blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
fda194aff772871c7c4b2ea781497dc72cf05c8a
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_cryings.py
62b48a889fcdd5f58f940b8aca110dd0c8ff2b83
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
from xai.brain.wordbase.verbs._cry import _CRY #calss header class _CRYINGS(_CRY, ): def __init__(self,): _CRY.__init__(self) self.name = "CRYINGS" self.specie = 'verbs' self.basic = "cry" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
240ee78594f9cde78e782abfe63180952dadd898
440b918affee34f5ae09f9389e10212eb00738d4
/pir.py
205cb238cc331fa40307c6183c3ad1b3dbda6cca
[]
no_license
wildtangent/raspberry-pi-examples
4cd0deaf2b8bba7d6e08ba58f3a1f991b96fdde4
4f74f9cfb6008bfa953c8b9ee3b5bfbd30662d35
refs/heads/master
2021-01-10T02:14:54.855946
2015-11-03T01:51:14
2015-11-03T01:51:14
45,083,645
0
0
null
null
null
null
UTF-8
Python
false
false
1,114
py
import RPi.GPIO as GPIO class MyPiPIR: # Current Pin on GPIO DEFAULT = 7 # States INACTIVE = 0 ACTIVE = 1 ACTIVATED = 2 DEACTIVATED = 3 def __init__(self, pin): self.pin = pin self.current_state = 0 self.previous_state = 0 self.setup() def setup(self): GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(self.pin, GPIO.IN) # Wait for PIR to settle down while GPIO.input(self.pin) == 1: self.ready = False self.ready = True self.current_state = self.__state() def __state(self): return GPIO.input(self.pin) def state(self): self.current_state = self.__state() if self.current_state == 1 and self.previous_state == 0: self.previous_state = 1 return self.__class__.ACTIVATED elif self.current_state == 0 and self.previous_state == 1: self.previous_state = 0 return self.__class__.DEACTIVATED elif self.current_state == 1 and self.previous_state == 1: return self.__class__.ACTIVE elif self.current_state == 0 and self.previous_state == 0: return self.__class__.INACTIVE
[ "joe@authomedia.co.uk" ]
joe@authomedia.co.uk
30df20c459875066299b819277787ea6cd268ad7
0fd506e2651fde07ff65ae80c12226a18d7778a2
/wildfire/pandas_cut_test.py
d3bbc09ac55c3f2995b8e3a3325024673de427c4
[]
no_license
MillerWu2014/remote_project
af69e20d84809ea3d1e121e5cac57715073f70d6
7458ec6571b5b046f07ce2f89dcb393e0dd2e478
refs/heads/master
2020-08-03T15:43:36.028810
2019-09-30T07:45:06
2019-09-30T07:45:06
211,804,058
2
0
null
null
null
null
UTF-8
Python
false
false
86
py
import pandas as pd x = pd.Series(range(100)) print(pd.cut(x, 50, labels=range(50)))
[ "root@localhost.localdomain" ]
root@localhost.localdomain
cd846f89d90d6f2f5ce61fa895e49409d4e39009
604ffaf79c5f9c816bb1a2151ae33fbf29bca52b
/cloudstoragetui/keypress.py
6eaf37d5320d02c08c43e2c2b52b735c33eabb6f
[ "MIT" ]
permissive
joeyism/cloud-storage-tui
1069092b51f1d11daa033ea5896b625e42e55691
8fda9bc8551756e88db706944489f1bbcc95a52c
refs/heads/master
2023-05-31T00:33:07.979555
2021-06-07T17:19:26
2021-06-07T17:19:26
352,346,198
0
0
null
null
null
null
UTF-8
Python
false
false
1,773
py
import curses from typing import List from cloudstoragetui.constants import KEY_QUIT, KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT, KEY_ENTER, ESC, UP, DOWN, LEFT, RIGHT from cloudstoragetui.draw import DrawnBox from cloudstoragetui.cursor_state import CursorState from cloudstoragetui.debug import log def _extract_min_max(box): min_y = box.top_left_y + 1 min_x = box.top_left_x + 1 max_y = box.length_y + box.top_left_y - 2 max_x = (box.index + 1) * box.length_x - 1 return (min_y, min_x, max_y, max_x) def _eval_keypress(screen, key, boxes, cursor_state): curs_y, curs_x = curses.getsyx() box = boxes[cursor_state.column] min_y, min_x, max_y, max_x = _extract_min_max(box) action = None if key in KEY_QUIT: action = ESC elif key in KEY_UP: cursor_state.move_row_up(min_y) screen.move(max(curs_y - 1, min_y), curs_x) action = UP elif key in KEY_DOWN: cursor_state.move_row_down(max_y) screen.move(min(curs_y + 1, max_y), curs_x) action = DOWN elif key in KEY_LEFT: if curs_x == min_x: cursor_state.move_column_left() box = boxes[cursor_state.column] min_y, min_x, max_y, max_x = _extract_min_max(box) screen.move(min_y, min_x) else: screen.move(curs_y, max(curs_x - 1, min_x)) action = LEFT elif key in KEY_RIGHT + KEY_ENTER: cursor_state.move_column_right() box = boxes[cursor_state.column] screen.move(box.top_left_y + 1, box.top_left_x + 1) action = RIGHT screen.refresh() return action def eval_keypress(screen, key: int, boxes: List[DrawnBox], cursor_state: CursorState): return _eval_keypress(screen, key, boxes, cursor_state)
[ "sham.joey@gmail.com" ]
sham.joey@gmail.com
17b06bd2a43cb53c3dac057bdad33d265da42666
3df70c9573f55311f03ad02a329b580eb8f4997f
/hms.py
dca8751cf4a45a172e85f7c24234b0d4d7634d97
[]
no_license
sumukharm/Distributed-Systems-projects-and-Implementations
02b57f34dfbd5582c630d04e027033dccfb929ea
61fbe949614e6d7eaeda530cf6ee1c22322ba898
refs/heads/master
2020-03-29T00:40:28.160427
2019-03-23T05:24:30
2019-03-23T05:24:30
149,350,446
0
0
null
null
null
null
UTF-8
Python
false
false
6,811
py
# -*- generated by 1.1.0b13 -*- import da PatternExpr_254 = da.pat.TuplePattern([da.pat.ConstantPattern('ack')]) PatternExpr_259 = da.pat.BoundPattern('_BoundPattern260_') PatternExpr_298 = da.pat.TuplePattern([da.pat.ConstantPattern('push'), da.pat.FreePattern('secrets'), da.pat.FreePattern('predecessor')]) PatternExpr_346 = da.pat.TuplePattern([da.pat.ConstantPattern('done')]) PatternExpr_351 = da.pat.SelfPattern() PatternExpr_371 = da.pat.TuplePattern([da.pat.ConstantPattern('done')]) PatternExpr_376 = da.pat.BoundPattern('_BoundPattern378_') PatternExpr_354 = da.pat.TuplePattern([da.pat.FreePattern(None), da.pat.TuplePattern([da.pat.FreePattern(None), da.pat.FreePattern(None), da.pat.SelfPattern()]), da.pat.TuplePattern([da.pat.ConstantPattern('done')])]) PatternExpr_379 = da.pat.TuplePattern([da.pat.FreePattern(None), da.pat.TuplePattern([da.pat.FreePattern(None), da.pat.FreePattern(None), da.pat.BoundPattern('_BoundPattern385_')]), da.pat.TuplePattern([da.pat.ConstantPattern('done')])]) PatternExpr_261 = da.pat.TuplePattern([da.pat.FreePattern(None), da.pat.TuplePattern([da.pat.FreePattern(None), da.pat.FreePattern(None), da.pat.BoundPattern('_BoundPattern267_')]), da.pat.TuplePattern([da.pat.ConstantPattern('ack')])]) _config_object = {} import sys import time from random import randint from statistics import stdev '\nclass for Hear My Secret, where:\nAgent i calls agent j if he (agent i) does not know whether j is familiar with his secret.\nThis protocol follows push mode of communication\n' class HMS(da.DistProcess): def __init__(self, procimpl, forwarder, **props): super().__init__(procimpl, forwarder, **props) self._HMSReceivedEvent_0 = [] self._HMSReceivedEvent_2 = [] self._HMSReceivedEvent_3 = [] self._events.extend([da.pat.EventPattern(da.pat.ReceivedEvent, '_HMSReceivedEvent_0', PatternExpr_254, sources=[PatternExpr_259], destinations=None, timestamps=None, record_history=True, handlers=[]), da.pat.EventPattern(da.pat.ReceivedEvent, '_HMSReceivedEvent_1', PatternExpr_298, sources=None, destinations=None, timestamps=None, record_history=None, handlers=[self._HMS_handler_297]), da.pat.EventPattern(da.pat.ReceivedEvent, '_HMSReceivedEvent_2', PatternExpr_346, sources=[PatternExpr_351], destinations=None, timestamps=None, record_history=True, handlers=[]), da.pat.EventPattern(da.pat.ReceivedEvent, '_HMSReceivedEvent_3', PatternExpr_371, sources=[PatternExpr_376], destinations=None, timestamps=None, record_history=True, handlers=[])]) def setup(self, agents, secret, tout, n, mLoss, mDelay, **rest_407): super().setup(agents=agents, secret=secret, tout=tout, n=n, mLoss=mLoss, mDelay=mDelay, **rest_407) self._state.agents = agents self._state.secret = secret self._state.tout = tout self._state.n = n self._state.mLoss = mLoss self._state.mDelay = mDelay self._state.AgentWithMySecret = set() self._state.knownSecrets = set() self._state.exitCondition = False self._state.knownSecrets.add(self._state.secret) def run(self): while (not PatternExpr_354.match_iter(self._HMSReceivedEvent_2, SELF_ID=self._id)): self.gossip() super()._label('_st_label_368', block=False) _st_label_368 = 0 while (_st_label_368 == 0): _st_label_368 += 1 if PatternExpr_379.match_iter(self._HMSReceivedEvent_3, _BoundPattern385_=self.parent(), SELF_ID=self._id): _st_label_368 += 1 else: super()._label('_st_label_368', block=True) _st_label_368 -= 1 'Correctness Test: \n\t\tIf the number of known/learned secrets are equal to the total number of agents in the network,\n\t\tthen an agent is an expert and the protocol is correct\n\t\t' if (self._state.n == len(self._state.knownSecrets)): print('<HMS>Testing correctness; Number of secrets learnt equals Number of different processes, Result :Verified', flush=True) else: print('<HMS>Failed in correctness testing', flush=True) def gossip(self): ' \n\t\tCore function of the protocol, contains the protocol specific logic.\n\t\tAgent i calls agent j if he (agent i) does not know whether j is familiar with his secret.\n\t\tThis protocol follows push mode of communication\n\t\t' super()._label('yeild', block=False) self._state.exitCondition = True for agent in self._state.agents: "check if there's atleast one agent which is not aware of his/her secret. \n\t\t\tIf not, then the exit condition remains true.\n\t\t\t" if (not (agent in self._state.AgentWithMySecret)): self._state.exitCondition = False print('{} sending secret to {}'.format(self._id, agent), flush=True) self.send(('push', self._state.knownSecrets, self._id), to=agent) super()._label('_st_label_251', block=False) _st_label_251 = 0 while (_st_label_251 == 0): _st_label_251 += 1 if PatternExpr_261.match_iter(self._HMSReceivedEvent_0, _BoundPattern267_=agent, SELF_ID=self._id): self._state.AgentWithMySecret.add(agent) _st_label_251 += 1 elif self._timer_expired: print('timeout', flush=True) _st_label_251 += 1 else: super()._label('_st_label_251', block=True, timeout=self._state.tout) _st_label_251 -= 1 else: if (_st_label_251 != 2): continue self._timer_start() if (_st_label_251 != 2): break if self._state.exitCondition: self.send(('done',), to=self._id) self.send(('done',), to=self.parent()) def _HMS_handler_297(self, secrets, predecessor): 'function called when an agent receives secret from the caller agent.\n\t\tAll the received secrets are added to the known set of secrets\n\t\t' print('{} receiving secret entries from {}'.format(self._id, predecessor), flush=True) self.send(('ack',), to=predecessor) ' If csller agent is familiar with his/her secret, \n\t\tthen add them to the set of known agents' if (self._state.secret in secrets): self._state.AgentWithMySecret.add(predecessor) self._state.knownSecrets = self._state.knownSecrets.union(secrets) _HMS_handler_297._labels = None _HMS_handler_297._notlabels = None
[ "noreply@github.com" ]
sumukharm.noreply@github.com
ca010878792d0bc73fec72213f7db9f251dfd0e5
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_bandaged.py
9ef009f331d8a4fe83aa934179c391e624957156
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
245
py
from xai.brain.wordbase.nouns._bandage import _BANDAGE #calss header class _BANDAGED(_BANDAGE, ): def __init__(self,): _BANDAGE.__init__(self) self.name = "BANDAGED" self.specie = 'nouns' self.basic = "bandage" self.jsondata = {}
[ "xingwang1991@gmail.com" ]
xingwang1991@gmail.com
a51a6f80ca166b4e727549a24872fb0c2e79b437
84b35f9c88de110056ae8fc4463a8b5218219112
/validations/float_validations.py
24e9afe52009e25fb1db90d5f58945298a8a43e5
[]
no_license
JMGalvan/python
7657889acba2a7eefacb62632903ad0fe3362765
38c6ae0b67d2e1913380f53db1b12fcffd6b922e
refs/heads/main
2023-03-25T18:09:49.989527
2021-03-28T12:54:51
2021-03-28T12:54:51
351,547,667
0
0
null
2021-03-28T12:54:51
2021-03-25T19:09:09
Python
UTF-8
Python
false
false
1,814
py
# -*- coding: utf-8 -*- """ @author: José Manuel Galván Díaz @course: 08GIIN Metodología de Programación """ # # isValidFloat: Comprueba si el valor es un número Real, en caso de no serlo, # revisa si se puede transformar a Real # @param value (Integer): Valor a revisar # @return boolean # def isValidFloat(value): if type(value) != float and type(value) != int: try: if float(value) or float(value) == 0 : return True except: return False else: return True # # valueFloatIncluded: Comprueba si el valor recibido, está comprendido entre el valor mínimo y máximo establecido. # @param value (Float): Valor que se tiene que validar. # @param minValue (Float): Valor mínimo válido, el valor introducido por el usuario debe de ser mayor o igual a este. # @param maxValue (Float): Valor máximo válido, el valor introducido por el usuario debe de ser menor a este. # @param decimals (Integer): Número máximo de decimales. # @return Boolean # def valueFloatIncluded(value, minValue, maxValue, decimals): if isValidFloat(value) and isValidFloat(minValue) and isValidFloat(maxValue): return float(value) >= float(minValue) and float(value) < float(maxValue) and minDecimals(value, decimals) else: return False # # minDecimals: Comprueba si el valor recibido, no supera los decimales máximos. # @param value (Float): Valor que se tiene que validar. # @param decimals (Integer): Número máximo de decimales. # @return Boolean # def minDecimals(value, decimals): numbers = str(value).split(".") if len(numbers) == 1: return True elif len(numbers) > 1: return len(numbers[1]) <= decimals
[ "noreply@github.com" ]
JMGalvan.noreply@github.com
0708d1f53178ef53448b79db82b98db55f6ac3f9
7540483a0fc5c529c00e8af2bcf0734b731c0478
/src/python/modules/setup.py
39115cf421b7a0cea8061112f70e494ca7183a86
[ "MIT" ]
permissive
Mart1250/bluebrain
a10bbae853efa0ed0c70bf02bb972e7f67873453
69670cb43c74e38b3dece288478b0c86bb9e4e23
refs/heads/master
2021-01-21T09:33:46.713262
2015-06-30T07:08:33
2015-06-30T07:08:33
38,633,562
1
0
null
2015-07-06T17:08:57
2015-07-06T17:08:57
null
UTF-8
Python
false
false
210
py
from distutils.core import setup setup( name='Cannybots', version='0.1dev', packages=['cannybots','cannybots.clients'], license='MIT license', long_description=open('README.txt').read(), )
[ "wayne@cannybots.com" ]
wayne@cannybots.com
b3646cc8d6f341f85ee10da44ac42e4e9153fe19
12747304dbdfced3ac425870c2c0f680ae3db26e
/todo/migrations/0002_auto_20180904_1255.py
c78e8f801d0741b67e4be50ed9668ab8ee029803
[]
no_license
Rudresh17/jarvisr
c0079333691092cc55171c757b6f1dfc8a3a1eb6
9ce0d1d96545bcd150b3533f508f1d764870e0ef
refs/heads/master
2020-03-28T18:23:46.240550
2018-09-15T06:58:11
2018-09-15T06:58:11
148,877,980
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
# Generated by Django 2.0.5 on 2018-09-04 07:25 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('todo', '0001_initial'), ] operations = [ migrations.RenameModel( old_name='todo', new_name='add', ), ]
[ "rudreshlegend@gmail.com" ]
rudreshlegend@gmail.com
8020760bc5cd0a1d148739c5991cea3a09beb85f
5aadc1f06bdb68a73bb003b23cc85af528d61bf4
/detection_network/src/rl/ppo.py
b71a185fbb72e8e16bc734d17634f6bdea14b165
[]
no_license
zideajang/zi_full_self_drive_system
81dca2ca0541dfab7c021c6e3a0e58701bbf1693
fee2e4057619a19a585fbd8b9622f69c25946be1
refs/heads/master
2023-09-03T02:41:35.720600
2021-09-27T02:37:41
2021-09-27T02:37:41
358,083,188
1
1
null
null
null
null
UTF-8
Python
false
false
2,307
py
import torch import torch.optim as optim class RolloutStorage: def __init__(self,num_steps,num_processes,action_size): pass class PPO(object): def __init__( self, controller, clip_param, lr, baseline_decay, action_size = 18, ppo_epoch=1, num_mini_batch=100, max_grad_norm=2.0, entropy_coef=0, num_steps=100, num_processes=1 ): self.ppo_epoch = ppo_epoch self.controller = controller self.optimizer = optim.Adam(controller.parameters(),lr=lr) self.num_mini_batch = num_mini_batch self.clip_param = clip_param self.max_grad_norm = max_grad_norm self.entropy_coef = entropy_coef self.rollouts = RolloutStorage(num_steps,num_processes,action_size) self.baseline = None self.decay = baseline_decay def state_dict(self): return { "baseline":self.baseline, "rollouts":self.controller.state_dict(), "optimizer:":self.optimizer.state_dict() } def load_state_dict(self,states): pass def update(self, sample, is_train=True): reward, action, log_prob = sample if self.baseline is None: self.baseline = reward else: self.baseline = self.decay * self.baseline + (1 - self.decay) * reward self.rollouts.insert(action, log_prob, reward) if not is_train: return -1,-1 advantages = self.rollouts.rewards - self.baseline loss_epoch = 0 entropy_epoch = 0 for _ in range(self.ppo_epoch): data_generator = self.rollouts.generator(advantages, self.num_mini_batch) for sample in data_generator: ( actions_batch, reward_batch, old_actions_log_probs_batch, adv_targ, ) = sample action_log_probs, entropy = self.controller.evaluate_actions( actions_batch ) ratio = torch.exp( action_log_probs - torch.from_numpy(adv_targ) ) adv_targ_th = torch.from_numpy(adv_targ).float()
[ "you@example.com" ]
you@example.com
38c7d9d6bb8677f9a4868e805cbb65a375dc0c84
352d5acef4e8fca2d1306d9e749444869ed4ef2f
/easy/WeakestRowInAMatrix.py
213a28f74b1de73ce29e57445ecf4565a51837dc
[]
no_license
rupafn/leetcode
d73672a5fce8fd2027d3a7d0118d9ff7b9e89c5e
2c75625db500d806e2a55954c85f389cfde2c3aa
refs/heads/master
2021-06-07T20:01:07.992640
2021-05-07T15:29:15
2021-05-07T15:29:15
128,645,991
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
class Solution: def kWeakestRows(self, mat, k): sums = [] for i in range(0,len(mat)): sums.append(sum(mat[i])) res = [] while(k>0): ind = sums.index(min(sums)) sums[ind] = 100000 res.append(ind) k-=1 return res obj = Solution() mat = [[1,1,0,0,0],[1,1,1,1,0],[1,0,0,0,0],[1,1,0,0,0],[1,1,1,1,1]] k = 3 obj.kWeakestRows(mat,k)
[ "rupafn@gmail.com" ]
rupafn@gmail.com
4cd13153a646bc5c96f4e50481b78f266720eb61
4d7f0434526a8f286e98a36379b991a1a307a6cb
/WikiTextsDataset/WrapperTextsSource.py
85b66a99e4284c66a10a0443e95af82e0643595d
[]
no_license
PerfectStepCoder/NeuroProjects
464acbaa50e0067f70710d13bd0024dbd1117825
d385828a0e0b668760f9990a75c13cb05f5efef4
refs/heads/master
2020-03-24T21:30:14.668472
2018-08-09T11:13:15
2018-08-09T11:13:15
143,035,960
0
0
null
null
null
null
UTF-8
Python
false
false
2,567
py
import os import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader from src.NN.WikiTextsDataset.wiki_utils import Texts wikitext_folder = os.path.abspath(os.path.join(os.path.curdir, 'wikitext')) class WikitextDataset(Dataset): """ Dataset of Wikitext """ def __init__(self, path_folder, transform=None, sequence_length=10): self.origin_corpus = Texts(path_folder) self.transform = transform self.sequence_length = sequence_length def __len__(self): return len(self.origin_corpus.valid) - self.sequence_length def __getitem__(self, idx): end = idx + self.sequence_length id_symbols_x = self.origin_corpus.valid[idx:end] id_symbols_y = self.origin_corpus.valid[end + 1] if self.transform: # Буквы перводить в id или в one-hot вектора id_symbols_x = self.transform(id_symbols_x, self.origin_corpus.dictionary) id_symbols_y = self.transform(id_symbols_y, self.origin_corpus.dictionary)[0] sample = {'serial': id_symbols_x, 'predict_letter': id_symbols_y} return sample class ToSymbols(object): """ id -> letter """ def __call__(self, x, dic): output = [] if len(x.size()) != 0: for item in x: output.append(dic.idx2symbol[int(item)]) else: output.append(dic.idx2symbol[int(x)]) return output class ToOneHot(object): """ id -> one hot vector """ def __call__(self, x, dic): output = [] if len(x.size()) != 0: for item in x: output.append([1 if i == item else 0 for i in range(len(dic))]) else: output.append([1 if i == int(x) else 0 for i in range(len(dic))]) return output class Nothing(object): def __call__(self, x): return x if __name__ == "__main__": #wikitextDataset = WikitextDataset('wikitext', transform=ToSymbols()) # сэмлы из символов wikitextDataset = WikitextDataset('wikitext', transform=ToOneHot()) # сэмлы из one_hot векторов dataloader = DataLoader(wikitextDataset, batch_size=4, shuffle=True, num_workers=1, collate_fn=Nothing()) # Покажет первые 10 бачей for i_batch, sample_batched in enumerate(dataloader): for one_batch in sample_batched: print(one_batch) print("-"*10) if (i_batch + 1) % 10 == 0: break print("Done!")
[ "xfile2003@mail.ru" ]
xfile2003@mail.ru
1fe3fb6fa971710011542bc58df695cb0c6d7730
c3082eb2adc43b311dd3c9ff16fd3ed9df85f266
/python/examples/fastapi/dynamic-response/main.py
e9ecf608f59322153963fae72ce85a28b0f05e1f
[]
no_license
szabgab/slides
78818c7138331b3ba9e221c81da3678a46efe9b3
63bba06678554db737602f2fbcd6510c36037e8a
refs/heads/main
2023-08-31T07:13:51.536711
2023-08-29T13:17:59
2023-08-29T13:17:59
122,212,527
87
69
null
2023-05-19T06:55:11
2018-02-20T14:57:03
Python
UTF-8
Python
false
false
164
py
from fastapi import FastAPI import datetime app = FastAPI() @app.get("/") async def root(): return {"message": f"Hello World at {datetime.datetime.now()}"}
[ "gabor@szabgab.com" ]
gabor@szabgab.com
c5248a3cae6dcafab9c6ad505abc712db1980a72
74ec860957869ea48af8535bf32f9fd87cc81011
/dna-methylation/scripts/develop/illumina450k/residuals/plot/scatter_comparison.py
22a26b4bf6f95cc4078b5e99f2a407784322a5a3
[]
no_license
GillianGrayson/dna-methylation
f1a0878f4aa8c917bee9e5230387d6145826fb3a
e602ba91f3d275d92aadf0f874ac6f189adf547b
refs/heads/master
2022-02-08T03:31:22.423781
2022-02-01T16:50:37
2022-02-01T16:50:37
164,105,085
0
1
null
2020-03-20T18:08:24
2019-01-04T12:30:29
Python
UTF-8
Python
false
false
2,721
py
import pydnameth as pdm import pandas as pd import os.path from scripts.develop.routines import * max_rows = 10 fn = 'scatter_comparison_rows.xlsx' rows_dict = {} if os.path.isfile(fn): df = pd.read_excel(fn) tmp_dict = df.to_dict() for key in tmp_dict: curr_dict = tmp_dict[key] rows_dict[key] = list(curr_dict.values()) fn = 'scatter_comparison_cols.xlsx' cols_dict = {} if os.path.isfile(fn): df = pd.read_excel(fn) tmp_dict = df.to_dict() for key in tmp_dict: curr_dict = tmp_dict[key] cols_dict[key] = list(curr_dict.values()) data_bases = cols_dict['data_bases'] data_list = [] annotations_list = [] attributes_list = [] observables_list = [] data_params_list = [] for data_base in data_bases: data = pdm.Data( path='', base=data_base ) data_list.append(data) annotations = pdm.Annotations( name='annotations', type='450k', exclude='bad_cpgs', select_dict={ 'CHR': ['-X', '-Y'] } ) annotations_list.append(annotations) observables = pdm.Observables( name='observables', types={} ) cells = pdm.Cells( name='cells', types='any' ) target = get_target(data.base) obs = get_observables_list(data.base) data_params = get_data_params(data.base) data_params['cells'] = ['Bcell', 'CD4T', 'CD8T', 'Gran', 'NK'] data_params['observables'] = ['gender'] attributes = pdm.Attributes( target='age', observables=observables, cells=cells ) attributes_list.append(attributes) observables_list.append(obs) data_params_list.append(data_params) for run_id in range(0, len(rows_dict['items']), max_rows): s_id = run_id f_id = min(s_id + max_rows, len(rows_dict['items'])) curr_dict = {} for key in rows_dict: curr_dict[key] = rows_dict[key][s_id:f_id][::-1] pdm.residuals_plot_scatter_comparison( data_list=data_list, annotations_list=annotations_list, attributes_list=attributes_list, observables_list=observables_list, data_params_list=data_params_list, rows_dict=curr_dict, cols_dict=cols_dict, method_params={ 'line': 'no', 'fit': 'yes', 'semi_window': 4, 'box_b': 'Q1', 'box_t': 'Q99', 'legend_size': 1, 'add': 'none' } # method_params = { # 'line': 'no', # 'fit': 'no', # 'semi_window': 4, # 'box_b': 'Q1', # 'box_t': 'Q99', # 'legend_size': 1, # 'add': 'none' # } )
[ "hewitt.archie@yandex.ru" ]
hewitt.archie@yandex.ru
9e4a2dfbb16d5446314128083d3801b0a07f75b3
f2e5abc20da551051f0d1f306227b1b3838d7997
/NEZHA_MODEL/utils/data_utils.py
828586476622b66fb3540c628099fc1f1c89e1f0
[]
no_license
chenmingwei00/bert-ner
3224fec5f979a5c1cfbcf5762fd3957dfded4206
6ca5cc34c71be879a34333c7dc4b1fbaa0870cc9
refs/heads/master
2022-11-30T04:31:42.682793
2020-08-11T14:08:38
2020-08-11T14:08:38
286,760,176
5
1
null
null
null
null
UTF-8
Python
false
false
17,904
py
import tensorflow as tf import os, codecs, pickle, collections, json from NEZHA_TensorFlow.NEZHA_MODEL.nezha_bert import tokenization from NEZHA_TensorFlow.NEZHA_MODEL.server.helper import set_logger from NEZHA_TensorFlow.NEZHA_MODEL.nezha_bert.models import create_model, InputFeatures, InputExample logger = set_logger('NER Training') class DataProcessor(object): """Base class for NERdata converters for sequence classification NERdata sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this NERdata set.""" raise NotImplementedError() @classmethod def _read_data(cls, input_file): """Reads a BIO NERdata.""" with codecs.open(input_file, 'r', encoding='utf-8') as f: lines = [] words = [] labels = [] for line in f: contends = line.strip() tokens = contends.split(' ') if len(tokens) == 2: words.append(tokens[0]) labels.append(tokens[1]) else: if len(contends) == 0: l = ' '.join([label for label in labels if len(label) > 0]) w = ' '.join([word for word in words if len(word) > 0]) lines.append([l, w]) words = [] labels = [] continue if contends.startswith("-DOCSTART-"): words.append('') continue return lines class NerProcessor(DataProcessor): def __init__(self, output_dir): self.labels = set() self.output_dir = output_dir def get_train_examples(self, data_dir): return self._create_example( self._read_data(os.path.join(data_dir, "train.txt")), "train" ) def get_dev_examples(self, data_dir): return self._create_example( self._read_data(os.path.join(data_dir, "dev.txt")), "dev" ) def get_test_examples(self, data_dir, stype='predict'): if stype == 'predict': return self._create_example( self._read_test(os.path.join(data_dir, "validate_data.json")), "test") else: return self._create_example( self._read_test2(os.path.join(data_dir, "predict.txt")), "test") def get_labels(self, labels=None): if labels is not None: try: # 支持从文件中读取标签类型 if os.path.exists(labels) and os.path.isfile(labels): with codecs.open(labels, 'r', encoding='utf-8') as fd: for line in fd: self.labels.append(line.strip()) else: # 否则通过传入的参数,按照逗号分割 self.labels = labels.split(',') self.labels = set(self.labels) # to set except Exception as e: print(e) # 通过读取train文件获取标签的方法会出现一定的风险。 if os.path.exists(os.path.join(self.output_dir, 'label_list.pkl')): with codecs.open(os.path.join(self.output_dir, 'label_list.pkl'), 'rb') as rf: self.labels = pickle.load(rf) else: if len(self.labels) > 0: self.labels = self.labels.union(set(["X", "[CLS]", "[SEP]"])) with codecs.open(os.path.join(self.output_dir, 'label_list.pkl'), 'wb') as rf: pickle.dump(self.labels, rf) else: self.labels = ["O", 'B-TIM', 'I-TIM', "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "X", "[CLS]", "[SEP]"] return self.labels def _create_example(self, lines, set_type): examples = [] for (i, line) in enumerate(lines): if set_type != 'test': guid = "%s-%s" % (set_type, i) text = tokenization.convert_to_unicode(line[1]) label = tokenization.convert_to_unicode(line[0]) # if i == 0: # print('label: ', label) examples.append(InputExample(guid=guid, text=text, label=label)) else: guid = tokenization.convert_to_unicode(line[0]) text = tokenization.convert_to_unicode(line[1]) # if i == 0: # print('label: ', label) examples.append(InputExample(guid=guid, text=text)) return examples def _read_data(self, input_file): """Reads a BIO NERdata.""" with codecs.open(input_file, 'r', encoding='utf-8') as f: lines = [] words = [] labels = [] for line in f: contends = line tokens = contends.split('\t') if len(tokens) == 2: words.append(tokens[0]) labels.append(tokens[-1].strip()) else: if contends.strip() == '---' and len(words) > 0: label = [] word = [] for l, w in zip(labels, words): if len(l) > 0 and len(w) > 0: label.append(l) self.labels.add(l) word.append(w) assert len(label) == len(word) lines.append(['|'.join(label), '|'.join(word)]) words = [] labels = [] continue if contends.startswith("-DOCSTART-"): continue return lines def _read_test(self, input_file): """Reads a BIO NERdata.""" with codecs.open(input_file, 'r', encoding='utf-8') as f: test_data = json.load(f) lines = [] for key_ids, value_input in test_data.items(): lines.append([key_ids, value_input]) return lines def _read_test2(self, input_file): """Reads a BIO NERdata.""" with codecs.open(input_file, 'r', encoding='utf-8') as f: test_data = f.readlines() lines = [] for temp_text in test_data: key_ids, value_input = temp_text.split("|-") lines.append([str(key_ids), value_input]) return lines def write_tokens(tokens, output_dir, mode): """ 将序列解析结果写入到文件中 只在mode=test的时候启用 :param tokens: :param mode: :return: """ if mode == "test": path = os.path.join(output_dir, "token_" + mode + ".txt") wf = codecs.open(path, 'a', encoding='utf-8') for token in tokens: if token != "**NULL**": wf.write(token + '\n') wf.close() import jieba.posseg as pseg def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, output_dir, mode, part_speech_dcit): """ 将一个样本进行分析,然后将字转化为id, 标签转化为id,然后结构化到InputFeatures对象中 :param ex_index: index :param example: 一个样本 :param label_list: 标签列表 :param max_seq_length: :param tokenizer: :param output_dir :param mode: :return: """ label_map = {} # 1表示从1开始对label进行index化 for (i, label) in enumerate(label_list, 1): label_map[label] = i # 保存label->index 的map if not os.path.exists(os.path.join(output_dir, 'label2id.pkl')): with codecs.open(os.path.join(output_dir, 'label2id.pkl'), 'wb') as w: pickle.dump(label_map, w) # cut_words = pseg.cut(''.join(example.text.split('|'))) # 里边包含空格符所以 # words_parts = [] # for w in cut_words: # # if len(w.word.strip()) == 0: continue # for k in range(len(w.word)): # words_parts.append(part_speech_dcit[w.flag]) # bia # # real_words.append(w.flag) if mode != 'test': labellist = example.label.split('|') textlist = example.text.split('|') assert len(textlist) == len(labellist) tokens = [] labels = [] for i, word in enumerate(textlist): # 分词,如果是中文,就是分字,但是对于一些不在BERT的vocab.txt中得字符会被进行WordPice处理(例如中文的引号),可以将所有的分字操作替换为list(input) token = tokenizer.tokenize(word) if len(token) > 1: print('1111111') tokens.extend(token) label_1 = labellist[i] for m in range(len(token)): if m == 0: labels.append(label_1) else: # 一般不会出现else labels.append("X") assert len(tokens) == len(labels) else: tokens_list_index = [] # 表示原始对应当前分词后的结果 tokens = [] words_parts_ids=[] assert len(words_parts)==len(list(example.text)) for i, word in enumerate(list(example.text)): current_tokens_index = [] token = tokenizer.tokenize(word) for toke in token: current_tokens_index.append(len(tokens)) words_parts_ids.append(words_parts[i]) tokens.append(toke) tokens_list_index.append(current_tokens_index) words_parts=words_parts_ids # tokens = tokenizer.tokenize(example.text) try: assert len(words_parts)==len(tokens) except: print('1111111111111111111111') if len(tokens) >= max_seq_length - 1: tokens = tokens[0:(max_seq_length - 2)] # -2 的原因是因为序列需要加一个句首和句尾标志 words_parts = words_parts[0:(max_seq_length - 2)] if mode != 'test': labels = labels[0:(max_seq_length - 2)] ntokens = [] segment_ids = [] if mode != 'test': label_ids = [] label_ids.append(label_map["[CLS]"]) # O OR CLS 没有任何影响,不过我觉得O 会减少标签个数,不过拒收和句尾使用不同的标志来标注,使用LCS 也没毛病 ntokens.append("[CLS]") # 句子开始设置CLS 标志 segment_ids.append(0) # words_parts.insert(0, part_speech_dcit['[CLS]']) # append("O") or append("[CLS]") not sure! for i, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) if mode != 'test': label_ids.append(label_map[labels[i]]) ntokens.append("[SEP]") # 句尾添加[SEP] 标志 segment_ids.append(0) # words_parts.append(part_speech_dcit['[SEP]']) # append("O") or append("[SEP]") not sure! if mode != 'test': label_ids.append(label_map["[SEP]"]) input_ids = tokenizer.convert_tokens_to_ids(ntokens) # 将序列中的字(ntokens)转化为ID形式 input_mask = [1] * len(input_ids) # label_mask = [1] * len(input_ids) # padding, 使用 # assert len(words_parts)==len(input_ids) while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) # words_parts.append(0) # we don't concerned about it! if mode != 'test': label_ids.append(0) ntokens.append("**NULL**") # label_mask.append(0) # print(len(input_ids)) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length # assert len(words_parts) == max_seq_length if mode != 'test': assert len(label_ids) == max_seq_length # assert len(label_mask) == max_seq_length # 打印部分样本数据信息 if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) # logger.info("label_ids: %s" % " ".join([str(x) for x in label_ids])) # logger.info("label_mask: %s" % " ".join([str(x) for x in label_mask])) # 结构化为一个类 if mode != 'test': feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids, # label_mask = label_mask ) else: feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=None, guid=example.guid, ) # mode='test'的时候才有效 write_tokens(ntokens, output_dir, mode) return feature def filed_based_convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, output_file, output_dir, mode=None, part_speech_dcit=None): """ 将数据转化为TF_Record 结构,作为模型数据输入 :param examples: 样本 :param label_list:标签list :param max_seq_length: 预先设定的最大序列长度 :param tokenizer: tokenizer 对象 :param output_file: tf.record 输出路径 :param mode: :return: """ writer = tf.python_io.TFRecordWriter(output_file) # 遍历训练数据 for (ex_index, example) in enumerate(examples): if ex_index % 5000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) # 对于每一个训练样本, if mode != 'test': assert len(example.text.split('|')) == len(example.label.split('|')) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, output_dir, mode, part_speech_dcit) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f def create_bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList( value=[value.encode('utf - 8') if type( value) == str else value])) features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if mode != 'test': features["label_ids"] = create_int_feature(feature.label_ids) else: features["guid"] = create_bytes_feature(feature.guid) # features["words_parts_ids"] = create_int_feature(feature.words_parts) # features["label_mask"] = create_int_feature(feature.label_mask) # tf.train.Example/Feature 是一种协议,方便序列化??? tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): if is_training: name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([seq_length], tf.int64), # "words_parts_ids": tf.FixedLenFeature([seq_length], tf.int64), # "label_mask": tf.FixedLenFeature([seq_length], tf.int64), } else: name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "guid": tf.FixedLenFeature([], tf.string), # "words_parts_ids": tf.FixedLenFeature([seq_length], tf.int64), # "label_ids": tf.FixedLenFeature([seq_length], tf.int64), # "label_ids":tf.VarLenFeature(tf.int64), # "label_mask": tf.FixedLenFeature([seq_length], tf.int64), } def _decode_record(record, name_to_features): example = tf.parse_single_example(record, name_to_features) for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): batch_size = params["batch_size"] d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=300) d = d.apply(tf.data.experimental.map_and_batch(lambda record: _decode_record(record, name_to_features), batch_size=batch_size, num_parallel_calls=8, # 并行处理数据的CPU核心数量,不要大于你机器的核心数 drop_remainder=drop_remainder)) d = d.prefetch(buffer_size=4) return d return input_fn
[ "614489362@qq.com" ]
614489362@qq.com
2e307cc53432f29673c4057851212ede07e1b46d
7f1830dd630a6ee7fe63a01fd0bff31c7c1979a3
/users/urls.py
3d83515c2b19584e96029f25c21881319baa06a0
[]
no_license
kot6egemot/musicwebsite
d610c81a764e809b502b762b7355e74157a5d26e
585f7a34a3ecbcd9b6b827240b8cf7875b1955de
refs/heads/true_media
2022-12-03T00:57:38.215244
2019-03-15T21:22:22
2019-03-15T21:22:22
165,709,813
1
0
null
null
null
null
UTF-8
Python
false
false
395
py
from django.urls import path from django.conf.urls import url from django.contrib.auth.views import auth_login from .views import logout_view,login_view,register_view app_name = 'users' urlpatterns = [ path('login/', login_view, name = 'login_view'), path('logout/', logout_view, name = 'logout_view'), path('register/', register_view, name = 'register_view'), ]
[ "ex-2k@yandex.ru" ]
ex-2k@yandex.ru
d64dd27b9a3bc143aa7bf6611da63721f4d4da41
5a4539b69985e9d61162a5b1876dea244da98c07
/config.py
a7d974a5f6e917e179e1f1a9a6a6152acb1acaf3
[]
no_license
Koperundevi/user-profile-api
50d5af289ae22a43eef772b6c0a26dcc4b96f645
4e6c9a63665e9ffb69a76a325085e33c493746e2
refs/heads/master
2023-04-01T07:14:25.872925
2021-04-04T11:03:31
2021-04-04T11:03:31
353,040,197
0
0
null
null
null
null
UTF-8
Python
false
false
2,453
py
from datetime import timedelta import sys, os '''get config based on environment''' def getEnvConfig(): env = os.getenv('FLASK_ENV') return app_config[env] if env else DevelopmentConfig class Config(object): """ Common configurations """ PROPAGATE_EXCEPTIONS = True class DevelopmentConfig(Config): """ Development configurations """ SQLALCHEMY_ECHO = False DEBUG = True #github authorization URI GITHUB_AUTH_URI = """https://github.com/login/oauth/authorize?response_type=code&client_id=5a429afe708ee411ec8f&redirect_uri=http%3A%2F%2F127.0.0.1%3A8000%2Flogin%2Fcallback&scope=user""" #postgresql://user:pw@host:port/db SQLALCHEMY_DATABASE_URI = """postgresql://postgres:postgres@localhost:5432/userprofileapp""" #github access token header GITHUB_ACCESS_TOKEN_HEADER = {"client_id": "5a429afe708ee411ec8f", "client_secret": "a927daabebe346f36a27bf75aa0a0de99d487d34", "code":"" } SQLALCHEMY_TRACK_MODIFICATIONS = True JWT_SECRET_KEY = 'a927daabebe346f36a27bf75aa0a0de99d487d34' JWT_ACCESS_TOKEN_EXPIRES = timedelta(hours=10) FLASK_RUN_HOST = '127.0.0.1' FLASK_RUN_PORT = 8000 LOGIN_SUCCESS_REDIRECT_URI = "http://localhost:4200/profile?token=" class ProductionConfig(Config): """ Production configurations """ SQLALCHEMY_ECHO = False DEBUG = False #github authorization URI GITHUB_AUTH_URI = """https://github.com/login/oauth/authorize?response_type=code&client_id=90b8b080bb9c3ac59350&redirect_uri=http%3A%2F%2Fuser-profile-api.herokuapp.com%2Flogin%2Fcallback&scope=user""" #postgresql://user:pw@host:port/db SQLALCHEMY_DATABASE_URI = """postgresql://tozpjdfkrgpjjd:b1f7915e9f8574f731d58214ca6a76e5d8a95999869fd37cb8575f3889824e59@ec2-52-45-73-150.compute-1.amazonaws.com:5432/dccoog9uvjg7bg""" #github access token header GITHUB_ACCESS_TOKEN_HEADER = {"client_id": "90b8b080bb9c3ac59350", "client_secret": "e84f6c8fe2ed62d024eaa13c3e743bee1653589c", "code":"" } SQLALCHEMY_TRACK_MODIFICATIONS = True JWT_SECRET_KEY = 'e84f6c8fe2ed62d024eaa13c3e743bee1653589c' JWT_ACCESS_TOKEN_EXPIRES = timedelta(hours=5) FLASK_RUN_HOST = '0.0.0.0' FLASK_RUN_PORT=5000 LOGIN_SUCCESS_REDIRECT_URI = "https://user-profile-appln.herokuapp.com/profile?token=" app_config = { 'development': DevelopmentConfig, 'production': ProductionConfig }
[ "koperundevianbu@gmail.com" ]
koperundevianbu@gmail.com
a9582fe1ff3a16c1aa108f54b5ff1ae3984f5ccb
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_171/ch65_2019_06_07_01_24_18_525767.py
79aa0ff8a8f6334244edcac2ba434f9ec46d556f
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
206
py
def acha_bigramas(string): lista=[] i=0 while i<len(string): if string[i:i+2] not in lista and len(string[i:i+2])>3: lista.append(string[i:i+2]) i+=1 return lista
[ "you@example.com" ]
you@example.com
26571c6b5080ba1be22ee2d52d6fd124c821b6c7
b5952ec93687e66bc0fc0ee7dbd6b2a2cfc6bbaa
/Server/app/__init__.py
a4e30a7b0af85f379d2994d8e66779eb2078688e
[]
no_license
elektrobohemian/imi-unicorns
32001448ea7cbc5276a9c3fb54fc7e51d0029138
a3dac66d8d6d1d36749473883ced8de7e2678e26
refs/heads/master
2020-03-31T08:37:48.046267
2019-03-16T07:06:24
2019-03-16T07:06:24
152,065,376
2
0
null
2018-10-08T10:59:58
2018-10-08T10:59:58
null
UTF-8
Python
false
false
829
py
from flask import Flask from pymongo import MongoClient # Setup Flask app app = Flask(__name__) app.config.from_object('app.config') # Setup MongoDB connection client = MongoClient('localhost', 27017) db = client['unicorns'] from app import category_controller, image_controller, book_controller, genre_controller, maps_controller, color_controller # Instantiate controller classes so they can be used in the project category_controller = category_controller.Category_Controller() image_controller = image_controller.Image_Controller() books_controller = book_controller.Book_Controller() genre_controller = genre_controller.Genre_Controller() maps_controller = maps_controller.Maps_Controller() color_controller = color_controller.Color_Controller() from app import api if __name__ == '__main__': app.run(debug=True)
[ "caglar.oezel@gmail.com" ]
caglar.oezel@gmail.com
6e90658a4808635df02ace2c0dd08c4d5d2ceb3e
4beabdb5089e3284251dcaf046366c35d3afe02f
/communication/multithreading/Client.py
8743a1106aebdb0b5ab603d90c530f73da03cc10
[]
no_license
AndrewFendrich/Mandelbrot
c3fa2b1463d6e01b91ac0a3c53ef88c8e1716641
074ebd9028c13a9f840c2436ab2c8c3d2275dbf6
refs/heads/master
2021-01-13T00:52:24.060863
2017-05-08T14:30:02
2017-05-08T14:30:02
50,623,517
1
0
null
null
null
null
UTF-8
Python
false
false
472
py
from multiprocessing.connection import Client from array import array address = ('localhost', 6000) with Client(address, authkey=b'secret password') as conn: print(conn.recv()) # => [2.25, None, 'junk', float] print(conn.recv_bytes()) # => 'hello' arr = array('i', [0, 0, 0, 0, 0]) print(conn.recv_bytes_into(arr)) # => 8 print(arr) # => array('i', [42, 1729, 0, 0, 0]) print(conn.recv())
[ "afendrich@gmail.com" ]
afendrich@gmail.com
2e3e48d88ad0126676c3194181242ceb8c20f327
3d110d335dc51c8f270676675c742cf406ecdeb5
/RESTSerializer/serializers.py
f8dc80dafac6c9d175cf5572054eb4ebbf4f8339
[]
no_license
1284753334/RESTAPI
2de797cc931214e4c32731c71e5f0163ca00e3fb
f96b2a868a892912d6933cc8444e5ad7b8e91f62
refs/heads/master
2022-11-18T08:12:00.783699
2020-07-16T04:30:32
2020-07-16T04:30:32
280,053,281
0
0
null
null
null
null
UTF-8
Python
false
false
1,169
py
from rest_framework import serializers from RESTSerializer.models import Person, Student, Book # 原生序列化 代码比person 多 class PersonSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) p_name = serializers.CharField(max_length=32) p_age = serializers.IntegerField(default=1) P_sex = serializers.BooleanField(default=False) def create(self, validated_data): return Person.objects.create(**validated_data) def update(self, instance, validated_data): # 如果拿不到值,就用原来的值 instance.p_name = validated_data.get('p_name',instance.p_name) instance.p_age = validated_data.get('p_age',instance.p_age) instance.p_sex = validated_data.get('p_sex',instance.p_sex) instance.save() return instance # 模型序列化 ModelSerializer class StudentSerializer(serializers.ModelSerializer): class Meta: #模型序列化 不带括号 model = Student fields = ('s_name','s_age') class BookSerializer(serializers.ModelSerializer): class Meta: model = Book fields = ('b_price','b_name')
[ "xiaomin@169.com" ]
xiaomin@169.com
8df0a5de30770486d65f5750ddf7332158529917
385ce240ae264a1449079c21bd0c4cbe7c0fe3b8
/myowntests/ifelseladder.py
6be8802a946907017b902d6c6c70418b5968deb2
[]
no_license
Maxcousin123/Python-workspace
3ed60ae80d790b5c055bf47872ff0fdd39f4ec58
326b023190a12e082dcb35ae5ab8ef644c32159b
refs/heads/master
2022-11-24T11:05:08.707003
2020-07-29T06:32:08
2020-07-29T06:32:08
283,415,557
0
0
null
null
null
null
UTF-8
Python
false
false
576
py
maths=int(input('fill your math grade')) physics=int(input('fill your physics grade')) chemistry=int(input('fill your chemistry grade')) av=(maths+physics+chemistry)/3 if maths<35: print('Exam Failed') else:print('Exam passed') if physics<35: print('Exam failed') else:print('Exam passed') if physics<35: print('Exam failed') else:print('Exam passed') if maths and physics and chemistry<35: print('Exams failed') elif av<=59: print('your grade is c') elif 59>av<=69: print('your grade is b') else: print('your grade is a') #69
[ "66350396+Maxcousin123@users.noreply.github.com" ]
66350396+Maxcousin123@users.noreply.github.com
1bbcca3940cb02865ed6ba250a1b7e06fe44680c
e72337dd656adfabe62325a472763a2836f30f8e
/problem19.py
2837b3d4e8213832c0d860e66e9fe792f7222d5a
[]
no_license
deepachari/euler
1b3285b43c136122d59a418740f4ae4fc853a54f
6995293cd6cb391772bd883d17c12d545aa162a3
refs/heads/master
2021-07-25T05:17:36.860375
2017-11-05T11:01:19
2017-11-05T11:01:19
109,484,529
0
0
null
null
null
null
UTF-8
Python
false
false
969
py
# You are given the following information, but you may prefer to do some research for yourself. # # 1 Jan 1900 was a Monday. # Thirty days has September, # April, June and November. # All the rest have thirty-one, # Saving February alone, # Which has twenty-eight, rain or shine. # And on leap years, twenty-nine. # A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. # How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? from datetime import date, timedelta def date_generator(start, end): while start <= end: yield start start += timedelta(days=1) def problem19(start, end): num_sundays = 0 for d in date_generator(start, end): if d.day == 1 and d.weekday() == 6: num_sundays += 1 return num_sundays start = date(year=1901, month=1, day=1) end = date(year=2000, month=12, day=31) print(problem19(start, end))
[ "dchari@newclassrooms.org" ]
dchari@newclassrooms.org
a30c882225f0729f7727634a091398bc4b341d00
a58fcf9467749de7d269c5b17430773069e29791
/designate/exceptions.py
bd807f15966c85208c564dccc08126f802c00c8e
[ "Apache-2.0" ]
permissive
Woody89/designate-private
586df6c28a2da573663487e4728c3fddfef095af
0a6ed5a1d7cdac5cb1e9dec8fd3ddfb9a77c58f5
refs/heads/master
2021-01-22T19:22:49.391876
2017-08-19T06:16:53
2017-08-19T06:16:53
100,774,211
1
0
null
null
null
null
UTF-8
Python
false
false
17,905
py
# Copyright 2012 Managed I.T. # # Author: Kiall Mac Innes <kiall@managedit.ie> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six class Base(Exception): error_code = 500 error_type = None error_message = None errors = None def __init__(self, *args, **kwargs): self.errors = kwargs.pop('errors', None) self.object = kwargs.pop('object', None) super(Base, self).__init__(*args, **kwargs) if len(args) > 0 and isinstance(args[0], six.string_types): self.error_message = args[0] class Backend(Exception): pass class RelationNotLoaded(Base): error_code = 500 error_type = 'relation_not_loaded' def __init__(self, *args, **kwargs): self.relation = kwargs.pop('relation', None) super(RelationNotLoaded, self).__init__(*args, **kwargs) self.error_message = "%(relation)s is not loaded on %(object)s" % \ {"relation": self.relation, "object": self.object.obj_name()} def __str__(self): return self.error_message class AdapterNotFound(Base): error_code = 500 error_type = 'adapter_not_found' class NSD4SlaveBackendError(Backend): pass class NotImplemented(Base, NotImplementedError): pass class XFRFailure(Base): pass class ConfigurationError(Base): error_type = 'configuration_error' class UnknownFailure(Base): error_code = 500 error_type = 'unknown_failure' class CommunicationFailure(Base): error_code = 504 error_type = 'communication_failure' class NeutronCommunicationFailure(CommunicationFailure): """ Raised in case one of the alleged Neutron endpoints fails. """ error_type = 'neutron_communication_failure' class NoFiltersConfigured(ConfigurationError): error_code = 500 error_type = 'no_filters_configured' class NoServersConfigured(ConfigurationError): error_code = 500 error_type = 'no_servers_configured' class MultiplePoolsFound(ConfigurationError): error_code = 500 error_type = 'multiple_pools_found' class NoPoolTargetsConfigured(ConfigurationError): error_code = 500 error_type = 'no_pool_targets_configured' class OverQuota(Base): error_code = 413 error_type = 'over_quota' expected = True class QuotaResourceUnknown(Base): error_type = 'quota_resource_unknown' class InvalidObject(Base): error_code = 400 error_type = 'invalid_object' expected = True class BadRequest(Base): error_code = 400 error_type = 'bad_request' expected = True class EmptyRequestBody(BadRequest): error_type = 'empty_request_body' expected = True class InvalidUUID(BadRequest): error_type = 'invalid_uuid' class InvalidRecord(BadRequest): error_type = 'invalid_record' class NetworkEndpointNotFound(BadRequest): error_type = 'no_endpoint' error_code = 403 class MarkerNotFound(BadRequest): error_type = 'marker_not_found' class NotEqual(Base): error_type = 'udn_record_count not equals record in db' class NoChange(Base): error_type = 'No changes' class ValueError(BadRequest): error_type = 'value_error' class InvalidMarker(BadRequest): error_type = 'invalid_marker' class InvalidSortDir(BadRequest): error_type = 'invalid_sort_dir' class InvalidLimit(BadRequest): error_type = 'invalid_limit' class InvalidSortKey(BadRequest): error_type = 'invalid_sort_key' class InvalidJson(BadRequest): error_type = 'invalid_json' class NoneIpAddress(BadRequest): error_type = 'none_ip_address' class InvalidOperation(BadRequest): error_code = 400 error_type = 'invalid_operation' class UnsupportedAccept(BadRequest): error_code = 406 error_type = 'unsupported_accept' class UnsupportedContentType(BadRequest): error_code = 415 error_type = 'unsupported_content_type' class InvalidZoneName(Base): error_code = 400 error_type = 'invalid_zone_name' expected = True class InvalidAclName(Base): error_code = 400 error_type = 'invalid_acl_name' expected = True class InvalidRecordSetName(Base): error_code = 400 error_type = 'invalid_recordset_name' expected = True class InvalidRecordSetLocation(Base): error_code = 400 error_type = 'invalid_recordset_location' expected = True class InvaildZoneTransfer(Base): error_code = 400 error_type = 'invalid_zone_transfer_request' class InvalidTTL(Base): error_code = 400 error_type = 'invalid_ttl' class ZoneHasSubZone(Base): error_code = 400 error_type = 'zone_has_sub_zone' class Forbidden(Base): error_code = 403 error_type = 'forbidden' expected = True class IllegalChildZone(Forbidden): error_type = 'illegal_child' class IllegalParentZone(Forbidden): error_type = 'illegal_parent' class IncorrectZoneTransferKey(Forbidden): error_type = 'invalid_key' class Duplicate(Base): expected = True error_code = 409 error_type = 'duplicate' class DuplicateServiceStatus(Duplicate): error_type = 'duplicate_service_status' class DuplicateQuota(Duplicate): error_type = 'duplicate_quota' class DuplicateServer(Duplicate): error_type = 'duplicate_server' class DuplicateTsigKey(Duplicate): error_type = 'duplicate_tsigkey' class DuplicateZone(Duplicate): error_type = 'duplicate_zone' class DuplicateAcl(Duplicate): error_type = 'duplicate_acl' class DuplicateTld(Duplicate): error_type = 'duplicate_tld' class DuplicateRecordSet(Duplicate): error_type = 'duplicate_recordset' class DuplicateRecord(Duplicate): error_type = 'duplicate_record' class DuplicateBlacklist(Duplicate): error_type = 'duplicate_blacklist' class DuplicatePoolManagerStatus(Duplicate): error_type = 'duplication_pool_manager_status' class DuplicatePool(Duplicate): error_type = 'duplicate_pool' class DuplicatePoolAttribute(Duplicate): error_type = 'duplicate_pool_attribute' class DuplicatePoolNsRecord(Duplicate): error_type = 'duplicate_pool_ns_record' class DuplicatePoolNameserver(Duplicate): error_type = 'duplicate_pool_nameserver' class DuplicatePoolTarget(Duplicate): error_type = 'duplicate_pool_target' class DuplicatePoolTargetOption(Duplicate): error_type = 'duplicate_pool_target_option' class DuplicatePoolTargetMaster(Duplicate): error_type = 'duplicate_pool_target_master' class DuplicatePoolAlsoNotify(Duplicate): error_type = 'duplicate_pool_also_notify' class DuplicateZoneImport(Duplicate): error_type = 'duplicate_zone_import' class DuplicateZoneExport(Duplicate): error_type = 'duplicate_zone_export' class DuplicateViewDuplicate(Duplicate): error_type = 'duplicate_view_export' class DuplicateZdnsViewInfo(Duplicate): error_type = 'duplicate_zdns_view_info' class DuplicateViewZdnsView(Duplicate): error_type = 'duplicate_view_zdns_view_association' class DuplicateView(Duplicate): error_type = 'duplicate_view' class NeedView(BadRequest): error_type = 'attributes_need_view' class MethodNotAllowed(Base): expected = True error_code = 405 error_type = 'method_not_allowed' class DuplicateZoneTransferRequest(Duplicate): error_type = 'duplicate_zone_transfer_request' class DuplicateZoneTransferAccept(Duplicate): error_type = 'duplicate_zone_transfer_accept' class DuplicateZoneAttribute(Duplicate): error_type = 'duplicate_zone_attribute' class DuplicateZoneMaster(Duplicate): error_type = 'duplicate_zone_attribute' class NotFound(Base): expected = True error_code = 404 error_type = 'not_found' class Failed(Base): expected = True error_code = 500 error_type = 'create_failed' class ServiceStatusNotFound(NotFound): error_type = 'service_status_not_found' class QuotaNotFound(NotFound): error_type = 'quota_not_found' class ServerNotFound(NotFound): error_type = 'server_not_found' class TsigKeyNotFound(NotFound): error_type = 'tsigkey_not_found' class BlacklistNotFound(NotFound): error_type = 'blacklist_not_found' class ZoneNotFound(NotFound): error_type = 'zone_not_found' class AclNotFound(NotFound): error_type = 'acl_not_found' class ZoneMasterNotFound(NotFound): error_type = 'zone_master_not_found' class ZoneAttributeNotFound(NotFound): error_type = 'zone_attribute_not_found' class TldNotFound(NotFound): error_type = 'tld_not_found' class RecordSetNotFound(NotFound): error_type = 'recordset_not_found' class RecordNotFound(NotFound): error_type = 'record_not_found' class AllFailed(Failed): error_type = 'all record-create failed' class PartlyFailed(Failed): error_type = 'some record-create failed' class ReportNotFound(NotFound): error_type = 'report_not_found' class PoolManagerStatusNotFound(NotFound): error_type = 'pool_manager_status_not_found' class PoolNotFound(NotFound): error_type = 'pool_not_found' class NoValidPoolFound(NotFound): error_type = 'no_valid_pool_found' class PoolAttributeNotFound(NotFound): error_type = 'pool_attribute_not_found' class PoolNsRecordNotFound(NotFound): error_type = 'pool_ns_record_not_found' class PoolNameserverNotFound(NotFound): error_type = 'pool_nameserver_not_found' class PoolTargetNotFound(NotFound): error_type = 'pool_target_not_found' class PoolTargetOptionNotFound(NotFound): error_type = 'pool_target_option_not_found' class PoolTargetMasterNotFound(NotFound): error_type = 'pool_target_master_not_found' class PoolAlsoNotifyNotFound(NotFound): error_type = 'pool_also_notify_not_found' class ZoneTransferRequestNotFound(NotFound): error_type = 'zone_transfer_request_not_found' class ZoneTransferAcceptNotFound(NotFound): error_type = 'zone_transfer_accept_not_found' class ZoneImportNotFound(NotFound): error_type = 'zone_import_not_found' class ZoneExportNotFound(NotFound): error_type = 'zone_export_not_found' class ViewNotFound(NotFound): error_type = 'view_not_found' class ViewAclNotFound(NotFound): error_type = 'view_acl_not_found' class AclsIsNone(NotFound): error_type = 'acl_ids_is_none' class ParamsIsNotLegal(NotFound): error_type = 'params_is_not_legal' class AclidsMustBeList(NotFound): error_type = 'acl_ids_must_be_list' class CreateViewFailed(NotFound): error_type = 'create_view_failed' class LastServerDeleteNotAllowed(BadRequest): error_type = 'last_server_delete_not_allowed' EZDNS = { "1": "any or none acl is read only", "2": "acl already exists", "3": "operate non-exist acl", "4": "dns64 prefix should be a ipv6 addr", "5": "invalid dns64 prefix netmask", "6": "suffix is needed if netmask of prefix smaller than 96", "7": "DNS64 setting already exists", "8": "operate non-exist DNS64 setting", "9": "tsig key already exists", "10": "delete acl is using by view", "11": "operate non-exist zone", "12": "cache file not exist", "13": "cache size too large", "14": "operate non-exist view", "15": "get zone from backend server failed", "16": "zone already exists", "17": "unsupported meta data type", "18": "view already exists", "19": "delete default view", "20": "cann't modify acl of default view", "21": "operate non-exist rr", "22": "conflict key secret", "23": "not supported zone type", "24": "operate non-exist shared rr", "25": "cann't delete the last shared rr", "26": "operate non-exist tsig key", "27": "reconfig dns server failed", "28": "no rndc-confgen installed", "29": "lack/white list already exists", "30": "operate non-exist back/white list", "31": "zone owner doesn't has view owner", "32": "unsupport acl action", "33": "no pine-control installed", "34": "server already started", "35": "RR format error", "36": "zone transfer failed", "37": "more than one ad zone owner", "38": "update zone failed", "39": "shared rr already exists", "40": "add duplicate rr", "41": "add exclusive rr", "42": "short of glue rr", "43": "conflict with exists cname", "44": "delete unknown rr", "45": "can't delete soa rr", "46": "no ns left after delete", "47": "delete glue needed by other rr", "48": "reverse zone doesn't exist", "49": "rdata is valid", "50": "rr is out of zone", "51": "onfigure value isn't valid", "52": "unknown forward style", "53": "duplicate zone master", "54": "forwarder exists", "55": "operate non-exist forwarder", "56": "operate non-exist view on node", "57": "already exists root zone", "58": "only A/AAAA NS is allowed in hint zone", "59": "already has root configuration", "60": "rr type isn't supported", "61": "can't update slave zone", "62": "duplicate local domain policy", "63": "zone name isn't valid", "64": "add duplicate host", "65": "soa serial number degraded", "66": "root isn't support in local policy", "67": "auth zone with same name already exists", "68": "stub zone with same name already exists", "69": "forward zone with same name already exists", "70": "acl is used by view", "71": "acl is used by AD zone", "72": "rrl policy already exist", "73": "non-exist rrl policy", "74": "delete monitor strategy in use", "75": "monitor strategy already exist", "76": "non exist monitor strategy", "77": "node's view querysource already exists", "78": "node's view querysource not exist", "79": "too much rrls(over 999)", "100": "version is unknown", "101": "patch file broken", "102": "source code isn't a release version", "103": "binding different iface with same ip address", "104": "ntp interval out of range", "105": "send a test mail failed, check the configuration", "300": "invalid ip address", "301": "no dns server installed", "302": "not enough params", "303": "not supported backup method", "304": "not supported command method", "305": "service hasn't been init", "306": "not supported ha type", "307": "member is not accessible", "308": "wrong username and password", "309": "nic config failed", "310": "service hasn't been started", "311": "init params is required", "312": "invalid port", "313": "verify node failed", "314": "request body json format error", "315": "connect backup server timeout", "316": "data recovery failed", "317": "data backup failed", "318": "lower limit bigger than upper limit", "319": "execute command timeout", "320": "password/role failed", "404": "Wrong url, please check it", "421": "Equipment internal error !", "600": "operate non-exist group", "601": "member with same ip alreasy exists", "602": "member with same name alreasy exists", "603": "operate non-exist member", "604": "not supported service type", "605": "member command queue is full", "606": "member is performing data recovery", "607": "group already exists", "608": "cann't operate local group", "609": "user already exists", "610": "operate non-exist user", "611": "init member service failed", "612": "owners is required", "613": "cann't delete the last owner for resource", "614": "add duplicate owners", "615": "old password is wrong", "616": "cann't delete local group", "617": "cann't delete local member", "618": "permission denied", "619": "unkown authority rule", "620": "authority rule already exist", "621": "invalid backup data", "622": "device already under management", "623": "some devices don't exist any more", "624": "cann't operation inactive cloud", "625": "cann't add multi backup devices", "626": "no backup device", "627": "not master device", "628": "not backup device", "629": "not slave device", "630": "hasn't managed by cloud yet", "631": "node can't communicate with master", "632": "invalid exception handle method", "800": "time out while sending alarm msg" } class ZdnsErrMessage(Base): error_type = "Equipment Internal Error" expected = True def __init__(self,*args,**kwargs): self.errors = kwargs.pop('errors', None) self.object = kwargs.pop('object', None) super(Base, self).__init__(*args, **kwargs) if len(args) > 0 and isinstance(args[0], six.string_types): self.error_message = str(args[0]) + ": " + EZDNS[args[0]] # @staticmethod # def getmsg(cord): # msg = str(cord) + ": " + EZDNS[cord] # return msg class AclUsedByView(Base): error_type = 'acl used by view'
[ "dongpzh@adtec.com.cn" ]
