blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
0639bb8bfaf5d12027ea12b6ee6bbe9dec7363a0
6b7176e32e8e6b105d5ad8b4bda038ad9ae6a281
/P25034-zhaojie/week-11/homework.py
31a196df26a7d4580903c49e0900fa52b26d02c2
[ "Apache-2.0" ]
permissive
xiaohh2016/python-25
20c7e0a157c4be5707891d1839644e015b28dbb4
8981ba89bfb32754c3f9c881ee8fcaf13332ce51
refs/heads/master
2021-01-05T18:50:53.838337
2020-02-12T08:46:53
2020-02-12T08:46:53
241,107,053
0
0
Apache-2.0
2020-02-17T12:52:31
2020-02-17T12:52:31
null
UTF-8
Python
false
false
1,910
py
#!/usr/bin/env python # encoding:utf-8 # file: homework.py # 自己实现python自带的map、zip和filter函数 # 还没学到 yield语法不熟 先简单实现 # 实现map函数 def my_map(*args): """文档字符串位置 """ if len(args) < 2: # 先不用异常的方式处理 只是打印 print('map()至少需要两个参数') else: # 判断是否为可迭代对象 先不处理 fnc_nme = args[0] new_tpl = args[1:] min_len = len(min(new_tpl, key=len)) for idx in range(min_len): # yield后的代码会继续执行 yield只要存在函数就变成生成器 yield fnc_nme(*[itr[idx] for itr in new_tpl]) # 实现zip函数 def my_zip(*args): if not len(args): return tuple() min_len = len(min(args, key=len)) for idx in range(min_len): yield tuple(itr[idx] for itr in args) # 实现filter函数 def my_filter(func, itr): if func is not None: for it in itr: if func(it): yield it else: for it in itr: if it: yield it # 测试函数 加法 def func1(x, y): return x + y # 测试函数 平方 def func2(x): return x ** 2 # 测试函数 取大于100的数 def func3(x): return True if x > 100 else False if __name__ == '__main__': l1 = [3, 2, 3] l2 = [6, 5] print(list(my_map(func1, l1, l2))) print(list(my_zip([1, 2, 3], [4, 5], 'abcdefg'))) print(list(my_filter(func3, [0, 201, 1, 2, 3, 100, 101]))) print(list(my_zip())) print(list(my_filter(None, [0, 201, 1, 2, 3, 100, 101]))) print('-------- 对照组 --------') print(list(map(func1, l1, l2))) print(list(zip([1, 2, 3], [4, 5], 'abcdefg'))) print(list(filter(func3, [0, 201, 1, 2, 3, 100, 101]))) print(list(zip())) print(list(filter(None, [0, 201, 1, 2, 3, 100, 101])))
[ "jasonz666@qq.com" ]
jasonz666@qq.com
e18cb7dd81804a2ba328dc66b22ac4a5eb10f3e6
92d79bbe1e94e192e9d4a728f99f6aecea500645
/attack/df_attack_2_tab_next.py
33f57d3a58533a0b661b278d2c17db343feda980
[]
no_license
westzyan/attackWFP
e6f61dc7a6636640a298162941c5b7c882c1fc80
5e2227308b3ab7be5b607c4d8dddb4871ed56fc4
refs/heads/master
2023-03-02T19:16:14.846449
2021-02-09T18:04:42
2021-02-09T18:04:42
325,488,478
2
0
null
null
null
null
UTF-8
Python
false
false
5,558
py
from sklearn.metrics import confusion_matrix, precision_recall_fscore_support, classification_report from Model_DF import DFNet import random from keras.utils import np_utils from keras.optimizers import Adamax import numpy as np import os import tensorflow as tf import keras config = tf.ConfigProto() config.gpu_options.allow_growth = True keras.backend.tensorflow_backend.set_session(tf.Session(config=config)) # Load data for non-defended dataset for CW setting def LoadDataNoDefCW(second): print("Loading defended dataset for closed-world scenario") # Point to the directory storing data # dataset_dir = '../dataset/ClosedWorld/NoDef/' # dataset_dir = "/media/zyan/软件/张岩备份/PPT/DeepFingerprinting/df-master/dataset/ClosedWorld/NoDef/" dataset_dir = "/home/thinkst/zyan/real_specified_split/round/second{}/".format(second) # X represents a sequence of traffic directions # y represents a sequence of corresponding label (website's label) data = np.loadtxt(dataset_dir + "df_tcp_95000_10000_head_math_order.csv", delimiter=",") print(data) np.random.shuffle(data) print(data) print(len(data)) train_length = int(0.8 * len(data)) valid_length = int(0.1 * len(data)) test_length = len(data) - train_length - valid_length train = data[:train_length, :] valid = data[train_length: train_length + valid_length, :] test = data[train_length + valid_length:, :] X_train = train[:, :-1] y_train = train[:, -1] X_valid = valid[:, :-1] y_valid = valid[:, -1] X_test = test[:, :-1] y_test = test[:, -1] print("X: Training data's shape : ", X_train.shape) print("y: Training data's shape : ", y_train.shape) print("X: Validation data's shape : ", X_valid.shape) print("y: Validation data's shape : ", y_valid.shape) print("X: Testing data's shape : ", X_test.shape) print("y: Testing data's shape : ", y_test.shape) # return X_train, y_train, X_valid, y_valid, X_test, y_test if __name__ == '__main__': for second in range(2, 9): random.seed(0) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' description = "Training and evaluating DF model for closed-world scenario on non-defended dataset" print(description) # Training the DF model NB_EPOCH = 20 # Number of training epoch print("Number of Epoch: ", NB_EPOCH) BATCH_SIZE = 128 # Batch size VERBOSE = 2 # Output display mode LENGTH = 10000 # Packet sequence length OPTIMIZER = Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) # Optimizer NB_CLASSES = 95 # number of outputs = number of classes INPUT_SHAPE = (LENGTH, 1) # Data: shuffled and split between train and test sets print("Loading and preparing data for training, and evaluating the model") X_train, y_train, X_valid, y_valid, X_test, y_test = LoadDataNoDefCW(second) # Please refer to the dataset format in readme # K.set_image_dim_ordering("tf") # tf is tensorflow # Convert data as float32 type X_train = X_train.astype('float32') X_valid = X_valid.astype('float32') X_test = X_test.astype('float32') y_train = y_train.astype('float32') y_valid = y_valid.astype('float32') y_test = y_test.astype('float32') # we need a [Length x 1] x n shape as input to the DF CNN (Tensorflow) X_train = X_train[:, :, np.newaxis] X_valid = X_valid[:, :, np.newaxis] X_test = X_test[:, :, np.newaxis] print(X_train.shape[0], 'train samples') print(X_valid.shape[0], 'validation samples') print(X_test.shape[0], 'test samples') # Convert class vectors to categorical classes matrices y_train = np_utils.to_categorical(y_train, NB_CLASSES) y_valid = np_utils.to_categorical(y_valid, NB_CLASSES) y_test = np_utils.to_categorical(y_test, NB_CLASSES) # Building and training model print("Building and training DF model") model = DFNet.build(input_shape=INPUT_SHAPE, classes=NB_CLASSES) model.compile(loss="categorical_crossentropy", optimizer=OPTIMIZER, metrics=["accuracy"]) print("Model compiled") # Start training history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_data=(X_valid, y_valid)) # model.save('my_model_undef_tcp_10000_round2.h5') # Start evaluating model with testing data score_test = model.evaluate(X_test, y_test, verbose=VERBOSE) print("Testing accuracy:", score_test[1]) y_pre = model.predict(X_test) index_test = np.argmax(y_test, axis=1) index_pre = np.argmax(y_pre, axis=1) print(precision_recall_fscore_support(index_test, index_pre, average='macro')) # Macro-P,Macro-R,Macro-F1 print(precision_recall_fscore_support(index_test, index_pre, average='micro')) # Micro-P,Micro-R,Micro-F1 print(classification_report(index_test, index_pre)) score = classification_report(index_test, index_pre) # 混淆矩阵并可视化 confmat = confusion_matrix(y_true=index_test, y_pred=index_pre) # 输出混淆矩阵 print(confmat) with open("./overlap_second.txt", 'a') as f: f.write("second:{} acc:{}\n".format(second, score_test[1])) f.write(score) f.close()
[ "15639067131@163.com" ]
15639067131@163.com
014cbf61158fb280b11d2f149b026f48d5234c0e
2e2a54e30f8c8018fe0d163a5fd4b0d854ef165d
/src/gluonts/torch/model/deep_npts/_network.py
c29d1935c3d32e884ec124b33fde866e0b55aa92
[ "Apache-2.0" ]
permissive
kashif/gluon-ts
b742021ca0292ca2885b3b079150f24cdf3e6dec
a818f69dc049c1c1d57e09d2ccb8b5f7a0cff656
refs/heads/master
2023-09-05T00:00:22.861992
2023-08-09T15:47:28
2023-08-09T15:47:28
222,552,468
5
0
null
2019-11-18T21:56:52
2019-11-18T21:56:52
null
UTF-8
Python
false
false
14,377
py
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from functools import partial from typing import Optional, Callable, List, Union import torch from torch import nn from torch.distributions import ( Categorical, MixtureSameFamily, Normal, ) from gluonts.core.component import validated from gluonts.torch.distributions import DiscreteDistribution from .scaling import ( min_max_scaling, standard_normal_scaling, ) INPUT_SCALING_MAP = { "min_max_scaling": partial(min_max_scaling, dim=1, keepdim=True), "standard_normal_scaling": partial( standard_normal_scaling, dim=1, keepdim=True ), } def init_weights(module: nn.Module, scale: float = 1.0): if type(module) == nn.Linear: nn.init.uniform_(module.weight, -scale, scale) nn.init.zeros_(module.bias) class FeatureEmbedder(nn.Module): """Creates a feature embedding for the static categorical features.""" @validated() def __init__( self, cardinalities: List[int], embedding_dimensions: List[int], ): super().__init__() assert ( len(cardinalities) > 0 ), "Length of `cardinalities` list must be greater than zero" assert len(cardinalities) == len( embedding_dimensions ), "Length of `embedding_dims` and `embedding_dims` should match" assert all( [c > 0 for c in cardinalities] ), "Elements of `cardinalities` should be > 0" assert all( [d > 0 for d in embedding_dimensions] ), "Elements of `embedding_dims` should be > 0" self.embedders = [ torch.nn.Embedding(num_embeddings=card, embedding_dim=dim) for card, dim in zip(cardinalities, embedding_dimensions) ] for embedder in self.embedders: embedder.apply(init_weights) def forward(self, features: torch.Tensor): """ Parameters ---------- features Input features to the model, shape: (-1, num_features). Returns ------- torch.Tensor Embedding, shape: (-1, sum(self.embedding_dimensions)). """ embedded_features = torch.cat( [ embedder(features[:, i].long()) for i, embedder in enumerate(self.embedders) ], dim=-1, ) return embedded_features class DeepNPTSNetwork(nn.Module): """Base class implementing a simple feed-forward neural network that takes in static and dynamic features and produces `num_hidden_nodes` independent outputs. These outputs are then used by derived classes to construct the forecast distribution for a single time step. Note that the dynamic features are just treated as independent features without considering their temporal nature. """ @validated() def __init__( self, context_length: int, num_hidden_nodes: List[int], cardinality: List[int], embedding_dimension: List[int], num_time_features: int, batch_norm: bool = False, input_scaling: Optional[Union[Callable, str]] = None, dropout_rate: float = 0.0, ): super().__init__() self.context_length = context_length self.num_hidden_nodes = num_hidden_nodes self.batch_norm = batch_norm self.input_scaling = ( INPUT_SCALING_MAP[input_scaling] if isinstance(input_scaling, str) else input_scaling ) self.dropout_rate = dropout_rate # Embedding for categorical features self.embedder = FeatureEmbedder( cardinalities=cardinality, embedding_dimensions=embedding_dimension ) total_embedding_dim = sum(embedding_dimension) # We have two target related features: past_target and observed value # indicator each of length `context_length`. # Also, +1 for the static real feature. dimensions = [ context_length * (num_time_features + 2) + total_embedding_dim + 1 ] + num_hidden_nodes modules: List[nn.Module] = [] for in_features, out_features in zip(dimensions[:-1], dimensions[1:]): modules += [nn.Linear(in_features, out_features), nn.ReLU()] if self.batch_norm: modules.append(nn.BatchNorm1d(out_features)) if self.dropout_rate > 0: modules.append(nn.Dropout(self.dropout_rate)) self.model = nn.Sequential(*modules) self.model.apply(partial(init_weights, scale=0.07)) # TODO: Handle missing values using the observed value indicator. def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, ): """ Parameters ---------- feat_static_cat Shape (-1, num_features). feat_static_real Shape (-1, num_features). past_target Shape (-1, context_length). past_observed_values Shape (-1, context_length). past_time_feat Shape (-1, context_length, self.num_time_features). """ x = past_target if self.input_scaling: loc, scale = self.input_scaling(x) x_scaled = (x - loc) / scale else: x_scaled = x embedded_cat = self.embedder(feat_static_cat) static_feat = torch.cat( (embedded_cat, torch.tensor(feat_static_real)), dim=1, ) time_features = torch.cat( [ x_scaled.unsqueeze(dim=-1), past_observed_values.unsqueeze(dim=-1), past_time_feat, ], dim=-1, ) features = torch.cat( [ time_features.reshape(time_features.shape[0], -1), static_feat, ], dim=-1, ) return self.model(features) class DeepNPTSNetworkDiscrete(DeepNPTSNetwork): """ Extends `DeepNTPSNetwork` by implementing the output layer which converts the outputs from the base network into probabilities of length `context_length`. These probabilities together with the past values in the context window constitute the one-step-ahead forecast distribution. Specifically, the forecast is always one of the values observed in the context window with the corresponding predicted probability. Parameters ---------- *args Arguments to ``DeepNPTSNetwork``. use_softmax Flag indicating whether to use softmax or normalization for converting the outputs of the base network to probabilities. kwargs Keyword arguments to ``DeepNPTSNetwork``. """ @validated() def __init__(self, *args, use_softmax: bool = False, **kwargs): super().__init__(*args, **kwargs) self.use_softmax = use_softmax modules: List[nn.Module] = ( [] if self.dropout_rate > 0 else [nn.Dropout(self.dropout_rate)] ) modules.append( nn.Linear(self.num_hidden_nodes[-1], self.context_length) ) self.output_layer = nn.Sequential(*modules) self.output_layer.apply(init_weights) def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, ) -> DiscreteDistribution: h = super().forward( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=past_observed_values, past_time_feat=past_time_feat, ) outputs = self.output_layer(h) probs = ( nn.functional.softmax(outputs, dim=1) if self.use_softmax else nn.functional.normalize( nn.functional.softplus(outputs), p=1, dim=1 ) ) return DiscreteDistribution(values=past_target, probs=probs) class DeepNPTSNetworkSmooth(DeepNPTSNetwork): """ Extends `DeepNTPSNetwork` by implementing the output layer which converts the outputs from the base network into a smoothed mixture distribution. The components of the mixture are Gaussians centered around the observations in the context window. The mixing probabilities as well as the width of the Gaussians are predicted by the network. This mixture distribution represents the one-step-ahead forecast distribution. Note that the forecast can contain values not observed in the context window. """ @validated() def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) modules = ( [] if self.dropout_rate > 0 else [nn.Dropout(self.dropout_rate)] ) modules += [ nn.Linear(self.num_hidden_nodes[-1], self.context_length + 1), nn.Softplus(), ] self.output_layer = nn.Sequential(*modules) self.output_layer.apply(init_weights) def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, ) -> MixtureSameFamily: h = super().forward( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=past_observed_values, past_time_feat=past_time_feat, ) outputs = self.output_layer(h) probs = outputs[:, :-1] kernel_width = outputs[:, -1:] mix = Categorical(probs) components = Normal(loc=past_target, scale=kernel_width) return MixtureSameFamily( mixture_distribution=mix, component_distribution=components ) class DeepNPTSMultiStepNetwork(nn.Module): """ Implements multi-step prediction given a trained `DeepNPTSNetwork` model that outputs one-step-ahead forecast distribution. """ @validated() def __init__( self, net: DeepNPTSNetwork, prediction_length: int, num_parallel_samples: int = 100, ): super().__init__() self.net = net self.prediction_length = prediction_length self.num_parallel_samples = num_parallel_samples def forward( self, feat_static_cat: torch.Tensor, feat_static_real: torch.Tensor, past_target: torch.Tensor, past_observed_values: torch.Tensor, past_time_feat: torch.Tensor, future_time_feat: torch.Tensor, ): """Generates samples from the forecast distribution. Parameters ---------- feat_static_cat Shape (-1, num_features). feat_static_real Shape (-1, num_features). past_target Shape (-1, context_length). past_observed_values Shape (-1, context_length). past_time_feat Shape (-1, context_length, self.num_time_features). future_time_feat Shape (-1, prediction_length, self.num_time_features). Returns ------- torch.Tensor Tensor containing samples from the predicted distribution. Shape is (-1, self.num_parallel_samples, self.prediction_length). """ # Blow up the initial `x` by the number of parallel samples required. # (batch_size * num_parallel_samples, context_length) past_target = past_target.repeat_interleave( self.num_parallel_samples, dim=0 ) # Note that gluonts returns empty future_observed_values. future_observed_values = torch.ones( (past_observed_values.shape[0], self.prediction_length) ) observed_values = torch.cat( [past_observed_values, future_observed_values], dim=1 ) observed_values = observed_values.repeat_interleave( self.num_parallel_samples, dim=0 ) time_feat = torch.cat([past_time_feat, future_time_feat], dim=1) time_feat = time_feat.repeat_interleave( self.num_parallel_samples, dim=0 ) feat_static_cat = feat_static_cat.repeat_interleave( self.num_parallel_samples, dim=0 ) feat_static_real = feat_static_real.repeat_interleave( self.num_parallel_samples, dim=0 ) future_samples = [] for t in range(self.prediction_length): distr = self.net( feat_static_cat=feat_static_cat, feat_static_real=feat_static_real, past_target=past_target, past_observed_values=observed_values[ :, t : -self.prediction_length + t ], past_time_feat=time_feat[ :, t : -self.prediction_length + t, : ], ) samples = distr.sample() if past_target.dim() != samples.dim(): samples = samples.unsqueeze(dim=-1) future_samples.append(samples) past_target = torch.cat([past_target[:, 1:], samples], dim=1) # (batch_size * num_parallel_samples, prediction_length) samples_out = torch.stack(future_samples, dim=1) # (batch_size, num_parallel_samples, prediction_length) return samples_out.reshape( -1, self.num_parallel_samples, self.prediction_length )
[ "noreply@github.com" ]
kashif.noreply@github.com
725d9518757190bbff990c8383cf7ec9d56e3cc5
c0d537532f11cf742493093c3c325b4625fdc6e4
/Q4/HW3_Q4.py
ca25aabc6ff5e1c28eeec4da92089f07eb0f066c
[]
no_license
plusbzz/cs224w-hw3
c9b4296425f467e203d12e4008b871d6dd89333f
7d513c991ff6e16433b6a4241950a2a3b2c15a96
refs/heads/master
2016-09-06T06:56:45.495051
2013-11-07T05:35:46
2013-11-07T05:35:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,469
py
# Homework 3: Question 4 from snap import * from random import sample,choice from ggplot import * N=10670 M=22002 nodes=arange(N) dia_sample = 20 # Creating graphs # Create a random Gnm network g_nm = PUNGraph_New() for i in nodes: g_nm.AddNode(i) while True: s,t = sample(nodes,2) g_nm.AddEdge(s,t) if g_nm.GetEdges() == M: break g_nm.GetNodes(),g_nm.GetEdges() # Save graph SaveEdgeList_PUNGraph(g_nm,"Gnm.txt") # Create a graph G_pa with preferential attachment # Start with a complete graph of 40 nodes N_init = 40 edges = [] g_pa = PUNGraph_New() for n in xrange(N_init): g_pa.AddNode(n) for m in xrange(n): g_pa.AddEdge(m,n) edges.append((m,n)) for n in nodes[N_init:]: g_pa.AddNode(n) for i in xrange(2): m = choice(choice(edges)) g_pa.AddEdge(m,n) edges.append((m,n)) if g_pa.GetEdges() == M: break g_pa.GetNodes(),g_pa.GetEdges() SaveEdgeList_PUNGraph(g_pa,"Gpa.txt") # Load Autonomous network graph g_as = LoadEdgeList_PUNGraph("oregon1_010331.txt") SaveEdgeList_PUNGraph(g_as,"Gas.txt") # Q4.1) Deletion experiments for failure vs attack # Failure deletion def failure1(graph,batchsize,percent): del_nodes = 0 # number of deleted nodes N = graph.GetNodes() stopN = (percent*N)/100 # number of nodes at which to stop X = [0] Y = [GetBfsFullDiam_PUNGraph(graph,dia_sample)] nodeset = set(range(N)) while True: # start deleting for d in sample(nodeset,batchsize): graph.DelNode(d) nodeset.remove(d) del_nodes += batchsize dia = GetBfsFullDiam_PUNGraph(graph,dia_sample) X.append((100.0*del_nodes)/N) Y.append(dia) if del_nodes >= stopN: break return X,Y # Attack deletion def attack1(graph,batchsize,percent): del_nodes = 0 # number of deleted nodes N = graph.GetNodes() stopN = (percent*N)/100 # number of nodes at which to stop X = [0] Y = [GetBfsFullDiam_PUNGraph(graph,dia_sample)] nodeset = set(range(N)) while True: # start deleting for i in xrange(batchsize): d = GetMxDegNId_PUNGraph(graph) graph.DelNode(d) nodeset.remove(d) del_nodes += batchsize dia = GetBfsFullDiam_PUNGraph(graph,dia_sample) X.append((100.0*del_nodes)/N) Y.append(dia) if del_nodes >= stopN: break return X,Y # Plot for average diameter vs. deleted nodes def plots(X,Y,xlab,ylab,tpref,failure_func,attack_func): g_nm = LoadEdgeListStr_PUNGraph("Gnm.txt") f_g_nm_x,f_g_nm_y = failure_func(g_nm,X,Y) g_as = LoadEdgeListStr_PUNGraph("Gas.txt") f_g_as_x,f_g_as_y = failure_func(g_as,X,Y) g_pa = LoadEdgeListStr_PUNGraph("Gpa.txt") f_g_pa_x,f_g_pa_y = failure_func(g_pa,X,Y) g_nm = LoadEdgeListStr_PUNGraph("Gnm.txt") a_g_nm_x,a_g_nm_y = attack_func(g_nm,X,Y) g_as = LoadEdgeListStr_PUNGraph("Gas.txt") a_g_as_x,a_g_as_y = attack_func(g_as,X,Y) g_pa = LoadEdgeListStr_PUNGraph("Gpa.txt") a_g_pa_x,a_g_pa_y = attack_func(g_pa,X,Y) p = plt.plot(f_g_as_x,f_g_as_y,'-o',f_g_nm_x,f_g_nm_y,'-x',f_g_pa_x,f_g_pa_y,'-+', a_g_as_x,a_g_as_y,'-.',a_g_nm_x,a_g_nm_y,'--',a_g_pa_x,a_g_pa_y,'-4', lw=1,mew=2) p = plt.legend(("Failure: AS","Failure: NM","Failure: PA", "Attack: AS","Attack: NM","Attack: PA"),loc="best") p = plt.title(tpref + ': ' + ylab + " vs. " + xlab) p = plt.xlabel(xlab) p = plt.ylabel(ylab) # Scenario 1: X = N/100, Y = 50 X = N/100 Y = 50 plots(X,Y,"Percent of deleted nodes","Average sampled diameter","Q4.1)X=N/100,Y=50", failure1,attack1) # Scenario 2: X = N/1000, Y = 2 X = N/1000 Y = 2 plots(X,Y,"Percent of deleted nodes","Average sampled diameter","Q4.1)X=N/1000,Y=2", failure1,attack1) # Q4.2) Change in size of largest connected component # Failure deletion def failure2(graph,batchsize,percent): del_nodes = 0 # number of deleted nodes N = graph.GetNodes() stopN = (percent*N)/100 # number of nodes at which to stop X = [0] Y = [float(GetMxWccSz_PUNGraph(graph))] nodeset = set(range(N)) while True: # start deleting for d in sample(nodeset,batchsize): graph.DelNode(d) nodeset.remove(d) del_nodes += batchsize lcc = float(GetMxWccSz_PUNGraph(graph)) # size of LCC X.append((100.0*del_nodes)/N) Y.append(lcc) if del_nodes >= stopN: break return X,Y # Attack deletion def attack2(graph,batchsize,percent): del_nodes = 0 # number of deleted nodes N = graph.GetNodes() stopN = (percent*N)/100 # number of nodes at which to stop X = [0] Y = [float(GetMxWccSz_PUNGraph(graph))] nodeset = set(range(N)) while True: # start deleting for i in xrange(batchsize): d = GetMxDegNId_PUNGraph(graph) graph.DelNode(d) nodeset.remove(d) del_nodes += batchsize lcc = float(GetMxWccSz_PUNGraph(graph)) X.append((100.0*del_nodes)/N) Y.append(lcc) if del_nodes >= stopN: break return X,Y # Plots of fraction in largest connected component vs. percent deleted nodes X = N/100 Y = 50 plots(X,Y,"Percent of deleted nodes","Fraction of nodes in LCC","Q4.2)X=N/100,Y=50", failure2,attack2)
[ "plusbzz@gmail.com" ]
plusbzz@gmail.com
1864abd09c45d30c777b5127b78b028f192c006a
ce3f2b03f38076b75544ab901662e6aeda35d97a
/manage.py
0f521b7d0f5bf1caf2215a08b13f9ff161682059
[]
no_license
DivingCats/reflask
98799b7f693101a211152701cace06ef627233f3
1be5c61f3cf48b4e6e6a15fee56930f8166d3cd6
refs/heads/master
2022-12-09T22:13:58.644735
2020-02-08T09:56:14
2020-02-08T09:56:14
230,551,305
0
0
null
2022-12-08T03:34:28
2019-12-28T03:11:44
Python
UTF-8
Python
false
false
610
py
# -*- coding: utf-8 -*- # @Time : 2020/2/5 20:55 # @Author : DivingKitten # @File : manage.py # @Software: PyCharm # @Desc : 启动脚本 from app import create_app from flask_script import Manager, Shell app = create_app('default') manager = Manager(app) def make_shell_context(): return dict(app=app) manager.add_command("shell", Shell(make_context=make_shell_context)) @manager.command def test(): import unittest tests = unittest.TestLoader().discover('tests') unittest.TextTestRunner(verbosity=2).run(tests) if __name__ == '__main__': # app.run() manager.run()
[ "Unility@163.com" ]
Unility@163.com
235950d4728104e2a077b449c15418d2a6e7154c
057554afbdfec2f8689a999a15ba0848c620ab4f
/find_available_room.py
d3ca3e14301c511f7ba7b3c8037a7f21148694ab
[ "Apache-2.0" ]
permissive
cnaert/roomfinder2
fe40c2728d19c92688ef4b86699db660f36fefb8
75040a2842058334fb5dfa9d12491e321bc88b43
refs/heads/master
2021-01-19T21:59:25.368371
2017-04-19T11:13:33
2017-04-19T11:13:33
88,688,826
0
0
null
null
null
null
UTF-8
Python
false
false
2,600
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys reload(sys) sys.setdefaultencoding("utf-8") import subprocess import getpass from string import Template import xml.etree.ElementTree as ET import csv, codecs import argparse import datetime now = datetime.datetime.now().replace(microsecond=0) starttime_default = now.isoformat() end_time_default = None parser = argparse.ArgumentParser() parser.add_argument("-url","--url", help="url for exhange server, e.g. 'https://mail.domain.com/ews/exchange.asmx'.",required=True) parser.add_argument("-u","--user", help="user name for exchange/outlook",required=True) parser.add_argument("-p","--password", help="password for exchange/outlook", required=True) parser.add_argument("-start","--starttime", help="Starttime e.g. 2014-07-02T11:00:00 (default = now)", default=starttime_default) parser.add_argument("-end","--endtime", help="Endtime e.g. 2014-07-02T12:00:00 (default = now+1h)", default=end_time_default) #parser.add_argument("-n","--now", help="Will set starttime to now and endtime to now+1h", action="store_true") parser.add_argument("-f","--file", help="csv filename with rooms to check (default=favorites.csv). Format: Name,email",default="favorites.csv") args=parser.parse_args() url = args.url reader = csv.reader(codecs.open(args.file, 'r', encoding='utf-8')) start_time = args.starttime if not args.endtime: start = datetime.datetime.strptime( start_time, "%Y-%m-%dT%H:%M:%S" ) end_time = (start + datetime.timedelta(hours=1)).isoformat() else: end_time = args.endtime user = args.user password = args.password print "Searching for a room from " + start_time + " to " + end_time + ":" print "{0:10s} {1:25s} {2:40s} {3:10s} {4:10s} {5:10s} {6:50s}".format("Status", "Room", "Email", "Level", "Zone", "Seats", "Description") xml_template = open("getavailibility_template.xml", "r").read() xml = Template(xml_template) for room in reader: data = unicode(xml.substitute(email=room[1],starttime=start_time,endtime=end_time)) header = "\"content-type: text/xml;charset=utf-8\"" command = "curl --silent --header " + header +" --data '" + data + "' --ntlm -u "+ user+":"+password+" "+ url response = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True).communicate()[0] tree = ET.fromstring(response) status = "Free" # arrgh, namespaces!! elems=tree.findall(".//{http://schemas.microsoft.com/exchange/services/2006/types}BusyType") for elem in elems: status=elem.text print "{0:10s} {1:25s} {2:40s} {3:10s} {4:10s} {5:10s} {6:50s}".format(status, room[0], room[1], room[2], room[3], room[4], room[5] )
[ "cyrille.naert@dimensiondata.com" ]
cyrille.naert@dimensiondata.com
f45604bd7b04946b6c72a23f38771783457a5ae7
9998ff1d80a5442970ffdc0b2dd343e3cab30ee8
/fiaqm.py
8d1e36ec5d2bdf3d45320c614cf86650b2282341
[ "MIT" ]
permissive
cgomezsu/FIAQM
9baac1a9410a6ad19e67fff024a9ff15f24df70c
da44e370f40e573233a148414229359e7782ad0c
refs/heads/main
2023-05-13T02:17:19.833979
2021-05-24T01:25:17
2021-05-24T01:25:17
301,475,198
0
0
null
null
null
null
UTF-8
Python
false
false
14,902
py
""" v.e.s. Federated Congestion Predictor + Intelligent AQM MIT License Copyright (c) 2020 Cesar A. Gomez Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from mininet.topo import Topo from mininet.net import Mininet from mininet.link import TCLink from mininet.log import info, setLogLevel from mininet.cli import CLI import numpy as np import pandas as pd import time, random, os import substring as ss import tuner as tnr random.seed(7) # For reproducibility class CreateTopo(Topo): def build(self, n): bra = self.addSwitch('bra1') # Border Router A brb = self.addSwitch('brb1') # Border Router B ixp = self.addSwitch('ixp1') # IXP switch vs = self.addSwitch('vs1') # Virtual switch to emulate a tunnel connection between Learning Orchestrator and Local Learners self.addLink(bra, ixp, bw=1000, delay='2ms') # Link between bra-eth1 and ixp-eth1 self.addLink(ixp, brb, bw=1000, delay='2ms') # Link between ixp-eth2 and brb-eth1 # Creation of hosts connected to Border Routers in each domain for j in range(n): BW = random.randint(250,500) d = str(random.randint(2,10))+'ms' # Each host has a random propagation delay (between 2 and 10 ms) on its link connected to the corresponding router ha = self.addHost('a%s' % (j+1), ip='10.10.0.%s' % (j+1)) self.addLink(ha, bra, bw=BW, delay=d) BW = random.randint(250,500) # Random BW to limit rate on each interface d = str(random.randint(2,10))+'ms' hb = self.addHost('b%s' % (j+1), ip='10.11.0.%s' % (j+1)) self.addLink(hb, brb, bw=BW, delay=d) hlla = self.addHost('lla1', ip='10.10.11.11') # Host acting as the Local Learner A self.addLink(hlla, vs, bw=100)#, delay='2ms') hllb = self.addHost('llb1', ip='10.10.11.12') # Host acting as the Local Learner B self.addLink(hllb, vs, bw=100)#, delay='2ms') hlo = self.addHost('lo1', ip='10.10.10.10') # Host acting as the Learning Orchestrator self.addLink(hlo, vs, bw=100)#, delay='2ms') ma = self.addHost('ma1', ip='10.0.0.10') # There are two monitor hosts for probing self.addLink(ma, bra, bw=1000) # The BW of the monitor hosts are the same as the inter-domain links mb = self.addHost('mb1', ip='10.0.0.11') self.addLink(mb, brb, bw=1000) setLogLevel('info') # To show info messages n = 20 # Number of network elements connected per border router topo = CreateTopo(n) net = Mininet(topo, link=TCLink, autoSetMacs=True) # We use Traffic Control links info('\n*** Starting network\n') net.start() # Creating network devices from topology lo1 = net['lo1'] lla1 = net['lla1'] llb1 = net['llb1'] bra1 = net['bra1'] ixp1 = net['ixp1'] brb1 = net['brb1'] ma1 = net['ma1'] mb1 = net['mb1'] # AQM configuration for link between IXP switch and Border Router A ixp1.cmd('tc qdisc del dev ixp1-eth1 root') # Clear current qdisc ixp1.cmd('tc qdisc add dev ixp1-eth1 root handle 1:0 htb default 1') # Set the name of the root as 1:, for future references. The default class is 1 ixp1.cmd('tc class add dev ixp1-eth1 classid 1:1 htb rate 1000mbit') # Create class 1:1 as direct descendant of root (the parent is 1:) ixp1.cmd('tc qdisc add dev ixp1-eth1 parent 1:1 handle 10:1 fq_codel limit 1000 target 50ms interval 1000ms noecn') # Create qdisc with ID (handle) 10 of class 1. Its parent class is 1:1. Queue size limited to 1000 pkts # AQM configuration for link between Border Router B and IXP switch. This will be the IAQM aqm_target = 5000 aqm_interval = 100 # Initial parameters brb1.cmd('tc qdisc del dev brb1-eth1 root') brb1.cmd('tc qdisc add dev brb1-eth1 root handle 1:0 htb default 1') brb1.cmd('tc class add dev brb1-eth1 classid 1:1 htb rate 1000mbit') brb1.cmd('tc qdisc add dev brb1-eth1 parent 1:1 handle 10:1 fq_codel limit 1000 target {}us interval {}ms noecn'.format(aqm_target,aqm_interval)) # Both target and interval of this queue will be set dynamically as the emulation runs info('\n*** Setting up AQM for intra-domain link buffers at Border Router\n') a = [0 for j in range(n)] # List initialization for hosts A b = [0 for j in range(n)] # List initialization for hosts B for j in range(n): # Changing the queue discipline on interfaces connected to Border Router A BW = random.randint(250,500) # Random BW to limit rate on each interface bra1.cmd('tc qdisc del dev bra1-eth{} root'.format(j+2)) bra1.cmd('tc qdisc add dev bra1-eth{} root handle 1:0 htb default 1'.format(j+2)) bra1.cmd('tc class add dev bra1-eth{} classid 1:1 htb rate {}mbit'.format(j+2,BW)) bra1.cmd('tc qdisc add dev bra1-eth{} parent 1:1 handle 10:1 fq_codel limit 1000 target 2000us interval 40ms noecn'.format(j+2)) time.sleep(3) # Wait a moment while the AQM is configured a[j] = net['a%s' % (j+1)] # Creating net devices from topology b[j] = net['b%s' % (j+1)] time.sleep(5) info('\n*** Testing connectivity...\n') for j in range(n): net.ping(hosts=[a[j],b[j]]) net.ping(hosts=[lla1,lo1]) net.ping(hosts=[llb1,lo1]) net.ping(hosts=[ma1,mb1]) info('\n*** Starting AQM stat captures...\n') bra1.cmd('bash ~/stat_bra.sh') # Bash script to capture AQM stats at Border Router A ixp1.cmd('bash ~/stat_ixp.sh &') # Bash script to capture AQM stats at the IXP switch brb1.cmd('bash ~/stat_brb.sh &') # Bash script to capture AQM stats at Border Router B info('\n*** Starting RRUL traffic between pairs...\n') for j in range(n): a[j].cmd('netserver &') # Start server on domain-A hosts for RRUL tests l = random.randint(300,900) # Random length for each RRUL test b[j].cmd('bash rrul.sh 10.10.0.{} {} &'.format(j+1,l)) # Start RRUL tests on domain-B hosts time.sleep(20) # Waiting time while all RRUL tests start info('\n*** Capturing AQM stats for initial training...\n') time.sleep(150) # Waiting time for the getting initial training samples # If emulation gets stuck in the first period, it's porbably because there's not enough traffic samples to train the model. Leave a longer time info('\n*** Starting Federated Congestion Predictor process...\n') lo1.cmd('mkdir ~/LO') # Directory to store parameter files of Learning Orchestrator lo1.cmd('mkdir ~/LO/Predictions') # Directory to store predictions of Learning Orchestrator lla1.cmd('mkdir ~/LLA') # Directory to store files of Local Learner A llb1.cmd('mkdir ~/LLB') # Directory to store files of Local Learner B # Start SCP server on Learning Orchestrator lo1.cmd('/usr/sbin/sshd -p 54321') # Start learning process on Learning Orchestrator lo1.cmd('source PyTorch/bin/activate') # Activate virtual environment where PyTorch is installed lo1.cmd('python lo_train.py &') lo1.cmd('python lo_predict.py &') # Start learning process on Local Learner A lla1.cmd('source PyTorch/bin/activate') lla1.cmd('python ll_train.py &') # Receive predictions periods = 300 # Number of periods (of aprox 2 secs) to run the emulation factor = 1000 S = 100 # Number of states: discrete levels of congestion [0, 100] in a period of 2 s A = np.arange(1100, 11100, 100) # Set of actions: set value of target parameter in us epsilon = 0.5 s_curr = random.randint(0,S) # Random initialization of the first observed state for tuning ind_action = len(A)-1 # Initial action for tuning: max FQ-CoDel target considered (7.5 ms) cong_pred_max = 1e-6 hist_pred = np.zeros(periods) hist_local = np.zeros(periods) hist_r = np.zeros(periods) hist_rtt = np.ones(periods)*8 hist_tput = np.ones(periods)*100 ma1.cmd('iperf -s &') # Iperf server on Monitor A to measure throughput t0 = time.time() # To take time of all periods preds_file = '/home/ubuntu/LLB/dr_est.npy' for i in range(periods): # Measure RTT and throughput in 1 sec mb1.cmd('iperf -c 10.0.0.10 -i 0.1 -t 1 | tail -1 > ~/LLB/tput.out &') mb1.cmd('ping 10.0.0.10 -i 0.1 -w 1 -q | tail -1 > ~/LLB/ping.out') print("*** Period",i) print("+++ Configured target and interval parameters:",aqm_target,"us",aqm_interval,"ms") # Load received file with predictions, sent by the Learning Orchestrator while not os.path.isfile(preds_file): time.sleep(0) while not os.path.getsize(preds_file) >= 928: # To make sure that the file is not empty and still being transferred (file size with 100 predictions) time.sleep(0) dr_est = np.load(preds_file) # Some signal rearrangements of the predictions dr_est = dr_est*factor dr_est = dr_est-dr_est.mean() dr_est = np.abs(dr_est) dr_est[dr_est > 1] = 1 # Avoid any possible outlier after rearranging hist_pred[i] = dr_est.mean() # Discretize values of predictions if hist_pred[i] > cong_pred_max: cong_pred_max = hist_pred[i] # Stores the max value of predicted congestion s_next = int((hist_pred[i]/cong_pred_max)*S-1) print("+++ Predicted level of congestion ahead:",s_next+1) time.sleep(1) # The duration of each period is this waiting time + ping time statinfo = os.stat('/home/ubuntu/LLB/ping.out') if statinfo.st_size < 10: mRTT = hist_rtt.max() # If no ping response was gotten, take the maximum in the records (worst case) print ('>>> No mRTT response. Taking maximum known: %.3f' % mRTT, 'ms') else: din = open('/home/ubuntu/LLB/ping.out').readlines() slice = ss.substringByInd(din[0],26,39) text = (slice.split('/')) mRTT = float(text[1]) print ('>>> mRTT: %.3f' % mRTT, 'ms') hist_rtt[i] = mRTT statinfo = os.stat('/home/ubuntu/LLB/tput.out') if statinfo.st_size < 10: tput = hist_tput.min() # If no tput response was gotten, take the minimum in the records (worst case) print ('>>> No Tput response. Taking minimum known: %.3f' % tput, 'Mbps') else: din = open('/home/ubuntu/LLB/tput.out').readlines() tput = float(ss.substringByInd(din[0],34,37)) unit = ss.substringByInd(din[0],39,39) if unit == 'K': tput = tput*0.001 print ('>>> Tput: %.3f' % tput, 'Mbps') hist_tput[i] = tput hist_r[i] = tput/mRTT R = hist_r[i] # Reward is based on power function print ('>>> Power: %.2f' % R) if i >= 75: # Start the AQM tuning process after this period # Update Q-values Q = tnr.update(s_curr, ind_action, R, s_next) s_curr = s_next # Select action for next iteration ind_action = tnr.action(s_curr, epsilon) aqm_target = A[ind_action] # Select a FQ-CoDel target aqm_interval = int(aqm_target/(0.05*1000)) # Select a FQ-CoDel interval. Tipycally, target is 5% of interval brb1.cmd('tc qdisc change dev brb1-eth1 parent 1:1 handle 10:1 fq_codel limit 1000 target {}us interval {}ms noecn'.format(aqm_target,aqm_interval)) # Change the AQM parameters at Border Router B print("*** Total wall time: ", time.time() - t0, " seconds") np.save('/home/ubuntu/hist_pred.npy',hist_pred) np.save('/home/ubuntu/hist_power.npy',hist_r) np.save('/home/ubuntu/q-table.npy',Q) #CLI(net) # Uncomment this line to explore the temporary files before exiting Mininet info('*** Deleting temporary files...\n') lo1.cmd('rm -r ~/LO') lla1.cmd('rm -r ~/LLA') llb1.cmd('rm -r ~/LLB') info('*** Experiment finished!\n') net.stop()
