blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
73e8ef99e53d2aaeeb1ea03125982542a67cbd7b
0c027ff203fc3d109f927639642c28f5ec37632b
/robot/video.py
bcace3cd4968c0ab69d7bcf4ed13020a075bde16
[]
no_license
mcbianconi/reddit_scrapper
5200705473116205770da9d1a6723e225891a4c2
447d38eee0190214be108483619d28493cfacfb5
refs/heads/master
2022-02-19T06:02:45.739192
2019-09-21T14:57:45
2019-09-21T14:57:45
207,712,785
0
0
null
null
null
null
UTF-8
Python
false
false
3,047
py
import os import shutil import subprocess from robot.config import (IMG_HEIGHT, IMG_WIDTH, OUTPUT_DIR, RESIZED_VIDEO_SUFFIX) VIDEO_FILE_NAME = "video_input_list" AUDIO_FILE_NAME = "audio_input_list" def make_files(comment_list): submission_folder = os.path.join( OUTPUT_DIR, comment_list[0].submission.fullname) video_input_list = os.path.join(submission_folder, VIDEO_FILE_NAME) audio_input_list = os.path.join(submission_folder, AUDIO_FILE_NAME) comment_list_file_path = os.path.join(submission_folder, "comment_list") video_file = open(video_input_list, "a+") audio_file = open(audio_input_list, "a+") comment_list_file = open(comment_list_file_path, "a+") video_file.write( f" file '{submission_folder}/{comment_list[0].submission.fullname}.png'\n") audio_file.write( f" file '{submission_folder}/{comment_list[0].submission.fullname}.mp3'\n") for c in comment_list: video_file.write(f" file '{submission_folder}/{c.fullname}.png'\n") audio_file.write(f" file '{submission_folder}/{c.fullname}.mp3'\n") comment_list_file.write(f"{c.fullname}\n") video_file.close() audio_file.close() def create_submission_video(submission): submission_folder = os.path.join(OUTPUT_DIR, submission.fullname) video_file = os.path.join(submission_folder, VIDEO_FILE_NAME) audio_file = os.path.join(submission_folder, AUDIO_FILE_NAME) video_title = submission.title.replace(" ", "_") output_video = os.path.join(submission_folder, video_title + ".mp4") cmnd = [ "ffmpeg -r 24 -f concat -safe 0 -i", video_file, "-f concat -safe 0 -i", audio_file, "-c:a aac -pix_fmt yuv420p -crf 23 -r 24 -shortest -y", output_video] p = subprocess.call(cmnd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def scale_video(input_path: str): output = input_path + RESIZED_VIDEO_SUFFIX cmnd = [ "ffmpeg", "-i", input_path, "-vf", f"scale={IMG_WIDTH}:{IMG_HEIGHT}", "-max_muxing_queue_size", "9999", "-y", output] subprocess.call(cmnd) return output def concat_videos(video, edition_path): shutil.copy(video, edition_path) edit_list = ( os.path.join(edition_path, "intro.mp4"), os.path.join(edition_path, video), os.path.join(edition_path, "outro.mp4"), ) list_file = os.path.join(edition_path, "tmp_edit_file.txt") with open(list_file, "a+") as file: for partial_video in filter( lambda video: os.path.exists(video), edit_list): resized_video = scale_video( os.path.join(edition_path, partial_video)) file.write(f"file '{resized_video}'\n") cmnd = [ "ffmpeg", "-safe", "0", "-f", "concat", "-i", list_file, "-c", "copy", video + "_FINAL.mp4", ] process = subprocess.call(cmnd) os.remove(list_file) os.remove(os.path.join(edition_path, video)) return process
[ "murillo.bianconi@gmail.com" ]
murillo.bianconi@gmail.com
ec4f8c6ba276514b62e7887ae58142eafdba83b9
ade85b6086c4775b673b94fb39dd2cab6965e48d
/loudblog_just_for_git_purposes/imi_to_cgnet_recordings/IMI_to_CGNet.py
eadd7edd1dfbdc8245981777c45c07e8f436b15f
[ "MIT" ]
permissive
rulebreakerdude/MobileSatyagraha_Backend_aws
dde4c0d6294269275609c2631281859d93440a96
af8658e5ab4c1593f56d38196c1b872655d70977
refs/heads/master
2022-12-21T22:46:56.628832
2020-04-19T03:17:07
2020-04-19T03:17:07
155,894,774
2
3
MIT
2022-12-08T04:51:04
2018-11-02T16:43:48
Python
UTF-8
Python
false
false
1,861
py
import ftplib import subprocess from db_repo import * import smtplib #from string import Template from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email import encoders from mutagen.mp3 import MP3 mydb=database_flaskr() MY_ADDRESS = 'cgnetmail2019@gmail.com' PASSWORD = 'QWERTYCGTECH123' s = smtplib.SMTP_SSL(host='smtp.gmail.com', port=465) s.ehlo() s.set_debuglevel(1) s.login(MY_ADDRESS, PASSWORD) email='cgnetswaratest@gmail.com' session = ftplib.FTP('59.162.167.59','Cgnet','mdy8YtLIzxf2') session.cwd("/Recordings") unsyncedFiles = mydb.getCGSwaraUnsyncedNumberData() for row in unsyncedFiles: print row ref_id=row[0] phoneNumber=row[1] filetocopy = ref_id+'.wav' localfile = open('temp.wav', 'wb') try: session.retrbinary('RETR ' + filetocopy, localfile.write) localfile.close() subprocess.call(['lame', 'temp.wav', '%s.mp3' %(ref_id)]) localmp3=open('%s.mp3' %(ref_id), 'rb') time='{:%Y%m%d%H%M%S}'.format(datetime.datetime.now()) length=str(MP3(ref_id+'.mp3').info.length) subject = "Swara-Main|app|" + length + "|DRAFT|" + phoneNumber + "|unk|" + time + "|PUBLIC"; message = "Recording sent from IMI cloud IVR" msg = MIMEMultipart() msg['From'] = MY_ADDRESS msg['To'] = email msg['Subject'] = subject msg.attach(MIMEText(message, 'plain')) part = MIMEBase('application', 'octet-stream') part.set_payload((localmp3).read()) encoders.encode_base64(part) part.add_header('Content-Disposition', "attachment; filename= %s.mp3" %(ref_id)) msg.attach(part) s.sendmail(msg['From'],msg['To'],msg.as_string()) subprocess.call(['rm','%s.mp3' %(ref_id)]) mydb.setCGSwaraSyncedNumberData(ref_id) except ftplib.error_perm: print filetocopy+' not present' session.quit()
[ "rulebreakerdude@gmail.com" ]
rulebreakerdude@gmail.com
5599bacd9c46473647fe8b163053d8f159092557
7515ed0821b925d08b31c4acb7efc2e0c0f8c8d6
/copla_search_reply_bot.py
d1d2e453e9448e447a968ff155733c7c1e99d614
[]
no_license
himanshu-irl/covidplasma_bot
271895e107d83cbd1fecfd5eef083b96f7de80d7
a32f604fc0d0dbf2ae209ff93b174dfeed7a29b2
refs/heads/main
2023-09-01T23:17:43.774502
2021-11-19T21:22:50
2021-11-19T21:22:50
360,315,645
0
0
null
null
null
null
UTF-8
Python
false
false
2,375
py
# -*- coding: utf-8 -*- """ @author: Verma, Himanshu """ #If account is locked #https://twitter.com/account/access import tweepy import time import random import datetime as dtm import logging #ud-modules from covidplasma_bot.input import keys, paths, tweet_parameter as param from covidplasma_bot.replier import tweet_replier as tr from covidplasma_bot.helper import file_handler as fh, telegram_poster as tp #Twitter API keys CONSUMER_KEY = keys.CONSUMER_KEY CONSUMER_SECRET = keys.CONSUMER_SECRET ACCESS_KEY = keys.ACCESS_KEY ACCESS_SECRET = keys.ACCESS_SECRET #Telegram: TwitterNotify bot API keys tgram_token = keys.tgram_token tgram_success_chatid = keys.success_chatid #TwitterNotify Bot chat tgram_error_chatid = keys.error_chatid # Twitter Bot Notifications channel date_since = (dtm.datetime.now()-dtm.timedelta(days=1)).strftime('%Y-%m-%d') #Setting up paths LOG_FILE_NAME = paths.replier_log_file #FILE_NAME = 'last_seen_id.txt' MENTION_FILE_NAME = paths.mentions_file REPLIER_FILE_NAME = paths.replier_file #----------------------------------------# while True: #deleting log file print('deleting log file...') fh.del_log(LOG_FILE_NAME) logging.basicConfig(handlers=[logging.FileHandler(filename=LOG_FILE_NAME ,encoding='utf-8' ,mode='a+')] ,level=logging.DEBUG ,format='%(asctime)s %(message)s') logger = logging.getLogger(name='copla-search-reply-bot') try: tr.reply_to_tweets(CONSUMER_KEY ,CONSUMER_SECRET ,ACCESS_KEY ,ACCESS_SECRET ,tgram_token ,tgram_success_chatid ,logger ,REPLIER_FILE_NAME ,MENTION_FILE_NAME ,search_for = param.search_for ,date_since = date_since ,rand_sleep=6) except tweepy.TweepError as e: print(e) tp.send_message(tgram_token,tgram_error_chatid,str('COVID PLASMA BOT REPLIER ERROR: ' + str(e.args[0][0]['code']) + ' - ' + str(e.args[0][0]['message']))) logger.info(e) time.sleep(random.randint(300,600))
[ "himanshuverma1516@gmail.com" ]
himanshuverma1516@gmail.com
5bd77a1c3d522e951f3792bdc26ad0123792bc50
b3a3ff13bae2f2597cf1e4f1ca74845ff34cbd08
/apps/goods/migrations/0013_images_classify_two.py
c649add75a59df8c6eca2e9e6ea86ca7ba2a9d79
[]
no_license
mkcc581130/MkOnline
b6593c973f958105dfdee92b3063231e9d7e6b97
b39cc48a05abe7340cbd8b59f77f21dc1b12bb23
refs/heads/master
2020-04-06T21:04:07.391589
2018-11-16T09:11:16
2018-11-16T09:11:16
157,791,503
0
0
null
null
null
null
UTF-8
Python
false
false
605
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-08-31 15:22 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('goods', '0012_auto_20170831_1513'), ] operations = [ migrations.AddField( model_name='images', name='classify_two', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='goods.ClassifyTwo', verbose_name='\u4e8c\u7ea7\u5206\u7c7b'), ), ]
[ "575151723@qq.com" ]
575151723@qq.com
bbafe5cb079e010686f81c3f97e3da672521a8e1
eaedf6de025b1d04fddaae2c80556ec9791d15a6
/website/contactkeep/models.py
435c315da64642a75b39bd47d4f9322ac882e742
[]
no_license
sherlock6147/contact-keeper
54ed02565c806b8e5d8a49eb9e9a9b2f77ec8256
38c0516aa62cbcc5ff89f307944ae98640bd96c4
refs/heads/master
2023-04-26T18:43:59.764527
2021-05-23T16:31:41
2021-05-23T16:31:41
365,991,962
0
0
null
null
null
null
UTF-8
Python
false
false
1,702
py
from django.db import models from django.db.models.query_utils import select_related_descend from django.utils import timezone # Create your models here. class Event(models.Model): name = models.CharField("Event Name",max_length=150) start_date = models.DateField("start date") end_date = models.DateField("end date") current = models.BooleanField("Current Event",default=False) def __str__(self): return self.name class Website(models.Model): event = models.ForeignKey(Event, on_delete=models.CASCADE) url = models.CharField("Link for website",max_length=250) name = models.CharField("Name for website",max_length=250) web_cache = models.CharField("Cache of website content",max_length=100000,default='') last_visit = models.DateTimeField("last visited on",auto_now=True) created_on = models.DateTimeField("Created on",auto_created=True,default=timezone.now) def __str__(self): return self.name class Contact(models.Model): name = models.CharField("Name",max_length=150) last_save = models.DateTimeField("Last saved on",auto_now=True) event = models.ForeignKey(Event,on_delete=models.CASCADE) website = models.ForeignKey(Website,on_delete=models.CASCADE) def __str__(self): return self.name class PhoneNumber(models.Model): phoneNumber = models.CharField("Phone No.",max_length=20) contact = models.ForeignKey(Contact, on_delete=models.CASCADE) def __str__(self): return self.phoneNumber class Email(models.Model): email = models.CharField("Email",max_length=100) contact = models.ForeignKey(Contact, on_delete=models.CASCADE) def __str__(self): return self.email
[ "tooshort9541@gmail.com" ]
tooshort9541@gmail.com
c8ca91810328f7cdb73e19a3734869b5ba021ea3
e5521f8544c63da113859eb9356828a0e7edd652
/blog/migrations/0016_auto_20171222_1657.py
5c89db310681999cb3c8a55df918c7eab6886577
[]
no_license
E0han/photography-web
c906967faa91efeae640e3759d46f41610410547
ba8fcaa0bc45918ea06ede0e38703d3453cba6dc
refs/heads/master
2021-09-02T09:40:29.267390
2018-01-01T14:43:00
2018-01-01T14:43:00
112,300,685
1
0
null
null
null
null
UTF-8
Python
false
false
838
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-22 16:57 from __future__ import unicode_literals from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('blog', '0015_auto_20171222_0916'), ] operations = [ migrations.AddField( model_name='introductions', name='author', field=models.CharField(default=django.utils.timezone.now, max_length=256, verbose_name='作者'), preserve_default=False, ), migrations.AddField( model_name='introductions', name='location', field=models.CharField(default=django.utils.timezone.now, max_length=258, verbose_name='举办地点'), preserve_default=False, ), ]
[ "ethan@YAMdeMacBook-Air.local" ]
ethan@YAMdeMacBook-Air.local
fb62ce0017de691177ebd7cac0b9e7d400b3b23d
88c453eebfd506926560787d2e964132cc6150a6
/accounts/admin.py
33bb6ab7d054bef7ca02fbe4ed6ed014b8f859bb
[]
no_license
ashish2/PySite
ecbde977a5195adefe7fe9065a909b87a95c46e1
a1513090568de3a0eade4d0f7df3d67d1992cbe2
refs/heads/master
2018-09-27T17:56:57.045095
2018-08-19T15:26:54
2018-08-19T15:26:54
12,662,322
1
0
null
null
null
null
UTF-8
Python
false
false
510
py
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.models import User from models import UserProfile class ProfileInline(admin.StackedInline): model = UserProfile fk_name = 'user' max_num = 1 class CustomUserAdmin(UserAdmin): inlines = [ProfileInline,] class UserProfileAdmin(admin.ModelAdmin): model = UserProfile admin.site.unregister(User) admin.site.register(User, CustomUserAdmin) admin.site.register(UserProfile, UserProfileAdmin)
[ "vickyojha2@yahoo.com" ]
vickyojha2@yahoo.com
9622f9ca09bff14c0d6cf590fd551ff732c036e1
6bf9e20aa0521fa9a153ddf754fe558e701b077e
/Flask/main.py
a889af48f0b4f2e818c3633c76d0f68e09cc1d4a
[]
no_license
Santhosh-A-K/Flask
0b04baaf08c4d393727a695b8aa383e23ecf0c2f
33eb7b45f69d3c50969e7617ebfa29bc0cca50b3
refs/heads/master
2022-08-26T05:40:11.289824
2020-03-12T03:34:22
2020-03-12T03:34:22
244,713,189
0
0
null
null
null
null
UTF-8
Python
false
false
1,156
py
# -*- coding: utf-8 -*- """ Created on Tue Mar 3 22:26:46 2020 @author: santhosh """ import logging logging.basicConfig(filename='app.log', filemode='a',level=logging.DEBUG) from flask import Flask,redirect,url_for,request,render_template from mongoConnection import mongoConnect app=Flask(__name__) @app.route('/') def index(): return render_template('index.html',check=False) @app.route('/connect/mongo/',methods=['POST','GET']) def connectToMongo(): logging.info('For this you must change the level and add a handler.') if request.method=='POST': host=request.form['host'] port=request.form['port'] dbName=request.form['dbName'] elif request.method=='GET': host=request.args.get('host') port=request.args.get('port') dbName=request.args.get('dbName') con=mongoConnect(host,int(port),dbName) print(con) if con==None: return render_template('index.html',check=True) else: return render_template('columns.html') if __name__=='__main__': app.run(port=5000,debug=True,use_reloader=False)
[ "noreply@github.com" ]
Santhosh-A-K.noreply@github.com
1b548a161e569b32fa70ab178b597b67048e8363
a6edb3c29d06abf46f657963fcb8716eb370aabe
/wiki/urls.py
709aff20082fdbe0934395e004bdbfd35faff7f0
[ "MIT" ]
permissive
ellojess/makewiki
5ecd2b05e11906f2e7ce8ee4160620f8c925c95d
353352ef71f395c0246b3757006bbafcc9bffa6d
refs/heads/master
2023-05-01T19:25:49.618312
2020-02-21T19:57:57
2020-02-21T19:57:57
238,797,725
0
0
MIT
2023-04-21T20:46:34
2020-02-06T22:27:23
Python
UTF-8
Python
false
false
319
py
from django.urls import path from wiki.views import PageListView, PageDetailView, NewPageView urlpatterns = [ path('', PageListView.as_view(), name='wiki-list-page'), path('new-page/', NewPageView.as_view(), name='wiki-new-page'), path('<str:slug>/', PageDetailView.as_view(), name='wiki-details-page'), ]
[ "jtjessicatrinh@gmail.com" ]
jtjessicatrinh@gmail.com
bc03d3213f757b64b9f4f8f296e4c26d3787b6b0
cb39dedfab9ce07fa0dd7fc0efed625f71a23cda
/passbucket/users/migrations/0001_initial.py
1424e01acc7c376b72b97d47d0578beca0e9f5e9
[]
no_license
neotrons/passbucket
25fb5fcccab6d6a2fe181cf0a98fe7dabad37d68
8845cfd2fdad04df0a68c62f9f5a1b0eeb60d585
refs/heads/master
2020-03-30T20:14:09.332629
2019-05-09T22:17:58
2019-05-09T22:17:58
151,579,212
0
0
null
null
null
null
UTF-8
Python
false
false
2,868
py
# Generated by Django 2.0.4 on 2018-10-04 23:39 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0009_alter_user_last_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'abstract': False, 'verbose_name': 'user', 'verbose_name_plural': 'users', }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
[ "jcramireztello@gmail.com" ]
jcramireztello@gmail.com
c327fdbb3cdba0853e6eed11b3727dd273c92dd2
aadfb150c0b662c9cb7ec763bddfdb3e3a7333b2
/Mono_Encrypt.py
ecae4b47cd1fb51a4fae7a108d82cc0855566bb0
[]
no_license
xue-yuan/Classic_Crypto
7edbf40831f08e67b9303a7bf89e08ea3ca6edcc
88c475ca7cd4f055842b890a081c11de00c23539
refs/heads/master
2022-03-30T07:49:42.711728
2019-12-21T04:27:24
2019-12-21T04:27:24
183,240,416
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
def monoCipherEncrypt(plain, key): keymap = {} cipher = [] for i, e in enumerate(key): keymap[chr(i + 97)] = e for i in plain: if i < 'a' or i > 'z': cipher.append(i) continue cipher.append(keymap.get(i)) return cipher while 1: text = input() text = list(text.lower().split()) plain = "".join(" " + i for i in text[:-1]).replace(' ', '', 1) key = text[-1] print("".join(monoCipherEncrypt(plain, key))) #keepgoingnevergiveup qwertyuiopasdfghjklzxcvbnm #atthugofuftctkuoctxh qwertyuiopasdfghjklzxcvbnm
[ "g00se.9527@gmail.com" ]
g00se.9527@gmail.com
fe14c1c48dec9e54e0e8fb37472870b424569383
87ba51b22a7f42c24e3c5364bccf460390f79655
/rain.py
af3fb913db82fc77c3a5f42e8ea1f0bc3e066faa
[]
no_license
cjturne6/weatherstation
4406f779dd0395be2ca8cd8445d8df1b9be6fc70
007d6473a9341e290b51344f5814804402f9bebf
refs/heads/main
2023-04-10T10:30:54.355120
2021-04-25T14:24:03
2021-04-25T14:24:03
360,980,685
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
#!/usr/bin/env python3 import RPi.GPIO as GPIO BUTTON_GPIO = 26 if __name__ == '__main__': GPIO.setmode(GPIO.BCM) GPIO.setup(BUTTON_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP) while True: GPIO.wait_for_edge(BUTTON_GPIO, GPIO.FALLING) print("Button pressed!")