dongpzh@adtec.com.cn
e730f6b2b0eca72e7e22623e746eb8a5f9fc2013
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/I_to_M_Gk3_no_pad/pyramid_2side/bce_s001_tv_s0p1_L8/step09_2side_L8.py
150ed37ed776a944b01f8ce846b25ba5de404b7b
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
24,319
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os from tkinter import S code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# from step08_b_use_G_generate_I_to_M import I_Generate_M_see from step09_c_train_step import train_step_Single_output_I_to_M from step09_d_KModel_builder_combine_step789 import KModel_builder, MODEL_NAME import time start_time = time.time() ############################################################################################################################################################################################### ############################################################################################################################################################################################### ########################################################### Block1 ### Block1 ######################################################################################### pyramid_1side_1__2side_0 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] pyramid_1side_1__2side_1 = [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2] pyramid_1side_2__2side_0 = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1] pyramid_1side_2__2side_1 = [2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2] pyramid_1side_2__2side_2 = [2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2] pyramid_1side_3__2side_0 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1] pyramid_1side_3__2side_1 = [2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2] pyramid_1side_3__2side_2 = [2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2] pyramid_1side_3__2side_3 = [2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2] pyramid_1side_4__2side_0 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1] pyramid_1side_4__2side_1 = [2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2] pyramid_1side_4__2side_2 = [2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2] pyramid_1side_4__2side_3 = [2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2] pyramid_1side_4__2side_4 = [2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2] pyramid_1side_5__2side_0 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1] pyramid_1side_5__2side_1 = [2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2] pyramid_1side_5__2side_2 = [2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2] pyramid_1side_5__2side_3 = [2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2] pyramid_1side_5__2side_4 = [2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2] pyramid_1side_5__2side_5 = [2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2] pyramid_1side_6__2side_0 = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] pyramid_1side_6__2side_1 = [2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2] pyramid_1side_6__2side_2 = [2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2] pyramid_1side_6__2side_3 = [2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2] pyramid_1side_6__2side_4 = [2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2] pyramid_1side_6__2side_5 = [2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2] pyramid_1side_6__2side_6 = [2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2] pyramid_1side_7__2side_0 = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] pyramid_1side_7__2side_1 = [2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2] pyramid_1side_7__2side_2 = [2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2] pyramid_1side_7__2side_3 = [2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2] pyramid_1side_7__2side_4 = [2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2] pyramid_1side_7__2side_5 = [2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2] pyramid_1side_7__2side_6 = [2, 2, 2, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2] pyramid_1side_7__2side_7 = [2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_8__2side_0 = [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1] pyramid_1side_8__2side_1 = [2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2] pyramid_1side_8__2side_2 = [2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2] pyramid_1side_8__2side_3 = [2, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2] pyramid_1side_8__2side_4 = [2, 2, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2] pyramid_1side_8__2side_5 = [2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2] pyramid_1side_8__2side_6 = [2, 2, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2] pyramid_1side_8__2side_7 = [2, 2, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_8__2side_8 = [2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_0 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] pyramid_1side_9__2side_1 = [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2] pyramid_1side_9__2side_2 = [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2] pyramid_1side_9__2side_3 = [2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2] pyramid_1side_9__2side_4 = [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2] pyramid_1side_9__2side_5 = [2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2] pyramid_1side_9__2side_6 = [2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_7 = [2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_8 = [2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2] pyramid_1side_9__2side_9 = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] ######################################################################################### ch032_pyramid_1side_1__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_1__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_2__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_2__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_3__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_3__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_3__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_4__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_4__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_4__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_4__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_5__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_5__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_5__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_5__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_5__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_6__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_6__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_6__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_6__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_6__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_6__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_7__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_7__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_7__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_7__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_7__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_7__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_7__2side_7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_8__2side_8 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_1, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_2, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_3, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_4, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_5, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_6, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_7, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_8 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_8, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ch032_pyramid_1side_9__2side_9 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=8, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_9__2side_9, ch_upper_bound= 2 ** 14).set_gen_op(I_Generate_M_see).set_train_step(train_step_Single_output_I_to_M) ######################################################################################### ############################################################################################################################################################################################### if(__name__ == "__main__"): import numpy as np print("build_model cost time:", time.time() - start_time) data = np.zeros(shape=(1, 512, 512, 1)) use_model = ch032_pyramid_1side_4__2side_2 use_model = use_model.build() result = use_model.generator(data) print(result.shape) from kong_util.tf_model_util import Show_model_weights Show_model_weights(use_model.generator) use_model.generator.summary()
[ "s89334roy@yahoo.com.tw" ]
s89334roy@yahoo.com.tw
4ebf8a054879eac94e2f5d8095ece9d5956ab041
71dad77ffa026e8ce2f80ac4214220b02eaa77fd
/src/concordion/impl/java.py
26eccce54f06e2fe190ccd312eb7875ad62ff44a
[]
no_license
jcplessis/pyconcordion
bf288e3f8fb4a5896396e3a6090cd0672262f1be
09fdbc0094c17f046f46202d216f8d91f8f5bcd3
refs/heads/master
2021-01-22T11:38:33.060065
2015-03-16T08:19:14
2015-03-16T08:19:14
32,134,378
0
0
null
null
null
null
UTF-8
Python
false
false
7,984
py
import os import glob import sys package = """ package %s; """ imports = """ import java.net.*; import org.apache.ws.commons.util.NamespaceContextImpl; import org.apache.xmlrpc.common.TypeFactoryImpl; import org.apache.xmlrpc.common.XmlRpcController; import org.apache.xmlrpc.common.XmlRpcStreamConfig; import org.apache.xmlrpc.parser.NullParser; import org.apache.xmlrpc.parser.TypeParser; import org.apache.xmlrpc.serializer.NullSerializer; import org.apache.xmlrpc.client.XmlRpcClient; import org.apache.xmlrpc.client.XmlRpcClientConfigImpl; import org.apache.xmlrpc.XmlRpcException; import org.concordion.integration.junit3.ConcordionTestCase; import org.concordion.api.%(expected)s; import java.lang.reflect.Array; import java.lang.System; import java.util.*; """ class_declaration = """ @%(expected)s public class %(name)s extends ConcordionTestCase{ """ attributes = """ XmlRpcClient client = null; """ constructor = """ public %(class_name)s() throws MalformedURLException{ XmlRpcClientConfigImpl config = new XmlRpcClientConfigImpl(); config.setServerURL(new URL("http://localhost:%(port)s/")); this.client = new XmlRpcClient(); this.client.setTypeFactory(new MyTypeFactory(this.client)); this.client.setConfig(config); %(extensions)s }""" footer = """ class MyTypeFactory extends TypeFactoryImpl { public MyTypeFactory(XmlRpcController pController) { super(pController); } @Override public TypeParser getParser(XmlRpcStreamConfig pConfig, NamespaceContextImpl pContext, String pURI, String pLocalName) { if ("".equals(pURI) && NullSerializer.NIL_TAG.equals(pLocalName)) { return new NullParser(); } else { return super.getParser(pConfig, pContext, pURI, pLocalName); } } } }""" method_template = """ public Object %(name)s(%(args_declaration)s) throws XmlRpcException{ Object result = this.client.execute("%(class_name)s_%(name)s", new Object[]{%(args_list)s}); if(result != null && result.getClass().isArray()){ List<Object> list = new ArrayList<Object>(); for(int i = 0; i < Array.getLength(result); i++){ list.add(Array.get(result, i)); } return list; } return result; }""" void_method_template = """ public void %(name)s() throws XmlRpcException{ this.client.execute("%(class_name)s_%(name)s", new Object[]{}); }""" suite_template = """import junit.framework.Test; import junit.framework.TestSuite; public class Suite { public static Test suite(){ TestSuite suite = new TestSuite(); suite.setName("pyConcordion test suite"); %(tests)s return suite; } } """ add_test_template = ' suite.addTest(new TestSuite(%(class_full_path)s.class));' void_methods = ["setUp", "tearDown"] class JavaClassGenerator: def __init__(self, root_dir, configuration=None): if not configuration: configuration = {'server_port':1337} self.configuration = configuration self.root_dir = root_dir def run(self, python_files): result = [] for python_file in python_files: java_file = python_file.replace(".py", ".java") python_module = {} execfile(python_file, python_module) python_class_name = os.path.split(python_file)[1].replace(".py", ""); if python_class_name not in python_module: print "Class %s not found in %s file !!! Please make sure that your test class complies with the naming convention." % (python_class_name, python_file) sys.exit(-1) python_class = python_module[python_class_name] java_content = self.generate(python_class, python_file) file(java_file, "w").write(java_content) result.append(python_file.replace(".py", ".java")) return result def suite(self, java_files): add_tests = [] for file in java_files: file_from_root = os.path.abspath(file)[len(os.path.abspath(self.root_dir)) + 1:] full_path = file_from_root.replace('.java', '').replace(os.sep, '.') add_tests.append(add_test_template % {"class_full_path":full_path}) suite_file = os.path.join(self.root_dir, "Suite.java") open(suite_file, "w").write(suite_template % {"tests" : "\n".join(add_tests)}) return suite_file def generate(self, python_class, python_file): expected = "ExpectedToPass" try: expected = python_class._pyconcordion_expected except AttributeError: pass extensions = "" if self.configuration.get("extensions"): extensions = 'System.setProperty("concordion.extensions", "%s");' % self.configuration.get("extensions") return "".join([self.generate_package(python_file), imports % {"expected" : expected}, class_declaration % {"name":python_class.__name__, "expected" : expected}, attributes, constructor % { "class_name":python_class.__name__, "port":self.configuration.get('server_port'), "extensions":extensions }, "\n".join(self.generateMethods(python_class)), footer]) def generate_package(self, python_file): file_from_root = os.path.abspath(python_file)[len(os.path.abspath(self.root_dir)) + 1:] file_package = os.path.split(file_from_root)[0] if file_package == "": return "" else: return package % file_package.replace(os.sep, ".") def generateMethods(self, python_class): methods = [] for method_name in dir(python_class): if not method_name.startswith("_"): method = getattr(python_class, method_name) if isinstance(method, type(self.generateMethods)): func_code = getattr(method, "real_func_code", method.func_code) arguments = func_code.co_varnames[:func_code.co_argcount] arguments_list = ", ".join(arguments[1:]) arguments_declaration = ", ".join(["String " + x for x in arguments[1:]]) if method_name in void_methods: methods.append(void_method_template % {"name":method_name, "class_name":python_class.__name__}) else: methods.append(method_template % {"name":method_name, "class_name":python_class.__name__, "args_declaration":arguments_declaration, "args_list":arguments_list}) return methods class Classpath: def __init__(self, path): self.path = path self.directories = [] def getClasspath(self): files = glob.glob(os.path.join(self.path, "*.jar")) absolute_files = map(os.path.abspath, files) absolute_files.extend(self.directories) return '"' + os.pathsep.join(absolute_files) + '"' def addDirectory(self, path): self.directories.append(path) def removeDirectory(self, path): self.directories.remove(path) def addDirectories(self, paths): for path in paths: self.addDirectory(path) class JavaFileCompiler: def __init__(self, config, classpath, executor): self.configuration = config self.classpath = classpath self.executor = executor def compile(self, javaFiles): command = " ".join([self.configuration.get("javac_command"), "-cp", self.classpath.getClasspath(), " ".join(javaFiles)]) if self.executor.run(command) != 0: raise Exception("Sorry, an exception occured in the compilation process") def modifyExtension(file): name, extension = os.path.splitext(file) return name + ".class" return map(modifyExtension, javaFiles) class JavaTestLauncher: def __init__(self, config, classpath, executor, root_dir): self.configuration = config self.classpath = classpath self.executor = executor self.root_dir = root_dir def launch(self, classFile): (directory, name) = os.path.split(classFile) className = name.replace(".class", "") package = os.path.abspath(directory)[len(os.path.abspath(self.root_dir)) + 1:].replace(os.sep, ".") class_full_path = None if package == "": class_full_path = className else: class_full_path = package + "." + className self.classpath.addDirectory(self.root_dir) command = " ".join([self.configuration.get('java_command'), "-Dconcordion.output.dir=" + self.configuration.get('output_folder'), "-cp", self.classpath.getClasspath(), "junit.textui.TestRunner", class_full_path]) execution_result = self.executor.run(command, True) self.classpath.removeDirectory(self.root_dir) return execution_result
[ "jcplessis@3b747d5a-b732-11dd-8af8-77a15857c330" ]
jcplessis@3b747d5a-b732-11dd-8af8-77a15857c330
c737af5d1ff073a22f5a3aaaf91937cb8797fb95
8164fd930d78efbd3885198efbfd9692c585319b
/week7/CrawWeb/craw_web.py
b837f0305e260bb319dc6622a4866529aa9c6f96
[]
no_license
kobso1245/Hack_BG
7a7b7524b20fada3d9856a583e02c6959d442e66
7ffdb8ccefd67aeca5a49c9a9354e65c77149ad4
refs/heads/master
2020-05-31T17:43:10.316633
2015-10-05T21:43:20
2015-10-05T21:43:20
30,460,888
0
1
null
null
null
null
UTF-8
Python
false
false
194
py
from Crawler import * from Histogram import * from Plotter import * if __name__ == '__main__': craw("http://register.start.bg/", "histogram2") plot("path_to_database_file/websites.db")
[ "kalo.evt@mail.bg" ]
kalo.evt@mail.bg
91ba9347fb713f1ec0e076a66bf3ce839adf7db1
087c9782bfad42a3fe33ba8d5a28577661a2e33a
/modules/EstadoSesion.py
f8109a2204cf2ea8f88c31abbee0a84f4575eaeb
[]
no_license
jav-rojas/capacitaciones
5d9ec7406eb4ad2018f4cbd000bd62f096328b14
fcff5aa9d87b0d6341240a8b2e84fa70487b9c9c
refs/heads/main
2023-01-12T05:39:15.737496
2020-11-17T20:55:47
2020-11-17T20:55:47
301,771,861
0
0
null
null
null
null
UTF-8
Python
false
false
1,563
py
try: import streamlit.ReportThread as ReportThread from streamlit.server.Server import Server except Exception: # Streamlit >= 0.65.0 import streamlit.report_thread as ReportThread from streamlit.server.server import Server class SessionState(object): def __init__(self, **kwargs): for key, val in kwargs.items(): setattr(self, key, val) def get(**kwargs): ctx = ReportThread.get_report_ctx() this_session = None current_server = Server.get_current() if hasattr(current_server, '_session_infos'): # Streamlit < 0.56 session_infos = Server.get_current()._session_infos.values() else: session_infos = Server.get_current()._session_info_by_id.values() for session_info in session_infos: s = session_info.session if ( # Streamlit < 0.54.0 (hasattr(s, '_main_dg') and s._main_dg == ctx.main_dg) or # Streamlit >= 0.54.0 (not hasattr(s, '_main_dg') and s.enqueue == ctx.enqueue) or # Streamlit >= 0.65.2 (not hasattr(s, '_main_dg') and s._uploaded_file_mgr == ctx.uploaded_file_mgr) ): this_session = s if this_session is None: raise RuntimeError( 'No se pudo recuperar la sesión de Streamlit. ¿Estás haciendo algo con threads?') if not hasattr(this_session, '_custom_session_state'): this_session._custom_session_state = SessionState(**kwargs) return this_session._custom_session_state
[ "54907635+jav-rojas@users.noreply.github.com" ]
54907635+jav-rojas@users.noreply.github.com
d022916a345025cb425f8776ec7613b96ad69f8d
abd471c7ef4a5ebae08a0b478e724ce4f5779c24
/setup.py
687c70dcd18e7a0dc3c3a41a281db8df46a2b83b
[ "MIT" ]
permissive
lazy-scrivener-games/homebrewery-to-libris
f0334df94a33ba14411fe00080d72581f75a8706
4420657b72c7ccc3339614c1e7937637b486a8af
refs/heads/main
2023-08-23T21:02:35.177631
2021-10-21T22:23:36
2021-10-21T22:23:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,317
py
from setuptools import setup setup( name='homebrewery-to-libris', version='1.1.0', description='Converter between homebrewery and libris markdown formats.', url='https://github.com/lazy-scrivener-games/homebrewery-to-libris', download_url='https://github.com/lazy-scrivener-games/homebrewery-to-libris/archive/refs/tags/v1.1.tar.gz', author='Chris Muller', author_email='chris@lazyscrivenergames.com', keywords=[ 'utility', 'pdf', 'html', 'markdown', 'conversion', 'book', 'roleplaying', 'game', 'homebrewery', 'libris' ], license='MIT', packages=[ 'homebrewery_to_libris' ], scripts=[ 'scripts/homebrewery-to-libris' ], install_requires=[ 'markdown2 == 2.4.1' ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: End Users/Desktop', 'Topic :: Text Processing :: Markup :: Markdown', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9' ] )
[ "illusorycaesura@gmail.com" ]
illusorycaesura@gmail.com
c008cb5d4d87cdea6e0a73a3afebeb74385aead1
bf9df944e54c4cca22f62f79c3150cf6b7f33fea
/NTupleMaker/bin/preAnalyzerTauTau_Batch_Summer15.py
2a24532b0a43b28671f3510bce77f74775f063ad
[]
no_license
bobovnii/DesyTauAnalysesRun2_25ns
39dce38e34486f98e630fbed515c7410a4a905f3
c45d0071f3024136a97c0af83c00219d22d2242a
refs/heads/master
2020-12-11T07:59:58.389966
2016-04-29T08:07:23
2016-04-29T08:07:23
58,554,259
1
0
null
2016-05-11T14:54:33
2016-05-11T14:54:33
null
UTF-8
Python
false
false
3,549
py
#!/usr/bin/env python import commands import re import os import sys sys.path.append('./') ########################################### ########################################### def preAnalyze( ana, sample, runInSeries=False): #os.system( 'mkdir batch/' ) stream = "TauTau" print "Stream ", stream #os.system('python makeTreeSkimmerTauTau_Summer14.py') if runInSeries: print "Running in series via the command ..." configFileName = "./Configs/preAnalyzerTauTau_Summer15_%s_%s_cfg.py" % (sample,ana) runInSeries = 'preAnalyzer'+stream+' '+configFileName+'\n' print runInSeries os.system(runInSeries) else: nameJob = 'job_'+sample+'_'+ana+'_'+stream if 'Data' in sample: nameJob = 'job_'+sample+'_'+stream else: nameJob = 'job_'+sample+'_'+stream+'_'+ana fileJob = 'batch/'+nameJob+'.sh' fileLog = 'batch/log/'+nameJob+'.txt' print "Creating the shell file : "+nameJob ## f = open(fileJob,'w') f.write('#!/bin/sh\n\n') configFileName = "./Configs/preAnalyzerTauTau_Summer15_%s_%s_cfg.py" % (sample,ana) f.write('cfg='+configFileName+'\n') f.write('cat > $cfg.zsh <<EOF\n') f.write('#!/bin/zsh\n') f.write('#\n') f.write('#(make sure the right shell will be used)\n') f.write('#$ -S /bin/zsh\n') f.write('#\n') f.write('#(the cpu time for this job)\n') f.write('#$ -l h_cpu=02:29:00\n') f.write('#\n') f.write('#(the maximum memory usage of this job)\n') f.write('#$ -l h_vmem=2000M\n') f.write('#\n') f.write('#(use hh site)\n') f.write('#$ -l site=hh\n') f.write('#(stderr and stdout are merged together to stdout)\n') f.write('#$ -j y\n') f.write('#\n') f.write('# use SL6\n') f.write('#$ -l os=sld6\n') f.write('#\n') f.write('# use current dir and current environment\n') f.write('#$ -cwd\n') f.write('#$ -V\n') f.write('#\n') f.write('#$ -o $cfg.out\n') f.write('#\n') f.write('#$ -e $cfg.err\n') f.write('preAnalyzer'+stream+' $cfg\n') f.write('EOF\n') f.write('rm $cfg.out\n') f.write('rm $cfg.err\n') f.write('chmod u+x $cfg.zsh\n') f.write('qsub $cfg.zsh\n') f.close() os.system('chmod u+x batch/*.sh') os.system('python preAnalyzerTauTau_Summer15.py') ########################################### ########################################### ##Data preAnalyze("nominal","Run2015B-Data_TauTau",True) ##Signal #preAnalyze("nominal","GGFH125",False) #preAnalyze("nominal","VBFH125",False) #preAnalyze("nominal","SUSYGGH160",True) #preAnalyze("nominal","SUSYBBH160",True) ## Background #preAnalyze("nominal","DYJets_TauTau",True) #preAnalyze("nominal","WJetsToLNu",True) #preAnalyze("nominal","TTJets",True) #preAnalyze("nominal","SingleTop_t",True) ##preAnalyze("nominal","SingleAntiTop_t",True) #preAnalyze("nominal","SingleTop_tW",True) #preAnalyze("nominal","SingleAntiTop_tW",True) ##preAnalyze("nominal","WWTo2L2Nu",True) ##preAnalyze("nominal","WWTo4Q",True) ##preAnalyze("nominal","WWToLNuQQ",True) ##preAnalyze("nominal","WZTo1L1Nu2Q",True) ##preAnalyze("nominal","WZTo3LNu",True) ##preAnalyze("nominal","ZZ",True)
[ "francesco.costanza@desy.de" ]
francesco.costanza@desy.de
7fa564e54a994f80546bfabe9d520dff0eacb74a
fa46fd872bd6aae13721569ef24c09d2dd09bc83
/ch_16_coroutines/simple_coroutines.py
0dbe70a9082015c8c4887d93e0fee9a4d61495ce
[]
no_license
justincrapse/fluent_python
0da1c7ce713c03fd3ed2ca5519b9d8a1a0b2dfcd
fa58da79adfa2bf6031667bc6290e272d9715d5c
refs/heads/master
2022-06-13T05:15:02.103596
2020-05-10T19:22:15
2020-05-10T19:22:15
257,097,106
0
0
null
null
null
null
UTF-8
Python
false
false
742
py
from inspect import getgeneratorstate def simple_coroutine(a): print('-> Started: a = ', a) b = yield a # b != a. b receives what is sent in my_coro.send(), which is 28 in the code below print('-> Received: b =', b) c = yield a + b print('-> Received: c =', c) my_coro = simple_coroutine(14) print(getgeneratorstate(my_coro)) next(my_coro) # prints first message and runs to yeild a, yielding number 14 print(getgeneratorstate(my_coro)) print(my_coro.send(28)) # assigns 28 to b, prints second message, and runs through to next yield (a + b '42') try: print(my_coro.send(99)) # runs the rest of the code, then terminates with StopIteration exception except StopIteration: print(getgeneratorstate(my_coro))
[ "justincrapse@gmail.com" ]
justincrapse@gmail.com
d913221b2594a670e1a1296137e8184576959356
d5862abce5457bbe3865c6c8fc0fcec42e8c27f7
/mgn/tools/run_train_e2e.py
c287a63a310f9980b196ca64f2f1e4e47df4b8ee
[ "MIT" ]
permissive
cdsfcesf/mgn
ecaf64bd51c3209d96646eb1beebf6b1ea28cb96
341d9feae7c400c0d56f3849633a2b357df8d8ed
refs/heads/master
2023-04-14T11:14:17.723482
2021-04-30T22:48:10
2021-04-30T22:48:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,453
py
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File: run_train_e2e.py # Author: anon # Email: anon@cs.anon.edu # Created on: 2020-05-18 # # This file is part of MGN # Distributed under terms of the MIT License import os import sys _dir = os.path.split(os.getcwd())[0] if _dir not in sys.path: sys.path.insert(0, _dir) sys.path.insert(0, ".") import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') logging.getLogger('imported_module').setLevel(logging.WARNING) from options.train_options import TrainOptions from datasets import get_dataloader from executors import get_executor from models.parser import Seq2seqParser from trainer import Trainer import numpy as np import random np.random.seed(42) random.seed(42) import clevr_parser graph_parser = clevr_parser.Parser(backend='spacy', model='en_core_web_sm', has_spatial=True, has_matching=True).get_backend(identifier='spacy') embedder = clevr_parser.Embedder(backend='torch', parser=graph_parser).get_backend(identifier='torch') opt = TrainOptions().parse() train_loader = get_dataloader(opt, 'train', graph_parser=graph_parser, embedder=embedder) val_loader = get_dataloader(opt, 'val', graph_parser=graph_parser, embedder=embedder) model = Seq2seqParser(opt) executor = get_executor(opt) trainer = Trainer(opt, train_loader, val_loader, model, executor) trainer.train()
[ "raeidsaqur@cs.toronto.edu" ]
raeidsaqur@cs.toronto.edu
2736296850dec612e5894e270ae5b568fc2c1cb0
f2c27c44ee4d54f1441df40cf5453b199e0f8142
/test3.py
0fc400769530d178a248c7fedc04935d734ec257
[]
no_license
weinan123/tests
e05f308ef7f5c3a1409b4be6eb644a6a11d05e6d
0a7e91e1977942babb574ea8bdf45a571d74ba4a
refs/heads/master
2020-04-27T06:48:01.596598
2019-03-26T08:12:50
2019-03-26T08:12:50
174,118,099
0
0
null
null
null
null
UTF-8
Python
false
false
1,364
py
# -*- coding: UTF-8 -*- #高阶函数 f = abs #函数本身可以赋值给变量 print f(-10) ''' 函数接收另外一个函数作为参数,称为高阶函数''' def add(x,y,f): return f(x)+f(y) result = add(-5,-6,abs) print result #map def f(x): return x*x r = map(f,[1,2,3,4,5,6,7]) print list(r) #capitalize()首字母大写,其他字母小写 def normalize(name): return name.capitalize() L1 = ['adam','LISA','barT'] L2 = list(map(normalize,L1)) print L2 def prod(L): return reduce(lambda x,y:x*y,L) str = prod([3,5,7,9]) print str #filter def _odd_iter(): n = 1 while True: n = n+2 yield n def _not_divisible(n): return lambda x:x%n>0 def primes(): yield 2 it = _odd_iter() while True: n = next(it) yield n it = filter(_not_divisible(n),it) for n in primes(): if n <1000: print n else: break def is_palindrome(n): return n and n == reversed(n) listsqwe = list(filter(is_palindrome,[123,121,345,23432])) print listsqwe from functools import reduce def str2num(s): return int(s) def calc(exp): ss = exp.split('+') ns = map(str2num, ss) return reduce(lambda acc, x: acc + x, ns) def main(): r = calc('100 + 200 + 345') print('100 + 200 + 345 =', r) r = calc('99 + 88 + 7.6') print('99 + 88 + 7.6 =', r) main()
[ "tom.weng@yff.com" ]
tom.weng@yff.com
ce19c5dcc0781b0f973bef61f84f4c439f3f4947
924c65166eee1da93c0a0c85f067c028b1d7c6be
/deepforest/deepforest.py
19e80e8a67f29e7e8a2266c1c25eca30a205a678
[ "MIT" ]
permissive
geo-py/DeepForest
4cf8e1fd742c6a52b67cb57d2f6825e149a0903b
39cb1db4b57ca7fbb64f0f87fee0f74487e4d7e3
refs/heads/master
2021-04-08T09:48:58.526848
2020-03-19T03:04:01
2020-03-19T03:04:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,798
py
""" Deepforest main module. This module holds the deepforest class for model building and training """ import os import csv import warnings from PIL import Image with warnings.catch_warnings(): #Suppress some of the verbose tensorboard warnings, compromise to avoid numpy version errors warnings.filterwarnings("ignore", category=FutureWarning) import tensorflow as tf import pandas as pd import cv2 import numpy as np from matplotlib import pyplot as plt from deepforest import get_data from deepforest import utilities from deepforest import predict from deepforest import preprocess from deepforest.retinanet_train import main as retinanet_train from deepforest.retinanet_train import parse_args from keras_retinanet import models from keras_retinanet.models import convert_model from keras_retinanet.bin.train import create_models from keras_retinanet.preprocessing.csv_generator import CSVGenerator, _read_classes from keras_retinanet.utils.eval import evaluate from keras_retinanet.utils.eval import _get_detections from keras_retinanet.utils.visualization import draw_box class deepforest: ''' Class for training and predicting tree crowns in RGB images Args: weights (str): Path to model saved on disk from keras.model.save_weights(). A new model is created and weights are copied. Default is None. saved_model: Path to a saved model from disk using keras.model.save(). No new model is created. Attributes: model: A keras training model from keras-retinanet ''' def __init__(self, weights=None, saved_model=None): self.weights = weights self.saved_model = saved_model #Read config file - if a config file exists in local dir use it, if not use installed. if os.path.exists("deepforest_config.yml"): config_path = "deepforest_config.yml" else: try: config_path = get_data("deepforest_config.yml") except Exception as e: raise ValueError( "No deepforest_config.yml found either in local directory or in installed package location. {}" .format(e)) print("Reading config file: {}".format(config_path)) self.config = utilities.read_config(config_path) #Create a label dict, defaults to "Tree" self.read_classes() #release version id to flag if release is being used self.__release_version__ = None #Load saved model if needed if self.saved_model: print("Loading saved model") #Capture user warning, not relevant here with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) self.model = utilities.load_model(saved_model) if self.weights is not None: print("Creating model from weights") backbone = models.backbone(self.config["backbone"]) self.model, self.training_model, self.prediction_model = create_models( backbone.retinanet, num_classes=1, weights=self.weights) else: print( "A blank deepforest object created. To perform prediction, either train or load an existing model." ) self.model = None def read_classes(self): """Read class file in case of multi-class training. If no file has been created, DeepForest assume there is 1 class, Tree""" # parse the provided class file self.labels = {} try: with open(self.classes_file, 'r') as file: self.classes = _read_classes(csv.reader(file, delimiter=',')) for key, value in self.classes.items(): self.labels[value] = key except: self.labels[0] = "Tree" def train(self, annotations, input_type="fit_generator", list_of_tfrecords=None, comet_experiment=None, images_per_epoch=None): '''Train a deep learning tree detection model using keras-retinanet. This is the main entry point for training a new model based on either existing weights or scratch Args: annotations (str): Path to csv label file, labels are in the format -> path/to/image.png,x1,y1,x2,y2,class_name comet_experiment: A comet ml object to log images. Optional. list_of_tfrecords: Ignored if input_type != "tfrecord", list of tf records to process input_type: "fit_generator" or "tfrecord" images_per_epoch: number of images to override default config of # images in annotations file / batch size. Useful for debug Returns: model (object): A trained keras model prediction model: with bbox nms trained model: without nms ''' #Test if there is a new classes file in case # of classes has changed. self.classes_file = utilities.create_classes(annotations) self.read_classes() arg_list = utilities.format_args(annotations, self.classes_file, self.config, images_per_epoch) print("Training retinanet with the following args {}".format(arg_list)) #Train model self.model, self.prediction_model, self.training_model = retinanet_train( forest_object=self, args=arg_list, input_type=input_type, list_of_tfrecords=list_of_tfrecords, comet_experiment=comet_experiment) def use_release(self, gpus=1): '''Use the latest DeepForest model release from github and load model. Optionally download if release doesn't exist Returns: model (object): A trained keras model gpus: number of gpus to parallelize, default to 1 ''' #Download latest model from github release release_tag, self.weights = utilities.use_release() #load saved model and tag release self.__release_version__ = release_tag print("Loading pre-built model: {}".format(release_tag)) if gpus == 1: with warnings.catch_warnings(): #Suppress compilte warning, not relevant here warnings.filterwarnings("ignore", category=UserWarning) self.model = utilities.read_model(self.weights, self.config) #Convert model self.prediction_model = convert_model(self.model) elif gpus > 1: backbone = models.backbone(self.config["backbone"]) n_classes = len(self.labels.keys()) self.model, self.training_model, self.prediction_model = create_models( backbone.retinanet, num_classes=n_classes, weights=self.weights, multi_gpu=gpus) #add to config self.config["weights"] = self.weights def predict_generator(self, annotations, comet_experiment=None, iou_threshold=0.5, max_detections=200, return_plot=False): """Predict bounding boxes for a model using a csv fit_generator Args: annotations (str): Path to csv label file, labels are in the format -> path/to/image.png,x1,y1,x2,y2,class_name iou_threshold(float): IoU Threshold to count for a positive detection (defaults to 0.5) max_detections (int): Maximum number of bounding box predictions comet_experiment(object): A comet experiment class objects to track return_plot: Whether to return prediction boxes (False) or Images (True). If True, files will be written to current working directory if model.config["save_path"] is not defined. Return: boxes_output: If return_plot=False, a pandas dataframe of bounding boxes for each image in the annotations file None: If return_plot is True, images are written to save_dir as a side effect. """ #Format args for CSV generator classes_file = utilities.create_classes(annotations) arg_list = utilities.format_args(annotations, classes_file, self.config) args = parse_args(arg_list) #create generator generator = CSVGenerator( args.annotations, args.classes, image_min_side=args.image_min_side, image_max_side=args.image_max_side, config=args.config, shuffle_groups=False, ) if self.prediction_model: boxes_output = [] #For each image, gather predictions for i in range(generator.size()): #pass image as path plot_name = generator.image_names[i] image_path = os.path.join(generator.base_dir, plot_name) result = self.predict_image(image_path, return_plot=return_plot, score_threshold=args.score_threshold) if return_plot: if not self.config["save_path"]: print( "model.config['save_path'] is None, saving images to current working directory" ) save_path = "." else: save_path = self.config["save_path"] #Save image fname = os.path.join(save_path, plot_name) cv2.imwrite(fname, result) continue else: #Turn boxes to pandas frame and save output box_df = pd.DataFrame(result) #use only plot name, not extension box_df["plot_name"] = os.path.splitext(plot_name)[0] boxes_output.append(box_df) else: raise ValueError( "No prediction model loaded. Either load a retinanet from file, download the latest release or train a new model" ) if return_plot: return None else: #if boxes, name columns and return box data boxes_output = pd.concat(boxes_output) boxes_output.columns = [ "xmin", "ymin", "xmax", "ymax", "score", "label", "plot_name" ] boxes_output = boxes_output.reindex( columns=["plot_name", "xmin", "ymin", "xmax", "ymax", "score", "label"]) return boxes_output def evaluate_generator(self, annotations, comet_experiment=None, iou_threshold=0.5, max_detections=200): """ Evaluate prediction model using a csv fit_generator Args: annotations (str): Path to csv label file, labels are in the format -> path/to/image.png,x1,y1,x2,y2,class_name iou_threshold(float): IoU Threshold to count for a positive detection (defaults to 0.5) max_detections (int): Maximum number of bounding box predictions comet_experiment(object): A comet experiment class objects to track Return: mAP: Mean average precision of the evaluated data """ #Format args for CSV generator classes_file = utilities.create_classes(annotations) arg_list = utilities.format_args(annotations, classes_file, self.config) args = parse_args(arg_list) #create generator validation_generator = CSVGenerator( args.annotations, args.classes, image_min_side=args.image_min_side, image_max_side=args.image_max_side, config=args.config, shuffle_groups=False, ) average_precisions = evaluate(validation_generator, self.prediction_model, iou_threshold=iou_threshold, score_threshold=args.score_threshold, max_detections=max_detections, save_path=args.save_path, comet_experiment=comet_experiment) # print evaluation total_instances = [] precisions = [] for label, (average_precision, num_annotations) in average_precisions.items(): print('{:.0f} instances of class'.format(num_annotations), validation_generator.label_to_name(label), 'with average precision: {:.4f}'.format(average_precision)) total_instances.append(num_annotations) precisions.append(average_precision) if sum(total_instances) == 0: print('No test instances found.') return print('mAP using the weighted average of precisions among classes: {:.4f}'.format( sum([a * b for a, b in zip(total_instances, precisions)]) / sum(total_instances))) mAP = sum(precisions) / sum(x > 0 for x in total_instances) print('mAP: {:.4f}'.format(mAP)) return mAP def predict_image(self, image_path=None, numpy_image=None, return_plot=True, score_threshold=0.05, show=False, color=None): """Predict tree crowns based on loaded (or trained) model Args: image_path (str): Path to image on disk numpy_image (array): Numpy image array in BGR channel order following openCV convention color (tuple): Color of bounding boxes in BGR order (0,0,0) black default show (bool): Plot the predicted image with bounding boxes. Ignored if return_plot=False return_plot: Whether to return image with annotations overlaid, or just a numpy array of boxes Returns: predictions (array): if return_plot, an image. Otherwise a numpy array of predicted bounding boxes, with scores and labels """ #Check for model save if (self.prediction_model is None): raise ValueError( "Model currently has no prediction weights, either train a new model using deepforest.train, loading existing model, or use prebuilt model (see deepforest.use_release()" ) #Check the formatting if isinstance(image_path, np.ndarray): raise ValueError( "image_path should be a string, but is a numpy array. If predicting a loaded image (channel order BGR), use numpy_image argument." ) #Check for correct formatting #Warning if image is very large and using the release model if numpy_image is None: numpy_image = cv2.imread(image_path) #Predict prediction = predict.predict_image(self.prediction_model, image_path=image_path, raw_image=numpy_image, return_plot=return_plot, score_threshold=score_threshold, color=color, classes=self.labels) #cv2 channel order to matplotlib order if return_plot & show: plt.imshow(prediction[:, :, ::-1]) plt.show() return prediction def predict_tile(self, raster_path=None, numpy_image=None, patch_size=400, patch_overlap=0.15, iou_threshold=0.15, return_plot=False): """ For images too large to input into the model, predict_tile cuts the image into overlapping windows, predicts trees on each window and reassambles into a single array. Args: raster_path: Path to image on disk numpy_image (array): Numpy image array in BGR channel order following openCV convention iou_threshold: Minimum iou overlap among predictions between windows to be suppressed. Defaults to 0.5. Lower values suppress more boxes at edges. return_plot: Should the image be returned with the predictions drawn? Returns: boxes (array): if return_plot, an image. Otherwise a numpy array of predicted bounding boxes, scores and labels """ if numpy_image: pass else: #Load raster as image raster = Image.open(raster_path) numpy_image = np.array(raster) #Compute sliding window index windows = preprocess.compute_windows(numpy_image, patch_size, patch_overlap) #Save images to tmpdir predicted_boxes = [] for index, window in enumerate(windows): #Crop window and predict crop = numpy_image[windows[index].indices()] #Crop is RGB channel order, change to BGR crop = crop[..., ::-1] boxes = self.predict_image(numpy_image=crop, return_plot=False, score_threshold=self.config["score_threshold"]) #transform coordinates to original system xmin, ymin, xmax, ymax = windows[index].getRect() boxes.xmin = boxes.xmin + xmin boxes.xmax = boxes.xmax + xmin boxes.ymin = boxes.ymin + ymin boxes.ymax = boxes.ymax + ymin predicted_boxes.append(boxes) predicted_boxes = pd.concat(predicted_boxes) #Non-max supression for overlapping boxes among window if patch_overlap == 0: mosaic_df = predicted_boxes else: with tf.Session() as sess: print("{} predictions in overlapping windows, applying non-max supression". format(predicted_boxes.shape[0])) new_boxes, new_scores, new_labels = predict.non_max_suppression( sess, predicted_boxes[["xmin", "ymin", "xmax", "ymax"]].values, predicted_boxes.score.values, predicted_boxes.label.values, max_output_size=predicted_boxes.shape[0], iou_threshold=iou_threshold) #Recreate box dataframe image_detections = np.concatenate([ new_boxes, np.expand_dims(new_scores, axis=1), np.expand_dims(new_labels, axis=1) ],axis=1) mosaic_df = pd.DataFrame( image_detections, columns=["xmin", "ymin", "xmax", "ymax", "score", "label"]) mosaic_df.label = mosaic_df.label.str.decode("utf-8") print("{} predictions kept after non-max suppression".format( mosaic_df.shape[0])) if return_plot: #Draw predictions for box in mosaic_df[["xmin", "ymin", "xmax", "ymax"]].values: draw_box(numpy_image, box, [0, 0, 255]) #Mantain consistancy with predict_image return numpy_image else: return mosaic_df def plot_curves(self): """Plot training curves""" if self.history: # Plot training & validation regression loss values fig, axes, = plt.subplots(nrows=1, ncols=3) axes = axes.flatten() #Regression Loss axes[0].plot(self.history.history['regression_loss']) axes[0].set_title('Bounding Box Loss') axes[0].set_ylabel('Loss') axes[0].set_xlabel('Epoch') #Classification Loss axes[1].plot(self.history.history['classification_loss']) axes[1].set_title('Classification Loss') axes[1].set_ylabel('Loss') axes[1].set_xlabel('Epoch') # Plot validation mAP if "mAP" in self.history.history.keys(): axes[2].plot(self.history.history['mAP']) axes[2].set_title('Validation: Mean Average Precision') axes[2].set_ylabel('mAP') axes[2].set_xlabel('Epoch') plt.show() else: print("No training history found.") return None
[ "benweinstein2010@gmail.com" ]
benweinstein2010@gmail.com
b808890d42c126b65c5b6213a5c1efc90ba24f4f
8e8487a365988830bce965cf6a80c179e7125292
/GitHub_test.py
ff877ce4130281f84b86dfab7e69f72ce4396bd3
[]
no_license
github-ruben/NeuralNetwork
f93d98b6c021dd91088fe96f33c6983606a550ad
d78f2a4c8cd32854f9c0d29b98b72eae4ba5b25f
refs/heads/master
2020-05-06T12:19:58.993602
2019-04-08T14:51:59
2019-04-08T14:51:59
180,117,231
0
0
null
null
null
null
UTF-8
Python
false
false
7,941
py
import sys import os import pandas as pd feature_sel_NN = ['SpdLimit', 'LengthMeter', 'IsPaved', 'HasSpdBumps', 'NrSharpTurns' ,'IsPriority', 'IsUrban', 'IsRamp'] training_data = (r'data_vrachtwagen_training.csv') test_data = (r'data_vrachtwagen_test.csv') def load_and_prepare(data_file_name): #Load data file with speeds and factors for road segments data_set_learning = pd.read_csv(data_file_name , sep = ';') data_set_learning = data_cleaning(data_set_learning) return data_set_learning def data_cleaning(data): #Ignore speed if GPS point is more than 20m away data = data[data.MeterAwayFromGps <= 20] #Ignore is speed is on ferry edge data = data[data.IsFerry == 0] #Ignore speed limits of >130 data = data[data.SpdLimit <= 130] return data training_data = load_and_prepare(training_data) test_data = load_and_prepare(test_data) #----- Setup independent and depedent (target) variables ---------------------------------------------------------------------------------------- features = feature_sel_NN nr_features = len(features) X_train = training_data[features] X_test = test_data[features] y_train = training_data.CrwlKmph y_test = test_data.CrwlKmph # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) #----- Building NN ------------------------------------------------------------------------------------------- # Importing the Keras libraries and packages import keras from keras.optimizers import Adam from keras.layers import Dense from keras.models import Sequential from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.wrappers.scikit_learn import KerasRegressor from sklearn.model_selection import cross_val_score #from keras.layers import Dropout # Building the Neural Network def build_regressor(nr_neurons, nr_hiddenlayers, nr_features, optimizer = 'adam'): #reproduce() regressor = Sequential() # Adding the input layer and the first hidden layer regressor.add(Dense(units = nr_neurons, kernel_initializer = 'uniform', activation = 'relu', input_dim = nr_features)) for layers in range(nr_hiddenlayers-1): # Adding (nr_hiddenlayers - 1) to NN regressor.add(Dense(units = nr_neurons, kernel_initializer = 'uniform', activation = 'relu')) # Adding the output layer regressor.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'linear')) # Compiling the ANN regressor.compile(optimizer = optimizer, loss = 'mean_squared_error') #print(regressor.get_weights()) return regressor #----- Learning -------------------------------------------------------------------------------------------------------------------------- ''' def run(x): nr_neuron = int(x[0,0]) nr_hiddenlayer = int(x[0,1]) epoch = int(x[0,2]) batch_size = int(x[0,3]) print(nr_neurons, nr_hiddenlayers,epoch,batch_size) regressor = build_regressor(nr_neuron, nr_hiddenlayer) callbacks = [EarlyStopping(monitor='val_loss', patience=2)] regressor.fit(X_train, y_train, batch_size = batch_size, nb_epoch = epoch, callbacks = callbacks, validation_data = (X_test, y_test)) return regressor.evaluate(X_test, y_test) ''' #---- Hyperparameter tuning ----------------------------------------- https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/ #Common hyperparameters for Neural Networks, from most important to least important, are: #Learning rate – α (is also adam parameter) #Number of hidden units for different layers #Momentum – β () #Mini-batch size #Number of hidden layers #Adam’s hyperparameter – β1, β2, ε (lr=0.001,beta_1=0.9,beta_2 = 0.999) #Learning rate decay import GPyOpt import GPy from GPy import kern from GPy import models #from GPy import priors ''' def hyp_optimizing(x): nr_neurons = int(x[0,0]) nr_hiddenlayers = int(x[0,1]) epoch = int(x[0,2]) batch_size = int(x[0,3]) print(nr_neurons, nr_hiddenlayers, epoch, batch_size) #regressor = build_regressor(nr_neurons, nr_hiddenlayers) #callbacks = [EarlyStopping(monitor='val_loss', patience=2), ModelCheckpoint(filepath = 'best_model_NN',monitor = 'val-loss', save_best_only = 'True')] neural_network = KerasRegressor(build_fn = build_regressor, batch_size= batch_size, epochs = epoch, nr_neurons = nr_neurons, nr_hiddenlayers = nr_hiddenlayers, nr_features = nr_features, verbose = 2) cv_result = cross_val_score(estimator = neural_network, X = X_train, y = y_train, cv=5, verbose =3, scoring = 'mean_squared_error', fit_params = {'callbacks':[EarlyStopping(monitor='val_loss', patience=5), ModelCheckpoint(filepath = 'best_model_NN',monitor = 'val-loss', save_best_only = 'True')], 'validation_data' : (X_test, y_test)}) loss = cv_result.mean() #regressor.evaluate(X_test, y_test) print ('The loss of the CV = ', loss) print ('') return loss#regressor.evaluate(X_test, y_test) mixed_domain =[{'name': 'nr_neurons' , 'type': 'discrete', 'domain': [x for x in range(6,20)] }, {'name': 'nr_hiddenlayers', 'type': 'discrete', 'domain': [x for x in range(1,5)] }, {'name': 'epochs' , 'type': 'discrete', 'domain': [x for x in range(2,3)] }, {'name': 'batch_size' , 'type': 'discrete', 'domain': [x for x in range(150,200)] }] myProblem = GPyOpt.methods.BayesianOptimization(f = hyp_optimizing, domain = mixed_domain, initial_design_numdata = 2, acquisition_type = 'EI_MCMC', model_type = 'GP_MCMC', maximize = True) myProblem.run_optimization(1) myProblem.plot_convergence() myProblem.plot_acquisition() #------ Train best model ------------------------------------------------------------------------------------------ print(myProblem.x_opt, myProblem.fx_opt) hyper_train = myProblem.x_opt nr_neurons, nr_hiddenlayers, nr_epochs, batch_size = int(hyper_train[0]), int(hyper_train[1]), int(hyper_train[2]), int(hyper_train[3]) ''' nr_neurons, nr_hiddenlayers, nr_epochs, batch_size = 20,10,100, 150 ''' filepath = r"PointBasedMethods\ModelCheckPoint\Best_NN_model-{val_loss:.4f}.hdf5" #Remove files from modelcheckpoint --> otherwise error occurs for c in os.listdir(ModelCheckPoint_folder): full_path = os.path.join(ModelCheckPoint_folder, c) if os.path.isfile(full_path): os.remove(full_path) else: shutil.rmtree(full_path) ''' regressor = build_regressor(nr_neurons, nr_hiddenlayers, nr_features) #regressor = build_regressor(15, 8, nr_features) #callbacks = [EarlyStopping(monitor='val_loss', patience=5), ModelCheckpoint(filepath ,mode= 'min',monitor = 'val_loss', save_best_only = 'True', verbose=1)] regressor.fit(X_train, y_train, batch_size = batch_size, nb_epoch = nr_epochs, verbose = 2)#callbacks = callbacks, validation_data = (X_test, y_test), verbose =2)