[ "noreply@github.com" ]
cgomezsu.noreply@github.com
6d39bfe89b71cb0c05cdf5b5824bde77c2647498
fca3fe7557c00a379e90cda8016a8719ca57fe28
/jexp/tests.py
32a07ef74a77e0e252e4893441888e74bb850e8b
[ "BSD-3-Clause" ]
permissive
mhluongo/jexp
d8a4db0a2d4f0f5f70471c2e36ecc22c8835b73e
e23b375c00bb62cab9671bc76250023125b4e60f
refs/heads/master
2021-01-13T01:15:08.980614
2011-09-02T00:11:13
2011-09-02T00:11:13
2,158,299
0
0
null
null
null
null
UTF-8
Python
false
false
279
py
from nose.tools import eq_ from jexp import J a = J('a') b = J('b') #logical tests def test_or(): eq_(str(a | b), '(a||b)') def test_and(): eq_(str(a & b), '(a&&b)') def test_inv(): eq_(str(~a), '(!a)') #math tests def test_negate(): eq_(str(-a), '(-a)')
[ "mhluongo@gmail.com" ]
mhluongo@gmail.com
25bd69a2f916412574ed02402bb69fe8bb639fc1
a1bfa15fdb28c2eb4f46c6a694dd310e0a174846
/jpg2mojo.py
c128a00be0cb268eea657c795fa607d5b2657c2a
[]
no_license
Rhoana/MojoToolkit
2971f6634adbcf40a5b8658b29de7fb6215498c2
c64e6d0c266dbb61105a8cadda16db7a2f76e0eb
refs/heads/master
2020-12-21T12:06:05.149710
2017-09-18T16:42:31
2017-09-18T16:42:31
73,499,035
0
1
null
2016-11-11T17:49:48
2016-11-11T17:49:47
null
UTF-8
Python
false
false
2,135
py
#!/usr/bin/python import os import cv2 import glob import argparse import numpy as np from toMojo.np2imgo import Imgo from toMojo.np2sego import Sego help = { 'out': 'output mojo parent (default mojo)', 'jpg2mojo': 'Stack all jpgs into a mojo folder!', 'jpgs': 'input folder with all jpgs (default jpgs)', 't': 'datatype for output file (default uint8)', 'c': '-c enables -t uint32 (and default -o bgr)', 'o': 'Little Endian channel order as rgba,bgr (default none)', } paths = {} stack = {} rgba = { 'r': 0, 'g': 1, 'b': 2, 'a': 3 } parser = argparse.ArgumentParser(description=help['jpg2mojo']) parser.add_argument('-t', metavar='string', default='uint8', help=help['t']) parser.add_argument('-o', metavar='string', default='', help=help['o']) parser.add_argument('jpgs', default='jpgs', nargs='?', help=help['jpgs']) parser.add_argument('out', default='mojo', nargs='?', help=help['out']) parser.add_argument('-c', help=help['c'], action='store_true') # attain all arguments args = vars(parser.parse_args()) for key in ['jpgs', 'out']: paths[key] = os.path.realpath(os.path.expanduser(args[key])) [order, color, dtype] = [args['o'], args['c'], args['t']] # Set color datatype if color: dtype = 'uint32' order = order or 'bgr' dtype = getattr(np,dtype) # read all jpgs in jpgs folder search = os.path.join(paths['jpgs'],'*.jpg') stack = sorted(glob.glob(search)) # Size input files sliceShape = cv2.imread(stack[0], 0).shape shape = (len(stack),) + sliceShape # Open an output file outfile = Imgo(paths['out']) if order: outfile = Sego(paths['out']) # Add each jpg file as a slice for zi, file in enumerate(stack): written = np.zeros(sliceShape,dtype=dtype) if not order: written = cv2.imread(file, 0).astype(dtype) else: # pixel to integer volume = cv2.imread(file) for ci, char in enumerate(order): colorbyte = volume[:, :, rgba[char]] * (256 ** ci) written = written + colorbyte # Write as image or segmentation outfile.run(written,zi) # Write metadata to ouput file outfile.save(shape)
[ "thejohnhoffer@coxgpu04.rc.fas.harvard.edu" ]
thejohnhoffer@coxgpu04.rc.fas.harvard.edu
808213727226448e77ae3540979e0a54ba99ac8c
29d6101cc76550b3dbb47e885a6c160f46551bc1
/test
61dbb6fd4297fef87fa9d79ea8c095ff1b07c43c
[]
no_license
awesomebjt/lpic-self-tests
b7dcc4062550b6ec06ef20ecb3c31c976ce46b32
bd772b1e25549e96caf02671b882212a3ab0cc13
refs/heads/master
2023-07-12T02:42:21.945693
2020-08-27T02:13:42
2020-08-27T02:13:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
558
#!/usr/bin/python import json from random import randint import sys try: content = json.loads(open(sys.argv[1],'r').read()) except Exception as e: print("Failed to load self-test. Did you provide the right file name as the first argument?") raise e total = 0 correct = 0 while len(content) > 0: q = content.pop(randint(0,len(content)-1)) total += 1 print(q['Q']) a=input("# ") if a == q['A']: correct += 1 print("Total: {}\tCorrect: {}\tGrade: {}%".format( total, correct, int((correct/total)*100)))
[ "bjt@rabidquill.com" ]
bjt@rabidquill.com
0a4d9c5a7f1c40f757a2731830ff440ee111ecd1
03b7430a0fbba63c0d5712ed6539caa807cb8d05
/problem1e.py
920b116d89aa792337950f565febeb39b2f85035
[ "MIT" ]
permissive
yasserglez/monkeys-typing
7e0dcecfea3bc7401fbd8d229180b8277dc0b6e0
c7d15802cedd29dc0a194612d3777a656cb43caa
refs/heads/master
2020-04-06T04:31:39.337137
2015-08-08T18:23:37
2015-08-08T18:23:37
18,028,427
0
1
null
null
null
null
UTF-8
Python
false
false
313
py
from monkeys import compute_freq_tab, write_freq_tab freq_tab_2nd_order = compute_freq_tab(2, 'books/agnes_grey.txt') write_freq_tab(freq_tab_2nd_order, 'agnes_grey_2nd_order.json') freq_tab_3rd_order = compute_freq_tab(3, 'books/agnes_grey.txt') write_freq_tab(freq_tab_3rd_order, 'agnes_grey_3rd_order.json')
[ "ygonzalezfernandez@gmail.com" ]
ygonzalezfernandez@gmail.com
9524b3b82893f96b5401f320e1e5ef79be1a59ef
523db0f90e8069311705173cfcfdfb2c4417ae44
/06_port_scan/w8ay.py
a95691477badbd9c9fae4083fb5c2c06b3319282
[]
no_license
ClayAndMore/py_scanner
b351fbc23fdc2d797fcc527472561333423d44f7
b21c1ae9ae8d9a6dc32841ec62bcd7cc40e0531f
refs/heads/master
2020-06-05T13:20:27.787920
2019-06-19T02:45:15
2019-06-19T02:45:15
192,449,157
0
0
null
null
null
null
UTF-8
Python
false
false
601
py
#!/usr/bin/env python #-*- coding:utf-8 -*- ''' Name:w8ayScan Author:w8ay Copyright (c) 2017 ''' import sys from lib.core.Spider import SpiderMain from lib.core import webcms, common, PortScan reload(sys) sys.setdefaultencoding('utf-8') def main(): root = "https://shiyanlou.com" threadNum = 10 ip = common.gethostbyname(root) print "IP:",ip print "Start Port Scan:" pp = PortScan.PortScan(ip) pp.work() #webcms ww = webcms.webcms(root,threadNum) ww.run() #spider w8 = SpiderMain(root,threadNum) w8.craw() if __name__ == '__main__': main()
[ "wangyu1@antiy.com" ]
wangyu1@antiy.com
2c2aebeebd8ad4a79fc47d44907d6a0fd9cdc88d
f68c7045d39039bcc58b8d096aca7edf433429ca
/env/bin/easy_install
2a206bc40153a884b403668cb00e8f28646c0b1c
[ "MIT" ]
permissive
kelvin-daniel/instagram
beca157eb4eb1130ebd86825a9f99d96b903da02
2ede5319266f4312a9440d4985d098bc7545c2ae
refs/heads/master
2022-12-30T17:31:37.451798
2020-10-26T09:02:55
2020-10-26T09:02:55
304,535,375
0
0
null
null
null
null
UTF-8
Python
false
false
283
#!/home/kevon/Documents/moringa_school/Django/instagram/env/bin/python3 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "kaymutor@gmail.com" ]
kaymutor@gmail.com
35509fe6b955bd2603e79013b82691a6ac50a9c7
1fa21cd2c288a9f87295631e10f747fe075a1502
/Trip Planner APIs/trip.py
fe94241adebdc4d7399310e515b6760df7830685
[]
no_license
bmrn/TfNSW_APIs
4bc22e800796f848ff5f1ced2c04dd56a0666472
b4cbe176ce811698739b5fd33517fb36edbfa68d
refs/heads/master
2021-01-19T22:55:33.722331
2017-04-28T06:33:23
2017-04-28T06:33:23
88,893,404
0
0
null
null
null
null
UTF-8
Python
false
false
1,853
py
from urllib.parse import urlencode import requests import json import tssetup from pprint import pprint api_key = tssetup.getKey() base_url = "https://api.transport.nsw.gov.au/v1/tp/" query_type = "trip?" #initialise query param dictionary qdict = {} #add parameters qdict["outputFormat"] = "rapidJSON" qdict["coordOutputFormat"] = "EPSG:4326" qdict["depArrMacro"] = "dep" #dep after or arr before qdict["itdDate"] = "20170707" qdict["itdTime"] = "1200" qdict["type_origin"] = "any" qdict["name_origin"] = "10101331" #get location/stop id from stop_finder.py qdict["type_destination"] = "any" qdict["name_destination"] = "10102027" qdict["calcNumberOfTrips"] = 5 qdict["wheelchair"] = "" #or "on" qdict["TfNSWSF"] = "true" qdict["version"] = "10.2.1.15" #encode params as querystring qstring = urlencode(qdict) #buildurl urlsend = base_url + query_type + qstring print(urlsend) #get authentication headers = {'Authorization': 'apikey ' + api_key, 'Accept': 'application/json'} response = requests.get(urlsend, headers=headers) #decode response and convert to JSON format respdict = json.loads(response.content.decode('utf-8')) #simple example to look at data for x in range(len(respdict["journeys"])): print("********* TRIP " + str(x+1) + " *********") for y in range(len(respdict["journeys"][x]["legs"])): print("LEG " + str(y+1) + "") print("Duration " + str(respdict["journeys"][x]["legs"][y]["duration"]/60) + " mins", end="\n") print(respdict["journeys"][x]["legs"][y]["origin"]["departureTimeEstimated"], end="\t") print(respdict["journeys"][x]["legs"][y]["origin"]["name"], end="\n") print(respdict["journeys"][x]["legs"][y]["destination"]["arrivalTimeEstimated"], end="\t") print(respdict["journeys"][x]["legs"][y]["destination"]["name"], end="\n") print("\t\t")
[ "ausben@gmail.com" ]
ausben@gmail.com
fe2dc08589eec0c27d13129f015869399ee3dae0
4bb72ba6ee6ed3ad887b799b27434946a92ff9d2
/algo/CryptoSystem.py
07c2ccc7e3f2ab9244ec99bd40722b77700c684c
[]
no_license
Libi92/ECCBDD
33de3d9b2a91d671304f3e5bc6b134e7046d55f8
baa7b2c9177c6110e1cfa57bea6c936b30a4985a
refs/heads/master
2020-03-22T10:04:52.317899
2018-07-08T07:24:56
2018-07-08T07:24:56
139,879,602
0
0
null
null
null
null
UTF-8
Python
false
false
4,516
py
import datetime from functools import reduce from algo import curve from algo.ecc import EC from algo.logger import Logger from algo.point import Point PXY_MATRIX_SIZE = 5 class CryptoSystem: def __init__(self, g, ec): self.g = g self.ec = ec def bit_invert(self, b): inv = map(lambda x: '0' if x == '1' else '1', b) return reduce(lambda x, y: x + y, inv) def constructPxPyMetrix(self, decimal_list): pxy_list = [] list_5 = [] for i in range(len(decimal_list)): if i != 0 and i % 5 == 0: pxy_list.append(list_5) list_5 = [] py = i px = decimal_list[i] + i list_5.append(Point(px, py)) pxy_list.append(list_5) return pxy_list def get_gMatrix(self): return [self.ec.mul(self.g, i) for i in range(1, 6)] def add(self, a, b): return [self.ec.add(m, n) for m, n in zip(a, b)] def sub(self, a, b): return [self.ec.sub(m, n) for m, n in zip(a, b)] def matrixShiftAdd(self, a_list, b): c_list = [] for a in a_list: c = self.add(a, b) b.append(b.pop(0)) c_list.append(c) return c_list def matrixShiftSub(self, a_list, b): c_list = [] for a in a_list: c = self.sub(a, b) b.append(b.pop(0)) c_list.append(c) return c_list def print_matrix(self, matrix): for x in matrix: Logger.log(str(x.x) + ', ' + str(x.y)) def extractPx(self, pxy_list): extracted = [] for list_5 in pxy_list: ext = map(lambda p: Point(p.x - p.y, p.y), list_5) extracted.append(list(ext)) return extracted def encode(self, message): start_time = datetime.datetime.now().microsecond eq_ascii = [ord(x) for x in message] Logger.log('ascii: ', eq_ascii) bin_array = [format(x, '08b') for x in eq_ascii] num_append = len(bin_array) % PXY_MATRIX_SIZE if num_append != 0: num_append = PXY_MATRIX_SIZE - num_append for i in range(num_append): bin_array.append(format(0, '08b')) Logger.log('binary: ', bin_array) inv_array = [self.bit_invert(b) for b in bin_array] Logger.log('inverse binary: ', inv_array) decimal_arr = [int(x, 2) for x in inv_array] Logger.log('decimal: ', decimal_arr) pxy_matrix = self.constructPxPyMetrix(decimal_arr) Logger.log('PxPy (5x2)matrix: ', pxy_matrix) g_matrix = self.get_gMatrix() Logger.log('(5x2)g matrix: ') self.print_matrix(g_matrix) mapped_list = self.matrixShiftAdd(pxy_matrix, g_matrix) Logger.log('encoded matrix: ') for x in mapped_list: self.print_matrix(x) end_time = datetime.datetime.now().microsecond execution_time = end_time - start_time Logger.log("Encoding time: {} μs".format(execution_time)) return mapped_list def decode(self, encoded_list): start_time = datetime.datetime.now().microsecond g_matrix = self.get_gMatrix() subs_matrix = self.matrixShiftSub(encoded_list, g_matrix) Logger.log('Subtracted Matrix: ') for x in subs_matrix: self.print_matrix(x) extracted = self.extractPx(subs_matrix) Logger.log('Px Extracted: ') for x in extracted: self.print_matrix(x) temp = [] for x in extracted: temp.extend(x) extracted = temp bin_array = [self.frmt(x) for x in extracted] Logger.log(bin_array) inv_bits = [self.bit_invert(b) for b in bin_array] decimal_arr = [int(x, 2) for x in inv_bits] Logger.log(decimal_arr) chars = [chr(d) for d in decimal_arr] plain_text = reduce(lambda x, y: x + y, chars) end_time = datetime.datetime.now().microsecond execution_time = end_time - start_time Logger.log("Decoding time: {} μs".format(execution_time)) return plain_text def frmt(self, X): Logger.log(X, display=True) return format(int(X.x), '08b') if __name__ == '__main__': plain_text = input("Enter your message: ") curve = curve.P256 g = Point(curve.gy, curve.gy) ec = EC(curve.a, curve.b, curve.p) crypto = CryptoSystem(g, ec) encoded = crypto.encode(plain_text) decoded = crypto.decode(encoded) print(decoded)
[ "libinbabup@hotmail.com" ]
libinbabup@hotmail.com
0cca7a3e106b4584b3b916276cb3e704eb75122f
e66efe2baf16c48398087e1e2322ae4e8e77b5f1
/deepbrain/train/segmenter/count_frequency.py
858fb7942997b6c83726df7342a20dcfe6b2a46e
[ "MIT" ]
permissive
codewithkaranjeswani/deepbrain
b43e72e95c185dd96ec78f92f42afd7741fac75c
ac16db831ba0fb213c08b4449657f5895b136324
refs/heads/master
2022-11-25T11:12:41.954520
2020-08-03T15:52:48
2020-08-03T15:52:48
284,741,744
0
0
MIT
2020-08-03T15:50:43
2020-08-03T15:50:43
null
UTF-8
Python
false
false
1,581
py
# Count class frequency to deal with unbalance import tensorflow as tf import os import nibabel as nib import numpy as np import random import re from skimage.transform import resize from pathlib import Path from const import * # CSF: 1, 2, 23, 24, 0, 18 -> 1 # WM: 16, 17 -> 2 # GM: Rest -> 3 # Brain Stem: 7 -> 4 # Cerebellum WM: 12, 13 -> 5 # Cerebellum GM: 10, 11, 36, 37, 38 -> 6 def shrink_labels(labels): labels[np.isin(labels, [1,2,23,24,0,18])] = 1 labels[np.isin(labels, [16,17])] = 2 labels[~np.isin(labels, [1,2,23,24,0,18,16,17,7,12,13,10,11,36,37,38])] = 3 labels[np.isin(labels, [7])] = 4 labels[np.isin(labels, [12,13])] = 5 labels[np.isin(labels, [10,11,36,37,38])] = 6 return labels def run(): _dir = ADNI_DATASET_DIR labels = Path(os.path.join(_dir, "masks", "malpem")) brains = Path(os.path.join(_dir, "masks", "brain_masks")) ret = {} index = 0 for each in os.listdir(labels): aux = each[7:] p = labels / each b = brains / aux img = nib.load(str(p)) brain = (nib.load(str(b)).get_fdata().squeeze()) == 1 x = img.get_fdata() x = x.astype(np.uint8).squeeze() assert x.shape == brain.shape x = x[brain] x = shrink_labels(x) y = np.bincount(x) ii = np.nonzero(y)[0] index +=1 if index % 100 == 0: print("Processed {}".format(index)) for k, v in zip(ii,y[ii]): ret[k] = ret.get(k, 0) + v print(ret) if __name__ == "__main__": run()
[ "i.itzcovich@gmail.com" ]
i.itzcovich@gmail.com
59accba5a656d5b413c7c3ad528bee9b9a83ad95
9025c27655e2f150d01e64ce0826df8166ac6813
/core/urls.py
a1c84250501f6e331d1daaab5d0a66f5b2db6bbf
[]
no_license
kairat3/bella-plain
02dd219f6bf087c99772490a32d61cd242a18f28
1950fd46dc53b800461f6077af3044bdfcf8300c
refs/heads/master
2023-07-13T05:06:17.575811
2021-08-19T14:05:29
2021-08-19T14:05:29
393,064,884
0
0
null
null
null
null
UTF-8
Python
false
false
1,452
py
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include from rest_framework.routers import DefaultRouter from product.views import ProductApiView from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi schema_view = get_schema_view( openapi.Info( title="Bella API", default_version='v1', description="Test description", terms_of_service="https://www.google.com/policies/terms/", contact=openapi.Contact(email="sunerisestudiopro@gmail.com"), license=openapi.License(name="BSD License"), ), public=True, permission_classes=(permissions.AllowAny,), ) router = DefaultRouter() router.register('products', ProductApiView) urlpatterns = [ path('', schema_view.with_ui('swagger', cache_timeout=0), name='schema-swagger-ui'), path('docs/', schema_view.with_ui('redoc', cache_timeout=0), name='schema-redoc'), path('', include('account.urls')), path('', include('product.urls')), path('admin/', admin.site.urls), path('', include(router.urls)), path('', include('info.urls')), path('', include('news.urls')), path('', include('cart.urls')), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "jvckmiller@gmail.com" ]
jvckmiller@gmail.com
c67c4e7d3e4988859508f7b101f56a874364ee59
1add9e012d8b61f17ca992f0c157ee0a5d1b7860
/env/bin/pyhtmlizer
5689466410d24f4b1c2200f96904416ace10fb6b
[]
no_license
dims337/chat-app
3b0cd7dd4c2b22ba71219fba181ae35e91e7b3db
042594f1f5785feeb3a06f7c204fa726ae2b2352
refs/heads/master
2020-04-11T17:09:17.406649
2018-12-21T04:02:46
2018-12-21T04:02:46
161,949,636
0
0
null
null
null
null
UTF-8
Python
false
false
259
#!/Users/dimsontenke/Desktop/chat_app/env/bin/python # -*- coding: utf-8 -*- import re import sys from twisted.scripts.htmlizer import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "dimsontenke@dimsons-MacBook-Pro.local" ]
dimsontenke@dimsons-MacBook-Pro.local
fb997a333c66b348a4b2be51acc74d9b48a24bd6
47a211616a0fd746c1738aac8ab00cb758d6b057
/Flask/Scripts/rst2xml.py
04f24d4bafeabae2bcd193f648d3307ea9da0421
[]
no_license
yan-egorov/flask_bro
49b8b43ae5d113fd776adda6a65214b334daf63b
5e233a5665c9948fc22d7d185c6d43b50b58fe5c
refs/heads/master
2021-01-18T20:30:05.722883
2015-06-10T07:40:45
2015-06-10T07:40:45
37,182,165
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
#!C:\Users\rusegy\Documents\Python Scripts\TrueStories\Flask\Scripts\python.exe # $Id: rst2xml.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing Docutils XML. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates Docutils-native XML from standalone ' 'reStructuredText sources. ' + default_description) publish_cmdline(writer_name='xml', description=description)
[ "egorov.yan@gmail.com" ]
egorov.yan@gmail.com
3e9e5f2e2ab82da05314d2f3be4cd0c514ea872e
b10bae1f94f00404d8d21a563d7626486aeebe74
/users/models.py
ce385919d08af645716f84c4baa3931bbe72a02d
[]
no_license
brotherchris65/newspaper
d93b91f618cc33c627f5e584fccd91bdcb6fb75c
7dd5f5c3e09fc38183684d9a30e01f5e1debc2ee
refs/heads/master
2021-09-28T14:20:35.043218
2019-12-11T01:42:05
2019-12-11T01:42:05
227,240,504
0
0
null
2021-09-22T18:10:49
2019-12-11T00:18:19
Python
UTF-8
Python
false
false
202
py
from django.db import models from django.contrib.auth.models import AbstractUser from django.db import models class CustomUser(AbstractUser): age=models.PositiveIntegerField(null=True, blank=True)
[ "brotherchris65@gmail.com" ]
brotherchris65@gmail.com
2cdced4eecc20d7bb193be9283df32bad706371b
841af9f674d910f1135b65a1e46f4a422d13a6db
/test_only_modified.py
6626cf6ccb89b554c250e63db1192603bc0e1db2
[]
no_license
betterteam/InterSec_simulation
07e95215abbab4722226355261b9909c4a8d8308
bfccec4e58b0fe79313993cb6cad33ce53a7f672
refs/heads/master
2021-01-15T22:18:47.528359
2018-01-10T07:57:19
2018-01-10T07:57:19
99,894,685
3
0
null
2017-12-15T15:39:54
2017-08-10T07:30:28
Python
UTF-8
Python
false
false
23,851
py
# Final version of traffic signal import sys import numpy as np from PyQt5.QtWidgets import QWidget, QApplication, QMainWindow, QFrame, QDesktopWidget from PyQt5.QtGui import QPainter, QColor, QPen, QBrush from PyQt5.QtCore import Qt, QTimer, QTime import math class Position: def __init__(self, x=0, y=0): self.x = x self.y = y class Speed: def __init__(self, x=0, y=0): self.x = x self.y = y class Size: def __init__(self, x=5, y=10): self.x = x self.y = y class Vehicle: def __init__(self): self._position = Position() self._speed = Speed() self._size = Size() def setPosition(self, position): self._position = position def getPosition(self): return self._position def setSpeed(self, speed): self._speed = speed def getSpeed(self): return self._speed def setSize(self, size): self._size = size def getSize(self): return self._size def moveNext(self): self._position.x += self._speed.x self._position.y += self._speed.y if self._position.x > 600: self._position.x = 0 class Example(QWidget): def __init__(self, vehicles_N, vehicles_W, vehicles_E): super().__init__() self.vehicles_N = vehicles_N self.vehicles_W = vehicles_W self.vehicles_E = vehicles_E self.initUI() self.timer = QTimer(self) self.timer.timeout.connect(self.update) self.timer.start(1000/60)#一秒間隔で更新 self.t = QTime() self.t.start() self.show() def initUI(self): self.setGeometry(300, 300, 600, 600) self.setWindowTitle("Koku's Simulation") self.ti = 0 self.beze_t = [] self.r = [] self.up_left_x = [] self.up_left_y = [] self.down_left_x = [] self.down_left_y = [] self.up_right_x = [] self.up_right_y = [] self.down_right_x = [] self.down_right_y = [] for i in range(10): self.beze_t.append(0) self.r.append(0) self.up_left_x.append(0) self.up_left_y.append(0) self.down_left_x.append(0) self.down_left_y.append(0) self.up_right_x.append(0) self.up_right_y.append(0) self.down_right_x.append(0) self.down_right_y.append(0) self.single_0_0 = True self.single_0_1 = True self.collision_check = [] self.collision_check_N = [] self.collision_check_S = [] self.collision_check_W = [] self.collision_check_E = [] self.grid = {} for i in range(270, 330, 10): for j in range(270, 330, 10): self.grid[(i, j)] = True def paintEvent(self, e): #print("!") qp = QPainter(self) self.drawLines(qp) self.drawSignals_0(qp) self.drawVehicles(qp) def drawLines(self, qp): # print(self.t.elapsed()) pen = QPen(Qt.black, 2, Qt.SolidLine) pen_dash = QPen(Qt.black, 2, Qt.DotLine) # Vertical qp.setPen(pen) qp.drawLine(270, 0, 270, 600) # with grids ################## # qp.drawLine(280, 0, 280, 600) # qp.drawLine(290, 0, 290, 600) # qp.drawLine(300, 0, 300, 600) # qp.drawLine(310, 0, 310, 600) # qp.drawLine(320, 0, 320, 600) # with grids ################## qp.drawLine(330, 0, 330, 600) qp.drawLine(300, 0, 300, 270) qp.drawLine(300, 330, 300, 600) qp.setPen(pen_dash) qp.drawLine(280, 330, 280, 600) qp.drawLine(290, 330, 290, 600) qp.drawLine(310, 330, 310, 600) qp.drawLine(320, 330, 320, 600) qp.drawLine(280, 0, 280, 270) qp.drawLine(290, 0, 290, 270) qp.drawLine(310, 0, 310, 270) qp.drawLine(320, 0, 320, 270) # Tropical qp.setPen(pen) qp.drawLine(0, 270, 600, 270) # with grids ################## # qp.drawLine(0, 280, 600, 280) # qp.drawLine(0, 290, 600, 290) # qp.drawLine(0, 300, 600, 300) # qp.drawLine(0, 310, 600, 310) # qp.drawLine(0, 320, 600, 320) # with grids ################## qp.drawLine(0, 330, 600, 330) qp.drawLine(0, 300, 270, 300) qp.drawLine(330, 300, 600, 300) qp.setPen(pen_dash) qp.drawLine(0, 280, 270, 280) qp.drawLine(0, 290, 270, 290) qp.drawLine(0, 310, 270, 310) qp.drawLine(0, 320, 270, 320) qp.drawLine(330, 280, 600, 280) qp.drawLine(330, 290, 600, 290) qp.drawLine(330, 310, 600, 310) qp.drawLine(330, 320, 600, 320) def drawSignals_0(self, qp): #print(self.t.elapsed()) if 1000 < self.t.elapsed() < 2000: qp.setPen(Qt.black) qp.setBrush(Qt.red) qp.drawEllipse(272, 262, 6, 6) qp.drawEllipse(282, 262, 6, 6) qp.drawEllipse(292, 262, 6, 6) qp.setBrush(Qt.green) qp.drawEllipse(332, 272, 6, 6) qp.drawEllipse(332, 282, 6, 6) qp.drawEllipse(332, 292, 6, 6) qp.setBrush(Qt.red) qp.drawEllipse(302, 332, 6, 6) qp.drawEllipse(312, 332, 6, 6) qp.drawEllipse(322, 332, 6, 6) qp.setBrush(Qt.green) qp.drawEllipse(262, 302, 6, 6) qp.drawEllipse(262, 312, 6, 6) qp.drawEllipse(262, 322, 6, 6) self.single_0_0 = False self.single_0_1 = True else: qp.setPen(Qt.black) qp.setBrush(Qt.green) qp.drawEllipse(272, 262, 6, 6) qp.drawEllipse(282, 262, 6, 6) qp.drawEllipse(292, 262, 6, 6) qp.setBrush(Qt.red) qp.drawEllipse(332, 272, 6, 6) qp.drawEllipse(332, 282, 6, 6) qp.drawEllipse(332, 292, 6, 6) qp.setBrush(Qt.green) qp.drawEllipse(302, 332, 6, 6) qp.drawEllipse(312, 332, 6, 6) qp.drawEllipse(322, 332, 6, 6) qp.setBrush(Qt.red) qp.drawEllipse(262, 302, 6, 6) qp.drawEllipse(262, 312, 6, 6) qp.drawEllipse(262, 322, 6, 6) self.single_0_0 = True self.single_0_1 = False def coordinate_up_left_x(self, po_x, r): return po_x - 5 * math.cos(math.radians(r)) def coordinate_up_left_y(self, po_y): return po_y def coordinate_up_right_x(self, po_x, r): return po_x + 10 * math.cos(math.radians(r)) def coordinate_up_right_y(self, po_y): return po_y def coordinate_down_left_x(self, po_x, r): return po_x - 5 * math.cos(math.radians(r)) def coordinate_down_left_y(self, po_y, r): return po_y + 5 * math.sin(math.radians(r)) + 10 * math.cos(math.radians(r)) def coordinate_down_right_x(self, po_x, r): return po_x + 10 * math.cos(math.radians(r)) def coordinate_down_right_y(self, po_y, r): return po_y + 10 * math.sin(math.radians(r)) + 5 * math.cos(math.radians(r)) def drawVehicles(self, qp): qp.setPen(Qt.black) qp.setBrush(Qt.green) # # Vehicles from North for i, veh in enumerate(vehicles_N): if (veh.getPosition().x + veh.getSpeed().x, veh.getPosition().y + veh.getSpeed().y) in self.collision_check_N: qp.drawRect(veh.getPosition().x, veh.getPosition().y, veh.getSize().x, veh.getSize().y) for i in range(11): self.collision_check_N.append((veh.getPosition().x, veh.getPosition().y - i)) else: if veh.getPosition().y + veh.getSpeed().y > 260 and veh.getPosition().y <= 260: if self.single_0_1: qp.drawRect(veh.getPosition().x, veh.getPosition().y, veh.getSize().x, veh.getSize().y) for i in range(11): self.collision_check_N.append((veh.getPosition().x, veh.getPosition().y - i)) else: if veh.getPosition().y <= 270: if self.grid[((veh.getPosition().x + veh.getSpeed().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y + veh.getSize().y) // 10 * 10)] and \ self.grid[((veh.getPosition().x + veh.getSpeed().x + veh.getSize().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y + veh.getSize().y) // 10 * 10)]: veh.getPosition().y += veh.getSpeed().y qp.drawRect(veh.getPosition().x, veh.getPosition().y, 5, 10) for i in range(11): self.collision_check_N.append((veh.getPosition().x, veh.getPosition().y - i)) self.grid[(veh.getPosition().x // 10 * 10, (veh.getPosition().y + veh.getSize().y) // 10 * 10)] = False self.grid[((veh.getPosition().x + veh.getSize().x) // 10 * 10, (veh.getPosition().y + veh.getSize().y) // 10 * 10)] = False else: try: if self.grid[((veh.getPosition().x + veh.getSpeed().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y) // 10 * 10)] and \ self.grid[((veh.getPosition().x + veh.getSpeed().x + veh.getSize().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y) // 10 * 10)] and \ self.grid[((veh.getPosition().x + veh.getSpeed().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y + veh.getSize().y) // 10 * 10)] and \ self.grid[((veh.getPosition().x + veh.getSpeed().x + veh.getSize().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y + veh.getSize().y) // 10 * 10)]: self.vehicles_N[i].getPosition().y += veh.getSpeed().y self.grid[((veh.getPosition().x + veh.getSpeed().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y) // 10 * 10)] = False self.grid[((veh.getPosition().x + veh.getSpeed().x + veh.getSize().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y) // 10 * 10)] = False self.grid[((veh.getPosition().x + veh.getSpeed().