[ "turner.collin@gmail.com" ]
turner.collin@gmail.com
095895835303bf63e55c209087016bcd47a53900
c6de42be3b8d3952ac4f970a410eb5ee7afbd580
/firstProgram_oct.py
e64f5038b01ccc5a540402d3f4949fed17ed6d9c
[]
no_license
kaiyaprovost/algobio_scripts_python
f0ac802b3a92ad514f69745984089ae69634c1e3
d273974127d6651621a3bb854036436d6e42444d
refs/heads/master
2021-01-21T13:53:15.826050
2016-05-06T21:54:28
2016-05-06T21:54:28
51,173,508
0
0
null
2016-05-06T21:54:28
2016-02-05T20:57:01
Python
UTF-8
Python
false
false
136
py
import turtle teddy = turtle.Turtle() for i in range(8): teddy.forward(100) teddy.right((360/8)) turtle.exitonclick()
[ "klp2143@columbia.edu" ]
klp2143@columbia.edu
49bb51e9b948d124b3a1f776df7bbddf90d813b7
dade24dd3f1144878a87e7b27eef3b90b9ebdfb4
/api-clients/python/test/test_inline_response_200_5.py
f0521f14c0bb2aaccb6e75fb36ab3117f75ac0b6
[]
no_license
lucaslmmanoel/otreeba-api-clients
f076144ff013071628cca179592b9713fba1b094
355e0635b4ffc651df7eb7cf2b23ea62d39280c1
refs/heads/master
2021-07-12T18:32:25.169618
2017-10-13T20:30:31
2017-10-13T20:30:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,289
py
# coding: utf-8 """ Otreeba Open Cannabis API This is an open, canonical database of cannabis seed companies, strains, brands, products, retailers, and studies from [Otreeba](https://otreeba.com). It is written on the OpenAPI Specification AKA Swagger. You can find out more about the Open API Initiative at [https://www.openapis.org/](https://www.openapis.org), or more info on Swagger at [http://swagger.io/](http://swagger.io/). OpenAPI spec version: 1.0.0 Contact: api@otreeba.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.inline_response_200_5 import InlineResponse2005 class TestInlineResponse2005(unittest.TestCase): """ InlineResponse2005 unit test stubs """ def setUp(self): pass def tearDown(self): pass def testInlineResponse2005(self): """ Test InlineResponse2005 """ # FIXME: construct object with mandatory attributes with example values #model = swagger_client.models.inline_response_200_5.InlineResponse2005() pass if __name__ == '__main__': unittest.main()
[ "david@randomdrake.com" ]
david@randomdrake.com
8d06548df5f6398354e80696bdcd4de55ab84d3a
f44e4485385296f4d1de2032c64c76de37ec5007
/pyatv/mrp/protobuf/DeviceInfoMessage_pb2.py
f18237f3e98c6570af7c0facc2de477cda9de067
[ "MIT" ]
permissive
kdschlosser/pyatv
370d0a35e39623b8e8e6a087c675ec47aa50fb16
fa32dab9ad3c4adffdc944ed78427f6c724074f5
refs/heads/master
2022-06-20T06:58:13.608441
2020-05-11T04:57:55
2020-05-11T06:22:23
264,143,600
1
0
MIT
2020-05-15T08:48:06
2020-05-15T08:48:05
null
UTF-8
Python
false
true
17,207
py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: pyatv/mrp/protobuf/DeviceInfoMessage.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from pyatv.mrp.protobuf import ProtocolMessage_pb2 as pyatv_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2 from pyatv.mrp.protobuf import Common_pb2 as pyatv_dot_mrp_dot_protobuf_dot_Common__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='pyatv/mrp/protobuf/DeviceInfoMessage.proto', package='', syntax='proto2', serialized_options=None, serialized_pb=b'\n*pyatv/mrp/protobuf/DeviceInfoMessage.proto\x1a(pyatv/mrp/protobuf/ProtocolMessage.proto\x1a\x1fpyatv/mrp/protobuf/Common.proto\"\x98\x07\n\x11\x44\x65viceInfoMessage\x12\x18\n\x10uniqueIdentifier\x18\x01 \x02(\t\x12\x0c\n\x04name\x18\x02 \x02(\t\x12\x1a\n\x12localizedModelName\x18\x03 \x01(\t\x12\x1a\n\x12systemBuildVersion\x18\x04 \x02(\t\x12#\n\x1b\x61pplicationBundleIdentifier\x18\x05 \x02(\t\x12 \n\x18\x61pplicationBundleVersion\x18\x06 \x01(\t\x12\x17\n\x0fprotocolVersion\x18\x07 \x02(\x05\x12 \n\x18lastSupportedMessageType\x18\x08 \x01(\r\x12\x1d\n\x15supportsSystemPairing\x18\t \x01(\x08\x12\x15\n\rallowsPairing\x18\n \x01(\x08\x12\x11\n\tconnected\x18\x0b \x01(\x08\x12\x1e\n\x16systemMediaApplication\x18\x0c \x01(\t\x12\x13\n\x0bsupportsACL\x18\r \x01(\x08\x12\x1b\n\x13supportsSharedQueue\x18\x0e \x01(\x08\x12\x1e\n\x16supportsExtendedMotion\x18\x0f \x01(\x08\x12\x18\n\x10\x62luetoothAddress\x18\x10 \x01(\x0c\x12\x1a\n\x12sharedQueueVersion\x18\x11 \x01(\r\x12\x11\n\tdeviceUID\x18\x13 \x01(\t\x12\x1d\n\x15managedConfigDeviceID\x18\x14 \x01(\t\x12&\n\x0b\x64\x65viceClass\x18\x15 \x01(\x0e\x32\x11.DeviceClass.Enum\x12\x1a\n\x12logicalDeviceCount\x18\x16 \x01(\r\x12\x1a\n\x12tightlySyncedGroup\x18\x17 \x01(\x08\x12\x1a\n\x12isProxyGroupPlayer\x18\x18 \x01(\x08\x12\x14\n\x0ctightSyncUID\x18\x19 \x01(\t\x12\x10\n\x08groupUID\x18\x1a \x01(\t\x12\x11\n\tgroupName\x18\x1b \x01(\t\x12*\n\x0egroupedDevices\x18\x1c \x03(\x0b\x32\x12.DeviceInfoMessage\x12\x15\n\risGroupLeader\x18\x1d \x01(\x08\x12\x17\n\x0fisAirplayActive\x18\x1e \x01(\x08\x12 \n\x18systemPodcastApplication\x18\x1f \x01(\t\x12\x1c\n\x14\x65nderDefaultGroupUID\x18 \x01(\t\x12\x18\n\x10\x61irplayReceivers\x18! \x03(\t\x12\x11\n\tlinkAgent\x18\" \x01(\t:?\n\x11\x64\x65viceInfoMessage\x12\x10.ProtocolMessage\x18\x14 \x01(\x0b\x32\x12.DeviceInfoMessage' , dependencies=[pyatv_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2.DESCRIPTOR,pyatv_dot_mrp_dot_protobuf_dot_Common__pb2.DESCRIPTOR,]) DEVICEINFOMESSAGE_FIELD_NUMBER = 20 deviceInfoMessage = _descriptor.FieldDescriptor( name='deviceInfoMessage', full_name='deviceInfoMessage', index=0, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=True, extension_scope=None, serialized_options=None, file=DESCRIPTOR) _DEVICEINFOMESSAGE = _descriptor.Descriptor( name='DeviceInfoMessage', full_name='DeviceInfoMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='uniqueIdentifier', full_name='DeviceInfoMessage.uniqueIdentifier', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='DeviceInfoMessage.name', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='localizedModelName', full_name='DeviceInfoMessage.localizedModelName', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='systemBuildVersion', full_name='DeviceInfoMessage.systemBuildVersion', index=3, number=4, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='applicationBundleIdentifier', full_name='DeviceInfoMessage.applicationBundleIdentifier', index=4, number=5, type=9, cpp_type=9, label=2, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='applicationBundleVersion', full_name='DeviceInfoMessage.applicationBundleVersion', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='protocolVersion', full_name='DeviceInfoMessage.protocolVersion', index=6, number=7, type=5, cpp_type=1, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lastSupportedMessageType', full_name='DeviceInfoMessage.lastSupportedMessageType', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsSystemPairing', full_name='DeviceInfoMessage.supportsSystemPairing', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allowsPairing', full_name='DeviceInfoMessage.allowsPairing', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='connected', full_name='DeviceInfoMessage.connected', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='systemMediaApplication', full_name='DeviceInfoMessage.systemMediaApplication', index=11, number=12, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsACL', full_name='DeviceInfoMessage.supportsACL', index=12, number=13, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsSharedQueue', full_name='DeviceInfoMessage.supportsSharedQueue', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='supportsExtendedMotion', full_name='DeviceInfoMessage.supportsExtendedMotion', index=14, number=15, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bluetoothAddress', full_name='DeviceInfoMessage.bluetoothAddress', index=15, number=16, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sharedQueueVersion', full_name='DeviceInfoMessage.sharedQueueVersion', index=16, number=17, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='deviceUID', full_name='DeviceInfoMessage.deviceUID', index=17, number=19, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='managedConfigDeviceID', full_name='DeviceInfoMessage.managedConfigDeviceID', index=18, number=20, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='deviceClass', full_name='DeviceInfoMessage.deviceClass', index=19, number=21, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='logicalDeviceCount', full_name='DeviceInfoMessage.logicalDeviceCount', index=20, number=22, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tightlySyncedGroup', full_name='DeviceInfoMessage.tightlySyncedGroup', index=21, number=23, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isProxyGroupPlayer', full_name='DeviceInfoMessage.isProxyGroupPlayer', index=22, number=24, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tightSyncUID', full_name='DeviceInfoMessage.tightSyncUID', index=23, number=25, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupUID', full_name='DeviceInfoMessage.groupUID', index=24, number=26, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupName', full_name='DeviceInfoMessage.groupName', index=25, number=27, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='groupedDevices', full_name='DeviceInfoMessage.groupedDevices', index=26, number=28, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isGroupLeader', full_name='DeviceInfoMessage.isGroupLeader', index=27, number=29, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='isAirplayActive', full_name='DeviceInfoMessage.isAirplayActive', index=28, number=30, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='systemPodcastApplication', full_name='DeviceInfoMessage.systemPodcastApplication', index=29, number=31, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enderDefaultGroupUID', full_name='DeviceInfoMessage.enderDefaultGroupUID', index=30, number=32, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='airplayReceivers', full_name='DeviceInfoMessage.airplayReceivers', index=31, number=33, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='linkAgent', full_name='DeviceInfoMessage.linkAgent', index=32, number=34, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=122, serialized_end=1042, ) _DEVICEINFOMESSAGE.fields_by_name['deviceClass'].enum_type = pyatv_dot_mrp_dot_protobuf_dot_Common__pb2._DEVICECLASS_ENUM _DEVICEINFOMESSAGE.fields_by_name['groupedDevices'].message_type = _DEVICEINFOMESSAGE DESCRIPTOR.message_types_by_name['DeviceInfoMessage'] = _DEVICEINFOMESSAGE DESCRIPTOR.extensions_by_name['deviceInfoMessage'] = deviceInfoMessage _sym_db.RegisterFileDescriptor(DESCRIPTOR) DeviceInfoMessage = _reflection.GeneratedProtocolMessageType('DeviceInfoMessage', (_message.Message,), { 'DESCRIPTOR' : _DEVICEINFOMESSAGE, '__module__' : 'pyatv.mrp.protobuf.DeviceInfoMessage_pb2' # @@protoc_insertion_point(class_scope:DeviceInfoMessage) }) _sym_db.RegisterMessage(DeviceInfoMessage) deviceInfoMessage.message_type = _DEVICEINFOMESSAGE pyatv_dot_mrp_dot_protobuf_dot_ProtocolMessage__pb2.ProtocolMessage.RegisterExtension(deviceInfoMessage) # @@protoc_insertion_point(module_scope)
[ "pierre.staahl@gmail.com" ]
pierre.staahl@gmail.com
ba0a3db81be17cc3f350086bd34cecc5073b54ac
935911dbf5c7ec43e3525ed000fc60d8efff0d9e
/find_anagram/anagram_checker.py
743a9041dcb73c7980fc1f063753b47521b81c8f
[ "MIT" ]
permissive
mattsgit/anagram_finder
653fdfe2fd0400a16acb7744fca2826fd12915d3
da5352d0881563522c3710f3ca880f512dd02748
refs/heads/master
2021-08-19T19:39:42.657063
2017-11-27T08:28:56
2017-11-27T08:28:56
111,863,461
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
import sys class AnagramCheck: def __init__(self): pass def is_anagram(self, a, b): # remove all non alphanum chars in string new_a = "".join([x for x in a.lower() if x.isalnum()]) new_b = "".join([x for x in b.lower() if x.isalnum()]) if len(new_a) != len(new_b): return False a_dict = {} b_dict = {} for char in new_a: a_dict[char] = a_dict.get(char, 0) + 1 for char in new_b: b_dict[char] = b_dict.get(char, 0) + 1 return b_dict == a_dict class AnagramTester: def __init__(self): pass def test_is_anagram_with_file(self, filename): results = {} anagram_checker = AnagramCheck() with open(filename) as f: content = f.readlines() for line in content: line_list = line.strip().split('","') results[anagram_checker.is_anagram(line_list[0][1:], line_list[1][:-1])] = results.get( anagram_checker.is_anagram(line_list[0][1:], line_list[1][:-1]), 0) + 1 return results def main(): if len(sys.argv) == 3: checker = AnagramCheck() print checker.is_anagram(sys.argv[1],sys.argv[2]) if __name__ == '__main__': main()
[ "matthewradams22@gmail.com" ]
matthewradams22@gmail.com
83b3e4af3c41afb8fa6ab9c832651bb33e8752e4
6f56e9496eca4ce758bfd9b3f9d8180929851e2b
/cmp_dirs.py
3098ae8ea3df252c4cc9cc817d781cb30e10bbf1
[]
no_license
yoramzarai/py_tools
b231fc3ad3d41876359eafa0143aef6cc26880b7
0d5386f9034bdcea423137433c50af9e04ae73bf
refs/heads/master
2020-04-13T15:01:18.962746
2018-12-27T10:08:24
2018-12-27T10:08:24
163,278,950
0
0
null
null
null
null
UTF-8
Python
false
false
3,139
py
#!/opt/local/bin/python3 '''Compares the content in two directories''' import argparse import os from termcolor import colored import filecmp as fcmp # Command-line parsing information def parse_in_args(): ''' Defines input arguments ''' # place description parser = argparse.ArgumentParser(description='Compares the content of two directories.', add_help=False) # required arguments group = parser.add_argument_group('Required arguments') group.add_argument('-l', dest='dirl', help='First (left) directory', type=str, metavar='<dir 1>', required='True') group.add_argument('-r', dest='dirr', help='Second (right) directory', type=str, metavar='<dir 2>', required='True') # optional arguments group_opt = parser.add_argument_group('Optional arguments') group_opt.add_argument('-f', dest='chk_f', help='File list to compare. Default is all files.', type=str, nargs='+', \ metavar=('fn1', 'fn2'), default=list()) group_opt.add_argument('-e', dest='ign_f', help='File list to ignore. Default is none.', type=str, nargs='+', \ metavar=('fn1', 'fn2'), default=list()) group_opt.add_argument('-D', help='Enables debug prints.', action='store_true') group_opt.add_argument('-h', '--help', help='Displays usage information and exits.', action='help') return parser.parse_args(), parser.print_help def print_base_cmp_dirs(var, name, colr): print(colored('\n\n{} {}', colr).format(len(var), name)) for s in var: print(colored(s, colr), end=' ') def print_cmp_dirs(args): cmp = fcmp.dircmp(args.dirl, args.dirr, args.ign_f) #print(cmp.report()) # same files print_base_cmp_dirs(cmp.same_files, 'identical files:', 'green') # different version print_base_cmp_dirs(cmp.diff_files, 'with different versions:', 'red') # could not compare print_base_cmp_dirs(cmp.funny_files, 'could not compare:', 'white') # files and directories only in args.dirl print_base_cmp_dirs(cmp.left_only, 'are only in {}:'.format(args.dirl), 'magenta') # files and directories only in args.dirr print_base_cmp_dirs(cmp.right_only, 'are only in {}:'.format(args.dirr), 'cyan') print() # Main function # ============= def main(): ''' Main body ''' args, _ = parse_in_args() # parse, validate and return input arguments if args.D: print('Comparing {} with {}...'.format(args.dirl, args.dirr)) args.ign_f += ['.DS_Store'] if args.chk_f: match, mismatch, errors = fcmp.cmpfiles(args.dirl, args.dirr, args.chk_f) if match: print_base_cmp_dirs(match, 'identical files:', 'green') if mismatch: print_base_cmp_dirs(mismatch, 'with different versions:', 'yellow') if errors: print_base_cmp_dirs(errors, 'missing files (in one or both directories):', 'red') print() else: print_cmp_dirs(args) # ======================================================================================================================= if __name__ == "__main__": main() else: print(__name__, 'has been imported.')
