blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
โŒ€
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
5287ea85f3001b72c450c0caac0ac4f3ed597f8c
b2afa86304d4ff715b60b7bdf9f5a7a8d238eb2b
/articulos/models.py
09303bc42406c7ea30df488a65ef8942439cfe39
[]
no_license
luis2906/APIs-pedido
dc58d922b0ce4dbc42ae2ac964ea90a7d427a416
bd6e6097b804067e61e9abf42c9a2e2053e92637
refs/heads/master
2022-06-06T20:15:51.809544
2019-09-30T17:07:37
2019-09-30T17:07:37
211,903,595
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
from django.db import models # Create your models here. class BaseModel(models.Model): nombre = models.CharField(unique=True, max_length=255) class Meta: abstract = True def __str__(self): return self.nombre class Marca(BaseModel): pass def __str__(self): return self.nombre class Articulo(BaseModel): codigo = models.CharField(unique=True, max_length=255) marca = models.ForeignKey(Marca, related_name="Articulo_marca", on_delete=models.PROTECT) def __str__(self): return self.nombre
[ "luis.hernandez@sourcemeridian.com" ]
luis.hernandez@sourcemeridian.com
1a9d990fbd2ef3a7ebad4d4ab0747d0f363daf29
7fd79f23ed85a5b4459379a1744a3cf7d2b03703
/ๆ‰‹ๅ†™ๆ•ฐๅญ—่ฏ†ๅˆซDNN/mnist_loader.py
405644f9574f0ec24cb5bb30cdec83f6dd37e3c9
[]
no_license
xuyanbo03/ml-workbook
ba2a98a8df0d7d7c22a221ae321322f0f492631f
41d036bf470ba7c63a798d254d8dc3b42007798b
refs/heads/master
2022-01-28T21:16:26.850821
2019-07-16T09:08:14
2019-07-16T09:08:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,400
py
""" mnist_loader ~~~~~~~~~~~~ A library to load the MNIST image data. For details of the data structures that are returned, see the doc strings for ``load_data`` and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the function usually called by our neural network code. """ #### Libraries # Standard library import pickle import gzip # Third-party libraries import numpy as np def load_data(): """Return the MNIST data as a tuple containing the training data, the validation data, and the test data. The ``training_data`` is returned as a tuple with two entries. The first entry contains the actual training images. This is a numpy ndarray with 50,000 entries. Each entry is, in turn, a numpy ndarray with 784 values, representing the 28 * 28 = 784 pixels in a single MNIST image. The second entry in the ``training_data`` tuple is a numpy ndarray containing 50,000 entries. Those entries are just the digit values (0...9) for the corresponding images contained in the first entry of the tuple. The ``validation_data`` and ``test_data`` are similar, except each contains only 10,000 images. This is a nice data format, but for use in neural networks it's helpful to modify the format of the ``training_data`` a little. That's done in the wrapper function ``load_data_wrapper()``, see below. """ f = gzip.open('mnist.pkl.gz', 'rb') training_data, validation_data, test_data = pickle.load(f, encoding="latin1") f.close() return (training_data, validation_data, test_data) def load_data_wrapper(): """Return a tuple containing ``(training_data, validation_data, test_data)``. Based on ``load_data``, but the format is more convenient for use in our implementation of neural networks. In particular, ``training_data`` is a list containing 50,000 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray containing the input image. ``y`` is a 10-dimensional numpy.ndarray representing the unit vector corresponding to the correct digit for ``x``. ``validation_data`` and ``test_data`` are lists containing 10,000 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional numpy.ndarry containing the input image, and ``y`` is the corresponding classification, i.e., the digit values (integers) corresponding to ``x``. Obviously, this means we're using slightly different formats for the training data and the validation / test data. These formats turn out to be the most convenient for use in our neural network code.""" tr_d, va_d, te_d = load_data() training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]] training_results = [vectorized_result(y) for y in tr_d[1]] training_data = zip(training_inputs, training_results) validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]] validation_data = zip(validation_inputs, va_d[1]) test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]] test_data = zip(test_inputs, te_d[1]) return (training_data, validation_data, test_data) def vectorized_result(j): """Return a 10-dimensional unit vector with a 1.0 in the jth position and zeroes elsewhere. This is used to convert a digit (0...9) into a corresponding desired output from the neural network.""" e = np.zeros((10, 1)) e[j] = 1.0 return e
[ "610958401@qq.com" ]
610958401@qq.com
9155110a9ae58bc903e5e05dc9dfed7c7bdc4cea
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-1645.py
4a5e725248f8e0b1a645420a84fb9273621ed52e
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,292
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if $Exp < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
bcb5ce8be64ba7b9ed474b57c0bb84c1a14ea3a8
28ee4df44811a7eff6f57dba03bcfe7e7a444d1f
/website_IPS/djangoServer/product_injection/models.py
807f758629c343a2a2db96e109cbe7abd75eea21
[]
no_license
fxanhkhoa/angularjs-SaleWebsite
5ddab11abd65bbd8b94911a6c2456143b1ba8d73
498d35b8dc967a30c1dc275777364f6a88f84810
refs/heads/master
2022-05-16T01:13:01.745273
2022-03-16T10:48:13
2022-03-16T10:48:13
225,559,401
0
0
null
2022-03-16T10:48:38
2019-12-03T07:39:57
SCSS
UTF-8
Python
false
false
598
py
from django.db import models # Create your models here. class Product(models.Model): barcode = models.CharField(max_length=20) type = models.CharField(max_length=100) product_name = models.CharField(max_length=100) price_main = models.FloatField() price1 = models.CharField(max_length=100) price2 = models.CharField(max_length=100) price3 = models.CharField(max_length=100) quantity = models.IntegerField() expired_day = models.DateField() class Meta: managed = False db_table = 'product' def __str__(self): return self.barcode
[ "fxanhkhoa@gmail.com" ]
fxanhkhoa@gmail.com
644f53da5330e99d42a57e2457baa4815d3cc52f
d0a54a3faa1891b647f8c621521cd26c13bd2926
/backend/mytts.py
b5bd2373d11ec245d0b144f5f903e259d2fd903f
[ "MIT" ]
permissive
ishine/PTTS-WebAPP
166318593d3247c88d458c9d4fe39dca27ef408f
dcc07a79d8dd695ca15e4dd5a69811b3ddd91709
refs/heads/main
2023-04-02T06:03:41.237351
2021-04-14T02:37:16
2021-04-14T02:37:16
357,388,655
0
0
MIT
2021-04-14T02:37:17
2021-04-13T01:31:11
null
UTF-8
Python
false
false
2,595
py
#!/usr/bin/env python import os.path as osp import librosa import torch from .hparams import HParam from .transform import StandardNorm, TextProcessor from .models import MelGenerator, ParallelText2Mel from .synthesizer import Synthesizer try: from .manager import GPUManager except ImportError as err: print(err); gm = None else: gm = GPUManager() def select_device(device): cpu_request = device.lower() == 'cpu' # if device requested other than 'cpu' if device and not cpu_request: c = 1024 ** 2 # bytes to MB x = torch.cuda.get_device_properties(int(device)) s = f'Using torch {torch.__version__} ' print("%sCUDA:%s (%s, %dMB)" % (s, device, x.name, x.total_memory / c)) return torch.device(f'cuda:{device}') else: print(f'Using torch {torch.__version__} CPU') return torch.device('cpu') class MyTTS: def __init__(self, config=None, device=None): if torch.cuda.is_available(): index = device if device else str(0 if gm is None else gm.auto_choice()) else: index = 'cpu' self.device = device = select_device(index) self.hparams = hparams = HParam(config) \ if config else HParam(osp.join(osp.dirname(osp.abspath(__file__)), "config", "default.yaml")) checkpoint = osp.join(osp.dirname(osp.abspath(__file__)), "pretrained", hparams.parallel.checkpoint) vocoder_checkpoint = osp.join(osp.dirname(osp.abspath(__file__)), "pretrained", hparams.vocoder.checkpoint) normalizer = StandardNorm(hparams.audio.spec_mean, hparams.audio.spec_std) processor = TextProcessor(hparams.text) text2mel = ParallelText2Mel(hparams.parallel) text2mel.eval() vocoder = MelGenerator(hparams.audio.n_mel_channels).to(device) vocoder.eval(inference=True) self.synthesizer = Synthesizer( model=text2mel, checkpoint=checkpoint, vocoder=vocoder, vocoder_checkpoint=vocoder_checkpoint, processor=processor, normalizer=normalizer, device=device ) def __call__(self, texts, speed, volume, tone): rate = int(tone) / 3 alpha = (4 / int(speed)) * rate beta = int(volume) / 3 wave = self.synthesizer.inference(texts, alpha=alpha, beta=beta) wave = wave.cpu().detach().numpy() sr = self.hparams.audio.sampling_rate # use TSM + resample to change tone wave = librosa.core.resample(wave, int(sr*rate), sr) return wave, sr
[ "atomicoo95@gmail.com" ]
atomicoo95@gmail.com
86141b295083fbfbabc34f7f63036b63e6caada7
e7a76e109e38c241b103b69c56b3a1c5786eec41
/plot_oceanoptics.py
e9f2c06008eddc5e40a6cf0b5f0a6cf1e793a560
[]
no_license
sdickreuter/auswertung
5e6baca12e3f56dda485256888e1871042e6af72
eb4f01ce1284cfa3d7e1b979ed90af55b36e242c
refs/heads/master
2021-05-09T13:16:34.952174
2019-03-01T15:52:02
2019-03-01T15:52:02
119,030,645
0
1
null
null
null
null
UTF-8
Python
false
false
834
py
import numpy as np from plotsettings import * import os import re import seaborn as sns sns.set_context("poster", rc= { "xtick.major.width":0.5, "ytick.major.width":0.5, "xtick.minor.width":0.5, "ytick.minor.width":0.5}) path = '/home/sei/Spektren/PosterPlot/' maxwl = 800 minwl = 460 wl, counts = np.loadtxt(open(path + "E1_corr.csv", "rb"), delimiter=",", skiprows=16, unpack=True) mask = (wl >= minwl) & (wl <= maxwl) wl = wl[mask] counts = counts[mask] counts /= counts.max() fig = newfig(1.1) plt.plot(wl, counts) plt.xlim((minwl,maxwl)) plt.ylabel(r'\boldmath$Intensit"at \; / \; a.u.$') plt.xlabel(r'\boldmath$Wellenl"ange \; / \; nm$') plt.tight_layout() # plt.plot(wl, counts) plt.savefig(path+"spec.png",dpi=600) plt.close()
[ "Simon.Dickreuter@uni-tuebingen.de" ]
Simon.Dickreuter@uni-tuebingen.de
5be1631a2109500c70886c510b62a60b37f20ede
1ad01c9f7335c14456fc10da41bcf942fcb58482
/main.py
e870545fed45d5d9f323a6174e957b915918d5e9
[]
no_license
AP-MI-2021/lab-3-VargaIonut23
1159cd1d576fa3d944c6f633d2a37aaeaf02ba0a
c419dd62ac441196e952301de31d20608bb99515
refs/heads/main
2023-08-22T01:20:38.356254
2021-10-12T05:13:08
2021-10-12T05:13:08
413,956,453
0
0
null
null
null
null
UTF-8
Python
false
false
4,324
py
def is_prime(n): ''' :param n: se va verifica daca n este prim :return: 1 daca n este prim ,0 in caz contrar ''' if n < 2: return 0 elif n == 2: return 1 elif n % 2 == 0: return 0 else: for i in range(3, n, 2): if n % i == 0: return 0 return 1 def is_all_prime(l): ''' determina daca toate elementele date sunt prime sau nu ''' for i in l : if is_prime(i) == 0 : return False return True def test_get_longest_all_primes (): assert get_longest_all_primes([2 , 3 , 7 , 11]) == [2 , 3 , 7 , 11] assert get_longest_all_primes([2 , 2 , 7 , 23]) == [2 , 2 , 7 ,23] assert get_longest_all_primes([1 , 3 , 3 , 7]) == [3 , 3 ,7] assert get_longest_all_primes([1 , 1 , 0 , 1 ]) == [] def get_longest_all_primes(l): ''' determina cea mai lunga segventa de numnere prime din vectorul dat ''' subsecventa_max = [] for i in range(len(l)): for j in range(i , len(l)+1): if(is_all_prime(l[i:j+1])) and len(l[i:j+1]) > len(subsecventa_max): subsecventa_max = l[i:j+1] return subsecventa_max def test_get_longest_prime_digits(): assert get_longest_prime_digits([2 , 2 , 2 , 3]) == [2 , 2 , 2 , 3] assert get_longest_prime_digits([1 , 2 , 7 , 9]) == [2 , 7] assert get_longest_prime_digits([2 , 2 , 7 , 5]) == [2 , 2 , 7 , 5] assert get_longest_prime_digits([1 , 3 , 5 , 7]) == [3 , 5 ,7] def au_toate_cifrele_prime(n) : while n != 0 : c = n % 10 if is_prime(c) == 0 : return False n = n // 10 return True def sunt_bune(l) : ''' verifica daca toate numerele din secventa data au toate cifrele pare :param l: :return: ''' for i in l : if au_toate_cifrele_prime(i) == 0 : return 0 return 1 def get_longest_prime_digits(l): ''' determina cea mai lunga secventa de numere a caror tuturor cifre sunt prime :param l: :return: cea mai lunga secventa de numere a caror tuturor cifre sunt prime ''' subsecventa_max = [] for i in range(len(l)): for j in range(i , len(l)+1): if (sunt_bune(l[i:j + 1])) and len(l[i:j + 1]) > len(subsecventa_max): subsecventa_max = l[i:j + 1] return subsecventa_max def citire_lista(): l = [] listasstring = input("Dati lista ") numberasstring = listasstring.split(",") for x in numberasstring: l.append(int(x)) return l def pare(l): ''' determina daca toate numerele din secventa sunt pare :return: ''' c = 0 for i in l : if i % 2 == 1 : return 0 return 1 def get_longest_all_even(l): ''' :return: cea mai lunga secventa de numere pare ''' subsecventa_max = [] for i in range(len(l)): for j in range(i, len(l) + 1): if (pare(l[i:j + 1])) and len(l[i:j + 1]) > len(subsecventa_max): subsecventa_max = l[i:j + 1] return subsecventa_max def test_get_longest_all_even(): assert get_longest_all_even([ 2 , 4 , 6 ,22 , 3]) == [2 , 4 , 6 ,22] assert get_longest_all_even([4 , 6 ,23 , 1 , 1]) == [4 , 6] assert get_longest_all_even([3 , 1]) == [] assert get_longest_all_even([22 , 24 , 88 , 54 , 24 , 56]) == [22 , 24 , 88 , 54 , 24 , 56] def print_menu(): print("1. Citire lista") print("2. Afisare cea mai lunga secventa de numere prime") print("3. Afisare cea mai lunga secventa de numere ale caror cifre sunt prime") print("4. Afisare cea mai lunga secventa de numere pare") print("5. Iesire") def main(): test_get_longest_all_primes() test_get_longest_prime_digits() test_get_longest_all_even() l = [] while True: print_menu() optiune = input("Dati optiunea: ") if optiune == "1" : l = citire_lista() elif optiune == "2" : print(get_longest_all_primes(l)) elif optiune == "3" : print(get_longest_prime_digits(l)) elif optiune == "4" : print(get_longest_all_even(l)) elif optiune == "5" : break else : print("Optiune gresita! Reincercati: ") if __name__ == "__main__": main()
[ "91500038+VargaIonut23@users.noreply.github.com" ]
91500038+VargaIonut23@users.noreply.github.com
a8b5e01ad95ded27a6c98be1480ba945be7e440d
8097f658e27de527be5756d64bdaa380ecb6dfb7
/MCU03_REC.py
c6d2761849e2779c686c710bb2387fdbfd98aed0
[]
no_license
kadonotakashi/sound_evaluate
b065cd976860e29b68c4f09f582f8edbc72dc310
549508738397231fc0c3da27e69cb61fb11b7b1a
refs/heads/main
2022-12-27T02:05:27.137923
2020-10-14T01:20:14
2020-10-14T01:20:14
303,869,184
0
0
null
null
null
null
UTF-8
Python
false
false
3,205
py
# -*- coding: utf-8 -*- import wave import pyaudio import time """Sanwa suply USB MIC MCU03 """ class MCU03_REC(): def __init__(self): self.devindex_mic = -1 self.fnameRec = 'sndRec.wav' self.ch_Mic = 1 self.qb_Mic = 2 self.fq_Mic = 16000 def SetFileName(self, fname): self.fnameRec = fname def CreateWaveFile(self): self.wfrec = wave.open(self.fnameRec, 'wb') self.wfrec.setnchannels(self.ch_Mic) self.wfrec.setsampwidth(self.qb_Mic) self.wfrec.setframerate(self.fq_Mic) print("record file is ") print(self.fnameRec, self.ch_Mic, self.qb_Mic, self.fq_Mic) def sndrec(self, in_data, frame_count, time_info, status): self.wfrec.writeframes(in_data) return(None, pyaudio.paContinue) def getDeviceIndex(self): info = self.p.get_host_api_info_by_index(0) numdevices = info.get('deviceCount') for i in range(0, numdevices): name = self.p.get_device_info_by_host_api_device_index(0, i).get('name') if name[0:3] == "ใƒžใ‚คใ‚ฏ": if (self.p.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0: self.devindex_mic = i print('Sanwa MCU03 index is', self.devindex_mic) def RECORD(self): self.p = pyaudio.PyAudio() self.getDeviceIndex() if (self.devindex_mic == -1): print("can't open XVF3510 as Input Device") while True: time.sleep(1) self.CreateWaveFile() self.stmrec = self.p.open( format=self.p.get_format_from_width(self.qb_Mic), channels=self.ch_Mic, rate=self.fq_Mic, input=True, frames_per_buffer=1024, stream_callback=self.sndrec, input_device_index=self.devindex_mic ) self.stmrec.start_stream() while self.stmrec.is_active(): cmd = input('when want to stop, type"exit"') if cmd == 'exit': break self.stmrec.stop_stream() self.stmrec.close() self.p.terminate() self.wfrec.close() def START(self): self.p = pyaudio.PyAudio() self.getDeviceIndex() if (self.devindex_mic == -1): print("can't open XVF3510 as Input Device") while True: time.sleep(1) self.CreateWaveFile() self.stmrec = self.p.open( format=self.p.get_format_from_width(self.qb_Mic), channels=self.ch_Mic, rate=self.fq_Mic, input=True, frames_per_buffer=1024, stream_callback=self.sndrec, input_device_index=self.devindex_mic ) self.stmrec.start_stream() def check_active(self): return self.stmrec.is_active() def STOP(self): self.stmrec.stop_stream() self.stmrec.close() self.p.terminate() self.wfrec.close() def main(): DeviceIn = MCU03_REC() DeviceIn.SetFileName('./record/sndRecXVF.wav') DeviceIn.RECORD() if __name__ == '__main__': main()
[ "kadono@mail.glory.co.jp" ]
kadono@mail.glory.co.jp
8860fd14e571f6895267fbdf6e37de2a1b996050
dfab6798ece135946aebb08f93f162c37dd51791
/timber/luban.timber/__init__.py
a1439a83d3cd277a7cb77b0454e6d6e5598f66c6
[]
no_license
yxqd/luban
405f5f7dcf09015d214079fe7e23d644332be069
00f699d15c572c8bf160516d582fa37f84ac2023
refs/heads/master
2020-03-20T23:08:45.153471
2012-05-18T14:52:43
2012-05-18T14:52:43
137,831,650
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
# -*- Python -*- # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Jiao Lin # California Institute of Technology # (C) 2006-2011 All Rights Reserved # # {LicenseText} # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ************************************************************ # bad bad import luban luban.__doc__ += """* timber: default extension of luban core """ # ************************************************************ # activate extensions from . import elements, actions from . import luban_ext from . import controller # replace the core controllers with timber controllers. see eg .controllers.CherrypyController from .controller import setUploadPath # End of file
[ "linjiao@caltech.edu" ]
linjiao@caltech.edu
113e34a17a867e34e5f5a4feab529de8c4ea4cad
7a6903357d830fb49c5e1ff4765ea8ea5f1ff18d
/lesson2/venv/bin/python-config
b9371e208651370827cd89a204a2c8a5422305e4
[]
no_license
StephanRaab/lambdaSchool
08ee36ae9cc2946c43b8fc4c9282c166651a71d4
fec83185e0e5bdb849cf69f459d61becf6965fe6
refs/heads/master
2021-01-13T12:26:24.520000
2017-03-09T03:07:47
2017-03-09T03:07:47
81,151,871
0
0
null
null
null
null
UTF-8
Python
false
false
2,362
#!/home/gnome/Github/lambdaSchool/lesson2/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
[ "sarcartist@gmail.com" ]
sarcartist@gmail.com
145a90c675971039d677b9e3411c7b6f30d2cde6
59be93c710d9e1750d2767f1c98f347ed3dc635c
/elements/when.py
308f8c8d7c8fbbc825abfaf9cd8a8914f92fd203
[ "MIT" ]
permissive
artemZholus/elements
802d14eb574be0c3f18a50fdbc87ee262fbcd01a
21b4f27e854d91a65619e8fc81b3916386c5ef66
refs/heads/main
2023-07-10T05:21:28.947510
2021-08-18T18:02:05
2021-08-18T18:02:05
397,594,638
0
0
MIT
2021-08-18T12:35:49
2021-08-18T12:35:49
null
UTF-8
Python
false
false
711
py
class Every: def __init__(self, every): self._every = every self._last = None def __call__(self, step): step = int(step) if not self._every: return False if self._last is None: self._last = step return True if step >= self._last + self._every: self._last += self._every return True return False class Once: def __init__(self): self._once = True def __call__(self): if self._once: self._once = False return True return False class Until: def __init__(self, until): self._until = until def __call__(self, step): step = int(step) if not self._until: return True return step < self._until
[ "mail@danijar.com" ]
mail@danijar.com
664fef8dbbee5f880d4f0a0866edc6ccd5676737
0facb323be8a76bb4c168641309972fa77cbecf2
/Configurations/HWWSemiLepHighMass/Full_v6Production/template_seed/templates_jhchoi/MassPoints2018/List_MX.py
ca93c1c06e444ba9cee292c6bdab834fd117111f
[]
no_license
bhoh/SNuAnalytics
ef0a1ba9fa0d682834672a831739dfcfa1e7486b
34d1fc062e212da152faa83be50561600819df0e
refs/heads/master
2023-07-06T03:23:45.343449
2023-06-26T12:18:28
2023-06-26T12:18:28
242,880,298
0
1
null
2020-02-25T01:17:50
2020-02-25T01:17:49
null
UTF-8
Python
false
false
396
py
List_MX=[ 115 , 120 , 124 , 125 , 126 , 130 , 135 , 140 , 145 , 150 , 155 , 160 , 165 , 170 , 175 , 180 , 190 , 200 , 210 , 230 , 250 , 270 , 300 , 350 , 400 , 450 , 500 , 550 , 600 , 650 , 700 , 750 , 800 , 900 , 1000 , 1500 , 2000 , 2500 , 3000 , 4000 , 5000 , ] if __name__ == '__main__': #print('( '+" ".join(str(MX) for MX in List_MX)+' )') print " ".join(str(MX) for MX in List_MX)
[ "soarnsoar@gmail.com" ]
soarnsoar@gmail.com
6d0725c591adc561c92b70e30aa85c54b60ff22e
c43825a9c2e88edd36af5f2e6088eae5f0b30822
/service3/__init__.py
1408208fb651cc957765054f47331f765c1c360c
[]
no_license
NaailC/milestone
a7d218ec60a74679aa8ba9633d14b5e6dbcc3f40
28189ce4d521696876a80c7f4ad31edec94bdb04
refs/heads/main
2023-03-02T04:41:27.558763
2021-02-01T14:21:19
2021-02-01T14:21:19
334,973,445
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
import logging import random from random import randint import azure.functions as func def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') numbers = '' for _ in range(5): numbers += str(random.randint(0,9)) return func.HttpResponse( numbers, status_code=200 )
[ "naailchoudhury@gmail.com" ]
naailchoudhury@gmail.com
48c1efe4bbfd4c809710895b5744853d0202dcf6
b59d1471c918168da512f52c33ca18f02caf75e3
/examples/mylexer.py
2d7cfc728152e68cc6e687d7236873688a18dd16
[]
no_license
lordmauve/dsls-talk
0473fda93d1229aad3be27da3a0cc1f04df978a3
8cb0df9ecc0c84e472f774b681b499d8c4973853
refs/heads/master
2020-07-23T11:16:44.556189
2015-07-24T10:48:15
2015-07-24T10:48:15
207,540,462
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
import ply.lex as lex tokens = 'ADDOP MULOP LPAREN RPAREN NUMBER'.split() t_ADDOP = r'[+-]' t_MULOP = r'[*/]' t_LPAREN = r'\(' t_RPAREN = r'\)' def t_NUMBER(t): r'\d+' t.value = int(t.value) return t t_ignore = ' \t' lexer = lex.lex()
[ "lordmauve@users.noreply.github.com" ]
lordmauve@users.noreply.github.com
87477ba53d15435cb55aa99b65ce10afdee5a360
e52501eb4db862d90ae5541bd512a50df30e0726
/Chapter 2+3 Intro + Variables + Strings/Chapter3-7 ShrinkingGuestList.py
47c9f766034b09d285472e34a1f448ce0ac89821
[]
no_license
ericnwin/Python-Crash-Course-Lessons
b2b12c221f545c961a47f2343b2aa3dac901927b
7b755c0b4ce65528f4880b3583aca3be9547b33b
refs/heads/master
2022-12-19T10:55:35.987330
2020-09-13T23:23:54
2020-09-13T23:23:54
295,255,228
0
0
null
null
null
null
UTF-8
Python
false
false
2,190
py
# You just found out that your new dinner table wonโ€™t # arrive in time for the dinner, and you have space for only two guests. # โ€ข Start with your program from Exercise 3-6. Add a new line that prints a # message saying that you can invite only two people for dinner. # โ€ข Use pop() to remove guests from your list one at a time until only two # names remain in your list. Each time you pop a name from your list, print # a message to that person letting them know youโ€™re sorry you canโ€™t invite # them to dinner. # โ€ข Print a message to each of the two people still on your list, letting them # know theyโ€™re still invited. # โ€ข Use del to remove the last two names from your list, so you have an empty # list. Print your list to make sure you actually have an empty list at the end # of your program. dinner_guests = ['Joeji', 'Elon Musk', 'OpenAI'] print( f"Hey {dinner_guests[0]} I'm a huge fan of your music! Please join me for dinner. ") print(f"Hey {dinner_guests[1]} can I get a free car? We can talk over dinner.") print(f"Hey {dinner_guests[2]} teach me AI. I gib food as payment.") # Declare who can't make it declined_invitations = "OpenAI" dinner_guests.remove(declined_invitations) print(f"Unfortunately {declined_invitations} can't make it.\n") # Adding new person to invite list new_person_invite = "Kanye West" dinner_guests.append(new_person_invite) print(dinner_guests) # Making 2nd set of invitations print( '\n' f"Hey {dinner_guests[0]} I'm a huge fan of your music! Please join me for dinner. ") print(f"Hey {dinner_guests[1]} can I get a free car? We can talk over dinner.") print(f"Hey {dinner_guests[2]} I loved you in Titanic. Please eat with me.\n") # shrinking down to 2 people and sending msg to those who are invited print(f"Hey sorry we only have room for two... I'm uninviting one of you sorry.\n") uninvited = dinner_guests.pop() print(f"Hey sorry {uninvited} you've been uninvited :( \n") print(f"Hey {dinner_guests[0]} you're still invited.") print(f"Hey {dinner_guests[1]} you're still invited.") # Remove last 2 names from list and printing out an empty list del dinner_guests[0] del dinner_guests[0] print(dinner_guests)
[ "noreply@github.com" ]
ericnwin.noreply@github.com
22ea3dfa2f6015821056ffa9d08c9af757802e96
c845f20c02b44809cc4a514637f01de7770c9661
/goods/็”Ÿไบง่ฎธๅฏ่ฏ.py
528cf03319bf36a2f89122ad11910d904f90d092
[]
no_license
20181105879/Student
2c2e275cfb334decd36e74d7c35d268f6947f6e5
90c31298997ec2c9b88c9f6d8dafd90438c75c77
refs/heads/main
2023-05-04T05:16:19.773862
2021-05-23T14:28:58
2021-05-23T14:28:58
369,209,581
0
0
null
null
null
null
UTF-8
Python
false
false
1,012
py
import requests import json if __name__=='__main__': url='http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsList' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36' } idlist=[] itemlist=[] for i in range(0,10): page=str(i) data={ 'on':' true', 'page':page, 'pageSize':' 15', 'productName':'', 'conditionType':' 1', 'applyname':'', 'pplysn':'', } jsonlist=requests.post(url=url,data=data,headers=headers).json() posturl='http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsById' for item in jsonlist['list']: idlist.append(item['ID']) data={ 'id':item['ID'] } itemlist.append(requests.post(url=posturl,data=data,headers=headers).json()) for item in itemlist: print(item)
[ "260575145@com" ]
260575145@com
9dbcb505b639e22b90865fcb3eba2f55754885fd
4ee88fa57d9bfe91032ef8b0ce8cce1e56bf728e
/api/content/test/test_router.py
1b35b6dade56e0c4d493fb880b4e2793135df061
[]
no_license
mnbbrown/contenter
b42198aa232d2fac6f3630f76e29319dac809ad3
3eda6777d1aae253afbde7a00fee362f61e45490
refs/heads/master
2021-05-21T19:07:05.140753
2020-04-03T15:01:33
2020-04-03T15:01:33
252,764,461
0
0
null
null
null
null
UTF-8
Python
false
false
1,015
py
import pytest from api.content.models import ContentType, Entity def test_list_content_types(client): response = client.get("/admin/content/") assert response.status_code == 200 def test_create_content_type(client): response = client.post( "/admin/content/", json={"name": "content type", "fields": [{"name": "name", "type": "string"}]} ) assert response.status_code == 200 def test_create_bad_content_type(client): response = client.post("/admin/content/", json={"fields": []}) assert response.status_code == 400 def test_list_entities(client, db): content_type = ContentType("test", None, [{"name": "name", "type": "string"}]) db.add(content_type) content_type_id = content_type.public_id db.flush() entity = Entity(content_type.id, {"name": "test"}) db.add(entity) db.commit() response = client.get(f"/admin/content/{content_type_id}/entities") assert response.status_code == 200 assert response.json()[0].get("name") == "test"
[ "me@matthewbrown.io" ]
me@matthewbrown.io
3b1f4b3c51f2e5d87d10b4dd24faf630961a85e1
7910b0c9a7ef23dd9400ef336813977a2c48affb
/sanskrit/migrations/0009_auto_20200227_0233.py
7972577ca21b97af2a21f8651b72e60086c1e4a5
[]
no_license
Rohit-Bhandari/LearnSanskrit
0b2f0991b056a34f678129a38a25798c265cb4ba
330e68dd9dbf56205f047ead93af479cfe6d5321
refs/heads/main
2023-05-03T00:42:49.655941
2021-05-22T15:48:31
2021-05-22T15:48:31
369,543,460
0
0
null
null
null
null
UTF-8
Python
false
false
511
py
# Generated by Django 2.2.6 on 2020-02-26 21:03 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('sanskrit', '0008_auto_20200227_0202'), ] operations = [ migrations.RemoveField( model_name='sanskritlessons', name='completed', ), migrations.AddField( model_name='userprofile', name='completed', field=models.BooleanField(default=False), ), ]
[ "rohitbhandari080@gmail.com" ]
rohitbhandari080@gmail.com
b2fcc624e79ef9ef10c62818cb0c7d2d93c0d250
080bbe77da955b3917435c25fc63b90b0f3c724e
/botorch/utils/multi_objective/box_decomposition.py
e566f0c69e493acd4370a0a28582374334f572aa
[ "MIT" ]
permissive
irinaespejo/botorch
3d15d962ff0f5bb34fbd11b2eb7549db755af705
e4dcf603fdaf83f0e5f8b9b392f943c89dfff7eb
refs/heads/master
2023-07-11T18:02:11.853790
2021-08-19T15:57:21
2021-08-19T15:58:12
316,017,084
0
0
MIT
2020-11-25T18:02:11
2020-11-25T18:02:09
null
UTF-8
Python
false
false
744
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" DEPRECATED - Box decomposition algorithms. Use the botorch.utils.multi_objective.box_decompositions instead. """ import warnings from botorch.utils.multi_objective.box_decompositions.non_dominated import ( # noqa F401 NondominatedPartitioning, ) warnings.warn( "The botorch.utils.multi_objective.box_decomposition module has " "been renamed to botorch.utils.multi_objective.box_decompositions. " "botorch.utils.multi_objective.box_decomposition will be removed in " "the next release.", DeprecationWarning, )
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
199f6cc9892da170451dd4f3f6f97aebd4b38111
a582676e281e8bd490bce79f17880d6195d96b83
/vote_site/settings.py
b803bffe6f7207c5ecaa63b42c223f78bfec2c91
[]
no_license
kyledavelaar/django-voting-app
1e435b85bed0891fe2a56715495e10cedabf6793
c79aa8a723483a63bf0aae663c6eed3431b79f8a
refs/heads/master
2021-06-27T20:17:52.850025
2017-09-09T21:24:13
2017-09-09T21:24:13
102,985,888
0
0
null
null
null
null
UTF-8
Python
false
false
3,135
py
""" Django settings for vote_site project. Generated by 'django-admin startproject' using Django 1.11.5. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'uot43!i1z%7l9_!cigd59onuddtj(f@li&novbl30pv-*fvjcg' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'vote_site.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'vote_site.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
[ "kyle@Kyles-MacBook-Pro.local" ]
kyle@Kyles-MacBook-Pro.local
8c040bcc27e5e281cd4496ce81d4e54bdd56d799
52125c518edbad99f5bb76d662397e34c0c281db
/users/forms.py
70f19ee26329d74b3bb5578e77871a3eb6c02ab6
[ "MIT" ]
permissive
Mich45/geddit
531a883e07ec282eaecc482591817ab6c9be77e2
6b985221d117e982b17dc48697bb8f611baa3366
refs/heads/master
2022-11-21T01:28:48.389908
2020-07-20T07:29:20
2020-07-20T07:29:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
676
py
from django import forms from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm from .models import Profile class UserRegisterForm(UserCreationForm): email = forms.EmailField() class Meta: model = User fields = ['username', 'email', 'first_name'] class UserUpdateForm(forms.ModelForm): email = forms.EmailField() class Meta: model = User fields = ['username', 'email', 'first_name'] class ProfileUpdateForm(forms.ModelForm): class Meta: model = Profile fields = ['image'] labels = {'image': 'Image'} widgets = {'image': forms.FileInput()}
[ "arthtyagi7@gmail.com" ]
arthtyagi7@gmail.com
187fe74df27234c89d53fd123734475bb1c8d243
c1631ba56600424e5cc473ccf160b5d935b4301c
/demo/BDTB.py
843840155faaf0525e85e266cbb4d22b3d9890f1
[]
no_license
misasagi1988/webcrawler
149155a6b5c1141722bcb9e06c13c93d862fbf58
bf3a1ea732cef3830ecebd90a67bf34a448422d5
refs/heads/master
2020-11-29T14:51:26.137966
2016-08-29T05:49:31
2016-08-29T05:49:31
66,517,150
0
0
null
null
null
null
UTF-8
Python
false
false
3,709
py
# -*- coding:utf-8 -*- import urllib2 import re class Tool(object): pattern_img = re.compile('<img.*?>| {7}') pattern_addr = re.compile('<a.*?>|</a>') pattern_line = re.compile('<tr>|<div>|</div>|</p>') pattern_td = re.compile('<td>') pattern_para = re.compile('<p.*?>') pattern_br = re.compile('<br><br>|<br>') def replace(self, content): content = re.sub(self.pattern_img, '', content) content = re.sub(self.pattern_addr, '', content) content = re.sub(self.pattern_line, '\n', content) content = re.sub(self.pattern_td, '\t', content) content = re.sub(self.pattern_para, '\n ', content) content = re.sub(self.pattern_br, '\n', content) return content.strip() class BDTB(object): def __init__(self, baseurl, see_lz): self.baseurl = baseurl self.see_lz = "?see_lz=" + str(see_lz) self.tool = Tool() self.default_filename = 'bdtb.txt' self.floor = 1 def deleteFile(self): with open(self.default_filename, 'w'): print 'clear default file content' def getPage(self, page_index): try: request = urllib2.Request(self.baseurl + self.see_lz + "&pn=" + str(page_index)) content = urllib2.urlopen(request).read().decode("utf-8") return content except urllib2.URLError, e: if hasattr(e, "code"): print e.code if hasattr(e, "reason"): print e.reason return None def getTitle(self, content): #content = self.getPage(1) reg = '<h3 class="core_title_txt.*?>(.*?)</h3>' pattern = re.compile(reg, re.S) match_res = re.search(pattern, content) if match_res: return match_res.group(1).strip() else: return None def getPageNum(self, content): #content = self.getPage(1) reg = '<li class="l_reply_num.*?</span>.*?<span.*?>(.*?)</span>' pattern = re.compile(reg, re.S) match_res = re.search(pattern, content) if match_res: return match_res.group(1).strip() else: return None def getContent(self, page_index): content = self.getPage(page_index) if content: reg = '<div id="post_content_.*?>(.*?)</div>' pattern = re.compile(reg, re.S) match_res = re.findall(pattern, content) cont_list = [] for item in match_res: item = '\n' + self.tool.replace(item) + '\n' cont_list.append(item.encode('utf-8')) return cont_list else: return None def writeFile(self, content, filename = None): if filename is None: filename = self.default_filename if not content: return with open(filename, 'a+') as f: for item in content: floortag = '\n%d floor------------------------------------------------------------\n' %self.floor self.floor = self.floor + 1 f.write(floortag) f.write(item) def run(self): self.deleteFile() page_index = self.getPage(1) page_title = self.getTitle(page_index) page_number = self.getPageNum(page_index) print 'page title is: ', page_title print 'page number is: ', page_number for i in range(1, int(page_number) + 1): print 'now crawling page %s: ' %int(i) self.writeFile(self.getContent(i)) print 'crawling end, total floor count: ', self.floor - 1 bdtb = BDTB("http://tieba.baidu.com/p/3138733512", 1) bdtb.run()
[ "meng_yujing@yeah.net" ]
meng_yujing@yeah.net
c949825bd197d7e4f5ac77c89814626a99bf58ae
d36546287721db2e97e0a4323e143163a14ce0b1
/2017/20/particle_swarm.py
9eec47de4d5275002ef18cae18495acda5fa59a1
[ "Unlicense" ]
permissive
GeoffRiley/AdventOfCode
ca258edee05ad7a4b6e6db2e59b83e8879b48af0
567df9cb5645bc6cf4c22063a84a621039069311
refs/heads/master
2023-01-12T03:42:11.099541
2022-12-25T17:16:20
2022-12-25T17:16:20
225,139,440
3
0
null
null
null
null
UTF-8
Python
false
false
2,628
py
import re from collections import deque, Counter from copy import deepcopy from dataclasses import dataclass from operator import add from statistics import mean from typing import List @dataclass class Particle(object): id: int pos: List[int] vec: List[int] acc: List[int] @property def dist(self): return sum(abs(x) for x in self.pos) @property def pos_hash(self): return hash(tuple(self.pos)) def move(self): self.vec = list(map(add, self.vec, self.acc)) self.pos = list(map(add, self.pos, self.vec)) VECTOR_RE = re.compile(r'^p=<([-\d,]+)>,\s+' r' v=<([-\d,]+)>,\s+' r' a=<([-\d,]+)>', re.VERBOSE) def particle_swarm(particles: List[Particle], part1=True): last_close = deque([0 for _ in range(20)], maxlen=150) if part1: closest_particle = calc_closest(particles) else: closest_particle = len(particles) while mean(last_close) != closest_particle: last_close.append(closest_particle) move_particles(particles) if part1: closest_particle = calc_closest(particles) else: remove_collisions(particles) closest_particle = len(particles) return closest_particle def remove_collisions(particles: List[Particle]) -> None: collision_collection = Counter(map(lambda p: p.pos_hash, particles)) for pos, cnt in collision_collection.items(): if cnt == 1: continue particle_array = [p for p in particles if p.pos_hash == pos] for p in particle_array: particles.remove(p) def move_particles(particles: List[Particle]) -> None: for particle in particles: particle.move() def calc_closest(particles: List[Particle]) -> int: min_part = min(particles, key=lambda p: p.dist) return min_part.id def parse_particle_list(inp: List[str]) -> List[Particle]: particles = [] for n, line in enumerate(inp): pos_s, vec_s, acc_s = (list(map(int, s.split(','))) for s in VECTOR_RE.match(line).groups()) particles.append(Particle(n, pos_s, vec_s, acc_s)) return particles if __name__ == '__main__': with open('input.txt') as swarm_file: swarm_list = swarm_file.read().splitlines(keepends=False) particle_list = parse_particle_list(swarm_list) particle_list_2 = deepcopy(particle_list) print(f'Day 20, part 1: {particle_swarm(particle_list)}') print(f'Day 20, part 2: {particle_swarm(particle_list_2, False)}') # Day 20, part 1: 243 # Day 20, part 2: 648
[ "gir6@ou.ac.uk" ]
gir6@ou.ac.uk
934aee2b86464868a709c9fd85fcb5b54022c3bb
0d88817307e26e3d4e5c26a0e6c8a1d5bf37711f
/stopp/stopp.py
aaace6eb13d18932db4d6d6b91b63be27f01183f
[ "MIT" ]
permissive
AbdelrhmanBassiouny/stopp
12b406824d780dea56a20eed5a046ef8b56df258
2713d49e038f640e87ecf8513705651c0ee3e0d1
refs/heads/master
2022-06-15T08:04:56.196553
2021-08-01T12:57:54
2021-08-01T12:57:54
252,969,836
4
3
null
null
null
null
UTF-8
Python
false
false
3,758
py
import numpy as np from .data_structs import RobotKinematics from .joint_profile import ConstructJointProfile from .trajectory_utils import EnsurePathHasOddSize, FindMaxJoint, SynchronizeJointsToTrajectory, ValidateRobotPath class Robot: """ define a robot with certain kinematic limits to be used when constructing a trajectory profile""" def __init__(self, n_joints, j_max, a_max, v_max): """ initialize robot kinematic parameters with user specified parameters Note:: If the robot joints have different kinematic limits, It is recommended to use the lowest values here to ensure safety and correct performance. :param n_joints: defining robot's number of joints :type n_joints: int :param j_max: defining joint maximum jerk to use in trajectory (rad/sec^3) :type j_max: float :param a_max: defining joint maximum acceleration to use in trajectory (rad/sec^2) :type a_max: float :param v_max: defining joint maximum velocity to use in trajectory (rad/sec) :type v_max: float """ if n_joints <= 0: raise ValueError("Robot number of joints should be greater than zero") if j_max <= 0: raise ValueError("Robot jerk limit should be greater than zero") if a_max <= 0: raise ValueError("Robot acceleration limit should be greater than zero") if v_max <= 0: raise ValueError("Robot velocity limit should be greater than zero") self.rob_k = RobotKinematics(n_joints, j_max, a_max, v_max) def TimeParameterizePath(self, robot_path, interp_time_step=None): """Construct the trajectory of the robot from a predefined path. :param robot_path: Union[ndarray, List, Tuple] -> rows=number of joints, columns= number of path points. :param interp_time_step: if not None, interpolation process will be added using this time step. :return rob_trajectory: (list) each list entry is a (TrajectoryPoint) containing a joint trajectory. """ # Check path dimensions, types, and number of joints. ValidateRobotPath(robot_path, self.rob_k.j_num) # Copy path to a numpy nd-array object. rob_path = np.copy(robot_path) # If path points are even, Add a point in the middle to make it Odd. rob_path = EnsurePathHasOddSize(rob_path) # Find Max Joint, which is the joint that moves the greatest distance. max_j_num = FindMaxJoint(rob_path) # Construct Max Joint Profile. max_trajectory = ConstructJointProfile(self.rob_k, rob_path[max_j_num], interp_time_step) # Construct Other Joints' Profiles from the Max Joint Profile, to have them Synchronized. rob_trajectory = SynchronizeJointsToTrajectory(rob_path, max_trajectory) return rob_trajectory if __name__ == "__main__": """This is an Example usage of the library, Enjoy!""" rob_j_max = 800.0 rob_a_max = 50 rob_v_max = 6 joints = 2 n_points = 31 time_step = 0.004 path = np.array([np.linspace(0, 50*(j+1), n_points) for j in range(joints)]) * (np.pi / 180) my_rob = Robot(joints, rob_j_max, rob_a_max, rob_v_max) trajectory = my_rob.TimeParameterizePath(path, time_step) for j in range(joints): print("joint {} trajectory points time = {}".format(j, trajectory[j].t)) print("joint {} trajectory points position = {}".format(j, trajectory[j].pos)) print("joint {} trajectory points velocity = {}".format(j, trajectory[j].vel)) print("joint {} trajectory points acceleration = {}".format(j, trajectory[j].acc)) print("============================================================")
[ "Bassio@programmer.com" ]
Bassio@programmer.com
3c2ddbefb534733402dab2315f80ebe6a3f1e70b
4f4ecdacdd57fddfec039439589472382875c539
/arelle/ModelRenderingObject.py
b01745af7d306800437c03ceca950e84d7240f08
[ "Apache-2.0" ]
permissive
irjudson/Arelle
0fadce7cf36d41115b1e833c9e30fb717c120613
d03be32dce33c34c3388e54afbe837bf83a4ff48
refs/heads/master
2020-05-29T11:39:16.391796
2013-11-07T23:00:14
2013-11-07T23:00:14
1,867,690
0
0
null
null
null
null
UTF-8
Python
false
false
69,169
py
''' Created on Mar 7, 2011 @author: Mark V Systems Limited (c) Copyright 2011 Mark V Systems Limited, All rights reserved. ''' import inspect, os from arelle import XmlUtil, XbrlConst, XPathParser, Locale, XPathContext from arelle.ModelDtsObject import ModelResource from arelle.ModelInstanceObject import ModelDimensionValue from arelle.ModelValue import qname, QName from arelle.ModelObject import ModelObject from arelle.ModelFormulaObject import (Trace, ModelFormulaResource, ModelFormulaRules, ModelConceptName, ModelParameter, Aspect, aspectStr) from arelle.ModelInstanceObject import ModelFact from arelle.FormulaEvaluator import (filterFacts as formulaEvaluatorFilterFacts, aspectsMatch, factsPartitions, VariableBinding) from arelle.PrototypeInstanceObject import FactPrototype ROLLUP_NOT_ANALYZED = 0 CHILD_ROLLUP_FIRST = 1 CHILD_ROLLUP_LAST = 2 CHILDREN_BUT_NO_ROLLUP = 3 OPEN_ASPECT_ENTRY_SURROGATE = '\uDBFF' EMPTY_SET = set() def definitionNodes(nodes): return [(ord.definitionNodeObject if isinstance(node, StructuralNode) else node) for node in nodes] # table linkbase structural nodes for rendering class StructuralNode: def __init__(self, parentStructuralNode, definitionNode, zInheritance=None, contextItemFact=None, breakdownTableNode=None): self.parentStructuralNode = parentStructuralNode self._definitionNode = definitionNode self._rendrCntx = getattr(definitionNode.modelXbrl, "rendrCntx", None) # None for EU 2010 table linkbases self.variables = {} self.aspects = {} self.childStructuralNodes = [] self.rollUpStructuralNode = None self.choiceStructuralNodes = [] self.zInheritance = zInheritance if contextItemFact is not None: self.contextItemBinding = VariableBinding(self._rendrCntx, boundFact=contextItemFact) if isinstance(self.contextItemBinding.yieldedFact, FactPrototype): for aspect in definitionNode.aspectsCovered(): if aspect != Aspect.DIMENSIONS: self.aspectEntryObjectId = self.aspects[aspect] = contextItemFact.aspectEntryObjectId break else: self.contextItemBinding = None self.subtreeRollUp = ROLLUP_NOT_ANALYZED self.depth = parentStructuralNode.depth + 1 if parentStructuralNode else 0 if breakdownTableNode is not None: self.breakdownTableNode = breakdownTableNode self.tagSelector = definitionNode.tagSelector self.isLabeled = True @property def modelXbrl(self): return self._definitionNode.modelXbrl @property def isAbstract(self): if self.subtreeRollUp: return self.subtreeRollUp == CHILDREN_BUT_NO_ROLLUP try: try: return self.abstract # ordinate may have an abstract attribute except AttributeError: # if none use axis object return self.definitionNode.isAbstract except AttributeError: # axis may never be abstract return False @property def isRollUp(self): return self.definitionNode.isRollUp @property def cardinalityAndDepth(self): return self.definitionNode.cardinalityAndDepth(self) @property def structuralDepth(self): if self.parentStructuralNode is not None: return self.parentStructuralNode.structuralDepth + 1 return 0 @property def definitionNode(self): if self.choiceStructuralNodes: return self.choiceStructuralNodes[getattr(self,"choiceNodeIndex",0)]._definitionNode return self._definitionNode def breakdownNode(self, tableELR): definitionNode = self._definitionNode if isinstance(definitionNode, ModelBreakdown): return definitionNode axisSubtreeRelSet = definitionNode.modelXbrl.relationshipSet((XbrlConst.tableBreakdownTree, XbrlConst.tableBreakdownTreeMMDD, XbrlConst.tableBreakdownTree201305, XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree201301, XbrlConst.tableAxisSubtree2011), tableELR) while (True): for parentRel in axisSubtreeRelSet.toModelObject(definitionNode): definitionNode = parentRel.fromModelObject if isinstance(definitionNode, ModelBreakdown): return definitionNode break # recurse to move to this node's parent breakdown node return definitionNode # give up here def constraintSet(self, tagSelectors=None): definitionNode = self.definitionNode if tagSelectors: for tag in tagSelectors: if tag in definitionNode.constraintSets: return definitionNode.constraintSets[tag] return definitionNode.constraintSets.get(None) # returns None if no default constraint set def aspectsCovered(self): return _DICT_SET(self.aspects.keys()) | self.definitionNode.aspectsCovered() def hasAspect(self, aspect, inherit=True): return (aspect in self.aspects or self.definitionNode.hasAspect(self, aspect) or (inherit and self.parentStructuralNode is not None and self.parentStructuralNode.hasAspect(aspect, inherit))) def aspectValue(self, aspect, inherit=True, dims=None, depth=0, tagSelectors=None): xc = self._rendrCntx if self.choiceStructuralNodes: # use aspects from choice structural node chosenStructuralNode = self.choiceStructuralNodes[getattr(self,"choiceNodeIndex",0)] aspects = chosenStructuralNode.aspects definitionNode = chosenStructuralNode._definitionNode contextItemBinding = chosenStructuralNode.contextItemBinding else: aspects = self.aspects definitionNode = self._definitionNode contextItemBinding = self.contextItemBinding constraintSet = self.constraintSet(tagSelectors) if aspect == Aspect.DIMENSIONS: if dims is None: dims = set() if inherit and self.parentStructuralNode is not None: dims |= self.parentStructuralNode.aspectValue(aspect, dims=dims, depth=depth+1) if aspect in aspects: dims |= aspects[aspect] elif constraintSet is not None and constraintSet.hasAspect(self, aspect): dims |= set(definitionNode.aspectValue(xc, aspect) or {}) if constraintSet is not None and constraintSet.hasAspect(self, Aspect.OMIT_DIMENSIONS): dims -= set(constraintSet.aspectValue(xc, Aspect.OMIT_DIMENSIONS)) return dims if aspect in aspects: return aspects[aspect] elif constraintSet is not None and constraintSet.hasAspect(self, aspect): if isinstance(definitionNode, ModelSelectionDefinitionNode): # result is in the indicated variable of ordCntx return self.variables.get(self._definitionNode.variableQname) elif isinstance(definitionNode, ModelFilterDefinitionNode): if contextItemBinding: return contextItemBinding.aspectValue(aspect) elif isinstance(definitionNode, ModelTupleDefinitionNode): if aspect == Aspect.LOCATION and contextItemBinding: return contextItemBinding.yieldedFact # non-location tuple aspects don't leak into cell bindings else: return constraintSet.aspectValue(xc, aspect) if inherit and self.parentStructuralNode is not None: return self.parentStructuralNode.aspectValue(aspect, depth=depth+1) return None ''' @property def primaryItemQname(self): # for compatibility with viewRelationsihps if Aspect.CONCEPT in self.aspects: return self.aspects[Aspect.CONCEPT] return self.definitionNode.primaryItemQname @property def explicitDims(self): return self.definitionNode.explicitDims ''' def objectId(self, refId=""): return self._definitionNode.objectId(refId) def header(self, role=None, lang=None, evaluate=True, returnGenLabel=True, returnMsgFormatString=False): # if ord is a nested selectionAxis selection, use selection-message or text contents instead of axis headers isZSelection = isinstance(self._definitionNode, ModelSelectionDefinitionNode) and hasattr(self, "zSelection") if role is None: # check for message before checking for genLabel msgsRelationshipSet = self._definitionNode.modelXbrl.relationshipSet( (XbrlConst.tableDefinitionNodeSelectionMessage201301, XbrlConst.tableAxisSelectionMessage2011) if isZSelection else (XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011)) if msgsRelationshipSet: msg = msgsRelationshipSet.label(self._definitionNode, XbrlConst.standardMessage, lang, returnText=False) if msg is not None: if evaluate: if returnMsgFormatString: return msg.formatString # not possible to evaluate (during resolution) else: return self.evaluate(msg, msg.evaluate) else: return XmlUtil.text(msg) if isZSelection: # no message, return text of selection return self.variables.get(self._definitionNode.variableQname, "selection") if returnGenLabel: label = self._definitionNode.genLabel(role=role, lang=lang) if label: return label if self.isEntryAspect: # True if open node bound to a prototype, false if boudn to a real fact return OPEN_ASPECT_ENTRY_SURROGATE # sort pretty high, work ok for python 2.7/3.2 as well as 3.3 # if there's a child roll up, check for it if self.rollUpStructuralNode is not None: # check the rolling-up child too return self.rollUpStructuralNode.header(role, lang, evaluate, returnGenLabel, returnMsgFormatString) # if aspect is a concept of dimension, return its standard label concept = None for aspect in self.aspectsCovered(): aspectValue = self.aspectValue(aspect) if isinstance(aspect, QName) or aspect == Aspect.CONCEPT: # dimension or concept if isinstance(aspectValue, QName): concept = self.modelXbrl.qnameConcepts[aspectValue] break elif isinstance(aspectValue, ModelDimensionValue): if aspectValue.isExplicit: concept = aspectValue.member elif aspectValue.isTyped: return XmlUtil.innerTextList(aspectValue.typedMember) elif isinstance(aspectValue, ModelObject): text = XmlUtil.innerTextList(aspectValue) if not text and XmlUtil.hasChild(aspectValue, aspectValue.namespaceURI, "forever"): text = "forever" return text if concept is not None: label = concept.label(lang=lang) if label: return label # if there is a role, check if it's available on a parent node if role and self.parentStructuralNode is not None: return self.parentStructuralNode.header(role, lang, evaluate, returnGenLabel, returnMsgFormatString) return None def evaluate(self, evalObject, evalMethod, otherOrdinate=None, evalArgs=()): xc = self._rendrCntx if self.contextItemBinding and not isinstance(xc.contextItem, ModelFact): previousContextItem = xc.contextItem # xbrli.xbrl xc.contextItem = self.contextItemBinding.yieldedFact else: previousContextItem = None if self.choiceStructuralNodes and hasattr(self,"choiceNodeIndex"): variables = self.choiceStructuralNodes[self.choiceNodeIndex].variables else: variables = self.variables removeVarQnames = [] for variablesItems in (self.tableDefinitionNode.parameters.items(), variables.items()): for qn, value in variablesItems: if qn not in xc.inScopeVars: removeVarQnames.append(qn) xc.inScopeVars[qn] = value if self.parentStructuralNode is not None: result = self.parentStructuralNode.evaluate(evalObject, evalMethod, otherOrdinate, evalArgs) elif otherOrdinate is not None: # recurse to other ordinate (which will recurse to z axis) result = otherOrdinate.evaluate(evalObject, evalMethod, None, evalArgs) elif self.zInheritance is not None: result = self.zInheritance.evaluate(evalObject, evalMethod, None, evalArgs) else: try: result = evalMethod(xc, *evalArgs) except XPathContext.XPathException as err: xc.modelXbrl.error(err.code, _("%(element)s set %(xlinkLabel)s \nException: %(error)s"), modelObject=evalObject, element=evalObject.localName, xlinkLabel=evalObject.xlinkLabel, error=err.message) result = '' for qn in removeVarQnames: xc.inScopeVars.pop(qn) if previousContextItem is not None: xc.contextItem = previousContextItem # xbrli.xbrl return result def hasValueExpression(self, otherAxisStructuralNode=None): return (self.definitionNode.hasValueExpression or (otherAxisStructuralNode is not None and otherAxisStructuralNode.definitionNode.hasValueExpression)) def evalValueExpression(self, fact, otherAxisStructuralNode=None): for structuralNode in (self, otherAxisStructuralNode): if structuralNode is not None and structuralNode.definitionNode.hasValueExpression: return self.evaluate(self.definitionNode, structuralNode.definitionNode.evalValueExpression, otherAxisStructuralNode=otherAxisStructuralNode, evalArgs=(fact,)) return