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y + veh.getSize().y) // 10 * 10)] = False self.grid[((veh.getPosition().x + veh.getSpeed().x + veh.getSize().x) // 10 * 10, (veh.getPosition().y + veh.getSpeed().y + veh.getSize().y) // 10 * 10)] = False if self.vehicles_N[i].getPosition().y > 600: self.vehicles_N[i].getPosition().y = 0 qp.drawRect(veh.getPosition().x, veh.getPosition().y, 5, 10) for i in range(11): self.collision_check_N.append((veh.getPosition().x, veh.getPosition().y - i)) except KeyError: self.vehicles_N[i].getPosition().y += veh.getSpeed().y if self.vehicles_N[i].getPosition().y > 600: self.vehicles_N[i].getPosition().y = 0 qp.drawRect(self.vehicles_N[i].getPosition().x, self.vehicles_N[i].getPosition().y, 5, 10) else: # print(self.single_0_1) veh.getPosition().y += veh.getSpeed().y if veh.getPosition().y > 600: veh.getPosition().y = 0 # print(self.t.elapsed()) qp.drawRect(veh.getPosition().x, veh.getPosition().y, 5, 10) for i in range(11): self.collision_check_N.append((veh.getPosition().x, veh.getPosition().y - i)) #print(self.collision_check) # Vehicles from West for i, veh in enumerate(vehicles_W): # Check if there are vehicles ahead. If true, stop if (veh.getPosition().x + veh.getSpeed().x, veh.getPosition().y + veh.getSpeed().y) in self.collision_check_W: qp.drawRect(veh.getPosition().x, veh.getPosition().y, veh.getSize().x, veh.getSize().y) # Make the room not available for other vehicles for j in range(11): self.collision_check_W.append((veh.getPosition().x - j, veh.getPosition().y)) # Move forward else: # Just before the intersection if veh.getPosition().x + 10 + 2 > 270 and veh.getPosition().x <= 270 - 10: # Check traffic signal. True, then stop before entering. if self.single_0_0: qp.drawRect(veh.getPosition().x, veh.getPosition().y, 10, 5) for j in range(11): self.collision_check_W.append((veh.getPosition().x - j, veh.getPosition().y)) # Enter intersection else: veh.getPosition().x += 2 qp.drawRect(veh.getPosition().x, veh.getPosition().y, 10, 5) for j in range(11): self.collision_check_W.append((veh.getPosition().x - j, veh.getPosition().y)) # Light up the grids in the intersection # Up left if (veh.getPosition().x // 10 * 10, veh.getPosition().y // 10 * 10) in self.grid: self.grid[(veh.getPosition().x // 10 * 10, veh.getPosition().y // 10 * 10)] = False #print('success, x:', veh.getPosition().x) # Up right if ((veh.getPosition().x + 10) // 10 * 10, veh.getPosition().y // 10 * 10) in self.grid: self.grid[((veh.getPosition().x + 10) // 10 * 10, veh.getPosition().y // 10 * 10)] = False #print('success, x:', veh.getPosition().x) # Down left if (veh.getPosition().x // 10 * 10, (veh.getPosition().y) // 10 * 10) in self.grid: self.grid[(veh.getPosition().x // 10 * 10, (veh.getPosition().y + 5) // 10 * 10)] = False #print('success, x:', veh.getPosition().x) # Down right if ((veh.getPosition().x + 10) // 10 * 10, (veh.getPosition().y) // 10 * 10) in self.grid: self.grid[((veh.getPosition().x + 10) // 10 * 10, (veh.getPosition().y + 5) // 10 * 10)] = False #print('success, x:', veh.getPosition().x) # Already in the intersection else: if 270 < veh.getPosition().x < 328 and veh.getPosition().y < 330: qp.save() qp.translate(veh.getPosition().x, veh.getPosition().y) # Calculate rotation angle if (((veh.getPosition().x - 270 + 3) / 60) * 90 > 15): self.r[i] = ((veh.getPosition().x - 270 + 3) / 60) * 90 qp.rotate(self.r[i]) else: self.r[i] = 0 qp.rotate(self.r[i]) qp.translate(-veh.getPosition().x, -veh.getPosition().y) # Calculate trajectory by using Bezier Curve x = pow(1 - (self.beze_t[i] / 60), 2) * 272 + 2 * (self.beze_t[i] / 60) * ( 1 - self.beze_t[i] / 60) * 330 + pow( self.beze_t[i] / 60, 2) * 330 y = pow(1 - (self.beze_t[i] / 60), 2) * 273 + 2 * (self.beze_t[i] / 60) * ( 1 - self.beze_t[i] / 60) * 273 + pow( self.beze_t[i] / 60, 2) * 330 veh.setPosition(Position(x, y)) self.beze_t[i] += 2 qp.drawRect(veh.getPosition().x, veh.getPosition().y, 10, 5) for j in range(11): self.collision_check_W.append((veh.getPosition().x - j, veh.getPosition().y)) qp.restore() # Calculate the big Square's coordinate self.up_left_x[i] = self.coordinate_up_left_x(veh.getPosition().x, self.r[i]) self.up_left_y[i] = self.coordinate_up_left_y(veh.getPosition().y) self.down_left_x[i] = self.coordinate_down_left_x(veh.getPosition().x, self.r[i]) self.down_left_y[i] = self.coordinate_down_left_y(veh.getPosition().y, self.r[i]) self.up_right_x[i] = self.coordinate_up_right_x(veh.getPosition().x, self.r[i]) self.up_right_y[i] = self.coordinate_up_right_y(veh.getPosition().y) self.down_right_x[i] = self.coordinate_down_right_x(veh.getPosition().x, self.r[i]) self.down_right_y[i] = self.coordinate_down_right_y(veh.getPosition().y, self.r[i]) # Up left if (self.up_left_x[i] // 10 * 10, self.up_left_y[i] // 10 * 10) in self.grid: self.grid[(self.up_left_x[i] // 10 * 10, self.up_left_y[i] // 10 * 10)] = False # print('success') # Up right if ((self.up_right_x[i]) // 10 * 10, self.up_right_y[i] // 10 * 10) in self.grid: self.grid[((self.up_right_x[i]) // 10 * 10, self.up_right_y[i] // 10 * 10)] = False # print('success') # Down left if (self.down_left_x[i] // 10 * 10, (self.down_left_y[i]) // 10 * 10) in self.grid: self.grid[(self.down_left_x[i] // 10 * 10, (self.down_left_y[i]) // 10 * 10)] = False # print('success') # Down right if ((self.down_right_x[i]) // 10 * 10, (self.down_right_y[i]) // 10 * 10) in self.grid: self.grid[((self.down_right_x[i]) // 10 * 10, (self.down_right_y[i]) // 10 * 10)] = False # print('success') # Already left intersection elif 328 <= veh.getPosition().x and veh.getPosition().y < 600: qp.save() qp.translate(veh.getPosition().x, veh.getPosition().y) qp.rotate(90) qp.translate(-veh.getPosition().x, -veh.getPosition().y) veh.getPosition().y += 2 qp.drawRect(veh.getPosition().x, veh.getPosition().y, 10, 5) for j in range(11): self.collision_check_W.append((veh.getPosition().x, veh.getPosition().y - j)) qp.restore() # Already left screen elif veh.getPosition().y >= 600: veh.getPosition().x = 0 veh.getPosition().y = 273 self.beze_t[i] = 0 qp.drawRect(veh.getPosition().x, veh.getPosition().y, 10, 5) for j in range(11): self.collision_check_W.append((veh.getPosition().x, veh.getPosition().y - j)) # Move horizontal direction(across X_axis) else: veh.getPosition().x += 2 qp.drawRect(veh.getPosition().x, veh.getPosition().y, 10, 5) for j in range(11): self.collision_check_W.append((veh.getPosition().x - j, veh.getPosition().y)) # Vehicle2 # if self.single_0_0: # qp.drawRect(self.vehicles_E[0].getPosition().x, self.vehicles_E[0].getPosition().y, 10, 5) # else: try: if self.grid[((self.vehicles_E[0].getPosition().x - 5) // 10 * 10, self.vehicles_E[0].getPosition().y // 10 * 10)] and \ self.grid[((self.vehicles_E[0].getPosition().x + 10 - 5) // 10 * 10, self.vehicles_E[0].getPosition().y // 10 * 10)] and \ self.grid[((self.vehicles_E[0].getPosition().x - 5) // 10 * 10, (self.vehicles_E[0].getPosition().y + 5) // 10 * 10)] and \ self.grid[((self.vehicles_E[0].getPosition().x + 10 - 5) // 10 * 10, (self.vehicles_E[0].getPosition().y + 5) // 10 * 10)]: self.vehicles_E[0].getPosition().x -= 3 if self.vehicles_E[0].getPosition().x < 0: self.vehicles_E[0].getPosition().x = 600 qp.drawPoint(self.vehicles_E[0].getPosition().x + 1, self.vehicles_E[0].getPosition().y - 1) qp.drawRect(self.vehicles_E[0].getPosition().x, self.vehicles_E[0].getPosition().y, 10, 5) else: qp.drawPoint(self.vehicles_E[0].getPosition().x + 1, self.vehicles_E[0].getPosition().y - 1) qp.drawRect(self.vehicles_E[0].getPosition().x, self.vehicles_E[0].getPosition().y, 10, 5) except KeyError: self.vehicles_E[0].getPosition().x -= 3 if self.vehicles_E[0].getPosition().x < 0: self.vehicles_E[0].getPosition().x = 600 qp.drawPoint(self.vehicles_E[0].getPosition().x + 1, self.vehicles_E[0].getPosition().y - 1) qp.drawRect(self.vehicles_E[0].getPosition().x, self.vehicles_E[0].getPosition().y, 10, 5) self.collision_check = [] self.collision_check_N = [] self.collision_check_S = [] self.collision_check_W = [] self.collision_check_E = [] for i in range(270, 330, 10): for j in range(270, 330, 10): self.grid[(i, j)] = True self.ti += 10 if self.ti > 700: self.ti = 0 # print(self.t.elapsed()) self.t.restart() if __name__ == '__main__': app = QApplication(sys.argv) # Vehicles from North vehicles_N = [] for i in range(5): v = Vehicle() v.setPosition(Position(313, 0 - i * 10)) v.setSpeed(Speed(0, 2)) v.setSize(Size(5, 10)) vehicles_N.append(v) # Vehicles from West vehicles_W = [] for i in range(9): v = Vehicle() v.setPosition(Position(0 - i * 10, 273)) v.setSpeed(Speed(2, 0)) v.setSize(Size(10, 5)) vehicles_W.append(v) # Vehicles from East vehicles_E = [] v = Vehicle() v.setPosition(Position(600, 302)) v.setSpeed(Speed(2, 0)) v.setSize(Size(10, 5)) vehicles_E.append(v) ex = Example(vehicles_N, vehicles_W, vehicles_E) sys.exit(app.exec_())
[ "better@opossum.itolab.nitech.ac.jp" ]
better@opossum.itolab.nitech.ac.jp
e6acc1a14b714638e4d8eb6b3210b8ad4b35a3c2
37069009dd428ce59819ffea2fcffc07dda6e712
/django_analyze/migrations/0068_auto__add_field_genotype_max_memory_usage.py
550ac7b81c79b27de932d2c0ecb1788805c93c03
[]
no_license
chrisspen/django-analyze
829f560d7c5f2fb1c19fc07bc77cb1a83238e696
421ee35235f76ff8657f7befe5212acd7ccf3989
refs/heads/master
2020-04-28T15:42:51.773823
2015-04-18T14:50:02
2015-04-18T14:50:02
14,995,029
2
2
null
2014-07-07T12:39:22
2013-12-06T22:26:29
Python
UTF-8
Python
false
false
18,209
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Genotype.max_memory_usage' db.add_column(u'django_analyze_genotype', 'max_memory_usage', self.gf('django.db.models.fields.PositiveIntegerField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Genotype.max_memory_usage' db.delete_column(u'django_analyze_genotype', 'max_memory_usage') models = { 'django_analyze.epoche': { 'Meta': {'ordering': "('genome', '-index')", 'unique_together': "(('genome', 'index'),)", 'object_name': 'Epoche'}, 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'epoches'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1', 'db_index': 'True'}), 'max_fitness': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'mean_fitness': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'min_fitness': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'oldest_epoche_of_creation': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}) }, 'django_analyze.gene': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('genome', 'name'),)", 'object_name': 'Gene'}, 'coverage_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'default': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'exploration_priority': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1', 'db_index': 'True'}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'genes'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_increment': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'max_value': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'max_value_observed': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'min_value': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'min_value_observed': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'mutation_weight': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'type': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'values': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, 'django_analyze.genedependency': { 'Meta': {'unique_together': "(('gene', 'dependee_gene', 'dependee_value'),)", 'object_name': 'GeneDependency'}, 'dependee_gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'dependents'", 'to': "orm['django_analyze.Gene']"}), 'dependee_value': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'dependencies'", 'to': "orm['django_analyze.Gene']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'positive': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, 'django_analyze.genestatistics': { 'Meta': {'ordering': "('genome', 'gene', '-mean_fitness')", 'object_name': 'GeneStatistics', 'managed': 'False'}, 'gene': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.Gene']", 'on_delete': 'models.DO_NOTHING', 'db_column': "'gene_id'"}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'gene_statistics'", 'on_delete': 'models.DO_NOTHING', 'db_column': "'genome_id'", 'to': "orm['django_analyze.Genome']"}), 'genotype_count': ('django.db.models.fields.PositiveIntegerField', [], {}), 'id': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'primary_key': 'True'}), 'max_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'mean_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'min_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '1000'}) }, 'django_analyze.genome': { 'Meta': {'object_name': 'Genome'}, '_epoche': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'current_genome'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Epoche']"}), 'delete_inferiors': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'elite_ratio': ('django.db.models.fields.FloatField', [], {'default': '0.1'}), 'epoche': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}), 'epoche_stall': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'epoches_since_improvement': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'error_report': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'evaluating_part': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'evaluation_timeout': ('django.db.models.fields.PositiveIntegerField', [], {'default': '300'}), 'evaluator': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'evolution_start_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'evolving': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'max_species': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'maximum_evaluated_population': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1000'}), 'maximum_population': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'min_fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'mutation_rate': ('django.db.models.fields.FloatField', [], {'default': '0.1'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'production_at_best': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'production_evaluation_timeout': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'production_genotype': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'production_genomes'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Genotype']"}), 'production_genotype_auto': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'ratio_evaluated': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'version': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}) }, 'django_analyze.genotype': { 'Meta': {'ordering': "('-fitness',)", 'unique_together': "(('genome', 'fingerprint'),)", 'object_name': 'Genotype', 'index_together': "(('valid', 'fresh', 'fitness'), ('genome', 'fresh'))"}, 'accuracy': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'complete_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'complete_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), 'epoche': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'genotypes'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Epoche']"}), 'epoche_of_creation': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'epoche_of_evaluation': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'error': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'evaluating': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'evaluating_pid': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'fingerprint': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '700', 'null': 'True', 'db_column': "'fingerprint'", 'blank': 'True'}), 'fingerprint_fresh': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'fitness': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'fitness_evaluation_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'fitness_evaluation_datetime_start': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'fresh': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'gene_count': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'generation': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'genotypes'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'immortal': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'max_memory_usage': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'mean_absolute_error': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'mean_evaluation_seconds': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'mean_memory_usage': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'memory_usage_samples': ('picklefield.fields.PickledObjectField', [], {'null': 'True', 'blank': 'True'}), 'ontime_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'ontime_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_complete_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_complete_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_error': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'production_evaluating': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'production_evaluating_pid': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_evaluation_end_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_evaluation_start_datetime': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_fresh': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'production_ontime_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_ontime_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_success_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_success_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'production_total_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'production_valid': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'species': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'genotypes'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': "orm['django_analyze.Species']"}), 'success_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'success_ratio': ('django.db.models.fields.FloatField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'total_evaluation_seconds': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'total_parts': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True', 'blank': 'True'}), 'valid': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}) }, 'django_analyze.genotypegene': { 'Meta': {'ordering': "('gene__name',)", 'unique_together': "(('genotype', 'gene'),)", 'object_name': 'GenotypeGene'}, '_value': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'db_column': "'value'"}), '_value_genome': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.Genome']", 'null': 'True', 'on_delete': 'models.SET_NULL', 'blank': 'True'}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'gene_values'", 'to': "orm['django_analyze.Gene']"}), 'genotype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'genes'", 'to': "orm['django_analyze.Genotype']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, u'django_analyze.genotypegeneillegal': { 'Meta': {'object_name': 'GenotypeGeneIllegal', 'managed': 'False'}, 'gene_value': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.GenotypeGene']", 'on_delete': 'models.DO_NOTHING', 'primary_key': 'True', 'db_column': "'illegal_genotypegene_id'"}), 'genotype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'illegal_gene_values'", 'on_delete': 'models.DO_NOTHING', 'db_column': "'illegal_genotype_id'", 'to': "orm['django_analyze.Genotype']"}), 'illegal_gene_name': ('django.db.models.fields.CharField', [], {'max_length': '1000'}) }, u'django_analyze.genotypegenemissing': { 'Meta': {'object_name': 'GenotypeGeneMissing', 'managed': 'False'}, 'default': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'gene': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['django_analyze.Gene']", 'on_delete': 'models.DO_NOTHING', 'primary_key': 'True', 'db_column': "'gene_id'"}), 'gene_name': ('django.db.models.fields.CharField', [], {'max_length': '1000'}), 'genotype': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'missing_gene_values'", 'on_delete': 'models.DO_NOTHING', 'db_column': "'genotype_id'", 'to': "orm['django_analyze.Genotype']"}) }, 'django_analyze.species': { 'Meta': {'ordering': "('genome', 'index')", 'unique_together': "(('genome', 'index'),)", 'object_name': 'Species', 'index_together': "(('genome', 'index'),)"}, 'centroid': ('picklefield.fields.PickledObjectField', [], {'null': 'True', 'blank': 'True'}), 'genome': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'species'", 'to': "orm['django_analyze.Genome']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'population': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) } } complete_apps = ['django_analyze']
[ "chris@coronis" ]
chris@coronis
e9645d989c183c9dbac600d419ff4e6142b1a50e
0c6fb8fcc31eb658561ee7e244e8f0f7c8d72d6e
/build/ros_arduino_firmware/catkin_generated/pkg.installspace.context.pc.py
499a2c796c3c70019a20c66822f8a3cea544edbd
[]
no_license
tutlebotmitica/mybot_ws
f71fac8e41a061d132694eb4f24f8375fd5eba8d
4bb2003069709a29f0868c5fc404da01cddd0af3
refs/heads/master
2021-08-18T21:41:13.355546
2017-11-24T00:43:04
2017-11-24T00:43:04
111,839,160
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "ros_arduino_firmware" PROJECT_SPACE_DIR = "/home/turtlebot/mybot_ws/install" PROJECT_VERSION = "0.2.0"
[ "paul@modulab.ro" ]
paul@modulab.ro
a8a1af44b4ff29b22520121f30295c8ebe1d693f
554ec84f23825452f7692f91f742bdc81fa50e84
/chatbot_27549/urls.py
7d1264887b9b6eb6dad7fc662d8571cc66eddd66
[]
no_license
crowdbotics-apps/chatbot-27549
a7806af210b6e7ccdfb3db3dbaaac9e9dcb5a5af
0e615cbb191a8d91e2874e7329b059193a8ad625
refs/heads/master
2023-05-26T13:30:53.116812
2021-05-29T07:24:50
2021-05-29T07:24:50
371,908,087
0
0
null
null
null
null
UTF-8
Python
false
false
2,022
py
"""chatbot_27549 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include, re_path from django.views.generic.base import TemplateView from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "Chatbot" admin.site.site_title = "Chatbot Admin Portal" admin.site.index_title = "Chatbot Admin" # swagger api_info = openapi.Info( title="Chatbot API", default_version="v1", description="API documentation for Chatbot App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
50363bbf710a2b67812e488531ed086fe0b32138
d40fbefbd5db39f1c3fb97f17ed54cb7b6f230e0
/datadog_checks_dev/datadog_checks/dev/tooling/config.py
7d63ecb7890e8d4df068f1419c36389ea8bb11bc
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
slightilusion/integrations-core
47a170d791e809f3a69c34e2426436a6c944c322
8f89e7ba35e6d27c9c1b36b9784b7454d845ba01
refs/heads/master
2020-05-20T18:34:41.716618
2019-05-08T21:51:17
2019-05-08T21:51:17
185,708,851
2
0
BSD-3-Clause
2019-05-09T02:05:19
2019-05-09T02:05:18
null
UTF-8
Python
false
false
3,143
py
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import os from collections import OrderedDict, deque from copy import deepcopy import toml from appdirs import user_data_dir from atomicwrites import atomic_write from six import string_types from ..compat import FileNotFoundError from ..utils import ensure_parent_dir_exists, file_exists, read_file APP_DIR = user_data_dir('dd-checks-dev', '') CONFIG_FILE = os.path.join(APP_DIR, 'config.toml') SECRET_KEYS = {'dd_api_key', 'github.token', 'pypi.pass', 'trello.key', 'trello.token'} DEFAULT_CONFIG = OrderedDict( [ ('core', os.path.join('~', 'dd', 'integrations-core')), ('extras', os.path.join('~', 'dd', 'integrations-extras')), ('agent', os.path.join('~', 'dd', 'datadog-agent')), ('repo', 'core'), ('agent6', OrderedDict((('docker', 'datadog/agent-dev:master'), ('local', 'latest')))), ('agent5', OrderedDict((('docker', 'datadog/dev-dd-agent:master'), ('local', 'latest')))), ('dd_api_key', os.getenv('DD_API_KEY')), ('github', OrderedDict((('user', ''), ('token', '')))), ('pypi', OrderedDict((('user', ''), ('pass', '')))), ('trello', OrderedDict((('key', ''), ('token', '')))), ] ) def config_file_exists(): return file_exists(CONFIG_FILE) def copy_default_config(): return deepcopy(DEFAULT_CONFIG) def save_config(config): ensure_parent_dir_exists(CONFIG_FILE) with atomic_write(CONFIG_FILE, mode='wb', overwrite=True) as f: f.write(toml.dumps(config).encode('utf-8')) def load_config(): config = copy_default_config() try: config.update(toml.loads(read_config_file(), OrderedDict)) except FileNotFoundError: pass return config def read_config_file(): return read_file(CONFIG_FILE) def read_config_file_scrubbed(): return toml.dumps(scrub_secrets(load_config())) def restore_config(): config = copy_default_config() save_config(config) return config def update_config(): config = copy_default_config() config.update(load_config()) # Support legacy config where agent5 and agent6 were strings if isinstance(config['agent6'], string_types): config['agent6'] = OrderedDict((('docker', config['agent6']), ('local', 'latest'))) if isinstance(config['agent5'], string_types): config['agent5'] = OrderedDict((('docker', config['agent5']), ('local', 'latest'))) save_config(config) return config def scrub_secrets(config): for secret_key in SECRET_KEYS: branch = config paths = deque(secret_key.split('.')) while paths: path = paths.popleft() if not hasattr(branch, 'get'): break if path in branch: if not paths: old_value = branch[path] if isinstance(old_value, string_types): branch[path] = '*' * len(old_value) else: branch = branch[path] else: break return config
[ "noreply@github.com" ]
slightilusion.noreply@github.com
4090524e51e82ff0144e1f510597cdaf59752ac9
08d5ac4947860068f3c79edd6eed7493cee29f95
/theano_train.py
54672bc9bc60d8e2e33a5ff5e6c0dc50ddded584
[]
no_license
MrsJLW/nslkdd-deep
9babc0821524247bdd4bd2afa1c197392af5ab3c
462705bb0f42328673a3fe6d0caf0e75802e9b87
refs/heads/master
2020-03-29T13:27:54.058568
2016-04-11T18:01:31
2016-04-11T18:01:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,049
py
import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, precision_score, confusion_matrix import numpy as np import sklearn import sklearn.datasets import matplotlib import theano import theano.tensor as T import timeit import time from theano import pp import data as d from theano import config from collections import Counter np.random.seed(0) class_weight = [] layer_stack, w_stack, b_stack, dw_stack, db_stack = [], [], [], [], [] num_examples = 40 nn_input_dim = 200 nn_output_dim = 5 # three layers in a conical structure nn_hdims = [500, 100] batch_per_epoch = 3000 num_passes = 2 n_layers = 2 epsilon = np.float32(0.06) reg_lambda = np.float32(0.0001) def activate(name, values): if name == 'sigmoid': return T.nnet.sigmoid(values) elif name == 'tanh': return T.tanh(values) elif name == 'relu': return T.switch(values > 0, values, 0) elif name == 'softmax': return T.nnet.softmax(values) def add_layer(activation, dim): if not layer_stack: W = theano.shared(np.random.randn(nn_input_dim, dim).astype('float32'), name='W' + str(len(layer_stack) + 1)) b = theano.shared(np.zeros(dim).astype('float32'), name='b' + str(len(layer_stack) + 1)) layer_stack.append(activate(activation, X.dot(W) + b)) w_stack.append(W) b_stack.append(b) else: prev = layer_stack[-1] W = theano.shared(np.random.randn(b_stack[-1].get_value().shape[0], dim).astype('float32'), name='W' + str(len(layer_stack) + 1)) b = theano.shared(np.zeros(dim).astype('float32'), name='b' + str(len(layer_stack) + 1)) layer_stack.append(activate(activation, prev.dot(W) + b)) w_stack.append(W) b_stack.append(b) # print(layer_stack) X = theano.shared(np.array(np.random.randn(200, 2000), config.floatX)) y = theano.shared(np.array(np.random.randn(200, 5), config.floatX)) c_w = theano.shared(np.array(np.random.randn(200), config.floatX)) # W1 = theano.shared(np.random.randn(nn_input_dim, nn_hdim1).astype('float32'), name='W1') # b1 = theano.shared(np.zeros(nn_hdim1).astype('float32'), name='b1') # W2 = theano.shared(np.random.randn(nn_hdim1, nn_hdim2).astype('float32'), name='W2') # b2 = theano.shared(np.zeros(nn_hdim2).astype('float32'), name='b2') # W3 = theano.shared(np.random.randn(nn_hdim2, nn_output_dim).astype('float32'), name='W3') # b3 = theano.shared(np.zeros(nn_output_dim).astype('float32'), name='b3') # params=[W1,b1,W2,b2,W3,b3] params = [w_stack, b_stack] add_layer('sigmoid', nn_hdims[0]) add_layer('sigmoid', nn_hdims[1]) add_layer('softmax', nn_output_dim) loss_reg = 1. / num_examples * reg_lambda / 2 * ( T.sum(T.sqr(w_stack[-3])) + T.sum(T.sqr(w_stack[-2])) + T.sum(T.sqr(w_stack[-1]))) loss = ((T.nnet.categorical_crossentropy(layer_stack[-1], y)).mean()) + loss_reg prediction = T.argmax(layer_stack[-1], axis=1) # dW4 = T.grad(loss, w_stack[-1]) # db4 = T.grad(loss, b_stack[-1]) # dW3 = T.grad(loss, w_stack[-2]) # db3 = T.grad(loss, b_stack[-2]) # dW2 = T.grad(loss, w_stack[-3]) # db2 = T.grad(loss, b_stack[-3]) # dW1 = T.grad(loss, w_stack[-4]) # db1 = T.grad(loss, b_stack[-4]) dw_stack = [T.grad(loss, w_stack[-n_layers+i-1]) for i in range(0, n_layers + 1)] db_stack = [T.grad(loss, b_stack[-n_layers+i-1]) for i in range(0, n_layers + 1)] forward_prop = theano.function([], layer_stack[-1]) calculate_loss = theano.function([], loss) predict = theano.function([], prediction) # u = ((w_stack[-1], w_stack[-1] - epsilon * dW4), # (w_stack[-2], w_stack[-2] - epsilon * dW3), # (w_stack[-3], w_stack[-3] - epsilon * dW2), # (w_stack[-4], w_stack[-4] - epsilon * dW1), # (b_stack[-1], b_stack[-1] - epsilon * db4), # (b_stack[-2], b_stack[-2] - epsilon * db3), # (b_stack[-3], b_stack[-3] - epsilon * db2), # (b_stack[-4], b_stack[-4] - epsilon * db1)) u = tuple([tuple([w_stack[-i], w_stack[-i] - epsilon * dw_stack[n_layers - i + 1]]) for i in range(1, n_layers+2)]) u += tuple([tuple([b_stack[-i], b_stack[-i] - epsilon * db_stack[n_layers - i + 1]]) for i in range(1, n_layers+2)]) gradient_step = theano.function( [], updates=u) def build_model(num_passes=5, print_loss=False): np.random.seed(0) w_stack[-3].set_value((np.random.randn(nn_input_dim, nn_hdims[0]) / np.sqrt(nn_input_dim)).astype('float32')) b_stack[-3].set_value(np.zeros(nn_hdims[0]).astype('float32')) w_stack[-2].set_value((np.random.randn(nn_hdims[0], nn_hdims[1]) / np.sqrt(nn_hdims[0])).astype('float32')) b_stack[-2].set_value(np.zeros(nn_hdims[1]).astype('float32')) # w_stack[-1].set_value((np.random.randn(nn_hdims[1], nn_hdims[2]) / np.sqrt(nn_hdims[1])).astype('float32')) # b_stack[-1].set_value(np.zeros(nn_hdims[2]).astype('float32')) w_stack[-1].set_value((np.random.randn(nn_hdims[1], nn_output_dim) / np.sqrt(nn_hdims[1])).astype('float32')) b_stack[-1].set_value(np.zeros(nn_output_dim).astype('float32')) for i in range(0, num_passes): for j in range(batch_per_epoch): a, b, c = d.train_batch_data(40) X.set_value(a.astype('float32')) y.set_value(b.astype('float32')) c_w.set_value(c.astype('float32')) if j % 500 == 0: # print(debug(),end='\n',flush=True) print(calculate_loss(), end=' ', flush=True) gradient_step() print() if print_loss and i % 1 == 0: print("Loss after iteration %i: %f" % (i, calculate_loss())) build_model(num_passes=2, print_loss=True) # save model np.savez('out/model.npz', params=[[x.get_value() for x in params[0]], [x.get_value() for x in params[1]]]) a, b = d.fulldata('test') X.set_value(a.astype('float32')) y.set_value(b.astype('float32')) predicted = predict() actual = [np.argmax(x) for x in b] print(accuracy_score(predicted, actual)) print(precision_score(actual, predicted, average='macro')) print(confusion_matrix(actual, predicted))
[ "rajarsheem@gmail.com" ]
rajarsheem@gmail.com
faccd9f59e65cffd749ab558cda959576930e26c
0ea5d0f75e7cb9f8a7fd213e2eb4f29a339ea285
/wnfportal_python/wnfportal_dm_konten.py
a209429b9d0e3bab64b37d89220a66b699158bda
[]
no_license
wnf58/wnfportal
1d5d7ba8e5b63b69feb016e57fc2ee7efccc8400
2d593fdd9266f44d60297f7f96b6b4a2c4c7ea98
refs/heads/master
2022-12-17T03:08:06.001400
2020-09-26T11:51:59
2020-09-26T11:51:59
115,601,732
0
0
null
null
null
null
UTF-8
Python
false
false
33,164
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # import fdb import os import configparser import wnfportal_dm_datenbank import wnfportal_tools as T import time from reportlab.graphics.shapes import Drawing from reportlab.graphics.charts.barcharts import VerticalBarChart from reportlab.graphics.charts.piecharts import Pie from reportlab.graphics import renderPM class dmKonten(wnfportal_dm_datenbank.dmDatenbank): def __init__(self): wnfportal_dm_datenbank.dmDatenbank.__init__(self) self.setIniDatei('wnfKuB.ini') # self.setIniDatei('wnfKITAOffice.ini') def summeAlleKonten(self): aSQL = """ SELECT SUM(BETRAG) FROM KO_KUBEA """ return self.sqlSumme(aSQL) def summeProjekt(self, aProjekt_ID): aSQL = "SELECT SUM(BETRAG) FROM KO_KUBEA WHERE PROJEKT_ID=%s" % (aProjekt_ID) print(aSQL) return self.sqlSumme(aSQL) def summeProjektWintergarten(self): aProjekt_ID = self.getProjekt_ID_Wintergarten_2017() return self.summeProjekt(aProjekt_ID) def listeAlleKonten(self): aSQL = """ SELECT E.KUB_ID,K.KURZ,SUM(E.BETRAG) FROM KO_KUBEA E LEFT JOIN KO_KUB K ON K.ID=E.KUB_ID GROUP BY K.KURZ,E.KUB_ID HAVING SUM(E.BETRAG)<>0 ORDER BY K.KURZ """ cur = self.sqlOpen(aSQL) if (cur == None): return [] konten = [] for row in cur: k = {'konto_id': row[0], 'konto': row[1], 'saldo': T.sDM(row[2])} # print k konten.append(k) return konten def jsonAlleKonten(self): j = {'summe': T.sDM(self.summeAlleKonten()), 'konten': self.listeAlleKonten()} return j def listeLetzteEA(self): aSumme = 0 aSQL = """ SELECT E.ID,E.DATUM,E.KURZ,E.BETRAG FROM KO_KUBEA E WHERE E.DATUM >= %s ORDER BY E.DATUM DESC,E.KURZ """ aSQL = aSQL % (T.wnfDateToSQL(T.wnfTagVorVor8Wochen())) print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return aSumme, [] ea = [] for row in cur: s = "%s | %s" % (row[1].strftime("%d.%m.%y"), row[2]) ttmmjj = "%s" % (row[1].strftime("%d.%m.%y")) # print (s) k = {'konto_ea_id': row[0], 'datum': str(row[1]), 'ttmmjj': ttmmjj, 'kurz': row[2], 'betrag': T.sDM(row[3]), 'datumkurz': s} aSumme = aSumme + row[3] print(k) ea.append(k) return aSumme, ea def listeProjekt(self, aProjekt_ID): print(aProjekt_ID) aSumme = 0 aSQL = """ SELECT E.ID,E.DATUM,E.KURZ,E.BETRAG FROM KO_KUBEA E WHERE E.PROJEKT_ID = %d ORDER BY E.DATUM DESC,E.KURZ """ aSQL = aSQL % (aProjekt_ID) print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return aSumme, [] ea = [] for row in cur: s = "%s | %s" % (row[1].strftime("%d.%m.%y"), row[2]) ttmmjj = "%s" % (row[1].strftime("%d.%m.%y")) # print (s) k = {'konto_ea_id': row[0], 'datum': str(row[1]), 'ttmmjj': ttmmjj, 'kurz': row[2], 'betrag': T.sDM(row[3]), 'datumkurz': s} aSumme = aSumme + row[3] print(k) ea.append(k) return aSumme, ea def listeProjektK(self, aProjekt_ID): print(aProjekt_ID) aSumme = 0 aSQL = """ SELECT K.ID,MAX(E.DATUM),K.KURZ,SUM(E.BETRAG) FROM KO_KUBEA E LEFT JOIN KO_KUBKAT K ON K.ID=E.KAT_ID WHERE E.PROJEKT_ID = %d AND NOT E.KAT_ID IS NULL GROUP BY K.ID,K.KURZ ORDER BY 4,K.KURZ """ aSQL = aSQL % (aProjekt_ID) print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return aSumme, [] ea = [] for row in cur: s = "%s | %s" % (row[1].strftime("%d.%m.%y"), row[2]) ttmmjj = "%s" % (row[1].strftime("%d.%m.%y")) # print (s) k = {'konto_ea_id': row[0], 'datum': str(row[1]), 'ttmmjj': ttmmjj, 'kurz': row[2], 'betrag': T.sDM(row[3]), 'datumkurz': s} aSumme = aSumme + row[3] print(k) ea.append(k) return aSumme, ea def jsonLetzteEA(self): aSumme, ea = self.listeLetzteEA() j = {'summe': T.sDM(aSumme), 'ea': ea} return j def jsonListEA(self): aSQL = """ SELECT E.ID,E.DATUM,E.KURZ, E.BEZ, E.BETRAG FROM KO_KUBEA E WHERE E.DATUM >= %s ORDER BY E.DATUM DESC,E.KURZ """ aSQL = aSQL % (T.wnfDateToSQL(T.wnfErsterTagVormonat())) # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return [] ea = [] for row in cur: s = "%s | %s" % (row[1].strftime("%d.%m.%y"), row[2]) ttmmjj = "%s" % (row[1].strftime("%d.%m.%y")) # print s k = {'id': row[0], 'datum': str(row[1]), 'kurz': row[2], 'bez': row[3], 'betrag': str(row[4])} # print(k) ea.append(k) # print(ea) return ea def jsonListEASkip(self, aFirst, aSkip): aSQL = """ SELECT FIRST %s SKIP %s E.ID,E.DATUM,E.KURZ, E.BEZ, E.BETRAG FROM KO_KUBEA E ORDER BY E.DATUM DESC,E.KURZ """ aSQL = aSQL % (aFirst, aSkip) # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return [] ea = [] for row in cur: s = "%s | %s" % (row[1].strftime("%d.%m.%y"), row[2]) ttmmjj = "%s" % (row[1].strftime("%d.%m.%y")) # print s k = {'id': row[0], 'datum': str(row[1]), 'kurz': row[2], 'bez': row[3], 'betrag': str(row[4])} # print(k) ea.append(k) print(ea) return ea def jsonDetailEA(self, id): aSQL = """ SELECT E.ID,E.DATUM,E.KURZ, E.BEZ, E.BETRAG FROM KO_KUBEA E WHERE E.ID = %s ORDER BY E.DATUM DESC,E.KURZ """ aSQL = aSQL % (id) # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return [] for row in cur: s = "%s | %s" % (row[1].strftime("%d.%m.%y"), row[2]) ttmmjj = "%s" % (row[1].strftime("%d.%m.