[ "noreply@github.com" ]
github-ruben.noreply@github.com
8ebabb8929c847e3c9edcd7a71bcd0940adfa0c2
d44bfb67b8b19f3773558870a71a42e0cd3ec002
/telemetry-library/telemetry/telemetry_mqtt.py
cc84776095c2500d7a5842bdd8449b8635c5956f
[ "Apache-2.0" ]
permissive
Abstract-Horizon/pyros-telemetry
764cdbb8cc98b7d72b1b2a04490c4989c003cbd2
7ecb5deaf266689555cbf0721f9c156e4dfe28d7
refs/heads/master
2023-08-17T19:52:24.684594
2021-10-11T17:46:40
2021-10-11T17:46:40
272,370,230
0
0
null
null
null
null
UTF-8
Python
false
false
6,580
py
################################################################################ # Copyright (C) 2016-2020 Abstract Horizon # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License v2.0 # which accompanies this distribution, and is available at # https://www.apache.org/licenses/LICENSE-2.0 # # Contributors: # Daniel Sendula - initial API and implementation # ################################################################################# import paho.mqtt.client as mqtt import random import re import sys import threading import time import traceback from telemetry.telemetry_logger import TelemetryLogger, LocalPipeTelemetryLoggerDestination, PubSubTelemetryLoggerClient from telemetry.telemetry_client import PubSubTelemetryClient class MQTTLocalPipeTelemetryLogger(TelemetryLogger): def __init__(self, stream_name, host="localhost", port=1883, topic='telemetry'): self.mqtt = MQTTWrapper(host, port) super(MQTTLocalPipeTelemetryLogger, self).__init__(stream_name, destination=LocalPipeTelemetryLoggerDestination(), telemetry_client=PubSubTelemetryLoggerClient(topic, self.mqtt.publish, self.mqtt.subscribe)) def init(self): while not self.mqtt.is_connected(): self.mqtt.loop(0.02) super(MQTTLocalPipeTelemetryLogger, self).init() while not self.stream_ready and self.registration_error == 0: self.mqtt.loop(0.02) class MQTTTelemetryClient(PubSubTelemetryClient): def __init__(self, host="localhost", port=1883, topic='telemetry'): self.mqtt = MQTTWrapper(host, port) super(MQTTTelemetryClient, self).__init__(topic, self.mqtt.publish, self.mqtt.subscribe) class MQTTWrapper: def __init__(self, host="localhost", port=1883, auto_init=True): self.client = None self.host = host self.port = port self.name = "telemetry-server-" + str(random.randint(10000, 99999)) self._subscribers = [] self._regexToLambda = {} self._received = False self.connected = False if auto_init: self.init() def init(self, wait_to_connect=True): self.client = mqtt.Client(self.name) self.client.on_disconnect = self._on_disconnect self.client.on_connect = self._on_connect self.client.on_message = self._on_message if self.host is not None: self._connect() if wait_to_connect: print(" " + self.name + " waiting to connect to broker...") while not self.connected: self.loop(0.02) print(" " + self.name + " connected to broker.") def _connect(self): self.connected = False if self.client is not None: try: self.client.disconnect() except Exception: pass self.client.connect_async(self.host, self.port, 60) thread = threading.Thread(target=self._reconnect) thread.daemon = True thread.start() def _on_disconnect(self, _mqtt_client, _data, _rc): self._connect() def _on_connect(self, mqtt_client, _data, _flags, rc): if rc == 0: self.connected = True for subscriber in self._subscribers: mqtt_client.subscribe(subscriber, 0) else: print("ERROR: Connection returned error result: " + str(rc)) sys.exit(rc) def _on_message(self, _mqtt_client, _data, msg): global _received _received = True topic = msg.topic try: for regex in self._regexToLambda: matching = regex.match(topic) if matching: method = self._regexToLambda[regex] method(topic, msg.payload) return except Exception as ex: print("ERROR: Got exception in on message processing; " + str(ex) + "\n" + ''.join(traceback.format_tb(ex.__traceback__))) def _reconnect(self): try: self.client.reconnect() except Exception: pass def publish(self, topic, message): if self.connected: self.client.publish(topic, message) def subscribe(self, topic, method): self._subscribers.append(topic) regex_string = "^" + topic.replace("+", "([^/]+)").replace("#", "(.*)") + "$" regex = re.compile(regex_string) self._regexToLambda[regex] = method if self.connected: self.client.subscribe(topic, 0) def is_connected(self): return self.connected def sleep(self, delta_time): self.loop(self, delta_time) def loop(self, delta_time, _inner=None): current_time = time.time() self._received = False self.client.loop(0.0005) # wait for 0.5 ms until = current_time + delta_time while current_time < until: if self._received: self._received = False self.client.loop(0.0005) # wait for 0.1 ms current_time = time.time() else: time.sleep(0.002) # wait for 2 ms current_time = time.time() if current_time + 0.0005 < until: self.client.loop(0.0005) # wait for 0.1 ms current_time = time.time() def forever(self, delta_time, outer=None, inner=None): current_time = time.time() next_time = current_time while True: next_time = next_time + delta_time try: if outer is not None: outer() except BaseException as ex: print("ERROR: Got exception in main loop; " + str(ex) + "\n" + ''.join(traceback.format_tb(ex.__traceback__))) current_time = time.time() sleep_time = next_time - current_time if sleep_time < 0.002: next_time = current_time self._received = False self.client.loop(0.0005) # wait for 0.1 ms count = 10 # allow at least 5 messages while count > 0 and self._received: self._received = True count -= 1 self.client.loop(0.0005) # wait for 0.1 ms else: self.loop(sleep_time, inner=inner)
[ "natdan@users.noreply.github.com" ]
natdan@users.noreply.github.com
35aed6992cd479774142420d442e2ef3961ae208
77fd9e792b1e72ee4522ed6173b51b7ae923bf8f
/p5/gamefile/sketch.py
f7eddf763efd4b55c8d2ea4d46bc53a70cf21371
[]
no_license
christophejacques/examples
28e2f46ca8b60ff3adb48eb8f03e2693c01f81a0
80ad880298bf9f6a2f32f87ec90e43068380c7a5
refs/heads/master
2023-08-17T01:30:19.180254
2023-08-05T18:13:16
2023-08-05T18:13:16
188,475,439
0
0
null
null
null
null
UTF-8
Python
false
false
2,014
py
import random from __init__ import background, createCanvas, stroke, fill, circle, rect, square, rectMode from __init__ import P5, strokeWeight, noStroke, map, Vector, line from __init__ import * SIZE = 10 ROWS, COLS = 0, 0 grid = [] updating = True olds = 0 compteur = 0 def nbVoisins(x, y): somme = 0 for i in range(max(0, x-1), min(COLS, x+2)): for j in range(max(0, y-1), min(ROWS, y+2)): somme += grid[i][j] return somme def init(grid, rand=True): grid.clear() for _ in range(COLS): grid.append([random.randint(0, 1) if rand else 0 for _ in range(ROWS)]) def update(): global grid newgrid = [] init(newgrid, False) for i, col in enumerate(grid): for j, c in enumerate(col): nb = nbVoisins(i, j) if grid[i][j] == 1 and nb in (3, 4) or grid[i][j] == 0 and nb == 3: newgrid[i][j] = 1 else: newgrid[i][j] = 0 grid = newgrid.copy() def keyReleased(): global updating if P5.keyCode == pygame.K_SPACE: updating = not updating elif P5.keyCode in (pygame.K_KP_ENTER, pygame.K_RETURN): init(grid) def mousePressed(): x = P5.mouseX // SIZE y = P5.mouseY // SIZE grid[y][x] = 1 def setup(): global COLS, ROWS createCanvas(600, 400) ROWS = P5.WIDTH // SIZE COLS = P5.HEIGHT // SIZE init(grid) fill(0, 50, 50) stroke(0) def draw(): global olds, compteur if P5.mouseIsPressed: mousePressed() s = sum([sum(x) for x in grid]) if olds == s: compteur += 1 else: compteur = 0 olds = s if compteur > 100: init(grid) background(0) for i, col in enumerate(grid): for j, c in enumerate(col): if c == 1: fill(200, 200, 200) else: fill(0, 50, 50) square(j*SIZE, i*SIZE, SIZE) if not P5.mouseIsPressed and updating: update() __import__("run")
[ "cjacques.programmes@numericable.fr" ]
cjacques.programmes@numericable.fr
414d29786eb51284f28473d7090b7778c546c6c3
dd860973103347b382d8a04ef68a9376561725ea
/wazimap_ng/profile/serializers/highlights_serializer.py
003ee147dc77b5daa5f28a8c58f772775589eb56
[ "Apache-2.0" ]
permissive
mauricemojito/wazimap-ng
7a7da6c9fc653054c376d77c22df120ed0abb653
e03748cb1258cbafb43faba441bbc37dd0556a2a
refs/heads/master
2023-03-12T01:45:53.173039
2020-09-30T13:55:29
2020-09-30T13:55:29
342,342,503
0
0
Apache-2.0
2021-02-25T18:55:09
2021-02-25T18:34:39
Python
UTF-8
Python
false
false
2,545
py
from wazimap_ng.datasets.models import IndicatorData from wazimap_ng.utils import mergedict def get_subindicator(highlight): subindicators = highlight.indicator.subindicators idx = highlight.subindicator if highlight.subindicator is not None else 0 return subindicators[idx] def sibling(highlight, geography): siblings = geography.get_siblings() indicator_data = IndicatorData.objects.filter(indicator__profilehighlight=highlight, geography__in=siblings) subindicator = get_subindicator(highlight) numerator = None denominator = 0 for datum in indicator_data: if datum.geography == geography: numerator = datum.data["subindicators"].get(subindicator, 0) s = datum.data["subindicators"][subindicator] denominator += s if denominator > 0 and numerator is not None: return numerator / denominator return None def absolute_value(highlight, geography): indicator_data = IndicatorData.objects.filter(indicator__profilehighlight=highlight, geography=geography) if indicator_data.count() > 0: subindicator = get_subindicator(highlight) data = indicator_data.first().data # TODO what to do with multiple results return data["subindicators"].get(subindicator, 0) return None def subindicator(highlight, geography): indicator_data = IndicatorData.objects.filter(indicator__profilehighlight=highlight, geography=geography) if indicator_data.count() > 0: indicator_data = indicator_data.first() # Fix this need to cater for multiple results subindicator = get_subindicator(highlight) numerator = indicator_data.data["subindicators"].get(subindicator, 0) denominator = 0 for datum, count in indicator_data.data["subindicators"].items(): denominator += count if denominator > 0 and numerator is not None: return numerator / denominator return None algorithms = { "absolute_value": absolute_value, "sibling": sibling, "subindicators": subindicator } def HighlightsSerializer(profile, geography): highlights = [] profile_highlights = profile.profilehighlight_set.all().order_by("order") for highlight in profile_highlights: denominator = highlight.denominator method = algorithms.get(denominator, absolute_value) val = method(highlight, geography) if val is not None: highlights.append({"label": highlight.label, "value": val, "method": denominator}) return highlights
[ "adi@openup.org.za" ]
adi@openup.org.za
1cf5824c168f9b478a4172a158f56e06d2c4acc3
3110d538f3801370d5853be7f7388dfcd1c47064
/app/migrations/0008_answer_empresa.py
a2e2b46945259e9daa7c4be7d2bfc58008f54e85
[]
no_license
thiagosouza448/ask-tech
1090e8ed0986e86cf7f23dae727c1c9b4652b2ad
765ea936b17ac50919fa96af8b504ee7bdedfb9c
refs/heads/master
2023-08-10T12:40:33.374088
2023-06-13T13:11:51
2023-06-13T13:11:51
223,251,326
0
0
null
2023-07-25T21:13:00
2019-11-21T19:40:59
Python
UTF-8
Python
false
false
510
py
# Generated by Django 2.1 on 2018-08-19 16:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('app', '0007_answer_data_resposta'), ] operations = [ migrations.AddField( model_name='answer', name='empresa', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='app.Empresa'), preserve_default=False, ), ]
[ "tgraca@grupogbi.com" ]
tgraca@grupogbi.com
3291856511a2416a25502d0b24cfff8ea292b989
a5db32e65fac3b30a50c3ee0e049a180db491a87
/checkf2.py
f07fab697157f670f308b5fd5f3853d45dac34d7
[]
no_license
ulibanesu/project
d3ea9db5be57b22201c48c7a8ae991ac438ecd86
13b703a8fc4f21c315c79b17f20cf4cc7513d20b
refs/heads/master
2020-04-06T07:10:07.319812
2016-09-01T20:57:06
2016-09-01T20:57:06
62,409,585
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:792eae919c97ecd16cd24965e89be8385de6483f1ba1247940486a64db21a9bf size 1613
[ "olivier.khatib@gmail.com" ]
olivier.khatib@gmail.com
910e66c7519bc439e5c9b699b496a6a967a0b70a
bef3ef5c44d97c468b5359b81bb8c4c4b95f151d
/Api1/tests/resources/test_login.py
6df447b1a79e092b571bd91388fcc1d5f23efa04
[]
no_license
stsiwo/sts_blogs
3a90f883f65b4a680f0b271e3792c63bcdc25aef
57231d4f040e5d4be557dc14cc583d269b812602
refs/heads/master
2023-01-14T01:37:22.538717
2020-04-02T18:03:52
2020-04-02T18:03:52
212,732,622
0
0
null
2023-01-04T23:30:34
2019-10-04T04:00:43
TypeScript
UTF-8
Python
false
false
2,668
py
from flask import Response import json from utils.util import prettyPrint from flask_jwt_extended import decode_token def test_login_endpoint_no_json_data_should_response_with_400(client): rv = client.post('/login') assert 400 == rv.status_code def test_login_endpoint_no_json_data_should_response_with_400_with_error_msg(client): rv: Response = client.post('/login') data = json.loads(rv.get_data()) assert 'message' in data def test_login_endpoint_no_json_data_should_response_with_400_with_bundle_error_msg(client): rv: Response = client.post('/login') data = json.loads(rv.get_data()) assert len(data['message']) > 1 def test_user_logined_successfully(client, usersSeededFixture, httpHeaders): rv = client.post('/login', 'http://localhost', json={ 'email': 'test@test.com', 'password': 'test' }, headers=httpHeaders) assert 200 == rv.status_code def test_user_logined_successfully_and_get_jwt_tokens( client, usersSeededFixture, httpHeaders): rv = client.post('/login', 'http://localhost', json={ 'email': 'test@test.com', 'password': 'test' }, headers=httpHeaders) cookies = [cookie[1] for cookie in rv.headers if (cookie[0] == 'Set-Cookie')] assert 200 == rv.status_code assert any('access_token' in s for s in cookies) is True assert any('refresh_token' in s for s in cookies) is True assert any('csrf_access_token' in s for s in cookies) is True assert any('csrf_refresh_token' in s for s in cookies) is True def test_user_logined_successfully_and_token_include_role_claim( client, application, usersSeededFixture, httpHeaders ): rv = client.post('/login', 'http://localhost', json={ 'email': 'test@test.com', 'password': 'test' }, headers=httpHeaders) access_token = [cookie[1].replace(";", "=").split("=")[1] for cookie in rv.headers if (cookie[0] == 'Set-Cookie' and 'access_token' in cookie[1])] user_claims = None with application.app_context(): prettyPrint(decode_token(access_token[0])) user_claims = decode_token(access_token[0])['user_claims'] assert 200 == rv.status_code assert user_claims.get('name') is not None assert user_claims.get('roles') is not None def test_user_logined_failed_since_not_found_and_receive_404( client, usersSeededFixture, httpHeaders): rv = client.post('/login', 'http://localhost', json={ 'email': 'not-test@test.com', 'password': 'test' }, headers=httpHeaders) assert 404 == rv.status_code
[ "stsiwo@gmail.com" ]
stsiwo@gmail.com
825adaf12bd86b90c9eab39068698a70bb4a198e
433fe4a402a29737d580661ff23bbfe3b6b19729
/pyloom/worker.py
2eeba4ac84b2478359b1bc586833b8e0fe056404
[]
no_license
forgeries/PyLoom
082de65674039d5d315280215f7cf66335aa04dd
cf447ec3a22d7a9562bc55509f0246affe7b15aa
refs/heads/master
2021-10-27T03:04:02.710632
2019-04-15T15:57:38
2019-04-15T15:57:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,765
py
import redis import signal import traceback import threading import multiprocessing from . import buckets from .utils import * from .tasks import Task, execute from .scheduler import Spider, Queue logger = logging.getLogger("worker") def worker_process(redis_conf, spiders, threads, token_curr, token_new): """ Worker子进程,负责启动线程 Args: redis_conf: redis数据库 spiders: 所有爬虫配置表,{name: (path, version)} threads: 线程数 token_curr: 新建进程时的token token_new: 父进程中最新的token 当token_curr与token_new不同时,表示父进程已更新了路由, 线程在完成当前生命周期后需自行退出 """ logger.debug("Worker进程已启动") # Manager的共享变量在并发启动过多进程时会出现ConnectionRefusedError for _ in range(60): try: spiders.items() break except Exception: pass else: logger.fatal("Worker进程退出,spiders超时未就绪") return thread_ids = [] # 构造路由,{name: [[regex, task]...]} routers = {} for name, (path, version) in spiders.items(): tasks = import_tasks(path) if tasks: routers[name] = tasks logger.info("载入爬虫成功", name, version) else: logger.info("载入爬虫失败,未发现合规Task类", name, version) # 启动线程 try: logger.info("正在启动Worker线程") signal.signal(signal.SIGINT, signal.SIG_IGN) # 忽略Ctrl+C for thread_index in range(threads): thread = threading.Thread( target=worker_thread, args=(redis_conf, routers, token_curr, token_new, thread_index) ) thread.start() thread_ids.append(thread) logger.info("Worker线程启动成功") except Exception as e: logger.fatal("Worker进程结束,启动Worker线程时出现异常", e, '\n', traceback.format_exc()) return for i in itertools.count(): try: # 清理进程内的过期键 if i % 500 == 0: count = buckets.LocalBucket.purge() if count: logger.debug(f"完成清理LocalBucket", count) # 线程全部退出后,结束进程 if not any([t.is_alive() for t in thread_ids]): logger.info("Worker进程结束,线程已全部退出") return time.sleep(2) except Exception as e: logger.fatal("Worker进程异常", e, '\n', traceback.format_exc()) time.sleep(5) def worker_thread(redis_conf, routers, token_curr, token_new, thread_index): """ 循环:申请任务->执行任务->上报结果 线程内捕捉所有异常,永不退出(Ctrl+C除外) """ logger.debug("Worker线程已启动") db = redis.StrictRedis.from_url(redis_conf) pop_failure_count = 0 while True: try: # 结束线程 try: if token_curr != token_new.value: logger.info("Worker线程结束,收到退出信号") return except ConnectionRefusedError: logger.debug("Token未就绪") time.sleep(1) continue except (BrokenPipeError, FileNotFoundError, EOFError): logger.info("Worker线程结束,Token已关闭") return # 从队列中弹出URL if not routers: logger.info("本地爬虫列表为空,等待加载爬虫") while not routers: time.sleep(1) keys = list(routers.keys()) url, name, address = Queue.pop(db, keys) if not url: if pop_failure_count % 20 == 0: # 避免日志过多 logger.debug("暂无已就绪任务,稍后重试") time.sleep(thread_index / 10 + 0.1) pop_failure_count += 1 continue logger.info("获得任务", name, url, address) pop_failure_count = 0 # 匹配Task类并执行 tasks = routers.get(name, None) queue = Queue(db, name) if tasks is None: logger.warning("爬虫匹配失败", name, url) queue.report_error("none_spider", url) continue for regex, task_cls in tasks: if not regex.match(url): continue # 实例化Task并执行 task = task_cls(name, url, db, address) links = execute(task) for priority, urls in links.items(): count = queue.add(urls, priority) logger.debug("添加任务", priority, f"{count}/{len(urls)}") logger.debug("报告任务完成", queue.report_finish(url), url) break else: logger.warning("任务匹配失败", name, url) queue.report_error("none_task", url) except Exception as e: logger.error("Worker线程异常", e, '\n', traceback.format_exc()) time.sleep(5) def import_tasks(path): """ 扫描并导入爬虫模块中的Tasks Return: [[regex, task]...] """ tasks = [] # 导入模块 parent = os.path.dirname(path) if parent not in sys.path: sys.path.append(parent) basename = os.path.basename(path) try: logger.debug("加载爬虫模块", basename) _module = importlib.import_module(basename) except Exception as e: logger.error("加载爬虫模块异常", e, '\n', traceback.format_exc()) return [] # 扫描模块中合规的Task子类 # 何为合规? # 1.Task的子类; 2.filters成员; 3.导入无异常; 4.名称不以'__'开头 for name in dir(_module): if name.startswith("__"): continue var = getattr(_module, name) try: is_subclass = issubclass(var, Task) except TypeError: continue try: if is_subclass: if hasattr(var, 'filters') and isinstance(var.filters, (list, tuple, str)): if isinstance(var.filters, str): filters = [var.filters] else: filters = var.filters for regex in filters: tasks.append([re.compile(regex), var]) logger.info("导入Task类", var.__name__) else: logger.warning("忽略Task类", var.__name__, "filters不合规") continue else: continue except Exception as e: logger.error("加载Task类异常", e, '\n', traceback.format_exc()) continue return tasks def start(spider_path, redis_conf, spider_configs, proxies, processes, threads): """ 重置爬虫状态后运行指定爬虫 Args: spider_path: 爬虫目录 redis_conf: Redis配置 spider_configs: 爬虫配置 proxies: 使用代理运行 processes: 进程数量 threads: 每个进程的线程数量 """ logger.info("正在启动爬虫") db = redis.StrictRedis.from_url(redis_conf) name = os.path.basename(spider_path) # 取目录名为爬虫名 RedisScripts.load(db) spider = Spider(db, name) # 注册爬虫/更新同名爬虫配置 logger.info("注册爬虫", name) logger.info("爬虫配置", spider_configs) spider.upsert(spider_configs['seeders'], spider_configs['interval'], spider_configs['timeout'], spider_configs['precision'], spider_configs['args'], proxies, time.time()) # 重置爬虫状态 status = spider.get_field("status") if status != 10: spider.set_field("status", 10) logger.info(f"重置爬虫状态", "{status} -> 10") # 回滚'timeout'异常队列 queue = Queue(db, name) logger.debug("清理Redis") Queue.purge(db) logger.info("回滚超时任务") queue.rollback_tag("timeout", 0) # 启动Worker logger.info("正在启动Worker") spiders = multiprocessing.Manager().dict({name: [spider_path, 0]}) pool = [] token = multiprocessing.Manager().Value('d', 0) for _ in range(processes): p = multiprocessing.Process( target=worker_process, args=(redis_conf, spiders, threads, token.value, token) ) p.start() pool.append(p) logger.info("Worker启动成功") try: # 循环检查爬虫状态,当爬虫停止时终止运行 while True: time.sleep(0.2) spider = Spider(db, name) status = spider.get_field("status") if status < 10: logger.info("爬虫停止,当前状态为:", Spider.status.get(status, "未知")) break except KeyboardInterrupt: logger.info("收到Ctrl+C", 'main') for p in pool: p.terminate() logger.info("爬虫停止", "Ctrl+C") except Exception as e: logger.error("爬虫停止", "未知异常", e, '\n', traceback.format_exc()) def start_all(redis_conf, spiders_path, processes, threads): """ 启动所有爬虫 Args: redis_conf: Redis配置 spiders_path: 放置所有爬虫的目录 processes: 进程数量 threads: 每个进程的线程数量 """
[ "ss@uutoto.com" ]
ss@uutoto.com
e190d58d3252c1adf559ac5037d33c99ebfaa92f
d007e87ae0e76035ddcb25959e74303c44fb2e5e
/test_openCV/cards/test_opencv_exposure.py
dbc41e72e090c64e8ed61a9b6ac463f38fc53b7d
[]
no_license
nju-luke/Test
a52ac1390c241d42a950a5eea1175771259e87ba
a70754e7cc619ab6363a35c5940efd5f82f78e6e
refs/heads/master
2020-07-12T22:56:02.517965
2017-09-28T06:31:15
2017-09-28T06:31:15
73,898,474
0
0
null
null
null
null
UTF-8
Python
false
false
983
py
# -*- coding: utf-8 -*- # @Time : 10/14/16 18:25 # @Author : Luke # @Software: PyCharm import cv2 import numpy as np import tflearn from matplotlib import pyplot as plt img1 = cv2.imread('11.jpg') img2 = cv2.imread('22.jpg') img3 = cv2.imread('33.jpg') cv2.imshow("fig1.1",img1) cv2.imshow("fig2.1",img2) cv2.imshow("fig3.1",img3) mul = 0 img1_1 = np.asarray(img1,dtype='float')/255 delta = (1-img1_1)*img1_1 if mul != 1: mul = (0.5-np.mean(img1_1))/np.mean(delta) img1_2 = img1_1 + (1-img1_1)*img1_1*mul cv2.imshow("fig1.2",img1_2) img1_1 = np.asarray(img2,dtype='float')/255 delta = (1-img1_1)*img1_1 if mul != 1: mul = (0.5-np.mean(img1_1))/np.mean(delta) img1_2 = img1_1 + (1-img1_1)*img1_1*mul cv2.imshow("fig2.2",img1_2) img1_1 = np.asarray(img3,dtype='float')/255 delta = (1-img1_1)*img1_1 if mul != 1: mul = (0.5-np.mean(img1_1))/np.mean(delta) img1_2 = img1_1 + (1-img1_1)*img1_1*mul cv2.imshow("fig3.2",img1_2) cv2.waitKey() cv2.destroyAllWindows()
[ "nju.hyhb@gmail.com" ]
nju.hyhb@gmail.com
f8c398deeee8b69e7cadf5ddbcf2202196b38563
50d7b77d1185320cf4989d5a096a073531991cc0
/app.py
2b440b1fc7bb0615f31398fc8cd8239f80214e7e
[]
no_license
kashrocks/Market-Place-Backeng-API-Development
7380835351810a1970a9b8f9df4b2d6e971562a8
fdf1642210371c2254d1c0fd093fd6b3672bf5ff
refs/heads/master
2020-04-16T05:25:38.803466
2019-01-17T02:56:44
2019-01-17T02:56:44
165,304,464
1
0
null
null
null
null
UTF-8
Python
false
false
6,161
py
# Shopify 2019 Developer Challenge # Author: Kashyap Achar # Date: 2019-01-0-12 # Python Version: 3.7.2 # README available at https://github.com/kashrocks/Shopify-Developer-Challenge from flask import Flask, jsonify, request app = Flask(__name__) # global dictionary of shoes that customer will see all_shoes = [ { "title": "nike", "price": 100, "inventory_count": 3 }, { "title": "adidas", "price": 120, "inventory_count": 15 }, { "title": "allbirds", "price": 90, "inventory_count": 0 }, { "title": "reebok", "price": 60, "inventory_count": 30 } ] # customers cart initialization cart = [{}, {'total_value': 0}] @app.route('/', methods=['GET']) def welcome(): # displays the welcome text and complete inventory return jsonify({'customer_shopping_cart': cart}, {'welc_message': 'Welcome to the greatest backend market ' 'place for all things shoes! Please see ' 'below for our complete inventory'}, {'all_shoes': all_shoes}) @app.route('/inventory', methods=['GET']) def inventory(): # displays inventory of shoes only of which have inventory greater than 0 to_show = [] for shoe in all_shoes: if shoe['inventory_count'] > 0: to_show.append(dict.copy(shoe)) return jsonify({'inventory': to_show}) @app.route('/inventory/<string:brand>', methods=['GET']) def oneBrand(brand): # displays a selected brand of shoe and shows inventory count, price # and title check = urlcheck(brand) if not check: return jsonify({'error': 'Invalid brand, please try again.'}) for shoe in all_shoes: if shoe['title'] == brand: return jsonify({'brand': shoe}) return @app.route('/inventory/<string:brand>/add', methods=['GET']) def addCart(brand): # adds the selected brand to the shopping cart # makes sure there is inventory of the shoe check = urlcheck(brand) if not check: return jsonify({'error': 'Invalid brand, please try again.'}) for shoe in all_shoes: if shoe['title'] == brand: select = shoe break if select['inventory_count'] <= 0: return jsonify({'error': 'The shoes you have selected are no longer ' 'available'}) elif brand not in cart[0]: # adds the brand to the cart if it was not there previously cart[0][brand] = 0 elif select['inventory_count'] == cart[0][brand]: # checks to see if there is actually enough inventory for the desired # order return jsonify( {'msg': 'For this brand of shoe, you already have our stores ' 'inventory worth in your cart. Thus we are unable to ' 'add more of this brand to your cart.'}) cart[1]['total_value'] += select['price'] # updates the total value of cart cart[0][brand] += 1 # updates quantity of the brand in cart return jsonify( {'msg': 'The shoes have been added to your cart. Please look at our ' 'other shoes!'}) @app.route('/cart', methods=['GET']) def showCart(): # shows customers shopping cart with its total value # if the cart is empty will tell customer to shop more if cart[1]['total_value'] == 0: return jsonify({'msg': 'Your cart is empty. Shop some more!'}) return jsonify({'customer_cart': cart}) @app.route('/cart/del/<string:brand>', methods=['DELETE']) def delfrCart(brand): # deletes one instance of a brand of shoe from the stores inventory check = urlcheck(brand) if not check: return jsonify({'error': 'Invalid brand, please try again.'}) for shoe in all_shoes: if shoe['title'] == brand: s_val = shoe['price'] for shoe in cart[0]: if brand in shoe: cart[0][brand] -= 1 # lowers the count of the brand by one if cart[0][brand] == 0: # if the count is now 0, removes brand from cart del cart[0][brand] cart[1]['total_value'] -= s_val # lowers the value of cart by value of the one brand break return showCart() @app.route('/cart/buy', methods=['POST']) def buyAll(): # purchases all shoes in the shopping cart and decreases inventory of each if cart[0] == {}: # if cart is empty will display message return jsonify({'msg': 'Your cart is empty. Shop some more!'}) for shoe in all_shoes: # decreases inventory of respective brand if shoe['title'] in cart[0]: shoe['inventory_count'] -= cart[0][shoe['title']] cart[0], cart[1]['total_value'] = {}, 0 # resets the shopping cart return jsonify( {'msg': 'The shoes have been purchased and your shopping cart has ' 'been reset. Thanks for shopping!'}) @app.route('/new', methods=['POST']) def addBrand(): # adds a new brand of shoe to the stores inventory params = request.get_json('Params') all_shoes.append(params) # adds the brand to the story inventory return inventory() @app.route('/del/<string:brand>', methods=['DELETE']) def delBrand(brand): # deletes a brand of shoe from the stores inventory check = urlcheck(brand) if not check: return jsonify({'error': 'Invalid brand, please try again.'}) for shoe in all_shoes: if shoe['title'] == brand: # finds index of brand and deletes from inventory del all_shoes[all_shoes.index(shoe)] break return inventory() def urlcheck(brand): # checks to see if the brand entered in url is valid for b in all_shoes: if b['title'] == brand: return True return False if __name__ == '__main__': app.run(debug=True, port=6020)
[ "noreply@github.com" ]
kashrocks.noreply@github.com
69f4c17eca81e4e9cf3c95d9894745677f59a7b4
42a5277bb987a623489330187847356682a41783
/spec/part_spec.py
c88fbcdf150154104728318883abc52e09049142
[]
no_license
GestaoDeReuniao/gest-o-de-reuni-o
05d7bd1bb8014c77218589fbf344ba1ba0515102
9d1b8acfd1719866e7cbe766f94ab6b638c7ba1c
refs/heads/master
2021-01-19T07:24:30.293758
2014-03-11T22:55:52
2014-03-11T22:55:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
import unittest from should_dsl import should from part import Part class PartSpec(unittest.TestCase): def it_criar_part(self): part = Part('123') part.tempo |should| equal_to('123')
[ "thiagolessam@hotmail.com" ]
thiagolessam@hotmail.com
229bb954ad637b3c780475f96f2f202e84d0a4db
c8cf1bdacdbf6de75e61cc6a2ce8617479c19ec6
/test/mobile/test_bytecode.py
95baa86d5763e5e308c727fa87d6d77972080125
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0", "BSD-2-Clause" ]
permissive
Afonso-2403/pytorch
7f5ddf8370de938045b4ec412b98bef9dfc193ed
e35e6237d24b6c96b122deb21f015c0fe3eccb13
refs/heads/master
2023-08-21T18:43:43.019194
2021-09-13T17:58:00
2021-09-13T17:58:00
363,847,561
1
0
NOASSERTION
2021-07-08T19:06:16
2021-05-03T07:16:49
C++
UTF-8
Python
false
false
13,355
py
import fnmatch import io import shutil import tempfile import torch import torch.utils.show_pickle # from torch.utils.mobile_optimizer import optimize_for_mobile from torch.jit.mobile import ( _load_for_lite_interpreter, _get_model_bytecode_version, _get_model_ops_and_info, _backport_for_mobile_to_buffer, _backport_for_mobile) from torch.testing._internal.common_utils import TestCase, run_tests from pathlib import Path pytorch_test_dir = Path(__file__).resolve().parents[1] # script_module_v4.ptl and script_module_v5.ptl source code # class TestModule(torch.nn.Module): # def __init__(self, v): # super().__init__() # self.x = v # def forward(self, y: int): # increment = torch.ones([2, 4], dtype=torch.float64) # return self.x + y + increment # output_model_path = Path(tmpdirname, "script_module_v5.ptl") # script_module = torch.jit.script(TestModule(1)) # optimized_scripted_module = optimize_for_mobile(script_module) # exported_optimized_scripted_module = optimized_scripted_module._save_for_lite_interpreter( # str(output_model_path)) SCRIPT_MODULE_V4_BYTECODE_PKL = ''' (4, ('__torch__.*.TestModule.forward', (('instructions', (('STOREN', 1, 2), ('DROPR', 1, 0), ('LOADC', 0, 0), ('LOADC', 1, 0), ('MOVE', 2, 0), ('OP', 0, 0), ('LOADC', 1, 0), ('OP', 1, 0), ('RET', 0, 0))), ('operators', (('aten::add', 'int'), ('aten::add', 'Scalar'))), ('constants', (torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, '0', 'cpu', 8),), 0, (2, 4), (4, 1), False, collections.OrderedDict()), 1)), ('types', ()), ('register_size', 2)), (('arguments', ((('name', 'self'), ('type', '__torch__.*.TestModule'), ('default_value', None)), (('name', 'y'), ('type', 'int'), ('default_value', None)))), ('returns', ((('name', ''), ('type', 'Tensor'), ('default_value', None)),))))) ''' SCRIPT_MODULE_V5_BYTECODE_PKL = ''' (5, ('__torch__.*.TestModule.forward', (('instructions', (('STOREN', 1, 2), ('DROPR', 1, 0), ('LOADC', 0, 0), ('LOADC', 1, 0), ('MOVE', 2, 0), ('OP', 0, 0), ('LOADC', 1, 0), ('OP', 1, 0), ('RET', 0, 0))), ('operators', (('aten::add', 'int'), ('aten::add', 'Scalar'))), ('constants', (torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, 'constants/0', 'cpu', 8),), 0, (2, 4), (4, 1), False, collections.OrderedDict()), 1)), ('types', ()), ('register_size', 2)), (('arguments', ((('name', 'self'), ('type', '__torch__.*.TestModule'), ('default_value', None)), (('name', 'y'), ('type', 'int'), ('default_value', None)))), ('returns', ((('name', ''), ('type', 'Tensor'), ('default_value', None)),))))) ''' SCRIPT_MODULE_V6_BYTECODE_PKL = ''' (6, ('__torch__.*.TestModule.forward', (('instructions', (('STOREN', 1, 2), ('DROPR', 1, 0), ('LOADC', 0, 0), ('LOADC', 1, 0), ('MOVE', 2, 0), ('OP', 0, 0), ('OP', 1, 0), ('RET', 0, 0))), ('operators', (('aten::add', 'int', 2), ('aten::add', 'Scalar', 2))), ('constants', (torch._utils._rebuild_tensor_v2(pers.obj(('storage', torch.DoubleStorage, '0', 'cpu', 8),), 0, (2, 4), (4, 1), False, collections.OrderedDict()), 1)), ('types', ()), ('register_size', 2)), (('arguments', ((('name', 'self'), ('type', '__torch__.*.TestModule'), ('default_value', None)), (('name', 'y'), ('type', 'int'), ('default_value', None)))), ('returns', ((('name', ''), ('type', 'Tensor'), ('default_value', None)),))))) ''' SCRIPT_MODULE_BYTECODE_PKL = { 4: { "bytecode_pkl": SCRIPT_MODULE_V4_BYTECODE_PKL, "model_name": "script_module_v4.ptl"}, } # The minimum version a model can be backported to # Need to be updated when a bytecode version is completely retired MINIMUM_TO_VERSION = 4 class testVariousModelVersions(TestCase): def test_get_model_bytecode_version(self): def check_model_version(model_path, expect_version): actual_version = _get_model_bytecode_version(model_path) assert(actual_version == expect_version) for version, model_info in SCRIPT_MODULE_BYTECODE_PKL.items(): model_path = pytorch_test_dir / "cpp" / "jit" / model_info["model_name"] check_model_version(model_path, version) def test_bytecode_values_for_all_backport_functions(self): # Find the maximum version of the checked in models, start backporting to the minimum support version, # and comparing the bytecode pkl content. # It can't be merged to the test `test_all_backport_functions`, because optimization is dynamic and # the content might change when optimize function changes. This test focuses # on bytecode.pkl content validation. For the content validation, it is not byte to byte check, but # regular expression matching. The wildcard can be used to skip some specific content comparison. maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys()) current_from_version = maximum_checked_in_model_version with tempfile.TemporaryDirectory() as tmpdirname: while current_from_version > MINIMUM_TO_VERSION: # Load model v5 and run forward method model_name = SCRIPT_MODULE_BYTECODE_PKL[current_from_version]["model_name"] input_model_path = pytorch_test_dir / "cpp" / "jit" / model_name # A temporary model file will be export to this path, and run through bytecode.pkl # content check. tmp_output_model_path_backport = Path(tmpdirname, "tmp_script_module_backport.ptl") current_to_version = current_from_version - 1 backport_success = _backport_for_mobile(input_model_path, tmp_output_model_path_backport, current_to_version) assert(backport_success) expect_bytecode_pkl = SCRIPT_MODULE_BYTECODE_PKL[current_to_version]["bytecode_pkl"] buf = io.StringIO() torch.utils.show_pickle.main( ["", tmpdirname + "/" + tmp_output_model_path_backport.name + "@*/bytecode.pkl"], output_stream=buf) output = buf.getvalue() acutal_result_clean = "".join(output.split()) expect_result_clean = "".join(expect_bytecode_pkl.split()) isMatch = fnmatch.fnmatch(acutal_result_clean, expect_result_clean) assert(isMatch) current_from_version -= 1 shutil.rmtree(tmpdirname) # Please run this test manually when working on backport. # This test passes in OSS, but fails internally, likely due to missing step in build # def test_all_backport_functions(self): # # Backport from the latest bytecode version to the minimum support version # # Load, run the backport model, and check version # class TestModule(torch.nn.Module): # def __init__(self, v): # super().__init__() # self.x = v # def forward(self, y: int): # increment = torch.ones([2, 4], dtype=torch.float64) # return self.x + y + increment # module_input = 1 # expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64) # # temporary input model file and output model file will be exported in the temporary folder # with tempfile.TemporaryDirectory() as tmpdirname: # tmp_input_model_path = Path(tmpdirname, "tmp_script_module.ptl") # script_module = torch.jit.script(TestModule(1)) # optimized_scripted_module = optimize_for_mobile(script_module) # exported_optimized_scripted_module = optimized_scripted_module._save_for_lite_interpreter(str(tmp_input_model_path)) # current_from_version = _get_model_bytecode_version(tmp_input_model_path) # current_to_version = current_from_version - 1 # tmp_output_model_path = Path(tmpdirname, "tmp_script_module_backport.ptl") # while current_to_version >= MINIMUM_TO_VERSION: # # Backport the latest model to `to_version` to a tmp file "tmp_script_module_backport" # backport_success = _backport_for_mobile(tmp_input_model_path, tmp_output_model_path, current_to_version) # assert(backport_success) # backport_version = _get_model_bytecode_version(tmp_output_model_path) # assert(backport_version == current_to_version) # # Load model and run forward method # mobile_module = _load_for_lite_interpreter(str(tmp_input_model_path)) # mobile_module_result = mobile_module(module_input) # torch.testing.assert_close(mobile_module_result, expected_mobile_module_result) # current_to_version -= 1 # # Check backport failure case # backport_success = _backport_for_mobile(tmp_input_model_path, tmp_output_model_path, MINIMUM_TO_VERSION - 1) # assert(not backport_success) # # need to clean the folder before it closes, otherwise will run into git not clean error # shutil.rmtree(tmpdirname) # Check just the test_backport_bytecode_from_file_to_file mechanism but not the function implementations def test_backport_bytecode_from_file_to_file(self): maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys()) script_module_v5_path = pytorch_test_dir / "cpp" / "jit" / SCRIPT_MODULE_BYTECODE_PKL[ maximum_checked_in_model_version]["model_name"] if (maximum_checked_in_model_version > MINIMUM_TO_VERSION): with tempfile.TemporaryDirectory() as tmpdirname: tmp_backport_model_path = Path(tmpdirname, "tmp_script_module_v5_backported_to_v4.ptl") # backport from file success = _backport_for_mobile( script_module_v5_path, tmp_backport_model_path, maximum_checked_in_model_version - 1) assert(success) buf = io.StringIO() torch.utils.show_pickle.main( ["", tmpdirname + "/" + tmp_backport_model_path.name + "@*/bytecode.pkl"], output_stream=buf) output = buf.getvalue() expected_result = SCRIPT_MODULE_V4_BYTECODE_PKL acutal_result_clean = "".join(output.split()) expect_result_clean = "".join(expected_result.split()) isMatch = fnmatch.fnmatch(acutal_result_clean, expect_result_clean) assert(isMatch) # Load model v4 and run forward method mobile_module = _load_for_lite_interpreter(str(tmp_backport_model_path)) module_input = 1 mobile_module_result = mobile_module(module_input) expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64) torch.testing.assert_close(mobile_module_result, expected_mobile_module_result) shutil.rmtree(tmpdirname) # Check just the _backport_for_mobile_to_buffer mechanism but not the function implementations def test_backport_bytecode_from_file_to_buffer(self): maximum_checked_in_model_version = max(SCRIPT_MODULE_BYTECODE_PKL.keys()) script_module_v5_path = pytorch_test_dir / "cpp" / "jit" / SCRIPT_MODULE_BYTECODE_PKL[ maximum_checked_in_model_version]["model_name"] if (maximum_checked_in_model_version > MINIMUM_TO_VERSION): # Backport model to v4 script_module_v4_buffer = _backport_for_mobile_to_buffer( script_module_v5_path, maximum_checked_in_model_version - 1) buf = io.StringIO() # Check version of the model v4 from backport bytesio = io.BytesIO(script_module_v4_buffer) backport_version = _get_model_bytecode_version(bytesio) assert(backport_version == maximum_checked_in_model_version - 1) # Load model v4 from backport and run forward method bytesio = io.BytesIO(script_module_v4_buffer) mobile_module = _load_for_lite_interpreter(bytesio) module_input = 1 mobile_module_result = mobile_module(module_input) expected_mobile_module_result = 3 * torch.ones([2, 4], dtype=torch.float64) torch.testing.assert_close(mobile_module_result, expected_mobile_module_result) def test_get_model_ops_and_info(self): # TODO update this to be more in the style of the above tests after a backport from 6 -> 5 exists script_module_v6 = pytorch_test_dir / "cpp" / "jit" / "script_module_v6.ptl" ops_v6 = _get_model_ops_and_info(script_module_v6) assert(ops_v6["aten::add.int"].num_schema_args == 2) assert(ops_v6["aten::add.Scalar"].num_schema_args == 2) if __name__ == '__main__': run_tests()
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
3a1d2b7b1ca964b83fb27615d0d4a1acf3343435
dd512d0f5f217c40340d2c4a1a3b77ac047c286e
/venv/bin/pip3
5ff136764df2057a356e506cdd40fbeb570b5a40
[]
no_license
alexdemeo/RokuApp
b7256f67036ca6b6964a9d04c00731cd7bb62584
fb20ab3c571c4396d16f521a38b54ea6549512f0
refs/heads/master
2020-06-12T23:37:48.338812
2020-04-27T21:57:52
2020-04-27T21:57:52
194,462,636
0
0
null
null
null
null
UTF-8
Python
false
false
407
#!/Users/alexdemeo/Documents/Other/RokuApp/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3')() )
[ "alex.demeo129@gmail.com" ]
alex.demeo129@gmail.com
373835e7e99ec0d675171328272741ec1442da52
55f012626575008a5497b99e98c583996c75da55
/Permutations of a number.py
6c3384480fe51b110e345366944f3a3a66ddf9af
[]
no_license
nitish283/Python_Coding
15fa861779f2fe325cf3b2f532df9ee3c12e95a7
5b165ddebec7234e0f42ba3db2a70c3f6016b0f5
refs/heads/master
2022-12-13T06:27:54.385836
2020-09-07T09:28:36
2020-09-07T09:28:36
293,481,837
0
0
null
null
null
null
UTF-8
Python
false
false
593
py
import copy def perm(n): if(n==2): x=[[1,2],[2,1]] return(x) else: t=[] x=perm(n-1) b=copy.deepcopy(x) for i in range(len(x)): for j in range(len(x[i])+1): b[i].insert(j,n) t.append(b[i]) b=copy.deepcopy(x) return(t) N=int(input()) print((perm(N)))
[ "noreply@github.com" ]
nitish283.noreply@github.com
631f910181d17efb14583a50b22675b9e5c41974
2300b448e9c13fd39068a46a1062baa19acd3853
/day18/part2/main.py
1a8925840cf33420ff56b60937946ebe6ef0771f
[]
no_license
cryptable/adventcode2020
42764bc1a26ee5e242f2b267fd82ac2f2fb05b09
6a65ba00c93d92c627e7b71243faccee69f304a9
refs/heads/master
2023-02-05T22:42:53.641937
2020-12-26T15:19:53
2020-12-26T15:19:53
318,576,531
0
0
null
null
null
null
UTF-8
Python
false
false
5,900
py
# Vocabularia # statement : '(' <mul-expression> ')' | <number> # mul-expression : plus-expression ('*' plus-expression)* # plus-expression : statement ('+' statement)* # <operand> : '+' | '*' # <number> : [1-9][0-9]* class Token: def __init__(self, token, value): self.token = token self.value = value def __str__(self): return str('[kind:{},value:{}]'.format(self.token, self.value)) class ASTNode: def __init__(self, operand_token, left, right): self.token = operand_token self.left = left self.right = right class AST: def __init__(self, ast_node): self.root = ast_node def traverse(self, node): if node.token.token == 'number': return node.token.value if node.token.token == 'operand': if node.token.value == '+': return self.traverse(node.left) + self.traverse(node.right) if node.token.value == '*': return self.traverse(node.left) * self.traverse(node.right) def walk(self): return self.traverse(self.root) def _print_tree(self, node, level): slevel = "-" * level if node.token.token == 'number': print("{}: '{}' ".format(slevel,node.token.value)) if node.token.token == 'operand': if node.token.value == '+': self._print_tree(node.left, level+1) print("{}: {}".format(slevel, node.token.value)) self._print_tree(node.right, level+1) if node.token.value == '*': self._print_tree(node.left, level+1) print("{}: {}".format(slevel, node.token.value)) self._print_tree(node.right, level+1) def print(self): self._print_tree(self.root, 0) def processToken(token, line, i): if token == '(': return (i, Token('(', '')) if token == ')': return (i, Token(')', '')) if token == '+': return (i, Token('operand', '+')) if token == '*': return (i, Token('operand', '*')) if token.isnumeric(): return (i, Token('number', int(token))) raise Exception("unknown token {}:{} \"{}\"".format(line.rstrip('\n'), i, token)) def pass1_lex(line): tokens = [] token = '' for i in range(0, len(line)): if line[i] == ' ': i += 1 if len(token) > 0: (i, tkn) = processToken(token, line, i) tokens.append(tkn) token = '' elif line[i] == '(': (i, tkn) = processToken(line[i], line, i) tokens.append(tkn) token = '' elif line[i] == ')': if len(token) > 0: (i, tkn) = processToken(token, line, i) tokens.append(tkn) (i, tkn) = processToken(line[i], line, i) tokens.append(tkn) token = '' elif line[i] == '\n': if len(token) > 0: (i, tkn) = processToken(token, line, i) tokens.append(tkn) token = '' break else: token += line[i] i += 1 # last token no '\n' if len(token) > 0: (i, tkn) = processToken(token, line, i) tokens.append(tkn) return tokens def processPlusExpression(tokens, idx): (idx, value1) = processStatement(tokens, idx) ast = value1 # print("p1: {}".format(idx)) while idx < len(tokens) and tokens[idx].token != ')' and tokens[idx].value != '*': if tokens[idx].token != 'operand' or tokens[idx].value != '+': raise Exception('Illegal expression') operand = tokens[idx] idx += 1 (idx, value2) = processStatement(tokens, idx) ast = ASTNode(operand, ast, value2) # print("p2: {}".format(idx)) return (idx, ast) def processMulExpression(tokens, idx): (idx, value1) = processPlusExpression(tokens, idx) ast = value1 # print("m1: {}".format(idx)) while idx < len(tokens) and tokens[idx].token != ')' and tokens[idx].value != '+': if tokens[idx].token != 'operand' or tokens[idx].value != '*': raise Exception('Illegal mul expression {}: {}'.format(tokens[idx].token, tokens[idx].value)) operand = tokens[idx] idx += 1 (idx, value2) = processPlusExpression(tokens, idx) ast = ASTNode(operand, ast, value2) # print("m2: {}".format(idx)) return (idx, ast) def processStatement(tokens, idx): # <number> # print("s1: {}".format(idx)) if tokens[idx].token == 'number': number_node = ASTNode(tokens[idx], None, None) idx += 1 return (idx, number_node) elif tokens[idx].token == '(': idx += 1 if idx >= len(tokens): raise Exception("Unbalanced braces") (idx, parenthese_node) = processMulExpression(tokens, idx) if tokens[idx].token != ')': raise Exception("Unbalanced braces") idx += 1 return (idx, parenthese_node) else: raise Exception("Unexpected token {}".format(tokens[idx].token)) return (0, None) def printTokens(tokens): for token in tokens: print(token) def pass2_parser(tokens): idx = 0 (idx, val) = processMulExpression(tokens, idx) if idx != len(tokens): raise Exception("Unused Tokens {} vs {}".format(idx, len(tokens))) return val if __name__ == '__main__': sum = 0 with open('input.txt', 'r') as infile: for line in infile: tokens = pass1_lex(line) # for token in tokens: # print(token, end=',') # print() value = pass2_parser(tokens) astTree = AST(value) # astTree.print() print(astTree.walk()) sum += astTree.walk() infile.close() print(sum)
[ "david.tillemans@cryptable.org" ]
david.tillemans@cryptable.org
e74a21dbb2b0a860b6fb7b8cad7c50db9fe62cdb
4e3de79f0c1f49b64e53c368622ea540208c3c6b
/.ycm_extra_conf.py
b2e8bd91540ff5681fec730b42a1d3291e57f3db
[]
no_license
rappet/md5spoofer
7c8b41bb6e0af2728e5f1be5d40369db3fe850ed
b1903efe9b376eea02dda566278af69f5016fb34
refs/heads/master
2021-01-10T05:40:47.135184
2016-04-03T20:57:51
2016-04-03T20:57:51
55,368,698
0
0
null
null
null
null
UTF-8
Python
false
false
4,661
py
# Generated by YCM Generator at 2016-04-03 18:01:58.710140 # This file is NOT licensed under the GPLv3, which is the license for the rest # of YouCompleteMe. # # Here's the license text for this file: # # This is free and unencumbered software released into the public domain. # # Anyone is free to copy, modify, publish, use, compile, sell, or # distribute this software, either in source code form or as a compiled # binary, for any purpose, commercial or non-commercial, and by any # means. # # In jurisdictions that recognize copyright laws, the author or authors # of this software dedicate any and all copyright interest in the # software to the public domain. We make this dedication for the benefit # of the public at large and to the detriment of our heirs and # successors. We intend this dedication to be an overt act of # relinquishment in perpetuity of all present and future rights to this # software under copyright law. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # For more information, please refer to <http://unlicense.org/> import os import ycm_core flags = [ '-x', 'c', ] # Set this to the absolute path to the folder (NOT the file!) containing the # compile_commands.json file to use that instead of 'flags'. See here for # more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html # # You can get CMake to generate this file for you by adding: # set( CMAKE_EXPORT_COMPILE_COMMANDS 1 ) # to your CMakeLists.txt file. # # Most projects will NOT need to set this to anything; you can just change the # 'flags' list of compilation flags. Notice that YCM itself uses that approach. compilation_database_folder = '' if os.path.exists( compilation_database_folder ): database = ycm_core.CompilationDatabase( compilation_database_folder ) else: database = None SOURCE_EXTENSIONS = [ '.cpp', '.cxx', '.cc', '.c', '.m', '.mm' ] def DirectoryOfThisScript(): return os.path.dirname( os.path.abspath( __file__ ) ) def MakeRelativePathsInFlagsAbsolute( flags, working_directory ): if not working_directory: return list( flags ) new_flags = [] make_next_absolute = False path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ] for flag in flags: new_flag = flag if make_next_absolute: make_next_absolute = False if not flag.startswith( '/' ): new_flag = os.path.join( working_directory, flag ) for path_flag in path_flags: if flag == path_flag: make_next_absolute = True break if flag.startswith( path_flag ): path = flag[ len( path_flag ): ] new_flag = path_flag + os.path.join( working_directory, path ) break if new_flag: new_flags.append( new_flag ) return new_flags def IsHeaderFile( filename ): extension = os.path.splitext( filename )[ 1 ] return extension in [ '.h', '.hxx', '.hpp', '.hh' ] def GetCompilationInfoForFile( filename ): # The compilation_commands.json file generated by CMake does not have entries # for header files. So we do our best by asking the db for flags for a # corresponding source file, if any. If one exists, the flags for that file # should be good enough. if IsHeaderFile( filename ): basename = os.path.splitext( filename )[ 0 ] for extension in SOURCE_EXTENSIONS: replacement_file = basename + extension if os.path.exists( replacement_file ): compilation_info = database.GetCompilationInfoForFile( replacement_file ) if compilation_info.compiler_flags_: return compilation_info return None return database.GetCompilationInfoForFile( filename ) def FlagsForFile( filename, **kwargs ): if database: # Bear in mind that compilation_info.compiler_flags_ does NOT return a # python list, but a "list-like" StringVec object compilation_info = GetCompilationInfoForFile( filename ) if not compilation_info: return None final_flags = MakeRelativePathsInFlagsAbsolute( compilation_info.compiler_flags_, compilation_info.compiler_working_dir_ ) else: relative_to = DirectoryOfThisScript() final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to ) return { 'flags': final_flags, 'do_cache': True }
[ "raphael.r.peters@gmail.com" ]
raphael.r.peters@gmail.com
466373d76ca24cb2a34c4824c5097fc46feafc28
88cc55bc6e6feee2fa5f186d57ccb5e1d420217c
/django_websocket/__init__.py
6e4e96ace8d71052cc4fc96b0c8e0a06953e792e
[ "BSD-3-Clause" ]
permissive
gregmuellegger/django-websocket
7c16d3ba27970284b8fbeab5cecd1358d47373a2
cb4804e98f397f242e74c6f9e6f4fabab41a7ab7
refs/heads/master
2021-07-05T00:13:21.719973
2016-05-10T06:27:40
2016-05-10T06:27:40
773,121
68
19
BSD-3-Clause
2021-06-10T17:32:54
2010-07-13T19:40:14
Python
UTF-8
Python
false
false
42
py
from django_websocket.decorators import *
[ "gregor@muellegger.de" ]
gregor@muellegger.de
3f6d7ec8d6856734417c11a6e64dec45fb9e6067
ebf8541575709eaaf59515ee972f482b81499fe5
/app/repository/teams.py
124a6316a0c11641da1d33b3aacaeaeba3e3d745
[ "Apache-2.0" ]
permissive
maestro-server/data-app
d689411d2bad9991c8995439792929d894e053da
cde6479cc84fe410220b34742772d5017571e3d3
refs/heads/master
2023-07-15T05:50:50.199168
2021-10-15T17:12:32
2021-10-15T17:12:32
129,275,899
0
0
Apache-2.0
2023-07-11T01:13:44
2018-04-12T15:51:15
Python
UTF-8
Python
false
false
56
py
from .model import Model class Teams(Model): pass
[ "felipeklerk@yahoo.com.br" ]
felipeklerk@yahoo.com.br
78ba15feb70dfa3b47f3b5c30834f09806324425
ab0c5c2da1a98276df745e922ea9483360fa476b
/ex103.py
b9b02e595934d590697061a2da67d9f1b4631574
[]
no_license
edlorencetti/Python-3
7b18cf4ea434b864fb576bda83ab5fb13d5d703a
a66a197f4de2bfd8e197fbb5a4e6d2ed0a2dc05c
refs/heads/master
2022-09-11T12:22:54.711256
2020-05-29T13:23:28
2020-05-29T13:23:28
264,819,685
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
def ficha(jog='<esconhecido>', gol=0): print(f'O jogador {jog} fez {gol} gol(s) no campeonato.') n = str(input("Nome do jogador: ")) g = str(input("Número de gol: ")) if g.isnumeric(): g = int(g) else: g = 0 if n.strip() == '': ficha(gol=g) else: ficha(n, g)
[ "edlorencetti@yahoo.com.br" ]
edlorencetti@yahoo.com.br
7bea582bb5ad2dd0f88b003d966aaf9fd502fe7c
17c6294e656703acb394b63e978fdf605746c3c3
/resume_scanner/wsgi.py
88964705e5997d10a6fb6fe6af6ff0509af8f9ed
[]
no_license
oraby8/resume_scanner
c0e2bd6cb1beb2870fc5816b3770d65d90825f6e
e3000e8f1bafdfd654b70e6cbb4d3ecaace98110
refs/heads/master
2023-07-11T05:59:03.372907
2019-11-04T11:10:07
2019-11-04T11:10:07
219,481,787
5
0
null
2023-07-06T21:49:43
2019-11-04T11:06:57
CSS
UTF-8
Python
false
false
497
py
""" WSGI config for resume_scanner project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application #from whitenoise.django import DjangoWhiteNoise os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'resume_scanner.settings') application = get_wsgi_application() #application=DjangoWhiteNoise(application)
[ "ahmedsamiroraby8@gmail.com" ]
ahmedsamiroraby8@gmail.com
09da46de08db8efd21ef86e80c0bd1b0bfa4641f
9e988c0dfbea15cd23a3de860cb0c88c3dcdbd97
/sdBs/AllRun/fbs_0140+360/sdB_FBS_0140+360_lc.py
757218cb78912bdc16ba760e680f6cef9c974b74
[]
no_license
tboudreaux/SummerSTScICode
73b2e5839b10c0bf733808f4316d34be91c5a3bd
4dd1ffbb09e0a599257d21872f9d62b5420028b0
refs/heads/master
2021-01-20T18:07:44.723496
2016-08-08T16:49:53
2016-08-08T16:49:53
65,221,159
0
0
null
null
null
null
UTF-8
Python
false
false
346
py
from gPhoton.gAperture import gAperture def main(): gAperture(band="NUV", skypos=[25.926708,36.25925], stepsz=30., csvfile="/data2/fleming/GPHOTON_OUTPU/LIGHTCURVES/sdBs/sdB_FBS_0140+360 /sdB_FBS_0140+360_lc.csv", maxgap=1000., overwrite=True, radius=0.00555556, annulus=[0.005972227,0.0103888972], verbose=3) if __name__ == "__main__": main()
[ "thomas@boudreauxmail.com" ]
thomas@boudreauxmail.com
51149a9b0f94c7ee80090fabec79d37acd1ca528
b1b495eb9cd761ed4a968828b62ef8b12888990b
/Network/data_loader.py
df1c344c71328e347e02e9ba94b85427d2801319
[]
no_license
liuwenhaha/LungNoduleRetrieval
7aaaa79eac22dbd93efd2599d69777e34d7e2c9d
49ae736ae0410f5869559d7eaa4399872ff9c00b
refs/heads/master
2020-06-21T04:22:11.886122
2019-05-08T19:22:52
2019-05-08T19:22:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,306
py