None @property def isEntryAspect(self): # true if open node and bound to a fact prototype return self.contextItemBinding is not None and isinstance(self.contextItemBinding.yieldedFact, FactPrototype) def isEntryPrototype(self, default=False): # true if all axis open nodes before this one are entry prototypes (or not open axes) if self.contextItemBinding is not None: # True if open node bound to a prototype, false if boudn to a real fact return isinstance(self.contextItemBinding.yieldedFact, FactPrototype) if self.parentStructuralNode is not None: return self.parentStructuralNode.isEntryPrototype(default) return default # nothing open to be bound to a fact @property def tableDefinitionNode(self): if self.parentStructuralNode is None: return self.breakdownTableNode else: return self.parentStructuralNode.tableDefinitionNode @property def tagSelectors(self): try: return self._tagSelectors except AttributeError: if self.parentStructuralNode is None: self._tagSelectors = set() else: self._tagSelectors = self.parentStructuralNode.tagSelectors if self.tagSelector: self._tagSelectors.add(self.tagSelector) return self._tagSelectors @property def leafNodeCount(self): childLeafCount = 0 for childStructuralNode in self.childStructuralNodes: childLeafCount += childStructuralNode.leafNodeCount if childLeafCount == 0: return 1 if not self.isAbstract and isinstance(self.definitionNode, (ModelClosedDefinitionNode, ModelEuAxisCoord)): childLeafCount += 1 # has a roll up return childLeafCount def setHasOpenNode(self): if self.parentStructuralNode is not None: self.parentStructuralNode.setHasOpenNode() else: self.hasOpenNode = True def inheritedPrimaryItemQname(self, view): return (self.primaryItemQname or self.inheritedPrimaryItemQname(self.parentStructuralNode, view)) def inheritedExplicitDims(self, view, dims=None, nested=False): if dims is None: dims = {} if self.parentOrdinateContext: self.parentStructuralNode.inheritedExplicitDims(view, dims, True) for dim, mem in self.explicitDims: dims[dim] = mem if not nested: return {(dim,mem) for dim,mem in dims.items() if mem != 'omit'} def inheritedAspectValue(self, otherAxisStructuralNode, view, aspect, tagSelectors, xAspectStructuralNodes, yAspectStructuralNodes, zAspectStructuralNodes): aspectStructuralNodes = xAspectStructuralNodes.get(aspect, EMPTY_SET) | yAspectStructuralNodes.get(aspect, EMPTY_SET) | zAspectStructuralNodes.get(aspect, EMPTY_SET) structuralNode = None if len(aspectStructuralNodes) == 1: structuralNode = aspectStructuralNodes.pop() elif len(aspectStructuralNodes) > 1: if aspect == Aspect.LOCATION: hasClash = False for _aspectStructuralNode in aspectStructuralNodes: if not _aspectStructuralNode.definitionNode.aspectValueDependsOnVars(aspect): if structuralNode: hasClash = True else: structuralNode = _aspectStructuralNode else: # take closest structural node hasClash = True ''' reported in static analysis by RenderingEvaluator.py if hasClash: from arelle.ModelFormulaObject import aspectStr view.modelXbrl.error("xbrlte:aspectClash", _("Aspect %(aspect)s covered by multiple axes."), modelObject=view.modelTable, aspect=aspectStr(aspect)) ''' if structuralNode: definitionNodeConstraintSet = structuralNode.constraintSet(tagSelectors) if definitionNodeConstraintSet is not None and definitionNodeConstraintSet.aspectValueDependsOnVars(aspect): return self.evaluate(definitionNodeConstraintSet, definitionNodeConstraintSet.aspectValue, # this passes a method otherAxisStructuralNode=otherAxisStructuralNode, evalArgs=(aspect,)) return structuralNode.aspectValue(aspect, tagSelectors=tagSelectors) return None def __repr__(self): return ("structuralNode[{0}]{1})".format(self.objectId(),self.definitionNode)) # Root class for rendering is formula, to allow linked and nested compiled expressions def definitionModelLabelsView(mdlObj): return tuple(sorted([("{} {} {} {}".format(label.localName, str(rel.order).rstrip("0").rstrip("."), os.path.basename(label.role), label.xmlLang), label.stringValue) for rel in mdlObj.modelXbrl.relationshipSet((XbrlConst.elementLabel,XbrlConst.elementReference)).fromModelObject(mdlObj) for label in (rel.toModelObject,)] + [("xlink:label", mdlObj.xlinkLabel)])) # 2010 EU Table linkbase class ModelEuTable(ModelResource): def init(self, modelDocument): super(ModelEuTable, self).init(modelDocument) self.aspectsInTaggedConstraintSets = set() @property def aspectModel(self): return "dimensional" @property def propertyView(self): return ((("id", self.id),) + self.definitionLabelsView) def header(self, role=None, lang=None, strip=False, evaluate=True): return self.genLabel(role=role, lang=lang, strip=strip) @property def parameters(self): return {} @property def definitionLabelsView(self): return definitionModelLabelsView(self) def __repr__(self): return ("table[{0}]{1})".format(self.objectId(),self.propertyView)) class ModelEuAxisCoord(ModelResource): def init(self, modelDocument): super(ModelEuAxisCoord, self).init(modelDocument) @property def abstract(self): return self.get("abstract") or 'false' @property def isAbstract(self): return self.abstract == "true" @property def isMerged(self): return False @property def parentChildOrder(self): return self.get("parentChildOrder") @property def isRollUp(self): return False @property def parentDefinitionNode(self): try: return self._parentDefinitionNode except AttributeError: parentDefinitionNode = None for rel in self.modelXbrl.relationshipSet(XbrlConst.euAxisMember).toModelObject(self): parentDefinitionNode = rel.fromModelObject break self._parentDefinitionNode = parentDefinitionNode return parentDefinitionNode def aspectsCovered(self): aspectsCovered = set() if XmlUtil.hasChild(self, XbrlConst.euRend, "primaryItem"): aspectsCovered.add(Aspect.CONCEPT) if XmlUtil.hasChild(self, XbrlConst.euRend, "timeReference"): aspectsCovered.add(Aspect.INSTANT) for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord"): aspectsCovered.add(self.prefixedNameQname(e.get("dimension"))) return aspectsCovered @property def constraintSets(self): return {None: self} @property def tagSelector(self): # default constraint set for ruleNode has name None return None def hasAspect(self, structuralNode, aspect): if aspect == Aspect.CONCEPT: return XmlUtil.hasChild(self, XbrlConst.euRend, "primaryItem") elif aspect == Aspect.DIMENSIONS: return XmlUtil.hasChild(self, XbrlConst.euRend, "explicitDimCoord") elif aspect in (Aspect.PERIOD_TYPE, Aspect.INSTANT): return XmlUtil.hasChild(self, XbrlConst.euRend, "timeReference") elif isinstance(aspect, QName): for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord"): if self.prefixedNameQname(e.get("dimension")) == aspect: return True return False def aspectValueDependsOnVars(self, aspect): return False def aspectValue(self, xpCtx, aspect, inherit=False): if aspect == Aspect.DIMENSIONS: dims = set(self.prefixedNameQname(e.get("dimension")) for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord")) if inherit and self.parentDefinitionNode is not None: dims |= self.parentDefinitionNode.aspectValue(None, aspect, inherit) return dims if inherit and not self.hasAspect(None, aspect): if self.parentDefinitionNode is not None: return self.parentDefinitionNode.aspectValue(None, aspect, inherit) return None if aspect == Aspect.CONCEPT: priItem = XmlUtil.childAttr(self, XbrlConst.euRend, "primaryItem", "name") if priItem is not None: return self.prefixedNameQname(priItem) return None elif aspect == Aspect.PERIOD_TYPE: if XmlUtil.hasChild(self, XbrlConst.euRend, "timeReference"): return "instant" elif aspect == Aspect.INSTANT: return XmlUtil.datetimeValue(XmlUtil.childAttr(self, XbrlConst.euRend, "timeReference", "instant"), addOneDay=True) elif isinstance(aspect, QName): for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord"): if self.prefixedNameQname(e.get("dimension")) == aspect: return self.prefixedNameQname(e.get("value")) return None ''' @property def primaryItemQname(self): priItem = XmlUtil.childAttr(self, XbrlConst.euRend, "primaryItem", "name") if priItem is not None: return self.prefixedNameQname(priItem) return None @property def explicitDims(self): return {(self.prefixedNameQname(e.get("dimension")), self.prefixedNameQname(e.get("value"))) for e in XmlUtil.children(self, XbrlConst.euRend, "explicitDimCoord")} @property def instant(self): return XmlUtil.datetimeValue(XmlUtil.childAttr(self, XbrlConst.euRend, "timeReference", "instant"), addOneDay=True) ''' def cardinalityAndDepth(self, structuralNode): return (1, 1) def header(self, role=None, lang=None, strip=False, evaluate=True): return self.genLabel(role=role, lang=lang, strip=strip) @property def hasValueExpression(self): return False @property def definitionLabelsView(self): return definitionModelLabelsView(self) @property def propertyView(self): explicitDims = self.aspectValue(None, Aspect.DIMENSIONS, inherit=True) return ((("id", self.id), ("primary item", self.aspectValue(None, Aspect.CONCEPT, inherit=True)), ("dimensions", "({0})".format(len(explicitDims)), tuple((str(dim),str(self.aspectValue(None, dim, inherit=True))) for dim in sorted(explicitDims))) if explicitDims else (), ("abstract", self.abstract)) + self.definitionLabelsView) def __repr__(self): return ("axisCoord[{0}]{1})".format(self.objectId(),self.propertyView)) # 2011 Table linkbase class ModelTable(ModelFormulaResource): def init(self, modelDocument): super(ModelTable, self).init(modelDocument) self.modelXbrl.modelRenderingTables.add(self) self.modelXbrl.hasRenderingTables = True self.aspectsInTaggedConstraintSets = set() @property def aspectModel(self): return self.get("aspectModel", "dimensional") # attribute removed 2013-06, always dimensional @property def descendantArcroles(self): return (XbrlConst.tableFilter, XbrlConst.tableFilterMMDD, XbrlConst.tableFilter201305, XbrlConst.tableFilter201301, XbrlConst.tableFilter2011, XbrlConst.tableBreakdown, XbrlConst.tableBreakdownMMDD, XbrlConst.tableBreakdown201305, XbrlConst.tableBreakdown201301, XbrlConst.tableAxis2011, XbrlConst.tableParameter, XbrlConst.tableParameterMMDD) @property def filterRelationships(self): try: return self._filterRelationships except AttributeError: rels = [] # order so conceptName filter is first (if any) (may want more sorting in future) for rel in self.modelXbrl.relationshipSet((XbrlConst.tableFilter, XbrlConst.tableFilterMMDD, XbrlConst.tableFilter201305, XbrlConst.tableFilter201301, XbrlConst.tableFilter2011)).fromModelObject(self): if isinstance(rel.toModelObject, ModelConceptName): rels.insert(0, rel) # put conceptName filters first else: rels.append(rel) self._filterRelationships = rels return rels @property def parameters(self): try: return self._parameters except AttributeError: self._parameters = {} xc = self.modelXbrl.rendrCntx for rel in self.modelXbrl.relationshipSet((XbrlConst.tableParameter, XbrlConst.tableParameterMMDD)).fromModelObject(self): if isinstance(rel.toModelObject, ModelParameter): varQname = rel.variableQname parameter = rel.toModelObject if isinstance(parameter, ModelParameter): self._parameters[varQname] = xc.inScopeVars.get(var.qname) return self._parameters def header(self, role=None, lang=None, strip=False, evaluate=True): return self.genLabel(role=role, lang=lang, strip=strip) @property def definitionLabelsView(self): return definitionModelLabelsView(self) @property def propertyView(self): return ((("id", self.id),) + self.definitionLabelsView) def __repr__(self): return ("modlTable[{0}]{1})".format(self.objectId(),self.propertyView)) class ModelDefinitionNode(ModelFormulaResource): def init(self, modelDocument): super(ModelDefinitionNode, self).init(modelDocument) @property def parentDefinitionNode(self): return None @property def descendantArcroles(self): return (XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD) def hasAspect(self, structuralNode, aspect): return False def aspectValueDependsOnVars(self, aspect): return False @property def variablename(self): """(str) -- name attribute""" return self.getStripped("name") @property def variableQname(self): """(QName) -- resolved name for an XPath bound result having a QName name attribute""" varName = self.variablename return qname(self, varName, noPrefixIsNoNamespace=True) if varName else None def aspectValue(self, xpCtx, aspect, inherit=True): if aspect == Aspect.DIMENSIONS: return [] return None def aspectsCovered(self): return set() @property def constraintSets(self): return {None: self} @property def tagSelector(self): return self.get("tagSelector") @property def valueExpression(self): return self.get("value") @property def hasValueExpression(self): return bool(self.valueProg) # non empty program def compile(self): if not hasattr(self, "valueProg"): value = self.valueExpression self.valueProg = XPathParser.parse(self, value, self, "value", Trace.VARIABLE) # duplicates formula resource for RuleAxis but not for other subclasses super(ModelDefinitionNode, self).compile() def evalValueExpression(self, xpCtx, fact): # compiled by FormulaResource compile() return xpCtx.evaluateAtomicValue(self.valueProg, 'xs:string', fact) ''' @property def primaryItemQname(self): # for compatibility with viewRelationsihps return None @property def explicitDims(self): return set() ''' @property def isAbstract(self): return False @property def isMerged(self): return False @property def isRollUp(self): return self.get("rollUp") == 'true' def cardinalityAndDepth(self, structuralNode): return (1, 1 if (structuralNode.header(evaluate=False) is not None) else 0) def header(self, role=None, lang=None, strip=False, evaluate=True): if role is None: # check for message before checking for genLabel msgsRelationshipSet = self.modelXbrl.relationshipSet((XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011)) if msgsRelationshipSet: msg = msgsRelationshipSet.label(self, XbrlConst.standardMessage, lang, returnText=False) if msg is not None: if evaluate: result = msg.evaluate(self.modelXbrl.rendrCntx) else: result = XmlUtil.text(msg) if strip: return result.strip() return result return self.genLabel(role=role, lang=lang, strip=strip) @property def definitionNodeView(self): return XmlUtil.xmlstring(self, stripXmlns=True, prettyPrint=True) @property def definitionLabelsView(self): return definitionModelLabelsView(self) class ModelBreakdown(ModelDefinitionNode): def init(self, modelDocument): super(ModelBreakdown, self).init(modelDocument) @property def parentChildOrder(self): return self.get("parentChildOrder") @property def descendantArcroles(self): return (XbrlConst.tableBreakdownTree, XbrlConst.tableBreakdownTreeMMDD, XbrlConst.tableBreakdownTree201305) @property def propertyView(self): return ((("id", self.id), ("parent child order", self.parentChildOrder), ("definition", self.definitionNodeView)) + self.definitionLabelsView) class ModelClosedDefinitionNode(ModelDefinitionNode): def init(self, modelDocument): super(ModelClosedDefinitionNode, self).init(modelDocument) @property def abstract(self): return self.get("abstract") @property def isAbstract(self): return self.abstract == 'true' @property def parentChildOrder(self): return self.get("parentChildOrder") @property def descendantArcroles(self): return (XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree201301, XbrlConst.tableAxisSubtree2011, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011) def filteredFacts(self, xpCtx, facts): aspects = self.aspectsCovered() axisAspectValues = dict((aspect, self.aspectValue(xpCtx, aspect)) for aspect in aspects) fp = FactPrototype(self, axisAspectValues) return set(fact for fact in facts if aspectsMatch(xpCtx, fact, fp, aspects)) class ModelConstraintSet(ModelFormulaRules): def init(self, modelDocument): super(ModelConstraintSet, self).init(modelDocument) self._locationSourceVar = self.source(Aspect.LOCATION_RULE, acceptFormulaSource=False) self._locationAspectCovered = set() self.aspectValues = {} # only needed if error blocks compiling this node, replaced by compile() self.aspectProgs = {} # ditto if self._locationSourceVar: self._locationAspectCovered.add(Aspect.LOCATION) # location is parent (tuple), not sibling def hasAspect(self, structuralNode, aspect, inherit=None): return self._hasAspect(structuralNode, aspect, inherit) def _hasAspect(self, structuralNode, aspect, inherit=None): # opaque from ModelRuleDefinitionNode if aspect == Aspect.LOCATION and self._locationSourceVar: return True return self.hasRule(aspect) def aspectValue(self, xpCtx, aspect, inherit=None): try: if xpCtx is None: xpCtx = self.modelXbrl.rendrCntx if aspect == Aspect.LOCATION and self._locationSourceVar in xpCtx.inScopeVars: return xpCtx.inScopeVars[self._locationSourceVar] return self.evaluateRule(xpCtx, aspect) except AttributeError: return '(unavailable)' # table defective or not initialized def aspectValueDependsOnVars(self, aspect): return aspect in _DICT_SET(self.aspectProgs.keys()) or aspect in self._locationAspectCovered def aspectsCovered(self): return _DICT_SET(self.aspectValues.keys()) | _DICT_SET(self.aspectProgs.keys()) | self._locationAspectCovered # provide model table's aspect model to compile() method of ModelFormulaRules @property def aspectModel(self): for frameRecord in inspect.stack(): obj = frameRecord[0].f_locals['self'] if isinstance(obj,ModelTable): return obj.aspectModel return None ''' @property def primaryItemQname(self): return self.evaluateRule(self.modelXbrl.rendrCntx, Aspect.CONCEPT) @property def explicitDims(self): dimMemSet = set() dims = self.evaluateRule(self.modelXbrl.rendrCntx, Aspect.DIMENSIONS) if dims: # may be none if no dim aspects on this ruleAxis for dim in dims: mem = self.evaluateRule(self.modelXbrl.rendrCntx, dim) if mem: # may be none if dimension was omitted dimMemSet.add( (dim, mem) ) return dimMemSet @property def instant(self): periodType = self.evaluateRule(self.modelXbrl.rendrCntx, Aspect.PERIOD_TYPE) if periodType == "forever": return None return self.evaluateRule(self.modelXbrl.rendrCntx, {"instant": Aspect.INSTANT, "duration": Aspect.END}[periodType]) ''' def cardinalityAndDepth(self, structuralNode): if self.aspectValues or self.aspectProgs or structuralNode.header(evaluate=False) is not None: return (1, 1) else: return (0, 0) class ModelRuleSet(ModelConstraintSet, ModelFormulaResource): def init(self, modelDocument): super(ModelRuleSet, self).init(modelDocument) @property def tagName(self): # can't call it tag because that would hide ElementBase.tag return self.get("tag") class ModelRuleDefinitionNode(ModelConstraintSet, ModelClosedDefinitionNode): def init(self, modelDocument): super(ModelRuleDefinitionNode, self).init(modelDocument) @property def merge(self): return self.get("merge") @property def isMerged(self): return self.merge == "true" @property def constraintSets(self): try: return self._constraintSets except AttributeError: self._constraintSets = dict((ruleSet.tagName, ruleSet) for ruleSet in XmlUtil.children(self, self.namespaceURI, "ruleSet")) if self.aspectsCovered(): # any local rule? self._constraintSets[None] = self return self._constraintSets def hasAspect(self, structuralNode, aspect): return any(constraintSet._hasAspect(structuralNode, aspect) for constraintSet in self.constraintSets.values()) @property def aspectsInTaggedConstraintSet(self): try: return self._aspectsInTaggedConstraintSet except AttributeError: self._aspectsInTaggedConstraintSet = set() for tag, constraintSet in self.constraitSets().items(): if tag is not None: for aspect in constraintSet.aspectsCovered(): if aspect != Aspect.DIMENSIONS: self._aspectsInTaggedConstraintSet.add(aspect) return self._aspectsInTaggedConstraintSet def compile(self): super(ModelRuleDefinitionNode, self).compile() for constraintSet in self.constraintSets.values(): if constraintSet != self: # compile nested constraint sets constraintSet.compile() @property def propertyView(self): return ((("id", self.id), ("abstract", self.abstract), ("merge", self.merge), ("definition", self.definitionNodeView)) + self.definitionLabelsView) def __repr__(self): return ("modelRuleDefinitionNode[{0}]{1})".format(self.objectId(),self.propertyView)) # deprecated 2013-05-17 class ModelTupleDefinitionNode(ModelRuleDefinitionNode): def init(self, modelDocument): super(ModelTupleDefinitionNode, self).init(modelDocument) @property def descendantArcroles(self): return (XbrlConst.tableTupleContent201301, XbrlConst.tableTupleContent2011, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011) @property def contentRelationships(self): return self.modelXbrl.relationshipSet((XbrlConst.tableTupleContent201301, XbrlConst.tableTupleContent2011)).fromModelObject(self) def hasAspect(self, structuralNode, aspect, inherit=None): return aspect == Aspect.LOCATION # non-location aspects aren't leaked to ordinate for Tuple or self.hasRule(aspect) def aspectValue(self, xpCtx, aspect, inherit=None): return self.evaluateRule(xpCtx, aspect) def aspectsCovered(self): return {Aspect.LOCATION} # tuple's aspects don't leak to ordinates def tupleAspectsCovered(self): return _DICT_SET(self.aspectValues.keys()) | _DICT_SET(self.aspectProgs.keys()) | {Aspect.LOCATION} def filteredFacts(self, xpCtx, facts): aspects = self.aspectsCovered() axisAspectValues = dict((aspect, self.tupleAspectsCovered(aspect)) for aspect in aspects if aspect != Aspect.LOCATION) # location determined by ordCntx, not axis fp = FactPrototype(self, axisAspectValues) return set(fact for fact in facts if fact.isTuple and aspectsMatch(xpCtx, fact, fp, aspects)) class ModelCompositionDefinitionNode(ModelClosedDefinitionNode): def init(self, modelDocument): super(ModelCompositionDefinitionNode, self).init(modelDocument) @property def abstract(self): # always abstract, no filters, no data return 'true' class ModelRelationshipDefinitionNode(ModelClosedDefinitionNode): def init(self, modelDocument): super(ModelRelationshipDefinitionNode, self).init(modelDocument) def aspectsCovered(self): return {Aspect.CONCEPT} @property def conceptQname(self): name = self.getStripped("conceptname") return qname(self, name, noPrefixIsNoNamespace=True) if name else None @property def relationshipSourceQname(self): sourceQname = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "relationshipSource") if sourceQname is not None: return qname( sourceQname, XmlUtil.text(sourceQname) ) return None @property def linkrole(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linkrole") @property def axis(self): a = XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), ("axis", "formulaAxis")) if not a: a = 'descendant' # would be an XML error return a @property def isOrSelfAxis(self): return self.axis.endswith('-or-self') @property def generations(self): try: return _INT( XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "generations") ) except (TypeError, ValueError): if self.axis in ('sibling', 'child', 'parent'): return 1 return 0 @property def relationshipSourceQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "relationshipSourceExpression") @property def linkroleExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linkroleExpression") @property def axisExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), ("axisExpression", "formulAxisExpression")) @property def generationsExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "generationsExpression") def compile(self): if not hasattr(self, "relationshipSourceQnameExpressionProg"): self.relationshipSourceQnameExpressionProg = XPathParser.parse(self, self.relationshipSourceQnameExpression, self, "relationshipSourceQnameExpressionProg", Trace.VARIABLE) self.linkroleExpressionProg = XPathParser.parse(self, self.linkroleExpression, self, "linkroleQnameExpressionProg", Trace.VARIABLE) self.axisExpressionProg = XPathParser.parse(self, self.axisExpression, self, "axisExpressionProg", Trace.VARIABLE) self.generationsExpressionProg = XPathParser.parse(self, self.generationsExpression, self, "generationsExpressionProg", Trace.VARIABLE) super(ModelRelationshipDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): if self.relationshipSourceQname and self.relationshipSourceQname != XbrlConst.qnXfiRoot: if varRefSet is None: varRefSet = set() varRefSet.add(self.relationshipSourceQname) return super(ModelRelationshipDefinitionNode, self).variableRefs( [p for p in (self.relationshipSourceQnameExpressionProg, self.linkroleExpressionProg, self.axisExpressionProg, self.generationsExpressionProg) if p], varRefSet) def evalRrelationshipSourceQname(self, xpCtx, fact=None): if self.relationshipSourceQname: return self.relationshipSourceQname return xpCtx.evaluateAtomicValue(self.relationshipSourceQnameExpressionProg, 'xs:QName', fact) def evalLinkrole(self, xpCtx, fact=None): if self.linkrole: return self.linkrole return xpCtx.evaluateAtomicValue(self.linkroleExpressionProg, 'xs:anyURI', fact) def evalAxis(self, xpCtx, fact=None): if self.axis: return self.axis return xpCtx.evaluateAtomicValue(self.axisExpressionProg, 'xs:token', fact) def evalGenerations(self, xpCtx, fact=None): if self.generations: return self.generations return xpCtx.evaluateAtomicValue(self.generationsExpressionProg, 'xs:integer', fact) def cardinalityAndDepth(self, structuralNode): return self.lenDepth(self.relationships(structuralNode), self.axis.endswith('-or-self')) def lenDepth(self, nestedRelationships, includeSelf): l = 0 d = 1 for rel in nestedRelationships: if isinstance(rel, list): nl, nd = self.lenDepth(rel, False) l += nl nd += 1 # returns 0 if sublist is not nested if nd > d: d = nd else: l += 1 if includeSelf: l += 1 # root relationships include root in addition if includeSelf: d += 1 return (l, d) @property def propertyView(self): return ((("id", self.id), ("abstract", self.abstract), ("definition", self.definitionNodeView)) + self.definitionLabelsView) def __repr__(self): return ("modelRelationshipDefinitionNode[{0}]{1})".format(self.objectId(),self.propertyView)) class ModelConceptRelationshipDefinitionNode(ModelRelationshipDefinitionNode): def init(self, modelDocument): super(ModelConceptRelationshipDefinitionNode, self).init(modelDocument) def hasAspect(self, structuralNode, aspect): return aspect == Aspect.CONCEPT @property def arcrole(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcrole") @property def arcQname(self): arcnameElt = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcname") if arcnameElt is not None: return qname( arcnameElt, XmlUtil.text(arcnameElt) ) return None @property def linkQname(self): linknameElt = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linkname") if linknameElt is not None: return qname( linknameElt, XmlUtil.text(linknameElt) ) return None def compile(self): if not hasattr(self, "arcroleExpressionProg"): self.arcroleExpressionProg = XPathParser.parse(self, self.arcroleExpression, self, "arcroleExpressionProg", Trace.VARIABLE) self.linkQnameExpressionProg = XPathParser.parse(self, self.linkQnameExpression, self, "linkQnameExpressionProg", Trace.VARIABLE) self.arcQnameExpressionProg = XPathParser.parse(self, self.arcQnameExpression, self, "arcQnameExpressionProg", Trace.VARIABLE) super(ModelConceptRelationshipDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): return super(ModelConceptRelationshipDefinitionNode, self).variableRefs( [p for p in (self.arcroleExpressionProg, self.linkQnameExpressionProg, self.arcQnameExpressionProg) if p], varRefSet) def evalArcrole(self, xpCtx, fact=None): if self.arcrole: return self.arcrole return xpCtx.evaluateAtomicValue(self.arcroleExpressionProg, 'xs:anyURI', fact) def evalLinkQname(self, xpCtx, fact=None): if self.linkQname: return self.linkQname return xpCtx.evaluateAtomicValue(self.linkQnameExpressionProg, 'xs:QName', fact) def evalArcQname(self, xpCtx, fact=None): if self.arcQname: return self.arcQname return xpCtx.evaluateAtomicValue(self.arcQnameExpressionProg, 'xs:QName', fact) @property def arcroleExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcroleExpression") @property def linkQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "linknameExpression") @property def arcQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "arcnameExpression") def coveredAspect(self, ordCntx=None): return Aspect.CONCEPT def relationships(self, structuralNode): self._sourceQname = structuralNode.evaluate(self, self.evalRrelationshipSourceQname) or XbrlConst.qnXfiRoot linkrole = structuralNode.evaluate(self, self.evalLinkrole) if not linkrole: linkrole = "XBRL-all-linkroles" linkQname = (structuralNode.evaluate(self, self.evalLinkQname) or () ) arcrole = (structuralNode.evaluate(self, self.evalArcrole) or () ) arcQname = (structuralNode.evaluate(self, self.evalArcQname) or () ) self._axis = (structuralNode.evaluate(self, self.evalAxis) or () ) self._generations = (structuralNode.evaluate(self, self.evalGenerations) or () ) return concept_relationships(self.modelXbrl.rendrCntx, None, (self._sourceQname, linkrole, arcrole, self._axis.replace('-or-self',''), self._generations, linkQname, arcQname), True) # return nested lists representing concept tree nesting class ModelDimensionRelationshipDefinitionNode(ModelRelationshipDefinitionNode): def init(self, modelDocument): super(ModelDimensionRelationshipDefinitionNode, self).init(modelDocument) def hasAspect(self, structuralNode, aspect): return aspect == self.coveredAspect(structuralNode) or aspect == Aspect.DIMENSIONS def aspectValue(self, xpCtx, aspect, inherit=None): if aspect == Aspect.DIMENSIONS: return (self.coveredAspect(xpCtx), ) return None def aspectsCovered(self): return {self.dimensionQname} @property def dimensionQname(self): dimensionElt = XmlUtil.child(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "dimension") if dimensionElt is not None: return qname( dimensionElt, XmlUtil.text(dimensionElt) ) return None @property def dimensionQnameExpression(self): return XmlUtil.childText(self, (XbrlConst.table, XbrlConst.tableMMDD, XbrlConst.table201305, XbrlConst.table201301, XbrlConst.table2011), "dimensionExpression") def compile(self): if not hasattr(self, "dimensionQnameExpressionProg"): self.dimensionQnameExpressionProg = XPathParser.parse(self, self.dimensionQnameExpression, self, "dimensionQnameExpressionProg", Trace.VARIABLE) super(ModelDimensionRelationshipDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): return super(ModelDimensionRelationshipDefinitionNode, self).variableRefs(self.dimensionQnameExpressionProg, varRefSet) def evalDimensionQname(self, xpCtx, fact=None): if self.dimensionQname: return self.dimensionQname return xpCtx.evaluateAtomicValue(self.dimensionQnameExpressionProg, 'xs:QName', fact) def coveredAspect(self, structuralNode=None): try: return self._coveredAspect except AttributeError: self._coveredAspect = self.dimRelationships(structuralNode, getDimQname=True) return self._coveredAspect def relationships(self, structuralNode): return self.dimRelationships(structuralNode, getMembers=True) def dimRelationships(self, structuralNode, getMembers=False, getDimQname=False): self._dimensionQname = structuralNode.evaluate(self, self.evalDimensionQname) self._sourceQname = structuralNode.evaluate(self, self.evalRrelationshipSourceQname) or XbrlConst.qnXfiRoot linkrole = structuralNode.evaluate(self, self.evalLinkrole) if not linkrole and getMembers: linkrole = "XBRL-all-linkroles" dimConcept = self.modelXbrl.qnameConcepts.get(self._dimensionQname) sourceConcept = self.modelXbrl.qnameConcepts.get(self._sourceQname) self._axis = (structuralNode.evaluate(self, self.evalAxis) or () ) self._generations = (structuralNode.evaluate(self, self.evalGenerations) or () ) if ((self._dimensionQname and (dimConcept is None or not dimConcept.isDimensionItem)) or (self._sourceQname and self._sourceQname != XbrlConst.qnXfiRoot and ( sourceConcept is None or not sourceConcept.isItem))): return () if dimConcept is not None: if getDimQname: return self._dimensionQname if sourceConcept is None: sourceConcept = dimConcept if getMembers: return concept_relationships(self.modelXbrl.rendrCntx, None, (self._sourceQname, linkrole, "XBRL-dimensions", # all dimensions arcroles self._axis.replace('-or-self',''), self._generations), True) # return nested lists representing concept tree nesting if getDimQname: if sourceConcept is not None: # look back from member to a dimension return self.stepDimRel(sourceConcept, linkrole) return None def stepDimRel(self, stepConcept, linkrole): if stepConcept.isDimensionItem: return stepConcept.qname for rel in self.modelXbrl.relationshipSet("XBRL-dimensions").toModelObject(stepConcept): if not linkrole or linkrole == rel.consecutiveLinkrole: dim = self.stepDimRel(rel.fromModelObject, rel.linkrole) if dim: return dim return None coveredAspectToken = {"concept": Aspect.CONCEPT, "entity-identifier": Aspect.VALUE, "period-start": Aspect.START, "period-end": Aspect.END, "period-instant": Aspect.INSTANT, "period-instant-end": Aspect.INSTANT_END, "unit": Aspect.UNIT} class ModelOpenDefinitionNode(ModelDefinitionNode): def init(self, modelDocument): super(ModelOpenDefinitionNode, self).init(modelDocument) # deprecated 2013-05-17 class ModelSelectionDefinitionNode(ModelOpenDefinitionNode): def init(self, modelDocument): super(ModelSelectionDefinitionNode, self).init(modelDocument) @property def descendantArcroles(self): return (XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011, XbrlConst.tableDefinitionNodeSelectionMessage201301, XbrlConst.tableAxisSelectionMessage2011) def clear(self): XPathParser.clearNamedProg(self, "selectProg") super(ModelSelectionDefinitionNode, self).clear() def coveredAspect(self, structuralNode=None): try: return self._coveredAspect except AttributeError: coveredAspect = self.get("coveredAspect") if coveredAspect in coveredAspectToken: self._coveredAspect = coveredAspectToken[coveredAspect] else: # must be a qname self._coveredAspect = qname(self, coveredAspect) return self._coveredAspect def aspectsCovered(self): return {self.coveredAspect} def hasAspect(self, structuralNode, aspect): return aspect == self.coveredAspect() or (isinstance(self._coveredAspect,QName) and aspect == Aspect.DIMENSIONS) @property def select(self): return self.get("select") def compile(self): if not hasattr(self, "selectProg"): self.selectProg = XPathParser.parse(self, self.select, self, "select", Trace.PARAMETER) super(ModelSelectionDefinitionNode, self).compile() def variableRefs(self, progs=[], varRefSet=None): return super(ModelSelectionDefinitionNode, self).variableRefs(self.selectProg, varRefSet) def evaluate(self, xpCtx, typeQname=None): if typeQname: return xpCtx.evaluateAtomicValue(self.selectProg, typeQname) else: return xpCtx.flattenSequence(xpCtx.evaluate(self.selectProg, None)) aspectNodeAspectCovered = {"conceptAspect": Aspect.CONCEPT, "unitAspect": Aspect.UNIT, "entityIdentifierAspect": Aspect.ENTITY_IDENTIFIER, "periodAspect": Aspect.PERIOD} class ModelFilterDefinitionNode(ModelOpenDefinitionNode): def init(self, modelDocument): super(ModelFilterDefinitionNode, self).init(modelDocument) @property def descendantArcroles(self): return (XbrlConst.tableAspectNodeFilter, XbrlConst.tableAspectNodeFilterMMDD, XbrlConst.tableAspectNodeFilter201305, XbrlConst.tableFilterNodeFilter2011, XbrlConst.tableAxisFilter2011,XbrlConst.tableAxisFilter201205, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011, XbrlConst.tableDefinitionNodeSubtree, XbrlConst.tableDefinitionNodeSubtreeMMDD, XbrlConst.tableDefinitionNodeSubtree201305, XbrlConst.tableDefinitionNodeSubtree201301, XbrlConst.tableAxisSubtree2011, XbrlConst.tableDefinitionNodeMessage201301, XbrlConst.tableAxisMessage2011) @property def filterRelationships(self): try: return self._filterRelationships except AttributeError: rels = [] # order so conceptName filter is first (if any) (may want more sorting in future) for rel in self.modelXbrl.relationshipSet((XbrlConst.tableAspectNodeFilter, XbrlConst.tableAspectNodeFilterMMDD, XbrlConst.tableAspectNodeFilter201305, XbrlConst.tableFilterNodeFilter2011, XbrlConst.tableAxisFilter2011,XbrlConst.tableAxisFilter201205)).fromModelObject(self): if isinstance(rel.toModelObject, ModelConceptName): rels.insert(0, rel) # put conceptName filters first else: rels.append(rel) self._filterRelationships = rels return rels def hasAspect(self, structuralNode, aspect): return aspect in self.aspectsCovered() def aspectsCovered(self, varBinding=None): try: return self._aspectsCovered except AttributeError: self._aspectsCovered = set() self._dimensionsCovered = set() self.includeUnreportedValue = False if self.localName == "aspectNode": # after 2-13-05-17 aspectElt = XmlUtil.child(self, self.namespaceURI, ("conceptAspect", "unitAspect", "entityIdentifierAspect", "periodAspect", "dimensionAspect")) if aspectElt is not None: if aspectElt.localName == "dimensionAspect": dimQname = qname(aspectElt, aspectElt.textValue) self._aspectsCovered.add(dimQname) self._aspectsCovered.add(Aspect.DIMENSIONS) self._dimensionsCovered.add(dimQname) self.includeUnreportedValue = aspectElt.get("includeUnreportedValue") in ("true", "1") else: self._aspectsCovered.add(aspectNodeAspectCovered[aspectElt.localName]) else: # filter node (prior to 2013-05-17) for rel in self.filterRelationships: if rel.isCovered: _filter = rel.toModelObject self._aspectsCovered |= _filter.aspectsCovered(varBinding) self._dimensionsCovered = set(aspect for aspect in self._aspectsCovered if isinstance(aspect,QName)) if self._dimensionsCovered: self._aspectsCovered.add(Aspect.DIMENSIONS) return self._aspectsCovered def aspectValue(self, xpCtx, aspect, inherit=None): if aspect == Aspect.DIMENSIONS: return self._dimensionsCovered # does not apply to filter, value can only come from a bound fact return None def filteredFactsPartitions(self, xpCtx, facts): filteredFacts = formulaEvaluatorFilterFacts(xpCtx, VariableBinding(xpCtx), facts, self.filterRelationships, None) if not self.includeUnreportedValue: # remove unreported falue reportedAspectFacts = set() for fact in filteredFacts: if all(fact.context is not None and isinstance(fact.context.dimValue(dimAspect), ModelDimensionValue) for dimAspect in self._dimensionsCovered): reportedAspectFacts.add(fact) else: reportedAspectFacts = filteredFacts return factsPartitions(xpCtx, reportedAspectFacts, self.aspectsCovered()) @property def propertyView(self): return ((("id", self.id), ("aspect", ", ".join(aspectStr(aspect) for aspect in self.aspectsCovered() if aspect != Aspect.DIMENSIONS)), ("definition", self.definitionNodeView)) + self.definitionLabelsView) from arelle.ModelObjectFactory import elementSubstitutionModelClass elementSubstitutionModelClass.update(( # IWD (XbrlConst.qnTableTableMMDD, ModelTable), (XbrlConst.qnTableBreakdownMMDD, ModelBreakdown), (XbrlConst.qnTableRuleSetMMDD, ModelRuleSet), (XbrlConst.qnTableRuleNodeMMDD, ModelRuleDefinitionNode), (XbrlConst.qnTableConceptRelationshipNodeMMDD, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNodeMMDD, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableAspectNodeMMDD, ModelFilterDefinitionNode), # PWD 2013-08-28 (XbrlConst.qnTableTable, ModelTable), (XbrlConst.qnTableBreakdown, ModelBreakdown), (XbrlConst.qnTableRuleNode, ModelRuleDefinitionNode), (XbrlConst.qnTableConceptRelationshipNode, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNode, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableAspectNode, ModelFilterDefinitionNode), # PWD 2013-05-17 (XbrlConst.qnTableTable201305, ModelTable), (XbrlConst.qnTableBreakdown201305, ModelBreakdown), (XbrlConst.qnTableRuleNode201305, ModelRuleDefinitionNode), (XbrlConst.qnTableConceptRelationshipNode201305, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNode201305, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableAspectNode201305, ModelFilterDefinitionNode), # PWD 2013-01-17 (XbrlConst.qnTableTable201301, ModelTable), (XbrlConst.qnTableRuleNode201301, ModelRuleDefinitionNode), (XbrlConst.qnTableCompositionNode201301, ModelCompositionDefinitionNode), (XbrlConst.qnTableConceptRelationshipNode201301, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableDimensionRelationshipNode201301, ModelDimensionRelationshipDefinitionNode), (XbrlConst.qnTableSelectionNode201301, ModelSelectionDefinitionNode), (XbrlConst.qnTableFilterNode201301, ModelFilterDefinitionNode), (XbrlConst.qnTableTupleNode201301, ModelTupleDefinitionNode), # PWD 2011 Montreal (XbrlConst.qnTableTable2011, ModelTable), (XbrlConst.qnTableRuleAxis2011, ModelRuleDefinitionNode), (XbrlConst.qnTableCompositionAxis2011, ModelCompositionDefinitionNode), (XbrlConst.qnTableConceptRelationshipAxis2011, ModelConceptRelationshipDefinitionNode), (XbrlConst.qnTableSelectionAxis2011, ModelSelectionDefinitionNode), (XbrlConst.qnTableFilterAxis2011, ModelFilterDefinitionNode), (XbrlConst.qnTableTupleAxis2011, ModelTupleDefinitionNode), (XbrlConst.qnTableDimensionRelationshipAxis2011, ModelDimensionRelationshipDefinitionNode), # Eurofiling (XbrlConst.qnEuTable, ModelEuTable), (XbrlConst.qnEuAxisCoord, ModelEuAxisCoord), )) # import after other modules resolved to prevent circular references from arelle.FunctionXfi import concept_relationships
[ "fischer@markv.com" ]
fischer@markv.com
2c76743609405faec1c19b81f0f1195064f29b9a
0672600aca6eecc0e2b51ec794063103f5effd43
/jobads/migrations/0024_auto_20210112_2355.py
8789a38c385842dcfb66e6a453d74d908cf1899a
[]
no_license
pxian/careercare
871f22459e1544e3e78b71dea1ba393c5d6f3d03
91e483bb65affb9d415e53fb4142ec1e9b2dbccc
refs/heads/main
2023-02-20T18:45:38.175948
2021-01-25T03:30:00
2021-01-25T03:30:00
330,128,770
0
0
null
null
null
null
UTF-8
Python
false
false
1,986
py
# Generated by Django 3.1.3 on 2021-01-12 15:55 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('jobads', '0023_merge_20210111_2144'), ] operations = [ migrations.CreateModel( name='test_employee', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100, null=True)), ('openess', models.IntegerField()), ('conscientiousness', models.IntegerField()), ('extraversion', models.IntegerField()), ('agreeableness', models.IntegerField()), ('neuroticism', models.IntegerField()), ('chart', models.CharField(max_length=100, null=True)), ], ), migrations.AlterField( model_name='jobad', name='closing_date', field=models.DateField(blank=True, null=True, verbose_name='Date'), ), migrations.AlterField( model_name='jobad', name='max_salary', field=models.CharField(blank=True, max_length=100, null=True), ), migrations.AlterField( model_name='jobad', name='min_salary', field=models.CharField(blank=True, max_length=100, null=True), ), migrations.DeleteModel( name='personality', ), migrations.AddField( model_name='test_employee', name='JobAd_id', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='jobads.jobad'), ), migrations.AddField( model_name='test_employee', name='job_id', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='jobads.joblist'), ), ]
[ "phooixian@hotmail.com" ]
phooixian@hotmail.com
a8569f82ed1a73ffbd59f8b49866754ec53e411d
9dfb3372a1e4516d970a6e9d0a9fd8360580eae7
/python pySerial/maping_data.py
feb9a76200b26899373a1eeba25711e6b4835877
[]
no_license
clambering-goat/cameron_pyton
d1cd0e7b04da14e7ba4f89dcb4d973f297a4626c
df0b0365b86e75cfcfc2c1fc21608f1536a3b79f
refs/heads/master
2021-07-14T20:37:37.021401
2019-02-28T07:52:11
2019-02-28T07:52:11
137,251,669
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
import serial y_points=[] with serial.Serial('COM4', 9600, timeout=1) as ser: for q in range(20000): line =ser.readline() x=line.decode("utf-8") #print(x) y_points.append(int(x)) import matplotlib.pyplot as plt x_points=[] for q in range(len(y_points)): x_points.append(q) plt.plot(x_points,y_points) plt.ylabel('some numbers') plt.xlabel('some numbers') plt.show()
[ "camerondrain@gmail.com" ]
camerondrain@gmail.com
df04408ea19ba007c8c896dee247c69359930c60
7cd865dbf48dfdf9bfe7404b7046e6d026e24b87
/tree/BST/Print BST keys in the given range.py
29397ca31a77eca6c25a0344f7712e26834e7f32
[]
no_license
rishikeshpuri/Algorithms-and-Data-Structure
93e718f7f73cdf8eacfd56cb6de651dbe5ba0eec
6d9d7e2003327461a8bc5ac00d2037bc0d61f3f3
refs/heads/master
2020-12-15T17:20:57.893997
2020-01-20T20:43:56
2020-01-20T20:43:56
235,192,251
1
0
null
null
null
null
UTF-8
Python
false
false
595
py
class Node: def __init__(self, value): self.value = value self.left = None self.right = None def print_range(root, k1, k2): if root is None: return if k1 < root.value: print_range(root.left, k1,k2) if k1 <=root.value and k2 >= root.value: print(root.value, end=' ') if k2 > root.value: print_range(root.right, k1, k2) k1= 10 k2 =25 root = Node(20) root.left = Node(8) root.right = Node(22) root.left.left = Node(4) root.left.right = Node(12) print_range(root, k1, k2) print() print() removeOutsideRange(root,k1,k2)
[ "noreply@github.com" ]
rishikeshpuri.noreply@github.com
b45e4c13c16af6af208d3b3e8386d1021777db67
685a0a66d6499849f9ccdbca59bf79f2f64a4203
/manpy/simulation/applications/CapacityStations/CapacityStation.py
3a8d13e57b5ff2e1a1bb870295e00da860ca0b75
[ "MIT" ]
permissive
sunhughees/manpy
b05271f53875f8b0f5a09b2f0df01cc6c05df869
0056eb6e93cba3bf2a1061f9170aa2a1edf248f6
refs/heads/master
2022-12-14T10:06:59.334817
2020-08-20T17:31:30
2020-08-20T17:31:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,222
py
# =========================================================================== # Copyright 2013 University of Limerick # # This file is part of DREAM. # # DREAM is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DREAM is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with DREAM. If not, see <http://www.gnu.org/licenses/>. # =========================================================================== """ Created on 5 June 2013 @author: George """ """ a station that can process a specified capacity in every time period """ from manpy.simulation.Queue import Queue import simpy # =========================================================================== # the CapacityStation object # =========================================================================== class CapacityStation(Queue): family = "CapacityStation" # =========================================================================== # the __init__ method of the CapacityStation # =========================================================================== def __init__( self, id, name, capacity=float("inf"), intervalCapacity=[], schedulingRule="FIFO", gatherWipStat=False, sharedResources={}, intervalCapacityStart=0, intervalCapacityExceptions={}, notProcessOutsideThreshold=False, **kw ): Queue.__init__(self, id, name, capacity=capacity) # a list that holds the capacity (manhours) that is available in each interval self.intervalCapacity = intervalCapacity # a list that holds the capacity (manhours) that is available in each interval for the remaining time self.remainingIntervalCapacity = list(self.intervalCapacity) # blocks the entry of the capacity station, so that it can be manipulated to accept only in certain moments of simulation time self.isLocked = True # dict that holds information if station shares workpower with some other station self.sharedResources = sharedResources self.intervalCapacityStart = intervalCapacityStart self.intervalCapacityExceptions = intervalCapacityExceptions self.notProcessOutsideThreshold = int(notProcessOutsideThreshold) def initialize(self): Queue.initialize(self) # if the station shares resources and the capacity is not defined in this # then read it from some other of the sharing stations if not self.intervalCapacity and self.sharedResources: for stationId in self.sharedResources.get("stationIds", []): import manpy.simulation.Globals as Globals station = Globals.findObjectById(stationId) if station.intervalCapacity: self.intervalCapacity = station.intervalCapacity break # initialize variables self.remainingIntervalCapacity = list(self.intervalCapacity) for i in range(self.intervalCapacityStart): self.remainingIntervalCapacity.pop(0) self.isLocked = True self.utilisationDict = [] # a list of dicts for the utilization results self.detailedWorkPlan = [] # a list of dicts to keep detailed data from manpy.simulation.Globals import G if hasattr(G, "CapacityStationList"): G.CapacityStationList.append(self) else: G.CapacityStationList = [] G.CapacityStationList.append(self) def canAccept(self, callerObject=None): if self.isLocked: return False return Queue.canAccept(self) # ======================================================================= # outputs results to JSON File # ======================================================================= def outputResultsJSON(self): from manpy.simulation.Globals import G json = { "_class": "manpy.%s" % self.__class__.__name__, "id": self.id, "family": self.family, "results": {}, } if G.numberOfReplications == 1: # if we had just one replication output the results as numbers json["results"]["capacityUsed"] = self.utilisationDict meanUtilization = 0 for entry in self.utilisationDict: meanUtilization += entry["utilization"] / float( len(self.utilisationDict) ) assert (entry["utilization"]) < 1.00001, "utilization greater than 1" json["results"]["meanUtilization"] = meanUtilization json["results"]["detailedWorkPlan"] = self.detailedWorkPlan G.outputJSON["elementList"].append(json)
[ "pedro@datarevenue.com" ]
pedro@datarevenue.com
c07aa82c886d791ed37e80ecf66b26fe3ba26449
f59860bb4d04007cf03258753aefcbf58e760db0
/music/migrations/0005_song_datetime.py
a64764e5215f82e94025a21d14a4720153be91ab
[]
no_license
Arefeh902/station_49
fc306d7668d64c68df7dba35adbdc25d5600544a
3076e4ab616759f5aa0a973525c0436b603f942f
refs/heads/master
2023-07-01T10:25:39.820956
2021-08-10T18:47:28
2021-08-10T18:47:28
391,368,241
1
1
null
null
null
null
UTF-8
Python
false
false
386
py
# Generated by Django 2.1.9 on 2021-08-07 08:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('music', '0004_auto_20210807_0806'), ] operations = [ migrations.AddField( model_name='song', name='datetime', field=models.DateTimeField(auto_now=True), ), ]
[ "alimahdiyar77@gmail.com" ]
alimahdiyar77@gmail.com
5f7222976fb35436291dddf6bb8506aa13684468
c6e2731a9d9757cb37c849266d7dd68ff8f1e879
/accounts/migrations/0001_initial.py
c57fcbfff1355c533895c1fde4a2580a33ef48c5
[]
no_license
lucaskruk13/dogfightWebsiteNew
aa989d344b87b050fd3691fcbb132c6050528c02
d9a05efbdbb02b24ab5e9707aba1bc69e38f825a
refs/heads/master
2020-04-17T05:49:09.325257
2019-01-17T21:16:43
2019-01-17T21:16:43
166,298,690
0
0
null
null
null
null
UTF-8
Python
false
false
2,101
py
# Generated by Django 2.1.5 on 2019-01-17 03:19 import accounts.models from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('feed', '0001_initial'), ] operations = [ migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('bio', models.TextField(blank=True, max_length=500)), ('location', models.CharField(blank=True, max_length=30)), ('birth_date', models.DateField(blank=True, null=True)), ('handicap', models.CharField(default=0, max_length=6, validators=[django.core.validators.RegexValidator(code='invalid_handicap', message='Invalid Handicap', regex='^[+]?\\d*\\.?\\d*$')])), ('initial', models.BooleanField(default=True)), ('profile_image', models.ImageField(blank=True, null=True, upload_to=accounts.models.user_directory_path)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Scores', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('score', models.IntegerField(default=0)), ('created_at', models.DateTimeField(auto_now_add=True)), ('countable', models.BooleanField(default=False)), ('dogfight', models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='scores_dogfight', to='feed.Dogfight')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='scores', to=settings.AUTH_USER_MODEL)), ], ), ]
[ "skywalker@lucass-air.lan" ]
skywalker@lucass-air.lan
84b5119f4a7da520c9709538e33f4b9ed1d635b2
ab499e9d6927ded1e11874975bc12c21a107973b
/Code - Data_Cleaning_Analysis/taxi6/reduce.py
b486e29d2b0040c273bfc39d22674ae22a857757
[]
no_license
adewin/NYC-Weather-vs-Taxi-analysis
5dc6a6df5ba8007370b94cc5508387f13b8d0228
9b7718fed555adfa95be8bc4283f9f304c7e1627
refs/heads/master
2020-07-01T05:53:19.696772
2017-04-29T16:34:20
2017-04-29T16:34:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
#!/usr/bin/python import sys oldKey = None totalSum = 0 for line in sys.stdin: data = line.strip().split("\t") if len(data) != 2: continue thisKey, thisValue = data; if oldKey and oldKey != thisKey: print "%s,%i"%(oldKey,totalSum) oldKey = thisKey; totalSum = 0 oldKey = thisKey; totalSum += int(1) if oldKey != None: print "%s,%i"%(oldKey,totalSum)
[ "da1722@nyu.edu" ]
da1722@nyu.edu
72467a52dc9e6ecba8e2954a405841694aeb43f4
6168968d8dd813a9070f87fb2309366852a1d627
/run.py
8271c3b793b6f476b9de2f50e899c0a9078d8f16
[]
no_license
Edb83/love-sandwiches
58d0b92dccc46b3738eb0a8b41b618020eebe83d
6ac727b610d54ee31e48a98dce0d0dafdde7bc24
refs/heads/main
2023-07-29T19:09:46.819604
2021-09-08T18:13:08
2021-09-08T18:13:08
403,935,070
0
0
null
null
null
null
UTF-8
Python
false
false
4,131
