set the value of a header. Note: this does not overwrite an existing header with the same field name. Use __delitem__() first to delete any existing headers. """ max_count = self.policy.header_max_count(name) if max_count: lname = name.lower() found = 0 for k, v in self._headers: if k.lower() == lname: found += 1 if found >= max_count: raise ValueError("There may be at most {} {} headers " "in a message".format(max_count, name)) self._headers.append(self.policy.header_store_parse(name, val)) def __delitem__(self, name): """Delete all occurrences of a header, if present. Does not raise an exception if the header is missing. """ name = name.lower() newheaders = [] for k, v in self._headers: if k.lower() != name: newheaders.append((k, v)) self._headers = newheaders def __contains__(self, name): return name.lower() in [k.lower() for k, v in self._headers] def __iter__(self): for field, value in self._headers: yield field def keys(self): """Return a list of all the message's header field names. These will be sorted in the order they appeared in the original message, or were added to the message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. """ return [k for k, v in self._headers] def values(self): """Return a list of all the message's header values. These will be sorted in the order they appeared in the original message, or were added to the message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. """ return [self.policy.header_fetch_parse(k, v) for k, v in self._headers] def items(self): """Get all the message's header fields and values. These will be sorted in the order they appeared in the original message, or were added to the message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. """ return [(k, self.policy.header_fetch_parse(k, v)) for k, v in self._headers] def get(self, name, failobj=None): """Get a header value. Like __getitem__() but return failobj instead of None when the field is missing. """ name = name.lower() for k, v in self._headers: if k.lower() == name: return self.policy.header_fetch_parse(k, v) return failobj # # "Internal" methods (public API, but only intended for use by a parser # or generator, not normal application code. # def set_raw(self, name, value): """Store name and value in the model without modification. This is an "internal" API, intended only for use by a parser. """ self._headers.append((name, value)) def raw_items(self): """Return the (name, value) header pairs without modification. This is an "internal" API, intended only for use by a generator. """ return iter(self._headers.copy()) # # Additional useful stuff # def get_all(self, name, failobj=None): """Return a list of all the values for the named field. These will be sorted in the order they appeared in the original message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. If no such fields exist, failobj is returned (defaults to None). """ values = [] name = name.lower() for k, v in self._headers: if k.lower() == name: values.append(self.policy.header_fetch_parse(k, v)) if not values: return failobj return values def add_header(self, _name, _value, **_params): """Extended header setting. name is the header field to add. keyword arguments can be used to set additional parameters for the header field, with underscores converted to dashes. Normally the parameter will be added as key="value" unless value is None, in which case only the key will be added. If a parameter value contains non-ASCII characters it can be specified as a three-tuple of (charset, language, value), in which case it will be encoded according to RFC2231 rules. Otherwise it will be encoded using the utf-8 charset and a language of ''. Examples: msg.add_header('content-disposition', 'attachment', filename='bud.gif') msg.add_header('content-disposition', 'attachment', filename=('utf-8', '', Fußballer.ppt')) msg.add_header('content-disposition', 'attachment', filename='Fußballer.ppt')) """ parts = [] for k, v in _params.items(): if v is None: parts.append(k.replace('_', '-')) else: parts.append(_formatparam(k.replace('_', '-'), v)) if _value is not None: parts.insert(0, _value) self[_name] = SEMISPACE.join(parts) def replace_header(self, _name, _value): """Replace a header. Replace the first matching header found in the message, retaining header order and case. If no matching header was found, a KeyError is raised. """ _name = _name.lower() for i, (k, v) in zip(range(len(self._headers)), self._headers): if k.lower() == _name: self._headers[i] = self.policy.header_store_parse(k, _value) break else: raise KeyError(_name) # # Use these three methods instead of the three above. # def get_content_type(self): """Return the message's content type. The returned string is coerced to lower case of the form `maintype/subtype'. If there was no Content-Type header in the message, the default type as given by get_default_type() will be returned. Since according to RFC 2045, messages always have a default type this will always return a value. RFC 2045 defines a message's default type to be text/plain unless it appears inside a multipart/digest container, in which case it would be message/rfc822. """ missing = object() value = self.get('content-type', missing) if value is missing: # This should have no parameters return self.get_default_type() ctype = _splitparam(value)[0].lower() # RFC 2045, section 5.2 says if its invalid, use text/plain if ctype.count('/') != 1: return 'text/plain' return ctype def get_content_maintype(self): """Return the message's main content type. This is the `maintype' part of the string returned by get_content_type(). """ ctype = self.get_content_type() return ctype.split('/')[0] def get_content_subtype(self): """Returns the message's sub-content type. This is the `subtype' part of the string returned by get_content_type(). """ ctype = self.get_content_type() return ctype.split('/')[1] def get_default_type(self): """Return the `default' content type. Most messages have a default content type of text/plain, except for messages that are subparts of multipart/digest containers. Such subparts have a default content type of message/rfc822. """ return self._default_type def set_default_type(self, ctype): """Set the `default' content type. ctype should be either "text/plain" or "message/rfc822", although this is not enforced. The default content type is not stored in the Content-Type header. """ self._default_type = ctype def _get_params_preserve(self, failobj, header): # Like get_params() but preserves the quoting of values. BAW: # should this be part of the public interface? missing = object() value = self.get(header, missing) if value is missing: return failobj params = [] for p in _parseparam(value): try: name, val = p.split('=', 1) name = name.strip() val = val.strip() except ValueError: # Must have been a bare attribute name = p.strip() val = '' params.append((name, val)) params = utils.decode_params(params) return params def get_params(self, failobj=None, header='content-type', unquote=True): """Return the message's Content-Type parameters, as a list. The elements of the returned list are 2-tuples of key/value pairs, as split on the `=' sign. The left hand side of the `=' is the key, while the right hand side is the value. If there is no `=' sign in the parameter the value is the empty string. The value is as described in the get_param() method. Optional failobj is the object to return if there is no Content-Type header. Optional header is the header to search instead of Content-Type. If unquote is True, the value is unquoted. """ missing = object() params = self._get_params_preserve(missing, header) if params is missing: return failobj if unquote: return [(k, _unquotevalue(v)) for k, v in params] else: return params def get_param(self, param, failobj=None, header='content-type', unquote=True): """Return the parameter value if found in the Content-Type header. Optional failobj is the object to return if there is no Content-Type header, or the Content-Type header has no such parameter. Optional header is the header to search instead of Content-Type. Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-tuple if the parameter was RFC 2231 encoded. When it's a 3-tuple, the elements of the value are of the form (CHARSET, LANGUAGE, VALUE). Note that both CHARSET and LANGUAGE can be None, in which case you should consider VALUE to be encoded in the us-ascii charset. You can usually ignore LANGUAGE. The parameter value (either the returned string, or the VALUE item in the 3-tuple) is always unquoted, unless unquote is set to False. If your application doesn't care whether the parameter was RFC 2231 encoded, it can turn the return value into a string as follows: rawparam = msg.get_param('foo') param = email.utils.collapse_rfc2231_value(rawparam) """ if header not in self: return failobj for k, v in self._get_params_preserve(failobj, header): if k.lower() == param.lower(): if unquote: return _unquotevalue(v) else: return v return failobj def set_param(self, param, value, header='Content-Type', requote=True, charset=None, language='', replace=False): """Set a parameter in the Content-Type header. If the parameter already exists in the header, its value will be replaced with the new value. If header is Content-Type and has not yet been defined for this message, it will be set to "text/plain" and the new parameter and value will be appended as per RFC 2045. An alternate header can specified in the header argument, and all parameters will be quoted as necessary unless requote is False. If charset is specified, the parameter will be encoded according to RFC 2231. Optional language specifies the RFC 2231 language, defaulting to the empty string. Both charset and language should be strings. """ if not isinstance(value, tuple) and charset: value = (charset, language, value) if header not in self and header.lower() == 'content-type': ctype = 'text/plain' else: ctype = self.get(header) if not self.get_param(param, header=header): if not ctype: ctype = _formatparam(param, value, requote) else: ctype = SEMISPACE.join( [ctype, _formatparam(param, value, requote)]) else: ctype = '' for old_param, old_value in self.get_params(header=header, unquote=requote): append_param = '' if old_param.lower() == param.lower(): append_param = _formatparam(param, value, requote) else: append_param = _formatparam(old_param, old_value, requote) if not ctype: ctype = append_param else: ctype = SEMISPACE.join([ctype, append_param]) if ctype != self.get(header): if replace: self.replace_header(header, ctype) else: del self[header] self[header] = ctype def del_param(self, param, header='content-type', requote=True): """Remove the given parameter completely from the Content-Type header. The header will be re-written in place without the parameter or its value. All values will be quoted as necessary unless requote is False. Optional header specifies an alternative to the Content-Type header. """ if header not in self: return new_ctype = '' for p, v in self.get_params(header=header, unquote=requote): if p.lower() != param.lower(): if not new_ctype: new_ctype = _formatparam(p, v, requote) else: new_ctype = SEMISPACE.join([new_ctype, _formatparam(p, v, requote)]) if new_ctype != self.get(header): del self[header] self[header] = new_ctype def set_type(self, type, header='Content-Type', requote=True): """Set the main type and subtype for the Content-Type header. type must be a string in the form "maintype/subtype", otherwise a ValueError is raised. This method replaces the Content-Type header, keeping all the parameters in place. If requote is False, this leaves the existing header's quoting as is. Otherwise, the parameters will be quoted (the default). An alternative header can be specified in the header argument. When the Content-Type header is set, we'll always also add a MIME-Version header. """ # BAW: should we be strict? if not type.count('/') == 1: raise ValueError # Set the Content-Type, you get a MIME-Version if header.lower() == 'content-type': del self['mime-version'] self['MIME-Version'] = '1.0' if header not in self: self[header] = type return params = self.get_params(header=header, unquote=requote) del self[header] self[header] = type # Skip the first param; it's the old type. for p, v in params[1:]: self.set_param(p, v, header, requote) def get_filename(self, failobj=None): """Return the filename associated with the payload if present. The filename is extracted from the Content-Disposition header's `filename' parameter, and it is unquoted. If that header is missing the `filename' parameter, this method falls back to looking for the `name' parameter. """ missing = object() filename = self.get_param('filename', missing, 'content-disposition') if filename is missing: filename = self.get_param('name', missing, 'content-type') if filename is missing: return failobj return utils.collapse_rfc2231_value(filename).strip() def get_boundary(self, failobj=None): """Return the boundary associated with the payload if present. The boundary is extracted from the Content-Type header's `boundary' parameter, and it is unquoted. """ missing = object() boundary = self.get_param('boundary', missing) if boundary is missing: return failobj # RFC 2046 says that boundaries may begin but not end in w/s return utils.collapse_rfc2231_value(boundary).rstrip() def set_boundary(self, boundary): """Set the boundary parameter in Content-Type to 'boundary'. This is subtly different than deleting the Content-Type header and adding a new one with a new boundary parameter via add_header(). The main difference is that using the set_boundary() method preserves the order of the Content-Type header in the original message. HeaderParseError is raised if the message has no Content-Type header. """ missing = object() params = self._get_params_preserve(missing, 'content-type') if params is missing: # There was no Content-Type header, and we don't know what type # to set it to, so raise an exception. raise errors.HeaderParseError('No Content-Type header found') newparams = [] foundp = False for pk, pv in params: if pk.lower() == 'boundary': newparams.append(('boundary', '"%s"' % boundary)) foundp = True else: newparams.append((pk, pv)) if not foundp: # The original Content-Type header had no boundary attribute. # Tack one on the end. BAW: should we raise an exception # instead??? newparams.append(('boundary', '"%s"' % boundary)) # Replace the existing Content-Type header with the new value newheaders = [] for h, v in self._headers: if h.lower() == 'content-type': parts = [] for k, v in newparams: if v == '': parts.append(k) else: parts.append('%s=%s' % (k, v)) val = SEMISPACE.join(parts) newheaders.append(self.policy.header_store_parse(h, val)) else: newheaders.append((h, v)) self._headers = newheaders def get_content_charset(self, failobj=None): """Return the charset parameter of the Content-Type header. The returned string is always coerced to lower case. If there is no Content-Type header, or if that header has no charset parameter, failobj is returned. """ missing = object() charset = self.get_param('charset', missing) if charset is missing: return failobj if isinstance(charset, tuple): # RFC 2231 encoded, so decode it, and it better end up as ascii. pcharset = charset[0] or 'us-ascii' try: # LookupError will be raised if the charset isn't known to # Python. UnicodeError will be raised if the encoded text # contains a character not in the charset. as_bytes = charset[2].encode('raw-unicode-escape') charset = str(as_bytes, pcharset) except (LookupError, UnicodeError): charset = charset[2] # charset characters must be in us-ascii range try: charset.encode('us-ascii') except UnicodeError: return failobj # RFC 2046, $4.1.2 says charsets are not case sensitive return charset.lower() def get_charsets(self, failobj=None): """Return a list containing the charset(s) used in this message. The returned list of items describes the Content-Type headers' charset parameter for this message and all the subparts in its payload. Each item will either be a string (the value of the charset parameter in the Content-Type header of that part) or the value of the 'failobj' parameter (defaults to None), if the part does not have a main MIME type of "text", or the charset is not defined. The list will contain one string for each part of the message, plus one for the container message (i.e. self), so that a non-multipart message will still return a list of length 1. """ return [part.get_content_charset(failobj) for part in self.walk()] # I.e. def walk(self): ... from email.iterators import walk class MIMEPart(Message): def __init__(self, policy=None): if policy is None: from email.policy import default policy = default Message.__init__(self, policy) @property def is_attachment(self): c_d = self.get('content-disposition') if c_d is None: return False return c_d.lower() == 'attachment' def _find_body(self, part, preferencelist): if part.is_attachment: return maintype, subtype = part.get_content_type().split('/') if maintype == 'text': if subtype in preferencelist: yield (preferencelist.index(subtype), part) return if maintype != 'multipart': return if subtype != 'related': for subpart in part.iter_parts(): yield from self._find_body(subpart, preferencelist) return if 'related' in preferencelist: yield (preferencelist.index('related'), part) candidate = None start = part.get_param('start') if start: for subpart in part.iter_parts(): if subpart['content-id'] == start: candidate = subpart break if candidate is None: subparts = part.get_payload() candidate = subparts[0] if subparts else None if candidate is not None: yield from self._find_body(candidate, preferencelist) def get_body(self, preferencelist=('related', 'html', 'plain')): """Return best candidate mime part for display as 'body' of message. Do a depth first search, starting with self, looking for the first part matching each of the items in preferencelist, and return the part corresponding to the first item that has a match, or None if no items have a match. If 'related' is not included in preferencelist, consider the root part of any multipart/related encountered as a candidate match. Ignore parts with 'Content-Disposition: attachment'. """ best_prio = len(preferencelist) body = None for prio, part in self._find_body(self, preferencelist): if prio < best_prio: best_prio = prio body = part if prio == 0: break return body _body_types = {('text', 'plain'), ('text', 'html'), ('multipart', 'related'), ('multipart', 'alternative')} def iter_attachments(self): """Return an iterator over the non-main parts of a multipart. Skip the first of each occurrence of text/plain, text/html, multipart/related, or multipart/alternative in the multipart (unless they have a 'Content-Disposition: attachment' header) and include all remaining subparts in the returned iterator. When applied to a multipart/related, return all parts except the root part. Return an empty iterator when applied to a multipart/alternative or a non-multipart. """ maintype, subtype = self.get_content_type().split('/') if maintype != 'multipart' or subtype == 'alternative': return parts = self.get_payload() if maintype == 'multipart' and subtype == 'related': # For related, we treat everything but the root as an attachment. # The root may be indicated by 'start'; if there's no start or we # can't find the named start, treat the first subpart as the root. start = self.get_param('start') if start: found = False attachments = [] for part in parts: if part.get('content-id') == start: found = True else: attachments.append(part) if found: yield from attachments return parts.pop(0) yield from parts return # Otherwise we more or less invert the remaining logic in get_body. # This only really works in edge cases (ex: non-text relateds or # alternatives) if the sending agent sets content-disposition. seen = [] # Only skip the first example of each candidate type. for part in parts: maintype, subtype = part.get_content_type().split('/') if ((maintype, subtype) in self._body_types and not part.is_attachment and subtype not in seen): seen.append(subtype) continue yield part def iter_parts(self): """Return an iterator over all immediate subparts of a multipart. Return an empty iterator for a non-multipart. """ if self.get_content_maintype() == 'multipart': yield from self.get_payload() def get_content(self, *args, content_manager=None, **kw): if content_manager is None: content_manager = self.policy.content_manager return content_manager.get_content(self, *args, **kw) def set_content(self, *args, content_manager=None, **kw): if content_manager is None: content_manager = self.policy.content_manager content_manager.set_content(self, *args, **kw) def _make_multipart(self, subtype, disallowed_subtypes, boundary): if self.get_content_maintype() == 'multipart': existing_subtype = self.get_content_subtype() disallowed_subtypes = disallowed_subtypes + (subtype,) if existing_subtype in disallowed_subtypes: raise ValueError("Cannot convert {} to {}".format( existing_subtype, subtype)) keep_headers = [] part_headers = [] for name, value in self._headers: if name.lower().startswith('content-'): part_headers.append((name, value)) else: keep_headers.append((name, value)) if part_headers: # There is existing content, move it to the first subpart. part = type(self)(policy=self.policy) part._headers = part_headers part._payload = self._payload self._payload = [part] else: self._payload = [] self._headers = keep_headers self['Content-Type'] = 'multipart/' + subtype if boundary is not None: self.set_param('boundary', boundary) def make_related(self, boundary=None): self._make_multipart('related', ('alternative', 'mixed'), boundary) def make_alternative(self, boundary=None): self._make_multipart('alternative', ('mixed',), boundary) def make_mixed(self, boundary=None): self._make_multipart('mixed', (), boundary) def _add_multipart(self, _subtype, *args, _disp=None, **kw): if (self.get_content_maintype() != 'multipart' or self.get_content_subtype() != _subtype): getattr(self, 'make_' + _subtype)() part = type(self)(policy=self.policy) part.set_content(*args, **kw) if _disp and 'content-disposition' not in part: part['Content-Disposition'] = _disp self.attach(part) def add_related(self, *args, **kw): self._add_multipart('related', *args, _disp='inline', **kw) def add_alternative(self, *args, **kw): self._add_multipart('alternative', *args, **kw) def add_attachment(self, *args, **kw): self._add_multipart('mixed', *args, _disp='attachment', **kw) def clear(self): self._headers = [] self._payload = None def clear_content(self): self._headers = [(n, v) for n, v in self._headers if not n.lower().startswith('content-')] self._payload = None class EmailMessage(MIMEPart): def set_content(self, *args, **kw): super().set_content(*args, **kw) if 'MIME-Version' not in self: self['MIME-Version'] = '1.0'