%y")) # print s k = {'id': row[0], 'datum': str(row[1]), 'kurz': row[2], 'bez': row[3], 'betrag': str(row[4])} print(k) return k def jsonListKonten(self): aSQL = """ SELECT K.ID, MAX(E.DATUM), K.KURZ, SUM(E.BETRAG) FROM KO_KUBEA E LEFT JOIN KO_KUB K ON K.ID=E.KUB_ID GROUP BY K.KURZ,K.ID HAVING SUM(E.BETRAG)<>0 ORDER BY K.KURZ """ # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return [] ea = [] for row in cur: k = {'id': row[0], 'datum': str(row[1]), 'kurz': row[2], 'betrag': str(row[3])} # print(k) ea.append(k) print(ea) return ea def jsonKontostandSumme(self): aSQL = """ SELECT SUM(E.BETRAG) FROM KO_KUBEA E """ # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return {} for row in cur: k = [{'summe': str(row[0])}] print(k) return k def htmlLetzteEA(self): aSumme, ea = self.listeLetzteEA() s = '' for l in ea: datum = l['ttmmjj'] # .encode('utf-8') kurz = l['kurz'] # .encode('utf-8') betrag = l['betrag'] s = '%s <tr><td class=table-3c-spalte1>%s</td><td class=table-3c-spalte2>%s</td><td class=table-3c-spalte3>%s</td></tr>' % ( s, datum, kurz, betrag) return ("<table>" "<tr><th class=table-3c-spalte1>Datum</th><th class=table-3c-spalte2>Bezeichnung</th><th class=table-3c-spalte3>Betrag</th></tr>" "%s" "<tr><th class=table-3c-spalte1></th><th class=table-3c-spalte2>Summe</th><th class=table-3c-spalte3>%s</th></tr>" "</table>") % (s, T.sDM(aSumme)) def htmlEAMonatlich(self): aSumme, ea = self.analyseEAMonatlich() s = '' for l in ea: kurz = l['kurz'] # .encode('utf-8') betrag = l['betrag'] durchschnitt = l['durchschnitt'] s = '%s <tr><td class=table-3c-spalte1>%s</td><td class=table-3c-spalte3>%.2f</td><td class=table-3c-spalte3>%.2f</td></tr>' % ( s, kurz, betrag, durchschnitt) return ("<table>" "<tr><th class=table-3c-spalte1>Bezeichnung</th><th class=table-3c-spalte3>Betrag</th><th class=table-3c-spalte3>Durchschnitt</th></tr>" "%s" "<tr><th class=table-3c-spalte1></th><th class=table-3c-spalte2>Summe</th><th class=table-3c-spalte3>%s</th></tr>" "</table>") % (s, T.sDM(aSumme)) def htmldiagrammVonBis(self, aVon, aBis, dn): aSumme, aData, aLabels, aRecord = self.analyseAusgabenVonBis(aVon, aBis) p = '/home/wnf/Entwicklung/PycharmProjects/wnfportal/wnfportal_python/www/img/' self.diagrammKostenartVonBis(p, dn, aData, aLabels) s = '' for l in aRecord: aLabel = l['ID'] kurz = l['kurz'] # .encode('utf-8') betrag = l['sDM'] s = '%s <tr><td class=table-3c-spalte1>%s</td><td class=table-3c-spalte2>%s</td><td class=table-3c-spalte3>%s</td></tr>' % ( s, aLabel, kurz, betrag) tabelle = ("<table>" "<tr><th class=table-3c-spalte1>Kurz</th><th class=table-3c-spalte2>Bezeichnung</th><th class=table-3c-spalte3>Betrag</th></tr>" "%s" "<tr><th class=table-3c-spalte1></th><th class=table-3c-spalte2>Summe</th><th class=table-3c-spalte3>%s</th></tr>" "</table>") % (s, T.sDM(aSumme)) return ('<img src="img/%s.png" alt="Diagramm"> %s' % (dn, tabelle)) def htmldiagrammLetzterMonat(self): aVon = T.wnfDateToSQL(T.wnfErsterTagVormonat()) aBis = T.wnfDateToSQL(T.wnfLetzterTagVormonat()) dn = 'kreis_vormonat' return self.htmldiagrammVonBis(aVon, aBis, dn) def htmldiagrammLetzte12Monate(self): aVon = T.wnfDateToSQL(T.wnfErsterVor12Monaten()) aBis = T.wnfDateToSQL(T.wnfHeute()) dn = 'kreis_12Monate' return self.htmldiagrammVonBis(aVon, aBis, dn) def htmldiagrammDieserMonat(self): aVon = T.wnfDateToSQL(T.wnfErsterDieserMonat()) aBis = T.wnfDateToSQL(T.wnfLetzterDieserMonat()) dn = 'kreis_diesermonat' return self.htmldiagrammVonBis(aVon, aBis, dn) def csvKontoVerlauf(self, dn): # Die Datei wird nur alle Minute neu geschrieben if os.path.exists(dn): if (time.time() - os.path.getmtime(dn) < 60): return os.remove(dn) print(dn) with open(dn, 'x') as out: s = 'Datum,Kontostand' out.write(s + '\n') # alle Monate aSQL = 'SELECT MIN(E.DATUM),MAX(E.DATUM) FROM KO_KUBEA E' cur = self.sqlOpen(aSQL) if (cur == None): return for row in cur: aVon = row[0] aBis = row[1] while (aVon < aBis): aVon = T.ersterNaechsterMonat(aVon) # print(aVon) aSQL = """ SELECT SUM(E.BETRAG) FROM KO_KUBEA E WHERE E.DATUM < '%s' """ % (aVon) # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return for row in cur: betrag = row[0] s = aVon.strftime("%Y/%m/%d") s = "%s,%s" % (s, betrag) print(s) with open(dn, 'a') as out: out.write(s + '\n') return def listeAlleJahreEA(self): aSumme = 0 aAnzJahre = 0 aSQL = """ SELECT EXTRACT(YEAR FROM E.DATUM) AS JAHR, SUM(E.BETRAG), SUM(CASE WHEN E.BETRAG > 0 THEN E.BETRAG END) AS Einnahme, SUM(CASE WHEN E.BETRAG < 0 THEN E.BETRAG END) AS Ausgabe FROM KO_KUBEA E WHERE E.IGNORIEREN = 0 GROUP BY EXTRACT(YEAR FROM E.DATUM) ORDER BY 1 DESC """ # print aSQL cur = self.sqlOpen(aSQL) if (cur == None): return aSumme, [] ea = [] for row in cur: s = "%s | %20s" % (row[0], T.sDM(row[1])) # print s k = {'jahr': row[0], 'betrag': row[1], 'sDM': T.sDM(row[1]), 'sDME': T.sDM(row[2]), 'sDMA': T.sDM(row[3]) } aSumme = aSumme + row[1] aAnzJahre = aAnzJahre + 1 # print k ea.append(k) if aAnzJahre > 0: aSumme = aSumme / aAnzJahre return aAnzJahre, aSumme, ea def listeKostenartVonBis(self, aVon, aBis): aSQL = """ SELECT ABS(SUM(E.BETRAG)),K.KURZ,K.ID FROM KO_KUBEA E LEFT JOIN KO_KUBKST K ON K.ID=E.KST_ID WHERE E.IGNORIEREN = 0 AND NOT E.KST_ID IS NULL AND E.BETRAG < 0 AND E.DATUM BETWEEN %s AND %s GROUP BY K.KURZ,K.ID ORDER BY 2 """ aSQL = aSQL % (aVon, aBis) print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return [], [] ea = [] kst = [] aRecord = [] aSumme = 0 for row in cur: # s = "%s | %20s" % (row[0], T.sDM(row[1])) # print s ea.append(round(row[0])) aSumme = aSumme + row[0] kst.append(row[1]) k = {'betrag': row[0], 'sDM': T.sDM(row[0]), 'kurz': row[1], 'ID': row[2] } # print(aSumme) aRecord.append(k) return aSumme, ea, kst, aRecord def analyseAusgabenVonBis10Prozent(self, aKst_ID, aKst_Kurz, aVon, aBis, a10Prozent): aSQL = """ SELECT SUM(ABS(E.BETRAG)),K.KURZ,K.ID FROM KO_KUBEA E LEFT JOIN KO_KUBKAT K ON K.ID=E.KAT_ID WHERE E.IGNORIEREN = 0 AND E.KST_ID = %d AND E.BETRAG < 0 AND E.DATUM BETWEEN %s AND %s GROUP BY K.KURZ,K.ID ORDER BY 2 """ aSQL = aSQL % (aKst_ID, aVon, aBis) print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return [] aRec = [] aRest = 0 for row in cur: if (row[0] > a10Prozent): x = {'betrag': row[0], 'sDM': T.sDM(row[0]), 'kurz': '%s - %s' % (aKst_Kurz, row[1]), 'ID': aKst_ID } aRec.append(x) else: aRest = aRest + row[0] if aRest > 0: x = {'betrag': aRest, 'sDM': T.sDM(aRest), 'kurz': '%s' % (aKst_Kurz), 'ID': aKst_ID } aRec.append(x) return aRec def analyseAusgabenVonBis(self, aVon, aBis): """ Alle EA bis 10 % zusammenfassen """ aSQL = """ SELECT ABS(SUM(E.BETRAG)),K.KURZ,K.ID FROM KO_KUBEA E LEFT JOIN KO_KUBKST K ON K.ID=E.KST_ID WHERE E.IGNORIEREN = 0 AND NOT E.KST_ID IS NULL AND E.BETRAG < 0 AND E.DATUM BETWEEN %s AND %s GROUP BY K.KURZ,K.ID ORDER BY 2 """ aSQL = aSQL % (aVon, aBis) print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return 0, [], [], [] ea = [] kst = [] aRecord = [] aRecKst = [] aSumme = 0 for row in cur: # s = "%s | %20s" % (row[0], T.sDM(row[1])) # print s k = {'betrag': row[0], 'kurz': row[1], 'KST_ID': row[2] } aSumme = aSumme + row[0] # print(aSumme) aRecKst.append(k) a10Prozent = aSumme / 20 print(aSumme, a10Prozent) for k in aRecKst: if (k['betrag'] < a10Prozent): x = {'betrag': k['betrag'], 'sDM': T.sDM(k['betrag']), 'kurz': k['kurz'], 'ID': k['KST_ID'] } aRecord.append(x) else: rx = self.analyseAusgabenVonBis10Prozent(k['KST_ID'], k['kurz'], aVon, aBis, a10Prozent) for x in rx: aRecord.append(x) print(aRecord) for x in aRecord: ea.append(round(x['betrag'])) kst.append(x['kurz']) print(kst) print(ea) self.closeConnection() return aSumme, ea, kst, aRecord def analyseEAMonatlich(self): """ Alle EA mit Monatlich <> 0 zusammenfassen """ aSQL = """ SELECT SUM(E.BETRAG),K.KURZ,K.ID,E.MONATLICH,COUNT(*) FROM KO_KUBEA E LEFT JOIN KO_KUBKST K ON K.ID=E.KST_ID WHERE E.IGNORIEREN = 0 AND E.MONATLICH <> 0 AND NOT E.KST_ID IS NULL GROUP BY K.KURZ,K.ID,E.MONATLICH ORDER BY 2 """ aSQL = """ SELECT ABS(SUM(E.BETRAG)),E.KURZ,E.MONATLICH,COUNT(*) FROM KO_KUBEA E WHERE E.IGNORIEREN = 0 AND E.MONATLICH <> 0 AND E.BETRAG<0 GROUP BY E.KURZ,E.MONATLICH ORDER BY 1,2 """ print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return 0, [], [], [] aRecord = [] aSumme = 0 for row in cur: # s = "%s | %20s" % (row[0], T.sDM(row[1])) # print s aDurchschnitt = row[0] / row[2] / row[3] k = {'betrag': row[0], 'kurz': row[1], 'monatlich': row[2], 'anzahl': row[3], 'durchschnitt': aDurchschnitt } aSumme = aSumme + aDurchschnitt # print(aSumme, k) aRecord.append(k) return aSumme, aRecord def listeAlleMonateEA(self): aSumme = 0 aAnzMonate = 0 aSQL = """ SELECT EXTRACT(YEAR FROM E.DATUM) AS JAHR, EXTRACT(MONTH FROM E.DATUM) AS MONAT, SUM(E.BETRAG), SUM(CASE WHEN E.BETRAG > 0 THEN E.BETRAG END) AS Einnahme, SUM(CASE WHEN E.BETRAG < 0 THEN E.BETRAG END) AS Ausgabe FROM KO_KUBEA E WHERE E.IGNORIEREN = 0 GROUP BY EXTRACT(YEAR FROM E.DATUM),EXTRACT(MONTH FROM E.DATUM) ORDER BY 1 DESC,2 DESC """ # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return aAnzMonate, aSumme, [] ea = [] for row in cur: s = "%s/%s | %20s" % (row[0],row[1], T.sDM(row[2])) # print(s) k = {'jahr': row[0], 'monat': row[1], 'betrag': row[2], 'sDM': T.sDM(row[2]), 'sDME': T.sDM(row[3]), 'sDMA': T.sDM(row[4]) } aSumme = aSumme + row[1] aAnzMonate = aAnzMonate + 1 # print(k) ea.append(k) if aAnzMonate > 0: aSumme = aSumme / aAnzMonate return aAnzMonate, aSumme, ea def openKontoverlauf(self): aSQL = """ SELECT EXTRACT(YEAR FROM E.DATUM) AS JAHR, EXTRACT(MONTH FROM E.DATUM) AS MONAT, SUM(E.BETRAG) FROM KO_KUBEA E WHERE E.IGNORIEREN = 0 GROUP BY EXTRACT(YEAR FROM E.DATUM),EXTRACT(MONTH FROM E.DATUM) ORDER BY 1,2 """ # print(aSQL) return self.sqlOpen(aSQL) def openAlleMonateEinkommen(self): aSQL = """ SELECT FIRST 240 EXTRACT(YEAR FROM E.DATUM) AS JAHR, EXTRACT(MONTH FROM E.DATUM) AS MONAT, SUM(E.BETRAG), SUM(CASE WHEN E.KAT_ID = 22 THEN E.BETRAG END) AS Uwe, SUM(CASE WHEN E.KAT_ID = 24 THEN E.BETRAG END) AS Sabine FROM KO_KUBEA E WHERE E.IGNORIEREN = 0 AND E.BETRAG > 1000 AND E.KST_ID = 11 AND E.KAT_ID IN (22,24) GROUP BY EXTRACT(YEAR FROM E.DATUM),EXTRACT(MONTH FROM E.DATUM) ORDER BY 1 DESC,2 DESC """ # print(aSQL) return self.sqlOpen(aSQL) def openAlleJahreEinkommen(self): aSQL = """ SELECT EXTRACT(YEAR FROM E.DATUM) AS JAHR, SUM(E.BETRAG), SUM(CASE WHEN E.KAT_ID = 22 THEN E.BETRAG END) AS Uwe, SUM(CASE WHEN E.KAT_ID = 24 THEN E.BETRAG END) AS Sabine FROM KO_KUBEA E WHERE E.IGNORIEREN = 0 AND E.KST_ID = 11 AND E.KAT_ID IN (22,24) GROUP BY EXTRACT(YEAR FROM E.DATUM) ORDER BY 1 DESC,2 DESC """ # print(aSQL) return self.sqlOpen(aSQL) def chartjsKontoverlauf(self): aLabels = '' aDaten = '' # alle Monate aSQL = 'SELECT MIN(E.DATUM),MAX(E.DATUM) FROM KO_KUBEA E' cur = self.sqlOpen(aSQL) if (cur == None): return aLabels, aDaten for row in cur: aVon = row[0] aBis = row[1] while (aVon < aBis): aVon = T.ersterNaechsterMonat(aVon) # print(aVon) aSQL = """ SELECT SUM(E.BETRAG) FROM KO_KUBEA E WHERE E.DATUM < '%s' """ % (aVon) # print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return aLabels, aDaten for row in cur: betrag = row[0] s = aVon.strftime("%m/%Y") print(s) if aLabels != '': aLabels = aLabels + ', ' aLabels = ("%s'%s'") % (aLabels, s) if aDaten != '': aDaten = aDaten + ', ' aDaten = ("%s %s") % (aDaten, betrag) return aLabels, aDaten def chartjsAlleMonateEinkommen(self): """ aLabels = "'Jan', 'Feb', 'Mar'" aEKU = " 1000 , 1500 , 2000" aEKS = " 4000 , 5000 , 6000" """ aLabels = '' aEKU = '' aEKS = '' cur = self.openAlleMonateEinkommen() if (cur == None): return aLabels, aEKU, aEKS for row in cur: if aLabels != '': aLabels = ', ' + aLabels aLabels = ("'%s/%s'%s") % (row[1], row[0], aLabels) if aEKU != '': aEKU = ', ' + aEKU aEKU = ("%s %s") % (row[3], aEKU) if aEKS != '': aEKS = ', ' + aEKS aEKS = ("%s %s") % (row[4], aEKS) return aLabels, aEKU, aEKS def chartjsAlleJahreEinkommen(self): """ aLabels = "'Jan', 'Feb', 'Mar'" aEKU = " 1000 , 1500 , 2000" aEKS = " 4000 , 5000 , 6000" """ aLabels = '' aEKU = '' aEKS = '' cur = self.openAlleJahreEinkommen() if (cur == None): return aLabels, aEKU, aEKS for row in cur: if aLabels != '': aLabels = ', ' + aLabels aLabels = ("'%s'%s") % (row[0], aLabels) if aEKU != '': aEKU = ', ' + aEKU aEKU = ("%s %s") % (row[2], aEKU) if aEKS != '': aEKS = ', ' + aEKS aEKS = ("%s %s") % (row[3], aEKS) return aLabels, aEKU, aEKS def listeAlleMonateEinkommen(self): aSumme = 0 aAnzMonate = 0 cur = self.openAlleMonateEinkommen() if (cur == None): return aAnzMonate, aSumme, [] ea = [] for row in cur: s = "%s | %20s" % (row[0], T.sDM(row[1])) # print s k = {'jahr': row[0], 'monat': row[1], 'betrag': row[2], 'sDMG': T.sDM(row[2]), 'sDMU': T.sDM(row[3]), 'sDMS': T.sDM(row[4]) } aSumme = aSumme + row[2] aAnzMonate = aAnzMonate + 1 # print k ea.append(k) if aAnzMonate > 0: aSumme = aSumme / aAnzMonate return aAnzMonate, aSumme, ea def diagrammKostenartVonBis(self, aPfad, aDateiname, aData, aLabels): d = Drawing(800, 800) pie = Pie() pie.x = 360 pie.y = 360 pie.xradius = 300 pie.yradius = 300 pie.data = aData pie.labels = aLabels pie.slices.strokeWidth = 0.5 # pie.slices[3].popout = 20 d.add(pie) d.save(formats=['png'], outDir=aPfad, fnRoot=aDateiname) def diagrammAlleJahreEA(self, aPngDateiname): # Festlegen der Gesamtgröße in Pixel d = Drawing(800, 600) # Anlegen des Diagramms diagramm = VerticalBarChart() # Positionierung und Größe des Diagramms diagramm.x = 50 diagramm.y = 50 diagramm.width = 700 diagramm.height = 500 # Holen der Daten daten = [] jahre = [] aAnzJahre, aSumme, ea = self.listeAlleJahreEA() print(ea) for x in ea: print x['betrag'], x['jahr'] daten.append(float(x['betrag'])) jahre.append(str(x['jahr'])) ymin = min(daten) ymax = max(daten) # Daten für das Diagramm müssen als Liste von Tupeln vorliegen daten = [tuple(daten)] print(daten) print(jahre) # return False # Hinzufügen der Daten diagramm.data = daten # Y-Achse (in ReportLab „valueAxis“) formatieren diagramm.valueAxis.valueMin = ymin diagramm.valueAxis.valueMax = ymax diagramm.valueAxis.valueStep = 2000 # X-Achse (in ReportLab „categoryAxis“) formatieren diagramm.categoryAxis.categoryNames = jahre # Diagramm zeichnen d.add(diagramm) # ... und speichernhttp://www.reportlab.com/software/opensource/rl-toolkit/guide/ print(aPngDateiname) renderPM.drawToFile(d, aPngDateiname, 'PNG') def diagrammAlleMonateEinkommen(self, aPngDateiname): # Festlegen der Gesamtgröße in Pixel d = Drawing(800, 600) # Anlegen des Diagramms diagramm = VerticalBarChart() # Positionierung und Größe des Diagramms diagramm.x = 50 diagramm.y = 50 diagramm.width = 700 diagramm.height = 500 # Holen der Daten daten = [] jahre = [] aAnzJahre, aSumme, ea = self.listeAlleMonateEinkommen() print(ea) for x in ea: # print (x) x['betrag'], x['jahr'] daten.append(float(x['betrag'])) jahre.append(str(x['jahr'])) ymin = min(daten) ymax = max(daten) # Daten für das Diagramm müssen als Liste von Tupeln vorliegen daten = [tuple(daten)] print(daten) print(jahre) # return False # Hinzufügen der Daten diagramm.data = daten # Y-Achse (in ReportLab „valueAxis“) formatieren diagramm.valueAxis.valueMin = ymin diagramm.valueAxis.valueMax = ymax diagramm.valueAxis.valueStep = 2000 # X-Achse (in ReportLab „categoryAxis“) formatieren diagramm.categoryAxis.categoryNames = jahre # Diagramm zeichnen d.add(diagramm) # ... und speichernhttp://www.reportlab.com/software/opensource/rl-toolkit/guide/ print(aPngDateiname) renderPM.drawToFile(d, aPngDateiname, 'PNG') def jsonAlleJahreEA(self): aSumme, ea = self.listeAlleJahreEA() j = {'summe': T.sDM(aSumme), 'ea': ea} return j def htmlAlleJahreEA(self): aAnzahl, aSumme, ea = self.listeAlleJahreEA() s = '' for l in ea: jahr = l['jahr'] # print type(konto),konto betrag = l['betrag'] sSaldo = l['sDM'] sDME = l['sDME'] sDMA = l['sDMA'] if (betrag < 0): aKlasse = 'class=table-right-currency-red' else: aKlasse = 'class=table-right-currency' # print type(konto),konto s = '%s <tr><td class=table-left>%s</td><td class=table-right-currency>%s</td><td class=table-right-currency>%s</td><td %s>%s</td></tr>' % ( s, jahr, sDME, sDMA, aKlasse, sSaldo) return ("<table>" "<tr><th class=table-left>Jahr</th><th class=table-right-currency>Einnahmen</th><th class=table-right-currency>Ausgaben</th><th class=table-right-currency>Saldo</th></tr>" "%s" "<tr><th class=table-left>Durchschnitt für %d Jahre</th><th class=table-right-currency></th><th class=table-right-currency></th><th class=table-right-currency>%s</th></tr>" "</table>") % (s, aAnzahl, T.sDM(aSumme)) return ("<table>" "<tr><th class=table-left>Jahr</th><th class=table-right-currency>Saldo</th></tr>" "%s" "<tr><th class=table-left>Durchschnitt</th><th class=table-right-currency>%s</th></tr>" "</table>") % (s, T.sDM(aSumme)) def htmlAlleMonateEA(self): aAnzahl, aSumme, ea = self.listeAlleMonateEA() # print(type(ea)) s = '' for l in ea: # print(l) monat = "%2d/%d" % (l['monat'], l['jahr']) betrag = l['betrag'] sSaldo = l['sDM'] sDME = l['sDME'] sDMA = l['sDMA'] if (betrag < 0): aKlasse = 'class=table-right-currency-red' else: aKlasse = 'class=table-right-currency' # print type(konto),konto sDME = '<a href="monatea/%d/%d/">%s</a>' % (l['jahr'], l['monat'], sDME) s = '%s <tr>' \ '<td class=table-left>%s</td>' \ '<td %s>%s</td>' \ '<td class=table-right-currency>%s</td>' \ '<td class=table-right-currency>%s</td>' \ '</tr>' \ % (s, monat, aKlasse, sSaldo, sDME, sDMA) # print(s) return ("<table>" "<tr><th class=table-left>Monat</th><th class=table-right-currency>Saldo</th><th class=table-right-currency>Einnahmen</th><th class=table-right-currency>Ausgaben</th></tr>" "%s" "<tr><th class=table-left>Durchschnitt für %d Monate</th><th class=table-right-currency></th><th class=table-right-currency></th><th class=table-right-currency>%s</th></tr>" "</table>") % (s, aAnzahl, T.sDM(aSumme)) def htmlAlleMonateEinkommen(self): aAnzahl, aSumme, ea = self.listeAlleMonateEinkommen() s = '' for l in ea: monat = "%2d/%d" % (l['monat'], l['jahr']) betrag = l['betrag'] sDMG = l['sDMG'] sDMU = l['sDMU'] sDMS = l['sDMS'] if (betrag < 0): aKlasse = 'class=table-right-currency-red' else: aKlasse = 'class=table-right-currency' # print type(konto),konto s = '%s <tr><td class=table-left>%s</td><td class=table-right-currency>%s</td><td class=table-right-currency>%s</td><td %s>%s</td></tr>' % ( s, monat, sDMU, sDMS, aKlasse, sDMG) return ("<table>" "<tr><th class=table-left>Monat</th><th class=table-right-currency>Uwe</th><th class=table-right-currency>Sabine</th><th class=table-right-currency>Gesamt</th></tr>" "%s" "<tr><th class=table-left>Durchschnitt für %d Monate</th><th class=table-right-currency></th><th class=table-right-currency></th><th class=table-right-currency>%s</th></tr>" "</table>") % (s, aAnzahl, T.sDM(aSumme)) def getProjekt_ID(self, aKurz): aSQL = "SELECT MAX(ID) FROM KO_KUBPROJEKT P WHERE P.KURZ='%s'" aSQL = aSQL % (aKurz) print(aSQL) cur = self.sqlOpen(aSQL) if (cur == None): return 0 else: for row in cur: if (row[0]): return row[0] else: return 0 def getProjekt_ID_Wintergarten_2017(self): return self.getProjekt_ID('Wintergarten 2017') def htmlProjekt(self, aProjekt_ID): aSumme, ea = self.listeProjekt(aProjekt_ID) s = '' for l in ea: datum = l['ttmmjj'] # .encode('utf-8') kurz = l['kurz'] # .encode('utf-8') betrag = l['betrag'] s = '%s <tr><td class=table-3c-spalte1>%s</td><td class=table-3c-spalte2>%s</td><td class=table-3c-spalte3>%s</td></tr>' % ( s, datum, kurz, betrag) return ("<table>" "<tr><th class=table-3c-spalte1>Datum</th><th class=table-3c-spalte2>Bezeichnung</th><th class=table-3c-spalte3>Betrag</th></tr>" "%s" "<tr><th class=table-3c-spalte1></th><th class=table-3c-spalte2>Summe</th><th class=table-3c-spalte3>%s</th></tr>" "</table>") % (s, T.sDM(aSumme)) def htmlProjektK(self, aProjekt_ID): aSumme, ea = self.listeProjektK(aProjekt_ID) s = '' for l in ea: datum = l['ttmmjj'] # .encode('utf-8') kurz = l['kurz'] # .encode('utf-8') betrag = l['betrag'] s = '%s <tr><td class=table-3c-spalte1>%s</td><td class=table-3c-spalte2>%s</td><td class=table-3c-spalte3>%s</td></tr>' % ( s, datum, kurz, betrag) return ("<table>" "<tr><th class=table-3c-spalte1>Datum</th><th class=table-3c-spalte2>Bezeichnung</th><th class=table-3c-spalte3>Betrag</th></tr>" "%s" "<tr><th class=table-3c-spalte1></th><th class=table-3c-spalte2>Summe</th><th class=table-3c-spalte3>%s</th></tr>" "</table>") % (s, T.sDM(aSumme)) def htmlProjektWintergarten2017(self): aProjekt_ID = self.getProjekt_ID_Wintergarten_2017() return self.htmlProjekt(aProjekt_ID) def htmlProjektWintergarten2017K(self): aProjekt_ID = self.getProjekt_ID_Wintergarten_2017() return self.htmlProjektK(aProjekt_ID) def main(): k = dmKonten() # k.analyseEAMonatlich() print(k.htmlAlleMonateEA()) # print(k.chartjsAlleMonateEinkommen()) # print(k.chartjsKontoverlauf()) # print k.summeAlleKonten() # print k.listeAlleKonten() # print (k.listeAlleMonateEinkommen()) # print k.listeAlleJahreEA() # print k.listeProjektK(1) # print k.jsonAlleKonten() # print k.jsonLetzteEA() # print k.jsonAlleJahreEA() # print(k.htmlProjektWintergarten2017()) # print(k.htmldiagrammLetzterMonat()) # print(k.htmldiagrammDieserMonat()) # k.csvKontoVerlauf('/home/wnf/Entwicklung/PycharmProjects/wnfportal/wnfportal_python/www/daten/kontoverlauf.csv') # k.analyseAusgabenVonBis( # T.wnfDateToSQL(T.wnfErsterTagVormonat()), # T.wnfDateToSQL(T.wnfLetzterTagVormonat())) # k.diagrammKostenartVonBis('/wnfdaten/wnfpython/wnfportal/trunk/src/wnfportal/m/diagramme/', 'kreis_2018_09', # '01.09.2018', '30.09.2018') # k.diagrammAlleJahreEA('/wnfdaten/wnfpython/wnfportal/trunk/src/wnfportal/m/diagramme/diagramm_alle_jahre.png') # k.diagrammAlleJahreEinkommen( # '/wnfdaten/wnfpython/wnfportal/trunk/src/wnfportal/m/diagramme/diagramm_alle_jahre_ek.png') return 0 if __name__ == '__main__': main()
[ "dev@wlsoft.de" ]
dev@wlsoft.de
beb223699fadcff443ec1b36fb64cecf67b2359c
b5d0a6254b54c0a778181a67bcda14cc6663e871
/0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.5-question.py
5ec618baaa19cdb2c7b27b33ac1bfb9f081b82c6
[ "MIT", "LicenseRef-scancode-public-domain" ]
permissive
Web-Dev-Collaborative/Lambda-Final-Backup
113e719a76a144b86d06f3a412afe4b02689cad7
e9ab84928faa8364bacd863009ae9aec01ff9d1e
refs/heads/master
2023-06-07T15:34:00.682815
2021-04-17T01:53:14
2021-04-17T01:53:14
358,899,122
0
0
MIT
2023-05-30T04:03:16
2021-04-17T14:24:53
JavaScript
UTF-8
Python
false
false
318
py
# Sparse Search # Given a sorted array of strings that is interspersed with empty strings, # write a method to find the location of a given string. # EXAMPLE: INPUT: ball, {"at", "", "", "", "ball", "", "", "car", "", "", "dad", "", ""} # OUTPUT: 4 # time complexity: O() # space complexity: O()
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
af5d3531a0c3b27b202c1ef66223d898bd77ec13
008aada8c0e718e0220eabc5b54732a1e1b07f97
/sergeant/connector/_connector.py
ee1985d5cf05a1683d5b4b588c6a582648b9599b
[ "MIT" ]
permissive
gabriel-yahav/sergeant
59259a92c4c072e317d82022f19b440b21d2c294
0de9bfb4fdca62f061d6588c6839c4491c5d4f9b
refs/heads/master
2022-09-30T04:38:48.414842
2020-05-26T10:28:50
2020-05-26T10:28:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,931
py
import typing class Lock: def acquire( self, timeout: typing.Optional[float] = None, check_interval: float = 1.0, ttl: int = 60, ) -> bool: raise NotImplementedError() def release( self, ) -> bool: raise NotImplementedError() def is_locked( self, ) -> bool: raise NotImplementedError() def set_ttl( self, ttl: int, ) -> bool: raise NotImplementedError() def get_ttl( self, ) -> typing.Optional[int]: raise NotImplementedError() class Connector: name: str def key_set( self, key: str, value: bytes, ) -> bool: raise NotImplementedError() def key_get( self, key: str, ) -> typing.Optional[bytes]: raise NotImplementedError() def key_delete( self, key: str, ) -> bool: raise NotImplementedError() def queue_pop( self, queue_name: str, ) -> typing.Optional[bytes]: raise NotImplementedError() def queue_pop_bulk( self, queue_name: str, number_of_items: int, ) -> typing.List[bytes]: raise NotImplementedError() def queue_push( self, queue_name: str, item: bytes, priority: str = 'NORMAL', ) -> bool: raise NotImplementedError() def queue_push_bulk( self, queue_name: str, items: typing.Iterable[bytes], priority: str = 'NORMAL', ) -> bool: raise NotImplementedError() def queue_length( self, queue_name: str, ) -> int: raise NotImplementedError() def queue_delete( self, queue_name: str, ) -> bool: raise NotImplementedError() def lock( self, name: str, ) -> Lock: raise NotImplementedError()
[ "gal@intsights.com" ]
gal@intsights.com
f8b918dbc080c727941fe32353727591500f3f2d
5c61851a03dd1ac98d03c2e98f27487f188ff00f
/{{cookiecutter.repo_name}}/manage.py
13bffdcfd10dc0e98343059f47512923a6698335
[ "BSD-3-Clause" ]
permissive
tony/cookiecutter-flask-pythonic
e7208a8fc9ccbde10e541f8e657dbf4da7b388b3
d1274ec5d5b72cab128e593ed78de88c29bd54b5
refs/heads/master
2023-05-29T20:49:21.927268
2021-10-05T12:39:04
2021-10-05T12:39:04
35,064,692
39
4
null
2023-05-01T21:06:54
2015-05-04T22:52:20
Python
UTF-8
Python
false
false
1,203
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from flask_script import Manager from {{ cookiecutter.repo_name }} import {{ cookiecutter.repo_name | capitalize }} """If not using Flask-Script:: app = {{ cookiecutter.repo_name | capitalize }}.from_cli(sys.argv[1:]) Does the trick for retrieving an application object using pure argparse. But let's hook into Flask-Script's CLI argparse instance. """ def app_wrapper(*args, **kwargs): """App factory returns the :class:`flask.Flask` via ``__call__``, but because of the way :class:`flask_script.Manager` handles accepting app objects, this wrapper returns the flask object directly. :returns: Flask object build from CLI :rtype: :class:`flask.Flask` """ return {{ cookiecutter.repo_name | capitalize }}.from_file(*args, **kwargs).app manager = Manager(app_wrapper) manager.add_option('-c', '--config', dest='config', required=False) @manager.command def run_server(*args, **kwargs): {{ cookiecutter.repo_name | capitalize }}.from_file().run() @manager.command def testing(*args, **kwargs): print('Run "./run-tests.py" or "python setup.py test".') if __name__ == "__main__": run_server()
[ "tony@git-pull.com" ]
tony@git-pull.com
52361d8d4a6f74b1bd33bc572eee6582ff87237f
92a34017b2c604e3e1d5af6347f98cd05e8d0cb7
/orders/urls.py
3fbadc5750edf20f37089f51c4735544a62a7205
[]
no_license
dandani-cs/swishtest
76b7c2e04193c749bef1b31e24fdd53a61707341
983e07930265690918d9d60b7ca972c2547d95bf
refs/heads/master
2023-02-18T03:25:23.652843
2020-12-12T12:54:15
2020-12-12T12:54:15
316,511,893
0
1
null
null
null
null
UTF-8
Python
false
false
240
py
from django.urls import path from .views import OrderListView, OrderCreateView urlpatterns = [ path("", OrderListView.as_view(), name="order_view"), path("new", OrderCreateView.as_view(), name="order_new") ]
[ "dani.cstech@gmail.com" ]
dani.cstech@gmail.com
5b645591d5f4113d5f9bc03b5fb8121abefcbe03
47c12b42843d08a10655006fba6fb0c662e7bf62
/yonep.py
92b1c822b8ae4f9d036e2f38a53af06c6ffd61e1
[]
no_license
easthgs/git-test
6325a8ba1bc77bec6a4b2d54fc84d08498d4b67e
34de227bbf017f6b78b5bcf2cd4a7a47069c797a
refs/heads/master
2021-01-10T12:23:10.331150
2016-02-20T17:55:13
2016-02-20T17:55:13
52,128,190
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
#!/usr/bin/env python # -*- coding: UTF-8 -*- from flask import Flask, render_template, url_for, redirect, request app = Flask(__name__) @app.route('/') @app.route('/<name>') def yo(name=None): return render_template('yo.html', name=name) @app.route('/add', methods=['POST']) def add(): return redirect(url_for('yo', name=request.form['name'])) if __name__ == '__main__': app.run(debug=True)
[ "eastnep@yahoo.co.jp" ]
eastnep@yahoo.co.jp
b9d3d581f68fcf8fdc2b060485db026dfba0d13f
7cb7553a04ce0eace07f331a493b96f2bdb2fd26
/week13_H.W/IDS_20200529-8.py
fbc674aded1485154d1c326dc00a9f40c3df7241
[]
no_license
hjkyuit1226/Introduction-to-DS
2308f0780e2c6944f98ba3c0a559bca96b23bfbf
1cf26d1c7b080bb518f2f131c26091461a844fd3
refs/heads/master
2021-02-19T15:32:10.344138
2020-06-06T19:04:13
2020-06-06T19:04:13
245,314,930
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
def get_fahrenheit(x): """ Transform a Celsius degree into Farenheit scale """ f = x*9/5 + 32 return f print(get_fahrenheit(25))
[ "noreply@github.com" ]
hjkyuit1226.noreply@github.com
c85864db8a16d494aabf4adc4a5f186176ac2e22
1cd904a429a2392f47762a037e7ac8545cd673f1
/homework_hse/homework03/homework03.py
79b8c6afc95b99b94d14f1dbddd140ce4a529c33
[]
no_license
annnyway/homework
e0bce8af87fc6100f20ce736e7082721005f4842
4fd3aa4279560d7a56af99d24636128e520945df
refs/heads/master
2021-07-12T16:06:44.210852
2019-03-03T20:40:05
2019-03-03T20:40:05
148,026,613
0
1
null
null
null
null
UTF-8
Python
false
false
3,018
py
import random def adjective(): with open('adjectives.tsv', 'r') as f: adjectives = f.read().split() return random.choice(adjectives) def noun(): with open('nouns.tsv', 'r') as f: nouns = f.read().split() return random.choice(nouns) def transitive_verb(): with open('trans_verbs.tsv', 'r') as f: verbs = f.read().split() return random.choice(verbs) def intransitive_verb(): with open('intrans_verbs.tsv', 'r') as f: verbs = f.read().split() return random.choice(verbs) def transitive_verb_with_s(): with open('trans_verbs.tsv', 'r') as f: verbs = f.read().split() verb = random.choice(verbs) ends = ['ss', 'x', 'z', 'ch', 'sh'] vowels = 'aeiou' if verb.endswith('y') and verb[-2] not in vowels: verb = verb[0:-1] + 'ies' elif verb.endswith(tuple(ends)): verb += 'es' else: verb += 's' return verb def intransitive_verb_with_s(): with open('intrans_verbs.tsv', 'r') as f: verbs = f.read().split() verb = random.choice(verbs) ends = ['ss', 'x', 'z', 'ch', 'sh'] vowels = 'aeiou' if verb.endswith('y') and verb[-2] not in vowels: verb = verb[0:-1] + 'ies' elif verb.endswith(tuple(ends)): verb = verb + 'es' else: verb = verb + 's' return verb def adverb(): with open('adverbs.tsv', 'r') as f: adverbs = f.read().split() return random.choice(adverbs) def comparative_adjective(): with open('comparative_adjectives.tsv', 'r') as f: adjectives = f.read().split() return random.choice(adjectives) def affirmative_sentence(): sentence = adjective().capitalize() + ' ' + noun() + ' ' + transitive_verb_with_s() +\ ' ' + noun() + ' that ' + intransitive_verb_with_s() + ' ' + adverb() + '.' return sentence def interrogative_sentence(): sentence = 'Did ' + noun() + ' ' + transitive_verb() + ' ' + adjective() + ' ' +\ noun() + ' ' + 'yesterday?' return sentence def negative_sentence(): sentence = adjective().capitalize() + ' ' + noun() + ' will not ' + transitive_verb() +\ ' ' + noun() + '.' return sentence def conditional_sentence(): sentence = 'If ' + noun() + ' ' + transitive_verb_with_s() + ' ' + noun() + ', ' +\ noun() + ' will ' + intransitive_verb() + ' ' + comparative_adjective() + '.' return sentence def imperative_sentence(): sentence = transitive_verb().capitalize() + ' the ' + adjective() + ' ' + noun() + ', please.' return sentence def random_sentences(): sentences = [affirmative_sentence(), interrogative_sentence(), negative_sentence(), conditional_sentence(), imperative_sentence()] random.shuffle(sentences) return sentences def main(): with open('random_sentences.txt', 'w') as f: for sent in random_sentences(): f.write(sent + '\n') return 0 if __name__ == '__main__': main()
[ "nuticbooms@gmail.com" ]
nuticbooms@gmail.com
c40f6a5a4f47f0180df1f9da49f262d8982ae040
728bd80edb381d74b5d19b0d2bbd5f0c7e00412e
/partenaire/admin.py
e4d1b140508662c013b2e393f60d3fdb997f44dc
[]
no_license
guilavogui24/applisigre
16b45b4448975c7872223b911745ca02d8c64a84
39572782b2646543129208503f8c47a5813223ce
refs/heads/master
2023-07-12T06:31:54.882558
2021-08-06T13:28:55
2021-08-06T13:28:55
393,380,589
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
from django.contrib import admin from .models import Partenaire from .models import TypePartenaire from .models import FormeJuridique from .models import Categories from .models import SousCategorie class SousCategorieAdmin(admin.ModelAdmin): list_display = ('nom', 'Categories') search_fields = ['nom'] # Register your models here. admin.site.register(Partenaire) admin.site.register(TypePartenaire) admin.site.register(FormeJuridique) admin.site.register(Categories) admin.site.register(SousCategorie, SousCategorieAdmin)
[ "guilavoguijoseph@gmail.com" ]
guilavoguijoseph@gmail.com
fc751a4c8a4c39cb45786c720a5ed4aa6a9bfb76
5cd9518f9a869a355019c743a5c2e65b0f3c50ba
/problem4.py
a96d8f797444928c1432d958ac34449608efcd17
[]
no_license
astan54321/PA3
0d2ce6a1e9bce4ae9cafcedb930459e6b0bf66ee
13d4048c12ea9b42cf9990389cf7894b2430cb3c
refs/heads/master
2023-01-06T09:51:21.428543
2020-10-15T08:17:30
2020-10-15T08:17:30
303,866,798
0
1
null
null
null
null
UTF-8
Python
false
false
1,484
py
from mrjob.job import MRJob from mrjob.step import MRStep import re WORD_RE = re.compile(r"[\w']+") class MRMostUsedWord(MRJob): def steps(self): return [ MRStep(mapper=self.mapper_get_words, combiner=self.combiner_count_words, reducer=self.reducer_count_words), MRStep(reducer=self.reducer_find_max_word) ] def mapper_get_words(self, _, line): # yield each word in the line for word in WORD_RE.findall(line): word = word.lower() yield (word, 1) def combiner_count_words(self, word, counts): # optimization: sum the words we've seen so far yield (word, sum(counts)) def reducer_count_words(self, word, counts): # send all (num_occurrences, word) pairs to the same reducer. # num_occurrences is so we can easily use Python's max() function. yield None, (sum(counts), word) # discard the key; it is just None def reducer_find_max_word(self, _, word_count_pairs): # each item of word_count_pairs is (count, word), # so yielding one results in key=counts, value=word words = [] for word in word_count_pairs: words.append(word) for i in range(10): temp_max = max(words) yield temp_max words.remove(temp_max) if __name__ == '__main__': MRMostUsedWord.run()
[ "astan54321@gmail.com" ]
astan54321@gmail.com
aa3069e85491124d364115e57d1a97e1ff6dbda7
e2589896ad0e629d933f1e9e03f9963eb922664a
/backend/cool_dust_27675/wsgi.py
297564f38beadc76f1ea37eeabd22b393dcbc0c4
[]
no_license
crowdbotics-apps/cool-dust-27675
89b947ddd6c87d70febeb2af15ffab3706b6cc13
f2fa1d6f4206955173a2ebf1b0f824ee5d184d1a
refs/heads/master
2023-05-08T10:46:07.382608
2021-06-02T06:44:22
2021-06-02T06:44:22
373,066,266
0
0
null
null
null
null
UTF-8
Python
false
false
407
py
""" WSGI config for cool_dust_27675 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'cool_dust_27675.settings') application = get_wsgi_application()
[ "team@crowdbotics.com" ]
team@crowdbotics.com
b12892a96f4b48796a35f6700c11b1ce1875c2cf
94c8dd4126da6e9fe9acb2d1769e1c24abe195d3
/test/python/circuit/library/test_phase_estimation.py
8bf3d15d9ea0a395cd1d2ede7c122fdb666605b4
[ "Apache-2.0" ]
permissive
levbishop/qiskit-terra
a75c2f96586768c12b51a117f9ccb7398b52843d
98130dd6158d1f1474e44dd5aeacbc619174ad63
refs/heads/master
2023-07-19T19:00:53.483204
2021-04-20T16:30:16
2021-04-20T16:30:16
181,052,828