py
import gspread from google.oauth2.service_account import Credentials from pprint import pprint SCOPE = [ "https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive.file", "https://www.googleapis.com/auth/drive" ] CREDS = Credentials.from_service_account_file('creds.json') SCOPED_CREDS = CREDS.with_scopes(SCOPE) GSPREAD_CLIENT = gspread.authorize(SCOPED_CREDS) SHEET = GSPREAD_CLIENT.open('love_sandwiches') def get_sales_data(): """ Get sales figures input from user """ while True: print("Please enter sales data from the last market.") print("Data should be six numbers, separated by commas.") print("Examples: 10,20,30,40,50,60\n") data_str = input("Enter your data here: ") sales_data = data_str.split(',') if validate_data(sales_data): print("Data is valid!") break return sales_data def validate_data(values): """ Inside the try, converts all string values into integers. Raises ValueError if strings cannot be converted to int, or if there aren't exactly 6 values. """ try: [int(value) for value in values] if len(values) != 6: raise ValueError( f"6 values required, you provided {len(values)}" ) except ValueError as e: print(f"Invalid data: {e}, please try again.\n") return False return True def update_worksheet(data, worksheet): """ Receives a list of integers to be inserted into a worksheet Updates the relevant worksheet with the data provided """ print(f"Updating {worksheet} worksheet...\n") worksheet_to_update = SHEET.worksheet(worksheet) worksheet_to_update.append_row(data) print(f"{worksheet} worksheet updated successfully.\n") def calculate_surplus(sales_row): """ Compare sales with stock and calculate the surplus for each item type. The surplus is defined as the sales figure subtracted from the stock: +ive surplus indicates waste -ive surplus indicates extra made when stock was sold out. """ print("Calculating surplus data...\n") stock_data = SHEET.worksheet('stock').get_all_values() stock_row = stock_data[-1] surplus_data = [] for stock, sales in zip(stock_row, sales_row): surplus = int(stock) - sales surplus_data.append(surplus) return surplus_data def get_last_5_entries_sales(): """ Collects columms of data from sales worksheet, collecting the last 5 entries for each sandwich and returns the data as a list of lists """ sales = SHEET.worksheet('sales') columns = [] for i in range(1, len(sales.get_all_values()[0]) + 1): column = sales.col_values(i)[-5:] columns.append(column) return columns def calculate_stock_data(data): """ Calculate average stock for each item type, adding 10% """ print("Calculating stock data...\n") new_stock_data = [] for column in data: int_column = [int(num) for num in column] average = sum(int_column) / len(int_column) stock_num = average * 1.1 new_stock_data.append(round(stock_num)) return new_stock_data def get_stock_values(data): """ Create dictionary using sheet headings and values from data passed in """ print("Make the following numbers of sandwiches for next market:\n\n") headings = SHEET.worksheet('stock').get_all_values()[0] result = dict(zip(headings, data)) print(f"{result}\n") return result def main(): """ Run all program functions """ data = get_sales_data() sales_data = [int(num) for num in data] update_worksheet(sales_data, 'sales') new_surplus_data = calculate_surplus(sales_data) update_worksheet(new_surplus_data, 'surplus') sales_columns = get_last_5_entries_sales() stock_data = calculate_stock_data(sales_columns) update_worksheet(stock_data, 'stock') get_stock_values(stock_data) print("Welcome to Love Sandwiches Data Automation") main()
[ "62900492+Edb83@users.noreply.github.com" ]
62900492+Edb83@users.noreply.github.com
c7718ce92c4ae61570c07bd6d5c0985424cb7b5d
922da7c12b4f675c9a538c710e25752322918106
/archive/mitsuscreenshots/mitsuscreenshots/main.py
6823005f0611350fc5fbd93fc99407067fb1e29b
[ "Unlicense", "LicenseRef-scancode-unknown-license-reference", "Python-2.0" ]
permissive
NikaDark16/python-projects
412b991086b4cde49576844792d0823415ef1aaa
569dae888d3dbf05fc39b759de5635164a79922c
refs/heads/master
2021-05-23T12:20:12.845526
2020-01-27T11:33:31
2020-01-27T11:33:31
253,283,491
3
1
Unlicense
2020-09-30T19:20:43
2020-04-05T16:45:22
null
UTF-8
Python
false
false
907
py
# !/usr/bin/python # -*- coding: utf-8 -*- import argparse import mitsuscreenshots.cli as cli import mitsuscreenshots.gui as gui import mitsuscreenshots.organize as organize __author__ = "IceArrow256" __version__ = '3' def main(): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', help='show program\'s config path and exit', action='store_true') parser.add_argument('-V', '--version', help='show program\'s version number and exit', action='store_true') parser.add_argument('--gui', help='launch the MitsuScreenshots GUI', action='store_true') args = parser.parse_args() if args.version: print("MitsuScreenshots ({})".format(__version__)) elif args.config: print("MitsuScreenshots config path: " + organize.get_config_path()) elif args.gui: gui.main() else: cli.main() if __name__ == '__main__': main()
[ "icearrow256@gmail.com" ]
icearrow256@gmail.com
02e5bd573ae6af8746e876ded4b58af4d7b07a9d
22f63ddb67d7b170754550fba80277461f90b23f
/Bump_attractor_network.py
9e22e8d725be2bd8213bd0fe99b3aca36ca4ae10
[]
no_license
HenriAton/CA6
bd1745697af067b6e6751f4554275bf1b697563c
18e5ccce0029cf3ac9cddc2b6fff751bf67aba52
refs/heads/master
2021-08-30T06:02:45.907256
2017-12-16T10:04:35
2017-12-16T10:04:35
109,322,073
0
1
null
null
null
null
UTF-8
Python
false
false
14,953
py
import matplotlib.pyplot as plt import numpy as np import scipy as sp from scipy import signal import os #to create directory if needed ## Define the parameters #Parameters model #Number of neurons N=360 # All-to-all connectivity matrices W0=1 #not given in the paper # Strength of excitation GEE=6 # strength of excitation to excitatory neurons GEI=4 # strength of excitation to inhibitory neurons GIE=3.4 GII=0.85 #Initial currents Ie0=0.2 Ii0=0.5 # Input-output function Im=0 #Initial firing-rates re=np.zeros(N) ri=np.zeros(N) #Firing-rate sigmae=1 sigmai=3 taue=20 taui=10 #Stimulus stimulus=np.ones(N)*100 #Parameters simulation #Time deltat = 2 T = 4200. # ms t = np.linspace (0, T, int(T/deltat)) #Realtime(): Initialization of store variables stock_ex=np.zeros(N) stock_in=np.zeros(N) #Sim(): Steps tstep=500 nbstep=3 nbneuron=1 #variator() stepsim=1 lim=5 #plot_var_param(): given-time given_time=10 ## Build the model # Connectivity matrices WII=WIE=np.ones((N,N)) WEI=-WIE #inhibition =>useless def ex_matrix(x): WEE=np.zeros((N,N)) window = signal.gaussian(N, std=100) window=window*(-1)+1 #reversed gaussian for i in range(len(WEE)): for j in range(len(WEE)): WEE[i,j]=window[abs(i-j)] WEE=WEE/x return(WEE) WEE=ex_matrix(100) # Input-output function (Phi) def transfer(x): if x<0: x=x*x elif x>0 and x<1: x=x elif x>=1: x=np.sqrt(4*x-3) return(x) #Phi output def phi(y): for i in range(len(y)): y[i]=transfer(y[i]) return(y) # Simulate #One step def realtime(t, stim): for i in range (t): #for i in range ( len(t) - 1 ): #take input global stock_ex global stock_in global Ie global Ii global re global ri #build the list stock_ex=np.vstack([stock_ex,re]) stock_in=np.vstack([stock_in,ri]) #update values of excitatory neurons Ie=GEE*np.matmul(WEE,re)+(Ie0-GIE*np.mean(ri))*np.ones(N)+stim gaussian_noise_ex=sigmae*np.random.randn(N) #ok re=re+deltat/taue*(-re+phi(Ie)+gaussian_noise_ex) #addition of phi(Ie) and gaussian_noise-_ex so the #update values of inhibitory neurons Ii=(GEI*np.mean(re)-GII*np.mean(ri)+Ii0)*np.ones(N) gaussian_noise_inh=sigmai*np.random.randn(N) ri=ri+deltat/taui*(-ri+phi(Ii)+gaussian_noise_inh) return #The four steps def sim(): #take input global tstep global nbstep #execute steps if nbstep>0: realtime(tstep, 0) if nbstep>1: realtime(tstep, stimulus) if nbstep>2: realtime(tstep,0) if nbstep>3: realtime(tstep, -stimulus) return #Plot xth excitatory neuron and xth inhibitory neuron def plot_neuron(x): ne=np.zeros(tstep*nbstep) #not efficient ni=np.zeros(tstep*nbstep) for i in range(tstep*nbstep): ne[i]=stock_ex[i][x] ni[i]=stock_in[i][x] plt.plot(ne) plt.plot(ni) return #Simulate and plot def total(): sim() plt.figure(1) plt.title(str(N)+' excitatory neurons') plt.plot(stock_ex) plt.figure(2) plt.plot(stock_in) plt.title(str(N)+' inhibitory neurons') plt.figure(3) plot_neuron(nbneuron) plt.title(' Excitatory and inhibitory neurons nยฐ'+str(nbneuron)) plt.show() return #Plot the firing rate according to time according to different strenghts of the parameter def fire_stim(keep, plot="yes",param="inconnu", save="no",type_neuron="exc"): #give param between quotes count=0 for i in range(int(lim/stepsim)): count+=stepsim plt.plot(keep[i], label = str(count)) plt.legend(loc = 4) #optionnal, to save plot if needed if save=="yes": #create dir address_dir='/home/lucdufour/Documents/Cogmaster/Cours/S3/CA6/Project/Bump_attractor_model/variator/'+param+"/" if not os.path.exists(address_dir): os.makedirs(address_dir) #save figure address='/home/lucdufour/Documents/Cogmaster/Cours/S3/CA6/Project/Bump_attractor_model/variator/'+param+"/"+'variator_'+param+"_"+type_neuron+'.png' print(address) plt.savefig(address) #plot figure by default if plot=="yes": plt.show() return #Plot at a given time the firing rate according to the strength of the parameter def plot_var_param(given_time, plot="yes",param="inconnu", save="no"): ne=[] ni=[] absciss=np.arange(stepsim, lim+stepsim, stepsim) for i in range(int(lim/stepsim)): ne.append(keep_ex[i][given_time]) ni.append(keep_in[i][given_time]) plt.plot(absciss, ne) plt.plot(absciss, ni) #optionnal, to save plot if needed if save=="yes": #create dir address_dir='/home/lucdufour/Documents/Cogmaster/Cours/S3/CA6/Project/Bump_attractor_model/variator/'+param+"/" if not os.path.exists(address_dir): os.makedirs(address_dir) #save figure address='/home/lucdufour/Documents/Cogmaster/Cours/S3/CA6/Project/Bump_attractor_model/variator/'+param+"/"+'var_param_'+param+"_"+'.png' print(address) plt.savefig(address) #plot figure by default if plot=="yes": plt.show() return #Save and/or plot figures created thanks to variator def save_plot(param,plot="no",save="yes"): if save=="yes": plt.close() fire_stim(keep_ex,"no",param,"yes","exc") plt.close() fire_stim(keep_in,"no",param,"yes","inh") plt.close() plot_var_param(given_time,"no",param,"yes") plt.close() if plot=="yes": plt.figure(1) plt.title(str(N)+' excitatory neurons') fire_stim(keep_ex,"yes",param,"no","exc") plt.figure(2) plt.title(str(N)+' inhibitory neurons') fire_stim(keep_in,"yes",param,"no","inh") plt.figure(3) plt.title(' Excitatory and inhibitory neurons') plot_var_param(given_time,"yes",param,"no") return #Quick variator and save/plot def all_included(dep,arr,varia,zero,param,plot="yes",save="no"): quick_variator(dep,arr,varia,zero) save_plot(param,plot,save) return #Close windows def close(x): for i in range(x): plt.close() return ##Simulate and plot #Simulate sim() #Plot all excitatory neurons firing rate plt.plot(stock_ex) #works => very nice figure +++ plt.show() #Plot all inhibitory neurons firing rate plt.plot(stock_in) plt.show() #Compare the two plt.figure(1) #to let the index start at 1 plt.plot(stock_ex) plt.figure(2) plt.plot(stock_in) plt.show() #Plot xth excitatory neuron and xth inhibitory neuron plot_neuron(nbneuron) plt.show() #Simulate and plot total() #Stimulus theta = [0:N-1]/N*2*pi; theta=theta-pi; v = exp(kappa*cos(theta)); v = v/sum(v); stimulus = stim*v' ## Analysis: change the strength of a parameter # Change the strength of the parameter def variator(varia, zero): #zero=0 or zero=np.zeros(N) #take input global keep_ex global keep_in global stock_ex #even if I don't modify the variable, I have to call it with global +++ global stock_in global Ie0 # vary with the parameter #variation for e in range(int(lim/stepsim)): #reinitialize essential parameters re=np.zeros(N) ri=np.zeros(N) stock_ex=np.zeros(N) stock_in=np.zeros(N) #reinitialize optionnal parameters (to play with) GEE=6 GEI=4 GIE=3.4 GII=0.85 Ie0=0.2 Ii0=0.5 stimulus=np.ones(N)*100 WEE=ex_matrix(100) #parameters of variator row_ex=[] row_in=[] #vary varia=zero varia=stepsim+e*stepsim Ie0=varia # vary with the parameter #execution sim() for j in range(tstep*nbstep): row_ex.append(np.mean(stock_ex[j])) row_in.append(np.mean(stock_in[j])) print(row_ex) #speaker here keep_ex=np.vstack([keep_ex,row_ex]) keep_in=np.vstack([keep_in,row_in]) return #quick variator def quick_variator(stepsi, li,varia,zero): #take input global stepsim global lim global keep_ex global keep_in #modify stepsim and lim for the plot stepsim=stepsi lim=li #reinitialize keep_ex and keep_in keep_ex=np.zeros(tstep*nbstep) keep_in=np.zeros(tstep*nbstep) #variator variator(varia,zero) return ##Try #Parameter studied = GEI quick_variator(1,5,GEI,0) #Plot the firing rate according to time according to different strenghts of the stimulus #Plot at a given time the firing rate according to the strength of the stimulus save_plot("GEI","yes","no") #to vary close(3) #Parameter studied = stimulus quick_variator(50, 250,stimulus,np.zeros(N)) save_plot("stimulus","yes","no") #to vary close(3) all_included(50,150,stimulus,np.zeros(N),"stimulus",plot="yes",save="no") #to vary close(3) #Parameter studied = Ie0 all_included(0.2,1,Ie0,0,"Ie0",plot="yes",save="yes") close(3) ## Draft fe=2 fe=a print(fe) stimulus=2 def ttt(var=stimulus): var=3 print(stimulus) return ttt(stimulus) #quick variator def quick_variator(stepsi, li): #take input global stepsim global lim global keep_ex global keep_in #modify stepsim and lim for the plot stepsim=stepsi lim=li #reinitialize keep_ex and keep_in keep_ex=np.zeros(tstep*nbstep) keep_in=np.zeros(tstep*nbstep) #variator variator(stimulus,np.zeros(N)) #to vary return #2 possibles errors : variable is not global, so it stays at its inital value. Or sim doesn't change according to the variable because ot doesn't take it in input => I have to check that. #Call a variable with global: if I modify after calling this variable, this modification is avaible everywhere,included recursively in the function a=34 def check(): global a print(a) a=2 print(a) rer() return #a=rer() #return(a) check() def rer(): global a print(a) return(a) rer() #Bug def var_stim(stepsim,lim): global keep for i in range(int(lim/stepsim)): re=np.zeros(N) ri=np.zeros(N) Ie0=0.2 Ii0=0.5 stock_ex=np.zeros(N) stock_in=np.zeros(N) row=[] stimulus=np.zeros(N)+stepsim sim(tstep, nbstep) for i in range(len(stock_ex)-1): row.append(np.mean(stock_ex[i])) keep=np.vstack([keep,row]) return lim=150 stepsim=50 keep=np.zeros(tstep*nbstep) for i in range(int(lim/stepsim)): re=np.zeros(N) ri=np.zeros(N) Ie0=0.2 Ii0=0.5 stock_ex=np.zeros(N) stock_in=np.zeros(N) row=[] stimulus=np.zeros(N)+stepsim sim(tstep, nbstep) for i in range(len(stock_ex)-1): row.append(np.mean(stock_ex[i])) keep=np.vstack([keep,row]) print(len(row)) print(len(keep)) row=[] for i in range(len(stock_ex)): row.append(np.mean(stock_ex[i])) print(row) print(stock_ex) print(len(row)) #Phi input #Ie=GEE*np.matmul(WEE,re)+(Ie0-GIE*np.mean(ri))*np.ones(N) #be careful with matrices calculus => if I don't use np.matmul, can do errors without signaling it => for example a matrix (WEE) multiplied by an array (re) gives a matrix instead of an array #Ii=(GEI*np.mean(re)-GII*np.mean(ri)+Ii0)*np.ones(N) #Can't modify global variables in the script stimulus=np.ones(N)*200 def try(): stimulus=np.ones(N)*200 for in range(5): essai() return def essai(): stimulus=stimulus+1 return essai() #Useless packages import networkx as nx # module useful to manipulate graphs such as connectivity matrices from scipy.fftpack import fft, fftshift #Print first neuron firing rate r1=np.zeros(3) re=np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) for i in range(len(re-1)): r1[i]=re[i][0] print(r1) #Append list vertically stock=np.zeros(5) for i in range(4): stock=np.vstack([stock,np.ones(5)]) print(stock) #my way Ie=WEE[1]*re0*GEE-WEI[1]*ri0*GIE+Ie0 Ii=WIE[1]*re0*GEI-WII[1]*ri0*GII+Ii0 #sum def output_neurons_in(u): output_inh=0 for v in range(len(WIE)): output_inh+=WIE[u,v]*1*GEI-WII[u,v]*1*GII return(int(output_inh)) ess=output_neurons_in(2) print(ess) print((4-0.85)*360) #transfer a=transfer(output_neurons_in(1)) print(a) #firing-rate #re[0]=0? print(ri) for i in range ( len(t) - 1 ): re[i+1]=re[i]+deltat/T*(re[i]+transfer(output_neurons_in(i)+Ie0)+gaussian_noise_ex) for i in range ( len(t) - 1 ): print(transfer(output_neurons_in(i))) #Initial currents Ie0par=0.5 Ii0par=0.2 # Initial currents Ie0=np.ones(N)*Ie0par #initial current for excitatory neurons Ii0=np.ones(N)*Ii0par #initial current for inhibitory neurons # Firing-rate re=(re0-phie-sigmae*epsilon0)*np.exp(-t/taue)+phie+sigmae*epsilon ri=(ri0-phii-sigmai*epsilon0)*np.exp(-t/taui)+phii+sigmai*epsilon #Calculus with matrices print(np.ones((5,5))*np.ones(5)) print(np.matmul(np.ones((5,5)),np.ones(5))) print(np.ones(5)) print(np.ones((1,5))*np.ones((5,1))) #Phi input Ie=GEE*WEE-GEI*WEI+Ie0+Im Ii=GIE*WIE-GII*WII+Ii0 #Connectivity matrices using module network # All-to-all connectivity matrices G=nx.complete_graph(10) # example of a connectivity matrice print(G.nodes()) print(G.edges()) A=nx.adjacency_matrix(G) print(A.todense()) A=A*2 # weight of the edges print(A.todense()) WIE=nx.complete_graph(512) #paper matrices WIE=nx.adjacency_matrix(WIE) WIE=WIE*W0 WII=WIE WEI=WIE #module network import networkx as nx G=nx.Graph() listneurons=list(range(512)) print(listneurons) G.add_nodes_from(listneurons) print(G.nodes) G.add_edges_from([1,2]) G.add_edges_from([(1,2),(1,3)]) A=nx.adjacency_matrix(G, weight='3') print(A.todense()) #square matrices rr=np.zeros((5,5)) print(rr) rr+=1 print(rr)
[ "noreply@github.com" ]
HenriAton.noreply@github.com
4d8b9892b21dc06b532dbbcb1ec60eb0dfe5ef79
a8de5fb308cc351cb84ff465c7619d25080d5cd5
/s.py
f1b086e1387c8bd7b4f6800fc64b3a129e68b485
[]
no_license
Anil2144/python-basics
6ab4c3c7a77763a3f5fd7e71dc42d402ecea2d92
7ece9f9a58af0959eef19a99437a4b32b426d836
refs/heads/master
2022-11-27T06:27:04.344515
2020-07-21T07:22:20
2020-07-21T07:22:20
275,876,169
0
0
null
null
null
null
UTF-8
Python
false
false
22
py
print("anil\treddy")
[ "noreply@github.com" ]
Anil2144.noreply@github.com
cdc7e016f9ad364f72d1571461759254c34eab98
8955cc12cc644b8ed1dbc59c6801242cf0824f87
/edmshyft_code/GaussFit.py
3bd05561fa9d37db0069313955d121bc9cb1faed
[]
no_license
mattbellis/Siena_College_Danielle_Berish
565e76392c65c0be9b8fba294671bb00e08b8956
11eaef1dfc2e3d165f978f9014469a635a44d5bd
refs/heads/master
2020-04-16T02:45:40.070587
2014-04-01T08:39:40
2014-04-01T08:39:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,511
py
#!/usr/bin/env python from ROOT import TH1D, TH1, TCanvas import ROOT import numpy as np import sys import matplotlib.pyplot as plt ################################################################################# # Read in the file from the command line infile = None if len(sys.argv) > 1: infile = open(sys.argv[1],'r') else: print "Need to pass in an input file" exit(-1) content = np.array(infile.read().split()).astype('float') #print content # Separate content into designated lists mean = [] meanError = [] std = [] stdError = [] i = 0 count = 0 while count < len(content): mean.append(content[i]) meanError.append(content[i+1]) std.append(content[i+2]) stdError.append(content[i+3]) i += 4 count += 4 mean = np.array(mean) std = np.array(std) ############################################ # List of pT's pT = [] n = 170 while n <= 740: pT.append(n) n += 20 ########################################### # Fit the mean and std. dev. slope,intercept = np.polyfit(pT,mean[8:37],1) print "Slope of Mean: ",slope print "Intercept of Mean: ",intercept slope_std,intercept_std = np.polyfit(pT,std[8:37],1) print "Slope of Std. Dev.: ", slope_std print "Intercept of Std. Dev.: ",intercept_std ############################################ # Plot the mean and std. dev. plt.figure(1) plt.subplot(211) plt.ylabel("Mean") plt.scatter(pT,mean[8:37]) plt.subplot(212) plt.xlabel("Top pT") plt.ylabel("Std. Dev.") plt.scatter(pT,std[8:37]) plt.show()
[ "berish@serenity" ]
berish@serenity
b563563bd985a3f9d737ea973f8314bd6fb8f40d
9d2b33eb85fca3a81ccb7272422c41a08467a8c4
/pdm/formats/requirements.py
37c230c8eab420dab9e877204074086b6fe605a6
[ "MIT" ]
permissive
skyoo2003/pdm
9b9d20079f325c087855c7a37a4270d36fa71131
95a758ee259dff02f00f0a3eab79fa23e5d2aa97
refs/heads/master
2022-12-12T18:01:36.331560
2020-09-04T01:16:41
2020-09-04T01:16:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,729
py
import hashlib import urllib.parse from pip._internal.req.req_file import parse_requirements from pdm.models.markers import Marker from pdm.models.requirements import parse_requirement from pdm.utils import get_finder def _requirement_to_str_lowercase_name(requirement): """Formats a packaging.requirements.Requirement with a lowercase name.""" parts = [requirement.name.lower()] if requirement.extras: parts.append("[{0}]".format(",".join(sorted(requirement.extras)))) if requirement.specifier: parts.append(str(requirement.specifier)) if requirement.url: parts.append("@ {0}".format(requirement.url)) if requirement.marker: parts.append("; {0}".format(requirement.marker)) return "".join(parts) def requirement_from_ireq(ireq): """Formats an `InstallRequirement` instance as a `pdm.models.requirement.Requirement`. Generic formatter for pretty printing InstallRequirements to the terminal in a less verbose way than using its `__str__` method. :param :class:`InstallRequirement` ireq: A pip **InstallRequirement** instance. :return: A formatted string for prettyprinting :rtype: str """ if ireq.editable: line = "{}".format(ireq.link) else: line = _requirement_to_str_lowercase_name(ireq.req) if str(ireq.req.marker) != str(ireq.markers): if not ireq.req.marker: line = "{}; {}".format(line, ireq.markers) else: name, markers = line.split(";", 1) markers = Marker(markers) & ireq.markers line = "{}; {}".format(name, markers) return parse_requirement(line, ireq.editable) def parse_requirement_file(filename): from pip._internal.req.constructors import install_req_from_parsed_requirement finder = get_finder([]) ireqs = [ install_req_from_parsed_requirement(pr) for pr in parse_requirements(filename, finder.session, finder) ] return ireqs, finder def check_fingerprint(project, filename): import tomlkit with open(filename, encoding="utf-8") as fp: try: tomlkit.parse(fp.read()) except ValueError: # the file should be a requirements.txt if it not a TOML document. return True else: return False def convert_url_to_source(url, name=None): if not name: name = hashlib.sha1(url.encode("utf-8")).hexdigest()[:6] return {"name": name, "url": url, "verify_ssl": url.startswith("https://")} def convert(project, filename): ireqs, finder = parse_requirement_file(str(filename)) reqs = [requirement_from_ireq(ireq) for ireq in ireqs] data = {"dependencies": dict(req.as_req_dict() for req in reqs)} if finder.index_urls: sources = [convert_url_to_source(finder.index_urls[0], "pypi")] sources.extend(convert_url_to_source(url) for url in finder.index_urls[1:]) data["source"] = sources return data def export(project, candidates, options): lines = [] for candidate in candidates: req = candidate.req.as_line() lines.append(req) if options.hashes and candidate.hashes: for item in candidate.hashes.values(): lines.append(f" \\\n --hash={item}") lines.append("\n") sources = project.tool_settings.get("source", []) for source in sources: url = source["url"] prefix = "--index-url" if source["name"] == "pypi" else "--extra-index-url" lines.append(f"{prefix} {url}\n") if not source["verify_ssl"]: host = urllib.parse.urlparse(url).hostname lines.append(f"--trusted-host {host}\n") return "".join(lines)
[ "mianghong@gmail.com" ]
mianghong@gmail.com
eb1a62f56f2ffc107571e481f289733b9e687a09
5642ba9c9ba25768757e31f681eb8573c02e2e52
/django/ws17/index/admin.py
2940d331ae074237d884291b067a9e0922f74f0e
[]
no_license
intaekShin/TIL-c9
f2ce3f857481feeb9de7f388d8e25cbdc11cacc5
f63bb7b71601196e91303ff03a26c25f1e07b445
refs/heads/master
2020-04-17T17:17:57.184912
2019-05-02T03:09:08
2019-05-02T03:09:08
166,777,132
0
0
null
null
null
null
UTF-8
Python
false
false
204
py
from django.contrib import admin from .models import Student class StudentAdmin(admin.ModelAdmin): list_display = ('name', ) # Register your models here. admin.site.register(Student, StudentAdmin)
[ "sit921212@gmail.com" ]
sit921212@gmail.com
8023c70563e9521e74a25e84b2e0594f82363218
5357547a3d7eb14904c7a7c15f6d804e095cbca3
/August 2019/09th August 2019/validateBinarySearchTree.py
982ead0197bd3aee7e86e33b36c5a790a97b2508
[]
no_license
MichaelOgunsanmi/dailyCodingChallenge
3aaff98e07263dfde79192c5e040fc5f2523066b
2ca318b2be10be6af5b7130dd14627047cf257e8
refs/heads/master
2023-03-16T13:57:07.998943
2023-03-09T10:38:15
2023-03-09T10:38:15
195,297,943
2
0
null
null
null
null
UTF-8
Python
false
false
1,369
py
# Source: https://leetcode.com/problems/validate-binary-search-tree/ # Level: Medium # # Date: 09th August 2019 """ Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greater than the node's key. Both the left and right subtrees must also be binary search trees. Example 1: 2 / \ 1 3 Input: [2,1,3] Output: true Example 2: 5 / \ 1 4 / \ 3 6 Input: [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4. """ # Solution # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def isValidBST(self, rootNode: TreeNode) -> bool: return isBST(rootNode, float('-inf'), float('inf')) def isBST(currentNode, leftMin, rightMax): if currentNode is None: return True checkRoot = leftMin < currentNode.val < rightMax return checkRoot and isBST(currentNode.left, leftMin, currentNode.val) and isBST(currentNode.right, currentNode.val, rightMax)
[ "ogunsanmimichael@gmail.com" ]
ogunsanmimichael@gmail.com
bef3b9ad03bdc33f7171cc9b588f198ce873e861
62922a76e40003f3d3a7d02282853f9a2b76c6fc
/cv2/ch22/test1.py
1172f8de48d2bc9bfba7168431a2727b16325054
[]
no_license
cchangcs/ai_learning_record
a7d0d9c7fcdc1e97d8869aa7e63b535f8cf62df2
235a90ff5fe0205334376a927d462b8ae64e4e70
refs/heads/master
2020-04-01T16:59:31.203223
2018-11-21T11:12:34
2018-11-21T11:12:34
153,408,023
0
0
null
null
null
null
UTF-8
Python
false
false
1,103
py
# encoding:utf-8 ''' ๆ–‘็‚นๆฃ€ๆต‹SimpleBlodDetector() ๆ–‘็‚นๆฃ€ๆต‹๏ผš้ป˜่ฎคๆฃ€ๆต‹้ป‘่‰ฒ็‚น๏ผŒๅฆ‚ๆžœ่ฆๆฃ€ๆต‹็™ฝ่‰ฒ็š„็‚น้œ€่ฆ่ฎพ็ฝฎbycolorไธบtrue๏ผŒๅนถไธ”colorๆ•ฐๅ€ผไธบ255 ๆ–‘็‚น้€šๅธธๆ˜ฏๆŒ‡ไธŽๅ‘จๅ›ดๆœ‰็€้ขœ่‰ฒๅ’Œ็ฐๅบฆๅทฎๅˆซ็š„ๅŒบๅŸŸ๏ผŒๅœจๅฎž้™…็š„ๅ›พไธญ๏ผŒๅพ€ๅพ€ๅญ˜ๅœจ็€ๅคง้‡่ฟ™ๆ ท็š„ๆ–‘็‚น๏ผŒๅฆ‚ไธ€ๆฃตๆ ‘ๆ˜ฏไธ€ไธชๆ–‘็‚น๏ผŒไธ€ๅ—่‰ๅœฐๆ˜ฏไธ€ไธชๆ–‘็‚นใ€‚ ็”ฑไบŽๆ–‘็‚นไปฃ่กจ็š„ๆ˜ฏไธ€ไธชๅŒบๅŸŸ๏ผŒ็›ธๆฏ”ๅ•็บฏ็š„่ง’็‚น๏ผŒๅฎƒ็š„็จณๅฎšๆ€งๆ›ดๅฅฝ๏ผŒๆŠ—ๅ™ชๅฃฐ่ƒฝๅŠ›ๆ›ดๅผบ๏ผŒๆ‰€ไปฅๅฎƒๅœจๅ›พๅƒ้…ๅ‡†ไธŠๆ‰ฎๆผ”็€้‡่ฆ็š„่ง’่‰ฒใ€‚ ๅŒๆ—ถๆœ‰ๆ—ถๅ›พๅƒไธญ็š„ๆ–‘็‚นไนŸๆ˜ฏๆˆ‘ไปฌๅ…ณๅฟƒ็š„ๅŒบๅŸŸ๏ผŒๆฏ”ๅฆ‚ๅœจๅŒปๅญฆไธŽ็”Ÿ็‰ฉ้ข†ๅŸŸ๏ผŒๆˆ‘ไปฌ้œ€่ฆไปŽไธ€ไบ›Xๅ…‰็…ง็‰‡ๆˆ–็ป†่ƒžๆ˜พๅพฎ็…ง็‰‡ไธญๆๅ–ไธ€ไบ›ๅ…ทๆœ‰็‰นๆฎŠๆ„ไน‰็š„ๆ–‘็‚น็š„ไฝ็ฝฎๆˆ–ๆ•ฐ้‡ ''' import cv2 import numpy as np im = cv2.imread('blob.jpg', cv2.IMREAD_GRAYSCALE) detector = cv2.SimpleBlobDetector_create() keypoints = detector.detect(im) im_with_keypoints = cv2.drawKeypoints(im, keypoints, np.array([]), (0, 0, 255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) cv2.imshow("Keypoints", im_with_keypoints) cv2.waitKey(0) cv2.destroyAllWindows()
[ "752340690@qq.com" ]
752340690@qq.com
2787877ab7c4b47fa32149dee05ec29535e288c6
e52d1885191694c5098e17c10c6957a8222f753f
/PhotoStudio/views.py
7681e1fbe834b88eaabe3df3f27b43cfee8076f9
[]
no_license
LalitNath1221/pUkStudio
17ea355ccca61ee59294706d142cbc83cb6cecd1
55ae04ddec8b30f6c2b0b09a981ad972fafb1337
refs/heads/master
2023-06-14T00:32:59.265234
2021-07-11T06:13:29
2021-07-11T06:13:29
384,870,202
1
0
null
null
null
null
UTF-8
Python
false
false
3,693
py
from django.http import HttpResponse, request from django.shortcuts import render, redirect from django.core.mail import BadHeaderError, send_mail, EmailMultiAlternatives from django.conf import settings from .models import Appointments, Queries from socket import gaierror, timeout from django.contrib import messages # Create your views here. def index(request): if (request.method == "POST"): userName = request.POST["Name"] userEmail = request.POST["Email"] userPhno = request.POST["ContactNum"] userMsg = request.POST["userQuery"] body = f"""<div style="border: 2px solid black; padding: 1rem;"><p><b>Name : {userName}</b></p><br><p>Phone no : {userPhno}</p><hr><u><b>query</b></u><br><p>{userMsg}</p></div>""" subj = "Query" msg, status = send_email(subj, userEmail, body) #print(userName," ",userMsg," ",userPhno," ",userEmail) params = {'responce':msg, 'status':status} if (status=="success"): data = Queries.objects.create( User_Name= userName, User_Email= userEmail, User_Contact= userPhno, User_Discription= userMsg) data.save() return render(request, 'index.html', params) else: params = {} return render(request, 'index.html', params) def base(request): return render(request, 'base.html') def bookings(request): if (request.method == "POST"): userFirstName = request.POST["CFirstName"] userLastName = request.POST["CLastName"] userEmail = request.POST["cEmail"] userContact = request.POST["cContactNo"] BookingDate = request.POST["BookedOn"] apptDate = request.POST["apptDate"] userEvent = request.POST["cEvent"] userMsg = request.POST["cMessage"] body = f"""<div style="border: 2px solid black; padding: 1rem;"><p><u><b> User Name : {userFirstName}{userLastName} </b></u><br />User Email: {userEmail}<br />Phon No : {userContact}<br />Booked on :{BookingDate}<br />Appointment Date : {apptDate}<br />For {userEvent} <hr><u><b>Message :</b></u>{userMsg}</p></div>""" subj = "Regards Booking Appointment" msg, status = send_email(subj, userEmail, body) params = {'responce':msg, 'status':status} if (status=="success"): Adata = Appointments.objects.create(User_FirstName=userFirstName, User_LastName= userLastName, User_Email= userEmail, User_Contact= userContact, User_BookedOn= BookingDate, User_ApptDate= apptDate, User_Event= userEvent, User_Suggestion= userMsg) print(status) Adata.save() print(status) return render(request, 'book.html', params) else: params = {} return render(request, 'book.html', params) def send_email(subject, Uemail, body): text_content = "A mail from UkPhotography user" html_content = f'{body}' from_mail = settings.EMAIL_HOST_USER msg = EmailMultiAlternatives(subject, text_content, from_mail, ['ukphotography2002@gmail.com'], reply_to=[Uemail,]) msg.attach_alternative(html_content, "text/html") try: msg.send() except BadHeaderError: Msg = "Invalid header found" status = "error" return(Msg, status) except (gaierror, timeout): Msg = "SORRY!<br/>Check your internet connection or try again after some time" status = "error" return(Msg, status) Msg="Thank you for getting in touch!<br/>we will get back in touch with you soon!<br>Have a great day!" status = "success" return(Msg, status)
[ "lalitgosai2002@gmail.com" ]
lalitgosai2002@gmail.com
43f563d0761110d21a9addf1d57a833d60af3c04
e25f1cafc3e63e468d103918ebcf901867e3d786
/Assignment2/q5-2.py
cbfaf8a06d698af1b5fab4edcd8104d4f56d406d
[]
no_license
lebrice/IFT6135
726ee55c4d331a3a632a2038af8cf81e207db510
e0a28e21124718a59027ffce68c47b0cb4562aef
refs/heads/master
2020-04-18T14:47:19.555720
2019-04-23T00:13:03
2019-04-23T00:13:03
167,597,823
0
0
null
2019-03-19T03:11:36
2019-01-25T18:57:37
Jupyter Notebook
UTF-8
Python
false
false
2,427
py
import torch from torch import nn import numpy as np import matplotlib.pyplot as plt from models import FullTransformer from q5 import get_best_model, train_data, ptb_iterator, repackage_hidden, Batch, device def run_batch(model, data): model.eval() if not isinstance(model, FullTransformer): hidden = model.init_hidden() hidden = hidden.to(device) loss_fn = nn.CrossEntropyLoss() # LOOP THROUGH MINIBATCHES x, y = next(ptb_iterator(data, model.batch_size, model.seq_len)) model.zero_grad() if isinstance(model, FullTransformer): batch = Batch(torch.from_numpy(x).long().to(device)) outputs = model.forward(batch.data, batch.mask).transpose(1,0) #print ("outputs.shape", outputs.shape) else: inputs = torch.from_numpy(x.astype(np.int64)).transpose(0, 1).contiguous().to(device) # hidden = repackage_hidden(hidden) outputs, new_hidden = model(inputs, hidden) targets = torch.from_numpy(y.astype(np.int64)).contiguous().to(device) tt = torch.squeeze(targets.view(-1, model.batch_size * model.seq_len)) def register_grad_hook(tensor): def hook(grad): tensor.hidden_grad = grad tensor.register_hook(hook) for hidden_state in model.hidden_states: register_grad_hook(hidden_state) # LOSS COMPUTATION # This line currently averages across all the sequences in a mini-batch # and all time-steps of the sequences. # For problem 5.3, you will (instead) need to compute the average loss # at each time-step separately. loss = loss_fn(outputs.contiguous().view(-1, model.vocab_size), tt) loss.backward() hidden_grads = torch.stack(model.hidden_states) return hidden_grads.mean(1).norm(p=2, dim=-1) if __name__ == "__main__": for model_type in ['RNN', 'GRU']: model = get_best_model(model_type) model = model.to(device) hidden_grads = run_batch(model, train_data) normalized = (hidden_grads - hidden_grads.min()) / (hidden_grads.max() - hidden_grads.min()) plt.plot(range(model.seq_len), normalized.detach().cpu().numpy(), label=model_type) plt.title(f'Normalized norm of average hidden state gradients at each time-step') plt.legend() plt.xlabel('Time-step') plt.ylabel('Normalizaed norm of average hidden state gradient') plt.savefig(f'Q5_2_grad_wrt_time_steps.jpg')
[ "jerome-pl2@hotmail.ca" ]
jerome-pl2@hotmail.ca
72171071e30159663bde7ae3c5659354955ca45c
9aecf38356351986889b162fced066c1c4cf775a
/name.py
af29007a7745d852251fdf3d870d28d5904c987f
[]
no_license
Saitop/CS50.4_Python-JS_web_programming
51c2c6e7911c28eb4ddf65c0c981fcb1d031db9f
c2ed428fda5dcecc713dfa91bf28c2e520109c37
refs/heads/master
2022-11-24T16:43:16.725590
2020-07-25T17:06:10
2020-07-25T17:06:10
282,488,453
0
0
null
null
null
null
UTF-8
Python
false
false
80
py
print("please input your name:") name = input("Name: ") print(f"Hello, {name}")
[ "saitoplam@hotmail.com" ]
saitoplam@hotmail.com
f8624618ec8af27c85fe2f7d142c1b79ab69ae1b
66c0e47287c8e7737cf93adc6c42f84bf1dfe31c
/sagemaker/serve/utils_nlp.py
48e18ef2ac7236d0fe3874a04a3e0ae489e663cb
[]
no_license
reneang17/deep-toxic-analysis
ed1c10e5631dbd2bd3255aea9ce2e51e2072fcb5
b42147366f54aefa2009506b9e1498286624c59d
refs/heads/master
2020-09-03T02:37:15.164813
2020-01-02T03:36:16
2020-01-02T03:36:16
219,363,839
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
import re rep_numbers=re.compile(r'\d+',re.IGNORECASE) # Numbers rep_special_chars= re.compile("[^\w']|_") # Special character but not apostrophes def apostrophes(text): return re.findall(r"\w+(?=n't)|n't|\w+(?=')|'\w+|\w+", text, re.IGNORECASE | re.DOTALL) def text_to_words(text): text=rep_special_chars.sub(' ', text) # Remove special characters but apostrophes text = rep_numbers.sub('n', text) # substitute all numbers words = text.lower() words = apostrophes(words)[:120]# Split string into words return words def tokenize(word_dict, text): words = text_to_words(text) words=[word_dict[w] if w in word_dict else word_dict['<unk>'] for w in words] return words
[ "ec2-user@ip-172-16-29-12.us-east-2.compute.internal" ]
ec2-user@ip-172-16-29-12.us-east-2.compute.internal
622882398cd5c1e5077722f60c7aa9e77ef203af
0ad8fc76aebe7ce22abe771fbeadf227e5b471cb
/app/productdb/tasks.py
8cb6cd358ef178da1d7cd5290af4ab4a8389c040
[ "MIT" ]
permissive
ppavlu/product-database
354c6a1a3e9ebfdc931f2aacf8751ed0f149401c
09610c09600c63eb91106c0b5a2fa995b134dbf4
refs/heads/master
2021-01-17T22:51:43.247027
2015-10-11T11:37:12
2015-10-11T11:37:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,251
py
from django_project.celery import app as app from app.productdb.models import Settings import app.productdb.crawler.cisco_eox_api_crawler as cisco_eox_api_crawler import logging logger = logging.getLogger(__name__) @app.task(serializer='json', name="synchronize_with_cisco_eox_api") def execute_task_to_synchronize_cisco_eox_states(): """ This task will automatically synchronize the Cisco EoX states with the local database. It will execute the configured queries and saves the information to the local database. There are two types of operation: * cisco_eox_api_auto_sync_auto_create_elements is set to true - will create any element which is not part of the blacklist and not in the database * cisco_eox_api_auto_sync_auto_create_elements is set to false - will only update entries, which are already included in the database :return: """ logger.info("execute synchronize Cisco EoX update task...") # update based on the configured query settings result = cisco_eox_api_crawler.synchronize_with_cisco_eox_api() logger.info("result: %s" % str(result)) s = Settings.objects.get(id=0) s.eox_api_sync_task_id = "" s.save() return result
[ "henry@codingnetworker.com" ]
henry@codingnetworker.com
ad04f80a228f6453c99bb617772d78fcf7ed8e48
517ff269c8aaca5edf8b754dc81fbbdb37adde28
/PatternCounting.py
40c03215ec5a2c5feb9c15105d29891cf5726a20
[]
no_license
Andrewwu73/BioInformaticsAlgorithms
0d681bcc43b721dd743c1030042b2b19fbb04393
e2bd4029ef60ee4fee96567b45e93f673eecc665
refs/heads/master
2020-06-24T18:43:20.462859
2020-02-27T00:30:11
2020-02-27T00:30:11
199,049,930
0
0
null
null
null
null
UTF-8
Python
false
false
135
py
a = input("") b = input("") count = 0 for k in range(len(a)-len(b)+1): if(a[k:k+len(b)]==b): count = count + 1 print(count)
[ "andrewswu2000@gmail.com" ]
andrewswu2000@gmail.com
89c2127cdb13c6c6248abfba21d3cdb0eba90d73
3b9fdd117bfcfa86b1e354b2c193727e7567cb76
/proxyuser17/proxyuser17/apps/myapp/models.py
9a06f4b7a626979e8ea1971891cbd06fbebd22c1
[ "BSD-3-Clause" ]
permissive
marcofucci/django-ticket-24506
84beb913b2db2993034e199c3a63c2cde60fa9aa
88a36d792e77fb70c12224ea6a02774015ddbc84
refs/heads/master
2021-01-21T11:37:23.621884
2015-03-22T12:55:25
2015-03-22T12:55:25
32,672,309
0
1
null
2015-03-22T12:55:25
2015-03-22T11:11:24
Python
UTF-8
Python
false
false
314
py
from django.db import models class FKUserModel(models.Model): user = models.ForeignKey('core.User') def __unicode__(self): return u'%s' % self.user class OneToOneUserModel(models.Model): user = models.OneToOneField('core.User') def __unicode__(self): return u'%s' % self.user
[ "marcofucci@gmail.com" ]
marcofucci@gmail.com
31e927f3c4978a6c84c65f9dd512111ab7794a3b
34af993fb0c26e9b154effc01a3117e38a134ce7
/esp32-micropython/sys/boot.py
5089da4e1aa9574e20c3423bbaaa39057060fa80
[]
no_license
dida1012/Edublocks_ESP32
467401c2c100a09acffd1afced80b8fa6956520f
b4d97afba499a303f7558c561484625b86e2b4b4
refs/heads/master
2023-01-22T07:29:23.147930
2019-11-17T22:02:45
2019-11-17T22:02:45
222,307,141
3
0
null
2023-01-12T05:57:25
2019-11-17T20:24:56
TypeScript
UTF-8
Python
false
false
1,023
py
import sys import gc import webrepl from lib import screen from lib import wifi from lib import panel try: screen.fb.set_line_range_palette(0, 12, 0b1111100000011111, 0x0000) screen.fb.set_line_range_palette(12, 24, 0b0000011111100000, 0xffff) screen.fb.set_line_range_palette(108, 120, 0b0000011111111111, 0x0000) screen.fb.set_line_range_palette(120, 122, 0b1111100000000000, 0xffff) screen.fb.set_line_range_palette(122, 124, 0b1111100000000000, 0xffff) screen.fb.set_line_range_palette(124, 126, 0b0000011111000000, 0xffff) screen.fb.set_line_range_palette(126, 128, 0b1111111111000000, 0xffff) screen.print_line('Pretty colours!', 9) except: pass screen.print_line('Starting...', 0) gc.collect() wifi.auto_connect() gc.collect() webrepl.start(password='') gc.collect() screen.print_line('WebREPL started', 4) panel.start_panel() gc.collect() sys.path.append('/user') from lib import splash try: import main except: print('Could not find main start up script')
[ "daviddiener@outlook.com" ]
daviddiener@outlook.com
e7c933c7739f81bba762a05bd13220dda275b7ae
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Wyx_w_M_w_Sob_to_Wz_focus/IN_Sob_k5_EroMore/Sob_k35_s001_EroM/pyr_Tcrop255_p60_j15/pyr_5s/L7/step09_5side_L7.py
94ce9cec1f7924ce4d28ef2ca3b168732be84876
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
399,932
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### ๆŠŠ kong_model2 ๅŠ ๅ…ฅ sys.path import os from tkinter import S code_exe_path = os.path.realpath(__file__) ### ็›ฎๅ‰ๅŸท่กŒ step10_b.py ็š„ path code_exe_path_element = code_exe_path.split("\\") ### ๆŠŠ path ๅˆ‡ๅˆ† ็ญ‰็ญ‰ ่ฆๆ‰พๅ‡บ kong_model ๅœจ็ฌฌๅนพๅฑค kong_layer = code_exe_path_element.index("kong_model2") ### ๆ‰พๅ‡บ kong_model2 ๅœจ็ฌฌๅนพๅฑค kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### ๅฎšไฝๅ‡บ kong_model2 ็š„ dir import sys ### ๆŠŠ kong_model2 ๅŠ ๅ…ฅ sys.path sys.path.append(kong_model2_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# from step08_b_use_G_generate_Wxy_w_M_to_Wz_combine import Wyx_w_M_to_Wz from step08_b_use_G_generate_0_util import Tight_crop from step09_c_train_step import Train_step_Wyx_w_M_to_Wz from step09_d_KModel_builder_combine_step789 import KModel_builder, MODEL_NAME from step10_a1_loss import Sobel_MAE Sob_k5_s001_erose_M = Sobel_MAE(sobel_kernel_size=5, sobel_kernel_scale=1, erose_M=True, erose_More=True) use_gen_op = Wyx_w_M_to_Wz( focus=True, tight_crop=Tight_crop(pad_size=60, resize=(255, 255), jit_scale= 0), sobel=Sob_k5_s001_erose_M, sobel_only=True ) use_train_step = Train_step_Wyx_w_M_to_Wz( focus=True, tight_crop=Tight_crop(pad_size=60, resize=(255, 255), jit_scale=15), sobel=Sob_k5_s001_erose_M, sobel_only=True ) import time start_time = time.time() ############################################################################################################################################################################################### ################################## ### 5side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side1 OK 1 pyramid_1side_1__2side_1__3side_1_4side_1_5s1 = [5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side2 OK 4 pyramid_1side_2__2side_1__3side_1_4side_1_5s1 = [5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5] pyramid_1side_2__2side_2__3side_1_4side_1_5s1 = [5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5] pyramid_1side_2__2side_2__3side_2_4side_1_5s1 = [5, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5] pyramid_1side_2__2side_2__3side_2_4side_2_5s1 = [5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_3__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5] pyramid_1side_3__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5] pyramid_1side_3__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5] pyramid_1side_3__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5] pyramid_1side_3__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5] pyramid_1side_3__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 5] pyramid_1side_3__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 5] pyramid_1side_3__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5] pyramid_1side_3__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5] pyramid_1side_3__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_4__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 5] pyramid_1side_4__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 5] pyramid_1side_4__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5] pyramid_1side_4__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 5] pyramid_1side_4__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 5] pyramid_1side_4__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 5] pyramid_1side_4__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 5] pyramid_1side_4__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 5] pyramid_1side_4__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 5] pyramid_1side_4__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 5] pyramid_1side_4__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 4, 5] pyramid_1side_4__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 5] pyramid_1side_4__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 4, 5] pyramid_1side_4__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 4, 5] pyramid_1side_4__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 5] pyramid_1side_4__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 4, 5] pyramid_1side_4__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 1, 4, 4, 5] pyramid_1side_4__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 4, 5] pyramid_1side_4__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 3, 4, 4, 5] pyramid_1side_4__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_5__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 5] pyramid_1side_5__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 5] pyramid_1side_5__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 3, 5] pyramid_1side_5__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5] pyramid_1side_5__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5] pyramid_1side_5__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 3, 5] pyramid_1side_5__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 2, 5] pyramid_1side_5__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 3, 5] pyramid_1side_5__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 3, 5] pyramid_1side_5__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 3, 5] pyramid_1side_5__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 5] pyramid_1side_5__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 3, 5] pyramid_1side_5__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 3, 5] pyramid_1side_5__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 0, 0, 0, 0, 0, 2, 3, 3, 3, 5] pyramid_1side_5__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 3, 5] pyramid_1side_5__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 4, 5] pyramid_1side_5__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 4, 5] pyramid_1side_5__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 4, 5] pyramid_1side_5__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5] pyramid_1side_5__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5] pyramid_1side_5__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 4, 5] pyramid_1side_5__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 4, 5] pyramid_1side_5__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 4, 5] pyramid_1side_5__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 0, 0, 0, 0, 0, 2, 3, 3, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 4, 5] pyramid_1side_5__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 4, 5] pyramid_1side_5__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 0, 0, 0, 0, 0, 1, 2, 4, 4, 5] pyramid_1side_5__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 0, 0, 0, 0, 0, 1, 3, 4, 4, 5] pyramid_1side_5__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 0, 0, 0, 0, 0, 2, 2, 4, 4, 5] pyramid_1side_5__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 0, 0, 0, 0, 0, 2, 3, 4, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 0, 0, 0, 0, 0, 3, 3, 4, 4, 5] pyramid_1side_5__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 0, 0, 0, 0, 0, 1, 4, 4, 4, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 0, 0, 0, 0, 0, 2, 4, 4, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 0, 0, 0, 0, 0, 3, 4, 4, 4, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 5] # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 pyramid_1side_6__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 5] pyramid_1side_6__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 2, 5] pyramid_1side_6__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 3, 5] pyramid_1side_6__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 5] pyramid_1side_6__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 3, 5] pyramid_1side_6__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 1, 0, 0, 0, 1, 1, 1, 3, 3, 5] pyramid_1side_6__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 5] pyramid_1side_6__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 3, 5] pyramid_1side_6__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 1, 0, 0, 0, 1, 1, 2, 3, 3, 5] pyramid_1side_6__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 1, 0, 0, 0, 1, 1, 3, 3, 3, 5] pyramid_1side_6__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 2, 5] pyramid_1side_6__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 3, 5] pyramid_1side_6__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 1, 0, 0, 0, 1, 2, 2, 3, 3, 5] pyramid_1side_6__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 1, 0, 0, 0, 1, 2, 3, 3, 3, 5] pyramid_1side_6__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 1, 0, 0, 0, 1, 3, 3, 3, 3, 5] pyramid_1side_6__2side_6__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 5] pyramid_1side_6__2side_6__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 3, 5] pyramid_1side_6__2side_6__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 0, 0, 0, 2, 2, 2, 3, 3, 5] pyramid_1side_6__2side_6__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 0, 0, 0, 2, 2, 3, 3, 3, 5] pyramid_1side_6__2side_6__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 0, 0, 0, 2, 3, 3, 3, 3, 5] pyramid_1side_6__2side_6__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 3, 5] pyramid_1side_6__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 4, 5] pyramid_1side_6__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 4, 5] pyramid_1side_6__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 1, 0, 0, 0, 1, 1, 1, 3, 4, 5] pyramid_1side_6__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 4, 5] pyramid_1side_6__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 1, 2, 3, 4, 5] pyramid_1side_6__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 1, 0, 0, 0, 1, 1, 3, 3, 4, 5] pyramid_1side_6__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 4, 5] pyramid_1side_6__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 1, 0, 0, 0, 1, 2, 2, 3, 4, 5] pyramid_1side_6__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 1, 0, 0, 0, 1, 2, 3, 3, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 1, 0, 0, 0, 1, 3, 3, 3, 4, 5] pyramid_1side_6__2side_6__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 4, 5] pyramid_1side_6__2side_6__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 0, 0, 0, 2, 2, 2, 3, 4, 5] pyramid_1side_6__2side_6__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 0, 0, 0, 2, 2, 3, 3, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 0, 0, 0, 2, 3, 3, 3, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 4, 5] pyramid_1side_6__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 1, 0, 0, 0, 1, 1, 1, 4, 4, 5] pyramid_1side_6__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 1, 0, 0, 0, 1, 1, 2, 4, 4, 5] pyramid_1side_6__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 1, 0, 0, 0, 1, 1, 3, 4, 4, 5] pyramid_1side_6__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 1, 0, 0, 0, 1, 2, 2, 4, 4, 5] pyramid_1side_6__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 1, 0, 0, 0, 1, 2, 3, 4, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 1, 0, 0, 0, 1, 3, 3, 4, 4, 5] pyramid_1side_6__2side_6__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 0, 0, 0, 2, 2, 2, 4, 4, 5] pyramid_1side_6__2side_6__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 0, 0, 0, 2, 2, 3, 4, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 0, 0, 0, 2, 3, 3, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 0, 0, 0, 3, 3, 3, 4, 4, 5] pyramid_1side_6__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 1, 0, 0, 0, 1, 1, 4, 4, 4, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 1, 0, 0, 0, 1, 2, 4, 4, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 1, 0, 0, 0, 1, 3, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 0, 0, 0, 2, 2, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 0, 0, 0, 2, 3, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 0, 0, 0, 3, 3, 4, 4, 4, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 1, 0, 0, 0, 1, 4, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 0, 0, 0, 2, 4, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 0, 0, 0, 3, 4, 4, 4, 4, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 0, 0, 0, 4, 4, 4, 4, 4, 5] # 1 3 6 10 15 21 "28" 36 45 55 # side7 OK 84 pyramid_1side_7__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 5] pyramid_1side_7__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 5] pyramid_1side_7__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 3, 5] pyramid_1side_7__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 5] pyramid_1side_7__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 3, 5] pyramid_1side_7__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 3, 5] pyramid_1side_7__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 5] pyramid_1side_7__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 3, 