[ "964697423@qq.com" ]
964697423@qq.com
2874996f6c897cca1dca1e9260b196d93d55bff3
bad1849b772933eb45775d1a3484d9b6e8354e3c
/opt/omd/versions/1.2.6p16.cre/share/check_mk/web/plugins/views/availability.py
6fe7ce261e3273e6bd9fd67fa738565758a7b7b8
[]
no_license
parvathikonda/My-Repos
620cbb52321a37e47d3e83d93777570f03913ef7
2b748c0c75f14634a0f1efa8db53ea1b5bf2e388
refs/heads/master
2020-12-24T18:50:51.483479
2016-04-23T05:16:49
2016-04-23T05:16:49
57,040,285
0
0
null
null
null
null
UTF-8
Python
false
false
78,399
py
#!/usr/bin/python # -*- encoding: utf-8; py-indent-offset: 4 -*- # +------------------------------------------------------------------+ # | ____ _ _ __ __ _ __ | # | / ___| |__ ___ ___| | __ | \/ | |/ / | # | | | | '_ \ / _ \/ __| |/ / | |\/| | ' / | # | | |___| | | | __/ (__| < | | | | . \ | # | \____|_| |_|\___|\___|_|\_\___|_| |_|_|\_\ | # | | # | Copyright Mathias Kettner 2014 mk@mathias-kettner.de | # +------------------------------------------------------------------+ # # This file is part of Check_MK. # The official homepage is at http://mathias-kettner.de/check_mk. # # check_mk is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation in version 2. check_mk is distributed # in the hope that it will be useful, but WITHOUT ANY WARRANTY; with- # out even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the GNU General Public License for more de- # ails. You should have received a copy of the GNU General Public # License along with GNU Make; see the file COPYING. If not, write # to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, # Boston, MA 02110-1301 USA. # Hints: # There are several modes for displaying data # 1. Availability table # 2. Timeline view with chronological events of one object # There are two types of data sources # a. Hosts/Services (identified by site, host and service) # b. BI aggregates (identified by aggr_groups and aggr_name) # The code flow for these four combinations is different # # 1a) availability of hosts/services # Here the logic of show_view is used for creating the # filter headers. But these are being reused for the statehist # table instead of the original hosts/services table! This is # done in get_availability_data(). # # - htdocs/views.py:show_view() # - plugins/views/availability.py:render_availability() # - plugins/views/availability.py:get_availability_data() # - plugins/views/availability.py:do_render_availability() # - plugins/views/availability.py:render_availability_table() # # 2a) timeline of hosts/services # It is much the same as for 1a), just that in get_availability_data() # an additional filter is being added for selecting just one host/serivce. # # - htdocs/views.py:show_view() # - plugins/views/availability.py:render_availability() # - plugins/views/availability.py:get_availability_data() # - plugins/views/availability.py:do_render_availability() # - plugins/views/availability.py:render_timeline() # # 1b) availability of bi aggregates # In order to use the filter logic of the aggr datasource, we # also start in show_view(). But this time we let the actual # rows being computed - just we make sure that only the two # columns aggr_name, aggr_group and aggr_tree are being fetched. The # other columns won't be displayed. We just need the correct # result set. With that we fork into render_bi_availability(). # This computes the historic states of the aggregate by using # data from hosts/services from state_hist. # # - htdocs/views.py:show_view() # - plugins/views/availability.py:render_bi_availability() # - plugins/views/availability.py:get_bi_timeline() # - plugins/views/availability.py:do_render_availability() # - plugins/views/availability.py:render_availability_table() # # 2b) timeline of bi aggregates # In this case we do not need any logic from the view, since # we just diplay one element - which is identified by aggr_group # and aggr_name. We immediately fork to page_timeline() # # - htdocs/views.py:show_view() (jumps immediately to page_timeline) # - htdocs/bi.py:page_timeline() # - plugins/views/availability.py:render_bi_availability() # - plugins/views/availability.py:do_render_availability() # - plugins/views/availability.py:render_timeline() import table from valuespec import * # Function building the availability view def render_availability(view, datasource, filterheaders, display_options, only_sites, limit): if handle_edit_annotations(): return timeline = not not html.var("timeline") if timeline: tl_site = html.var("timeline_site") tl_host = html.var("timeline_host") tl_service = html.var("timeline_service") tl_aggr = html.var("timeline_aggr") if tl_aggr: title = _("Timeline of") + " " + tl_aggr timeline = (tl_aggr, None, None) else: title = _("Timeline of") + " " + tl_host if tl_service: title += ", " + tl_service timeline = (tl_site, tl_host, tl_service) else: title = _("Availability: ") + view_title(view) html.add_status_icon("download_csv", _("Export as CSV"), html.makeuri([("output_format", "csv_export")])) if timeline and tl_aggr: what = "bi" else: what = "service" in datasource["infos"] and "service" or "host" avoptions = get_availability_options_from_url(what) range, range_title = avoptions["range"] title += " - " + range_title if html.output_format == "csv_export": do_csv = True av_output_csv_mimetype(title) else: do_csv = False if 'H' in display_options: html.body_start(title, stylesheets=["pages","views","status"], force=True) if 'T' in display_options: html.top_heading(title) handle_delete_annotations() # Remove variables for editing annotations, otherwise they will make it into the uris html.del_all_vars("editanno_") html.del_all_vars("anno_") if html.var("filled_in") == "editanno": html.del_var("filled_in") if 'B' in display_options: html.begin_context_buttons() togglebutton("avoptions", html.has_user_errors(), "painteroptions", _("Configure details of the report")) html.context_button(_("Status View"), html.makeuri([("mode", "status")]), "status") if config.reporting_available(): html.context_button(_("Export as PDF"), html.makeuri([], filename="report_instant.py"), "report") if timeline: html.context_button(_("Availability"), html.makeuri([("timeline", "")]), "availability") history_url = history_url_of(tl_site, tl_host, tl_service, range[0], range[1]) if not tl_aggr: # No history for BI aggregate timeline html.context_button(_("History"), history_url, "history") html.end_context_buttons() if not do_csv: # Render the avoptions again to get the HTML code, because the HTML vars have changed # above (anno_ and editanno_ has been removed, which must not be part of the form avoptions = render_availability_options(what) if not html.has_user_errors(): if timeline and tl_aggr: if not html.has_var("aggr_group"): raise MKGeneralException("Missing GET variable <tt>aggr_group</tt>") aggr_group = html.var("aggr_group") tree = bi.get_bi_tree(aggr_group, tl_aggr) rows = [{ "aggr_tree" : tree , "aggr_group" : aggr_group}] else: rows = get_availability_data(datasource, filterheaders, range, only_sites, limit, timeline, timeline or avoptions["show_timeline"], avoptions) do_render_availability(rows, what, avoptions, timeline, "") if 'Z' in display_options: html.bottom_footer() if 'H' in display_options: html.body_end() def av_output_csv_mimetype(title): html.req.content_type = "text/csv; charset=UTF-8" filename = '%s-%s.csv' % (title, time.strftime('%Y-%m-%d_%H-%M-%S', time.localtime(time.time()))) if type(filename) == unicode: filename = filename.encode("utf-8") html.req.headers_out['Content-Disposition'] = 'Attachment; filename="%s"' % filename # Options for availability computation and rendering. These are four-tuple # with the columns: # 1. variable name # 2. show in single or double height box # 3. use this in reporting # 4. the valuespec def get_avoption_entries(what): if what == "bi": grouping_choices = [ ( None, _("Do not group") ), ( "host", _("By Aggregation Group") ), ] else: grouping_choices = [ ( None, _("Do not group") ), ( "host", _("By Host") ), ( "host_groups", _("By Host group") ), ( "service_groups", _("By Service group") ), ] return [ # Time range selection ( "rangespec", "double", False, Timerange( title = _("Time Range"), default_value = 'd0', ) ), # Labelling and Texts ( "labelling", "double", True, ListChoice( title = _("Labelling Options"), choices = [ ( "omit_headers", _("Do not display column headers")), ( "omit_host", _("Do not display the host name")), ( "use_display_name", _("Use alternative display name for services")), ( "omit_buttons", _("Do not display icons for history and timeline")), ( "display_timeline_legend", _("Display legend for timeline")), ] ) ), # How to deal with downtimes ( "downtimes", "double", True, Dictionary( title = _("Scheduled Downtimes"), columns = 2, elements = [ ( "include", DropdownChoice( choices = [ ( "honor", _("Honor scheduled downtimes") ), ( "ignore", _("Ignore scheduled downtimes") ), ( "exclude", _("Exclude scheduled downtimes" ) ), ], default_value = "honor", ) ), ( "exclude_ok", Checkbox(label = _("Treat phases of UP/OK as non-downtime")) ), ], optional_keys = False, ) ), # How to deal with downtimes, etc. ( "consider", "double", True, Dictionary( title = _("Status Classification"), columns = 2, elements = [ ( "flapping", Checkbox( label = _("Consider periods of flapping states"), default_value = True), ), ( "host_down", Checkbox( label = _("Consider times where the host is down"), default_value = True), ), ( "unmonitored", Checkbox( label = _("Include unmonitored time"), default_value = True), ), ], optional_keys = False, ), ), # Optionally group some states together ( "state_grouping", "double", True, Dictionary( title = _("Status Grouping"), columns = 2, elements = [ ( "warn", DropdownChoice( label = _("Treat Warning as: "), choices = [ ( "ok", _("OK") ), ( "warn", _("WARN") ), ( "crit", _("CRIT") ), ( "unknown", _("UNKNOWN") ), ], default_value = "warn", ), ), ( "unknown", DropdownChoice( label = _("Treat Unknown as: "), choices = [ ( "ok", _("OK") ), ( "warn", _("WARN") ), ( "crit", _("CRIT") ), ( "unknown", _("UNKNOWN") ), ], default_value = "unknown", ), ), ( "host_down", DropdownChoice( label = _("Treat Host Down as: "), choices = [ ( "ok", _("OK") ), ( "warn", _("WARN") ), ( "crit", _("CRIT") ), ( "unknown", _("UNKNOWN") ), ( "host_down", _("Host Down") ), ], default_value = "host_down", ), ), ], optional_keys = False, ), ), # Visual levels for the availability ( "av_levels", "double", False, Optional( Tuple( elements = [ Percentage(title = _("Warning below"), default_value = 99, display_format="%.3f", size=7), Percentage(title = _("Critical below"), default_value = 95, display_format="%.3f", size=7), ] ), title = _("Visual levels for the availability (OK percentage)"), ) ), # Show colummns for min, max, avg duration and count ( "outage_statistics", "double", True, Tuple( title = _("Outage statistics"), orientation = "horizontal", elements = [ ListChoice( title = _("Aggregations"), choices = [ ( "min", _("minimum duration" )), ( "max", _("maximum duration" )), ( "avg", _("average duration" )), ( "cnt", _("count" )), ] ), ListChoice( title = _("For these states:"), columns = 2, choices = [ ( "ok", _("OK/Up") ), ( "warn", _("Warn") ), ( "crit", _("Crit/Down") ), ( "unknown", _("Unknown/Unreach") ), ( "flapping", _("Flapping") ), ( "host_down", _("Host Down") ), ( "in_downtime", _("Downtime") ), ( "outof_notification_period", _("OO/Notif") ), ] ) ] ) ), # Omit all non-OK columns ( "av_mode", "single", True, Checkbox( title = _("Availability"), label = _("Just show the availability (i.e. OK/UP)"), ), ), # How to deal with the service periods ( "service_period", "single", True, DropdownChoice( title = _("Service Time"), choices = [ ( "honor", _("Base report only on service times") ), ( "ignore", _("Include both service and non-service times" ) ), ( "exclude", _("Base report only on non-service times" ) ), ], default_value = "honor", ) ), # How to deal with times out of the notification period ( "notification_period", "single", True, DropdownChoice( title = _("Notification Period"), choices = [ ( "honor", _("Distinguish times in and out of notification period") ), ( "exclude", _("Exclude times out of notification period" ) ), ( "ignore", _("Ignore notification period") ), ], default_value = "ignore", ) ), # Group by Host, Hostgroup or Servicegroup? ( "grouping", "single", True, DropdownChoice( title = _("Grouping"), choices = grouping_choices, default_value = None, ) ), # Format of numbers ( "dateformat", "single", True, DropdownChoice( title = _("Format time stamps as"), choices = [ ("yyyy-mm-dd hh:mm:ss", _("YYYY-MM-DD HH:MM:SS") ), ("epoch", _("Unix Timestamp (Epoch)") ), ], default_value = "yyyy-mm-dd hh:mm:ss", ) ), ( "timeformat", "single", True, DropdownChoice( title = _("Format time ranges as"), choices = [ ("percentage_0", _("Percentage - XX %") ), ("percentage_1", _("Percentage - XX.X %") ), ("percentage_2", _("Percentage - XX.XX %") ), ("percentage_3", _("Percentage - XX.XXX %") ), ("seconds", _("Seconds") ), ("minutes", _("Minutes") ), ("hours", _("Hours") ), ("hhmmss", _("HH:MM:SS") ), ], default_value = "percentage_2", ) ), # Short time intervals ( "short_intervals", "single", True, Integer( title = _("Short Time Intervals"), label = _("Ignore intervals shorter or equal"), minvalue = 0, unit = _("sec"), default_value = 0, ), ), # Merging ( "dont_merge", "single", True, Checkbox( title = _("Phase Merging"), label = _("Do not merge consecutive phases with equal state")), ), # Summary line ( "summary", "single", True, DropdownChoice( title = _("Summary line"), choices = [ ( None, _("Do not show a summary line") ), ( "sum", _("Display total sum (for % the average)") ), ( "average", _("Display average") ), ], default_value = "sum", ) ), # Timeline ( "show_timeline", "single", True, Checkbox( title = _("Timeline"), label = _("Show timeline of each object directly in table")), ), # Timelimit ( "timelimit", "single", False, Age( title = _("Query Time Limit"), help = _("Limit the execution time of the query, in order to " "avoid a hanging system."), unit = _("sec"), default_value = 30, ), ) ] # Get availability options without rendering the valuespecs def get_availability_options_from_url(what): html.plug() avoptions = render_availability_options(what) html.drain() html.unplug() return avoptions def get_default_avoptions(): return { "range" : (time.time() - 86400, time.time()), "rangespec" : "d0", "labelling" : [], "downtimes" : { "include" : "honor", "exclude_ok" : False, }, "consider" : { "flapping" : True, "host_down" : True, "unmonitored" : True, }, "state_grouping" : { "warn" : "warn", "unknown" : "unknown", "host_down" : "host_down", }, "av_levels" : None, "outage_statistics" : ([],[]), "av_mode" : False, "service_period" : "honor", "notification_period" : "ignore", "grouping" : None, "dateformat" : "yyyy-mm-dd hh:mm:ss", "timeformat" : "percentage_2", "short_intervals" : 0, "dont_merge" : False, "summary" : "sum", "show_timeline" : False, "timelimit" : 30, } def render_availability_options(what): if html.var("_reset") and html.check_transaction(): config.save_user_file("avoptions", {}) for varname in html.vars.keys(): if varname.startswith("avo_"): html.del_var(varname) html.del_var("avoptions") avoptions = get_default_avoptions() # Users of older versions might not have all keys set. The following # trick will merge their options with our default options. avoptions.update(config.load_user_file("avoptions", {})) is_open = False html.begin_form("avoptions") html.hidden_field("avoptions", "set") avoption_entries = get_avoption_entries(what) if html.var("avoptions") == "set": for name, height, show_in_reporting, vs in avoption_entries: try: avoptions[name] = vs.from_html_vars("avo_" + name) except MKUserError, e: html.add_user_error(e.varname, e) is_open = True range_vs = None for name, height, show_in_reporting, vs in avoption_entries: if name == 'rangespec': range_vs = vs try: range, range_title = range_vs.compute_range(avoptions["rangespec"]) avoptions["range"] = range, range_title except MKUserError, e: html.add_user_error(e.varname, e) if html.has_user_errors(): html.show_user_errors() html.write('<div class="view_form" id="avoptions" %s>' % (not is_open and 'style="display: none"' or '') ) html.write("<table border=0 cellspacing=0 cellpadding=0 class=filterform><tr><td>") for name, height, show_in_reporting, vs in avoption_entries: html.write('<div class="floatfilter %s %s">' % (height, name)) html.write('<div class=legend>%s</div>' % vs.title()) html.write('<div class=content>') vs.render_input("avo_" + name, avoptions.get(name)) html.write("</div>") html.write("</div>") html.write("</td></tr>") html.write("<tr><td>") html.button("apply", _("Apply"), "submit") html.button("_reset", _("Reset to defaults"), "submit") html.write("</td></tr></table>") html.write("</div>") html.hidden_fields() html.end_form() if html.form_submitted(): config.save_user_file("avoptions", avoptions) # Convert outage-options from service to host states = avoptions["outage_statistics"][1] for os, oh in [ ("ok","up"), ("crit","down"), ("unknown", "unreach") ]: if os in states: states.append(oh) return avoptions def get_availability_data(datasource, filterheaders, range, only_sites, limit, single_object, include_output, avoptions): has_service = "service" in datasource["infos"] av_filter = "Filter: time >= %d\nFilter: time < %d\n" % range if single_object: tl_site, tl_host, tl_service = single_object av_filter += "Filter: host_name = %s\nFilter: service_description = %s\n" % ( tl_host, tl_service) only_sites = [ tl_site ] elif has_service: av_filter += "Filter: service_description !