[ "noreply@github.com" ]
yoramzarai.noreply@github.com
551479db553cc38ade33fc01b941a3b7ba4c94bb
06a0e768da8fae660652a7de477e13f8be9a0708
/QuantumDiscreteFourierTransform/classic_dft_example.py
84030076af85b3b0efc62d3bf5992731bc7bcec9
[ "MIT" ]
permissive
ettoremessina/quantum-experiments
d5dc1e94cc32a3de2f3f40a25208cfb2b9667301
0a06dd5bdde1c3831625147f96348a3d8dfb0533
refs/heads/master
2022-11-05T06:40:58.822685
2022-10-30T20:41:10
2022-10-30T20:41:10
218,624,888
2
1
null
null
null
null
UTF-8
Python
false
false
1,800
py
import numpy as np import matplotlib.pyplot as plt #signal generation duration = 2. #in seconds sampling_rate = 100. #per seconds sampling_period = 1./sampling_rate discrete_times = np.arange(0, duration, sampling_period) num_of_samples = len(discrete_times) frequency = 5. #in Hz amplitude = 1.4 #in Volts, for example phase = 0. #in radiant sampled_values = amplitude * np.sin(2 * np.pi * frequency * discrete_times + phase) frequency = 10. amplitude = 0.8 phase = np.pi / 2. sampled_values += amplitude * np.sin(2 * np.pi * frequency * discrete_times + phase) plt.plot(discrete_times, sampled_values, 'b') plt.title('Signal') plt.xlabel('Time') plt.ylabel('Amplitude') plt.grid() plt.show() #Discrete Fourier Transform using SciPy import scipy.fft as spf transformed_signal = np.abs(spf.fft(sampled_values)[0:num_of_samples//2]) normalized_transformed = (2.0/num_of_samples) * transformed_signal discrete_frequencies = spf.fftfreq(num_of_samples, sampling_period)[:num_of_samples//2] plt.plot(discrete_frequencies, normalized_transformed, 'r') plt.title('DFT by SciPy fft') plt.xlabel('Frequency') plt.ylabel('Magnitude') plt.grid() plt.show() #Discrete Fourier Matrix Transform def DFTByMatrix(signal): N = len(signal) n = np.arange(N) k = n.reshape((N, 1)) fourier_matrix = np.exp(-2j * np.pi * k * n / N) transf_signal = np.dot(fourier_matrix, signal) return transf_signal transformed_signal = np.abs(DFTByMatrix(sampled_values))[0:num_of_samples//2] normalized_transformed = (2.0/num_of_samples) * transformed_signal discrete_frequencies = (discrete_times / sampling_period)[:num_of_samples//2] plt.plot(discrete_frequencies, normalized_transformed, 'g') plt.title('DFT by Matrix') plt.xlabel('Frequency') plt.ylabel('Magnitude') plt.grid() plt.show()
[ "et.messina@gmail.com" ]
et.messina@gmail.com
c05700dbe86d74616c8013fd8d430433417ac148
f7f66d1327238f34d0b3b85c1e221616a95aae8c
/memex_dossier/web/search_engines.py
d91e55479ba651492f015a4e32ee8074f1624841
[ "MIT" ]
permissive
biyanisuraj/memex-dossier-open
820d5afc8a5cf93afc1364fb2a960ac5ab245217
43bab4e42d46ab2cf1890c3c2935658ae9b10a3a
refs/heads/master
2020-06-07T01:34:51.467907
2018-10-09T15:44:58
2018-10-09T15:44:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,270
py
'''memex_dossier.web.search_engines .. This software is released under an MIT/X11 open source license. Copyright 2012-2014 Diffeo, Inc. ''' from __future__ import absolute_import, division, print_function from itertools import ifilter, islice import logging import random as rand from memex_dossier.fc import SparseVector, StringCounter from memex_dossier.web.interface import SearchEngine logger = logging.getLogger(__name__) class random(SearchEngine): '''Return random results with the same name. This finds all content objects that have a matching name and returns ``limit`` results at random. If there is no ``NAME`` index defined, then this always returns no results. ''' def __init__(self, store): super(random, self).__init__() self.store = store def recommendations(self): if u'NAME' not in self.store.index_names(): return {'results': []} fc = self.store.get(self.query_content_id) if fc is None: raise KeyError(self.query_content_id) cids = [] for name in fc.get(u'NAME', {}): cids.extend(self.store.index_scan_ids(u'NAME', name)) predicate = self.create_filter_predicate() results = list(ifilter(predicate, self.store.get_many(cids))) rand.shuffle(results) return {'results': results[0:self.params['limit']]} class plain_index_scan(SearchEngine): '''Return a random sample of an index scan. This scans all indexes defined for all values in the query corresponding to those indexes. ''' def __init__(self, store): super(plain_index_scan, self).__init__() self.store = store def recommendations(self): predicate = self.create_filter_predicate() cids = self.streaming_ids(self.query_content_id) results = ifilter(predicate, ((cid, self.store.get(cid)) for cid in cids)) sample = streaming_sample( results, self.params['limit'], self.params['limit'] * 10) return {'results': sample} def get_query_fc(self, content_id): query_fc = self.store.get(content_id) if query_fc is None: logger.info('Could not find FC for "%s"', content_id) return query_fc def streaming_ids(self, content_id): def scan(idx_name, val): for cid in self.store.index_scan(idx_name, val): if cid not in cids and cid not in blacklist: cids.add(cid) yield cid query_fc = self.get_query_fc(content_id) if query_fc is None: return blacklist = set([content_id]) cids = set() logger.info('starting index scan (query content id: %s)', content_id) for idx_name in self.store.index_names(): feat = query_fc.get(idx_name, None) if isinstance(feat, unicode): logger.info('[Unicode index: %s] scanning for "%s"', idx_name, feat) for cid in scan(idx_name, feat): yield cid elif isinstance(feat, (SparseVector, StringCounter)): for name in feat.iterkeys(): logger.info('[StringCounter index: %s] scanning for "%s"', idx_name, name) for cid in scan(idx_name, name): yield cid def streaming_sample(seq, k, limit=None): '''Streaming sample. Iterate over seq (once!) keeping k random elements with uniform distribution. As a special case, if ``k`` is ``None``, then ``list(seq)`` is returned. :param seq: iterable of things to sample from :param k: size of desired sample :param limit: stop reading ``seq`` after considering this many :return: list of elements from seq, length k (or less if seq is short) ''' if k is None: return list(seq) seq = iter(seq) if limit is not None: k = min(limit, k) limit -= k result = list(islice(seq, k)) for count, x in enumerate(islice(seq, limit), len(result)): if rand.random() < (1.0 / count): result[rand.randint(0, k-1)] = x return result
[ "jrf@diffeo.com" ]
jrf@diffeo.com
a0bbf4695e7ad752b16be83f1631a7babdea7f3a
c9293ab68d0235a1830a3634a41a5b65b4eb5d6a
/Lessons/Section-03/lesson_0081/lesson_0002.py
05b0ca33ab0b45e7283839c5a790fda630138775
[]
no_license
lipegomes/python-django-udemy-studies
4f836497ee10ece7ee5b40af1b636bb1c03deb75
938fa6a05f9505b8eaf6e7e6bc1c5e199b670432
refs/heads/master
2023-01-07T01:22:16.855346
2020-11-03T13:49:54
2020-11-03T13:49:54
283,852,942
1
1
null
null
null
null
UTF-8
Python
false
false
179
py
from newcalc import multiply, double_the_list, PI from sayhai import say_hi print(multiply([10, 5])) say_hi() numbers1 = [5, 4, 8] print(double_the_list(numbers1)) print(PI)
[ "61765381+lipegomes@users.noreply.github.com" ]
61765381+lipegomes@users.noreply.github.com
b6a7c8bb7b0ea4447d1bfa3f5e4bfaf58671e05a
770586dc530756e179ae9db9ae8b30ffa9664e7c
/dataset/mnist.py
1928dda8769e7e0c038a2e28a7dba134ac64c244
[ "MIT" ]
permissive
mseif2016/private_objective_perturbation
0f4c242aa473b57e309fdaf3b07ccceb06e3ca4e
ce0e881f9115c1d07df535261b4b7c6ee650325c
refs/heads/master
2022-11-14T02:42:35.958656
2020-06-30T15:02:08
2020-06-30T15:02:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,275
py
import os import sys import numpy as np from sklearn import preprocessing from tensorflow.examples.tutorials.mnist import input_data from utils.utils_preprocessing import convert_to_binary, normalize_rows, format_output FILENAME_X = 'mnist_processed_x.npy' FILENAME_Y = 'mnist_processed_y.npy' def preprocess(cache_location="dataset/data_cache", output_location="dataset/data"): np.random.seed(10000019) mnist = input_data.read_data_sets( os.path.join(cache_location, "MNIST_data"), one_hot=True) train_features = np.array(mnist.train.images) train_labels = np.array(mnist.train.labels) test_features = np.array(mnist.test.images) test_labels = np.array(mnist.test.labels) features_set = np.vstack((train_features, test_features)) labels_set = np.vstack((train_labels, test_labels)) label_width = len(labels_set[0]) combined_data = np.column_stack([features_set, labels_set]) np.random.shuffle(combined_data) np.save(os.path.join(output_location, FILENAME_X), combined_data[:, :-label_width]) np.save(os.path.join(output_location, FILENAME_Y), combined_data[:, -label_width:]) if __name__=="__main__": if len(sys.argv) == 3: preprocess(sys.argv[1], sys.argv[2]) else: preprocess()
[ "giusevtr@gmail.com" ]
giusevtr@gmail.com
a562ea5925bb853287c30692e331db3ad17821e2
8c42964a29af1d5a2f4541ab634b54e25a90b9f4
/Example2/configuration.py
5a64a7d9aada01e4a7e1e383119cbc7d566d617f
[]
no_license
lenzip/CMSDataAnalysisSchoolPisa2019ScalarToWW
a21dc572ae2e152410a867ae5013703c886e4bbf
8cff1dea08887b78a9efc26a142609ba1b7ba296
refs/heads/master
2020-04-14T21:13:03.028961
2019-01-23T16:22:23
2019-01-23T16:22:23
164,121,564
0
1
null
null
null
null
UTF-8
Python
false
false
803
py
# example of configuration file tag = 'Inclusive' # used by mkShape to define output directory for root files outputDir = 'rootFile' # file with list of variables variablesFile = 'variables.py' # file with list of cuts cutsFile = 'cuts.py' # file with list of samples samplesFile = 'samples.py' # file with list of samples plotFile = 'plot.py' # luminosity to normalize to (in 1/fb) lumi = 35.867 # used by mkPlot to define output directory for plots # different from "outputDir" to do things more tidy outputDirPlots = 'plotsInclusive' # used by mkDatacards to define output directory for datacards outputDirDatacard = 'datacardsInclusive' # structure file for datacard structureFile = 'structure.py' # nuisances file for mkDatacards and for mkShape nuisancesFile = 'nuisances.py'
[ "piergiulio.lenzi@cern.ch" ]
piergiulio.lenzi@cern.ch
e3e0ff71c09f66324bba160b6a4edccc40d93fff
ddc5aa77203bf76cd789c173dffbc382ed8ef004
/test/app_test/master.py
f1fe1995de473cf239f7fc143c31029ce2d5bca1
[]
no_license
phroiland/FinBiotic
0b8183ce9f97c3fc4b1f7e20decc3472bffe8800
a30ef2e979b230e5424fd25ef7dd1fb49bbd5245
refs/heads/master
2023-08-18T15:26:15.948262
2023-08-15T15:13:23
2023-08-15T15:13:23
93,895,989
2
2
null
2023-03-01T20:08:37
2017-06-09T20:52:02
Python
UTF-8
Python
false
false
4,105
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon May 29 13:30:38 2017 @author: jonfroiland """ import sys import argparse import oandapyV20 import oandapyV20.endpoints.positions as openPos # Data, Price, and Strategy Imports import settings import common.config import common.args from stream.streamingData import StreamingData from stream.view import mid_string, heartbeat_to_string, instrument_string from account.balance import Balance from strategy.breakout import Breakout from strategy.spreads import Spreads from strategy.strategy import Strategy from pivots.pivotImports import PivotImports # from view import bid_string, ask_string, price_to_string from datetime import datetime import pandas as pd pd.set_option('display.large_repr', 'truncate') pd.set_option('display.max_columns', 0) def main(): print "------ System online -------", datetime.now() parser = argparse.ArgumentParser() common.config.add_argument(parser) parser.add_argument('--instrument', "-i", type=common.args.instrument, required=True, action="append", help="Instrument to get prices for") parser.add_argument('--snapshot', action="store_true", default=True, help="Request an initial snapshot") parser.add_argument('--no-snapshot', dest="snapshot", action="store_false", help="Do not request an initial snapshot") parser.add_argument('--show-heartbeats', "-s", action='store_true', default=False, help="display heartbeats") args = parser.parse_args() # print sys.argv[2] account_id = args.config.active_account api = args.config.create_streaming_context() account_api = args.config.create_context() response = api.pricing.stream(account_id, snapshot=args.snapshot, instruments=",".join(args.instrument)) dfD = PivotImports(sys.argv[2]).daily() # dfW = p.weekly() balance = Balance(account_api, account_id).balance() df = pd.DataFrame([]) for msg_type, msg in response.parts(): if msg_type == "pricing.Heartbeat" and args.show_heartbeats: print heartbeat_to_string(msg) if msg_type == "pricing.Price": sd = StreamingData(datetime.now(), instrument_string(msg), mid_string(msg), account_api, account_id, 's', '5min', balance) df = df.append(sd.df()) sd.resample(df) print "df:", df.shape[0], "minuteData:", sd.minuteData().shape[0] # print sd.minuteData(),'\n' if sd.minuteData().shape[0] < 20: continue else: client = oandapyV20.API(settings.ACCESS_TOKEN) r = openPos.OpenPositions(accountID=account_id) client.request(r) openTrades = [] for i in r.response['positions']: trades = i['instrument'] openTrades.append(trades) print 'Open Trades', openTrades if instrument_string(msg) in openTrades: continue else: try: b = Breakout(sd.minuteData()) breakout = b.breakout() # print 'Breakout Units:',breakout s = Spreads(dfD, mid_string(msg)) pivot, rl1, rl2, rl3, sl1, sl2, sl3 = s.spreads() rate1, rate2 = s.spreads_out() strat = Strategy(account_api, account_id, instrument_string(msg), dfD, mid_string(msg), breakout, pivot, rl1, rl2, rl3, sl1, sl2, sl3, rate1, rate2) strat.res_check() strat.sup_check() except Exception as e: print e if __name__ == "__main__": main()
[ "jon.froiland@gmail.com" ]
jon.froiland@gmail.com
4449a9ba1f7077329a5da7221fd2c951aa9a4573
ebcea394905df8222c257c8c6c469627a6e48095
/PyQt5/object_detection/inputs_test.py
cc79131e3a02e54893093a7c803e84b4cb10687c
[]
no_license
valiok98/Python-Qt5-Tensorflow
2773cfc2a0e569ed53cf3d90066885f17abe8c6a
e03ccc2884b687a36fbe47f5ff320837be3e217a
refs/heads/master
2021-09-17T20:41:01.908602
2018-03-31T12:42:25
2018-03-31T12:42:25
103,644,683
1
0
null
null
null
null
UTF-8
Python
false
false
24,083
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.tflearn.inputs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import numpy as np import tensorflow as tf import sys sys.path.append("..") import inputs from core import preprocessor from core import standard_fields as fields from utils import config_util FLAGS = tf.flags.FLAGS def _get_configs_for_model(model_name): """Returns configurations for model.""" # TODO: Make sure these tests work fine outside google3. fname = os.path.join( FLAGS.test_srcdir, ('google3/third_party/tensorflow_models/' 'object_detection/samples/configs/' + model_name + '.config')) label_map_path = os.path.join(FLAGS.test_srcdir, ('google3/third_party/tensorflow_models/' 'object_detection/data/pet_label_map.pbtxt')) data_path = os.path.join(FLAGS.test_srcdir, ('google3/third_party/tensorflow_models/' 'object_detection/test_data/pets_examples.record')) configs = config_util.get_configs_from_pipeline_file(fname) return config_util.merge_external_params_with_configs( configs, train_input_path=data_path, eval_input_path=data_path, label_map_path=label_map_path) class InputsTest(tf.test.TestCase): def test_faster_rcnn_resnet50_train_input(self): """Tests the training input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') configs['train_config'].unpad_groundtruth_tensors = True model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = train_input_fn() self.assertAllEqual([None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [None, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [None, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [None], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) def test_faster_rcnn_resnet50_eval_input(self): """Tests the eval input function for FasterRcnnResnet50.""" configs = _get_configs_for_model('faster_rcnn_resnet50_pets') model_config = configs['model'] model_config.faster_rcnn.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( configs['eval_config'], configs['eval_input_config'], model_config) features, labels = eval_input_fn() self.assertAllEqual([1, None, None, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [1, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, None, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, None, model_config.faster_rcnn.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_ssd_inceptionV2_train_input(self): """Tests the training input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 batch_size = configs['train_config'].batch_size train_input_fn = inputs.create_train_input_fn( configs['train_config'], configs['train_input_config'], model_config) features, labels = train_input_fn() self.assertAllEqual([batch_size, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual([batch_size], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [batch_size], labels[fields.InputDataFields.num_groundtruth_boxes].shape.as_list()) self.assertEqual(tf.int32, labels[fields.InputDataFields.num_groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 50, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [batch_size, 50, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [batch_size, 50], labels[fields.InputDataFields.groundtruth_weights].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_weights].dtype) def test_ssd_inceptionV2_eval_input(self): """Tests the eval input function for SSDInceptionV2.""" configs = _get_configs_for_model('ssd_inception_v2_pets') model_config = configs['model'] model_config.ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( configs['eval_config'], configs['eval_input_config'], model_config) features, labels = eval_input_fn() self.assertAllEqual([1, 300, 300, 3], features[fields.InputDataFields.image].shape.as_list()) self.assertEqual(tf.float32, features[fields.InputDataFields.image].dtype) self.assertAllEqual( [1, None, None, 3], features[fields.InputDataFields.original_image].shape.as_list()) self.assertEqual(tf.uint8, features[fields.InputDataFields.original_image].dtype) self.assertAllEqual([1], features[inputs.HASH_KEY].shape.as_list()) self.assertEqual(tf.int32, features[inputs.HASH_KEY].dtype) self.assertAllEqual( [1, None, 4], labels[fields.InputDataFields.groundtruth_boxes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_boxes].dtype) self.assertAllEqual( [1, None, model_config.ssd.num_classes], labels[fields.InputDataFields.groundtruth_classes].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_classes].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_area].shape.as_list()) self.assertEqual(tf.float32, labels[fields.InputDataFields.groundtruth_area].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_is_crowd].shape.as_list()) self.assertEqual( tf.bool, labels[fields.InputDataFields.groundtruth_is_crowd].dtype) self.assertAllEqual( [1, None], labels[fields.InputDataFields.groundtruth_difficult].shape.as_list()) self.assertEqual( tf.int32, labels[fields.InputDataFields.groundtruth_difficult].dtype) def test_predict_input(self): """Tests the predict input function.""" configs = _get_configs_for_model('ssd_inception_v2_pets') predict_input_fn = inputs.create_predict_input_fn( model_config=configs['model']) serving_input_receiver = predict_input_fn() image = serving_input_receiver.features[fields.InputDataFields.image] receiver_tensors = serving_input_receiver.receiver_tensors[ inputs.SERVING_FED_EXAMPLE_KEY] self.assertEqual([1, 300, 300, 3], image.shape.as_list()) self.assertEqual(tf.float32, image.dtype) self.assertEqual(tf.string, receiver_tensors.dtype) def test_error_with_bad_train_config(self): """Tests that a TypeError is raised with improper train config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['eval_config'], # Expecting `TrainConfig`. train_input_config=configs['train_input_config'], model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_input_config(self): """Tests that a TypeError is raised with improper train input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_train_model_config(self): """Tests that a TypeError is raised with improper train model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 train_input_fn = inputs.create_train_input_fn( train_config=configs['train_config'], train_input_config=configs['train_input_config'], model_config=configs['train_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): train_input_fn() def test_error_with_bad_eval_config(self): """Tests that a TypeError is raised with improper eval config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['train_config'], # Expecting `EvalConfig`. eval_input_config=configs['eval_input_config'], model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_input_config(self): """Tests that a TypeError is raised with improper eval input config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['model'], # Expecting `InputReader`. model_config=configs['model']) with self.assertRaises(TypeError): eval_input_fn() def test_error_with_bad_eval_model_config(self): """Tests that a TypeError is raised with improper eval model config.""" configs = _get_configs_for_model('ssd_inception_v2_pets') configs['model'].ssd.num_classes = 37 eval_input_fn = inputs.create_eval_input_fn( eval_config=configs['eval_config'], eval_input_config=configs['eval_input_config'], model_config=configs['eval_config']) # Expecting `DetectionModel`. with self.assertRaises(TypeError): eval_input_fn() class DataAugmentationFnTest(tf.test.TestCase): def test_apply_image_and_box_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes], [[10, 10, 20, 20]] ) def test_include_masks_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }) ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.zeros([2, 10, 10], np.uint8)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3]) self.assertAllEqual(augmented_tensor_dict_out[ fields.InputDataFields.groundtruth_instance_masks].shape, [2, 20, 20]) def test_include_keypoints_in_data_augmentation(self): data_augmentation_options = [ (preprocessor.resize_image, { 'new_height': 20, 'new_width': 20, 'method': tf.image.ResizeMethod.NEAREST_NEIGHBOR }), (preprocessor.scale_boxes_to_pixel_coordinates, {}), ] data_augmentation_fn = functools.partial( inputs.augment_input_data, data_augmentation_options=data_augmentation_options) tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(10, 10, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1., 1.]], np.float32)), fields.InputDataFields.groundtruth_keypoints: tf.constant(np.array([[[0.5, 1.0], [0.5, 0.5]]], np.float32)) } augmented_tensor_dict = data_augmentation_fn(tensor_dict=tensor_dict) with self.test_session() as sess: augmented_tensor_dict_out = sess.run(augmented_tensor_dict) self.assertAllEqual( augmented_tensor_dict_out[fields.InputDataFields.image].shape, [20, 20, 3] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_boxes], [[10, 10, 20, 20]] ) self.assertAllClose( augmented_tensor_dict_out[fields.InputDataFields.groundtruth_keypoints], [[[10, 20], [10, 10]]] ) def _fake_model_preprocessor_fn(image): return (image, tf.expand_dims(tf.shape(image)[1:], axis=0)) def _fake_image_resizer_fn(image, mask): return (image, mask, tf.shape(image)) class DataTransformationFnTest(tf.test.TestCase): def test_returns_correct_class_label_encodings(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[0, 0, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[0, 0, 1], [1, 0, 0]]) def test_returns_correct_merged_boxes(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_boxes: tf.constant(np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, merge_multiple_boxes=True) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_boxes], [[.5, .5, 1., 1.]]) self.assertAllClose( transformed_inputs[fields.InputDataFields.groundtruth_classes], [[1, 0, 1]]) def test_returns_resized_masks(self): tensor_dict = { fields.InputDataFields.image: tf.constant(np.random.rand(4, 4, 3).astype(np.float32)), fields.InputDataFields.groundtruth_instance_masks: tf.constant(np.random.rand(2, 4, 4).astype(np.float32)), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def fake_image_resizer_fn(image, masks): resized_image = tf.image.resize_images(image, [8, 8]) resized_masks = tf.transpose( tf.image.resize_images(tf.transpose(masks, [1, 2, 0]), [8, 8]), [2, 0, 1]) return resized_image, resized_masks, tf.shape(resized_image) num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(transformed_inputs[ fields.InputDataFields.groundtruth_instance_masks].shape, [2, 8, 8]) def test_applies_model_preprocess_fn_to_image_tensor(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def fake_model_preprocessor_fn(image): return (image / 255., tf.expand_dims(tf.shape(image)[1:], axis=0)) num_classes = 3 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes) with self.test_session() as sess: transformed_inputs = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllClose(transformed_inputs[fields.InputDataFields.image], np_image / 255.) self.assertAllClose(transformed_inputs[fields.InputDataFields. true_image_shape], [4, 4, 3]) def test_applies_data_augmentation_fn_to_tensor_dict(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def add_one_data_augmentation_fn(tensor_dict): return {key: value + 1 for key, value in tensor_dict.items()} num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=_fake_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_one_data_augmentation_fn) with self.test_session() as sess: augmented_tensor_dict = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image], np_image + 1) self.assertAllEqual( augmented_tensor_dict[fields.InputDataFields.groundtruth_classes], [[0, 0, 0, 1], [0, 1, 0, 0]]) def test_applies_data_augmentation_fn_before_model_preprocess_fn(self): np_image = np.random.randint(256, size=(4, 4, 3)) tensor_dict = { fields.InputDataFields.image: tf.constant(np_image), fields.InputDataFields.groundtruth_classes: tf.constant(np.array([3, 1], np.int32)) } def mul_two_model_preprocessor_fn(image): return (image * 2, tf.expand_dims(tf.shape(image)[1:], axis=0)) def add_five_to_image_data_augmentation_fn(tensor_dict): tensor_dict[fields.InputDataFields.image] += 5 return tensor_dict num_classes = 4 input_transformation_fn = functools.partial( inputs.transform_input_data, model_preprocess_fn=mul_two_model_preprocessor_fn, image_resizer_fn=_fake_image_resizer_fn, num_classes=num_classes, data_augmentation_fn=add_five_to_image_data_augmentation_fn) with self.test_session() as sess: augmented_tensor_dict = sess.run( input_transformation_fn(tensor_dict=tensor_dict)) self.assertAllEqual(augmented_tensor_dict[fields.InputDataFields.image], (np_image + 5) * 2) if __name__ == '__main__': tf.test.main()
[ "valentin1998v@gmail.com" ]
valentin1998v@gmail.com
b5183ff595872d8796cab1c531e0e8ca9453123d
0ca0bbb58378d9e73b69ca605a8ea8a82b6617da
/src/tag_add.py
c81c4cedf93a1f6da82c33a48c734fcdae582776
[ "MIT" ]
permissive
tws0002/footage-importer
e1f14447ae4489ad300edd92f459f2776e9a0a4d
a797b79efa184167ca472369b07d1a029dd86cbd
refs/heads/master
2020-03-28T17:40:47.444278
2018-09-19T07:47:05
2018-09-19T07:47:05
148,812,988
0
0
MIT
2018-09-19T07:47:06
2018-09-14T16:10:24
Python
UTF-8
Python
false
false
438
py
from PyQt5.QtWidgets import QDialog from PyQt5 import uic from PyQt5.QtCore import Qt import os ui_path = os.path.join(os.path.dirname(__file__), 'tag_add.ui') class TagAddInput(QDialog): def __init__(self): super().__init__(None, Qt.WindowTitleHint | Qt.WindowCloseButtonHint) uic.loadUi(ui_path, self) self.apply_button.clicked.connect(self.accept) self.cancel_button.clicked.connect(self.close)
[ "mrhchief@gmail.com" ]
mrhchief@gmail.com
55249766cbf2b635521c31509e0f05dbd5aa83cb
4310528fa617bf1fd498535858bd02e40eb45834
/venv/bin/easy_install
73392ec6d584aeeff44e80c7e4d72d15dafafa5d
[]
no_license
lgergelyo/DHT11
d6f38df38e57b5ac6b2570373a18f6879a859852
b531722281f29fdaa954bd89fb4333ec49346362
refs/heads/master
2020-07-11T08:11:29.105044
2019-08-26T14:14:50
2019-08-26T14:14:50
204,485,805
0
0
null
null
null
null
UTF-8
Python
false
false
439
#!/home/gergely/PycharmProjects/DHT11/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
[ "leandrotecnico@terra.com.br" ]
leandrotecnico@terra.com.br
44f6551cecf87e0cc64db8a41ab7784033adc958
586e60b4bbf80e3da9c1051182a42cb81bb2ea1b
/scripts/generate-demo-users.py
787052a0fab94bece1059cc3565abb512a20e0bd
[ "Apache-2.0" ]
permissive
DD-DeCaF/caffeine-bootstrap
daa0cb844fd694b87430451baee664d816e366a7
ec65cd5f135f86c7bf2faeb96930637e910c380f
refs/heads/master
2021-07-09T15:18:56.476754
2020-08-18T11:16:37
2020-08-18T11:16:37
161,489,310
1
0
Apache-2.0
2020-08-18T11:16:38
2018-12-12T13:03:41
Shell
UTF-8
Python
false
false
409
py
from iam.models import User, db from iam.app import app, init_app init_app(app, db) app.app_context().push() print("Adding user: demo@demo") user = User(email="demo@demo") user.set_password("demo") db.session.add(user) for i in range(40): print(f"Adding user: demo{i}@demo (password demo)") user = User(email=f"demo{i}@demo") user.set_password("demo") db.session.add(user) db.session.commit()
[ "ali@kvikshaug.no" ]
ali@kvikshaug.no
3c7c5139a5cd6dd8e33834de89b98fdd8bba4a33
52b5773617a1b972a905de4d692540d26ff74926
/.history/length_20200529113854.py
76b776e2932e64a11975284ff9a772f9332ca676
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
431
py
def removeDuplicates(nums): i = 0 while i <len(nums): print(nums[i]) if nums[i] == nums[i+1]: nums.remove(nums[i]) else: nums.add(nums[i]) # for i in range(length): # print('i--------->',i) # for j in range(i+1,length): # print('j----->',j) removeDuplicates([1,1,2])
[ "mary.jereh@gmail.com" ]
mary.jereh@gmail.com
30980eca76f9208b779a5f3c5e0e65affab9eb1c
5e4897b32cd19d145cefc4451ced910313cde0bb
/sphinxextra/phpdomain.py
4380ed3ab6981611f85ff56abfe6880149f92879
[]
no_license
Tinkerforge/doc
7e87edcf8d8b67d1edce749c4a3106f431a77585
19e49bad70fbe644aa9b4af4d64f99aa0cf71d7f
refs/heads/master
2023-08-20T22:10:37.363910
2023-08-17T13:33:28
2023-08-17T13:33:28
2,262,338
6
8
null
2023-07-24T13:46:27
2011-08-24T15:21:34
Python
UTF-8
Python
false
false
34,922
py
# -*- coding: utf-8 -*- """ sphinx.domains.php ~~~~~~~~~~~~~~~~~~ The PHP language domain. :copyright: Copyright 2007-2010 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from copy import deepcopy from docutils import nodes from sphinx import addnodes from sphinx.roles import XRefRole from sphinx.locale import l_, _ from sphinx.domains import Domain, ObjType from sphinx.directives import ObjectDescription from sphinx.util.nodes import make_refnode from sphinx.util.compat import Directive from sphinx.util.docfields import TypedField from sphinxextra.utils import fixup_index_entry # Olaf: add [\[\]]*, remove \b to allow java arrays, add \. to allow Class1.Class2 #_identifier_re = re.compile(r'\b(~?[a-zA-Z_][a-zA-Z0-9_]*)\b') _identifier_re = re.compile(r'\$?\b(~?[a-zA-Z_\$][a-zA-Z0-9_\.]*[\[\]]*)') _whitespace_re = re.compile(r'\s+(?u)') _string_re = re.compile(r"[LuU8]?('([^'\\]*(?:\\.[^'\\]*)*)'" r'|"([^"\\]*(?:\\.[^"\\]*)*)")', re.S) _visibility_re = re.compile(r'\b(public|private|protected)\b') _operator_re = re.compile(r'''(?x) \[\s*\] | \(\s*\) | [!<>=/*%+|&^-]=? | \+\+ | -- | (<<|>>)=? | ~ | && | \| | \|\| | ->\*? | \, ''') _id_shortwords = { 'char': 'c', 'signed char': 'c', 'unsigned char': 'C', 'int': 'i', 'signed int': 'i', 'unsigned int': 'U', 'long': 'l', 'signed long': 'l', 'unsigned long': 'L', 'bool': 'b', 'size_t': 's', 'std::string': 'ss', 'std::ostream': 'os', 'std::istream': 'is', 'std::iostream': 'ios', 'std::vector': 'v', 'std::map': 'm', 'operator[]': 'subscript-operator', 'operator()': 'call-operator', 'operator!': 'not-operator', 'operator<': 'lt-operator', 'operator<=': 'lte-operator', 'operator>': 'gt-operator', 'operator>=': 'gte-operator', 'operator=': 'assign-operator', 'operator/': 'div-operator', 'operator*': 'mul-operator', 'operator%': 'mod-operator', 'operator+': 'add-operator', 'operator-': 'sub-operator', 'operator|': 'or-operator', 'operator&': 'and-operator', 'operator^': 'xor-operator', 'operator&&': 'sand-operator', 'operator||': 'sor-operator', 'operator==': 'eq-operator', 'operator!=': 'neq-operator', 'operator<<': 'lshift-operator', 'operator>>': 'rshift-operator', 'operator-=': 'sub-assign-operator', 'operator+=': 'add-assign-operator', 'operator*-': 'mul-assign-operator', 'operator/=': 'div-assign-operator', 'operator%=': 'mod-assign-operator', 'operator&=': 'and-assign-operator', 'operator|=': 'or-assign-operator', 'operator<<=': 'lshift-assign-operator', 'operator>>=': 'rshift-assign-operator', 'operator^=': 'xor-assign-operator', 'operator,': 'comma-operator', 'operator->': 'pointer-operator', 'operator->*': 'pointer-by-pointer-operator', 'operator~': 'inv-operator', 'operator++': 'inc-operator', 'operator--': 'dec-operator', 'operator new': 'new-operator', 'operator new[]': 'new-array-operator', 'operator delete': 'delete-operator', 'operator delete[]': 'delete-array-operator' } class DefinitionError(Exception): def __init__(self, description): self.description = description def __unicode__(self): return self.description def __str__(self): return unicode(self.encode('utf-8')) class DefExpr(object): def __unicode__(self): raise NotImplementedError() def __eq__(self, other): if type(self) is not type(other): return False try: for key, value in self.__dict__.iteritems(): if value != getattr(other, value): return False except AttributeError: return False return True def __ne__(self, other): return not self.__eq__(other) def clone(self): """Close a definition expression node""" return deepcopy(self) def get_id(self): """Returns the id for the node""" return u'' def get_name(self): """Returns the name. Returns either `None` or a node with a name you might call :meth:`split_owner` on. """ return None def split_owner(self): """Nodes returned by :meth:`get_name` can split off their owning parent. This function returns the owner and the name as a tuple of two items. If a node does not support it, :exc:`NotImplementedError` is raised. """ raise NotImplementedError() def prefix(self, prefix): """Prefixes a name node (a node returned by :meth:`get_name`).""" raise NotImplementedError() def __str__(self): return unicode(self).encode('utf-8') def __repr__(self): return '<defexpr %s>' % self class PrimaryDefExpr(DefExpr): def get_name(self): return self def split_owner(self): return None, self def prefix(self, prefix): if isinstance(prefix, PathDefExpr): prefix = prefix.clone() prefix.path.append(self) return prefix return PathDefExpr([prefix, self]) class NameDefExpr(PrimaryDefExpr): def __init__(self, name): self.name = name def get_id(self): name = _id_shortwords.get(self.name) if name is not None: return name return self.name.replace(u' ', u'-') def __unicode__(self): return unicode(self.name) class PathDefExpr(PrimaryDefExpr): def __init__(self, parts): self.path = parts def get_id(self): rv = u'::'.join(x.get_id() for x in self.path) return _id_shortwords.get(rv, rv) def split_owner(self): if len(self.path) > 1: return PathDefExpr(self.path[:-1]), self.path[-1] return None, self def prefix(self, prefix): if isinstance(prefix, PathDefExpr): prefix = prefix.clone() prefix.path.extend(self.path) return prefix return PathDefExpr([prefix] + self.path) def __unicode__(self): return u'::'.join(map(unicode, self.path)) class TemplateDefExpr(PrimaryDefExpr): def __init__(self, typename, args): self.typename = typename self.args = args def split_owner(self): owner, typename = self.typename.split_owner() return owner, TemplateDefExpr(typename, self.args) def get_id(self): return u'%s:%s:' % (self.typename.get_id(), u'.'