5] pyramid_1side_7__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 3, 3, 5] pyramid_1side_7__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 1, 1, 0, 1, 1, 1, 3, 3, 3, 5] pyramid_1side_7__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 2, 5] pyramid_1side_7__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 3, 5] pyramid_1side_7__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 1, 1, 0, 1, 1, 2, 2, 3, 3, 5] pyramid_1side_7__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 3, 5] pyramid_1side_7__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 1, 1, 0, 1, 1, 3, 3, 3, 3, 5] pyramid_1side_7__2side_6__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 5] pyramid_1side_7__2side_6__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 3, 5] pyramid_1side_7__2side_6__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 1, 0, 1, 2, 2, 2, 3, 3, 5] pyramid_1side_7__2side_6__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 3, 5] pyramid_1side_7__2side_6__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 1, 0, 1, 2, 3, 3, 3, 3, 5] pyramid_1side_7__2side_6__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 1, 0, 1, 3, 3, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 5] pyramid_1side_7__2side_7__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 3, 5] pyramid_1side_7__2side_7__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 2, 0, 2, 2, 2, 2, 3, 3, 5] pyramid_1side_7__2side_7__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 2, 0, 2, 2, 2, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 2, 0, 2, 2, 3, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 2, 0, 2, 3, 3, 3, 3, 3, 5] pyramid_1side_7__2side_7__3side_7_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_7__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 4, 5] pyramid_1side_7__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 4, 5] pyramid_1side_7__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 4, 5] pyramid_1side_7__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 4, 5] pyramid_1side_7__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 3, 4, 5] pyramid_1side_7__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 1, 1, 0, 1, 1, 1, 3, 3, 4, 5] pyramid_1side_7__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 4, 5] pyramid_1side_7__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 1, 1, 0, 1, 1, 2, 2, 3, 4, 5] pyramid_1side_7__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 1, 1, 0, 1, 1, 3, 3, 3, 4, 5] pyramid_1side_7__2side_6__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 4, 5] pyramid_1side_7__2side_6__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 1, 0, 1, 2, 2, 2, 3, 4, 5] pyramid_1side_7__2side_6__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 1, 0, 1, 2, 3, 3, 3, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 1, 0, 1, 3, 3, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 4, 5] pyramid_1side_7__2side_7__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 2, 0, 2, 2, 2, 2, 3, 4, 5] pyramid_1side_7__2side_7__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 2, 0, 2, 2, 2, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 2, 0, 2, 2, 3, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 2, 0, 2, 3, 3, 3, 3, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_7__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 1, 1, 0, 1, 1, 1, 1, 4, 4, 5] pyramid_1side_7__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 1, 1, 0, 1, 1, 1, 2, 4, 4, 5] pyramid_1side_7__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 1, 1, 0, 1, 1, 1, 3, 4, 4, 5] pyramid_1side_7__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 1, 1, 0, 1, 1, 2, 2, 4, 4, 5] pyramid_1side_7__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 4, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 1, 1, 0, 1, 1, 3, 3, 4, 4, 5] pyramid_1side_7__2side_6__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 1, 0, 1, 2, 2, 2, 4, 4, 5] pyramid_1side_7__2side_6__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 1, 0, 1, 2, 2, 3, 4, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 1, 0, 1, 2, 3, 3, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 1, 0, 1, 3, 3, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 2, 0, 2, 2, 2, 2, 4, 4, 5] pyramid_1side_7__2side_7__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 2, 0, 2, 2, 2, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 2, 0, 2, 2, 3, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 2, 0, 2, 3, 3, 3, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 0, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_7__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 1, 1, 0, 1, 1, 1, 4, 4, 4, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 1, 1, 0, 1, 1, 2, 4, 4, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 1, 1, 0, 1, 1, 3, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 1, 0, 1, 2, 2, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 1, 0, 1, 2, 3, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 1, 0, 1, 3, 3, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 2, 0, 2, 2, 2, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 2, 0, 2, 2, 3, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 2, 0, 2, 3, 3, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 0, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 1, 1, 0, 1, 1, 4, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 1, 0, 1, 2, 4, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 1, 0, 1, 3, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 2, 0, 2, 2, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 2, 0, 2, 3, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 0, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 1, 0, 1, 4, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 2, 0, 2, 4, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 0, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 5] # 1 3 6 10 15 21 28 "36" 45 55 # side8 OK 120 pyramid_1side_8__2side_1__3side_1_4side_1_5s1 = [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5] pyramid_1side_8__2side_2__3side_1_4side_1_5s1 = [5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5] pyramid_1side_8__2side_2__3side_2_4side_1_5s1 = [5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5] pyramid_1side_8__2side_3__3side_1_4side_1_5s1 = [5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 5] pyramid_1side_8__2side_3__3side_2_4side_1_5s1 = [5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5] pyramid_1side_8__2side_3__3side_3_4side_1_5s1 = [5, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5] pyramid_1side_8__2side_4__3side_1_4side_1_5s1 = [5, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 5] pyramid_1side_8__2side_4__3side_2_4side_1_5s1 = [5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 5] pyramid_1side_8__2side_4__3side_3_4side_1_5s1 = [5, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 5] pyramid_1side_8__2side_4__3side_4_4side_1_5s1 = [5, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 5] pyramid_1side_8__2side_5__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 5] pyramid_1side_8__2side_5__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 5] pyramid_1side_8__2side_5__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5] pyramid_1side_8__2side_5__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 1, 1, 1, 1, 1, 2, 3, 3, 3, 5] pyramid_1side_8__2side_5__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 1, 1, 1, 1, 1, 3, 3, 3, 3, 5] pyramid_1side_8__2side_6__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 5] pyramid_1side_8__2side_6__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 3, 5] pyramid_1side_8__2side_6__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 5] pyramid_1side_8__2side_6__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 1, 1, 1, 2, 2, 3, 3, 3, 5] pyramid_1side_8__2side_6__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 1, 1, 1, 2, 3, 3, 3, 3, 5] pyramid_1side_8__2side_6__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 5] pyramid_1side_8__2side_7__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 5] pyramid_1side_8__2side_7__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 5] pyramid_1side_8__2side_7__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 2, 1, 2, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_7__3side_7_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_1_4side_1_5s1 = [5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5] pyramid_1side_8__2side_8__3side_2_4side_1_5s1 = [5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5] pyramid_1side_8__2side_8__3side_3_4side_1_5s1 = [5, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5] pyramid_1side_8__2side_8__3side_4_4side_1_5s1 = [5, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_5_4side_1_5s1 = [5, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_6_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_7_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_8__3side_8_4side_1_5s1 = [5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5] pyramid_1side_8__2side_2__3side_2_4side_2_5s1 = [5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 5] pyramid_1side_8__2side_3__3side_2_4side_2_5s1 = [5, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 5] pyramid_1side_8__2side_3__3side_3_4side_2_5s1 = [5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5] pyramid_1side_8__2side_4__3side_2_4side_2_5s1 = [5, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 5] pyramid_1side_8__2side_4__3side_3_4side_2_5s1 = [5, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5] pyramid_1side_8__2side_4__3side_4_4side_2_5s1 = [5, 4, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 5] pyramid_1side_8__2side_5__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 4, 5] pyramid_1side_8__2side_5__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5] pyramid_1side_8__2side_5__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 1, 1, 1, 1, 1, 2, 3, 3, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 1, 1, 1, 1, 1, 3, 3, 3, 4, 5] pyramid_1side_8__2side_6__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 4, 5] pyramid_1side_8__2side_6__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 4, 5] pyramid_1side_8__2side_6__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 1, 1, 1, 2, 2, 3, 3, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 1, 1, 1, 2, 3, 3, 3, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 4, 5] pyramid_1side_8__2side_7__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 4, 5] pyramid_1side_8__2side_7__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 2, 1, 2, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_2_4side_2_5s1 = [5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5] pyramid_1side_8__2side_8__3side_3_4side_2_5s1 = [5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5] pyramid_1side_8__2side_8__3side_4_4side_2_5s1 = [5, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_2_5s1 = [5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_2_5s1 = [5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5] pyramid_1side_8__2side_3__3side_3_4side_3_5s1 = [5, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 5] pyramid_1side_8__2side_4__3side_3_4side_3_5s1 = [5, 4, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 5] pyramid_1side_8__2side_4__3side_4_4side_3_5s1 = [5, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 4, 5] pyramid_1side_8__2side_5__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 1, 1, 1, 1, 1, 2, 2, 4, 4, 5] pyramid_1side_8__2side_5__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 1, 1, 1, 1, 1, 2, 3, 4, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 1, 1, 1, 1, 1, 3, 3, 4, 4, 5] pyramid_1side_8__2side_6__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 1, 1, 1, 2, 2, 2, 4, 4, 5] pyramid_1side_8__2side_6__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 1, 1, 1, 2, 2, 3, 4, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 1, 1, 1, 2, 3, 3, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 1, 1, 1, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 4, 5] pyramid_1side_8__2side_7__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 2, 1, 2, 2, 2, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 2, 1, 2, 2, 3, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 2, 1, 2, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 1, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_3_4side_3_5s1 = [5, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 5] pyramid_1side_8__2side_8__3side_4_4side_3_5s1 = [5, 4, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_3_5s1 = [5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_3_5s1 = [5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5] pyramid_1side_8__2side_4__3side_4_4side_4_5s1 = [5, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 1, 1, 1, 1, 1, 2, 4, 4, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 1, 1, 1, 1, 1, 3, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 1, 1, 1, 2, 2, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 1, 1, 1, 2, 3, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 1, 1, 1, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 2, 1, 2, 2, 2, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 2, 1, 2, 2, 3, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 2, 1, 2, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 1, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s1 = [5, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s1 = [5, 4, 4, 4, 3, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 2, 2, 2, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 2, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s1 = [5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 1, 1, 1, 1, 1, 4, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 1, 1, 1, 2, 4, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 1, 1, 1, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 2, 1, 2, 2, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 2, 1, 2, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 1, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s1 = [5, 4, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 2, 2, 2, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 2, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s1 = [5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 1, 1, 1, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 2, 1, 2, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 1, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s1 = [5, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s1 = [5, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s1 = [5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5] ################################## ### 5side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_2__2side_2__3side_2_4side_2_5s2 = [5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_3__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 5] pyramid_1side_3__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 5] pyramid_1side_3__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 5] pyramid_1side_3__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_4__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 5] pyramid_1side_4__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 5] pyramid_1side_4__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 5] pyramid_1side_4__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 5, 5] pyramid_1side_4__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 5, 5] pyramid_1side_4__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 0, 0, 0, 0, 0, 0, 0, 1, 4, 5, 5] pyramid_1side_4__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 4, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_5__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 5, 5] pyramid_1side_5__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 0, 0, 0, 0, 0, 1, 1, 2, 5, 5] pyramid_1side_5__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 0, 0, 0, 0, 0, 1, 1, 3, 5, 5] pyramid_1side_5__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 5, 5] pyramid_1side_5__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 0, 0, 0, 0, 0, 1, 3, 3, 5, 5] pyramid_1side_5__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 5, 5] pyramid_1side_5__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 0, 0, 0, 0, 0, 2, 2, 3, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 0, 0, 0, 0, 0, 2, 3, 3, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 5, 5] pyramid_1side_5__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 5, 5] pyramid_1side_5__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 0, 0, 0, 0, 0, 1, 2, 4, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 0, 0, 0, 0, 0, 1, 3, 4, 5, 5] pyramid_1side_5__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 0, 0, 0, 0, 0, 2, 2, 4, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 0, 0, 0, 0, 0, 2, 3, 4, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 0, 0, 0, 0, 0, 3, 3, 4, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 0, 0, 0, 0, 0, 1, 4, 4, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 0, 0, 0, 0, 0, 2, 4, 4, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 0, 0, 0, 0, 0, 3, 4, 4, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 5, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_6__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 5, 5] pyramid_1side_6__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 5, 5] pyramid_1side_6__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 1, 0, 0, 0, 1, 1, 1, 3, 5, 5] pyramid_1side_6__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 1, 0, 0, 0, 1, 1, 2, 2, 5, 5] pyramid_1side_6__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 1, 0, 0, 0, 1, 1, 2, 3, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 1, 0, 0, 0, 1, 1, 3, 3, 5, 5] pyramid_1side_6__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 1, 0, 0, 0, 1, 2, 2, 2, 5, 5] pyramid_1side_6__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 1, 0, 0, 0, 1, 2, 2, 3, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 1, 0, 0, 0, 1, 2, 3, 3, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 1, 0, 0, 0, 1, 3, 3, 3, 5, 5] pyramid_1side_6__2side_6__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 5, 5] pyramid_1side_6__2side_6__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 0, 0, 0, 2, 2, 2, 3, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 0, 0, 0, 2, 2, 3, 3, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 0, 0, 0, 2, 3, 3, 3, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3, 5, 5] pyramid_1side_6__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 1, 0, 0, 0, 1, 1, 1, 4, 5, 5] pyramid_1side_6__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 1, 0, 0, 0, 1, 1, 2, 4, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 1, 0, 0, 0, 1, 1, 3, 4, 5, 5] pyramid_1side_6__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 1, 0, 0, 0, 1, 2, 2, 4, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 1, 0, 0, 0, 1, 2, 3, 4, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 1, 0, 0, 0, 1, 3, 3, 4, 5, 5] pyramid_1side_6__2side_6__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 0, 0, 0, 2, 2, 2, 4, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 0, 0, 0, 2, 2, 3, 4, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 0, 0, 0, 2, 3, 3, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 0, 0, 0, 3, 3, 3, 4, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 1, 0, 0, 0, 1, 1, 4, 4, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 1, 0, 0, 0, 1, 2, 4, 4, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 1, 0, 0, 0, 1, 3, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 0, 0, 0, 2, 2, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 0, 0, 0, 2, 3, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 0, 0, 0, 3, 3, 4, 4, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 1, 0, 0, 0, 1, 4, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 0, 0, 0, 2, 4, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 0, 0, 0, 3, 4, 4, 4, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 0, 0, 0, 4, 4, 4, 4, 5, 5] # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 pyramid_1side_7__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 5, 5] pyramid_1side_7__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 5, 5] pyramid_1side_7__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 5, 5] pyramid_1side_7__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 5, 5] pyramid_1side_7__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 1, 1, 0, 1, 1, 1, 2, 3, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 1, 1, 0, 1, 1, 1, 3, 3, 5, 5] pyramid_1side_7__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 2, 5, 5] pyramid_1side_7__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 1, 1, 0, 1, 1, 2, 2, 3, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 1, 1, 0, 1, 1, 2, 3, 3, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 1, 1, 0, 1, 1, 3, 3, 3, 5, 5] pyramid_1side_7__2side_6__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 5, 5] pyramid_1side_7__2side_6__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 1, 0, 1, 2, 2, 2, 3, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 1, 0, 1, 2, 2, 3, 3, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 1, 0, 1, 2, 3, 3, 3, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 1, 0, 1, 3, 3, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 5, 5] pyramid_1side_7__2side_7__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 2, 0, 2, 2, 2, 2, 3, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 2, 0, 2, 2, 2, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 2, 0, 2, 2, 3, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 2, 0, 2, 3, 3, 3, 3, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_7__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 1, 1, 0, 1, 1, 1, 1, 4, 5, 5] pyramid_1side_7__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 1, 1, 0, 1, 1, 1, 2, 4, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 1, 1, 0, 1, 1, 1, 3, 4, 5, 5] pyramid_1side_7__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 1, 1, 0, 1, 1, 2, 2, 4, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 1, 1, 0, 1, 1, 2, 3, 4, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 1, 1, 0, 1, 1, 3, 3, 4, 5, 5] pyramid_1side_7__2side_6__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 1, 0, 1, 2, 2, 2, 4, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 1, 0, 1, 2, 2, 3, 4, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 1, 0, 1, 2, 3, 3, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 1, 0, 1, 3, 3, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 2, 0, 2, 2, 2, 2, 4, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 2, 0, 2, 2, 2, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 2, 0, 2, 2, 3, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 2, 0, 2, 3, 3, 3, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 0, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 1, 1, 0, 1, 1, 1, 4, 4, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 1, 1, 0, 1, 1, 2, 4, 4, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 1, 1, 0, 1, 1, 3, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 1, 0, 1, 2, 2, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 1, 0, 1, 2, 3, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 1, 0, 1, 3, 3, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 2, 0, 2, 2, 2, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 2, 0, 2, 2, 3, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 2, 0, 2, 3, 3, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 0, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 1, 1, 0, 1, 1, 4, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 1, 0, 1, 2, 4, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 1, 0, 1, 3, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 2, 0, 2, 2, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 2, 0, 2, 3, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 0, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 1, 0, 1, 4, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 2, 0, 2, 4, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 0, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 5, 5] # 1 3 6 10 15 21 "28" 36 45 55 # side7 OK 84 pyramid_1side_8__2side_2__3side_2_4side_2_5s2 = [5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5] pyramid_1side_8__2side_3__3side_2_4side_2_5s2 = [5, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 5] pyramid_1side_8__2side_3__3side_3_4side_2_5s2 = [5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5] pyramid_1side_8__2side_4__3side_2_4side_2_5s2 = [5, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 5, 5] pyramid_1side_8__2side_4__3side_3_4side_2_5s2 = [5, 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_2_5s2 = [5, 5, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5] pyramid_1side_8__2side_5__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2, 5, 5] pyramid_1side_8__2side_5__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 1, 1, 1, 1, 1, 2, 2, 3, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 1, 1, 1, 1, 1, 2, 3, 3, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 1, 1, 1, 1, 1, 3, 3, 3, 5, 5] pyramid_1side_8__2side_6__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 5, 5] pyramid_1side_8__2side_6__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 1, 1, 1, 2, 2, 2, 3, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 1, 1, 1, 2, 2, 3, 3, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 1, 1, 1, 2, 3, 3, 3, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 5, 5] pyramid_1side_8__2side_7__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 2, 1, 2, 2, 2, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 2, 1, 2, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_2_4side_2_5s2 = [5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5] pyramid_1side_8__2side_8__3side_3_4side_2_5s2 = [5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_2_5s2 = [5, 5, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_2_5s2 = [5, 5, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 2, 2, 2, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_2_5s2 = [5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5] pyramid_1side_8__2side_3__3side_3_4side_3_5s2 = [5, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 5, 5] pyramid_1side_8__2side_4__3side_3_4side_3_5s2 = [5, 5, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 4, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_3_5s2 = [5, 5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 5] pyramid_1side_8__2side_5__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 1, 1, 1, 1, 1, 2, 2, 4, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 1, 1, 1, 1, 1, 3, 3, 4, 5, 5] pyramid_1side_8__2side_6__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 1, 1, 1, 2, 2, 2, 4, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 1, 1, 1, 2, 2, 3, 4, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 1, 1, 1, 2, 3, 3, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 1, 1, 1, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 2, 1, 2, 2, 2, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 2, 1, 2, 2, 3, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 2, 1, 2, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 1, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_3_4side_3_5s2 = [5, 5, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_3_5s2 = [5, 5, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_3_5s2 = [5, 5, 4, 3, 3, 2, 2, 2, 2, 2, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 2, 2, 2, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_3_5s2 = [5, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_4_5s2 = [5, 5, 4, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 1, 1, 1, 1, 1, 2, 4, 4, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 1, 1, 1, 1, 1, 3, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 1, 1, 1, 2, 2, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 1, 1, 1, 2, 3, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 1, 1, 1, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 2, 1, 2, 2, 2, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 2, 1, 2, 2, 3, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 2, 1, 2, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 1, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s2 = [5, 5, 4, 4, 2, 2, 2, 2, 2, 2, 2, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s2 = [5, 5, 4, 4, 3, 2, 2, 2, 2, 2, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 2, 2, 2, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 2, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s2 = [5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 1, 1, 1, 1, 1, 4, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 1, 1, 1, 2, 4, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 1, 1, 1, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 2, 1, 2, 2, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 2, 1, 2, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 1, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s2 = [5, 5, 4, 4, 4, 2, 2, 2, 2, 2, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 2, 2, 2, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 2, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s2 = [5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 1, 1, 1, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 2, 1, 2, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 1, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 2, 2, 2, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 2, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s2 = [5, 5, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s2 = [5, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s2 = [5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5] ################################## ### 5side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_3__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_4__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 5, 5] pyramid_1side_4__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 0, 0, 0, 0, 0, 0, 0, 2, 5, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 0, 0, 0, 0, 0, 0, 0, 3, 5, 5, 5] pyramid_1side_4__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 0, 0, 0, 0, 0, 0, 0, 4, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_5__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 0, 0, 0, 0, 0, 1, 1, 5, 5, 5] pyramid_1side_5__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 0, 0, 0, 0, 0, 1, 2, 5, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 0, 0, 0, 0, 0, 1, 3, 5, 5, 5] pyramid_1side_5__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 0, 0, 0, 0, 0, 2, 2, 5, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 0, 0, 0, 0, 0, 2, 3, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 0, 0, 0, 0, 0, 3, 3, 5, 5, 5] pyramid_1side_5__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 0, 0, 0, 0, 0, 1, 4, 5, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 0, 0, 0, 0, 0, 2, 4, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 0, 0, 0, 0, 0, 3, 4, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 0, 0, 0, 0, 0, 4, 4, 5, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_6__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 1, 0, 0, 0, 1, 1, 1, 5, 5, 5] pyramid_1side_6__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 1, 0, 0, 0, 1, 1, 2, 5, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 1, 0, 0, 0, 1, 1, 3, 5, 5, 5] pyramid_1side_6__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 1, 0, 0, 0, 1, 2, 2, 5, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 1, 0, 0, 0, 1, 2, 3, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 1, 0, 0, 0, 1, 3, 3, 5, 5, 5] pyramid_1side_6__2side_6__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 0, 0, 0, 2, 2, 2, 5, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 0, 0, 0, 2, 2, 3, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 0, 0, 0, 2, 3, 3, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 0, 0, 0, 3, 3, 3, 5, 5, 5] pyramid_1side_6__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 1, 0, 0, 0, 1, 1, 4, 5, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 1, 0, 0, 0, 1, 2, 4, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 1, 0, 0, 0, 1, 3, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 0, 0, 0, 2, 2, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 0, 0, 0, 2, 3, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 0, 0, 0, 3, 3, 4, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 1, 0, 0, 0, 1, 4, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 0, 0, 0, 2, 4, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 0, 0, 0, 3, 4, 4, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 0, 0, 0, 4, 4, 4, 5, 5, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_7__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 1, 1, 0, 1, 1, 1, 1, 5, 5, 5] pyramid_1side_7__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 1, 1, 0, 1, 1, 1, 2, 5, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 1, 1, 0, 1, 1, 1, 3, 5, 5, 5] pyramid_1side_7__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 1, 1, 0, 1, 1, 2, 2, 5, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 1, 1, 0, 1, 1, 2, 3, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 1, 1, 0, 1, 1, 3, 3, 5, 5, 5] pyramid_1side_7__2side_6__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 1, 0, 1, 2, 2, 2, 5, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 1, 0, 1, 2, 2, 3, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 1, 0, 1, 2, 3, 3, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 1, 0, 1, 3, 3, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 2, 0, 2, 2, 2, 2, 5, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 2, 0, 2, 2, 2, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 2, 0, 2, 2, 3, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 2, 0, 2, 3, 3, 3, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 0, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_7__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 1, 1, 0, 1, 1, 1, 4, 5, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 1, 1, 0, 1, 1, 2, 4, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 1, 1, 0, 1, 1, 3, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 1, 0, 1, 2, 2, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 1, 0, 1, 3, 3, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 2, 0, 2, 2, 2, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 2, 0, 2, 2, 3, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 2, 0, 2, 3, 3, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 0, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 1, 1, 0, 1, 1, 4, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 1, 0, 1, 2, 4, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 1, 0, 1, 3, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 2, 0, 2, 2, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 2, 0, 2, 3, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 0, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 1, 0, 1, 4, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 2, 0, 2, 4, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 0, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 5, 5, 5] # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 pyramid_1side_8__2side_3__3side_3_4side_3_5s3 = [5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5] pyramid_1side_8__2side_4__3side_3_4side_3_5s3 = [5, 5, 5, 2, 1, 1, 1, 1, 1, 1, 1, 2, 5, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_3_5s3 = [5, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1, 3, 5, 5, 5] pyramid_1side_8__2side_5__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 1, 1, 1, 1, 1, 2, 2, 5, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 1, 1, 1, 1, 1, 2, 3, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 1, 1, 1, 1, 1, 3, 3, 5, 5, 5] pyramid_1side_8__2side_6__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 1, 1, 1, 2, 2, 2, 5, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 1, 1, 1, 2, 2, 3, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 1, 1, 1, 2, 3, 3, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 1, 1, 1, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 2, 1, 2, 2, 2, 2, 5, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 2, 1, 2, 2, 2, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 2, 1, 2, 2, 3, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 2, 1, 2, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 1, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_3_4side_3_5s3 = [5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_3_5s3 = [5, 5, 5, 3, 2, 2, 2, 2, 2, 2, 2, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_3_5s3 = [5, 5, 5, 3, 3, 2, 2, 2, 2, 2, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 2, 2, 2, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 2, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_3_5s3 = [5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5] pyramid_1side_8__2side_4__3side_4_4side_4_5s3 = [5, 5, 5, 4, 1, 1, 1, 1, 1, 1, 1, 4, 5, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 1, 1, 1, 1, 1, 2, 4, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 1, 1, 1, 1, 1, 3, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 1, 1, 1, 2, 2, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 1, 1, 1, 2, 3, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 1, 1, 1, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 2, 1, 2, 2, 2, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 2, 1, 2, 2, 3, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 2, 1, 2, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 1, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s3 = [5, 5, 5, 4, 2, 2, 2, 2, 2, 2, 2, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s3 = [5, 5, 5, 4, 3, 2, 2, 2, 2, 2, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 2, 2, 2, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 2, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s3 = [5, 5, 5, 4, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 1, 1, 1, 1, 1, 4, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 1, 1, 1, 2, 4, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 1, 1, 1, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 2, 1, 2, 2, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 2, 1, 2, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 1, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s3 = [5, 5, 5, 4, 4, 2, 2, 2, 2, 2, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 2, 2, 2, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 2, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s3 = [5, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 1, 1, 1, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 2, 1, 2, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 1, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 2, 2, 2, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 2, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s3 = [5, 5, 5, 4, 4, 4, 3, 3, 3, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s3 = [5, 5, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s3 = [5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5] ################################## ### 5side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_4__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_5__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 0, 0, 0, 0, 0, 1, 5, 5, 5, 5] pyramid_1side_5__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 0, 0, 0, 0, 0, 2, 5, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 0, 0, 0, 0, 0, 3, 5, 5, 5, 5] pyramid_1side_5__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 0, 0, 0, 0, 0, 4, 5, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_6__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 1, 0, 0, 0, 1, 1, 5, 5, 5, 5] pyramid_1side_6__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 1, 0, 0, 0, 1, 2, 5, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 1, 0, 0, 0, 1, 3, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 0, 0, 0, 2, 2, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 0, 0, 0, 2, 3, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 0, 0, 0, 3, 3, 5, 5, 5, 5] pyramid_1side_6__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 1, 0, 0, 0, 1, 4, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 0, 0, 0, 2, 4, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 0, 0, 0, 3, 4, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 0, 0, 0, 4, 4, 5, 5, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_7__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 1, 1, 0, 1, 1, 1, 5, 5, 5, 5] pyramid_1side_7__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 1, 1, 0, 1, 1, 2, 5, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 1, 1, 0, 1, 1, 3, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 1, 0, 1, 2, 2, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 1, 0, 1, 2, 3, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 1, 0, 1, 3, 3, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 2, 0, 2, 2, 2, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 2, 0, 2, 2, 3, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 2, 0, 2, 3, 3, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 0, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_7__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 1, 1, 0, 1, 1, 4, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 1, 0, 1, 2, 4, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 1, 0, 1, 3, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 2, 0, 2, 2, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 2, 0, 2, 3, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 0, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 1, 0, 1, 4, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 2, 0, 2, 4, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 0, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 0, 4, 4, 4, 5, 5, 5, 5] # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 pyramid_1side_8__2side_4__3side_4_4side_4_5s4 = [5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5] pyramid_1side_8__2side_5__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 1, 1, 1, 1, 1, 2, 5, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 1, 1, 1, 1, 1, 3, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 1, 1, 1, 2, 2, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 1, 1, 1, 2, 3, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 1, 1, 1, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 2, 1, 2, 2, 2, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 2, 1, 2, 2, 3, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 2, 1, 2, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 1, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_4_4side_4_5s4 = [5, 5, 5, 5, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_4_5s4 = [5, 5, 5, 5, 3, 2, 2, 2, 2, 2, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 2, 2, 2, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 2, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_4_5s4 = [5, 5, 5, 5, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5] pyramid_1side_8__2side_5__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 1, 1, 1, 1, 1, 4, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 1, 1, 1, 2, 4, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 1, 1, 1, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 2, 1, 2, 2, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 2, 1, 2, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 1, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s4 = [5, 5, 5, 5, 4, 2, 2, 2, 2, 2, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 2, 2, 2, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 2, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s4 = [5, 5, 5, 5, 4, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 1, 1, 1, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 2, 1, 2, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 1, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 2, 2, 2, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 2, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s4 = [5, 5, 5, 5, 4, 4, 3, 3, 3, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 1, 4, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 2, 4, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s4 = [5, 5, 5, 5, 4, 4, 4, 3, 4, 4, 4, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s4 = [5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5] ################################## ### 5side5 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_5__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 5, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_6__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 1, 0, 0, 0, 1, 5, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 0, 0, 0, 2, 5, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 0, 0, 0, 3, 5, 5, 5, 5, 5] pyramid_1side_6__2side_6__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 0, 0, 0, 4, 5, 5, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_7__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 1, 1, 0, 1, 1, 5, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 1, 0, 1, 2, 5, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 1, 0, 1, 3, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 2, 0, 2, 2, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 2, 0, 2, 3, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 0, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_7__2side_6__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 1, 0, 1, 4, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 2, 0, 2, 4, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 0, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 0, 4, 4, 5, 5, 5, 5, 5] # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 pyramid_1side_8__2side_5__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 1, 1, 1, 2, 5, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 1, 1, 1, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 2, 1, 2, 2, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 2, 1, 2, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 1, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_5_4side_5_5s5 = [5, 5, 5, 5, 5, 2, 2, 2, 2, 2, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 2, 2, 2, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 2, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_5_5s5 = [5, 5, 5, 5, 5, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5] pyramid_1side_8__2side_6__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 1, 1, 1, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 2, 1, 2, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 1, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 2, 2, 2, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 2, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s5 = [5, 5, 5, 5, 5, 4, 3, 3, 3, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 1, 4, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 2, 4, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s5 = [5, 5, 5, 5, 5, 4, 4, 3, 4, 4, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s5 = [5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5] ################################## ### 5side6 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_6__2side_6__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 0, 0, 0, 5, 5, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_7__2side_6__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 1, 0, 1, 5, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 2, 0, 2, 5, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 0, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_7__2side_7__3side_7_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 0, 4, 5, 5, 5, 5, 5, 5] # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 pyramid_1side_8__2side_6__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 2, 1, 2, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 1, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_6_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 2, 2, 2, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 2, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_6_5s6 = [5, 5, 5, 5, 5, 5, 3, 3, 3, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_7__3side_7_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 1, 4, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 2, 4, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s6 = [5, 5, 5, 5, 5, 5, 4, 3, 4, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s6 = [5, 5, 5, 5, 5, 5, 4, 4, 4, 5, 5, 5, 5, 5, 5] ################################## ### 5side7 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_7__2side_7__3side_7_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 0, 5, 5, 5, 5, 5, 5, 5] # 1 "3" 6 10 15 21 28 36 45 55 # side3 OK 4 pyramid_1side_8__2side_7__3side_7_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_7_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_7_5s7 = [5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5] pyramid_1side_8__2side_8__3side_8_4side_8_5s7 = [5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5] ################################## ### 5side8 ################################## # "1" 3 6 10 15 21 28 36 45 55 # side3 OK 1 pyramid_1side_8__2side_8__3side_8_4side_8_5s8 = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5] ############################################################################################################################################################################################### ############################################################################################################################################################################################### ############################################################################################################################################################################################### ################################## ### 1side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_1__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_2__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_3__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_4__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side5 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_5__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 5side6 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_6__2side_6__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side7 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_pyramid_1side_7__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_pyramid_1side_7__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_7__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_7__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_7__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_pyramid_1side_7__2side_6__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_6__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 21 "28" 36 45 55 # 2side7 OK 84 ch032_pyramid_1side_7__2side_7__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_7__2side_7__3side_7_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ################################## ### 1side8 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side3 OK 1 ch032_pyramid_1side_8__2side_1__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_1__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 "3" 6 10 15 21 28 36 45 55 # 2side3 OK 4 ch032_pyramid_1side_8__2side_2__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_2__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_2__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_pyramid_1side_8__2side_3__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_3__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_pyramid_1side_8__2side_4__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_4__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_pyramid_1side_8__2side_5__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_5__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_pyramid_1side_8__2side_6__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_6__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 21 "28" 36 45 55 # 2side7 OK 84 ch032_pyramid_1side_8__2side_7__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_7__3side_7_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) # 1 3 6 10 15 21 28 "36" 45 55 # 2side8 OK 120 ch032_pyramid_1side_8__2side_8__3side_1_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_1_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_2_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_2_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_2_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_2_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_3_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_4_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_5_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_6_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_7_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_1_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_1_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_2_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_2_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_3_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_3_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_3_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_4_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_5_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_6_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_7_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s1 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s1, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s2, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s3, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s4, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s5, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s6, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s7, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8 = KModel_builder().set_model_name(MODEL_NAME.flow_unet2).set_unet3(out_conv_block=True, concat_before_down=True, kernel_size=3, padding="valid", hid_ch= 32, depth_level=7, out_ch=1, unet_acti="sigmoid", conv_block_num=pyramid_1side_8__2side_8__3side_8_4side_8_5s8, ch_upper_bound= 2 ** 14).set_gen_op( use_gen_op ).set_train_step( use_train_step ) ############################################################################################################################################################################################### ############################################################################################################################################################################################### if(__name__ == "__main__"): import numpy as np print("build_model cost time:", time.time() - start_time) data = np.zeros(shape=(1, 512, 512, 1)) use_model = ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1 use_model = use_model.build() result = use_model.generator(data) print(result.shape) from kong_util.tf_model_util import Show_model_weights Show_model_weights(use_model.generator) use_model.generator.summary() print(use_model.model_describe)