=\n" else: av_filter += "Filter: service_description =\n" query = "GET statehist\n" + av_filter query += "Timelimit: %d\n" % avoptions["timelimit"] # Add Columns needed for object identification columns = [ "host_name", "service_description" ] # Columns for availability columns += [ "duration", "from", "until", "state", "host_down", "in_downtime", "in_host_downtime", "in_notification_period", "in_service_period", "is_flapping", ] if include_output: columns.append("log_output") if "use_display_name" in avoptions["labelling"]: columns.append("service_display_name") # If we group by host/service group then make sure that that information is available if avoptions["grouping"] not in [ None, "host" ]: columns.append(avoptions["grouping"]) add_columns = datasource.get("add_columns", []) rows = do_query_data(query, columns, add_columns, None, filterheaders, only_sites, limit = None) return rows host_availability_columns = [ ( "up", "state0", _("UP"), None ), ( "down", "state2", _("DOWN"), None ), ( "unreach", "state3", _("UNREACH"), None ), ( "flapping", "flapping", _("Flapping"), None ), ( "in_downtime", "downtime", _("Downtime"), _("The host was in a scheduled downtime") ), ( "outof_notification_period", "", _("OO/Notif"), _("Out of Notification Period") ), ( "outof_service_period", "ooservice", _("OO/Service"), _("Out of Service Period") ), ( "unmonitored", "unmonitored", _("N/A"), _("During this time period no monitoring data is available") ), ] service_availability_columns = [ ( "ok", "state0", _("OK"), None ), ( "warn", "state1", _("WARN"), None ), ( "crit", "state2", _("CRIT"), None ), ( "unknown", "state3", _("UNKNOWN"), None ), ( "flapping", "flapping", _("Flapping"), None ), ( "host_down", "hostdown", _("H.Down"), _("The host was down") ), ( "in_downtime", "downtime", _("Downtime"), _("The host or service was in a scheduled downtime") ), ( "outof_notification_period", "", _("OO/Notif"), _("Out of Notification Period") ), ( "outof_service_period", "ooservice", _("OO/Service"), _("Out of Service Period") ), ( "unmonitored", "unmonitored", _("N/A"), _("During this time period no monitoring data is available") ), ] bi_availability_columns = [ ( "ok", "state0", _("OK"), None ), ( "warn", "state1", _("WARN"), None ), ( "crit", "state2", _("CRIT"), None ), ( "unknown", "state3", _("UNKNOWN"), None ), ( "in_downtime", "downtime", _("Downtime"), _("The aggregate was in a scheduled downtime") ), ( "unmonitored", "unmonitored", _("N/A"), _("During this time period no monitoring data is available") ), ] # Fetch = true: return av table as Python data, do render nothing def do_render_availability(rows, what, avoptions, timeline, timewarpcode, fetch=False): # Sort by site/host and service, while keeping native order by_host = {} for row in rows: site_host = row["site"], row["host_name"] service = row["service_description"] by_host.setdefault(site_host, {}) by_host[site_host].setdefault(service, []).append(row) # Load annotations annotations = load_annotations() # Now compute availability table. We have the following possible states: # 1. "unmonitored" # 2. "monitored" # 2.1 "outof_notification_period" # 2.2 "in_notification_period" # 2.2.1 "in_downtime" (also in_host_downtime) # 2.2.2 "not_in_downtime" # 2.2.2.1 "host_down" # 2.2.2.2 "host not down" # 2.2.2.2.1 "ok" # 2.2.2.2.2 "warn" # 2.2.2.2.3 "crit" # 2.2.2.2.4 "unknown" availability = [] os_aggrs, os_states = avoptions.get("outage_statistics", ([],[])) need_statistics = os_aggrs and os_states show_timeline = avoptions["show_timeline"] or timeline grouping = avoptions["grouping"] timeline_rows = [] # Need this as a global variable if just one service is affected total_duration = 0 considered_duration = 0 # Note: in case of timeline, we have data from exacly one host/service for site_host, site_host_entry in by_host.iteritems(): for service, service_entry in site_host_entry.iteritems(): if grouping == "host": group_ids = [site_host] elif grouping: group_ids = set([]) else: group_ids = None # First compute timeline timeline_rows = [] total_duration = 0 considered_duration = 0 for span in service_entry: # Information about host/service groups are in the actual entries if grouping and grouping != "host" and what != "bi": group_ids.update(span[grouping]) # List of host/service groups display_name = span.get("service_display_name", service) state = span["state"] consider = True if state == -1: s = "unmonitored" if not avoptions["consider"]["unmonitored"]: consider = False elif avoptions["service_period"] != "ignore" and \ (( span["in_service_period"] and avoptions["service_period"] != "honor" ) or \ ( not span["in_service_period"] and avoptions["service_period"] == "honor" )): s = "outof_service_period" consider = False elif span["in_notification_period"] == 0 and avoptions["notification_period"] == "exclude": consider = False elif span["in_notification_period"] == 0 and avoptions["notification_period"] == "honor": s = "outof_notification_period" elif (span["in_downtime"] or span["in_host_downtime"]) and not \ (avoptions["downtimes"]["exclude_ok"] and state == 0) and not \ avoptions["downtimes"]["include"] == "ignore": if avoptions["downtimes"]["include"] == "exclude": consider = False else: s = "in_downtime" elif what != "host" and span["host_down"] and avoptions["consider"]["host_down"]: s = "host_down" elif span["is_flapping"] and avoptions["consider"]["flapping"]: s = "flapping" else: if what in [ "service", "bi" ]: s = { 0: "ok", 1:"warn", 2:"crit", 3:"unknown" }.get(state, "unmonitored") else: s = { 0: "up", 1:"down", 2:"unreach" }.get(state, "unmonitored") if s == "warn": s = avoptions["state_grouping"]["warn"] elif s == "unknown": s = avoptions["state_grouping"]["unknown"] elif s == "host_down": s = avoptions["state_grouping"]["host_down"] total_duration += span["duration"] if consider: timeline_rows.append((span, s)) considered_duration += span["duration"] # Now merge consecutive rows with identical state if not avoptions["dont_merge"]: merge_timeline(timeline_rows) # Melt down short intervals if avoptions["short_intervals"]: melt_short_intervals(timeline_rows, avoptions["short_intervals"], avoptions["dont_merge"]) # Condense into availability states = {} statistics = {} for span, s in timeline_rows: states.setdefault(s, 0) duration = span["duration"] states[s] += duration if need_statistics: entry = statistics.get(s) if entry: entry[0] += 1 entry[1] = min(entry[1], duration) entry[2] = max(entry[2], duration) else: statistics[s] = [ 1, duration, duration ] # count, min, max if not show_timeline: timeline_rows = None availability.append([site_host[0], site_host[1], service, display_name, states, considered_duration, total_duration, statistics, timeline_rows, group_ids]) # Prepare number format function range, range_title = avoptions["range"] from_time, until_time = range duration = until_time - from_time render_number = render_number_function(avoptions) fetch_data = {} if timeline: if not fetch: # Timeline does not support fetch render_timeline(timeline_rows, from_time, until_time, total_duration, timeline, range_title, render_number, what, timewarpcode, avoptions, False, style="standalone") else: fetch_data["table"] = render_availability_table(availability, from_time, until_time, range_title, what, avoptions, render_number, fetch) if not fetch: render_annotations(annotations, from_time, until_time, by_host, what, avoptions, omit_service = timeline) return fetch_data # Creates a function for rendering time values according to # the avoptions of the report. def render_number_function(avoptions): timeformat = avoptions["timeformat"] if timeformat.startswith("percentage_"): def render_number(n, d): if not d: return _("n/a") else: return ("%." + timeformat[11:] + "f%%") % ( float(n) / float(d) * 100.0) elif timeformat == "seconds": def render_number(n, d): return "%d s" % n elif timeformat == "minutes": def render_number(n, d): return "%d min" % (n / 60) elif timeformat == "hours": def render_number(n, d): return "%d h" % (n / 3600) else: def render_number(n, d): minn, sec = divmod(n, 60) hours, minn = divmod(minn, 60) return "%02d:%02d:%02d" % (hours, minn, sec) return render_number # style is either inline (just the timeline bar) or "standalone" (the complete page) def render_timeline(timeline_rows, from_time, until_time, considered_duration, timeline, range_title, render_number, what, timewarpcode, avoptions, fetch, style): if not timeline_rows: if fetch: return [] else: html.write('<div class=info>%s</div>' % _("No information available")) return # Timeformat: show date only if the displayed time range spans over # more than one day. format = "%H:%M:%S" if time.localtime(from_time)[:3] != time.localtime(until_time-1)[:3]: format = "%Y-%m-%d " + format def render_date(ts): if avoptions["dateformat"] == "epoch": return str(int(ts)) else: return time.strftime(format, time.localtime(ts)) if type(timeline) == tuple: tl_site, tl_host, tl_service = timeline if tl_service: availability_columns = service_availability_columns else: availability_columns = host_availability_columns else: availability_columns = bi_availability_columns # Render graphical representation # Make sure that each cell is visible, if possible min_percentage = min(100.0 / len(timeline_rows), style == "inline" and 0.0 or 0.5) rest_percentage = 100 - len(timeline_rows) * min_percentage if not fetch: html.write('<div class="timelinerange %s">' % style) if style == "standalone": html.write('<div class=from>%s</div><div class=until>%s</div></div>' % ( render_date(from_time), render_date(until_time))) if not fetch: html.write('<table class="timeline %s">' % style) html.write('<tr class=timeline>') chaos_begin = None chaos_end = None chaos_count = 0 chaos_width = 0 def output_chaos_period(chaos_begin, chaos_end, chaos_count, chaos_width): if fetch: html.write("|chaos:%s" % chaos_width) else: title = _("%d chaotic state changes from %s until %s (%s)") % ( chaos_count, render_date(chaos_begin), render_date(chaos_end), render_number(chaos_end - chaos_begin, considered_duration)) html.write('<td style="width: %.3f%%" title="%s" class="chaos"></td>' % ( max(0.2, chaos_width), html.attrencode(title))) for row_nr, (row, state_id) in enumerate(timeline_rows): for sid, css, sname, help in availability_columns: if sid == state_id: title = _("From %s until %s (%s) %s") % ( render_date(row["from"]), render_date(row["until"]), render_number(row["duration"], considered_duration), help and help or sname) if "log_output" in row and row["log_output"]: title += " - " + row["log_output"] width = rest_percentage * row["duration"] / considered_duration # If the width is very small then we group several phases into # one single "chaos period". if style == "inline" and width < 0.05: if not chaos_begin: chaos_begin = row["from"] chaos_width += width chaos_count += 1 chaos_end = row["until"] continue # Chaos period has ended? One not-small phase: elif chaos_begin: # Only output chaos phases with a certain length if chaos_count >= 4: output_chaos_period(chaos_begin, chaos_end, chaos_count, chaos_width) chaos_begin = None chaos_count = 0 chaos_width = 0 width += min_percentage if fetch: html.write("|%s:%s" % (css, width)) else: html.write('<td onmouseover="timeline_hover(%d, 1);" onmouseout="timeline_hover(%d, 0);" ' 'style="width: %.3f%%" title="%s" class="%s"></td>' % ( row_nr, row_nr, width, html.attrencode(title), css)) if chaos_count > 1: output_chaos_period(chaos_begin, chaos_end, chaos_count, chaos_width) if not fetch: html.write('</tr></table>') if style == "inline": if not fetch: render_timeline_choords(from_time, until_time, width=500) return # Render timewarped BI aggregate (might be empty) html.write(timewarpcode) # Render Table table.begin("av_timeline", "", css="timelineevents") for row_nr, (row, state_id) in enumerate(timeline_rows): table.row() table.cell(_("Links"), css="buttons") if what == "bi": url = html.makeuri([("timewarp", str(int(row["from"])))]) if html.var("timewarp") and int(html.var("timewarp")) == int(row["from"]): html.disabled_icon_button("timewarp_off") else: html.icon_button(url, _("Time warp - show BI aggregate during this time period"), "timewarp") else: url = html.makeuri([("anno_site", tl_site), ("anno_host", tl_host), ("anno_service", tl_service), ("anno_from", row["from"]), ("anno_until", row["until"])]) html.icon_button(url, _("Create an annotation for this period"), "annotation") table.cell(_("From"), render_date(row["from"]), css="nobr narrow") table.cell(_("Until"), render_date(row["until"]), css="nobr narrow") table.cell(_("Duration"), render_number(row["duration"], considered_duration), css="narrow number") for sid, css, sname, help in availability_columns: if sid == state_id: table.cell(_("State"), sname, css=css + " state narrow") break else: table.cell(_("State"), "(%s/%s)" % (sid,sname)) table.cell(_("Last Known Plugin Output"), row["log_output"]) table.end() # Legend for timeline if "display_timeline_legend" in avoptions["labelling"]: render_timeline_legend(what) def render_timeline_choords(from_time, until_time, width): duration = until_time - from_time def render_choord(t, title): pixel = width * (t - from_time) / float(duration) html.write('<div title="%s" class="timelinechoord" style="left: %dpx"></div>' % (title, pixel)) # Now comes the difficult part: decide automatically, whether to use # hours, days, weeks or months. Days and weeks needs to take local time # into account. Months are irregular. hours = duration / 3600 if hours < 12: scale = "hours" elif hours < 24: scale = "2hours" elif hours < 48: scale = "6hours" elif hours < 24 * 14: scale = "days" elif hours < 24 * 60: scale = "weeks" else: scale = "months" broken = list(time.localtime(from_time)) while True: next_choord, title = find_next_choord(broken, scale) if next_choord >= until_time: break render_choord(next_choord, title) # Elements in broken: # 0: year # 1: month (1 = January) # 2: day of month # 3: hour # 4: minute # 5: second # 6: day of week (0 = monday) # 7: day of year # 8: isdst (0 or 1) def find_next_choord(broken, scale): broken[4:6] = [0, 0] # always set min/sec to 00:00 old_dst = broken[8] if scale == "hours": epoch = time.mktime(broken) epoch += 3600 broken[:] = list(time.localtime(epoch)) title = time.strftime("%H:%M", broken) elif scale == "2hours": broken[3] = broken[3] / 2 * 2 epoch = time.mktime(broken) epoch += 2 * 3600 broken[:] = list(time.localtime(epoch)) title = valuespec.weekdays[broken[6]] + time.strftime(" %H:%M", broken) elif scale == "6hours": broken[3] = broken[3] / 6 * 6 epoch = time.mktime(broken) epoch += 6 * 3600 broken[:] = list(time.localtime(epoch)) title = valuespec.weekdays[broken[6]] + time.strftime(" %H:%M", broken) elif scale == "days": broken[3] = 0 epoch = time.mktime(broken) epoch += 24 * 3600 broken[:] = list(time.localtime(epoch)) title = valuespec.weekdays[broken[6]] + time.strftime(", %d.%m. 00:00", broken) elif scale == "weeks": broken[3] = 0 at_00 = int(time.mktime(broken)) at_monday = at_00 - 86400 * broken[6] epoch = at_monday + 7 * 86400 broken[:] = list(time.localtime(epoch)) title = valuespec.weekdays[broken[6]] + time.strftime(", %d.%m.", broken) else: # scale == "months": broken[3] = 0 broken[2] = 0 broken[1] += 1 if broken[1] > 12: broken[1] = 1 broken[0] += 1 epoch = time.mktime(broken) title = "%s %d" % (valuespec.month_names[broken[1]-1], broken[0]) dst = broken[8] if old_dst == 1 and dst == 0: epoch += 3600 elif old_dst == 0 and dst == 1: epoch -= 3600 return epoch, title # Merge consecutive rows with same state def merge_timeline(entries): n = 1 while n < len(entries): if entries[n][1] == entries[n-1][1]: entries[n-1][0]["duration"] += entries[n][0]["duration"] entries[n-1][0]["until"] = entries[n][0]["until"] del entries[n] else: n += 1 def melt_short_intervals(entries, duration, dont_merge): n = 1 need_merge = False while n < len(entries) - 1: if entries[n][0]["duration"] <= duration and \ entries[n-1][1] == entries[n+1][1]: entries[n] = (entries[n][0], entries[n-1][1]) need_merge = True n += 1 # Due to melting, we need to merge again if need_merge and not dont_merge: merge_timeline(entries) melt_short_intervals(entries, duration, dont_merge) def history_url_of(site, host, service, from_time, until_time): history_url_vars = [ ("site", site), ("host", host), ("logtime_from_range", "unix"), # absolute timestamp ("logtime_until_range", "unix"), # absolute timestamp ("logtime_from", str(int(from_time))), ("logtime_until", str(int(until_time)))] if service: history_url_vars += [ ("service", service), ("view_name", "svcevents"), ] else: history_url_vars += [ ("view_name", "hostevents"), ] return "view.py?" + html.urlencode_vars(history_url_vars) statistics_headers = { "min" : _("Shortest"), "max" : _("Longest"), "avg" : _("Average"), "cnt" : _("Count"), } def render_availability_table(availability, from_time, until_time, range_title, what, avoptions, render_number, fetch): do_csv = html.output_format == "csv_export" no_html = do_csv or fetch if not availability: if not no_html: html.message(_("No matching hosts/services.")) return [] # No objects grouping = avoptions["grouping"] fetch_data = [] if not grouping: fetch_data.append((None, render_availability_group(range_title, range_title, None, availability, from_time, until_time, what, avoptions, render_number, fetch))) else: # Grouping is one of host/hostgroup/servicegroup # 1. Get complete list of all groups all_group_ids = get_av_groups(availability, grouping) # 2. Compute Names for the groups and sort according to these names if grouping != "host": group_titles = dict(visuals.all_groups(grouping[:-7])) titled_groups = [] for group_id in all_group_ids: if grouping == "host": titled_groups.append((group_id[1], group_id)) # omit the site name else: if group_id == (): title = _("Not contained in any group") else: title = group_titles.get(group_id, group_id) titled_groups.append((title, group_id)) ## ACHTUNG titled_groups.sort(cmp = lambda a,b: cmp(a[1], b[1])) # 3. Loop over all groups and render them for title, group_id in titled_groups: fetch_data.append((title, render_availability_group(title, range_title, group_id, availability, from_time, until_time, what, avoptions, render_number, fetch) )) # Legend for Availability levels av_levels = avoptions["av_levels"] if av_levels and not no_html: warn, crit = av_levels html.write('<div class="avlegend levels">') html.write('<h3>%s</h3>' % _("Availability levels")) html.write('<div class="state state0">%s</div><div class=level>&ge; %.3f%%</div>' % (_("OK"), warn)) html.write('<div class="state state1">%s</div><div class=level>&ge; %.3f%%</div>' % (_("WARN"), crit)) html.write('<div class="state state2">%s</div><div class=level>&lt; %.3f%%</div>' % (_("CRIT"), crit)) html.write('</div>') # Legend for timeline if "display_timeline_legend" in avoptions["labelling"] and avoptions["show_timeline"] and not no_html: render_timeline_legend(what) return fetch_data def render_timeline_legend(what): html.write('<div class="avlegend timeline">') html.write('<h3>%s</h3>' % _('Timeline colors')) html.write('<div class="state state0">%s</div>' % (what == "host" and _("UP") or _("OK"))) if what != "host": html.write('<div class="state state1">%s</div>' % _("WARN")) html.write('<div class="state state2">%s</div>' % (what == "host" and _("DOWN") or _("CRIT"))) html.write('<div class="state state3">%s</div>' % (what == "host" and _("UNREACH") or _("UNKNOWN"))) html.write('<div class="state flapping">%s</div>' % _("Flapping")) if what != "host": html.write('<div class="state hostdown">%s</div>' % _("H.Down")) html.write('<div class="state downtime">%s</div>' % _("Downtime")) html.write('<div class="state ooservice">%s</div>' % _("OO/Service")) html.write('<div class="state unmonitored">%s</div>' % _("unmonitored")) html.write('</div>') def get_av_groups(availability, grouping): all_group_ids = set([]) for site, host, service, display_name, states, considered_duration, total_duration, statistics, timeline_rows, group_ids in availability: all_group_ids.update(group_ids) if len(group_ids) == 0: all_group_ids.add(()) # null-tuple denotes ungrouped objects return all_group_ids # When grouping is enabled, this function is called once for each group def render_availability_group(group_title, range_title, group_id, availability, from_time, until_time, what, avoptions, render_number, fetch): # Filter out groups that we want to show this time group_availability = [] for entry in availability: group_ids = entry[-1] if group_id == () and group_ids: continue # This is not an angrouped object elif group_id and group_id not in group_ids: continue # Not this group group_availability.append(entry) # Some columns might be unneeded due to state treatment options sg = avoptions["state_grouping"] state_groups = [ sg["warn"], sg["unknown"], sg["host_down"] ] show_timeline = avoptions["show_timeline"] labelling = avoptions["labelling"] av_levels = avoptions["av_levels"] # Helper function, needed in row and in summary line def cell_active(sid): if sid not in [ "up", "ok" ] and avoptions["av_mode"]: return False if sid == "outof_notification_period" and avoptions["notification_period"] != "honor": return False elif sid == "outof_service_period": # Never show this as a column return False elif sid == "in_downtime" and avoptions["downtimes"]["include"] != "honor": return False elif sid == "unmonitored" and not avoptions["consider"]["unmonitored"]: return False elif sid == "flapping" and not avoptions["consider"]["flapping"]: return False elif sid == "host_down" and not avoptions["consider"]["host_down"]: return False elif sid in [ "warn", "unknown", "host_down" ] and sid not in state_groups: return False else: return True # Render the stuff do_csv = html.output_format == "csv_export" no_html = do_csv or fetch # Sort according to host and service. First after site, then # host (natural sort), then service def cmp_av_entry(a, b): return cmp(a[0], b[0]) or \ cmp(num_split(a[1]) + (a[1],), num_split(b[1]) + (b[1],)) or \ cmp(cmp_service_name_equiv(a[2]), cmp_service_name_equiv(b[2])) or \ cmp(a[2], b[2]) group_availability.sort(cmp = cmp_av_entry) show_summary = avoptions.get("summary") summary = {} summary_counts = {} table.begin("av_items", group_title, css="availability", searchable = False, limit = None, output_format = do_csv and "csv" or (fetch and "fetch" or "html"), omit_headers = "omit_headers" in avoptions["labelling"]) for site, host, service, display_name, states, considered_duration, total_duration, statistics, timeline_rows, group_ids in group_availability: table.row() if what != "bi": timeline_url = html.makeuri([ ("timeline", "yes"), ("timeline_site", site), ("timeline_host", host), ("timeline_service", service)]) else: timeline_url = html.makeuri([("timeline", "yes"), ("av_aggr_name", service), ("av_aggr_group", host)]) if not "omit_buttons" in labelling and not no_html: table.cell("", css="buttons") if what != "bi": history_url = history_url_of(site, host, service, from_time, until_time) html.icon_button(history_url, _("Event History"), "history") html.icon_button(timeline_url, _("Timeline"), "timeline") else: html.icon_button(timeline_url, _("Timeline"), "timeline") host_url = "view.py?" + html.urlencode_vars([("view_name", "hoststatus"), ("site", site), ("host", host)]) if what == "bi": table.cell(_("Aggregate")) if no_html: html.write(service) else: bi_url = "view.py?" + html.urlencode_vars([("view_name", "aggr_single"), ("aggr_group", host), ("aggr_name", service)]) html.write('<a href="%s">%s</a>' % (bi_url, service)) availability_columns = bi_availability_columns else: if not "omit_host" in labelling: table.cell(_("Host")) if no_html: html.write(host) else: html.write('<a href="%s">%s</a>' % (host_url, host)) if what == "service": if "use_display_name" in labelling: service_name = display_name else: service_name = service table.cell(_("Service")) if no_html: html.write(service_name) else: service_url = "view.py?" + html.urlencode_vars([("view_name", "service"), ("site", site), ("host", host), ("service", service)]) html.write('<a href="%s">%s</a>' % (service_url, service_name)) availability_columns = service_availability_columns else: availability_columns = host_availability_columns if show_timeline: table.cell(_("Timeline"), css="timeline") if not no_html: html.write('<a href="%s">' % timeline_url) render_timeline(timeline_rows, from_time, until_time, total_duration, (site, host, service), range_title, render_number, what, "", avoptions, fetch, style="inline") if not no_html: html.write('</a>') for sid, css, sname, help in availability_columns: if not cell_active(sid): continue if avoptions["av_mode"]: sname = _("Avail.") number = states.get(sid, 0) if not number: css = "unused" elif show_summary: summary.setdefault(sid, 0.0) if avoptions["timeformat"].startswith("percentage"): if considered_duration > 0: summary[sid] += float(number) / considered_duration else: summary[sid] += number # Apply visual availability levels (render OK in yellow/red, if too low) if number and av_levels and sid in [ "ok", "up" ]: css = "state%d" % check_av_levels(number, av_levels, considered_duration) table.cell(sname, render_number(number, considered_duration), css="narrow number " + css, help=help) # Statistics? x_cnt, x_min, x_max = statistics.get(sid, (None, None, None)) os_aggrs, os_states = avoptions.get("outage_statistics", ([],[])) if sid in os_states: for aggr in os_aggrs: title = statistics_headers[aggr] if x_cnt != None: if aggr == "avg": r = render_number(number / x_cnt, considered_duration) elif aggr == "min": r = render_number(x_min, considered_duration) elif aggr == "max": r = render_number(x_max, considered_duration) else: r = str(x_cnt) summary_counts.setdefault(sid, 0) summary_counts[sid] += x_cnt table.cell(title, r, css="number stats " + css) else: table.cell(title, "") if show_summary: table.row(css="summary") if not "omit_buttons" in labelling and not no_html: table.cell("") if not "omit_host" in labelling or what == "bi": table.cell("", _("Summary"), css="heading") if what == "service": table.cell("", "") if show_timeline and not do_csv: table.cell("") for sid, css, sname, help in availability_columns: if not cell_active(sid): continue number = summary.get(sid, 0) if show_summary == "average" or avoptions["timeformat"].startswith("percentage"): number /= len(group_availability) if avoptions["timeformat"].startswith("percentage"): number *= considered_duration if not number: css = "unused" if number and av_levels and sid in [ "ok", "up" ]: css = "state%d" % check_av_levels(number, av_levels, considered_duration) table.cell(sname, render_number(number, considered_duration), css="heading number " + css, help=help) os_aggrs, os_states = avoptions.get("outage_statistics", ([],[])) if sid in os_states: for aggr in os_aggrs: title = statistics_headers[aggr] if aggr == "cnt": count = summary_counts.get(sid, 0) if show_summary == "average": count = float(count) / len(group_availability) text = "%.2f" % count else: text = str(count) table.cell(sname, text, css="number stats " + css, help=help) else: table.cell(title, "") return table.end() # returns Table data if fetch == True def check_av_levels(number, av_levels, considered_duration): if considered_duration == 0: return 0 perc = 100 * float(number) / float(considered_duration) warn, crit = av_levels if perc < crit: return 2 elif perc < warn: return 1 else: return 0 def compute_bi_availability(avoptions, aggr_rows): rows = [] for aggr_row in aggr_rows: these_rows, tree_state = get_bi_timeline(aggr_row["aggr_tree"], aggr_row["aggr_group"], avoptions, False) rows += these_rows return do_render_availability(rows, "bi", avoptions, timeline=False, timewarpcode=None, fetch=True) # Render availability of a BI aggregate. This is currently # no view and does not support display options def render_bi_availability(title, aggr_rows): html.add_status_icon("download_csv", _("Export as CSV"), html.makeuri([("output_format", "csv_export")])) timeline = html.var("timeline") if timeline: title = _("Timeline of ") + title else: title = _("Availability of ") + title if html.output_format != "csv_export": html.body_start(title, stylesheets=["pages","views","status", "bi"], javascripts=['bi']) html.top_heading(title) html.begin_context_buttons() togglebutton("avoptions", False, "painteroptions", _("Configure details of the report")) html.context_button(_("Status View"), html.makeuri([("mode", "status")]), "status") if timeline: html.context_button(_("Availability"), html.makeuri([("timeline", "")]), "availability") elif len(aggr_rows) == 1: aggr_name = aggr_rows[0]["aggr_name"] aggr_group = aggr_rows[0]["aggr_group"] timeline_url = html.makeuri([("timeline", "1"), ("av_aggr_name", aggr_name), ("av_aggr_group", aggr_group)]) html.context_button(_("Timeline"), timeline_url, "timeline") html.end_context_buttons() html.plug() avoptions = render_availability_options("bi") range, range_title = avoptions["range"] avoptions_html = html.drain() html.unplug() if html.output_format == "csv_export": av_output_csv_mimetype(title) else: html.write(avoptions_html) timewarpcode = "" if not html.has_user_errors(): rows = [] for aggr_row in aggr_rows: tree = aggr_row["aggr_tree"] reqhosts = tree["reqhosts"] try: timewarp = int(html.var("timewarp")) except: timewarp = None these_rows, tree_state = get_bi_timeline(tree, aggr_row["aggr_group"], avoptions, timewarp) rows += these_rows if timewarp and tree_state: state, assumed_state, node, subtrees = tree_state eff_state = state if assumed_state != None: eff_state = assumed_state row = { "aggr_tree" : tree, "aggr_treestate" : tree_state, "aggr_state" : state, # state disregarding assumptions "aggr_assumed_state" : assumed_state, # is None, if there are no assumptions "aggr_effective_state" : eff_state, # is assumed_state, if there are assumptions, else real state "aggr_name" : node["title"], "aggr_output" : eff_state["output"], "aggr_hosts" : node["reqhosts"], "aggr_function" : node["func"], "aggr_group" : html.var("aggr_group"), } tdclass, htmlcode = bi.render_tree_foldable(row, boxes=False, omit_root=False, expansion_level=bi.load_ex_level(), only_problems=False, lazy=False) html.plug() html.write('<h3>') # render icons for back and forth if int(these_rows[0]["from"]) == timewarp: html.disabled_icon_button("back_off") have_forth = False previous_row = None for row in these_rows: if int(row["from"]) == timewarp and previous_row != None: html.icon_button(html.makeuri([("timewarp", str(int(previous_row["from"])))]), _("Jump one phase back"), "back") elif previous_row and int(previous_row["from"]) == timewarp and row != these_rows[-1]: html.icon_button(html.makeuri([("timewarp", str(int(row["from"])))]), _("Jump one phase forth"), "forth") have_forth = True previous_row = row if not have_forth: html.disabled_icon_button("forth_off") html.write(" &nbsp; ") html.icon_button(html.makeuri([("timewarp", "")]), _("Close Timewarp"), "closetimewarp") timewarpcode = html.drain() html.unplug() timewarpcode += '%s %s</h3>' % (_("Timewarp to "), time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(timewarp))) + \ '<table class="data table timewarp"><tr class="data odd0"><td class="%s">' % tdclass + \ htmlcode + \ '</td></tr></table>' else: timewarpcode = "" do_render_availability(rows, "bi", avoptions, timeline, timewarpcode) if html.output_format != "csv_export": html.bottom_footer() html.body_end() def get_bi_timeline(tree, aggr_group, avoptions, timewarp): range, range_title = avoptions["range"] # Get state history of all hosts and services contained in the tree. # In order to simplify the query, we always fetch the information for # all hosts of the aggregates. only_sites = set([]) hosts = [] for site, host in tree["reqhosts"]: only_sites.add(site) hosts.append(host) columns = [ "host_name", "service_description", "from", "log_output", "state", "in_downtime" ] html.live.set_only_sites(list(only_sites)) html.live.set_prepend_site(True) html.live.set_limit() # removes limit query = "GET statehist\n" + \ "Columns: " + " ".join(columns) + "\n" +\ "Filter: time >= %d\nFilter: time < %d\n" % range # Create a specific filter. We really only want the services and hosts # of the aggregation in question. That prevents status changes # irrelevant services from introducing new phases. by_host = {} for site, host, service in bi.find_all_leaves(tree): by_host.setdefault(host, set([])).add(service) for host, services in by_host.items(): query += "Filter: host_name = %s\n" % host query += "Filter: service_description = \n" for service in services: query += "Filter: service_description = %s\n" % service query += "Or: %d\nAnd: 2\n" % (len(services) + 1) if len(hosts) != 1: query += "Or: %d\n" % len(hosts) data = html.live.query(query) if not data: return [], None # raise MKGeneralException(_("No historical data available for this aggregation. Query was: <pre>%s</pre>") % query) html.live.set_prepend_site(False) html.live.set_only_sites(None) columns = ["site"] + columns rows = [ dict(zip(columns, row)) for row in data ] # Now comes the tricky part: recompute the state of the aggregate # for each step in the state history and construct a timeline from # it. As a first step we need the start state for each of the # hosts/services. They will always be the first consecute rows # in the statehist table # First partition the rows into sequences with equal start time phases = {} for row in rows: from_time = row["from"] phases.setdefault(from_time, []).append(row) # Convert phases to sorted list sorted_times = phases.keys() sorted_times.sort() phases_list = [] for from_time in sorted_times: phases_list.append((from_time, phases[from_time])) states = {} def update_states(phase_entries): for row in phase_entries: service = row["service_description"] key = row["site"], row["host_name"], service states[key] = row["state"], row["log_output"], row["in_downtime"] update_states(phases_list[0][1]) # states does now reflect the host/services states at the beginning # of the query range. tree_state = compute_tree_state(tree, states) tree_time = range[0] if timewarp == int(tree_time): timewarp_state = tree_state else: timewarp_state = None timeline = [] def append_to_timeline(from_time, until_time, tree_state): timeline.append({ "state" : tree_state[0]['state'], "log_output" : tree_state[0]['output'], "from" : from_time, "until" : until_time, "site" : "", "host_name" : aggr_group, "service_description" : tree['title'], "in_notification_period" : 1, "in_service_period" : 1, "in_downtime" : tree_state[0]['in_downtime'], "in_host_downtime" : 0, "host_down" : 0, "is_flapping" : 0, "duration" : until_time - from_time, }) for from_time, phase in phases_list[1:]: update_states(phase) next_tree_state = compute_tree_state(tree, states) duration = from_time - tree_time append_to_timeline(tree_time, from_time, tree_state) tree_state = next_tree_state tree_time = from_time if timewarp == tree_time: timewarp_state = tree_state # Add one last entry - for the state until the end of the interval append_to_timeline(tree_time, range[1], tree_state) return timeline, timewarp_state def compute_tree_state(tree, status): # Convert our status format into that needed by BI services_by_host = {} hosts = {} for site_host_service, state_output in status.items(): site_host = site_host_service[:2] service = site_host_service[2] if service: services_by_host.setdefault(site_host, []).append(( service, # service description state_output[0], # state 1, # has_been_checked state_output[1], # output state_output[0], # hard state (we use the soft state here) 1, # attempt 1, # max_attempts (not relevant) state_output[2], # in_downtime False, # acknowledged )) else: hosts[site_host] = state_output status_info = {} for site_host, state_output in hosts.items(): status_info[site_host] = [ state_output[0], state_output[0], # host hard state state_output[1], state_output[2], # in_downtime False, # acknowledged services_by_host.get(site_host,[]) ] # Finally we can execute the tree bi.load_assumptions() tree_state = bi.execute_tree(tree, status_info) return tree_state #. # .--Annotations---------------------------------------------------------. # | _ _ _ _ | # | / \ _ __ _ __ ___ | |_ __ _| |_(_) ___ _ __ ___ | # | / _ \ | '_ \| '_ \ / _ \| __/ _` | __| |/ _ \| '_ \/ __| | # | / ___ \| | | | | | | (_) | || (_| | |_| | (_) | | | \__ \ | # | /_/ \_\_| |_|_| |_|\___/ \__\__,_|\__|_|\___/|_| |_|___/ | # | | # +----------------------------------------------------------------------+ # | This code deals with retrospective annotations and downtimes. | # '----------------------------------------------------------------------' # Example for annotations: # { # ( "mysite", "foohost", "myservice" ) : # service might be None # [ # { # "from" : 1238288548, # "until" : 1238292845, # "text" : u"Das ist ein Text über mehrere Zeilen, oder was weiß ich", # "downtime" : True, # Treat as scheduled Downtime, # "date" : 12348854885, # Time of entry # "author" : "mk", # }, # # ... further entries # ] # } def save_annotations(annotations): file(defaults.var_dir + "/web/statehist_annotations.mk", "w").write(repr(annotations) + "\n") def load_annotations(lock = False): path = defaults.var_dir + "/web/statehist_annotations.mk" if os.path.exists(path): if lock: aquire_lock(path) return eval(file(path).read()) else: return {} def update_annotations(site_host_svc, annotation): annotations = load_annotations(lock = True) entries = annotations.get(site_host_svc, []) new_entries = [] for entry in entries: if entry["from"] == annotation["from"] \ and entry["until"] == annotation["until"]: continue # Skip existing entries with same identity new_entries.append(entry) new_entries.append(annotation) annotations[site_host_svc] = new_entries save_annotations(annotations) def find_annotation(annotations, site_host_svc, fromtime, untiltime): entries = annotations.get(site_host_svc) if not entries: return None for annotation in entries: if annotation["from"] == fromtime \ and annotation["until"] == untiltime: return annotation return None def delete_annotation(annotations, site_host_svc, fromtime, untiltime): entries = annotations.get(site_host_svc) if not entries: return found = None for nr, annotation in enumerate(entries): if annotation["from"] == fromtime \ and annotation["until"] == untiltime: found = nr break if found != None: del entries[nr] def render_annotations(annotations, from_time, until_time, by_host, what, avoptions, omit_service): format = "%H:%M:%S" if time.localtime(from_time)[:3] != time.localtime(until_time-1)[:3]: format = "%Y-%m-%d " + format def render_date(ts): return time.strftime(format, time.localtime(ts)) annos_to_render = [] for site_host, avail_entries in by_host.iteritems(): for service in avail_entries.keys(): site_host_svc = site_host[0], site_host[1], (service or None) for annotation in annotations.get(site_host_svc, []): if (annotation["from"] >= from_time and annotation["from"] <= until_time) or \ (annotation["until"] >= from_time and annotation["until"] <= until_time): annos_to_render.append((site_host_svc, annotation)) annos_to_render.sort(cmp=lambda a,b: cmp(a[1]["from"], b[1]["from"]) or cmp(a[0], b[0])) labelling = avoptions["labelling"] table.begin(title = _("Annotations"), omit_if_empty = True) for (site_id, host, service), annotation in annos_to_render: table.row() table.cell("", css="buttons") anno_vars = [ ( "anno_site", site_id ), ( "anno_host", host ), ( "anno_service", service or "" ), ( "anno_from", int(annotation["from"]) ), ( "anno_until", int(annotation["until"]) ), ] edit_url = html.makeuri(anno_vars) html.icon_button(edit_url, _("Edit this annotation"), "edit") delete_url = html.makeactionuri([("_delete_annotation", "1")] + anno_vars) html.icon_button(delete_url, _("Delete this annotation"), "delete") if not omit_service: if not "omit_host" in labelling: host_url = "view.py?" + html.urlencode_vars([("view_name", "hoststatus"), ("site", site_id), ("host", host)]) table.cell(_("Host"), '<a href="%s">%s</a>' % (host_url, host)) if service: service_url = "view.py?" + html.urlencode_vars([("view_name", "service"), ("site", site_id), ("host", host), ("service", service)]) # TODO: honor use_display_name. But we have no display names here... service_name = service table.cell(_("Service"), '<a href="%s">%s</a>' % (service_url, service_name)) table.cell(_("From"), render_date(annotation["from"]), css="nobr narrow") table.cell(_("Until"), render_date(annotation["until"]), css="nobr narrow") table.cell(_("Annotation"), html.attrencode(annotation["text"])) table.cell(_("Author"), annotation["author"]) table.cell(_("Entry"), render_date(annotation["date"]), css="nobr narrow") table.end() def edit_annotation(): site_id = html.var("anno_site") or "" hostname = html.var("anno_host") service = html.var("anno_service") or None fromtime = float(html.var("anno_from")) untiltime = float(html.var("anno_until")) site_host_svc = (site_id, hostname, service) # Find existing annotation with this specification annotations = load_annotations() annotation = find_annotation(annotations, site_host_svc, fromtime, untiltime) if not annotation: annotation = { "from" : fromtime, "until" : untiltime, "text" : "", } annotation["host"] = hostname annotation["service"] = service annotation["site"] = site_id html.plug() title = _("Edit annotation of ") + hostname if service: title += "/" + service html.body_start(title, stylesheets=["pages","views","status"]) html.top_heading(title) html.begin_context_buttons() html.context_button(_("Abort"), html.makeuri([("anno_host", "")]), "abort") html.end_context_buttons() value = forms.edit_dictionary([ ( "site", TextAscii(title = _("Site")) ), ( "host", TextUnicode(title = _("Hostname")) ), ( "service", Optional(TextUnicode(allow_empty=False), sameline = True, title = _("Service")) ), ( "from", AbsoluteDate(title = _("Start-Time"), include_time = True) ), ( "until", AbsoluteDate(title = _("End-Time"), include_time = True) ), ( "text", TextAreaUnicode(title = _("Annotation"), allow_empty = False) ), ], annotation, varprefix = "editanno_", formname = "editanno", focus = "text") if value: site_host_svc = value["site"], value["host"], value["service"] del value["site"] del value["host"] value["date"] = time.time() value["author"] = config.user_id update_annotations(site_host_svc, value) html.drain() # omit previous HTML code, not needed html.unplug() html.del_all_vars(prefix = "editanno_") html.del_var("filled_in") return False html.unplug() # show HTML code html.bottom_footer() html.body_end() return True # Called at the beginning of every availability page def handle_delete_annotations(): if html.var("_delete_annotation"): site_id = html.var("anno_site") or "" hostname = html.var("anno_host") service = html.var("anno_service") or None fromtime = float(html.var("anno_from")) untiltime = float(html.var("anno_until")) site_host_svc = (site_id, hostname, service) annotations = load_annotations() annotation = find_annotation(annotations, site_host_svc, fromtime, untiltime) if not annotation: return if not html.confirm(_("Are you sure that you want to delete the annotation '%s'?" % annotation["text"])): return delete_annotation(annotations, site_host_svc, fromtime, untiltime) save_annotations(annotations) def handle_edit_annotations(): if html.var("anno_host") and not html.var("_delete_annotation"): finished = edit_annotation() else: finished = False return finished