.join(x.get_id() for x in self.args)) def __unicode__(self): return u'%s<%s>' % (self.typename, u', '.join(map(unicode, self.args))) class WrappingDefExpr(DefExpr): def __init__(self, typename): self.typename = typename def get_name(self): return self.typename.get_name() class ModifierDefExpr(WrappingDefExpr): def __init__(self, typename, modifiers): WrappingDefExpr.__init__(self, typename) self.modifiers = modifiers def get_id(self): pieces = [_id_shortwords.get(unicode(x), unicode(x)) for x in self.modifiers] pieces.append(self.typename.get_id()) return u'-'.join(pieces) def __unicode__(self): return u' '.join(map(unicode, list(self.modifiers) + [self.typename])) class PtrDefExpr(WrappingDefExpr): def get_id(self): return self.typename.get_id() + u'P' def __unicode__(self): return u'%s*' % self.typename class RefDefExpr(WrappingDefExpr): def get_id(self): return self.typename.get_id() + u'R' def __unicode__(self): return u'%s&' % self.typename class ConstDefExpr(WrappingDefExpr): def __init__(self, typename, prefix=False): WrappingDefExpr.__init__(self, typename) self.prefix = prefix def get_id(self): return self.typename.get_id() + u'C' def __unicode__(self): return (self.prefix and u'const %s' or u'%s const') % self.typename class CastOpDefExpr(PrimaryDefExpr): def __init__(self, typename): self.typename = typename def get_id(self): return u'castto-%s-operator' % self.typename.get_id() def __unicode__(self): return u'operator %s' % self.typename class ArgumentDefExpr(DefExpr): def __init__(self, type, name, default=None): self.name = name self.type = type self.default = default def get_name(self): return self.name.get_name() def get_id(self): if self.type is None: return 'X' return self.type.get_id() def __unicode__(self): return (self.type is not None and u'%s %s' % (self.type, self.name) or unicode(self.name)) + (self.default is not None and u'=%s' % self.default or u'') class NamedDefExpr(DefExpr): def __init__(self, name, visibility, static): self.name = name self.visibility = visibility self.static = static def get_name(self): return self.name.get_name() def get_modifiers(self): rv = [] if self.visibility != 'public': rv.append(self.visibility) if self.static: rv.append(u'static') return rv class TypeObjDefExpr(NamedDefExpr): def __init__(self, name, visibility, static, typename): NamedDefExpr.__init__(self, name, visibility, static) self.typename = typename def get_id(self): if self.typename is None: return self.name.get_id() return u'%s__%s' % (self.name.get_id(), self.typename.get_id()) def __unicode__(self): buf = self.get_modifiers() if self.typename is None: buf.append(unicode(self.name)) else: buf.extend(map(unicode, (self.typename, self.name))) return u' '.join(buf) class MemberObjDefExpr(NamedDefExpr): def __init__(self, name, visibility, static, typename, value): NamedDefExpr.__init__(self, name, visibility, static) self.typename = typename self.value = value def get_id(self): return u'%s__%s' % (self.name.get_id(), self.typename.get_id()) def __unicode__(self): buf = self.get_modifiers() buf.append(u'%s %s' % (self.typename, self.name)) if self.value is not None: buf.append(u'= %s' % self.value) return u' '.join(buf) class FuncDefExpr(NamedDefExpr): def __init__(self, name, visibility, static, explicit, rv, signature, const, pure_virtual): NamedDefExpr.__init__(self, name, visibility, static) self.rv = rv self.signature = signature self.explicit = explicit self.const = const self.pure_virtual = pure_virtual def get_id(self): return u'%s%s%s' % ( self.name.get_id(), self.signature and u'__' + u'.'.join(x.get_id() for x in self.signature) or u'', self.const and u'C' or u'' ) def __unicode__(self): buf = self.get_modifiers() if self.explicit: buf.append(u'explicit') if self.rv is not None: buf.append(unicode(self.rv)) buf.append(u'%s(%s)' % (self.name, u', '.join( map(unicode, self.signature)))) if self.const: buf.append(u'const') if self.pure_virtual: buf.append(u'= 0') return u' '.join(buf) class ClassDefExpr(NamedDefExpr): def __init__(self, name, visibility, static): NamedDefExpr.__init__(self, name, visibility, static) def get_id(self): return self.name.get_id() def __unicode__(self): buf = self.get_modifiers() buf.append(unicode(self.name)) return u' '.join(buf) class DefinitionParser(object): # mapping of valid type modifiers. if the set is None it means # the modifier can prefix all types, otherwise only the types # (actually more keywords) in the set. Also check # _guess_typename when changing this. _modifiers = { 'volatile': None, 'register': None, 'mutable': None, 'const': None, 'typename': None, 'unsigned': set(('char', 'int', 'long')), 'signed': set(('char', 'int', 'long')), 'short': set(('int', 'short')), 'long': set(('int', 'long', 'double')) } def __init__(self, definition): self.definition = definition.strip() self.pos = 0 self.end = len(self.definition) self.last_match = None self._previous_state = (0, None) def fail(self, msg): raise DefinitionError('Invalid definition: %s [error at %d]\n %s' % (msg, self.pos, self.definition)) def match(self, regex): match = regex.match(self.definition, self.pos) if match is not None: self._previous_state = (self.pos, self.last_match) self.pos = match.end() self.last_match = match return True return False def backout(self): self.pos, self.last_match = self._previous_state def skip_string(self, string): strlen = len(string) if self.definition[self.pos:self.pos + strlen] == string: self.pos += strlen return True return False def skip_word(self, word): return self.match(re.compile(r'\b%s\b' % re.escape(word))) def skip_ws(self): return self.match(_whitespace_re) @property def eof(self): return self.pos >= self.end @property def current_char(self): try: return self.definition[self.pos] except IndexError: return 'EOF' @property def matched_text(self): if self.last_match is not None: return self.last_match.group() def _parse_operator(self): self.skip_ws() # thank god, a regular operator definition if self.match(_operator_re): return NameDefExpr('operator' + _whitespace_re.sub('', self.matched_text)) # new/delete operator? for allocop in 'new', 'delete': if not self.skip_word(allocop): continue self.skip_ws() if self.skip_string('['): self.skip_ws() if not self.skip_string(']'): self.fail('expected "]" for ' + allocop) allocop += '[]' return NameDefExpr('operator ' + allocop) # oh well, looks like a cast operator definition. # In that case, eat another type. type = self._parse_type() return CastOpDefExpr(type) def _parse_name(self): if not self.match(_identifier_re): print self.definition, self.pos self.fail('expected name') identifier = self.matched_text # strictly speaking, operators are not regular identifiers # but because operator is a keyword, it might not be used # for variable names anyways, so we can safely parse the # operator here as identifier if identifier == 'operator': return self._parse_operator() return NameDefExpr(identifier) def _guess_typename(self, path): if not path: return [], 'int' # for the long type, we don't want the int in there if 'long' in path: path = [x for x in path if x != 'int'] # remove one long path.remove('long') return path, 'long' if path[-1] in ('int', 'char'): return path[:-1], path[-1] return path, 'int' def _attach_crefptr(self, expr, is_const=False): if is_const: expr = ConstDefExpr(expr, prefix=True) while 1: self.skip_ws() if self.skip_word('const'): expr = ConstDefExpr(expr) elif self.skip_string('*'): expr = PtrDefExpr(expr) elif self.skip_string('&'): expr = RefDefExpr(expr) else: return expr def _peek_const(self, path): try: path.remove('const') return True except ValueError: return False def _parse_builtin(self, modifier): path = [modifier] following = self._modifiers[modifier] while 1: self.skip_ws() if not self.match(_identifier_re): break identifier = self.matched_text if identifier in following: path.append(identifier) following = self._modifiers[modifier] assert following else: self.backout() break is_const = self._peek_const(path) modifiers, typename = self._guess_typename(path) # Olaf: don't use typename (this makes "short int" from "short" etc) if typename != 'long': typename = '' rv = ModifierDefExpr(NameDefExpr(typename), modifiers) return self._attach_crefptr(rv, is_const) def _parse_type_expr(self): typename = self._parse_name() self.skip_ws() if not self.skip_string('<'): return typename args = [] while 1: self.skip_ws() if self.skip_string('>'): break if args: if not self.skip_string(','): self.fail('"," or ">" in template expected') self.skip_ws() args.append(self._parse_type(True)) return TemplateDefExpr(typename, args) def _parse_type(self, in_template=False): self.skip_ws() result = [] modifiers = [] # if there is a leading :: or not, we don't care because we # treat them exactly the same. Buf *if* there is one, we # don't have to check for type modifiers if not self.skip_string('::'): self.skip_ws() while self.match(_identifier_re): modifier = self.matched_text if modifier in self._modifiers: following = self._modifiers[modifier] # if the set is not none, there is a limited set # of types that might follow. It is technically # impossible for a template to follow, so what # we do is go to a different function that just # eats types if following is not None: return self._parse_builtin(modifier) modifiers.append(modifier) else: self.backout() break while 1: self.skip_ws() if (in_template and self.current_char in ',>') or \ (result and not self.skip_string('::')) or \ self.eof: break result.append(self._parse_type_expr()) if not result: self.fail('expected type') if len(result) == 1: rv = result[0] else: rv = PathDefExpr(result) is_const = self._peek_const(modifiers) if modifiers: rv = ModifierDefExpr(rv, modifiers) return self._attach_crefptr(rv, is_const) def _parse_default_expr(self): self.skip_ws() if self.match(_string_re): return self.matched_text idx1 = self.definition.find(',', self.pos) idx2 = self.definition.find(')', self.pos) if idx1 < 0: idx = idx2 elif idx2 < 0: idx = idx1 else: idx = min(idx1, idx2) if idx < 0: self.fail('unexpected end in default expression') rv = self.definition[self.pos:idx] self.pos = idx return rv def _parse_signature(self): self.skip_ws() if not self.skip_string('('): self.fail('expected parentheses for function') args = [] while 1: self.skip_ws() if self.eof: self.fail('missing closing parentheses') if self.skip_string(')'): break if args: if not self.skip_string(','): self.fail('expected comma between arguments') self.skip_ws() argname = self._parse_type() argtype = default = None self.skip_ws() if self.skip_string('='): self.pos += 1 default = self._parse_default_expr() elif self.current_char not in ',)': argtype = argname argname = self._parse_name() self.skip_ws() if self.skip_string('='): default = self._parse_default_expr() args.append(ArgumentDefExpr(argtype, argname, default)) self.skip_ws() const = self.skip_word('const') if const: self.skip_ws() if self.skip_string('='): self.skip_ws() if not (self.skip_string('0') or \ self.skip_word('NULL') or \ self.skip_word('nullptr')): self.fail('pure virtual functions must be defined with ' 'either 0, NULL or nullptr, other macros are ' 'not allowed') pure_virtual = True else: pure_virtual = False return args, const, pure_virtual def _parse_visibility_static(self): visibility = '' if self.match(_visibility_re): visibility = self.matched_text static = self.skip_word('static') return visibility, static def parse_type(self): return self._parse_type() def parse_type_object(self): visibility, static = self._parse_visibility_static() typename = self._parse_type() self.skip_ws() if not self.eof: name = self._parse_type() else: name = typename typename = None return TypeObjDefExpr(name, visibility, static, typename) def parse_member_object(self): visibility, static = self._parse_visibility_static() typename = self._parse_type() name = self._parse_type() self.skip_ws() if self.skip_string('='): value = self.read_rest().strip() else: value = None return MemberObjDefExpr(name, visibility, static, typename, value) def parse_function(self): visibility, static = self._parse_visibility_static() if self.skip_word('explicit'): explicit = True self.skip_ws() else: explicit = False rv = self._parse_type() self.skip_ws() # some things just don't have return values if self.current_char == '(': name = rv rv = None else: name = self._parse_type() return FuncDefExpr(name, visibility, static, explicit, rv, *self._parse_signature()) def parse_class(self): visibility, static = self._parse_visibility_static() return ClassDefExpr(self._parse_type(), visibility, static) def read_rest(self): rv = self.definition[self.pos:] self.pos = self.end return rv def assert_end(self): self.skip_ws() if not self.eof: self.fail('expected end of definition, got %r' % self.definition[self.pos:]) class PHPObject(ObjectDescription): """Description of a PHP language object.""" def attach_name(self, node, name): owner, name = name.split_owner() varname = unicode(name) if owner is not None: owner = unicode(owner) + '::' node += addnodes.desc_addname(owner, owner) node += addnodes.desc_name(varname, varname) def attach_type(self, node, type): # XXX: link to c? text = unicode(type) pnode = addnodes.pending_xref( '', refdomain='php', reftype='type', reftarget=text, modname=None, classname=None) pnode['php:parent'] = self.env.temp_data.get('php:parent') pnode += nodes.Text(text) node += pnode def attach_modifiers(self, node, obj): if obj.visibility != 'public': node += addnodes.desc_annotation(obj.visibility, obj.visibility) node += nodes.Text(' ') if obj.static: node += addnodes.desc_annotation('static', 'static') node += nodes.Text(' ') def add_target_and_index(self, sigobj, sig, signode): theid = sigobj.get_id() name = unicode(sigobj.name) signode['names'].append(theid) signode['ids'].append(theid) signode['first'] = (not self.names) self.state.document.note_explicit_target(signode) self.env.domaindata['php']['objects'].setdefault(name, (self.env.docname, self.objtype, theid)) indextext = self.get_index_text(name) if indextext: self.indexnode['entries'].append(fixup_index_entry(('single', indextext, name, name, 'foobar'))) def before_content(self): lastname = self.names and self.names[-1] if lastname and not self.env.temp_data.get('php:parent'): assert isinstance(lastname, NamedDefExpr) self.env.temp_data['php:parent'] = lastname.name self.parentname_set = True else: self.parentname_set = False def after_content(self): if self.parentname_set: self.env.temp_data['php:parent'] = None def parse_definition(self, parser): raise NotImplementedError() def describe_signature(self, signode, arg): raise NotImplementedError() def handle_signature(self, sig, signode): parser = DefinitionParser(sig) try: rv = self.parse_definition(parser) parser.assert_end() except DefinitionError, e: self.env.warn(self.env.docname, e.description, self.lineno) raise ValueError self.describe_signature(signode, rv) parent = self.env.temp_data.get('php:parent') if parent is not None: rv = rv.clone() rv.name = rv.name.prefix(parent) return rv class PHPClassObject(PHPObject): def get_index_text(self, name): return _('%s (PHP class)') % name def parse_definition(self, parser): return parser.parse_class() def describe_signature(self, signode, cls): self.attach_modifiers(signode, cls) signode += addnodes.desc_annotation('class ', 'class ') self.attach_name(signode, cls.name) class PHPTypeObject(PHPObject): def get_index_text(self, name): if self.objtype == 'type': return _('%s (PHP type)') % name return '' def parse_definition(self, parser): return parser.parse_type_object() def describe_signature(self, signode, obj): self.attach_modifiers(signode, obj) signode += addnodes.desc_annotation('type ', 'type ') if obj.typename is not None: self.attach_type(signode, obj.typename) signode += nodes.Text(' ') self.attach_name(signode, obj.name) class PHPMemberObject(PHPObject): def get_index_text(self, name): if self.objtype == 'member': return _('%s (PHP member)') % name return '' def parse_definition(self, parser): return parser.parse_member_object() def describe_signature(self, signode, obj): self.attach_modifiers(signode, obj) self.attach_type(signode, obj.typename) signode += nodes.Text(' ') self.attach_name(signode, obj.name) if obj.value is not None: signode += nodes.Text(u' = ' + obj.value) class PHPFunctionObject(PHPObject): def attach_function(self, node, func): owner, name = func.name.split_owner() if owner is not None: owner = unicode(owner) + '::' node += addnodes.desc_addname(owner, owner) # cast operator is special. in this case the return value # is reversed. if isinstance(name, CastOpDefExpr): node += addnodes.desc_name('operator', 'operator') node += nodes.Text(u' ') self.attach_type(node, name.typename) else: funcname = unicode(name) node += addnodes.desc_name(funcname, funcname) paramlist = addnodes.desc_parameterlist() for arg in func.signature: param = addnodes.desc_parameter('', '', noemph=True) if arg.type is not None: self.attach_type(param, arg.type) param += nodes.Text(u' ') param += nodes.emphasis(unicode(arg.name), unicode(arg.name)) if arg.default is not None: def_ = u'=' + unicode(arg.default) param += nodes.emphasis(def_, def_) paramlist += param node += paramlist if func.const: node += addnodes.desc_addname(' const', ' const') if func.pure_virtual: node += addnodes.desc_addname(' = 0', ' = 0') def get_index_text(self, name): return _('%s (PHP function)') % name def parse_definition(self, parser): return parser.parse_function() def describe_signature(self, signode, func): self.attach_modifiers(signode, func) if func.explicit: signode += addnodes.desc_annotation('explicit', 'explicit') signode += nodes.Text(' ') # return value is None for things with a reverse return value # such as casting operator definitions or constructors # and destructors. if func.rv