[ "s89334roy@yahoo.com.tw" ]
s89334roy@yahoo.com.tw
e34c717eb62a620f52cb209c03274c86b346ba74
ccb17eaa277838efd23f8bd2522b5e69fda6ec5b
/hello_world/hola.py
ec5c538b8d0b8973338934effe253ab5f1235aca
[]
no_license
danilozte/learningC
3c145869a3853c7ef56720ba076547ee3d6bb9ad
4a994ac3f28e78023142a539c47afd4c0968dc1b
refs/heads/master
2023-03-30T12:47:19.922288
2021-03-11T22:07:24
2021-03-11T22:07:24
346,822,840
0
1
null
2021-03-11T20:51:06
2021-03-11T20:03:25
C
UTF-8
Python
false
false
100
py
# este es el unico archivo.py print("Python es lo mejor") print("Python es mejor que c") input(" ")
[ "felipeagq99@gmail.com" ]
felipeagq99@gmail.com
b1d84ff6d8719c6d1cb346458bafaa88df886d86
0facb323be8a76bb4c168641309972fa77cbecf2
/Configurations/HWWSemiLepHighMass/nanoAODv5/v6_production/2017/NJET_biined_WJets/SKIM10/HMVar10_Full_ALL_var/MassPoints/structure_M1500.py
006d035cd83abd3e70ffc306361571ee477e383b
[]
no_license
bhoh/SNuAnalytics
ef0a1ba9fa0d682834672a831739dfcfa1e7486b
34d1fc062e212da152faa83be50561600819df0e
refs/heads/master
2023-07-06T03:23:45.343449
2023-06-26T12:18:28
2023-06-26T12:18:28
242,880,298
0
1
null
2020-02-25T01:17:50
2020-02-25T01:17:49
null
UTF-8
Python
false
false
1,725
py
#['WW', 'ggHWWlnuqq_M1500', 'DY', 'DATA', 'WZ', 'ggHWWlnuqq_M125', 'ZZZ', 'ggHWWlnuqq_M900', 'vbfHWWlnuqq_M500', 'Wjets1j', 'QCD_MU', 'WZZ', 'vbfHWWlnuqq_M900', 'QCD_bcToE', 'Wjets2j', 'QCD_EM', 'ggHWWlnuqq_M500', 'ZZ', 'WWW', 'vbfHWWlnuqq_M1500', 'vbfHWWlnuqq_M125', 'WWZ', 'Wjets0j', 'top'] QCD_MU=['QCD_Pt-15to20_MuEnrichedPt5', 'QCD_Pt-20to30_MuEnrichedPt5', 'QCD_Pt-30to50_MuEnrichedPt5', 'QCD_Pt-50to80_MuEnrichedPt5', 'QCD_Pt-80to120_MuEnrichedPt5', 'QCD_Pt-120to170_MuEnrichedPt5', 'QCD_Pt-170to300_MuEnrichedPt5', 'QCD_Pt-300to470_MuEnrichedPt5', 'QCD_Pt-470to600_MuEnrichedPt5', 'QCD_Pt-600to800_MuEnrichedPt5', 'QCD_Pt-800to1000_MuEnrichedPt5', 'QCD_Pt-1000toInf_MuEnrichedPt5', ] QCD_EM=[ 'QCD_Pt-20to30_EMEnriched', 'QCD_Pt-30to50_EMEnriched', 'QCD_Pt-50to80_EMEnriched', 'QCD_Pt-80to120_EMEnriched', 'QCD_Pt-120to170_EMEnriched', 'QCD_Pt-170to300_EMEnriched', 'QCD_Pt-300toInf_EMEnriched' ] QCD_bcToE=[ 'QCD_Pt_20to30_bcToE', 'QCD_Pt_30to80_bcToE', 'QCD_Pt_80to170_bcToE', 'QCD_Pt_170to250_bcToE', 'QCD_Pt_250toInf_bcToE', ] for name in [ 'DY', 'WZZ', 'WWZ','WWW','ZZZ', 'ZZ', 'WZ', 'WW', 'WpWmJJ_EWK_QCD_noHiggs', 'top', 'Wjets0j', 'Wjets1j', 'Wjets2j','vbfHWWlnuqq_M125','ggHWWlnuqq_M125'] + ['QCD_MU','QCD_EM','QCD_bcToE']: structure[name] = { 'isSignal' : 0, 'isData' : 0 } #ggHWWlnuqq_M1500_S_B_I structure['ggHWWlnuqq_M1500'] = { 'isSignal' : 1, 'isData' : 0 } structure['vbfHWWlnuqq_M1500'] = { 'isSignal' : 1, 'isData' : 0 } structure['PseudoData'] = { 'isSignal' : 0, 'isData' : 1 }
[ "soarnsoar@gmail.com" ]
soarnsoar@gmail.com
a7a4d6e5592f92cb3623341644968b8963217700
a80916c83c67cacb33d7d1a66ad3c6acb9b3cc32
/SVM-examples/breast-SVM.py
514cd4bcc742df07dcdd7b82e5822109d7ba86d6
[]
no_license
brynelee/gk_dataanalysis_practices
3f82255abd253fcdca0fedcc2fffba124ac55b70
723dac7592a55fe6b422c74c03684a11d869e72d
refs/heads/master
2020-07-22T21:36:22.935095
2020-04-14T16:21:56
2020-04-14T16:21:56
207,335,160
0
0
null
null
null
null
UTF-8
Python
false
false
2,090
py
# -*- coding: utf-8 -*- # ไนณ่…บ็™Œ่ฏŠๆ–ญๅˆ†็ฑป import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn import svm from sklearn import metrics from sklearn.preprocessing import StandardScaler # ๅŠ ่ฝฝๆ•ฐๆฎ้›†๏ผŒไฝ ้œ€่ฆๆŠŠๆ•ฐๆฎๆ”พๅˆฐ็›ฎๅฝ•ไธญ data = pd.read_csv("./SVM-examples/data.csv") # ๆ•ฐๆฎๆŽข็ดข # ๅ› ไธบๆ•ฐๆฎ้›†ไธญๅˆ—ๆฏ”่พƒๅคš๏ผŒๆˆ‘ไปฌ้œ€่ฆๆŠŠdataframeไธญ็š„ๅˆ—ๅ…จ้ƒจๆ˜พ็คบๅ‡บๆฅ pd.set_option('display.max_columns', None) print(data.columns) print(data.head(5)) print(data.describe()) # ๅฐ†็‰นๅพๅญ—ๆฎตๅˆ†ๆˆ3็ป„ features_mean= list(data.columns[2:12]) features_se= list(data.columns[12:22]) features_worst=list(data.columns[22:32]) # ๆ•ฐๆฎๆธ…ๆด— # IDๅˆ—ๆฒกๆœ‰็”จ๏ผŒๅˆ ้™ค่ฏฅๅˆ— data.drop("id",axis=1,inplace=True) # ๅฐ†B่‰ฏๆ€งๆ›ฟๆขไธบ0๏ผŒMๆถๆ€งๆ›ฟๆขไธบ1 data['diagnosis']=data['diagnosis'].map({'M':1,'B':0}) # ๅฐ†่‚ฟ็˜ค่ฏŠๆ–ญ็ป“ๆžœๅฏ่ง†ๅŒ– sns.countplot(data['diagnosis'],label="Count") plt.show() # ็”จ็ƒญๅŠ›ๅ›พๅ‘ˆ็Žฐfeatures_meanๅญ—ๆฎตไน‹้—ด็š„็›ธๅ…ณๆ€ง corr = data[features_mean].corr() plt.figure(figsize=(14,14)) # annot=Trueๆ˜พ็คบๆฏไธชๆ–นๆ ผ็š„ๆ•ฐๆฎ sns.heatmap(corr, annot=True) plt.show() # ็‰นๅพ้€‰ๆ‹ฉ features_remain = ['radius_mean','texture_mean', 'smoothness_mean','compactness_mean','symmetry_mean', 'fractal_dimension_mean'] # ๆŠฝๅ–30%็š„ๆ•ฐๆฎไฝœไธบๆต‹่ฏ•้›†๏ผŒๅ…ถไฝ™ไฝœไธบ่ฎญ็ปƒ้›† train, test = train_test_split(data, test_size = 0.3)# in this our main data is splitted into train and test # ๆŠฝๅ–็‰นๅพ้€‰ๆ‹ฉ็š„ๆ•ฐๅ€ผไฝœไธบ่ฎญ็ปƒๅ’Œๆต‹่ฏ•ๆ•ฐๆฎ train_X = train[features_remain] train_y=train['diagnosis'] test_X= test[features_remain] test_y =test['diagnosis'] # ้‡‡็”จZ-Score่ง„่ŒƒๅŒ–ๆ•ฐๆฎ๏ผŒไฟ่ฏๆฏไธช็‰นๅพ็ปดๅบฆ็š„ๆ•ฐๆฎๅ‡ๅ€ผไธบ0๏ผŒๆ–นๅทฎไธบ1 ss = StandardScaler() train_X = ss.fit_transform(train_X) test_X = ss.transform(test_X) # ๅˆ›ๅปบSVMๅˆ†็ฑปๅ™จ model = svm.SVC() # ็”จ่ฎญ็ปƒ้›†ๅš่ฎญ็ปƒ model.fit(train_X,train_y) # ็”จๆต‹่ฏ•้›†ๅš้ข„ๆต‹ prediction=model.predict(test_X) print('ๅ‡†็กฎ็އ: ', metrics.accuracy_score(prediction,test_y))
[ "bryne_lxd@sina.com" ]
bryne_lxd@sina.com
f1d925c52d0d73f77dbb39812e5db0b68f59cf6d
84a65bb80441dea2e3b5d0e8b957e68762bd6c60
/snowmass/snowmassSubmit.py
ba35c48d0c4dd000c9bb12338e9f1509a6d21285
[]
no_license
jstupak/UserCode
cc559c04ebe074e6c3add08e1da95da08e73ff20
4a720642914b5f779de2bb02eaa41ef2927161a0
refs/heads/master
2021-01-19T18:10:56.212998
2013-06-29T20:14:34
2013-06-29T20:14:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,284
py
#!/usr/bin/python import os, sys from datetime import datetime from snowmassSamples import allSamples as theSamples relBase = os.environ['CMSSW_BASE'] #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #Job config doBackground=True doSignal=True analysisOutputDir='/uscms_data/d1/jstupak/2hdm' condorJobTempl=relBase+"/src/JohnStupak/snowmass/twoHiggsDoublet.templ.job" condorScriptTempl=relBase+"/src/JohnStupak/snowmass/twoHiggsDoublet.templ.csh" #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #Analysis config ################################################################################################################################################ cTime=datetime.now() date=str(cTime.year)+'_'+str(cTime.month)+'_'+str(cTime.day) condorDir=analysisOutputDir+'/'+date #Make sure twoHiggsDoublet.cpp is pre-compiled #os.system('root -l -b -q compile.C') if len(sys.argv)==2: submissionID=sys.argv[1] condorDir+='/'+submissionID rc=os.system('mkdir -p '+condorDir) if rc!=0: raise Exception('condorDir already exists - '+condorDir) ################################################################################################################################################ ################################################################################################################################################ ################################################################################################################################################ def submitJobs(): print '#################################################' print 'Condor Job Submission' print print 'Condor Work Area:',condorDir print 'Condor Job File Template:',condorJobTempl print 'Condor Script Template:',condorScriptTempl print #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for sample in theSamples: if (sample.isBackground and doBackground) or (sample.isSignal and doSignal): print '-------------------------------------------------' jobID=sample.name jobDir=condorDir+'/'+jobID os.system('mkdir '+jobDir) print 'Sample Name:',sample.name print 'Number Of Input Files:',len(sample.inputList) jobNo=1 firstFile=0 lastFile=firstFile+sample.filesPerJob-1 while firstFile<len(sample.inputList): print '- - - - - - - - - - - - - - - - - - - - - - - - -' if lastFile>=len(sample.inputList): lastFile=len(sample.inputList)-1 files=sample.inputList[firstFile:lastFile+1] fileNamesBase=jobDir+'/'+sample.name+'_'+str(jobNo) fileList=open(fileNamesBase+'.txt','w') for file in files: fileList.write(file+'\n') fileList.close() condorJobFile=fileNamesBase+'.job' condorScriptFile=fileNamesBase+'.csh' multiSed(condorJobTempl,condorJobFile,[['DIRECTORY',jobDir], ['PREFIX',jobID], ['JOBID',jobNo]]) multiSed(condorScriptTempl,condorScriptFile,[['CMSSWBASE',relBase], ['DIRECTORY',jobDir], ['PREFIX',jobID], ['JOBID',jobNo], ['INPUTS',fileNamesBase+'.txt'], ['OUTPUT',sample.name+'_'+str(jobNo)+'.root']]) os.system('chmod u+x '+condorScriptFile) submitCommand='condor_submit '+condorJobFile print submitCommand os.system('cd '+jobDir+'; '+submitCommand+'; cd -') jobNo+=1 firstFile=lastFile+1 lastFile=firstFile+sample.filesPerJob-1 os.system('tar -czvf '+condorDir+'/backup.tar.gz --exclude="*.log" --exclude="*.root" --exclude="*.pdf" --exclude="*.eps" --exclude=".backup" '+relBase+'/src/JohnStupak/snowmass/*') ################################################################################################################################################ def multiSed(oldFileName,newFileName,replacements): os.system('cp '+oldFileName+' '+newFileName) for replacement in replacements: if len(replacement)>2: raise Exception("Invalid argument to multiSed") old=replacement[0] new=str(replacement[1]) command='sed "s#'+old+'#'+new+'#" '+newFileName+' --in-place' #print command os.system(command) ################################################################################################################################################ #NOW FINALLY DO THE SUBMISSION submitJobs()
[ "" ]
ce724e74bd828e57ea1364efbcb346377f4226af
da76317b35fa2848589ffd5b38fe0182c9de6f73
/annotations/views.py
f3f7465ced5ba5e077a957dcc21598127eef84f5
[]
no_license
hemagso/pokefind
d5a03d1767c70466c32d6c6577ebc4ea169681cf
59bb8bb7e47771416a808cb1f828b85e64a4e46e
refs/heads/master
2020-04-19T12:44:13.153254
2019-01-30T20:40:43
2019-01-30T20:40:43
168,198,847
0
0
null
null
null
null
UTF-8
Python
false
false
3,559
py
# Django boilerplate from django.http import HttpResponse from django.shortcuts import render from django.db.models import Max # Data models from .models import Pokemon, Annotation, AreaAnnotation, Image, FAQItem, FAQGroup # Standard library from datetime import datetime import json import random def index(request): """" index view Renders the main webpage of the application :param request: The HTTP request sent by the client :return Rendered template of the application """ faq_groups = FAQGroup.objects.all().order_by("priority") faq_questions = FAQItem.objects.all().order_by("priority") faq_items = {} for group in faq_groups: faq_items[group.name] = [] for question in faq_questions: faq_items[question.group.name].append((question.question, question.answer)) context = { "faq_items": faq_items } return render(request, 'annotations/index.html', context) def get_pokemon_list(request): pokemon_list = {pokemon.id: pokemon.name for pokemon in Pokemon.objects.all()} return HttpResponse(json.dumps(pokemon_list)) def make(request): """" make view Submit a new annotation to the database. :param request: The HTTP request sent by the client :return String containing "OK" todo: Add error handling and feedback to the client todo: Use built-in timezone support """ areas = json.loads(request.POST["annotations"]) frame_id = request.POST["frame_id"] img = Image.objects.get(pk=frame_id) annotation = Annotation() annotation.image = img annotation.timestamp = datetime.now() annotation.save() for area in areas: new_area = AreaAnnotation() new_area.annotation = annotation new_area.width = area["bbox"]["width"] new_area.height = area["bbox"]["height"] new_area.x = area["bbox"]["x"] new_area.y = area["bbox"]["y"] new_area.comment = area["comment"] if area["id"]: new_area.pokemon = Pokemon.objects.get(id=area["id"]) new_area.save() return HttpResponse("OK") def frame_image(request, id): """" frame_image view Serve one frame of an specific Pokemon Episode :param request: The HTTP Request sent by the client :param id: ID of the frame requested :return HttpResponse object containing the image todo: Add error handling and feedback to the client """ img = Image.objects.get(id=id) img_path = "annotations/data/frames/season_{season:02d}/episode_{episode:03d}/frame_{frame:09d}.jpg".format( season=img.season, episode=img.episode, frame=img.frame ) with open(img_path, "rb") as f: img_data = f.read() return HttpResponse(img_data, content_type="image/jpg") all_frames_id = [image.id for image in Image.objects.all()] def get_frame(request): """" get_frame view Select one random frame ID to be sent over to the client :param request: The HTTP Request sent by the client :return HttpResponse object containing the JSON representation of a frame and its metadata todo: Do a better random frame selection todo: Integrate with login so as not to serve repeated images to the same user (Low-priority) """ frame_id = random.choice(all_frames_id) frame = Image.objects.get(id=frame_id) ret_data = { "id": str(frame.pk), "season": frame.season, "episode": frame.episode, "frame": frame.frame } return HttpResponse(json.dumps(ret_data))
[ "hemagso@gmail.com" ]
hemagso@gmail.com
6f89a5f67208f94eeef6c4be009c08ce1b707e3c
7262436a2fbb5645318b8cca080572a6deb507ca
/lexical/tokenize.py
a9911d9fb8fb3e55b0b906aa0035725539fa731d
[]
no_license
lysine1217/lyspy
2047ff117f7c778cd80d876a8d2f9e5e051d25e0
c5356ea7c64b0b57773831c966aeb7c44ae895a6
refs/heads/master
2021-01-17T17:07:50.774709
2014-06-19T15:22:35
2014-06-19T15:22:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
# -*- coding: utf-8 -*- """ simple sentence tokenizer """ from .string_tokenize import * def tokenize(string_or_listofstring, tolower=False, remove_punctions=False): if(isinstance(string_or_listofstring, str)): return string_tokenize(string_or_listofstring, tolower, remove_punctions) else: return [string_tokenize(sentence) for sentence in string_or_listofstring]
[ "lixinjian@roo.nii.ac.jp" ]
lixinjian@roo.nii.ac.jp
c3c0fe953162e894aab721bf5e7817ed8b7c94ce
16acbf7c73b172cf993a66ff8aa84376d12d1f19
/migrations/versions/18552074ce1a_.py
d5cc3ea58f68331ac846a8a26c9167aafc1545dd
[]
no_license
apexkid/realive
e5c18c57f7aafd7f485db14a7055cac17b41db00
eb31655478308195716e744b2531dcbc0e1510a6
refs/heads/master
2020-04-09T02:15:42.686539
2015-04-25T12:10:21
2015-04-25T12:10:21
34,567,090
0
0
null
null
null
null
UTF-8
Python
false
false
1,248
py
"""empty message Revision ID: 18552074ce1a Revises: None Create Date: 2015-04-25 17:38:17.506401 """ # revision identifiers, used by Alembic. revision = '18552074ce1a' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_table('campaign', sa.Column('id', sa.Integer(), nullable=False), sa.Column('isactive', sa.Boolean(), nullable=False), sa.Column('isdeleted', sa.Boolean(), nullable=False), sa.Column('added_on', sa.DateTime(), nullable=False), sa.Column('modified_on', sa.DateTime(), nullable=False), sa.Column('city', sa.String(length=30), nullable=False), sa.Column('officeLocation', sa.String(length=100), nullable=False), sa.Column('localityPref', sa.String(length=100), nullable=False), sa.Column('poi', sa.String(length=100), nullable=False), sa.Column('livingCost', sa.Integer(), nullable=False), sa.Column('priorities', sa.String(length=100), nullable=False), sa.PrimaryKeyConstraint('id') ) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_table('campaign') ### end Alembic commands ###
[ "aadi@0c4de9c6553e.ant.amazon.com" ]
aadi@0c4de9c6553e.ant.amazon.com
b4bf75c5fddbcf8887a7ebd127e00e1c3a3fcbfd
df190642c10d93a1ded605748245d2cff9daf337
/MxNet/5-predict.py
ab191064e90eb33b462c6a2c24b04894a63c34e1
[]
no_license
philloidin/AdvancedPythonForBio
fcb7a52bfc4f1fad85b17d89ee52790db81d6714
5d50664c78bc02228c59e8ccfe7a395d64f14a4e
refs/heads/master
2021-09-22T17:45:59.915389
2018-09-12T21:40:11
2018-09-12T21:40:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
918
py
plt.imshow(val_img[0], cmap='Greys_r') plt.axis('off') plt.show() prob = model.predict(val_img[0:1].astype(np.float32)/255)[0] assert max(prob) > 0.99, "Low prediction accuracy." print 'Classified as %d with probability %f' % (prob.argmax(), max(prob)) valid_acc = model.score(val_iter) print 'Validation accuracy: %f%%' % (valid_acc *100,) assert valid_acc > 0.95, "Low validation accuracy." from IPython.display import HTML import cv2 import numpy as np def classify(img): img = img[len('data:image/png;base64,'):].decode('base64') img = cv2.imdecode(np.fromstring(img, np.uint8), -1) img = cv2.resize(img[:,:,3], (28,28)) img = img.astype(np.float32).reshape((1,1,28,28))/255.0 return model.predict(img)[0].argmax() ''' To see the model in action, run the demo notebook at https://github.com/dmlc/mxnet-notebooks/blob/master/python/tutorials/mnist.ipynb. ''' HTML(filename="mnist_demo.html")
[ "lynnlangit@live.com" ]
lynnlangit@live.com
9ea362e7e23645d74ada3c82eae8bd8ed6962067
6f6b7e1a9837fb581cc5fed92b66b4ad12ea30f5
/19-05-161_STOCK_profit_AIC_BIC_L500_github/4plot_profit_nh6.py
4d358b74123f153c55f5113d35716f99896e3ac4
[ "MIT" ]
permissive
danhtaihoang/stock
f7b4f4989ff0c2b267766761d402adc599fc893d
9c3a3e467839dda095a0152055e347254abaf271
refs/heads/master
2020-06-10T01:35:59.136032
2019-06-24T17:13:35
2019-06-24T17:13:35
193,546,744
0
0
null
null
null
null
UTF-8
Python
false
false
1,052
py
import numpy as np import matplotlib.pyplot as plt #========================================================================================= # average: p1 = np.loadtxt('profit_cost_nhmax6.dat') p2 = np.loadtxt('profit_AIC_nhmax6.dat') p3 = np.loadtxt('profit_BIC_nhmax6.dat') tmax = np.shape(p1)[0] t = np.arange(0,tmax,1) plt.figure(figsize=(20,16)) plt.subplot(2,2,1) #plt.figure(figsize=(5,4)) plt.title('trade everyday') plt.plot(t, p1[:,0],'k-',label='cost') plt.plot(t, p2[:,0],'b-',label='AIC') plt.plot(t, p3[:,0],'r-',label='BIC') plt.legend() plt.xlabel('time') plt.ylabel('cumulative profit') plt.ylim([-1,4]) plt.grid(linestyle='dotted') plt.subplot(2,2,2) plt.title('not trade everyday') plt.plot(t, p1[:,1],'k-',label='cost') plt.plot(t, p2[:,1],'b-',label='AIC') plt.plot(t, p3[:,1],'r-',label='BIC') plt.legend() plt.xlabel('time') plt.ylabel('cumulative profit') plt.ylim([-1,4]) plt.grid(linestyle='dotted') #plt.tight_layout(h_pad=0.8, w_pad=1.2) plt.savefig('profit_cost_AIC_BIC_nhmax6.pdf', format='pdf', dpi=300)
[ "hoangdanhtai@gmail.com" ]
hoangdanhtai@gmail.com
c3ca98e5d8c7a2b7a60bee0667267c57f753f0a6
6bf97e57103b9ddd639a91a0c371f86b3bce60d8
/pure_ee/earth_engine_start.py
48154028788ff39dfead3649a9176c9cbc69a261
[ "Apache-2.0" ]
permissive
geosconsulting/gee_wapor
655372722eed9e1c00ef7880870bd85c7953d64a
c3c451fcb21664172a74647fe5d9e56f312aa1df
refs/heads/master
2021-01-13T05:01:37.233979
2017-03-01T14:09:08
2017-03-01T14:09:08
81,427,303
2
1
null
null
null
null
UTF-8
Python
false
false
327
py
# -*- coding: utf-8 -*- """ Created on Tue Jan 3 04:59:03 2017 @author: fabio """ # Import the Earth Engine Python Package import ee # Initialize the Earth Engine object, using the authentication credentials. ee.Initialize() # Print the information for an image asset. image = ee.Image('srtm90_v4') print(image.getInfo())
[ "geos-consulting@fastwebnet.it" ]
geos-consulting@fastwebnet.it
650e55b0150684558af4365f5f79147c34428123
3a3c3dd0265d9627857a8a1618a253ac74689bfc
/Bebras.py
c3903827c934863dd6e3fcd70fb38d5d4cc34889
[]
no_license
YoEugene/BeBras
5c8ca4fa7b2e9629d38393359d1447ea774eebd8
49a033ab1ce8e514470e13c5b59f7fc2a3c96017
refs/heads/master
2020-04-17T12:54:53.845048
2016-09-09T09:20:12
2016-09-09T09:20:12
67,782,356
0
0
null
null
null
null
UTF-8
Python
false
false
730
py
#-*- coding: UTF-8 -*- import requests import urllib from bs4 import BeautifulSoup saved = [] while len(saved) != 45: r = requests.get('http://bebras.csie.ntnu.edu.tw/main/?page=try') soup = BeautifulSoup(r.text.encode("utf-8"), 'html.parser') prob_id = soup.find(id="subform").attrs['action'].replace("?page=try_ans&id=","") imgs = soup.findAll("img") if prob_id not in saved: for img in imgs: src = img.get('src').encode('ascii') url = 'http://bebras.csie.ntnu.edu.tw/main/' + src urllib.urlretrieve(url, src) saved.append(prob_id) with open(prob_id+'.html', 'w') as file: file.write(r.text.encode("utf-8")) print(prob_id)
[ "dreammacer.yo@gmail.com" ]
dreammacer.yo@gmail.com
dc88abb3406c5bcfebb348f98a3bedeae0c3782b
f183e0624a02f02d3d4e225863a0357a5bf25a16
/Assignment_3/lambda/Assignment_3/index-photos.py
b72073b98d4d7c374fbeafaefd20f67007a8c677
[]
no_license
Wangwei0223/AWS-PhotoAlbum
37611a892e8e4d6cd3c89258b79e759f6e98c26c
57bf82c022fe7e4da5e987fb9fdf68b88e96b5f2
refs/heads/master
2020-03-31T20:05:18.974679
2018-12-06T20:49:57
2018-12-06T20:49:57
152,524,758
0
1
null
null
null
null
UTF-8
Python
false
false
1,805
py
import boto3 import re import requests from requests_aws4auth import AWS4Auth import time region = 'us-east-1' # e.g. us-west-1 service = 'es' credentials = boto3.Session().get_credentials() awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service, session_token=credentials.token) host = 'https://vpc-photo-hvy4wfq763nmzdhjwbku6nmtyu.us-east-1.es.amazonaws.com' # the Amazon ES domain, including https:// index = 'photo' type = 'image' url = host + '/' + index + '/' + type headers = { "Content-Type": "application/json" } s3 = boto3.client('s3') # Regular expressions used to parse some simple log lines ip_pattern = re.compile('(\d+\.\d+\.\d+\.\d+)') time_pattern = re.compile('\[(\d+\/\w\w\w\/\d\d\d\d:\d\d:\d\d:\d\d\s-\d\d\d\d)\]') message_pattern = re.compile('\"(.+)\"') # Lambda execution starts here def lambda_handler(event, context): print event client=boto3.client('rekognition') for record in event['Records']: # Get the bucket name and key for the new file bucket = record['s3']['bucket']['name'] key = record['s3']['object']['key'] timestampe = record['eventTime'] response = client.detect_labels(Image={'S3Object':{'Bucket':bucket,'Name':key}}, MaxLabels = 10, MinConfidence = 80) labels = [] for label in response['Labels']: labels.append(label['Name']) print (label['Name'] + ' : ' + str(label['Confidence'])) #localtime = time.asctime( time.localtime(time.time()) ) document = { "objectKey": key, "bucket": bucket, "createdTimestamp": timestampe, "labels": labels } r = requests.post(url, auth=awsauth, json=document, headers=headers)
[ "291978313@qq.com" ]
291978313@qq.com
ab0cab89b2414d9573a94e530d85774ff67f6f5b
7d8e74a400927fb3c9b9a37adb5802107d6184d9
/airports/utils.py
ca7a3a757a903d1421454cebcff37aa9dc89af0c
[]
no_license
garytouchsoft/airports
4c17dfd0cd5fb695e13feac33585bb2fb0d26828
46559a31f9e92de1e7303b830f653bbe6a6445fd
refs/heads/master
2023-07-01T02:36:02.119495
2021-07-29T17:26:45
2021-07-29T17:26:45
390,801,609
0
0
null
null
null
null
UTF-8
Python
false
false
616
py
from math import cos, asin, sqrt, pi def find_airport(airports, latitude, longitude): found = None nearest = 100000 for a in airports: lat1 = float(latitude) lng1 = float(longitude) d = distance(lat1, lng1, float(a.latitude), float(a.longitude)) if d < nearest: nearest = d found = a return (found, nearest) def distance( lat1, lon1, lat2, lon2, ): p = pi / 180 a = 0.5 - cos((lat2 - lat1) * p) / 2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2 return 12742 * asin(sqrt(a))
[ "extgarykennedy@gmail.com" ]
extgarykennedy@gmail.com
ee42c62ee368606b853eb33596799a966b0bffed
eedbd94d616246d8dbf5d3244101a3eb4f82a222
/bicyclepartsproject/pipelines.py
034b651caab27581430249bae8e982425be745fe
[]
no_license
dkasarov/bicycle_parts_spider
0bc344c1e7e195d8139817092f1918fb900e1853
0288a2c3238026514c7fe564d3de9d2da73dcde0
refs/heads/master
2020-05-02T09:23:29.498541
2019-03-27T19:38:19
2019-03-27T19:38:19
177,870,115
0
0
null
null
null
null
UTF-8
Python
false
false
300
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class BicyclepartsprojectPipeline(object): def process_item(self, item, spider): return item
[ "31469124+dkasarov@users.noreply.github.com" ]
31469124+dkasarov@users.noreply.github.com
4248e63135d6e7f10c126f4a9b1d2bf034255994
829e69a4184e3be9e18ce4fbbfdb4939b8d028bb
/archdaily.py
3e9a3d96fc17a68e6624698504e541cd8b6c2bd8
[ "MIT" ]
permissive
busster/Archdaily_bg_info
7c2eaf9a4ed99c33481fcdb0ed09e73a625a861e
c106d8dac62bd4b76739e6b29eac5fd5a35dad77
refs/heads/master
2021-01-20T20:14:26.878855
2016-08-09T22:56:56
2016-08-09T22:56:56
65,316,696
0
0
null
2016-08-09T22:56:57
2016-08-09T17:57:49
Python
UTF-8
Python
false
false
3,157
py
import requests, os, webbrowser, bs4 import urllib.request import ctypes import datetime import time from apscheduler.scheduler import Scheduler import re def downloadimage(): # Download archdaily's general projects page res = requests.get('http://www.archdaily.com/search/projects') res.raise_for_status # Parse the page to find the first project site = bs4.BeautifulSoup(res.text, "html.parser") #project_link = site.findAll('ul',{'class':'afd-search-list'}) project_link = site.findAll('li',{'class':'afd-search-list__item'}) project_link = project_link[1] one = project_link.find('a',href=True) two = one['href'] res2 = requests.get('http://www.archdaily.com' + two) res2.raise_for_status site_project = bs4.BeautifulSoup(res2.text, "html.parser") image_link = site_project.find('div',{'class':'image-bookmark'}) image_car = image_link.find('a',href=True) image_car = image_car['href'] specs = site_project.find('ul',{'class':'char-list char-list-box '}) os.chdir(os.path.join(os.getenv('userprofile'),'Desktop')) location = 'archdaily_project' dir = os.path.dirname(location) if not os.path.exists(location): os.makedirs(location) os.chdir(os.path.join(os.getenv('userprofile'),'Desktop','archdaily_project')) location = open('project_info.txt','w') location.write(specs.text) location.close() res3 = requests.get(image_car) res3.raise_for_status site_car = bs4.BeautifulSoup(res3.text, "html.parser") theimage = site_car.find('div',{'class':'table-display'}) theimage = str(theimage) try: image = re.search('"url_large":"(.+?)"', str(theimage)).group(1) except AttributeError: image = 'Sorry dunno what happened' data = urllib.request.urlretrieve((image), os.path.join(os.getenv('userprofile'),'Desktop','archdaily_project','project.jpg')) #print (specs.text) # # first project's page extension # project_link_ref = project_link[0].get('href') # # Download the projects page # res2 = requests.get(project_link_ref) # res2.raise_for_status # # Parse the page and find the image # devart_image = bs4.BeautifulSoup(res2.text) # image_link = devart_image.select('div.dev-view-main-content img') # image = image_link[0].get('src') # # Download image # data = urllib.request.urlretrieve((image), 'C:/Users/jason/Desktop/background/001.jpg') downloadimage() # def setbackground(): # # Set image as background # SPI_SETDESKWALLPAPER = 0x14 # SPIF_UPDATEINFILE = 0x2 # src = 'C:/Users/jason/Desktop/background/001.jpg' # print(ctypes.windll.user32.SystemParametersInfoW(SPI_SETDESKWALLPAPER, 0, src, SPIF_UPDATEINFILE)) # def interval(): # downloadimage() # setbackground() # print(datetime.datetime.now()) # time.sleep(20) # return # sched = Scheduler() # sched.daemonic = False # sched.start() # sched.add_cron_job(interval, minute='0-59')
[ "jasonmbuss@gmail.com" ]
jasonmbuss@gmail.com
6d32a6f67ce35aef72c121b3210ad72f27a32c9e
98d34b4c9dec318f783c37bd3612a0f9a5a9b16d
/credit/migrations/0009_auto_20170929_1320.py
6d099d0b2302c5c48c2ce44f0d99c2ef2f2ece34
[]
no_license
Toweringweed/db
5718792f3647c99232c3c48426b49b392a32e9c2
18109ce6ba15233b9ca27c1c2ea7e4ba21b92b21
refs/heads/master
2021-09-08T10:42:43.135989
2017-12-14T06:34:48
2017-12-14T06:34:48
107,344,117
0
0
null
null
null
null
UTF-8
Python
false
false
3,332
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-29 05:20 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('credit', '0008_auto_20170928_1628'), ] operations = [ migrations.CreateModel( name='luresult', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('luru', models.BooleanField(default=False, verbose_name='ๅฝ•ๅ…ฅๅฎŒๆˆ')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='ๆ›ดๆ–ฐๆ—ถ้—ด')), ], options={ 'verbose_name': 'ๅฝ•ๅ…ฅ็ป“ๆžœ', 'verbose_name_plural': 'ๅฝ•ๅ…ฅ็ป“ๆžœ', }, ), migrations.AlterModelOptions( name='basic', options={'verbose_name': 'ๅฎขๆˆทไฟกๆฏ', 'verbose_name_plural': 'ๅฎขๆˆทไฟกๆฏ'}, ), migrations.AlterModelOptions( name='card', options={'verbose_name': 'ไฟก็”จๅกไฟกๆฏ', 'verbose_name_plural': 'ไฟก็”จๅกไฟกๆฏ'}, ), migrations.AlterModelOptions( name='chaxun', options={'verbose_name': 'ๅพไฟกๆŸฅ่ฏข', 'verbose_name_plural': 'ๅพไฟกๆŸฅ่ฏข'}, ), migrations.AlterModelOptions( name='loan', options={'verbose_name': '่ดทๆฌพไฟกๆฏ', 'verbose_name_plural': '่ดทๆฌพไฟกๆฏ'}, ), migrations.AlterModelOptions( name='summary', options={'verbose_name': 'ไฟกๆฏๆฆ‚่ฆ', 'verbose_name_plural': 'ไฟกๆฏๆฆ‚่ฆ'}, ), migrations.RemoveField( model_name='basic', name='luru', ), migrations.RemoveField( model_name='chaxun', name='c_date', ), migrations.AlterField( model_name='basic', name='IDcard', field=models.CharField(default='', max_length=19, verbose_name='่บซไปฝ่ฏๅท'), ), migrations.AlterField( model_name='basic', name='adress', field=models.CharField(max_length=20, verbose_name='ๅพไฟกๅฝฑๅฐไปถ'), ), migrations.AlterField( model_name='basic', name='name', field=models.CharField(default='', max_length=10, verbose_name='ๅฎขๆˆทๅง“ๅ'), ), migrations.AlterField( model_name='basic', name='order_id', field=models.CharField(max_length=30, primary_key=True, serialize=False, verbose_name='่ฎขๅ•ๆตๆฐดๅท'), ), migrations.AlterField( model_name='loan', name='account_category', field=models.CharField(default='', max_length=10, verbose_name='่ดทๆฌพ็”จ้€”'), ), migrations.AlterField( model_name='summary', name='card_90overdue', field=models.IntegerField(null=True, verbose_name='ไฟก็”จๅกๅ‘็”Ÿ่ฟ‡90ๅคฉไปฅไธŠ้€พๆœŸ็š„่ดฆๆˆทๆ•ฐ'), ), migrations.AlterField( model_name='summary', name='card_notsettled', field=models.IntegerField(null=True, verbose_name='ไฟก็”จๅกๆœช็ป“ๆธ…/ๆœช้”€ๆˆท่ดฆๆˆทๆ•ฐ'), ), ]
[ "xiaohou09@gmail.com" ]
xiaohou09@gmail.com
b2516c9040789df5a0e98f754aab40508283b38c
c834c1b7ef5d0039a706f174ed3f7b0ab82fa2e5
/optOnMysql/data2mysql.py
5903606b3171c597649676ce4e1d13f00e79309e
[]
no_license
yangze01/Laws-Search-Project
126ffc5ec1ad1c2e9d95c2490104e8e37e766ad4
d1fff57a9298aa0d883a1b988aa98804d0ab00c1
refs/heads/master
2021-08-14T15:26:27.455518
2017-11-16T03:59:58
2017-11-16T03:59:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,597
py
#coding=utf8 import sys import time reload(sys) sys.setdefaultencoding('utf8') from optOnMysql.DocumentsOnMysql import * from optOnMysql.DocumentUnit import * import json BasePath = sys.path[0] def is_valid_date(str): '''ๅˆคๆ–ญๆ˜ฏๅฆๆ˜ฏไธ€ไธชๆœ‰ๆ•ˆ็š„ๆ—ฅๆœŸๅญ—็ฌฆไธฒ''' try: time.strptime(str, "%Y-%m-%d") return True except: return False# def document_format(line, criminal): line = json.loads(line.decode('utf8')) document_unit = dict() document_unit["title"] = line['title'] # print(len(document_unit['title'])) document_unit["court"] = line['court'] document_unit["url"] = line['url'] document_unit["content"] = '|'.join(line['content']).encode('utf8') # print(len(document_unit["content"])) document_unit["criminal"] = criminal if(is_valid_date(line["date"])): document_unit["date"] = line['date'] else: document_unit["date"] = "0000-00-00" return document_unit def save_document2mysql(file_path, criminal): opt = DocumentsOnMysql() i = 0 for line in open(file_path): print(i) i = i + 1 document_unit = document_format(line, criminal) opt.insertOneDocuments(document_unit) opt.connClose() print(u"finished") if __name__ == "__main__": opt = DocumentsOnMysql() # opt.insertOneDocuments(document_unit) # print(opt) opt.findById("1") a = opt.findall() for i in a : print(i) opt.connClose() # file_path = BasePath + "/../data/judgment_trafficking.txt" # save_document2mysql(file_path,u"ๆ‹ๅ–ๅฆ‡ๅฅณๅ„ฟ็ซฅ็ฝช")
[ "858848101@qq.com" ]
858848101@qq.com
8ead5ead4b013cc7d4c232e05fdbb87bc51f7ce4
8fb60261b33abf1da575faa0ee4eac8e18f6a517
/service1/app.py
f9757623edead27339cc1c17a848833096eda8d4
[]
no_license
AndrewBarrett182/DevOps-Practical-Project
6a17fa36c279d18a5b19b09ae7fec8c21c1e61e8
7962674352d8d1c779aee3c429d9c09ffb2c8122
refs/heads/main
2023-06-06T04:47:00.185664
2021-06-13T19:51:21
2021-06-13T19:51:21
374,668,538
0
0
null
2021-06-14T10:11:49
2021-06-07T13:04:29
Python
UTF-8
Python
false
false
107
py
from application import app if __name__=='__main__': app.run(debug=True, host = '0.0.0.0', port = 5000)
[ "ABarrett@qa.com" ]
ABarrett@qa.com
f98b81c01d75af857e62bdb4215ea2e8bd610be9
f3d7cdf664cd4dd17acb600871bcfab8d38dc6ba
/01_MCNN_Result/00_AES_HD/MCNN(org,ma100,pca).py
450fac2c2f33b3ba0ab9e756ae2278193216d9c9
[]
no_license
mitMathe/SCA-MCNN
1bf2a8c6ec792bb96a6c1beae4ce4e06703c5fd0
0dafbfc1f9d57ff264bc961d31b092995e488117
refs/heads/main
2023-03-16T06:03:05.872179
2021-03-03T06:51:06
2021-03-03T06:51:06
343,676,120
6
0
null
null
null
null
UTF-8
Python
false
false
67,175
py
import os.path import sys import h5py import numpy as np from numpy import * import random from tqdm import tqdm import matplotlib.pyplot as plt import struct from ctypes import * import tensorflow as tf import os import time import shutil import sys import binascii import pickle from keras.models import Model from keras.layers import Concatenate, Flatten, Dense, Input, Conv1D, AveragePooling1D, BatchNormalization from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from keras.utils import to_categorical from sklearn import preprocessing import warnings from keras.callbacks import Callback from keras import backend as K import sklearn from sklearn.decomposition import PCA, KernelPCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA from operator import itemgetter from keras.utils import plot_model from IPython.display import SVG from tensorflow.python.keras.layers import Lambda ################################################################### ########################## PARAMETER ############################ ################################################################### G_IV_PRINT = False G_INFO_PRINT = False G_RESULT_PRINT = True G_RESULT_SAVE = True # "aes_hd" "ascad100" "ascad50" "ascad0" "aes_rd" "aes_hd_mm" G_OPEN_DATASET = "aes_hd" # "original" "moving_average" "pca" G_PREPROCESS = "original" G_DATA_ROOT_PATH = "../../SCA_DATA/AES_HD" G_TRAIN_DATA_FILE = G_DATA_ROOT_PATH + "/" + "AES_HD_profiling_50000tr_1250pt.npy" G_TRAIN_PLAIN_FILE = G_DATA_ROOT_PATH + "/" + "AES_HD_profiling_50000tr_1250pt_cipher.npy" G_VALID_DATA_FILE = G_DATA_ROOT_PATH + "/" + "AES_HD_validation_25000tr_1250pt.npy" G_VALID_PLAIN_FILE = G_DATA_ROOT_PATH + "/" + "AES_HD_validation_25000tr_1250pt_cipher.npy" G_GEN_RESULT_PATH = "." G_TRAIN_NO = 45000 G_VALID_NO = 5000 G_ATTACK_NO = 5000 G_PLAIN_NO = 16 G_BIT_DEPTH = 8 G_OUT_SIZE = 256 G_PT_ST = 0 G_PT_ED = 1249 G_LEARN_RATE = 0.01 G_IN_SIZE = G_PT_ED - G_PT_ST + 1 G_LEARN_RATE_ST = G_LEARN_RATE G_LEARN_RATE_ED = G_LEARN_RATE / 100000 # MASSIVE HYPERPARAMETER G_EPOCH = 50 G_BATCH = 256 G_LAYER_CNN = 2 G_LAYER = 3 G_LAYER_NO = [20, 20, 20] class C_SFT_HEADER(Structure): _fields_ = [ ("ucVariable", c_uint8), ("ucTypeofTrace", c_uint8), ("ucReserved_1", c_uint8), ("ucReserved_2", c_uint8), ("strID_1", c_int32), ("strID_2", c_int32), ("nFrequency", c_uint32), ("nTraceNum", c_uint32), ("nTraceLength", c_uint32), ("fOffset", c_float), ("fGain", c_float) ] class C_MPL_HYPERPARAMETER(Structure): _fields_ = [ ("learn_rate", c_float), ("epoch_size", c_uint32), ("batch_size", c_uint32), ("layer_size", c_uint32), ("p_layer_net_size", POINTER(c_uint32)), ("layer_size_cnn", c_uint32), ("local_layer_size_cnn", c_uint32), ("train_no", c_uint32), ("train_size", c_uint32), ("valid_no", c_uint32), ("valid_size", c_uint32), ("attack_no", c_uint32), ("in_size", c_uint32), ("out_size", c_uint32) ] def COPY_HYPER(DST_HYPER, DEP_HYPER): DST_HYPER.learn_rate = DEP_HYPER.learn_rate DST_HYPER.epoch_size = DEP_HYPER.epoch_size DST_HYPER.batch_size = DEP_HYPER.batch_size DST_HYPER.layer_size = DEP_HYPER.layer_size layer_no = (c_uint32 * DEP_HYPER.layer_size)() for i in range(DEP_HYPER.layer_size): layer_no[i] = DEP_HYPER.p_layer_net_size[i] DST_HYPER.p_lyaer_net_size = layer_no DST_HYPER.layer_size_cnn = DEP_HYPER.layer_size_cnn DST_HYPER.train_no = DEP_HYPER.train_no DST_HYPER.train_size = DEP_HYPER.train_size DST_HYPER.valid_no = DEP_HYPER.valid_no DST_HYPER.valid_size = DEP_HYPER.valid_size DST_HYPER.attack_no = DEP_HYPER.attack_no DST_HYPER.in_size = DEP_HYPER.in_size DST_HYPER.out_size = DEP_HYPER.out_size def GET_TODAY(): now = time.localtime() s = "%04d-%02d-%02d_%02d-%02d-%02d" % ( now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec) return s def MAKE_FOLDER(folder_name): work_dir = G_GEN_RESULT_PATH + "/" + folder_name if not os.path.isdir(folder_name): os.mkdir(work_dir) return work_dir def DEBUG_PRINT(s, print_on_off): if print_on_off: print(s) def SHUFFLE_SCA_DATA(profiling_x,label_y): l = list(zip(profiling_x,label_y)) random.shuffle(l) shuffled_x,shuffled_y = list(zip(*l)) shuffled_x = np.array(shuffled_x) shuffled_y = np.array(shuffled_y) return (shuffled_x, shuffled_y) def INV_CAL(PLAIN, PLAIN_NO, GUESS_POS, GUESS_VALUE, INTERMEDIATE): AES_SBOX = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16] AES_SBOX_INV = np.array([0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ]) for i in range(PLAIN_NO): if G_OPEN_DATASET == 'aes_hd': INTERMEDIATE[i] = AES_SBOX_INV[int(PLAIN[i][11]) ^ GUESS_VALUE] ^ int(PLAIN[i][7]) else: INTERMEDIATE[i] = AES_SBOX[PLAIN[i][GUESS_POS] ^ GUESS_VALUE] def LOAD_TRACE(data_type, path, tr_no, pt_st, pt_ed): if data_type == 'npy': train_data = np.load(path) return train_data[:tr_no, pt_st:pt_ed + 1] def LOAD_PLAIN(data_type, path): if data_type == 'npy': plain = np.load(path) return plain # Code implemented by https://github.com/titu1994/keras-one-cycle # Code is ported from https://github.com/fastai/fastai class OneCycleLR(Callback): def __init__(self, max_lr, end_percentage=0.1, scale_percentage=None, maximum_momentum=0.95, minimum_momentum=0.85, verbose=True): """ This callback implements a cyclical learning rate policy (CLR). This is a special case of Cyclic Learning Rates, where we have only 1 cycle. After the completion of 1 cycle, the learning rate will decrease rapidly to 100th its initial lowest value. # Arguments: max_lr: Float. Initial learning rate. This also sets the starting learning rate (which will be 10x smaller than this), and will increase to this value during the first cycle. end_percentage: Float. The percentage of all the epochs of training that will be dedicated to sharply decreasing the learning rate after the completion of 1 cycle. Must be between 0 and 1. scale_percentage: Float or None. If float, must be between 0 and 1. If None, it will compute the scale_percentage automatically based on the `end_percentage`. maximum_momentum: Optional. Sets the maximum momentum (initial) value, which gradually drops to its lowest value in half-cycle, then gradually increases again to stay constant at this max value. Can only be used with SGD Optimizer. minimum_momentum: Optional. Sets the minimum momentum at the end of the half-cycle. Can only be used with SGD Optimizer. verbose: Bool. Whether to print the current learning rate after every epoch. # Reference - [A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, weight_decay, and weight decay](https://arxiv.org/abs/1803.09820) - [Super-Convergence: Very Fast Training of Residual Networks Using Large Learning Rates](https://arxiv.org/abs/1708.07120) """ super(OneCycleLR, self).__init__() if end_percentage < 0. or end_percentage > 1.: raise ValueError("`end_percentage` must be between 0 and 1") if scale_percentage is not None and (scale_percentage < 0. or scale_percentage > 1.): raise ValueError("`scale_percentage` must be between 0 and 1") self.initial_lr = max_lr self.end_percentage = end_percentage self.scale = float(scale_percentage) if scale_percentage is not None else float(end_percentage) self.max_momentum = maximum_momentum self.min_momentum = minimum_momentum self.verbose = verbose if self.max_momentum is not None and self.min_momentum is not None: self._update_momentum = True else: self._update_momentum = False self.clr_iterations = 0. self.history = {} self.epochs = None self.batch_size = None self.samples = None self.steps = None self.num_iterations = None self.mid_cycle_id = None def _reset(self): """ Reset the callback. """ self.clr_iterations = 0. self.history = {} def compute_lr(self): """ Compute the learning rate based on which phase of the cycle it is in. - If in the first half of training, the learning rate gradually increases. - If in the second half of training, the learning rate gradually decreases. - If in the final `end_percentage` portion of training, the learning rate is quickly reduced to near 100th of the original min learning rate. # Returns: the new learning rate """ if self.clr_iterations > 2 * self.mid_cycle_id: current_percentage = (self.clr_iterations - 2 * self.mid_cycle_id) current_percentage /= float((self.num_iterations - 2 * self.mid_cycle_id)) new_lr = self.initial_lr * (1. + (current_percentage * (1. - 100.) / 100.)) * self.scale elif self.clr_iterations > self.mid_cycle_id: current_percentage = 1. - ( self.clr_iterations - self.mid_cycle_id) / self.mid_cycle_id new_lr = self.initial_lr * (1. + current_percentage * (self.scale * 100 - 1.)) * self.scale else: current_percentage = self.clr_iterations / self.mid_cycle_id new_lr = self.initial_lr * (1. + current_percentage * (self.scale * 100 - 1.)) * self.scale if self.clr_iterations == self.num_iterations: self.clr_iterations = 0 return new_lr def compute_momentum(self): """ Compute the momentum based on which phase of the cycle it is in. - If in the first half of training, the momentum gradually decreases. - If in the second half of training, the momentum gradually increases. - If in the final `end_percentage` portion of training, the momentum value is kept constant at the maximum initial value. # Returns: the new momentum value """ if self.clr_iterations > 2 * self.mid_cycle_id: new_momentum = self.max_momentum elif self.clr_iterations > self.mid_cycle_id: current_percentage = 1. - ((self.clr_iterations - self.mid_cycle_id) / float( self.mid_cycle_id)) new_momentum = self.max_momentum - current_percentage * ( self.max_momentum - self.min_momentum) else: current_percentage = self.clr_iterations / float(self.mid_cycle_id) new_momentum = self.max_momentum - current_percentage * ( self.max_momentum - self.min_momentum) return new_momentum def on_train_begin(self, logs={}): logs = logs or {} self.epochs = self.params['epochs'] self.batch_size = self.params['batch_size'] self.samples = self.params['samples'] self.steps = self.params['steps'] if self.steps is not None: self.num_iterations = self.epochs * self.steps else: if (self.samples % self.batch_size) == 0: remainder = 0 else: remainder = 1 self.num_iterations = (self.epochs + remainder) * self.samples // self.batch_size self.mid_cycle_id = int(self.num_iterations * ((1. - self.end_percentage)) / float(2)) self._reset() K.set_value(self.model.optimizer.lr, self.compute_lr()) if self._update_momentum: if not hasattr(self.model.optimizer, 'momentum'): raise ValueError("Momentum can be updated only on SGD optimizer !") new_momentum = self.compute_momentum() K.set_value(self.model.optimizer.momentum, new_momentum) def on_batch_end(self, epoch, logs=None): logs = logs or {} self.clr_iterations += 1 new_lr = self.compute_lr() self.history.setdefault('lr', []).append( K.get_value(self.model.optimizer.lr)) K.set_value(self.model.optimizer.lr, new_lr) if self._update_momentum: if not hasattr(self.model.optimizer, 'momentum'): raise ValueError("Momentum can be updated only on SGD optimizer !") new_momentum = self.compute_momentum() self.history.setdefault('momentum', []).append( K.get_value(self.model.optimizer.momentum)) K.set_value(self.model.optimizer.momentum, new_momentum) for k, v in logs.items(): self.history.setdefault(k, []).append(v) def on_epoch_end(self, epoch, logs=None): if self.verbose: if self._update_momentum: print(" - lr: %0.5f - momentum: %0.2f " % (self.history['lr'][-1], self.history['momentum'][-1])) else: print(" - lr: %0.5f " % (self.history['lr'][-1])) class LRFinder(Callback): def __init__(self, num_samples, batch_size, minimum_lr=1e-5, maximum_lr=10., lr_scale='exp', validation_data=None, validation_sample_rate=5, stopping_criterion_factor=4., loss_smoothing_beta=0.98, save_dir=None, verbose=True): """ This class uses the Cyclic Learning Rate history to find a set of learning rates that can be good initializations for the One-Cycle training proposed by Leslie Smith in the paper referenced below. A port of the Fast.ai implementation for Keras. # Note This requires that the model be trained for exactly 1 epoch. If the model is trained for more epochs, then the metric calculations are only done for the first epoch. # Interpretation Upon visualizing the loss plot, check where the loss starts to increase rapidly. Choose a learning rate at somewhat prior to the corresponding position in the plot for faster convergence. This will be the maximum_lr lr. Choose the max value as this value when passing the `max_val` argument to OneCycleLR callback. Since the plot is in log-scale, you need to compute 10 ^ (-k) of the x-axis # Arguments: num_samples: Integer. Number of samples in the dataset. batch_size: Integer. Batch size during training. minimum_lr: Float. Initial learning rate (and the minimum). maximum_lr: Float. Final learning rate (and the maximum). lr_scale: Can be one of ['exp', 'linear']. Chooses the type of scaling for each update to the learning rate during subsequent batches. Choose 'exp' for large range and 'linear' for small range. validation_data: Requires the validation dataset as a tuple of (X, y) belonging to the validation set. If provided, will use the validation set to compute the loss metrics. Else uses the training batch loss. Will warn if not provided to alert the user. validation_sample_rate: Positive or Negative Integer. Number of batches to sample from the validation set per iteration of the LRFinder. Larger number of samples will reduce the variance but will take longer time to execute per batch. If Positive > 0, will sample from the validation dataset If Megative, will use the entire dataset stopping_criterion_factor: Integer or None. A factor which is used to measure large increase in the loss value during training. Since callbacks cannot stop training of a model, it will simply stop logging the additional values from the epochs after this stopping criterion has been met. If None, this check will not be performed. loss_smoothing_beta: Float. The smoothing factor for the moving average of the loss function. save_dir: Optional, String. If passed a directory path, the callback will save the running loss and learning rates to two separate numpy arrays inside this directory. If the directory in this path does not exist, they will be created. verbose: Whether to print the learning rate after every batch of training. # References: - [A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, weight_decay, and weight decay](https://arxiv.org/abs/1803.09820) """ super(LRFinder, self).__init__() if lr_scale not in ['exp', 'linear']: raise ValueError("`lr_scale` must be one of ['exp', 'linear']") if validation_data is not None: self.validation_data = validation_data self.use_validation_set = True if validation_sample_rate > 0 or validation_sample_rate < 0: self.validation_sample_rate = validation_sample_rate else: raise ValueError("`validation_sample_rate` must be a positive or negative integer other than o") else: self.use_validation_set = False self.validation_sample_rate = 0 self.num_samples = num_samples self.batch_size = batch_size self.initial_lr = minimum_lr self.final_lr = maximum_lr self.lr_scale = lr_scale self.stopping_criterion_factor = stopping_criterion_factor self.loss_smoothing_beta = loss_smoothing_beta self.save_dir = save_dir self.verbose = verbose self.num_batches_ = num_samples // batch_size self.current_lr_ = minimum_lr if lr_scale == 'exp': self.lr_multiplier_ = (maximum_lr / float(minimum_lr)) ** ( 1. / float(self.num_batches_)) else: extra_batch = int((num_samples % batch_size) != 0) self.lr_multiplier_ = np.linspace( minimum_lr, maximum_lr, num=self.num_batches_ + extra_batch) # If negative, use entire validation set if self.validation_sample_rate < 0: self.validation_sample_rate = self.validation_data[0].shape[0] // batch_size self.current_batch_ = 0 self.current_epoch_ = 0 self.best_loss_ = 1e6 self.running_loss_ = 0. self.history = {} def on_train_begin(self, logs=None): self.current_epoch_ = 1 K.set_value(self.model.optimizer.lr, self.initial_lr) warnings.simplefilter("ignore") def on_epoch_begin(self, epoch, logs=None): self.current_batch_ = 0 if self.current_epoch_ > 1: warnings.warn( "\n\nLearning rate finder should be used only with a single epoch. " "Hereafter, the callback will not measure the losses.