1
0
Apache-2.0
2019-06-05T15:32:13
2019-04-12T17:20:54
Python
UTF-8
Python
false
false
5,238
py
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test library of phase estimation circuits.""" import unittest import numpy as np from qiskit.test.base import QiskitTestCase from qiskit import BasicAer, execute from qiskit.circuit import QuantumCircuit from qiskit.circuit.library import PhaseEstimation, QFT from qiskit.quantum_info import Statevector class TestPhaseEstimation(QiskitTestCase): """Test the phase estimation circuit.""" def assertPhaseEstimationIsCorrect(self, pec: QuantumCircuit, eigenstate: QuantumCircuit, phase_as_binary: str): r"""Assert that the phase estimation circuit implements the correct transformation. Applying the phase estimation circuit on a target register which holds the eigenstate :math:`|u\rangle` (say the last register), the final state should be .. math:: |\phi_1\rangle \cdots |\phi_t\rangle |u\rangle where the eigenvalue is written as :math:`e^{2\pi i \phi}` and the angle is represented in binary fraction, i.e. :math:`\phi = 0.\phi_1 \ldots \phi_t`. Args: pec: The circuit implementing the phase estimation circuit. eigenstate: The eigenstate as circuit. phase_as_binary: The phase of the eigenvalue in a binary fraction. E.g. if the phase is 0.25, the binary fraction is '01' as 0.01 = 0 * 0.5 + 1 * 0.25 = 0.25. """ # the target state eigenstate_as_vector = Statevector.from_instruction(eigenstate).data reference = eigenstate_as_vector zero, one = [1, 0], [0, 1] for qubit in phase_as_binary[::-1]: reference = np.kron(reference, zero if qubit == '0' else one) # the simulated state circuit = QuantumCircuit(pec.num_qubits) circuit.compose(eigenstate, list(range(pec.num_qubits - eigenstate.num_qubits, pec.num_qubits)), inplace=True) circuit.compose(pec, inplace=True) # TODO use Statevector for simulation once Qiskit/qiskit-terra#4681 is resolved # actual = Statevector.from_instruction(circuit).data backend = BasicAer.get_backend('statevector_simulator') actual = execute(circuit, backend).result().get_statevector() np.testing.assert_almost_equal(reference, actual) def test_phase_estimation(self): """Test the standard phase estimation circuit.""" with self.subTest('U=S, psi=|1>'): unitary = QuantumCircuit(1) unitary.s(0) eigenstate = QuantumCircuit(1) eigenstate.x(0) # eigenvalue is 1j = exp(2j pi 0.25) thus phi = 0.25 = 0.010 = '010' # using three digits as 3 evaluation qubits are used phase_as_binary = '0100' pec = PhaseEstimation(4, unitary) self.assertPhaseEstimationIsCorrect(pec, eigenstate, phase_as_binary) with self.subTest('U=SZ, psi=|11>'): unitary = QuantumCircuit(2) unitary.z(0) unitary.s(1) eigenstate = QuantumCircuit(2) eigenstate.x([0, 1]) # eigenvalue is -1j = exp(2j pi 0.75) thus phi = 0.75 = 0.110 = '110' # using three digits as 3 evaluation qubits are used phase_as_binary = '110' pec = PhaseEstimation(3, unitary) self.assertPhaseEstimationIsCorrect(pec, eigenstate, phase_as_binary) with self.subTest('a 3-q unitary'): unitary = QuantumCircuit(3) unitary.x([0, 1, 2]) unitary.cz(0, 1) unitary.h(2) unitary.ccx(0, 1, 2) unitary.h(2) eigenstate = QuantumCircuit(3) eigenstate.h(0) eigenstate.cx(0, 1) eigenstate.cx(0, 2) # the unitary acts as identity on the eigenstate, thus the phase is 0 phase_as_binary = '00' pec = PhaseEstimation(2, unitary) self.assertPhaseEstimationIsCorrect(pec, eigenstate, phase_as_binary) def test_phase_estimation_iqft_setting(self): """Test default and custom setting of the QFT circuit.""" unitary = QuantumCircuit(1) unitary.s(0) with self.subTest('default QFT'): pec = PhaseEstimation(3, unitary) expected_qft = QFT(3, inverse=True, do_swaps=False).reverse_bits() self.assertEqual(pec.data[-1][0].definition, expected_qft) with self.subTest('custom QFT'): iqft = QFT(3, approximation_degree=2).inverse() pec = PhaseEstimation(3, unitary, iqft=iqft) self.assertEqual(pec.data[-1][0].definition, iqft) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
levbishop.noreply@github.com
0e162d2c63ae0f43fffc22bc0537ef43c0b7ff22
baa4b4e6a4aae7df3236cc97f600262f969fe827
/project/server.py
39d0f9cd9df5c6768b9fbdd29f1e2e3bac6fc873
[]
no_license
elihan27/CS-131
97517d86d0d92033ab207185d2a64cdbe55cfa50
088d05a138c9f7383faa048a500748f43e6c789b
refs/heads/master
2020-04-21T23:13:11.225262
2019-02-10T03:37:02
2019-02-10T03:37:02
169,938,878
0
0
null
null
null
null
UTF-8
Python
false
false
9,303
py
import asyncio import string import aiohttp import sys import time import logging #As of 9:30 AM, 06/08/2018: #has implemented "WHATSAT", "IAMAT", and "AT", dictionary, servers talking to each other #need to implement: logger, buffer server_info={} #buffer=[] portnumbers= { 'Goloman': 12717, 'Hands': 12718, 'Holiday': 12719, 'Welsh': 12720, 'Wilkes': 12721 } logs={ 'Goloman': 'Goloman.log', 'Hands': 'Hands.log', 'Holiday': 'Holiday.log', 'Welsh': 'Welsh.log', 'Wilkes': 'Wilkes.log' } comm_network = {'Goloman': ['Hands','Holiday', 'Wilkes'], 'Hands': ['Goloman', 'Wilkes'], 'Holiday': ['Goloman','Welsh', 'Wilkes'], 'Welsh':['Holiday'], 'Wilkes':['Goloman', 'Hands', 'Holiday'] } def error(arg): print("? ", arg) sys.exit(0) def messenger(client_id): message = 'AT ' + server_info[client_id]['last_serv'] + " " + server_info[client_id]['time_diff'] + " " + client_id + " " + server_info[client_id]['location'] + " " + server_info[client_id]['time_stamp'] + '\r\n' logging.basicConfig(filename=logs[server_info[client_id]['last_serv']],level=logging.INFO) logging.info(message) return message def update_server(client_id, server, location, time_stamp): server_info[client_id]={} server_info[client_id]['last_serv']= server server_info[client_id]['location']= location server_info[client_id]['time_stamp']=time_stamp value = time.time()-float(time_stamp) sign="" if (value>0): sign="+" server_info[client_id]['time_diff']=sign+str(value) async def send_data(loop, serv_id, message): for server in comm_network[serv_id]: try: coro = await (loop).create_connection(lambda:ClientProtocol(message,loop), '0.0.0.0', portnumbers[server]) logging.basicConfig(filename=logs[serv_id],level=logging.INFO) logging.info("Opened connection to " +server) logging.info("Sent: "+ message) logging.info("Closed connection to " +server) except ConnectionRefusedError: logging.basicConfig(filename=logs[serv_id],level=logging.INFO) logging.info("Could not connect to " +server) async def fetch(session, url): async with session.get(url) as response: return await response.text() async def called(location, radius, bound, proto): async with aiohttp.ClientSession() as session: size =len(location) i=0 while (i!=size): if ((location[i]=='+' or location[i]=='-') and i!=0): break i=i+1 true_location = location[:i]+ "," + location[i+1:] info = await fetch(session, "https://maps.googleapis.com/maps/api/place/nearbysearch/json?location="+ true_location + "&radius=" + radius + "&key=AIzaSyD8h2eN8gP1G5wWc8FKc55sd93aEA8DrJI") i=0 j=0 lines = info.split("\n") length=len(lines) while((i+1)!=length): if ((lines[i]== " },") and (lines[i+1]==" {")): j=j+1 # print(j) if (j==bound): break; i=i+1 final = "" if (j==bound): final="\n".join(lines[:i])+"\n }\n" else: final = info print(final) proto.transport.write(final.encode()) class ClientProtocol(asyncio.Protocol): def __init__(self, message, loop): self.message = message self.loop = loop def connection_made(self, transport): transport.write(self.message.encode()) print('Connection made: {!r}'.format(self.message)) class ServerProtocol(asyncio.Protocol): def __init__(self, serv_id, loop): self.serv_id=serv_id self.loop = loop self.portnumber= portnumbers[serv_id] self.network = comm_network[serv_id] def connection_made(self, transport): self.transport = transport self.peername = transport.get_extra_info('peername') print('Connection from {}'.format(self.peername)) logging.basicConfig(filename=logs[self.serv_id],level=logging.INFO) logging.info('Connection from {}'.format(self.peername)) def data_received(self, data): message = data.decode() print('Data received: {!r}'.format(message)) logging.basicConfig(filename=logs[self.serv_id],level=logging.INFO) logging.info('Data received: {!r}'.format(message)) size = len(message) words=[] word="" i=0 while (i!=size): if (message[i] in string.whitespace): if (word!= ""): words.append(word) word="" i=i+1 else: word+=message[i] i=i+1 if (words[0]=="IAMAT"): if (len(words)!=4): #arg lengh error error(message) if (len(words[2])==1): error(message) #invalid location error i =(words[2])[1:].find("-") j=(words[2])[1:].find("+") if ((i==-1) and (j==-1)): error(message) if (i==-1): i==j try: x=float(words[2][:i+1]) y=float(words[2][i+1:]) z=float(words[3]) except ValueError: error(message) return_message="" client_id=words[1] if (server_info.get(client_id, -1)!=-1): #if it does exist if (float(words[3])<= float(server_info[client_id]['time_stamp'])): return_message=messenger(client_id) else: update_server(client_id, self.serv_id, words[2], words[3]) return_message=messenger(client_id) asyncio.ensure_future(send_data(self.loop, self.serv_id, return_message)) else: update_server(client_id, self.serv_id, words[2], words[3]) return_message=messenger(client_id) asyncio.ensure_future(send_data(self.loop, self.serv_id, return_message)) self.transport.write(return_message.encode()) elif(words[0]=="WHATSAT"): if (len(words)!=4): #arg lengh error error(message) try: temp1=float(words[2]) temp2=int(words[3]) if (not((temp1<=50) and (temp1>=0) and (temp2>=0) and (temp2<=20))): error(message) except ValueError: error(message) client_id=words[1] return_message=messenger(client_id) radius=words[2] bound =int(words[3]) print('Send: {!r}'.format(return_message)) self.transport.write(return_message.encode()) asyncio.ensure_future(called(server_info[client_id]['location'],radius,bound, self)) elif(words[0]=="AT"): if (len(words)!=6): #arg lengh error error(message) client_id=words[3] if (server_info.get(client_id, -1)!=-1): try: if(float(words[5])<= float(server_info[client_id]['time_stamp'])): return_message=messenger(client_id) print('Send: {!r}'.format(return_message)) self.transport.write(return_message.encode()) except ValueError: error(message) else: update_server(client_id, words[1], words[4], words[5]) server_info[client_id]['time_diff']=words[2] return_message=messenger(client_id) print('Send: {!r}'.format(return_message)) asyncio.ensure_future(send_data(self.loop, self.serv_id, return_message)) else: error(message) def connection_lost(self, exc): print('Lost connection of {}'.format(self.peername)) self.transport.close() def main(): if (len(sys.argv) <2): error(sys.argv) serv_id = sys.argv[1] loop = asyncio.get_event_loop() if (portnumbers.get(serv_id, -1)!=-1): coro = loop.create_server(lambda:ServerProtocol(serv_id, loop), '0.0.0.0', portnumbers[serv_id]) else: error(sys.argv) server = loop.run_until_complete(coro) loop = asyncio.get_event_loop() # Each client connection will create a new protocol instance # The IP address or hostname can be used. # 127.0.0.1 is intended for the 'localhost' loopback devices. # If you have multiple NIC(Network Interface Card)s, you may specify the specific IP address to be used (listen). # 0.0.0.0 is to use any available NIC device. # Serve requests until Ctrl+C is pressed print('Serving on {}'.format(server.sockets[0].getsockname())) try: loop.run_forever() except KeyboardInterrupt: pass # Close the server server.close() loop.run_until_complete(server.wait_closed()) loop.close() if __name__=="__main__": main()
[ "ehan2016@gmail.com" ]
ehan2016@gmail.com
8041a1fb64300f05fe3fc25480204f1c264af1d5
4c205e65142adcde0e55693e63aadc0f32b585a7
/Appliction_Generate_ETL/Fact/fact_commande_vente.py
2de5b3fc4f7fd4dfd663b5fbe28c2c9805ee8b0a
[]
no_license
HamzaLebcir/Generic-DW-ERP-realization
3d42809a48c012b2cbc96860350a5aa61529ddb3
e13de06158fbbc55b8760485131951aa7006d5ca
refs/heads/main
2023-01-30T04:51:52.603268
2020-11-26T11:48:48
2020-11-26T11:48:48
316,214,185
0
0
null
null
null
null
UTF-8
Python
false
false
2,315
py
from configparser import ConfigParser config = ConfigParser() class fact_commande_vente: def __init__(self, file_config): config.read(file_config, encoding='utf-8-sig') self.ID = config.get('Fact_Commande_Vente','ID') self.Key_Produit = config.get('Fact_Commande_Vente','Key_Produit') self.Key_Client = config.get('Fact_Commande_Vente','Key_Client') self.Key_DC = config.get('Fact_Commande_Vente','Key_DC') self.ID_Magasin =config.get('Fact_Commande_Vente','ID_Magasin') self.Description = config.get('Fact_Commande_Vente','Description') self.Quantite = config.get('Fact_Commande_Vente','Quantite') self.Prix_unitaire = config.get('Fact_Commande_Vente','Prix_unitaire') self.Prix_HT = config.get('Fact_Commande_Vente','Prix_HT') self.Remise = config.get('Fact_Commande_Vente','Remise') self.Prix_Total = config.get('Fact_Commande_Vente','Prix_Total') self.Date_commande =config.get('Fact_Commande_Vente','Date_commande') self.Table = config.get('Fact_Commande_Vente','Table') self.server = config.get('Linked_server','server') def ETL(self): if(self.ID==""): return("\n") else: return( "INSERT INTO Fact_Commande_Vente(ID,Key_Produit,Key_Client,Key_DC,ID_Magasin,Description,Quantite,Prix_unitaire,Prix_HT,Remise,Prix_total,Date_Commande) \n" +"SELECT ID,Key_Produit,Key_Client,Key_DC,ID_Magasin,Description,Quantite,Prix_unitaire,Prix_HT,Remise,Prix_total,Date_Commande \n" +"FROM OPENQUERY ("+self.server+",\n'select " +self.ID +" as ID, " +self.Key_Produit+ " as Key_Produit, " +self.Key_Client+ " as Key_Client, " +self.Key_DC+ " as Key_DC, " +self.ID_Magasin+ " as ID_Magasin, " +self.Description+ " as Description, " +self.Quantite+ " as Quantite, " +self.Prix_unitaire+ " as Prix_unitaire, " +self.Prix_HT+ " as Prix_HT, " +self.Remise+ " as Remise, " +self.Prix_Total+ " as Prix_Total," +self.Date_commande+ " as Date_Commande \n" +"FROM " +self.Table+ "'); \n" )
[ "lebcirhamza7@gmail.com" ]
lebcirhamza7@gmail.com
8efde5c2d68e9d8fcd988306f044844b4c316c77
c3796ebebb42e55878556a53abad1a2e18fa4020
/test/functional/wallet_resendwallettransactions.py
1d73e04f39a1b4d65c9ca45043ad36d0c6b036b9
[ "MIT" ]
permissive
lycion/genex-project
a9e54d22138ca81339f76bba166aa9f366fa9dd8
fc103e93ee274dc57179d01c32b0235b29e364ca
refs/heads/master
2020-03-29T02:18:33.445995
2018-08-07T23:56:27
2018-08-07T23:56:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,322
py
#!/usr/bin/env python3 # Copyright (c) 2017 The Genex Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test resendwallettransactions RPC.""" from test_framework.test_framework import GenexTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error class ResendWalletTransactionsTest(GenexTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [['--walletbroadcast=false']] def run_test(self): # Should raise RPC_WALLET_ERROR (-4) if walletbroadcast is disabled. assert_raises_rpc_error(-4, "Error: Wallet transaction broadcasting is disabled with -walletbroadcast", self.nodes[0].resendwallettransactions) # Should return an empty array if there aren't unconfirmed wallet transactions. self.stop_node(0) self.start_node(0, extra_args=[]) assert_equal(self.nodes[0].resendwallettransactions(), []) # Should return an array with the unconfirmed wallet transaction. txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) assert_equal(self.nodes[0].resendwallettransactions(), [txid]) if __name__ == '__main__': ResendWalletTransactionsTest().main()
[ "40029035+genexcore@users.noreply.github.com" ]
40029035+genexcore@users.noreply.github.com
2de0a3a5bc6d4a723ceea97771879e67868cf611
0543e8a6c4c45a80c3e11bbd6df694a63ad0155d
/diapers/migrations/0004_auto_20150822_1627.py
b4144d1ff6d3d09f9af4eea806abf61a693331fa
[]
no_license
asorokoumov/compare
758f0cc22607db51022386d64f21c29610622b02
221aef6024f3c63c1a1d01f13f03166ce5b02a54
refs/heads/master
2022-08-09T16:05:33.342400
2019-05-08T09:54:48
2019-05-08T09:54:48
41,490,630
0
0
null
2022-07-06T19:18:37
2015-08-27T14:13:05
CSS
UTF-8
Python
false
false
249
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('diapers', '0003_auto_20150822_1624'), ] operations = [ ]
[ "sorokoumov.anton@gmail.com" ]
sorokoumov.anton@gmail.com
f08c6bfd9d1ae8773db3560b2864739bc460de2e
4716314a21040600df9c186eefa9182ad6aab9d7
/civil_war/settings.py
b81ccbfb701633189dc2ec406661c89e9c140834
[]
no_license
muilee/politician_analytics
164a7127ca5fe74a399cf83abc8b25d2e64bff24
54b2761f880e5f441f299909266ebbfb4e4a5a29
refs/heads/master
2021-05-12T13:43:24.811319
2018-01-31T12:21:14
2018-01-31T12:21:14
116,940,230
0
0
null
null
null
null
UTF-8
Python
false
false
3,121
py
""" Django settings for civil_war project. Generated by 'django-admin startproject' using Django 2.0. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '&=a0pel91(_ih8hjypmo^@t^(htn3&^i1c%ka3)@7&$2nm@ep$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*"] # Application definition INSTALLED_APPS = [ 'politician', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'civil_war.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'civil_war.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Taipei' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
[ "matt@localhost.localdomain" ]
matt@localhost.localdomain
b13d0766ba150b96be1c6b817e88795d4963c5de
bbab26a8d60b9b1c3e0037596165d3639a5e18ae
/assign2.py
797216f15613313e889f7b7f082da1c2bdbe46a0
[]
no_license
MidhaTahir/-Python-
200d6c83c8066392143e7297659ea9ecc5b57b79
b054e4bc82289051e4f96b9b03f8402993b42a38
refs/heads/master
2021-07-19T20:13:37.920052
2020-06-24T18:31:05
2020-06-24T18:31:05
186,156,544
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
import random arr = [] for i in range(10): arr.append(random.randint(1,100)) print(arr) minimum = min(arr) print("The minimum number in random list is " + str(minimum)) minimum_position = arr.index(min(arr)) print("The minimum number position is " + str(minimum_position+1)) maximum = max(arr) print("The maximum number in random list is " + str(maximum)) maximum_position = arr.index(max(arr)) print("The maximum number position is " + str(maximum_position+1)) sum = 0 for i in range(len(arr)): sum = sum + arr[i] mean = sum/len(arr) print(mean)
[ "midhatahirkhan2011@gmail.com" ]
midhatahirkhan2011@gmail.com
aebbafdcebef5f7edbb5985af8c57816dee40ee3
a8e132c3cb716021064ad30b3d5a61a093d8ae6d
/Tugas 1/Find GCD of a Number/Find GCD of a Number.py
c0eecb79b70470313db3e3ae0e98674f3fa75f5c
[]
no_license
Ngurah30/Kriptoanalisis
2ad971eaec14c9967c27a4ec8270bc0cc4bd0dcd
e3a0e26f4005b060b9f8833525151ad4616ccaa4
refs/heads/main
2023-03-30T12:41:59.854953
2021-03-22T11:31:38
2021-03-22T11:31:38
343,434,756
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
# Menggunakan fungsi rekursif def gcd(x, y): if (y == 0): return x else: return gcd(y, x % y) x =int (input ("Masukkan bilangan pertama : ")) # Menginputkan bilangan pertama y =int (input ("Masukkan bilangan kedua : ")) # Menginputkan bilangan kedua bil = gcd(x, y) #Memanggil gcd untuk mencari hasil print("Faktor persekutuan terbesarnya adalah ", bil)
[ "noreply@github.com" ]
Ngurah30.noreply@github.com
f625664d16d2ea3be1e1bf2f040c0452b92aaf29
47541875c7be36ce612c382b7f98c92173c7144c
/WarDrivePiCar/Tests/test_main.py
47e6e1b2adc29e0bdcc292ffbd93dc17fff20045
[]
no_license
MorenoB/WarDrivePi
72b6373796e9b6a5ff5c8841154da556b9471906
b4a29774de033df9f50043c6275a13d7a9d186cc
refs/heads/master
2021-01-17T15:26:16.733107
2017-01-27T11:47:12
2017-01-27T11:47:12
69,866,547
1
0
null
2017-01-27T11:47:13
2016-10-03T11:59:23
JavaScript
UTF-8
Python
false
false
1,357
py
# Test files need to re register themselves for when using shell import sys import os sys.path.insert(1, os.path.abspath(os.path.dirname(__file__))) from unittest import TestCase from program import Program from Util.testing import TestThread import sys import time import os class TestMain(TestCase): def test_movement(self): program = Program() # Force in some mock-up location data for the Phone module current_dir = os.path.abspath(os.path.dirname(__file__)) file_path = os.path.join(current_dir, 'simulated_location_input.txt') location_mockup_data = open(file_path, 'r').read() file_path = os.path.join(current_dir, 'simulated_sensor_input.txt') sensor_mockup_data = open(file_path, 'r').read() program.force_phone_handler_input(location_data=location_mockup_data, sensor_data=sensor_mockup_data) # Start the main program new_thread = TestThread(program) new_thread.start() print "Simulating Keyboard Input..." file_path = os.path.join(current_dir, 'simulatedInput.txt') sys.stdin = open(file_path, 'r') time.sleep(1) print "Simulating Keyboard Interrupt..." program.stop() time.sleep(1) print "Checking if program is done..." self.assertEquals(program.is_running(), False)
[ "moreno_bralts@hotmail.com" ]
moreno_bralts@hotmail.com
b94eb3cd9714f1550d11a2faa1808f08db720be0
bc9f66258575dd5c8f36f5ad3d9dfdcb3670897d
/lib/surface/storage/delete.py
b0dd92d45fc1d77f4de21763de0131975f546827
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
google-cloud-sdk-unofficial/google-cloud-sdk
05fbb473d629195f25887fc5bfaa712f2cbc0a24
392abf004b16203030e6efd2f0af24db7c8d669e
refs/heads/master
2023-08-31T05:40:41.317697
2023-08-23T18:23:16
2023-08-23T18:23:16
335,182,594
9
2
NOASSERTION
2022-10-29T20:49:13
2021-02-02T05:47:30
Python
UTF-8
Python
false
false
5,897
py
# -*- coding: utf-8 -*- # # Copyright 2013 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command to list Cloud Storage objects.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.api_lib.storage import storage_api from googlecloudsdk.api_lib.storage import storage_util from googlecloudsdk.calliope import base from googlecloudsdk.calliope import exceptions from googlecloudsdk.command_lib.storage import expansion from googlecloudsdk.command_lib.storage import flags from googlecloudsdk.command_lib.storage import storage_parallel from googlecloudsdk.core import log from googlecloudsdk.core.console import console_io @base.Hidden @base.Deprecate(is_removed=False, warning='This command is deprecated. ' 'Use `gcloud alpha storage rm` instead.') @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class Delete(base.Command): """Delete Cloud Storage objects and buckets.""" detailed_help = { 'DESCRIPTION': """\ *{command}* lets you delete Cloud Storage objects and buckets. You can specify one or more paths (including wildcards) and all matching objects and buckets will be deleted. """, 'EXAMPLES': """\ To delete an object, run: $ *{command}* gs://mybucket/a.txt To delete all objects in a directory, run: $ *{command}* gs://mybucket/remote-dir/* The above command will delete all objects under remote-dir/ but not its sub-directories. To delete a directory and all its objects and subdirectories, run: $ *{command}* --recursive gs://mybucket/remote-dir $ *{command}* gs://mybucket/remote-dir/** To delete all objects and subdirectories of a directory, without deleting the directory itself, run: $ *{command}* --recursive gs://mybucket/remote-dir/* or $ *{command}* gs://mybucket/remote-dir/** To delete all objects and directories in a bucket without deleting the bucket itself, run: $ *{command}* gs://mybucket/** To delete all text files in a bucket or a directory, run: $ *{command}* gs://mybucket/*.txt $ *{command}* gs://mybucket/remote-dir/*.txt To go beyond directory boundary and delete all text files in a bucket or a directory, run: $ *{command}* gs://mybucket/**/*.txt $ *{command}* gs://mybucket/remote-dir/**/*.txt To delete a bucket, run: $ *{command}* gs://mybucket You can use wildcards in bucket names. To delete all buckets with prefix of `my`, run: $ *{command}* --recursive gs://my* """, } @staticmethod def Args(parser): parser.add_argument( 'path', nargs='+', help='The path of objects and directories to delete. The path must ' 'begin with gs:// and may or may not contain wildcard characters.') parser.add_argument( '--recursive', action='store_true', help='Recursively delete the contents of any directories that match ' 'the path expression.') parser.add_argument( '--num-threads', type=int, hidden=True, default=16, help='The number of threads to use for the delete.') flags.add_additional_headers_flag(parser) def Run(self, args): paths = args.path or ['gs://'] expander = expansion.GCSPathExpander() objects, dirs = expander.ExpandPaths(paths) if dirs and not args.recursive: raise exceptions.RequiredArgumentException( '--recursive', 'Source path matches directories but --recursive was not specified.') buckets = [] dir_paths = [] for d in dirs: obj_ref = storage_util.ObjectReference.FromUrl(d, allow_empty_object=True) if not obj_ref.name: buckets.append(obj_ref.bucket_ref) dir_paths.append(d + '**') sub_objects, _ = expander.ExpandPaths(dir_paths) objects.update(sub_objects) tasks = [] for o in sorted(objects): tasks.append(storage_parallel.ObjectDeleteTask( storage_util.ObjectReference.FromUrl(o))) if buckets: # Extra warnings and confirmation if any buckets will be deleted. log.warning('Deleting a bucket is irreversible and makes that bucket ' 'name available for others to claim.') message = 'This command will delete the following buckets:\n ' message += '\n '.join([b.bucket for b in buckets]) console_io.PromptContinue( message=message, throw_if_unattended=True, cancel_on_no=True) # TODO(b/120033753): Handle long lists of items. message = 'You are about to delete the following:' message += ''.join(['\n ' + b.ToUrl() for b in buckets]) message += ''.join(['\n ' + t.obj_ref.ToUrl() for t in tasks]) console_io.PromptContinue( message=message, throw_if_unattended=True, cancel_on_no=True) storage_parallel.ExecuteTasks(tasks, num_threads=args.num_threads, progress_bar_label='Deleting Files') log.status.write( 'Deleted [{}] file{}.\n'.format( len(tasks), 's' if len(tasks) > 1 else '')) storage_client = storage_api.StorageClient() for b in buckets: storage_client.DeleteBucket(b) log.DeletedResource(b.ToUrl(), kind='bucket')
[ "cloudsdk.mirror@gmail.com" ]
cloudsdk.mirror@gmail.com
6fb69cae212e1193fbae6999d71ad04fb456e8f7
be77e3ff1de69b11a427309ad5e953dfdbdb55a2
/main.py
7b29ea9b11bb750109abb536c2465b092280ee36
[]
no_license
Richard98PL/tibiaAntyLogout
58bfef476453ae021d69ebc7785eac6a1b47d947
b790f9ffb756624c1e6d71506f15e8f9dda390cb
refs/heads/main
2023-08-26T22:12:29.090560
2021-11-01T16:52:21
2021-11-01T16:52:21
423,093,921
0
0
null
null
null
null
UTF-8
Python
false
false
2,158
py
from pynput.keyboard import Key, Controller import win32gui import win32con import re import time import datetime from random import randint keyboard = Controller() class WindowMgr: """Encapsulates some calls to the winapi for window management""" def __init__ (self): """Constructor""" self._handle = None def find_window(self, class_name, window_name=None): """find a window by its class_name""" self._handle = win32gui.FindWindow(class_name, window_name) def _window_enum_callback(self, hwnd, wildcard): """Pass to win32gui.EnumWindows() to check all the opened windows""" if re.match(wildcard, str(win32gui.GetWindowText(hwnd))) is not None: self._handle = hwnd def find_window_wildcard(self, wildcard): """find a window whose title matches the wildcard regex""" self._handle = None win32gui.EnumWindows(self._window_enum_callback, wildcard) def set_foreground(self): """put the window in the foreground""" win32gui.SetForegroundWindow(self._handle) def get_rectangle(self): win32gui.GetWindowRect(self._handle) def antyLogout(): currentWindowManager = WindowMgr() currentWindow = win32gui.GetForegroundWindow() currentWindowManager._handle = currentWindow tibiaWindowManager = WindowMgr() tibiaWindowManager.find_window_wildcard("Tibia - *") if currentWindowManager._handle != tibiaWindowManager._handle: win32gui.ShowWindow(tibiaWindowManager._handle, win32con.SW_MAXIMIZE) tibiaWindowManager.set_foreground() keyboard.press(Key.ctrl) movementKeys = [Key.up, Key.down] for key in movementKeys: keyboard.tap(key) time.sleep( randint(15,31) / 1000) keyboard.release(Key.ctrl) now = datetime.datetime.now() print(now.hour, now.minute, now.second) if currentWindowManager._handle != tibiaWindowManager._handle: win32gui.ShowWindow(tibiaWindowManager._handle, win32con.SW_MINIMIZE) currentWindowManager.set_foreground() antyLogout() while True: time.sleep(6*60 + randint(0,13)) antyLogout()
[ "noreply@github.com" ]
Richard98PL.noreply@github.com
fedd1e48e973b16043436c9c51aa37b3063a283e
1f2df4dfed4af1485fefab0118dd6abd437de4de
/listings/migrations/0001_initial.py
7dc50d07d346be74a195cb7f75a96f3f72bf4ebd
[]
no_license
Rhillx/IH_project
90bc0ecaa200a2fb51e520dd75f6485cb21e6f17
4a51311e24456e0aefec16872f340685ec7dca74
refs/heads/master
2020-04-25T18:55:04.270785
2019-03-02T05:56:23
2019-03-02T05:56:23
173,000,886
0
0
null
null
null
null
UTF-8
Python
false
false
2,156
py
# Generated by Django 2.1.7 on 2019-02-21 22:48 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('realtors', '0001_initial'), ] operations = [ migrations.CreateModel( name='Listing', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('address', models.CharField(max_length=200)), ('city', models.CharField(max_length=100)), ('state', models.CharField(max_length=100)), ('zipcode', models.CharField(max_length=20)), ('description', models.TextField(blank=True)), ('price', models.IntegerField()), ('bedrooms', models.IntegerField()), ('bathrooms', models.DecimalField(decimal_places=1, max_digits=2)), ('garage', models.IntegerField(default=0)), ('sqft', models.IntegerField()), ('lot_size', models.DecimalField(decimal_places=1, max_digits=5)), ('photo_main', models.ImageField(upload_to='photos/%Y/%m/%d/')), ('photo_1', models.ImageField(upload_to='photos/%Y/%m/%d/')), ('photo_2', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_3', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_4', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_5', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_6', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('is_published', models.BooleanField(default=True)), ('list_date', models.DateTimeField(blank=True, default=datetime.datetime.now)), ('realtor', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='realtors.Realtor')), ], ), ]
[ "rhillz718@gmail.com" ]
rhillz718@gmail.com
c19e0105d28469432092df67fa6a94f2cb27922c
4a6f3bc478dcd0c32f376bd0369940526a0242c9
/main.py
71941dc9451847800a7fe93dae92f57aa8973e66
[ "Apache-2.0" ]
permissive
1999foxes/python-gobang-bilibililive
179495d2f7c8094a490dcb90a386a42cffafe61b
efc1f631a8c9686177b92a3e54c183ee227a45d2
refs/heads/master
2023-02-24T14:46:29.337799
2021-01-31T18:00:25
2021-01-31T18:00:25
334,715,046
0
0
null
null
null
null
UTF-8
Python
false
false
7,352
py
# _*_ encoding:utf-8 _*_ import os def installlibs(): libs = {"numpy","requests","pygame"} try: for lib in libs: os.system("pip3 install "+lib) print("Successful") except Exception as err: print("Failed:", Exception) try: import pygame from pygame.locals import * import sys import math import storn from socket import * import select import chessboard import time import danmuji except: installlibs() roomID = '646' pygame.init() bg_size = 615, 615 WHITE = (255, 255, 255) font1 = pygame.font.Font('font/12345.TTF', 35) win_text = font1.render(u"黑棋胜利", True, WHITE) win_text_rect = win_text.get_rect() win_text_rect.left, win_text_rect.top = (bg_size[0] - win_text_rect.width) // 2, \ (bg_size[1] - win_text_rect.height) // 2 lose_text = font1.render(u"白棋胜利", True, WHITE) lose_text_rect = lose_text.get_rect() lose_text_rect.left, lose_text_rect.top = (bg_size[0] - lose_text_rect.width) // 2, \ (bg_size[1] - lose_text_rect.height) // 2 class StateMachine(): def __init__(self): # state constant self.BLACKTURN = 'BLACKTURN' self.WHITETURN = 'WHITETURN' self.BLACKWIN = 'BLACKWIN' self.WHITEWIN = 'WHITEWIN' self.GAMEOVER = 'GAMEOVER' # current state self.state = self.GAMEOVER # Players ('all' or 'any' or some nickname, or 'ai' for white) self.black = 'all' self.white = 'mouse' # deadlines self.deadline = 0 self.allDeadline = 0 self.promptCountdown = 0 # new chess data, [[pos1, num1], [pos2, num2], ...] self.data = [] # chessboard self.board = chessboard.Chessboard() # render screen self.screen = pygame.display.set_mode(bg_size) # danmuji self.dmj = danmuji.Gift(roomID) self.dmj.run() print('hello') def newGame(self): self.state = self.BLACKTURN self.setDeadline() self.board.clear() def setDeadline(self): self.deadline = time.time() + 120 self.allDeadline = time.time() + 60 def player(self): if self.state == self.WHITETURN: return self.white elif self.state == self.BLACKTURN: return self.black def nextTurn(self): # add chess print('data =', self.data) print('add Chess to', self.data[0][0]) self.board.addChess(self.data[0][0]) # check who wins if self.board.isWin(): if self.state == self.WHITETURN: self.state = self.WHITEWIN else: self.state = self.BLACKWIN # init for next turn if self.state == self.WHITETURN: self.state = self.BLACKTURN elif self.state == self.BLACKTURN: self.state = self.WHITETURN self.setDeadline() self.data = [] def addData(self, pos): for i in self.data: if i[0] == pos: i[1] += 1 return self.data.append([pos, 1]) def getData(self): # get data from danmuji if self.player() == 'ai': self.data.append([self.board.ai(), 1]) elif self.player() == 'mouse': return else: self.dmj.lock.acquire() for danmu in self.dmj.danmuList: if (self.player() == 'all' or self.player() == 'any' or self.player() == danmu[0]) and self.board.is_valid(danmu[1]): self.addData(danmu[1]) self.dmj.danmuList = [] self.dmj.lock.release() self.data.sort(key=lambda a:a[1], reverse = True) def update(self): if self.state == self.GAMEOVER or self.state == self.WHITEWIN or self.state == self.BLACKWIN: if self.promptCountdown == 0: self.promptCountdown = time.time() + 10 elif time.time() > self.promptCountdown: self.promptCountdown = 0 self.newGame() else: self.getData() if len(self.data) == 0: if time.time() > self.deadline or (self.player() == 'all' and time.time() > self.allDeadline): if self.state == self.BLACKTURN: self.state = self.WHITEWIN else: self.state = self.BLACKWIN elif self.player() != 'all' or time.time() > self.allDeadline: self.nextTurn() def renderScreen(self): # 绘制棋盘 screen.blit(bg_image, (0, 0)) for i in self.board.black_chesses: screen.blit(i.image, i.image_rect()) for i in self.board.white_chesses: screen.blit(i.image, i.image_rect()) # draw gameover prompt if self.state == self.BLACKWIN: screen.blit(win_text, win_text_rect) elif self.state == self.WHITEWIN: screen.blit(lose_text, lose_text_rect) # draw countdown if self.player() == 'all': text_countdown = font1.render('倒计时:'+str(int(self.allDeadline - time.time())), True, WHITE) else: text_countdown = font1.render('倒计时:'+str(int(self.deadline - time.time())), True, WHITE) text_countdown_rect = text_countdown.get_rect() text_countdown_rect.left, text_countdown_rect.top = (20, 0) screen.blit(text_countdown, text_countdown_rect) # draw player 'all' statistic if self.player() == 'all': for danmu in self.data: tmp = font1.render(str(danmu[1]), True, WHITE) tmp_rect = tmp.get_rect() tmp_rect.left, tmp_rect.top = self.board.getPixel(danmu[0]) tmp_rect.left -= tmp_rect.width/2 tmp_rect.top -= 20 screen.blit(tmp, tmp_rect) pygame.display.flip() clock = pygame.time.Clock() screen = pygame.display.set_mode(bg_size) pygame.display.set_caption('五子棋') bg_image = pygame.image.load('image/bg.png').convert_alpha() # 背景图片 def main(): state_machine = StateMachine() state_machine.newGame() running = True while running: state_machine.renderScreen() state_machine.update() for event in pygame.event.get(): if event.type == QUIT: client_socket.close() server_socket.close() pygame.quit() sys.exit() if event.type == MOUSEBUTTONDOWN: if event.button == 1: print('click', event.pos) if state_machine.player() == 'mouse' and state_machine.board.is_valid(state_machine.board.getPos(event.pos)): state_machine.data = [] state_machine.data.append([state_machine.board.getPos(event.pos), 1]) state_machine.nextTurn() clock.tick(60) if __name__ == '__main__': main()
[ "hl1999@yeah.net" ]