import pickle import numpy as np from functools import partial, reduce from skimage import transform from config import dataset_dir as input_dir, pred_as_dataset_dir, output_dir, local from config import input_dir as in_dir from Network.FileManager import Dataset, Dataset3d, DatasetFromPredication from experiments import CrossValidationManager from Network.dataUtils import rating_normalize, crop_center, l2_distance from Network.dataUtils import rating_clusters_distance, rating_clusters_distance_matrix, reorder # ========================= # Load # ========================= def build_loader(size=128, res=1.0, apply_mask_to_patch=False, sample='Normal', dataset_type='Clean', configuration=None, n_groups=5, config_name='LEGACY', run=None, epoch=None, load_data_from_predictions=False, return_predicted_ratings=True): if config_name == 'LEGACY': loader = partial(load_nodule_dataset, size, res, apply_mask_to_patch, sample, configuration, n_groups, dataset_type) else: if load_data_from_predictions: loader = partial(load_nodule_dataset_from_predications, config_name, run, epoch, apply_mask_to_patch, configuration, return_predicted_ratings) else: loader = partial(load_nodule_dataset_from_dataset, config_name, size, res, apply_mask_to_patch, sample, configuration) return loader def build_loader_3d(configuration, net_type, run, epoch, n_groups=5): loader = partial(load_nodule_dataset_3d, configuration, net_type, run, epoch, n_groups) return loader def load_nodule_dataset_3d(configuration, net_type, run, epoch, n_groups=5): DataFile = Dataset3d(configuration, dir=input_dir) trainData = DataFile.load(dset='Train', net=net_type, run=run, epoch=epoch) validData = DataFile.load(dset='Valid', net=net_type, run=run, epoch=epoch) testData = None print("Loaded {} entries to {} set".format(len(trainData), 'Train')) print("Loaded {} entries to {} set".format(len(validData), 'Valid')) print("Test data not available") def gather_data(data): return [( entry['embed'], transform.resize(entry['mask'], output_shape=entry['embed'].shape, order=0), entry['label'], entry['info'], entry['size'], entry['rating'], entry['weights'], entry['z']) for entry in data] validData = gather_data(validData) trainData = gather_data(trainData) image_ = np.concatenate([e[0].flatten() for e in trainData]) print("\tImage Range = [{:.1f}, {:.1f}]".format(image_.max(), image_.min())) return testData, validData, trainData def load_nodule_dataset(size=128, res=1.0, apply_mask_to_patch=False, sample='Normal', configuration=None, n_groups=5, dataset_type='Clean'): if configuration is None: return load_nodule_dataset_old_style(size=size, res=res, apply_mask_to_patch=apply_mask_to_patch, sample=sample) if apply_mask_to_patch: print('WRN: apply_mask_to_patch is for debug only') test_id = configuration valid_id = (configuration + 1) % n_groups testData, validData, trainData = [], [], [] for c in range(n_groups): data_file = Dataset(data_type=dataset_type, conf=c, dir=input_dir) data_group = data_file.load(size, res, sample) if c == test_id: set = "Test" testData += data_group elif c == valid_id: set = "Valid" validData += data_group else: set = "Train" trainData += data_group print("Loaded {} entries from {} to {} set - LEGACY configuration".format(len(data_group), data_file.name(size, res, sample), set)) #trainData, validData, testData = [reduce(lambda x, y: x + y, data) for data in [trainData, validData, testData]] def gather_data(data, apply_mask): return [( entry['patch'] * (0.3 + 0.7 * entry['mask']) if apply_mask else entry['patch'], entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating'], entry['weights'], entry['z']) for entry in data] testData = gather_data(testData, apply_mask_to_patch) validData = gather_data(validData, apply_mask_to_patch) trainData = gather_data(trainData, apply_mask_to_patch) image_ = np.concatenate([e[0].flatten() for e in trainData]) print("\tImage Range = [{:.1f}, {:.1f}]".format(image_.max(), image_.min())) return testData, validData, trainData def load_nodule_dataset_from_dataset(config_name, size=128, res=1.0, apply_mask_to_patch=False, sample='Normal', configuration=None): if configuration is None: assert False if apply_mask_to_patch: print('WRN: apply_mask_to_patch is for debug only') dataset_type = 'Primary' manager = CrossValidationManager(config_name) print("Using {} CrossValidationManager:".format(config_name)) def load(data_type, conf, dir, size, res, sample, data_set): data_file = Dataset(data_type=data_type, conf=conf, dir=dir) data = data_file.load(size, res, sample) print("\tLoaded {} entries from {} to {} set".format(len(data), data_file.name(size, res, sample), data_set)) return data trainData = [load(dataset_type, c, input_dir, size, res, sample, 'Train') for c in manager.get_train(configuration)] validData = [load(dataset_type, c, input_dir, size, res, sample, 'Valid') for c in manager.get_valid(configuration)] testData = [load(dataset_type, c, input_dir, size, res, sample, 'Test') for c in manager.get_test(configuration)] trainData, validData, testData = [reduce(lambda x, y: x + y, data) for data in [trainData, validData, testData]] def gather_data(data, apply_mask): return [( entry['patch'] * (0.3 + 0.7 * entry['mask']) if apply_mask else entry['patch'], entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating'], entry['weights'], entry['z']) for entry in data] testData = gather_data(testData, apply_mask_to_patch) validData = gather_data(validData, apply_mask_to_patch) trainData = gather_data(trainData, apply_mask_to_patch) image_ = np.concatenate([e[0].flatten() for e in trainData]) print("\tImage Range = [{:.1f}, {:.1f}]".format(image_.max(), image_.min())) return testData, validData, trainData def load_nodule_dataset_from_predications(config_name, run, epoch, apply_mask_to_patch=False, configuration=None, return_predicted=True): if configuration is None: assert False if apply_mask_to_patch: print('WRN: apply_mask_to_patch is for debug only') manager = CrossValidationManager(config_name) print("Using {} CrossValidationManager:".format(config_name)) def load(r, epoch, indir, data_set): data_file = DatasetFromPredication(type='rating', input_dir=indir) data = data_file.load(goal=data_set, run=r, epoch=epoch, return_predicted=return_predicted) print("\tLoaded {} entries from {} to {} set".format(len(data), data_file.name(goal=data_set, run=r), data_set)) return data cnf_id = manager.get_run_id(configuration) run_name = '{}c{}'.format(run, cnf_id) trainData = load(run_name, epoch, pred_as_dataset_dir, 'Train') validData = load(run_name, epoch, pred_as_dataset_dir, 'Valid') testData = load(run_name, epoch, pred_as_dataset_dir, 'Test') #trainData, validData, testData = [reduce(lambda x, y: x + y, data) for data in [trainData, validData, testData]] def gather_data(data, apply_mask): return [( entry['patch'] * (0.3 + 0.7 * entry['mask']) if apply_mask else entry['patch'], entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating'], entry['weights'], entry['z']) for entry in data] testData = gather_data(testData, apply_mask_to_patch) validData = gather_data(validData, apply_mask_to_patch) trainData = gather_data(trainData, apply_mask_to_patch) image_ = np.concatenate([e[0].flatten() for e in trainData]) print("\tImage Range = [{:.1f}, {:.1f}]".format(image_.max(), image_.min())) return testData, validData, trainData def load_nodule_dataset_old_style(size=128, res=1.0, apply_mask_to_patch=False, sample='Normal'): if type(res) == str: filename = '/Dataset/Dataset{:.0f}-{}-{}.p'.format(size, res, sample) else: filename = '/Dataset/Dataset{:.0f}-{:.1f}-{}.p'.format(size, res, sample) try: testData, validData, trainData = pickle.load(open(filename, 'br')) except: testData, validData, trainData = pickle.load(open('.'+filename, 'br')) print('Loaded: {}'.format(filename)) image_ = np.concatenate([e['patch'] for e in trainData]) print("\tImage Range = [{:.1f}, {:.1f}]".format(np.max(image_), np.min(image_))) print("\tMasks Range = [{}, {}]".format(np.max(trainData[0]['mask']), np.min(trainData[0]['mask']))) #print("\tLabels Range = [{}, {}]".format(np.max(trainData[0]['label']), np.min(trainData[0]['label']))) if apply_mask_to_patch: print('WRN: apply_mask_to_patch is for debug only') testData = [(entry['patch']*(0.3+0.7*entry['mask']), entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating']) for entry in testData] validData = [(entry['patch']*(0.3+0.7*entry['mask']), entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating']) for entry in validData] trainData = [(entry['patch']*(0.3+0.7*entry['mask']), entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating']) for entry in trainData] else: testData = [ (entry['patch'], entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating']) for entry in testData ] validData = [ (entry['patch'], entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating']) for entry in validData] trainData = [ (entry['patch'], entry['mask'], entry['label'], entry['info'], entry['size'], entry['rating']) for entry in trainData] return testData, validData, trainData def load_nodule_raw_dataset(size=128, res='Legacy', sample='Normal'): if type(res) == str: filename = input_dir + '/Dataset{:.0f}-{}-{}.p'.format(size, res, sample) else: filename = input_dir + '/Dataset{:.0f}-{:.1f}-{}.p'.format(size, res, sample) print('Loading {}'.format(filename)) try: testData, validData, trainData = pickle.load(open(filename, 'br')) except: print('...Failed') testData, validData, trainData = pickle.load(open('.'+filename, 'br')) return testData, validData, trainData
[ "Mark.Loyman@gmail.com" ]
Mark.Loyman@gmail.com
c3be66df4769ed5c17fa2bf6be33d73e1d59c8c9
cacea9e8c9261717e8ce0b404f16a2ff2d7782e1
/train_conditional.py
2a4e6c9ef745b276dada7de8a523b615cf43526b
[ "MIT" ]
permissive
vislearn/HINT
6fc583bdff80d93a669535f42d7a54f4f05f483b
b26c5026bd486bb392a9416430cb1dfebe5aa06f
refs/heads/master
2023-03-07T03:01:11.791414
2021-02-11T11:49:40
2021-02-11T11:49:40
248,197,267
1
0
null
null
null
null
UTF-8
Python
false
false
7,707
py
from time import time import torch from FrEIA.framework import * from FrEIA.modules import * import monitoring # Load training configuration, model and data set # from configs.fourier_curve.conditional_cinn_1 import c, model, model_inverse # from configs.fourier_curve.conditional_cinn_2 import c, model, model_inverse # from configs.fourier_curve.conditional_cinn_4 import c, model, model_inverse # from configs.fourier_curve.conditional_cinn_8 import c, model, model_inverse # from configs.fourier_curve.conditional_hint_1_full import c, model, model_inverse # from configs.fourier_curve.conditional_hint_2_full import c, model, model_inverse # from configs.fourier_curve.conditional_hint_4_full import c, model, model_inverse # from configs.fourier_curve.conditional_hint_8_full import c, model, model_inverse # from configs.plus_shape.conditional_hint_8_full import c, model, model_inverse def save(c, name): torch.save({#'opt': optim.state_dict(), 'net': c.model.state_dict()}, name) def load(c, name): state_dicts = torch.load(name) c.model.load_state_dict(state_dicts['net']) try: optim.load_state_dict(state_dicts['opt']) except ValueError: print('Cannot load optimizer for some reason or other') def save_sample(c, N=500): y = c.vis_y_target # create sample from saved model try: load(c, f'output/{c.suffix}.pt') except: pass c.model.eval() with torch.no_grad(): z_sample = torch.cuda.FloatTensor(N, c.ndim_z).normal_() y_sample = torch.tensor(y).expand(N, c.ndim_y).cuda() x_sample = c.model_inverse(y_sample, z_sample) np.save(f'output/samples/{c.suffix}_sample-{N}', x_sample.cpu()) def x_jac(c): jacobian = 0 for node in c.model.node_list: if 'hac_x' in node.name or 'ac_y_to_x' in node.name: jacobian += node.module.jacobian(None) return jacobian def evaluate(c, only_x=True): with torch.no_grad(): c.model.eval() loader = c.test_loader batch_idx = 0 loss_history = [] for x, y in loader: batch_losses = [] batch_idx += 1 if batch_idx > c.max_batches_per_epoch > 0: break x, y = x.to(c.device), y.to(c.device) x += 0.01 * torch.randn_like(x) # Forward pass if 'hint' in c.suffix: z_y, z_x = c.model([y, x]) z = torch.cat([z_x, z_y], dim=-1) # Maximum likelihood loss terms if not only_x: log_jacobian = c.model.log_jacobian([y, x], run_forward=False) batch_losses.append(0.5 * torch.sum(z**2, dim=1).mean()) batch_losses.append(-log_jacobian.mean()) else: batch_losses.append(0.5 * torch.sum(z_x**2, dim=1).mean()) batch_losses.append(-x_jac(c).mean()) elif 'cinn' in c.suffix: z = c.model([x], c=[y]) log_jacobian = c.model.log_jacobian([x], c=[y], run_forward=False) # Maximum likelihood loss terms batch_losses.append(0.5 * torch.sum(z**2, dim=1).mean()) batch_losses.append(-log_jacobian.mean()) # Add up all losses loss_total = sum(batch_losses) loss_history.append([l.item() for l in batch_losses]) return np.mean(loss_history, axis=0).sum() def train_epoch(c, optim, i_epoch, vis_y, vis_latent, test=False): if not test: c.model.train() loader = c.train_loader if test: c.model.eval() loader = c.test_loader nograd = torch.no_grad() nograd.__enter__() nll_x = [] batch_idx = 0 loss_history = [] for x, y in loader: optim.zero_grad() batch_losses = [] batch_idx += 1 if batch_idx > c.max_batches_per_epoch > 0: break x, y = x.to(c.device), y.to(c.device) x += 0.01 * torch.randn_like(x) # Forward pass if 'hint' in c.suffix: z_y, z_x = c.model([y, x]) z = torch.cat([z_x, z_y], dim=-1) log_jacobian = c.model.log_jacobian([y, x], run_forward=False) if test: nll_x.append((0.5 * torch.sum(z_x**2, dim=1).mean() - x_jac(c).mean()).item()) elif 'cinn' in c.suffix: z = c.model([x], c=[y]) log_jacobian = c.model.log_jacobian([x], c=[y], run_forward=False) # Maximum likelihood loss terms batch_losses.append(0.5 * torch.sum(z**2, dim=1).mean()) batch_losses.append(-log_jacobian.mean()) # Add up all losses loss_total = sum(batch_losses) loss_history.append([l.item() for l in batch_losses]) # Compute gradients if not test: loss_total.backward() # Clamp gradients for p in c.model.params_trainable: p.grad.data.clamp_(-5.00, 5.00) # Parameter update optim.step() # Update progress bar monitoring.visualizer.update_progress(batch_idx, i_epoch+1) if test: # Update plots latent_sample = z[:500,:].data.cpu().numpy() with torch.no_grad(): vis_x = c.model_inverse(vis_y, vis_latent).data.cpu().numpy() monitoring.visualizer.update_plots(latent_sample, vis_x) # if len(nll_x) > 0: # print(' NLL_x:', np.mean(nll_x), ' | bits/dim:', -np.mean(nll_x) / (c.ndim_x * np.log(2.))) nograd.__exit__(None, None, None) return np.mean(loss_history, axis=0) def main(c): loss_labels = ['-log p(z)', '-log |det(J)|'] # Init trainable model parameters if c.init_scale > 0: for p in c.model.params_trainable: p.data = c.init_scale * torch.randn_like(p.data) # Count total number of trainable parameters n_model_params = sum([p.numel() for p in c.model.params_trainable]) print(f'\nModel {c.suffix} has {n_model_params:,} trainable parameters.\n') # assert False # Prepare optimizer and learning rate schedule optim = torch.optim.Adam(c.model.params_trainable, lr=c.lr_init, betas=c.adam_betas, eps=1e-4, weight_decay=c.l2_weight_reg) lr_scheduler = torch.optim.lr_scheduler.StepLR(optim, step_size=1, gamma=(c.final_decay)**(1./c.n_epochs)) # For visualization vis_batchsize = 300 vis_y = torch.Tensor([c.vis_y_target]*vis_batchsize).to(c.device) vis_latent = torch.randn(vis_batchsize, c.ndim_x).to(c.device) monitoring.restart(c, loss_labels) # monitoring.visualizer.print_config() t_start = time() try: for i_epoch in range(c.n_epochs): if i_epoch < c.pre_low_lr: for param_group in optim.param_groups: param_group['lr'] = c.lr_init * 3e-2 train_losses = train_epoch(c, optim, i_epoch, vis_y, vis_latent) test_losses = train_epoch(c, optim, i_epoch, vis_y, vis_latent, test=True) monitoring.visualizer.update_losses(np.concatenate([train_losses, test_losses]), lr_scheduler.get_lr(), logscale=False) lr_scheduler.step() # save(f'output/{c.suffix}.pt') except: # save(f'output/{c.suffix}.pt' + '_ABORT') raise finally: print("\n\nTraining took %f minutes\n\n" % ((time()-t_start)/60.)) return test_losses.sum() if __name__ == "__main__": main() # save_sample()
[ "jakob.kruse@iwr.uni-heidelberg.de" ]
jakob.kruse@iwr.uni-heidelberg.de
32bdc9074cfc1034329d665841a417491497b35a
d45d9111e4e5736c7bb7eebef27bfef7bc27b3b8
/projects/Python/proto/enums.py
c516eda6a82699c787794c1584339b5707d5c4a1
[ "MIT" ]
permissive
museghost/FastBinaryEncoding
0c0b4b4d6ae1004f13810fd1db0bb761116106cf
7e8425552d4c42cd78162dbe0dedab796808ae78
refs/heads/master
2023-01-02T08:47:52.223902
2020-10-16T10:53:09
2020-10-16T10:53:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
176,545
py
# Automatically generated by the Fast Binary Encoding compiler, do not modify! # https://github.com/chronoxor/FastBinaryEncoding # Source: enums.fbe # Version: 1.4.0.0 import base64 import decimal import enum import functools import json import sys import uuid import fbe class EnumByte(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(0) + 0 ENUM_VALUE_2 = int(0) + 1 ENUM_VALUE_3 = int(254) + 0 ENUM_VALUE_4 = int(254) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumByte.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumByte.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumByte.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumByte.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumByte.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumByte.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumByte.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumByte(value) # Fast Binary Encoding EnumByte field model class FieldModelEnumByte(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 1 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumByte() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumByte(self.read_byte(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_byte(self.fbe_offset, value) # Fast Binary Encoding EnumByte final model class FinalModelEnumByte(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 1 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumByte(), 0 return EnumByte(self.read_byte(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_byte(self.fbe_offset, value) return self.fbe_size class EnumChar(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = ord('1') + 0 ENUM_VALUE_2 = ord('1') + 1 ENUM_VALUE_3 = ord('3') + 0 ENUM_VALUE_4 = ord('3') + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumChar.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumChar.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumChar.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumChar.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumChar.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumChar.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumChar.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumChar(value) # Fast Binary Encoding EnumChar field model class FieldModelEnumChar(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 1 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumChar() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumChar(self.read_uint8(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_uint8(self.fbe_offset, value) # Fast Binary Encoding EnumChar final model class FinalModelEnumChar(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 1 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumChar(), 0 return EnumChar(self.read_uint8(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_uint8(self.fbe_offset, value) return self.fbe_size class EnumWChar(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(0x0444) + 0 ENUM_VALUE_2 = int(0x0444) + 1 ENUM_VALUE_3 = int(0x0555) + 0 ENUM_VALUE_4 = int(0x0555) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumWChar.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumWChar.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumWChar.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumWChar.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumWChar.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumWChar.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumWChar.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumWChar(value) # Fast Binary Encoding EnumWChar field model class FieldModelEnumWChar(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 4 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumWChar() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumWChar(self.read_uint32(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_uint32(self.fbe_offset, value) # Fast Binary Encoding EnumWChar final model class FinalModelEnumWChar(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 4 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumWChar(), 0 return EnumWChar(self.read_uint32(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_uint32(self.fbe_offset, value) return self.fbe_size class EnumInt8(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(-128) + 0 ENUM_VALUE_2 = int(-128) + 1 ENUM_VALUE_3 = int(126) + 0 ENUM_VALUE_4 = int(126) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumInt8.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumInt8.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumInt8.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumInt8.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumInt8.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumInt8.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumInt8.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumInt8(value) # Fast Binary Encoding EnumInt8 field model class FieldModelEnumInt8(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 1 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumInt8() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumInt8(self.read_int8(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_int8(self.fbe_offset, value) # Fast Binary Encoding EnumInt8 final model class FinalModelEnumInt8(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 1 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumInt8(), 0 return EnumInt8(self.read_int8(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_int8(self.fbe_offset, value) return self.fbe_size class EnumUInt8(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(0) + 0 ENUM_VALUE_2 = int(0) + 1 ENUM_VALUE_3 = int(254) + 0 ENUM_VALUE_4 = int(254) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumUInt8.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumUInt8.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumUInt8.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumUInt8.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumUInt8.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumUInt8.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumUInt8.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumUInt8(value) # Fast Binary Encoding EnumUInt8 field model class FieldModelEnumUInt8(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 1 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumUInt8() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumUInt8(self.read_uint8(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_uint8(self.fbe_offset, value) # Fast Binary Encoding EnumUInt8 final model class FinalModelEnumUInt8(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 1 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumUInt8(), 0 return EnumUInt8(self.read_uint8(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_uint8(self.fbe_offset, value) return self.fbe_size class EnumInt16(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(-32768) + 0 ENUM_VALUE_2 = int(-32768) + 1 ENUM_VALUE_3 = int(32766) + 0 ENUM_VALUE_4 = int(32766) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumInt16.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumInt16.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumInt16.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumInt16.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumInt16.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumInt16.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumInt16.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumInt16(value) # Fast Binary Encoding EnumInt16 field model class FieldModelEnumInt16(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 2 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumInt16() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumInt16(self.read_int16(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_int16(self.fbe_offset, value) # Fast Binary Encoding EnumInt16 final model class FinalModelEnumInt16(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 2 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumInt16(), 0 return EnumInt16(self.read_int16(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_int16(self.fbe_offset, value) return self.fbe_size class EnumUInt16(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(0) + 0 ENUM_VALUE_2 = int(0) + 1 ENUM_VALUE_3 = int(65534) + 0 ENUM_VALUE_4 = int(65534) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumUInt16.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumUInt16.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumUInt16.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumUInt16.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumUInt16.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumUInt16.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumUInt16.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumUInt16(value) # Fast Binary Encoding EnumUInt16 field model class FieldModelEnumUInt16(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 2 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumUInt16() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumUInt16(self.read_uint16(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_uint16(self.fbe_offset, value) # Fast Binary Encoding EnumUInt16 final model class FinalModelEnumUInt16(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 2 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumUInt16(), 0 return EnumUInt16(self.read_uint16(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_uint16(self.fbe_offset, value) return self.fbe_size class EnumInt32(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(-2147483648) + 0 ENUM_VALUE_2 = int(-2147483648) + 1 ENUM_VALUE_3 = int(2147483646) + 0 ENUM_VALUE_4 = int(2147483646) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumInt32.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumInt32.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumInt32.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumInt32.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumInt32.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumInt32.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumInt32.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumInt32(value) # Fast Binary Encoding EnumInt32 field model class FieldModelEnumInt32(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 4 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumInt32() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumInt32(self.read_int32(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_int32(self.fbe_offset, value) # Fast Binary Encoding EnumInt32 final model class FinalModelEnumInt32(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 4 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumInt32(), 0 return EnumInt32(self.read_int32(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_int32(self.fbe_offset, value) return self.fbe_size class EnumUInt32(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(0) + 0 ENUM_VALUE_2 = int(0) + 1 ENUM_VALUE_3 = int(0xFFFFFFFE) + 0 ENUM_VALUE_4 = int(0xFFFFFFFE) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumUInt32.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumUInt32.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumUInt32.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumUInt32.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumUInt32.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumUInt32.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumUInt32.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumUInt32(value) # Fast Binary Encoding EnumUInt32 field model class FieldModelEnumUInt32(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 4 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumUInt32() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumUInt32(self.read_uint32(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_uint32(self.fbe_offset, value) # Fast Binary Encoding EnumUInt32 final model class FinalModelEnumUInt32(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 4 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumUInt32(), 0 return EnumUInt32(self.read_uint32(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_uint32(self.fbe_offset, value) return self.fbe_size class EnumInt64(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(-9223372036854775807) + 0 ENUM_VALUE_2 = int(-9223372036854775807) + 1 ENUM_VALUE_3 = int(9223372036854775806) + 0 ENUM_VALUE_4 = int(9223372036854775806) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumInt64.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumInt64.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumInt64.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumInt64.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumInt64.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumInt64.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumInt64.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumInt64(value) # Fast Binary Encoding EnumInt64 field model class FieldModelEnumInt64(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 8 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumInt64() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumInt64(self.read_int64(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_int64(self.fbe_offset, value) # Fast Binary Encoding EnumInt64 final model class FinalModelEnumInt64(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 8 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumInt64(), 0 return EnumInt64(self.read_int64(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_int64(self.fbe_offset, value) return self.fbe_size class EnumUInt64(enum.IntEnum, metaclass=fbe.DefaultEnumMeta): ENUM_VALUE_0 = int(0) + 0 ENUM_VALUE_1 = int(0) + 0 ENUM_VALUE_2 = int(0) + 1 ENUM_VALUE_3 = int(0xFFFFFFFFFFFFFFFE) + 0 ENUM_VALUE_4 = int(0xFFFFFFFFFFFFFFFE) + 1 ENUM_VALUE_5 = ENUM_VALUE_3 unknown = ~0 __slots__ = () def __format__(self, format_spec): return self.__str__() def __str__(self): if self.value == EnumUInt64.ENUM_VALUE_0: return "ENUM_VALUE_0" if self.value == EnumUInt64.ENUM_VALUE_1: return "ENUM_VALUE_1" if self.value == EnumUInt64.ENUM_VALUE_2: return "ENUM_VALUE_2" if self.value == EnumUInt64.ENUM_VALUE_3: return "ENUM_VALUE_3" if self.value == EnumUInt64.ENUM_VALUE_4: return "ENUM_VALUE_4" if self.value == EnumUInt64.ENUM_VALUE_5: return "ENUM_VALUE_5" return "<unknown>" @classmethod def _missing_(cls, value): return EnumUInt64.unknown @staticmethod def __from_json__(value): if value is None: return None return EnumUInt64(value) # Fast Binary Encoding EnumUInt64 field model class FieldModelEnumUInt64(fbe.FieldModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the field size @property def fbe_size(self): return 8 # Get the value def get(self, defaults=None): if defaults is None: defaults = EnumUInt64() if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return defaults return EnumUInt64(self.read_uint64(self.fbe_offset)) # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return self.write_uint64(self.fbe_offset, value) # Fast Binary Encoding EnumUInt64 final model class FinalModelEnumUInt64(fbe.FinalModel): def __init__(self, buffer, offset): super().__init__(buffer, offset) # Get the allocation size # noinspection PyUnusedLocal def fbe_allocation_size(self, value): return self.fbe_size # Get the final size @property def fbe_size(self): return 8 # Check if the value is valid def verify(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return sys.maxsize return self.fbe_size # Get the value def get(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return EnumUInt64(), 0 return EnumUInt64(self.read_uint64(self.fbe_offset)), self.fbe_size # Set the value def set(self, value): assert ((self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size), "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 self.write_uint64(self.fbe_offset, value) return self.fbe_size @functools.total_ordering class Enums(object): __slots__ = "byte0", "byte1", "byte2", "byte3", "byte4", "byte5", "char0", "char1", "char2", "char3", "char4", "char5", "wchar0", "wchar1", "wchar2", "wchar3", "wchar4", "wchar5", "int8b0", "int8b1", "int8b2", "int8b3", "int8b4", "int8b5", "uint8b0", "uint8b1", "uint8b2", "uint8b3", "uint8b4", "uint8b5", "int16b0", "int16b1", "int16b2", "int16b3", "int16b4", "int16b5", "uint16b0", "uint16b1", "uint16b2", "uint16b3", "uint16b4", "uint16b5", "int32b0", "int32b1", "int32b2", "int32b3", "int32b4", "int32b5", "uint32b0", "uint32b1", "uint32b2", "uint32b3", "uint32b4", "uint32b5", "int64b0", "int64b1", "int64b2", "int64b3", "int64b4", "int64b5", "uint64b0", "uint64b1", "uint64b2", "uint64b3", "uint64b4", "uint64b5", def __init__(self, byte0=EnumByte.ENUM_VALUE_0, byte1=EnumByte.ENUM_VALUE_1, byte2=EnumByte.ENUM_VALUE_2, byte3=EnumByte.ENUM_VALUE_3, byte4=EnumByte.ENUM_VALUE_4, byte5=EnumByte.ENUM_VALUE_5, char0=EnumChar.ENUM_VALUE_0, char1=EnumChar.ENUM_VALUE_1, char2=EnumChar.ENUM_VALUE_2, char3=EnumChar.ENUM_VALUE_3, char4=EnumChar.ENUM_VALUE_4, char5=EnumChar.ENUM_VALUE_5, wchar0=EnumWChar.ENUM_VALUE_0, wchar1=EnumWChar.ENUM_VALUE_1, wchar2=EnumWChar.ENUM_VALUE_2, wchar3=EnumWChar.ENUM_VALUE_3, wchar4=EnumWChar.ENUM_VALUE_4, wchar5=EnumWChar.ENUM_VALUE_5, int8b0=EnumInt8.ENUM_VALUE_0, int8b1=EnumInt8.ENUM_VALUE_1, int8b2=EnumInt8.ENUM_VALUE_2, int8b3=EnumInt8.ENUM_VALUE_3, int8b4=EnumInt8.ENUM_VALUE_4, int8b5=EnumInt8.ENUM_VALUE_5, uint8b0=EnumUInt8.ENUM_VALUE_0, uint8b1=EnumUInt8.ENUM_VALUE_1, uint8b2=EnumUInt8.ENUM_VALUE_2, uint8b3=EnumUInt8.ENUM_VALUE_3, uint8b4=EnumUInt8.ENUM_VALUE_4, uint8b5=EnumUInt8.ENUM_VALUE_5, int16b0=EnumInt16.ENUM_VALUE_0, int16b1=EnumInt16.ENUM_VALUE_1, int16b2=EnumInt16.ENUM_VALUE_2, int16b3=EnumInt16.ENUM_VALUE_3, int16b4=EnumInt16.ENUM_VALUE_4, int16b5=EnumInt16.ENUM_VALUE_5, uint16b0=EnumUInt16.ENUM_VALUE_0, uint16b1=EnumUInt16.ENUM_VALUE_1, uint16b2=EnumUInt16.ENUM_VALUE_2, uint16b3=EnumUInt16.ENUM_VALUE_3, uint16b4=EnumUInt16.ENUM_VALUE_4, uint16b5=EnumUInt16.ENUM_VALUE_5, int32b0=EnumInt32.ENUM_VALUE_0, int32b1=EnumInt32.ENUM_VALUE_1, int32b2=EnumInt32.ENUM_VALUE_2, int32b3=EnumInt32.ENUM_VALUE_3, int32b4=EnumInt32.ENUM_VALUE_4, int32b5=EnumInt32.ENUM_VALUE_5, uint32b0=EnumUInt32.ENUM_VALUE_0, uint32b1=EnumUInt32.ENUM_VALUE_1, uint32b2=EnumUInt32.ENUM_VALUE_2, uint32b3=EnumUInt32.ENUM_VALUE_3, uint32b4=EnumUInt32.ENUM_VALUE_4, uint32b5=EnumUInt32.ENUM_VALUE_5, int64b0=EnumInt64.ENUM_VALUE_0, int64b1=EnumInt64.ENUM_VALUE_1, int64b2=EnumInt64.ENUM_VALUE_2, int64b3=EnumInt64.ENUM_VALUE_3, int64b4=EnumInt64.ENUM_VALUE_4, int64b5=EnumInt64.ENUM_VALUE_5, uint64b0=EnumUInt64.ENUM_VALUE_0, uint64b1=EnumUInt64.ENUM_VALUE_1, uint64b2=EnumUInt64.ENUM_VALUE_2, uint64b3=EnumUInt64.ENUM_VALUE_3, uint64b4=EnumUInt64.ENUM_VALUE_4, uint64b5=EnumUInt64.ENUM_VALUE_5): self.byte0 = byte0 self.byte1 = byte1 self.byte2 = byte2 self.byte3 = byte3 self.byte4 = byte4 self.byte5 = byte5 self.char0 = char0 self.char1 = char1 self.char2 = char2 self.char3 = char3 self.char4 = char4 self.char5 = char5 self.wchar0 = wchar0 self.wchar1 = wchar1 self.wchar2 = wchar2 self.wchar3 = wchar3 self.wchar4 = wchar4 self.wchar5 = wchar5 self.int8b0 = int8b0 self.int8b1 = int8b1 self.int8b2 = int8b2 self.int8b3 = int8b3 self.int8b4 = int8b4 self.int8b5 = int8b5 self.uint8b0 = uint8b0 self.uint8b1 = uint8b1 self.uint8b2 = uint8b2 self.uint8b3 = uint8b3 self.uint8b4 = uint8b4 self.uint8b5 = uint8b5 self.int16b0 = int16b0 self.int16b1 = int16b1 self.int16b2 = int16b2 self.int16b3 = int16b3 self.int16b4 = int16b4 self.int16b5 = int16b5 self.uint16b0 = uint16b0 self.uint16b1 = uint16b1 self.uint16b2 = uint16b2 self.uint16b3 = uint16b3 self.uint16b4 = uint16b4 self.uint16b5 = uint16b5 self.int32b0 = int32b0 self.int32b1 = int32b1 self.int32b2 = int32b2 self.int32b3 = int32b3 self.int32b4 = int32b4 self.int32b5 = int32b5 self.uint32b0 = uint32b0 self.uint32b1 = uint32b1 self.uint32b2 = uint32b2 self.uint32b3 = uint32b3 self.uint32b4 = uint32b4 self.uint32b5 = uint32b5 self.int64b0 = int64b0 self.int64b1 = int64b1 self.int64b2 = int64b2 self.int64b3 = int64b3 self.int64b4 = int64b4 self.int64b5 = int64b5 self.uint64b0 = uint64b0 self.uint64b1 = uint64b1 self.uint64b2 = uint64b2 self.uint64b3 = uint64b3 self.uint64b4 = uint64b4 self.uint64b5 = uint64b5 # Struct shallow copy def copy(self, other): self.byte0 = other.byte0 self.byte1 = other.byte1 self.byte2 = other.byte2 self.byte3 = other.byte3 self.byte4 = other.byte4 self.byte5 = other.byte5 self.char0 = other.char0 self.char1 = other.char1 self.char2 = other.char2 self.char3 = other.char3 self.char4 = other.char4 self.char5 = other.char5 self.wchar0 = other.wchar0 self.wchar1 = other.wchar1 self.wchar2 = other.wchar2 self.wchar3 = other.wchar3 self.wchar4 = other.wchar4 self.wchar5 = other.wchar5 self.int8b0 = other.int8b0 self.int8b1 = other.int8b1 self.int8b2 = other.int8b2 self.int8b3 = other.int8b3 self.int8b4 = other.int8b4 self.int8b5 = other.int8b5 self.uint8b0 = other.uint8b0 self.uint8b1 = other.uint8b1 self.uint8b2 = other.uint8b2 self.uint8b3 = other.uint8b3 self.uint8b4 = other.uint8b4 self.uint8b5 = other.uint8b5 self.int16b0 = other.int16b0 self.int16b1 = other.int16b1 self.int16b2 = other.int16b2 self.int16b3 = other.int16b3 self.int16b4 = other.int16b4 self.int16b5 = other.int16b5 self.uint16b0 = other.uint16b0 self.uint16b1 = other.uint16b1 self.uint16b2 = other.uint16b2 self.uint16b3 = other.uint16b3 self.uint16b4 = other.uint16b4 self.uint16b5 = other.uint16b5 self.int32b0 = other.int32b0 self.int32b1 = other.int32b1 self.int32b2 = other.int32b2 self.int32b3 = other.int32b3 self.int32b4 = other.int32b4 self.int32b5 = other.int32b5 self.uint32b0 = other.uint32b0 self.uint32b1 = other.uint32b1 self.uint32b2 = other.uint32b2 self.uint32b3 = other.uint32b3 self.uint32b4 = other.uint32b4 self.uint32b5 = other.uint32b5 self.int64b0 = other.int64b0 self.int64b1 = other.int64b1 self.int64b2 = other.int64b2 self.int64b3 = other.int64b3 self.int64b4 = other.int64b4 self.int64b5 = other.int64b5 self.uint64b0 = other.uint64b0 self.uint64b1 = other.uint64b1 self.uint64b2 = other.uint64b2 self.uint64b3 = other.uint64b3 self.uint64b4 = other.uint64b4 self.uint64b5 = other.uint64b5 return self # Struct deep clone def clone(self): # Serialize the struct to the FBE stream writer = EnumsModel(fbe.WriteBuffer()) writer.serialize(self) # Deserialize the struct from the FBE stream reader = EnumsModel(fbe.ReadBuffer()) reader.attach_buffer(writer.buffer) return reader.deserialize()[0] def __eq__(self, other): if not isinstance(self, other.__class__): return NotImplemented return True def __lt__(self, other): if not isinstance(self, other.__class__): return NotImplemented return False @property def __key__(self): return () def __hash__(self): return hash(self.__key__) def __format__(self, format_spec): return self.__str__() def __str__(self): sb = list() sb.append("Enums(") sb.append("byte0=") sb.append(str(self.byte0)) sb.append(",byte1=") sb.append(str(self.byte1)) sb.append(",byte2=") sb.append(str(self.byte2)) sb.append(",byte3=") sb.append(str(self.byte3)) sb.append(",byte4=") sb.append(str(self.byte4)) sb.append(",byte5=") sb.append(str(self.byte5)) sb.append(",char0=") sb.append(str(self.char0)) sb.append(",char1=") sb.append(str(self.char1)) sb.append(",char2=") sb.append(str(self.char2)) sb.append(",char3=") sb.append(str(self.char3)) sb.append(",char4=") sb.append(str(self.char4)) sb.append(",char5=") sb.append(str(self.char5)) sb.append(",wchar0=") sb.append(str(self.wchar0)) sb.append(",wchar1=") sb.append(str(self.wchar1)) sb.append(",wchar2=") sb.append(str(self.wchar2)) sb.append(",wchar3=") sb.append(str(self.wchar3)) sb.append(",wchar4=") sb.append(str(self.wchar4)) sb.append(",wchar5=") sb.append(str(self.wchar5)) sb.append(",int8b0=") sb.append(str(self.int8b0)) sb.append(",int8b1=") sb.append(str(self.int8b1)) sb.append(",int8b2=") sb.append(str(self.int8b2)) sb.append(",int8b3=") sb.append(str(self.int8b3)) sb.append(",int8b4=") sb.append(str(self.int8b4)) sb.append(",int8b5=") sb.append(str(self.int8b5)) sb.append(",uint8b0=") sb.append(str(self.uint8b0)) sb.append(",uint8b1=") sb.append(str(self.uint8b1)) sb.append(",uint8b2=") sb.append(str(self.uint8b2)) sb.append(",uint8b3=") sb.append(str(self.uint8b3)) sb.append(",uint8b4=") sb.append(str(self.uint8b4)) sb.append(",uint8b5=") sb.append(str(self.uint8b5)) sb.append(",int16b0=") sb.append(str(self.int16b0)) sb.append(",int16b1=") sb.append(str(self.int16b1)) sb.append(",int16b2=") sb.append(str(self.int16b2)) sb.append(",int16b3=") sb.append(str(self.int16b3)) sb.append(",int16b4=") sb.append(str(self.int16b4)) sb.append(",int16b5=") sb.append(str(self.int16b5)) sb.append(",uint16b0=") sb.append(str(self.uint16b0)) sb.append(",uint16b1=") sb.append(str(self.uint16b1)) sb.append(",uint16b2=") sb.append(str(self.uint16b2)) sb.append(",uint16b3=") sb.append(str(self.uint16b3)) sb.append(",uint16b4=") sb.append(str(self.uint16b4)) sb.append(",uint16b5=") sb.append(str(self.uint16b5)) sb.append(",int32b0=") sb.append(str(self.int32b0)) sb.append(",int32b1=") sb.append(str(self.int32b1)) sb.append(",int32b2=") sb.append(str(self.int32b2)) sb.append(",int32b3=") sb.append(str(self.int32b3)) sb.append(",int32b4=") sb.append(str(self.int32b4)) sb.append(",int32b5=") sb.append(str(self.int32b5)) sb.append(",uint32b0=") sb.append(str(self.uint32b0)) sb.append(",uint32b1=") sb.append(str(self.uint32b1)) sb.append(",uint32b2=") sb.append(str(self.uint32b2)) sb.append(",uint32b3=") sb.append(str(self.uint32b3)) sb.append(",uint32b4=") sb.append(str(self.uint32b4)) sb.append(",uint32b5=") sb.append(str(self.uint32b5)) sb.append(",int64b0=") sb.append(str(self.int64b0)) sb.append(",int64b1=") sb.append(str(self.int64b1)) sb.append(",int64b2=") sb.append(str(self.int64b2)) sb.append(",int64b3=") sb.append(str(self.int64b3)) sb.append(",int64b4=") sb.append(str(self.int64b4)) sb.append(",int64b5=") sb.append(str(self.int64b5)) sb.append(",uint64b0=") sb.append(str(self.uint64b0)) sb.append(",uint64b1=") sb.append(str(self.uint64b1)) sb.append(",uint64b2=") sb.append(str(self.uint64b2)) sb.append(",uint64b3=") sb.append(str(self.uint64b3)) sb.append(",uint64b4=") sb.append(str(self.uint64b4)) sb.append(",uint64b5=") sb.append(str(self.uint64b5)) sb.append(")") return "".join(sb) # Get struct JSON value def to_json(self): return json.dumps(self.__to_json__(), cls=fbe.JSONEncoder, separators=(',', ':')) def __to_json__(self): result = dict() result.update(dict( byte0=self.byte0, byte1=self.byte1, byte2=self.byte2, byte3=self.byte3, byte4=self.byte4, byte5=self.byte5, char0=self.char0, char1=self.char1, char2=self.char2, char3=self.char3, char4=self.char4, char5=self.char5, wchar0=self.wchar0, wchar1=self.wchar1, wchar2=self.wchar2, wchar3=self.wchar3, wchar4=self.wchar4, wchar5=self.wchar5, int8b0=self.int8b0, int8b1=self.int8b1, int8b2=self.int8b2, int8b3=self.int8b3, int8b4=self.int8b4, int8b5=self.int8b5, uint8b0=self.uint8b0, uint8b1=self.uint8b1, uint8b2=self.uint8b2, uint8b3=self.uint8b3, uint8b4=self.uint8b4, uint8b5=self.uint8b5, int16b0=self.int16b0, int16b1=self.int16b1, int16b2=self.int16b2, int16b3=self.int16b3, int16b4=self.int16b4, int16b5=self.int16b5, uint16b0=self.uint16b0, uint16b1=self.uint16b1, uint16b2=self.uint16b2, uint16b3=self.uint16b3, uint16b4=self.uint16b4, uint16b5=self.uint16b5, int32b0=self.int32b0, int32b1=self.int32b1, int32b2=self.int32b2, int32b3=self.int32b3, int32b4=self.int32b4, int32b5=self.int32b5, uint32b0=self.uint32b0, uint32b1=self.uint32b1, uint32b2=self.uint32b2, uint32b3=self.uint32b3, uint32b4=self.uint32b4, uint32b5=self.uint32b5, int64b0=self.int64b0, int64b1=self.int64b1, int64b2=self.int64b2, int64b3=self.int64b3, int64b4=self.int64b4, int64b5=self.int64b5, uint64b0=self.uint64b0, uint64b1=self.uint64b1, uint64b2=self.uint64b2, uint64b3=self.uint64b3, uint64b4=self.uint64b4, uint64b5=self.uint64b5, )) return result # Create struct from JSON value @staticmethod def from_json(document): return Enums.__from_json__(json.loads(document)) @staticmethod def __from_json__(fields): if fields is None: return None return Enums( None if "byte0" not in fields else EnumByte.__from_json__(fields["byte0"]), None if "byte1" not in fields else EnumByte.__from_json__(fields["byte1"]), None if "byte2" not in fields else EnumByte.__from_json__(fields["byte2"]), None if "byte3" not in fields else EnumByte.__from_json__(fields["byte3"]), None if "byte4" not in fields else EnumByte.__from_json__(fields["byte4"]), None if "byte5" not in fields else EnumByte.__from_json__(fields["byte5"]), None if "char0" not in fields else EnumChar.__from_json__(fields["char0"]), None if "char1" not in fields else EnumChar.__from_json__(fields["char1"]), None if "char2" not in fields else EnumChar.__from_json__(fields["char2"]), None if "char3" not in fields else EnumChar.__from_json__(fields["char3"]), None if "char4" not in fields else EnumChar.__from_json__(fields["char4"]), None if "char5" not in fields else EnumChar.__from_json__(fields["char5"]), None if "wchar0" not in fields else EnumWChar.__from_json__(fields["wchar0"]), None if "wchar1" not in fields else EnumWChar.__from_json__(fields["wchar1"]), None if "wchar2" not in fields else EnumWChar.__from_json__(fields["wchar2"]), None if "wchar3" not in fields else EnumWChar.__from_json__(fields["wchar3"]), None if "wchar4" not in fields else EnumWChar.__from_json__(fields["wchar4"]), None if "wchar5" not in fields else EnumWChar.__from_json__(fields["wchar5"]), None if "int8b0" not in fields else EnumInt8.__from_json__(fields["int8b0"]), None if "int8b1" not in fields else EnumInt8.__from_json__(fields["int8b1"]), None if "int8b2" not in fields else EnumInt8.__from_json__(fields["int8b2"]), None if "int8b3" not in fields else EnumInt8.__from_json__(fields["int8b3"]), None if "int8b4" not in fields else EnumInt8.__from_json__(fields["int8b4"]), None if "int8b5" not in fields else EnumInt8.__from_json__(fields["int8b5"]), None if "uint8b0" not in fields else EnumUInt8.__from_json__(fields["uint8b0"]), None if "uint8b1" not in fields else EnumUInt8.__from_json__(fields["uint8b1"]), None if "uint8b2" not in fields else EnumUInt8.__from_json__(fields["uint8b2"]), None if "uint8b3" not in fields else EnumUInt8.__from_json__(fields["uint8b3"]), None if "uint8b4" not in fields else EnumUInt8.__from_json__(fields["uint8b4"]), None if "uint8b5" not in fields else EnumUInt8.__from_json__(fields["uint8b5"]), None if "int16b0" not in fields else EnumInt16.__from_json__(fields["int16b0"]), None if "int16b1" not in fields else EnumInt16.__from_json__(fields["int16b1"]), None if "int16b2" not in fields else EnumInt16.__from_json__(fields["int16b2"]), None if "int16b3" not in fields else EnumInt16.__from_json__(fields["int16b3"]), None if "int16b4" not in fields else EnumInt16.__from_json__(fields["int16b4"]), None if "int16b5" not in fields else EnumInt16.__from_json__(fields["int16b5"]), None if "uint16b0" not in fields else EnumUInt16.__from_json__(fields["uint16b0"]), None if "uint16b1" not in fields else EnumUInt16.__from_json__(fields["uint16b1"]), None if "uint16b2" not in fields else EnumUInt16.__from_json__(fields["uint16b2"]), None if "uint16b3" not in fields else EnumUInt16.__from_json__(fields["uint16b3"]), None if "uint16b4" not in fields else EnumUInt16.__from_json__(fields["uint16b4"]), None if "uint16b5" not in fields else EnumUInt16.__from_json__(fields["uint16b5"]), None if "int32b0" not in fields else EnumInt32.__from_json__(fields["int32b0"]), None if "int32b1" not in fields else EnumInt32.__from_json__(fields["int32b1"]), None if "int32b2" not in fields else EnumInt32.__from_json__(fields["int32b2"]), None if "int32b3" not in fields else EnumInt32.__from_json__(fields["int32b3"]), None if "int32b4" not in fields else EnumInt32.__from_json__(fields["int32b4"]), None if "int32b5" not in fields else EnumInt32.__from_json__(fields["int32b5"]), None if "uint32b0" not in fields else EnumUInt32.__from_json__(fields["uint32b0"]), None if "uint32b1" not in fields else EnumUInt32.__from_json__(fields["uint32b1"]), None if "uint32b2" not in fields else EnumUInt32.__from_json__(fields["uint32b2"]), None if "uint32b3" not in fields else EnumUInt32.__from_json__(fields["uint32b3"]), None if "uint32b4" not in fields else EnumUInt32.__from_json__(fields["uint32b4"]), None if "uint32b5" not in fields else EnumUInt32.__from_json__(fields["uint32b5"]), None if "int64b0" not in fields else EnumInt64.__from_json__(fields["int64b0"]), None if "int64b1" not in fields else EnumInt64.__from_json__(fields["int64b1"]), None if "int64b2" not in fields else EnumInt64.__from_json__(fields["int64b2"]), None if "int64b3" not in fields else EnumInt64.__from_json__(fields["int64b3"]), None if "int64b4" not in fields else EnumInt64.__from_json__(fields["int64b4"]), None if "int64b5" not in fields else EnumInt64.__from_json__(fields["int64b5"]), None if "uint64b0" not in fields else EnumUInt64.__from_json__(fields["uint64b0"]), None if "uint64b1" not in fields else EnumUInt64.__from_json__(fields["uint64b1"]), None if "uint64b2" not in fields else EnumUInt64.__from_json__(fields["uint64b2"]), None if "uint64b3" not in fields else EnumUInt64.__from_json__(fields["uint64b3"]), None if "uint64b4" not in fields else EnumUInt64.__from_json__(fields["uint64b4"]), None if "uint64b5" not in fields else EnumUInt64.__from_json__(fields["uint64b5"]), ) # Get the FBE type @property def fbe_type(self): return self.TYPE TYPE = 1 class FieldModelEnums(fbe.FieldModel): __slots__ = "_byte0", "_byte1", "_byte2", "_byte3", "_byte4", "_byte5", "_char0", "_char1", "_char2", "_char3", "_char4", "_char5", "_wchar0", "_wchar1", "_wchar2", "_wchar3", "_wchar4", "_wchar5", "_int8b0", "_int8b1", "_int8b2", "_int8b3", "_int8b4", "_int8b5", "_uint8b0", "_uint8b1", "_uint8b2", "_uint8b3", "_uint8b4", "_uint8b5", "_int16b0", "_int16b1", "_int16b2", "_int16b3", "_int16b4", "_int16b5", "_uint16b0", "_uint16b1", "_uint16b2", "_uint16b3", "_uint16b4", "_uint16b5", "_int32b0", "_int32b1", "_int32b2", "_int32b3", "_int32b4", "_int32b5", "_uint32b0", "_uint32b1", "_uint32b2", "_uint32b3", "_uint32b4", "_uint32b5", "_int64b0", "_int64b1", "_int64b2", "_int64b3", "_int64b4", "_int64b5", "_uint64b0", "_uint64b1", "_uint64b2", "_uint64b3", "_uint64b4", "_uint64b5", def __init__(self, buffer, offset): super().