is not None: self.attach_type(signode, func.rv) signode += nodes.Text(u' ') self.attach_function(signode, func) class PHPCurrentNamespace(Directive): """This directive is just to tell Sphinx that we're documenting stuff in namespace foo. """ has_content = False required_arguments = 1 optional_arguments = 0 final_argument_whitespace = True option_spec = {} def run(self): env = self.state.document.settings.env if self.arguments[0].strip() in ('NULL', '0', 'nullptr'): env.temp_data['php:prefix'] = None else: parser = DefinitionParser(self.arguments[0]) try: prefix = parser.parse_type() parser.assert_end() except DefinitionError, e: self.env.warn(self.env.docname, e.description, self.lineno) else: env.temp_data['php:prefix'] = prefix return [] class PHPXRefRole(XRefRole): def process_link(self, env, refnode, has_explicit_title, title, target): refnode['php:parent'] = env.temp_data.get('php:parent') if not has_explicit_title: target = target.lstrip('~') # only has a meaning for the title # if the first character is a tilde, don't display the module/class # parts of the contents if title[:1] == '~': title = title[1:] dcolon = title.rfind('::') if dcolon != -1: title = title[dcolon + 2:] return title, target class PHPDomain(Domain): """PHP language domain.""" name = 'php' label = 'PHP' object_types = { 'class': ObjType(l_('class'), 'class'), 'function': ObjType(l_('function'), 'func'), 'member': ObjType(l_('member'), 'member'), 'type': ObjType(l_('type'), 'type') } directives = { 'class': PHPClassObject, 'function': PHPFunctionObject, 'member': PHPMemberObject, 'type': PHPTypeObject, 'namespace': PHPCurrentNamespace } roles = { 'class': PHPXRefRole(), 'func' : PHPXRefRole(fix_parens=True), 'member': PHPXRefRole(), 'type': PHPXRefRole() } initial_data = { 'objects': {}, # fullname -> docname, objtype } def clear_doc(self, docname): for fullname, (fn, _, _) in self.data['objects'].items(): if fn == docname: del self.data['objects'][fullname] def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): def _create_refnode(expr): name = unicode(expr) if name not in self.data['objects']: return None obj = self.data['objects'][name] if obj[1] not in self.objtypes_for_role(typ): return None return make_refnode(builder, fromdocname, obj[0], obj[2], contnode, name) parser = DefinitionParser(target) # XXX: warn? try: expr = parser.parse_type().get_name() parser.skip_ws() if not parser.eof or expr is None: return None except DefinitionError: return None parent = node['php:parent'] rv = _create_refnode(expr) if rv is not None or parent is None: return rv parent = parent.get_name() rv = _create_refnode(expr.prefix(parent)) if rv is not None: return rv parent, name = parent.split_owner() return _create_refnode(expr.prefix(parent)) def get_objects(self): for refname, (docname, type, theid) in self.data['objects'].iteritems(): yield (refname, refname, type, docname, refname, 1) def setup(app): app.add_domain(PHPDomain)
[ "matthias@tinkerforge.com" ]
matthias@tinkerforge.com
4dcb1a63e7effceb8e87d2579849844a5dcaecbe
d9eb21a408a449918ed431f760b6a61292869de6
/Workshops/custom_list/test_custom_list.py
ba4bb2591f76ff8946987ea4c1a7891db8355939
[]
no_license
zhyordanova/Python-OOP
5c73ab851848c969beb50b774b67bc9e4c102610
aad42e108b676de119ac99bef632b76ac595d49a
refs/heads/main
2023-05-27T06:09:23.524422
2021-05-06T22:00:18
2021-05-06T22:00:18
349,583,825
3
1
null
null
null
null
UTF-8
Python
false
false
9,477
py
from unittest import TestCase from lists.custom_list import ArrayList class TestArrayList(TestCase): def setUp(self): self.al = ArrayList() def test_append__when_list_is_empty__expect_append_to_the_end(self): self.al.append(1) values = list(self.al) self.assertEqual([1], values) def test_append__expect_to_return_the_list(self): result = self.al.append(1) self.assertEqual(self.al, result) def test_append__when_list_not_empty__expect_append_to_the_end(self): self.al.append(1) self.al.append(2) self.al.append(3) values = list(self.al) self.assertEqual([1, 2, 3], values) def test_append__1024_values__expect_append_to_the_end(self): values = [x for x in range(1024)] [self.al.append(x) for x in values] list_value = list(self.al) self.assertEqual(values, list_value) def test_append__expect_to_increase_size(self): self.al.append(1) self.assertEqual(1, self.al.size()) def test_remove__when_index_is_valid__expect_remove_value_and_return_it(self): self.al.append(1) self.al.append(2) self.al.append(333) self.al.append(4) result = self.al.remove(2) self.assertEqual([1, 2, 4], list(self.al)) self.assertEqual(333, result) def test_remove__when_index_is_invalid__expect_to_raise(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) with self.assertRaises(IndexError): self.al.remove(self.al.size()) def test_get__when_index_is_valid__expect_to_return_it(self): self.al.append(1) self.al.append(2) self.al.append(333) self.al.append(4) result = self.al.get(2) self.assertEqual(333, result) def test_get__when_index_is_invalid__expect_to_raise(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) with self.assertRaises(IndexError): self.al.get(self.al.size()) def test_extend_whit_empty_iterable__expect_to_be_same(self): self.al.append(1) self.al.extend([]) self.assertEqual([1], list(self.al)) def test_extend_whit_list_iterable__expect_to_append_the_list(self): self.al.append(1) self.al.extend([2]) self.assertEqual([1, 2], list(self.al)) def test_extend_whit_generator__expect_to_append_the_list(self): self.al.append(1) self.al.extend((x for x in range(1))) self.assertEqual([1, 0], list(self.al)) def test_extend_when_empty__expect_to_append_to_list(self): self.al.append(1) self.al.extend([1]) self.assertEqual([1, 1], list(self.al)) def test_extend_whit_no_iterable__expect_to_raise(self): self.al.append(1) with self.assertRaises(ValueError): self.al.extend(2) def test_insert__when_index_is_valid__expect_to_place_value_at_index(self): self.al.append(1) self.al.append(2) self.al.append(4) self.al.append(5) self.al.append(6) self.al.append(7) self.al.append(8) self.al.append(9) self.al.insert(2, 333) self.assertEqual([1, 2, 333, 4, 5, 6, 7, 8, 9], list(self.al)) def test_insert__when_index_is_invalid__expect_to_raise(self): self.al.append(1) self.al.append(2) self.al.append(3) with self.assertRaises(IndexError): self.al.insert(self.al.size() + 1, 2) def test_pop__expect_to_remove_last_element_and_return_it(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) result = self.al.pop() self.assertEqual(4, result) self.assertEqual([1, 2, 3], list(self.al)) def test_pop__when_empty__expect_to_raise(self): with self.assertRaises(IndexError): self.al.pop() def test_clear__expect_to_be_empty(self): [self.al.append(x) for x in range(15)] self.al.clear() self.assertEqual([], list(self.al)) def test_index__when_item_is_present__expect_return_correct_index(self): [self.al.append(x) for x in range(15)] index = self.al.index(5) self.assertEqual(5, index) def test_index__when_item_is_not_present__expect_raise(self): [self.al.append(x) for x in range(15)] with self.assertRaises(ValueError): self.al.index(17) def test_count__when_item_is_present_one_time__expected_to_return_1(self): [self.al.append(x) for x in range(15)] expected_count = 1 actual_count = self.al.count(5) self.assertEqual(expected_count, actual_count) def test_count__when_item_is_present_multiple_times__expected_to_return_correct_count(self): [self.al.append(x) for x in range(15)] self.al.append(5) self.al.insert(3, 5) self.al.insert(7, 5) self.al.insert(1, 5) self.al.insert(9, 5) expected_count = 6 actual_count = self.al.count(5) self.assertEqual(expected_count, actual_count) def test_count__when_item_is_present_multiple_times_and_once_poped__expected_to_return_correct_count(self): [self.al.append(x) for x in range(15)] self.al.insert(3, 5) self.al.insert(7, 5) self.al.insert(1, 5) self.al.insert(9, 5) self.al.append(5) self.al.pop() expected_count = 5 actual_count = self.al.count(5) self.assertEqual(expected_count, actual_count) def test_count__when_item_is_not_present__expected_to_return_0(self): [self.al.append(x) for x in range(15)] expected_count = 0 actual_count = self.al.count(55) self.assertEqual(expected_count, actual_count) def test_reversed__expect_in_reversed_order(self): [self.al.append(x) for x in range(5)] expected = [x for x in range(4, -1, -1)] actual = self.al.reverse() self.assertEqual(expected, actual) def test_copy__expect_to_return_another_list_with_same_value(self): [self.al.append(x) for x in range(5)] copied_list = self.al.copy() expected_result = [x for x in range(5)] actual_result = list(copied_list) self.assertNotEqual(copied_list, self.al) self.assertEqual(expected_result, actual_result) def test_add_first__when_empty__expect_to_add(self): self.al.add_first(1) self.assertListEqual([1], list(self.al)) def test_add_first__when_non_empty__expect_to_add(self): [self.al.append(x) for x in range(5)] self.al.add_first(1) self.assertListEqual([1, 0, 1, 2, 3, 4], list(self.al)) def test_dictionize__when_empty__expect_dict(self): expected = {} actual = self.al.dictionize() self.assertEqual(expected, actual) def test_dictionize__when_even_elements_count_expect_coorct_result(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) expected = { 1: 2, 3: 4, } actual = self.al.dictionize() self.assertEqual(expected, actual) def test_dictionize__when_odd_elements_count_expect_coorct_result(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) self.al.append(5) expected = { 1: 2, 3: 4, 5: ' ', } actual = self.al.dictionize() self.assertEqual(expected, actual) def test_move_list_empty__expect_to_move_nothing(self): self.al.move(1) self.assertEqual([], list(self.al)) def test_move__when_moving_1_element__expect_to_move_1_element(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) self.al.move(1) self.assertEqual([2, 3, 4, 1], list(self.al)) def test_move__when_moving_3_elements__expect_to_move_3_elements(self): self.al.append(1) self.al.append(2) self.al.append(3) self.al.append(4) self.al.move(3) self.assertEqual([4, 1, 2, 3], list(self.al)) def test_move__when_moving_3_values_and_have_2_values__expect_to_move_3_value_from_the_start_to_the_end(self): self.al.append(1) self.al.append(2) self.al.move(3) self.assertEqual([2, 1], list(self.al)) def test_sum__when_values__expected_to_return_correct_sum(self): self.al.append(1) self.al.append('2') self.al.append(3) expected = 5 actual = self.al.sum() self.assertEqual(expected, actual) def test_sum__when_empty_expected_to_return_0(self): self.assertEqual(0, self.al.sum()) def test_overbound__expect_to_return_min_value(self): values = [x for x in range(15)] [self.al.append(x) for x in values] expected = max(values) actual = self.al.overbound() self.assertEqual(expected, actual) def test_underbound__expect_to_return_min_value(self): values = [x for x in range(15)] [self.al.append(x) for x in values] expected = min(values) actual = self.al.underbound() self.assertEqual(expected, actual)
[ "zhyordanova88@gmail.com" ]
zhyordanova88@gmail.com
026745467476e61080f1b8483e76fc80ed91ca82
8f337d7a1477eb9878bd252f45fadd967ba5dbbe
/run_galfit_disk_only.py
62c3df5903da86c2f2a4574520757cfb091c1fa8
[]
no_license
bpRsh/b1_research_lib
bd4c293946329ea96d0fb37d8769aaa83d1ca15d
1de77f683b3ba18a1ab142b0fe86114c7a67791a
refs/heads/master
2021-01-15T19:04:32.177465
2020-11-23T19:55:34
2020-11-23T19:55:34
99,805,200
0
0
null
null
null
null
UTF-8
Python
false
false
7,674
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*-# # # Author : Bhishan Poudel; Physics Graduate Student, Ohio University # Date : 26-Oct-2016 13:10 # Last update : Dec 15, 2016 # Est time : 3 min for one galaxy one filter. # Main commands : rm -r imgblock.fits subcomps.fit ; galfit expdisk_devauc.sh # galfit -o3 galfit.01 && rm -r galfit.01 # ds9 -multiframe imgblock.fits subcomps.fits & # Imports from __future__ import division, unicode_literals, print_function import subprocess import os import time from string import ascii_uppercase import astropy.io from astropy.io import fits from astropy.io.fits import getdata from astropy.io.fits import getheader from astropy.io.fits import getval paramfile = r'expdisk_devauc.sh' def replace_galfit_param(name, value, object_num=1, fixed=True): """Replace input galfit parameter file with new configuration. Arguments: name : parameter name, e.g. A-P, 1-10, 'Z' value: new value for the parameter in string form. e.g. '20.0' object_num: For A-Z object_num is 1 For objects, object_num starts from 1. fixed: True means parameter will be fixed (0) during fitting. NOTE: Keep fixed = False while using this function to vary the parameter. """ name, value = str(name), str(value) with open(paramfile) as f: gf_file = f.readlines() # Location of param. # 3rd column is where one can hold the parameters fixed (0) or allow vary 1 loc = [i for i in range(len(gf_file)) if gf_file[i].strip().startswith(name + ')')][object_num - 1] param_str = gf_file[loc] comment = param_str.find('#') if name in ascii_uppercase: fmt = '{}) {} {}' param_str = fmt.format(name, value, param_str[comment:]) else: fmt = '{}) {} {} {}' param_str = fmt.format(name, value, '0' if fixed else '1', param_str[comment:]) gf_file[loc] = param_str with open(paramfile, 'w') as f: f.writelines(gf_file) def run_galfit(galaxy, outdir, count): """Run galfit on the input galaxy and create model and residual images. Runs galfit on the given input galaxies and creates model and residue images in the output directory galaxy : base name of input galaxy, e.g f606w or f814w outdir : output directory, e.g. galfit_outputs count : count number of galaxy, e.g. 0 for f606w_gal0.fits Needs : galfit_outputs/two_components/bulge/ galfit_outputs/two_components/disk/ galfit_outputs/two_components/residual/ Note: 1. This program will also read the values of mag and rad from the input fitsfile header, and updates the value in the galfit paramfile 'sim2.feedme'. 2. it will also create the mask file using ic command. """ # galaxy = f606w or f814w # path = '/Users/poudel/jedisim/simdatabase/colors' path = '/Users/poudel/jedisim/simdatabase/galaxies' ingal = path + '/' + galaxy + '_gal' + str(count) + '.fits' psf = galaxy + '_psf.fits' # psf in the script directory # get the value of magnitude, radius and mag0 of input galaxy try: mag = getval(ingal, 'MAG') except: mag = 20.0 try: rad = getval(ingal, 'RADIUS') except: rad = 10.0 mag0 = getval(ingal, 'MAG0') # create galfit paramfile according to the input galaxy # For A-Z object_num is 1 # fixed=True means it is fixed and not changed print("\n\n\n") print('+' * 80) print('+' * 80) print('+' * 80) print('{} {} {}'.format('Current Galaxy : ', ingal, '')) print('+' * 80) print('+' * 80) print('+' * 80) replace_galfit_param('A', ingal, object_num=1, fixed=False) replace_galfit_param('D', psf, object_num=1, fixed=False) replace_galfit_param('J', mag0, object_num=1, fixed=False) replace_galfit_param('3', mag, object_num=1, fixed=False) replace_galfit_param('4', rad, object_num=1, fixed=False) replace_galfit_param('3', mag, object_num=2, fixed=False) replace_galfit_param('4', rad, object_num=2, fixed=False) # create mask file according to the input galaxy cmd = "ic '1 0 %1 0 == ?' " + ingal + " > mask.fits" subprocess.call(cmd, shell=True) # For objects, object_num starts from 1 # 1 = expdisk, 2 = devauc # run galfit # rm -r imgblock.fits subcomps.fits galfit.01 # removes these files. # galfit sim.feedme # gives galfit.01, imgblock.fits,if succeed. # galfit -o3 galfit.01 # runs only when galfit.01 exists # we can delete galfit.01 immediately after it it used. cmd1 = 'rm -r imgblock.fits; galfit ' + paramfile cmd2 = 'rm -r subcomps.fits; galfit -o3 galfit.01; rm -r galfit.01' print("\n\n\n") print('*' * 80) print('Running: {}'.format(cmd1)) print('*' * 80) subprocess.call(cmd1, shell=True) # gives galfit.01 if succeed if os.path.exists('galfit.01'): print("\n\n\n") print('!' * 80) print('Running: {}'.format(cmd2)) print('!' * 80) subprocess.call(cmd2, shell=True) # get residual map from imgblock.fits # residual = outdir + '/residual/' + galaxy + '_res' + str(count) + '.fits' # get devauc and expdisk models from subcomps.fits # galaxy = f606w or f814w # devauc = bulge and expdisk+residual = disk # devauc = outdir + '/bulge/' + galaxy + '_bulge' + str(count) + '.fits' expdisk = outdir + galaxy + '_disk' +\ str(count) + '.fits' # extracting frames of imgblock.fits and subcomps.fits if they exists. if os.path.isfile('subcomps.fits') and os.path.isfile('imgblock.fits'): # for imgblock.fits : 0 is empty, 1 is input, 2 is model, 3 is residual # dat_res, hdr_res = fits.getdata(r'imgblock.fits', ext=3, header=True) # for subcomps.fits: 0 is input, 1 is expdisk, 2 is devauc etc. dat_exp, hdr_exp = fits.getdata(r'subcomps.fits', ext=1, header=True) # dat_dev, hdr_dev = fits.getdata(r'subcomps.fits', ext=2, header=True) # fits.writeto(expdisk, dat_exp, hdr_exp, clobber=False) # fits.writeto(residual, dat_res, hdr_res, clobber=True) # fits.writeto(devauc, dat_dev, hdr_dev, clobber=True) fits.writeto(expdisk, dat_exp, hdr_exp, clobber=True) # print('{} {} {}'.format('Output file: ', expdisk, '')) # print('{} {} {}'.format('Output file: ', residual, '')) # print('{} {} {}'.format('Output file: ', devauc, '')) print('{} {} {}'.format('Output file: ', expdisk, '')) def main(): """Main program.""" # output directory without '/' in the end # range is from 0 to 101 and both f606w and f814w galfit_outdir = 'disk_only_280_301/' # there are 302 galaxies for each filter # for count in list(range(101, 303)): for count in range(280, 301): run_galfit('f606w', galfit_outdir, count) run_galfit('f814w', galfit_outdir, count) if __name__ == '__main__': # beginning time program_begin_time = time.time() begin_ctime = time.ctime() # run main program main() # print the time taken program_end_time = time.time() end_ctime = time.ctime() seconds = program_end_time - program_begin_time m, s = divmod(seconds, 60) h, m = divmod(m, 60) d, h = divmod(h, 24) print('\nBegin time: ', begin_ctime) print('End time: ', end_ctime, '\n') print("Time taken: {0:.0f} days, {1:.0f} hours, \ {2:.0f} minutes, {3:f} seconds.".format(d, h, m, s))