[ "parvathi.konda@techwave.net" ]
parvathi.konda@techwave.net
cd50fc8b715db9544fca346be9d2f59be5483792
52b5773617a1b972a905de4d692540d26ff74926
/.history/FrogRiver_20200723134656.py
b53537eb14ce4472bd411f219e101697e4edb59b
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
def Frog(X,A): # given x where the frog wants to go # find earliest time # once you get the second that has that position # return the second pos = set() print(Frog(5,[1,3,1,4,2,3,5,4]))
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
6e5b22d94e41c54bed477e9c213add68291fd728
d85cc746428e787254455c80b66a7309aa715e24
/demo_odoo_tutorial/models/models.py
fc9e8beafbb712f17fd48d60021152bfda775a67
[ "MIT" ]
permissive
AllenHuang101/odoo-demo-addons-tutorial
2ef7d47432a2530f1e704f86cba78e3e975ca0f3
e719594bc42e3a9b273f5b37980ac61773702ab9
refs/heads/master
2023-03-28T03:37:46.338483
2021-03-29T08:44:22
2021-03-29T08:44:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,829
py
from odoo import models, fields, api from odoo.exceptions import UserError, ValidationError class DemoOdooTutorial(models.Model): _name = 'demo.odoo.tutorial' _description = 'Demo Odoo Tutorial' _inherit = ['mail.thread', 'mail.activity.mixin'] # track_visibility name = fields.Char('Description', required=True) # track_visibility='always' 和 track_visibility='onchange' is_done_track_onchange = fields.Boolean( string='Is Done?', default=False, track_visibility='onchange') name_track_always = fields.Char(string="track_name", track_visibility='always') start_datetime = fields.Datetime('Start DateTime', default=fields.Datetime.now()) stop_datetime = fields.Datetime('End Datetime', default=fields.Datetime.now()) field_onchange_demo = fields.Char('onchange_demo') field_onchange_demo_set = fields.Char('onchange_demo_set', readonly=True) # float digits # field tutorial input_number = fields.Float(string='input number', digits=(10,3)) field_compute_demo = fields.Integer(compute="_get_field_compute") # readonly _sql_constraints = [ ('name_uniq', 'unique(name)', 'Description must be unique'), ] @api.constrains('start_datetime', 'stop_datetime') def _check_date(self): for data in self: if data.start_datetime > data.stop_datetime: raise ValidationError( "data.stop_datetime > data.start_datetime" ) @api.depends('input_number') def _get_field_compute(self): for data in self: data.field_compute_demo = data.input_number * 1000 @api.onchange('field_onchange_demo') def onchange_demo(self): if self.field_onchange_demo: self.field_onchange_demo_set = 'set {}'.format(self.field_onchange_demo)
[ "twtrubiks@gmail.com" ]
twtrubiks@gmail.com
897039da602122f80f994a6b5a9d5a718d8d68df
d42ea0626b3322be8962857ff16621a40811186a
/payment/migrations/0001_initial.py
eb5dc095f9af8dd025347c28634ab01bbd11a7b1
[]
no_license
manalap/django-ToDo
f7fe270939b1aec7b1cbe14e78c9370f18864657
9d94df60d87f72797e40a4feb7f86d2e594aeb96
refs/heads/master
2023-08-17T07:00:03.654741
2023-08-13T06:26:57
2023-08-13T06:26:57
372,252,302
0
0
null
null
null
null
UTF-8
Python
false
false
554
py
# Generated by Django 3.2.3 on 2021-05-30 13:17 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='List', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('item', models.CharField(max_length=200)), ('completed', models.BooleanField(default=False)), ], ), ]
[ "manuchian@yahoo.com" ]
manuchian@yahoo.com
6d32ff9bf7835bf603fe781dc5c449adaf154377
356892df7a0b3a8afbe19e1a9ef8c1e01bf65ac6
/03. Lists.py
fc091435203e2450f2320cf5b4441a82ad29d847
[ "MIT" ]
permissive
LPIX-11/quick-python-for-developers
71d5ca22391d86b82d4b5fec47fe46402e510aa2
6c52d54a51cd7a1ba6915b77d9efd919ce98b4bc
refs/heads/master
2020-06-28T14:02:29.687633
2019-08-02T13:31:47
2019-08-02T14:34:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,795
py
# Dealing with lists in python since we use them a lot x = [1, 2, 3, 4, 5, 6] # Print list length print(x, ' contains: ', len(x), ' items') # len returns the number of items in contained an object # ### # If you need to slice list to extract values in a given range you can do first = x[:3] last = x[3:] tLast = x[-2:] print(first, ': first data extracted from the original list') print(last, ': last data extracted from the original list') print(tLast, ': last two elements extracted from the original list') # ### # Append a list to another list x.extend([7, 8]) print(x, ': Appened [7, 8] list') # If it's just appending a single object x.append(9) print(x, ': Appened 9\n') # If it's about creating a list of lists y = [14, 11, 13, 10, 12] # This will be a list constituated of x and y lists listLists = [x, y] print(listLists, ': list of lists\n') # ### # If it's about sorting the lists # the basic sorting listLists[1].sort() # the reverse sorting listLists[0].sort(reverse=True) # reversing the list of lists listLists.sort(reverse=True) print(listLists, ': sorted list of lists list') print(listLists[0], ': sorted y list') print(listLists[1], ': x list reversly sorted') # ### # Tuples # In python, tuples are a lot like lists but they are immutable, once a tuple, it can't change it # It's handy when performing functionnal programming or when interfacing with systems like Apache Spark # Redeclaring x as a tuple x = (1, 2, 3) print(len(x)) # And you can do pretty much things that we've done earlier # If you want to pass group of variables that you want to keep together you can use tuple tupleVariables = (age, income) = "29,1200000".split(',') (age, income) = "29,1200000".split(',') print(tupleVariables, ': Tupled values') print(age) print(income)
[ "mohamedjohnson31@gmail.com" ]
mohamedjohnson31@gmail.com
9950d363a6587e6d6ea4a143ceb4bdb58679db28
d690e866697b87a3eacc4d52d37461806f7dbc23
/wapi/wapi-0.1/SConstruct
84c7ca43ceed7e724215f5bd4e5dfe8d69b3eedb
[ "BSD-2-Clause" ]
permissive
bbrancke/tempNL
01e39f445dddc80d5b58177094a4a3a701f9b6e2
716c4c9e0c9da361e548b17d6847e1e4aa9788ec
refs/heads/master
2021-05-08T12:51:28.767516
2018-02-27T12:09:06
2018-02-27T12:09:06
119,975,337
0
0
null
null
null
null
UTF-8
Python
false
false
3,887
from os.path import join as opj from os import getenv from sys import stderr, stdout ### Common Variables ########################################################### INCDIR = 'include' LIBDIR = 'lib' SRCDIR = 'src' EXADIR = 'examples' ### Common Utilities ########################################################### def to_src_path(file): return opj(SRCDIR, file) ### Parse Command Line Arguments ############################################### vars = Variables() vars.AddVariables( BoolVariable('debug', 'Enable debug symbols.', True), BoolVariable('optimize', 'Compile with optimization flags turned on.', True), BoolVariable('profile', 'Enable profile information.', False), BoolVariable('check', 'Enable library/header checks.', True), ) env = Environment(variables = vars) Help(vars.GenerateHelpText(env)) if env['debug']: env.Append(CCFLAGS = '-g') if env['optimize']: env.Append(CCFLAGS = '-O3 -pipe') if not env['profile']: env.Append(CCFLAGS = '-fomit-frame-pointer') if env['profile']: env.Append(CCFLAGS = '-pg') env.Append(LINKFLAGS = '-pg') ### Generic Compiler Flags ##################################################### env.Append(CCFLAGS = '-Wall') env.Append(CPPPATH = [INCDIR]) env.Append(LIBPATH = LIBDIR) ### Parse Environment Variables ################################################ env.Append(CCFLAGS = getenv('CFLAGS', '')) env.Append(CCFLAGS = '-fno-strict-aliasing') env.Append(LINKFLAGS = getenv('LDFLAGS', '')) ### Library/Header Check ####################################################### common_libs = ['m', 'iw'] common_hdrs = [ 'ctype.h', 'errno.h', 'iwlib.h', 'linux/nl80211.h', 'math.h', 'netinet/in.h', 'netlink/attr.h', 'netlink/genl/ctrl.h', 'netlink/genl/family.h', 'netlink/genl/genl.h', 'netlink/msg.h', 'net/route.h', 'stdio.h', 'stdlib.h', 'string.h', 'sys/ioctl.h', 'sys/socket.h', 'sys/types.h', ] def CheckPkgConfig(ctx): ctx.Message('Checking for pkg-config... ') ret = ctx.TryAction('pkg-config pkg-config')[0] ctx.Result(ret) return ret def CheckPkg(ctx, pkg, ver): ctx.Message('Checking for package %s... ' % pkg) ret = ctx.TryAction('pkg-config --atleast-version=%s %s' % (ver, pkg))[0] ctx.Result(ret) return ret conf = Configure( env, custom_tests = { 'CheckPkgConfig': CheckPkgConfig, 'CheckPkg': CheckPkg}) def require_lib(lib): if not conf.CheckLib(lib): Exit(1) def require_hdr(hdr): if not conf.CheckCHeader(hdr): Exit(1) src = env.Clone() # Library sources. exa = env.Clone() # Examples. if not env.GetOption('clean') and env['check']: # Checking common libraries. map(require_hdr, common_hdrs) map(require_lib, common_libs) # Check pkg-config. if not conf.CheckPkgConfig(): stderr.write("pkg-config is missing!\n") Exit(1) # Configuring nl80211. if conf.CheckPkg('libnl-1', '1'): src.ParseConfig('pkg-config --libs --cflags libnl-1') src.Append(CCFLAGS = '-DLIBNL1') elif conf.CheckPkg('libnl-2.0', '2'): src.ParseConfig('pkg-config --libs --cflags libnl-2.0') src.Append(CCFLAGS = '-DLIBNL2') else: stderr.write('libnl could not be found!') Exit(1) ### Compile WAPI ############################################################### common_srcs = map(to_src_path, ['util.c', 'network.c', 'wireless.c']) src.Append(LIBS = common_libs) src.Append(CPPPATH = [SRCDIR]) src.SharedLibrary( opj(LIBDIR, 'wapi'), map(src.SharedObject, common_srcs)) ### Compile Examples ########################################################### exa.Append(LIBS = ["wapi"]) exa.Program(opj(EXADIR, 'sample-get.c')) exa.Program(opj(EXADIR, 'sample-set.c')) exa.Program(opj(EXADIR, 'ifadd.c')) exa.Program(opj(EXADIR, 'ifdel.c'))
[ "bbrancke@gmail.com" ]
bbrancke@gmail.com
12f6cd8c0d13ddb5246553b8acd29a2595a7a282
82ca64c6a819f3e2cb41057f2df9f758cedee28a
/BlockChain/venv/bin/python-config
ae068f06249b1f99eb784109dbf07bbc241050d5
[]
no_license
seanxxxx/coinx
619a18f9b2d7f83076083055bfccf0c5e404f665
eb1a7ed430c546cf02ddcc79f436200b218d5244
refs/heads/master
2023-01-28T03:09:10.358463
2018-09-07T07:49:19
2018-09-07T07:49:19
146,564,986
0
1
null
2022-12-20T14:20:06
2018-08-29T07:52:37
Python
UTF-8
Python
false
false
2,363
#!/Users/xuanxu/PycharmProjects/BlockChain/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
[ "xuxuan@lanlingdai.net" ]
xuxuan@lanlingdai.net
a040a91675720c6d4d854fce17ba48a719e606df
3770efe2f7ebadf6d2ec54a3771f1bdcee5c73d3
/yandex_parser/items.py
796bbe17a760d077b3e7affebcf2fd0b2b72125a
[]
no_license
Dantistnfs/yahoo-parser-scrapy
84d294e59e0a29787640c4f4766483050dd73f25
d747285272080d8969d90ef5f5f44558b62525ee
refs/heads/master
2021-04-30T17:28:13.682794
2017-02-01T13:55:50
2017-02-01T13:55:50
80,216,042
1
0
null
null
null
null
UTF-8
Python
false
false
853
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class YandexParserItem(scrapy.Item): # define the fields for your item here like: name = scrapy.Field() current_price = scrapy.Field() PREV_CLOSE = scrapy.Field() OPEN = scrapy.Field() BID = scrapy.Field() ASK = scrapy.Field() DAYS_RANGE = scrapy.Field() FIFTY_TWO_WK_RANGE = scrapy.Field() TD_VOLUME = scrapy.Field() AVERAGE_VOLUME_3MONTH = scrapy.Field() MARKET_CAP = scrapy.Field() BETA = scrapy.Field() PE_RATIO = scrapy.Field() EPS_RATIO = scrapy.Field() EARNINGS_DATE = scrapy.Field() DIVIDEND_AND_YIELD = scrapy.Field() EXDIVIDEND_DATE = scrapy.Field() ONE_YEAR_TARGET_PRICE = scrapy.Field() pass
[ "dantistnfs@gmail.com" ]
dantistnfs@gmail.com
227e871bbba83b930725e44eafc4874132d87a55
a3ea074995fd14fc6a1b3f31286a099ebd312ec1
/src/TDDBlog/Blog/blogUrls.py
b9e78ad49b988e1266eaca797283507f207965e1
[]
no_license
nicholaslemay/TDDBlog
e847a59be80dbd7087cc7910c3ae0cd190d98008
ca56c9746bc58892070c8787b6aed27eb97f2f63
refs/heads/master
2016-09-06T10:33:17.844652
2010-09-19T20:36:27
2010-09-19T20:36:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
380
py
from django.conf.urls.defaults import * from TDDBlog.Blog.controllers.NewBlogController import BlogPostController urlpatterns = patterns('', url(r'^new/', BlogPostController(), name="newBlog"), url(r'^thankyou/', "django.views.generic.simple.direct_to_template",{'template': 'thankYou.html'},name="thankYou") )
[ "nlemay@pyxis-tech.co" ]
nlemay@pyxis-tech.co
d99f3077d12c805081ea18bebf5d1bd924df3682
8f02939917edda1e714ffc26f305ac6778986e2d
/BOJ/2180/generator/gen.py
e0da56e963e00dd0ce89f4b06cd344b746f0aa3a
[]
no_license
queuedq/ps
fd6ee880d67484d666970e7ef85459683fa5b106
d45bd3037a389495d9937afa47cf0f74cd3f09cf
refs/heads/master
2023-08-18T16:45:18.970261
2023-08-17T17:04:19
2023-08-17T17:04:19
134,966,734
5
0
null
null
null
null
UTF-8
Python
false
false
431
py
from random import * N = int(input()) s = input() # seed seed(s) mx = 40000 # Generate A = [] for i in range(N//2): A.append((0, 0)) for i in range(N//2, N*3//4): A.append((randint(1, mx), randint(1, mx))) for i in range(N*3//4, N*7//8): A.append((0, randint(1, mx))) for i in range(N*7//8, N): A.append((randint(1, mx), 0)) assert(len(A) == N) shuffle(A) # Print print(N) for i in range(N): print(A[i][0], A[i][1])
[ "queued37@gmail.com" ]
queued37@gmail.com
b37888fa6385baeb41115a66b55bec5886b14fbc
387ad3775fad21d2d8ffa3c84683d9205b6e697d
/testsuite/trunk/el/el_test_036.py
cfab23e5ff03600c188c22c0c83bb31985905443
[]
no_license
kodiyalashetty/test_iot
916088ceecffc17d2b6a78d49f7ea0bbd0a6d0b7
0ae3c2ea6081778e1005c40a9a3f6d4404a08797
refs/heads/master
2020-03-22T11:53:21.204497
2018-03-09T01:43:41
2018-03-09T01:43:41
140,002,491
0
0
null
null
null
null
UTF-8
Python
false
false
1,025
py
#!/usr/bin/env python """ (C) Copyright IBM Corp. 2008 This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. This file and program are licensed under a BSD style license. See the Copying file included with the OpenHPI distribution for full licensing terms. Authors: Jayashree Padmanabhan <jayshree@in.ibm.com> """ import unittest from openhpi import * class TestSequence(unittest.TestCase): """ runTest : EL test * * This test verifies the failure of oh_el_map_from_file when el == None * * Return value: 0 on success, 1 on failure """ def runTest(self): el = oh_el() retc = None # test failure of oh_el_map_from_file with el==None el = None retc = oh_el_map_from_file(el, "./elTest.data") self.assertEqual (retc == SA_OK,False) if __name__=='__main__': unittest.main()
[ "suntrupth@a44bbd40-eb13-0410-a9b2-f80f2f72fa26" ]
suntrupth@a44bbd40-eb13-0410-a9b2-f80f2f72fa26
afc6a4f4facc75d71b3e22fc99b9f7be1895f171
021fd55be143c1520f2554a5fb5f671561e8a26a
/mysite/settings.py
044b36b1c33ce34558b366a3f0d10f5eee72b9bd
[]
no_license
seb-seb/my-first-blog
294ef99df1d5227104cdf0831bef98f01b423043
8a11f3e9bd4f179c7a269973da34c71976d13577
refs/heads/master
2020-03-19T04:32:57.764270
2018-06-03T20:42:20
2018-06-03T20:42:20
135,840,610
0
0
null
null
null
null
UTF-8
Python
false
false
3,242
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 1.11.13. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os #Django Girl tuto LOGIN_REDIRECT_URL = '/' # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '7cuby2(c_$m4hy9$-0uj*g0!!z+xsvc$f(c)__0zse2c41ax==' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1', '.pythonanywhere.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'fr-fr' TIME_ZONE = 'Europe/Paris' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static')
[ "sebetclo@bregeon.net" ]
sebetclo@bregeon.net
956b9766831edf51e30c5abb046640ac6e56815b
56a821768a62e41ca7486b7ff54fed3c6aa0d827
/lecture-artificial-intelligence/decision-tree.py
0f621b1c400cbff4daca6dfbf76085e4b0fcc90c
[]
no_license
goFrendiAsgard/kuliah-2.0
512fd0bacefd66f9564b3ba6ad034b2fd381911f
1f03d38979153bbb001e52b460f59118f11de880
refs/heads/master
2022-12-16T00:10:29.860433
2019-07-03T04:01:03
2019-07-03T04:01:03
125,147,197
24
23
null
2022-12-09T15:58:30
2018-03-14T03:02:53
Jupyter Notebook
UTF-8
Python
false
false
270
py
from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() clf = DecisionTreeClassifier() # train clf.fit(iris.data, iris.target) print(clf.predict([[5.9, 3, 5.1, 1.8]])) # 2 print(clf.predict([[5.1, 3.5, 1.4, 0.1]])) # 0
[ "gofrendiasgard@gmail.com" ]
gofrendiasgard@gmail.com
38c80d4c299c6dbe85afac306b3ae78b212ec38c
2b81ca6291eee31dc797b31ba15b088191f6a74e
/tutorial2/tutorial2/pipelines.py
899f6e34ccb176771ca57222bb334bc97a526142
[]
no_license
MIKEHHQ/Crawlers
f2f3a548bd75182a5e132696d4e3238be5c0a840
0321df0a68894c973440e81f6d2b40a07093ad19
refs/heads/master
2022-11-25T17:01:07.335872
2020-08-06T03:32:05
2020-08-06T03:32:05
284,692,079
0
0
null
null
null
null
UTF-8
Python
false
false
363
py
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html # useful for handling different item types with a single interface from itemadapter import ItemAdapter class Tutorial2Pipeline: def process_item(self, item, spider): return item
[ "392920729@qq.com" ]
392920729@qq.com
f4989d258e89f5e950e3729031c78f646095c4a1
e44de61f99836ee92f8cdfe3a8e53b60a42a7e63
/2018/day8/solution1.py
9bfd9604ecda288c879c607e28eaa0121fa0cfa8
[ "Apache-2.0" ]
permissive
om-henners/advent_of_code
471bae7d16fd7ae876f2f10f1399f85f5faa07a5
2c11272e05d7d1dcc5a96c9026d0f799f6443fa7
refs/heads/master
2021-12-15T02:00:17.590726
2021-12-04T01:07:17
2021-12-04T01:07:17
225,377,238
0
0
null
null
null
null
UTF-8
Python
false
false
1,173
py
from itertools import chain from uuid import uuid4 import networkx as nx data = open('input.txt').read().strip() # data = open('sample_input.txt').read().strip() starting_numbers = [int(i) for i in data.split()] tree = nx.DiGraph() def build_node(numbers): node_id = uuid4() num_children = numbers[0] num_metadata = numbers[1] remainder = numbers[2:] for i in range(num_children): child_node, remainder = build_node(remainder) tree.add_edge( node_id, child_node ) metadata = remainder[:num_metadata] if len(metadata) < num_metadata: raise ValueError("Missing metadata") tree.add_node( node_id, details=(num_children, num_metadata), metadata=metadata ) return node_id, remainder[num_metadata:] top_node, remainder = build_node(starting_numbers) if remainder: raise ValueError("Didn't work") print(sum(chain.from_iterable( pair[1] for pair in tree.nodes(data='metadata') ))) import matplotlib.pyplot as plt pos = nx.nx_agraph.graphviz_layout(tree, prog='dot') nx.draw_networkx(tree, pos=pos, with_labels=False) plt.show()
[ "henry.walshaw@gmail.com" ]
henry.walshaw@gmail.com
93d6f00bf21e5a4d6004d45417bd2d5253c50290
63913055f86d625786196a880c1d8f82b1b569d5
/makeSemiLeptonicTemplates.py
25b2bd497d54b53a42a56d256ee2a9e53b71beab
[]
no_license
mroguljic/X_YH_4b
328791db1449d5ddef8495df3e0ad8a30aeefba3
78ba7980058bd7759354182c685baf605a4e8a8d
refs/heads/master
2022-11-10T15:09:56.836525
2021-09-29T14:35:46
2021-09-29T14:35:46
248,929,562
0
3
null
2020-12-23T08:18:44
2020-03-21T07:44:38
Python
UTF-8
Python
false
false
15,171
py