__init__(buffer, offset) self._byte0 = FieldModelEnumByte(buffer, 4 + 4) self._byte1 = FieldModelEnumByte(buffer, self._byte0.fbe_offset + self._byte0.fbe_size) self._byte2 = FieldModelEnumByte(buffer, self._byte1.fbe_offset + self._byte1.fbe_size) self._byte3 = FieldModelEnumByte(buffer, self._byte2.fbe_offset + self._byte2.fbe_size) self._byte4 = FieldModelEnumByte(buffer, self._byte3.fbe_offset + self._byte3.fbe_size) self._byte5 = FieldModelEnumByte(buffer, self._byte4.fbe_offset + self._byte4.fbe_size) self._char0 = FieldModelEnumChar(buffer, self._byte5.fbe_offset + self._byte5.fbe_size) self._char1 = FieldModelEnumChar(buffer, self._char0.fbe_offset + self._char0.fbe_size) self._char2 = FieldModelEnumChar(buffer, self._char1.fbe_offset + self._char1.fbe_size) self._char3 = FieldModelEnumChar(buffer, self._char2.fbe_offset + self._char2.fbe_size) self._char4 = FieldModelEnumChar(buffer, self._char3.fbe_offset + self._char3.fbe_size) self._char5 = FieldModelEnumChar(buffer, self._char4.fbe_offset + self._char4.fbe_size) self._wchar0 = FieldModelEnumWChar(buffer, self._char5.fbe_offset + self._char5.fbe_size) self._wchar1 = FieldModelEnumWChar(buffer, self._wchar0.fbe_offset + self._wchar0.fbe_size) self._wchar2 = FieldModelEnumWChar(buffer, self._wchar1.fbe_offset + self._wchar1.fbe_size) self._wchar3 = FieldModelEnumWChar(buffer, self._wchar2.fbe_offset + self._wchar2.fbe_size) self._wchar4 = FieldModelEnumWChar(buffer, self._wchar3.fbe_offset + self._wchar3.fbe_size) self._wchar5 = FieldModelEnumWChar(buffer, self._wchar4.fbe_offset + self._wchar4.fbe_size) self._int8b0 = FieldModelEnumInt8(buffer, self._wchar5.fbe_offset + self._wchar5.fbe_size) self._int8b1 = FieldModelEnumInt8(buffer, self._int8b0.fbe_offset + self._int8b0.fbe_size) self._int8b2 = FieldModelEnumInt8(buffer, self._int8b1.fbe_offset + self._int8b1.fbe_size) self._int8b3 = FieldModelEnumInt8(buffer, self._int8b2.fbe_offset + self._int8b2.fbe_size) self._int8b4 = FieldModelEnumInt8(buffer, self._int8b3.fbe_offset + self._int8b3.fbe_size) self._int8b5 = FieldModelEnumInt8(buffer, self._int8b4.fbe_offset + self._int8b4.fbe_size) self._uint8b0 = FieldModelEnumUInt8(buffer, self._int8b5.fbe_offset + self._int8b5.fbe_size) self._uint8b1 = FieldModelEnumUInt8(buffer, self._uint8b0.fbe_offset + self._uint8b0.fbe_size) self._uint8b2 = FieldModelEnumUInt8(buffer, self._uint8b1.fbe_offset + self._uint8b1.fbe_size) self._uint8b3 = FieldModelEnumUInt8(buffer, self._uint8b2.fbe_offset + self._uint8b2.fbe_size) self._uint8b4 = FieldModelEnumUInt8(buffer, self._uint8b3.fbe_offset + self._uint8b3.fbe_size) self._uint8b5 = FieldModelEnumUInt8(buffer, self._uint8b4.fbe_offset + self._uint8b4.fbe_size) self._int16b0 = FieldModelEnumInt16(buffer, self._uint8b5.fbe_offset + self._uint8b5.fbe_size) self._int16b1 = FieldModelEnumInt16(buffer, self._int16b0.fbe_offset + self._int16b0.fbe_size) self._int16b2 = FieldModelEnumInt16(buffer, self._int16b1.fbe_offset + self._int16b1.fbe_size) self._int16b3 = FieldModelEnumInt16(buffer, self._int16b2.fbe_offset + self._int16b2.fbe_size) self._int16b4 = FieldModelEnumInt16(buffer, self._int16b3.fbe_offset + self._int16b3.fbe_size) self._int16b5 = FieldModelEnumInt16(buffer, self._int16b4.fbe_offset + self._int16b4.fbe_size) self._uint16b0 = FieldModelEnumUInt16(buffer, self._int16b5.fbe_offset + self._int16b5.fbe_size) self._uint16b1 = FieldModelEnumUInt16(buffer, self._uint16b0.fbe_offset + self._uint16b0.fbe_size) self._uint16b2 = FieldModelEnumUInt16(buffer, self._uint16b1.fbe_offset + self._uint16b1.fbe_size) self._uint16b3 = FieldModelEnumUInt16(buffer, self._uint16b2.fbe_offset + self._uint16b2.fbe_size) self._uint16b4 = FieldModelEnumUInt16(buffer, self._uint16b3.fbe_offset + self._uint16b3.fbe_size) self._uint16b5 = FieldModelEnumUInt16(buffer, self._uint16b4.fbe_offset + self._uint16b4.fbe_size) self._int32b0 = FieldModelEnumInt32(buffer, self._uint16b5.fbe_offset + self._uint16b5.fbe_size) self._int32b1 = FieldModelEnumInt32(buffer, self._int32b0.fbe_offset + self._int32b0.fbe_size) self._int32b2 = FieldModelEnumInt32(buffer, self._int32b1.fbe_offset + self._int32b1.fbe_size) self._int32b3 = FieldModelEnumInt32(buffer, self._int32b2.fbe_offset + self._int32b2.fbe_size) self._int32b4 = FieldModelEnumInt32(buffer, self._int32b3.fbe_offset + self._int32b3.fbe_size) self._int32b5 = FieldModelEnumInt32(buffer, self._int32b4.fbe_offset + self._int32b4.fbe_size) self._uint32b0 = FieldModelEnumUInt32(buffer, self._int32b5.fbe_offset + self._int32b5.fbe_size) self._uint32b1 = FieldModelEnumUInt32(buffer, self._uint32b0.fbe_offset + self._uint32b0.fbe_size) self._uint32b2 = FieldModelEnumUInt32(buffer, self._uint32b1.fbe_offset + self._uint32b1.fbe_size) self._uint32b3 = FieldModelEnumUInt32(buffer, self._uint32b2.fbe_offset + self._uint32b2.fbe_size) self._uint32b4 = FieldModelEnumUInt32(buffer, self._uint32b3.fbe_offset + self._uint32b3.fbe_size) self._uint32b5 = FieldModelEnumUInt32(buffer, self._uint32b4.fbe_offset + self._uint32b4.fbe_size) self._int64b0 = FieldModelEnumInt64(buffer, self._uint32b5.fbe_offset + self._uint32b5.fbe_size) self._int64b1 = FieldModelEnumInt64(buffer, self._int64b0.fbe_offset + self._int64b0.fbe_size) self._int64b2 = FieldModelEnumInt64(buffer, self._int64b1.fbe_offset + self._int64b1.fbe_size) self._int64b3 = FieldModelEnumInt64(buffer, self._int64b2.fbe_offset + self._int64b2.fbe_size) self._int64b4 = FieldModelEnumInt64(buffer, self._int64b3.fbe_offset + self._int64b3.fbe_size) self._int64b5 = FieldModelEnumInt64(buffer, self._int64b4.fbe_offset + self._int64b4.fbe_size) self._uint64b0 = FieldModelEnumUInt64(buffer, self._int64b5.fbe_offset + self._int64b5.fbe_size) self._uint64b1 = FieldModelEnumUInt64(buffer, self._uint64b0.fbe_offset + self._uint64b0.fbe_size) self._uint64b2 = FieldModelEnumUInt64(buffer, self._uint64b1.fbe_offset + self._uint64b1.fbe_size) self._uint64b3 = FieldModelEnumUInt64(buffer, self._uint64b2.fbe_offset + self._uint64b2.fbe_size) self._uint64b4 = FieldModelEnumUInt64(buffer, self._uint64b3.fbe_offset + self._uint64b3.fbe_size) self._uint64b5 = FieldModelEnumUInt64(buffer, self._uint64b4.fbe_offset + self._uint64b4.fbe_size) @property def byte0(self): return self._byte0 @property def byte1(self): return self._byte1 @property def byte2(self): return self._byte2 @property def byte3(self): return self._byte3 @property def byte4(self): return self._byte4 @property def byte5(self): return self._byte5 @property def char0(self): return self._char0 @property def char1(self): return self._char1 @property def char2(self): return self._char2 @property def char3(self): return self._char3 @property def char4(self): return self._char4 @property def char5(self): return self._char5 @property def wchar0(self): return self._wchar0 @property def wchar1(self): return self._wchar1 @property def wchar2(self): return self._wchar2 @property def wchar3(self): return self._wchar3 @property def wchar4(self): return self._wchar4 @property def wchar5(self): return self._wchar5 @property def int8b0(self): return self._int8b0 @property def int8b1(self): return self._int8b1 @property def int8b2(self): return self._int8b2 @property def int8b3(self): return self._int8b3 @property def int8b4(self): return self._int8b4 @property def int8b5(self): return self._int8b5 @property def uint8b0(self): return self._uint8b0 @property def uint8b1(self): return self._uint8b1 @property def uint8b2(self): return self._uint8b2 @property def uint8b3(self): return self._uint8b3 @property def uint8b4(self): return self._uint8b4 @property def uint8b5(self): return self._uint8b5 @property def int16b0(self): return self._int16b0 @property def int16b1(self): return self._int16b1 @property def int16b2(self): return self._int16b2 @property def int16b3(self): return self._int16b3 @property def int16b4(self): return self._int16b4 @property def int16b5(self): return self._int16b5 @property def uint16b0(self): return self._uint16b0 @property def uint16b1(self): return self._uint16b1 @property def uint16b2(self): return self._uint16b2 @property def uint16b3(self): return self._uint16b3 @property def uint16b4(self): return self._uint16b4 @property def uint16b5(self): return self._uint16b5 @property def int32b0(self): return self._int32b0 @property def int32b1(self): return self._int32b1 @property def int32b2(self): return self._int32b2 @property def int32b3(self): return self._int32b3 @property def int32b4(self): return self._int32b4 @property def int32b5(self): return self._int32b5 @property def uint32b0(self): return self._uint32b0 @property def uint32b1(self): return self._uint32b1 @property def uint32b2(self): return self._uint32b2 @property def uint32b3(self): return self._uint32b3 @property def uint32b4(self): return self._uint32b4 @property def uint32b5(self): return self._uint32b5 @property def int64b0(self): return self._int64b0 @property def int64b1(self): return self._int64b1 @property def int64b2(self): return self._int64b2 @property def int64b3(self): return self._int64b3 @property def int64b4(self): return self._int64b4 @property def int64b5(self): return self._int64b5 @property def uint64b0(self): return self._uint64b0 @property def uint64b1(self): return self._uint64b1 @property def uint64b2(self): return self._uint64b2 @property def uint64b3(self): return self._uint64b3 @property def uint64b4(self): return self._uint64b4 @property def uint64b5(self): return self._uint64b5 # Get the field size @property def fbe_size(self): return 4 # Get the field body size @property def fbe_body(self): fbe_result = 4 + 4 \ + self.byte0.fbe_size \ + self.byte1.fbe_size \ + self.byte2.fbe_size \ + self.byte3.fbe_size \ + self.byte4.fbe_size \ + self.byte5.fbe_size \ + self.char0.fbe_size \ + self.char1.fbe_size \ + self.char2.fbe_size \ + self.char3.fbe_size \ + self.char4.fbe_size \ + self.char5.fbe_size \ + self.wchar0.fbe_size \ + self.wchar1.fbe_size \ + self.wchar2.fbe_size \ + self.wchar3.fbe_size \ + self.wchar4.fbe_size \ + self.wchar5.fbe_size \ + self.int8b0.fbe_size \ + self.int8b1.fbe_size \ + self.int8b2.fbe_size \ + self.int8b3.fbe_size \ + self.int8b4.fbe_size \ + self.int8b5.fbe_size \ + self.uint8b0.fbe_size \ + self.uint8b1.fbe_size \ + self.uint8b2.fbe_size \ + self.uint8b3.fbe_size \ + self.uint8b4.fbe_size \ + self.uint8b5.fbe_size \ + self.int16b0.fbe_size \ + self.int16b1.fbe_size \ + self.int16b2.fbe_size \ + self.int16b3.fbe_size \ + self.int16b4.fbe_size \ + self.int16b5.fbe_size \ + self.uint16b0.fbe_size \ + self.uint16b1.fbe_size \ + self.uint16b2.fbe_size \ + self.uint16b3.fbe_size \ + self.uint16b4.fbe_size \ + self.uint16b5.fbe_size \ + self.int32b0.fbe_size \ + self.int32b1.fbe_size \ + self.int32b2.fbe_size \ + self.int32b3.fbe_size \ + self.int32b4.fbe_size \ + self.int32b5.fbe_size \ + self.uint32b0.fbe_size \ + self.uint32b1.fbe_size \ + self.uint32b2.fbe_size \ + self.uint32b3.fbe_size \ + self.uint32b4.fbe_size \ + self.uint32b5.fbe_size \ + self.int64b0.fbe_size \ + self.int64b1.fbe_size \ + self.int64b2.fbe_size \ + self.int64b3.fbe_size \ + self.int64b4.fbe_size \ + self.int64b5.fbe_size \ + self.uint64b0.fbe_size \ + self.uint64b1.fbe_size \ + self.uint64b2.fbe_size \ + self.uint64b3.fbe_size \ + self.uint64b4.fbe_size \ + self.uint64b5.fbe_size \ return fbe_result # Get the field extra size @property def fbe_extra(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 fbe_struct_offset = self.read_uint32(self.fbe_offset) if (fbe_struct_offset == 0) or ((self._buffer.offset + fbe_struct_offset + 4) > self._buffer.size): return 0 self._buffer.shift(fbe_struct_offset) fbe_result = self.fbe_body \ + self.byte0.fbe_extra \ + self.byte1.fbe_extra \ + self.byte2.fbe_extra \ + self.byte3.fbe_extra \ + self.byte4.fbe_extra \ + self.byte5.fbe_extra \ + self.char0.fbe_extra \ + self.char1.fbe_extra \ + self.char2.fbe_extra \ + self.char3.fbe_extra \ + self.char4.fbe_extra \ + self.char5.fbe_extra \ + self.wchar0.fbe_extra \ + self.wchar1.fbe_extra \ + self.wchar2.fbe_extra \ + self.wchar3.fbe_extra \ + self.wchar4.fbe_extra \ + self.wchar5.fbe_extra \ + self.int8b0.fbe_extra \ + self.int8b1.fbe_extra \ + self.int8b2.fbe_extra \ + self.int8b3.fbe_extra \ + self.int8b4.fbe_extra \ + self.int8b5.fbe_extra \ + self.uint8b0.fbe_extra \ + self.uint8b1.fbe_extra \ + self.uint8b2.fbe_extra \ + self.uint8b3.fbe_extra \ + self.uint8b4.fbe_extra \ + self.uint8b5.fbe_extra \ + self.int16b0.fbe_extra \ + self.int16b1.fbe_extra \ + self.int16b2.fbe_extra \ + self.int16b3.fbe_extra \ + self.int16b4.fbe_extra \ + self.int16b5.fbe_extra \ + self.uint16b0.fbe_extra \ + self.uint16b1.fbe_extra \ + self.uint16b2.fbe_extra \ + self.uint16b3.fbe_extra \ + self.uint16b4.fbe_extra \ + self.uint16b5.fbe_extra \ + self.int32b0.fbe_extra \ + self.int32b1.fbe_extra \ + self.int32b2.fbe_extra \ + self.int32b3.fbe_extra \ + self.int32b4.fbe_extra \ + self.int32b5.fbe_extra \ + self.uint32b0.fbe_extra \ + self.uint32b1.fbe_extra \ + self.uint32b2.fbe_extra \ + self.uint32b3.fbe_extra \ + self.uint32b4.fbe_extra \ + self.uint32b5.fbe_extra \ + self.int64b0.fbe_extra \ + self.int64b1.fbe_extra \ + self.int64b2.fbe_extra \ + self.int64b3.fbe_extra \ + self.int64b4.fbe_extra \ + self.int64b5.fbe_extra \ + self.uint64b0.fbe_extra \ + self.uint64b1.fbe_extra \ + self.uint64b2.fbe_extra \ + self.uint64b3.fbe_extra \ + self.uint64b4.fbe_extra \ + self.uint64b5.fbe_extra \ self._buffer.unshift(fbe_struct_offset) return fbe_result # Get the field type @property def fbe_type(self): return self.TYPE TYPE = 1 # Check if the struct value is valid def verify(self, fbe_verify_type=True): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return True fbe_struct_offset = self.read_uint32(self.fbe_offset) if (fbe_struct_offset == 0) or ((self._buffer.offset + fbe_struct_offset + 4 + 4) > self._buffer.size): return False fbe_struct_size = self.read_uint32(fbe_struct_offset) if fbe_struct_size < (4 + 4): return False fbe_struct_type = self.read_uint32(fbe_struct_offset + 4) if fbe_verify_type and (fbe_struct_type != self.fbe_type): return False self._buffer.shift(fbe_struct_offset) fbe_result = self.verify_fields(fbe_struct_size) self._buffer.unshift(fbe_struct_offset) return fbe_result # Check if the struct fields are valid def verify_fields(self, fbe_struct_size): fbe_current_size = 4 + 4 if (fbe_current_size + self.byte0.fbe_size) > fbe_struct_size: return True if not self.byte0.verify(): return False fbe_current_size += self.byte0.fbe_size if (fbe_current_size + self.byte1.fbe_size) > fbe_struct_size: return True if not self.byte1.verify(): return False fbe_current_size += self.byte1.fbe_size if (fbe_current_size + self.byte2.fbe_size) > fbe_struct_size: return True if not self.byte2.verify(): return False fbe_current_size += self.byte2.fbe_size if (fbe_current_size + self.byte3.fbe_size) > fbe_struct_size: return True if not self.byte3.verify(): return False fbe_current_size += self.byte3.fbe_size if (fbe_current_size + self.byte4.fbe_size) > fbe_struct_size: return True if not self.byte4.verify(): return False fbe_current_size += self.byte4.fbe_size if (fbe_current_size + self.byte5.fbe_size) > fbe_struct_size: return True if not self.byte5.verify(): return False fbe_current_size += self.byte5.fbe_size if (fbe_current_size + self.char0.fbe_size) > fbe_struct_size: return True if not self.char0.verify(): return False fbe_current_size += self.char0.fbe_size if (fbe_current_size + self.char1.fbe_size) > fbe_struct_size: return True if not self.char1.verify(): return False fbe_current_size += self.char1.fbe_size if (fbe_current_size + self.char2.fbe_size) > fbe_struct_size: return True if not self.char2.verify(): return False fbe_current_size += self.char2.fbe_size if (fbe_current_size + self.char3.fbe_size) > fbe_struct_size: return True if not self.char3.verify(): return False fbe_current_size += self.char3.fbe_size if (fbe_current_size + self.char4.fbe_size) > fbe_struct_size: return True if not self.char4.verify(): return False fbe_current_size += self.char4.fbe_size if (fbe_current_size + self.char5.fbe_size) > fbe_struct_size: return True if not self.char5.verify(): return False fbe_current_size += self.char5.fbe_size if (fbe_current_size + self.wchar0.fbe_size) > fbe_struct_size: return True if not self.wchar0.verify(): return False fbe_current_size += self.wchar0.fbe_size if (fbe_current_size + self.wchar1.fbe_size) > fbe_struct_size: return True if not self.wchar1.verify(): return False fbe_current_size += self.wchar1.fbe_size if (fbe_current_size + self.wchar2.fbe_size) > fbe_struct_size: return True if not self.wchar2.verify(): return False fbe_current_size += self.wchar2.fbe_size if (fbe_current_size + self.wchar3.fbe_size) > fbe_struct_size: return True if not self.wchar3.verify(): return False fbe_current_size += self.wchar3.fbe_size if (fbe_current_size + self.wchar4.fbe_size) > fbe_struct_size: return True if not self.wchar4.verify(): return False fbe_current_size += self.wchar4.fbe_size if (fbe_current_size + self.wchar5.fbe_size) > fbe_struct_size: return True if not self.wchar5.verify(): return False fbe_current_size += self.wchar5.fbe_size if (fbe_current_size + self.int8b0.fbe_size) > fbe_struct_size: return True if not self.int8b0.verify(): return False fbe_current_size += self.int8b0.fbe_size if (fbe_current_size + self.int8b1.fbe_size) > fbe_struct_size: return True if not self.int8b1.verify(): return False fbe_current_size += self.int8b1.fbe_size if (fbe_current_size + self.int8b2.fbe_size) > fbe_struct_size: return True if not self.int8b2.verify(): return False fbe_current_size += self.int8b2.fbe_size if (fbe_current_size + self.int8b3.fbe_size) > fbe_struct_size: return True if not self.int8b3.verify(): return False fbe_current_size += self.int8b3.fbe_size if (fbe_current_size + self.int8b4.fbe_size) > fbe_struct_size: return True if not self.int8b4.verify(): return False fbe_current_size += self.int8b4.fbe_size if (fbe_current_size + self.int8b5.fbe_size) > fbe_struct_size: return True if not self.int8b5.verify(): return False fbe_current_size += self.int8b5.fbe_size if (fbe_current_size + self.uint8b0.fbe_size) > fbe_struct_size: return True if not self.uint8b0.verify(): return False fbe_current_size += self.uint8b0.fbe_size if (fbe_current_size + self.uint8b1.fbe_size) > fbe_struct_size: return True if not self.uint8b1.verify(): return False fbe_current_size += self.uint8b1.fbe_size if (fbe_current_size + self.uint8b2.fbe_size) > fbe_struct_size: return True if not self.uint8b2.verify(): return False fbe_current_size += self.uint8b2.fbe_size if (fbe_current_size + self.uint8b3.fbe_size) > fbe_struct_size: return True if not self.uint8b3.verify(): return False fbe_current_size += self.uint8b3.fbe_size if (fbe_current_size + self.uint8b4.fbe_size) > fbe_struct_size: return True if not self.uint8b4.verify(): return False fbe_current_size += self.uint8b4.fbe_size if (fbe_current_size + self.uint8b5.fbe_size) > fbe_struct_size: return True if not self.uint8b5.verify(): return False fbe_current_size += self.uint8b5.fbe_size if (fbe_current_size + self.int16b0.fbe_size) > fbe_struct_size: return True if not self.int16b0.verify(): return False fbe_current_size += self.int16b0.fbe_size if (fbe_current_size + self.int16b1.fbe_size) > fbe_struct_size: return True if not self.int16b1.verify(): return False fbe_current_size += self.int16b1.fbe_size if (fbe_current_size + self.int16b2.fbe_size) > fbe_struct_size: return True if not self.int16b2.verify(): return False fbe_current_size += self.int16b2.fbe_size if (fbe_current_size + self.int16b3.fbe_size) > fbe_struct_size: return True if not self.int16b3.verify(): return False fbe_current_size += self.int16b3.fbe_size if (fbe_current_size + self.int16b4.fbe_size) > fbe_struct_size: return True if not self.int16b4.verify(): return False fbe_current_size += self.int16b4.fbe_size if (fbe_current_size + self.int16b5.fbe_size) > fbe_struct_size: return True if not self.int16b5.verify(): return False fbe_current_size += self.int16b5.fbe_size if (fbe_current_size + self.uint16b0.fbe_size) > fbe_struct_size: return True if not self.uint16b0.verify(): return False fbe_current_size += self.uint16b0.fbe_size if (fbe_current_size + self.uint16b1.fbe_size) > fbe_struct_size: return True if not self.uint16b1.verify(): return False fbe_current_size += self.uint16b1.fbe_size if (fbe_current_size + self.uint16b2.fbe_size) > fbe_struct_size: return True if not self.uint16b2.verify(): return False fbe_current_size += self.uint16b2.fbe_size if (fbe_current_size + self.uint16b3.fbe_size) > fbe_struct_size: return True if not self.uint16b3.verify(): return False fbe_current_size += self.uint16b3.fbe_size if (fbe_current_size + self.uint16b4.fbe_size) > fbe_struct_size: return True if not self.uint16b4.verify(): return False fbe_current_size += self.uint16b4.fbe_size if (fbe_current_size + self.uint16b5.fbe_size) > fbe_struct_size: return True if not self.uint16b5.verify(): return False fbe_current_size += self.uint16b5.fbe_size if (fbe_current_size + self.int32b0.fbe_size) > fbe_struct_size: return True if not self.int32b0.verify(): return False fbe_current_size += self.int32b0.fbe_size if (fbe_current_size + self.int32b1.fbe_size) > fbe_struct_size: return True if not self.int32b1.verify(): return False fbe_current_size += self.int32b1.fbe_size if (fbe_current_size + self.int32b2.fbe_size) > fbe_struct_size: return True if not self.int32b2.verify(): return False fbe_current_size += self.int32b2.fbe_size if (fbe_current_size + self.int32b3.fbe_size) > fbe_struct_size: return True if not self.int32b3.verify(): return False fbe_current_size += self.int32b3.fbe_size if (fbe_current_size + self.int32b4.fbe_size) > fbe_struct_size: return True if not self.int32b4.verify(): return False fbe_current_size += self.int32b4.fbe_size if (fbe_current_size + self.int32b5.fbe_size) > fbe_struct_size: return True if not self.int32b5.verify(): return False fbe_current_size += self.int32b5.fbe_size if (fbe_current_size + self.uint32b0.fbe_size) > fbe_struct_size: return True if not self.uint32b0.verify(): return False fbe_current_size += self.uint32b0.fbe_size if (fbe_current_size + self.uint32b1.fbe_size) > fbe_struct_size: return True if not self.uint32b1.verify(): return False fbe_current_size += self.uint32b1.fbe_size if (fbe_current_size + self.uint32b2.fbe_size) > fbe_struct_size: return True if not self.uint32b2.verify(): return False fbe_current_size += self.uint32b2.fbe_size if (fbe_current_size + self.uint32b3.fbe_size) > fbe_struct_size: return True if not self.uint32b3.verify(): return False fbe_current_size += self.uint32b3.fbe_size if (fbe_current_size + self.uint32b4.fbe_size) > fbe_struct_size: return True if not self.uint32b4.verify(): return False fbe_current_size += self.uint32b4.fbe_size if (fbe_current_size + self.uint32b5.fbe_size) > fbe_struct_size: return True if not self.uint32b5.verify(): return False fbe_current_size += self.uint32b5.fbe_size if (fbe_current_size + self.int64b0.fbe_size) > fbe_struct_size: return True if not self.int64b0.verify(): return False fbe_current_size += self.int64b0.fbe_size if (fbe_current_size + self.int64b1.fbe_size) > fbe_struct_size: return True if not self.int64b1.verify(): return False fbe_current_size += self.int64b1.fbe_size if (fbe_current_size + self.int64b2.fbe_size) > fbe_struct_size: return True if not self.int64b2.verify(): return False fbe_current_size += self.int64b2.fbe_size if (fbe_current_size + self.int64b3.fbe_size) > fbe_struct_size: return True if not self.int64b3.verify(): return False fbe_current_size += self.int64b3.fbe_size if (fbe_current_size + self.int64b4.fbe_size) > fbe_struct_size: return True if not self.int64b4.verify(): return False fbe_current_size += self.int64b4.fbe_size if (fbe_current_size + self.int64b5.fbe_size) > fbe_struct_size: return True if not self.int64b5.verify(): return False fbe_current_size += self.int64b5.fbe_size if (fbe_current_size + self.uint64b0.fbe_size) > fbe_struct_size: return True if not self.uint64b0.verify(): return False fbe_current_size += self.uint64b0.fbe_size if (fbe_current_size + self.uint64b1.fbe_size) > fbe_struct_size: return True if not self.uint64b1.verify(): return False fbe_current_size += self.uint64b1.fbe_size if (fbe_current_size + self.uint64b2.fbe_size) > fbe_struct_size: return True if not self.uint64b2.verify(): return False fbe_current_size += self.uint64b2.fbe_size if (fbe_current_size + self.uint64b3.fbe_size) > fbe_struct_size: return True if not self.uint64b3.verify(): return False fbe_current_size += self.uint64b3.fbe_size if (fbe_current_size + self.uint64b4.fbe_size) > fbe_struct_size: return True if not self.uint64b4.verify(): return False fbe_current_size += self.uint64b4.fbe_size if (fbe_current_size + self.uint64b5.fbe_size) > fbe_struct_size: return True if not self.uint64b5.verify(): return False fbe_current_size += self.uint64b5.fbe_size return True # Get the struct value (begin phase) def get_begin(self): if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 fbe_struct_offset = self.read_uint32(self.fbe_offset) assert (fbe_struct_offset > 0) and ((self._buffer.offset + fbe_struct_offset + 4 + 4) <= self._buffer.size), "Model is broken!" if (fbe_struct_offset == 0) or ((self._buffer.offset + fbe_struct_offset + 4 + 4) > self._buffer.size): return 0 fbe_struct_size = self.read_uint32(fbe_struct_offset) assert (fbe_struct_size >= (4 + 4)), "Model is broken!" if fbe_struct_size < (4 + 4): return 0 self._buffer.shift(fbe_struct_offset) return fbe_struct_offset # Get the struct value (end phase) def get_end(self, fbe_begin): self._buffer.unshift(fbe_begin) # Get the struct value def get(self, fbe_value=None): if fbe_value is None: fbe_value = Enums() fbe_begin = self.get_begin() if fbe_begin == 0: return fbe_value fbe_struct_size = self.read_uint32(0) self.get_fields(fbe_value, fbe_struct_size) self.get_end(fbe_begin) return fbe_value # Get the struct fields values def get_fields(self, fbe_value, fbe_struct_size): fbe_current_size = 4 + 4 if (fbe_current_size + self.byte0.fbe_size) <= fbe_struct_size: fbe_value.byte0 = self.byte0.get(EnumByte.ENUM_VALUE_0) else: fbe_value.byte0 = EnumByte.ENUM_VALUE_0 fbe_current_size += self.byte0.fbe_size if (fbe_current_size + self.byte1.fbe_size) <= fbe_struct_size: fbe_value.byte1 = self.byte1.get(EnumByte.ENUM_VALUE_1) else: fbe_value.byte1 = EnumByte.ENUM_VALUE_1 fbe_current_size += self.byte1.fbe_size if (fbe_current_size + self.byte2.fbe_size) <= fbe_struct_size: fbe_value.byte2 = self.byte2.get(EnumByte.ENUM_VALUE_2) else: fbe_value.byte2 = EnumByte.ENUM_VALUE_2 fbe_current_size += self.byte2.fbe_size if (fbe_current_size + self.byte3.fbe_size) <= fbe_struct_size: fbe_value.byte3 = self.byte3.get(EnumByte.ENUM_VALUE_3) else: fbe_value.byte3 = EnumByte.ENUM_VALUE_3 fbe_current_size += self.byte3.fbe_size if (fbe_current_size + self.byte4.fbe_size) <= fbe_struct_size: fbe_value.byte4 = self.byte4.get(EnumByte.ENUM_VALUE_4) else: fbe_value.byte4 = EnumByte.ENUM_VALUE_4 fbe_current_size += self.byte4.fbe_size if (fbe_current_size + self.byte5.fbe_size) <= fbe_struct_size: fbe_value.byte5 = self.byte5.get(EnumByte.ENUM_VALUE_5) else: fbe_value.byte5 = EnumByte.ENUM_VALUE_5 fbe_current_size += self.byte5.fbe_size if (fbe_current_size + self.char0.fbe_size) <= fbe_struct_size: fbe_value.char0 = self.char0.get(EnumChar.ENUM_VALUE_0) else: fbe_value.char0 = EnumChar.ENUM_VALUE_0 fbe_current_size += self.char0.fbe_size if (fbe_current_size + self.char1.fbe_size) <= fbe_struct_size: fbe_value.char1 = self.char1.get(EnumChar.ENUM_VALUE_1) else: fbe_value.char1 = EnumChar.ENUM_VALUE_1 fbe_current_size += self.char1.fbe_size if (fbe_current_size + self.char2.fbe_size) <= fbe_struct_size: fbe_value.char2 = self.char2.get(EnumChar.ENUM_VALUE_2) else: fbe_value.char2 = EnumChar.ENUM_VALUE_2 fbe_current_size += self.char2.fbe_size if (fbe_current_size + self.char3.fbe_size) <= fbe_struct_size: fbe_value.char3 = self.char3.get(EnumChar.ENUM_VALUE_3) else: fbe_value.char3 = EnumChar.ENUM_VALUE_3 fbe_current_size += self.char3.fbe_size if (fbe_current_size + self.char4.fbe_size) <= fbe_struct_size: fbe_value.char4 = self.char4.get(EnumChar.ENUM_VALUE_4) else: fbe_value.char4 = EnumChar.ENUM_VALUE_4 fbe_current_size += self.char4.fbe_size if (fbe_current_size + self.char5.fbe_size) <= fbe_struct_size: fbe_value.char5 = self.char5.get(EnumChar.ENUM_VALUE_5) else: fbe_value.char5 = EnumChar.ENUM_VALUE_5 fbe_current_size += self.char5.fbe_size if (fbe_current_size + self.wchar0.fbe_size) <= fbe_struct_size: fbe_value.wchar0 = self.wchar0.get(EnumWChar.ENUM_VALUE_0) else: fbe_value.wchar0 = EnumWChar.ENUM_VALUE_0 fbe_current_size += self.wchar0.fbe_size if (fbe_current_size + self.wchar1.fbe_size) <= fbe_struct_size: fbe_value.wchar1 = self.wchar1.get(EnumWChar.ENUM_VALUE_1) else: fbe_value.wchar1 = EnumWChar.ENUM_VALUE_1 fbe_current_size += self.wchar1.fbe_size if (fbe_current_size + self.wchar2.fbe_size) <= fbe_struct_size: fbe_value.wchar2 = self.wchar2.get(EnumWChar.ENUM_VALUE_2) else: fbe_value.wchar2 = EnumWChar.ENUM_VALUE_2 fbe_current_size += self.wchar2.fbe_size if (fbe_current_size + self.wchar3.fbe_size) <= fbe_struct_size: fbe_value.wchar3 = self.wchar3.get(EnumWChar.ENUM_VALUE_3) else: fbe_value.wchar3 = EnumWChar.ENUM_VALUE_3 fbe_current_size += self.wchar3.fbe_size if (fbe_current_size + self.wchar4.fbe_size) <= fbe_struct_size: fbe_value.wchar4 = self.wchar4.get(EnumWChar.ENUM_VALUE_4) else: fbe_value.wchar4 = EnumWChar.ENUM_VALUE_4 fbe_current_size += self.wchar4.fbe_size if (fbe_current_size + self.wchar5.fbe_size) <= fbe_struct_size: fbe_value.wchar5 = self.wchar5.get(EnumWChar.ENUM_VALUE_5) else: fbe_value.wchar5 = EnumWChar.ENUM_VALUE_5 fbe_current_size += self.wchar5.fbe_size if (fbe_current_size + self.int8b0.fbe_size) <= fbe_struct_size: fbe_value.int8b0 = self.int8b0.get(EnumInt8.ENUM_VALUE_0) else: fbe_value.int8b0 = EnumInt8.ENUM_VALUE_0 fbe_current_size += self.int8b0.fbe_size if (fbe_current_size + self.int8b1.fbe_size) <= fbe_struct_size: fbe_value.int8b1 = self.int8b1.get(EnumInt8.ENUM_VALUE_1) else: fbe_value.int8b1 = EnumInt8.ENUM_VALUE_1 fbe_current_size += self.int8b1.fbe_size if (fbe_current_size + self.int8b2.fbe_size) <= fbe_struct_size: fbe_value.int8b2 = self.int8b2.get(EnumInt8.ENUM_VALUE_2) else: fbe_value.int8b2 = EnumInt8.ENUM_VALUE_2 fbe_current_size += self.int8b2.fbe_size if (fbe_current_size + self.int8b3.fbe_size) <= fbe_struct_size: fbe_value.int8b3 = self.int8b3.get(EnumInt8.ENUM_VALUE_3) else: fbe_value.int8b3 = EnumInt8.ENUM_VALUE_3 fbe_current_size += self.int8b3.fbe_size if (fbe_current_size + self.int8b4.fbe_size) <= fbe_struct_size: fbe_value.int8b4 = self.int8b4.get(EnumInt8.ENUM_VALUE_4) else: fbe_value.int8b4 = EnumInt8.ENUM_VALUE_4 fbe_current_size += self.int8b4.fbe_size if (fbe_current_size + self.int8b5.fbe_size) <= fbe_struct_size: fbe_value.int8b5 = self.int8b5.get(EnumInt8.ENUM_VALUE_5) else: fbe_value.int8b5 = EnumInt8.ENUM_VALUE_5 fbe_current_size += self.int8b5.fbe_size if (fbe_current_size + self.uint8b0.fbe_size) <= fbe_struct_size: fbe_value.uint8b0 = self.uint8b0.get(EnumUInt8.ENUM_VALUE_0) else: fbe_value.uint8b0 = EnumUInt8.ENUM_VALUE_0 fbe_current_size += self.uint8b0.fbe_size if (fbe_current_size + self.uint8b1.fbe_size) <= fbe_struct_size: fbe_value.uint8b1 = self.uint8b1.get(EnumUInt8.ENUM_VALUE_1) else: fbe_value.uint8b1 = EnumUInt8.ENUM_VALUE_1 fbe_current_size += self.uint8b1.fbe_size if (fbe_current_size + self.uint8b2.fbe_size) <= fbe_struct_size: fbe_value.uint8b2 = self.uint8b2.get(EnumUInt8.ENUM_VALUE_2) else: fbe_value.uint8b2 = EnumUInt8.ENUM_VALUE_2 fbe_current_size += self.uint8b2.fbe_size if (fbe_current_size + self.uint8b3.fbe_size) <= fbe_struct_size: fbe_value.uint8b3 = self.uint8b3.get(EnumUInt8.ENUM_VALUE_3) else: fbe_value.uint8b3 = EnumUInt8.ENUM_VALUE_3 fbe_current_size += self.uint8b3.fbe_size if (fbe_current_size + self.uint8b4.fbe_size) <= fbe_struct_size: fbe_value.uint8b4 = self.uint8b4.get(EnumUInt8.ENUM_VALUE_4) else: fbe_value.uint8b4 = EnumUInt8.ENUM_VALUE_4 fbe_current_size += self.uint8b4.fbe_size if (fbe_current_size + self.uint8b5.fbe_size) <= fbe_struct_size: fbe_value.uint8b5 = self.uint8b5.get(EnumUInt8.ENUM_VALUE_5) else: fbe_value.uint8b5 = EnumUInt8.ENUM_VALUE_5 fbe_current_size += self.uint8b5.fbe_size if (fbe_current_size + self.int16b0.fbe_size) <= fbe_struct_size: fbe_value.int16b0 = self.int16b0.get(EnumInt16.ENUM_VALUE_0) else: fbe_value.int16b0 = EnumInt16.ENUM_VALUE_0 fbe_current_size += self.int16b0.fbe_size if (fbe_current_size + self.int16b1.fbe_size) <= fbe_struct_size: fbe_value.int16b1 = self.int16b1.get(EnumInt16.ENUM_VALUE_1) else: fbe_value.int16b1 = EnumInt16.ENUM_VALUE_1 fbe_current_size += self.int16b1.fbe_size if (fbe_current_size + self.int16b2.fbe_size) <= fbe_struct_size: fbe_value.int16b2 = self.int16b2.get(EnumInt16.ENUM_VALUE_2) else: fbe_value.int16b2 = EnumInt16.ENUM_VALUE_2 fbe_current_size += self.int16b2.fbe_size if (fbe_current_size + self.int16b3.fbe_size) <= fbe_struct_size: fbe_value.int16b3 = self.int16b3.get(EnumInt16.ENUM_VALUE_3) else: fbe_value.int16b3 = EnumInt16.ENUM_VALUE_3 fbe_current_size += self.int16b3.fbe_size if (fbe_current_size + self.int16b4.fbe_size) <= fbe_struct_size: fbe_value.int16b4 = self.int16b4.get(EnumInt16.ENUM_VALUE_4) else: fbe_value.int16b4 = EnumInt16.ENUM_VALUE_4 fbe_current_size += self.int16b4.fbe_size if (fbe_current_size + self.int16b5.fbe_size) <= fbe_struct_size: fbe_value.int16b5 = self.int16b5.get(EnumInt16.ENUM_VALUE_5) else: fbe_value.int16b5 = EnumInt16.ENUM_VALUE_5 fbe_current_size += self.int16b5.fbe_size if (fbe_current_size + self.uint16b0.fbe_size) <= fbe_struct_size: fbe_value.uint16b0 = self.uint16b0.get(EnumUInt16.ENUM_VALUE_0) else: fbe_value.uint16b0 = EnumUInt16.ENUM_VALUE_0 fbe_current_size += self.uint16b0.fbe_size if (fbe_current_size + self.uint16b1.fbe_size) <= fbe_struct_size: fbe_value.uint16b1 = self.uint16b1.get(EnumUInt16.ENUM_VALUE_1) else: fbe_value.uint16b1 = EnumUInt16.ENUM_VALUE_1 fbe_current_size += self.uint16b1.fbe_size if (fbe_current_size + self.uint16b2.fbe_size) <= fbe_struct_size: fbe_value.uint16b2 = self.uint16b2.get(EnumUInt16.ENUM_VALUE_2) else: fbe_value.uint16b2 = EnumUInt16.ENUM_VALUE_2 fbe_current_size += self.uint16b2.fbe_size if (fbe_current_size + self.uint16b3.fbe_size) <= fbe_struct_size: fbe_value.uint16b3 = self.uint16b3.get(EnumUInt16.ENUM_VALUE_3) else: fbe_value.uint16b3 = EnumUInt16.ENUM_VALUE_3 fbe_current_size += self.uint16b3.fbe_size if (fbe_current_size + self.uint16b4.fbe_size) <= fbe_struct_size: fbe_value.uint16b4 = self.uint16b4.get(EnumUInt16.ENUM_VALUE_4) else: fbe_value.uint16b4 = EnumUInt16.ENUM_VALUE_4 fbe_current_size += self.uint16b4.fbe_size if (fbe_current_size + self.uint16b5.fbe_size) <= fbe_struct_size: fbe_value.uint16b5 = self.uint16b5.get(EnumUInt16.ENUM_VALUE_5) else: fbe_value.uint16b5 = EnumUInt16.ENUM_VALUE_5 fbe_current_size += self.uint16b5.fbe_size if (fbe_current_size + self.int32b0.fbe_size) <= fbe_struct_size: fbe_value.int32b0 = self.int32b0.get(EnumInt32.ENUM_VALUE_0) else: fbe_value.int32b0 = EnumInt32.ENUM_VALUE_0 fbe_current_size += self.int32b0.fbe_size if (fbe_current_size + self.int32b1.fbe_size) <= fbe_struct_size: fbe_value.int32b1 = self.int32b1.get(EnumInt32.ENUM_VALUE_1) else: fbe_value.int32b1 = EnumInt32.ENUM_VALUE_1 fbe_current_size += self.int32b1.fbe_size if (fbe_current_size + self.int32b2.fbe_size) <= fbe_struct_size: fbe_value.int32b2 = self.int32b2.get(EnumInt32.ENUM_VALUE_2) else: fbe_value.int32b2 = EnumInt32.ENUM_VALUE_2 fbe_current_size += self.int32b2.fbe_size if (fbe_current_size + self.int32b3.fbe_size) <= fbe_struct_size: fbe_value.int32b3 = self.int32b3.get(EnumInt32.ENUM_VALUE_3) else: fbe_value.int32b3 = EnumInt32.ENUM_VALUE_3 fbe_current_size += self.int32b3.fbe_size if (fbe_current_size + self.int32b4.fbe_size) <= fbe_struct_size: fbe_value.int32b4 = self.int32b4.get(EnumInt32.ENUM_VALUE_4) else: fbe_value.int32b4 = EnumInt32.ENUM_VALUE_4 fbe_current_size += self.int32b4.fbe_size if (fbe_current_size + self.int32b5.fbe_size) <= fbe_struct_size: fbe_value.int32b5 = self.int32b5.get(EnumInt32.ENUM_VALUE_5) else: fbe_value.int32b5 = EnumInt32.ENUM_VALUE_5 fbe_current_size += self.int32b5.fbe_size if (fbe_current_size + self.uint32b0.fbe_size) <= fbe_struct_size: fbe_value.uint32b0 = self.uint32b0.get(EnumUInt32.ENUM_VALUE_0) else: fbe_value.uint32b0 = EnumUInt32.ENUM_VALUE_0 fbe_current_size += self.uint32b0.fbe_size if (fbe_current_size + self.uint32b1.fbe_size) <= fbe_struct_size: fbe_value.uint32b1 = self.uint32b1.get(EnumUInt32.ENUM_VALUE_1) else: fbe_value.uint32b1 = EnumUInt32.ENUM_VALUE_1 fbe_current_size += self.uint32b1.fbe_size if (fbe_current_size + self.uint32b2.fbe_size) <= fbe_struct_size: fbe_value.uint32b2 = self.uint32b2.get(EnumUInt32.ENUM_VALUE_2) else: fbe_value.uint32b2 = EnumUInt32.ENUM_VALUE_2 fbe_current_size += self.uint32b2.fbe_size if (fbe_current_size + self.uint32b3.fbe_size) <= fbe_struct_size: fbe_value.uint32b3 = self.uint32b3.get(EnumUInt32.ENUM_VALUE_3) else: fbe_value.uint32b3 = EnumUInt32.ENUM_VALUE_3 fbe_current_size += self.uint32b3.fbe_size if (fbe_current_size + self.uint32b4.fbe_size) <= fbe_struct_size: fbe_value.uint32b4 = self.uint32b4.get(EnumUInt32.ENUM_VALUE_4) else: fbe_value.uint32b4 = EnumUInt32.ENUM_VALUE_4 fbe_current_size += self.uint32b4.fbe_size if (fbe_current_size + self.uint32b5.fbe_size) <= fbe_struct_size: fbe_value.uint32b5 = self.uint32b5.get(EnumUInt32.ENUM_VALUE_5) else: fbe_value.uint32b5 = EnumUInt32.ENUM_VALUE_5 fbe_current_size += self.uint32b5.fbe_size if (fbe_current_size + self.int64b0.fbe_size) <= fbe_struct_size: fbe_value.int64b0 = self.int64b0.get(EnumInt64.ENUM_VALUE_0) else: fbe_value.int64b0 = EnumInt64.ENUM_VALUE_0 fbe_current_size += self.int64b0.fbe_size if (fbe_current_size + self.int64b1.fbe_size) <= fbe_struct_size: fbe_value.int64b1 = self.int64b1.get(EnumInt64.ENUM_VALUE_1) else: fbe_value.int64b1 = EnumInt64.ENUM_VALUE_1 fbe_current_size += self.int64b1.fbe_size if (fbe_current_size + self.int64b2.fbe_size) <= fbe_struct_size: fbe_value.int64b2 = self.int64b2.get(EnumInt64.ENUM_VALUE_2) else: fbe_value.int64b2 = EnumInt64.ENUM_VALUE_2 fbe_current_size += self.int64b2.fbe_size if (fbe_current_size + self.int64b3.fbe_size) <= fbe_struct_size: fbe_value.int64b3 = self.int64b3.get(EnumInt64.ENUM_VALUE_3) else: fbe_value.int64b3 = EnumInt64.ENUM_VALUE_3 fbe_current_size += self.int64b3.fbe_size if (fbe_current_size + self.int64b4.fbe_size) <= fbe_struct_size: fbe_value.int64b4 = self.int64b4.get(EnumInt64.ENUM_VALUE_4) else: fbe_value.int64b4 = EnumInt64.ENUM_VALUE_4 fbe_current_size += self.int64b4.fbe_size if (fbe_current_size + self.int64b5.fbe_size) <= fbe_struct_size: fbe_value.int64b5 = self.int64b5.get(EnumInt64.ENUM_VALUE_5) else: fbe_value.int64b5 = EnumInt64.ENUM_VALUE_5 fbe_current_size += self.int64b5.fbe_size if (fbe_current_size + self.uint64b0.fbe_size) <= fbe_struct_size: fbe_value.uint64b0 = self.uint64b0.get(EnumUInt64.ENUM_VALUE_0) else: fbe_value.uint64b0 = EnumUInt64.ENUM_VALUE_0 fbe_current_size += self.uint64b0.fbe_size if (fbe_current_size + self.uint64b1.fbe_size) <= fbe_struct_size: fbe_value.uint64b1 = self.uint64b1.get(EnumUInt64.ENUM_VALUE_1) else: fbe_value.uint64b1 = EnumUInt64.ENUM_VALUE_1 fbe_current_size += self.uint64b1.fbe_size if (fbe_current_size + self.uint64b2.fbe_size) <= fbe_struct_size: fbe_value.uint64b2 = self.uint64b2.get(EnumUInt64.ENUM_VALUE_2) else: fbe_value.uint64b2 = EnumUInt64.ENUM_VALUE_2 fbe_current_size += self.uint64b2.fbe_size if (fbe_current_size + self.uint64b3.fbe_size) <= fbe_struct_size: fbe_value.uint64b3 = self.uint64b3.get(EnumUInt64.ENUM_VALUE_3) else: fbe_value.uint64b3 = EnumUInt64.ENUM_VALUE_3 fbe_current_size += self.uint64b3.fbe_size if (fbe_current_size + self.uint64b4.fbe_size) <= fbe_struct_size: fbe_value.uint64b4 = self.uint64b4.get(EnumUInt64.ENUM_VALUE_4) else: fbe_value.uint64b4 = EnumUInt64.ENUM_VALUE_4 fbe_current_size += self.uint64b4.fbe_size if (fbe_current_size + self.uint64b5.fbe_size) <= fbe_struct_size: fbe_value.uint64b5 = self.uint64b5.get(EnumUInt64.ENUM_VALUE_5) else: fbe_value.uint64b5 = EnumUInt64.ENUM_VALUE_5 fbe_current_size += self.uint64b5.fbe_size # Set the struct value (begin phase) def set_begin(self): assert (self._buffer.offset + self.fbe_offset + self.fbe_size) <= self._buffer.size, "Model is broken!" if (self._buffer.offset + self.fbe_offset + self.fbe_size) > self._buffer.size: return 0 fbe_struct_size = self.fbe_body fbe_struct_offset = self._buffer.allocate(fbe_struct_size) - self._buffer.offset assert (fbe_struct_offset > 0) and ((self._buffer.offset + fbe_struct_offset + fbe_struct_size) <= self._buffer.size), "Model is broken!" if (fbe_struct_offset <= 0) or ((self._buffer.offset + fbe_struct_offset + fbe_struct_size) > self._buffer.size): return 0 self.write_uint32(self.fbe_offset, fbe_struct_offset) self.write_uint32(fbe_struct_offset, fbe_struct_size) self.write_uint32(fbe_struct_offset + 4, self.fbe_type) self._buffer.shift(fbe_struct_offset) return fbe_struct_offset # Set the struct value (end phase) def set_end(self, fbe_begin): self._buffer.unshift(fbe_begin) # Set the struct value def set(self, fbe_value): fbe_begin = self.set_begin() if fbe_begin == 0: return self.set_fields(fbe_value) self.set_end(fbe_begin) # Set the struct fields values def set_fields(self, fbe_value): self.byte0.set(fbe_value.byte0) self.byte1.set(fbe_value.byte1) self.byte2.set(fbe_value.byte2) self.byte3.set(fbe_value.byte3) self.byte4.set(fbe_value.byte4) self.byte5.set(fbe_value.byte5) self.char0.set(fbe_value.char0) self.char1.set(fbe_value.char1) self.char2.set(fbe_value.char2) self.char3.set(fbe_value.char3) self.char4.set(fbe_value.char4) self.char5.set(fbe_value.char5) self.wchar0.set(fbe_value.wchar0) self.wchar1.set(fbe_value.wchar1) self.wchar2.set(fbe_value.wchar2) self.wchar3.set(fbe_value.wchar3) self.wchar4.set(fbe_value.wchar4) self.wchar5.set(fbe_value.wchar5) self.int8b0.set(fbe_value.int8b0) self.int8b1.set(fbe_value.int8b1) self.int8b2.set(fbe_value.int8b2) self.int8b3.set(fbe_value.int8b3) self.int8b4.set(fbe_value.int8b4) self.int8b5.set(fbe_value.int8b5) self.uint8b0.set(fbe_value.uint8b0) self.uint8b1.set(fbe_value.uint8b1) self.uint8b2.set(fbe_value.uint8b2) self.uint8b3.set(fbe_value.uint8b3) self.uint8b4.set(fbe_value.uint8b4) self.uint8b5.set(fbe_value.uint8b5) self.int16b0.set(fbe_value.int16b0) self.int16b1.set(fbe_value.int16b1) self.int16b2.set(fbe_value.int16b2) self.int16b3.set(fbe_value.int16b3) self.int16b4.set(fbe_value.int16b4) self.int16b5.set(fbe_value.int16b5) self.uint16b0.set(fbe_value.uint16b0) self.uint16b1.set(fbe_value.uint16b1) self.uint16b2.set(fbe_value.uint16b2) self.uint16b3.set(fbe_value.uint16b3) self.uint16b4.set(fbe_value.uint16b4) self.uint16b5.set(fbe_value.uint16b5) self.int32b0.set(fbe_value.int32b0) self.int32b1.set(fbe_value.int32b1) self.int32b2.set(fbe_value.int32b2) self.int32b3.set(fbe_value.int32b3) self.int32b4.set(fbe_value.int32b4) self.int32b5.set(fbe_value.int32b5) self.uint32b0.set(fbe_value.uint32b0) self.uint32b1.set(fbe_value.uint32b1) self.uint32b2.set(fbe_value.uint32b2) self.uint32b3.set(fbe_value.uint32b3) self.uint32b4.set(fbe_value.uint32b4) self.uint32b5.set(fbe_value.uint32b5) self.int64b0.set(fbe_value.int64b0) self.int64b1.set(fbe_value.int64b1) self.int64b2.set(fbe_value.int64b2) self.int64b3.set(fbe_value.int64b3) self.int64b4.set(fbe_value.int64b4) self.int64b5.set(fbe_value.int64b5) self.uint64b0.set(fbe_value.uint64b0) self.uint64b1.set(fbe_value.uint64b1) self.uint64b2.set(fbe_value.uint64b2) self.uint64b3.set(fbe_value.uint64b3) self.uint64b4.set(fbe_value.uint64b4) self.uint64b5.set(fbe_value.uint64b5) # Fast Binary Encoding Enums model class EnumsModel(fbe.Model): __slots__ = "_model", def __init__(self, buffer=None): super().__init__(buffer) self._model = FieldModelEnums(self.buffer, 4) @property def model(self): return self._model # Get the model size @property def fbe_size(self): return self._model.fbe_size + self._model.fbe_extra # Get the model type @property def fbe_type(self): return self.TYPE TYPE = FieldModelEnums.TYPE # Check if the struct value is valid def verify(self): if (self.buffer.offset + self._model.fbe_offset - 4) > self.buffer.size: return False fbe_full_size = self.read_uint32(self._model.fbe_offset - 4) if fbe_full_size < self._model.fbe_size: return False return self._model.verify() # Create a new model (begin phase) def create_begin(self): fbe_begin = self.buffer.allocate(4 + self._model.fbe_size) return fbe_begin # Create a new model (end phase) def create_end(self, fbe_begin): fbe_end = self.buffer.size fbe_full_size = fbe_end - fbe_begin self.write_uint32(self._model.fbe_offset - 4, fbe_full_size) return fbe_full_size # Serialize the struct value def serialize(self, value): fbe_begin = self.create_begin() self._model.set(value) fbe_full_size = self.create_end(fbe_begin) return fbe_full_size # Deserialize the struct value def deserialize(self, value=None): if value is None: value = Enums() if (self.buffer.offset + self._model.fbe_offset - 4) > self.buffer.size: value = Enums() return value, 0 fbe_full_size = self.read_uint32(self._model.fbe_offset - 4) assert (fbe_full_size >= self._model.fbe_size), "Model is broken!" if fbe_full_size < self._model.fbe_size: value = Enums() return value, 0 self._model.get(value) return value, fbe_full_size # Move to the next struct value def next(self, prev): self._model.fbe_shift(prev) class FinalModelEnums(fbe.FinalModel): __slots__ = "_byte0", "_byte1", "_byte2", "_byte3", "_byte4", "_byte5", "_char0", "_char1", "_char2", "_char3", "_char4", "_char5", "_wchar0", "_wchar1", "_wchar2", "_wchar3", "_wchar4", "_wchar5", "_int8b0", "_int8b1", "_int8b2", "_int8b3", "_int8b4", "_int8b5", "_uint8b0", "_uint8b1", "_uint8b2", "_uint8b3", "_uint8b4", "_uint8b5", "_int16b0", "_int16b1", "_int16b2", "_int16b3", "_int16b4", "_int16b5", "_uint16b0", "_uint16b1", "_uint16b2", "_uint16b3", "_uint16b4", "_uint16b5", "_int32b0", "_int32b1", "_int32b2", "_int32b3", "_int32b4", "_int32b5", "_uint32b0", "_uint32b1", "_uint32b2", "_uint32b3", "_uint32b4", "_uint32b5", "_int64b0", "_int64b1", "_int64b2", "_int64b3", "_int64b4", "_int64b5", "_uint64b0", "_uint64b1", "_uint64b2", "_uint64b3", "_uint64b4", "_uint64b5", def __init__(self, buffer, offset): super().__init__(buffer, offset) self._byte0 = FinalModelEnumByte(buffer, 0) self._byte1 = FinalModelEnumByte(buffer, 0) self._byte2 = FinalModelEnumByte(buffer, 0) self._byte3 = FinalModelEnumByte(buffer, 0) self._byte4 = FinalModelEnumByte(buffer, 0) self._byte5 = FinalModelEnumByte(buffer, 0) self._char0 = FinalModelEnumChar(buffer, 0) self._char1 = FinalModelEnumChar(buffer, 0) self._char2 = FinalModelEnumChar(buffer, 0) self._char3 = FinalModelEnumChar(buffer, 0) self._char4 = FinalModelEnumChar(buffer, 0) self._char5 = FinalModelEnumChar(buffer, 0) self._wchar0 = FinalModelEnumWChar(buffer, 0) self._wchar1 = FinalModelEnumWChar(buffer, 0) self._wchar2 = FinalModelEnumWChar(buffer, 0) self._wchar3 = FinalModelEnumWChar(buffer, 0) self._wchar4 = FinalModelEnumWChar(buffer, 0) self._wchar5 = FinalModelEnumWChar(buffer, 0) self._int8b0 = FinalModelEnumInt8(buffer, 0) self._int8b1 = FinalModelEnumInt8(buffer, 0) self._int8b2 = FinalModelEnumInt8(buffer, 0) self._int8b3 = FinalModelEnumInt8(buffer, 0) self._int8b4 = FinalModelEnumInt8(buffer, 0) self._int8b5 = FinalModelEnumInt8(buffer, 0) self._uint8b0 = FinalModelEnumUInt8(buffer, 0) self._uint8b1 = FinalModelEnumUInt8(buffer, 0) self._uint8b2 = FinalModelEnumUInt8(buffer, 0) self._uint8b3 = FinalModelEnumUInt8(buffer, 0) self._uint8b4 = FinalModelEnumUInt8(buffer, 0) self._uint8b5 = FinalModelEnumUInt8(buffer, 0) self._int16b0 = FinalModelEnumInt16(buffer, 0) self._int16b1 = FinalModelEnumInt16(buffer, 0) self._int16b2 = FinalModelEnumInt16(buffer, 0) self._int16b3 = FinalModelEnumInt16(buffer, 0) self._int16b4 = FinalModelEnumInt16(buffer, 0) self._int16b5 = FinalModelEnumInt16(buffer, 0) self._uint16b0 = FinalModelEnumUInt16(buffer, 0) self._uint16b1 = FinalModelEnumUInt16(buffer, 0) self._uint16b2 = FinalModelEnumUInt16(buffer, 0) self._uint16b3 = FinalModelEnumUInt16(buffer, 0) self._uint16b4 = FinalModelEnumUInt16(buffer, 0) self._uint16b5 = FinalModelEnumUInt16(buffer, 0) self._int32b0 = FinalModelEnumInt32(buffer, 0) self._int32b1 = FinalModelEnumInt32(buffer, 0) self._int32b2 = FinalModelEnumInt32(buffer, 0) self._int32b3 = FinalModelEnumInt32(buffer, 0) self._int32b4 = FinalModelEnumInt32(buffer, 0) self._int32b5 = FinalModelEnumInt32(buffer, 0) self._uint32b0 = FinalModelEnumUInt32(buffer, 0) self._uint32b1 = FinalModelEnumUInt32(buffer, 0) self._uint32b2 = FinalModelEnumUInt32(buffer, 0) self._uint32b3 = FinalModelEnumUInt32(buffer, 0) self._uint32b4 = FinalModelEnumUInt32(buffer, 0) self._uint32b5 = FinalModelEnumUInt32(buffer, 0) self._int64b0 = FinalModelEnumInt64(buffer, 0) self._int64b1 = FinalModelEnumInt64(buffer, 0) self._int64b2 = FinalModelEnumInt64(buffer, 0) self._int64b3 = FinalModelEnumInt64(buffer, 0) self._int64b4 = FinalModelEnumInt64(buffer, 0) self._int64b5 = FinalModelEnumInt64(buffer, 0) self._uint64b0 = FinalModelEnumUInt64(buffer, 0) self._uint64b1 = FinalModelEnumUInt64(buffer, 0) self._uint64b2 = FinalModelEnumUInt64(buffer, 0) self._uint64b3 = FinalModelEnumUInt64(buffer, 0) self._uint64b4 = FinalModelEnumUInt64(buffer, 0) self._uint64b5 = FinalModelEnumUInt64(buffer, 0) @property def byte0(self): return self._byte0 @property def byte1(self): return self._byte1 @property def byte2(self): return self._byte2 @property def byte3(self): return self._byte3 @property def byte4(self): return self._byte4 @property def byte5(self): return self._byte5 @property def char0(self): return self._char0 @property def char1(self): return self._char1 @property def char2(self): return self._char2 @property def char3(self): return self._char3 @property def char4(self): return self._char4 @property def char5(self): return self._char5 @property def wchar0(self): return self._wchar0 @property def wchar1(self): return self._wchar1 @property def wchar2(self): return self._wchar2 @property def wchar3(self): return self._wchar3 @property def wchar4(self): return self._wchar4 @property def wchar5(self): return self._wchar5 @property def int8b0(self): return self._int8b0 @property def int8b1(self): return self._int8b1 @property def int8b2(self): return self._int8b2 @property def int8b3(self): return self._int8b3 @property def int8b4(self): return self._int8b4 @property def int8b5(self): return self._int8b5 @property def uint8b0(self): return self._uint8b0 @property def uint8b1(self): return self._uint8b1 @property def uint8b2(self): return self._uint8b2 @property def uint8b3(self): return self._uint8b3 @property def uint8b4(self): return self._uint8b4 @property def uint8b5(self): return self._uint8b5 @property def int16b0(self): return self._int16b0 @property def int16b1(self): return self._int16b1 @property def int16b2(self): return self._int16b2 @property def int16b3(self): return self._int16b3 @property def int16b4(self): return self._int16b4 @property def int16b5(self): return self._int16b5 @property def uint16b0(self): return self._uint16b0 @property def uint16b1(self): return self._uint16b1 @property def uint16b2(self): return self._uint16b2 @property def uint16b3(self): return self._uint16b3 @property def uint16b4(self): return self._uint16b4 @property def uint16b5(self): return self._uint16b5 @property def int32b0(self): return self._int32b0 @property def int32b1(self): return self._int32b1 @property def int32b2(self): return self._int32b2 @property def int32b3(self): return self._int32b3 @property def int32b4(self): return self._int32b4 @property def int32b5(self): return self._int32b5 @property def uint32b0(self): return self._uint32b0 @property def uint32b1(self): return self._uint32b1 @property def uint32b2(self): return self._uint32b2 @property def uint32b3(self): return self._uint32b3 @property def uint32b4(self): return self._uint32b4 @property def uint32b5(self): return self._uint32b5 @property def int64b0(self): return self._int64b0 @property def int64b1(self): return self._int64b1 @property def int64b2(self): return self._int64b2 @property def int64b3(self): return self._int64b3 @property def int64b4(self): return self._int64b4 @property def int64b5(self): return self._int64b5 @property def uint64b0(self): return self._uint64b0 @property def uint64b1(self): return self._uint64b1 @property def uint64b2(self): return self._uint64b2 @property def uint64b3(self): return self._uint64b3 @property def uint64b4(self): return self._uint64b4 @property def uint64b5(self): return self._uint64b5 # Get the allocation size def fbe_allocation_size(self, fbe_value): fbe_result = 0 \ + self.byte0.fbe_allocation_size(fbe_value.byte0) \ + self.byte1.fbe_allocation_size(fbe_value.byte1) \ + self.byte2.fbe_allocation_size(fbe_value.byte2) \ + self.byte3.fbe_allocation_size(fbe_value.byte3) \ + self.byte4.fbe_allocation_size(fbe_value.byte4) \ + self.byte5.fbe_allocation_size(fbe_value.byte5) \ + self.char0.fbe_allocation_size(fbe_value.char0) \ + self.char1.fbe_allocation_size(fbe_value.char1) \ + self.char2.fbe_allocation_size(fbe_value.char2) \ + self.char3.fbe_allocation_size(fbe_value.char3) \ + self.char4.fbe_allocation_size(fbe_value.char4) \ + self.char5.fbe_allocation_size(fbe_value.char5) \ + self.wchar0.fbe_allocation_size(fbe_value.wchar0) \ + self.wchar1.fbe_allocation_size(fbe_value.wchar1) \ + self.wchar2.fbe_allocation_size(fbe_value.wchar2) \ + self.wchar3.fbe_allocation_size(fbe_value.wchar3) \ + self.wchar4.fbe_allocation_size(fbe_value.wchar4) \ + self.wchar5.fbe_allocation_size(fbe_value.wchar5) \ + self.int8b0.fbe_allocation_size(fbe_value.int8b0) \ + self.int8b1.fbe_allocation_size(fbe_value.int8b1) \ + self.int8b2.fbe_allocation_size(fbe_value.int8b2) \ + self.int8b3.fbe_allocation_size(fbe_value.int8b3) \ + self.int8b4.fbe_allocation_size(fbe_value.int8b4) \ + self.int8b5.fbe_allocation_size(fbe_value.int8b5) \ + self.uint8b0.fbe_allocation_size(fbe_value.uint8b0) \ + self.uint8b1.fbe_allocation_size(fbe_value.uint8b1) \ + self.uint8b2.fbe_allocation_size(fbe_value.uint8b2) \ + self.uint8b3.fbe_allocation_size(fbe_value.uint8b3) \ + self.uint8b4.fbe_allocation_size(fbe_value.uint8b4) \ + self.uint8b5.fbe_allocation_size(fbe_value.uint8b5) \ + self.int16b0.fbe_allocation_size(fbe_value.int16b0) \ + self.int16b1.fbe_allocation_size(fbe_value.int16b1) \ + self.int16b2.fbe_allocation_size(fbe_value.int16b2) \ + self.int16b3.fbe_allocation_size(fbe_value.int16b3) \ + self.int16b4.fbe_allocation_size(fbe_value.int16b4) \ + self.int16b5.fbe_allocation_size(fbe_value.int16b5) \ + self.uint16b0.fbe_allocation_size(fbe_value.uint16b0) \ + self.uint16b1.fbe_allocation_size(fbe_value.uint16b1) \ + self.uint16b2.fbe_allocation_size(fbe_value.uint16b2) \ + self.uint16b3.fbe_allocation_size(fbe_value.uint16b3) \ + self.uint16b4.fbe_allocation_size(fbe_value.uint16b4) \ + self.uint16b5.fbe_allocation_size(fbe_value.uint16b5) \ + self.int32b0.fbe_allocation_size(fbe_value.int32b0) \ + self.int32b1.fbe_allocation_size(fbe_value.int32b1) \ + self.int32b2.fbe_allocation_size(fbe_value.int32b2) \ + self.int32b3.fbe_allocation_size(fbe_value.int32b3) \ + self.int32b4.fbe_allocation_size(fbe_value.int32b4) \ + self.int32b5.fbe_allocation_size(fbe_value.int32b5) \ + self.uint32b0.fbe_allocation_size(fbe_value.uint32b0) \ + self.uint32b1.fbe_allocation_size(fbe_value.uint32b1) \ + self.uint32b2.fbe_allocation_size(fbe_value.uint32b2) \ + self.uint32b3.fbe_allocation_size(fbe_value.uint32b3) \ + self.uint32b4.fbe_allocation_size(fbe_value.uint32b4) \ + self.uint32b5.fbe_allocation_size(fbe_value.uint32b5) \ + self.int64b0.fbe_allocation_size(fbe_value.int64b0) \ + self.int64b1.fbe_allocation_size(fbe_value.int64b1) \ + self.int64b2.fbe_allocation_size(fbe_value.int64b2) \ + self.int64b3.fbe_allocation_size(fbe_value.int64b3) \ + self.int64b4.fbe_allocation_size(fbe_value.int64b4) \ + self.int64b5.fbe_allocation_size(fbe_value.int64b5) \ + self.uint64b0.fbe_allocation_size(fbe_value.uint64b0) \ + self.uint64b1.fbe_allocation_size(fbe_value.uint64b1) \ + self.uint64b2.fbe_allocation_size(fbe_value.uint64b2) \ + self.uint64b3.fbe_allocation_size(fbe_value.uint64b3) \ + self.uint64b4.fbe_allocation_size(fbe_value.uint64b4) \ + self.uint64b5.fbe_allocation_size(fbe_value.uint64b5) \ return fbe_result # Get the final type @property def fbe_type(self): return self.TYPE TYPE = 1 # Check if the struct value is valid def verify(self): self._buffer.shift(self.fbe_offset) fbe_result = self.verify_fields() self._buffer.unshift(self.fbe_offset) return fbe_result # Check if the struct fields are valid def verify_fields(self): fbe_current_offset = 0 self.byte0.fbe_offset = fbe_current_offset fbe_field_size = self.byte0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.byte1.fbe_offset = fbe_current_offset fbe_field_size = self.byte1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.byte2.fbe_offset = fbe_current_offset fbe_field_size = self.byte2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.byte3.fbe_offset = fbe_current_offset fbe_field_size = self.byte3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.byte4.fbe_offset = fbe_current_offset fbe_field_size = self.byte4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.byte5.fbe_offset = fbe_current_offset fbe_field_size = self.byte5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.char0.fbe_offset = fbe_current_offset fbe_field_size = self.char0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.char1.fbe_offset = fbe_current_offset fbe_field_size = self.char1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.char2.fbe_offset = fbe_current_offset fbe_field_size = self.char2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.char3.fbe_offset = fbe_current_offset fbe_field_size = self.char3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.char4.fbe_offset = fbe_current_offset fbe_field_size = self.char4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.char5.fbe_offset = fbe_current_offset fbe_field_size = self.char5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.wchar0.fbe_offset = fbe_current_offset fbe_field_size = self.wchar0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.wchar1.fbe_offset = fbe_current_offset fbe_field_size = self.wchar1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.wchar2.fbe_offset = fbe_current_offset fbe_field_size = self.wchar2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.wchar3.fbe_offset = fbe_current_offset fbe_field_size = self.wchar3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.wchar4.fbe_offset = fbe_current_offset fbe_field_size = self.wchar4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.wchar5.fbe_offset = fbe_current_offset fbe_field_size = self.wchar5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int8b0.fbe_offset = fbe_current_offset fbe_field_size = self.int8b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int8b1.fbe_offset = fbe_current_offset fbe_field_size = self.int8b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int8b2.fbe_offset = fbe_current_offset fbe_field_size = self.int8b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int8b3.fbe_offset = fbe_current_offset fbe_field_size = self.int8b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int8b4.fbe_offset = fbe_current_offset fbe_field_size = self.int8b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int8b5.fbe_offset = fbe_current_offset fbe_field_size = self.int8b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint8b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint8b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint8b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint8b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint8b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint8b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int16b0.fbe_offset = fbe_current_offset fbe_field_size = self.int16b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int16b1.fbe_offset = fbe_current_offset fbe_field_size = self.int16b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int16b2.fbe_offset = fbe_current_offset fbe_field_size = self.int16b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int16b3.fbe_offset = fbe_current_offset fbe_field_size = self.int16b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int16b4.fbe_offset = fbe_current_offset fbe_field_size = self.int16b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int16b5.fbe_offset = fbe_current_offset fbe_field_size = self.int16b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint16b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint16b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint16b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint16b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint16b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint16b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int32b0.fbe_offset = fbe_current_offset fbe_field_size = self.int32b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int32b1.fbe_offset = fbe_current_offset fbe_field_size = self.int32b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int32b2.fbe_offset = fbe_current_offset fbe_field_size = self.int32b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int32b3.fbe_offset = fbe_current_offset fbe_field_size = self.int32b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int32b4.fbe_offset = fbe_current_offset fbe_field_size = self.int32b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int32b5.fbe_offset = fbe_current_offset fbe_field_size = self.int32b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint32b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint32b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint32b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint32b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint32b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint32b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int64b0.fbe_offset = fbe_current_offset fbe_field_size = self.int64b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int64b1.fbe_offset = fbe_current_offset fbe_field_size = self.int64b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int64b2.fbe_offset = fbe_current_offset fbe_field_size = self.int64b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int64b3.fbe_offset = fbe_current_offset fbe_field_size = self.int64b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int64b4.fbe_offset = fbe_current_offset fbe_field_size = self.int64b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.int64b5.fbe_offset = fbe_current_offset fbe_field_size = self.int64b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint64b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b0.