\n\n") def on_batch_begin(self, batch, logs=None): self.current_batch_ += 1 def on_batch_end(self, batch, logs=None): if self.current_epoch_ > 1: return if self.use_validation_set: X, Y = self.validation_data[0], self.validation_data[1] # use 5 random batches from test set for fast approximate of loss num_samples = self.batch_size * self.validation_sample_rate if num_samples > X.shape[0]: num_samples = X.shape[0] idx = np.random.choice(X.shape[0], num_samples, replace=False) x = X[idx] y = Y[idx] values = self.model.evaluate(x, y, batch_size=self.batch_size, verbose=False) loss = values[0] else: loss = logs['loss'] # smooth the loss value and bias correct running_loss = self.loss_smoothing_beta * loss + ( 1. - self.loss_smoothing_beta) * loss running_loss = running_loss / ( 1. - self.loss_smoothing_beta**self.current_batch_) # stop logging if loss is too large if self.current_batch_ > 1 and self.stopping_criterion_factor is not None and ( running_loss > self.stopping_criterion_factor * self.best_loss_): if self.verbose: print(" - LRFinder: Skipping iteration since loss is %d times as large as best loss (%0.4f)" % (self.stopping_criterion_factor, self.best_loss_)) return if running_loss < self.best_loss_ or self.current_batch_ == 1: self.best_loss_ = running_loss current_lr = K.get_value(self.model.optimizer.lr) self.history.setdefault('running_loss_', []).append(running_loss) if self.lr_scale == 'exp': self.history.setdefault('log_lrs', []).append(np.log10(current_lr)) else: self.history.setdefault('log_lrs', []).append(current_lr) # compute the lr for the next batch and update the optimizer lr if self.lr_scale == 'exp': current_lr *= self.lr_multiplier_ else: current_lr = self.lr_multiplier_[self.current_batch_ - 1] K.set_value(self.model.optimizer.lr, current_lr) # save the other metrics as well for k, v in logs.items(): self.history.setdefault(k, []).append(v) if self.verbose: if self.use_validation_set: print(" - LRFinder: val_loss: %1.4f - lr = %1.8f " % (values[0], current_lr)) else: print(" - LRFinder: lr = %1.8f " % current_lr) def on_epoch_end(self, epoch, logs=None): if self.save_dir is not None and self.current_epoch_ <= 1: if not os.path.exists(self.save_dir): os.makedirs(self.save_dir) losses_path = os.path.join(self.save_dir, 'losses.npy') lrs_path = os.path.join(self.save_dir, 'lrs.npy') np.save(losses_path, self.losses) np.save(lrs_path, self.lrs) if self.verbose: print("\tLR Finder : Saved the losses and learning rate values in path : {%s}" % (self.save_dir)) self.current_epoch_ += 1 warnings.simplefilter("default") def plot_schedule(self, clip_beginning=None, clip_endding=None): """ Plots the schedule from the callback itself. # Arguments: clip_beginning: Integer or None. If positive integer, it will remove the specified portion of the loss graph to remove the large loss values in the beginning of the graph. clip_endding: Integer or None. If negative integer, it will remove the specified portion of the ending of the loss graph to remove the sharp increase in the loss values at high learning rates. """ try: import matplotlib.pyplot as plt plt.style.use('seaborn-white') except ImportError: print( "Matplotlib not found. Please use `pip install matplotlib` first." ) return if clip_beginning is not None and clip_beginning < 0: clip_beginning = -clip_beginning if clip_endding is not None and clip_endding > 0: clip_endding = -clip_endding losses = self.losses lrs = self.lrs if clip_beginning: losses = losses[clip_beginning:] lrs = lrs[clip_beginning:] if clip_endding: losses = losses[:clip_endding] lrs = lrs[:clip_endding] plt.plot(lrs, losses) plt.title('Learning rate vs Loss') plt.xlabel('learning rate') plt.ylabel('loss') plt.show() @classmethod def restore_schedule_from_dir(cls, directory, clip_beginning=None, clip_endding=None): """ Loads the training history from the saved numpy files in the given directory. # Arguments: directory: String. Path to the directory where the serialized numpy arrays of the loss and learning rates are saved. clip_beginning: Integer or None. If positive integer, it will remove the specified portion of the loss graph to remove the large loss values in the beginning of the graph. clip_endding: Integer or None. If negative integer, it will remove the specified portion of the ending of the loss graph to remove the sharp increase in the loss values at high learning rates. Returns: tuple of (losses, learning rates) """ if clip_beginning is not None and clip_beginning < 0: clip_beginning = -clip_beginning if clip_endding is not None and clip_endding > 0: clip_endding = -clip_endding losses_path = os.path.join(directory, 'losses.npy') lrs_path = os.path.join(directory, 'lrs.npy') if not os.path.exists(losses_path) or not os.path.exists(lrs_path): print("%s and %s could not be found at directory : {%s}" % (losses_path, lrs_path, directory)) losses = None lrs = None else: losses = np.load(losses_path) lrs = np.load(lrs_path) if clip_beginning: losses = losses[clip_beginning:] lrs = lrs[clip_beginning:] if clip_endding: losses = losses[:clip_endding] lrs = lrs[:clip_endding] return losses, lrs @classmethod def plot_schedule_from_file(cls, directory, clip_beginning=None, clip_endding=None): """ Plots the schedule from the saved numpy arrays of the loss and learning rate values in the specified directory. # Arguments: directory: String. Path to the directory where the serialized numpy arrays of the loss and learning rates are saved. clip_beginning: Integer or None. If positive integer, it will remove the specified portion of the loss graph to remove the large loss values in the beginning of the graph. clip_endding: Integer or None. If negative integer, it will remove the specified portion of the ending of the loss graph to remove the sharp increase in the loss values at high learning rates. """ try: import matplotlib.pyplot as plt plt.style.use('seaborn-white') except ImportError: print("Matplotlib not found. Please use `pip install matplotlib` first.") return losses, lrs = cls.restore_schedule_from_dir( directory, clip_beginning=clip_beginning, clip_endding=clip_endding) if losses is None or lrs is None: return else: plt.plot(lrs, losses) plt.title('Learning rate vs Loss') plt.xlabel('learning rate') plt.ylabel('loss') plt.show() @property def lrs(self): return np.array(self.history['log_lrs']) @property def losses(self): return np.array(self.history['running_loss_']) ################################################################### ######################## LOADING DATA ########################### ################################################################### AES_SBOX = np.array([ 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 ]) AES_SBOX_INV = np.array([0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ]) ################################################################### ########################## FUNCTIONS ############################ ################################################################### # Compute the position of the key hypothesis key amongst the hypotheses def rk_key(rank_array,key): key_val = rank_array[key] return np.where(np.sort(rank_array)[::-1] == key_val)[0][0] # Compute the evolution of rank def rank_compute(prediction, att_plt, key, byte): """ - prediction : predictions of the NN - att_plt : plaintext of the attack traces - key : Key used during encryption - byte : byte to attack """ (nb_trs, nb_hyp) = prediction.shape idx_min = nb_trs min_rk = 255 key_log_prob = np.zeros(nb_hyp) rank_evol = np.full(nb_trs,255) prediction = np.log(prediction+1e-40) for i in range(nb_trs): for k in range(nb_hyp): if G_OPEN_DATASET == 'aes_hd': #Computes the hypothesis values key_log_prob[k] += prediction[i,AES_SBOX_INV[k^int(att_plt[i,11])]^int(att_plt[i,7])] else: #Computes the hypothesis values key_log_prob[k] += prediction[i,AES_SBOX[k^att_plt[i, byte]]] rank_evol[i] = rk_key(key_log_prob,key[byte]) return rank_evol # Performs attack def perform_attacks(nb_traces, predictions, nb_attacks, plt, key, byte=0, shuffle=True, savefig=True, filename='fig'): """ Performs a given number of attacks to be determined - nb_traces : number of traces used to perform the attack - predictions : array containing the values of the prediction - nb_attacks : number of attack to perform - plt : the plaintext used to obtain the consumption traces - key : the key used to obtain the consumption traces - byte : byte to attack - shuffle (boolean, default = True) """ (nb_total, nb_hyp) = predictions.shape all_rk_evol = np.zeros((nb_attacks, nb_traces)) for i in tqdm(range(nb_attacks)): if shuffle: l = list(zip(predictions,plt)) random.shuffle(l) sp,splt = list(zip(*l)) sp = np.array(sp) splt = np.array(splt) att_pred = sp[:nb_traces] att_plt = splt[:nb_traces] else: att_pred = predictions[:nb_traces] att_plt = plt[:nb_traces] rank_evolution = rank_compute(att_pred,att_plt,key,byte=byte) all_rk_evol[i] = rank_evolution rk_avg = np.mean(all_rk_evol,axis=0) return (rk_avg) def MASSIVE_SCA_DL(RUN_FUNCTION=None, BACKUP_FILE=None, DATA_TYPE='npy', GPU_CONFIG=None): # Creating the work folder based on current time if (G_RESULT_SAVE == 1): st_t = time.time() work_dir = MAKE_FOLDER(GET_TODAY()) # Allocation to train data train_data = LOAD_TRACE(DATA_TYPE, G_TRAIN_DATA_FILE, G_TRAIN_NO, G_PT_ST, G_PT_ED) if DATA_TYPE == 'npy': train_plain = LOAD_PLAIN(DATA_TYPE, G_TRAIN_PLAIN_FILE) else: exit() # Allocation to valid data valid_data = LOAD_TRACE(DATA_TYPE, G_VALID_DATA_FILE, G_VALID_NO + G_ATTACK_NO, G_PT_ST, G_PT_ED) if DATA_TYPE == 'npy': valid_plain = LOAD_PLAIN(DATA_TYPE, G_VALID_PLAIN_FILE) else: exit() if G_RESULT_SAVE: final_work_file = work_dir + "/" + "final_result.txt" fp_r = open(final_work_file, 'w') # Generating hyperparameter hyperparameter = C_MPL_HYPERPARAMETER() # Initializing hyperparameter hyperparameter.train_no = c_uint32(train_data.shape[0]) hyperparameter.train_size = c_uint32(train_data.shape[1]) hyperparameter.valid_no = c_uint32(G_VALID_NO) hyperparameter.valid_size = c_uint32(valid_data.shape[1]) hyperparameter.attack_no = c_uint32(G_ATTACK_NO) hyperparameter.out_size = G_OUT_SIZE hyperparameter.learn_rate = G_LEARN_RATE hyperparameter.in_size = G_IN_SIZE # Allocating hyperparameter to perform SCA layer_no = (c_uint32 * G_LAYER)() for i in range(G_LAYER): layer_no[i] = 20 hyperparameter.batch_size = G_BATCH hyperparameter.layer_size = G_LAYER hyperparameter.epoch_size = G_EPOCH hyperparameter.layer_size_cnn = G_LAYER_CNN hyperparameter.p_layer_net_size = layer_no if G_RESULT_SAVE: fp_r.write("#####") fp_r.write("batch_size: %d, layer_size: %d, epoch_size: %d, " % (hyperparameter.batch_size, hyperparameter.layer_size, hyperparameter.epoch_size)) fp_r.write("#####") if G_OPEN_DATASET == 'aes_rd': byte = 0 key = 0x2B elif G_OPEN_DATASET == 'aes_hd': byte = 0 key = 0x00 else: byte = 2 key = 0xE0 RUN_FUNCTION("log_archive", fp_r, (work_dir + "/"), hyperparameter, byte, key, train_data, train_plain, valid_data, valid_plain, GPU_CONFIG) else: RUN_FUNCTION("log_archive", "", (work_dir + "/"), hyperparameter, byte, key, train_data, train_plain, valid_data, valid_plain, GPU_CONFIG) if G_RESULT_SAVE: fp_r.close() ed_t = time.time() time_file = work_dir + "/elapsed_time.txt" fp_t = open(time_file, 'w') fp_t.write("elasped time: %f\n" % (ed_t - st_t)) fp_t.close() def CHES2020_CNN_SCA(LOG_FILE, FP_RESULT, FINAL_PATH, HYPERPARAMETER, GUESS_POS, GUESS_KEY, TRAIN_DATA, TRAIN_PLAIN, VALID_DATA, VALID_PLAIN, GPU_CONFIG): if G_OPEN_DATASET == 'aes_rd': correct_key = [0x2b, 0x7E, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c] #AES_RD elif G_OPEN_DATASET == 'aes_hd': correct_key = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] #AES_HD else: correct_key = [0x4D, 0xFB, 0xE0, 0xF2, 0x72, 0x21, 0xFE, 0x10, 0xA7, 0x8D, 0x4A, 0xDC, 0x8E, 0x49, 0x04, 0x69] #ASCAD train_data = TRAIN_DATA.astype('float32') valid_data = VALID_DATA.astype('float32') # Standardization and Normalzation (between 0 and 1) scaler = preprocessing.StandardScaler() train_data = scaler.fit_transform(train_data) valid_data = scaler.transform(valid_data) scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) train_data = scaler.fit_transform(train_data) valid_data = scaler.fit_transform(valid_data) (train_data, TRAIN_PLAIN) = SHUFFLE_SCA_DATA(train_data, TRAIN_PLAIN) if G_PREPROCESS == 'original': TRAIN_DATA = train_data VALID_DATA = valid_data elif G_PREPROCESS == 'moving_average': ###### Calculating the moving average ma_base, ma_step, ma_no = 100, 1, 1 (ma_train, ma_len) = MOVING_AVG(TRAIN_DATA, ma_base, ma_step, ma_no) (ma_valid, ma_len) = MOVING_AVG(VALID_DATA, ma_base, ma_step, ma_no) # Standardization and Normalzation (between 0 and 1) scaler = preprocessing.StandardScaler() ma_train = scaler.fit_transform(ma_train) ma_valid = scaler.transform(ma_valid) scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) ma_train = scaler.fit_transform(ma_train) ma_valid = scaler.fit_transform(ma_valid) TRAIN_DATA = ma_train VALID_DATA = ma_valid HYPERPARAMETER.in_size = ma_train.shape[1] HYPERPARAMETER.train_size = ma_train.shape[1] HYPERPARAMETER.valid_size = ma_valid.shape[1] elif G_PREPROCESS == 'pca': ###### Calculating the pca (pc_train, pc_len) = PCA_REDUCTION(TRAIN_DATA) (pc_valid, pc_len) = PCA_REDUCTION(VALID_DATA) # Standardization and Normalzation (between 0 and 1) scaler = preprocessing.StandardScaler() pc_train = scaler.fit_transform(pc_train) pc_valid = scaler.transform(pc_valid) scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) pc_train = scaler.fit_transform(pc_train) pc_valid = scaler.fit_transform(pc_valid) TRAIN_DATA = pc_train VALID_DATA = pc_valid HYPERPARAMETER.in_size = pc_train.shape[1] HYPERPARAMETER.train_size = pc_train.shape[1] HYPERPARAMETER.valid_size = pc_valid.shape[1] else: print("Type is wrong") exit() valid_data = VALID_DATA[:HYPERPARAMETER.valid_no] valid_plain = VALID_PLAIN[:HYPERPARAMETER.valid_no] attack_data = VALID_DATA[HYPERPARAMETER.valid_no:HYPERPARAMETER.valid_no+HYPERPARAMETER.attack_no] attack_plain = VALID_PLAIN[HYPERPARAMETER.valid_no:HYPERPARAMETER.valid_no+HYPERPARAMETER.attack_no] reshape_valid_data = valid_data.reshape((valid_data.shape[0], valid_data.shape[1], 1)) reshape_attack_data = attack_data.reshape((attack_data.shape[0], attack_data.shape[1], 1)) model = CHES2020_CNN_ARCHI(HYPERPARAMETER) model_name = G_OPEN_DATASET print("Model Name = " + model_name) print(model.summary()) st_t = time.time() history = CHES2020_CNN_TRAIN(LOG_FILE, FP_RESULT, HYPERPARAMETER, GUESS_POS, GUESS_KEY, TRAIN_DATA, TRAIN_PLAIN, valid_data, valid_plain, GPU_CONFIG, model) ed_t = time.time() time_file = FINAL_PATH + "train_time.txt" fp_t = open(time_file, 'w') fp_t.write("elasped time: %f\n" % (ed_t - st_t)) fp_t.close() predictions = model.predict(reshape_attack_data) if True: for layer in model.layers: inv_layer = Model(inputs=model.input, outputs=model.get_layer(layer.name).output) inv_out = inv_layer.predict(reshape_attack_data) avg = [0] * inv_out.shape[1] if inv_out.ndim == 3: for idx2 in range(inv_out.shape[2]): for idx1 in range(inv_out.shape[1]): avg[idx1] += inv_out[0][idx1][idx2] for idx1 in range(inv_out.shape[1]): avg[idx1] /= inv_out.shape[2] else: for idx1 in range(inv_out.shape[1]): avg[idx1] = inv_out[0][idx1] INV_PATH = (FINAL_PATH + '%s' + '.npy') % (layer.name) np.save(INV_PATH, avg) fig = plt.figure(figsize=(20, 10)) plt.rcParams["figure.figsize"] = (20,10) plt.title(layer.name) plt.plot(avg) plt.show() FIG_PATH = (FINAL_PATH + '%s' + '.png') % (layer.name) fig.savefig(FIG_PATH, dpi=fig.dpi, bbox_inches="tight") st_t = time.time() avg_rank = perform_attacks(HYPERPARAMETER.attack_no, predictions, 100, plt=attack_plain, key=correct_key, byte=GUESS_POS, filename=model_name) ed_t = time.time() time_file = FINAL_PATH + "attack_time.txt" fp_t = open(time_file, 'w') fp_t.write("elasped time: %f\n" % (ed_t - st_t)) fp_t.close() print("\n t_GE = ") print(avg_rank) print(np.where(avg_rank<=0)) if G_RESULT_SAVE: for idx in range(avg_rank.shape[0]): FP_RESULT.write("%f " % avg_rank[idx]) FP_RESULT.write("\n") FP_RESULT.write("%d" % TRAIN_DATA.shape[0]) INV_PATH = (FINAL_PATH + 'GE_result' + '.npy') np.save(INV_PATH, avg_rank) fig = plt.figure(figsize=(20, 10)) plt.plot(avg_rank, label=(G_PREPROCESS + ' Result against ' + G_OPEN_DATASET)) plt.rcParams["figure.figsize"] = (20,10) plt.legend(fontsize='x-large') FIG_PATH = (FINAL_PATH + 'GE_result' + '.png') fig.savefig(FIG_PATH, dpi=fig.dpi, bbox_inches="tight") plt.show() trace = np.load(FINAL_PATH + 'GE_result' + ".npy") plt.plot(trace) plt.rcParams["figure.figsize"] = (20,10) plt.show() model.save((FINAL_PATH + 'ORIGINAL_RESULT' + '.hdf5')) def CHES2020_CNN_ARCHI(HYPERPARAMETER): input_shape = (HYPERPARAMETER.in_size, 1) img_input = Input(shape=input_shape) BN_IDX = [1] * HYPERPARAMETER.layer_size_cnn COV_NO_FILTER = [32, 64, 128] COV_SIZE_FILTER = [1, 50, 3] POOL_FILTER = [2, 50, 2] LAYER_NO = [20, 20, 20] x = img_input for array_idx in range(HYPERPARAMETER.layer_size_cnn): x = Conv1D(COV_NO_FILTER[array_idx], COV_SIZE_FILTER[array_idx], kernel_initializer='he_uniform', activation='selu', padding='same', name='block1_conv%d' % array_idx)(x) if BN_IDX[array_idx] == 1: x = BatchNormalization()(x) x = AveragePooling1D(POOL_FILTER[array_idx], strides=POOL_FILTER[array_idx], name='block%d_pool' % array_idx)(x) x = Flatten(name='flatten')(x) for array_idx in range(HYPERPARAMETER.layer_size): x = Dense(LAYER_NO[array_idx], kernel_initializer='he_uniform', activation='selu', name='fc%d' % array_idx)(x) # Logits layer x = Dense(HYPERPARAMETER.out_size, activation='softmax', name='predictions')(x) # Create model inputs = img_input model = Model(inputs, x, name=G_OPEN_DATASET) optimizer = Adam(lr=HYPERPARAMETER.learn_rate) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model def CHES2020_CNN_TRAIN(LOG_FILE, FP_RESULT, HYPERPARAMETER, GUESS_POS, GUESS_KEY, TRAIN_DATA, TRAIN_PLAIN, VALID_DATA, VALID_PLAIN, GPU_CONFIG, MODEL): # Save model every epoch save_model = ModelCheckpoint(LOG_FILE) train_inv = [0] * HYPERPARAMETER.train_no INV_CAL(TRAIN_PLAIN, HYPERPARAMETER.train_no, GUESS_POS, GUESS_KEY, train_inv) # Calculating the intermediate variables train_inv_np = np.array(train_inv) train_inv_np = reshape(train_inv_np, (HYPERPARAMETER.train_no, 1)) valid_inv = [0] * HYPERPARAMETER.valid_no INV_CAL(VALID_PLAIN, HYPERPARAMETER.valid_no, GUESS_POS, GUESS_KEY, valid_inv) valid_inv_np = np.array(valid_inv) valid_inv_np = reshape(valid_inv_np, (HYPERPARAMETER.valid_no, 1)) # Get the input layer shape input_layer_shape = MODEL.get_layer(index=0).input_shape # Sanity check if input_layer_shape[1] != len(TRAIN_DATA[0]): print("Input layer error") sys.exit(-1) # Reshape the train and valid data reshape_train_data = TRAIN_DATA.reshape((TRAIN_DATA.shape[0], TRAIN_DATA.shape[1], 1)) reshape_valid_data = VALID_DATA.reshape((VALID_DATA.shape[0], VALID_DATA.shape[1], 1)) lr_manager = OneCycleLR(max_lr=HYPERPARAMETER.learn_rate, end_percentage=0.2, scale_percentage=0.1, maximum_momentum=None, minimum_momentum=None,verbose=True) callbacks = [save_model, lr_manager] history = MODEL.fit(x=reshape_train_data, y=to_categorical(train_inv_np, num_classes=HYPERPARAMETER.out_size), validation_data=(reshape_valid_data, to_categorical(valid_inv_np, num_classes=HYPERPARAMETER.out_size)), batch_size=HYPERPARAMETER.batch_size, verbose = 1, epochs=HYPERPARAMETER.epoch_size, callbacks=callbacks) return history def MOVING_AVG_SUB(DATA_X, WINDOW_SIZE): no = DATA_X.shape[0] len = DATA_X.shape[1] out_len = len - WINDOW_SIZE + 1 output = np.zeros((no, out_len)) for i in range(out_len): output[:,i]=np.mean(DATA_X[:,i : i + WINDOW_SIZE], axis=1) return output def MOVING_AVG(DATA_X, WINDOW_BASE, STEP_SIZE, NO): if NO == 0: return (None, []) out = MOVING_AVG_SUB(DATA_X, WINDOW_BASE) data_len = [out.shape[1]] for i in range(1, NO): window_size = WINDOW_BASE + STEP_SIZE * i if window_size > DATA_X.shape[1]: continue new_series = MOVING_AVG_SUB(DATA_X, window_size) data_len.append(new_series.shape[1]) out = np.concatenate([out, new_series], axis=1) return (out, data_len) def SCA_PCA(IN_TRAIN): pca_result = PCA(n_components=20) return pca_result.fit_transform(IN_TRAIN) def PCA_REDUCTION(DATA_X): pca_data = SCA_PCA(DATA_X) return (pca_data, [pca_data.shape[1]]) def MCNN_SCA(LOG_FILE, FP_RESULT, FINAL_PATH, HYPERPARAMETER, GUESS_POS, GUESS_KEY, TRAIN_DATA, TRAIN_PLAIN, VALID_DATA, VALID_PLAIN, GPU_CONFIG): if G_OPEN_DATASET == 'aes_rd': correct_key = [0x2b, 0x7E, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c] #AES_RD elif G_OPEN_DATASET == 'aes_hd': correct_key = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] #AES_HD else: correct_key = [0x4D, 0xFB, 0xE0, 0xF2, 0x72, 0x21, 0xFE, 0x10, 0xA7, 0x8D, 0x4A, 0xDC, 0x8E, 0x49, 0x04, 0x69] #ASCAD # Generating hyperparameter hyperparameter_1 = C_MPL_HYPERPARAMETER() hyperparameter_2 = C_MPL_HYPERPARAMETER() hyperparameter_3 = C_MPL_HYPERPARAMETER() COPY_HYPER(hyperparameter_1, HYPERPARAMETER) COPY_HYPER(hyperparameter_2, HYPERPARAMETER) COPY_HYPER(hyperparameter_3, HYPERPARAMETER) TRAIN_DATA = TRAIN_DATA.astype('float32') VALID_DATA = VALID_DATA.astype('float32') # Calculation to the intermediate variables for train train_inv = [0] * HYPERPARAMETER.train_no INV_CAL(TRAIN_PLAIN, HYPERPARAMETER.train_no, GUESS_POS, GUESS_KEY, train_inv) train_inv_np = np.array(train_inv) train_inv_np = reshape(train_inv_np, (HYPERPARAMETER.train_no, 1)) # Calculation to the intermediate variables for valid valid_inv = [0] * (HYPERPARAMETER.valid_no + HYPERPARAMETER.attack_no) INV_CAL(VALID_PLAIN, HYPERPARAMETER.valid_no, GUESS_POS, GUESS_KEY, valid_inv) valid_inv_np = np.array(valid_inv) valid_inv_np = reshape(valid_inv_np, ((HYPERPARAMETER.valid_no+ HYPERPARAMETER.attack_no), 1)) # Standardization and Normalzation (between 0 and 1) scaler = preprocessing.StandardScaler() TRAIN_DATA = scaler.fit_transform(TRAIN_DATA) VALID_DATA = scaler.transform(VALID_DATA) scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) TRAIN_DATA = scaler.fit_transform(TRAIN_DATA) VALID_DATA = scaler.fit_transform(VALID_DATA) (TRAIN_DATA, TRAIN_PLAIN) = SHUFFLE_SCA_DATA(TRAIN_DATA, TRAIN_PLAIN) train_data_1 = TRAIN_DATA reshape_valid_data_1 = VALID_DATA.reshape((VALID_DATA.shape[0], VALID_DATA.shape[1], 1)) ###### The setting for second CNN Layer ma_base, ma_step, ma_no = 100, 1, 1 (ma_train, ma_len) = MOVING_AVG(TRAIN_DATA, ma_base, ma_step, ma_no) (ma_valid, ma_len) = MOVING_AVG(VALID_DATA, ma_base, ma_step, ma_no) # Standardization and Normalzation (between 0 and 1) scaler = preprocessing.StandardScaler() ma_train = scaler.fit_transform(ma_train) ma_valid = scaler.transform(ma_valid) scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) ma_train = scaler.fit_transform(ma_train) ma_valid = scaler.fit_transform(ma_valid) train_data_2 = ma_train reshape_valid_data_2 = ma_valid.reshape((ma_valid.shape[0], ma_valid.shape[1], 1)) hyperparameter_2.in_size = ma_train.shape[1] hyperparameter_2.train_size = ma_train.shape[1] hyperparameter_2.valid_size = ma_valid.shape[1] ###### The setting for third CNN Layer (pc_train, pc_len) = PCA_REDUCTION(TRAIN_DATA) (pc_valid, pc_len) = PCA_REDUCTION(VALID_DATA) # Standardization and Normalzation (between 0 and 1) scaler = preprocessing.StandardScaler() pc_train = scaler.fit_transform(pc_train) pc_valid = scaler.transform(pc_valid) scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) pc_train = scaler.fit_transform(pc_train) pc_valid = scaler.fit_transform(pc_valid) hyperparameter_3.in_size = pc_train.shape[1] hyperparameter_3.train_size = pc_train.shape[1] hyperparameter_3.valid_size = pc_valid.shape[1] train_data_3 = pc_train reshape_valid_data_3 = pc_valid.reshape((pc_valid.shape[0], pc_valid.shape[1], 1)) # Split to validation data and attack data valid_data_1 = VALID_DATA[:HYPERPARAMETER.valid_no] valid_data_2 = ma_valid[:HYPERPARAMETER.valid_no] valid_data_3 = pc_valid[:HYPERPARAMETER.valid_no] valid_plain = VALID_PLAIN[:HYPERPARAMETER.valid_no] attack_data_1 = VALID_DATA[HYPERPARAMETER.valid_no:HYPERPARAMETER.valid_no+HYPERPARAMETER.attack_no] attack_data_2 = ma_valid[HYPERPARAMETER.valid_no:HYPERPARAMETER.valid_no+HYPERPARAMETER.attack_no] attack_data_3 = pc_valid[HYPERPARAMETER.valid_no:HYPERPARAMETER.valid_no+HYPERPARAMETER.attack_no] attack_plain = VALID_PLAIN[HYPERPARAMETER.valid_no:HYPERPARAMETER.valid_no+HYPERPARAMETER.attack_no] reshape_valid_data_1 = valid_data_1.reshape((valid_data_1.shape[0], valid_data_1.shape[1], 1)) reshape_valid_data_2 = valid_data_2.reshape((valid_data_2.shape[0], valid_data_2.shape[1], 1)) reshape_valid_data_3 = valid_data_3.reshape((valid_data_3.shape[0], valid_data_3.shape[1], 1)) reshape_attack_data_1 = attack_data_1.reshape((attack_data_1.shape[0], attack_data_1.shape[1], 1)) reshape_attack_data_2 = attack_data_2.reshape((attack_data_2.shape[0], attack_data_2.shape[1], 1)) reshape_attack_data_3 = attack_data_3.reshape((attack_data_3.shape[0], attack_data_3.shape[1], 1)) model = MCNN_ARCHI(hyperparameter_1, hyperparameter_2, hyperparameter_3) model_name = 'MCNN_' + G_OPEN_DATASET print("Model Name = " + model_name) print(model.summary()) st_t = time.time() history = MCNN_TRAIN(LOG_FILE, FP_RESULT, HYPERPARAMETER, GUESS_POS, GUESS_KEY, train_data_1, train_data_2, train_data_3, TRAIN_PLAIN, reshape_valid_data_1, reshape_valid_data_2, reshape_valid_data_3, valid_plain, GPU_CONFIG, model) ed_t = time.time() time_file = FINAL_PATH + "train_time.txt" fp_t = open(time_file, 'w') fp_t.write("elasped time: %f\n" % (ed_t - st_t)) fp_t.close() predictions = model.predict([reshape_attack_data_1, reshape_attack_data_2, reshape_attack_data_3]) if True: for layer in model.layers: inv_layer = Model(inputs=model.input, outputs=model.get_layer(layer.name).output) inv_out = inv_layer.predict([reshape_attack_data_1, reshape_attack_data_2, reshape_attack_data_3]) avg = [0] * inv_out.shape[1] if inv_out.ndim == 3: for idx2 in range(inv_out.shape[2]): for idx1 in range(inv_out.shape[1]): avg[idx1] += inv_out[0][idx1][idx2] for idx1 in range(inv_out.shape[1]): avg[idx1] /= inv_out.shape[2] else: for idx1 in range(inv_out.shape[1]): avg[idx1] = inv_out[0][idx1] INV_PATH = (FINAL_PATH + '%s' + '.npy') % (layer.name) np.save(INV_PATH, avg) fig = plt.figure(figsize=(20, 10)) plt.rcParams["figure.figsize"] = (20,10) plt.title(layer.name) plt.plot(avg) plt.show() FIG_PATH = (FINAL_PATH + '%s' + '.png') % (layer.name) fig.savefig(FIG_PATH, dpi=fig.dpi, bbox_inches="tight") st_t = time.time() avg_rank = perform_attacks(HYPERPARAMETER.attack_no, predictions, 100, plt=attack_plain, key=correct_key, byte=GUESS_POS, filename=model_name) ed_t = time.time() time_file = FINAL_PATH + "attack_time.txt" fp_t = open(time_file, 'w') fp_t.write("elasped time: %f\n" % (ed_t - st_t)) fp_t.close() print("\n t_GE = ") print(avg_rank) print(np.where(avg_rank<=0)) if G_RESULT_SAVE: for idx in range(avg_rank.shape[0]): FP_RESULT.write("%f " % avg_rank[idx]) FP_RESULT.write("\n") FP_RESULT.write("%d" % TRAIN_DATA.shape[0]) INV_PATH = (FINAL_PATH + 'GE_result' + '.npy') np.save(INV_PATH, avg_rank) fig = plt.figure(figsize=(20, 10)) plt.plot(avg_rank, label=('MCNN Result against ') + G_OPEN_DATASET) plt.rcParams["figure.figsize"] = (20,10) plt.legend(fontsize='x-large') FIG_PATH = (FINAL_PATH + 'GE_result' + '.png') fig.savefig(FIG_PATH, dpi=fig.dpi, bbox_inches="tight") plt.show() trace = np.load(FINAL_PATH + 'GE_result' + ".npy") plt.plot(trace) plt.rcParams["figure.figsize"] = (20,10) plt.show() model.save((FINAL_PATH + 'MCNN_RESULT' + '.hdf5')) def MCNN_ARCHI(HYPERPARAMETER_PRE_1, HYPERPARAMETER_PRE_2, HYPERPARAMETER_PRE_3): HYPERPARAMETER_PRE_1.layer_size_cnn = 2 HYPERPARAMETER_PRE_2.layer_size_cnn = 2 HYPERPARAMETER_PRE_3.layer_size_cnn = 2 in_1 = (HYPERPARAMETER_PRE_1.in_size, 1) ig_1 = Input(shape=in_1) in_2 = (HYPERPARAMETER_PRE_2.in_size, 1) ig_2 = Input(shape=in_2) in_3 = (HYPERPARAMETER_PRE_3.in_size, 1) ig_3 = Input(shape=in_3) COV_NO_1 = [32, 64] COV_SZ_1 = [1, 50] PL_FIL_1 = [2, 50] COV_NO_2 = [32, 64] COV_SZ_2 = [1, 50] PL_FIL_2 = [2, 50] COV_NO_3 = [32, 64] COV_SZ_3 = [1, 1] PL_FIL_3 = [2, 1] COV_NO = [128] COV_SZ = [3] PL_FIL = [2] LAY_NO = [20, 20, 20] x1 = ig_1 for array_idx in range(HYPERPARAMETER_PRE_1.layer_size_cnn): x1 = Conv1D(COV_NO_1[array_idx], COV_SZ_1[array_idx], kernel_initializer='he_uniform', activation='selu', padding='same', name='first_block%d_conv' % array_idx)(x1) x1 = BatchNormalization()(x1) x1 = AveragePooling1D(PL_FIL_1[array_idx], strides=PL_FIL_1[array_idx], name='first_block%d_pool' % array_idx)(x1) x1 = BatchNormalization()(x1) x1 = Model(inputs=ig_1, outputs=x1) x2 = ig_2 for array_idx in range(HYPERPARAMETER_PRE_2.layer_size_cnn): x2 = Conv1D(COV_NO_2[array_idx], COV_SZ_2[array_idx], kernel_initializer='he_uniform', activation='selu', padding='same', name='second_block%d_conv' % array_idx)(x2) x2 = BatchNormalization()(x2) x2 = AveragePooling1D(PL_FIL_2[array_idx], strides=PL_FIL_2[array_idx], name='second_block%d_pool' % array_idx)(x2) x2 = BatchNormalization()(x2) x2 = Model(inputs=ig_2, outputs=x2) x3 = ig_3 for array_idx in range(HYPERPARAMETER_PRE_3.layer_size_cnn): x3 = Conv1D(COV_NO_3[array_idx], COV_SZ_3[array_idx], kernel_initializer='he_uniform', activation='selu', padding='same', name='third_block%d_conv' % array_idx)(x3) x3 = BatchNormalization()(x3) x3 = AveragePooling1D(PL_FIL_3[array_idx], strides=PL_FIL_3[array_idx], name='third__block%d_pool' % array_idx)(x3) x3 = BatchNormalization()(x3) x3 = Model(inputs=ig_3, outputs=x3) x4 = Concatenate(axis=1)([x1.output, x2.output, x3.output]) x4 = BatchNormalization()(x4) for array_idx in range(1): x4 = Conv1D(COV_NO[array_idx], COV_SZ[array_idx], kernel_initializer='he_uniform', activation='selu', padding='same', name='fourth_block%d_conv' % array_idx)(x4) x4 = BatchNormalization()(x4) x4 = AveragePooling1D(PL_FIL[array_idx], strides=PL_FIL[array_idx], name='fourth_block%d_pool' % array_idx)(x4) x4 = Flatten(name='flatten_4')(x4) for array_idx in range(HYPERPARAMETER_PRE_1.layer_size): x4 = Dense(LAY_NO[array_idx], kernel_initializer='he_uniform', activation='selu', name='fc%d' % array_idx)(x4) # Logits layer x4 = Dense(HYPERPARAMETER_PRE_1.out_size, activation='softmax', name='predictions')(x4) # Create model model = Model(inputs=[x1.input, x2.input, x3.input], outputs=x4, name='mcnn') optimizer = Adam(lr=HYPERPARAMETER_PRE_1.learn_rate) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model def MCNN_TRAIN(LOG_FILE, FP_RESULT, HYPERPARAMETER, GUESS_POS, GUESS_KEY, TRAIN_DATA_1, TRAIN_DATA_2, TRAIN_DATA_3, TRAIN_PLAIN, VALID_DATA_1, VALID_DATA_2, VALID_DATA_3, VALID_PLAIN, GPU_CONFIG, MODEL): # Save model every epoch save_model = ModelCheckpoint(LOG_FILE) # Calculation to the intermediate variables for train train_inv = [0] * HYPERPARAMETER.train_no INV_CAL(TRAIN_PLAIN, HYPERPARAMETER.train_no, GUESS_POS, GUESS_KEY, train_inv) train_inv = train_inv[:HYPERPARAMETER.train_no] train_inv_np = np.array(train_inv) train_inv_np = reshape(train_inv_np, (HYPERPARAMETER.train_no, 1)) # Calculation to the intermediate variables for valid valid_inv = [0] * HYPERPARAMETER.valid_no INV_CAL(VALID_PLAIN, HYPERPARAMETER.valid_no, GUESS_POS, GUESS_KEY, valid_inv) valid_inv = valid_inv[:HYPERPARAMETER.valid_no] valid_inv_np = np.array(valid_inv) valid_inv_np = reshape(valid_inv_np, (HYPERPARAMETER.valid_no, 1)) # Conver to 3-dimensional shape reshape_train_data_1 = TRAIN_DATA_1.reshape((TRAIN_DATA_1.shape[0], TRAIN_DATA_1.shape[1], 1)) reshape_valid_data_1 = VALID_DATA_1.reshape((VALID_DATA_1.shape[0], VALID_DATA_1.shape[1], 1)) reshape_train_data_2 = TRAIN_DATA_2.reshape((TRAIN_DATA_2.shape[0], TRAIN_DATA_2.shape[1], 1)) reshape_valid_data_2 = VALID_DATA_2.reshape((VALID_DATA_2.shape[0], VALID_DATA_2.shape[1], 1)) reshape_train_data_3 = TRAIN_DATA_3.reshape((TRAIN_DATA_3.shape[0], TRAIN_DATA_3.shape[1], 1)) reshape_valid_data_3 = VALID_DATA_3.reshape((VALID_DATA_3.shape[0], VALID_DATA_3.shape[1], 1)) lr_manager = OneCycleLR(max_lr=HYPERPARAMETER.learn_rate, end_percentage=0.2, scale_percentage=0.1, maximum_momentum=None, minimum_momentum=None,verbose=True) callbacks = [save_model, lr_manager] history = MODEL.fit(x=[reshape_train_data_1, reshape_train_data_2, reshape_train_data_3], y=to_categorical(train_inv_np, num_classes=HYPERPARAMETER.out_size), validation_data=([reshape_valid_data_1, reshape_valid_data_2, reshape_valid_data_3], to_categorical(valid_inv_np, num_classes=HYPERPARAMETER.out_size)), batch_size=HYPERPARAMETER.batch_size, verbose = 1, epochs=HYPERPARAMETER.epoch_size, callbacks=callbacks) return history ######################################### ############## MAIN SOURCE ############## ######################################### # CHES2020_CNN_SCA # MCNN_SCA MASSIVE_SCA_DL(RUN_FUNCTION=MCNN_SCA, BACKUP_FILE=None, DATA_TYPE='npy', GPU_CONFIG=None)
[ "noreply@github.com" ]
mitMathe.noreply@github.com
72559b751060487570099698b89a7507b4c4babd
c8c34805443b574c6dbd2338fba148b9f0ff953b
/freqbased.py
e94fef83458b348109adebc694e5660a670c508f
[]
no_license
Amarjyotkaur/Stemly-Automatic-Exploratory-Data-Analysis
632370e2dd4cac2deabcc1beccd925aa0ee50426
d3ca880423a9360d08c820452a0ae26ee66dad77
refs/heads/main
2023-03-22T04:30:36.850286
2021-03-22T14:48:21
2021-03-22T14:48:21
350,379,109
0
0
null
null
null
null
UTF-8
Python
false
false
11,354
py
import pandas as pd from .builtin import quantile, iqr """ Functions: 1. min_freq 2. max_freq 3. mean_freq 4. median_freq 5. variance_freq 6. stdev_freq 7. range_freq 8. mean_abs_dev_freq 9. coef_of_var_freq 10. outliers_freq 11. outlier_c_freq""" #Minimum def min_freq(colData,**kwargs): """ Return the minimum frequency count of the values in the requested axis. If you want the *index* of the minimum, use ``idxmin``. This is the equivalent of the ``numpy.ndarray`` method ``argmin``. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on axis : {index (0)} Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. **kwargs Additional keyword arguments to be passed to the function. Returns ------- scalar or Series (if level specified) Examples -------- >>>s=pd.Series([2,3,3,4,3,3,2,1]) >>ft.min_freq() 1 """ freq=pd.Series.value_counts(colData) return pd.Series.min(freq,**kwargs) #Maximum def max_freq(colData,**kwargs): freq=pd.Series.value_counts(colData) return pd.Series.max(freq,**kwargs) """Return the maximum frequency count of the values in the requested axis. If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on axis : {index (0)} Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. **kwargs Additional keyword arguments to be passed to the function. Returns: scalar or Series (if level specified) Examples: >>>s=pd.Series([2,3,3,4,3,3,2,1]) >>ft.max_freq(s) 4""" #Mean def mean_freq(colData,**kwargs): freq = pd.Series.value_counts(colData) return pd.Series.mean(freq,**kwargs) """Return the mean frequency count of the values in the requested axis. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on axis : {index (0)} Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. **kwargs Additional keyword arguments to be passed to the function. Returns: scalar or Series (if level specified) Examples: >>>a=pd.Series([1,2,3,4,5,4,3,2,2,1] >>ft.mean_freq(a) 2 """ #Median def median_freq(colData,**kwargs): """ Return the median of the frequency values of the input series Args: axis : {index (0)} Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. **kwargs Additional keyword arguments to be passed to the function. Returns: scalar or Series (if level specified) Example: >>>>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>ft.median_freq(a) 2 """ freq = pd.Series.value_counts(colData) return pd.Series.median(freq,**kwargs) #Variance def variance_freq(colData, **kwargs): """ Return unbiased variance over frequency values of input series. Normalized by N-1 by default. This can be changed using the ddof argument Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on axis : {index (0)} skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns: scalar or Series (if level specified) Example: >>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>ft.variance_freq(a) 0.5 """ freq = pd.Series.value_counts(colData) return pd.Series.var(freq,**kwargs) #Standard Deviation def stdev_freq(colData,**kwargs): """Return sample standard deviation over frequency values of input series. Normalized by N-1 by default. This can be changed using the ddof argument Args: colData (array_like, 1D) : Pandas Series of Data or Dataframe Column for function to be applied on axis : {index (0)} skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns: scalar or Series (if level specified) Example: >>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>ft.stdev_freq(a) 0.707107 """ freq = pd.Series.value_counts(colData) return pd.Series.std(freq,**kwargs) #Range def range_freq(colData): """ Range of Frequency Returns the difference between the highest frequency value and lowest frequency value in the input series object. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on Returns: range : int range = Maximum value - Minimum value Example: >>>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>>ft.range_freq(a) 2""" freq = pd.Series.value_counts(colData) return pd.Series.max(freq)-pd.Series.min(freq) def mean_abs_dev_freq(colData): """Return the mean absolute deviation of the values for the requested axis. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on axis : {index (0)} Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. **kwargs Additional keyword arguments to be passed to the function. Returns: scalar or Series (if level specified) Example: >>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>ft.mean_abs_dev_freq(colData) 0.4 """ freq = pd.Series.value_counts(colData) return pd.Series.mad(freq) # Coefficient Of Variation def coef_of_var_freq(colData): """Coefficient of Variance of Frequency Returns the coefficient of variance of frequency values from the data in input series. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on Returns: Coefficient of Variance: float coefficient of variance = standard deviation/mean Example: >>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>ft.coef_of_var(a) 0.353553 """ freq=pd.Series.value_counts(colData) return pd.Series.std(freq)/pd.Series.mean(freq) def outliers_freq(colData): """Frequency Outliers Returns list of outliers of frequency values from input series. Outliers are determined using the quartiles of the data. Upper and lower bounds are calculated which are 1.5*IQR higher and lower than the 3rd and 1st quartiles respectively. Data values higher than the upper bound or lower than the lower bound are considered outliers. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on Returns: list of outliers : list Example: >>>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>>ft.outliers_freq(c) [] """ freq = pd.Series.value_counts(colData) lowerbound = quantile(freq,0.25) -(1.5* iqr(freq)) upperbound = quantile(freq, 0.75)+(1.5*iqr(freq)) result=[] for x in freq: if (x<lowerbound) or (x>upperbound): result.append(x) else: pass return result #Number of Outliers def outlier_c_freq(colData): """ Number of Outliers of Frequency Returns the number of outliers in frequency values of input series. Outliers are determined using the quartiles of the data. Upper and lower bounds are calculated which are 1.5*IQR higher and lower than the 3rd and 1st quartiles respectively. Data values higher than the upper bound or lower than the lower bound are considered outliers. Args: colData (array_like, 1D):Pandas Series of Data or Dataframe Column for function to be applied on Returns: Number of Outliers : int Example: >>>a=pd.Series([1,2,3,4,5,4,3,2,2,1]) >>>ft.outlier_c_freq(a) 0 """ freq = pd.Series.value_counts(colData) return len(outliers_freq(colData))
[ "noreply@github.com" ]
Amarjyotkaur.noreply@github.com
02b93dce874ce5992260b941b28517299197121c
f38faa56731cbbae07fa7cadf3941bd3942c356e
/Project/backend/manage.py
abfc4d721b8c7a3d7c0ec6a5b94bddbbf73e7206
[]
no_license
faisalsial/2018latestversion
b4f14eaf70e3884547a3930174b4f8a9f4299bac
aca58d22030ea40e04d2cde07f1886fd56b33245
refs/heads/master
2022-12-09T17:39:04.815723
2019-01-07T10:35:46
2019-01-07T10:35:46
215,658,770
0
0
null
2022-12-08T01:50:10
2019-10-16T22:56:28
Java
UTF-8
Python
false
false
543
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'gratelancer.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "umutoztunc@gmail.com" ]
umutoztunc@gmail.com
1798b56c0d7d2318a548568f32e627aef2ad2acb
5b1039a15a0b9478cd1c92e95370299673711b0c
/dao/influence_dao.py
546d21b00fbd89f1bfafdae5a98bf5cf348c6065
[]
no_license
seraphlnWu/weibo_dao
298bf7a5f06a034b8dded436b5da770e617af9ef
22836290dfe19677137e2faf391fcf3edbbfda59
refs/heads/master
2020-05-19T00:25:45.808804
2013-01-22T03:13:49
2013-01-22T03:13:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,875
py
# coding=utf8 from utils import MONGODB_INSTANCE from utils import today_datetime from datetime import timedelta def get_cur_influence(uid): '่Žทๅ–็”จๆˆทๅฏๅ˜ๅฑžๆ€งใ€‚eg:ๅฝฑๅ“ๅŠ›๏ผŒ็ฒ‰ไธๆ•ฐ๏ผŒๅพฎๅšๆ•ฐ' inf_list = MONGODB_INSTANCE.influence.find( {'id': uid} ).sort('date', -1).limit(10) for cur_inf in inf_list: if any([ cur_inf.get('followers_count'), cur_inf.get('influence'), cur_inf.get('followrs_activeness_distr'), cur_inf.get('friends_count'), cur_inf.get('statuses_count'), ]): return cur_inf return get_last_influence(uid) def get_last_influence(uid): ''' ่Žทๅ–ไธ€ๆกinfluence่ฎฐๅฝ• ''' return MONGODB_INSTANCE.influence.find_one({'id': uid}) or {} def get_influence_history(uid, period=10, reftime=None): ''' ่Žทๅ–ไธ€ไธชinfluenceๅކๅฒ่ฎฐๅฝ•็š„ๅˆ—่กจ ''' today = today_datetime() if reftime and reftime < today: pass else: reftime = today from_date = reftime - timedelta(period) result = MONGODB_INSTANCE.influence.find({ 'id': uid, 'date': {'$gt': from_date, '$lte': reftime}, }).sort('date', -1) return check_influence_list(result) def check_influence_list(histories): ''' ๆฃ€ๆŸฅไผ ๅ…ฅ็š„influenceๅˆ—่กจไธญ็š„ๆ•ฐๆฎๆ˜ฏๅฆๅˆๆณ• ''' his_list = [] for his in histories: if any([ his.get('account_activeness', 0), his.get('followers_quality', 0), his.get('followers_activeness', 0) ]): if len(his_list) == 0: his_list.append(his) else: if not (his['date'].day - his_list[-1]['date'].day): continue else: his_list.append(his) else: pass return his_list
[ "wubin@admaster.com.cn" ]
wubin@admaster.com.cn
4c47c7daef2fbb8028129b0b5c7eb9118ed2ecf2
8b8b3e959a86a5bd468110e0ab3b688628b46f40
/analyser/complex_type_analyser/text/text_utils.py
79233226624e8e5771ba4795fa3210c6ced78fa5
[]
no_license
sebneu/csvprofiler
18a027f152d31a0b59eeeae6abb29228ced5876c
e8eab970af326dc9a101d905700589d8dc196c12
refs/heads/master
2021-06-02T01:17:36.607468
2021-01-05T10:02:00
2021-01-05T10:02:00
39,006,277
0
0
null
null
null
null
UTF-8
Python
false
false
9,936
py
# -*- coding: utf-8 -*- #!/usr/bin/env python ''' Created on May 19, 2014 @author: max ''' import re import unittest import unicodedata import urlparse SERVER_URL = 'http://spotlight.dbpedia.org/rest/annotate' # 'http://localhost/rest/annotate' date_regex = '^(?:(?:31(\/|-|\.)(?:0?[13578]|1[02]))\1|(?:(?:29|30)(\/|-|\.)(?:0?[1,3-9]|1[0-2])\2))(?:(?:1[6-9]|[2-9]\d)?\d{2})$|^(?:29(\/|-|\.)0?2\3(?:(?:(?:1[6-9]|[2-9]\d)?(?:0[48]|[2468][048]|[13579][26])|(?:(?:16|[2468][048]|[3579][26])00))))$|^(?:0?[1-9]|1\d|2[0-8])(\/|-|\.)(?:(?:0?[1-9])|(?:1[0-2]))\4(?:(?:1[6-9]|[2-9]\d)?\d{2})$' date_pattern = re.compile(date_regex) date_regex2 = '^[1|2][0-9][0-9][0-9][\/-]?[0-3][0-9][\/-]?[0-3][0-9]$' date_pattern2 = re.compile(date_regex2) date_regex3 = '((0[1-9])|(1[0-2]))[\/-]((0[1-9])|(1[0-9])|(2[0-9])|(3[0-1]))[\/-](\d{4})' date_pattern3 = re.compile(date_regex3) date_regex4 = '^([0-9]?[0-9][\.\/-])?([0-3]?[0-9][\.\/-])\s?[1-9][0-9]([0-9][0-9])?$' date_pattern4 = re.compile(date_regex4) email_regex = '[a-zA-Z0-9_\.\+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-\.]+' email_pattern = re.compile(email_regex) phone_regex = '^\(?\+?\d+\)?(\s?\d+)+$' phone_pattern = re.compile(phone_regex) address_regex = '' address_pattern = re.compile(address_regex) url_regex = 'https?\:\/\/[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,}' url_pattern = re.compile(url_regex) places = ['street', 'strasse', 'rue', 'str', 'str.', 'platz', 'allee', 'gasse', 'g.', 'blvd', 'ave', 'road'] special_symbols = ['+', ' ', ';', '[', '/', ']', '\\', '-'] commas = [',', '.'] resource = ['://', 'www.', '.jpg', '.png', '.gif', '.html', '.htm', '.mp3', '.doc', '.pdf', '.ps', '.docx'] yes_no = ['yes', 'no', 'y', 'n', 'j', 'ja', 'nein', 'si', 'oui', 'da', 'njet'] # units = #camelCase regex first_cap_re = re.compile('(.)([A-Z][a-z]+)') all_cap_re = re.compile('([a-z0-9])([A-Z])') lookup = [] def contains_number(inputString): return any(char.isdigit() for char in inputString) def contains_alpha(inputString): return any(char.isalpha() for char in inputString) def contains_special(inputString): return any(char in special_symbols for char in inputString) def contains_commas(inputString): return any(char in commas for char in inputString) def contains_ampersand(inputString): return any(char == '@' for char in inputString) def contains_unit_symbol(inputString): return any(char in [u'%', u'$', u'โ‚ฌ'] for char in inputString) def contains_resource(inputString): for item in resource: if item in inputString: return True return False def is_yes_no(cell): return cell in yes_no def is_alpha(cell): for c in cell: if not c.isalpha() and c <> ' ': return False return True def is_alphanum(cell): is_digit = False is_alpha = False for c in cell: if c.isalpha(): is_alpha = True elif c.isdigit(): is_digit = True return is_digit and is_alpha def is_street(cell): if address_pattern.match(cell): return True for place in places: if cell.contains(place): return True return False def is_phone(cell): return phone_pattern.match(cell) def is_email(cell): return email_pattern.match(cell) def is_url(cell): return url_pattern.match(cell) def is_digitsep(cell): is_digit = False is_sep = False separators = [':', ',', '-', '/'] for c in cell: if c in separators: is_sep = True elif c.isdigit(): is_digit = True return is_digit and is_sep def is_date(cell): if date_pattern.match(cell): return True if date_pattern2.match(cell): return True if date_pattern3.match(cell): return True if date_pattern4.match(cell): return True return False def is_year(cell): try: int_val = int(cell) if int_val >= 1400 and int_val <= 2100: return True except Exception: return False def is_year_month(cell): try: int_val = int(cell) if int_val >= 197000 and int_val < 210000: return True except Exception: return False def is_numeric(text): pattern = re.compile("/^\d*\.?\d*$/") return re.match(pattern, text) def is_categorial(text): return text.isnumeric() def list_to_set(list): seen = set() seen_add = seen.add return [ x for x in list if not (x in seen or seen_add(x))] def safe_unicode(obj, *args): """ return the unicode representation of obj """ try: return unicode(obj, *args) except UnicodeDecodeError: # obj is byte string ascii_text = str(obj).encode('string_escape') return unicode(ascii_text) def safe_str(obj): """ return the byte string representation of obj """ try: return str(obj) except UnicodeEncodeError: # obj is unicode return unicode(obj).encode('unicode_escape') def file_to_ascii(filename, num_lines=-1): lines = [] with open(filename, 'r+') as f: line_num = 1 for line in f: if num_lines > -1 and line_num > num_lines: break lines.append(removeNonAscii(line)) text = '\n'.join(lines) f.seek(0) f.write(text) f.truncate() f.close() def removeNonAscii(s): return "".join(filter(lambda x: ord(x) < 128, s)) def to_ascii(text): return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore') def to_unicode(value): if type(value) is not str and type(value) is not unicode: return str(value) try: value = value.encode('utf8', 'replace') str(value) return value except UnicodeEncodeError as e: print type(e), e.encoding value = value.decode('utf-8').encode("utf-8") # value = value.encode('ascii', 'ignore').encode('utf8') str(value) return value except UnicodeDecodeError as e: print type(e), e.encoding, e # value = unicode(value) # iso-8859-1 value = value.decode('utf8', 'replace').encode("utf-8") str(value) return value def uncamel(text): s1 = first_cap_re.sub(r'\1_\2', text) return all_cap_re.sub(r'\1_\2', s1).lower() def humanize_text(text): s1 = dequote(text) s1 = uncamel(s1) s1 = s1.replace("_", " ") s1 = s1.replace("/", " / ") if (contains_alpha(s1)): s1 = ' '.join(re.findall('(\d+|\w+)', s1)) s1 = ' '.join(s1.split()) return s1 def extract_info_from_string(text): result = {} text = humanize_text(text) for word in text.split(" "): if is_date(word): result['date'] = word elif is_year(word): result['year'] = word return result def dequote(s): """ If a string has single or double quotes around it, remove them. If a matching pair of quotes is not found, return the string unchanged. """ if ( s.startswith(("'", '"')) and s.endswith(("'", '"')) and (s[0] == s[-1]) # make sure the pair of quotes match ): s = s[1:-1] return s def get_country_from_url(url): url_elements = urlparse(url).netloc.split(".") tld = ".".join(url_elements[-2:]) if tld in all: return all[tld] elif url_elements[-1] in all: return all[url_elements[-1]] else: return "unknown" class HumanizeTest(unittest.TestCase): def test_humanize(self): cell = '105mm' cleaned = humanize_text(cell) print cell, cleaned cell = '12.25' cleaned = humanize_text(cell) print cell, cleaned # print cleaned cell = 'StatBezirk' cleaned = humanize_text(cell) print cell, cleaned class DatatypeTest(unittest.TestCase): # def test_unit(self): # cell = '105mm' # type = extract_datatype(cell) # assert type=='UNIT' # cell = 'Gebiet/Distrikt' # cleaned = humanize_text(cell) # print cleaned # type = extract_datatype(cell) # type = query_concept(cell) # type = query_concept(cell) # print type # assert type=='UNIT' # def test_concept(self): # cell = 'Geschlecht' # type = extract_datatype(cell, lang=None) # print type # def test_person(self): # cell = 'Major Disaster' # type = extract_datatype(cell) # print type # # def test_dictionary(self): # pass # # def test_date(self): # cell = '20110101' # type = extract_datatype(cell) # assert type=='DATE' # # cell = '2011/01/01' # type = extract_datatype(cell) # assert type=='DATE' # # cell = '2011-01-01' # type = extract_datatype(cell) # assert type=='DATE' # # return True pass # parsing functions def parse_float(cell): """ Float parser, used for converting strings to float values using the type classification of ComplexTypeAnalyser :param cell: A string which is considered as NUMBER or FLOAT by the ComplexTypeAnalyser :return: 0.0 on an empty input, the parsed float, or throws a ValueError """ try: value = float(cell) return value except Exception as e: pass cell = str(cell).replace(" ", "") if "," in cell: if "." in cell: if cell.rfind(".") > cell.rfind(", "): cell = cell.replace(".", "") cell = cell.replace(",", ".") return parse_float(cell) else: cell = cell.replace(",", "") return parse_float(cell) else: cell = cell.replace(",", ".") return parse_float(cell) raise ValueError(cell + ': cannot convert to numeric') def is_none_type(cell): return cell is None or len(cell) == 0 or cell == 'null' or cell == 'None'
[ "seb.neumaier@gmail.com" ]
seb.neumaier@gmail.com
5fe9b2191e2862a97b4b0500d3c4777c88eab68c
56e96acad654d7480d17d5cae7402a2bc6cbaa76
/share/py_module/dataset.py
fc4a162fa0c59a4f2c53f521c749910a52a91ef4
[]
no_license
LitingLin/VehicleDC
641b1e25c22cac2ffb1dcba519b1af5ac7d9f2c8
2ac0b8ad708f033b59c0bc924ca7ec169e86b063
refs/heads/master
2020-05-17T19:30:00.556691
2019-07-12T16:21:12
2019-07-12T16:21:12
183,916,512
1
0
null
null
null
null
UTF-8
Python
false
false
4,885
py