#To be used with trees from event selection import ROOT as r import time, os from optparse import OptionParser from collections import OrderedDict from TIMBER.Tools.Common import * from TIMBER.Analyzer import * TIMBERPATH = os.environ["TIMBERPATH"] parser = OptionParser() parser.add_option('-i', '--input', metavar='IFILE', type='string', action='store', default = '', dest = 'input', help = 'A root file or text file with multiple root file locations to analyze') parser.add_option('-o', '--output', metavar='OFILE', type='string', action='store', default = 'output.root', dest = 'output', help = 'Output file name.') parser.add_option('-p', '--process', metavar='PROCESS', type='string', action='store', default = 'ttbarSemi', dest = 'process', help = 'Process in the given file') parser.add_option('-v','--var', metavar='variation', type='string', action='store', default = "nom", dest = 'variation', help = 'jmrUp/Down, jmsUp/Down, jesUp/Down, jerUp/Down, sfUp/sfDown, trigUp/Down, isoUp/Down, IdUp/IdDown') parser.add_option('-y', '--year', metavar='year', type='string', action='store', default = '2016', dest = 'year', help = 'Dataset year') parser.add_option('-m', metavar='mode', type='string', action='store', default = "RECREATE", dest = 'mode', help = 'RECREATE or UPDATE outputfile') (options, args) = parser.parse_args() #SF and JES/R have their own event trees iFile = options.input variation = options.variation year = options.year if ("je" in variation): if not variation in iFile: iFile = iFile.replace(".root","_{0}.root".format(variation)) print("{0} not in {1}, swapping input to {2}".format(variation,options.input,iFile)) elif ("sf" in variation): if not variation in iFile: iFile = iFile.replace(".root","_{0}.root".format(variation)) print("{0} not in {1}, swapping input to {2}".format(variation,options.input,iFile)) else: if not("nom" in iFile): iFile = iFile.replace(".root","_nom.root") a = analyzer(iFile) if("data" in options.process or "SingleMuon" in options.process): isData=True else: isData=False histos =[] if("jm" in variation): probeJetMassVar = "probeJetMass_{0}".format(variation) else: probeJetMassVar = "probeJetMass_nom" if(year=="2016"): #SFs are split into B-F and G-H era with respective lumis 19.961 and 16.217 IdFile1 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2016_preVFP_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2016_UL_HIPM_ID.root" IdName1 = "NUM_MediumID_DEN_TrackerMuons_abseta_pt" IdFile2 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2016_postVFP_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2016_UL_ID.root" IdName2 = "NUM_MediumID_DEN_TrackerMuons_abseta_pt" IsoFile1 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2016_postVFP_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2016_UL_ISO.root" IsoName1 = "NUM_TightRelIso_DEN_MediumID_abseta_pt" IsoFile2 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2016_preVFP_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2016_UL_HIPM_ISO.root" IsoName2 = "NUM_TightRelIso_DEN_MediumID_abseta_pt" TrigFile1 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesAndSF_RunBtoF.root" TrigName1 = "IsoMu24_OR_IsoTkMu24_PtEtaBins/efficienciesDATA/abseta_pt_DATA" TrigFile2 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesAndSF_Period4.root" TrigName2 = "IsoMu24_OR_IsoTkMu24_PtEtaBins/efficienciesDATA/abseta_pt_DATA" lumiBCDEF = 19.961 lumiGH = 16.227 elif(year=="2017"): IdFile = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2017_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2017_UL_ID.root" IdName = "NUM_MediumID_DEN_TrackerMuons_abseta_pt" IsoFile = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2017_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2017_UL_ISO.root" IsoName = "NUM_TightRelIso_DEN_MediumID_abseta_pt" TrigFile = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesAndSF_RunBtoF_Nov17Nov2017.root" TrigName = "IsoMu27_PtEtaBins/efficienciesDATA/abseta_pt_DATA" elif(year=="2018"): IdFile = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2018_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2018_UL_ID.root" IdName = "NUM_MediumID_DEN_TrackerMuons_abseta_pt" IsoFile = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_UL2018_DEN_TrackerMuons_rootfiles_Efficiencies_muon_generalTracks_Z_Run2018_UL_ISO.root" IsoName = "NUM_TightRelIso_DEN_MediumID_abseta_pt" TrigFile1 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_2018_trigger_EfficienciesAndSF_2018Data_BeforeMuonHLTUpdate.root" TrigName1 = "IsoMu24_PtEtaBins/efficienciesDATA/abseta_pt_DATA" TrigFile2 = TIMBERPATH+"TIMBER/data/OfficialSFs/EfficienciesStudies_2018_trigger_EfficienciesAndSF_2018Data_AfterMuonHLTUpdate.root" TrigName2 = "IsoMu24_PtEtaBins/efficienciesDATA/abseta_pt_DATA" lumiBefore= 8.950 lumiAfter = 50.789 if not isData: if(year=="2016"): IdCorr = Correction('IdSF',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(IdFile1),'"{0}"'.format(IdName1),'"{0}"'.format(IdFile2),'"{0}"'.format(IdName2),'{0}'.format(lumiBCDEF/(lumiBCDEF+lumiGH)),'{0}'.format(lumiGH/(lumiBCDEF+lumiGH))],corrtype='weight',mainFunc="evalComb") IsoCorr = Correction('IsoSF',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(IsoFile1),'"{0}"'.format(IsoName1),'"{0}"'.format(IsoFile2),'"{0}"'.format(IsoName2),'{0}'.format(lumiBCDEF/(lumiBCDEF+lumiGH)),'{0}'.format(lumiGH/(lumiBCDEF+lumiGH))],corrtype='weight',mainFunc="evalComb") TriggerCorr = Correction('TriggerEff',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(TrigFile1),'"{0}"'.format(TrigName1),'"{0}"'.format(TrigFile2),'"{0}"'.format(TrigName2),'{0}'.format(lumiBCDEF/(lumiBCDEF+lumiGH)),'{0}'.format(lumiGH/(lumiBCDEF+lumiGH))],corrtype='weight',mainFunc="evalComb") elif(year=="2017"): IdCorr = Correction('IdSF',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(IdFile),'"{0}"'.format(IdName)],corrtype='weight') IsoCorr = Correction('IsoSF',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(IsoFile),'"{0}"'.format(IsoName)],corrtype='weight') TriggerCorr = Correction('TriggerEff',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(TrigFile),'"{0}"'.format(TrigName)],corrtype='weight') elif(year=="2018"): IdCorr = Correction('IdSF',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(IdFile),'"{0}"'.format(IdName)],corrtype='weight') IsoCorr = Correction('IsoSF',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(IsoFile),'"{0}"'.format(IsoName)],corrtype='weight') TriggerCorr = Correction('TriggerEff',"TIMBER/Framework/src/TH2_SF.cc",constructor=['"{0}"'.format(TrigFile1),'"{0}"'.format(TrigName1),'"{0}"'.format(TrigFile2),'"{0}"'.format(TrigName2),'{0}'.format(lumiBefore/(lumiBefore+lumiAfter)),'{0}'.format(lumiAfter/(lumiBefore+lumiAfter))],corrtype='weight',mainFunc="evalComb") genWeight = Correction('genWeightCorr',"TIMBER/Framework/src/generatorWeight.cc",constructor=[],corrtype='corr') #STcorr = Correction('STcorr',"TIMBER/Framework/src/ST_weight.cc",constructor=[ '0.0','1.0'],corrtype='weight')#UPDATE WHEN REDERIVED! #STcorr = Correction('STcorr',"TIMBER/Framework/src/TF1_weight.cc",constructor=[ '"STcorr_{0}.root"'.format(year[2:]),'"ST"','"STdown"','"STup"'],corrtype='weight') #a.AddCorrection(STcorr,evalArgs={'var':'ST'}) a.AddCorrection(IdCorr,evalArgs={'pt':'lPt','eta':'lEta'}) a.AddCorrection(IsoCorr,evalArgs={'pt':'lPt','eta':'lEta'}) a.AddCorrection(TriggerCorr,evalArgs={'pt':'lPt','eta':'lEta'}) a.AddCorrection(genWeight,evalArgs={'genWeight':'genWeight'}) #a.MakeWeightCols('noSTCorr',dropList=["STcorr"]) a.MakeWeightCols() weightString = "weight__nominal" if(variation=="isoUp"): weightString = "weight__IsoSF_up" elif(variation=="isoDown"): weightString = "weight__IsoSF_down" elif(variation=="IdUp"): weightString = "weight__IdSF_up" elif(variation=="IdDown"): weightString = "weight__IdSF_down" elif(variation=="trigUp"): weightString = "weight__TriggerEff_up" elif(variation=="trigDown"): weightString = "weight__TriggerEff_down" pnetHi = 0.95 pnetLo = 0.80 pnetCuts = ["probeJetPNet>{0}".format(pnetHi),"probeJetPNet>{0} && probeJetPNet<{1}".format(pnetLo,pnetHi),"probeJetPNet>-0.001","probeJetPNet>-0.001 && probeJetPNet<{0}".format(pnetLo)] pnetTags = ["T","L","I","AT"] beforePnet = a.GetActiveNode() for i in range(len(pnetCuts)): a.SetActiveNode(beforePnet) a.Cut("{0}_cut".format(pnetTags[i]),pnetCuts[i]) hMET = a.DataFrame.Histo1D(('{0}_MET_{1}'.format(options.process,pnetTags[i]),';MET [GeV];Events/100 GeV;',20,0,2000),"MET_pt",weightString) hHT = a.DataFrame.Histo1D(('{0}_HT_{1}'.format(options.process,pnetTags[i]),';HT [GeV];Events/100;',20,0,2000),"HT",weightString) hST = a.DataFrame.Histo1D(('{0}_ST_{1}'.format(options.process,pnetTags[i]),';ST [GeV];Events/100;',30,0,3000),"ST",weightString) hPt = a.DataFrame.Histo1D(('{0}_lepton_pT_{1}'.format(options.process,pnetTags[i]),';pT [GeV];Events/100;',20,0,2000),"lPt",weightString) histos.append(hMET) histos.append(hHT) histos.append(hST) histos.append(hPt) if not isData: checkpoint = a.GetActiveNode() hMassInclusive = a.DataFrame.Histo1D(('{0}_mSD_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) histos.append(hMassInclusive) a.Cut("bqq_{0}".format(pnetTags[i]),"partonCategory==3") hMassInclusive = a.DataFrame.Histo1D(('{0}_bqq_mSD_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) beforePTcut = a.GetActiveNode() hMassLoPT = a.Cut("ptLoCutbqq_{0}".format(pnetTags[i]),"probeJetPt<500 && probeJetPt>300").DataFrame.Histo1D(('{0}_bqq_mSD_pTLo_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) a.SetActiveNode(beforePTcut) hMassHiPT = a.Cut("ptHiCutbqq_{0}".format(pnetTags[i]),"probeJetPt>500").DataFrame.Histo1D(('{0}_bqq_mSD_pTHi_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) histos.append(hMassLoPT) histos.append(hMassHiPT) histos.append(hMassInclusive) a.SetActiveNode(checkpoint) a.Cut("bq_{0}".format(pnetTags[i]),"partonCategory==2") hMassInclusive = a.DataFrame.Histo1D(('{0}_bq_mSD_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) beforePTcut = a.GetActiveNode() hMassLoPT = a.Cut("ptLoCutbq_{0}".format(pnetTags[i]),"probeJetPt<500 && probeJetPt>300").DataFrame.Histo1D(('{0}_bq_mSD_pTLo_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) a.SetActiveNode(beforePTcut) hMassHiPT = a.Cut("ptHiCutbq_{0}".format(pnetTags[i]),"probeJetPt>500").DataFrame.Histo1D(('{0}_bq_mSD_pTHi_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) histos.append(hMassLoPT) histos.append(hMassHiPT) histos.append(hMassInclusive) a.SetActiveNode(checkpoint) a.Cut("qq_{0}".format(pnetTags[i]),"partonCategory==1") hMassInclusive = a.DataFrame.Histo1D(('{0}_qq_mSD_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) beforePTcut = a.GetActiveNode() hMassLoPT = a.Cut("ptLoCutqq_{0}".format(pnetTags[i]),"probeJetPt<500 && probeJetPt>300").DataFrame.Histo1D(('{0}_qq_mSD_pTLo_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) a.SetActiveNode(beforePTcut) hMassHiPT = a.Cut("ptHiCutqq_{0}".format(pnetTags[i]),"probeJetPt>500").DataFrame.Histo1D(('{0}_qq_mSD_pTHi_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) histos.append(hMassLoPT) histos.append(hMassHiPT) histos.append(hMassInclusive) a.SetActiveNode(checkpoint) a.Cut("unmatched_{0}".format(pnetTags[i]),"partonCategory==0") hMassInclusive = a.DataFrame.Histo1D(('{0}_unmatched_mSD_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) beforePTcut = a.GetActiveNode() hMassLoPT = a.Cut("ptLoCutunm_{0}".format(pnetTags[i]),"probeJetPt<500 && probeJetPt>300").DataFrame.Histo1D(('{0}_unmatched_mSD_pTLo_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) a.SetActiveNode(beforePTcut) hMassHiPT = a.Cut("ptHiCutunm_{0}".format(pnetTags[i]),"probeJetPt>500").DataFrame.Histo1D(('{0}_unmatched_mSD_pTHi_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) histos.append(hMassLoPT) histos.append(hMassHiPT) histos.append(hMassInclusive) histos.append(hMassInclusive) else: hMassInclusive = a.DataFrame.Histo1D(('{0}_mSD_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) beforePTcut = a.GetActiveNode() hMassLoPT = a.Cut("ptLoCut_{0}".format(pnetTags[i]),"probeJetPt<500 && probeJetPt>300").DataFrame.Histo1D(('{0}_mSD_pTLo_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) a.SetActiveNode(beforePTcut) hMassHiPT = a.Cut("ptHiCut_{0}".format(pnetTags[i]),"probeJetPt>500").DataFrame.Histo1D(('{0}_mSD_pTHi_{1}'.format(options.process,pnetTags[i]),';mSD [GeV];Jets/10 GeV;',14,60,200),probeJetMassVar,weightString) histos.append(hMassLoPT) histos.append(hMassHiPT) histos.append(hMassInclusive) in_f = ROOT.TFile(iFile) #Grab cutflow histogram for key in in_f.GetListOfKeys(): h = key.ReadObj() hName = h.GetName() if(hName=="Events"): continue h.SetDirectory(0) histos.append(h) out_f = ROOT.TFile(options.output,options.mode) out_f.cd() for h in histos: if not isData: h.SetName(h.GetName()+"_"+options.variation) h.Write() out_f.Close()
[ "matej.roguljic@cern.ch" ]
matej.roguljic@cern.ch
8dc0940ac14fa2137b05281882c37b63abde2bd4
8d24418e352793aa9c4e20338cb07375e879a2a5
/STT.py
aa2f656b09f11be666e821b8c2c1604ef1659e4d
[]
no_license
mezeru/Internet-Speedtest
78972db073b1c7fd9d8c526f4fcc7ec64f86200c
4daa5b1369d9d7a18f8bf71b7e7e121329837cb2
refs/heads/main
2023-01-06T12:38:06.665252
2020-11-07T10:09:10
2020-11-07T10:09:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
856
py
import speedtest if __name__ == "__main__": speed = speedtest.Speedtest() print("Choose the units to be Displayed \n1)Mbps 2)MBps\n") choice = int(input()) print("\n\nPlease Wait......\n\n") if(choice == 1 or choice == 2): print("The source is : ",) Ds = speed.download() Us = speed.upload() servers = [] speed.get_servers(servers) png = (speed.results.ping) if choice == 1: print("\nThe Download Speed is ",Ds/1000000," Mbps") print("\nThe Upload Speed is ",Us/1000000," Mbps") elif choice == 2: print("\nThe Download Speed is ",Ds*0.000000125," MBps") print("\nThe Upload Speed is ",Us*0.000000125," MBps") print("\nThe Ping is : ",png," ms\n")
[ "noreply@github.com" ]
mezeru.noreply@github.com
6ccffde61a2ac1b34e249255ef314491f213a582
06685b319ecbabaf87a77ba06fb9ff7072581e1d
/timelapse/Photo.py
739be2cc5a20fe9727072a9aa046aa414e4ad242
[ "MIT" ]
permissive
tomhotch/timelapse
64b4ea35ad003ff834204ba1b717598b5a9cacf3
c4baf52b2ccce0978ab6281bc1b67731f8815b9a
refs/heads/master
2021-01-22T09:50:54.004645
2017-05-07T13:27:08
2017-05-07T13:27:08
55,226,091
0
0
null
null
null
null
UTF-8
Python
false
false
608
py
import time import picamera def take_and_save_photo(camera_settings, file_path_name): # Take a photo and save it in the given file path name # file_path_name includes a relative or absolute path to the file with picamera.PiCamera() as camera: camera.resolution = (camera_settings.horizontal_resolution, camera_settings.vertical_resolution) camera.rotation = camera_settings.rotation # TODO Do we want to add anything to exif data? time.sleep(camera_settings.camera_start_up_time) camera.capture(file_path_name) return
[ "tomhotch@yahoo.com" ]
tomhotch@yahoo.com
fb1d2f0d7ff511dafd8ee3da0267549af618152f
1d544794930ae2da3d4eb87e969ce04215ab87d9
/kpibrainstorm0.py
9365cb9057134dac6a815b83b13ab644b6842682
[]
no_license
samhung19/kpi-brainstorm
7bba8dfc242fdd7b0e03f8dff5f7c0922a763433
41e2de50c7b032f3eb454e9a1a35192674e10357
refs/heads/master
2021-03-27T20:37:57.090205
2017-07-20T00:26:38
2017-07-20T00:26:38
95,706,021
0
0
null
null
null
null
UTF-8
Python
false
false
758
py
import cv2 import numpy as np cap = cv2.VideoCapture('lalalala.mp4') framecount = 0 while True: framecount += 1 ret, frame = cap.read() roi = frame[65:75, 985:995] cv2.rectangle(frame, (982,62), (998,78), (0, 255, 0), 2) #highlight region of interest cv2.namedWindow('frame', cv2.WINDOW_NORMAL) #this reframes the window so it fits screen cv2.imshow('frame', frame) b, g, r = frame[70][990] #[row][column] print("framecount: ", framecount, "r: ",r ,"g: ",g,"b: ", b) if r>250 and g > 250 and b > 250: print(framecount) cv2.imwrite('frame%i.jpg' %framecount, frame) break if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
[ "noreply@github.com" ]
samhung19.noreply@github.com
28253f6b96351295cc00cef6d1448e446c31f212
672b57ee6ad36cab8eff4802c423d5f836ebcab0
/scraper/management/commands/scrape.py
e865b940702992b8b4392daebe620187f6ad9c2f
[]
no_license
stanislavn/thrustfeed
a6b76dd485c80c1a16156930d078eb67267ec30d
b6a79d11b777048ff4f93629eea70c161f612d33
refs/heads/master
2023-02-18T19:22:25.228888
2021-01-24T13:08:26
2021-01-24T13:08:26
332,446,445
0
0
null
null
null
null
UTF-8
Python
false
false
5,185
py
# importing the required modules import numpy as np import requests import xml.etree.ElementTree as ET import time import urllib.request import extruct from w3lib.html import get_base_url from scraper.models import Product from django.db import IntegrityError from fake_useragent import UserAgent import sys from bs4 import BeautifulSoup start_time = time.time() ua = UserAgent() #UCWEB/2.0 (compatible; Googlebot/2.1; +google.com/bot.html) headers = { "User-Agent": ua.random, 'Referer': 'www.google.com' } # url of rss feed url = 'https://www.tinte24.de/sitemap/devices.xml' req = urllib.request.Request( url=url, data=None, headers=headers ) #response = urllib.request.urlopen(req).read() response = requests.get(url, headers=headers, timeout=5) root = ET.fromstring(response.text) urls_to_scrape = [] i = 0 for url in root.findall('{http://www.sitemaps.org/schemas/sitemap/0.9}url'): #i = i + 1 loc = url.find('{http://www.sitemaps.org/schemas/sitemap/0.9}loc').text urls_to_scrape.append(loc) #if '/Tinte/' in loc: # urls_to_scrape.append(loc) #if '/Toner/' in loc: # urls_to_scrape.append(loc) urls_to_scrape = list(set(urls_to_scrape)) #print(f'Scrapovat sa bude {len(urls_to_scrape)} produktov z celkoveho poctu {i}') print(f'Scrapovat sa bude {len(urls_to_scrape)} produktov') j = 0 for url_to_scrape in urls_to_scrape: data_list = [] #cached_url = 'http://webcache.googleusercontent.com/search?q=cache:' + url_to_scrape j = j + 1 print(f'Starting scraping {j}/{len(urls_to_scrape)} url: {url_to_scrape}') try: #print(ua.random) r = requests.get(url_to_scrape, headers=headers, timeout=5) #print(r.text) soup = BeautifulSoup(r.content, 'html.parser') except: sys.exit("Cant load website. Check connection.") base_url = get_base_url(r.text, r.url) data = extruct.extract(r.text, base_url=base_url, uniform=True, syntaxes=['rdfa', 'json-ld']) data_list = data['json-ld'] print(data_list) if data_list == []: sys.exit("Website did not respond correctly, quitting") for data_dict in data_list: compatible = soup.find("div", class_='compatible') print('kompatibilne s ', compatible) brand=color=depth=gtin12=logo=manufacturer=mpn=sku=alternateName=description=image=name = '' price = data_dict['offers']['price'] priceCurrency = data_dict['offers']['priceCurrency'] try: name = data_dict['name'] image = data_dict['image'] url = data_dict['offers']['url'] brand = data_dict['brand'] color = data_dict['color'] depth = data_dict['depth'] gtin12 = data_dict['gtin12'] logo = data_dict['logo'] manufacturer = data_dict['manufacturer'] mpn = data_dict['mpn'] sku = data_dict['sku'] alternateName = data_dict['alternateName'] description = data_dict['description'] except: print('cant get all parameters') availability = data_dict['offers']['availability'] if 'InStock'.lower() in availability.lower(): availability = "In stock" elif 'OutOfStock'.lower() in availability.lower(): availability = "Out Of Stock" elif 'PreOrder'.lower() in availability.lower():\ availability = "Preorder" else: availability = "" print("cant get availability") print('dostupnost je ', availability) itemCondition = data_dict['offers']['itemCondition'] if 'NewCondition'.lower() in itemCondition.lower(): itemCondition = "New" elif 'UsedCondition'.lower() in itemCondition.lower(): itemCondition = "Used Condition" elif 'RefurbishedCondition'.lower() in itemCondition.lower(): itemCondition = "Refurbished Condition" elif 'DamagedCondition'.lower() in itemCondition.lower(): itemCondition = "Damaged Condition" else: itemCondition = "" if name != '': try: p = Product(availability=availability, itemCondition=itemCondition, price=price, priceCurrency=priceCurrency, url=url, brand=brand, color=color, depth=depth, gtin12=gtin12, logo=logo, manufacturer=manufacturer, mpn=mpn, sku=sku, alternateName=alternateName, description=description, image=image, name=name, compatible=compatible) p.save() print('ulozene') except IntegrityError: print("Cant scrape already existing url ", url_to_scrape) pass else: pass print(f'Scrapnute {j} produktov z celkoveho poctu {len(urls_to_scrape)}') delays = [7, 24, 22, 12, 30, 19] delay = np.random.choice(delays) print('waiting ',delay) time.sleep(delay) #except: # print("Cant scrape url ", url_to_scrape) finish_time = time.time() elapsed_time = finish_time - start_time print(f'Skript bezal {elapsed_time} sekund.')