hl1999@yeah.net
2cd11da1a7669bc9c9ef03e9c656328abf9a4495
f32f45a84f296392fa5433402bf126885fb2df23
/learningTemplates/basic_app/urls.py
ae5ad4e2a7806bef5b64fb1740555b78e54b3277
[]
no_license
samjonescode/Python-Anywhere-First-Deployment
8878f2b4d3c25a4b6f05795cd712c1def58f03ed
8608956168363442988acc3468886131787db4d6
refs/heads/master
2021-10-22T23:32:56.691641
2019-03-13T17:08:50
2019-03-13T17:08:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
from django.urls import path from basic_app import views # template tagging app_name = 'basic_app' urlpatterns = [ path('index/',views.index,name='index'), path('relative/',views.relative,name='relative'), path('other/',views.other, name='other'), ]
[ "sjonesmusician@gmail.com" ]
sjonesmusician@gmail.com
939c05361fb679aea62692cdc376799186c3289d
2bbb75129fa4e1d28b7fcfe58f585bcbfdc33dde
/lib/models/__init__.py
98f6d9847c0667734e0d47537fc46076fd0f5152
[]
no_license
Gyyz/Targeted-Sentiment-analysis-with-memory-network-attention
1165ba850fd1a61a1ddbfd0d8a1ec4fa408ecf92
2208188eb6bd150e739acfd6b16ec810eac15e43
refs/heads/master
2021-06-22T10:09:52.490474
2017-08-10T08:27:58
2017-08-10T08:27:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
53
py
from nn import NN import rnn from sentiment import *
[ "yuz@fff" ]
yuz@fff
8072e2425675f6565ceecb16805e4ef341e0456e
4cb37eaa0bdcf002c26aba4656df1287ce3cfe56
/main/settings.py
6abbf86caad648c174cc9b0af91a9fcf6aa0f5f6
[]
no_license
jiuniuone/app-mall-backend
86ef3ec8cd78e019d90c8885173b68a6ecfdf6ca
07dcb5840bc0d5f2d98522c5eb3d33de74bdcb6f
refs/heads/master
2020-03-26T07:27:43.297704
2018-08-21T05:10:30
2018-08-21T05:10:30
144,655,502
0
0
null
null
null
null
UTF-8
Python
false
false
5,210
py
import os import socket import sys import time from unipath import Path APP_NAME = 'mall' FUNCTION_NAME = "shopping mall" DEBUG = socket.gethostname() not in ['public', 'stage'] # DEBUG = False SHOW_SQL = 'runserver' in sys.argv if DEBUG: SHOW_SQL = False BASE_DIR = Path(__file__).ancestor(2) SECRET_KEY = 'i%25adry^l0r87l+228213a^%67q015z7j9^uc96jm=n%%0e^l' ALLOWED_HOSTS = ["*"] ROOT_URLCONF = 'main.urls' WSGI_APPLICATION = 'main.wsgi.application' LANGUAGE_CODE = 'zh-hans' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = False TIME_FORMAT = '%Y-%m-%d %H:%M:%S' DATE_TIME_FORMAT = '%Y-%m-%d' PAGINATE_BY = 10 START_TIME = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) AUTH_USER_MODEL = f'{APP_NAME}.User' LOGIN_URL = f'/{APP_NAME}/user/login/' MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.middleware.gzip.GZipMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', f'{APP_NAME}.middlewares.HttpsCheckMiddleware', f'{APP_NAME}.middlewares.LogMiddleware', ] TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', # 'DIRS': [BASE_DIR.child('templates')], 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.template.context_processors.static', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'acmin.processors.extra_context' ], }, }, ] def rotating_handler(name): return { 'level': 'DEBUG', 'filters': ['f1'], 'formatter': 'simple', 'class': 'logging.handlers.TimedRotatingFileHandler', 'when': 'midnight', 'interval': 1, 'backupCount': 100, 'filename': f'/var/log/{APP_NAME}/{name}.log', } def file_handler(name): return { 'level': 'DEBUG', 'filters': ['f1'], 'formatter': 'simple', 'class': 'logging.FileHandler', 'filename': f'/var/log/{APP_NAME}/{name}.log', } def console_handler(): return {'level': 'DEBUG', 'filters': ['f1'], 'formatter': 'simple', 'class': 'logging.StreamHandler', } def get_log_setting(debug): log_modules = [APP_NAME] return { 'version': 1, 'disable_existing_loggers': True, 'filters': {'f1': {'()': 'django.utils.log.RequireDebug' + str(debug)}}, 'formatters': {'simple': {'format': '%(levelname)s %(asctime)s %(message)s'}, }, 'handlers': dict({key: file_handler(key) for key in log_modules}, **{'console': console_handler()}), 'loggers': {key: {'level': 'INFO', 'handlers': ['console', key]} for key in log_modules} } INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'acmin', APP_NAME ] AUTH_PASSWORD_VALIDATORS = [ {'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, {'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, {'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, {'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] CACHALOT_UNCACHABLE_TABLES = ( 'django_migrations', ) from acmin.utils import get_ip, is_windows MEDIA_ROOT = "e:/var/www/media/" if is_windows() else "/var/www/media/" MEDIA_URL = f'http://{get_ip()}/media/' STATIC_URL = '/static/' STATICFILES_DIRS = [ BASE_DIR.child(APP_NAME, "static") ] STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', } } USE_SQLITE3 = True if DEBUG: name = 'test' if 'test' in sys.argv else 'app' if USE_SQLITE3: DATABASES = {'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR.child(f'{APP_NAME}.db'), 'TEST_NAME': BASE_DIR.child(f'{APP_NAME}-test.db'), }} else: DATABASES = {'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': APP_NAME, 'USER': APP_NAME, 'PASSWORD': '123456', 'HOST': '127.0.0.1', 'PORT': '5432', }} else: DATABASES = {'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': APP_NAME, 'USER': APP_NAME, 'PASSWORD': '123456', 'HOST': '127.0.0.1', 'PORT': '5432', }} LOGGING = get_log_setting(DEBUG)
[ "hikelee@gmail.com" ]
hikelee@gmail.com
816a6e3ddb957c0b742e5e7ca3543a7b6de38cf7
fff4db9bd3408d881168a4838bd3d342b6415583
/codesort/tests/test_data/sorted_1.py
27b8982e7e8ff7740a54d846e70e116697b5bb1d
[ "MIT" ]
permissive
dougthor42/CodeSort
853da348ddaa7461b6374fce7d4c62d66e437a12
4e4b5b862b903a258433cfd399db124a5abfa67e
refs/heads/master
2021-01-01T20:01:05.040710
2014-10-09T00:32:13
2014-10-09T00:32:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,472
py
# -*- coding: utf-8 -*- """ Docstring! """ from __future__ import print_function, division def ClassA(object): """ ClassA, for sorting! """ def __init__(self): """ Nothing needed here! """ pass def _private_a(self): """ And things! """ pass def _private_b(self): """ Stuff! """ pass def public_a(self): """ I'm tired... """ pass def public_b(self): """ That's all for now """ pass def public_c(self): """ More stuff! """ pass class ClassB(object): """ ClassA, for sorting! """ def __init__(self): """ Nothing needed here! """ pass def _private_a(self): """ And things! """ pass def _private_b(self): """ Stuff! """ pass def public_a(self): """ I'm tired... """ pass def public_b(self): """ That's all for now """ pass def public_c(self): """ More stuff! """ pass def module_func_a(a): """ I hope this works """ pass def module_func_b(a, b): """ Please don't hate me """ pass def module_func_c(c): """ But in the original file, it's not! """ pass if __name__ == "__main__": """ This should be last """ pass # A comment that starts the orphaned module code x = 5 y = 27 print(x+y)
[ "dougthor42@users.noreply.github.com" ]
dougthor42@users.noreply.github.com
7397068550e96dd401ecb0de352f442531574858
78a4379f22f1a1f8b801a26c4bb5357bdce24cb6
/apps/pay/migrations/0001_initial.py
c0f63180f3030475c4991ea0eef92a94c718e380
[]
no_license
18801166104/TravelWebSite
706890ecc901b7fea277dd5794d81c0e54424e98
131399ecc3df3344105677b9e6745fb2f23750e7
refs/heads/master
2020-04-30T15:12:34.745958
2019-03-21T09:38:16
2019-03-21T09:38:16
176,461,032
1
0
null
null
null
null
UTF-8
Python
false
false
1,163
py
# Generated by Django 2.1.7 on 2019-02-22 13:27 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='OrderItems', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('good_name', models.CharField(default='', max_length=30, verbose_name='购买商品名称')), ('good_num', models.IntegerField(default=1, verbose_name='购买数量')), ('good_price', models.FloatField(default=0, verbose_name='单价')), ('good_image', models.ImageField(default='', upload_to='', verbose_name='商品主图')), ('good_id', models.IntegerField(default=0, verbose_name='商品id')), ('order_num', models.CharField(max_length=25, verbose_name='订单号')), ], options={ 'verbose_name': '用户购买商品信息', 'verbose_name_plural': '用户购买商品信息', }, ), ]
[ "75197440@qq.com" ]
75197440@qq.com
6faafc33a8fa0bcb600ee25a8837c929a209e065
9054a65b931267d15d74ad992f947d348e0a039f
/hw0/code/python_tutorial.py
2f781d96bfa2f67f823357da87ca917398da18dd
[]
no_license
saunair/Autonomy
e0ba30b3e6301477efabc125880fcd7ee47bc0de
01621595250daeb858ddd096dfa67b8e1d4fe0c5
refs/heads/master
2021-06-13T07:09:04.409729
2017-02-24T02:09:47
2017-02-24T02:09:47
81,028,855
0
0
null
null
null
null
UTF-8
Python
false
false
1,670
py
#!/usr/bin/env python import numpy as np import operator def print_list(l): print l def sort_manual(shops): shops_sorted = [] values = [ v for v in shops.values() ] #TODO: Here implement manual sorting using loops for i in range(0, len(values)): for j in range(0, len(values)-i-1): if values[j] < values[j+1]: values[j], values[j+1] = values[j+1], values[j] #print values shops_sorted = len(values)*[0] i = 0 for kk in shops.keys(): shops_sorted[values.index(shops[kk])] = [kk,shops[kk]] print 'Manual sorting result:' print_list(shops_sorted) def sort_python(shops): shops_sorted = sorted(shops.items(), key=operator.itemgetter(1), reverse=True) #print shops_sorted #TODO: Here implement sorting using pythons build in sorting functions #shops_sorted = [ [k,v] for k, v in shops.items() ] print 'Python sorting result: ' print_list(shops_sorted) def sort_numpy(shops): shops_sorted = [] # TODO: Here implement sorting using numpys build-in sorting function x = np.array(shops) y = np.array(shops.items()) print 'Numpy sorting result: ' y = y[y[:,1].argsort()[::-1]] shops_sorted = y.tolist() print_list(shops_sorted) def main(): shops = {} shops['21st Street'] = 0.9 shops['Voluto'] = 0.6 shops['Coffee Tree'] = 0.45 shops['Tazza D\' Oro'] = 0.75 shops['Espresso a Mano'] = 0.95 shops['Crazy Mocha'] = 0.35 shops['Commonplace'] = 0.5 sort_manual(shops) sort_python(shops) sort_numpy(shops) if __name__ == "__main__": main()
[ "snnair@andrew.cmu.edu" ]
snnair@andrew.cmu.edu
dff8c7bdbed01f6050d2849d52ffd0a9b798193a
bcf09471588530a543b1eca8fd2938ee10c1a9c5
/api-service/api/service.py
320dbfe7cf29e4250393d9fe4930558d7373abd8
[]
no_license
dlops-io/video-in-out
34bf5ded0a3d48a678cd4f47f4edade11ef6131a
c2cd180e5f00f67d9fcce532b728a92950ae25aa
refs/heads/main
2023-08-20T13:21:37.479774
2021-10-25T12:48:55
2021-10-25T12:48:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
752
py
from fastapi import FastAPI from starlette.middleware.cors import CORSMiddleware from starlette.requests import Request from starlette.responses import JSONResponse from starlette.staticfiles import StaticFiles from api.routers import video # Setup FastAPI app app = FastAPI( title="API Service", description="API Service", version="0.1.0" ) # Enable CORSMiddleware app.add_middleware( CORSMiddleware, allow_credentials=False, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], ) # Routes @app.get( "/", summary="Index", description="Root api" ) async def get_index(): return { "message": "API Server Running!" } # Additional routers here app.include_router(video.router)
[ "shivasj@gmail.com" ]
shivasj@gmail.com
7ce22c0d3c1840a8b15bf306b73f4eaade25b3f0
c80ae9c1decd51252f8d623ded02b1003eb369c2
/web/movies/migrations/0003_auto_20170827_1727.py
27edc80f52dabe8be01eff1bc0d86b5e77aa52e9
[]
no_license
wudizhangzhi/demo
5fa605709fb6f3d90b530d65149298d98b45c7fd
679933b7fdacbf7942c1cceb4f69da8b9e7d4bdd
refs/heads/master
2021-01-20T12:42:40.050376
2017-09-30T02:15:11
2017-09-30T02:15:11
90,399,626
0
0
null
null
null
null
UTF-8
Python
false
false
806
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-27 09:27 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('movies', '0002_auto_20170826_1532'), ] operations = [ migrations.AddField( model_name='movies', name='category', field=models.IntegerField(choices=[(0, b'\xe7\x94\xb5\xe5\xbd\xb1'), (1, b'\xe7\x94\xb5\xe8\xa7\x86\xe5\x89\xa7'), (2, b'\xe7\xbb\xbc\xe8\x89\xba')], default=0), ), migrations.AlterField( model_name='movies', name='film_type', field=models.IntegerField(choices=[(0, b'\xe6\xad\xa3\xe7\x89\x87'), (1, b'\xe9\xa2\x84\xe5\x91\x8a')], default=0), ), ]
[ "zhangzhichao@promote.cache-dns.local" ]
zhangzhichao@promote.cache-dns.local
74d689c8c85d5d2561a6abc2a06ba077a7496e0e
0fa82ccc0b93944c4cbb8255834b019cf16d128d
/Az/temp.py
caf3bc211fbf8fccda75e10e1fee9d32caddc4ec
[]
no_license
Akashdeepsingh1/project
6ad477088a3cae2d7eea818a7bd50a2495ce3ba8
bdebc6271b39d7260f6ab5bca37ab4036400258f
refs/heads/master
2022-12-13T23:09:35.782820
2020-08-27T14:22:37
2020-08-27T14:22:37
279,722,741
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
def mincostTickets (days, costs): dp = [0] * 366 for i in range (1,max (days)+1): if i in days: dp[i] = min (dp[i - 1] + costs[0], dp[i - 7] + costs[1], dp[i - 30] + costs[2]) else: dp[i] = dp[i-1] return dp[:max (days) + 1][-1] def mincostTickets2( days, costs): dp = [0]*366 for i in range(1,max(days)+1): dp[i] = min(dp[i-1] + costs[0] , dp[i-7] + costs[1], dp[i-30] + costs[2]) return dp[:max(days)+1][-1] days = [1,4,6,7,8,20] costs= [2,7,15] print (mincostTickets2 (days, costs))
[ "Akashdeep_S@Dell.com" ]
Akashdeep_S@Dell.com
24a9afca2f817f33c7ce171ef49ab354c5dd6efc
d925eb9cf278a67c7714ffa26f25060ae176cb1a
/09_ingredient_splitter_v3.py
0cd41a40b08cf10dc8fe487ef18f3d9e721adf97
[]
no_license
wenqitoh/Recipe-Moderniser
bf188697706d69e836396fbf99e7708962ec9f96
e257b35f82b70d15bda812dca774f089ce40e68e
refs/heads/main
2023-06-13T23:24:50.556741
2021-07-11T05:04:02
2021-07-11T05:04:02
372,673,168
0
0
null
null
null
null
UTF-8
Python
false
false
2,474
py
"""Further version of ingredient splitter which splits the ingredients from one lin of input into quantity, unit, and ingredient version 3 - testing on full recipe created by Wen-Qi Toh 7/7/21""" import re # this is the Regular Expression module # ingredient has mixed fraction followed by unit and ingredient full_recipe = [ "1 1/2 ml flour", "3/4 cup milk", "1 cup flour", "2 tablespoons white sugar", "1 3/4 cups flour", "1.5 tsp baking powder", "pinch of cinnamon" ] # the regex format below is expecting: number <space> number mixed_regex = r"\d{1,3}\s\d{1,3}\/\d{1,3}" # \d for a digit, /d{1,3} allows 1-3 digits, /s for space, \/ for divide for recipe_line in full_recipe: recipe_line = recipe_line.strip() # get amount if re.match(mixed_regex, recipe_line): # checking for mixed fraction # get mixed number by matching the regex pre_mixed_num = re.match(mixed_regex, recipe_line) mixed_num = pre_mixed_num.group() # .group returns the part of the string where there was a match # replace the space in the mixed number with '+' sign amount = mixed_num.replace(" ","+") # changes the string into a float using python's evaluation method amount = eval(amount) # get unit and ingredient compile_regex = re.compile(mixed_regex) # compiles the regex into a string object - so we can search for patterns unit_ingredient = re.split(compile_regex, recipe_line) # produces the recipe line unit and amount as a list unit_ingredient = (unit_ingredient[1]).strip() # removes the extra white space before and after the unit # 2nd element in list, converting into a string else: # splits the line at the first space get_amount = recipe_line.split(" ", 1) try: amount = eval(get_amount[0]) # convert amount to float if possible except NameError: amount = get_amount[0] unit_ingredient = get_amount[1] # get unit and ingredient # splits the string into a list containing just the unit and ingredient get_unit = unit_ingredient.split(" ", 1) unit = get_unit[0] # making the 1st item in the list 'unit' ingredient = get_unit[1] # making the 2nd item in the list 'ingredient' # all 3 elements of original reciple line now broken into the 3 variables print("{} {} {}".format(amount, unit, ingredient))
[ "tohw@middleton.school.nz" ]
tohw@middleton.school.nz
9ff2745dddde91c4bb375c36b46f51ff6af9493f
fe19282d91746bd21d1daed624d6d5102a871d8d
/assign5/models.py
05082fd5e43de3bfec644355f7fc8ca81186f2b1
[]
no_license
vivekpradhan/autograder
344410aa8f7fa8c93137ec56762b949be77c24ae
0cd8c24d0ba1c8f2af129c1c2a7bd7a7bbe0853d
refs/heads/master
2021-01-24T10:34:04.424425
2017-10-09T12:07:32
2017-10-09T12:07:32
69,992,405
0
0
null
null
null
null
UTF-8
Python
false
false
2,500
py
from __future__ import unicode_literals from django.db import models # Create your models here. class Submission(models.Model): eid = models.CharField(max_length=10, blank=False) document = models.FileField(upload_to='media/') uploaded_at = models.DateTimeField(auto_now_add=True) assignment_num = models.IntegerField(default = 0) password = models.CharField(max_length=10, default='') class SubResults(models.Model): password = models.CharField(max_length=10, default='') processed_at = models.DateTimeField(auto_now_add=True) assignment_num = models.IntegerField(default = 0) pomlocation = models.CharField(max_length=500, blank=False) eid = models.CharField(max_length=10, blank=False) mvnstarted = models.BooleanField(default=False) mvnended = models.BooleanField(default=False) hadoopstarted = models.BooleanField(default=False) hadoopended = models.BooleanField(default=False) foundoutput = models.BooleanField(default=False) numberoflines = models.IntegerField(default=-999) numberofkeymatches = models.IntegerField(default=-999) events_sorted = models.BooleanField(default=False) features_sorted = models.BooleanField(default=False) completed = models.BooleanField(default=False) errors = models.CharField(max_length=500, default='') def convert_to_string(self): output = "<div id='output'>" output+= '<li> Autograder started at '+ str(self.processed_at) + ' </li>\n' #output+= '<li> EID: '+str(self.eid) + ' </li>\n' output+= '<li> mvn clean package started?: ' +str(self.mvnstarted)+'</li>\n' output+= '<li> mvn clean package ended?: ' +str(self.mvnended)+'</li>\n' output+= '<li> hadoop job started?: ' +str(self.hadoopstarted)+'</li>\n' output+= '<li> hadoop job ended?: ' +str(self.hadoopended)+'</li>\n' output+= '<li> found output file?: '+str(self.foundoutput)+ '</li>\n' output+= '<li> Number of lines in output is '+str(self.numberoflines)+' of xx</li>\n' output+= '<li> Number of matching keys in output is '+str(self.numberofkeymatches)+' of xx</li>\n' output+= '<li> Events sorted? : '+str(self.events_sorted)+'</li>\n' output+= '<li> Features sorted? : '+str(self.features_sorted)+'</li>\n' output+= '<li> Autograder is finished? '+str(self.completed)+'</li>\n' output+= '<li> ERRORS: '+str(self.errors)+'</li>\n' output+= '</div>' return output
[ "vivkripra@gmail.com" ]
vivkripra@gmail.com
a7ba513d9dbf489347919fd23a3cec055f45149c
e4bf5f3ad3beecf288507470b20ae30849effdb1
/node_modules/mongoose/node_modules/mongodb/node_modules/mongodb-core/node_modules/kerberos/build/config.gypi
fbceeb251c1b9d148e8e13e1a6ab16086dcc9128
[ "MIT", "Apache-2.0" ]
permissive
JohnnyLamb/scotch_jwt_token
6356e30026db88fdac64484e4ca0770b40d0701f
505db6a587deaefb75df7ad24b718bbac72472db
refs/heads/master
2021-01-10T16:36:39.379628
2015-10-17T23:32:49
2015-10-17T23:32:49
44,454,151
0
0
null
null
null
null
UTF-8
Python
false
false
3,717
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 1, "host_arch": "x64", "icu_data_file": "icudt54l.dat", "icu_data_in": "../../deps/icu/source/data/in/icudt54l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "./deps/icu", "icu_small": "true", "icu_ver_major": "54", "node_install_npm": "true", "node_prefix": "", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_use_dtrace": "true", "node_use_etw": "false", "node_use_mdb": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "openssl_no_asm": 0, "python": "/usr/bin/python", "target_arch": "x64", "uv_library": "static_library", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "true", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_random_seed": 0, "v8_use_snapshot": "false", "want_separate_host_toolset": 0, "nodedir": "/Users/johnny/.node-gyp/0.12.7", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "shell": "/bin/zsh", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "if_present": "", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "fetch_retries": "2", "npat": "", "registry": "https://registry.npmjs.org/", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "spin": "true", "cache_lock_retries": "10", "cafile": "", "heading": "npm", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "access": "", "json": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/johnny/.npm-init.js", "userconfig": "/Users/johnny/.npmrc", "node_version": "0.12.7", "user": "", "save": "true", "editor": "vi", "tag": "latest", "global": "", "optional": "true", "bin_links": "true", "force": "", "searchopts": "", "depth": "Infinity", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "strict_ssl": "true", "tag_version_prefix": "v", "dev": "", "fetch_retry_factor": "10", "group": "20", "save_exact": "", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/johnny/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "npm/2.11.3 node/v0.12.7 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "init_version": "1.0.0", "umask": "0022", "git": "git", "init_author_name": "", "scope": "", "onload_script": "", "tmp": "/var/folders/3q/_3b6n01s6yd817hd60lsckk80000gn/T", "unsafe_perm": "true", "prefix": "/usr/local", "link": "" } }
[ "agnusjack@gmail.com" ]
agnusjack@gmail.com
8602f77cf80a23e828ccb71e0edd430dbdbb77c2
b97fd4dd496456bbbeda8d774bb179f1b03b0dba
/day11/part2.py
c85016a17ab75f04ef04b920eb6f2beffec81e34
[]
no_license
woranov/aoc2020
7666cabc96267936fda04a58244193db19e9489e
671ef866e0c81a5f70898a7e6ec725b1f78378fb
refs/heads/master
2023-02-11T19:03:01.437839
2020-12-25T15:29:46
2020-12-25T15:29:46
317,584,125
0
0
null
null
null
null
UTF-8
Python
false
false
2,312
py
import functools import itertools _TESTCASE = """\ L.LL.LL.LL LLLLLLL.LL L.L.L..L.. LLLL.LL.LL L.LL.LL.LL L.LLLLL.LL ..L.L..... LLLLLLLLLL L.LLLLLL.L L.LLLLL.LL """.strip().splitlines() def compute(data): """ >>> compute(_TESTCASE) 26 """ grid = [*map(list, data)] rows = len(grid) cols = len(grid[0]) # doing some memoization but its pretty pointless @functools.lru_cache(maxsize=None) def get_directions(r, c): return { "↓": tuple(zip(itertools.repeat(r), range(c + 1, cols))), "↑": tuple(zip(itertools.repeat(r), range(c - 1, -1, -1))), "→": tuple(zip(range(r + 1, rows), itertools.repeat(c))), "←": tuple(zip(range(r - 1, -1, -1), itertools.repeat(c))), "↗": tuple(zip(range(r + 1, rows), range(c + 1, cols))), "↖": tuple(zip(range(r + 1, rows), range(c - 1, -1, -1))), "↙": tuple(zip(range(r - 1, -1, -1), range(c + 1, cols))), "↘": tuple(zip(range(r - 1, -1, -1), range(c - 1, -1, -1))), } non_floor_seats = [(r, c) for r in range(rows) for c in range(cols) if grid[r][c] != "."] while True: new_grid = [row[:] for row in grid] for r_idx, c_idx in non_floor_seats: sym = new_grid[r_idx][c_idx] if sym == ".": continue else: count = 0 for direction in get_directions(r_idx, c_idx).values(): for nb_r, nb_c in direction: if grid[nb_r][nb_c] == ".": continue elif grid[nb_r][nb_c] == "#": count += 1 break if sym == "L" and count == 0: new_grid[r_idx][c_idx] = "#" elif sym == "#" and count >= 5: new_grid[r_idx][c_idx] = "L" if new_grid == grid: break else: grid = new_grid return sum(seat == "#" for row in grid for seat in row) def main(): import pathlib input_path = pathlib.Path(__file__).with_name("input.txt") with input_path.open() as f: print(compute(f.read().strip().splitlines())) if __name__ == "__main__": main()
[ "wor4nov@gmail.com" ]
wor4nov@gmail.com
66bd585e840a22d0e4615b07176d861991dd6612
da617dbc147d7720490866b279068cdef87e00c9
/q7.py
510b9e8113cec4c9b681288211d223574fb7efc6
[]
no_license
Shailaj97/Python-Assignment-1
444750a816bd593fdafb9eebdd9b6b5dd646915f
55e11b541fbc517da360afc41ea915a1a9af43ea
refs/heads/main
2023-07-17T06:10:59.775212
2021-09-01T04:32:43
2021-09-01T04:32:43
401,912,524
0
0
null
null
null
null
UTF-8
Python
false
false
534
py
""" Write a Python program to combine two lists into a dictionary, where the elements of the first one serve as the keys and the elements of the second one serve as the values. The values of the first list need to be unique and hashable. Sample Output: Original lists: ['a', 'b', 'c', 'd', 'e', 'f'] [1, 2, 3, 4, 5] Combine the values of the said two lists into a dictionary: {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5} """ list1= ['a', 'b', 'c', 'd', 'e', 'f'] list2 = [1, 2, 3, 4, 5] a=dict(zip(list1,list2)) print(str(a))
[ "noreply@github.com" ]
Shailaj97.noreply@github.com
425b4486fa1fd6169f158a9b5cac855c66475095
7d5d8492c2d88b88bdc57e3c32db038a7e7e7924
/IPCC-CMIP5/bias_correction/bc_extract_gcm.py
ef32727acb01fb3b19decbfd3c17f5d35dbfc4ff
[]
no_license
CIAT-DAPA/dapa-climate-change
80ab6318d660a010efcd4ad942664c57431c8cce
2480332e9d61a862fe5aeacf6f82ef0a1febe8d4
refs/heads/master
2023-08-17T04:14:49.626909
2023-08-15T00:39:58
2023-08-15T00:39:58
39,960,256
15
17
null
null
null
null
UTF-8
Python
false
false
1,770
py
# --------------------------------------------------------------------------------- # Author: Jaime Tarapues # Date: September 23th, 2014 # Updated: July 28th, 2014 # Purpose: Purpose: extract values daily data of cmip5 # ---------------------------------------------------------------------------------- import os, sys, string,glob, shutil # python D:\jetarapues\_scripts\bc_extract_gcm.py T:\gcm\cmip5\raw\daily\rcp45\gfdl_esm2m\r1i1p1\pr_day_GFDL-ESM2M_rcp45_r1i1p1_20060101-21001231.nc D:\jetarapues\Request\Request_cnavarro\bc\tes.tab 2006 2100 -72.301412 5.339301 YES cdo #Syntax if len(sys.argv) < 8: os.system('cls') print "\n Too few args" print " Syntax : <Extract_MaskGCM.py> <dirout> <mask> <dataset> <sres> <resolution> <models> <periods> <variable> <ascii> <descfile>" print " - ie: " sys.exit(1) #Set variables ifile = sys.argv[1] odat = sys.argv[2] yi = sys.argv[3] yf = sys.argv[4] lon=sys.argv[5] lat=sys.argv[6] vartype=sys.argv[7] dircdo = sys.argv[8] # Clean screen os.system('cls') name=os.path.basename(ifile) if not os.path.exists(odat): # print '\n...Extracting',name,'lon:'+str(lon)+' lat:'+lat,'Date:'+str(yi)+'-'+str(yf),'\n' if vartype == 'NO': os.system(dircdo+" -s -outputtab,date,value -remapnn,lon="+str(lon)+"_lat="+lat+' -selyear,'+str(yi)+'/'+str(yf)+' '+ifile+" > "+odat) else: var=name.split("_")[0] if var == 'hur': os.system(dircdo+" -s -outputtab,date,value -remapnn,lon="+str(lon)+"_lat="+lat+' -selyear,'+str(yi)+'/'+str(yf)+' -selname,'+var+' -sellevel,85000 '+ifile+" > "+odat) else: os.system(dircdo+" -s -outputtab,date,value -remapnn,lon="+str(lon)+"_lat="+lat+' -selyear,'+str(yi)+'/'+str(yf)+' -selname,'+var+' '+ifile+" > "+odat) # else: # print '\t...Extracted by coordinate',name
[ "jaime.tm8@gmail.com" ]
jaime.tm8@gmail.com
e14ac3d06dfe4effe84493b1c1438edb268348ab
ab692ff0773367a0190309d3e7c3785a46a205d3
/main_finetune_imagenet.py
ffeb8bccfc2c0e2dac3ba392891c83eea971c116
[ "MIT" ]
permissive
sAviOr287/imagenet_ICLR
f6da8149bf4280c923c584c4e6aade81fc469cf4
1ac83d799f5335355161156aa9bba63e0d82a063
refs/heads/main
2023-01-13T02:45:53.450571
2020-11-15T22:12:36
2020-11-15T22:12:36
313,132,189
0
0
null
null
null
null
UTF-8
Python
false
false
20,010
py
import argparse import os import random import shutil import time import warnings import sys import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from tensorboardX import SummaryWriter from pprint import pprint model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--data', metavar='DIR', help='path to dataset') parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--resume_pruned', default='', type=str, metavar='PATH', help='path to latest pruned network (default: none)') # resume_pruned parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') parser.add_argument('--grad_loop', default=1, type=int, help='GPU id to use.') best_acc1 = 0 writer = None def main(): args = parser.parse_args() args.lr /= args.grad_loop if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1, writer args.gpu = gpu args.save_dir = None if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model def forward_pre_hook(m, x): m.mask.requires_grad_(False) mask = m.mask # mask.requires_grad_(False) # mask.cuda(m.weight.get_device()) m.weight.data.mul_(mask.to(m.weight.get_device())) if args.resume_pruned: if os.path.isfile(args.resume_pruned): print("=> loading checkpoint '{}'".format(args.resume_pruned)) checkpoint = torch.load(args.resume_pruned) model = checkpoint['net'].cpu() masks = checkpoint['mask'] ratio = checkpoint['ratio'] print("=> Ratios:") pprint(ratio) # optimizer.load_state_dict(checkpoint['optimizer']) print("Loaded check point from %s." % args.resume_pruned) print('=> Registering masks for each layer') for m in model.modules(): if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): m.mask = nn.Parameter(masks[m]).requires_grad_(False).cpu() m.register_forward_pre_hook(forward_pre_hook) args.save_dir = os.path.join(*args.resume_pruned.split('/')[:-1]) writer = SummaryWriter(args.save_dir) print('=> Will save to %s.' % args.save_dir) else: print("=> no checkpoint found at '{}'".format(args.resume)) elif args.pretrained: import pdb ; pdb.set_trace() print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: import pdb ; pdb.set_trace() print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch]() if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int(args.workers / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # optionally resume from a checkpoint if args.resume: def to_cpu(m): if isinstance(m, dict): for k in m.keys(): m[k] = to_cpu(m[k]) return m elif isinstance(m, list): return [to_cpu(_) for _ in m] elif isinstance(m, torch.Tensor): return m.cpu() else: return m if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) checkpoint['state_dict'] = to_cpu(checkpoint['state_dict']) checkpoint['optimizer'] = to_cpu(checkpoint['optimizer']) # for k in checkpoint['state_dict'].keys(): # checkpoint['state_dict'][k] = checkpoint['state_dict'][k].cpu() # # for k in checkpoint['optimizer'].keys(): # checkpoint['optimizer'][k] = checkpoint['optimizer'][k].cpu() print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) del checkpoint else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) if args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: train_sampler = None train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler) val_loader = torch.utils.data.DataLoader( datasets.ImageFolder(valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True) if args.evaluate: validate(val_loader, model, criterion, args) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch train_loss, train_top1, train_top5 = train(train_loader, model, criterion, optimizer, epoch, args) # evaluate on validation set acc1, val_loss, val_top1, val_top5 = validate(val_loader, model, criterion, args) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'optimizer' : optimizer.state_dict(), }, is_best, args=args) # global writer if writer is not None: writer.add_scalar('train/loss', train_loss.avg, epoch) writer.add_scalar('train/top1', train_top1.avg, epoch) writer.add_scalar('train/top5', train_top5.avg, epoch) writer.add_scalar('val/loss', val_loss.avg, epoch) writer.add_scalar('val/top1', val_top1.avg, epoch) writer.add_scalar('val/top5', val_top5.avg, epoch) def train(train_loader, model, criterion, optimizer, epoch, args): total = args.epochs intv = total // 3 lr = args.lr * (0.1 ** (epoch // intv)) batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1, top5, prefix="[lr={}, grad_loop={}] Epoch: [{}]".format(lr, args.grad_loop, epoch)) # switch to train mode model.train() end = time.time() optimizer.zero_grad() all_loss = 0 counts = 0 acc_top1 = 0 acc_top5 = 0 all_samples = 0 for i, (input, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: input = input.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output all_samples += input.shape[0] output = model(input) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) # compute gradient and do SGD step loss.backward() if (i+1) % args.grad_loop == 0: optimizer.step() optimizer.zero_grad() # measure elapsed time batch_time.update(time.time() - end) end = time.time() all_loss += loss.item() counts += 1 if i % args.print_freq == 0: progress.print(i) return losses, top1, top5 def validate(val_loader, model, criterion, args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top5, prefix='Test: ') # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (input, target) in enumerate(val_loader): if args.gpu is not None: input = input.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output output = model(input) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.print(i) print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg, losses, top1, top5 def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', args=None): if args.save_dir is not None: filename = os.path.join(args.save_dir, filename) torch.save(state, filename) if is_best: best_location = 'model_best.pth.tar' if args.save_dir is not None: best_location = os.path.join(args.save_dir, 'model_best.pth.tar') shutil.copyfile(filename, best_location) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, *meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def print(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print('\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): total = args.epochs intv = total // 3 """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // intv)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