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint64b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b1.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint64b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b2.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint64b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b3.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint64b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b4.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size self.uint64b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b5.verify() if fbe_field_size == sys.maxsize: return sys.maxsize fbe_current_offset += fbe_field_size return fbe_current_offset # Get the struct value def get(self, fbe_value=None): if fbe_value is None: fbe_value = Enums() self._buffer.shift(self.fbe_offset) fbe_size = self.get_fields(fbe_value) self._buffer.unshift(self.fbe_offset) return fbe_value, fbe_size # Get the struct fields values def get_fields(self, fbe_value): fbe_current_offset = 0 fbe_current_size = 0 self.byte0.fbe_offset = fbe_current_offset fbe_result = self.byte0.get() fbe_value.byte0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.byte1.fbe_offset = fbe_current_offset fbe_result = self.byte1.get() fbe_value.byte1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.byte2.fbe_offset = fbe_current_offset fbe_result = self.byte2.get() fbe_value.byte2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.byte3.fbe_offset = fbe_current_offset fbe_result = self.byte3.get() fbe_value.byte3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.byte4.fbe_offset = fbe_current_offset fbe_result = self.byte4.get() fbe_value.byte4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.byte5.fbe_offset = fbe_current_offset fbe_result = self.byte5.get() fbe_value.byte5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.char0.fbe_offset = fbe_current_offset fbe_result = self.char0.get() fbe_value.char0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.char1.fbe_offset = fbe_current_offset fbe_result = self.char1.get() fbe_value.char1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.char2.fbe_offset = fbe_current_offset fbe_result = self.char2.get() fbe_value.char2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.char3.fbe_offset = fbe_current_offset fbe_result = self.char3.get() fbe_value.char3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.char4.fbe_offset = fbe_current_offset fbe_result = self.char4.get() fbe_value.char4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.char5.fbe_offset = fbe_current_offset fbe_result = self.char5.get() fbe_value.char5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.wchar0.fbe_offset = fbe_current_offset fbe_result = self.wchar0.get() fbe_value.wchar0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.wchar1.fbe_offset = fbe_current_offset fbe_result = self.wchar1.get() fbe_value.wchar1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.wchar2.fbe_offset = fbe_current_offset fbe_result = self.wchar2.get() fbe_value.wchar2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.wchar3.fbe_offset = fbe_current_offset fbe_result = self.wchar3.get() fbe_value.wchar3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.wchar4.fbe_offset = fbe_current_offset fbe_result = self.wchar4.get() fbe_value.wchar4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.wchar5.fbe_offset = fbe_current_offset fbe_result = self.wchar5.get() fbe_value.wchar5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int8b0.fbe_offset = fbe_current_offset fbe_result = self.int8b0.get() fbe_value.int8b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int8b1.fbe_offset = fbe_current_offset fbe_result = self.int8b1.get() fbe_value.int8b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int8b2.fbe_offset = fbe_current_offset fbe_result = self.int8b2.get() fbe_value.int8b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int8b3.fbe_offset = fbe_current_offset fbe_result = self.int8b3.get() fbe_value.int8b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int8b4.fbe_offset = fbe_current_offset fbe_result = self.int8b4.get() fbe_value.int8b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int8b5.fbe_offset = fbe_current_offset fbe_result = self.int8b5.get() fbe_value.int8b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint8b0.fbe_offset = fbe_current_offset fbe_result = self.uint8b0.get() fbe_value.uint8b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint8b1.fbe_offset = fbe_current_offset fbe_result = self.uint8b1.get() fbe_value.uint8b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint8b2.fbe_offset = fbe_current_offset fbe_result = self.uint8b2.get() fbe_value.uint8b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint8b3.fbe_offset = fbe_current_offset fbe_result = self.uint8b3.get() fbe_value.uint8b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint8b4.fbe_offset = fbe_current_offset fbe_result = self.uint8b4.get() fbe_value.uint8b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint8b5.fbe_offset = fbe_current_offset fbe_result = self.uint8b5.get() fbe_value.uint8b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int16b0.fbe_offset = fbe_current_offset fbe_result = self.int16b0.get() fbe_value.int16b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int16b1.fbe_offset = fbe_current_offset fbe_result = self.int16b1.get() fbe_value.int16b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int16b2.fbe_offset = fbe_current_offset fbe_result = self.int16b2.get() fbe_value.int16b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int16b3.fbe_offset = fbe_current_offset fbe_result = self.int16b3.get() fbe_value.int16b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int16b4.fbe_offset = fbe_current_offset fbe_result = self.int16b4.get() fbe_value.int16b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int16b5.fbe_offset = fbe_current_offset fbe_result = self.int16b5.get() fbe_value.int16b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint16b0.fbe_offset = fbe_current_offset fbe_result = self.uint16b0.get() fbe_value.uint16b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint16b1.fbe_offset = fbe_current_offset fbe_result = self.uint16b1.get() fbe_value.uint16b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint16b2.fbe_offset = fbe_current_offset fbe_result = self.uint16b2.get() fbe_value.uint16b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint16b3.fbe_offset = fbe_current_offset fbe_result = self.uint16b3.get() fbe_value.uint16b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint16b4.fbe_offset = fbe_current_offset fbe_result = self.uint16b4.get() fbe_value.uint16b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint16b5.fbe_offset = fbe_current_offset fbe_result = self.uint16b5.get() fbe_value.uint16b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int32b0.fbe_offset = fbe_current_offset fbe_result = self.int32b0.get() fbe_value.int32b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int32b1.fbe_offset = fbe_current_offset fbe_result = self.int32b1.get() fbe_value.int32b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int32b2.fbe_offset = fbe_current_offset fbe_result = self.int32b2.get() fbe_value.int32b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int32b3.fbe_offset = fbe_current_offset fbe_result = self.int32b3.get() fbe_value.int32b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int32b4.fbe_offset = fbe_current_offset fbe_result = self.int32b4.get() fbe_value.int32b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int32b5.fbe_offset = fbe_current_offset fbe_result = self.int32b5.get() fbe_value.int32b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint32b0.fbe_offset = fbe_current_offset fbe_result = self.uint32b0.get() fbe_value.uint32b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint32b1.fbe_offset = fbe_current_offset fbe_result = self.uint32b1.get() fbe_value.uint32b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint32b2.fbe_offset = fbe_current_offset fbe_result = self.uint32b2.get() fbe_value.uint32b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint32b3.fbe_offset = fbe_current_offset fbe_result = self.uint32b3.get() fbe_value.uint32b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint32b4.fbe_offset = fbe_current_offset fbe_result = self.uint32b4.get() fbe_value.uint32b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint32b5.fbe_offset = fbe_current_offset fbe_result = self.uint32b5.get() fbe_value.uint32b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int64b0.fbe_offset = fbe_current_offset fbe_result = self.int64b0.get() fbe_value.int64b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int64b1.fbe_offset = fbe_current_offset fbe_result = self.int64b1.get() fbe_value.int64b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int64b2.fbe_offset = fbe_current_offset fbe_result = self.int64b2.get() fbe_value.int64b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int64b3.fbe_offset = fbe_current_offset fbe_result = self.int64b3.get() fbe_value.int64b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int64b4.fbe_offset = fbe_current_offset fbe_result = self.int64b4.get() fbe_value.int64b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.int64b5.fbe_offset = fbe_current_offset fbe_result = self.int64b5.get() fbe_value.int64b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint64b0.fbe_offset = fbe_current_offset fbe_result = self.uint64b0.get() fbe_value.uint64b0 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint64b1.fbe_offset = fbe_current_offset fbe_result = self.uint64b1.get() fbe_value.uint64b1 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint64b2.fbe_offset = fbe_current_offset fbe_result = self.uint64b2.get() fbe_value.uint64b2 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint64b3.fbe_offset = fbe_current_offset fbe_result = self.uint64b3.get() fbe_value.uint64b3 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint64b4.fbe_offset = fbe_current_offset fbe_result = self.uint64b4.get() fbe_value.uint64b4 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] self.uint64b5.fbe_offset = fbe_current_offset fbe_result = self.uint64b5.get() fbe_value.uint64b5 = fbe_result[0] fbe_current_offset += fbe_result[1] fbe_current_size += fbe_result[1] return fbe_current_size # Set the struct value def set(self, fbe_value): self._buffer.shift(self.fbe_offset) fbe_size = self.set_fields(fbe_value) self._buffer.unshift(self.fbe_offset) return fbe_size # Set the struct fields values def set_fields(self, fbe_value): fbe_current_offset = 0 fbe_current_size = 0 self.byte0.fbe_offset = fbe_current_offset fbe_field_size = self.byte0.set(fbe_value.byte0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.byte1.fbe_offset = fbe_current_offset fbe_field_size = self.byte1.set(fbe_value.byte1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.byte2.fbe_offset = fbe_current_offset fbe_field_size = self.byte2.set(fbe_value.byte2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.byte3.fbe_offset = fbe_current_offset fbe_field_size = self.byte3.set(fbe_value.byte3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.byte4.fbe_offset = fbe_current_offset fbe_field_size = self.byte4.set(fbe_value.byte4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.byte5.fbe_offset = fbe_current_offset fbe_field_size = self.byte5.set(fbe_value.byte5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.char0.fbe_offset = fbe_current_offset fbe_field_size = self.char0.set(fbe_value.char0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.char1.fbe_offset = fbe_current_offset fbe_field_size = self.char1.set(fbe_value.char1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.char2.fbe_offset = fbe_current_offset fbe_field_size = self.char2.set(fbe_value.char2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.char3.fbe_offset = fbe_current_offset fbe_field_size = self.char3.set(fbe_value.char3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.char4.fbe_offset = fbe_current_offset fbe_field_size = self.char4.set(fbe_value.char4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.char5.fbe_offset = fbe_current_offset fbe_field_size = self.char5.set(fbe_value.char5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.wchar0.fbe_offset = fbe_current_offset fbe_field_size = self.wchar0.set(fbe_value.wchar0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.wchar1.fbe_offset = fbe_current_offset fbe_field_size = self.wchar1.set(fbe_value.wchar1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.wchar2.fbe_offset = fbe_current_offset fbe_field_size = self.wchar2.set(fbe_value.wchar2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.wchar3.fbe_offset = fbe_current_offset fbe_field_size = self.wchar3.set(fbe_value.wchar3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.wchar4.fbe_offset = fbe_current_offset fbe_field_size = self.wchar4.set(fbe_value.wchar4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.wchar5.fbe_offset = fbe_current_offset fbe_field_size = self.wchar5.set(fbe_value.wchar5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int8b0.fbe_offset = fbe_current_offset fbe_field_size = self.int8b0.set(fbe_value.int8b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int8b1.fbe_offset = fbe_current_offset fbe_field_size = self.int8b1.set(fbe_value.int8b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int8b2.fbe_offset = fbe_current_offset fbe_field_size = self.int8b2.set(fbe_value.int8b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int8b3.fbe_offset = fbe_current_offset fbe_field_size = self.int8b3.set(fbe_value.int8b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int8b4.fbe_offset = fbe_current_offset fbe_field_size = self.int8b4.set(fbe_value.int8b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int8b5.fbe_offset = fbe_current_offset fbe_field_size = self.int8b5.set(fbe_value.int8b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint8b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b0.set(fbe_value.uint8b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint8b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b1.set(fbe_value.uint8b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint8b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b2.set(fbe_value.uint8b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint8b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b3.set(fbe_value.uint8b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint8b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b4.set(fbe_value.uint8b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint8b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint8b5.set(fbe_value.uint8b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int16b0.fbe_offset = fbe_current_offset fbe_field_size = self.int16b0.set(fbe_value.int16b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int16b1.fbe_offset = fbe_current_offset fbe_field_size = self.int16b1.set(fbe_value.int16b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int16b2.fbe_offset = fbe_current_offset fbe_field_size = self.int16b2.set(fbe_value.int16b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int16b3.fbe_offset = fbe_current_offset fbe_field_size = self.int16b3.set(fbe_value.int16b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int16b4.fbe_offset = fbe_current_offset fbe_field_size = self.int16b4.set(fbe_value.int16b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int16b5.fbe_offset = fbe_current_offset fbe_field_size = self.int16b5.set(fbe_value.int16b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint16b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b0.set(fbe_value.uint16b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint16b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b1.set(fbe_value.uint16b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint16b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b2.set(fbe_value.uint16b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint16b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b3.set(fbe_value.uint16b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint16b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b4.set(fbe_value.uint16b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint16b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint16b5.set(fbe_value.uint16b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int32b0.fbe_offset = fbe_current_offset fbe_field_size = self.int32b0.set(fbe_value.int32b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int32b1.fbe_offset = fbe_current_offset fbe_field_size = self.int32b1.set(fbe_value.int32b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int32b2.fbe_offset = fbe_current_offset fbe_field_size = self.int32b2.set(fbe_value.int32b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int32b3.fbe_offset = fbe_current_offset fbe_field_size = self.int32b3.set(fbe_value.int32b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int32b4.fbe_offset = fbe_current_offset fbe_field_size = self.int32b4.set(fbe_value.int32b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int32b5.fbe_offset = fbe_current_offset fbe_field_size = self.int32b5.set(fbe_value.int32b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint32b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b0.set(fbe_value.uint32b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint32b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b1.set(fbe_value.uint32b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint32b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b2.set(fbe_value.uint32b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint32b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b3.set(fbe_value.uint32b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint32b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b4.set(fbe_value.uint32b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint32b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint32b5.set(fbe_value.uint32b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int64b0.fbe_offset = fbe_current_offset fbe_field_size = self.int64b0.set(fbe_value.int64b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int64b1.fbe_offset = fbe_current_offset fbe_field_size = self.int64b1.set(fbe_value.int64b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int64b2.fbe_offset = fbe_current_offset fbe_field_size = self.int64b2.set(fbe_value.int64b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int64b3.fbe_offset = fbe_current_offset fbe_field_size = self.int64b3.set(fbe_value.int64b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int64b4.fbe_offset = fbe_current_offset fbe_field_size = self.int64b4.set(fbe_value.int64b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.int64b5.fbe_offset = fbe_current_offset fbe_field_size = self.int64b5.set(fbe_value.int64b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint64b0.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b0.set(fbe_value.uint64b0) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint64b1.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b1.set(fbe_value.uint64b1) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint64b2.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b2.set(fbe_value.uint64b2) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint64b3.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b3.set(fbe_value.uint64b3) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint64b4.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b4.set(fbe_value.uint64b4) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size self.uint64b5.fbe_offset = fbe_current_offset fbe_field_size = self.uint64b5.set(fbe_value.uint64b5) fbe_current_offset += fbe_field_size fbe_current_size += fbe_field_size return fbe_current_size # Fast Binary Encoding Enums final model class EnumsFinalModel(fbe.Model): __slots__ = "_model", def __init__(self, buffer=None): super().__init__(buffer) self._model = FinalModelEnums(self.buffer, 8) # Get the model type @property def fbe_type(self): return self.TYPE TYPE = FinalModelEnums.TYPE # Check if the struct value is valid def verify(self): if (self.buffer.offset + self._model.fbe_offset) > self.buffer.size: return False fbe_struct_size = self.read_uint32(self._model.fbe_offset - 8) fbe_struct_type = self.read_uint32(self._model.fbe_offset - 4) if (fbe_struct_size <= 0) or (fbe_struct_type != self.fbe_type): return False return (8 + self._model.verify()) == fbe_struct_size # Serialize the struct value def serialize(self, value): fbe_initial_size = self.buffer.size fbe_struct_type = self.fbe_type fbe_struct_size = 8 + self._model.fbe_allocation_size(value) fbe_struct_offset = self.buffer.allocate(fbe_struct_size) - self.buffer.offset assert ((self.buffer.offset + fbe_struct_offset + fbe_struct_size) <= self.buffer.size), "Model is broken!" if (self.buffer.offset + fbe_struct_offset + fbe_struct_size) > self.buffer.size: return 0 fbe_struct_size = 8 + self._model.set(value) self.buffer.resize(fbe_initial_size + fbe_struct_size) self.write_uint32(self._model.fbe_offset - 8, fbe_struct_size) self.write_uint32(self._model.fbe_offset - 4, fbe_struct_type) return fbe_struct_size # Deserialize the struct value def deserialize(self, value=None): if value is None: value = Enums() assert ((self.buffer.offset + self._model.fbe_offset) <= self.buffer.size), "Model is broken!" if (self.buffer.offset + self._model.fbe_offset) > self.buffer.size: return Enums(), 0 fbe_struct_size = self.read_uint32(self._model.fbe_offset - 8) fbe_struct_type = self.read_uint32(self._model.fbe_offset - 4) assert ((fbe_struct_size > 0) and (fbe_struct_type == self.fbe_type)), "Model is broken!" if (fbe_struct_size <= 0) or (fbe_struct_type != self.fbe_type): return Enums(), 8 fbe_result = self._model.get(value) return fbe_result[0], (8 + fbe_result[1]) # Move to the next struct value def next(self, prev): self._model.fbe_shift(prev) # Fast Binary Encoding enums protocol version class ProtocolVersion(object): # Protocol major version Major = 1 # Protocol minor version Minor = 0 # Fast Binary Encoding enums sender class Sender(fbe.Sender): def __init__(self, buffer=None): super().__init__(buffer, False) # Sender models accessors # Send methods def send(self, value): return 0 # Send message handler def on_send(self, buffer, offset, size): raise NotImplementedError("enums.Sender.on_send() not implemented!") # Fast Binary Encoding enums receiver class Receiver(fbe.Receiver): def __init__(self, buffer=None): super().__init__(buffer, False) # Receive handlers def on_receive(self, type, buffer, offset, size): return False # Fast Binary Encoding enums proxy class Proxy(fbe.Receiver): def __init__(self, buffer=None): super().__init__(buffer, False) # Receive handlers def on_receive(self, type, buffer, offset, size): return False # Fast Binary Encoding enums final sender class FinalSender(fbe.Sender): def __init__(self, buffer=None): super().__init__(buffer, True) # Sender models accessors # Send methods def send(self, value): return 0 # Send message handler def on_send(self, buffer, offset, size): raise NotImplementedError("enums.Sender.on_send() not implemented!") # Fast Binary Encoding enums final receiver class FinalReceiver(fbe.Receiver): def __init__(self, buffer=None): super().__init__(buffer, True) # Receive handlers def on_receive(self, type, buffer, offset, size): return False
[ "chronoxor@gmail.com" ]
chronoxor@gmail.com
269e62c46fbf46b0860106a026daa1e57e7d2698
d0c8170d1189cb7b6914b7d37d672531f0992f66
/week 1/Hackerrank/mutations.py
c4801b73718913dceb3d0bd5369cb1e362db4450
[]
no_license
shynaraaya/BFDjango
3c459e45a8c253144783416e06f7fdd43e44ceef
dd26cc6f21619c260fda05d46f22ff69bce09f82
refs/heads/master
2021-09-25T15:33:29.148280
2020-04-20T02:26:02
2020-04-20T02:26:02
234,970,186
0
0
null
2021-09-22T18:31:24
2020-01-19T21:23:50
Python
UTF-8
Python
false
false
259
py
def mutate_string(string, position, character): res = string[:position] + character + string[position+1:] return res if __name__ == '__main__': s = raw_input() i, c = raw_input().split() s_new = mutate_string(s, int(i), c) print s_new
[ "ayanbekshynar@gmail.com" ]
ayanbekshynar@gmail.com
266c418c43ab368672a7149e70538c0e807b5f91
8c6fa70bae915c70268c1180281b2b6d78399ce4
/venv/Scripts/easy_install-3.6-script.py
c653fcfbb7ae0fe3c591da67ededb234868bfb59
[]
no_license
cha-n/PG
6aad26fe32521e4713c0b0828b1365da7dcd1613
681051fff24f37302c2bba2f4614dc07386b3f89
refs/heads/master
2022-11-18T14:34:58.439384
2020-07-03T07:30:41
2020-07-03T07:30:41
276,623,082
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
#!C:\Users\JCY\PycharmProjects\PG\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install-3.6' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install-3.6')() )
[ "chan01115@naver.com" ]
chan01115@naver.com
a6269498158572202304da939470fc4fdd2e3b1f
060ce17de7b5cdbd5f7064d1fceb4ded17a23649
/fn_github/tests/test_releases.py
afd754d1f6b234e0108ff323b9fb987cfd825a66
[ "MIT" ]
permissive
ibmresilient/resilient-community-apps
74bbd770062a22801cef585d4415c29cbb4d34e2
6878c78b94eeca407998a41ce8db2cc00f2b6758
refs/heads/main
2023-06-26T20:47:15.059297
2023-06-23T16:33:58
2023-06-23T16:33:58
101,410,006
81
107
MIT
2023-03-29T20:40:31
2017-08-25T14:07:33
Python
UTF-8
Python
false
false
4,464
py
# -*- coding: utf-8 -*- """Tests using pytest_resilient_circuits""" import pytest from .common_config import github_config, TS from resilient_circuits.util import get_config_data, get_function_definition from resilient_circuits import SubmitTestFunction, FunctionResult PACKAGE_NAME = "fn_github" FUNCTION_NAME = "github_create_release" # Read the default configuration-data section from the package config_data = get_config_data(PACKAGE_NAME) # Provide a simulation of the Resilient REST API (uncomment to connect to a real appliance) resilient_mock = "pytest_resilient_circuits.BasicResilientMock" def call_function(circuits, function_name, function_params, timeout=5): # Create the submitTestFunction event evt = SubmitTestFunction(function_name, function_params) # Fire a message to the function circuits.manager.fire(evt) # circuits will fire an "exception" event if an exception is raised in the FunctionComponent # return this exception if it is raised exception_event = circuits.watcher.wait("exception", parent=None, timeout=timeout) if exception_event is not False: exception = exception_event.args[1] raise exception # else return the FunctionComponent's results else: event = circuits.watcher.wait(f"{function_name}_result", parent=evt, timeout=timeout) assert event assert isinstance(event.kwargs["result"], FunctionResult) pytest.wait_for(event, "complete", True) return event.kwargs["result"].value def call_github_create_release_function(circuits, function_params, timeout=5): # Create the submitTestFunction event evt = SubmitTestFunction("github_create_release", function_params) # Fire a message to the function circuits.manager.fire(evt) # circuits will fire an "exception" event if an exception is raised in the FunctionComponent # return this exception if it is raised exception_event = circuits.watcher.wait("exception", parent=None, timeout=timeout) if exception_event is not False: exception = exception_event.args[1] raise exception # else return the FunctionComponent's results else: event = circuits.watcher.wait("github_create_release_result", parent=evt, timeout=timeout) assert event assert isinstance(event.kwargs["result"], FunctionResult) pytest.wait_for(event, "complete", True) return event.kwargs["result"].value class TestGithubCreateRelease: """ Tests for the github_create_release function""" def test_function_definition(self): """ Test that the package provides customization_data that defines the function """ func = get_function_definition(PACKAGE_NAME, FUNCTION_NAME) assert func is not None @pytest.mark.livetest def test_create_release(self, circuits_app): """ Test calling with sample values for the parameters """ create_release_setup = github_config('create_release') create_release_setup['github_release_name'] = f"{create_release_setup['github_release_name']}_{TS.strftime('%Y%m%d_%H%M%S')}" create_release_setup['github_release_tag'] = f"{create_release_setup['github_release_tag']}_{TS.strftime('%Y%m%d_%H%M%S')}" results = call_function(circuits_app, "github_create_release", create_release_setup) assert(results['success']) @pytest.mark.livetest def test_get_release(self, circuits_app): """ Test calling with sample values for the parameters """ get_release_setup = github_config('get_release') get_release_setup['github_release_tag'] = f"{get_release_setup['github_release_tag']}_{TS.strftime('%Y%m%d_%H%M%S')}" results = call_function(circuits_app, "github_get_release", get_release_setup) assert(results['success']) assert(results['content']) @pytest.mark.livetest def test_get_releases(self, circuits_app): get_releases_setup = github_config('get_releases') results = call_function(circuits_app, "github_get_releases", get_releases_setup) assert(results['success']) assert(results['content']) @pytest.mark.livetest def test_get_latest_release(self, circuits_app): get_releases_setup = github_config('get_latest_release') results = call_function(circuits_app, "github_get_latest_release", get_releases_setup) assert(results['success']) assert(results['content'])
[ "travis@example.org" ]
travis@example.org
dae2ef9510eb7658c02a8bec10863d09063de120
75e5600bcd545b36b0c70700e947c9714569d305
/manyActualparameters.py
ed6fa7e38812b20666ce9b9a4ac61c6530df91bf
[]
no_license
CandyZ93/Python_Work
5f720c5b644aef1198c0ad785697f88997ff98b7
33c673e4235e103ed6cbad5a40d884524e3d3bd3
refs/heads/master
2021-05-06T13:35:54.272085
2017-12-06T04:56:53
2017-12-06T04:56:53
113,270,347
0
0
null
null
null
null
UTF-8
Python
false
false
1,956
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # #many actual parameters ''' def make_pizza(size, *toppings): """print all the topping""" print("\nMaking a " + str(size) + "-inch pizza with the following toppings:") for topping in toppings: print("- " + topping) make_pizza(16,'pepperoni') make_pizza(12, 'mushrooms', 'green peppers', 'extra cheese') def build_profile(first, last, **user_info): """creat a dict, which contain all the info mation about users.""" profile = {} profile['first_name'] = first profile['last_name'] = last for key, value in user_info.items(): profile[key] = value return profile user_profile = build_profile('albert', 'einstein', location = 'princeton', filed = 'physics') print(user_profile) ''' ##homework ''' def ordered_sandwich(*ingredients): flavor = '' for ingredient in ingredients: flavor += (ingredient + ', ') print("You have orderd a " + flavor + "\b\b sandwich.\n") ordered_sandwich('tuna') ordered_sandwich('tuna', 'beef') ordered_sandwich('tuna', 'beef', 'eggroll') def build_profile(first, last, **user_info): """creat a dict, which contain all the info mation about users.""" profile = {} profile['first_name'] = first profile['last_name'] = last for key, value in user_info.items(): profile[key] = value return profile person = build_profile('lance', 'zhou', location = 'wuhan', edcation = 'master', major = 'software engineering') full_name = person['first_name'] + ' ' + person['last_name'] print("The profile of " + full_name.title() + " is:") for k,v in person.items(): print("\t"+k + " : " +v.title()) ''' def make_car(manufacturer, model, **details): car = {} car['manufacturer_name'] = manufacturer car['model'] = model for key,value in details.items(): car[key] = value return car car = make_car('subaru', 'outback', color = 'red', drive = '4WD') print(car)
[ "lance.z1993@outlook.com" ]
lance.z1993@outlook.com
0f923332d74ab03086681ff9097adf5ed4fd7603
70ec704fdd3e30c5df97323cd4c9532ebfd544ea
/ml_wiki/ch2/selenium-login.py
d53a91bf593dc64f47bd9b445885c8954f53b454
[]
no_license
smart1004/learn_src
e02c13c82bae65b7de2a572e4a1ae58e2ea11588
353f92f7657a6f676a271d8d7f00d7c20e39d234
refs/heads/master
2021-01-25T11:49:49.906805
2018-04-08T13:26:18
2018-04-08T13:26:18
123,435,997
3
0
null
null
null
null
UTF-8
Python
false
false
1,073
py
from selenium import webdriver USER = "<아이디>" PASS = "<비밀번호>" # PhantomJS 드라이버 추출하기 --- (※1) browser = webdriver.PhantomJS() browser.implicitly_wait(3) # 로그인 페이지에 접근하기 --- (※2) url_login = "https://nid.naver.com/nidlogin.login" browser.get(url_login) print("로그인 페이지에 접근합니다.") # 텍스트 박스에 아이디와 비밀번호 입력하기 --- (※3) e = browser.find_element_by_id("id") e.clear() e.send_keys(USER) e = browser.find_element_by_id("pw") e.clear() e.send_keys(PASS) # 입력 양식 전송해서 로그인하기 --- (※4) form = browser.find_element_by_css_selector("input.btn_global[type=submit]") form.submit() print("로그인 버튼을 클릭합니다.") # 쇼핑 페이지의 데이터 가져오기 --- (※5) browser.get("https://order.pay.naver.com/home?tabMenu=SHOPPING") # 쇼핑 목록 출력하기 --- (※6) products = browser.find_elements_by_css_selector(".p_info span") print(products) for product in products: print("-", product.text)
[ "kusung25@naver.com" ]
kusung25@naver.com
8ee7f264c8f5e86b5c66a93f520750a34ee73f7b
cab0673e71c6294103d8c2b57b25081dd3e0fb24
/model/ActiveLearning.py
65fb987633c3c138151765856e2ffa99419d6e06
[]
no_license
akassara/Bayesian-Active-Learning
236873c9c93b04494a01facc1791a36d26bdd07b
b5b8b912dbe83271eeee2226ab36ae986c361d11
refs/heads/main
2023-01-18T23:20:43.009164
2020-11-23T16:09:01
2020-11-23T16:09:01
314,571,081
1
0
null
null
null
null
UTF-8
Python
false
false
4,043
py
import numpy as np from utils.train_utils import to_var, to_numpy, train_model import torch from utils.Preprocessing import FashionDataset, complex_preprocess from model.BayesianCNN import BayesianCNN if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' def select_from_pool(model, D_train, N, nb_samples, aquis='BALD'): """Return indices of the N most uncertain predictions """ if aquis == 'BALD': uncertainties = [] for i, sample in enumerate(D_train, 1): # Take variable and put them to GPU (images, _) = sample images = to_var(images.float(), device) # compute uncertainty uncertainty = model.uncertainty(images) uncertainties.append(to_numpy(uncertainty)) uncertainties = np.array(uncertainties).flatten() m = uncertainties.mean() indices = [] new_x_train = [] new_y_train = [] for k in range(N): j = np.argmax(uncertainties) uncertainties[j] = -np.inf indices.append(j) return indices, m elif aquis == 'RAND': indices = np.random.choice(nb_samples, N) return indices, None def active_training(init_model,X_train,y_train,X_pool,y_pool,valid_loader,N,aquis,iterations,epochs,learning_rate,batch_size,weight_decay,criterion): """Train model on new dataset after the aquisition of N data points from the new data """ train_active_losses = [] train_active_metrics = [] val_active_losses = [] val_active_metrics = [] model = init_model for k in range(iterations): new_train_dataset = FashionDataset(X_pool,y_pool,transform = complex_preprocess()) # DataLoaders new_train_loader = torch.utils.data.DataLoader(new_train_dataset, batch_size=batch_size, shuffle=False,sampler=None, drop_last=True) # We set model to train to activate the dropout layers model.train() print('*************') print('Extract training images from the pool with high uncertainty') indices,mean = select_from_pool(model,new_train_loader,N,X_pool.shape[0],aquis=aquis) print('mean uncertainty:',mean) print('Number of extracted training images:',len(indices)) X_train = np.concatenate((X_train,X_pool[indices]),axis=0) y_train = np.concatenate((y_train,y_pool[indices]),axis=0) print('Size of new training dataset',np.shape(X_train)) X_pool = np.delete(X_pool,indices,axis=0) y_pool = np.delete(y_pool,indices,axis=0) new_train_dataset = FashionDataset(X_train,y_train,transform = complex_preprocess()) # DataLoaders new_train_loader = torch.utils.data.DataLoader(new_train_dataset, batch_size=batch_size, shuffle=True,sampler=None, drop_last=True) model = BayesianCNN(dropout_prob=0.25,num_samples=5) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,weight_decay=weight_decay) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,mode='min',factor=0.9,patience=5000,verbose=True) # TRAINING print('New training has began') new_train_losses, new_train_metrics,new_val_losses,new_val_metrics = train_model(model,new_train_loader,valid_loader, criterion,optimizer,scheduler,batch_size,epochs,device) filename = '/content/drive/MyDrive/BayesianActiveLearning/model_'+aquis + '_' +str(k)+'.pth.tar' torch.save(model.state_dict(),filename) print('Saving the model to ',filename) train_active_losses = train_active_losses + new_train_losses train_active_metrics = train_active_metrics + new_train_metrics val_active_losses = val_active_losses + new_val_losses val_active_metrics = val_active_metrics + new_val_metrics return model , train_active_losses , train_active_metrics ,val_active_losses , val_active_metrics
[ "kassara.amyn@gmail.com" ]
kassara.amyn@gmail.com
5bd1ccd8e4f231ed43f68842d8cd667f6c5ea565
9b2d05c7d759e9c8f7e2bf817088b8943402ef15
/itdiscovery.py
c7868ebf2001c8e7bd56450250a404f598d02754
[]
no_license
zipi85/AWL
9c3f54483d5899177770668a8e970ec16eadb91a
ea2592e68bc0d2cd25102616d4719e4d1283b936
refs/heads/master
2021-01-25T08:13:19.623508
2017-06-19T20:02:50
2017-06-19T20:02:50
93,733,338
0
0
null
null
null
null
UTF-8
Python
false
false
1,852
py
from fabric.api import task, hide, sudo import fabric.contrib.files from fabric.contrib.files import exists, contains, append, first, sed @task() def update(): """update itdiscovery""" with hide('stdout', 'stderr'): sudo('yum -y update itdiscovery --enablerepo=awl-main,epel') @task() def remove_pci_option(): """remove `-P` option from cron file""" with hide('stdout', 'stderr'): fabric.contrib.files.sed('/etc/cron.d/itdiscovery', '-P', '', use_sudo=True, backup='') @task() def upgrade_v3(): """upgrade ITDiscovery v3""" with hide('stdout', 'stderr'): if exists('/etc/cron.d/itdiscovery', use_sudo=True): smtp=sudo('''grep -o -E '(ypp|relay-smtp|smtp).*fr|relay-smtp' /etc/cron.d/itdiscovery''',warn_only=True,quiet=True) if smtp.succeeded: print "\033[95m"+smtp+"\033[0m" installitdisc=sudo("yum -y update itdiscovery --enablerepo=awl-main,epel",quiet=True) if installitdisc.succeeded: print "\033[92mITDiscovery has been installed successfully\033[0m" else: print "\033[91mFailed to install ITDiscovery\033[0m" return 1 sudo('''sed -ri 's/#?smtp_server:.*/smtp_server: '''+smtp+'''/g' /etc/itdiscovery/itdiscovery.yml''',quiet=True) ittest=sudo("itdiscovery -W",quiet=True) if ittest.succeeded: print "\033[92mITDiscovery is correctly set\033[0m" else: print "\033[91mProblem with ITDiscovery\033[0m" return 1 else: itdiscv3=sudo('''grep nice /etc/cron.d/itdiscovery''',warn_only=True,quiet=True) if itdiscv3.succeeded: print "\033[96mITDiscovery V3 already installed.\033[0m" else: print "\033[93mNo SMTP found in ITDiscovery cron.\033[0m" else: print "\033[91mITDiscovery cron not found\033[0m"
[ "dariusz.noga@atos.net" ]
dariusz.noga@atos.net
f7242ea788b8b591ac5ace6f519661bc61723bd8
8012340a24e3b367ca0c536f6d0a2646587f6319
/project/app/models.py
b5417cb2281985735e0f04bd95d7b8ccc82a2bec
[]
no_license
urvisuthar85/drc_project
f175ab707b5f32ab0bd22dd6127f4b1df9c29c23
2469692b140fe0eb547af8e4744e96dd216ce7ff
refs/heads/master
2023-01-02T00:18:57.554134
2020-10-25T18:07:15
2020-10-25T18:07:15
307,160,459
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
from django.db import models # Create your models here. class User(models.Model): username = models.CharField(max_length=255) phone = models.IntegerField() email = models.EmailField(max_length=255,unique=True) password = models.CharField(max_length=20) def __str__(self): return self.username # from django.contrib.auth.models import User
[ "urvashicitrusbug@gmail.com" ]
urvashicitrusbug@gmail.com
38459d585c7f1861e8774c7571859a85236be08b
6515a47190986c4f3b6beececfabab42e3d34e34
/Models/GPT2_Model/Model/GPT2LMHead.py
7f0304b3b13ce6e44e8c037aec7823bb34427b7e
[]
no_license
jk96491/Advanced_Models
f4140936f5004ed9a9464ad745b33e52d63157fa
cde49356fec3c53296446a54f4be497a89dd08cd
refs/heads/master
2023-06-14T02:26:43.869417
2021-06-30T13:07:31
2021-06-30T13:07:31
143,489,382
60
16
null
null
null
null
UTF-8
Python
false
false
782
py
import torch.nn as nn class GPT2LMHead(nn.Module): def __init__(self, model_embeddings_weights, config): super(GPT2LMHead, self).__init__() self.n_embd = config.n_embd self.set_embeddings_weights(model_embeddings_weights) def set_embeddings_weights(self, model_embeddings_weights): embed_shape = model_embeddings_weights.shape self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) self.decoder.weight = model_embeddings_weights # Tied weights def forward(self, hidden_state): # Truncated Language modeling logits (we remove the last token) # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd) lm_logits = self.decoder(hidden_state) return lm_logits
[ "jk96491@naver.com" ]
jk96491@naver.com
40e508f888e6e5ccfdc610d006a27e1b0da0f9c1
713ffaf6b0633cb217cff7297799f2c29a75d8ba
/main/settings.py
51d07ae0663ee131c1dbd75e3096fb7df021033a
[]
no_license
Dora72/surveyForm
15398fd84856c23704b18e60e7dae8bee878a3c1
1b4cfaf0a1cc57e64c32728cd95f7a6badb10c2a
refs/heads/master
2021-01-23T02:19:20.013812
2017-03-23T18:48:51
2017-03-23T18:48:51
85,985,213
0
0
null
null
null
null
UTF-8
Python
false
false
3,113
py
""" Django settings for main project. Generated by 'django-admin startproject' using Django 1.10.6. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'sbs-vpk@8rirn*m(uq7=+-y2m_=(+18ox+^p!6(p416$e2^ykb' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'apps.first_app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'main.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'main.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/'
[ "dorineazmy@gmail.com" ]
dorineazmy@gmail.com
1e236e30d75c559339f1261b732a9a70d9df7122
35053a371d85c2d45a4f52239d8a70b38194ef48
/Can Place Flowers.py
86bf8aeeb427181d1fe805cbf5b1d1bcb364a643
[]
no_license
Kuehar/LeetCode
51d169c81a2e572ea854399fc78e1130220388f9
4555c20455f181f9dd7b3aba2a8779dea795edfb
refs/heads/master
2023-04-16T10:13:03.584541
2023-04-06T11:47:21
2023-04-06T11:47:21
243,361,421
4
0
null
null
null
null
UTF-8
Python
false
false
930
py
class Solution: def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool: if n == 0: return True if len(flowerbed) == 0: return False if len(flowerbed) == 1: return flowerbed[0] == 0 pre,cur = flowerbed[0],flowerbed[1] if pre + cur == 0: flowerbed[0] = 1 n -= 1 cur,nex = flowerbed[-1],flowerbed[-2] if cur + nex == 0: flowerbed[-1] = 1 n -= 1 for i in range(2,len(flowerbed)-2): pre = flowerbed[i-1] cur = flowerbed[i] nex = flowerbed[i+1] if (pre + cur + nex) == 0: flowerbed[i] = 1 n -= 1 return n <= 0 # Runtime: 164 ms, faster than 58.48% of Python3 online submissions for Can Place Flowers. # Memory Usage: 14.5 MB, less than 89.00% of Python3 online submissions for Can Place Flowers.
[ "noreply@github.com" ]
Kuehar.noreply@github.com
9ae92d30735a63f876e54362e26dba76ae2b811a
b73dbd5810be0ee54143a9f1a58f1f662fb6063b
/polls/tests.py
15c916d5d65908e20dd6f0c1fccf497f9f87c77e
[]
no_license
wataruxun/LearnDjango
030c380ec3f5e810dac24ca43cd096668164495a
ba604c0b04fa4d2968f035421609dc65ab4e3344
refs/heads/master
2022-01-29T18:50:35.255105
2019-05-06T01:54:52
2019-05-06T01:54:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,889
py
import datetime from django.test import TestCase from django.utils import timezone from django.urls import reverse from .models import Question # Create your tests here. class QuestionModelTests(TestCase): """ was_published_recently() returns False for questions whose pub_date is in the future """ def test_was_publishe_recently_with_future_question(self): time = timezone.now() + datetime.timedelta(days=30) future_question = Question(pub_date=time) self.assertIs(future_question.was_published_recently(), False) def test_was_published_recently_with_old_question(self): """ was_published_recently() returns False for questions whose pub_date is older than 1 day. """ time = timezone.now() - datetime.timedelta(days=1, seconds=1) old_question = Question(pub_date=time) self.assertIs(old_question.was_published_recently(), False) def test_was_published_recently_with_recent_question(self): """ was_published_recently() returns True for questions whose pub_date is within the last day. """ time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59) recent_question = Question(pub_date=time) self.assertIs(recent_question.was_published_recently(), True) def create_question(question_text, days): """ Create a question with the given `question_text` and published the given number of `days` offset to now (negative for questions published in the past, positive for questions that have yet to be published). """ time = timezone.now() + datetime.timedelta(days = days) return Question.objects.create(question_text=question_text, pub_date=time) class QuestionIndexViewTests(TestCase): def test_no_questions(self): """ If no questions exist, an appropriate message is displayed. """ response = self.client.get(reverse('polls:index')) self.assertEqual(response.status_code, 200) self.assertContains(response, "No polls are available.") self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_past_question(self): """ Questions with a pub_date in the past are displayed on the index page. """ create_question(question_text="Past question.", days=-30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question.>'] ) def test_future_question(self): """ Questions with a pub_date in the future aren't displayed on the index page. """ create_question(question_text="Future question.", days=30) response = self.client.get(reverse('polls:index')) self.assertContains(response, "No polls are available.") self.assertQuerysetEqual(response.context['latest_question_list'], []) def test_future_question_and_past_question(self): """ Even if both past and future questions exist, only past questions are displayed. """ create_question(question_text="Past question.", days=-30) create_question(question_text="Future question.", days=30) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question.>'] ) def test_two_past_questions(self): """ The questions index page may display multiple questions. """ create_question(question_text="Past question 1.", days=-30) create_question(question_text="Past question 2.", days=-5) response = self.client.get(reverse('polls:index')) self.assertQuerysetEqual( response.context['latest_question_list'], ['<Question: Past question 2.>', '<Question: Past question 1.>'] ) class QuestionDetailViewTests(TestCase): def test_future_question(self): """ The detail view of a question with a pub_date in the future returns a 404 not found. """ future_question = create_question(question_text='Future question.', days=5) url = reverse('polls:detail', args=(future_question.id,)) response = self.client.get(url) self.assertEqual(response.status_code, 404) def test_past_question(self): """ The detail view of a question with a pub_date in the past displays the question's text. """ past_question = create_question(question_text='Past Question.', days=-5) url = reverse('polls:detail', args=(past_question.id,)) response = self.client.get(url) self.assertContains(response, past_question.question_text)
[ "mikoto.toaru@gmail.com" ]
mikoto.toaru@gmail.com
2e79679ebdc6ebb91b85f95ac5bccc7866b865ab
ace30d0a4b1452171123c46eb0f917e106a70225
/filesystems/vnx_rootfs_lxc_ubuntu64-16.04-v025-openstack-compute/rootfs/usr/lib/python2.7/dist-packages/openstackclient/tests/functional/image/v2/test_image.py
6faff94a3295cd738875bfb8fda2baf1ac162efb
[ "Python-2.0" ]
permissive
juancarlosdiaztorres/Ansible-OpenStack
e98aa8c1c59b0c0040c05df292964520dd796f71
c01951b33e278de9e769c2d0609c0be61d2cb26b
refs/heads/master
2022-11-21T18:08:21.948330
2018-10-15T11:39:20
2018-10-15T11:39:20
152,568,204
0
3
null
2022-11-19T17:38:49
2018-10-11T09:45:48
Python
UTF-8
Python
false
false
3,865
py
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import uuid from openstackclient.tests.functional import base class ImageTests(base.TestCase): """Functional tests for image. """ NAME = uuid.uuid4().hex OTHER_NAME = uuid.uuid4().hex HEADERS = ['Name'] FIELDS = ['name'] @classmethod def setUpClass(cls): os.environ['OS_IMAGE_API_VERSION'] = '2' opts = cls.get_opts(cls.FIELDS) raw_output = cls.openstack('image create ' + cls.NAME + opts) expected = cls.NAME + '\n' cls.assertOutput(expected, raw_output) @classmethod def tearDownClass(cls): # Rename test raw_output = cls.openstack('image set --name ' + cls.OTHER_NAME + ' ' + cls.NAME) cls.assertOutput('', raw_output) # Delete test raw_output = cls.openstack('image delete ' + cls.OTHER_NAME) cls.assertOutput('', raw_output) def test_image_list(self): opts = self.get_opts(self.HEADERS) raw_output = self.openstack('image list' + opts) self.assertIn(self.NAME, raw_output) def test_image_show(self): opts = self.get_opts(self.FIELDS) raw_output = self.openstack('image show ' + self.NAME + opts) self.assertEqual(self.NAME + "\n", raw_output) def test_image_set(self): opts = self.get_opts([ "disk_format", "visibility", "min_disk", "min_ram", "name"]) self.openstack('image set --min-disk 4 --min-ram 5 ' + '--public ' + self.NAME) raw_output = self.openstack('image show ' + self.NAME + opts) self.assertEqual("raw\n4\n5\n" + self.NAME + '\npublic\n', raw_output) def test_image_metadata(self): opts = self.get_opts(["name", "properties"]) self.openstack('image set --property a=b --property c=d ' + self.NAME) raw_output = self.openstack('image show ' + self.NAME + opts) self.assertEqual(self.NAME + "\na='b', c='d'\n", raw_output) def test_image_unset(self): opts = self.get_opts(["name", "tags", "properties"]) self.openstack('image set --tag 01 ' + self.NAME) self.openstack('image unset --tag 01 ' + self.NAME) # test_image_metadata has set image properties "a" and "c" self.openstack('image unset --property a --property c ' + self.NAME) raw_output = self.openstack('image show ' + self.NAME + opts) self.assertEqual(self.NAME + "\n\n", raw_output) def test_image_members(self): opts = self.get_opts(['project_id']) my_project_id = self.openstack('token issue' + opts).strip() self.openstack( 'image add project {} {}'.format(self.NAME, my_project_id)) self.openstack( 'image set --accept ' + self.NAME) shared_img_list = self.parse_listing( self.openstack('image list --shared', self.get_opts(['name'])) ) self.assertIn(self.NAME, [img['Name'] for img in shared_img_list]) self.openstack( 'image set --reject ' + self.NAME) shared_img_list = self.parse_listing( self.openstack('image list --shared', self.get_opts(['name'])) ) self.openstack( 'image remove project {} {}'.format(self.NAME, my_project_id))
[ "jcdiaztorres96@gmail.com" ]
jcdiaztorres96@gmail.com
b40a347f034798cd207d5819205c875aa7fb8bdb
0c8b1eedb2f3c5b7aa5fddfe902174d68a5ba40d
/array/using python/kadane.py
a5de2ad2e54f972bdefd2b4464f1a55c32e05286
[]
no_license
vibhav21/must_do_coding_ques
4838619fb42935fdc5816c159a440e8cee1a5e29
3b6d59868fb7da3f7cb09c4a9449729892ddf16b
refs/heads/master
2020-04-28T06:04:02.888082
2019-07-24T15:06:55
2019-07-24T15:06:55
175,043,273
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
# -*- coding: utf-8 -*- """ Created on Wed Feb 13 20:09:09 2019 @author: Vaibhav """ arr=[] a=int(input()) while(a): max_s=-32000 max_t=0 size=int(input()) arr=list(map(int,input().split())) for i in range(size): max_t=max_t+arr[i] if(max_s<max_t): max_s=max_t if(max_t<0): max_t=0 print(max_s) a=a-1
[ "vaibhavchat1@gmail.com" ]
vaibhavchat1@gmail.com
e806e3218cd8bc55131bce1e7d166c76ad1ec718
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03288/s779086883.py
309d8d3ea1e3ed5219effec5418e8a99e6125de3
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
64
py
r=int(input()) print("ABC"if r<1200else"ARC"if r<2800else"AGC")
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
2c9513597922cdf544f8ece8671ae067d202e958
1e888f58fce5356b556a8a68562f6fcc19baad8a
/publish_handler.py
29ca024c425f530ff0a40e7d7e91545bbc0edc8e
[]
no_license
carcigenicate/song-searcher
1cded140c7609b7d5e58f64f15d02db02f3ff4c4
acd0c322e17e1635d2974735e7b29ac62adb3e75
refs/heads/master
2023-04-14T02:11:31.907739
2021-04-25T14:44:00
2021-04-25T14:44:00
358,049,145
6
0
null
null
null
null
UTF-8
Python
false
false
1,774
py
import json import logging import ssl from paho.mqtt import MQTTException from paho.mqtt.publish import single as publish_single import common as comm from simple_handlers import bad_request_handler from broker_config import Config REQUEST_PARAMETER = "yid" CONFIG_PATH = "./broker.cfg" CONFIG = Config.from_file(CONFIG_PATH) def song_request_handler(request: comm.Request) -> None: song_request = request.query.get(REQUEST_PARAMETER) if not song_request: bad_request_handler(request, "Missing youtube video ID.") else: try: auth = {"username": CONFIG.username, "password": CONFIG.password} publish_single(CONFIG.topic, song_request[0], auth=auth, hostname=CONFIG.host, port=CONFIG.port, tls={"tls_version": ssl.PROTOCOL_TLS}, keepalive=10, # Publish timeout qos=2) comm.send_simple_response(request, 200, {"Content-Type": "application/json"}, json.dumps({"success": "Request Received"})) # These errors will only be thrown if the hostname is something obviously wrong like "localhost". except ConnectionRefusedError: logging.warning("MQTT server rejected connection/is not started.") bad_request_handler(request, "Unable to contact broker. Message was not passed on.") except MQTTException as e: logging.warning(f"Generic MQTT error: {e}") bad_request_handler(request, "Unable to contact broker. Message was not passed on.")