[ "29331439+stanislavn@users.noreply.github.com" ]
29331439+stanislavn@users.noreply.github.com
8b3f32f97c1f1d0f6fb4c91406e974436d1e30ea
44b9c654ba58adeb7213d80dfcf22dd4794f08dc
/util/RiskParityPortfolio.py
6f423b7c42564c8fc98efcb9dff1447304f7f2de
[]
no_license
handrew/all-weather-for-noobs
437be02f7677e96dbceeb16f815a4a8cd19f72bb
5f2b57acea381ed110e6ec157cd50af1b8872d94
refs/heads/master
2023-07-15T04:58:42.111046
2023-06-21T20:52:35
2023-06-21T20:52:35
65,438,423
5
7
null
null
null
null
UTF-8
Python
false
false
4,291
py
"""RiskParityPortfolio object. Optimizes weights to be inversely proportional to the volatility of each asset. This approach does not not assume any correlations – for a risk parity approach that accounts for correlation, use EqualRiskContributionPortfolio. """ import pdb from typing import List import numpy as np import pandas as pd from .asset import Asset from .portfolio import Portfolio class RiskParityPortfolio(Portfolio): """Optimizes weights to be inversely proportional to the volatility of each asset. This approach does not not assume any correlations – for a risk parity approach that accounts for correlation, use EqualRiskContributionPortfolio. """ def __init__(self, assets, window=60, periodicity=1, volatility_target=0.1): has_portfolio_objs = any([isinstance(a, Portfolio) for a in assets]) if has_portfolio_objs: raise ValueError( "RiskParityPortfolio can not " "accept Portfolio in param `assets`." ) super(RiskParityPortfolio, self).__init__( assets, window=window, periodicity=periodicity, volatility_target=volatility_target, ) def optimize(self, as_of_date=None): """Solves for inverse-volatility weights. @param as_of_date: datetime object @return: {asset_name: {"asset": Asset, "weight": float}} """ most_recent_vols: List[float] = [ asset.last_volatility( window=self.window, periodicity=self.periodicity, as_of_date=as_of_date ) for asset in self.assets ] asset_df = pd.DataFrame([self.assets, most_recent_vols]).T asset_df.columns = ["asset", "vol"] asset_df = asset_df.dropna().reset_index() # get rid of None vols weights_i: List[float] = [] std_inv = 1.0 / np.sqrt(asset_df["vol"].astype(float)) weights_i = list(std_inv / std_inv.sum()) asset_df["weights"] = pd.Series(weights_i) # Make sure that volatility contributions are all the same. try: vol_contributions = (asset_df["weights"] ** 2) * asset_df["vol"] for i in range(1, len(vol_contributions)): diff = abs(vol_contributions[0] - vol_contributions[i]) assert diff <= 1e-4 except AssertionError: pdb.set_trace() # Put it in return format. allocations: dict = {} for i in range(len(asset_df)): curr_asset: Asset = asset_df["asset"].iloc[i] weight = asset_df["weights"].iloc[i] vol_cont = (weight ** 2) * asset_df["vol"].iloc[i] allocations[curr_asset.name] = { "asset": curr_asset, "weight": weight, "vol_contribution": vol_cont, } if self.volatility_target: # Scale to vol target. vol_contributions = [ allocations[name]["vol_contribution"] for name in allocations ] portfolio_vol = np.sum(vol_contributions) vol_scale = np.sqrt(self.volatility_target / portfolio_vol) for name in allocations: allocations[name]["weight"] = allocations[name]["weight"] * vol_scale # Update vol contributions. asset_df["name"] = asset_df["asset"].apply(lambda x: x.name) for name in allocations: weight = allocations[name]["weight"] vol_cont = (weight ** 2) * asset_df[asset_df["name"] == name][ "vol" ].iloc[0] allocations[name]["vol_contribution"] = vol_cont # Check that everything is right. vol_contributions = [ allocations[name]["vol_contribution"] for name in allocations ] try: diff = abs(np.sum(vol_contributions) - self.volatility_target) assert diff <= 1e-4 for i in range(1, len(vol_contributions)): diff = abs(vol_contributions[0] - vol_contributions[i]) assert diff <= 1e-4 except AssertionError: pdb.set_trace() return allocations
[ "handrew11@gmail.com" ]
handrew11@gmail.com
2ce81be387ddd1049a70ef86640fe60c543417eb
cf149e692b5abcb1c8ec9e86aaf1c52e71127da5
/particionador_de_audio.py
91e14517beda3256d4d310b954a9666fb60589ee
[]
no_license
rafael03/Conversores
2f0d1a4a3b33d3c93024b921cfdb22282af10419
093096a658e6e9db26090920203febd70d5b2cd1
refs/heads/master
2021-01-13T13:15:33.485048
2016-11-03T00:42:44
2016-11-03T00:42:44
72,692,961
0
0
null
null
null
null
UTF-8
Python
false
false
743
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from os import walk import sys # print sys.argv[1] lista_de_arquivos = [] for (dirpath, dirnames, filenames) in walk(os.getcwd()): lista_de_arquivos.extend(filenames) break for arquivo in lista_de_arquivos: if arquivo[-4:] == ".mp3": os.system("mp3splt %s -S 7" % arquivo) os.system("rm %s" % arquivo) lista_particionada = [] for (dirpath, dirnames, filenames) in walk(os.getcwd()): lista_particionada.extend(filenames) break lista_particionada.sort() print "lista normal", lista_particionada for arquivo in range(0, len(lista_particionada)): if lista_particionada[arquivo][-4:] == ".mp3": os.system("mv %s %s" % (lista_particionada[arquivo], str(arquivo)))
[ "noreply@github.com" ]
rafael03.noreply@github.com
3f9f14f0bbc5f8fa531618edc817cd13a2a7ea16
140bc1bb4b2a68f71d7fa7e4bbcf22da824a645c
/first_occurrence.py
f3ed1722827dbfda78cf82c3d6b6c86e1b4c3a99
[]
no_license
rmorency40/python-projects
3371ac7b6cbd70b722bf5c0733326d007fbf6f8e
00ec7bade93d0f7afd71203731f18a2e99140955
refs/heads/master
2022-12-14T11:07:15.144179
2020-09-18T16:21:59
2020-09-18T16:21:59
288,572,815
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
#!/usr/bin/python string = input("enter your own string : ") char = input("Enter your own character: ") flag = 0 #if not string: # print("this is not a string") for i in range(len(string)): if (string[i] == char): flag = 1 break if (flag == 0): print("Sorry, we haven't found the search character in this string") else: print("The first occurence of", char, "is found at position", i + 1)
[ "30129346+rmorency40@users.noreply.github.com" ]
30129346+rmorency40@users.noreply.github.com
fb483adff09210c3a8dea90d203b5b070f3768fb
84379e15e54ba79b7e63c1fceecf712b46f22977
/apps/decks/migrations/0016_auto_20181011_1715.py
2ac96bd86b326bc8447c68610a43fbba4554b4f0
[]
no_license
CoderEnko007/HearthStoneStationBackend
a1d74c324233ebd617ad01df13bc609d1f1aa2f6
6cc92cb806f19f2a2a0596645028cfe2fa5895d6
refs/heads/master
2022-12-11T23:20:24.335737
2022-09-18T07:04:08
2022-09-18T07:04:08
144,392,864
0
0
null
2022-12-08T02:22:42
2018-08-11T14:40:48
JavaScript
UTF-8
Python
false
false
831
py
# Generated by Django 2.0.4 on 2018-10-11 17:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('decks', '0015_auto_20180928_1019'), ] operations = [ migrations.AddField( model_name='decks', name='real_game_count', field=models.IntegerField(blank=True, null=True, verbose_name='实际对局数'), ), migrations.AddField( model_name='trending', name='real_game_count', field=models.IntegerField(blank=True, null=True, verbose_name='实际对局数'), ), migrations.AlterField( model_name='decks', name='game_count', field=models.IntegerField(blank=True, null=True, verbose_name='对局数'), ), ]
[ "yf381966217@163.com" ]
yf381966217@163.com
a6e6e3dc88952cfbd159649b851d165f6ccff89b
138cf8c6710e844541e23b8a88f42b0bf695b655
/547. Number of Provinces.py
7ad052955bcaccc2aaafd04922835080b85c4eb8
[]
no_license
cherryzoe/Leetcode
58fb1c353c57ce02a8cf3c345caeeacb1e1bdfaf
f8fd6bb130a4d55d83d9bc07caac53c7e0a26afd
refs/heads/master
2023-01-11T10:48:53.214138
2022-12-29T20:20:41
2022-12-29T20:20:41
40,199,293
0
0
null
null
null
null
UTF-8
Python
false
false
1,732
py
# BFS / DFS 的时间复杂度是 O(n^2), n 为城市的数量,需要遍历 n^2 的邻接矩阵 class Solution(object): def findCircleNum(self, isConnected): """ :type isConnected: List[List[int]] :rtype: int """ # dfs solution: # loop through all cites, from 1 - n. # find a city,if it is not visited, -> increase province count and explore its connected city self.n = len(isConnected) visited = set() cnt = 0 for i in range(self.n): if i not in visited: cnt += 1 self.explore(i, isConnected, visited) return cnt def explore(self, i, isConnected, visited): visited.add(i) for j in range(self.n): if isConnected[i][j] == 1 and j not in visited: self.explore(j, isConnected, visited) # BFS Version class Solution(object): def findCircleNum(self, isConnected): """ :type isConnected: List[List[int]] :rtype: int """ # bfs version q = collections.deque() n = len(isConnected) cnt = 0 visited = [False for _ in range(n)] for i in range(n): if visited[i] == False: q.append(i) visited[i] = True cnt += 1 while q: cur = q.popleft() # visited[cur] = True for j in range(n): nx = isConnected[cur][j] if not visited[j] and nx == 1: q.append(j) visited[j] = True return cnt
[ "noreply@github.com" ]
cherryzoe.noreply@github.com
d7aa8e7ee0133ca62e4816336b143153993ef60f
107a49df30fd8b300cca888cf3a41e2cac4ba9c3
/crawler/items.py
cec0d679422fb725c76be4b9f4042ec615922def
[ "MIT" ]
permissive
oliverdelacruz/crawler
6c8c0dd1e4894064b1f882ea1ddc5b2125697327
ef8688807af7722ecc882b2b62a7ba5a78e49513
refs/heads/master
2020-07-22T05:43:22.927185
2020-01-18T21:26:34
2020-01-18T21:26:34
207,090,871
1
0
null
null
null
null
UTF-8
Python
false
false
556
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class CrawlerItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass class AmazonItem(scrapy.Item): # define the fields for your item here like: product_name = scrapy.Field() product_sale_price = scrapy.Field() product_category = scrapy.Field() product_original_price = scrapy.Field() product_availability = scrapy.Field()
[ "deoliver@student.ethz.ch" ]
deoliver@student.ethz.ch
1b9f51303dca395e8adaa69dbf9242d4fbb2ad07
20da145915700a20487fb1000adbe2bfc4042e9e
/sandersfeatures/tweet_pca.py
0659fe0f2bd6ed8fd61a6f08920256ae9153f0e6
[]
no_license
yogeshg/Twitter-Sentiment
d362b02c895681c61f8f4ed137da5b481076eb73
2ade1641d7bddaa0ef3423f9d4a160edb9ae593f
refs/heads/master
2023-03-08T17:42:53.473532
2022-12-01T02:21:20
2022-12-01T02:21:20
15,335,630
74
40
null
2023-03-01T08:48:36
2013-12-20T10:22:20
Python
UTF-8
Python
false
false
1,379
py
""" @package tweet_pca PCT for dimensionality reduction. """ import mdp, numpy import tweet_features import pdb def tweet_pca_reduce( tweets_train, tweets_test, output_dim ): # convert dictionary feature vecs to numpy array print '--> Converting dictionaries to NumPy arrays' train_arr = numpy.array( [tweet_features.tweet_dict_to_nparr(t) for \ (t,s) in tweets_train]) test_arr = numpy.array( [tweet_features.tweet_dict_to_nparr(t) for \ (t,s) in tweets_test]) # compute principle components over training set print '--> Computing PCT' pca_array = mdp.pca( train_arr.transpose(), \ svd=True, output_dim=output_dim ) # both train and test sets to PC space print '--> Projecting feature vectors to PC space' train_arr = numpy.dot( train_arr, pca_array ) test_arr = numpy.dot( test_arr, pca_array ) # convert projected vecs back to reduced dictionaries print '--> Converting NumPy arrays to dictionaries' reduced_train = \ zip( [tweet_features.tweet_nparr_to_dict(v) for v in train_arr], \ [s for (t,s) in tweets_train] ) reduced_test = \ zip( [tweet_features.tweet_nparr_to_dict(v) for v in test_arr], \ [s for (t,s) in tweets_test]) return (reduced_train, reduced_test)
[ "yogeshg91@gmail.com" ]
yogeshg91@gmail.com
2e1932ed858673f53ed800edcdc60355be87bf3d
7739128a2e4112317f2dfec6bb4a04033b2a0d5a
/venv/bin/pip3
c14562829e6a306b1be02ec70927e1caf314f232
[]
no_license
basharE/sixthLesson
e5a3d19f1abe888c4c6ccaebafe9f879f8604038
aa50cb1d1b38733e92a27dfa7c66644eb4f0023f
refs/heads/master
2023-03-05T10:54:10.806231
2021-02-14T18:48:15
2021-02-14T18:48:15
338,868,837
0
0
null
2021-02-14T18:42:28
2021-02-14T18:08:40
Python
UTF-8
Python
false
false
270
#!/Users/basharegbariya/PycharmProjects/sixthLesson/venv/bin/python # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "e.bashar.t@gmail.com" ]
e.bashar.t@gmail.com
f8e9c00352aa73396ea5b86fe09beb3dca7d00de
582c42e5aa6611433e7f8cad225f5c9fd8c2c3ba
/client/__init__.py
692f6087bc05e1b6806fb5b7228444fe8572f9b3
[ "MIT" ]
permissive
Soulou/msc-thesis-container-balancer-client
7b44fafb473caec787adb1c65b25d863738d8534
05ea1fc0005733ec2be25494bc2d0b216fd19fa5
refs/heads/master
2021-01-02T10:25:36.265062
2014-08-10T23:00:48
2014-08-10T23:00:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
505
py
from .client import * from .status import * from .start import * from .stop import * from .migrate import * from .node_status import * from .nodes_status import * from .container_status import * from .balance import * Client.start = start Client.stop = stop Client.stop_service = stop_service Client.stop_all = stop_all Client.status = status Client.migrate = migrate Client.node_status = node_status Client.nodes_status = nodes_status Client.container_status = container_status Client.balance = balance
[ "leo@unbekandt.eu" ]
leo@unbekandt.eu
288c78dc9899d83b795e90be1572c02ebf22ea94
c7517291eeb44cfb829373c6c233e408237b4af2
/chapter_4/queue.py
662d8cab35ba148d6e51850481436cfe8568b81e
[ "MIT" ]
permissive
elishaking/CTCi
fbec515ad26a4d11ddbb6e479ad11bd0e8a083e0
6a91fd67e8765e5abef72c5b247f4d5444945438
refs/heads/master
2022-11-17T13:18:22.589740
2020-07-08T16:53:42
2020-07-08T16:53:42
272,730,371
1
0
null
null
null
null
UTF-8
Python
false
false
2,525
py
class Node: def __init__(self, value=0, next=None): self.value = value self.next = next def __str__(self): return str(self.value) class LinkedList: def __init__(self, head: Node = None): self.head = head self.tail = self.head def push(self, value: int, node: Node = None): if node: new_node = node else: new_node = Node(value=value) if self.head == None: self.head = new_node self.tail = self.head return self self.tail.next = new_node self.tail = new_node return self def unshift(self, value: int): new_node = Node(value=value, next=self.head) self.head = new_node return self def shift(self): node = self.head self.head = self.head.next return node def insert(self, value: int, index: int): current_node = self.head current_index = 0 if index == 0: return self.unshift(value) while current_node: if current_index == index - 1: new_node = Node(value=value, next=current_node.next) current_node.next = new_node return self current_index += 1 current_node = current_node.next raise Exception('index out of range') def delete(self, node: Node): if node == self.head: temp_node = self.head self.head = self.head.next del temp_node prev_node = self.head current_node = self.head.next while current_node: if node == current_node: prev_node.next = current_node.next del current_node return self prev_node = prev_node.next current_node = current_node.next return self def __str__(self): values = [] current_node = self.head while current_node: values.append(current_node.value) current_node = current_node.next return str(values) class Queue: def __init__(self): self.values = LinkedList() def add(self, value): self.values.push(value) return self def remove(self): return self.values.shift() def peek(self): return self.values.head.value def is_empty(self): return self.values.head == None def __str__(self): return str(self.values)
[ "ek.chibueze@gmail.com" ]
ek.chibueze@gmail.com
bb7dd72cb79f5b8c3c70bc802cfd22bd72c2a811
bd149e195fbe5fa2aa0ca2dd88989e4f0b6bac5c
/pytest_1/test_fixture.py
76500e993d5fbb935868f3b2f74a563d6e67d356
[]
no_license
sanjidaoli/pytest1
b0f9c59663146cdce72049598c00d68f07c05de8
39ef6ae2c2935c800672cbe4bf4664c2595c6c51
refs/heads/master
2023-07-26T19:47:01.563951
2021-09-12T15:35:22
2021-09-12T15:35:22
348,737,475
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
#!/usr/bin/env python #!-*- coding:utf-8 -*- import pytest @pytest.fixture() def login(): print("这是个登录方法") return ('tom;','123') @pytest.fixture() def operate(): print("登录后的操作") def test_case1(login,operate): print(login) print("test_case1,需要登录") def test_case2(): print("test_case2,不需要登录") def test_case3(login): print(login) print("test_case3,需要登录")
[ "123903159@qq.com" ]
123903159@qq.com
2978555e84a362cb5ed925eb7a8317d2a53cace9
d85d078dd2eea23083c3b5e8fb7bed5b7aa96b00
/generic/management/commands/create_proxy_permissions.py
ee4e40f74deb80c7dc97eaaf8a508c54e2fb2370
[]
no_license
ixc/django-generic
1ef3c27ac89d582d3b9fc3afd743d97ccda4a68a
fc17e7907162829faaf80cd2af605357b204a315
refs/heads/master
2022-12-04T19:52:26.700398
2019-02-20T13:16:07
2019-02-20T13:16:07
287,650,998
0
0
null
null
null
null
UTF-8
Python
false
false
1,036
py
from django.core.management.base import AppCommand from django.contrib.contenttypes.models import ContentType from django.contrib.auth.models import Permission from django.contrib.auth.management import _get_all_permissions class Command(AppCommand): help = 'Creates permissions for proxy models; see Django #11154.' def handle_app(self, app, **options): app_name = app.__name__.split('.')[-2] # app is the models module for ctype in ContentType.objects.filter( app_label=app_name, permission__isnull=True ): for codename, name in _get_all_permissions( ctype.model_class()._meta ): p, created = Permission.objects.get_or_create( codename=codename, content_type__pk=ctype.id, defaults={'name': name, 'content_type': ctype}) if created: if options.get('verbosity', 1) >= 1: self.stdout.write("Created: %s\n" % (p,))
[ "simon@simonmeers.com" ]
simon@simonmeers.com
6f49e68819abe8b1d485500c72678faf77327817
146012dda21ab72badad6daa8f98e6b26fedb128
/08day/04-练习求和.py
c539322bdecb93e196c838806f2fc360f0cb12e3
[]
no_license
fengshuai1/1805
41786c3561beca580ba82d9e9d4347571e38e198
8dc3e6605cc1d6f91685ae45bfebfc062f0aa489
refs/heads/master
2020-03-19T07:41:40.608389
2018-06-28T01:45:43
2018-06-28T01:45:43
136,140,329
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
c = 0 m = 0 while c <= 100: print("当前数字:%d"%c) c+=1 m = c + m print("求和是%d"%m)
[ "1329008013@qq.com" ]
1329008013@qq.com
4acb6cd3c096137fa35422140bd2fb23a7a5a1ca
b16abb62b283064bd2fa4819a711578658759c7b
/zhihu.py
901c9bd5f90425194b7b793230c9c22f6df0872f
[]
no_license
pfDou/insects-of-zhihu-hot-topics
5bfa66f9775de98b4c6dc58abbe1620f0bbd5a95
0f338ec287d1832a1792ad613fb65858329982e7
refs/heads/master
2021-01-23T22:10:46.731370
2015-05-09T14:36:01
2015-05-09T14:36:01
32,391,701
0
1
null
null
null
null
UTF-8
Python
false
false
2,082
py
# -*- coding: utf-8 -*- import urllib.request from bs4 import BeautifulSoup import re import io import sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encoding="utf8") main_page = "http://www.zhihu.com/explore#daily-hot" urllines = urllib.request.urlopen(main_page) #<class 'http.client.HTTPResponse'> page_data = urllines.read() #<class 'bytes'> urllines.close() soup = BeautifulSoup(page_data) #<class 'bs4.BeautifulSoup'> #f = open("zhihu.txt","w") hot_topics = soup.find('div', attrs = {"data-type":"daily"}).children output = [] for item in list(hot_topics): if item.string: pass # navigableString type, maybe space line in the source page else: output.append({}) q_index = int(item["data-offset"])-1 print(item["data-offset"]) href = item.h2.a["href"] question = item.h2.a.string print("Question:", question) #answer page's url url = "http://www.zhihu.com" + href print("answer address:",url) #open answer page get the answer sub_urllines = urllib.request.urlopen(url) #<class 'http.client.HTTPResponse'> sub_page_data = sub_urllines.read() #<class 'bytes'> sub_urllines.close() sub_soup = BeautifulSoup(sub_page_data) # print(sub_soup.title) favorer_num = sub_soup.find("span", class_="count").text print("favorer_num:",favorer_num) brief_Q = sub_soup.find("div", class_="zm-editable-content").text print("Question's brief:",brief_Q) # test = sub_soup.find_all("div", attrs={"class":"zm-editable-content"}) # for i in test: # print(i["class"]) answer_head = sub_soup.find("div", class_="answer-head") author = sub_soup.find("a", class_="zm-item-link-avatar").next_sibling.next_sibling.string print("author:", author) author_qg = sub_soup.find("a", class_="zm-item-link-avatar").next_sibling.next_sibling.next_sibling.next_sibling.string print("author's qg:", author_qg) #answer = sub_soup.find_all("div", attrs={"class":"zm-editable-content"})[2].text#get_text() answer = sub_soup.find("div", class_=" zm-editable-content clearfix").text print("Answer:", answer)
[ "372167676@qq.com" ]
372167676@qq.com
d7dc7236ef3c00feb2d661cbb1f257e5ad610ec1
7a93b7817b343b9da49662948e922684b94d1d40
/jstorm-client/src/main/py/storm/Nimbus-remote
2aae8a4fa0862207f6473a1653963e9e2abfbd00
[ "Apache-2.0" ]
permissive
caiyifeng/learn_jstorm
c2aeeb9dd6d29ddf4c7593347b537e049fa57b4a
61d27beea51a5c37e00193ad4c464b58ded156c1
refs/heads/master
2020-12-26T21:49:50.380442
2015-05-03T14:43:19
2015-05-03T14:43:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,717