[ "jeanfrancois287@hotmail.fr" ]
jeanfrancois287@hotmail.fr
e7336bb7129d0dba26d5d33533f5b0997f133562
b53869d9c0b38ecc5f2bef40f03e0146d05c67c5
/send_mail/core/kafka_connect.py
420f3ba573dc426a1325a1038a87f916c876b163
[]
no_license
manhcuong2801/send_sms
564435736e163b41b06c6d53c79d41ac9ca1886d
8734ffa74ddf723852d01a4b4ecc9dc3dd4accef
refs/heads/master
2023-04-03T13:35:43.433808
2021-04-23T12:42:59
2021-04-24T03:52:22
360,880,700
0
0
null
null
null
null
UTF-8
Python
false
false
1,481
py
import json as j from django.conf import settings as s from kafka import KafkaConsumer as KC, KafkaProducer as KP class KafkaConnector: _bootstrap_server = s.KAFKA_SERVER _topic = "topic_example" _group_id = "group_example" def get_consumer( self, topic: str = _topic, group_id: str = _group_id, is_handle_json: bool = True, ): if not is_handle_json: return KC( topic, group_id=group_id, bootstrap_servers=[self._bootstrap_server] ) return KC( topic, group_id=group_id, bootstrap_servers=[self._bootstrap_server], value_deserializer=lambda v: j.loads(v), ) def get_producer(self, is_handle_json: bool = True): if not is_handle_json: return KP(bootstrap_servers=[self._bootstrap_server]) return KP( bootstrap_servers=[self._bootstrap_server], value_serializer=lambda v: j.dumps(v).encode("utf-8"), ) def send_message_to_topic( self, topic: str, bytes_msg: bytes = b"", json_msg: dict = {}, is_handle_json: bool = True, ): if not is_handle_json: producer = self.get_producer(is_handle_json=False) future = producer.send(topic, bytes_msg) else: producer = self.get_producer() future = producer.send(topic, json_msg) return future
[ "cuongle@tamdongtam.vn" ]
cuongle@tamdongtam.vn
9bf4e35570827087d92050fcab5d0ddbc721c47b
e8469a38083f28633b74cfd2cf4399aac11a6514
/ver.1/selectors.py
4197f85bcdd90c359aaf3cf34c0d506aec0db4a4
[]
no_license
JadenHeo/FO4-data-crawling
e67ff2b611e9f3b5c83b3e237e5d06065094d091
e1d4be6a144985d953c9e57b2aef409d7eddea8a
refs/heads/main
2023-08-07T17:59:28.884544
2021-10-04T07:57:22
2021-10-04T07:57:22
395,150,481
0
0
null
null
null
null
UTF-8
Python
false
false
3,343
py
selector = {"name" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_name > div.name", "pay" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_name > div.side_utils > div", "position" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_ab > span > span.txt", "live up" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_ab > span > span.live.up", "birth" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_etc > span.etc.birth", "height" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_etc > span.etc.height", "weight" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_etc > span.etc.weight", "physical" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_etc > span.etc.physical", "skill" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_etc > span.etc.skill > span", "foot" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_etc > span.etc.foot", "class" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_etc > span.etc.season", "team" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_team > div.etc.team", "nation" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.info_line.info_team > div.etc.nation", "speciality" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.info_wrap > div.skill_wrap > span", "position_overalls" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_header > div.ovr_set > div", "club_history" : "#middle > div > div > div:nth-child(4) > div:nth-child(1) > div.content.data_detail_club > div.data_table > ul > li > div", "stat" : "#middle > div > div > div:nth-child(2) > div.content.data_detail > div > div.content_bottom" } position_overalls = ["ST", "LW", "CF", "RW", "CAM", "LM", "CM", "RM", "CDM", "LWB", "CB", "RWB", "LB", "SW", "RB", "GK"] position_index = {"GK" : 0, "SW" : 1, "RWB" : 2, "RB" : 3, "RCB" : 4, "CB" : 5, "LCB" : 6, "LB" : 7, "LWB" : 8, "RDM" : 9, "CDM" : 10, "LDM" : 11, "RM" : 12, "RCM" : 13, "CM" : 14, "LCM" : 15, "LM" : 16, "RAM" : 17, "CAM" : 18, "LAM" : 19, "RF" : 20, "CF" : 21, "LF" : 22, "RW" : 23, "RT" : 24, "ST" : 25, "LT" : 26, "LW" : 27}
[ "hhj801@gmail.com" ]
hhj801@gmail.com
de555bff1a32f8e3a9d93047cae238e8a3aa29ce
b0a9e9df50749086a7db7e135b2582d87cb8dbc2
/energy_estimation/nd/fhc/svm/hadron/sample_weighted_estimator_2d.py
aac40196ce6aae3c0ebd3a02e163dc5b2568c47b
[]
no_license
kaikai581/sklearn-nova
6ff204bfb4351395c8029b80fedfbb6b8702f06d
e16644c0651123fe3ebdf42a9fb3dc50fbd2c2de
refs/heads/master
2020-03-08T17:26:46.222451
2020-01-07T01:12:36
2020-01-07T01:12:36
128,268,443
0
0
null
null
null
null
UTF-8
Python
false
false
4,781
py
#!/usr/bin/env python """ This script weights each point with inverse square root of its true hadronic energy when fitting. This is equivalent to modifying the SVM loss function. Two predictors are used, namely calibrated hadronic energy, and one swappable varisble. """ from __future__ import print_function print(__doc__) from array import array from matplotlib.colors import LogNorm from ROOT import * from root_numpy import root2array from scipy.spatial.distance import pdist from scipy.stats import tstd, skew, kurtosis from sklearn import preprocessing from sklearn.externals import joblib from sklearn.svm import SVR import argparse import matplotlib.pyplot as plt import numpy as np import os def fit_with_subdata(var, cpar, gpar, scaledown, offset): # retrieve training data and official reco hadronic energy for comparison cut = 'mustopz<1275&&isnumucc==1' X = root2array('../training_data.root', branches=['calehad', var], selection=cut, step=scaledown, start=offset) X = X.view(np.float32).reshape(X.shape + (-1,)) recoemu_official = root2array('../training_data.root', branches='recoemu', selection=cut, step=scaledown, start=offset) trueenu = root2array('../training_data.root', branches='trueenu', selection=cut, step=scaledown, start=offset) y = trueenu - recoemu_official yoff = root2array('../training_data.root', branches='recoehad', selection=cut, step=scaledown, start=offset) # rescale the regressors scaler = preprocessing.StandardScaler().fit(X) # calculate the mean pairwise squared distance between regressors Xstd = scaler.transform(X) if gpar == 'auto': mean_squared_dist = np.mean(pdist(Xstd, 'sqeuclidean')) gpar = '{0:.3g}'.format(1./mean_squared_dist) # save the scaler os.system('mkdir -p models/2d') joblib.dump(scaler, 'models/2d/sample_weighted_hadronic_scaler_{}_c{}g{}step{}offset{}.pkl'.format(var, cpar, gpar, scaledown, offset)) # make an array for sample weights swei = np.copy(y) #~ swei[y != 0] = 1./np.sqrt(np.abs(swei[y != 0])) swei[y != 0] = 1./np.abs(swei[y != 0]) swei[y == 0.] = 1. # train svm with standardized regressors svr = SVR(kernel='rbf', C=float(cpar), gamma=float(gpar), verbose=True) y_pred = svr.fit(Xstd, y, swei).predict(Xstd) # save the model joblib.dump(svr, 'models/2d/sample_weighted_hadronic_energy_estimator_{}_c{}g{}step{}offset{}.pkl'.format(var, cpar, gpar, scaledown, offset)) # make plots #~ plt.figure(1) #~ xbin = np.linspace(-.05,2,80) #~ ybin = np.linspace(-.2,5,80) #~ plt.hist2d(X,y,[xbin,ybin], norm=LogNorm()) #~ plt.colorbar() #~ plt.scatter(X, y_pred, s=2, c='red', alpha=0.5) # save plots #~ os.system('mkdir -p plots/2d') #~ plt.savefig('plots/2d/sample_weighted_estimator_overlaid_on_data_{}_c{}g{}step{}offset{}.pdf'.format(var, cpar, gpar, scaledown, offset)) # estimate various reco values yest = y_pred rest = (yest-y)/y roff = (yoff-y)/y # save root file os.system('mkdir -p output_root_files/2d') toutf = TFile('output_root_files/2d/sample_weighted_resolution_{}_c{}g{}step{}offset{}.root'.format(var, cpar, gpar, scaledown, offset), 'recreate') tr = TTree( 'tr', 'resolution tree' ) r1 = array( 'f', [ 0. ] ) r2 = array( 'f', [ 0. ] ) svmehad = array( 'f', [ 0. ] ) offehad = array( 'f', [ 0. ] ) trueehad = array( 'f', [ 0. ] ) tr.Branch( 'rest', r1, 'rest/F' ) tr.Branch( 'roff', r2, 'roff/F' ) tr.Branch('svmehad', svmehad, 'svmehad/F') tr.Branch('offehad', offehad, 'offehad/F') tr.Branch('trueehad', trueehad, 'trueehad/F') for i in range(len(rest)): r1[0] = rest[i] r2[0] = roff[i] svmehad[0] = yest[i] offehad[0] = yoff[i] trueehad[0] = y[i] tr.Fill() tr.Write() toutf.Close() if __name__ == '__main__': # list of second variable varlist = ['cvnpi0', 'cvnchargedpion', 'cvnneutron', 'cvnproton', 'npng'] # parse command line arguments parser = argparse.ArgumentParser(description='Hadronic energy SVM with sample weights.') parser.add_argument('-c','--cpar',type=str,default='100') parser.add_argument('-g','--gpar',type=str,default='auto') parser.add_argument('-s','--step',type=int,default='500') parser.add_argument('-o','--offset',type=int,default='0') parser.add_argument('-v','--variable',type=int,default='0') args = parser.parse_args() # specified parameters cpar = args.cpar gpar = args.gpar scaledown = args.step offset = args.offset var = varlist[args.variable] # fit model with arguments fit_with_subdata(var, cpar, gpar, scaledown, offset)
[ "shihkailin78@gmail.com" ]
shihkailin78@gmail.com
cc22681d605c52facf8d17b0ff1cd2612d797397
eb5ab5ce3763f5e5b80a38f77ee98b7b954d726e
/cciaa/portlet/calendar/tests/base.py
34f3751741116d33cc8d925131230f0af4066c0c
[]
no_license
PloneGov-IT/cciaa.portlet.calendar
088e400c567066ce486f6dfb6eaa2f482abd0471
81aa9deb5e082520604946387a6a60dd229db21a
refs/heads/master
2021-01-21T19:28:56.055750
2013-11-20T16:48:08
2013-11-20T16:48:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,309
py
from Products.Five import zcml from Products.Five import fiveconfigure from Testing import ZopeTestCase as ztc from Products.PloneTestCase import PloneTestCase as ptc from Products.PloneTestCase.layer import onsetup @onsetup def setup_product(): """Set up additional products and ZCML required to test this product. The @onsetup decorator causes the execution of this body to be deferred until the setup of the Plone site testing layer. """ # Load the ZCML configuration for this package and its dependencies fiveconfigure.debug_mode = True import cciaa.portlet.calendar zcml.load_config('configure.zcml', cciaa.portlet.calendar) fiveconfigure.debug_mode = False # We need to tell the testing framework that these products # should be available. This can't happen until after we have loaded # the ZCML. ztc.installPackage('cciaa.portlet.calendar') # The order here is important: We first call the deferred function and then # let PloneTestCase install it during Plone site setup setup_product() ptc.setupPloneSite(products=['cciaa.portlet.calendar']) class TestCase(ptc.PloneTestCase): """Base class used for test cases """ class FunctionalTestCase(ptc.FunctionalTestCase): """Test case class used for functional (doc-)tests """
[ "keul@db7f04ef-aaf3-0310-a811-c281ed44c4ad" ]
keul@db7f04ef-aaf3-0310-a811-c281ed44c4ad
28b5d104d8e8eb1a445ac2a3359068286e7227cf
dde3f20bc5d50bb87f735f88645a07d9789ada2a
/contrib/seeds/generate-seeds.py
885030bca90708d6cc21d0386331627e2401a544
[ "MIT" ]
permissive
wai1496/Quaz
6c96dd0009df9254127d4e37d5398e0e09b355c9
8cea70d86e0b38cd580a8de457d1890b4710c0d2
refs/heads/master
2021-04-15T03:37:17.426013
2018-03-16T08:43:39
2018-03-16T08:43:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,366
py
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Script to generate list of seed nodes for chainparams.cpp. This script expects two text files in the directory that is passed as an argument: nodes_main.txt nodes_test.txt These files must consist of lines in the format <ip> <ip>:<port> [<ipv6>] [<ipv6>]:<port> <onion>.onion 0xDDBBCCAA (IPv4 little-endian old pnSeeds format) The output will be two data structures with the peers in binary format: static SeedSpec6 pnSeed6_main[]={ ... } static SeedSpec6 pnSeed6_test[]={ ... } These should be pasted into `src/chainparamsseeds.h`. ''' from __future__ import print_function, division from base64 import b32decode from binascii import a2b_hex import sys, os import re # ipv4 in ipv6 prefix pchIPv4 = bytearray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]) # tor-specific ipv6 prefix pchOnionCat = bytearray([0xFD,0x87,0xD8,0x7E,0xEB,0x43]) def name_to_ipv6(addr): if len(addr)>6 and addr.endswith('.onion'): vchAddr = b32decode(addr[0:-6], True) if len(vchAddr) != 16-len(pchOnionCat): raise ValueError('Invalid onion %s' % s) return pchOnionCat + vchAddr elif '.' in addr: # IPv4 return pchIPv4 + bytearray((int(x) for x in addr.split('.'))) elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) return bytearray(sub[0] + ([0] * nullbytes) + sub[1]) elif addr.startswith('0x'): # IPv4-in-little-endian return pchIPv4 + bytearray(reversed(a2b_hex(addr[2:]))) else: raise ValueError('Could not parse address %s' % addr) def parse_spec(s, defaultport): match = re.match('\[([0-9a-fA-F:]+)\](?::([0-9]+))?$', s) if match: # ipv6 host = match.group(1) port = match.group(2) elif s.count(':') > 1: # ipv6, no port host = s port = '' else: (host,_,port) = s.partition(':') if not port: port = defaultport else: port = int(port) host = name_to_ipv6(host) return (host,port) def process_nodes(g, f, structname, defaultport): g.write('static SeedSpec6 %s[] = {\n' % structname) first = True for line in f: comment = line.find('#') if comment != -1: line = line[0:comment] line = line.strip() if not line: continue if not first: g.write(',\n') first = False (host,port) = parse_spec(line, defaultport) hoststr = ','.join(('0x%02x' % b) for b in host) g.write(' {{%s}, %i}' % (hoststr, port)) g.write('\n};\n') def main(): if len(sys.argv)<2: print(('Usage: %s <path_to_nodes_txt>' % sys.argv[0]), file=sys.stderr) exit(1) g = sys.stdout indir = sys.argv[1] g.write('#ifndef QUAZ_CHAINPARAMSSEEDS_H\n') g.write('#define QUAZ_CHAINPARAMSSEEDS_H\n') g.write('/**\n') g.write(' * List of fixed seed nodes for the quaz network\n') g.write(' * AUTOGENERATED by contrib/seeds/generate-seeds.py\n') g.write(' *\n') g.write(' * Each line contains a 16-byte IPv6 address and a port.\n') g.write(' * IPv4 as well as onion addresses are wrapped inside a IPv6 address accordingly.\n') g.write(' */\n') with open(os.path.join(indir,'nodes_main.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_main', 9992) g.write('\n') with open(os.path.join(indir,'nodes_test.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_test', 19992) g.write('#endif // QUAZ_CHAINPARAMSSEEDS_H\n') if __name__ == '__main__': main()
[ "devquaz@gmail.com" ]
devquaz@gmail.com
8b97fb6b8a7718a7b273586c5c11230785335bf5
51d348426c6e5fa79f2e77baf59bdbf8357d9f12
/week10/Инфоматрикс/d.массивы/1.py
39e914161d08fae03f9bd90984ada04bfe926359
[]
no_license
Zhansayaas/webdev
c01325b13abf92cef13138d7ffc123cf9bc4f81a
dd054d0bcafc498eccc5f4626ab45fd8b46b3a3f
refs/heads/main
2023-04-10T23:33:30.469465
2021-04-17T10:21:53
2021-04-17T10:21:53
322,049,225
0
0
null
null
null
null
UTF-8
Python
false
false
82
py
n=int(input()) a=input().split() for i in range(0,n,2): print(a[i],end=' ')
[ "noreply@github.com" ]
Zhansayaas.noreply@github.com
b60bee7fa7a89fdb6ab3d2d5194fd86e56b4801b
0f0a7e594c53acbce5e93fad653abed2a3d02466
/zhidao/middlewares.py
190647c84d6e3a0b2e42f946e2fa9359d599844a
[]
no_license
ElliottYan/crawler
de1e5a7ae1dbf0bd3bd3faa9224180ebb7051964
cab3e078ec85b13219bee836fa136c2f43eb4f2f
refs/heads/master
2020-03-24T06:12:58.864182
2018-07-27T03:05:52
2018-07-27T03:05:52
142,520,505
1
1
null
null
null
null
UTF-8
Python
false
false
1,880
py
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # http://doc.scrapy.org/en/latest/topics/spider-middleware.html from scrapy import signals class ZhidaoSpiderMiddleware(object): # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Response, dict # or Item objects. pass def process_start_requests(start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name)
[ "elliottyan37@gmail.com" ]
elliottyan37@gmail.com
0d9c11e159814d4603e92a7da12ac0993d494912
db012fc9716bb27e9ff22078bc17edb7745b3f13
/examples/plot_classifier_dl85_plot_tree.py
c1d3f1657cd0965bb5b814f5562272bc9936fd33
[ "MIT" ]
permissive
VivanVatsa/pydl8.5
df15b99c313da29b32a0571c59e90225aaa71566
8686839d000e47375b5ed70ad42828e6c3eef6e6
refs/heads/master
2023-08-14T11:25:06.511972
2021-09-21T18:50:13
2021-09-21T18:50:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
""" ============================================== DL85Classifier example to export tree as image ============================================== """ import numpy as np from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from dl85 import DL85Classifier import graphviz print("######################################################################\n" "# DL8.5 default classifier #\n" "######################################################################") # read the dataset and split into features and targets dataset = np.genfromtxt("../datasets/anneal.txt", delimiter=' ') X, y = dataset[:, 1:], dataset[:, 0] # split the dataset into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) clf = DL85Classifier(max_depth=2) clf.fit(X, y) y_pred = clf.predict(X_test) # show results print("Model built in", round(clf.runtime_, 4), "seconds") print("Found tree:", clf.tree_) print("Confusion Matrix below\n", confusion_matrix(y_test, y_pred)) print("Accuracy on training set =", round(clf.accuracy_, 4)) print("Accuracy on test set =", round(accuracy_score(y_test, y_pred), 4)) # print the tree dot = clf.export_graphviz() graph = graphviz.Source(dot, format="png") graph.render("plots/anneal_odt")
[ "aglingael@gmail.com" ]
aglingael@gmail.com
114910137765ee9246494ef8b775990951da0d1f
b321ca6310cd84bd8603fa9685365bb2a4acc945
/公司真题/拼多多/phone_number.py
144534cc23631ee5da9b7f732598e83ae9e6c492
[]
no_license
baixiaoyanvision/python-algorithm
71b2fdf7d6b57be8a2960c44160f2a7459e153ae
6cbb61213af8264e083af1994522929fb7711616
refs/heads/master
2020-08-27T03:41:08.332322
2019-10-02T13:28:49
2019-10-02T13:28:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
# line1 = input() # line2 = input() line1 = '6 5' line2 = '787585' N, K = [int(i) for i in line1.split()] line2 = [int(i) for i in line2] result = [] line2_set = set(line2) min_money = 99999999 for val in line2_set: sub_vals = [abs(val - number) for number in line2] sort_sub_vals = sorted( list(range(len(sub_vals))), key=lambda x: sub_vals[x] ) pay_money = sum([sub_vals[i] for i in sort_sub_vals[:K]]) equal_val = sub_vals[sort_sub_vals[K-1]] copy_line2 = line2[:] for i in sort_sub_vals[:K-1]: copy_line2[i] = val last_change = None for i in range(len(copy_line2)): if abs(copy_line2[i]-val) == equal_val: last_change = i copy_line2[last_change] = val copy_line2 = [str(i) for i in copy_line2] copy_line2 = ''.join(copy_line2) if pay_money > min_money: continue elif pay_money < min_money: result = [] result.append(copy_line2) min_money = pay_money else: result.append(copy_line2) result = sorted(result) print(min_money) print(result[0])
[ "18310523922@163.com" ]
18310523922@163.com
ef3863b249697253ae98c02f073111c5d9fb56a5
2406724e872efc10c25fff5fb4b551c65cf4f298
/Codes/Pong_game.py
48b58da41228fb79140ac11d9c18925f1ca9ffb7
[]
no_license
Pradhyuman12/Beginner-Hacktoberfest
c6d57b692f34f19b3334a7b364ca084f2b85bf95
5e0184d0825e5bafbb4625c31396bca9e6792c7a
refs/heads/main
2023-08-30T11:31:58.281561
2021-10-29T18:19:26
2021-10-29T18:19:26
412,496,299
0
0
null
2021-10-01T14:20:41
2021-10-01T14:20:40
null
UTF-8
Python
false
false
2,339
py
import turtle wn = turtle.Screen() wn.title("Pong Game") wn.bgcolor("black") wn.setup(width=800, height=600) wn.tracer() #Score score_a = 0 score_b = 0 #Paddle A paddle_a = turtle.Turtle() paddle_a.speed(0) paddle_a.shape("square") paddle_a.color("white") paddle_a.shapesize(stretch_wid=5, stretch_len=1) paddle_a.penup() paddle_a.goto(-350, 0) #Paddle B paddle_b = turtle.Turtle() paddle_b.speed(0) paddle_b.shape("square") paddle_b.color("white") paddle_b.shapesize(stretch_wid=5, stretch_len=1) paddle_b.penup() paddle_b.goto(350, 0) #Ball ball = turtle.Turtle() ball.speed(0) ball.shape("square") ball.color("white") ball.penup() ball.goto(0, 0) ball.dx = 2 ball.dy = -2 # Pen pen = turtle.Turtle() pen.speed(0) pen.color("white") pen.penup() pen.hideturtle() pen.goto(0, 260) pen.write("Player A : 0 Player B : 0", align="center", font=("Courier", 24, "normal")) #Function def paddle_a_up(): y = paddle_a.ycor() y += 20 paddle_a.sety(y) def paddle_a_down(): y = paddle_a.ycor() y -= 20 paddle_a.sety(y) def paddle_b_up(): y = paddle_b.ycor() y += 20 paddle_b.sety(y) def paddle_b_down(): y = paddle_b.ycor() y -= 20 paddle_b.sety(y) #Keyboard binding wn.listen() wn.onkeypress(paddle_a_up, "w") wn.onkeypress(paddle_a_down, "s") wn.onkeypress(paddle_b_up, "Up") wn.onkeypress(paddle_b_down, "Down") #Main game loop while True: wn.update() #MOVE THE BALL ball.setx(ball.xcor() + ball.dx) ball.sety(ball.ycor() + ball.dy) # Border checking if ball.ycor() > 290: ball.sety(290) ball.dy *= -1 if ball.ycor() < -290: ball.sety(-290) ball.dy *= -1 if ball.xcor() > 390: ball.goto(0,0) ball.dx *= -1 score_a += 1 pen.clear() pen.write("Player A : {} Player B : {}".format(score_a, score_b), align="center", font=("Courier", 24, "normal")) if ball.xcor() < -390: ball.goto(0,0) ball.dx *= -1 score_b += 1 pen.clear() pen.write("Player A : {} Player B : {}".format(score_a, score_b), align="center", font=("Courier", 24, "normal")) if (ball.xcor() > 340 and ball.xcor() < 350) and (ball.ycor() < paddle_b.ycor() + 40 and ball.ycor() > paddle_b.ycor() -40): ball.setx(340) ball.dx *= -1 if (ball.xcor() < -340 and ball.xcor() > -350) and (ball.ycor() < paddle_a.ycor() + 40 and ball.ycor() > paddle_a.ycor() -40): ball.setx(-340) ball.dx *= -1
[ "noreply@github.com" ]
Pradhyuman12.noreply@github.com
c246469f12df1abde9b82eeadc65ac655fed42e2
add649416e475ef5febb207ec3c90ef504a4d5b7
/Marie Laure/django/mycalendar2/mycalendar2/wsgi.py
11e4e77fa13f33700e778d5217741c38e3dbf3d6
[]
no_license
juliencampus/python
e3bc77453d449533db02bc69376ea6d1a4f2e9ba
323013fa32be74571ccd665cd3faa74ff8a905f3
refs/heads/main
2022-12-29T09:09:08.917610
2020-10-23T14:55:14
2020-10-23T14:55:14
303,637,772
0
4
null
2020-10-21T11:12:06
2020-10-13T08:29:19
Python
UTF-8
Python
false
false
399
py
""" WSGI config for mycalendar2 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mycalendar2.settings') application = get_wsgi_application()
[ "marie-laure.riedinger@le-campus-numerique.fr" ]
marie-laure.riedinger@le-campus-numerique.fr
25055392f3e0fab759ac48b34d2c85f1944c0249
dbbb304265437b2d591d6d42953efc96bd8b4a24
/blog/views.py
c19f66271a7b0a97d3aca9fd694b2641d6ce7c38
[ "Apache-2.0" ]
permissive
echessa/django-ex
647edbea8a9dd7159420af96dd3414bdaaf8aff3
33758d254886d3298acba20c0d231bcd6bb6c09a
refs/heads/master
2020-12-02T21:12:24.753773
2017-07-05T09:09:18
2017-07-05T09:09:18
96,271,914
1
1
null
2017-07-05T03:11:15
2017-07-05T03:11:15
null
UTF-8
Python
false
false
1,463
py
from django.shortcuts import render, redirect from django.utils import timezone from django.shortcuts import render, get_object_or_404 from .forms import PostForm from .models import Post def post_list(request): posts = Post.objects.filter(published_date__lte=timezone.now()).order_by('-published_date') return render(request, 'blog/post_list.html', {'posts': posts}) def post_detail(request, pk): post = get_object_or_404(Post, pk=pk) return render(request, 'blog/post_detail.html', {'post': post}) def post_new(request): if request.method == "POST": form = PostForm(request.POST) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.published_date = timezone.now() post.save() return redirect('post_detail', pk=post.pk) else: form = PostForm() return render(request, 'blog/post_edit.html', {'form': form}) def post_edit(request, pk): post = get_object_or_404(Post, pk=pk) if request.method == "POST": form = PostForm(request.POST, instance=post) if form.is_valid(): post = form.save(commit=False) post.author = request.user post.published_date = timezone.now() post.save() return redirect('post_detail', pk=post.pk) else: form = PostForm(instance=post) return render(request, 'blog/post_edit.html', {'form': form})
[ "jokhessa@yahoo.com" ]
jokhessa@yahoo.com
7df32dbb48957659309409618ea967eed738d6a8
ff1dbdb9baed0be909aaf60b7b78bef9441bfcd9
/review_homework/ifstatement_review.py
330b7c81edabb8d705433d5648705605630043d7
[]
no_license
singh-sonali/AP-Compsci
ab2c923c79e67eebc021168c720de10618c58583
1f26e40b88532cfb9aee39d18fb2ea254d8a1083
refs/heads/master
2020-03-28T06:43:33.963516
2019-03-20T12:04:25
2019-03-20T12:04:25
147,855,508
0
1
null
null
null
null
UTF-8
Python
false
false
5,381
py
# Partner 1: # Partner 2: ''' Instructions: Work with a partner to complete these tasks. Assume that all variables are declared; you need only write the if-statement using the variables indicated in the description. Write your solution below the commented description. ''' ''' 1. Variable grade is a character. If it is an A, print good work. ''' ''' 2. Variable yards is an int. If it is less than 17, multiply yards by 2. ''' ''' 3. Variable success is a boolean. If something is a success, print congratulations. ''' ''' 4. Variable word is a String. If the string's second letter is 'f', print fun. ''' ''' 5. Variable temp is a float. Variable celsius is a boolean. If celsius is true, convert to fahrenheit, storing the result in temp. F = 1.8C + 32. ''' ''' 6. Variable numItems is an int. Variable averageCost and totalCost are floats. If there are items, calculate the average cost. If there are no items, print no items. ''' ''' 7. Variable pollution is a float. Variable cutoff is a float. If pollution is less than the cutoff, print safe condition. If pollution is greater than or equal to cutoff, print unsafe condition. ''' ''' 8. Variable score is a float, and grade is a char. Store the appropriate letter grade in the grade variable according to this chart. F: <60; B: 80-89; D: 60-69; A: 90-100; C: 70-79. ''' ''' 9. Variable letter is a char. If it is a lowercase letter, print lowercase. If it is an uppercase, print uppercase. If it is 0-9, print digit. If it is none of these, print symbol. ''' ''' 10. Variable neighbors is an int. Determine where you live based on your neighbors. 50+: city; 25+: suburbia; 1+: rural; 0: middle of nowhere. ''' ''' 11. Variables doesSignificantWork, makesBreakthrough, and nobelPrizeCandidate are booleans. A nobel prize winner does significant work and makes a break through. Store true in nobelPrizeCandidate if they merit the award and false if they don't. ''' ''' 12. Variable tax is a boolean, price and taxRate are floats. If there is tax, update price to reflect the tax you must pay. ''' ''' 13. Variable word and type are Strings. Determine (not super accurately) what kind of word it is by looking at how it ends. -ly: adverb; -ing; gerund; -s: plural; something else: error ''' ''' 14. If integer variable currentNumber is odd, change its value so that it is now 3 times currentNumber plus 1, otherwise change its value so that it is now half of currentNumber (rounded down when currentNumber is odd). ''' ''' 15. Assign true to the boolean variable leapYear if the integer variable year is a leap year. (A leap year is a multiple of 4, and if it is a multiple of 100, it must also be a multiple of 400.) ''' ''' 16. Determine the smallest of three ints, a, b and c. Store the smallest one of the three in int result. ''' ''' 17. If an int, number, is even, a muliple of 5, and in the range of -100 to 100, then it is a special number. Store whether a number is special or not in the boolean variable special. ''' ''' 18. Variable letter is a char. Determine if the character is a vowel or not by storing a letter code in the int variable code. a/e/o/u/i: 1; y: -1; everything else: 0 ''' ''' 19. Given a string dayOfWeek, determine if it is the weekend. Store the result in boolean isWeekend. ''' ''' 20. Given a String variable month, store the number of days in the given month in integer variable numDays. ''' ''' 21. Three integers, angle1, angle2, and angle3, supposedly made a triangle. Store whether the three given angles make a valid triangle in boolean variable validTriangle. ''' ''' 22. Given an integer, electricity, determine someone's monthly electric bill, float payment, following the rubric below. First 50 units: 50 cents/unit Next 100 units: 75 cents/unit Next 100 units: 1.20/unit For units above 250: 1.50/unit, plus an additional 20% surcharge. ''' ''' 23. String, greeting, stores a greeting. String language stores the language. If the language is English, greeting is Hello. If the language is French, the greeting is Bonjour. If the language is Spanish, the greeting is Hola. If the language is something else, the greeting is something of your choice. ''' ''' 24. Generate a phrase and store it in String phrase, given an int number and a String noun. Here are some sample phrases: number: 5; noun: dog; phrase: 5 dogs number: 1; noun: cat; phrase: 1 cat number: 0; noun: elephant; phrase: 0 elephants number: 3; noun: human; phrase: 3 humans number: 1; noun: home; phrase: 3 homes ''' ''' 25. If a string, userInput, is bacon, print out, "Why did you type bacon?". If it is not bacon, print out, "I like bacon." ''' ''' 26. Come up with your own creative tasks someone could complete to practice if-statements. Also provide solutions. ''' ''' Task 1: ''' # solution ''' Task 2: ''' # solution ''' Task 3: ''' # solution ''' Sources http://www.bowdoin.edu/~ltoma/teaching/cs107/spring05/Lectures/allif.pdf http://www.codeforwin.in/2015/05/if-else-programming-practice.html Ben Dreier for pointing out some creative boolean solutions. '''
[ "ssingh20@choate.edu" ]
ssingh20@choate.edu
9ee04dc56eec32ca912fa8b81136a49356550e03
dfbe04629c68e49c0671b0ed1890d82d96180164
/graphsage/datafetcher.py
28421aa404bbc8ea1a9ba08303cc535fc7c67f45
[]
no_license
bluelancer/MLAdv2020Proj
417d9c3853297541d48036f3af5999aea68465ad
7057492f7b4f171aa1bdf5a6f792c5fbdc679d35
refs/heads/main
2023-04-30T02:47:49.581387
2021-01-12T11:47:17
2021-01-12T11:47:17
325,494,559
0
0
null
null
null
null
UTF-8
Python
false
false
3,263
py
from collections import defaultdict from scipy.io import mmread import numpy as np class DataFetcher: def __init__(self): return def load(self, dataset): if dataset == 'cora': return self.load_cora() elif dataset == 'pubmed': return self.load_pubmed() def load_cora(self): num_nodes = 2708 num_feats = 1433 feat_data = np.zeros((num_nodes, num_feats)) labels = np.empty((num_nodes, 1), dtype=np.int64) node_map = {} label_map = {} with open("../dataset_UNRL/citation/cora/cora.content") as fp: for i, line in enumerate(fp): info = line.strip().split() for j in range(len(info) - 2): feat_data[i, j] = float(info[j + 1]) # feat_data[i,:] = map(float(), info[1:-1]) node_map[info[0]] = i if not info[-1] in label_map: label_map[info[-1]] = len(label_map) labels[i] = label_map[info[-1]] adj_lists = defaultdict(set) link_list = [] with open("../dataset_UNRL/citation/cora/cora.cites") as fp: for i, line in enumerate(fp): info = line.strip().split() paper1 = node_map[info[0]] paper2 = node_map[info[1]] adj_lists[paper1].add(paper2) adj_lists[paper2].add(paper1) link_list.append((paper1, paper2, 1)) return feat_data, labels, adj_lists, link_list def load_pubmed(self): # hardcoded for simplicity... num_nodes = 19717 num_feats = 500 feat_data = np.zeros((num_nodes, num_feats)) labels = np.empty((num_nodes, 1), dtype=np.int64) node_map = {} with open("../dataset_UNRL/citation/pubmed-data/Pubmed-Diabetes.NODE.paper.tab") as fp: fp.readline() feat_map = {entry.split(":")[1]: i - 1 for i, entry in enumerate(fp.readline().split("\t"))} for i, line in enumerate(fp): info = line.split("\t") node_map[info[0]] = i labels[i] = int(info[1].split("=")[1]) - 1 for word_info in info[2:-1]: word_info = word_info.split("=") feat_data[i][feat_map[word_info[0]]] = float(word_info[1]) adj_lists = defaultdict(set) with open("../dataset_UNRL/citation/pubmed-data/Pubmed-Diabetes.DIRECTED.cites.tab") as fp: fp.readline() fp.readline() link_list = [] for line in fp: info = line.strip().split("\t") paper1 = node_map[info[1].split(":")[1]] paper2 = node_map[info[-1].split(":")[1]] adj_lists[paper1].add(paper2) adj_lists[paper2].add(paper1) link_list.append((paper1, paper2, 1)) return feat_data, labels, adj_lists, link_list def load_blogcata(self): filename = '../dataset_UNRL/soc/soc-BlogCatalog/soc-BlogCatalog.mtx' link_matrix = mmread(filename) return link_matrix if __name__ == '__main__': datafetcher = DataFetcher() datafetcher.load_blogcata()
[ "zhaoyu@zhaoyudeMacBook-Pro.local" ]
zhaoyu@zhaoyudeMacBook-Pro.local
34fc9717d6ba5477e1aa8e8cc9c71b46b8ee7fd2
2f2feae3dee5847edbf95c1eeb14e656490dae35
/2022/day_13_distress_signal_1.py
e89f9fb5f20ecbd78b7b38f8d58eca40028031af
[]
no_license
olga3n/adventofcode
32597e9044e11384452410b7a7dda339faf75f32
490a385fb8f1c45d22deb27bf21891e193fe58a2
refs/heads/master
2023-01-07T09:19:04.090030
2022-12-25T13:31:22
2022-12-25T13:31:22
163,669,598
0
0
null
null
null
null
UTF-8
Python
false
false
2,209
py