[ "brendon@localhost.localdomain" ]
brendon@localhost.localdomain
7078a2ddc9cf33c2fc31c6ca289eae0fe39c85e5
829b1d2661e9fead0f4ac1397129a62e50184683
/src/runGdEval.py
38d4cee47278954b0f451ae6322eeb9257ac3ce1
[]
no_license
vmanisha/tasks_track_evaluation
6366bd325b8d274c1f2404c6c425dd67ff1d1fa3
c79c4925a608c33433d11019d10f708c5950b8df
refs/heads/master
2021-07-11T03:06:13.287375
2017-10-12T20:18:03
2017-10-12T20:18:03
106,740,749
0
0
null
null
null
null
UTF-8
Python
false
false
3,143
py
import os import argparse as ap import sys import pandas as pd def RunNdEval(qrelFile,runFolder, outFolder): docTopics= range(1,51) # used for 2015: [1, 2 ,3 ,4 ,5 ,6 ,7, 8, 9, 11, 12, 14 ,15 ,16, 17 ,18 ,19 ,20, 21, 22, 23, 24, 25, 26, 28, 29, 31, 32, 34, 35, 36, 37, 42, 43, 50] commandString = 'perl ./eval/diversity_eval/gdeval.pl ' if not os.path.exists(outFolder): os.mkdir(outFolder) for ifile in os.listdir(runFolder): run = open(runFolder+'/'+ifile,'r').read() step = 5 k = 5 runMetrics = {} runid = None # Format : # runid,topic,ndcg@K,err@K for k in [10,20,1000]: print k, ifile # Run the command print commandString+' -k '+str(k)+' '+qrelFile+' '+runFolder+'/'+ifile content = os.popen(commandString+' -k '+str(k)+' '+qrelFile+' '+runFolder+'/'+ifile).read() # Process and store the input i= 0 header = {} #print content for line in content.split('\n'): split = line.strip().split(',') if len(split) == 4: # Set the header if i == 0: for l in range(len(split)): header[l] = split[l] i+=1 else: runid = split[0] topic = split[1] if 'amean' in topic or int(topic) in docTopics: if topic not in runMetrics: runMetrics[topic] = {} runMetrics[topic][header[2]] = split[2] runMetrics[topic][header[3]] = split[3] ofile = open(outFolder+'/'+ifile,'w') # write the header #dataFrame = pd.DataFrame(index= range(1,50), columns= runMetrics['amean'].keys()) ofile.write('runid,topic,'+','.join(sorted(runMetrics['amean'].keys()))+'\n') for entry in sorted(runMetrics.items()): topic, metricValues = entry[0], entry[1] sortedMet = sorted(metricValues.items()) #print topic, sortedMet values = [] for entry in sortedMet: values.append(entry[1]) #print values ofile.write(runid+','+topic+','+','.join(values) +'\n') ofile.close() def main(argv): parser = ap.ArgumentParser(description='Generate diversity evaluation for several runs in a folder'); parser.add_argument('-q','--qrelFile', help='Qrel file to use for evaluation. Should have format \ query-id subtopic-id doc-id relevance', required=True); parser.add_argument('-r','--runFolder', help='Folder containing participant runs.', required=True); parser.add_argument('-o','--outFolder', help='Folder to output per query evaluation for each submitted run.', required=True); args = parser.parse_args() RunNdEval(args.qrelFile, args.runFolder, args.outFolder) if __name__ == '__main__': main(sys.argv)
[ "manishav@yahoo-inc.com" ]
manishav@yahoo-inc.com
cfe76fa70009f31c4fa505c0f592be700b7e4c89
9a056a03487a7594a4c2379282638ca22a585670
/resources/libs/notify.py
ce6a6e0c01f69675483fecf057557ec2fa21eb53
[]
no_license
leosupreme/plugin.program.ghost.wizard-1.0.0
d67d2d77c74f29cb50b27a1f010ee77cd1c6c892
6505cc6f7718598ece7e1005ff1252a1a26723b2
refs/heads/master
2022-10-06T11:40:17.414864
2020-06-11T12:15:26
2020-06-11T12:15:26
271,537,300
0
0
null
null
null
null
UTF-8
Python
false
false
43,867
py
############################################################################ # /T /I # # / |/ | .-~/ # # T\ Y I |/ / _ # # /T | \I | I Y.-~/ # # I l /I T\ | | l | T / # # T\ | \ Y l /T | \I l \ ` l Y If your going to copy # # __ | \l \l \I l __l l \ ` _. | this addon just # # \ ~-l `\ `\ \ \ ~\ \ `. .-~ | give credit! # # \ ~-. "-. ` \ ^._ ^. "-. / \ | # #.--~-._ ~- ` _ ~-_.-"-." ._ /._ ." ./ Stop Deleting the # # >--. ~-. ._ ~>-" "\ 7 7 ] credits file! # #^.___~"--._ ~-{ .-~ . `\ Y . / | # # <__ ~"-. ~ /_/ \ \I Y : | # # ^-.__ ~(_/ \ >._: | l______ # # ^--.,___.-~" /_/ ! `-.~"--l_ / ~"-. # # (_/ . ~( /' "~"--,Y -=b-. _) # # (_/ . \ : / l c"~o \ # # \ / `. . .^ \_.-~"~--. ) # # (_/ . ` / / ! )/ # # / / _. '. .': / ' # # ~(_/ . / _ ` .-<_ # # /_/ . ' .-~" `. / \ \ ,z=. Surfacingx # # ~( / ' : | K "-.~-.______// Original Author # # "-,. l I/ \_ __{--->._(==. # # //( \ < ~"~" // # # /' /\ \ \ ,v=. (( Fire TV Guru # # .^. / /\ " }__ //===- ` PyXBMCt LaYOUt # # / / ' ' "-.,__ {---(==- # # .^ ' : T ~" ll # # / . . . : | :! \ # # (_/ / | | j-" ~^ # # ~-<_(_.^-~" # # # # Copyright (C) One of those Years.... # # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # ############################################################################ import xbmc, xbmcaddon, xbmcgui, xbmcplugin, os, sys, xbmcvfs, glob import shutil import urllib2,urllib import re import uservar import time from resources.libs import yt, wizard as wiz from datetime import date, datetime, timedelta ADDON_ID = uservar.ADDON_ID ADDON = wiz.addonId(ADDON_ID) VERSION = wiz.addonInfo(ADDON_ID,'version') ADDONPATH = wiz.addonInfo(ADDON_ID,'path') ADDONTITLE = uservar.ADDONTITLE BUILDERNAME = uservar.BUILDERNAME DIALOG = xbmcgui.Dialog() DP = xbmcgui.DialogProgress() HOME = xbmc.translatePath('special://home/') ADDONS = os.path.join(HOME, 'addons') USERDATA = os.path.join(HOME, 'userdata') PLUGIN = os.path.join(ADDONS, ADDON_ID) PACKAGES = os.path.join(ADDONS, 'packages') ADDONDATA = os.path.join(USERDATA, 'addon_data', ADDON_ID) FANART = os.path.join(ADDONPATH, 'fanart.jpg') ICON = os.path.join(ADDONPATH, 'icon.png') ART = os.path.join(ADDONPATH, 'resources', 'art') SKINFOLD = os.path.join(ADDONPATH, 'resources', 'skins', 'DefaultSkin', 'media') ADVANCED = os.path.join(USERDATA, 'advancedsettings.xml') NOTIFY = wiz.getS('notify') NOTEID = wiz.getS('noteid') NOTEDISMISS = wiz.getS('notedismiss') BUILDNAME = wiz.getS('buildname') BUILDVERSION = wiz.getS('buildversion') LATESTVERSION = wiz.checkBuild(BUILDNAME, 'version') TODAY = date.today() KODIV = float(xbmc.getInfoLabel("System.BuildVersion")[:4]) TOMORROW = TODAY + timedelta(days=1) THREEDAYS = TODAY + timedelta(days=3) UPDATECHECK = uservar.UPDATECHECK if str(uservar.UPDATECHECK).isdigit() else 1 NEXTCHECK = TODAY + timedelta(days=UPDATECHECK) NOTIFICATION = uservar.NOTIFICATION ENABLE = uservar.ENABLE HEADERTYPE = uservar.HEADERTYPE if uservar.HEADERTYPE == 'Image' else 'Text' HEADERMESSAGE = uservar.HEADERMESSAGE BACKGROUND = uservar.BACKGROUND HEADERIMAGE = uservar.HEADERIMAGE THEME1 = uservar.THEME1 THEME2 = uservar.THEME2 THEME3 = uservar.THEME3 THEME4 = uservar.THEME4 THEME5 = uservar.THEME5 COLOR1 = uservar.COLOR1 COLOR2 = uservar.COLOR2 COLOR3 = uservar.COLOR3 COLOR4 = uservar.COLOR4 COLOR5 = uservar.COLOR5 CONTACTICON = uservar.CONTACTICON if not uservar.CONTACTICON == 'http://' else ICON CONTACTFANART = uservar.CONTACTFANART if not uservar.CONTACTFANART == 'http://' else FANART if BACKGROUND == '': BACKGROUND = FANART elif not wiz.workingURL(BACKGROUND): BACKGROUND = FANART ACTION_PREVIOUS_MENU = 10 ## ESC action ACTION_NAV_BACK = 92 ## Backspace action ACTION_MOVE_LEFT = 1 ## Left arrow key ACTION_MOVE_RIGHT = 2 ## Right arrow key ACTION_MOVE_UP = 3 ## Up arrow key ACTION_MOVE_DOWN = 4 ## Down arrow key ACTION_MOUSE_WHEEL_UP = 104 ## Mouse wheel up ACTION_MOUSE_WHEEL_DOWN = 105 ## Mouse wheel down ACTION_MOVE_MOUSE = 107 ## Down arrow key ACTION_SELECT_ITEM = 7 ## Number Pad Enter ACTION_BACKSPACE = 110 ## ? ACTION_MOUSE_LEFT_CLICK = 100 ACTION_MOUSE_LONG_CLICK = 108 def artwork(file): if file == 'button': return os.path.join(SKINFOLD, 'Button', 'button-focus_lightblue.png'), os.path.join(SKINFOLD, 'Button', 'button-focus_grey.png') elif file == 'radio' : return os.path.join(SKINFOLD, 'RadioButton', 'MenuItemFO.png'), os.path.join(SKINFOLD, 'RadioButton', 'MenuItemNF.png'), os.path.join(SKINFOLD, 'RadioButton', 'radiobutton-focus.png'), os.path.join(SKINFOLD, 'RadioButton', 'radiobutton-nofocus.png') elif file == 'slider': return os.path.join(SKINFOLD, 'Slider', 'osd_slider_nib.png'), os.path.join(SKINFOLD, 'Slider', 'osd_slider_nibNF.png'), os.path.join(SKINFOLD, 'Slider', 'slider1.png'), os.path.join(SKINFOLD, 'Slider', 'slider1.png') def autoConfig(msg='', TxtColor='0xFFFFFFFF', Font='font10', BorderWidth=10): class MyWindow(xbmcgui.WindowDialog): scr={}; def __init__(self,msg='',L=0,T=0,W=1280,H=720,TxtColor='0xFFFFFFFF',Font='font10',BorderWidth=10): buttonfocus, buttonnofocus = artwork('button') radiobgfocus, radiobgnofocus, radiofocus, radionofocus = artwork('radio') slidernibfocus, slidernibnofocus, sliderfocus, slidernofocus = artwork('slider') image_path = os.path.join(ART, 'ContentPanel.png') boxbg = os.path.join(ART, 'bgg2.png') self.border = xbmcgui.ControlImage(L,T,W,H, image_path) self.addControl(self.border); self.BG=xbmcgui.ControlImage(L+BorderWidth,T+BorderWidth,W-(BorderWidth*2),H-(BorderWidth*2), FANART, aspectRatio=0, colorDiffuse='0x5FFFFFFF') self.addControl(self.BG) top = T+BorderWidth leftside = L+BorderWidth rightside = L+(W/2)-(BorderWidth*2) firstrow = top+30 secondrow = firstrow+275+(BorderWidth/2) currentwidth = ((W/2)-(BorderWidth*4))/2 header = '[COLOR %s]Advanced Settings Configurator[/COLOR]' % (COLOR2) self.Header=xbmcgui.ControlLabel(L, top, W, 30, header, font='font13', textColor=TxtColor, alignment=0x00000002) self.addControl(self.Header) top += 30+BorderWidth self.bgarea = xbmcgui.ControlImage(leftside, firstrow, rightside-L, 275, boxbg, aspectRatio=0, colorDiffuse='0x5FFFFFFF') self.addControl(self.bgarea) self.bgarea2 = xbmcgui.ControlImage(rightside+BorderWidth+BorderWidth, firstrow, rightside-L, 275, boxbg, aspectRatio=0, colorDiffuse='0x5FFFFFFF') self.addControl(self.bgarea2) self.bgarea3 = xbmcgui.ControlImage(leftside, secondrow, rightside-L, 275, boxbg, aspectRatio=0, colorDiffuse='0x5FFFFFFF') self.addControl(self.bgarea3) self.bgarea4 = xbmcgui.ControlImage(rightside+BorderWidth+BorderWidth, secondrow, rightside-L, 275, boxbg, aspectRatio=0, colorDiffuse='0x5FFFFFFF') self.addControl(self.bgarea4) header = '[COLOR %s]Video Cache Size[/COLOR]' % (COLOR2) self.Header2=xbmcgui.ControlLabel(leftside+BorderWidth, firstrow+5, (W/2)-(BorderWidth*2), 20, header, font='font13', textColor=TxtColor, alignment=0x00000002) self.addControl(self.Header2) freeMemory = int(float(wiz.getInfo('System.Memory(free)')[:-2])*.33) recMemory = int(float(wiz.getInfo('System.Memory(free)')[:-2])*.23) msg3 = "[COLOR %s]Number of bytes used for buffering streams in memory. When set to [COLOR %s]0[/COLOR] the cache will be written to disk instead of RAM. Note: For the memory size set here, Kodi will require 3x the amount of RAM to be free. Setting this too high might cause Kodi to crash if it can't get enough RAM(1/3 of Free Memory: [COLOR %s]%s[/COLOR])[/COLOR]" % (COLOR2, COLOR1, COLOR1, freeMemory) self.Support3=xbmcgui.ControlTextBox(leftside+int(BorderWidth*1.5), firstrow+30+BorderWidth, (W/2)-(BorderWidth*4), 150, font='font12', textColor=TxtColor) self.addControl(self.Support3) self.Support3.setText(msg3) try: self.videoCacheSize=xbmcgui.ControlSlider(leftside+int(BorderWidth*1.5), firstrow+210,(W/2)-(BorderWidth*5),20, textureback=sliderfocus, texture=slidernibnofocus, texturefocus=slidernibfocus, orientation=xbmcgui.HORIZONTAL) except: self.videoCacheSize=xbmcgui.ControlSlider(leftside+int(BorderWidth*1.5), firstrow+210,(W/2)-(BorderWidth*5),20, textureback=sliderfocus, texture=slidernibnofocus, texturefocus=slidernibfocus) self.addControl(self.videoCacheSize) self.videomin = 0; self.videomax = freeMemory if freeMemory < 2000 else 2000 self.recommendedVideo = recMemory if recMemory < 500 else 500; self.currentVideo = self.recommendedVideo videopos = wiz.percentage(self.currentVideo, self.videomax) self.videoCacheSize.setPercent(videopos) current1 = '[COLOR %s]Current:[/COLOR] [COLOR %s]%s MB[/COLOR]' % (COLOR1, COLOR2, self.currentVideo) recommended1 = '[COLOR %s]Recommended:[/COLOR] [COLOR %s]%s MB[/COLOR]' % (COLOR1, COLOR2, self.recommendedVideo) self.currentVideo1=xbmcgui.ControlTextBox(leftside+BorderWidth,firstrow+235,currentwidth,20,font=Font,textColor=TxtColor) self.addControl(self.currentVideo1) self.currentVideo1.setText(current1) self.recommendedVideo1=xbmcgui.ControlTextBox(leftside+BorderWidth+currentwidth,firstrow+235,currentwidth,20,font=Font,textColor=TxtColor) self.addControl(self.recommendedVideo1) self.recommendedVideo1.setText(recommended1) header = '[COLOR %s]CURL Timeout/CURL Low Speed[/COLOR]' % (COLOR2) self.Header3=xbmcgui.ControlLabel(rightside+BorderWidth, firstrow+5, (W/2)-(BorderWidth*2), 20, header, font='font13', textColor=TxtColor, alignment=0x00000002) self.addControl(self.Header3) msg3 = "[COLOR %s][B]curlclienttimeout[/B] is the time in seconds for how long it takes for libcurl connection will timeout and [B]curllowspeedtime[/B] is the time in seconds for libcurl to consider a connection lowspeed. For slower connections set it to 20.[/COLOR]" % COLOR2 self.Support3=xbmcgui.ControlTextBox(rightside+int(BorderWidth*3.5), firstrow+30+BorderWidth, (W/2)-(BorderWidth*4), 150, font='font12', textColor=TxtColor) self.addControl(self.Support3) self.Support3.setText(msg3) try: self.CURLTimeout=xbmcgui.ControlSlider(rightside+int(BorderWidth*3.5),firstrow+210,(W/2)-(BorderWidth*5),20, textureback=sliderfocus, texture=slidernibnofocus, texturefocus=slidernibfocus, orientation=xbmcgui.HORIZONTAL) except: self.CURLTimeout=xbmcgui.ControlSlider(rightside+int(BorderWidth*3.5),firstrow+210,(W/2)-(BorderWidth*5),20, textureback=sliderfocus, texture=slidernibnofocus, texturefocus=slidernibfocus) self.addControl(self.CURLTimeout) self.curlmin = 0; self.curlmax = 20 self.recommendedCurl = 10; self.currentCurl = self.recommendedCurl curlpos = wiz.percentage(self.currentCurl, self.curlmax) self.CURLTimeout.setPercent(curlpos) current2 = '[COLOR %s]Current:[/COLOR] [COLOR %s]%ss[/COLOR]' % (COLOR1, COLOR2, self.currentCurl) recommended2 = '[COLOR %s]Recommended:[/COLOR] [COLOR %s]%ss[/COLOR]' % (COLOR1, COLOR2, self.recommendedCurl) self.currentCurl2=xbmcgui.ControlTextBox(rightside+(BorderWidth*3),firstrow+235,currentwidth,20,font=Font,textColor=TxtColor) self.addControl(self.currentCurl2) self.currentCurl2.setText(current2) self.recommendedCurl2=xbmcgui.ControlTextBox(rightside+(BorderWidth*3)+currentwidth,firstrow+235,currentwidth,20,font=Font,textColor=TxtColor) self.addControl(self.recommendedCurl2) self.recommendedCurl2.setText(recommended2) header = '[COLOR %s]Read Buffer Factor[/COLOR]' % (COLOR2) self.Header4=xbmcgui.ControlLabel(leftside, secondrow+5, (W/2)-(BorderWidth*2), 20, header, font='font13', textColor=TxtColor, alignment=0x00000002) self.addControl(self.Header4) msg3 = "[COLOR %s]The value of this setting is a multiplier of the default limit. If Kodi is loading a typical bluray raw file at 36 Mbit/s, then a value of 2 will need at least 72 Mbit/s of network bandwidth. However, unlike with the RAM setting, you can safely increase this value however high you want, and Kodi won't crash.[/COLOR]" % COLOR2 self.Support3=xbmcgui.ControlTextBox(leftside+int(BorderWidth*1.5), secondrow+30+BorderWidth, (W/2)-(BorderWidth*4), 150, font='font12', textColor=TxtColor) self.addControl(self.Support3) self.Support3.setText(msg3) try: self.readBufferFactor=xbmcgui.ControlSlider(leftside+int(BorderWidth*1.5), secondrow+210,(W/2)-(BorderWidth*5),20, textureback=sliderfocus, texture=slidernibnofocus, texturefocus=slidernibfocus, orientation=xbmcgui.HORIZONTAL) except: self.readBufferFactor=xbmcgui.ControlSlider(leftside+int(BorderWidth*1.5), secondrow+210,(W/2)-(BorderWidth*5),20, textureback=sliderfocus, texture=slidernibnofocus, texturefocus=slidernibfocus) self.addControl(self.readBufferFactor) self.readmin = 0; self.readmax = 10 self.recommendedRead = 5; self.currentRead = self.recommendedRead readpos = wiz.percentage(self.currentRead, self.readmax) self.readBufferFactor.setPercent(readpos) current3 = '[COLOR %s]Current:[/COLOR] [COLOR %s]%s[/COLOR]' % (COLOR1, COLOR2, self.currentRead) recommended3 = '[COLOR %s]Recommended:[/COLOR] [COLOR %s]%s[/COLOR]' % (COLOR1, COLOR2, self.recommendedRead) self.currentRead3=xbmcgui.ControlTextBox(leftside+BorderWidth,secondrow+235,currentwidth,20,font=Font,textColor=TxtColor) self.addControl(self.currentRead3) self.currentRead3.setText(current3) self.recommendedRead3=xbmcgui.ControlTextBox(leftside+BorderWidth+currentwidth,secondrow+235,currentwidth,20,font=Font,textColor=TxtColor) self.addControl(self.recommendedRead3) self.recommendedRead3.setText(recommended3) header = '[COLOR %s]Buffer Mode[/COLOR]' % (COLOR2) self.Header4=xbmcgui.ControlLabel(rightside+BorderWidth, secondrow+5, (W/2)-(BorderWidth*2), 20, header, font='font13', textColor=TxtColor, alignment=0x00000002) self.addControl(self.Header4) msg4 = "[COLOR %s]This setting will force Kodi to use a cache for all video files, including local network, internet, and even the local hard drive. Default value is 0 and will only cache videos that use internet file paths/sources.[/COLOR]" % COLOR2 self.Support4=xbmcgui.ControlTextBox(rightside+int(BorderWidth*3.5), secondrow+30+BorderWidth, (W/2)-(BorderWidth*4), 110, font='font12', textColor=TxtColor) self.addControl(self.Support4) self.Support4.setText(msg4) B1 = secondrow+130+BorderWidth; B2 = B1+30; B3 = B2+30; B4 = B3+30; self.Button0 = xbmcgui.ControlRadioButton(rightside+(BorderWidth*3), B1, (W/2)-(BorderWidth*4), 30, '0: Buffer all internet filesystems', font='font10', focusTexture=radiobgfocus, noFocusTexture=radiobgnofocus, focusOnTexture=radiofocus, noFocusOnTexture=radiofocus, focusOffTexture=radionofocus, noFocusOffTexture=radionofocus) self.Button1 = xbmcgui.ControlRadioButton(rightside+(BorderWidth*3), B2, (W/2)-(BorderWidth*4), 30, '1: Buffer all filesystems', font='font10', focusTexture=radiobgfocus, noFocusTexture=radiobgnofocus, focusOnTexture=radiofocus, noFocusOnTexture=radiofocus, focusOffTexture=radionofocus, noFocusOffTexture=radionofocus) self.Button2 = xbmcgui.ControlRadioButton(rightside+(BorderWidth*3), B3, (W/2)-(BorderWidth*4), 30, '2: Only buffer true internet filesystems', font='font10', focusTexture=radiobgfocus, noFocusTexture=radiobgnofocus, focusOnTexture=radiofocus, noFocusOnTexture=radiofocus, focusOffTexture=radionofocus, noFocusOffTexture=radionofocus) self.Button3 = xbmcgui.ControlRadioButton(rightside+(BorderWidth*3), B4, (W/2)-(BorderWidth*4), 30, '3: No Buffer', font='font10', focusTexture=radiobgfocus, noFocusTexture=radiobgnofocus, focusOnTexture=radiofocus, noFocusOnTexture=radiofocus, focusOffTexture=radionofocus, noFocusOffTexture=radionofocus) self.addControl(self.Button0) self.addControl(self.Button1) self.addControl(self.Button2) self.addControl(self.Button3) self.Button0.setSelected(False) self.Button1.setSelected(False) self.Button2.setSelected(True) self.Button3.setSelected(False) self.buttonWrite=xbmcgui.ControlButton(leftside,T+H-40-BorderWidth,(W/2)-(BorderWidth*2),35,"Write File",textColor="0xFF000000",focusedColor="0xFF000000",alignment=2,focusTexture=buttonfocus,noFocusTexture=buttonnofocus) self.buttonCancel=xbmcgui.ControlButton(rightside+BorderWidth*2,T+H-40-BorderWidth,(W/2)-(BorderWidth*2),35,"Cancel",textColor="0xFF000000",focusedColor="0xFF000000",alignment=2,focusTexture=buttonfocus,noFocusTexture=buttonnofocus) self.addControl(self.buttonWrite); self.addControl(self.buttonCancel) self.buttonWrite.controlLeft(self.buttonCancel); self.buttonWrite.controlRight(self.buttonCancel); self.buttonWrite.controlUp(self.Button3); self.buttonWrite.controlDown(self.videoCacheSize) self.buttonCancel.controlLeft(self.buttonWrite); self.buttonCancel.controlRight(self.buttonWrite); self.buttonCancel.controlUp(self.Button3); self.buttonCancel.controlDown(self.videoCacheSize) self.videoCacheSize.controlUp(self.buttonWrite); self.videoCacheSize.controlDown(self.CURLTimeout) self.CURLTimeout.controlUp(self.videoCacheSize); self.CURLTimeout.controlDown(self.readBufferFactor) self.readBufferFactor.controlUp(self.CURLTimeout); self.readBufferFactor.controlDown(self.Button0) self.Button0.controlUp(self.CURLTimeout); self.Button0.controlDown(self.Button1); self.Button0.controlLeft(self.readBufferFactor); self.Button0.controlRight(self.readBufferFactor); self.Button1.controlUp(self.Button0); self.Button1.controlDown(self.Button2); self.Button1.controlLeft(self.readBufferFactor); self.Button1.controlRight(self.readBufferFactor); self.Button2.controlUp(self.Button1); self.Button2.controlDown(self.Button3); self.Button2.controlLeft(self.readBufferFactor); self.Button2.controlRight(self.readBufferFactor); self.Button3.controlUp(self.Button2); self.Button3.controlDown(self.buttonWrite); self.Button3.controlLeft(self.readBufferFactor); self.Button3.controlRight(self.readBufferFactor); self.setFocus(self.videoCacheSize) def doExit(self): self.CloseWindow() def updateCurrent(self, control): if control == self.videoCacheSize: self.currentVideo = (self.videomax)*self.videoCacheSize.getPercent()/100 current = '[COLOR %s]Current:[/COLOR] [COLOR %s]%s MB[/COLOR]' % (COLOR1, COLOR2, int(self.currentVideo)) self.currentVideo1.setText(current) elif control == self.CURLTimeout: self.currentCurl = (self.curlmax)*self.CURLTimeout.getPercent()/100 current = '[COLOR %s]Current:[/COLOR] [COLOR %s]%ss[/COLOR]' % (COLOR1, COLOR2, int(self.currentCurl)) self.currentCurl2.setText(current) elif control == self.readBufferFactor: self.currentRead = (self.readmax)*self.readBufferFactor.getPercent()/100 current = '[COLOR %s]Current:[/COLOR] [COLOR %s]%s[/COLOR]' % (COLOR1, COLOR2, int(self.currentRead)) self.currentRead3.setText(current) elif control in [self.Button0, self.Button1, self.Button2, self.Button3]: self.Button0.setSelected(False) self.Button1.setSelected(False) self.Button2.setSelected(False) self.Button3.setSelected(False) control.setSelected(True) def doWrite(self): #self.currentVideo = int((self.videomax-20)*self.videoCacheSize.getPercent()/100+20)*1024*1024 #self.currentCurl = int((self.curlmax)*self.CURLTimeout.getPercent()/100) #self.currentRead = int((self.readmax)*self.readBufferFactor.getPercent()/100) if self.Button0.isSelected(): buffermode = 0 elif self.Button1.isSelected(): buffermode = 1 elif self.Button2.isSelected(): buffermode = 2 elif self.Button3.isSelected(): buffermode = 3 if os.path.exists(ADVANCED): choice = DIALOG.yesno(ADDONTITLE, "[COLOR %s]There is currently an active [COLOR %s]AdvancedSettings.xml[/COLOR], would you like to remove it and continue?[/COLOR]" % (COLOR2, COLOR1), yeslabel="[B][COLOR green]Remove Settings[/COLOR][/B]", nolabel="[B][COLOR red]Cancel Write[/COLOR][/B]") if choice == 0: return try: os.remove(ADVANCED) except: f = open(ADVANCED, 'w'); f.close() if KODIV < 17: with open(ADVANCED, 'w+') as f: f.write('<advancedsettings>\n') f.write(' <network>\n') f.write(' <buffermode>%s</buffermode>\n' % buffermode) f.write(' <cachemembuffersize>%s</cachemembuffersize>\n' % int(self.currentVideo*1024*1024)) f.write(' <readbufferfactor>%s</readbufferfactor>\n' % self.currentRead) f.write(' <curlclienttimeout>%s</curlclienttimeout>\n' % self.currentCurl) f.write(' <curllowspeedtime>%s</curllowspeedtime>\n' % self.currentCurl) f.write(' </network>\n') f.write('</advancedsettings>\n') f.close() else: with open(ADVANCED, 'w+') as f: f.write('<advancedsettings>\n') f.write(' <cache>\n') f.write(' <buffermode>%s</buffermode>\n' % buffermode) f.write(' <memorysize>%s</memorysize>\n' % int(self.currentVideo*1024*1024)) f.write(' <readfactor>%s</readfactor>\n' % self.currentRead) f.write(' </cache>\n') f.write(' <network>\n') f.write(' <curlclienttimeout>%s</curlclienttimeout>\n' % self.currentCurl) f.write(' <curllowspeedtime>%s</curllowspeedtime>\n' % self.currentCurl) f.write(' </network>\n') f.write('</advancedsettings>\n') f.close() wiz.LogNotify("[COLOR %s]%s[/COLOR]" % (COLOR1, ADDONTITLE), '[COLOR %s]AdvancedSettings.xml have been written[/COLOR]' % COLOR2) self.CloseWindow() def onControl(self, control): if control==self.buttonWrite: self.doWrite() elif control==self.buttonCancel: self.doExit() def onAction(self, action): try: F=self.getFocus() except: F=False if F == self.videoCacheSize: self.updateCurrent(self.videoCacheSize) elif F == self.CURLTimeout: self.updateCurrent(self.CURLTimeout) elif F == self.readBufferFactor: self.updateCurrent(self.readBufferFactor) elif F in [self.Button0, self.Button1, self.Button2, self.Button3] and action in [ACTION_MOUSE_LEFT_CLICK, ACTION_SELECT_ITEM]: self.updateCurrent(F) elif action == ACTION_PREVIOUS_MENU: self.doExit() elif action == ACTION_NAV_BACK: self.doExit() def CloseWindow(self): self.close() maxW=1280; maxH=720; W=int(900); H=int(650); L=int((maxW-W)/2); T=int((maxH-H)/2); TempWindow=MyWindow(L=L,T=T,W=W,H=H,TxtColor=TxtColor,Font=Font,BorderWidth=BorderWidth); TempWindow.doModal() del TempWindow ########################################## # `7MM"""YMM MMP""MM""YMM .g8"""bgd # # MM `7 P' MM `7 .dP' `M # # MM d MM dM' ` # # MM""MM MM MM # # MM Y MM MM. `7MMF' # # MM MM `Mb. MM # # .JMML. .JMML. `"bmmmdPY # ########################################## def autoConfig2(msg='', TxtColor='0xFFFFFFFF', Font='font10', BorderWidth=10): class MyWindow(xbmcgui.WindowDialog): scr={}; def __init__(self,msg='',L=0,T=0,W=1280,H=720,TxtColor='0xFFFFFFFF',Font='font10',BorderWidth=10): buttonfocus, buttonnofocus = artwork('button') self.BG=xbmcgui.ControlImage(L+BorderWidth,T+BorderWidth,W-(BorderWidth*2),H-(BorderWidth*2), FANART, aspectRatio=0) self.addControl(self.BG) top = T+BorderWidth leftside = L+BorderWidth rightside = L+(W/2)-(BorderWidth*2) header = '[COLOR %s]Quick Advanced Settings Configurator[/COLOR]' % (COLOR3) self.Header=xbmcgui.ControlLabel(L, top, W, 30, header, font='font13', textColor=TxtColor, alignment=0x00000002) self.addControl(self.Header) top += 30+BorderWidth #####Video Cache Size#### freeMemory = int(float(wiz.getInfo('System.Memory(free)')[:-2])*.33) recMemory = int(float(wiz.getInfo('System.Memory(free)')[:-2])*.23) self.videomin = 0; self.videomax = freeMemory if freeMemory < 2000 else 2000 self.recommendedVideo = recMemory if recMemory < 500 else 500; self.currentVideo = self.recommendedVideo current1 = '[COLOR %s]Video Cache Size[/COLOR]=[COLOR %s]%s MB[/COLOR]' % (COLOR1, COLOR2, self.currentVideo) recommended1 = '[COLOR %s]Video Cache Size:[/COLOR] [COLOR %s]%s MB[/COLOR]' % (COLOR1, COLOR5, self.recommendedVideo) ####CURL Timeout/CURL Low Speed#### self.curlmin = 0; self.curlmax = 20 self.recommendedCurl = 10; self.currentCurl = self.recommendedCurl curlpos = wiz.percentage(self.currentCurl, self.curlmax) recommended2 = '[COLOR %s]CURL Timeout/CURL Low Speed:[/COLOR] [COLOR %s]%ss[/COLOR]' % (COLOR1, COLOR5, self.recommendedCurl) ########Read Buffer Factor##### self.readmin = 0; self.readmax = 10 self.recommendedRead = 5; self.currentRead = self.recommendedRead readpos = wiz.percentage(self.currentRead, self.readmax) recommended3 = '[COLOR %s]Read Buffer Factor:[/COLOR] [COLOR %s]%s[/COLOR]' % (COLOR1, COLOR5, self.recommendedRead) ######Buffer Mode##### recommended4 = '[COLOR %s]Buffer Mode:[/COLOR] [COLOR %s]2[/COLOR]' %(COLOR1, COLOR5) ####BOX## msgbox='[COLOR %s]These settings will be written to the advancesettings.xml[/COLOR]\r\n\r\n%s\r\n%s\r\n%s\r\n%s' %(COLOR4, recommended4, recommended1, recommended3, recommended2) self.box=xbmcgui.ControlTextBox(L+25,T+50,W,H, font='font14') self.addControl(self.box) self.box.setText(msgbox) ####Buttons### self.buttonWrite=xbmcgui.ControlButton(leftside,T+H-40-BorderWidth,(W/2)-(BorderWidth*2),35,"Write File",textColor="0xFF000000",focusedColor="0xFF000000",alignment=2,focusTexture=buttonfocus,noFocusTexture=buttonnofocus) self.buttonCancel=xbmcgui.ControlButton(rightside+BorderWidth*2,T+H-40-BorderWidth,(W/2)-(BorderWidth*2),35,"Cancel",textColor="0xFF000000",focusedColor="0xFF000000",alignment=2,focusTexture=buttonfocus,noFocusTexture=buttonnofocus) self.addControl(self.buttonWrite); self.addControl(self.buttonCancel) self.setFocus(self.buttonCancel) self.buttonWrite.controlLeft(self.buttonCancel); self.buttonWrite.controlRight(self.buttonCancel); self.buttonCancel.controlLeft(self.buttonWrite); self.buttonCancel.controlRight(self.buttonWrite) def doExit(self): self.CloseWindow() def updateCurrent(self, control): if control == self.videoCacheSize: self.currentVideo = (self.videomax)*self.videoCacheSize.getPercent()/100 current = '[COLOR %s]Current:[/COLOR] [COLOR %s]%s MB[/COLOR]' % (COLOR1, COLOR2, int(self.currentVideo)) self.currentVideo1.setText(current) elif control == self.CURLTimeout: self.currentCurl = (self.curlmax)*self.CURLTimeout.getPercent()/100 current = '[COLOR %s]Current:[/COLOR] [COLOR %s]%ss[/COLOR]' % (COLOR1, COLOR2, int(self.currentCurl)) self.currentCurl2.setText(current) elif control == self.readBufferFactor: self.currentRead = (self.readmax)*self.readBufferFactor.getPercent()/100 current = '[COLOR %s]Current:[/COLOR] [COLOR %s]%s[/COLOR]' % (COLOR1, COLOR2, int(self.currentRead)) self.currentRead3.setText(current) def doWrite(self): buffermode = 2 if os.path.exists(ADVANCED): choice = DIALOG.yesno(ADDONTITLE, "[COLOR %s]There is currently an active [COLOR %s]AdvancedSettings.xml[/COLOR], would you like to remove it and continue?[/COLOR]" % (COLOR2, COLOR1), yeslabel="[B][COLOR green]Remove Settings[/COLOR][/B]", nolabel="[B][COLOR red]Cancel Write[/COLOR][/B]") if choice == 0: return try: os.remove(ADVANCED) except: f = open(ADVANCED, 'w'); f.close() if KODIV < 17: with open(ADVANCED, 'w+') as f: f.write('<advancedsettings>\n') f.write(' <network>\n') f.write(' <buffermode>%s</buffermode>\n' % buffermode) f.write(' <cachemembuffersize>%s</cachemembuffersize>\n' % int(self.currentVideo*1024*1024)) f.write(' <readbufferfactor>%s</readbufferfactor>\n' % self.currentRead) f.write(' <curlclienttimeout>%s</curlclienttimeout>\n' % self.currentCurl) f.write(' <curllowspeedtime>%s</curllowspeedtime>\n' % self.currentCurl) f.write(' </network>\n') f.write('</advancedsettings>\n') f.close() else: with open(ADVANCED, 'w+') as f: f.write('<advancedsettings>\n') f.write(' <cache>\n') f.write(' <buffermode>%s</buffermode>\n' % buffermode) f.write(' <memorysize>%s</memorysize>\n' % int(self.currentVideo*1024*1024)) f.write(' <readfactor>%s</readfactor>\n' % self.currentRead) f.write(' </cache>\n') f.write(' <network>\n') f.write(' <curlclienttimeout>%s</curlclienttimeout>\n' % self.currentCurl) f.write(' <curllowspeedtime>%s</curllowspeedtime>\n' % self.currentCurl) f.write(' </network>\n') f.write('</advancedsettings>\n') f.close() wiz.LogNotify("[COLOR %s]%s[/COLOR]" % (COLOR1, ADDONTITLE), '[COLOR %s]AdvancedSettings.xml have been written[/COLOR]' % COLOR2) self.CloseWindow() def onControl(self, control): if control==self.buttonWrite: self.doWrite() elif control==self.buttonCancel: self.doExit() def onAction(self, action): try: F=self.getFocus() except: F=False if action == ACTION_PREVIOUS_MENU: self.doExit() elif action == ACTION_NAV_BACK: self.doExit() def CloseWindow(self): self.close() maxW=1280; maxH=720; W=int(700); H=int(350); L=int((maxW-W)/2); T=int((maxH-H)/2); TempWindow=MyWindow(L=L,T=T,W=W,H=H,TxtColor=TxtColor,Font=Font,BorderWidth=BorderWidth); TempWindow.doModal() del TempWindow ########################## ### Converted to XML ########################## def contact(msg=""): class MyWindow(xbmcgui.WindowXMLDialog): def __init__(self, *args, **kwargs): self.title = THEME3 % kwargs["title"] self.image = kwargs["image"] self.fanart = kwargs["fanart"] self.msg = THEME2 % kwargs["msg"] def onInit(self): self.fanartimage = 101 self.titlebox = 102 self.imagecontrol = 103 self.textbox = 104 self.scrollcontrol = 105 self.showdialog() def showdialog(self): self.getControl(self.imagecontrol).setImage(self.image) self.getControl(self.fanartimage).setImage(self.fanart) self.getControl(self.fanartimage).setColorDiffuse('9FFFFFFF') self.getControl(self.textbox).setText(self.msg) self.getControl(self.titlebox).setLabel(self.title) self.setFocusId(self.scrollcontrol) def onAction(self,action): if action == ACTION_PREVIOUS_MENU: self.close() elif action == ACTION_NAV_BACK: self.close() cw = MyWindow( "Contact.xml" , ADDON.getAddonInfo('path'), 'DefaultSkin', title=ADDONTITLE, fanart=CONTACTFANART, image=CONTACTICON, msg=msg) cw.doModal() del cw def apkInstaller(apk): class APKInstaller(xbmcgui.WindowXMLDialog): def __init__(self,*args,**kwargs): self.shut=kwargs['close_time'] xbmc.executebuiltin("Skin.Reset(AnimeWindowXMLDialogClose)") xbmc.executebuiltin("Skin.SetBool(AnimeWindowXMLDialogClose)") def onClick(self,controlID): self.CloseWindow() def onAction(self,action): if action in [ACTION_PREVIOUS_MENU, ACTION_BACKSPACE, ACTION_NAV_BACK, ACTION_SELECT_ITEM, ACTION_MOUSE_LEFT_CLICK, ACTION_MOUSE_LONG_CLICK]: self.CloseWindow() def CloseWindow(self): xbmc.executebuiltin("Skin.Reset(AnimeWindowXMLDialogClose)") xbmc.sleep(400) self.close() xbmc.executebuiltin('Skin.SetString(apkinstaller, Now that %s has been downloaded[CR]Click install on the next window!)' % apk) popup = APKInstaller('APK.xml', ADDON.getAddonInfo('path'), 'DefaultSkin', close_time=34) popup.doModal() del popup def speedTest(img): class speedTest(xbmcgui.WindowXMLDialog): def __init__(self,*args,**kwargs): self.imgfile = kwargs['img'] def onInit(self): self.imagespeed = 101 self.button = 201 self.showdialog() def showdialog(self): self.setFocus(self.getControl(self.button)) self.getControl(self.imagespeed).setImage(self.imgfile) def onClick(self,controlID): self.CloseWindow() def onAction(self,action): if action in [ACTION_PREVIOUS_MENU, ACTION_BACKSPACE, ACTION_NAV_BACK, ACTION_SELECT_ITEM, ACTION_MOUSE_LEFT_CLICK, ACTION_MOUSE_LONG_CLICK]: self.CloseWindow() def CloseWindow(self): self.close() popup = speedTest('SpeedTest.xml', ADDON.getAddonInfo('path'), 'DefaultSkin', img=img) popup.doModal() del popup def Preview(url): class YTvid(xbmcgui.WindowXMLDialog): def __init__(self,*args,**kwargs): self.url = kwargs['url'] def onInit(self): self.button = 101 self.Obutton = 102 self.showdialog() def showdialog(self): self.setFocus(self.getControl(self.Obutton)) if wiz.getCond('System.HasAddon(plugin.video.youtube)') == 1: url = 'plugin://plugin.video.youtube/play/?video_id=%s' % self.url xbmc.Player().play(url, windowed=False) xbmc.sleep(2000) if xbmc.Player().isPlayingVideo() == 0: yt.PlayVideoB(self.url) def onClick(self,controlID): if controlId == self.Obutton: self.close() else: self.CloseWindow() def onAction(self,action): if action in [ACTION_PREVIOUS_MENU, ACTION_BACKSPACE, ACTION_NAV_BACK, ACTION_SELECT_ITEM, ACTION_MOUSE_LEFT_CLICK, ACTION_MOUSE_LONG_CLICK]: self.CloseWindow(); xbmc.Player().stop() def CloseWindow(self): self.close() YTv = YTvid('Preview.xml', ADDON.getAddonInfo('path'), 'DefaultSkin', url=url) YTv.doModal() del YTv def firstRunSettings(): class firstRun(xbmcgui.WindowXMLDialog): def __init__(self,*args,**kwargs): self.whitelistcurrent = kwargs['current'] def onInit(self): self.title = 101 self.okbutton = 201 self.trakt = 301 self.debrid = 302 self.login = 303 self.alluc = 314 self.profiles = 305 self.advanced = 306 self.favourites = 307 self.superfav = 308 self.repo = 309 self.whitelist = 310 self.cache = 311 self.showdialog() self.controllist = [self.trakt, self.debrid, self.login, self.profiles, self.advanced, self.favourites, self.superfav, self.repo, self.whitelist, self.cache, self.alluc] self.controlsettings = ['keeptrakt', 'keepdebrid', 'keeplogin', 'keepprofiles', 'keepadvanced', 'keepfavourites', 'keeprepos', 'keepsuper', 'keepwhitelist', 'clearcache', 'keepalluc'] for item in self.controllist: if wiz.getS(self.controlsettings[self.controllist.index(item)]) == 'true': self.getControl(item).setSelected(True) def showdialog(self): self.getControl(self.title).setLabel(ADDONTITLE) self.setFocus(self.getControl(self.okbutton)) def onClick(self, controlId): if controlId == self.okbutton: self.close() for item in self.controllist: at = self.controllist.index(item) if self.getControl(item).isSelected(): wiz.setS(self.controlsettings[at], 'true') else: wiz.setS(self.controlsettings[at], 'false') if self.getControl(self.whitelist).isSelected() and not self.whitelistcurrent == 'true': wiz.whiteList('edit') fr = firstRun( "FirstRunSaveData.xml" , ADDON.getAddonInfo('path'), 'DefaultSkin', current=wiz.getS('keepwhitelist')) fr.doModal() del fr def firstRun(): class MyWindow(xbmcgui.WindowXMLDialog): def __init__(self, *args, **kwargs): self.title = THEME3 % ADDONTITLE self.msg = "Currently no build installed from %s.\n\nSelect 'Build Menu' to install a %s Build or 'Ignore' to never see this message again.\n\nThank you for choosing %s." % (ADDONTITLE,BUILDERNAME, ADDONTITLE) self.msg = THEME2 % self.msg def onInit(self): self.image = 101 self.titlebox = 102 self.textbox = 103 self.buildmenu = 201 self.ignore = 202 self.showdialog() def showdialog(self): self.getControl(self.image).setImage(FANART) self.getControl(self.image).setColorDiffuse('9FFFFFFF') self.getControl(self.textbox).setText(self.msg) self.getControl(self.titlebox).setLabel(self.title) self.setFocusId(self.buildmenu) def onAction(self,action): if action == ACTION_PREVIOUS_MENU: self.doIgnore() elif action == ACTION_NAV_BACK: self.doIgnore() def onClick(self, controlId): if (controlId == self.buildmenu): self.doBuildMenu() else: self.doIgnore() def notification(msg='', test=False): class MyWindow(xbmcgui.WindowXMLDialog): def __init__(self, *args, **kwargs): self.test = kwargs['test'] self.message = THEME2 % kwargs['msg'] def onInit(self): self.image = 101 self.titlebox = 102 self.titleimage = 103 self.textbox = 104 self.scroller = 105 self.dismiss = 201 self.remindme = 202 self.showdialog() def showdialog(self): self.testimage = os.path.join(ART, 'text.png') self.getControl(self.image).setImage(BACKGROUND) self.getControl(self.image).setColorDiffuse('9FFFFFFF') self.getControl(self.textbox).setText(self.message) self.setFocusId(self.remindme) if HEADERTYPE == 'Text': self.getControl(self.titlebox).setLabel(THEME3 % HEADERMESSAGE) else: self.getControl(self.titleimage).setImage(HEADERIMAGE) def doRemindMeLater(self): if not test == True: wiz.setS("notedismiss","false") wiz.log("[Notification] NotifyID %s Remind Me Later" % wiz.getS('noteid'), xbmc.LOGNOTICE) self.close() def doDismiss(self): if not test == True: wiz.setS("notedismiss","true") wiz.log("[Notification] NotifyID %s Dismissed" % wiz.getS('noteid'), xbmc.LOGNOTICE) self.close() def onAction(self,action): if action == ACTION_PREVIOUS_MENU: self.doRemindMeLater() elif action == ACTION_NAV_BACK: self.doRemindMeLater() def onClick(self, controlId): if (controlId == self.dismiss): self.doDismiss() else: self.doRemindMeLater() xbmc.executebuiltin('Skin.SetString(headertexttype, %s)' % 'true' if HEADERTYPE == 'Text' else 'false') xbmc.executebuiltin('Skin.SetString(headerimagetype, %s)' % 'true' if HEADERTYPE == 'Image' else 'false') notify = MyWindow( "Notifications.xml" , ADDON.getAddonInfo('path'), 'DefaultSkin', msg=msg, test=test) notify.doModal() del notify def updateWindow(name='Testing Window', current='1.0', new='1.1', icon=ICON, fanart=FANART): class MyWindow(xbmcgui.WindowXMLDialog): def __init__(self, *args, **kwargs): self.name = THEME3 % kwargs['name'] self.current = kwargs['current'] self.new = kwargs['new'] self.icon = kwargs['icon'] self.fanart = kwargs['fanart'] self.msgupdate = "Update avaliable for installed build:\n[COLOR %s]%s[/COLOR]\n\nCurrent Version: v[COLOR %s]%s[/COLOR]\nLatest Version: v[COLOR %s]%s[/COLOR]\n\n[COLOR %s]*Recommened: Fresh install[/COLOR]" % (COLOR1, self.name, COLOR1, self.current, COLOR1, self.new, COLOR1) self.msgcurrent = "Running latest version of installed build:\n[COLOR %s]%s[/COLOR]\n\nCurrent Version: v[COLOR %s]%s[/COLOR]\nLatest Version: v[COLOR %s]%s[/COLOR]\n\n[COLOR %s]*Recommended: Fresh install[/COLOR]" % (COLOR1, self.name, COLOR1, self.current, COLOR1, self.new, COLOR1) def onInit(self): self.imagefanart = 101 self.header = 102 self.textbox = 103 self.imageicon = 104 self.fresh = 201 self.normal = 202 self.ignore = 203 self.showdialog() def showdialog(self): self.getControl(self.header).setLabel(self.name) self.getControl(self.textbox).setText(THEME2 % self.msgupdate if current < new else self.msgcurrent) self.getControl(self.imagefanart).setImage(self.fanart) self.getControl(self.imagefanart).setColorDiffuse('2FFFFFFF') self.getControl(self.imageicon).setImage(self.icon) self.setFocusId(self.fresh) def doFreshInstall(self): wiz.log("[Check Updates] [Installed Version: %s] [Current Version: %s] [User Selected: Fresh Install build]" % (BUILDVERSION, LATESTVERSION), xbmc.LOGNOTICE) wiz.log("[Check Updates] [Next Check: %s]" % str(NEXTCHECK), xbmc.LOGNOTICE) wiz.setS('lastbuildcheck', str(NEXTCHECK)) self.close() url = 'plugin://%s/?mode=install&name=%s&url=fresh' % (ADDON_ID, urllib.quote_plus(BUILDNAME)) xbmc.executebuiltin('RunPlugin(%s)' % url) def doNormalInstall(self): wiz.log("[Check Updates] [Installed Version: %s] [Current Version: %s] [User Selected: Normal Install build]" % (BUILDVERSION, LATESTVERSION), xbmc.LOGNOTICE) wiz.log("[Check Updates] [Next Check: %s]" % str(NEXTCHECK), xbmc.LOGNOTICE) wiz.setS('lastbuildcheck', str(NEXTCHECK)) self.close() url = 'plugin://%s/?mode=install&name=%s&url=normal' % (ADDON_ID, urllib.quote_plus(BUILDNAME)) xbmc.executebuiltin('RunPlugin(%s)' % url) def doIgnore(self): wiz.log("[Check Updates] [Installed Version: %s] [Current Version: %s] [User Selected: Ignore 3 Days]" % (BUILDVERSION, LATESTVERSION), xbmc.LOGNOTICE) wiz.log("[Check Updates] [Next Check: %s]" % str(THREEDAYS), xbmc.LOGNOTICE) wiz.setS('lastbuildcheck', str(THREEDAYS)) self.close() def onAction(self,action): if action == ACTION_PREVIOUS_MENU: self.doIgnore() elif action == ACTION_NAV_BACK: self.doIgnore() def onClick(self, controlId): if (controlId == self.fresh): self.doFreshInstall() elif (controlId == self.normal): self.doNormalInstall() else: self.doIgnore() update = MyWindow( "BuildUpdate.xml" , ADDON.getAddonInfo('path'), 'DefaultSkin', name=name, current=current, new=new, icon=icon, fanart=fanart) update.doModal() del update
[ "LeoNguena@gmail.com" ]
LeoNguena@gmail.com
3b4876337161a3823dec9d8ca32ffca1ec5482ca
013444f1d7030f9bbe56240cb695e12b8cf71e18
/tests/conftest.py
e4e01bfc4ea668329cb14fae5617a196d32070e5
[ "MIT" ]
permissive
caperea/django-admin-resumable-js
63feb8fd84d02d6d4bf9f74104c6b1dbbdbab373
3dbd8e46dd3558180525d861811881ad9966e2a3
refs/heads/master
2020-12-25T09:48:03.162724
2015-08-29T08:27:14
2015-08-29T08:27:14
41,584,547
0
0
null
2015-08-29T07:18:42
2015-08-29T07:18:41
null
UTF-8
Python
false
false
2,089
py
import pytest import os from selenium import webdriver browsers = { 'firefox': webdriver.Firefox, #'chrome': webdriver.Chrome, } @pytest.fixture(scope='session', params=browsers.keys()) def driver(request): if 'DISPLAY' not in os.environ: pytest.skip('Test requires display server (export DISPLAY)') b = browsers[request.param]() request.addfinalizer(lambda *args: b.quit()) return b def pytest_configure(): import django from django.conf import settings settings.configure( DEBUG=False, DEBUG_PROPAGATE_EXCEPTIONS=True, DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:' } }, SITE_ID=1, SECRET_KEY='not very secret in tests', USE_I18N=True, USE_L10N=True, STATIC_URL='/static/', ROOT_URLCONF='tests.urls', TEMPLATE_LOADERS=( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ), MIDDLEWARE_CLASSES=( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ), INSTALLED_APPS=( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'admin_resumable', 'tests', ), PASSWORD_HASHERS=( 'django.contrib.auth.hashers.MD5PasswordHasher', ), MEDIA_ROOT=os.path.join(os.path.dirname(__file__), 'media') ) try: import django django.setup() except AttributeError: pass
[ "jonath4n@gmail.com" ]
jonath4n@gmail.com
159cad8ebc54a5a356612b41ee281288113cfa71
6df44f3f9660cf63f64cf31af98fa96c23d55bdc
/venv/bin/flask
e4023bf9e1b6ed60f4b570ff42d0ffc45fa02c1f
[]
no_license
ethanchewy/FriendOrNot
82a9c8bda2e70e8e692d5c1aae1869a9cfcb6ae3
3aeb8e7b2a5481cad391767daf5eb0ffd20f1b04
refs/heads/master
2021-01-11T18:45:16.496180
2017-02-23T20:22:35
2017-02-23T20:22:35
79,618,551
2
3
null
null
null
null
UTF-8
Python
false
false
233
#!/home/ethanc/pennapps/venv/bin/python # -*- coding: utf-8 -*- import re import sys from flask.cli import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "17chiue@gmail.com" ]
17chiue@gmail.com
4fe46a3e69863bca6e98c1cb6ab5c17fd36f8261
5c531de5e4759c904e608b4fc653b2b041f79a0e
/779. K-th Symbol in Grammar.py
06e46cf683b3f090a9b595db7b7a9fd6675029aa
[]
no_license
jianhui-ben/leetcode_python
133c7e6e5c7316d00607ba2e327239e002de28b2
fcc16124cc24a5993e27f5d97e78d8f290e68230
refs/heads/master
2022-06-05T22:32:18.034581
2022-05-17T02:27:11
2022-05-17T02:27:11
250,683,308
0
0
null
null
null
null
UTF-8
Python
false
false
728
py
#779. K-th Symbol in Grammar #On the first row, we write a 0. Now in every subsequent row, we look at the previous row and replace each occurrence of 0 with 01, and each occurrence of 1 with 10. #Given row N and index K, return the K-th indexed symbol in row N. (The values of K are 1-indexed.) (1 indexed). #Examples: #Input: N = 1, K = 1 #Output: 0 #Input: N = 2, K = 1 #Output: 0 #Input: N = 2, K = 2 #Output: 1 #Input: N = 4, K = 5 #Output: 1 class Solution: def kthGrammar(self, N: int, K: int) -> int: ## recursion if N==1: return 0 if K%2==1: return self.kthGrammar(N-1,(K+1)//2) else: return 1-self.kthGrammar(N-1,(K+1)//2)
[ "jianhui.ben@gmail.com" ]
jianhui.ben@gmail.com
2c5c74923e47610c9a47e37607a43702de94c859
37260ad04c3a965014cd95d6b1bc81e3c3822068
/SoundSpeedPrediction/load_weights.py
ee4657c0b8252490221406ec3727e94dcb737e58
[]
no_license
MarineBioAcousticsRC/ShipNoise
db17c330a7892c0eca57cd3377a3751844f7c3a9
07d3ccfdeef09e4a8609b9bbbc4f4d2097eb70f5
refs/heads/master
2022-11-27T13:36:17.284376
2021-12-10T19:54:25
2021-12-10T19:54:25
196,640,839
2
1
null
null
null
null
UTF-8
Python
false
false
2,716
py
from keras.models import load_model import data_gen_mixed_stand as pd import numpy as np import ML_data_collection as dc import model_gen as mg from keras.models import Model from keras.layers import Input, Dense, Dropout, Activation,Flatten from keras.layers import concatenate from keras.utils import np_utils import model_gen as mg from keras import optimizers import tensorflow as tf from keras import backend as K from keras.callbacks import TensorBoard,EarlyStopping from keras import regularizers import data_gen_mixed_stand as pd import numpy as np from DataGenerator import Generator import unpickle as up import ML_data_collection as dc folder = "J:\Pickled_Data_2\\" filepath = 'J:\\scripts\\ML_Attempts\\Weights\\Mixed_Data\\attempt_2015.h5' #definition of R^2 loss function def coeff_determination(y_true, y_pred): pd.conv(y_true) pd.conv(y_pred) SS_res = K.sum(K.square( y_true-y_pred )) SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) ) return ( 1 - SS_res/(SS_tot + K.epsilon()) ) #Root Mean Squared Error def RMSE(y_true, y_pred): return K.sqrt(K.mean(K.square(pd.conv(y_pred) - pd.conv(y_true)))) #mean absolute error but in m/s so its more readable def conv_mae(y_true, y_pred): return K.mean(abs(pd.conv(y_pred) - pd.conv(y_true))) mlp = mg.create_mlp(5, regress=False) cnn = mg.create_cnn(508, 508, 1, filters=(16,32), regress=False) # create the input to our final set of layers as the *output* of both # the MLP and CNN combinedInput = concatenate([mlp.output, cnn.output]) # our final FC layer head will have two dense layers, the final one # being our regression head x = Dense(4, activation="relu")(combinedInput) comb_output = (Dense(1,activation='linear', kernel_regularizer=regularizers.l1_l2(l1 = 0.01,l2 = 0.01)))(x) # our final model will accept categorical/numerical data on the MLP # input and images on the CNN input, outputting a single value model = Model(inputs=[mlp.input, cnn.input], outputs=comb_output) adam = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) model.compile(loss='mae', optimizer=adam,metrics=[conv_mae,RMSE,coeff_determination]) model.load_weights(filepath) x_data,true_speeds,dates = pd.eval_batch(folder,1000) pred_speeds = model.predict(x_data) pred_speeds_conv = pd.conv(pred_speeds) print(pd.conv(true_speeds)) print(dates) for i in range(len(dates)): if dates[i] == 0: dates.pop(i) true_speeds.pop(i) pred_speeds_conv.pop(i) dc.residual_plot(2015,pd.conv(true_speeds),pred_speeds_conv,) # dc.fitted_line(2015,pd.conv(true_speeds),pred_speeds_conv,dates) dc.true_v_pred(2015,pd.conv(true_speeds),pred_speeds_conv)
[ "kfrasier@users.noreply.github.com" ]
kfrasier@users.noreply.github.com
d5956bba85c35f02ea953943898e93b84a8d93c3
dee95af958bde1937d47646c706f815450023d3c
/maya-tools/shelf/scripts/reload_scripts.py
ac50bd9996f619e38a18925a2c91b83390122722
[]
no_license
tws0002/byu-pipeline-tools
4e06556033ea3b4a0d4f2d792ae7962300b689a8
076b3f461a7dc239ca7919ed99dbcd212fdfe061
refs/heads/master
2020-03-16T00:24:22.763033
2018-05-03T01:44:24
2018-05-03T01:44:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
import maya.cmds as mc import alembic_static_exporter import alembic_exporter import reference_selection import alembic_tagger import alembic_untagger import checkout import new_body import playblast import publish import rollback import fk_ik_snapping import cluster_interpolate import reference import reload_scripts import playground import education import crowdCycle def go(): reload(alembic_static_exporter) reload(alembic_exporter) reload(reference_selection) reload(alembic_tagger) reload(alembic_untagger) reload(checkout) reload(new_body) reload(playblast) reload(publish) reload(rollback) reload(fk_ik_snapping) reload(reload_scripts) reload(reference) reload(cluster_interpolate) reload(playground) reload(education) reload(crowdCycle) # reload(byuam) # reload(byugui)
[ "benjamin.demann@gmail.com" ]
benjamin.demann@gmail.com
f92340c5080f725a48b938b510a93a68ecd76fca
d1b0f7ba2f23a12dbc3aac6f8e54c646d8c18b95
/myprofileApp/urls.py
8493915c8364881266798bc5ac8aa51eb7db35a7
[]
no_license
Oliver-CodeRepo/Oliver-Mulaku-Profile
f81a0e790913e4499616681309d5389f5c4ba60d
47e500bf1ad766e7e1fd7dff58e15f0a48192702
refs/heads/master
2023-03-01T04:28:55.536207
2021-02-05T16:32:17
2021-02-05T16:32:17
331,657,275
0
0
null
null
null
null
UTF-8
Python
false
false
169
py
from django.urls import path from . import views urlpatterns = [ path('', views.homePage, name='home'), path('my-resume/', views.downloadFile, name='resume') ]
[ "sinyorr.mi@gmail.com" ]
sinyorr.mi@gmail.com
786ebda7175d2b93a3367c33edc52cf774294e06
8ac3ef229436abdb2a9ae4c428ab1f62148897a3
/Vijay_Sir/28-04-2021/Constructor_Override.py
f0c5d291738df6cb877b0b0dbf8d4bd883e2963c
[]
no_license
udayreddy026/pdemo_Python
358e01cf6599e1bea3f787e6dfae2d039ee66668
6b7272fe205053141ed273ae70beb4358a4071f2
refs/heads/main
2023-05-01T04:33:40.558187
2021-05-14T07:06:20
2021-05-14T07:06:20
349,928,315
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
class Example: def __init__(self): self.a = 'Sting Instance Variable' class Ex: def __init__(self): super(Ex, self).__init__() self.b = 'Second Class Instance Variable' class Ex1(Ex, Example): def __init__(self): super(Ex1, self).__init__() self.c = 'Ex1 Class Instance variable' self.a = 'Override Variable' e = Ex1() print(e.a) print(e.b)
[ "udayreddy026gmail.com" ]
udayreddy026gmail.com
04358d64c0ac30747ca35d7106ea8a5cbd6927be
be1fe1f60420c76bce5ffe71795bb5e7930d3771
/Algorithm_Specialization_Course3/Assignment2/clusteringBig.py
6615eb376b62141768d953f06d113ec12dd47f75
[]
no_license
MagnIeeT/AlgorithmSpecializationStanford
b37c2a103835ef8abae1675b3c82080d7b6c31d3
d18167fc3a08614ec4a5b3ddb73328e39d9c40fb
refs/heads/master
2021-09-04T10:02:37.361788
2018-01-17T18:56:56
2018-01-17T18:56:56
114,814,492
2
0
null
null
null
null
UTF-8
Python
false
false
1,734
py
# -*- coding: utf-8 -*- """ Created on Fri Jan 05 22:48:14 2018 @author: Neeraj Agrawal """ from unionFind import UnionFind def graph(): with open("clustering_big.txt", 'r') as f: data = f.readlines() numberNodes = int(data[0].split()[0]) vertexlist =[] for line in data[1:]: node = "".join([ el for el in line if el is not " "])[:-1] vertexlist.append(node) return numberNodes ,list(set(vertexlist)) numberNodes, vertexlist = graph() hastable ={} for i,ele in enumerate(vertexlist): hastable[ele] = i uf = UnionFind(len(vertexlist)) def generatecloseVertex(vertex): newVertices1 = [] newVertices2 = [] for i in range(len(vertex)): newVertex = (vertex[:i]+str(int(not(int(vertex[i])))) + vertex[i+1:]) newVertices1.append(newVertex) for i in range(len(vertex)-1): newVertex = (vertex[:i]+str(int(not(int(vertex[i])))) + vertex[i+1:]) for j in range(i+1, len(vertex)): newVertex2 = (newVertex[:j]+str(int(not(int(newVertex[j])))) + newVertex[j+1:]) newVertices2.append(newVertex2) return newVertices1 + newVertices2 def clustering(hastable,uf, vertexlist): for node in vertexlist: newVertices = generatecloseVertex(node) for closenode in newVertices: try: uf.union(hastable[closenode],hastable[node]) except: None k = len(set(uf.leaders)) return k print clustering(hastable,uf,vertexlist)
[ "Neeraj.Agrawal@Honeywell.com" ]
Neeraj.Agrawal@Honeywell.com
95173e69d72af810e8c4a7049b2ec3ff78a41093
8956d5b5c519b2c30e9ba83f8456ec7448cd00a3
/Ch02 kNN/kNN_sklearn.py
5cda4eec993e7d869b298a4626987f14b6d5b043
[]
no_license
zhsama/ml_in_action
1f03da846fffa9011d92881fa78fcf498e36e150
e0b6af6b9ad1f322c3b1161930299a3338e921f9
refs/heads/master
2020-04-09T23:16:57.240355
2018-12-24T13:39:31
2018-12-24T13:39:31
160,652,161
0
0
null
null
null
null
UTF-8
Python
false
false
2,027
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/12/7 15:43 # @Author : zhcf1ess # @Site : # @File : kNN_sklearn.py # @Software: PyCharm print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 3 # 导入一些要玩的数据 iris = datasets.load_iris() X = iris.data[:, :2] # 我们只采用前两个feature. 我们可以使用二维数据集避免这个丑陋的切片 y = iris.target # print 'X=', type(X), X # print 'y=', type(y), y # X = array([[-1.0, -1.1], [-1.0, -1.0], [0, 0], [1.0, 1.1], [2.0, 2.0], [2.0, 2.1]]) # y = array([0, 0, 0, 1, 1, 1]) # print 'X=', type(X), X # print 'y=', type(y), y h = .02 # 网格中的步长 # 创建彩色的图 cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) # cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA']) # cmap_bold = ListedColormap(['#FF0000', '#00FF00']) for weights in ['uniform', 'distance']: # 我们创建了一个knn分类器的实例,并拟合数据。 clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # 绘制决策边界。为此,我们将为每个分配一个颜色 # 来绘制网格中的点 [x_min, x_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # 将结果放入一个彩色图中 Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # 绘制训练点 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
[ "939020488@qq.com" ]
939020488@qq.com
aa2a15e47cf92dff5ccf95452ce98b39fcdab1e3
edd0b7ecc93778832965f428cc591d8ee517be27
/pymoviedb/excs/__init__.py
34f031c1b0adb10f5328b554b135287ef181f7dd
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
SensiPeeps/PyMovieDB
035a90f9550ab80b6adccc335c350de5da707580
1686b267399bcfc8dfe8119fb67b90142f6a878c
refs/heads/master
2023-02-25T06:56:08.033303
2021-01-30T05:16:44
2021-01-30T05:16:44
293,163,066
3
1
null
null
null
null
UTF-8
Python
false
false
311
py
class PyMovieDBError(Exception): """ Base class for all PyMovieDB errors """ class TmdbApiError(PyMovieDBError): """ raised when API response is not `OK 200` """ class ZeroResultsFound(PyMovieDBError): """ raised when zero results are found against search query. """
[ "starry369126@outlook.com" ]
starry369126@outlook.com
781153323d66fcb4c682d3c1a289b8abfdd599a0
b2db5765f567177d17b27163f6f17f1c32a1f275
/working on text data/cleaning_regency.py
ecb547dc86fb1d8dbf9203acbd2386ad74341820
[]
no_license
udaykumar156/ML_codes
35ca95c3ebe29477e67ad3e4ece15b09c18b6779
e8f7edd0a8362ec6625ae79a1c43247845b3a78b
refs/heads/master
2021-01-19T20:22:56.819949
2017-11-04T06:03:16
2017-11-04T06:03:16
88,501,414
0
1
null
2018-02-08T09:50:19
2017-04-17T11:21:54
Jupyter Notebook
UTF-8
Python
false
false
2,840
py