[ "bhishantryphysics@gmail.com" ]
bhishantryphysics@gmail.com
b3d9caa16e9c29665a7edb9b7efabb1a3531e91d
e6f1e23409bfcba563dcfc9dbf6d19c5c99fc0d5
/linear regression.py
07283088d68c33d1727f08a7efb0b7811af865cf
[]
no_license
AmiraHmd/gdML
4378fae056f5ff88cdd1a7d86c68c28f5d16e80d
a4e6c3f495d02c2b0c43700843290c89c30f2fc1
refs/heads/master
2022-10-24T01:13:48.355828
2020-06-24T10:12:35
2020-06-24T10:12:35
272,714,651
0
3
null
null
null
null
UTF-8
Python
false
false
2,909
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np from sklearn.datasets import make_regression import matplotlib.pyplot as plt # In[2]: x,y = make_regression(n_samples=100, n_features=1, noise=10) plt.scatter(x,y) # In[3]: print(x.shape) y=y.reshape(y.shape[0],1) print(y.shape) # In[4]: #matrice X X=np.hstack((x,np.ones(x.shape))) X.shape # In[5]: theta=np.random.randn(2,1) theta # In[6]: def model(X, theta): return X.dot(theta) # In[7]: plt.scatter(x,y) plt.plot(x, model(X, theta)) # In[8]: def cost_function(X, y, theta): m=len(y) return 1/(2*m )* np.sum((model(X,theta)-y)**2) # In[9]: cost_function(X, y, theta) # In[10]: def grad(X,y, theta): m=len(y) return 1/m *X.T.dot(model(X,theta)-y) # In[22]: def gradient_descent(X, y, theta, learning_rate, n_iterations): cost_history=np.zeros(n_iterations) for i in range(0, n_iterations): theta=theta-learning_rate*grad(X, y, theta) cost_history[i]=cost_function(X, y, theta) return theta, cost_history # In[23]: theta_final, cost_history= gradient_descent(X, y, theta, learning_rate=0.01, n_iterations=1000) # In[18]: theta_final # In[19]: predictions= model(X, theta_final) plt.scatter(x,y) plt.plot(X, predictions, c='r') # In[24]: plt.plot(range(1000), cost_history) # In[27]: def coef_determination(y, pred): u=((y-pred)**2).sum() v=((y-y.mean())**2).sum() return 1-u/v # In[28]: coef_determination(y, predictions) # In[29]: from sklearn.linear_model import SGDRegressor # In[31]: np.random.seed(0) x, y= make_regression(n_samples=100, n_features=1, noise=10) plt.scatter(x,y) # In[33]: model=SGDRegressor(max_iter=100, eta0=0.0001) model.fit(x,y) # In[35]: print('coeff R2=' , model.score(x,y)) plt.scatter(x,y) plt.plot(x, model.predict(x) , c='red', lw=3) # In[53]: model=SGDRegressor(max_iter=1000, eta0=0.001) model.fit(x,y) # In[55]: print('coeff R2=' , model.score(x,y)) plt.scatter(x,y) plt.plot(x, model.predict(x) , c='red', lw=3) # In[46]: from sklearn.preprocessing import PolynomialFeatures # In[47]: np.random.seed(0) # In[48]: # création du Dataset x, y = make_regression(n_samples=100, n_features=1, noise=10) y = y**2 # y ne varie plus linéairement selon x ! # In[49]: # On ajoute des variables polynômiales dans notre dataset poly_features = PolynomialFeatures(degree=2, include_bias=False) x = poly_features.fit_transform(x) # In[50]: plt.scatter(x[:,0], y) x.shape # la dimension de x: 100 lignes et 2 colonnes # In[51]: # On entraine le modele comme avant ! rien ne change ! model = SGDRegressor(max_iter=1000, eta0=0.001) model.fit(x,y) print('Coeff R2 =', model.score(x, y)) # In[52]: plt.scatter(x[:,0], y, marker='o') plt.scatter(x[:,0], model.predict(x), c='red', marker='+') # In[ ]:
[ "hamadiamira2@gmail.com" ]
hamadiamira2@gmail.com
0d345e0ccd73dd5b9c1f651ef05e860db671f8e1
76c5a7c8428387d83c0ac11e907997e12a27f8ef
/handler/base.py
bf5c39efa6fe59fccfd439a7b6d8d170d2e92587
[ "MIT" ]
permissive
northfun/godeyes
13fd52ce1030899f8d4f015c8a10b63e23d90447
5afffa52701e61514aa9935df2806f1804e4a43f
refs/heads/master
2020-09-12T22:54:03.929993
2019-11-27T15:56:45
2019-11-27T15:56:45
222,584,998
0
0
null
2019-11-19T01:54:23
2019-11-19T01:54:22
null
UTF-8
Python
false
false
257
py
class Base: instance = None client = None def __new__(cls, *args, **kwargs): if cls.instance is None: cls.instance = super().__new__(cls, *args, **kwargs) return cls.instance def __init__(self): pass
[ "chenenquan@qutoutiao.net" ]
chenenquan@qutoutiao.net
8097d71b8ebae32d7fdc01e7873b5ee6d6ad0fb4
c01ab71f681efdeb9f4e7d52ed083745b6d42590
/old/6th sem/cpp/TRIKA/test_modules/testCases.py
96b35814c7b3c3e9a1a25b8848bf226225f18b05
[]
no_license
anant-pushkar/competetive_programming_codes
398a39c85a761c8d242f42f368933239a438ac06
127c67d7d4e2cef2d1f25189b6535606f4523af6
refs/heads/master
2021-01-20T11:57:07.528790
2014-11-14T08:29:21
2014-11-14T08:29:21
23,577,655
0
1
null
null
null
null
UTF-8
Python
false
false
475
py
import testTemplate '''number of test suites''' nSuites=1 def getTests(): tests = [] suite=testTemplate.testSuite("Sample 1") testcase = testTemplate.testInstance("4 4\n1 1\n100 55 10 2\n20 10 90 1\n60 20 22 4\n1 30 70 5" , "Y 23" , "") suite.add(testcase) tests.append(suite) suite=testTemplate.testSuite("Sample 2") testcase = testTemplate.testInstance("2 2\n1 1\n1 55 \n20 10 " , "N" , "") suite.add(testcase) tests.append(suite) return tests
[ "anantpushkar009@gmail.com" ]
anantpushkar009@gmail.com
adbbdfada5b469d69539163f64be0df3954710d1
00af94d633b29adb849409a264caa49d4702822e
/examples/18_rgb_encoding_mobilenet.py
ec73d90363b79e1d647bf484a89e5213631038a9
[ "MIT" ]
permissive
gromovnik1337/depthai-python
bcc0fe5aff3651a698ee86daf07a5a860f3675d4
2b17444aba2f94a236222934e1572c4dd06062dc
refs/heads/main
2023-03-28T00:34:03.525543
2021-03-27T15:28:09
2021-03-27T15:28:09
348,476,293
0
0
MIT
2021-03-20T08:20:56
2021-03-16T20:01:17
null
UTF-8
Python
false
false
3,589
py
#!/usr/bin/env python3 from pathlib import Path import sys import cv2 import depthai as dai import numpy as np # Get argument first mobilenet_path = str((Path(__file__).parent / Path('models/mobilenet.blob')).resolve().absolute()) if len(sys.argv) > 1: mobilenet_path = sys.argv[1] pipeline = dai.Pipeline() cam = pipeline.createColorCamera() cam.setBoardSocket(dai.CameraBoardSocket.RGB) cam.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P) cam.setPreviewSize(300, 300) cam.setInterleaved(False) videoEncoder = pipeline.createVideoEncoder() videoEncoder.setDefaultProfilePreset(1920, 1080, 30, dai.VideoEncoderProperties.Profile.H265_MAIN) cam.video.link(videoEncoder.input) detection_nn = pipeline.createNeuralNetwork() detection_nn.setBlobPath(mobilenet_path) cam.preview.link(detection_nn.input) videoOut = pipeline.createXLinkOut() videoOut.setStreamName('h265') videoEncoder.bitstream.link(videoOut.input) xout_rgb = pipeline.createXLinkOut() xout_rgb.setStreamName("rgb") cam.preview.link(xout_rgb.input) xout_nn = pipeline.createXLinkOut() xout_nn.setStreamName("nn") detection_nn.out.link(xout_nn.input) # MobilenetSSD label texts texts = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] with dai.Device(pipeline) as device, open('video.h265', 'wb') as videoFile: device.startPipeline() queue_size = 8 q_rgb = device.getOutputQueue("rgb", queue_size) q_nn = device.getOutputQueue("nn", queue_size) q_rgb_enc = device.getOutputQueue('h265', maxSize=30, blocking=True) frame = None bboxes = [] labels = [] confidences = [] def frame_norm(frame, bbox): norm_vals = np.full(len(bbox), frame.shape[0]) norm_vals[::2] = frame.shape[1] return (np.clip(np.array(bbox), 0, 1) * norm_vals).astype(int) while True: in_rgb = q_rgb.tryGet() in_nn = q_nn.tryGet() while q_rgb_enc.has(): q_rgb_enc.get().getData().tofile(videoFile) if in_rgb is not None: # if the data from the rgb camera is available, transform the 1D data into a HxWxC frame shape = (3, in_rgb.getHeight(), in_rgb.getWidth()) frame = in_rgb.getData().reshape(shape).transpose(1, 2, 0).astype(np.uint8) frame = np.ascontiguousarray(frame) if in_nn is not None: bboxes = np.array(in_nn.getFirstLayerFp16()) bboxes = bboxes.reshape((bboxes.size // 7, 7)) bboxes = bboxes[bboxes[:, 2] > 0.5] # Cut bboxes and labels labels = bboxes[:, 1].astype(int) confidences = bboxes[:, 2] bboxes = bboxes[:, 3:7] if frame is not None: for raw_bbox, label, conf in zip(bboxes, labels, confidences): bbox = frame_norm(frame, raw_bbox) cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (255, 0, 0), 2) cv2.putText(frame, texts[label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255) cv2.putText(frame, f"{int(conf * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255) cv2.imshow("rgb", frame) if cv2.waitKey(1) == ord('q'): break print("To view the encoded data, convert the stream file (.h265) into a video file (.mp4) using a command below:") print("ffmpeg -framerate 30 -i video.h265 -c copy video.mp4")
[ "lukpila29@gmail.com" ]
lukpila29@gmail.com
6660b8d4d207c68d1ac096de1ccd5270579c84c5
cbe790c67841f82102b54d4e7ff9d9bfbae5435d
/GDash/GDash-Min/GDash-Min/urls.py
e532f05450bc7971f1c55fab5d0759c621db5488
[]
no_license
Lance-Gauthier-CSC/GenomeDashboard-Django
69fa35cd026492ca8fd0208a502a55cd7e709a85
0d644f83f01d04f444d65e22e0b7a2c1f8362ff0
refs/heads/master
2022-11-27T10:33:12.331828
2020-07-28T11:35:07
2020-07-28T11:35:07
270,015,615
0
0
null
null
null
null
UTF-8
Python
false
false
888
py
"""GDash-Min URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('', include('master.urls')), path('dalliance/', include('dalliance.urls')), path('ngl/', include('ngl.urls')), path('admin/', admin.site.urls), ]
[ "lance.gauthier.csc@gmail.com" ]
lance.gauthier.csc@gmail.com
6b7a698ab1b77b1c68ff89692d00593e418f7d31
7f62cf6037d0c6a0e79a0e197519f6404bc0d930
/bookBrowser.py
6f2ec69f728637bd7fd475914ddc0c60079da309
[]
no_license
stpCollabr8nLstn/book-browser
d6d25f346320f44169442514d06d25a66270d445
099463df504a4df2a3f4e54bcc0d31edab134110
refs/heads/master
2021-01-09T20:18:50.344789
2016-06-30T03:27:57
2016-06-30T03:27:57
62,276,237
0
0
null
null
null
null
UTF-8
Python
false
false
3,331
py
import flask import json app = flask.Flask(__name__) # returns the index of an id you are searching for in a list def get_index(general_list, key, value): general_index = None for i in range(len(general_list)): if value == general_list[i][key]: general_index = i break return general_index def get_books(author_id, book_list): authors_books = [] id_found = False for book in book_list: if author_id in book['authors']: authors_books.append(book) id_found = True if id_found: return authors_books else: return flask.abort(404) def get_authors(author_list, full_list): books_authors = [] for author in full_list: if author['id'] in author_list: books_authors.append(author) return books_authors with open('./data/authors.json', encoding='utf-8') as author_file: authors = json.loads(author_file.read()) with open('./data/books.json', encoding='utf-8') as book_file: books = json.loads(book_file.read()) num_books = 0 num_authors = 0 num_editions = 0 for book in books: num_books += 1 for edition in book['editions']: num_editions += 1 for author in authors: num_authors += 1 @app.route('/') def index(): return flask.render_template('index.html', num_authors=num_authors, num_books=num_books, num_editions=num_editions) @app.route('/authors/') def show_authors(): return flask.render_template('authors.html', authors=authors) @app.route('/authors/<author_id>/') def show_author(author_id): # check if author id is invalid # if author_id not in dictionary, render template author_index = get_index(authors, 'id', author_id) if author_index is None: flask.abort(404) authors_books = get_books(author_id, books) return flask.render_template('author.html', author=authors[author_index], author_id=author_id, authors_books=authors_books) @app.route('/books/') def show_books(): return flask.render_template('books.html', books=books) @app.route('/books/<book_id>/') def show_book(book_id): book_index = get_index(books, 'id', book_id) if book_index is None: flask.abort(404) books_authors = get_authors(books[book_index]['authors'], authors) for edition in books[book_index]['editions']: if 'publish_date' not in edition: edition['publish_date'] = 'Publish Date Unavailable' return flask.render_template('book.html', books=books, book_id=book_id, book_index=book_index, books_authors=books_authors) @app.route('/books/<book_id>/editions/<edition_id>') def show_edition(book_id, edition_id): book_index = get_index(books, 'id', book_id) edition_index = get_index(books[book_index]['editions'], 'id', edition_id) books_authors = get_authors(books[book_index]['editions'][edition_index]['authors'], authors) return flask.render_template('edition.html', books=books, book_id=book_id, book_index=book_index, books_authors=books_authors, edition_index=edition_index) @app.errorhandler(404) def not_found(err): return flask.render_template('404.html', path=flask.request.path), 404 if __name__ == '__main__': app.run(debug=True)
[ "amrios@us.ibm.com" ]
amrios@us.ibm.com
15fc22e8fd23bf75543afca8ce167e6017251fa0
fb1e852da0a026fb59c8cb24aeb40e62005501f1
/decoding/GAD/fairseq/dataclass/constants.py
93bc6d03cb81618c47a58009dc22f7953a106eb3
[ "LicenseRef-scancode-unknown-license-reference", "LGPL-2.1-or-later", "LicenseRef-scancode-free-unknown", "Apache-2.0", "MIT" ]
permissive
microsoft/unilm
134aa44867c5ed36222220d3f4fd9616d02db573
b60c741f746877293bb85eed6806736fc8fa0ffd
refs/heads/master
2023-08-31T04:09:05.779071
2023-08-29T14:07:57
2023-08-29T14:07:57
198,350,484
15,313
2,192
MIT
2023-08-19T11:33:20
2019-07-23T04:15:28
Python
UTF-8
Python
false
false
1,626
py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from enum import Enum, EnumMeta from typing import List class StrEnumMeta(EnumMeta): # this is workaround for submitit pickling leading to instance checks failing in hydra for StrEnum, see # https://github.com/facebookresearch/hydra/issues/1156 @classmethod def __instancecheck__(cls, other): return "enum" in str(type(other)) class StrEnum(Enum, metaclass=StrEnumMeta): def __str__(self): return self.value def __eq__(self, other: str): return self.value == other def __repr__(self): return self.value def __hash__(self): return hash(str(self)) def ChoiceEnum(choices: List[str]): """return the Enum class used to enforce list of choices""" return StrEnum("Choices", {k: k for k in choices}) LOG_FORMAT_CHOICES = ChoiceEnum(["json", "none", "simple", "tqdm"]) DDP_BACKEND_CHOICES = ChoiceEnum([ "c10d", # alias for pytorch_ddp "legacy_ddp", "no_c10d", # alias for legacy_ddp "pytorch_ddp", "slow_mo", ]) DATASET_IMPL_CHOICES = ChoiceEnum(["raw", "lazy", "cached", "mmap", "fasta"]) GENERATION_CONSTRAINTS_CHOICES = ChoiceEnum(["ordered", "unordered"]) GENERATION_DECODING_FORMAT_CHOICES = ChoiceEnum( ["unigram", "ensemble", "vote", "dp", "bs"] ) ZERO_SHARDING_CHOICES = ChoiceEnum(["none", "os"]) PIPELINE_CHECKPOINT_CHOICES = ChoiceEnum(["always", "never", "except_last"]) PRINT_ALIGNMENT_CHOICES = ChoiceEnum(["hard", "soft"])
[ "tage@microsoft.com" ]
tage@microsoft.com
4b79a3eb38897d261f00134058fddc49fa3acc84
f8de6503a34902e5f12d1a0ea22be54c342fbc9c
/translator/__init__.py
ebea33dce6b355697575aa5d6ceb801be7d612e4
[]
no_license
ethanhjennings/didnt-even-know-it
2e6b14ad598a8e5f66584e7172cc53c0aa0c551e
207b737597966b77409f58b13be3a1bf2bef7ee4
refs/heads/master
2021-01-20T12:44:48.875354
2013-09-24T01:27:21
2013-09-24T01:27:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
from translator.translate import translatePoem from translator.exceptions import TranslatorSyntaxError
[ "ethan@cs.utexas.edu" ]
ethan@cs.utexas.edu
048eb7259bc442fe98c5f467df45c137bb3725cd
4fb8939db0fac64cca6e8414b75353cc6f89b89c
/venv/Lib/site-packages/jedi/evaluate/compiled/subprocess/__init__.py
9cc8704a457e1919212c066ec733eb538301e8b1
[ "MIT" ]
permissive
BDubon/Wander
2c303e09524d84c455171dfe2926e15f87b3bd3c
12c7e5a9c18b0445a01a61fa1e05f2681bf884df
refs/heads/master
2022-12-11T20:30:40.468109
2019-11-15T03:18:17
2019-11-15T03:18:17
131,355,054
1
0
MIT
2022-11-22T04:32:15
2018-04-27T23:59:07
Python
UTF-8
Python
false
false
11,703
py