#!/usr/bin/env python # # Autogenerated by Thrift Compiler (0.7.0) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # import sys import pprint from urlparse import urlparse from thrift.transport import TTransport from thrift.transport import TSocket from thrift.transport import THttpClient from thrift.protocol import TBinaryProtocol import Nimbus from ttypes import * if len(sys.argv) <= 1 or sys.argv[1] == '--help': print '' print 'Usage: ' + sys.argv[0] + ' [-h host:port] [-u url] [-f[ramed]] function [arg1 [arg2...]]' print '' print 'Functions:' print ' void submitTopology(string name, string uploadedJarLocation, string jsonConf, StormTopology topology)' print ' void submitTopologyWithOpts(string name, string uploadedJarLocation, string jsonConf, StormTopology topology, SubmitOptions options)' print ' void killTopology(string name)' print ' void killTopologyWithOpts(string name, KillOptions options)' print ' void activate(string name)' print ' void deactivate(string name)' print ' void rebalance(string name, RebalanceOptions options)' print ' void metricMonitor(string name, MonitorOptions options)' print ' void beginLibUpload(string libName)' print ' string beginFileUpload()' print ' void uploadChunk(string location, string chunk)' print ' void finishFileUpload(string location)' print ' string beginFileDownload(string file)' print ' string downloadChunk(string id)' print ' string getNimbusConf()' print ' ClusterSummary getClusterInfo()' print ' TopologyInfo getTopologyInfo(string id)' print ' SupervisorWorkers getSupervisorWorkers(string host)' print ' string getTopologyConf(string id)' print ' StormTopology getTopology(string id)' print ' StormTopology getUserTopology(string id)' print ' TopologyMetricInfo getTopologyMetric(string id)' print '' sys.exit(0) pp = pprint.PrettyPrinter(indent = 2) host = 'localhost' port = 9090 uri = '' framed = False http = False argi = 1 if sys.argv[argi] == '-h': parts = sys.argv[argi+1].split(':') host = parts[0] port = int(parts[1]) argi += 2 if sys.argv[argi] == '-u': url = urlparse(sys.argv[argi+1]) parts = url[1].split(':') host = parts[0] if len(parts) > 1: port = int(parts[1]) else: port = 80 uri = url[2] if url[4]: uri += '?%s' % url[4] http = True argi += 2 if sys.argv[argi] == '-f' or sys.argv[argi] == '-framed': framed = True argi += 1 cmd = sys.argv[argi] args = sys.argv[argi+1:] if http: transport = THttpClient.THttpClient(host, port, uri) else: socket = TSocket.TSocket(host, port) if framed: transport = TTransport.TFramedTransport(socket) else: transport = TTransport.TBufferedTransport(socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) client = Nimbus.Client(protocol) transport.open() if cmd == 'submitTopology': if len(args) != 4: print 'submitTopology requires 4 args' sys.exit(1) pp.pprint(client.submitTopology(args[0],args[1],args[2],eval(args[3]),)) elif cmd == 'submitTopologyWithOpts': if len(args) != 5: print 'submitTopologyWithOpts requires 5 args' sys.exit(1) pp.pprint(client.submitTopologyWithOpts(args[0],args[1],args[2],eval(args[3]),eval(args[4]),)) elif cmd == 'killTopology': if len(args) != 1: print 'killTopology requires 1 args' sys.exit(1) pp.pprint(client.killTopology(args[0],)) elif cmd == 'killTopologyWithOpts': if len(args) != 2: print 'killTopologyWithOpts requires 2 args' sys.exit(1) pp.pprint(client.killTopologyWithOpts(args[0],eval(args[1]),)) elif cmd == 'activate': if len(args) != 1: print 'activate requires 1 args' sys.exit(1) pp.pprint(client.activate(args[0],)) elif cmd == 'deactivate': if len(args) != 1: print 'deactivate requires 1 args' sys.exit(1) pp.pprint(client.deactivate(args[0],)) elif cmd == 'rebalance': if len(args) != 2: print 'rebalance requires 2 args' sys.exit(1) pp.pprint(client.rebalance(args[0],eval(args[1]),)) elif cmd == 'metricMonitor': if len(args) != 2: print 'metricMonitor requires 2 args' sys.exit(1) pp.pprint(client.metricMonitor(args[0],eval(args[1]),)) elif cmd == 'beginLibUpload': if len(args) != 1: print 'beginLibUpload requires 1 args' sys.exit(1) pp.pprint(client.beginLibUpload(args[0],)) elif cmd == 'beginFileUpload': if len(args) != 0: print 'beginFileUpload requires 0 args' sys.exit(1) pp.pprint(client.beginFileUpload()) elif cmd == 'uploadChunk': if len(args) != 2: print 'uploadChunk requires 2 args' sys.exit(1) pp.pprint(client.uploadChunk(args[0],args[1],)) elif cmd == 'finishFileUpload': if len(args) != 1: print 'finishFileUpload requires 1 args' sys.exit(1) pp.pprint(client.finishFileUpload(args[0],)) elif cmd == 'beginFileDownload': if len(args) != 1: print 'beginFileDownload requires 1 args' sys.exit(1) pp.pprint(client.beginFileDownload(args[0],)) elif cmd == 'downloadChunk': if len(args) != 1: print 'downloadChunk requires 1 args' sys.exit(1) pp.pprint(client.downloadChunk(args[0],)) elif cmd == 'getNimbusConf': if len(args) != 0: print 'getNimbusConf requires 0 args' sys.exit(1) pp.pprint(client.getNimbusConf()) elif cmd == 'getClusterInfo': if len(args) != 0: print 'getClusterInfo requires 0 args' sys.exit(1) pp.pprint(client.getClusterInfo()) elif cmd == 'getTopologyInfo': if len(args) != 1: print 'getTopologyInfo requires 1 args' sys.exit(1) pp.pprint(client.getTopologyInfo(args[0],)) elif cmd == 'getSupervisorWorkers': if len(args) != 1: print 'getSupervisorWorkers requires 1 args' sys.exit(1) pp.pprint(client.getSupervisorWorkers(args[0],)) elif cmd == 'getTopologyConf': if len(args) != 1: print 'getTopologyConf requires 1 args' sys.exit(1) pp.pprint(client.getTopologyConf(args[0],)) elif cmd == 'getTopology': if len(args) != 1: print 'getTopology requires 1 args' sys.exit(1) pp.pprint(client.getTopology(args[0],)) elif cmd == 'getUserTopology': if len(args) != 1: print 'getUserTopology requires 1 args' sys.exit(1) pp.pprint(client.getUserTopology(args[0],)) elif cmd == 'getTopologyMetric': if len(args) != 1: print 'getTopologyMetric requires 1 args' sys.exit(1) pp.pprint(client.getTopologyMetric(args[0],)) else: print 'Unrecognized method %s' % cmd sys.exit(1) transport.close()
[ "songtk@msn.com" ]
songtk@msn.com
cec42bc5df865c7e99d23024fa4c71a6f7db99d8
32fb6fd06b496b4c9ceabe578dceed265950cc37
/homework/core/models/meta/base.py
b45e9d7de1fe1813e6d37480dcef6702e9545bf9
[]
no_license
rach/homework
8167d3930d4313818e306fb0965ffbd6402bf12b
aca450753445caa188675d637300ead443d15525
refs/heads/master
2021-01-10T04:50:53.857108
2016-01-11T21:13:38
2016-01-11T21:13:38
49,445,928
0
0
null
null
null
null
UTF-8
Python
false
false
841
py
from sqlalchemy.ext.declarative import declared_attr from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, scoped_session from sqlalchemy import event from sqlalchemy import ( Column, Integer ) import re _underscorer1 = re.compile(r'(.)([A-Z][a-z]+)') _underscorer2 = re.compile('([a-z0-9])([A-Z])') def _camel_to_snake(s): subbed = _underscorer1.sub(r'\1_\2', s) return _underscorer2.sub(r'\1_\2', subbed).lower() class Base(object): @declared_attr def __tablename__(cls): return _camel_to_snake(cls.__name__) id = Column(Integer, primary_key=True) Base = declarative_base(cls=Base) def create_dbsession(engine): dbsession = scoped_session(sessionmaker()) dbsession.configure(bind=engine) Base.metadata.bind = engine return dbsession
[ "rachid.belaid@gmail.com" ]
rachid.belaid@gmail.com
4b5be1fb84187f4d83d1e07885657d02b7a120f5
30d1b89b67d48efdacce5bceeee2c734bee2b509
/manual_translation/devel/lib/python2.7/dist-packages/mavros_msgs/msg/_Mavlink.py
2d4e562e868c5dec2e71bd13bbbde54c744bcc04
[]
no_license
ParthGaneriwala/uppaal2ros
db4a6b20c78e423511e565477a2461942c2adceb
f88b2b860b0b970b61110a323d0397352785c9e2
refs/heads/main
2023-02-20T19:36:22.406515
2021-01-28T18:58:44
2021-01-28T18:58:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
/home/adi/ardu_ws/devel/.private/mavros_msgs/lib/python2.7/dist-packages/mavros_msgs/msg/_Mavlink.py
[ "adithyatp@yahoo.com" ]
adithyatp@yahoo.com
268f77595526ce94d83bcd97375dc506662f676b
309da681f1ce8d119f2e44580ba196094d03bd92
/project.py
1dbaa8cec2329e4e1555049d01b2d79a0b6f0710
[]
no_license
aditya6116/catalog
bd9da4c8f8ec2c95728b66a8914d04e759c7ddb0
e8247118cde31d92327a8df82f766bb0f218999f
refs/heads/master
2021-01-21T21:32:36.111228
2017-06-20T07:01:09
2017-06-20T07:01:09
94,858,288
0
0
null
null
null
null
UTF-8
Python
false
false
14,369
py
from flask import Flask, render_template from flask import request, redirect, jsonify, url_for, flash from sqlalchemy import create_engine, asc from sqlalchemy.orm import sessionmaker from database_setup import Base, Restaurant, MenuItem, User from flask import session as login_session import random import string from oauth2client.client import flow_from_clientsecrets from oauth2client.client import FlowExchangeError import httplib2 import json from flask import make_response import requests app = Flask(__name__) # Connect to Database and create database session engine = create_engine('sqlite:///restaurantmenuwithusers.db') Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() CLIENT_ID = json.loads( open('client_secrets.json', 'r').read())['web']['client_id'] APPLICATION_NAME = "Restaurant Menu Application" def createUser(login_session): newUser = User(name=login_session['username'], email=login_session[ 'email'], picture=login_session['picture']) session.add(newUser) session.commit() user = session.query(User).filter_by(email=login_session['email']).one() return user.id def getUserInfo(user_id): user = session.query(User).filter_by(id=user_id).one() return user def getUserID(email): try: user = session.query(User).filter_by(email=email).one() return user.id except BaseException: return None @app.route('/login') def showLogin(): state = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in xrange(32)) login_session['state'] = state return render_template("login.html", STATE=state) # gconnect @app.route('/gconnect', methods=['POST']) def gconnect(): # Validate state token if request.args.get('state') != login_session['state']: response = make_response(json.dumps('Invalid state parameter.'), 401) response.headers['Content-Type'] = 'application/json' return response # Obtain authorization code code = request.data try: # Upgrade the authorization code into a credentials object oauth_flow = flow_from_clientsecrets('client_secrets.json', scope='') oauth_flow.redirect_uri = 'postmessage' credentials = oauth_flow.step2_exchange(code) except FlowExchangeError: response = make_response( json.dumps('Failed to upgrade the authorization code.'), 401) response.headers['Content-Type'] = 'application/json' return response # Check that the access token is valid. access_token = credentials.access_token url = ('https://www.googleapis.com/oauth2/v1/tokeninfo?access_token=%s' % access_token) h = httplib2.Http() result = json.loads(h.request(url, 'GET')[1]) # If there was an error in the access token info, abort. if result.get('error') is not None: response = make_response(json.dumps(result.get('error')), 500) response.headers['Content-Type'] = 'application/json' return response # Verify that the access token is used for the intended user. gplus_id = credentials.id_token['sub'] if result['user_id'] != gplus_id: response = make_response( json.dumps("Token's user ID doesn't match given user ID."), 401) response.headers['Content-Type'] = 'application/json' return response # Verify that the access token is valid for this app. if result['issued_to'] != CLIENT_ID: response = make_response( json.dumps("Token's client ID does not match app's."), 401) print "Token's client ID does not match app's." response.headers['Content-Type'] = 'application/json' return response stored_access_token = login_session.get('access_token') stored_gplus_id = login_session.get('gplus_id') if stored_access_token is not None and gplus_id == stored_gplus_id: response = make_response( json.dumps('Current user is already connected.'), 200) response.headers['Content-Type'] = 'application/json' return response # Store the access token in the session for later use. login_session['access_token'] = credentials.access_token login_session['gplus_id'] = gplus_id # Get user info userinfo_url = "https://www.googleapis.com/oauth2/v1/userinfo" params = {'access_token': credentials.access_token, 'alt': 'json'} answer = requests.get(userinfo_url, params=params) data = answer.json() login_session['username'] = data['name'] login_session['picture'] = data['picture'] login_session['email'] = data['email'] user_id = getUserID(login_session['email']) if not user_id: user_id = createUser(login_session) login_session['user_id'] = user_id print login_session['username'] output = '' output += '<h1>Welcome, ' output += login_session['username'] output += '!</h1>' output += '<img src="' output += login_session['picture'] output += """ " style = "width: 300px; height: 300px;border-radius: 150px; -webkit-border-radius: 150px;-moz-border-radius: 150px;"> """ flash("you are now logged in as %s" % login_session['username']) print "done!" return output # DISCONNECT - Revoke a current user's token and reset their login_session @app.route('/gdisconnect') def gdisconnect(): access_token = login_session['access_token'] print 'In gdisconnect access token is %s', access_token print 'User name is: ' print login_session['username'] if access_token is None: print 'Access Token is None' response = make_response( json.dumps('Current user not connected.'), 401) response.headers['Content-Type'] = 'application/json' return response url = """https://accounts.google.com/o/oauth2/revoke? token=%s""" %login_session['access_token'] h = httplib2.Http() result = h.request(url, 'GET')[0] print 'result is ' print result if result['status'] == '404': del login_session['access_token'] del login_session['gplus_id'] del login_session['username'] del login_session['email'] del login_session['picture'] response = make_response(json.dumps('Successfully disconnected.'), 200) response.headers['Content-Type'] = 'application/json' return response else: response = make_response( json.dumps( 'Failed to revoke token for given user.', 400)) response.headers['Content-Type'] = 'application/json' return response # JSON APIs to view Restaurant Information @app.route('/restaurant/<int:restaurant_id>/menu/JSON') def restaurantMenuJSON(restaurant_id): restaurant = session.query(Restaurant).filter_by(id=restaurant_id).one() items = session.query(MenuItem).filter_by( restaurant_id=restaurant_id).all() return jsonify(MenuItems=[i.serialize for i in items]) @app.route('/restaurant/<int:restaurant_id>/menu/<int:menu_id>/JSON') def menuItemJSON(restaurant_id, menu_id): Menu_Item = session.query(MenuItem).filter_by(id=menu_id).one() return jsonify(Menu_Item=Menu_Item.serialize) @app.route('/restaurant/JSON') def restaurantsJSON(): restaurants = session.query(Restaurant).all() return jsonify(restaurants=[r.serialize for r in restaurants]) # Show all restaurants @app.route('/') @app.route('/restaurant/') def showRestaurants(): restaurants = session.query(Restaurant).order_by(asc(Restaurant.name)) if 'username' not in login_session: return render_template( 'publicrestaurant.html', restaurants=restaurants) else: return render_template('restaurants.html', restaurants=restaurants) # Create a new restaurant @app.route('/restaurant/new/', methods=['GET', 'POST']) def newRestaurant(): if 'username' not in login_session: return redirect("/login") if request.method == 'POST': newRestaurant = Restaurant( name=request.form['name'], user_id=login_session['user_id']) session.add(newRestaurant) flash('New Restaurant %s Successfully Created' % newRestaurant.name) session.commit() return redirect(url_for('showRestaurants')) else: return render_template('newRestaurant.html') # Edit a restaurant @app.route('/restaurant/<int:restaurant_id>/edit/', methods=['GET', 'POST']) def editRestaurant(restaurant_id): if 'username' not in login_session: return redirect("/login") editedRestaurant = session.query( Restaurant).filter_by(id=restaurant_id).one() if login_session['user_id'] != editedRestaurant.user_id: flash('edit your restaurant') return redirect(url_for('showRestaurants')) else: if request.method == 'POST': if request.form['name']: editedRestaurant.name = request.form['name'] flash( 'Restaurant Successfully Edited %s' % editedRestaurant.name) return redirect(url_for('showRestaurants')) else: return render_template( 'editRestaurant.html', restaurant=editedRestaurant) # Delete a restaurant @app.route('/restaurant/<int:restaurant_id>/delete/', methods=['GET', 'POST']) def deleteRestaurant(restaurant_id): if 'username' not in login_session: return redirect("/login") else: restaurantToDelete = session.query( Restaurant).filter_by(id=restaurant_id).one() if login_session['user_id'] != restaurantToDelete.user_id: flash('You can Delete only your restaurant') return redirect(url_for('showRestaurants')) if request.method == 'POST': session.delete(restaurantToDelete) flash('%s Successfully Deleted' % restaurantToDelete.name) session.commit() return redirect( url_for( 'showRestaurants', restaurant_id=restaurant_id)) else: return render_template( 'deleteRestaurant.html', restaurant=restaurantToDelete) # Show a restaurant menu @app.route('/restaurant/<int:restaurant_id>/') @app.route('/restaurant/<int:restaurant_id>/menu/') def showMenu(restaurant_id): restaurant = session.query(Restaurant).filter_by(id=restaurant_id).one() items = session.query(MenuItem).filter_by( restaurant_id=restaurant_id).all() creator = getUserInfo(restaurant.user_id) if "username" not in \ login_session or login_session['user_id'] != creator.id: return render_template( 'publicmenu.html', items=items, restaurant=restaurant, creator=creator) else: return render_template( 'menu.html', items=items, restaurant=restaurant, creator=creator) # Create a new menu item @app.route( '/restaurant/<int:restaurant_id>/menu/new/', methods=[ 'GET', 'POST']) def newMenuItem(restaurant_id): if 'username' not in login_session: return redirect("/login") restaurant = session.query(Restaurant).filter_by(id=restaurant_id).one() if request.method == 'POST': newItem = MenuItem( name=request.form['name'], description=request.form['description'], price=request.form['price'], course=request.form['course'], restaurant_id=restaurant_id, user_id=restaurant.user_id) session.add(newItem) session.commit() flash('New Menu %s Item Successfully Created' % (newItem.name)) return redirect(url_for('showMenu', restaurant_id=restaurant_id)) else: return render_template('newmenuitem.html', restaurant_id=restaurant_id) # Edit a menu item @app.route( '/restaurant/<int:restaurant_id>/menu/<int:menu_id>/edit', methods=[ 'GET', 'POST']) def editMenuItem(restaurant_id, menu_id): if 'username' not in login_session: return redirect("/login") editedItem = session.query(MenuItem).filter_by(id=menu_id).one() restaurant = session.query( Restaurant).filter_by(id=restaurant_id).one() if login_session['user_id'] != restaurant.user_id: flash('edit your restaurant Menu') return redirect(url_for('showRestaurants')) if request.method == 'POST': if request.form['name']: editedItem.name = request.form['name'] if request.form['description']: editedItem.description = request.form['description'] if request.form['price']: editedItem.price = request.form['price'] if request.form['course']: editedItem.course = request.form['course'] session.add(editedItem) session.commit() flash('Menu Item Successfully Edited') return redirect(url_for('showMenu', restaurant_id=restaurant_id)) else: return render_template( 'editmenuitem.html', restaurant_id=restaurant_id, menu_id=menu_id, item=editedItem) # Delete a menu item @app.route( '/restaurant/<int:restaurant_id>/menu/<int:menu_id>/delete', methods=[ 'GET', 'POST']) def deleteMenuItem(restaurant_id, menu_id): if 'username' not in login_session: return redirect("/login") else: restaurant = session.query( Restaurant).filter_by(id=restaurant_id).one() itemToDelete = session.query(MenuItem).filter_by(id=menu_id).one() if login_session['user_id'] != restaurant.user_id: flash('edit your restaurant') return redirect(url_for('showRestaurants')) if request.method == 'POST': session.delete(itemToDelete) session.commit() flash('Menu Item Successfully Deleted') return redirect(url_for('showMenu', restaurant_id=restaurant_id)) else: return render_template('deleteMenuItem.html', item=itemToDelete) if __name__ == '__main__': app.secret_key = 'super_secret_key' app.debug = True app.run(host='0.0.0.0', port=5000)
[ "gurusharan2@gmail.com" ]
gurusharan2@gmail.com
7ed8f7fb8b672c0b572c9f73874b66a87b146d20
ff55f48130e88f678a9a7896a746579a24fe02d2
/app/app.py
aaaba555e077b465e1007feed77119eb3c932c7c
[]
no_license
201504481/Tarea8
5c91d0b95feb0542d6cd195e6b4d65cde89de352
794190ff15efe775a9ef090883f0582e139f3542
refs/heads/master
2020-08-09T12:30:57.291552
2019-10-10T06:00:41
2019-10-10T06:00:41
214,088,587
0
0
null
null
null
null
UTF-8
Python
false
false
687
py
from typing import List, Dict from flask import Flask import mysql.connector import json app = Flask(__name__) def Materia() -> List[Dict]: config = { 'user': 'root', 'password': 'root', 'host': 'db', 'port': '3306', 'database': 'knights' } connection = mysql.connector.connect(**config) cursor = connection.cursor() cursor.execute('SELECT * FROM Materia') results = [{nombre: codigo} for (nombre, codigo) in cursor] cursor.close() connection.close() return results @app.route('/') def index() -> str: return json.dumps({'Materia': Materia()}) if __name__ == '__main__': app.run(host='0.0.0.0')
[ "eljulio.arango97@gmail.com" ]
eljulio.arango97@gmail.com
f6c327232f55a5253a539568cc9c8d10d656384d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02686/s642611525.py
914bb9607791cee5d353d156d9afb343faf395b3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
981
py
def main(): N = int(input()) up_lines = [] down_lines = [] for i in range(N): s = input() height = 0 bottom = 0 for c in s: if c == "(": height += 1 else: height -= 1 bottom = min(bottom, height) if height > 0: up_lines.append((bottom, height)) else: down_lines.append((bottom-height, -height)) up_lines.sort(reverse=True, key=lambda line: line[0]) down_lines.sort(reverse=True, key=lambda line: line[0]) left = 0 for bottom, height in up_lines: if left + bottom < 0: print("No") return left += height right = 0 for bottom, height in down_lines: if right + bottom < 0: print("No") return right += height if left == right: print("Yes") else: print("No") if __name__ == "__main__": main()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
d41a42e653d1d0c41e86f0a5e096ce3bb000a5ee
a0398f983a3eec052780b13953e8d43162bc9787
/LogProducer/main.py
e3698fe863387a65d68ebd21c15b30ae5fbf2179
[]
no_license
nguyenvanhuybk99/ForexSpark
1795ad295f18753a7ec685282b3fe7e7b7210991
4008213223fae7cca63695015c33c59f17754f16
refs/heads/main
2023-02-06T05:46:03.942904
2020-12-22T04:33:36
2020-12-22T04:33:36
323,226,046
0
0
null
null
null
null
UTF-8
Python
false
false
1,338
py
# This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. from log_manager import LogManager from connector import KafkaConnector from config import LoggerConfig, ConnectorConfig import sys class Main: __log_manager: LogManager @classmethod def setup(cls, msg_num=1, rate=1): task_usdeur_logger_config = LoggerConfig("TASK_USDEUR", 2) task_usdeur_connector_config = ConnectorConfig("KAFKA_CONNECTOR", "USDEUR") task_gbpusd_logger_config = LoggerConfig("TASK_GBPUSD", 2) task_gbpusd_connector_config = ConnectorConfig("KAFKA_CONNECTOR", "GBPUSD") cls.__log_manager = LogManager([(task_usdeur_logger_config, task_usdeur_connector_config), (task_gbpusd_logger_config, task_gbpusd_connector_config)], msg_num, rate) return cls @classmethod def run(cls): cls.__log_manager.dispatch_logs() if __name__ == '__main__': args = sys.argv try: app = Main.setup(int(args[1]), int(args[2])) except Exception as e: print(e) print("Wrong arguments, use default config") app = Main.setup(3, 4) app.run()
[ "huynv1@kaopiz.com" ]
huynv1@kaopiz.com
5d00e7dd24ff76d035474abbf3f113bf88deb4cc
cb82718999848e7ab557b6877d40c079916d065a
/gen_trips.py
b17191fbed4c9fd60f31a3d9421639b2a40469c9
[ "Apache-2.0" ]
permissive
divergent63/simple_shortest_routing
e84d1b6659a7f19436f3d9125534075b39a274e1
f6719ad1fb0a0fdd5916bece62edbed82a0ef899
refs/heads/master
2020-05-20T22:29:29.099605
2019-05-15T12:26:26
2019-05-15T12:26:26
185,783,420
0
0
null
null
null
null
UTF-8
Python
false
false
1,456
py
#!/usr/bin/env python # coding=utf-8 """ input: OD information(vehicle information) output: SUMO Trips """ from lxml import etree from pathlib import Path import os import pandas as pd def gen_trips(od): start_time = od['start_time'].values root = etree.Element("routes") for i in range(len(od.values)): veh_id = str(i) route = od['route'].values[i] route = route.split("'") route_list = [] for j in range(len(route)): if len(route[j]) > 3: route_list.append(route[j]) if len(route_list) == 4: route = str(route_list[0]) + ' ' + str(route_list[1]) + str(' ') + str(route_list[2]) + ' ' + str(route_list[3]) if len(route_list) == 3: route = str(route_list[0]) + ' ' + str(route_list[1]) + str(' ') + str(route_list[2]) if len(route_list) == 2: route = str(route_list[0]) + ' ' + str(route_list[1]) root_1 = etree.SubElement(root, "vehicle", id=str(veh_id), depart=str(start_time[i] * 10)) child_11 = etree.SubElement( root_1, "route", edges=route ) with open(Path(Path(os.getcwd()) / 'conf' / Path('test0_trips.trips.xml')), 'w') as e_data: print(etree.tostring(root, pretty_print=True, encoding='unicode'), file=e_data) if __name__ == '__main__': path = Path(os.getcwd()) / 'conf' / 'veh_info.csv' od = pd.read_csv(path).dropna() gen_trips(od)
[ "634184805@qq.com" ]
634184805@qq.com