# coding: utf-8 import os import re import numpy as np import torch from torch.utils import data from torchvision import transforms as T from PIL import Image color_attrs = ['Black', 'Blue', 'Brown', 'Gray', 'Green', 'Pink', 'Red', 'White', 'Yellow'] direction_attrs = ['Front', 'Rear'] type_attrs = ['passengerCar', 'saloonCar', 'shopTruck', 'suv', 'trailer', 'truck', 'van', 'waggon'] class Vehicle(data.Dataset): """ ๅฑžๆ€งๅ‘้‡ๅคšๆ ‡็ญพ:้…ๅˆcross entropy loss็š„ไฝฟ็”จ ไฝฟ็”จๅค„็†่ฟ‡็š„ๆ•ฐๆฎ: ๅŽปๆމๆ‰€ๆœ‰็š„unknown """ def __init__(self, root, transform=None, is_train=True): """ :return: """ if not os.path.exists(root): print('=> [Err]: root not exists.') return if is_train: print('=> train data root: ', root) else: print('=> test data root: ', root) # ็ปŸ่ฎก้ž็ฉบๅญ็›ฎๅฝ•ๅนถๆŒ‰ๅ็งฐ(็ฑปๅˆซๅ็งฐ)่‡ช็„ถๆŽ’ๅบ self.img_dirs = [os.path.join(root, x) for x in os.listdir(root) \ if os.path.isdir(os.path.join(root, x))] self.img_dirs = [x for x in self.img_dirs if len(os.listdir(x)) != 0] if len(self.img_dirs) == 0: print('=> [Err]: empty sub-dirs.') return self.img_dirs.sort() # ้ป˜่ฎค่‡ช็„ถๆŽ’ๅบ, ไปŽๅฐๅˆฐๅคง # print('=> total {:d} classes for training'.format(len(self.img_dirs))) # ๅฐ†ๅคšๆ ‡็ญพๅˆ†ๅผ€ self.color_attrs = color_attrs self.direction_attrs = direction_attrs self.type_attrs = type_attrs # ๆŒ‰ๅญ็›ฎๅฝ•(็ฑปๅ)็š„้กบๅบๆŽ’ๅบๆ–‡ไปถ่ทฏๅพ„ self.imgs_path = [] self.labels = [] for x in self.img_dirs: match = re.match('([a-zA-Z]+)_([a-zA-Z]+)_([a-zA-Z]+)', os.path.split(x)[1]) color = match.group(1) # ่ฝฆ่บซ้ขœ่‰ฒ direction = match.group(2) # ่ฝฆ่บซๆ–นๅ‘ type = match.group(3) # ่ฝฆ่บซ็ฑปๅž‹ # print('=> color: %s, direction: %s, type: %s' % (color, direction, type)) for y in os.listdir(x): # ๆทปๅŠ ๆ–‡ไปถ่ทฏๅพ„ self.imgs_path.append(os.path.join(x, y)) # ๆทปๅŠ label color_idx = int(np.where(self.color_attrs == np.array(color))[0]) direction_idx = int(np.where(self.direction_attrs == np.array(direction))[0]) type_idx = int(np.where(self.type_attrs == np.array(type))[0]) label = np.array([color_idx, direction_idx, type_idx], dtype=int) label = torch.Tensor(label) # torch.from_numpy(label) self.labels.append(label) # Tensor(label) # print(label) if is_train: print('=> total {:d} samples for training.'.format(len(self.imgs_path))) else: print('=> total {:d} samples for testing.'.format(len(self.imgs_path))) # ๅŠ ่ฝฝๆ•ฐๆฎๅ˜ๆข if transform is not None: self.transform = transform else: # default image transformation self.transform = T.Compose([ T.Resize(448), T.CenterCrop(448), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # --------------------- serialize imgs_path to disk # root_parent = os.path.abspath(os.path.join(root, '..')) # print('=> parent dir: ', root_parent) # if is_train: # imgs_path = os.path.join(root_parent, 'train_imgs_path.pkl') # else: # imgs_path = os.path.join(ropytorch docot_parent, 'test_imgs_path.pkl') # print('=> dump imgs path: ', imgs_path) # pickle.dump(self.imgs_path, open(imgs_path, 'wb')) def __getitem__(self, idx): """ :param idx: :return: """ image = Image.open(self.imgs_path[idx]) # ๆ•ฐๆฎๅ˜ๆข, ็ฐๅบฆๅ›พ่ฝฌๆขๆˆ'RGB' if image.mode == 'L' or image.mode == 'I': # 8bitๆˆ–32bit็ฐๅบฆๅ›พ image = image.convert('RGB') if self.transform is not None: image = self.transform(image) label = self.labels[idx] f_path = os.path.split(self.imgs_path[idx])[0].split('/')[-2] + \ '/' + os.path.split(self.imgs_path[idx])[0].split('/')[-1] + \ '/' + os.path.split(self.imgs_path[idx])[1] return image, label, f_path def __len__(self): """os.path.split(self.imgs_path[idx])[0].split('/')[-2] :return: """ return len(self.imgs_path)
[ "linliting06@live.com" ]
linliting06@live.com
47ede167ba6a6ed1d51b168cb720119680f3ce58
b4de314adaebdc238b05ff1e81c5f1d8304c4a86
/.history/functionality_20211022152543.py
6ca297f72695f8861201c7633ef2612b0bc81f67
[]
no_license
Imprasna/signapp-login-automation
b36616de7a583ff4bdf35d907c30615b3ac48128
f39fdd7b34966f263ea47da41d1e8aa0f57b95d8
refs/heads/main
2023-08-29T19:13:07.208590
2021-10-22T10:05:06
2021-10-22T10:05:06
387,170,705
0
0
null
null
null
null
UTF-8
Python
false
false
3,937
py
from selenium import webdriver #we need to install webdriver #pip install selenium from getpass import getpass #inbuild function import pyautogui as pt import os import platform from datetime import datetime from threading import Timer # import Scheduler from apscheduler.schedulers.blocking import BlockingScheduler def login_automate(): username = 'prasanna.signatures1@gmail.com' password = '123456' username_textbox = driver.find_element_by_id('email') username_textbox.send_keys(username) password_textbox = driver.find_element_by_id('password') password_textbox.send_keys(password) login_button = driver.find_element_by_class_name('btn') login_button.submit() # if login_automate is True: click_login = driver.find_element_by_id('timecard-clock-out') click_login.click() print('Hello') if platform.system() == 'Windows': print (platform.system()); print(datetime.today()); x=datetime.today() y=x.replace(day=x.day+0, hour=15, minute=25, second=0, microsecond=0) print ("hello world") # Start the scheduler sched = BlockingScheduler() sched.start() exec_date = date(2021, 10, 22) # Store the job in a variable in case we want to cancel it job = sched.add_date_job(login_automate, exec_date, ['text']) # The job will be executed on November 6th, 2009 at 16:30:05 job = sched.add_date_job(login_automate, datetime(2021, 10, 22, 15, 25, 0), ['text']) driver = webdriver.Chrome('C:\\\Program Files\\\chromedriver_win32\\\chromedriver.exe'); driver.get('http://fibroinbeta.com/signapp_new') elif platform.system() == 'Linux': print (platform.system()); driver = webdriver.Chrome(); driver.get('http://fibroinbeta.com/signapp_new') # driver = webdriver.Chrome() else: print ("Unsupported browser bro....:(") # username_textbox = driver.find_element_by_id('email') # username_textbox.send_keys(username) # password_textbox = driver.find_element_by_id('password') # password_textbox.send_keys(password) # login_button = driver.find_element_by_class_name('btn') # login_button.submit() # # if login_automate is True: # click_login = driver.find_element_by_id('timecard-clock-out') # click_login.click() # print('Hello') position1 = pt.locateOnScreen("close.png", confidence = .8) x = position1[0] y = position1[1] pt.moveTo(x + 165, y + 20, duration = .3) pt.click() close_dialog = driver.find_element_by_class_name('btn-default') login_automate() # if platform.system() == 'Windows': # print (platform.system()); # driver = webdriver.Chrome('C:\\\Program Files\\\chromedriver_win32\\\chromedriver.exe'); # elif platform.system() == 'Linux': # print (platform.system()); # driver = webdriver.Chrome(); # login_automate() # else: # print ("It is not Windows neither linux Bro....:(") # print(os.name) # print(platform.system()) # print(platform.release()) # def login_automate(): # username = 'prasanna.signatures1@gmail.com' # password = '123456' # driver = webdriver.Chrome() # driver.get('http://fibroinbeta.com/signapp_new') # username_textbox = driver.find_element_by_id('email') # username_textbox.send_keys(username) # password_textbox = driver.find_element_by_id('password') # password_textbox.send_keys(password) # login_button = driver.find_element_by_class_name('btn') # login_button.submit() # # if login_automate is True: # click_login = driver.find_element_by_id('timecard-clock-out') # click_login.click() # print('Hello') # position1 = pt.locateOnScreen("close.png", confidence = .8) # x = position1[0] # y = position1[1] # pt.moveTo(x + 165, y + 20, duration = .3) # pt.click() # close_dialog = driver.find_element_by_class_name('btn-default') # login_automate()
[ "prasanna@sibbc.org" ]
prasanna@sibbc.org
f1e23193458c9b501d74f917876d60949e706428
09cbf5ce3a600e8475971223acc2fce565ac24bb
/count_swear/helper_functions.py
b1c108a197e83419666a3f05b35d941df0eb3317
[]
no_license
fednem/python_reddit_test
e28e201ef567a921bef627b7b110b152cc5247a7
7e94af1d43326351b9e302ba66dff451cdf7456c
refs/heads/master
2021-03-19T05:59:37.205929
2018-04-12T15:02:32
2018-04-12T15:02:32
123,020,771
0
0
null
null
null
null
UTF-8
Python
false
false
2,835
py
# -*- coding: utf-8 -*- """ Created on Wed Mar 14 09:16:27 2018 @author: federico nemmi """ import praw import regex from nltk.corpus import stopwords #for the moment it only take the top submission def create_list_of_submission_from_subreddit(reddit_instance,subreddit): list_of_submission = [submission for submission in reddit_instance.subreddit(subreddit).hot(limit = 20)] return list_of_submission #create a list that has every entry (title, body, comments) of every post def from_sub_to_list(list_of_submission): final_result = [] for submission in list_of_submission: final_result.append(submission.title) final_result.append(submission.selftext) submission.comments.replace_more(limit = None) for comment in submission.comments.list(): final_result.append(comment.body) return final_result #give matching as ouotput def count_swear_words_in_text(text, swear_words_list, error = "{e<=1}"): non_stopword = [word for word in text.split() if word not in stopwords.words("english") ] n_swear = [regex.match("(?:" + swear_word + ")" + error, word.lower()) for swear_word in swear_words_list for word in non_stopword] return(n_swear) #give number of swearword as output, the one giving matching has been preferred, I leave this here for future reference #def count_swear_words_in_text(text, swear_words_list, error = "{e<=1}"): # non_stopword = [word for word in text.split() if word not in stopwords.words("english") ] # n_swear = sum([bool(regex.match("(?:" + swear_word + ")" + error, word)) for swear_word # in swear_words_list for word in non_stopword]) # return(n_swear) def count_words_in_text(text): non_stopword = [word for word in text.split() if word not in stopwords.words("english") ] return len(non_stopword) def swear_ratio(list_of_post, swear_words_list, error = ""): from itertools import chain match = [] for text in list_of_post: local_count = count_swear_words_in_text(text, swear_words_list, error = "") match.append(local_count) only_matched = [element for element in chain(*match) if bool(element)] n_of_match = len(only_matched) tot_n = 0 for text in list_of_post: n = count_words_in_text(text) tot_n += n swear_ratio = n_of_match/tot_n return only_matched, n_of_match, swear_ratio #subreddit is a list of name, kwargs may be the error in the fuzzy search def compare_subreddits(*args): output_dict = {} for subreddit in args: submissions = create_list_of_submission_from_subreddit(reddit_instance, subreddit) submissions_list = from_sub_to_list(submissions) flattened_list = [i for i in chain(*submissions_list)]
[ "federico.nemmi@gmail.com" ]
federico.nemmi@gmail.com
fb01c0af695a570da4062568c7325f57d59a9a2a
943a4976ff506dc674b685aaf0525405b0a92f1b
/kinguilahoje.py
538517e5a0f90293133f665bac572de7e66c9020
[]
no_license
maapinho/webscraping_play
c68ea119dbb5bdbe83cc180250b0c5d746b117a1
eb05e75e3870956be0a84eb2e3e30693896c8e78
refs/heads/master
2021-05-26T18:00:54.405772
2020-04-13T01:26:36
2020-04-13T01:44:32
254,143,096
0
0
null
null
null
null
UTF-8
Python
false
false
734
py
from gazpacho import get,Soup from pprint import pprint import json from datetime import datetime #current date time object dt=datetime.now().replace(microsecond=0) print(dt) print(dt.isoformat()) # Datetim in ISO 8601 # datetime.datetime.now().replace(microsecond=0).isoformat() URL='http://www.kinguilahoje.com/' html=get(URL) soup=Soup(html) quotations=soup.find('span',{'class':'quotation'}) dolar=quotations[0].text euro=quotations[1].text #pprint(quotations) print('dolar:',dolar) print('euro:',euro) dolar_integer=int(dolar.split()[1]) euro_integer=int(euro.split()[1]) # data to JSON json_data={'Dolar':dolar_integer,'Euro':euro_integer} #print(json_data) #output JSON data as a string print(json.dumps(json_data))
[ "maapinho@hotmail.com" ]
maapinho@hotmail.com
f67a9f32b5bc88c51b23c4f94c7ca1674316a0c1
f6577ac3fd9f96ddba43560a03edae40556ea010
/socket/chatbot.py
638785e818fd714db60e1d1420ee47bdb48f3d95
[]
no_license
UndergraduateProject/IotServer
02379ac5c0544381b0a0c9a90f87b7ee74d3d8bf
ac3baba112c85c2ac81d841ff37f07c4e2d33e57
refs/heads/master
2023-08-23T17:21:11.822574
2021-10-30T14:47:34
2021-10-30T14:47:34
352,904,724
0
0
null
null
null
null
UTF-8
Python
false
false
3,084
py
import os import dialogflow from google.api_core.exceptions import InvalidArgument import requests as rq import socketio src = 'http://140.117.71.98:8000/api/Humidtemp/' #socket sio = socketio.Client() os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = './reactpageagent-rehl-e8f6c376b8ef.json' DIALOGFLOW_PROJECT_ID = 'reactpageagent-rehl' DIALOGFLOW_LANGUAGE_CODE = 'en' SESSION_ID = 'ni_chatbot' #text_to_be_analyzed = "hi" session_client = dialogflow.SessionsClient() session = session_client.session_path(DIALOGFLOW_PROJECT_ID, SESSION_ID) #text_input = dialogflow.types.TextInput(text=text_to_be_analyzed, language_code=DIALOGFLOW_LANGUAGE_CODE) def get_response(text_to_be_analyzed="ni_chatbot"): text_input = dialogflow.types.TextInput(text=text_to_be_analyzed, language_code=DIALOGFLOW_LANGUAGE_CODE) query_input = dialogflow.types.QueryInput(text=text_input) # dialogflow database try: response = session_client.detect_intent(session=session, query_input=query_input) #print(response) except InvalidArgument as e: # print(e) raise return response # display def temperature(): res = rq.get(src) data = res.json() count = data["count"] url = src + str(count) res = rq.get(url) data = res.json() temperature = data['temperature'] msg = response.query_result.fulfillment_text + str(temperature) sio.emit('chatbot', msg) # print(response.query_result.fulfillment_text, temperature) def humidity(): res = rq.get(src) data = res.json() count = data["count"] url = src + str(count) res = rq.get(url) data = res.json() humidity = data['humidity'] msg = response.query_result.fulfillment_text + str(humidity) sio.emit('chatbot', msg) # print(response.query_result.fulfillment_text, humidity) # action def action_watering(): pass def action_light(): pass def action_fan(): pass @sio.on('connect') def on_connect(): # print('connection established') pass @sio.on("chatbot") def on_message(data): # print("message" ,data) global response response = get_response(data) # get_output(response) # print("keyword: ", response.query_result.intent.display_name) #command+shift+p -> interpreter-> copy bin/python keyword = response.query_result.intent.display_name confidence = response.query_result.intent_detection_confidence if keyword == "temperature": temperature() elif keyword == "lighting": humidity() elif keyword == "open lighting": action_light() elif keyword == "open fan": action_fan() elif keyword == "open watering": action_watering() elif keyword == "Default Fallback Intent": sio.emit("chatbot", "Sorry, what was that?") # print("Sorry, what was that?") else: sio.emit('chatbot', response.query_result.fulfillment_text) @sio.on('disconnect') def on_disconnect(): # print('disconnected from server') pass sio.connect("http://140.117.71.98:4001") while True: None
[ "s2012439@yes.my" ]
s2012439@yes.my
b3db901f568db3d311f39131427c789d20d2b786
9a1a0b47b59e55e3f2043ad32d5d58455e69425d
/0708/listas/ej233.py
9089219b5ce46da511c1c457bd8a33c211a40db2
[]
no_license
piranna/asi-iesenlaces
dcabc0213791c04a8b6b4ccb850d5bda78292ae1
cf35cbea732065e09a58604a93538a9b9dca875f
refs/heads/master
2016-08-06T05:09:44.270637
2008-06-15T09:00:27
2008-06-15T09:00:27
32,416,588
1
0
null
null
null
null
UTF-8
Python
false
false
717
py
# -*- coding: utf-8 -*- # $Id$ # elimina nรบmeros pares de una lista """ Eliminamos elementos de una lista con del(). Cuidado al eliminar elementos de una lista. Si eliminamos un elemento de una lista, estamos modificando su tamaรฑo """ lista = [1,2,3,4,5,6,7,8,9] i=0 #รญndice para recorrer la lista while i < len (lista): # en cada iteraciรณn volvemos a evaluar el tamaรฑo de la lista if lista[i] % 2 == 0: del lista[i] else: i += 1 # sรณlo modificamos el รญndice cuando no eliminamos ningรบn elemento # si hemos eliminado un elemento no es necesario, porque el รญndice ahora # apunta al siguiente (el que ocupa el nuevo lugar del eliminado) print lista
[ "morillas@f86dea77-7e2e-0410-97ea-a74e350978e6" ]
morillas@f86dea77-7e2e-0410-97ea-a74e350978e6
57cec0f730cf6763d39090ab33bed1567ec463f9
4df98b871e8bdf94d8841ec1f6d7a3b4150b4dcc
/adaline-classifier/adalineSGD.py
998031d6324fdf5a573c0eb9251c19969f9d79aa
[]
no_license
samrod13/Machine-Learning
ee026067710e8798befb332bd18a097acbd79775
080de188a73703c49dd83bbb3212699f36a348f0
refs/heads/master
2021-01-18T04:22:30.269977
2016-11-06T20:14:26
2016-11-06T20:14:26
67,274,971
0
0
null
null
null
null
UTF-8
Python
false
false
3,068
py
from numpy.random import seed import numpy as np class AdalineSGD(object): """ADAptive LInear NEuron classifier. Parameters ------------ eta : float Learning rate (between 0.0 and 1.0) n_iter : int Passes over the training dataset. Attributes ----------- w_ : 1d-array Weights after fitting. errors_ : list Number of misclassifications in every epoch. shuffle : bool (default: True) Shuffles training data every epoch if True to prevent cycles. random_state : int (default: None) Set random state for shuffling and initializing the weights. """ def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None): self.eta = eta self.n_iter = n_iter self.w_initialized = False self.shuffle = shuffle if random_state: seed(random_state) def fit(self, X, y): """ Fit training data. Parameters ---------- X : {array-like}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. Returns ------- self : object """ self._initialize_weights(X.shape[1]) self.cost_ = [] for i in range(self.n_iter): if self.shuffle: X, y = self._shuffle(X, y) cost = [] for xi, target in zip(X, y): cost.append(self._update_weights(xi, target)) avg_cost = sum(cost) / len(y) self.cost_.append(avg_cost) return self def partial_fit(self, X, y): """Fit training data without reinitializing the weights""" if not self.w_initialized: self._initialize_weights(X.shape[1]) if y.ravel().shape[0] > 1: for xi, target in zip(X, y): self._update_weights(xi, target) else: self._update_weights(X, y) return self def _shuffle(self, X, y): """Shuffle training data""" r = np.random.permutation(len(y)) return X[r], y[r] def _initialize_weights(self, m): """Initialize weights to zeros""" self.w_ = np.zeros(1 + m) self.w_initialized = True def _update_weights(self, xi, target): """Apply Adaline learning rule to update the weights""" output = self.net_input(xi) error = (target - output) self.w_[1:] += self.eta * xi.dot(error) self.w_[0] += self.eta * error cost = 0.5 * error**2 return cost def net_input(self, X): """Calculate net input""" return np.dot(X, self.w_[1:]) + self.w_[0] def activation(self, X): """Compute linear activation""" return self.net_input(X) def predict(self, X): """Return class label after unit step""" return np.where(self.activation(X) >= 0.0, 1, -1)
[ "rodriguezs466@gmail.com" ]
rodriguezs466@gmail.com
105ccae1d666281b62ba6b9043fac68fcb1651e2
83b41f8ba0959f3ab3094869670920bdef92d0db
/df_test.py
99b6eda66b317c936570c534d41f9875f5ca88ff
[]
no_license
kumarchintu/aws-trainning
9157da4496d0894eefe39bb4303c32c362af517f
34ff156c74216abd039f24267107b60f0586460f
refs/heads/master
2021-01-26T07:40:38.693976
2020-05-01T04:06:57
2020-05-01T04:06:57
243,369,342
0
0
null
null
null
null
UTF-8
Python
false
false
473
py
import pandas as pd dfObj = pd.DataFrame(columns=['User_ID', 'UserName', 'Action']) print("Empty Dataframe ", dfObj, sep='\n') dfObj = dfObj.append({'User_ID': 23, 'UserName': 'Riti', 'Action': 'Login'}, ignore_index=True) dfObj = dfObj.append({'User_ID': 24, 'UserName': 'Aadi', 'Action': 'Logout'}, ignore_index=True) dfObj = dfObj.append({'User_ID': 25, 'UserName': 'Jack', 'Action': 'Login'}, ignore_index=True) print("Dataframe Contens ", dfObj, sep='\n')
[ "noreply@github.com" ]
kumarchintu.noreply@github.com
77d0baf93da1adb6871816e657d76373586457b6
e888171a028d297dca5120fc748d5816d47b3be6
/cnn_aenc_genome_tr_seq_ld.py
f308c777e60d45798dccb97140661fecf67188a6
[]
no_license
AmirUCR/CRISPER-CAS9
f130a3a2c1df1f6f7e7082ed05b869d0421ffce0
4207b794662acfefa82077a88be5fcd3afd0ef41
refs/heads/master
2023-04-27T01:24:51.956009
2021-05-27T23:45:26
2021-05-27T23:45:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,249
py
from collections import OrderedDict import os import sys import warnings import argparse import logging import h5py as h5 import numpy as np import pandas as pd import scipy.io import six from six.moves import range import matplotlib.pyplot as plt #from dna import * from sklearn.metrics import roc_auc_score, confusion_matrix from keras.preprocessing import sequence from keras.optimizers import RMSprop,Adam, SGD from keras.models import Sequential, Model from keras.layers.core import Dropout, Activation, Flatten from keras.regularizers import l1,l2,l1_l2 from keras.constraints import maxnorm #from keras.layers.recurrent import LSTM, GRU from keras.callbacks import ModelCheckpoint, EarlyStopping from keras.layers import Conv1D, MaxPooling1D, Dense, LSTM, Bidirectional, BatchNormalization, MaxPooling2D, AveragePooling1D, Input, Multiply, Add, UpSampling1D from sklearn.metrics import mean_squared_error as mse import scipy.stats as st #from keras.utils import plot_model #from keras.utils.layer_utils import print_layer_shapes # fix random seed for reproducibility from random import shuffle np.random.seed(1369) def PREPROCESS(lines): data_n = len(lines) - 1 SEQ = np.zeros((data_n, 40, 4), dtype=int) #CA = np.zeros((data_n, 1), dtype=float) #Score = np.zeros((data_n, 1), dtype=float) #lines = lines[1:] shuffle(lines) for l in range(0, data_n): data = lines[l] seq = data #Score[l-1] = float(data[6]) #CA[l-1] = float(data[5]) for i in range(40): if seq[i] in "Aa": SEQ[l-1, i, 0] = 1 elif seq[i] in "Cc": SEQ[l-1, i, 1] = 1 elif seq[i] in "Gg": SEQ[l-1, i, 2] = 1 elif seq[i] in "Tt": SEQ[l-1, i, 3] = 1 #CA[l-1,0] = int(data[2])*100 return SEQ if __name__ == '__main__': print ("Loading train data") FILE = open("sequence_SFLI.txt", "r") data = FILE.readlines() print(len(data)) SEQ_in = PREPROCESS(data) #score = st.zscore(score) print(SEQ_in.shape) FILE.close() # model for seq SEQ = Input(shape=(40,4)) conv_1 = Conv1D(activation="relu", padding="same", strides=1, filters=20, kernel_size=5, kernel_regularizer = l2(0.0001))(SEQ) bat_norm1 = BatchNormalization()(conv_1) pool = MaxPooling1D(pool_size=(2))(bat_norm1) conv_2 = Conv1D(activation="relu", padding="same", strides=1, filters=40, kernel_size=8, kernel_regularizer = l2(0.0001))(pool) bat_norm2 = BatchNormalization()(conv_2) pool_1 = AveragePooling1D(pool_size=(2))(bat_norm2) flatten = Flatten()(pool_1) dropout_1 = Dropout(0.5)(flatten) dense_1 = Dense(80, activation='relu', kernel_initializer='glorot_uniform')(dropout_1) dropout_2 = Dropout(0.5)(dense_1) dense_2 = Dense(units=40, activation="relu",kernel_initializer='glorot_uniform')(dropout_2) dropout_3 = Dropout(0.3)(dense_2) dense_3 = Dense(units=40, activation="relu",kernel_initializer='glorot_uniform')(dropout_3) out = Dense(units=1, activation="linear")(dense_3) model = Model(inputs = SEQ, outputs= out) model.summary() model.load_weights("seqonly_wtt.h5") pred_y = model.predict(SEQ_in) np.savetxt("activity_score_SFLI.csv", pred_y, delimiter= ",")
[ "dbais001@dipankar.cs.ucr.edu" ]
dbais001@dipankar.cs.ucr.edu
b270564b58d3fcdb665fa602738083d04173c420
2dfa1822a5d3006187c47f383bb67ab4e202e417
/GraphicsView.py
ea34878b4a0a92f448f3cf3ec2a7c6addf7005b4
[ "MIT" ]
permissive
amandashack/QDmapping
254c2754634b072161e0f1232089a25440c5228d
ee93dc693ebc8e6cfd378d5b69367c5293d232be
refs/heads/master
2020-04-16T16:14:55.137660
2020-03-26T23:46:27
2020-03-26T23:46:27
156,276,056
0
0
null
null
null
null
UTF-8
Python
false
false
5,661
py
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt, QPoint, pyqtSignal, QRect from PyQt5.QtWidgets import QMainWindow, QApplication, QGraphicsScene, QGraphicsView, QRubberBand from PyQt5.QtGui import QPixmap, QPainter, QPen from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtGui import * from main import * from GraphicsView import * from collections import defaultdict import sys import time import cv2 class photoViewer(object): def __init__(self, ogImage, ogImageScene, pixmapItem, width, height): self.ogImage = ogImage self.ogImageScene = ogImageScene self.pixmapItem = pixmapItem self._zoom = 0 self._width = width self._height = height def setDefaultImage(self, image): self.image = image pixmap = self.scale(self._width, self._height) self.updatePixmap(pixmap) return(pixmap) def updatePixmap(self, pixmap): self.ogImageScene.clear() self.pixmapItem = QGraphicsPixmapItem() self.pixmapItem.setPixmap(pixmap) self.ogImageScene.addItem(self.pixmapItem) self.ogImageScene.setSceneRect(QtCore.QRectF(0.0, 0.0, pixmap.width(), pixmap.height())) def scale(self, width, height): if (self.image.isNull()): return(QPixmap()) return(self.image.scaled(width, height, QtCore.Qt.KeepAspectRatio)) def zoom(self, pixmap, factor): pixmap = self.scale(pixmap.width()*factor, pixmap.height()*factor) self.updatePixmap(pixmap) return(pixmap) def zoomIn(self, pixmap): self._zoom += 1 factor = 1.25 return(self.zoom(pixmap, factor)) def zoomOut(self, pixmap): if self._zoom == 0: return(pixmap) self._zoom -= 1 factor = 0.75 return(self.zoom(pixmap, factor)) def zeroZoom(self, pixmap): if self._zoom == 0: return(pixmap) pixmap = self.scale(self._width, self._height) #### self.pixmap is used for scaling and anything else self.updatePixmap(pixmap) return (pixmap) class photoManager(): def __init__(self): pass def editIm(self, editim, opDict, cur_mode, value): ''' the problem is that the image is edited to include the previous state of the image AND THEN the current position of the slider is taken into account ~ this must be done beforehand so that the current state of the image is created from the slider + the previously moved sliders I believe this has been fixed and the below commented out code can be removed - 10/16 ''' im = editim opDict[cur_mode].append(value) for key in opDict.keys(): if key.upper() == "ERODE": value = opDict[key][-1] kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2)) editim = cv2.erode(editim, kernal, iterations = value) elif key.upper() == "DILATE": value = opDict[key][-1] kernal = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2)) editim = cv2.erode(editim, kernal, iterations = value) elif key.upper() in ["OPEN", "CLOSE", "TOPHAT", "BLACKHAT"] and opDict[key]: key_value = opDict[key][-1] str_mode = 'ellipse' str_name = f'MORPH_{str_mode.upper()}' oper_name = f'MORPH_{key.upper()}' st = cv2.getStructuringElement(getattr(cv2, str_name), (2, 2)) editim = cv2.morphologyEx(editim, getattr(cv2, oper_name), st, iterations = key_value) elif key.upper() == "BLUR" and opDict[key]: key_value = opDict[key][-1] editim = cv2.GaussianBlur(editim, (3, 3), key_value) elif key.upper() == "THRESHOLD" and opDict[key]: key_value = opDict[key][-1] #### types of thresholding #### Threshold binary or binary inverted: if the intensity of the pixel is higher than the thresh, #### Then the thresh is set to a MaxVal, otherwise the pixels are set to 0 #### truncate : the maxiumum intensity value for the pixels is thresh, if the intensity of a pixel #### value is greater, then its value is truncated (set to the MaxVal) #### threshold to zero or inverted: if the intensity of the pixel value is lower than the thresh, #### then the new pixe value is zero or vice versa - I believe the other possible option is the TOZERO option #### cv2.threshold(src, dst, *150*, 200, cv.THRESH_TOZERO) where the stared entry is the threshold and the value which would be the slider #### adaptive thresholding: calculates the threshold for small regions of an image for when there are #### different shadows editim = cv2.adaptiveThreshold(editim, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 3, key_value - 7) else: print('you have a wrong key on line 96 in graphicsview.py') return(editim) def zoomByRect(self, editim, areaView): #QRect - x, y, width, height rect_scene = self.mapToScene(areaView).boundingRect() selected = self.scene().items(rect_scene)
[ "ajshack4@gmail.com" ]
ajshack4@gmail.com
a039247a947488efd56abfaec5d0e514192661ef
5c34abe10630b23da8ba7d1cbce38bda53a4b6fa
/calibGenACD/python/ParseFileListNew.py
acf59a483c6f81fe4fa16b4b31a6de0eb090bd39
[]
no_license
fermi-lat/GlastRelease-scons-old
cde76202f706b1c8edbf47b52ff46fe6204ee608
95f1daa22299272314025a350f0c6ef66eceda08
refs/heads/master
2021-07-23T02:41:48.198247
2017-05-09T17:27:58
2017-05-09T17:27:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,316
py
#!/usr/bin/env python # # Copyright 2007 # by # The Board of Trustees of the # Leland Stanford Junior University. # All rights reserved. # __facility__ = "calibGenACD" __abstract__ = "Extracts the DAC to PHA set point relationship of ACD veto" __author__ = "E. Charles" __date__ = "$Date$" __version__ = "$Revision$, $Author$" __release__ = "$Name$" #import LATTE.copyright_SLAC import os, sys import time from optparse import OptionParser from py_mootCore import MootQuery, vectorOfConstitInfo, ConstitInfo DATACATBIN = "/afs/slac/g/glast/ground/bin/datacat" def getDateStamp(): """ """ return time.strftime("%y%m%d") def callDatacat(group,dateStamp): """ """ dataCatList = "%s_%s.list"%(group,dateStamp) dataCatLine = "%s find --sort nMetStart --group %s /Data/Flight/Level1/LPA/ > %s"%(DATACATBIN,group,dataCatList) print "Calling datacat for group %s on %s"%(group,dateStamp) os.system(dataCatLine) return dataCatList def configInfo(metTime,mq): """ """ acqInfo = mq.getAcqSummaryInfo( int(metTime[1:]) ) if acqInfo is None: return ("None",0) key = int(acqInfo.getConfigKey()) configInfo = mq.getConfigInfo(key) if configInfo is None: return ("None",key) return (configInfo.getName(),key) def fmxKeys(mKey): """ """ mq = MootQuery(None) constits = vectorOfConstitInfo() ci = mq.getActiveFilters(mKey,constits,0) for ci in constits: print (ci.getKey(),ci.getFswId(),ci.getSchemaId(),ci.getSchemaVersionId(),ci.getInstanceId() ) def utcDayAndWeek(metTime): """ """ unixSecs = float(metTime[1:]) missionEpoch = time.mktime( time.strptime("Sun Dec 31 16:00:00 2000") ) missionStart = time.mktime( time.strptime("Sun Jun 8 15:00:00 2008") ) utcTime = time.gmtime(unixSecs+missionEpoch) launchSecs = unixSecs+missionEpoch-missionStart week = int ( launchSecs / 604800 ) day = "%02d%02d%02d"%(utcTime[0]-2000,utcTime[1],utcTime[2]) return (day,week) def parseNames(inFileName): """ """ outFileName = inFileName.replace("list","table") outFile = open(outFileName,'w') mq = MootQuery(None) inFile = open(inFileName) inline = inFile.readline() while inline<>'': w = inline.find('/r0') runNum = inline[w+2:w+12] (uDay,mWeek) = utcDayAndWeek(runNum) (configName,configKey) = configInfo(runNum,mq) outFile.write("%s %s %03d %-4d %s %s\n"%(runNum,uDay,mWeek,configKey,configName,inline.strip())) inline = inFile.readline() inFile.close() outFile.close() return None if __name__=='__main__': # argument parsing usage = 'ParseFileList.py type' parser = OptionParser(usage) if len(sys.argv) == 1 or sys.argv[1] == '-h': parser.print_help() sys.exit() (options, args) = parser.parse_args(sys.argv[1:]) if len(args) < 1: parser.print_help() sys.exit() dateStamp = getDateStamp() for group in args: dataCatList = callDatacat(group,dateStamp) #Latch the time parseNames(dataCatList)
[ "" ]
6c4853e5d42f5a96aabcd2f6bac19abb11fe102f
7d5738e9713ddae056138217238e39eb093574dd
/deeplearning/imagenet_labels.py
67f92e88da0d85045b9e0274a723db2b1d4c046c
[]
no_license
tanle2694/deploy_deeplearning_model
1093fa7f7e7567540e8ac9863477906666332b97
7c5473feb4cc5a67b5f3b9626ddcbcf5091e5ecc
refs/heads/master
2022-10-12T20:13:42.699632
2020-06-10T08:04:24
2020-06-10T08:04:24
270,533,225
0
0
null
null
null
null
UTF-8
Python
false
false
14,201
py
labels = ["tench", "goldfish", "great white shark", "tiger shark", "hammerhead shark", "electric ray", "stingray", "cock", "hen", "ostrich", "brambling", "goldfinch", "house finch", "junco", "indigo bunting", "American robin", "bulbul", "jay", "magpie", "chickadee", "American dipper", "kite", "bald eagle", "vulture", "great grey owl", "fire salamander", "smooth newt", "newt", "spotted salamander", "axolotl", "American bullfrog", "tree frog", "tailed frog", "loggerhead sea turtle", "leatherback sea turtle", "mud turtle", "terrapin", "box turtle", "banded gecko", "green iguana", "Carolina anole", "desert grassland whiptail lizard", "agama", "frilled-necked lizard", "alligator lizard", "Gila monster", "European green lizard", "chameleon", "Komodo dragon", "Nile crocodile", "American alligator", "triceratops", "worm snake", "ring-necked snake", "eastern hog-nosed snake", "smooth green snake", "kingsnake", "garter snake", "water snake", "vine snake", "night snake", "boa constrictor", "African rock python", "Indian cobra", "green mamba", "sea snake", "Saharan horned viper", "eastern diamondback rattlesnake", "sidewinder", "trilobite", "harvestman", "scorpion", "yellow garden spider", "barn spider", "European garden spider", "southern black widow", "tarantula", "wolf spider", "tick", "centipede", "black grouse", "ptarmigan", "ruffed grouse", "prairie grouse", "peacock", "quail", "partridge", "grey parrot", "macaw", "sulphur-crested cockatoo", "lorikeet", "coucal", "bee eater", "hornbill", "hummingbird", "jacamar", "toucan", "duck", "red-breasted merganser", "goose", "black swan", "tusker", "echidna", "platypus", "wallaby", "koala", "wombat", "jellyfish", "sea anemone", "brain coral", "flatworm", "nematode", "conch", "snail", "slug", "sea slug", "chiton", "chambered nautilus", "Dungeness crab", "rock crab", "fiddler crab", "red king crab", "American lobster", "spiny lobster", "crayfish", "hermit crab", "isopod", "white stork", "black stork", "spoonbill", "flamingo", "little blue heron", "great egret", "bittern", "crane (bird)", "limpkin", "common gallinule", "American coot", "bustard", "ruddy turnstone", "dunlin", "common redshank", "dowitcher", "oystercatcher", "pelican", "king penguin", "albatross", "grey whale", "killer whale", "dugong", "sea lion", "Chihuahua", "Japanese Chin", "Maltese", "Pekingese", "Shih Tzu", "King Charles Spaniel", "Papillon", "toy terrier", "Rhodesian Ridgeback", "Afghan Hound", "Basset Hound", "Beagle", "Bloodhound", "Bluetick Coonhound", "Black and Tan Coonhound", "Treeing Walker Coonhound", "English foxhound", "Redbone Coonhound", "borzoi", "Irish Wolfhound", "Italian Greyhound", "Whippet", "Ibizan Hound", "Norwegian Elkhound", "Otterhound", "Saluki", "Scottish Deerhound", "Weimaraner", "Staffordshire Bull Terrier", "American Staffordshire Terrier", "Bedlington Terrier", "Border Terrier", "Kerry Blue Terrier", "Irish Terrier", "Norfolk Terrier", "Norwich Terrier", "Yorkshire Terrier", "Wire Fox Terrier", "Lakeland Terrier", "Sealyham Terrier", "Airedale Terrier", "Cairn Terrier", "Australian Terrier", "Dandie Dinmont Terrier", "Boston Terrier", "Miniature Schnauzer", "Giant Schnauzer", "Standard Schnauzer", "Scottish Terrier", "Tibetan Terrier", "Australian Silky Terrier", "Soft-coated Wheaten Terrier", "West Highland White Terrier", "Lhasa Apso", "Flat-Coated Retriever", "Curly-coated Retriever", "Golden Retriever", "Labrador Retriever", "Chesapeake Bay Retriever", "German Shorthaired Pointer", "Vizsla", "English Setter", "Irish Setter", "Gordon Setter", "Brittany", "Clumber Spaniel", "English Springer Spaniel", "Welsh Springer Spaniel", "Cocker Spaniels", "Sussex Spaniel", "Irish Water Spaniel", "Kuvasz", "Schipperke", "Groenendael", "Malinois", "Briard", "Australian Kelpie", "Komondor", "Old English Sheepdog", "Shetland Sheepdog", "collie", "Border Collie", "Bouvier des Flandres", "Rottweiler", "German Shepherd Dog", "Dobermann", "Miniature Pinscher", "Greater Swiss Mountain Dog", "Bernese Mountain Dog", "Appenzeller Sennenhund", "Entlebucher Sennenhund", "Boxer", "Bullmastiff", "Tibetan Mastiff", "French Bulldog", "Great Dane", "St. Bernard", "husky", "Alaskan Malamute", "Siberian Husky", "Dalmatian", "Affenpinscher", "Basenji", "pug", "Leonberger", "Newfoundland", "Pyrenean Mountain Dog", "Samoyed", "Pomeranian", "Chow Chow", "Keeshond", "Griffon Bruxellois", "Pembroke Welsh Corgi", "Cardigan Welsh Corgi", "Toy Poodle", "Miniature Poodle", "Standard Poodle", "Mexican hairless dog", "grey wolf", "Alaskan tundra wolf", "red wolf", "coyote", "dingo", "dhole", "African wild dog", "hyena", "red fox", "kit fox", "Arctic fox", "grey fox", "tabby cat", "tiger cat", "Persian cat", "Siamese cat", "Egyptian Mau", "cougar", "lynx", "leopard", "snow leopard", "jaguar", "lion", "tiger", "cheetah", "brown bear", "American black bear", "polar bear", "sloth bear", "mongoose", "meerkat", "tiger beetle", "ladybug", "ground beetle", "longhorn beetle", "leaf beetle", "dung beetle", "rhinoceros beetle", "weevil", "fly", "bee", "ant", "grasshopper", "cricket", "stick insect", "cockroach", "mantis", "cicada", "leafhopper", "lacewing", "dragonfly", "damselfly", "red admiral", "ringlet", "monarch butterfly", "small white", "sulphur butterfly", "gossamer-winged butterfly", "starfish", "sea urchin", "sea cucumber", "cottontail rabbit", "hare", "Angora rabbit", "hamster", "porcupine", "fox squirrel", "marmot", "beaver", "guinea pig", "common sorrel", "zebra", "pig", "wild boar", "warthog", "hippopotamus", "ox", "water buffalo", "bison", "ram", "bighorn sheep", "Alpine ibex", "hartebeest", "impala", "gazelle", "dromedary", "llama", "weasel", "mink", "European polecat", "black-footed ferret", "otter", "skunk", "badger", "armadillo", "three-toed sloth", "orangutan", "gorilla", "chimpanzee", "gibbon", "siamang", "guenon", "patas monkey", "baboon", "macaque", "langur", "black-and-white colobus", "proboscis monkey", "marmoset", "white-headed capuchin", "howler monkey", "titi", "Geoffroy's spider monkey", "common squirrel monkey", "ring-tailed lemur", "indri", "Asian elephant", "African bush elephant", "red panda", "giant panda", "snoek", "eel", "coho salmon", "rock beauty", "clownfish", "sturgeon", "garfish", "lionfish", "pufferfish", "abacus", "abaya", "academic gown", "accordion", "acoustic guitar", "aircraft carrier", "airliner", "airship", "altar", "ambulance", "amphibious vehicle", "analog clock", "apiary", "apron", "waste container", "assault rifle", "backpack", "bakery", "balance beam", "balloon", "ballpoint pen", "Band-Aid", "banjo", "baluster", "barbell", "barber chair", "barbershop", "barn", "barometer", "barrel", "wheelbarrow", "baseball", "basketball", "bassinet", "bassoon", "swimming cap", "bath towel", "bathtub", "station wagon", "lighthouse", "beaker", "military cap", "beer bottle", "beer glass", "bell-cot", "bib", "tandem bicycle", "bikini", "ring binder", "binoculars", "birdhouse", "boathouse", "bobsleigh", "bolo tie", "poke bonnet", "bookcase", "bookstore", "bottle cap", "bow", "bow tie", "brass", "bra", "breakwater", "breastplate", "broom", "bucket", "buckle", "bulletproof vest", "high-speed train", "butcher shop", "taxicab", "cauldron", "candle", "cannon", "canoe", "can opener", "cardigan", "car mirror", "carousel", "tool kit", "carton", "car wheel", "automated teller machine", "cassette", "cassette player", "castle", "catamaran", "CD player", "cello", "mobile phone", "chain", "chain-link fence", "chain mail", "chainsaw", "chest", "chiffonier", "chime", "china cabinet", "Christmas stocking", "church", "movie theater", "cleaver", "cliff dwelling", "cloak", "clogs", "cocktail shaker", "coffee mug", "coffeemaker", "coil", "combination lock", "computer keyboard", "confectionery store", "container ship", "convertible", "corkscrew", "cornet", "cowboy boot", "cowboy hat", "cradle", "crane (machine)", "crash helmet", "crate", "infant bed", "Crock Pot", "croquet ball", "crutch", "cuirass", "dam", "desk", "desktop computer", "rotary dial telephone", "diaper", "digital clock", "digital watch", "dining table", "dishcloth", "dishwasher", "disc brake", "dock", "dog sled", "dome", "doormat", "drilling rig", "drum", "drumstick", "dumbbell", "Dutch oven", "electric fan", "electric guitar", "electric locomotive", "entertainment center", "envelope", "espresso machine", "face powder", "feather boa", "filing cabinet", "fireboat", "fire engine", "fire screen sheet", "flagpole", "flute", "folding chair", "football helmet", "forklift", "fountain", "fountain pen", "four-poster bed", "freight car", "French horn", "frying pan", "fur coat", "garbage truck", "gas mask", "gas pump", "goblet", "go-kart", "golf ball", "golf cart", "gondola", "gong", "gown", "grand piano", "greenhouse", "grille", "grocery store", "guillotine", "barrette", "hair spray", "half-track", "hammer", "hamper", "hair dryer", "hand-held computer", "handkerchief", "hard disk drive", "harmonica", "harp", "harvester", "hatchet", "holster", "home theater", "honeycomb", "hook", "hoop skirt", "horizontal bar", "horse-drawn vehicle", "hourglass", "iPod", "clothes iron", "jack-o'-lantern", "jeans", "jeep", "T-shirt", "jigsaw puzzle", "pulled rickshaw", "joystick", "kimono", "knee pad", "knot", "lab coat", "ladle", "lampshade", "laptop computer", "lawn mower", "lens cap", "paper knife", "library", "lifeboat", "lighter", "limousine", "ocean liner", "lipstick", "slip-on shoe", "lotion", "speaker", "loupe", "sawmill", "magnetic compass", "mail bag", "mailbox", "tights", "tank suit", "manhole cover", "maraca", "marimba", "mask", "match", "maypole", "maze", "measuring cup", "medicine chest", "megalith", "microphone", "microwave oven", "military uniform", "milk can", "minibus", "miniskirt", "minivan", "missile", "mitten", "mixing bowl", "mobile home", "Model T", "modem", "monastery", "monitor", "moped", "mortar", "square academic cap", "mosque", "mosquito net", "scooter", "mountain bike", "tent", "computer mouse", "mousetrap", "moving van", "muzzle", "nail", "neck brace", "necklace", "nipple", "notebook computer", "obelisk", "oboe", "ocarina", "odometer", "oil filter", "organ", "oscilloscope", "overskirt", "bullock cart", "oxygen mask", "packet", "paddle", "paddle wheel", "padlock", "paintbrush", "pajamas", "palace", "pan flute", "paper towel", "parachute", "parallel bars", "park bench", "parking meter", "passenger car", "patio", "payphone", "pedestal", "pencil case", "pencil sharpener", "perfume", "Petri dish", "photocopier", "plectrum", "Pickelhaube", "picket fence", "pickup truck", "pier", "piggy bank", "pill bottle", "pillow", "ping-pong ball", "pinwheel", "pirate ship", "pitcher", "hand plane", "planetarium", "plastic bag", "plate rack", "plow", "plunger", "Polaroid camera", "pole", "police van", "poncho", "billiard table", "soda bottle", "pot", "potter's wheel", "power drill", "prayer rug", "printer", "prison", "projectile", "projector", "hockey puck", "punching bag", "purse", "quill", "quilt", "race car", "racket", "radiator", "radio", "radio telescope", "rain barrel", "recreational vehicle", "reel", "reflex camera", "refrigerator", "remote control", "restaurant", "revolver", "rifle", "rocking chair", "rotisserie", "eraser", "rugby ball", "ruler", "running shoe", "safe", "safety pin", "salt shaker", "sandal", "sarong", "saxophone", "scabbard", "weighing scale", "school bus", "schooner", "scoreboard", "CRT screen", "screw", "screwdriver", "seat belt", "sewing machine", "shield", "shoe store", "shoji", "shopping basket", "shopping cart", "shovel", "shower cap", "shower curtain", "ski", "ski mask", "sleeping bag", "slide rule", "sliding door", "slot machine", "snorkel", "snowmobile", "snowplow", "soap dispenser", "soccer ball", "sock", "solar thermal collector", "sombrero", "soup bowl", "space bar", "space heater", "space shuttle", "spatula", "motorboat", "spider web", "spindle", "sports car", "spotlight", "stage", "steam locomotive", "through arch bridge", "steel drum", "stethoscope", "scarf", "stone wall", "stopwatch", "stove", "strainer", "tram", "stretcher", "couch", "stupa", "submarine", "suit", "sundial", "sunglass", "sunglasses", "sunscreen", "suspension bridge", "mop", "sweatshirt", "swimsuit", "swing", "switch", "syringe", "table lamp", "tank", "tape player", "teapot", "teddy bear", "television", "tennis ball", "thatched roof", "front curtain", "thimble", "threshing machine", "throne", "tile roof", "toaster", "tobacco shop", "toilet seat", "torch", "totem pole", "tow truck", "toy store", "tractor", "semi-trailer truck", "tray", "trench coat", "tricycle", "trimaran", "tripod", "triumphal arch", "trolleybus", "trombone", "tub", "turnstile", "typewriter keyboard", "umbrella", "unicycle", "upright piano", "vacuum cleaner", "vase", "vault", "velvet", "vending machine", "vestment", "viaduct", "violin", "volleyball", "waffle iron", "wall clock", "wallet", "wardrobe", "military aircraft", "sink", "washing machine", "water bottle", "water jug", "water tower", "whiskey jug", "whistle", "wig", "window screen", "window shade", "Windsor tie", "wine bottle", "wing", "wok", "wooden spoon", "wool", "split-rail fence", "shipwreck", "yawl", "yurt", "website", "comic book", "crossword", "traffic sign", "traffic light", "dust jacket", "menu", "plate", "guacamole", "consomme", "hot pot", "trifle", "ice cream", "ice pop", "baguette", "bagel", "pretzel", "cheeseburger", "hot dog", "mashed potato", "cabbage", "broccoli", "cauliflower", "zucchini", "spaghetti squash", "acorn squash", "butternut squash", "cucumber", "artichoke", "bell pepper", "cardoon", "mushroom", "Granny Smith", "strawberry", "orange", "lemon", "fig", "pineapple", "banana", "jackfruit", "custard apple", "pomegranate", "hay", "carbonara", "chocolate syrup", "dough", "meatloaf", "pizza", "pot pie", "burrito", "red wine", "espresso", "cup", "eggnog", "alp", "bubble", "cliff", "coral reef", "geyser", "lakeshore", "promontory", "shoal", "seashore", "valley", "volcano", "baseball player", "bridegroom", "scuba diver", "rapeseed", "daisy", "yellow lady's slipper", "corn", "acorn", "rose hip", "horse chestnut seed", "coral fungus", "agaric", "gyromitra", "stinkhorn mushroom", "earth star", "hen-of-the-woods", "bolete", "ear", "toilet paper"]
[ "tanlm@datascience.com.vn" ]
tanlm@datascience.com.vn
6321392e8ea506f89ad8138de98709a7d3aeef3a
e5f1befb7c7ca0072747b33086fc6569a6befd01
/old/flaskold/json/008.py
f4caad8db1b8d37bfc3909c746dc3bac66210760
[]
no_license
nepomnyashchii/TestGit
ae08d8bb1b7d2ab9389a309fd1dc9e24729b019c
c7abf4ab08ee3c2f3ea1fb09a1938bff7a3e0e5c
refs/heads/master
2020-04-28T23:41:51.053547
2020-01-24T12:22:40
2020-01-24T12:22:40
175,666,093
0
1
null
2019-03-15T13:44:03
2019-03-14T17:08:58
null
UTF-8
Python
false
false
147
py
from flask import Flask app = Flask(__name__) @app.route('/') def index(): return "test" if __name__ =="__main__": app.run(debug=True)
[ "nepomnyashchii@gmail.com" ]
nepomnyashchii@gmail.com
cf1f21a13c39529187755f3f9be3a26fdbd963c2
413cb01c0fa276ebf0263b5f853fac704d2b4a38
/scripts/notebook-hash.py
6943c47a564af788273a54525322b64d9d41a7d6
[]
no_license
dergachev/iruby-docker
15f5824f5e6ce90194c5b1e5512b509db46b8dd4
987905ea6342749aa5ae5111d262f17137086001
refs/heads/master
2021-01-10T11:56:05.652262
2016-01-21T17:51:25
2016-01-21T17:51:25
50,068,353
0
0
null
null
null
null
UTF-8
Python
false
false
669
py
# adapted from https://github.com/jupyter/notebook/blob/master/notebook/auth/security.py import getpass import hashlib import random from sys import argv # Length of the salt in nr of hex chars, which implies salt_len * 4 # bits of randomness. salt_len = 12 def passwd(passphrase): h = hashlib.new('sha1') salt = ('%0' + str(salt_len) + 'x') % random.getrandbits(4 * salt_len) h.update(passphrase + salt) return ':'.join(("sha1", salt, h.hexdigest())) text=""" c.NotebookApp.ip = '*' c.NotebookApp.password = u'{password}' c.NotebookApp.open_browser = False c.NotebookApp.port = {port} """ print(text.format(password=passwd(argv[1]), port='9999'))
[ "alex@evolvingweb.ca" ]
alex@evolvingweb.ca
fee4e4dfa383d20a8d34a381be6e30b2f7fb0bd2
468378e1e85033b790c980f0c89f93907caadd86
/deepspeed/runtime/state_dict_factory.py
46efed7dc219930bc4668828714ab72a6cf04672
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
Distributed-AI/DeepSpeed
0e2e7f17a0a35e5a89416eaf7cba18d6356b36f8
edb6964603b04cdd8c8fe2d1134ee83e110f13e6
refs/heads/master
2023-07-31T12:34:06.227771
2021-09-26T21:42:59
2021-09-26T21:42:59
409,327,992
1
0
null
null
null
null
UTF-8
Python
false
false
18,703
py