import pandas as pd import numpy as np from sqlalchemy import create_engine engine = create_engine('#######################################') reg = pd.read_sql_table(table_name='regency_final', con=engine) reg.fillna(np.nan, inplace=True) reg.replace('None', np.nan, inplace=True) reg.replace(' ', np.nan, inplace=True) reg.isnull().sum() reg.drop(['other degree','special interests','website',], axis=1, inplace=True) reg.rename(columns={'consultation hour':'work_days'}, inplace=True) reg.rename(columns={'mmc full reg. no':'mmcreg_no'}, inplace=True) reg.rename(columns={'medical education':'education'}, inplace=True) reg.rename(columns={'professional membership':'memberships'}, inplace=True) reg.rename(columns={'procedure specialties':'speciality_1'}, inplace=True) reg.rename(columns={'designation':'speciality_2'}, inplace=True) reg.rename(columns={'academic affiliation':'academic_affiliation'}, inplace=True) reg.loc[reg.academic_affiliation.str.contains('|'.join(['lecturer','Professor','Faculty']),case=False,na=False), 'parttime_prof'] = 1 reg.loc[reg.speciality_2.str.contains('Resident Consultant', case=False, na=False), 'resident_cons'] = 1 reg.loc[reg.speciality_2.str.contains('Part time Consultant', case=False, na=False), 'partime_cons'] = 1 reg.loc[reg.speciality_2.str.contains('Consultant Emergency', case=False, na=False), 'emergency_cons'] = 1 reg.loc[reg.speciality_2.str.contains('Visiting Consultant', case=False, na=False), 'visiting_cons'] = 1 reg.loc[reg.work_days.str.contains('Sunday', case=False,na=False), 'weekend'] = 1 reg.loc[reg.work_days.str.contains('By appointment', case=False, na=False), 'appointment_cons'] = 1 reg.loc[reg.work_days.str.contains('24/7', na=False), 'fullday_service'] = 1 reg.credentials.replace(np.nan, 'None', inplace=True) import re for x in range(len(reg)): if reg.credentials[x] is not None: reg.credentials[x] = re.sub(r'\([^\(]*?\)', r'', reg.credentials[x]) reg.education.replace(np.nan, 'None', inplace=True) import re for x in range(len(reg)): if reg.education[x] is not None: reg.education[x] = re.sub(r'\([^\(]*?\)', r'', reg.education[x]) reg.name = reg.name.str.split('|').str[0] reg['duplicated_name'] = reg.name.str.strip('Dr.') reg['duplicated_name'] = reg.duplicated_name.str.replace('S/O','') reg['duplicated_name'] = reg.duplicated_name.str.replace('@','') reg['duplicated_name'] = reg.duplicated_name.str.replace('A/L','') reg['duplicated_name'] = reg.duplicated_name.str.replace('A/P','') reg['duplicated_name'] = reg.duplicated_name.str.replace('.','') reg['duplicated_name'] = reg.duplicated_name.str.replace(' ','') reg.duplicated_name = reg.duplicated_name.str.upper() reg['regency_data'] = 1 reg.reset_index(drop=True, inplace=True) reg.shape reg.to_csv('regency_final.csv', index=False, mode='w', encoding='utf-8')
[ "noreply@github.com" ]
udaykumar156.noreply@github.com
5adf7e2ecf8e0908041fd9b472f7833397d98c44
e990606b3db8429e87f9a0a5a10e3c10b17ae13b
/data_proc/wordpiece/mlperf_tags.py
88313a6ba9df4bb9205a4755d963ed60a5c9aa46
[]
no_license
michael-wzhu/redesign_vocab_for_zh_bert
4c9ae36295815ea58cfb34d4f46ac2ace097861f
4e7e72e8f4554feebba6ae2f553a5240e5bedcd4
refs/heads/master
2022-12-16T17:41:09.704451
2020-09-26T12:06:35
2020-09-26T12:06:35
274,569,222
1
0
null
null
null
null
UTF-8
Python
false
false
12,882
py
# coding=utf-8 # Copyright 2020 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2018 MLBenchmark Group. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Master list of MLPerf tags to be logged for benchmark submissions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # ============================================================================== # == Benchmarks ================================================================ # ============================================================================== # translation/ TRANSFORMER = "transformer" INPUT_MAX_LENGTH = "input_max_length" OPT_LR_WARMUP_STEPS = "opt_learning_rate_warmup_steps" MODEL_HP_INITIALIZER_GAIN = "model_hp_initializer_gain" MODEL_HP_VOCAB_SIZE = "model_hp_vocab_size" MODEL_HP_NUM_HIDDEN_LAYERS = "model_hp_hidden_layers" MODEL_HP_EMBEDDING_SHARED_WEIGHTS = "model_hp_embedding_shared_weights" MODEL_HP_ATTENTION_DENSE = "model_hp_attention_dense" MODEL_HP_ATTENTION_DROPOUT = "model_hp_attention_dropout" MODEL_HP_FFN_OUTPUT_DENSE = "model_hp_ffn_output_dense" MODEL_HP_FFN_FILTER_DENSE = "model_hp_ffn_filter_dense" MODEL_HP_RELU_DROPOUT = "model_hp_relu_dropout" MODEL_HP_LAYER_POSTPROCESS_DROPOUT = "model_hp_layer_postprocess_dropout" MODEL_HP_NORM = "model_hp_norm" MODEL_HP_SEQ_BEAM_SEARCH = "model_hp_sequence_beam_search" # ============================================================================== # == Tags ====================================================================== # ============================================================================== """ Tags may be used by all models, a subset of models, or only one model. A specification for which models require which tags can be found below the tag definitions. """ # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # All models: Tags which should appear in absolutely every MLPerf model. # ////////////////////////////////////////////////////////////////////////////// # This tag signals to start the timer. Emission of this tag need not be (and # generally will not be) the first part of a submission script. Rather, this # tag must be emitted prior to performing any work which the MLPerf rules # state must be timed. This tag is generally emitted directly before the first # step which invokes random number generation or the first step which must be # performed on the system under test. (Whichever comes first.) If clarification # is needed, please file an issue under: # https://github.com/mlperf/policies RUN_START = "run_start" # This tag signals that a submission has reached the relevant stopping criteria, # and has completed all tasks which are performed in the reference. The wall # time for a submission will be computed as the difference between the time # when this tag is emitted and the time whe the RUN_START is emitted. RUN_STOP = "run_stop" # This tag should be emitted immediately before ending a run, and should be the # last tag emitted. This tag should indicate the completion of untimed post # processing work such as system specific cleanup. RUN_FINAL = "run_final" # Emit this tag in the place(s) where random seeds are set. RUN_SET_RANDOM_SEED = "run_set_random_seed" # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # Common Values: Constants which are expected to be reported across many models. # These values are included for convenience. # ////////////////////////////////////////////////////////////////////////////// BCE = "binary_cross_entropy" CCE = "categorical_cross_entropy" SGD = "stochastic_gradient_descent" # Some conventions distinguish between "vanilla" SGD and SGD with momentum # (where vanilla SGD would be the specific case of momentum=0) SGD_WITH_MOMENTUM = "stochastic_gradient_descent_with_momentum" ADAM = "adam" LAZY_ADAM = "lazy_adam" TRUNCATED_NORMAL = "truncated_normal" RELU = "relu" # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # Preprocessing: Tags for generic preprocessing steps # ////////////////////////////////////////////////////////////////////////////// # The number of training examples in a single epoch PREPROC_NUM_TRAIN_EXAMPLES = "preproc_num_train_examples" # The number of evaluation examples in a single epoch PREPROC_NUM_EVAL_EXAMPLES = "preproc_num_eval_examples" # This tag is used to declare what part of code tokenizes the training data. PREPROC_TOKENIZE_TRAINING = "preproc_tokenize_training" # This tag is used to declare what part of code tokenizes the evaluation data. PREPROC_TOKENIZE_EVAL = "preproc_tokenize_eval" # The vocabulary size used for tokenization. PREPROC_VOCAB_SIZE = "preproc_vocab_size" # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # Input: Tags for the timed portion of the data input pipeline # ////////////////////////////////////////////////////////////////////////////// # The number of examples in the training portion of the data pipeline. Generally # this should match PREPROC_NUM_TRAIN_EXAMPLES. If it does not (for instance # if certain examples are dropped in compliance with MLPerf rules), the # call which declares this tag is a good place for a comment stating why the # disparity is expected. INPUT_SIZE = "input_size" # The size of a training minibatch size. If this value is variable, please emit # "-1" and then log an implementation specific characterization of the batch # size which is a reasonable analog to the reference. (For instance log that # all but the last batch has size 64, and the last batch is a partial batch) INPUT_BATCH_SIZE = "input_batch_size" # This tag indicates where the location of the code which defines the order in # which training examples are traversed. It is not necessary to describe the # method in the tag emission (though comments are always welcome). Rather, this # should simply provide a good starting point to an interested party. INPUT_ORDER = "input_order" # -------------------------------------- # -- Data Augmentation and Alteration -- # -------------------------------------- # ResNet random cropping INPUT_CENTRAL_CROP = "input_central_crop" INPUT_DISTORTED_CROP_MIN_OBJ_COV = "input_distorted_crop_min_object_covered" INPUT_DISTORTED_CROP_RATIO_RANGE = "input_distorted_crop_aspect_ratio_range" INPUT_DISTORTED_CROP_AREA_RANGE = "input_distorted_crop_area_range" INPUT_DISTORTED_CROP_MAX_ATTEMPTS = "input_distorted_crop_max_attempts" INPUT_MEAN_SUBTRACTION = "input_mean_subtraction" # Random flip of an image for data augmentation INPUT_RANDOM_FLIP = "input_random_flip" INPUT_RESIZE = "input_resize" INPUT_RESIZE_ASPECT_PRESERVING = "input_resize_aspect_preserving" # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # Opt: Tags for declaring optimizer specific information. Submissions should # declare and log explicit values rather than relying on defaults. # ////////////////////////////////////////////////////////////////////////////// # The name of the optimizer used. (SGD, Adam, etc.) OPT_NAME = "opt_name" OPT_LR = "opt_learning_rate" OPT_MOMENTUM = "opt_momentum" OPT_WEIGHT_DECAY = "opt_weight_decay" # beta1, beta2, and epsilon are optimizer hyperparameters associated with the # Adam optimizer and its variants (e.g. LazyAdam). OPT_HP_ADAM_BETA1 = "opt_hp_Adam_beta1" OPT_HP_ADAM_BETA2 = "opt_hp_Adam_beta2" OPT_HP_ADAM_EPSILON = "opt_hp_Adam_epsilon" # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # Train: Tags for control flow during model training. # ////////////////////////////////////////////////////////////////////////////// # This tag is emitted when a model first enters its training loop. This is not # necessarily when it begins to apply gradients; rather, it should be placed at # a location which logically partitions the submission code. TRAIN_LOOP = "train_loop" # The current epoch as said epoch begins training. TRAIN_EPOCH = "train_epoch" # This tag is used to indicate approximately where checkpoints are written. Some # frameworks abstract away checkpoint saving; in such cases simply choose a # logical place in the code which signals that the framework has been instructed # to save checkpoints, along with an explanatory comment. TRAIN_CHECKPOINT = "train_checkpoint" # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # Eval: Tags for control flow during model evaluation. # ////////////////////////////////////////////////////////////////////////////// # This tag should be emitted whenever the submission begins an evaluation pass # for a given set of weights. EVAL_START = "eval_start" # The number of examples on which evaluation is performed. EVAL_SIZE = "eval_size" # The target quality at which the model may stop training. EVAL_TARGET = "eval_target" # The observed accuracy of the model at a given epoch. EVAL_ACCURACY = "eval_accuracy" # This tag should be emitted when the model has determined that it has met the # target quality set by the reference. EVAL_STOP = "eval_stop" # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ # Model: Tags for logging topology specific information. # ////////////////////////////////////////////////////////////////////////////// # The loss function (cross entropy, squared error, etc.) used by the model. For # more exotic loss functions such as those encountered in object detection # models, additional benchmark specific subcomponents should also be logged. MODEL_HP_LOSS_FN = "model_hp_loss_fn" MODEL_HP_INITIAL_SHAPE = "model_hp_initial_shape" MODEL_HP_FINAL_SHAPE = "model_hp_final_shape" MODEL_L2_REGULARIZATION = "model_l2_regularization" MODEL_EXCLUDE_BN_FROM_L2 = "model_exclude_bn_from_l2" MODEL_HP_RELU = "model_hp_relu" MODEL_HP_CONV2D_FIXED_PADDING = "model_hp_conv2d_fixed_padding" MODEL_HP_BATCH_NORM = "model_hp_batch_norm" MODEL_HP_DENSE = "model_hp_dense" # ============================================================================== # == Stdout tags =============================================================== # ============================================================================== # These tags are always logged to stdout. The rest will be logged to a file if # one is available. STDOUT_TAG_SET = { RUN_START, RUN_STOP, RUN_FINAL, TRAIN_LOOP, TRAIN_EPOCH, EVAL_START, EVAL_SIZE, EVAL_TARGET, EVAL_ACCURACY, EVAL_STOP, } # ============================================================================== # == Benchmark tag sets ======================================================== # ============================================================================== ALL_USED_TAGS = set() TRANSFORMER_TAGS = ( RUN_START, RUN_STOP, RUN_FINAL, RUN_SET_RANDOM_SEED, PREPROC_NUM_TRAIN_EXAMPLES, PREPROC_NUM_EVAL_EXAMPLES, PREPROC_TOKENIZE_TRAINING, PREPROC_TOKENIZE_EVAL, PREPROC_VOCAB_SIZE, INPUT_BATCH_SIZE, INPUT_MAX_LENGTH, INPUT_ORDER, OPT_NAME, OPT_LR, OPT_LR_WARMUP_STEPS, OPT_HP_ADAM_BETA1, OPT_HP_ADAM_BETA2, OPT_HP_ADAM_EPSILON, TRAIN_LOOP, TRAIN_EPOCH, EVAL_START, EVAL_SIZE, EVAL_TARGET, EVAL_ACCURACY, EVAL_STOP, MODEL_HP_INITIALIZER_GAIN, MODEL_HP_VOCAB_SIZE, MODEL_HP_NUM_HIDDEN_LAYERS, MODEL_HP_EMBEDDING_SHARED_WEIGHTS, MODEL_HP_ATTENTION_DENSE, MODEL_HP_ATTENTION_DROPOUT, MODEL_HP_FFN_OUTPUT_DENSE, MODEL_HP_FFN_FILTER_DENSE, MODEL_HP_RELU_DROPOUT, MODEL_HP_LAYER_POSTPROCESS_DROPOUT, MODEL_HP_NORM, MODEL_HP_SEQ_BEAM_SEARCH, ) ALL_USED_TAGS.update(TRANSFORMER_TAGS)
[ "michael_wzhu91@163.com" ]
michael_wzhu91@163.com
618b5d6a7e123ec702bb14cb6cac13e2bdf14346
1c859d75ef777168d111f6dc7e5aa51d89d3028f
/chat/mainmenu/views.py
8334f1269cd140ef11354c3ea2c71e95d91dda41
[]
no_license
Alex-proktor/Chat
ae8e34c2cccc2a687742e784f79413b96bbe3c4b
f561cfa308fdded6cdadf77316be905bd7b94495
refs/heads/master
2021-04-27T19:41:43.692910
2018-03-03T15:42:42
2018-03-03T15:42:42
122,362,739
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
from django.shortcuts import render from django.contrib import auth def index(request): username = "Bob" return render(request, 'chat.html', {'username': auth.get_user(request).username})
[ "a.ivanov@dunice.net" ]
a.ivanov@dunice.net
1082ace705179dde53219daae2a8d6cf3f9c2bba
bf25e2478d11132ea4db03c4b8e12180dd72b39a
/reviewweb/urls.py
6b528d4606635fb1e55ffc279c25006000fdc78c
[]
no_license
hassanito/reviewweb
0892d6d444e93e88daabaa2289b7a1c8a8e69deb
3233299f0570f60ef0a1d321e56d19104900ceac
refs/heads/master
2020-06-25T13:54:27.716798
2019-09-09T21:09:13
2019-09-09T21:09:13
199,328,513
0
0
null
null
null
null
UTF-8
Python
false
false
1,689
py
"""reviewweb URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from . import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.HomePage.as_view(), name="home"), path("test/", views.TestPage.as_view(), name="test"), path('thanks', views.ThanksPage.as_view(), name="thanks"), path('admin', admin.site.urls), path('accounts/',include('accounts.urls',namespace='accounts')), path('accounts/',include('django.contrib.auth.urls')), path('shops/',include('shops.urls',namespace='shops')), path('ajax_calls/search/', views.autocompleteModel), path('login/',views.ajax_login), path('oauth/', include('social_django.urls', namespace='social')), # <-- path('comment/',views.comment,name='comment'), path('review/',views.review_ajax,name='review_ajax'), ] from django.conf import settings from django.conf.urls.static import static if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "1Aa_12345" ]
1Aa_12345
94171e19440d59601861aee4f580b056a82ba31e
104085f6878411a137521b17c06612e5f648ef33
/service_pro/service_pro/doctype/agent_payment_request/agent_payment_request_dashboard.py
bf5bad55f86a6116faab28263273e7b0828fce28
[ "MIT" ]
permissive
ksbbalean/service-pro
d39f0d12977dd66627b9f7c0336c605d7be4c388
c89b39a8e9967dada50dc0db4b08460ed45843bf
refs/heads/master
2023-04-13T05:35:19.842021
2021-04-22T11:05:18
2021-04-22T11:05:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
from frappe import _ def get_data(): return { 'fieldname': 'agent_payment_request', 'transactions': [ { 'label': _('Linked Forms'), 'items': ["Journal Entry"] } ] }
[ "jangeles@bai.ph" ]
jangeles@bai.ph
600d648aef968fa6d9aaf3ddd8d410059382df4b
65f856bb3c782fe2fec794192260d5b7aa997ef3
/wsc_django/wsc_django/apps/shop/services.py
0a53f3c8e183bdcaeeefad41252f7a5440069671
[ "MIT" ]
permissive
hzh595395786/wsc_django
0c8faf0cac1d8db8d9e3fa22f6914b6b64bf788b
c0a4de1a4479fe83f36108c1fdd4d68d18348b8d
refs/heads/main
2023-06-06T07:26:17.979944
2021-06-24T13:14:53
2021-06-24T13:14:53
336,303,377
2
0
null
null
null
null
UTF-8
Python
false
false
4,909
py
from uuid import uuid4 from django.db.models import Count from product.constant import ProductStatus from shop.models import Shop, HistoryRealName, ShopRejectReason, PayChannel from shop.utils import get_shop_mini_program_qcode, put_qcode_file_to_tencent_cos from user.models import User from shop.constant import ( ShopStatus, ) def create_shop(shop_info: dict, user: User): """ 创建一个商铺 :param shop_info:{ "shop_name": "name", "shop_img": "http://xxx", "shop_province": 420000, "shop_city": 420100, "shop_county": 420101, "shop_address": "光谷智慧谷一栋505", "description": "xxxx", "suggest_phone": "153xxxxxxxx", "shop_phone": "152xxxxxxxx", "super_admin_id": 1 } :param user: 创建商铺的用户对象 :return: """ # 创建店铺 # 随机一个商铺编码, 查一下,万一重复就再来一个 while True: shop_code = str(uuid4())[-9:] shop = Shop.objects.filter(shop_code=shop_code) if not shop: break shop_info["shop_code"] = shop_code shop_info["shop_phone"] = user.phone shop_info["super_admin_id"] = user.id shop = Shop(**shop_info) shop.save() return shop def create_pay_channel(pay_channel_info: dict, shop_id: int): """ 创建一个商铺的pay_channel :param pay_channel_info: :param shop_id: :return: """ shop_pay_channel = PayChannel(shop_id=shop_id, **pay_channel_info) shop_pay_channel.save() return shop_pay_channel def create_shop_reject_reason_by_shop_id(shop_id: int, reject_reason: str): """ 给拒绝的商铺创建一个拒绝理由 :param shop_id: :return: """ reject_reason = ShopRejectReason(id=shop_id, reject_reason=reject_reason) reject_reason.save() return reject_reason def create_shop_creator_history_realname(shop_id: int, history_realname: str): """ 储存商铺创建者的历史真实姓名, 与店铺绑定 :param shop_id: :param history_realname: :return: """ history_realname = HistoryRealName(id=shop_id, realname=history_realname) history_realname.save() return history_realname def create_shop_mini_program_qcode(shop_code: str): """ 为商铺创建小程序码 :param shop_code: :return: """ qcode_file = get_shop_mini_program_qcode(shop_code) success, url = put_qcode_file_to_tencent_cos(qcode_file, shop_code) return success, url def update_shop_data(shop: Shop, args: dict): """ 修改商铺信息 :param shop: :param args: :return: """ for k, v in args.items(): setattr(shop, k, v) shop.save() return shop def get_shop_by_shop_code(shop_code: str, only_normal: bool = True): """ 通过shop_code获取shop对象 :param shop_code: 商铺编码 :param only_normal: 只查询正常 :return: """ shop = Shop.objects.filter(shop_code=shop_code) if shop and only_normal: shop = shop.filter(status=ShopStatus.NORMAL) shop = shop.first() return shop def get_shop_by_shop_id(shop_id: int, filter_close: bool = True): """ 通过商铺id获取商 :param shop_id: 商铺id :param filter_close: 不查询关闭的 :return: """ shop = Shop.objects.filter(id=shop_id) if shop and filter_close: shop = shop.exclude(status=ShopStatus.CLOSED) shop = shop.first() return shop def list_shop_by_shop_ids(shop_ids: list, filter_close: bool = True, role: int = 1): """ 通过ship_id列表查询商铺列表 :param shop_ids: :param filter_close:过滤关闭 :param role: 访问角色,1:为普通用户,2.为admin用户,普通用户访问时只能查到已审核的店铺 :return: """ shop_list_query = Shop.objects.filter(id__in=shop_ids) if shop_list_query and filter_close: shop_list_query = shop_list_query.exclude(status=ShopStatus.CLOSED) if role == 1: shop_list_query = shop_list_query.filter(status=ShopStatus.NORMAL) shop_list = shop_list_query.all() return shop_list def list_shop_by_shop_status(shop_status: int): """ 查询某一状态的所有商铺 :param shop_status: :return: """ shop_list = Shop.objects.filter(status=shop_status).order_by('update_at').all() return shop_list def list_shop_creator_history_realname(shop_ids: list): """ 找出商铺创建的历史真实姓名列表 :param shop_ids: :return: """ history_realname_list = ( HistoryRealName.objects.filter(id__in=shop_ids).all() ) return history_realname_list def list_shop_reject_reason(shop_ids: list): """查询出所有的商铺拒绝信息""" reject_reason_list = ShopRejectReason.objects.filter(id__in=shop_ids).all() return reject_reason_list
[ "595395786@qq.com" ]
595395786@qq.com
6e0eaa8412f98de3cb193a1d8b771c2ac490c3db
2e682fd72e3feaa70e3f7bf2a3b83c50d783ec02
/PyTorch/dev/cv/image_classification/SimplePose_ID1038_for_PyTorch/parallel_encoding/paralle.py
22a4742535a0677b59076b72a684e6b7562466f4
[ "BSD-3-Clause", "Apache-2.0", "BSD-2-Clause", "MIT", "LicenseRef-scancode-generic-cla", "LicenseRef-scancode-unknown-license-reference", "GPL-1.0-or-later" ]
permissive
Ascend/ModelZoo-PyTorch
4c89414b9e2582cef9926d4670108a090c839d2d
92acc188d3a0f634de58463b6676e70df83ef808
refs/heads/master
2023-07-19T12:40:00.512853
2023-07-17T02:48:18
2023-07-17T02:48:18
483,502,469
23
6
Apache-2.0
2022-10-15T09:29:12
2022-04-20T04:11:18
Python
UTF-8
Python
false
false
13,118
py
# # BSD 3-Clause License # # Copyright (c) 2017 xxxx # All rights reserved. # Copyright 2021 Huawei Technologies Co., Ltd # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================ # # #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # Created by: Hang Zhang, Rutgers University, Email: zhang.hang@rutgers.edu # # Modified by Thomas Wolf, HuggingFace Inc., Email: thomas@huggingface.co # # Copyright (c) 2017-2018 ## # # This source code is licensed under the MIT-style license found in the # # LICENSE file in the root directory of this source tree # #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ """Encoding Data Parallel""" import threading import functools import torch from torch.autograd import Variable, Function import torch.npu.comm as comm from torch.nn.parallel.data_parallel import DataParallel from torch.nn.parallel.distributed import DistributedDataParallel from torch.nn.parallel.parallel_apply import get_a_var from torch.nn.parallel.scatter_gather import gather from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast torch_ver = torch.__version__[:3] __all__ = ['allreduce', 'DataParallelModel', 'DataParallelCriterion', 'patch_replication_callback'] def allreduce(*inputs): """Cross GPU all reduce autograd operation for calculate mean and variance in SyncBN. """ return AllReduce.apply(*inputs) class AllReduce(Function): @staticmethod def forward(ctx, num_inputs, *inputs): ctx.num_inputs = num_inputs ctx.target_gpus = [inputs[i].get_device() for i in range(0, len(inputs), num_inputs)] inputs = [inputs[i:i + num_inputs] for i in range(0, len(inputs), num_inputs)] # sort before reduce sum inputs = sorted(inputs, key=lambda i: i[0].get_device()) results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) outputs = comm.broadcast_coalesced(results, ctx.target_gpus) return tuple([t for tensors in outputs for t in tensors]) @staticmethod def backward(ctx, *inputs): inputs = [i.data for i in inputs] inputs = [inputs[i:i + ctx.num_inputs] for i in range(0, len(inputs), ctx.num_inputs)] results = comm.reduce_add_coalesced(inputs, ctx.target_gpus[0]) outputs = comm.broadcast_coalesced(results, ctx.target_gpus) return (None,) + tuple([Variable(t) for tensors in outputs for t in tensors]) class Reduce(Function): @staticmethod def forward(ctx, *inputs): ctx.target_gpus = [inputs[i].get_device() for i in range(len(inputs))] inputs = sorted(inputs, key=lambda i: i.get_device()) return comm.reduce_add(inputs) @staticmethod def backward(ctx, gradOutput): return Broadcast.apply(ctx.target_gpus, gradOutput) class DistributedDataParallelModel(DistributedDataParallel): """Implements data parallelism at the module level for the DistributedDataParallel module. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. In the forward pass, the module is replicated on each device, and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. Note that the outputs are not gathered, please use compatible :class:`encoding.parallel.DataParallelCriterion`. The batch size should be larger than the number of GPUs used. It should also be an integer multiple of the number of GPUs so that each chunk is the same size (so that each GPU processes the same number of samples). Args: module: module to be parallelized device_ids: npu devices (default: all devices) Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. 鈥淐ontext Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DistributedDataParallelModel(model, device_ids=[0, 1, 2]) >>> y = net(x) """ def gather(self, outputs, output_device): return outputs class DataParallelModel(DataParallel): """Implements data parallelism at the module level. This container parallelizes the application of the given module by splitting the input across the specified devices by chunking in the batch dimension. In the forward pass, the module is replicated on each device, and each replica handles a portion of the input. During the backwards pass, gradients from each replica are summed into the original module. Note that the outputs are not gathered, please use compatible :class:`encoding.parallel.DataParallelCriterion`. The batch size should be larger than the number of GPUs used. It should also be an integer multiple of the number of GPUs so that each chunk is the same size (so that each GPU processes the same number of samples). Args: module: module to be parallelized device_ids: npu devices (default: all devices) Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. 鈥淐ontext Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) >>> y = net(x) """ def gather(self, outputs, output_device): return outputs def replicate(self, module, device_ids): modules = super(DataParallelModel, self).replicate(module, device_ids) execute_replication_callbacks(modules) return modules class DataParallelCriterion(DataParallel): """ Calculate loss in multiple-GPUs, which balance the memory usage. The targets are splitted across the specified devices by chunking in the batch dimension. Please use together with :class:`encoding.parallel.DataParallelModel`. Reference: Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. 鈥淐ontext Encoding for Semantic Segmentation. *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018* Example:: >>> net = encoding.nn.DataParallelModel(model, device_ids=[0, 1, 2]) >>> criterion = encoding.nn.DataParallelCriterion(criterion, device_ids=[0, 1, 2]) >>> y = net(x) >>> loss = criterion(y, target) """ def forward(self, inputs, *targets, **kwargs): # input should be already scattered # scattering the targets instead if not self.device_ids: return self.module(inputs, *targets, **kwargs) targets, kwargs = self.scatter(targets, kwargs, self.device_ids) if len(self.device_ids) == 1: return self.module(inputs, *targets[0], **kwargs[0]) replicas = self.replicate(self.module, self.device_ids[:len(inputs)]) outputs = _criterion_parallel_apply(replicas, inputs, targets, kwargs) # return Reduce.apply(*outputs) / len(outputs) # return self.gather(outputs, self.output_device).mean() return self.gather(outputs, self.output_device) def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices=None): assert len(modules) == len(inputs) assert len(targets) == len(inputs) if kwargs_tup: assert len(modules) == len(kwargs_tup) else: kwargs_tup = ({},) * len(modules) if devices is not None: assert len(modules) == len(devices) else: devices = [None] * len(modules) lock = threading.Lock() results = {} if torch_ver != "0.3": grad_enabled = torch.is_grad_enabled() def _worker(i, module, input, target, kwargs, device=None): if torch_ver != "0.3": torch.set_grad_enabled(grad_enabled) if device is None: device = get_a_var(input).get_device() try: with torch.npu.device(device): # this also avoids accidental slicing of `input` if it is a Tensor if not isinstance(input, (list, tuple)): input = (input,) if not isinstance(target, (list, tuple)): target = (target,) output = module(*(input + target), **kwargs) with lock: results[i] = output except Exception as e: with lock: results[i] = e if len(modules) > 1: threads = [threading.Thread(target=_worker, args=(i, module, input, target, kwargs, device), ) for i, (module, input, target, kwargs, device) in enumerate(zip(modules, inputs, targets, kwargs_tup, devices))] for thread in threads: thread.start() for thread in threads: thread.join() else: _worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0]) outputs = [] for i in range(len(inputs)): output = results[i] if isinstance(output, Exception): raise output outputs.append(output) return outputs ########################################################################### # Adapted from Synchronized-BatchNorm-PyTorch. # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch # class CallbackContext(object): pass def execute_replication_callbacks(modules): """ Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` Note that, as all modules are isomorphism, we assign each sub-module with a context (shared among multiple copies of this module on different devices). Through this context, different copies can share some information. We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback of any slave copies. """ master_copy = modules[0] nr_modules = len(list(master_copy.modules())) ctxs = [CallbackContext() for _ in range(nr_modules)] for i, module in enumerate(modules): for j, m in enumerate(module.modules()): if hasattr(m, '__data_parallel_replicate__'): m.__data_parallel_replicate__(ctxs[j], i) def patch_replication_callback(data_parallel): """ Monkey-patch an existing `DataParallel` object. Add the replication callback. Useful when you have customized `DataParallel` implementation. Examples: > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) > patch_replication_callback(sync_bn) # this is equivalent to > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) """ assert isinstance(data_parallel, DataParallel) old_replicate = data_parallel.replicate @functools.wraps(old_replicate) def new_replicate(module, device_ids): modules = old_replicate(module, device_ids) execute_replication_callbacks(modules) return modules data_parallel.replicate = new_replicate
[ "wangjiangben@huawei.com" ]
wangjiangben@huawei.com
a69fba4e5d07f0b75304b6ba75e87e6f68467fdc
1e449c2b408c59f7722aeeacf01ac6d904016785
/boardapp/models.py
488018ad7e9ed9e552116797d04d734d4ff54611
[]
no_license
alittlekitten/hangoverlion
62930111298000ceb99aa282bbbdbc596150f5c5
3643adfac2fb5c420a00e9548ef5c43a629f0c78
refs/heads/master
2023-04-29T00:29:59.874724
2019-06-01T10:17:53
2019-06-01T10:17:53
189,718,352
0
0
null
2023-04-21T20:33:41
2019-06-01T10:13:16
JavaScript
UTF-8
Python
false
false
600
py
from django.db import models # Create your models here. class Board(models.Model): title = models.CharField(max_length=200) name = models.CharField(max_length=50) pub_date = models.DateTimeField('date published') body = models.TextField() def __str__(self): return self.title class Comment(models.Model): board = models.ForeignKey('Board',on_delete=models.CASCADE, related_name='comments') comment_author = models.CharField(max_length = 10) comment_contents = models.TextField(max_length=200) created_date = models.DateTimeField(auto_now_add=True)
[ "alittlekitten" ]
alittlekitten
a4988105b8f44db42f20393940d9d3a3ae4e6178
e23a4f57ce5474d468258e5e63b9e23fb6011188
/125_algorithms/_exercises/templates/_algorithms_challenges/pybites/intermediate/191/bmi.py
0ee130d805eb92fd958498062113b022207001d6
[]
no_license
syurskyi/Python_Topics
52851ecce000cb751a3b986408efe32f0b4c0835
be331826b490b73f0a176e6abed86ef68ff2dd2b
refs/heads/master
2023-06-08T19:29:16.214395
2023-05-29T17:09:11
2023-05-29T17:09:11
220,583,118
3
2
null
2023-02-16T03:08:10
2019-11-09T02:58:47
Python
UTF-8
Python
false
false
1,056
py
# data """Luke Skywalker,172,77 # C-3PO,167,75 # R2-D2,96,32 # Darth Vader,202,136 # Leia Organa,150,49 # Owen Lars,178,120 # Beru Whitesun lars,165,75 # R5-D4,97,32 # Biggs Darklighter,183,84 # Obi-Wan Kenobi,182,77 # Anakin Skywalker,188,84 # Chewbacca,228,112 # Han Solo,180,80 # Greedo,173,74 # Jek Tono Porkins,180,110 # Yoda,66,17 # Palpatine,170,75 # Boba Fett,183,78.2 # IG-88,200,140 # Bossk,190,113 # """ # # # ___ person_max_bmi data_? # """Return (name, BMI float) of the character in data that # has the highest BMI (rounded on 2 decimals)""" # bmi # dict # data_list ?.s.. "\n" # # ___ row __ ? # current ?.s...s.. "," # __ l.. ? > 1 # ? ? 0 f__ c.. 2 / i.. ? 1 / 100) ** 2 # # name_max_bmi m.. b.. key b__.g.. # r.. ? r.. b.. ? 2 # # # if __name__ == "__main__": # # print(person_max_bmi())
[ "sergejyurskyj@yahoo.com" ]
sergejyurskyj@yahoo.com
a0fee7a87dd4a39dd09e787d7f658e7974737e16
f49bf19b343a6230573afdb5bdce61298baca914
/HT12/generate_teachers/core/tasks.py
59532528ee8df19922fdb68e1016d677a43f8447
[]
no_license
DaniilOmelianenko/Python_Advanced_course_Hillel
bfb71fcfa0228bef74f4c0594c176223cd970f85
5fa7101801e7668bd57a106f40066d88d6845861
refs/heads/master
2023-05-14T00:24:29.820741
2021-03-31T11:22:45
2021-03-31T11:22:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
812
py
from datetime import date, timedelta from core.models import Logger from core.rates import get_kurstoday_rate, get_minfin_mejbank_rate,\ get_mono_rate, get_national_bank_rate, get_vkurse_rate from django.core.mail import send_mail from generate_teachers import celery_app @celery_app.task def send_mail_task(title, message, email): send_mail( subject=title, message=message, recipient_list=['support@support.com'], from_email=email ) @celery_app.task def delete_old_logs(): old_date = date.today() - timedelta(days=7) Logger.objects.filter(creation_date__lte=old_date).delete() @celery_app.task def collect_currency_rates(): get_vkurse_rate() get_mono_rate() get_minfin_mejbank_rate() get_national_bank_rate() get_kurstoday_rate()
[ "dr.odiram@gmail.com" ]
dr.odiram@gmail.com
ba3339eeda813a3c7d315fcb1cb1c530a8080125
d094ba0c8a9b1217fbf014aa79a283a49aabe88c
/env/lib/python3.6/site-packages/sklearn/preprocessing/_discretization.py
7b26ce916e1893d6d13fc02304699fa07bd412b3
[ "Apache-2.0" ]
permissive
Raniac/NEURO-LEARN
d9274e0baadd97bb02da54bdfcf6ca091fc1c703
3c3acc55de8ba741e673063378e6cbaf10b64c7a
refs/heads/master
2022-12-25T23:46:54.922237
2020-09-06T03:15:14
2020-09-06T03:15:14
182,013,100
9
2
Apache-2.0
2022-12-09T21:01:00
2019-04-18T03:57:00
CSS
UTF-8
Python
false
false
12,083
py
# -*- coding: utf-8 -*- # Author: Henry Lin <hlin117@gmail.com> # Tom Dupré la Tour # License: BSD from __future__ import division, absolute_import import numbers import numpy as np import warnings from . import OneHotEncoder from ..base import BaseEstimator, TransformerMixin from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..utils.fixes import np_version class KBinsDiscretizer(BaseEstimator, TransformerMixin): """Bin continuous data into intervals. Read more in the :ref:`User Guide <preprocessing_discretization>`. Parameters ---------- n_bins : int or array-like, shape (n_features,) (default=5) The number of bins to produce. Raises ValueError if ``n_bins < 2``. encode : {'onehot', 'onehot-dense', 'ordinal'}, (default='onehot') Method used to encode the transformed result. onehot Encode the transformed result with one-hot encoding and return a sparse matrix. Ignored features are always stacked to the right. onehot-dense Encode the transformed result with one-hot encoding and return a dense array. Ignored features are always stacked to the right. ordinal Return the bin identifier encoded as an integer value. strategy : {'uniform', 'quantile', 'kmeans'}, (default='quantile') Strategy used to define the widths of the bins. uniform All bins in each feature have identical widths. quantile All bins in each feature have the same number of points. kmeans Values in each bin have the same nearest center of a 1D k-means cluster. Attributes ---------- n_bins_ : int array, shape (n_features,) Number of bins per feature. Bins whose width are too small (i.e., <= 1e-8) are removed with a warning. bin_edges_ : array of arrays, shape (n_features, ) The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )`` Ignored features will have empty arrays. Examples -------- >>> X = [[-2, 1, -4, -1], ... [-1, 2, -3, -0.5], ... [ 0, 3, -2, 0.5], ... [ 1, 4, -1, 2]] >>> est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform') >>> est.fit(X) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE KBinsDiscretizer(...) >>> Xt = est.transform(X) >>> Xt # doctest: +SKIP array([[ 0., 0., 0., 0.], [ 1., 1., 1., 0.], [ 2., 2., 2., 1.], [ 2., 2., 2., 2.]]) Sometimes it may be useful to convert the data back into the original feature space. The ``inverse_transform`` function converts the binned data into the original feature space. Each value will be equal to the mean of the two bin edges. >>> est.bin_edges_[0] array([-2., -1., 0., 1.]) >>> est.inverse_transform(Xt) array([[-1.5, 1.5, -3.5, -0.5], [-0.5, 2.5, -2.5, -0.5], [ 0.5, 3.5, -1.5, 0.5], [ 0.5, 3.5, -1.5, 1.5]]) Notes ----- In bin edges for feature ``i``, the first and last values are used only for ``inverse_transform``. During transform, bin edges are extended to:: np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf]) You can combine ``KBinsDiscretizer`` with :class:`sklearn.compose.ColumnTransformer` if you only want to preprocess part of the features. ``KBinsDiscretizer`` might produce constant features (e.g., when ``encode = 'onehot'`` and certain bins do not contain any data). These features can be removed with feature selection algorithms (e.g., :class:`sklearn.feature_selection.VarianceThreshold`). See also -------- sklearn.preprocessing.Binarizer : class used to bin values as ``0`` or ``1`` based on a parameter ``threshold``. """ def __init__(self, n_bins=5, encode='onehot', strategy='quantile'): self.n_bins = n_bins self.encode = encode self.strategy = strategy def fit(self, X, y=None): """Fits the estimator. Parameters ---------- X : numeric array-like, shape (n_samples, n_features) Data to be discretized. y : ignored Returns ------- self """ X = check_array(X, dtype='numeric') valid_encode = ('onehot', 'onehot-dense', 'ordinal') if self.encode not in valid_encode: raise ValueError("Valid options for 'encode' are {}. " "Got encode={!r} instead." .format(valid_encode, self.encode)) valid_strategy = ('uniform', 'quantile', 'kmeans') if self.strategy not in valid_strategy: raise ValueError("Valid options for 'strategy' are {}. " "Got strategy={!r} instead." .format(valid_strategy, self.strategy)) n_features = X.shape[1] n_bins = self._validate_n_bins(n_features) bin_edges = np.zeros(n_features, dtype=object) for jj in range(n_features): column = X[:, jj] col_min, col_max = column.min(), column.max() if col_min == col_max: warnings.warn("Feature %d is constant and will be " "replaced with 0." % jj) n_bins[jj] = 1 bin_edges[jj] = np.array([-np.inf, np.inf]) continue if self.strategy == 'uniform': bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1) elif self.strategy == 'quantile': quantiles = np.linspace(0, 100, n_bins[jj] + 1) if np_version < (1, 9): quantiles = list(quantiles) bin_edges[jj] = np.asarray(np.percentile(column, quantiles)) elif self.strategy == 'kmeans': from ..cluster import KMeans # fixes import loops # Deterministic initialization with uniform spacing uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1) init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5 # 1D k-means procedure km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1) centers = km.fit(column[:, None]).cluster_centers_[:, 0] # Must sort, centers may be unsorted even with sorted init centers.sort() bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5 bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max] # Remove bins whose width are too small (i.e., <= 1e-8) if self.strategy in ('quantile', 'kmeans'): mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8 bin_edges[jj] = bin_edges[jj][mask] if len(bin_edges[jj]) - 1 != n_bins[jj]: warnings.warn('Bins whose width are too small (i.e., <= ' '1e-8) in feature %d are removed. Consider ' 'decreasing the number of bins.' % jj) n_bins[jj] = len(bin_edges[jj]) - 1 self.bin_edges_ = bin_edges self.n_bins_ = n_bins if 'onehot' in self.encode: self._encoder = OneHotEncoder( categories=[np.arange(i) for i in self.n_bins_], sparse=self.encode == 'onehot') # Fit the OneHotEncoder with toy datasets # so that it's ready for use after the KBinsDiscretizer is fitted self._encoder.fit(np.zeros((1, len(self.n_bins_)), dtype=int)) return self def _validate_n_bins(self, n_features): """Returns n_bins_, the number of bins per feature. """ orig_bins = self.n_bins if isinstance(orig_bins, numbers.Number): if not isinstance(orig_bins, (numbers.Integral, np.integer)): raise ValueError("{} received an invalid n_bins type. " "Received {}, expected int." .format(KBinsDiscretizer.__name__, type(orig_bins).__name__)) if orig_bins < 2: raise ValueError("{} received an invalid number " "of bins. Received {}, expected at least 2." .format(KBinsDiscretizer.__name__, orig_bins)) return np.full(n_features, orig_bins, dtype=np.int) n_bins = check_array(orig_bins, dtype=np.int, copy=True, ensure_2d=False) if n_bins.ndim > 1 or n_bins.shape[0] != n_features: raise ValueError("n_bins must be a scalar or array " "of shape (n_features,).") bad_nbins_value = (n_bins < 2) | (n_bins != orig_bins) violating_indices = np.where(bad_nbins_value)[0] if violating_indices.shape[0] > 0: indices = ", ".join(str(i) for i in violating_indices) raise ValueError("{} received an invalid number " "of bins at indices {}. Number of bins " "must be at least 2, and must be an int." .format(KBinsDiscretizer.__name__, indices)) return n_bins def transform(self, X): """Discretizes the data. Parameters ---------- X : numeric array-like, shape (n_samples, n_features) Data to be discretized. Returns ------- Xt : numeric array-like or sparse matrix Data in the binned space. """ check_is_fitted(self, ["bin_edges_"]) Xt = check_array(X, copy=True, dtype=FLOAT_DTYPES) n_features = self.n_bins_.shape[0] if Xt.shape[1] != n_features: raise ValueError("Incorrect number of features. Expecting {}, " "received {}.".format(n_features, Xt.shape[1])) bin_edges = self.bin_edges_ for jj in range(Xt.shape[1]): # Values which are close to a bin edge are susceptible to numeric # instability. Add eps to X so these values are binned correctly # with respect to their decimal truncation. See documentation of # numpy.isclose for an explanation of ``rtol`` and ``atol``. rtol = 1.e-5 atol = 1.e-8 eps = atol + rtol * np.abs(Xt[:, jj]) Xt[:, jj] = np.digitize(Xt[:, jj] + eps, bin_edges[jj][1:]) np.clip(Xt, 0, self.n_bins_ - 1, out=Xt) if self.encode == 'ordinal': return Xt return self._encoder.transform(Xt) def inverse_transform(self, Xt): """Transforms discretized data back to original feature space. Note that this function does not regenerate the original data due to discretization rounding. Parameters ---------- Xt : numeric array-like, shape (n_sample, n_features) Transformed data in the binned space. Returns ------- Xinv : numeric array-like Data in the original feature space. """ check_is_fitted(self, ["bin_edges_"]) if 'onehot' in self.encode: Xt = self._encoder.inverse_transform(Xt) Xinv = check_array(Xt, copy=True, dtype=FLOAT_DTYPES) n_features = self.n_bins_.shape[0] if Xinv.shape[1] != n_features: raise ValueError("Incorrect number of features. Expecting {}, " "received {}.".format(n_features, Xinv.shape[1])) for jj in range(n_features): bin_edges = self.bin_edges_[jj] bin_centers = (bin_edges[1:] + bin_edges[:-1]) * 0.5 Xinv[:, jj] = bin_centers[np.int_(Xinv[:, jj])] return Xinv
[ "leibingye@outlook.com" ]
leibingye@outlook.com
a776987187e4d6bc91acfa696ed24a492103e6e9
4231a5ad312a3a03434a49b08ac6ed0bbce7edb7
/models/nets/resnet_v2.py
7a2ad32a045416fd9fadf2c06e5c52fb4fb726fd
[]
no_license
fxle/DFL-CNN-tensorflow
db3c97f14b89d60f19e7350735028ecb4ec2019a
9c5e3574940ccfc5ada1f09b5afc8bbb03857b43
refs/heads/master
2020-04-07T04:40:05.303507
2018-11-16T08:35:42
2018-11-16T08:35:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,511
py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains definitions for the preactivation form of Residual Networks. Residual networks (ResNets) were originally proposed in: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 The full preactivation 'v2' ResNet variant implemented in this module was introduced by: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027 The key difference of the full preactivation 'v2' variant compared to the 'v1' variant in [1] is the use of batch normalization before every weight layer. Typical use: from tensorflow.contrib.slim.nets import resnet_v2 ResNet-101 for image classification into 1000 classes: # inputs has shape [batch, 224, 224, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope()): net, end_points = resnet_v2.resnet_v2_101(inputs, 1000, is_training=False) ResNet-101 for semantic segmentation into 21 classes: # inputs has shape [batch, 513, 513, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope()): net, end_points = resnet_v2.resnet_v2_101(inputs, 21, is_training=False, global_pool=False, output_stride=16) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import resnet_utils slim = tf.contrib.slim resnet_arg_scope = resnet_utils.resnet_arg_scope @slim.add_arg_scope def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None): """Bottleneck residual unit variant with BN before convolutions. This is the full preactivation residual unit variant proposed in [2]. See Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope. Returns: The ResNet unit's output. """ with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc: depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4) preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact') if depth == depth_in: shortcut = resnet_utils.subsample(inputs, stride, 'shortcut') else: shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride, normalizer_fn=None, activation_fn=None, scope='shortcut') residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, biases_initializer=None, scope='conv1') residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2') residual = slim.conv2d(residual, depth, [1, 1], stride=1, normalizer_fn=None, activation_fn=None, scope='conv3') output = shortcut + residual return slim.utils.collect_named_outputs(outputs_collections, sc.name, output) def resnet_v2(inputs, blocks, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, spatial_squeeze=True, reuse=None, scope=None): """Generator for v2 (preactivation) ResNet models. This function generates a family of ResNet v2 models. See the resnet_v2_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Training for image classification on Imagenet is usually done with [224, 224] inputs, resulting in [7, 7] feature maps at the output of the last ResNet block for the ResNets defined in [1] that have nominal stride equal to 32. However, for dense prediction tasks we advise that one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block. For dense prediction tasks, the ResNet needs to run in fully-convolutional (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all have nominal stride equal to 32 and a good choice in FCN mode is to use output_stride=16 in order to increase the density of the computed features at small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If 0 or None, we return the features before the logit layer. is_training: whether batch_norm layers are in training mode. global_pool: If True, we perform global average pooling before computing the logits. Set to True for image classification, False for dense prediction. output_stride: If None, then the output will be computed at the nominal network stride. If output_stride is not None, it specifies the requested ratio of input to output spatial resolution. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. If excluded, `inputs` should be the results of an activation-less convolution. spatial_squeeze: if True, logits is of shape [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. To use this parameter, the input images must be smaller than 300x300 pixels, in which case the output logit layer does not contain spatial information and can be removed. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is 0 or None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes is a non-zero integer, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' with slim.arg_scope([slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense], outputs_collections=end_points_collection): with slim.arg_scope([slim.batch_norm], is_training=is_training): net = inputs if include_root_block: if output_stride is not None: if output_stride % 4 != 0: raise ValueError('The output_stride needs to be a multiple of 4.') output_stride /= 4 # We do not include batch normalization or activation functions in # conv1 because the first ResNet unit will perform these. Cf. # Appendix of [2]. with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None): net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1') net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1') net = resnet_utils.stack_blocks_dense(net, blocks, output_stride) # This is needed because the pre-activation variant does not have batch # normalization or activation functions in the residual unit output. See # Appendix of [2]. net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm') # Convert end_points_collection into a dictionary of end_points. end_points = slim.utils.convert_collection_to_dict( end_points_collection) if global_pool: # Global average pooling. net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True) end_points['global_pool'] = net if num_classes: net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits') end_points[sc.name + '/logits'] = net if spatial_squeeze: net = tf.squeeze(net, [1, 2], name='SpatialSqueeze') end_points[sc.name + '/spatial_squeeze'] = net end_points['predictions'] = slim.softmax(net, scope='predictions') return net, end_points resnet_v2.default_image_size = 224 def resnet_v2_block(scope, base_depth, num_units, stride): """Helper function for creating a resnet_v2 bottleneck block. Args: scope: The scope of the block. base_depth: The depth of the bottleneck layer for each unit. num_units: The number of units in the block. stride: The stride of the block, implemented as a stride in the last unit. All other units have stride=1. Returns: A resnet_v2 bottleneck block. """ return resnet_utils.Block(scope, bottleneck, [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': 1 }] * (num_units - 1) + [{ 'depth': base_depth * 4, 'depth_bottleneck': base_depth, 'stride': stride }]) resnet_v2.default_image_size = 224 def resnet_v2_50(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_50'): """ResNet-50 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), resnet_v2_block('block3', base_depth=256, num_units=6, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_50.default_image_size = resnet_v2.default_image_size def resnet_v2_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), resnet_v2_block('block3', base_depth=256, num_units=23, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_101.default_image_size = resnet_v2.default_image_size def resnet_v2_152(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_152'): """ResNet-152 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=8, stride=2), resnet_v2_block('block3', base_depth=256, num_units=36, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_152.default_image_size = resnet_v2.default_image_size def resnet_v2_200(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=True, reuse=None, scope='resnet_v2_200'): """ResNet-200 model of [2]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=24, stride=2), resnet_v2_block('block3', base_depth=256, num_units=36, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope) resnet_v2_200.default_image_size = resnet_v2.default_image_size
[ "noreply@github.com" ]
fxle.noreply@github.com
bcc75b28b810ed3342694c31eda9379e6b0b1569
0af56ece1f50f93cd4e4841ba101600f958fe94c
/camera.py
0887896256ffbf12bfd73d540af4f556ee8777e2
[]
no_license
strikerdlm/HAB-pi-cam
df21f8f483b0c8b5e0ca9ffb53cdec7af9f5ca91
b1eb0f4c87501adcae7cb5ec28f8ad96ddaa0e4d
refs/heads/master
2021-09-07T07:21:05.872448
2018-02-19T14:17:41
2018-02-19T14:17:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,917
py
#!/usr/bin/python2 # Import required modules import picamera import time import signal import sys import os # The following code will write the Process ID of this script to a hidden file pid = os.getpid() PIDfilename = ".PID" PIDfile = open(PIDfilename, "wt") PIDfile.write(str(pid)) PIDfile.close() # Variables numpics = 5 # number of still pictures taken numburst = 5 # number of burst pictures taken rectime = 300 # length of time to record in each loop between pictures (in seconds) # Functions # This function will take a number of still pictures, as defined by the input parameter def capture(numPics): for i in range(0,numPics): picname = str(time.strftime('%I%M%S%p_%d-%m-%y')) camera.capture('Pictures/' + picname + '.jpg') time.sleep(1) # This function will take a burst of pictures def burst(numBurst): camera.capture_sequence([ 'Pictures/' + str(time.strftime('%I%M%S%p_%d-%m-%y')) + '_burst' + str(i+1) + '.jpg' for i in range(numBurst) ]) def record(recTime): vidname = str(time.strftime('%I%M%S%p_%d-%m-%y')) camera.start_recording('Videos/' + vidname + '.h264') time.sleep(recTime) camera.stop_recording() time.sleep(1) # The following function handles the case when a kill signal is sent to the process def signal_term_handler(signal, frame): camera.close() os.remove(PIDfilename) #removes the hidden temp PID file sys.exit() signal.signal(signal.SIGTERM, signal_term_handler) try: with picamera.PiCamera() as camera: while True: camera.start_preview(alpha=0) #starting the preview "warms up" the camera, and is recommended in the PiCamera documentation time.sleep(2) capture(numpics) burst(numburst) record(rectime) camera.stop_preview() time.sleep(2) # Handles the case when user exits the running script using Control+C except KeyboardInterrupt: camera.close() os.remove(PIDfilename) #removes the hidden temp PID file sys.exit()
[ "robo_man11@hotmail.com" ]
robo_man11@hotmail.com
bad6ea385845a9eb0bc05e0022b7b16e5480692f
9353358a88ca52b4fa5c62ed2f2d2f8feeebc194
/core/utils.py
31dbf88f744027f0b5771cb6555900de6edaa016
[]
no_license
Ydrasil/neomad.org
d2b47f7ed983c5b4eea656d4f2c8d22a281e4af4
70f7b4c704fcb58c625a758ab8d5b55878ae130f
refs/heads/master
2021-01-19T07:17:46.160125
2017-07-18T15:52:26
2017-07-31T13:33:20
87,534,270
0
0
null
2017-07-26T16:38:54
2017-04-07T10:23:31
Python
UTF-8
Python
false
false
767
py
import base64 import re from io import BytesIO from feincms_cleanse import Cleanse from PIL import Image def is_base64(data): return len(re.findall('^data:\w+/(\w+);base64,', data)) def save_base64_image(data, output, size=None): meta, data = data.split(',') try: format_ = re.findall('data:\w+/(\w+);base64', meta)[0] except KeyError: format_ = 'jpeg' image_data = BytesIO(base64.b64decode(data)) image = Image.open(image_data) if size: image.thumbnail(size) return image.save(output, format=format_) def clean_html(html, allowed_tags=None): cleaner = Cleanse() if allowed_tags: cleaner.allowed_tags = allowed_tags cleaner.empty_tags = ('br', 'img',) return cleaner.cleanse(html)
[ "vincent.agnano@scopyleft.fr" ]
vincent.agnano@scopyleft.fr