#!/usr/bin/env python3 import sys import json from typing import Iterable, List, Any, Tuple, Optional def is_right_order(left: List[Any], right: List[Any]) -> Optional[bool]: iter_left = iter(left) iter_right = iter(right) while True: item_left = next(iter_left, None) item_right = next(iter_right, None) if item_left is None and item_right is None: return None if item_left is None: return True if item_right is None: return False if isinstance(item_left, int) and isinstance(item_right, int): if item_left < item_right: return True if item_left > item_right: return False if item_right == item_left: continue if isinstance(item_left, int): item_left = [item_left] if isinstance(item_right, int): item_right = [item_right] value = is_right_order(item_left, item_right) if value is not None: return value def build_pairs(data: Iterable[str]) -> Iterable[Tuple[List[Any], List[Any]]]: buf = [] for line in data: if not line.strip(): continue buf.append(line) if len(buf) == 2: yield json.loads(buf[0]), json.loads(buf[1]) buf = [] def right_order_pairs(data: Iterable[str]) -> int: return sum( index + 1 for index, pair in enumerate(build_pairs(data)) if is_right_order(pair[0], pair[1]) ) def test_right_order_pairs(): data = [ '[1,1,3,1,1]', '[1,1,5,1,1]', '', '[[1],[2,3,4]]', '[[1],4]', '', '[9]', '[[8,7,6]]', '', '[[4,4],4,4]', '[[4,4],4,4,4]', '', '[7,7,7,7]', '[7,7,7]', '', '[]', '[3]', '', '[[[]]]', '[[]]', '', '[1,[2,[3,[4,[5,6,7]]]],8,9]', '[1,[2,[3,[4,[5,6,0]]]],8,9]' ] assert right_order_pairs(data) == 13 def main(): data = sys.stdin result = right_order_pairs(data) print(result) if __name__ == '__main__': main()
[ "olga3n@gmail.com" ]
olga3n@gmail.com
3351932d3d3a75e35b6b1fcbd967fa8b054bd65b
13a32b92b1ba8ffb07e810dcc8ccdf1b8b1671ab
/home--tommy--mypy/mypy/lib/python2.7/site-packages/theano/sandbox/cuda/tests/test_tensor_op.py
cb9162354ac7fa9120cf4dd3b05d616e784e0f36
[ "Unlicense" ]
permissive
tommybutler/mlearnpy2
8ec52bcd03208c9771d8d02ede8eaa91a95bda30
9e5d377d0242ac5eb1e82a357e6701095a8ca1ff
refs/heads/master
2022-10-24T23:30:18.705329
2022-10-17T15:41:37
2022-10-17T15:41:37
118,529,175
0
2
Unlicense
2022-10-15T23:32:18
2018-01-22T23:27:10
Python
UTF-8
Python
false
false
5,283
py
""" This file test tensor op that should also operate on CudaNdaray. """ from __future__ import absolute_import, print_function, division from nose.plugins.skip import SkipTest from nose_parameterized import parameterized import numpy import theano from theano import tensor import theano.tensor as T import theano.tests.unittest_tools as utt # Skip test if cuda_ndarray is not available. import theano.sandbox.cuda as cuda from theano.tensor.nnet.tests import test_conv3d2d if cuda.cuda_available is False: raise SkipTest('Optional package cuda disabled') if theano.config.mode == 'FAST_COMPILE': mode_with_gpu = theano.compile.mode.get_mode('FAST_RUN').including('gpu') mode_without_gpu = theano.compile.mode.get_mode('FAST_RUN').excluding('gpu') else: mode_with_gpu = theano.compile.mode.get_default_mode().including('gpu') mode_without_gpu = theano.compile.mode.get_default_mode().excluding('gpu') def test_shape_i(): x = cuda.ftensor3() v = cuda.CudaNdarray(numpy.zeros((3, 4, 5), dtype='float32')) f = theano.function([x], x.shape[1]) topo = f.maker.fgraph.toposort() assert f(v) == 4 if theano.config.mode != 'FAST_COMPILE': assert len(topo) == 1 assert isinstance(topo[0].op, T.opt.Shape_i) def test_shape(): x = cuda.ftensor3() v = cuda.CudaNdarray(numpy.zeros((3, 4, 5), dtype='float32')) f = theano.function([x], x.shape) topo = f.maker.fgraph.toposort() assert numpy.all(f(v) == (3, 4, 5)) if theano.config.mode != 'FAST_COMPILE': assert len(topo) == 4 assert isinstance(topo[0].op, T.opt.Shape_i) assert isinstance(topo[1].op, T.opt.Shape_i) assert isinstance(topo[2].op, T.opt.Shape_i) assert isinstance(topo[3].op, T.opt.MakeVector) def test_softmax_optimizations(): from theano.tensor.nnet.nnet import softmax, crossentropy_categorical_1hot x = tensor.fmatrix('x') one_of_n = tensor.lvector('one_of_n') op = crossentropy_categorical_1hot op(x, one_of_n) fgraph = theano.gof.FunctionGraph( [x, one_of_n], [op(softmax(x), one_of_n)]) assert fgraph.outputs[0].owner.op == op mode_with_gpu.optimizer.optimize(fgraph) assert str(fgraph.outputs[0].owner.op) == 'OutputGuard' assert fgraph.outputs[0].owner.inputs[0].owner.op == cuda.host_from_gpu assert fgraph.outputs[0].owner.inputs[0].owner.inputs[0].owner.op == cuda.nnet.gpu_crossentropy_softmax_argmax_1hot_with_bias def test_may_share_memory_cuda(): from theano.misc.may_share_memory import may_share_memory a = cuda.CudaNdarray(numpy.zeros((3, 4), dtype='float32')) b = cuda.CudaNdarray(numpy.zeros((3, 4), dtype='float32')) na = numpy.zeros((3, 4)) nb = numpy.zeros((3, 4)) va = a.view() vb = b.view() ra = a.reshape((4, 3)) rb = b.reshape((4, 3)) # can't test the transpose as ta._strides = is not implemented # manual transpose of a # ta = a.reshape((4,3)) # ta._strides = (ta._strides[1],ta._strides[0])#not implemented # elem_size=elem_size = numpy.zeros(0,dtype=a.dtype).dtype.itemsize # ta.gpudata += ta.size*elem_size for a_, b_, rep in [(a, a, True), (b, b, True), (a, b, False), (a, na, False), (b, nb, False), (na, b, False), (nb, a, False), (a, va, True), (b, vb, True), (va, b, False), (a, vb, False), (a, ra, True), (b, rb, True), (ra, b, False), (a, rb, False), ]: assert may_share_memory(a_, b_) == rep assert may_share_memory(b_, a_) == rep # test that it raise error when needed. for a_, b_, rep in [(a, (0,), False), (a, 1, False), (a, None, False)]: assert may_share_memory(a_, b_, False) == rep assert may_share_memory(b_, a_, False) == rep try: may_share_memory(a_, b_) raise Exception("An error was expected") except TypeError: pass try: may_share_memory(b_, a_) raise Exception("An error was expected") except TypeError: pass def test_deepcopy(): a = cuda.fmatrix() a_v = cuda.CudaNdarray(numpy.zeros((3, 4), dtype='float32')) # We force the c code to check that we generate c code mode = theano.Mode("c", mode_with_gpu.optimizer) f = theano.function([a], a, mode=mode) theano.printing.debugprint(f) out = f(a_v) assert out is not a_v assert numpy.allclose(numpy.asarray(a_v), numpy.asarray(out)) # We force the python linker as the default code should work for this op mode = theano.Mode("py", mode_with_gpu.optimizer) f = theano.function([a], a, mode=mode) theano.printing.debugprint(f) out = f(a_v) assert out is not a_v assert numpy.allclose(numpy.asarray(a_v), numpy.asarray(out)) def test_get_diagonal_subtensor_view(): test_conv3d2d.test_get_diagonal_subtensor_view(wrap=cuda.CudaNdarray) @parameterized.expand(('valid', 'full'), utt.custom_name_func) def test_conv3d(border_mode): test_conv3d2d.check_conv3d(border_mode=border_mode, mode=mode_with_gpu, shared=cuda.shared_constructor)
[ "tbutler.github@internetalias.net" ]
tbutler.github@internetalias.net
98cbe8d9f4b12239cf1d517d7cd9c165e3ac2876
83df3d7773a4c7c3da8824cd3e6b3f0d6e6cfa07
/world.py
92f49a7703868c98e84f84d8b7d82c02437552a6
[]
no_license
azmzing/c
d4f8690ae0ad43c6441b6559995042ebe730108e
69b2511683d709961034ec46814400bccae0ae5b
refs/heads/master
2020-03-15T23:42:45.118141
2018-05-07T06:13:12
2018-05-07T06:13:12
132,399,355
0
0
null
null
null
null
UTF-8
Python
false
false
16
py
print"b hellow
[ "amazing.zanjun@outlook.com" ]
amazing.zanjun@outlook.com
27687dfa574c3d83cfd55d79f9b60849782917ff
09a32f98165c20fbc0c519f826cbd445b1906d54
/merge_opt.py
03c8ad504fd12016c93a0f874d11647442ea508f
[]
no_license
huuthai37/LSTM-Consensus
d2ec2d63073a1a996c827c1f71a8edc4e763a8dc
97233cf0a4176b0a0fc69c4c7051a5289628e48f
refs/heads/master
2020-03-17T05:53:33.663364
2018-07-13T04:12:50
2018-07-13T04:12:50
133,332,710
2
2
null
null
null
null
UTF-8
Python
false
false
3,447
py
import argparse parser = argparse.ArgumentParser() parser.add_argument('-d', '--dataset', help='Dataset', default='ucf101') parser.add_argument('-s', '--segment', help='Number of segments', default=3, type=int) parser.add_argument('-debug', '--debug', help='Number of classes', default=1, type=int) args = parser.parse_args() print args import cv2 import os import sys import random import numpy as np import config import pickle # Lay tuy chon dataset = args.dataset num_seq = args.segment if args.debug == 1: debug = True else: debug = False # Cau hinh folder du lieu server = config.server() data_input_folder = config.data_input_path() output_path = config.data_output_path() out_file_folder = r'{}database/'.format(output_path) data_file = r'{}data-{}-{}.pickle'.format(out_file_folder,dataset,num_seq) count = 0 with open(data_file,'rb') as f1: data = pickle.load(f1) length_data = len(data) data_folder_opt = r'{}{}-opt/'.format(output_path,dataset) data_folder_seq_opt = r'{}{}-seq-opt/'.format(output_path,dataset) if not os.path.isdir(data_folder_seq_opt + 'u'): os.makedirs(data_folder_seq_opt + 'u') # tao data_folder_seq_opt + 'u'/ print 'Create directory ' + data_folder_seq_opt + 'u' if not os.path.isdir(data_folder_seq_opt + 'v'): os.makedirs(data_folder_seq_opt + 'v') # tao data_folder_seq_opt + 'v'/ print 'Create directory ' + data_folder_seq_opt + 'v' for l in range(length_data): path_video = data[l][0] render_opt = data[l][1] name_video = path_video.split('/')[1] u = data_folder_opt + 'u/' + name_video + '/frame' v = data_folder_opt + 'v/' + name_video + '/frame' if not os.path.isdir(data_folder_seq_opt + 'u/' + name_video): os.makedirs(data_folder_seq_opt + 'u/' + name_video) # tao data_folder_seq_opt + 'u/' + name_video/ print 'Create directory ' + data_folder_seq_opt + 'u/' + name_video if not os.path.isdir(data_folder_seq_opt + 'v/' + name_video): os.makedirs(data_folder_seq_opt + 'v/' + name_video) # tao data_folder_seq_opt + 'v/' + name_video/ print 'Create directory ' + data_folder_seq_opt + 'v/' + name_video return_data = [] if (render_opt[0] >= 0): render = render_opt else: render = [render_opt[1]] len_render_opt = len(render) for k in range(len_render_opt): nstack_u = np.zeros((2560,340)) nstack_v = np.zeros((2560,340)) for i in range(10): img_u = cv2.imread(u + str(render[k] + 5 + i).zfill(6) + '.jpg', 0) img_v = cv2.imread(v + str(render[k] + 5 + i).zfill(6) + '.jpg', 0) # img_u = np.ones((240,320)) # img_v = np.ones((240,320)) if (img_u is None) | (img_v is None): print 'Error render optical flow' print(u + str(render[k] + 5 + i).zfill(6) + '.jpg') sys.exit() hh, ww = img_u.shape if (hh != 256) | (ww != 340): img_u = cv2.resize(img_u, (340, 256)) img_v = cv2.resize(img_v, (340, 256)) nstack_u[(256*i):(256*(i+1)),:] = img_u nstack_v[(256*i):(256*(i+1)),:] = img_v os.chdir(data_folder_seq_opt + 'u/' + name_video) cv2.imwrite('{}.jpg'.format(k),nstack_u) os.chdir(data_folder_seq_opt + 'v/' + name_video) cv2.imwrite('{}.jpg'.format(k),nstack_v) if l%1000 == 0: print l
[ "huuthai37@gmail.com" ]
huuthai37@gmail.com
c0d29ea3e56d0a9a1129476105c243a8a2566772
8d2a124753905fb0455f624b7c76792c32fac070
/pytnon-month01/周六练习-practice on saturday/独立完成/OOP-fanb-1_student_manager_system.py
370a4186757ac84e2f949eca27cb01e393c5348c
[]
no_license
Jeremy277/exercise
f38e4f19aae074c804d265f6a1c49709fd2cae15
a72dd82eb2424e4ae18e2f3e9cc66fc4762ec8fa
refs/heads/master
2020-07-27T09:14:00.286145
2019-09-17T11:31:44
2019-09-17T11:31:44
209,041,629
0
0
null
null
null
null
UTF-8
Python
false
false
5,533
py
#学生信息管理系统: # 数据模型类:StudentModel # 数据:编号 id,姓名 name,年龄 age,成绩 score class StudentModel: def __init__(self,name,age,score,id = 0): self.name = name self.age = age self.score = score self.id = id # 逻辑控制类:StudentManagerController # 数据:学生列表 __stu_list # (#私有属性,提供只读) # 行为:获取列表 stu_list,添加学生 add_student,删除学生remove_student, # 修改学生update_student,根据成绩排序order_by_score。 class StudentManagerController: __stu_id = 1000 def __init__(self): #函数中不需要定义行参 self.__stu_list = [] #赋值空列表 @property def stu_list(self): return self.__stu_list def add_student(self,stu): StudentManagerController.__stu_id += 1 stu.id = StudentManagerController.__stu_id self.__stu_list.append(stu) def remove_student(self,id): for item in self.__stu_list: if item.id == id: self.__stu_list.remove(item) return True def update_student(self,stu): for item in self.__stu_list: if item.id == stu.id: item.name = stu.name item.age = stu.age item.score = stu.score return True def order_by_score(self): for i in range(len(self.__stu_list)-1): for j in range(i+1,len(self.__stu_list)): if self.__stu_list[i].score > self.__stu_list[j].score: self.__stu_list[i],self.__stu_list[j] = self.__stu_list[j],self.__stu_list[i] # 界面视图类:StudentManagerView # 数据:逻辑控制对象__manager # 行为:显示菜单__display_menu,选择菜单项__select_menu_item,入口逻辑main, # 输入学生__input_students,输出学生__output_students, # 删除学生__delete_student,修改学生信息__modify_student class StudentManagerView(): def __init__(self): self.__manager = StudentManagerController() def __display_menu(self): print(''' 学生信息管理系统1.0 +-----------------------+ | 0)退出管理系统 | | 1)添加学生信息 | | 2)显示学生信息 | | 3)删除学生信息 | | 4)修改学生信息 | | 5)按照成绩排序 | +-----------------------+ ''') def main(self): choice = None while choice != 0: self.__display_menu() choice = input('请输入选项:') if choice == '0': print('谢谢使用,退出!') break elif choice == '1': self.__input_students() elif choice == '2': self.__output_students() elif choice == '3': self.__delete_student() elif choice == '4': self.__modify_student() elif choice == '5': self.__sort_by_score() else: print('请重新输入选项!') def __input_students(self): name = input('请输入学生姓名:') age = int(input('请输入学生年龄:')) score = int(input('请输入学生成绩:')) stu = StudentModel(name,age,score) self.__manager.add_student(stu) print('添加学生信息成功!') def __output_students(self): print('学生信息:') for item in self.__manager.stu_list: print(item.id,item.name,item.age,item.score) def __delete_student(self): stu_id = int(input('请输入学生编号:')) if self.__manager.remove_student(stu_id): print('删除学生信息成功!') else: print('删除学生信息失败!') def __modify_student(self): id = int(input('请输入需要修改的学生ID:')) name = input('请输入修改后学生姓名:') age = int(input('请输入修改后学生年龄:')) score = int(input('请输入修改后学生成绩:')) stu = StudentModel(name, age, score, id) if self.__manager.update_student(stu): print('修改学生信息成功!') else: print('修改学生信息失败!') def __sort_by_score(self): self.__manager.order_by_score() print('排序成功!') view = StudentManagerView() view.main() #1.测试逻辑控制代码 #测试添加学员 # manger = StudentManagerController() # s01 = StudentModel('许瑶',18,98) # s02 = StudentModel('许仙',16,99) # s03 = StudentModel('小青',15,79) # s04 = StudentModel('姐夫',15,79) # manger.add_student(s01) # manger.add_student(s02) # manger.add_student(s03) # manger.add_student(s04) # for item in manger.stu_list: # print(item.id,item.name,item.age,item.score) # # #manger.stu_list列表 保存学生对象 # # print(manger.stu_list[1].name) # # #测试删除学员 # manger.remove_student(1004) # for item in manger.stu_list: # print('删除后:',item.id,item.name) # # #测试修改学员 # manger.update_student(StudentModel('娘子',19,80,1001)) # for item in manger.stu_list: # print('修改后:',item.id,item.name,item.age,item.score) # # #测试按成绩排序 # manger.order_by_score() # for item in manger.stu_list: # print('按分数升序排列:',item.id,item.name,item.age,item.score)
[ "13572093824@163.com" ]
13572093824@163.com
edbc5843172b296c275bf4d38092d8dabd6213fe
bd3b1eaedfd0aab45880c100b86bc4714149f5cd
/student/dyp1/11.py
c6e63aa6b223b8b5cdbb13353fe5872beeeea0a7
[]
no_license
ophwsjtu18/ohw19f
a008cd7b171cd89fa116718e2a5a5eabc9f7a93e
96dedf53a056fbb4d07c2e2d37d502171a6554a6
refs/heads/master
2020-08-08T12:59:38.875197
2020-04-01T10:38:14
2020-04-01T10:38:14
213,835,959
3
1
null
null
null
null
UTF-8
Python
false
false
1,178
py
import numpy as np import cv2 capture = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier('C:\\Users\\DING-DING\\AppData\\Local\\Programs\\Python\\Python36\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('C:\\Users\\DING-DING\\AppData\\Local\\Programs\\Python\\Python36\\Lib\\site-packages\\cv2\\data\\haarcascade_eye.xml') while(True): ret, frame = capture.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: img = cv2.rectangle(gray,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] def hhh( lists ): for (x,y,w,h) in lists: a = x for num in range(1,4): for num in range(1,4): cv2.rectangle(img,(x,y),(x+int(w/3),y+int(h/3)),(255,0,0),2) x+=int(w/3) x=a y+=int(h/3) hhh(faces) cv2.imshow('frame',gray) cv2.waitKey(0) cv2.destroyAllWindows()
[ "noreply@github.com" ]
ophwsjtu18.noreply@github.com
00333130e10a7ca7f1207ec2896cc61f017a3839
24e2b10c6d13deac27bd4b8af07907de4c9e8bcd
/traingle.py
413d3bf8ba2ac1ff1e4a678063e1efb7d2d49f1a
[]
no_license
adilreza/docker-env-var-python
a5b2e0269511d588bc2de30ab35f09a86138419a
156d3fa9b3fc25e56a40edc091818d6c86ba017b
refs/heads/main
2023-03-29T12:02:06.158341
2021-04-08T12:25:56
2021-04-08T12:25:56
355,896,730
0
0
null
null
null
null
UTF-8
Python
false
false
360
py
import os def triangle(n): k = n - 1 for i in range(0, n): for j in range(0, k): print(end=" ") k = k - 1 for j in range(0, i+1): print("* ", end="") print("\r") n = os.environ.get('TR_NUMBER') # TR_NUMBER=8 python3 traingle.py # docker run -e TR_NUMBER=7 bff2ba77dbd1 nn = int(n) triangle(nn)
[ "adil.reza@selise.ch" ]
adil.reza@selise.ch
9f704f4065654f070e858bc08858abfdfaeb1745
796198b4613ae30ff7735d7a8473064b8ecb0247
/abc140/D.py
cc3f77d7f92a52f460d82787bdd62c4304943b30
[]
no_license
Tomoki-Kikuta/atcoder
993cb13ae30435d02ea2e743cf3cead1a7882830
97b886de867575084bd1a70310a2a9c1c514befe
refs/heads/master
2021-07-16T15:14:00.706609
2020-06-29T06:15:13
2020-06-29T06:15:13
184,001,549
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
n,k = map(int,input().split()) s = input() h = 0 for i in range(n-1): if s[i] == s[i+1]: h+=1 print(min([n-1,h+2*k]))
[ "tomoki0819@akane.waseda.jp" ]
tomoki0819@akane.waseda.jp
713b479653ed7764eabad8e061233c7fc1086f24
0c2ca3b3c7f307c29f45957e87ed940c23571fae
/fhirclient/models/bodysite_tests.py
a3aaa3593967b5390640ec04095fcc47317b4e4a
[ "LicenseRef-scancode-warranty-disclaimer", "Apache-2.0" ]
permissive
myungchoi/client-py-1.0.3
49c3d15b8dfb845e7cbc933084ed5fcc37e7c4ed
08e4e5828fb461c105907fd454b19dfc8463aad8
refs/heads/master
2021-06-25T04:36:26.952685
2021-02-11T16:27:26
2021-02-11T16:27:26
209,669,881
0
0
NOASSERTION
2021-03-20T01:45:42
2019-09-20T00:11:10
Python
UTF-8
Python
false
false
2,663
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 1.0.2.7202 on 2016-03-23. # 2016, SMART Health IT. import os import io import unittest import json from . import bodysite from .fhirdate import FHIRDate class BodySiteTests(unittest.TestCase): def instantiate_from(self, filename): datadir = os.environ.get('FHIR_UNITTEST_DATADIR') or '' with io.open(os.path.join(datadir, filename), 'r', encoding='utf-8') as handle: js = json.load(handle) self.assertEqual("BodySite", js["resourceType"]) return bodysite.BodySite(js) def testBodySite1(self): inst = self.instantiate_from("bodysite-example.json") self.assertIsNotNone(inst, "Must have instantiated a BodySite instance") self.implBodySite1(inst) js = inst.as_json() self.assertEqual("BodySite", js["resourceType"]) inst2 = bodysite.BodySite(js) self.implBodySite1(inst2) def implBodySite1(self, inst): self.assertEqual(inst.code.coding[0].code, "53120007") self.assertEqual(inst.code.coding[0].display, "Arm") self.assertEqual(inst.code.coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.code.text, "Arm") self.assertEqual(inst.description, "front of upper left arm directly below the tattoo") self.assertEqual(inst.id, "example") self.assertEqual(inst.identifier[0].system, "http://www.acmehosp.com/bodysites") self.assertEqual(inst.identifier[0].use, "official") self.assertEqual(inst.identifier[0].value, "12345") self.assertEqual(inst.image[0].contentType, "image/png;base64") self.assertEqual(inst.image[0].title, "ARM") self.assertEqual(inst.modifier[0].coding[0].code, "419161000") self.assertEqual(inst.modifier[0].coding[0].display, "Unilateral left") self.assertEqual(inst.modifier[0].coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.modifier[0].text, "Left") self.assertEqual(inst.modifier[1].coding[0].code, "261183002") self.assertEqual(inst.modifier[1].coding[0].display, "Upper") self.assertEqual(inst.modifier[1].coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.modifier[1].text, "Upper") self.assertEqual(inst.modifier[2].coding[0].code, "255549009") self.assertEqual(inst.modifier[2].coding[0].display, "Anterior") self.assertEqual(inst.modifier[2].coding[0].system, "http://snomed.info/sct") self.assertEqual(inst.modifier[2].text, "Anterior") self.assertEqual(inst.text.status, "generated")
[ "myungchoi@gmail.com" ]
myungchoi@gmail.com
0312b66b3e7867e0ab472288a6c5e79ae7d68dd8
dacdc8eca8258abc9c82b3a87d97f6a461503edf
/data/process_data.py
5318bb50a55db8751ba09ebc42d4a40d09cfc52d
[]
no_license
eherdter/MessageClassifier
ce8f6503c9980068f038e1aa777c9c6a99921bf6
449431fab917b9294acce82977eb1d7c44e42bb3
refs/heads/master
2020-06-12T12:10:07.883068
2019-07-10T19:15:54
2019-07-10T19:15:54
194,294,707
0
0
null
null
null
null
UTF-8
Python
false
false
3,016
py
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' Loads messages and category datasets and joins them together using the common id.''' ''' Returns: pandas.DataFrame ''' #Load data. messages = pd.read_csv(messages_filepath, dtype=str, encoding ='latin1') categories = pd.read_csv(categories_filepath, dtype=str, encoding ='latin1') #Merge datasets using common id. df = categories.set_index('id').join(messages.set_index('id')) return df def clean_data(df): ''' Tidy and clean df. Tidies the categories columns, cleans up duplicates rows,removes rows with non binary (0/1) category entries, removes rows where there is no category selected (1).''' ''' Returns: pandas.DataFrame ''' #split categories into separate category columns and assign column names categories = df.categories.str.split(';', expand=True) categories.columns = categories.iloc[0].apply(lambda x: x[:len(x)-2]) #convert category values to just binary (0/1) for column in categories: # set each value to be the last character of the string categories[column] = categories[column].astype(str).str[-1] categories[column] = categories[column].astype(int) #replace categories column in df with new categories df = df.drop(columns=['categories']) df = pd.concat([categories,df], axis=1) #removes duplicate rows df = df.drop_duplicates() #remove child alone category because there are no notes for it df = df.drop(['child_alone'], axis=1) #change level 2 for related column to level 0 b/c they are not related posts df['related'][df['related'] == 2] = 0 return df def save_data(df, database_filepath): ''' Saves cleaned df to a SQL database.''' engine = create_engine('sqlite:///' + database_filepath) df.to_sql('messages', con=engine, if_exists='replace', index=False) return None def main(): if len(sys.argv) == 4: messages_filepath, categories_filepath, database_filepath = sys.argv[1:] print('Loading data...\n MESSAGES: {}\n CATEGORIES: {}' .format(messages_filepath, categories_filepath)) df = load_data(messages_filepath, categories_filepath) print('Cleaning data...') df = clean_data(df) print('Saving data...\n DATABASE: {}'.format(database_filepath)) save_data(df, database_filepath) print('Cleaned data saved to database!') else: print('Please provide the filepaths of the messages and categories '\ 'datasets as the first and second argument respectively, as '\ 'well as the filepath of the database to save the cleaned data '\ 'to as the third argument. \n\nExample: python process_data.py '\ 'disaster_messages.csv disaster_categories.csv '\ 'DisasterResponse.db') if __name__ == '__main__': main()
[ "eherdter@mail.usf.edu" ]
eherdter@mail.usf.edu
a6d438db0bc275cba915649a275ab52409197ac7
059b6f2963515af4ee4a5342f45ab05a4f431b60
/string reverse.py
2e5ff44a2f7f05c080f8e1c3b9e5f2ab8162ad8f
[]
no_license
Surya-Narayanan0503/Python-Programs
70c20c0b1e07420b3058bbdd6ac88bcb9b1c273a
2fcdc31ed3c4cc068f2a23ef02a465673c0700e7
refs/heads/master
2020-06-20T02:40:16.488314
2019-07-19T08:49:07
2019-07-19T08:49:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
29
py
n=input() i=n[::-1] print(i)
[ "noreply@github.com" ]
Surya-Narayanan0503.noreply@github.com
9c7357576d312b577fde01d5955822e944b46c7b
d0f11aa36b8c594a09aa06ff15080d508e2f294c
/leecode/1-500/401-500/472-连接词.py
4edb1540db15225aeb711ca0bd0954fa23641a7b
[]
no_license
saycmily/vtk-and-python
153c1fe9953fce685903f938e174d3719eada0f5
5045d7c44a5af5c16df5a3b72c157e9a2928a563
refs/heads/master
2023-01-28T14:02:59.970115
2021-04-28T09:03:32
2021-04-28T09:03:32
161,468,316
1
1
null
2023-01-12T05:59:39
2018-12-12T10:00:08
Python
UTF-8
Python
false
false
1,016
py
class Solution: def findAllConcatenatedWordsInADict(self, words): def search(word, pre_dict): if len(word)==0: return True cur_dict = pre_dict for i,c in enumerate(word): cur_dict = cur_dict.get(c,None) if not cur_dict: return False if '#' in cur_dict: if search(word[i+1:], pre_dict): return True return False def insert(word, cur_dict): for c in word: if c not in cur_dict: cur_dict[c] = {} cur_dict = cur_dict[c] cur_dict['#'] ={} words.sort(key=lambda x: len(x)) ret = [] pre_dict = {} for word in words: if len(word)==0: continue if search(word, pre_dict): ret.append(word) else: insert(word, pre_dict) return ret
[ "1786386686@qq.com" ]
1786386686@qq.com
c4d7e36734ac5ab04af3745ef7239a1f37d315fd
1005b44f86523c377b607c69d96a0f6cbfbd62c7
/Weather ToPy_bot/bot.py
9cb6e7c3d32246ca654b13e6d664c8f6a65b966c
[]
no_license
Tofan93/Python
7e3308b99ea8f0db374a74d778d0fe6229bc0f59
20c0085bf8592bc2bee6ca35360701054993fd2f
refs/heads/master
2022-11-11T17:53:13.606553
2020-07-09T06:31:24
2020-07-09T06:31:24
258,720,575
0
0
null
null
null
null
UTF-8
Python
false
false
912
py
import pyowm import telebot owm = pyowm.OWM('b819a91869f45bb714b2cb0a0c647732', language = 'ru') bot = telebot.TeleBot('1223510132:AAEg4XkxdnSa92GP4dfcamjb3uznTB9rkzM') @bot.message_handler(content_types=['text']) def send_echo(message): obs = owm.weather_at_place(message.text) city = obs.get_weather() temp = city.get_temperature('celsius')['temp'] answer = 'В городе ' + message.text + ' сейчас ' + city.get_detailed_status() answer += 'Температура в районе ' + str(round(temp)) + ' градусов' + '\n\n' if temp<10: answer += 'Очень холодно, оденься потеплее))' elif temp<17: answer += 'Прохладно, лучше оденься:)' else: answer += 'Не холодно, хоть в трусах иди:)' bot.send_message(message.chat.id, answer) bot.polling(none_stop = True)
[ "noreply@github.com" ]
Tofan93.noreply@github.com
05fa6c5fd8aacf359f1d9088e7f7c6cdb1a8d9ab
08fe9b6afba5708f8d51d79c1d503b8e87ff96a8
/Sets/symmetric_diff.py
844629f4671501b4b5d6caaf92c07ccc6faf3d96
[]
no_license
Harsh-2909/HackerRank-Python-Solutions
667e83290c1421150b8ce782a2ffad82b84c4f57
2a6c5f013870791eb45c34e470c2a797a49f4cc1
refs/heads/master
2020-05-30T21:54:37.185556
2019-08-10T06:17:10
2019-08-10T06:17:10
189,983,460
1
0
null
null
null
null
UTF-8
Python
false
false
232
py
m = int(input()) m_set = set(map(int, input().split())) n = int(input()) n_set = set(map(int, input().split())) m_set, n_set = list(m_set - n_set), list(n_set - m_set) l = [*m_set, *n_set] l.sort() for i in l: print(i)
[ "harsh29092000@gmail.com" ]
harsh29092000@gmail.com
92c7ef3d0dd3f76c0176fecc684bb6e824e0fa9f
1521645e97dfa364ce4ecc34ef97aa00510a5d7c
/cart/test_forms.py
aa48460ebb4a3c7ccf62ff39049c915e09f89007
[]
no_license
kajamiko/u_m_website
0327903646ae21a024e0d95df937c49605c9e615
158953e5e375856c80ab34859c581b628681657e
refs/heads/master
2022-12-14T03:38:42.702543
2018-10-23T16:08:30
2018-10-23T16:08:30
139,005,832
0
0
null
2022-12-08T02:48:16
2018-06-28T10:53:31
JavaScript
UTF-8
Python
false
false
838
py
from django.test import TestCase from .forms import CartAddTicketForm from django.contrib.auth.models import User class TestTicketForm(TestCase): def test_for_updating(self): """ Normal, as from a real view """ form = CartAddTicketForm({'donation': 20, 'update': True}) self.assertTrue(form.is_valid()) def test_for_update_with_no_donation_value(self): """ Donation value is required """ form = CartAddTicketForm({'update': True}) self.assertFalse(form.is_valid()) def test_for_add_with_no_update(self): """ Update is not required, as it is also an add form """ form = CartAddTicketForm({'donation': 20}) self.assertTrue(form.is_valid())
[ "kajaths@gmail.com" ]
kajaths@gmail.com
6696d49ec45e3e7ddf84f6655775d70902a6d38f
9fbec0955358e0dc3c24e2b7e5e7aeb4fa12f963
/info.py
5eacb8d09d67a42912218c1f4e3c65871f39fe3c
[]
no_license
AyselHavutcu/FlaskBlog
9b0142d7a400a6b73f9367d42a09e421e1ab1a0b
820e1e4740eb1f31ed302b208f61af0ba32f8f14
refs/heads/master
2020-07-26T01:20:28.171975
2019-09-14T18:30:30
2019-09-14T18:30:30
208,485,109
0
0
null
null
null
null
UTF-8
Python
false
false
2,188
py
from flask import Flask,render_template,flash,redirect,url_for,session,logging,request#web sunucumuzu aga kaldıracak from flask_mysqldb import MySQL #mysql icin gerekli olan fromları dahil ettik from wtforms import From,StringField,PasswordField,validators #bunlarda formda kullanmak icin dahil ediyourz from passlib.hash import sha256_crypt #parola gizliligi icin ekledik app = Flask(__name__) #her bir pyhton dosyamız aslında bir modul #biz bu pyhton dosyalarını 2 turlu kullanabilriz #1. si:Biz bu python dosyalarının icine degisik fonksiyonlar yazarız ve #daha sonra bu fonksiyonları pyhtonda fonksiyon cagrısı yaparak kullanablirz #2.si:biz bu python dosyalarını modul olarak baska bir python dosyasında calıstırabilirz #ve sadece fonksiyonları almak isteyebilir ve fonksiyon cagrılarının calısmamasını saglayabilir #eger python dosyasını terminalde calıstırısak name in degeri main olursa terminalde calısmıs #eger degilse baska bir modul olarak aktarılmıs demektir o zaman ben bu fonksiyon cagrılarını yapamam @app.route("/") #her url adresi istedigimizde kullanılan bir decorator def index(): #yukarda request yaptık ve bu fonksiyon direk bu requestten sonra calısacaktır #response donmemiz lazım numbers = [1,2,3,4,5] return render_template("index.html",numbers = numbers) #baska requestler de yapabilirz @app.route("/about") def about(): return render_template("about.html") #dinamik url tanımlayacaz @app.route("/article/<string:id>") def detail(id): return "Article ID:" +id if __name__ == "__main__": app.run(debug=True) #debug true dememizin sebebi debug ı aktiflestiriyoruz #yani herhangi bir yerde hatamız olursa bize bir uyarı mesajı fırlatılacak #jinja templater ı icinde html css kodlarını ve boostrap modullerimiz #kullanıyoruz aynı zamanda python kodlarımızıda bu template e uygun bir sekilde kullanabiliyoruz #boylelikle biz fonksiyonlarımızda herhangi bir deger urettigimiz zaman bu template a bu degeri verip template i response olarak donebilioruz #bunun icin bizim bu template render etmemiz gerekiyor boylece biz bu template bir pythom degeri gonderebiliyoruz
[ "42868243+AyselHavutcu@users.noreply.github.com" ]
42868243+AyselHavutcu@users.noreply.github.com
2602f0d5d20194361a9b3aaf0ea2586b950fa49b
5af72fd35f3f967be5b6c195eaedd8739df3ee47
/SnakeBlock.py
fb9c5afcab27983b4ec802adfbba6fe9c6d19186
[]
no_license
tomluko/PythonSnake
0d43e0d7ba37fd4ca29b37856294d5f63502412b
e336cf1853fa060f3b33445d485a2b353bb0dccc
refs/heads/master
2021-01-10T02:43:08.590884
2015-06-02T19:52:54
2015-06-02T19:52:54
36,740,484
0
0
null
null
null
null
UTF-8
Python
false
false
270
py
import Block #snakes body segment class SnakeBlock(Block.Block): def __init__(self, size, position): solid = True removable = False color = (0, 153, 0) super(SnakeBlock, self).__init__(solid, removable, position, size, color)
[ "tomazasax@yahoo.com" ]
tomazasax@yahoo.com
4d5620e88c6380c33efa91a55293aac691fa505e
64cacb589af13865d8c1aef9b27e65bfed742967
/md_image_backup_py3.py
576aa084a8a8b6120e98074c4de692836ce5a214
[]
no_license
eggfly/markdown-img-backup
6f984a380ca837b69446f3e805cfeba19a8dd40f
6d0e5bb2e679b081ca0b960869d87a17b5e1cdda
refs/heads/master
2022-01-11T17:53:49.165213
2018-12-26T00:30:34
2018-12-26T00:30:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,552
py
# coding=utf-8 import sys import os import re import requests import urllib.request def backup(): try: # 备份指定文件的img download(str('你的markdown文件路径' + sys.argv[1])) except IndexError: # 备份文件夹下的所有img search('你的markdown文件路径', '.md') def search(path, word): for filename in os.listdir(path): fp = os.path.join(path, filename) if os.path.isfile(fp) and word in filename: print(fp) download(str(fp)) elif os.path.isdir(fp): search(fp, word) def download(file_path): # filename = "test" name = file_path.split(u"\\") filename = name[-1] f_md = open(file_path, 'rb') # all text of md file text = f_md.read().decode('utf-8') # regex # img_reg = r'\!{1}\[(.*?)\]\((.*?)\)' result = re.findall('!\[(.*?)\]\((.*?)\)', text) print(result) for i in range(len(result)): img_quote = result[i][0] img_url = result[i][1] # download img request = urllib.request.Request(img_url) response = urllib.request.urlopen(request) img_contents = response.read() # img name spell urlname = img_url.split(u"/") img_name = filename + '_' + \ str(i) + '_' + img_quote + str(urlname[len(urlname) - 1]) print (img_name + '~~~' + img_url) # write to file f_img = open('img/' + img_name, 'wb') f_img.write(img_contents) f_img.close() f_md.close() backup()
[ "hj531@live.com" ]
hj531@live.com
1f54af48b0de5de3deb1326d6dfc2e3b9b08012e
7246faf9a222269ce2612613f58dc5ff19091f10
/baekjoon/3000~5999/4949_균형잡힌세상.py
69e300ec26003ff839d8917a542427b2e7f68cc4
[]
no_license
gusdn3477/Algorithm_Study
87a2eb72a8488d9263a86db70dadc7944434d41d
3fefe1dcb40122157845ffc542f41cb097711cc8
refs/heads/main
2023-08-30T12:18:21.412945
2021-09-28T13:00:11
2021-09-28T13:00:11
308,364,230
0
1
null
null
null
null
UTF-8
Python
false
false
598
py
a = input() while a != '.': poc = [] for i in range(len(a)): if a[i] == '(' or a[i] == '[': poc.append(a[i]) if a[i] == ')': if not poc or poc[-1] != '(': poc.append(a[i]) break if poc[-1] == '(': poc.pop() if a[i] == ']': if not poc or poc[-1] != '[': poc.append(a[i]) break if poc[-1] == '[': poc.pop() if not poc: print("yes") else: print("no") poc.clear() a = input()
[ "gusdn3477@naver.com" ]
gusdn3477@naver.com
5686a856ed2ea24c4fa6fc47556d57a680b78c88
8a9dfd08d8bfbe07f948851ada95085bb279daa2
/Python/26-Remove-Duplicates-from-Sorted-Array.py
ff24549e704ad2e566add902835aae98f2e34dfb
[]
no_license
lukk47/LeetCode
e437dd39f27ce40f421b03dad50935ec55239dc6
038cadf2b50c3aa28a7c3834f5e0dc1e8ef40e38
refs/heads/master
2023-09-01T18:57:09.888955
2021-02-08T09:46:12
2021-02-08T09:46:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
class Solution(object): def removeDuplicates(self, nums): """ :type nums: List[int] :rtype: int """ index = 0 last_number = None while index < len(nums): if nums[index]!=last_number: last_number = nums[index] index = index +1 else: del nums[index] return len(nums)
[ "noreply@github.com" ]
lukk47.noreply@github.com