''' Copyright 2020 The Microsoft DeepSpeed Team ''' import torch import os import copy import collections import json from abc import ABC, abstractmethod from deepspeed.utils import logger from .weight_quantizer import WeightQuantization AUTO_MODULE_KEY = 'auto' class SDLoaderFactory: @staticmethod def get_sd_loader_json(json_file): with open(json_file) as f: data = json.load(f) sd_type = data['type'] ckpt_list = data['checkpoints'] version = data['version'] return SDLoaderFactory.get_sd_loader(ckpt_list, sd_type, version) @staticmethod def get_sd_loader(ckpt_list, sd_type='Megatron', version=None): if sd_type == 'Megatron': return MegatronSDLoader(ckpt_list, version) else: assert False, '{} checkpoint type is not supported'.format(sd_type) class SDLoaderBase(ABC): def __init__(self, ckpt_list, version): self.module_key = None self.ckpt_list = ckpt_list self.check_ckpt_list() self.version = version def load(self, mp_world_size, mp_rank, module_key=AUTO_MODULE_KEY, is_pipe_parallel=False, quantize=False, quantize_bits=8, quantize_groups=64, mlp_extra_grouping=True): self.module_key = module_key num_ckpt = len(self.ckpt_list) idx = mp_rank * num_ckpt // mp_world_size logger.info( f'mp_world_size: {mp_world_size}, mp_rank: {mp_rank}, module_key: {module_key}' ) """ We have multiple cases to handle here for both training and inference: 1. PipeModule loading mp_rank_*.pt files, is_pipe_parallel=True, module_key is not None a. if no mp_size/pp_size resizing occurs, for both training & inference, loading the mp_rank related checkpoint directly. b. if has mp_size/pp_size resizing, only Megatron model inference is supported, in this case each mp_rank_*.pt have same content, we will load the first checkpoint file (idx=0), to avoid idx exceeding file list boundary. 2. PipeModule loading layer_*.pt files, is_pipe_parallel=True, module_key is None a. if no mp_size resizing occurs, for both training & inference, loading the mp_rank related checkpoint directly. b. if has mp_size resizing, only Megatron model inference is supported, checkpoint file(s) will be merged/splitted according to mp_rank, mp_world_size and checkpoint file list. 3. Non-PipeModule loading mp_rank_*.pt files, is_pipe_parallel=False Same with case (2). """ if is_pipe_parallel and module_key is not None and mp_world_size != num_ckpt: mp_world_size = num_ckpt idx = 0 load_path = self.ckpt_list[idx] merge_count = 1 if num_ckpt == mp_world_size: assert os.path.exists(load_path) logger.info(f'rank: {mp_rank} loading checkpoint: {load_path}') sd = torch.load(load_path, map_location=lambda storage, loc: storage) if quantize: quantizer = WeightQuantization(mlp_extra_grouping=mlp_extra_grouping, mp_size=mp_world_size) sd_module, all_scales = quantizer.sd_quantize_megatron(self.get_module(sd), quantize_bits, quantize_groups) self.set_module(sd, sd_module) else: all_scales = None elif num_ckpt > mp_world_size: sd, all_scales, merge_count = self.merge_state_dict(mp_world_size, mp_rank, quantize, \ quantize_bits, quantize_groups, mlp_extra_grouping) else: sd, all_scales = self.split_state_dict(mp_world_size, mp_rank, quantize, quantize_bits, \ quantize_groups, mlp_extra_grouping) return load_path, sd, (all_scales, merge_count) def get_merge_state_dicts(self, mp_world_size, mp_rank): num_ckpt = len(self.ckpt_list) assert num_ckpt % mp_world_size == 0, 'Invalid checkpoints and world size for sd merge' num_to_merge = num_ckpt // mp_world_size ckpt_list = [ self.ckpt_list[i] for i in range(num_to_merge * mp_rank, num_to_merge * (mp_rank + 1)) ] logger.info(f"mp_rank: {mp_rank}, ckpt_list: {ckpt_list}") sd_list = [ torch.load(ckpt, map_location=lambda storage, loc: storage) for ckpt in ckpt_list ] return sd_list def get_split_state_dict(self, mp_world_size, mp_rank): num_ckpt = len(self.ckpt_list) assert mp_world_size % num_ckpt == 0, 'Invalid checkpoints and world size for sd split' num_to_split = mp_world_size // num_ckpt ckpt_index = mp_rank // num_to_split ckpt_offset = mp_rank % num_to_split logger.info( f"mp_rank: {mp_rank}, ckpt_list: {self.ckpt_list[ckpt_index]}, offset: {ckpt_offset}" ) sd = torch.load(self.ckpt_list[ckpt_index], map_location=lambda storage, loc: storage) return sd, num_to_split, ckpt_offset def _choose_module_key(self, sd): assert not ('module' in sd and 'model' in sd), "checkpoint has both 'model' and 'module' keys, not sure how to proceed" assert 'module' in sd or 'model' in sd, "checkpoint contains neither 'model' or 'module' keys, not sure how to proceed" if 'module' in sd: return 'module' elif 'model' in sd: return 'model' def get_module(self, sd): if self.module_key is None: return sd elif self.module_key == AUTO_MODULE_KEY: return sd[self._choose_module_key(sd)] else: return sd[self.module_key] def set_module(self, sd, module): if self.module_key is None: sd = module elif self.module_key == AUTO_MODULE_KEY: sd[self._choose_module_key(sd)] = module else: sd[self.module_key] = module return sd def check_ckpt_list(self): logger.info(f'checkpoint file list: {self.ckpt_list}') assert len(self.ckpt_list) > 0 sd = torch.load(self.ckpt_list[0], map_location=lambda storage, loc: storage) # check checkpoint count is same with saved mp_world_size if 'mp_world_size' in sd.keys(): assert len(self.ckpt_list) == sd['mp_world_size'], f"checkpoint count {len(self.ckpt_list)} is different from saved mp_world_size {sd['mp_world_size']}" @abstractmethod def merge_state_dict(self, mp_world_size, mp_rank, quantize, quantize_bits, groups, mlp_extra_grouping): pass @abstractmethod def split_state_dict(self, mp_world_size, mp_rank, quantize, quantize_bits, groups, mlp_extra_grouping): pass @abstractmethod def sanity_check(self, ckpt_file_name): pass class MegatronSDLoader(SDLoaderBase): def __init__(self, ckpt_list, version): super().__init__(ckpt_list, version) """ ## Q/K/V data need special processing key: transformer.layers.0.attention.query_key_value.weight, shape: torch.Size([3192, 4256]) key: transformer.layers.0.attention.query_key_value.bias, shape: torch.Size([3192]) ## merge or split on axis=0 key: word_embeddings.weight, shape: torch.Size([12672, 4256]) key: transformer.layers.0.mlp.dense_h_to_4h.bias, shape: torch.Size([4256]) key: transformer.layers.0.mlp.dense_h_to_4h.weight, shape: torch.Size([4256, 4256]) ## merge or split on axis=1 key: transformer.layers.0.attention.dense.weight, shape: torch.Size([4256, 1064]) key: transformer.layers.0.mlp.dense_4h_to_h.weight, shape: torch.Size([4256, 4256]) ## no change required key: transformer.layers.0.mlp.dense_4h_to_h.bias, shape: torch.Size([4256]) key: transformer.final_layernorm.weight, shape: torch.Size([4256]) key: transformer.final_layernorm.bias, shape: torch.Size([4256]) key: transformer.layers.0.attention.dense.bias, shape: torch.Size([4256]) key: transformer.layers.0.post_attention_layernorm.weight, shape: torch.Size([4256]) key: transformer.layers.0.post_attention_layernorm.bias, shape: torch.Size([4256]) key: transformer.layers.0.input_layernorm.weight, shape: torch.Size([4256]) key: transformer.layers.0.input_layernorm.bias, shape: torch.Size([4256]) key: position_embeddings.weight, shape: torch.Size([1024, 4256]) """ def merge_query_key_value(self, param_list, ckpt_ver): """ Up to now we found 3 Q/K/V parameter formats in different Megatron checkpoint versions: 1. version 0, there is no version information saved in checkpoint. format: [(3 * np * hn), h] 2. version 1.0 format: [(np * hn * 3), h] 3. version 2.0 format: [(np * 3 * hn), h] h: hidden size n: number of attention heads p: number of model parallel partitions np: n/p hn: h/n """ new_qkv = None if ckpt_ver == 0: # [(3 * np * hn), h] assert param_list[0].shape[0] % 3 == 0 size_qkv = param_list[0].shape[0] // 3 split_tensors = [torch.split(param, size_qkv, dim=0) for param in param_list] tensors = [] for i in range(3): tensor_tuple = [t[i] for t in split_tensors] tensors.append(torch.cat(tensor_tuple, axis=0)) new_qkv = torch.cat(tensors, axis=0) elif ckpt_ver == 1.0 or ckpt_ver == 2.0: # [(np * hn * 3), h] or [(np * 3 * hn), h] new_qkv = torch.cat(param_list, axis=0) else: assert False, f'checkpoint version: {ckpt_ver} is not supported' return new_qkv def split_query_key_value(self, param, num_to_split, offset, ckpt_ver): """ Up to now we found 3 Q/K/V parameter formats in different Megatron checkpoint versions: 1. version 0, there is no version information saved in checkpoint. format: [(3 * np * hn), h] 2. version 1.0 format: [(np * hn * 3), h] 3. version 2.0 format: [(np * 3 * hn), h] h: hidden size n: number of attention heads p: number of model parallel partitions np: n/p hn: h/n """ new_qkv = None if ckpt_ver == 0: # [(3 * np * hn), h] assert param.shape[0] % 3 == 0 size_qkv = param.shape[0] // 3 split_tensors = torch.split(param, size_qkv, dim=0) assert split_tensors[0].shape[0] % num_to_split == 0 split_size = split_tensors[0].shape[0] // num_to_split tensors = [] for i in range(3): tensors.append(torch.split(split_tensors[i], split_size, dim=0)[offset]) new_qkv = torch.cat(tensors, axis=0) elif ckpt_ver == 1.0 or ckpt_ver == 2.0: # [(np * hn * 3), h] or [(np * 3 * hn), h] assert param.shape[0] % num_to_split == 0 size_qkv = param.shape[0] // num_to_split split_tensors = torch.split(param, size_qkv, dim=0) new_qkv = split_tensors[offset] else: assert False, f'checkpoint version: {ckpt_ver} is not supported' return new_qkv def merge_state_dict(self, mp_world_size, mp_rank, quantize=False, quantize_bits=8, groups=64, mlp_extra_grouping=True): self.sanity_check(self.ckpt_list[0]) sd_list = self.get_merge_state_dicts(mp_world_size, mp_rank) ds_sd = copy.deepcopy(sd_list[0]) new_client_sd = collections.OrderedDict() client_sd_list = [self.get_module(sd) for sd in sd_list] keys = client_sd_list[0].keys() ckpt_ver = self.get_checkpoint_version(ds_sd) logger.info(f"checkpoint version: {ckpt_ver}") if quantize: quantizer = WeightQuantization(mlp_extra_grouping=mlp_extra_grouping, mp_size=mp_world_size) for key in keys: value_list = [sd[key] for sd in client_sd_list] if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key: if quantize: value_list = quantizer.Quantize(value_list, quantize_bits, groups, key=key, merge_dim=1) new_client_sd[key] = torch.cat(value_list, axis=1) elif "attention.query_key_value" in key: if quantize and "attention.query_key_value.weight" in key: value_list = quantizer.Quantize(value_list, quantize_bits, groups, key=key) new_client_sd[key] = torch.cat(value_list, axis=0) else: if quantize: new_client_sd[key] = torch.cat(value_list, axis=0) else: new_client_sd[key] = self.merge_query_key_value( value_list, ckpt_ver) elif "mlp.dense_h_to_4h.weight" in key or "word_embeddings.weight" in key or "mlp.dense_h_to_4h.bias" in key: if quantize and "mlp.dense_h_to_4h.weight" in key: value_list = quantizer.Quantize(value_list, quantize_bits, groups, key=key) new_client_sd[key] = torch.cat(value_list, axis=0) else: new_client_sd[key] = value_list[0] if quantize: all_scales = quantizer.merge_scales() ds_sd = self.set_module(ds_sd, new_client_sd) return ds_sd, (all_scales if quantize else None), len(client_sd_list) def split_state_dict(self, mp_world_size, mp_rank, quantize=False, quantize_bits=8, groups=64, mlp_extra_grouping=True): self.sanity_check(self.ckpt_list[0]) sd, num_to_split, ckpt_offset = self.get_split_state_dict(mp_world_size, mp_rank) ds_sd = copy.deepcopy(sd) new_client_sd = collections.OrderedDict() client_sd = self.get_module(sd) ckpt_ver = self.get_checkpoint_version(ds_sd) logger.info(f"checkpoint version: {ckpt_ver}") if quantize: quantizer = WeightQuantization(mlp_extra_grouping=mlp_extra_grouping, mp_size=mp_world_size) for key in client_sd.keys(): value = client_sd[key] if "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key: assert value.shape[1] % num_to_split == 0 split_size = value.shape[1] // num_to_split if quantize: q_vals = quantizer.Quantize([value], quantize_bits, groups, key) value = q_vals[0] new_client_sd[key] = torch.split(value, split_size, dim=1)[ckpt_offset] elif "attention.query_key_value" in key: if quantize and "attention.query_key_value.weight" in key: q_vals = quantizer.Quantize([value], quantize_bits, groups, key) value = q_vals[0] new_client_sd[key] = self.split_query_key_value( value, num_to_split, ckpt_offset, ckpt_ver) elif "mlp.dense_h_to_4h.weight" in key or "word_embeddings.weight" in key or "mlp.dense_h_to_4h.bias" in key: assert value.shape[0] % num_to_split == 0 split_size = value.shape[0] // num_to_split if quantize and "mlp.dense_h_to_4h.weight" in key: q_vals = quantizer.Quantize([value], quantize_bits, groups, key) value = q_vals[0] new_client_sd[key] = torch.split(value, split_size, dim=0)[ckpt_offset] else: new_client_sd[key] = value if quantize: all_scales = quantizer.merge_scales_split(num_to_split) ds_sd = self.set_module(ds_sd, new_client_sd) return ds_sd, (all_scales if quantize else None) def sanity_check(self, ckpt_file_name): keys_to_check = [ "attention.dense.weight", "mlp.dense_4h_to_h.weight", "attention.query_key_value", "mlp.dense_h_to_4h.weight", "mlp.dense_h_to_4h.bias" ] sd = torch.load(ckpt_file_name, map_location=lambda storage, loc: storage) # partail_key is a sub-string of one key in the sd def check_key_exist(partial_key, sd): keys = sd.keys() found = False for k in keys: if partial_key in k: found = True break return found for key in keys_to_check: assert check_key_exist(key, self.get_module(sd)), f'key: {key} is not found in the checkpoint {ckpt_file_name}' def get_checkpoint_version(self, state_dict): # Use 0 if version info doesn't exist return self.version if self.version is not None else state_dict.get( 'checkpoint_version', 0)
[ "noreply@github.com" ]
Distributed-AI.noreply@github.com
f4a850cce56f0f8cf0a4527768d60ba75d2eb5df
e06ff08424324ac5d6c567ae9cd6954290ff9bd4
/Yudi TANG/axe/KNN/KNN_dating.py
ba4684b05e29ddc86468b5905cf90baf69208d11
[ "Apache-2.0" ]
permissive
JKChang2015/Machine_Learning
b1bdfcf9ea43a98fc7efd5c0624bbaf5d9dbf495
f8b46bf23e4d1972de6bd652dd4286e9322ed62f
refs/heads/master
2021-06-06T19:18:16.596549
2020-05-03T22:28:18
2020-05-03T22:28:18
119,390,891
1
1
null
null
null
null
UTF-8
Python
false
false
4,671
py
# KNN_dating # Created by JKChang # 29/01/2020, 10:20 # Tag: # Description: dating people recommendation # Feature: 1. Number of frequent flyer miles earned per year # 2. Percentage of time spent playing video games # 3. Liters of ice cream consumed per week # classifies๏ผš1. doesn't like # 2. small like # 3. large like import operator import matplotlib.pyplot as plt # from mpl_toolkits import mplot3d import numpy as np def viewMatrix(matrix, labels, arg1, arg2): fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(matrix[:, arg1 - 1], matrix[:, arg2 - 1], 15.0 * np.array(labels), 15.0 * np.array(labels)) plt.show() def view3DMatrix(matrix, labels): fig = plt.figure() ax = plt.axes(projection='3d') # Data for a three-dimensional line zline = np.linspace(0, 1, 1000) xline = np.sin(zline) yline = np.cos(zline) ax.plot3D(xline, yline, zline, 'gray') # Data for three-dimensional scattered points zdata = matrix[:, 0] xdata = matrix[:, 1] ydata = matrix[:, 2] ax.scatter3D(xdata, ydata, zdata, c=labels) fig.show() def kNNClassify(newInput, dataSet, labels, k): numSamples = dataSet.shape[0] # shape[0] stands for the number of rows # Step 1: calculate Euclidean distance diff = np.tile(newInput, (numSamples, 1)) - dataSet squareDiff = diff ** 2 squareSum = squareDiff.sum(axis=1) distance = squareSum ** 0.5 # Step 2: Sort distance # argsort() returns the indices that would sort an array in a ascending order sortedDistIndicies = distance.argsort() classCount = {} # key: label , value: laebl count for i in range(k): # Step 3: choose the min k distance voteLabel = labels[sortedDistIndicies[i]] # Step 4: count the label frequency classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 # Step 5: the max voted class label will return # Sort the dictionary according to the values sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def file2matrix(filename): with open(filename, 'r') as f: resMatrix = np.zeros((1, 3)) labels = [] for line in f.readlines(): content = line.split('\t') lineVector = np.asfarray([content[:3]]) resMatrix = np.r_[resMatrix, lineVector] labels.append(int(content[-1])) DataMatrix = np.delete(resMatrix, (0), axis=0) return DataMatrix, labels def autoNorm(dataSet): # normalization: # nor_value = (old_Value - minimum_value) / (max - min) # get list of minimum value for each col minValue = dataSet.min(0) # get list of maximum value for each col maxValue = dataSet.max(0) normDataSet = np.zeros(np.shape(dataSet)) m = dataSet.shape[0] # copy the minValue to size(m,1) matrix normDataSet = dataSet - np.tile(minValue, (m, 1)) normDataSet = normDataSet / np.tile(maxValue - minValue, (m, 1)) return normDataSet, maxValue - minValue, minValue def datingClassTest(filename): hoRatio = 0.1 dataMatrix, labels = file2matrix(filename) norm_matrix, ranges, min = autoNorm(dataMatrix) # row number m = norm_matrix.shape[0] # number of test row numTestVecs = int(m * hoRatio) errorCount = 0.0 for i in range(numTestVecs): res = kNNClassify(norm_matrix[i, :], norm_matrix[numTestVecs:m, :], labels[numTestVecs:m], 3) print('The classifier came back with: %d, the real answer is %d' % (res, labels[i])) if (res != labels[i]): errorCount += 1.0 print('the total error rate is: %f' % (errorCount / float(numTestVecs))) def classifypersion(testSetName): resultList = ['not at all', 'in small doses', 'in large doses'] percentTats = float(input('percentage of time spent playing video games? ')) ffMiles = float(input('frequent flier miles earned per year? ')) iceCream = float(input('liters of ice creamconsued per year? ')) datingDataMat, datingLabels = file2matrix(testSetName) normMat, ranges, minVals = autoNorm(datingDataMat) inArr = np.array([ffMiles, percentTats, iceCream]) classifierResult = kNNClassify((inArr - minVals / ranges), normMat, datingLabels, 3) print('You will probably like this persion : %s' % resultList[int(classifierResult) - 1]) filename = '../resource/dating/datingTestSet2.txt' # matrix, labels = file2matrix(filename) # norm_matrix, ranges, min = autoNorm(matrix) # view3DMatrix(norm_matrix, labels) # datingClassTest(filename) classifypersion(filename)
[ "jkchang2015@gmail.com" ]
jkchang2015@gmail.com
2a2f0eadfad2350dc050d895f631d7c1ddbcd4f2
c12bb52375c3c6938f55488c66abe991e0d5c456
/app3/urls.py
0a2359c59156413fca51dd1bb1f65e0efc1a1db8
[]
no_license
kamleshn19/navy1
a011178e02ceac9282096bed8f087b7c4e3ae710
8ea3e1d8104408aa090245066cb2d5ed328c4b3e
refs/heads/master
2021-01-02T07:56:41.286090
2020-02-10T17:13:57
2020-02-10T17:13:57
239,557,672
0
0
null
null
null
null
UTF-8
Python
false
false
815
py
"""hello_world URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from .import views urlpatterns = [ path('admin/', admin.site.urls), path('login',views.login,name='login') ]
[ "kamleshn19@yahoo.co.in" ]
kamleshn19@yahoo.co.in
306520d5560d414aa3f79d54ccb155169016b9d7
78da0ab05436ac61232e6cc8b055ad992f42cbf0
/placidity/interpreter.py
1ea774d0a2476734bd84e01cd080726410b74a5c
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
bebraw/Placidity
82dc0710b41b1148f48eec826a31a0ad3bd8bc2f
944b69dadb613fc8c2f7e10c0b84facd6363b404
refs/heads/master
2023-07-10T03:54:47.517107
2011-11-16T08:14:21
2011-11-16T08:14:21
462,544
4
0
null
null
null
null
UTF-8
Python
false
false
2,215
py
import inspect class Context: owner = None def claim_for(self, owner): self.owner = owner def release(self): self.owner = None class Commands(list): def __init__(self, commands=None): commands = commands if commands else [] if not hasattr(commands, '__iter__'): commands = [commands] super(Commands, self).__init__(commands) def match(self, expression): priorities = ('high', 'normal', 'low') for priority in priorities: commands = self.find(priority=priority) for command in commands: if command.matches(expression): return command def find(self, name=None, priority=None): if name: for command in self: class_name = command.__class__.__name__ if class_name.lower() == name: return command if priority: return filter(lambda command: command.priority == priority, self) class Interpreter: def __init__(self, commands=None): self.context = Context() self.commands = Commands(commands) self.variables = {} def interpret(self, expression): possible_parameters = {'context': self.context, 'commands': self.commands, 'expression': expression, 'variables': self.variables} if expression is None: return try: if self.context.owner: command = self.context.owner else: command = self.commands.match(expression) args = self._get_args(command.execute) params = self._find_parameters(possible_parameters, args) return command.execute(**params) except SystemExit, e: raise e # DEBUG! #except: # return 'null' def _get_args(self, method): return inspect.getargspec(method).args def _find_parameters(self, possible_parameters, args): ret = {} for name, value in possible_parameters.items(): if name in args: ret[name] = value return ret
[ "bebraw@gmail.com" ]
bebraw@gmail.com
7db676908bf5ec1405df15a1265dc9b8d577bb96
378d4be9048dab93a130489a74e82fda02e53de3
/ml_algorithm/demo_data.py
636433197e56c018c4a1979de55bebb75ae794b1
[]
no_license
geekieo/iMpLement
167f86fd4ff24efad0f503256c31cc1f342b5d2d
f3df6664e4115a0301b4a8ba5e72d9e6f63b6f98
refs/heads/master
2023-07-24T08:13:43.091659
2023-07-14T02:20:07
2023-07-14T02:20:07
87,257,617
1
0
null
null
null
null
UTF-8
Python
false
false
731
py
# -*- coding: utf-8 -*- import numpy as np import utils import matplotlib.pyplot as plt import time def create_train_data1(size): mu,sigma=0,2.4 rarray=np.random.normal(mu,sigma,size*2).reshape(size,2)*10 return rarray def create_train_data2(size): mu,sigma=5,1.0 rarray=np.random.normal(mu,sigma,size*2).reshape(size,2)*10 return rarray def create_train_data3(size): mu,sigma=-5,1.0 rarray=np.random.normal(mu,sigma,size*2).reshape(size,2)*10 return rarray def load_model(i,dim,model_file): others=None for j in range(10): current=utils.load_matrix(model_file) if j==i: target=current elif others is None: others=current else: temp=np.vstack((others,current)) others=temp return target,others
[ "geekieo@hotmail.com" ]
geekieo@hotmail.com
50e9870739673efcfa7b101e2a5fab4d46cee95a
e0b7fb64e57823d24ad6b8ca4e130c657ba437a4
/analysis/yields/plot.py
1c98b8833d00a74347fe5b76ba3b506ff8435f4a
[]
no_license
cfangmeier/FTAnalysis
66644189f02ddf43dadb8e029e4709950572e7cf
6612f40b67689d6d946866710ad2e0256b790821
refs/heads/master
2021-09-11T00:16:35.222837
2018-01-09T22:26:50
2018-01-09T22:26:50
106,859,187
0
0
null
2017-10-13T18:23:23
2017-10-13T18:23:23
null
UTF-8
Python
false
false
24,136
py
import os import sys import ROOT as r import sys sys.path.insert(0,'../../') from common.Software.dataMCplotMaker.dataMCplotMaker import dataMCplot from analysis.limits.runLimits import get_lims from analysis.limits.singleBinLimits import get_singlebin_limits from analysis.limits.makeScan import make_scan from analysis.limits.getPostFit import get_postfit_dict def reduce_bins(h_in, ndrop=2): # drop first [ndrop] bins nbins_reduced = h_in.GetNbinsX() - ndrop h_out = r.TH1F(h_in.GetName()+"_reduced"+str(ndrop), h_in.GetTitle(), nbins_reduced, 0.5, nbins_reduced+0.5) binvals = list(h_in) # includes under and overflow, so bin 1 is index 1 for ibin,val in enumerate(binvals): if ibin <= ndrop: continue h_out.SetBinContent(ibin-ndrop,val) h_out.SetBinError(ibin-ndrop,h_in.GetBinError(ibin)) return h_out def scale_hist(h_in, scale=1.): # return scaled histogram h_out = h_in.Clone(h_in.GetName()+"_scaled") h_out.Scale(scale) return h_out if __name__ == "__main__": os.system("mkdir -p plots") r.gROOT.SetBatch(1) bginfo = [ ("flips", "Charge misid.", r.kGray+2, 0.2), ("rares", "Rare", r.kMagenta-7, 0.5), ("xg", "X#gamma", r.kViolet+2, 0.5), ("ttvv", "t#bar{t}VV", r.kAzure-4, 0.5), ("ttz", "t#bar{t}Z", r.kGreen-6, 0.40), ("fakes", "Nonprompt lep.", 18, 0.30), ("tth", "t#bar{t}H", r.kBlue-5, 0.50), ("ttw", "t#bar{t}W", r.kGreen+3, 0.40), ] bgnames, titles, colors, systs = map(list,zip(*bginfo)) f1 = r.TFile("histos.root") cards_dir = "../limits/{0}".format(f1.Get("metadata").GetTitle()) d_postfit, fitratios = get_postfit_dict("{}/mlfit.root".format(cards_dir)) # d_postfit, fitratios = get_postfit_dict("../limits/v0.10_Jul20/mlfit.root".format(cards_dir)) # print d_postfit # print fitratios for proc,h1 in d_postfit.items(): if not h1: continue vals,errs = zip(*[[h1.GetBinContent(ib),h1.GetBinError(ib)] for ib in range(1,h1.GetNbinsX()+1)]) # print proc, zip(vals,errs) # print d_postfit, fitratios commonopts = "--darkColorLines --lumi 35.9 --topYaxisTitle Data/Pred. --type Preliminary --poissonErrorsNoZeros --dataName Data --outOfFrame --systInclStat --systFillStyle 3344 " d_opts_br = { # "SR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp .03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --xAxisBinLabels SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], # "SRCR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp .03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --xAxisBinLabels CRZ,CRW,SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], # "ht" : [("ttzcr","ttwcr","sr","br"), commonopts+" --ratioUpperBound 4 --xAxisLabel H_{T} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --yAxisLabel Events "], # "met" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel p_{T}^{miss} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --yAxisLabel Events "], # "njets" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel N_{jets} --noXaxisUnit --nDivisions 6 --noDivisionLabel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --yAxisLabel Events / bin "], # "nbtags" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --xAxisLabel N_{b} --nDivisions 4 --noXaxisUnit --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --makeTable --yAxisLabel Events / bin "], "SR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.15 --makeTable --xAxisBinLabels SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], "SRCR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.10 --legendRight -0.08 --legendTaller 0.20 --yTitleOffset -0.00 --makeTable --xAxisBinLabels CRZ,CRW,SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 --yAxisLabel Events "], "ht" : [("ttzcr","ttwcr","sr","br"), commonopts+" --ratioUpperBound 4 --xAxisLabel #it{H}_{T} --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.1 --yAxisLabel Events "], "met" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel #it{p}_{T}^{miss} --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.1 --yAxisLabel Events "], "njets" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel #it{N}_{jets} --noXaxisUnit --nDivisions 6 --noDivisionLabel --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.18 --yTitleOffset -0.1 --yAxisLabel Events / bin "], "nbtags" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --xAxisLabel #it{N}_{b} --nDivisions 4 --noXaxisUnit --isLinear --legendUp -0.09 --legendRight -0.08 --legendTaller 0.16 --yTitleOffset -0.1 --makeTable --yAxisLabel Events / bin "], # "SR_TOTAL" : [("",), commonopts+" --xAxisLabel SR --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --percentageInBox --xAxisBinLabels SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 "], # "SRCR_TOTAL" : [("",), commonopts+" --xAxisLabel Region --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --percentageInBox --xAxisBinLabels CRZ,CRW,SR1,SR2,SR3,SR4,SR5,SR6,SR7,SR8 "], # "ht" : [("ttzcr","ttwcr","sr","br"), commonopts+" --ratioUpperBound 4 --xAxisLabel H_{T} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "met" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel E_{T}^{miss} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mvis" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m^{vis} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # "mtvis" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m_{T}^{vis} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # "njets" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel N_{jets} --noXaxisUnit --nDivisions 6 --noDivisionLabel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "nbtags" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --xAxisLabel N_{b} --nDivisions 4 --noXaxisUnit --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --makeTable "], # "mtmin" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m_{T}^{min} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mll" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel m_{ll} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mllos" : [("ttzcr",), commonopts+" --xAxisLabel Z cand m_{ll} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "type" : [("ttzcr","ttwcr","sr","br"), commonopts+" --noDivisionLabel --noXaxisUnit --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 --xAxisBinLabels #mu#mu,#mu e,e#mu,ee "], # "charge" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel charge --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "nleps" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel Nleps --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l1pt" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel ordered l1pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l2pt" : [("ttzcr","ttwcr","sr","br"), commonopts+" --xAxisLabel ordered l2pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l3pt" : [("ttzcr",), commonopts+" --xAxisLabel ordered l3pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mtop1" : [("sr",), commonopts+" --xAxisLabel m_{top,1} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # "mtop2" : [("sr",), commonopts+" --xAxisLabel m_{top,2} --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], # # "mva" : [("sr","br"), commonopts+" --xAxisLabel lep1,2 el MVA --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_mu_lep1" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_mu_lep2" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mu_l1pt" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "mu_l2pt" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "mu_l3pt" : [("sr","br"), commonopts+" --xAxisLabel lep3 mu pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l1eta_mu" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l2eta_mu" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "l3eta_mu" : [("sr","br"), commonopts+" --xAxisLabel lep3 mu eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_mu_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_mu_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_mu_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep1 mu ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_mu_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep2 mu ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_el_lep1" : [("sr","br"), commonopts+" --xAxisLabel lep1 el sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "sip3d_el_lep2" : [("sr","br"), commonopts+" --xAxisLabel lep2 el sip3d --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "el_l1pt" : [("sr","br"), commonopts+" --xAxisLabel lep1 el pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "el_l2pt" : [("sr","br"), commonopts+" --xAxisLabel lep2 el pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "el_l3pt" : [("sr","br"), commonopts+" --xAxisLabel lep3 el pt --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l1eta_el" : [("sr","br"), commonopts+" --xAxisLabel lep1 el eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "l2eta_el" : [("sr","br"), commonopts+" --xAxisLabel lep2 el eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # # "l3eta_el" : [("sr","br"), commonopts+" --xAxisLabel lep3 el eta --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_el_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep1 el miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_el_miniIso" : [("sr","br"), commonopts+" --xAxisLabel lep2 el miniIso --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep1_el_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep1 el ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "lep2_el_ptRel" : [("sr","br"), commonopts+" --xAxisLabel lep2 el ptRel --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "bjetpt" : [("sr","br"), commonopts+" --xAxisLabel p_{T}(bjets) --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "jetpt" : [("sr","br"), commonopts+" --xAxisLabel p_{T}(jets) --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.1 "], # "disc" : [("br",), commonopts+" --isLinear --xAxisLabel disc --legendUp .0 --legendRight -0.08 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable "], # "disc2" : [("br",), commonopts+" --isLinear --xAxisLabel disc2 --legendUp .0 --legendRight -0.08 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable "], # "SRDISC_TOTAL" : [("",), commonopts+" --xAxisLabel SR_{disc} --noDivisionLabel --noXaxisUnit --isLinear --noOverflow --legendUp -.03 --legendRight -0.05 --legendTaller 0.05 --yTitleOffset -0.1 --makeTable --percentageInBox "], # "ntops" : [("sr",), commonopts+" --xAxisLabel N_{tops} --noXaxisUnit --nDivisions 5 --noDivisionLabel --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset 0.1 --makeTable "], # "ntopness" : [("sr",), commonopts+" --xAxisLabel N_{tops}ness --isLinear --legendUp -.15 --legendRight -0.08 --legendTaller 0.15 --yTitleOffset -0.0 "], } do_stats = True for key in d_opts_br.keys(): types, opts_str = d_opts_br[key] for typ in types: if len(typ) == 0: name = key[:] else: name = "{}_{}".format(typ,key) oname = "plots/%s.pdf" % name.replace("_TOTAL","") # title = typ.upper() title = "" subtitle = "" d_newopts = { "outputName": oname, } # if key == "njets" and typ == "ttwcr": subtitle = "(a)" # if key == "nbtags" and typ == "ttwcr": subtitle = "(b)" # if key == "njets" and typ == "ttzcr": subtitle = "(c)" # if key == "nbtags" and typ == "ttzcr": subtitle = "(d)" # if key == "njets" and typ == "sr": subtitle = "(a)" # if key == "nbtags" and typ == "sr": subtitle = "(b)" # if key == "ht" and typ == "sr": subtitle = "(c)" # if key == "met" and typ == "sr": subtitle = "(d)" # if key == "SRCR_TOTAL": subtitle = "(a)" # if key == "SR_TOTAL": subtitle = "(b)" if key == "njets" and typ == "ttwcr": subtitle = "CRW" if key == "nbtags" and typ == "ttwcr": subtitle = "CRW" if key == "njets" and typ == "ttzcr": subtitle = "CRZ" if key == "nbtags" and typ == "ttzcr": subtitle = "CRZ" if key == "njets" and typ == "sr": subtitle = "" if key == "nbtags" and typ == "sr": subtitle = "" if key == "ht" and typ == "sr": subtitle = "" if key == "met" and typ == "sr": subtitle = "" if key == "SRCR_TOTAL": subtitle = "" if key == "SR_TOTAL": subtitle = "" if typ in ["ttzcr","sr"] and ("njets" in name or "nbtags" in name or "met" in name): d_newopts["ratioUpperBound"] = 4.0 if key in ["njets","nbtags","ht","met"] and typ == "sr": d_newopts["ratioUpperBound"] = 5.0 print name, typ bgs = map(lambda x: f1.Get("{0}_{1}".format(name,x)), ["data", "tttt"]+bgnames) h_data,h_tttt,bgs = bgs[0], bgs[1], bgs[2:] h_data_empty = h_data.Clone("empty") h_data_empty.Reset() h_tttt.Sumw2() tttt_sf = 5.0 h_tttt.Scale(tttt_sf) do_unblind = True d_newopts["noDataWidth"] = True # if do_stats and key == "SRCR_TOTAL": # # if key == "SRCR_TOTAL": # make_scan(cards_dir, do_blind=not do_unblind) # os.system("cp scan.pdf plots/scan.pdf") # if do_stats and key in ["SRCR_TOTAL"]: # regions="srcr" # if "DISC" in key: regions="srdisc" # d_lims = get_lims(card=cards_dir, regions=regions, redocard=True, redolimits=True, domcfakes=False) # exp, expp1, expm1 = d_lims["exp"], d_lims["sp1"]-d_lims["exp"], d_lims["exp"]-d_lims["sm1"] # subtitle = "#sigma^{UL}_{exp} = %.2f^{+%.1f}_{-%.1f} fb" % (exp, expp1, expm1) # do_unblind = typ in ["ttwcr","ttzcr", "sr"] do_blind = not do_unblind if do_unblind: if "l3eta_el" not in name and "el_l3pt" not in name: d_newopts["noTextBetweenPads"] = True d_newopts["noGrass"] = True dataMCplot(h_data, bgs=bgs, sigs=[h_tttt], sigtitles=["t#bar{t}t#bar{t} x 5"], systs=systs, titles=titles, title=title, subtitle=subtitle, colors=colors, opts=d_newopts, opts_str=opts_str) new_d_newopts = d_newopts.copy() new_h_tttt = h_tttt.Clone("new_tttt") new_h_tttt.Scale(1.0/tttt_sf) # undo above scaling new_bgs = bgs+[new_h_tttt] new_colors = colors+[r.kPink-1] new_systs = systs+[0.1] new_titles = titles+["t#bar{t}t#bar{t}"] new_d_newopts["poissonErrorsNoZeros"] = False new_d_newopts["noTextBetweenPads"] = False new_d_newopts["preserveBackgroundOrder"] = True def get_name(hist): return hist.GetName().rsplit("_",1)[-1] if do_stats and key == "SR_TOTAL": # new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") # dataMCplot(h_data_empty, bgs=new_bgs, systs=new_systs, titles=new_titles, title="Prefit", subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str) new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") new_d_newopts["noTextBetweenPads"] = True del new_d_newopts["noGrass"] postfit_bgs = [reduce_bins(d_postfit[get_name(bg)],2) for bg in new_bgs] h_totalsyst = reduce_bins(d_postfit["total"],2) # total_background is tot bg, total is totbg+sig dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title="", subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, total_syst=h_totalsyst) if do_stats and key == "SRCR_TOTAL": new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") new_d_newopts["noTextBetweenPads"] = True del new_d_newopts["noGrass"] this_opts_str = opts_str.replace("--isLinear","--setMinimum 0.1") # this_opts_str = this_opts_str.replace("--legendUp -.05","--legendUp .00") postfit_bgs = [reduce_bins(d_postfit[get_name(bg)],0) for bg in new_bgs] h_totalsyst = reduce_bins(d_postfit["total"],0) # total_background is tot bg, total is totbg+sig dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title="", subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=this_opts_str, total_syst=h_totalsyst) if do_stats and key not in ["SR_TOTAL","SRCR_TOTAL"]: new_d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_postfit.pdf") new_d_newopts["noGrass"] = True postfit_bgs = [scale_hist(bg,scale=fitratios[get_name(bg)]) for bg in new_bgs] # dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title="Postfit "+title, subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, systs=new_systs) dataMCplot(h_data, bgs=postfit_bgs, titles=new_titles, title=""+title, subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, systs=new_systs) if do_stats and key not in ["SR_TOTAL","SRCR_TOTAL"]: new_d_newopts["noGrass"] = True new_d_newopts["outputName"] = oname.replace(".pdf","_stacked.pdf") dataMCplot(h_data, bgs=new_bgs, titles=new_titles, title=title, subtitle=subtitle, colors=new_colors, opts=new_d_newopts, opts_str=opts_str, systs=new_systs) # if do_blind: # d_newopts["outputName"] = d_newopts["outputName"].replace(".pdf","_blind.pdf") # d_newopts["poissonErrorsNoZeros"] = False # d_newopts["noTextBetweenPads"] = False # # For SRCR, "blind" is actually partially blind (first two bins -- CRZ,CRW -- are unblinded) # # make data with only CR unblinded (first two bins) # h_data_cronly = h_data.Clone("cronly") # for i in range(1,h_data.GetNbinsX()+1): # if i in [1,2]: h_data_cronly.SetBinContent(i, h_data.GetBinContent(i)) # else: h_data_cronly.SetBinContent(i, 0) # if key == "SRCR_TOTAL": # dataMCplot(h_data_cronly, bgs=bgs, sigs=[h_tttt], sigtitles=["t#bar{t}t#bar{t} x 5"], systs=systs, titles=titles, title=title, subtitle=subtitle, colors=colors, opts=d_newopts, opts_str=opts_str) # else: # dataMCplot(h_data_empty, bgs=bgs, sigs=[h_tttt], sigtitles=["t#bar{t}t#bar{t} x 5"], systs=systs, titles=titles, title=title, subtitle=subtitle, colors=colors, opts=d_newopts, opts_str=opts_str) # os.system("ic plots/SRCR_postfit.pdf") # os.system("niceplots plots plots_tttt_Jul20_unblind") # os.system("niceplots plots plots_tttt_Aug1_sr4") # os.system("niceplots plots plots_tttt_Aug8") # os.system("niceplots plots plots_tttt_Sep11") os.system("niceplots plots plots_tttt_Oct9")
[ "amin.nj@gmail.com" ]
amin.nj@gmail.com
6766670e972169da5ec57df6ba4c07ab94b8415f
d5eee852fafc803ed24353f59ac0d2b8d0538200
/django_backend/notifications_react/migrations/0001_initial.py
ade7b003c869215b4a80574c7d6174272e17e907
[]
no_license
jande48/ComeWithNotificationFeatures
ca69edf2fb5e36fcf64b81864f6f6ef1cc818d09
13a24165ff33829b8ffe505b31163eec13130d72
refs/heads/master
2023-03-04T06:34:18.009327
2021-02-15T09:31:26
2021-02-15T09:31:26
337,786,348
0
0
null
null
null
null
UTF-8
Python
false
false
716
py
# Generated by Django 3.1.6 on 2021-02-10 21:26 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Notifications', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('email', models.EmailField(max_length=100, unique=True)), ('message', models.CharField(blank=True, max_length=500)), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), ]
[ "jacob.anderson10@gmail.com" ]
jacob.anderson10@gmail.com
0cff05c6b6bf735c8bf8d40bc3c5f8a0e2528232
8110196da9c11de7fd6cac1be3f8f17efbda126a
/pastSlavePi/slavePi3/pastFiles/manualPic_capturePhotos.py
469e9657b840b3be0f8ddfc94a9e8e44cf606245
[]
no_license
msit18/UrbanFlows
d57a5f2e0cbc8e804df163ef85f22b7f62309911
1f2e98a324def24838d1ab1dd6bf6d60e6e74f63
refs/heads/master
2020-05-21T12:27:56.429774
2017-07-24T19:21:36
2017-07-24T19:21:36
34,413,160
0
1
null
2015-10-26T20:46:01
2015-04-22T20:09:51
C
UTF-8
Python
false
false
4,756
py
#/!/usr/bin/python #Written by Michelle Sit #wORK IN PROGRESS #Edited from manualPic4.py. Takes pictures on #one thread and on another thread moves/removes them to the server. Picture resolution, #fps, and time are controlled by inputs #Update: also provides updates every twenty minutes (CURRENTLY SET TO EVERY 10 MINUTES) on #the program's fps progress while the program is running #listServerArgs[0] = totalTime duration (in seconds) #listServerArgs[1] = resolution width #listServerArgs[2] = resolution height #listServerArgs[3] = number of pictures to take (fps) #listServerArgs[4] = time interval (seconds) for frames to be taken in (fps) #listServerArgs[5] = framerate of picamera import time import picamera import datetime import os import string import sys import numpy as np #Takes pictures based inputted fps options (while loops control total run time and how many #pictures are taken in the specified time frame (fps). #Time is also updated on each run through class takePictures(): def run (self, args): try: #print "running RUN TAKE PICTURES" serverArgs = args #print serverArgs listServerArgs = [args for args in args.split()] #print listServerArgs resW = int(listServerArgs[1]) resH = int(listServerArgs[2]) numPics = int(listServerArgs[3]) timeInterval = int(listServerArgs[4]) frameRate = int(listServerArgs[5]) timeStart = time.time() #When the program began totalTimeSec = int(listServerArgs[0]) totalTimeMin = int(listServerArgs[0])/60 timeNow = time.time() #Used to keep track of current time timeEnd = totalTimeSec+timeNow #When the program ends timePlusInt = timeNow #Keeps track of time increments timePlusTwentyMins = timeNow+600 # print "Capturing {0}p for a total time of {1} min ({2} secs) at {3} "\ # "frames per {4} second (({5} mins) at {6} framerate ".format(str(resH), \ # str(totalTimeMin), str(totalTimeSec), str(numPics), str(timeInterval), \ # str(float(timeInterval/60)), str(frameRate) ) #print "TimePlusTwenty = {0}".format(str(timePlusTwentyMins) ) numPicArray = [] fpsArray = [] timeAvg = [] while timeNow < timePlusTwentyMins and timeNow < timeEnd: timeNow = time.time() if timeNow >= timePlusTwentyMins: endTwenty = time.time() twentyTime = endTwenty-timeStart twentyFPS = sum(numPicArray)/twentyTime #print "10.2 Twenty Min Update: Total number of pictures is {0},"\ #" total time elapsed is {1}, totalFPS is {2}".format(str(sum(numPicArray)),\ # str(twentyTime), str(twentyFPS) ) timePlusTwentyMins = time.time()+600 else: while timeNow > timePlusInt: timePlusInt = timeNow + timeInterval start=time.time() with picamera.PiCamera() as camera: camera.resolution = (resW, resH) camera.framerate = frameRate camera.capture_sequence([ datetime.datetime.now().strftime ('%M_%S_%f') + '.jpg' # datetime.datetime.now().strftime ('%d-%m-%Y-%H_%M_%S_%f') + '_TT'\ # + str(listServerArgs[0]) + '_RES' + str(resH) + '_PIC' + str(numPics) +\ # '_TI' + str(timeInterval) + '_FR' + str(frameRate) + '.jpg' for i in range(numPics) ], use_video_port=True) finish = time.time() #Analyzing time and frames fpsTime = (finish-start) fps = numPics/fpsTime numPicArray.append(numPics) fpsArray.append(fps) timeAvg.append(fpsTime) #print 'Captured {0} frames at {1}fps in {2}secs'\ #.format( str(sum(numPicArray)), str(numPics/(finish-start)), str(finish-start)) self.numPicsTaken = numPicArray print self.numPicsTaken endTime = time.time() totalTime = endTime-timeStart totalFPS = sum(numPicArray)/totalTime #print "10.2: Captured {0} total pictures. Total time was {1}, total FPS is {2}"\ #.format(str(sum(numPicArray)), str(totalTime), str(totalFPS) ) camera.close() print "CAMERA IS FINISHED. RETURN TRUE" return "True" except: print "noooooooooooooo break" print sys.exc_info()[0] raise if __name__ == '__main__': t = takePictures() #camLog = open('CamLog-{0}.txt'.format(time.strftime("%Y-%m-%d-%H:%M:%S")), 'w') t.run() #Error handling can be handled in callbackClient class # except (picamera.exc.PiCameraError, picamera.exc.PiCameraMMALError): # print >>self.f, "PiCameraError or MMALError" # self.queue.put('exit') # time.sleep(1) # os.system("sshpass -p 'raspberry' ssh pi@10.0.0.1 -o StrictHostKeyChecking=no python"\ # "flash.py camError 2") # except: # print >>self.f, "other error" # self.queue.put('exit') # time.sleep(1) # os.system("sshpass -p 'raspberry' ssh pi@10.0.0.1 -o StrictHostKeyChecking=no python"\ # " flash.py error 2")
[ "msit@wellesley.edu" ]
msit@wellesley.edu
37e4054dcb4b679729433a6b236355c800064f7c
774dc27fe5192e81dfbcbf6ac9ddfa6a68ee06ae
/__temp_migrations/FW_disaster/0001_initial.py
ff2a5fcb6ad90e0646f8e93a98dc055d29d5bcb2
[]
no_license
akrgt/gotree
1540ebca65c7372489622d81b15943db1b20c383
93e9ed432b23518fd1dfde6d6f9761d313c06611
refs/heads/master
2021-06-19T00:12:32.769202
2020-01-27T03:18:50
2020-01-27T03:18:50
149,593,711
0
0
null
2021-06-10T20:49:49
2018-09-20T10:41:50
JavaScript
UTF-8
Python
false
false
25,161
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2018-06-29 17:00 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import otree.db.models import otree_save_the_change.mixins class Migration(migrations.Migration): initial = True dependencies = [ ('otree', '0001_initial'), ] operations = [ migrations.CreateModel( name='Group', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('id_in_subsession', otree.db.models.PositiveIntegerField(db_index=True, null=True)), ('round_number', otree.db.models.PositiveIntegerField(db_index=True, null=True)), ('session', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='fw_disaster_group', to='otree.Session')), ], options={ 'db_table': 'FW_disaster_group', }, bases=(otree_save_the_change.mixins.SaveTheChange, models.Model), ), migrations.CreateModel( name='Player', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('id_in_group', otree.db.models.PositiveIntegerField(db_index=True, null=True)), ('_payoff', otree.db.models.CurrencyField(default=0, null=True)), ('round_number', otree.db.models.PositiveIntegerField(db_index=True, null=True)), ('_gbat_arrived', otree.db.models.BooleanField(choices=[(True, 'Yes'), (False, 'No')], default=False)), ('_gbat_grouped', otree.db.models.BooleanField(choices=[(True, 'Yes'), (False, 'No')], default=False)), ('DisasterExp_1', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='ๅœฐ้œ‡')), ('DisasterExp_2', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='ๆดฅๆณข')), ('DisasterExp_3', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='ๅ™ด็ซ')), ('DisasterExp_4', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='ๅœŸ็ ‚็ฝๅฎณ๏ผˆๅด–ๅดฉใ‚ŒใƒปๅœŸ็Ÿณๆตใƒปๅœฐๆป‘ใ‚Š๏ผ‰')), ('DisasterExp_5', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='่ฑช้›จ')), ('DisasterExp_6', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='ๆดชๆฐด')), ('DisasterExp_7', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='ๆšด้ขจใƒป็ซœๅทป')), ('DisasterExp_8', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='่ฑช้›ช')), ('DisasterExp_9', otree.db.models.StringField(choices=[('็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅคง่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒ่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ', '็ตŒ้จ“ใ—๏ผŒๅฐ่ฆๆจกใช่ขซๅฎณใ‚’ๅ—ใ‘ใŸ'), ('็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ', '็ตŒ้จ“ใ—ใŸใŒ๏ผŒ่ขซๅฎณใฏๅ…จใๅ—ใ‘ใชใ‹ใฃใŸ'), ('็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„', '็ตŒ้จ“ใ—ใŸใ“ใจใฏใชใ„')], max_length=10000, null=True, verbose_name='ใใฎไป–ใฎ็•ฐๅธธใช่‡ช็„ถ็ฝๅฎณ')), ('crt_HAP', otree.db.models.StringField(choices=[('0', '0'), ('1', '1'), ('2', '2'), ('3', '3'), ('4', '4'), ('5', '5'), ('6', '6'), ('7', '7'), ('8', '8'), ('9', '9'), ('10', '10')], max_length=10000, null=True, verbose_name='ใ‚ใชใŸใฏ็พๅœจ๏ผŒใฉใฎ็จ‹ๅบฆๅนธใ›ใงใ™ใ‹๏ผŸ0-10ๆบ€็‚นใง่ฉ•ไพกใ—ใฆใใ ใ•ใ„๏ผŽ')), ('crt_1st', otree.db.models.StringField(choices=[('ใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹'), ('ใ‚ใฆใฏใพใ‚‹', 'ใ‚ใฆใฏใพใ‚‹')], max_length=10000, null=True, verbose_name='ๆ—ฅๅธธ็”Ÿๆดปใฎไธญใง๏ผŒ่‡ชๅˆ†ใฎ่กŒๅ‹•ใฏใ€Œ่‡ชๅˆ†่‡ช่บซใ€ใซ่ฆ‹ใ‚‰ใ‚Œใฆใ„ใ‚‹ใจๆ€ใ†ใ“ใจใŒใ‚ใ‚‹๏ผŽ')), ('crt_2nd', otree.db.models.StringField(choices=[('ใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹'), ('ใ‚ใฆใฏใพใ‚‹', 'ใ‚ใฆใฏใพใ‚‹')], max_length=10000, null=True, verbose_name='ๆ—ฅๅธธ็”Ÿๆดปใฎไธญใง๏ผŒ่‡ชๅˆ†ใฎ่กŒๅ‹•ใฏใ€Œ็›ดๆŽฅ่ชฐใ‹๏ผˆไบบ้–“๏ผ‰ใ€ใซ่ฆ‹ใ‚‰ใ‚Œใฆใ„ใ‚‹ใจๆ€ใ†ใ“ใจใŒใ‚ใ‚‹๏ผŽ')), ('crt_3rd', otree.db.models.StringField(choices=[('ใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹'), ('ใ‚ใฆใฏใพใ‚‹', 'ใ‚ใฆใฏใพใ‚‹')], max_length=10000, null=True, verbose_name='ๆ—ฅๅธธ็”Ÿๆดปใฎไธญใง๏ผŒ่‡ชๅˆ†ใฎ่กŒๅ‹•ใฏใ€Œ็›ฃ่ฆ–ใ‚ซใƒกใƒฉ็ญ‰ใ‚’้€šใ˜ใฆ่ชฐใ‹๏ผˆไบบ้–“๏ผ‰ใ€ใซ้–“ๆŽฅ็š„ใซ่ฆ‹ใ‚‰ใ‚Œใฆใ„ใ‚‹ใจๆ€ใ†ใ“ใจใŒใ‚ใ‚‹๏ผŽ')), ('crt_sup', otree.db.models.StringField(choices=[('ใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‰ใชใ„'), ('ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹', 'ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใ‚ใฆใฏใพใ‚‹'), ('ใ‚ใฆใฏใพใ‚‹', 'ใ‚ใฆใฏใพใ‚‹')], max_length=10000, null=True, verbose_name='ๆ—ฅๅธธ็”Ÿๆดปใฎไธญใง๏ผŒ่‡ชๅˆ†ใฎ่กŒๅ‹•ใฏใ€ŒใŠๅคฉ้“ๆง˜ใ‚„็ฅžๆง˜๏ผŒไปๆง˜ใชใฉใฎ่ถ…่‡ช็„ถ็š„ใชๅญ˜ๅœจใ€ใซ่ฆ‹ใ‚‰ใ‚Œใฆใ„ใ‚‹ใจๆ€ใ†ใ“ใจใŒใ‚ใ‚‹๏ผŽ')), ('FW1', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ๆœชๆฅใฏใ„ใคใ‚‚้‹ๅ‘ฝใซใ‚ˆใฃใฆๆฑบใ‚ใ‚‰ใ‚Œใฆใ„ใ‚‹ใจไฟกใ˜ใฆใ„ใ‚‹')), ('FW2', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฎๆ€งๆ ผใ‚„ๆ‰่ƒฝใฏ๏ผŒ๏ผˆ่„ณใฎใคใใ‚Šใชใฉใฎ๏ผ‰็”Ÿ็‰ฉๅญฆ็š„ใชๆง‹้€ ใซใ‚ˆใฃใฆๆฑบใพใฃใฆใ„ใ‚‹')), ('FW3', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฎๆญดๅฒใฎๅคง้ƒจๅˆ†ใฏๅถ็„ถใฎๅ‡บๆฅไบ‹ใฎ็ฉใฟ้‡ใญใงใ‚ใ‚‹')), ('FW4', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฏ่‡ชๅˆ†ใฎๆ„ๅฟ—ใงๆฑบๅฎšใ‚’ไธ‹ใ™ใ“ใจใŒใงใใ‚‹')), ('FW5', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ใฉใ‚“ใชใซๅŠชๅŠ›ใ—ใฆใ‚‚๏ผŒ่‡ชๅˆ†ใฎ้‹ๅ‘ฝใฏๅค‰ใˆใ‚‰ใ‚Œใชใ„')), ('FW6', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ๅฟƒ็†ๅญฆ่€…ใ‚„็ฒพ็ฅž็ง‘ๅŒปใฏใ‚„ใŒใฆไบบใฎใตใ‚‹ใพใ„ใฎๅ…จใฆใ‚’่งฃๆ˜Žใ™ใ‚‹ใ ใ‚ใ†')), ('FW7', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='่ชฐใ‚‚ใ“ใ‚Œใ‹ใ‚‰่ตทใ“ใ‚‹ใ“ใจใ‚’ไบˆๆธฌใงใใชใ„')), ('FW8', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฏ่‡ชๅˆ†ใŒไธ‹ใ—ใŸ่ชคใฃใŸ้ธๆŠžใซๅฏพใ—ใฆใฏ๏ผŒไธ€ๅˆ‡ใฎ่ฒฌไปปใ‚’่ฒ ใ‚ใชใใฆใฏใชใ‚‰ใชใ„')), ('FW9', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ๅ…จใฆใฎไบบใฎไบบ็”Ÿใฏ๏ผŒๆœ€ๅˆใ‹ใ‚‰้‹ๅ‘ฝใซใ‚ˆใฃใฆๆฑบใ‚ใ‚‰ใ‚Œใฆใ„ใ‚‹')), ('FW10', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='่‡ชๅˆ†ใฎๅฐ†ๆฅใฏ๏ผŒ้บไผๅญใซใ‚ˆใฃใฆๆฑบใ‚ใ‚‰ใ‚Œใฆใ„ใ‚‹')), ('FW11', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ใ‚ตใ‚คใ‚ณใƒญใฎ็›ฎใ‚„ใ‚ณใ‚คใƒณใƒˆใ‚นใฎใ‚ˆใ†ใซ๏ผŒไบบ็”Ÿใฏไบˆๆธฌใงใใชใ„')), ('FW12', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฏๅฟƒใ‹ใ‚‰ๆœ›ใ‚ใฐ๏ผŒใฉใ‚“ใช้šœๅฎณใงใ‚‚ไน—ใ‚Š่ถŠใˆใ‚‰ใ‚Œใ‚‹')), ('FW13', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='็‰ฉไบ‹ใฏใชใ‚‹ใ‚ˆใ†ใซใ—ใ‹ใชใ‚‰ใš๏ผŒ่‡ชๅˆ†ใซใงใใ‚‹ใ“ใจใฏๅฐ‘ใชใ„')), ('FW14', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='้ŽๅŽปใฎ็ตŒ้จ“ใŒใฉใฎใ‚ˆใ†ใซ็พๅœจใฎ่‡ชๅˆ†ใฎ็Ÿฅๆ€งใ‚„ๆ€งๆ ผใ‚’ๅฝขไฝœใฃใฆใใŸใ‹ใ‚’๏ผŒ็ง‘ๅญฆใฏ็คบใ—ใฆใใ‚Œใ‚‹')), ('FW15', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฏ่ชฐใ—ใ‚‚ไบˆๆธฌใงใใชใ„ใ‚ˆใ†ใชใตใ‚‹ใพใ„ใ‚’ใ™ใ‚‹')), ('FW16', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='็Šฏ็ฝช่€…ใซใฏ่‡ชๅˆ†ใฎ่กŒใฃใŸๆ‚ชไบ‹ใซๅฏพใ™ใ‚‹๏ผŒๅ…จ้ข็š„ใช่ฒฌไปปใŒใ‚ใ‚‹')), ('FW17', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ใใฎ่€ƒใˆๆ–นใŒๅฅฝใใ‹ใฉใ†ใ‹ใฏๅˆฅใจใ—ใฆ๏ผŒไบบ็”Ÿใฏ่ชฌๆ˜Žใงใใชใ„ๅŠ›ใซๅ‹•ใ‹ใ•ใ‚Œใฆใ„ใ‚‹ใ‚ˆใ†ใซๆ€ใ†')), ('FW18', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบ้–“ใฎ่กŒๅ‹•ใฏไป–ใฎๅ‹•็‰ฉใŸใกใจๅŒใ˜ใ‚ˆใ†ใซ๏ผŒใ„ใคใ‚‚่‡ช็„ถใฎๆ‘‚็†ใซๅพ“ใฃใฆใ„ใ‚‹')), ('FW19', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ๆ—ฅใ€…ใฎๅ‡บๆฅไบ‹ใฏๅ…จใใ‚‚ใฃใฆไธ€่ฒซๆ€งใ‚’ๆŒใŸใชใ„ใŸใ‚๏ผŒๅ…ˆใ‚’ไบˆๆธฌใ™ใ‚‹ใ“ใจใฏ้›ฃใ—ใ„')), ('FW20', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบ็”Ÿใฏ้‹ใซ่ฒ ใ†ใจใ“ใ‚ใŒๅคงใใ„')), ('FW21', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฏ่‡ชใ‚‰ใฎ่‡ช็”ฑใชๆ„ๅฟ—ใ‚„ๆ€่€ƒใง่กŒๅ‹•ใ—ใฆใ„ใ‚‹')), ('FW22', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='่ฆชใฎๆŒใคๆ€ง่ณชใฏ๏ผŒๅญใฉใ‚‚ใฎๆ€ง่ณชใ‚’ๆฑบใ‚ใฆใ„ใ‚‹')), ('FW23', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฏ๏ผŒ่‡ชๅˆ†ใฎใ‚ใ‚„ใพใกใซใ„ใคใ‚‚่ฒฌไปปใ‚’่ฒ ใฃใฆใ„ใ‚‹')), ('FW24', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ๅคงไบบใซใชใฃใฆใ‹ใ‚‰ๆˆๅŠŸใ™ใ‚‹ใ‹ใฏๅญใฉใ‚‚ใฎ้ ƒใฎ็’ฐๅขƒใงๆฑบใพใ‚‹')), ('FW25', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใซ่ตทใ“ใ‚‹ๅ‡บๆฅไบ‹ใฏ๏ผŒๅถ็„ถใฎ็”ฃ็‰ฉใงใ‚ใ‚‹')), ('FW26', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='็ฒพ็ฅžๅŠ›ใŒๅผทใ‘ใ‚Œใฐ๏ผŒ่‡ชๅˆ†ใซ็”Ÿใ˜ใŸๆฌฒๆœ›ใ‚’ใ„ใคใ‚‚ๆŠ‘ใˆใ‚‹ใ“ใจใŒใงใใ‚‹')), ('FW27', otree.db.models.StringField(choices=[('1.ใใ†ๆ€ใ‚ใชใ„', '1.ใใ†ๆ€ใ‚ใชใ„'), ('2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„', '2.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ‚ใชใ„'), ('3.ใฉใกใ‚‰ใงใ‚‚ใชใ„', '3.ใฉใกใ‚‰ใงใ‚‚ใชใ„'), ('4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†', '4.ใฉใกใ‚‰ใ‹ใจใ„ใˆใฐใใ†ๆ€ใ†'), ('5.ใใ†ๆ€ใ†', '5.ใใ†ๆ€ใ†')], max_length=10000, null=True, verbose_name='ไบบใฎๅฐ†ๆฅใฏไบˆๆธฌใ™ใ‚‹ใ“ใจใŒใงใใชใ„')), ('group', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='FW_disaster.Group')), ('participant', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='fw_disaster_player', to='otree.Participant')), ('session', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='fw_disaster_player', to='otree.Session')), ], options={ 'db_table': 'FW_disaster_player', }, bases=(otree_save_the_change.mixins.SaveTheChange, models.Model), ), migrations.CreateModel( name='Subsession', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('round_number', otree.db.models.PositiveIntegerField(db_index=True, null=True)), ('session', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='fw_disaster_subsession', to='otree.Session')), ], options={ 'db_table': 'FW_disaster_subsession', }, bases=(otree_save_the_change.mixins.SaveTheChange, models.Model), ), migrations.AddField( model_name='player', name='subsession', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='FW_disaster.Subsession'), ), migrations.AddField( model_name='group', name='subsession', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='FW_disaster.Subsession'), ), ]
[ "goaki@me.com" ]
goaki@me.com
c819076050d722cded9659553a0f62ca4aa3fd36
2e80eb0e44bc3ce05373b047a22bfb220ce6ff7b
/name/foo.py
e55411fd75037a2eddbaaf03dd96423e7f72827f
[]
no_license
Jorge-Hoyos/python-workshop
07fcda929270604827148b871a6352a92a0b21b4
a182f2b77d372ae31a324ba8c498729bbb26a08a
refs/heads/master
2023-02-09T02:03:21.722897
2021-01-04T16:19:32
2021-01-04T16:19:32
284,469,031
0
0
null
null
null
null
UTF-8
Python
false
false
359
py
# Suppose this is foo.py. import math print(__name__) print("before import") print("before functionA") def functionA(): print("Function A") print("before functionB") def functionB(): print("Function B {}".format(math.sqrt(100))) print("before __name__ guard") if __name__ == '__main__': functionA() functionB() print("after __name__ guard")
[ "jorhoyos@bancolombia.com.co" ]
jorhoyos@bancolombia.com.co
5bc0c700daa377d54f09a5f669fc0520f96b3bd7
20d1787feaf42b8aee5aeabad9b295d29c837152
/kiwitrains/__init__.py
afc72c30259bf270ce6493711a19cca3d1573b5e
[]
no_license
simonblack/kiwitrains
c2d41a04b6c8802db7481780ec3581bc52feff99
2f4b6999d75def75d8b38f3e17e421965d675992
refs/heads/master
2021-04-15T10:49:08.365913
2018-03-25T06:12:30
2018-03-25T06:12:30
126,666,121
0
0
null
null
null
null
UTF-8
Python
false
false
195
py
#!/usr/bin/env python3 """ Kiwiland Railroad Transit library """ from .lib import * __version__ = '1.0.0' __author__ = 'Simon Black' __email__ = "mail@simon.black" __status__ = "Production"
[ "simon@cerneo.org" ]
simon@cerneo.org
669334c48eb971bb65dac2a7beec7cfd408c959f
38686e0da040e3aef0bba63ebe99ee3e7dceea4f
/doc/conf.py
ef17133c0332186ec287ae1fbc16bc566fb0496d
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
oubiwann/bundes
ae6daf042c1d8738007063f9acd40ffe1e987113
4388e1935c822517969b40e796d16e0838caba37
refs/heads/master
2021-04-15T15:02:17.617919
2016-02-17T10:06:53
2016-02-17T10:06:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,201
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # bundes documentation build configuration file, created by # sphinx-quickstart on Thu May 28 16:23:40 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'bundes' copyright = '2015, Pierre-Yves Ritschard' author = 'Pierre-Yves Ritschard' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.5' # The full version, including alpha/beta/rc tags. release = '0.5.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'bundesdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'bundes.tex', 'bundes Documentation', 'Pierre-Yves Ritschard', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'bundes', 'bundes Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'bundes', 'bundes Documentation', author, 'bundes', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
[ "pyr@spootnik.org" ]
pyr@spootnik.org
2b1e005dac468057714ac833d3332fca0078eef9
0975b4d581c4f6364f541b299b639dcc6f65a9f6
/apps/dataviz/migrations/0001_initial.py
5d7708031478be2ae0526a8f4e925a5efeb5903d
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Sasha-P/dataviz
40af1f440a66e1c8454a812d40f5caa8be570d4f
ccef27b41636ce30bc9abbe8ae47a5ec807e2712
refs/heads/master
2021-01-11T06:03:54.308225
2016-10-06T22:31:26
2016-10-06T22:31:26
70,165,861
0
0
null
null
null
null
UTF-8
Python
false
false
1,280
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2016-10-02 11:46 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Country', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('value', models.IntegerField(default=0)), ], options={ 'ordering': ('name',), }, ), migrations.CreateModel( name='Region', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], options={ 'ordering': ('name',), }, ), migrations.AddField( model_name='country', name='region', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='dataviz.Region'), ), ]
[ "sasha.pazyuk@gmail.com" ]
sasha.pazyuk@gmail.com