""" Makes it possible to do the compiled analysis in a subprocess. This has two goals: 1. Making it safer - Segfaults and RuntimeErrors as well as stdout/stderr can be ignored and dealt with. 2. Make it possible to handle different Python versions as well as virtualenvs. """ import os import sys import subprocess import socket import errno import weakref import traceback from functools import partial from jedi._compatibility import queue, is_py3, force_unicode, \ pickle_dump, pickle_load, GeneralizedPopen from jedi.cache import memoize_method from jedi.evaluate.compiled.subprocess import functions from jedi.evaluate.compiled.access import DirectObjectAccess, AccessPath, \ SignatureParam from jedi.api.exceptions import InternalError _subprocesses = {} _MAIN_PATH = os.path.join(os.path.dirname(__file__), '__main__.py') def get_subprocess(executable): try: return _subprocesses[executable] except KeyError: sub = _subprocesses[executable] = _CompiledSubprocess(executable) return sub def _get_function(name): return getattr(functions, name) class _EvaluatorProcess(object): def __init__(self, evaluator): self._evaluator_weakref = weakref.ref(evaluator) self._evaluator_id = id(evaluator) self._handles = {} def get_or_create_access_handle(self, obj): id_ = id(obj) try: return self.get_access_handle(id_) except KeyError: access = DirectObjectAccess(self._evaluator_weakref(), obj) handle = AccessHandle(self, access, id_) self.set_access_handle(handle) return handle def get_access_handle(self, id_): return self._handles[id_] def set_access_handle(self, handle): self._handles[handle.id] = handle class EvaluatorSameProcess(_EvaluatorProcess): """ Basically just an easy access to functions.py. It has the same API as EvaluatorSubprocess and does the same thing without using a subprocess. This is necessary for the Interpreter process. """ def __getattr__(self, name): return partial(_get_function(name), self._evaluator_weakref()) class EvaluatorSubprocess(_EvaluatorProcess): def __init__(self, evaluator, compiled_subprocess): super(EvaluatorSubprocess, self).__init__(evaluator) self._used = False self._compiled_subprocess = compiled_subprocess def __getattr__(self, name): func = _get_function(name) def wrapper(*args, **kwargs): self._used = True result = self._compiled_subprocess.run( self._evaluator_weakref(), func, args=args, kwargs=kwargs, ) # IMO it should be possible to create a hook in pickle.load to # mess with the loaded objects. However it's extremely complicated # to work around this so just do it with this call. ~ dave return self._convert_access_handles(result) return wrapper def _convert_access_handles(self, obj): if isinstance(obj, SignatureParam): return SignatureParam(*self._convert_access_handles(tuple(obj))) elif isinstance(obj, tuple): return tuple(self._convert_access_handles(o) for o in obj) elif isinstance(obj, list): return [self._convert_access_handles(o) for o in obj] elif isinstance(obj, AccessHandle): try: # Rewrite the access handle to one we're already having. obj = self.get_access_handle(obj.id) except KeyError: obj.add_subprocess(self) self.set_access_handle(obj) elif isinstance(obj, AccessPath): return AccessPath(self._convert_access_handles(obj.accesses)) return obj def __del__(self): if self._used: self._compiled_subprocess.delete_evaluator(self._evaluator_id) class _CompiledSubprocess(object): _crashed = False def __init__(self, executable): self._executable = executable self._evaluator_deletion_queue = queue.deque() @property @memoize_method def _process(self): parso_path = sys.modules['parso'].__file__ args = ( self._executable, _MAIN_PATH, os.path.dirname(os.path.dirname(parso_path)) ) return GeneralizedPopen( args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, ) def run(self, evaluator, function, args=(), kwargs={}): # Delete old evaluators. while True: try: evaluator_id = self._evaluator_deletion_queue.pop() except IndexError: break else: self._send(evaluator_id, None) assert callable(function) return self._send(id(evaluator), function, args, kwargs) def get_sys_path(self): return self._send(None, functions.get_sys_path, (), {}) def kill(self): self._crashed = True try: subprocess = _subprocesses[self._executable] except KeyError: # Fine it was already removed from the cache. pass else: # In the `!=` case there is already a new subprocess in place # and we don't need to do anything here anymore. if subprocess == self: del _subprocesses[self._executable] self._process.kill() self._process.wait() def _send(self, evaluator_id, function, args=(), kwargs={}): if self._crashed: raise InternalError("The subprocess %s has crashed." % self._executable) if not is_py3: # Python 2 compatibility kwargs = {force_unicode(key): value for key, value in kwargs.items()} data = evaluator_id, function, args, kwargs try: pickle_dump(data, self._process.stdin) except (socket.error, IOError) as e: # Once Python2 will be removed we can just use `BrokenPipeError`. # Also, somehow in windows it returns EINVAL instead of EPIPE if # the subprocess dies. if e.errno not in (errno.EPIPE, errno.EINVAL): # Not a broken pipe raise self.kill() raise InternalError("The subprocess %s was killed. Maybe out of memory?" % self._executable) try: is_exception, traceback, result = pickle_load(self._process.stdout) except EOFError: self.kill() raise InternalError("The subprocess %s has crashed." % self._executable) if is_exception: # Replace the attribute error message with a the traceback. It's # way more informative. result.args = (traceback,) raise result return result def delete_evaluator(self, evaluator_id): """ Currently we are not deleting evalutors instantly. They only get deleted once the subprocess is used again. It would probably a better solution to move all of this into a thread. However, the memory usage of a single evaluator shouldn't be that high. """ # With an argument - the evaluator gets deleted. self._evaluator_deletion_queue.append(evaluator_id) class Listener(object): def __init__(self): self._evaluators = {} # TODO refactor so we don't need to process anymore just handle # controlling. self._process = _EvaluatorProcess(Listener) def _get_evaluator(self, function, evaluator_id): from jedi.evaluate import Evaluator try: evaluator = self._evaluators[evaluator_id] except KeyError: from jedi.api.environment import InterpreterEnvironment evaluator = Evaluator( # The project is not actually needed. Nothing should need to # access it. project=None, environment=InterpreterEnvironment() ) self._evaluators[evaluator_id] = evaluator return evaluator def _run(self, evaluator_id, function, args, kwargs): if evaluator_id is None: return function(*args, **kwargs) elif function is None: del self._evaluators[evaluator_id] else: evaluator = self._get_evaluator(function, evaluator_id) # Exchange all handles args = list(args) for i, arg in enumerate(args): if isinstance(arg, AccessHandle): args[i] = evaluator.compiled_subprocess.get_access_handle(arg.id) for key, value in kwargs.items(): if isinstance(value, AccessHandle): kwargs[key] = evaluator.compiled_subprocess.get_access_handle(value.id) return function(evaluator, *args, **kwargs) def listen(self): stdout = sys.stdout # Mute stdout/stderr. Nobody should actually be able to write to those, # because stdout is used for IPC and stderr will just be annoying if it # leaks (on module imports). sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') stdin = sys.stdin if sys.version_info[0] > 2: stdout = stdout.buffer stdin = stdin.buffer while True: try: payload = pickle_load(stdin) except EOFError: # It looks like the parent process closed. Don't make a big fuss # here and just exit. exit(1) try: result = False, None, self._run(*payload) except Exception as e: result = True, traceback.format_exc(), e pickle_dump(result, file=stdout) class AccessHandle(object): def __init__(self, subprocess, access, id_): self.access = access self._subprocess = subprocess self.id = id_ def add_subprocess(self, subprocess): self._subprocess = subprocess def __repr__(self): try: detail = self.access except AttributeError: detail = '#' + str(self.id) return '<%s of %s>' % (self.__class__.__name__, detail) def __getstate__(self): return self.id def __setstate__(self, state): self.id = state def __getattr__(self, name): if name in ('id', 'access') or name.startswith('_'): raise AttributeError("Something went wrong with unpickling") #if not is_py3: print >> sys.stderr, name #print('getattr', name, file=sys.stderr) return partial(self._workaround, force_unicode(name)) def _workaround(self, name, *args, **kwargs): """ TODO Currently we're passing slice objects around. This should not happen. They are also the only unhashable objects that we're passing around. """ if args and isinstance(args[0], slice): return self._subprocess.get_compiled_method_return(self.id, name, *args, **kwargs) return self._cached_results(name, *args, **kwargs) @memoize_method def _cached_results(self, name, *args, **kwargs): #if type(self._subprocess) == EvaluatorSubprocess: #print(name, args, kwargs, #self._subprocess.get_compiled_method_return(self.id, name, *args, **kwargs) #) return self._subprocess.get_compiled_method_return(self.id, name, *args, **kwargs)
[ "33406715+BDubon@users.noreply.github.com" ]
33406715+BDubon@users.noreply.github.com
a29864449dba920011f6794ab0dfac0a7a45a45b
d5b95e229c5c21ff3c25e828838aed1dc5ca9c1c
/prueba.py
13bc402c7d03354e6f93fd3460b7881ddc0942d7
[]
no_license
jmvazz/ds_desafio1
d3c89dbd82cace3eed65976ee0909a89bd1aac33
b16f0898f367f6e4e9e828a56d8e901ae32b7db6
refs/heads/master
2020-03-26T17:01:52.841600
2018-09-05T20:13:57
2018-09-05T20:13:57
145,138,172
0
0
null
null
null
null
UTF-8
Python
false
false
20
py
def prueba(): pass
[ "jm.vazzano@gmail.com" ]
jm.vazzano@gmail.com
3e6ea47accbdc339c75b3939b92eac58902b0157
203243793e32405778c18d27a32088c806da8ee1
/DataStructuresAndAlgorithms/DataStructures/ArrayQueue.py
ec38702b77cf625219811099c8312d9e536bc7f9
[]
no_license
jonnysassoon/Projects
bf9ff35f71b5583d9377deb41a6aa485eec313ac
3a96ee7800dbdf1c08cdb6c4e5534c4db019ee4a
refs/heads/master
2021-10-15T23:14:38.053566
2019-02-06T16:14:53
2019-02-06T16:14:53
109,350,386
0
0
null
null
null
null
UTF-8
Python
false
false
1,301
py
""" Author: Jonny Sassoon Program: Queue Implementation of FIFO Data Structure """ class Empty(Exception): pass class ArrayQueue: INITIAL_CAPACITY = 10 def __init__(self): self.data = [None] * ArrayQueue.INITIAL_CAPACITY self.num_of_elems = 0 self.front_ind = 0 def __len__(self): return self.num_of_elems def is_empty(self): return (self.num_of_elems == 0) def enqueue(self, elem): if (self.num_of_elems == len(self.data)): self.resize(2 * len(self.data)) back_ind = (self.front_ind + self.num_of_elems) % len(self.data) self.data[back_ind] = elem self.num_of_elems += 1 def dequeue(self): if (self.is_empty()): raise Empty("Queue is empty") value = self.data[self.front_ind] self.data[self.front_ind] = None self.front_ind = (self.front_ind + 1) % len(self.data) self.num_of_elems -= 1 if(self.num_of_elems < len(self.data) // 4): self.resize(len(self.data) // 2) return value def first(self): if self.is_empty(): raise Empty("Queue is empty") return self.data[self.front_ind] def resize(self, new_cap): old_data = self.data self.data = [None] * new_cap old_ind = self.front_ind for new_ind in range(self.num_of_elems): self.data[new_ind] = old_data[old_ind] old_ind = (old_ind + 1) % len(old_data) self.front_ind = 0
[ "jonny.sassoon@nyu.edu" ]
jonny.sassoon@nyu.edu
8b336856ca278bdb4d36904fd1587cee0e315585
da6e23ae4623a4c975f37257ab8a22e0bdf0e67e
/File-Encrypt/file-encrypt.py
c147cd3b3076c4fa7bd467bc153e87c3e31d15c1
[]
no_license
unbin/Python
e7946d31774fed6bc88618e70be3cac58c650261
4e73c0ae1bb1ec934831eaff8efabb79b64adb84
refs/heads/master
2020-08-03T10:45:43.171974
2020-04-04T01:40:29
2020-04-04T01:40:29
211,724,147
0
0
null
null
null
null
UTF-8
Python
false
false
1,189
py
# File Encrypt.py # =============== # XOR Encrypts a file with # the supplied key. # from sys import argv, exit import sys import os DEBUG = True # DEF def usage(): print("Usage: " + argv[0] + " <File Path> <Key>") exit(1) # Read blocks from file_in, xor encrypt, and write to file_out def encrypt(file_in, file_out): file_out.write("Encryption Not Implemented Yet!\n".encode("utf-8")) # END DEF # MAIN # Check arguments if (len(argv) != 3): usage() # Check if file exists if not os.path.exists(argv[1]): print("Error: Path file name not found!", file=sys.stderr) exit(1) if not os.path.isfile(argv[1]): print("Error: File must be a normal file.", file=sys.stderr) exit(1) file_size = os.path.getsize(argv[1]) if DEBUG: print("[DEBUG] File Size: {} Bytes".format(file_size)) with open (argv[1], "rb") as file_in: if DEBUG: print("[DEBUG] File " + file_in.name + " Opened.") with open(argv[1] + ".encrypted", 'wb') as file_out: if DEBUG: print("[DEBUG] File " + file_out.name + " Opened.") encrypt(file_in, file_out) file_out.close() file_in.close() # END MAIN
[ "unbin1234@gmail.com" ]
unbin1234@gmail.com
30d076a33b413db6d98a89853257711172247372
60f067710243089ea5a09c676f8092232904ed40
/ltp/task_segmention.py
bfd04d9af9f685de08e23778fb8c48e4e00e5b95
[]
no_license
liyang-2401/ltp
cfc5386fe9cebc78f828431b1c04d8288d450678
5d26093f2e2bbec76a892dd25e206d9e7dacc13e
refs/heads/master
2023-01-22T14:43:16.871839
2020-12-04T08:00:23
2020-12-04T08:00:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,058
py
import types import numpy import torch import torch.utils.data import os from tqdm import tqdm from argparse import ArgumentParser from ltp.data import dataset as datasets from ltp import optimization from ltp.data.utils import collate from seqeval.metrics import f1_score from ltp.transformer_linear import TransformerLinear as Model import pytorch_lightning as pl from pytorch_lightning import Trainer from transformers import AutoTokenizer from ltp.utils import TaskInfo, common_train, map2device, convert2npy os.environ['TOKENIZERS_PARALLELISM'] = 'true' task_info = TaskInfo(task_name='seg', metric_name='f1') # CUDA_VISIBLE_DEVICES=0 PYTHONPATH=. python ltp/task_segmention.py --data_dir=data/seg --num_labels=2 --max_epochs=10 --batch_size=16 --gpus=1 --precision=16 --auto_lr_find=lr def build_dataset(model, data_dir): dataset = datasets.load_dataset( datasets.Conllu, data_dir=data_dir, cache_dir=data_dir ) dataset.remove_columns_(["id", "lemma", "upos", "xpos", "feats", "head", "deprel", "deps", "misc"]) tokenizer = AutoTokenizer.from_pretrained(model.hparams.transformer, use_fast=True) # {'B':1, 'I':0} def tokenize(examples): res = tokenizer( examples['form'], is_split_into_words=True, max_length=model.transformer.config.max_position_embeddings, truncation=True ) labels = [] for encoding in res.encodings: labels.append([]) last_word_idx = -1 for word_idx in encoding.words[1:-1]: labels[-1].append(int(word_idx != last_word_idx)) last_word_idx = word_idx res['labels'] = labels return res dataset = dataset.map( lambda examples: tokenize(examples), batched=True, cache_file_names={ k: d._get_cache_file_path(f"{task_info.task_name}-{k}-tokenized") for k, d in dataset.items() } ) dataset.set_format(type='torch', columns=['input_ids', 'token_type_ids', 'attention_mask', 'labels']) dataset.shuffle( indices_cache_file_names={ k: d._get_cache_file_path(f"{task_info.task_name}-{k}-shuffled-index-{model.hparams.seed}") for k, d in dataset.items() } ) return dataset, f1_score def validation_method(metric, loss_tag='val_loss', metric_tag=f'val_{task_info.metric_name}', log=True): label_mapper = ['I-W', 'B-W'] def step(self: pl.LightningModule, batch, batch_nb): loss, logits = self(**batch) mask = batch['attention_mask'][:, 2:] != 1 # acc labels = batch['labels'] preds = torch.argmax(logits, dim=-1) labels[mask] = -1 preds[mask] = -1 labels = [[label_mapper[word] for word in sent if word != -1] for sent in labels.detach().cpu().numpy()] preds = [[label_mapper[word] for word in sent if word != -1] for sent in preds.detach().cpu().numpy()] return {'loss': loss.item(), 'pred': preds, 'labels': labels} def epoch_end(self: pl.LightningModule, outputs): if isinstance(outputs, dict): outputs = [outputs] length = len(outputs) loss = sum([output['loss'] for output in outputs]) / length preds = sum([output['pred'] for output in outputs], []) labels = sum([output['labels'] for output in outputs], []) f1 = metric(preds, labels) if log: self.log_dict( dictionary={loss_tag: loss, metric_tag: f1}, on_step=False, on_epoch=True, prog_bar=True, logger=True ) else: return f1 return step, epoch_end def build_method(model): dataset, metric = build_dataset(model, model.hparams.data_dir) def train_dataloader(self): res = torch.utils.data.DataLoader( dataset[datasets.Split.TRAIN], batch_size=self.hparams.batch_size, collate_fn=collate, num_workers=self.hparams.num_workers, pin_memory=True ) return res def training_step(self, batch, batch_nb): loss, logits = self(**batch) self.log("loss", loss.item()) return loss def val_dataloader(self): return torch.utils.data.DataLoader( dataset[datasets.Split.VALIDATION], batch_size=self.hparams.batch_size, collate_fn=collate, num_workers=self.hparams.num_workers, pin_memory=True ) def test_dataloader(self): return torch.utils.data.DataLoader( dataset[datasets.Split.TEST], batch_size=self.hparams.batch_size, collate_fn=collate, num_workers=self.hparams.num_workers, pin_memory=True ) # AdamW + LR scheduler def configure_optimizers(self: Model): num_epoch_steps = (len(dataset[datasets.Split.TRAIN]) + self.hparams.batch_size - 1) // self.hparams.batch_size num_train_steps = num_epoch_steps * self.hparams.max_epochs optimizer, scheduler = optimization.create_optimizer( self, lr=self.hparams.lr, num_train_steps=num_train_steps, weight_decay=self.hparams.weight_decay, warmup_steps=self.hparams.warmup_steps, warmup_proportion=self.hparams.warmup_proportion, layerwise_lr_decay_power=self.hparams.layerwise_lr_decay_power, n_transformer_layers=self.transformer.config.num_hidden_layers, lr_scheduler=optimization.get_polynomial_decay_schedule_with_warmup, lr_scheduler_kwargs={ 'lr_end': self.hparams.lr_end, 'power': self.hparams.lr_decay_power } ) return [optimizer], [{'scheduler': scheduler, 'interval': 'step'}] model.configure_optimizers = types.MethodType(configure_optimizers, model) model.train_dataloader = types.MethodType(train_dataloader, model) model.training_step = types.MethodType(training_step, model) # model.training_epoch_end = types.MethodType(training_epoch_end, model) validation_step, validation_epoch_end = validation_method( metric, loss_tag='val_loss', metric_tag=f'val_{task_info.metric_name}' ) model.val_dataloader = types.MethodType(val_dataloader, model) model.validation_step = types.MethodType(validation_step, model) model.validation_epoch_end = types.MethodType(validation_epoch_end, model) test_step, test_epoch_end = validation_method( metric, loss_tag='test_loss', metric_tag=f'test_{task_info.metric_name}' ) model.test_dataloader = types.MethodType(test_dataloader, model) model.test_step = types.MethodType(test_step, model) model.test_epoch_end = types.MethodType(test_epoch_end, model) def add_task_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument('--seed', type=int, default=19980524) parser.add_argument('--batch_size', type=int, default=16) parser.add_argument('--num_workers', type=int, default=4) parser.add_argument('--data_dir', type=str, required=True) parser.add_argument('--build_dataset', action='store_true') return parser def build_distill_dataset(args): model = Model.load_from_checkpoint( args.resume_from_checkpoint, hparams=args ) model.eval() model.freeze() dataset, metric = build_dataset(model, args.data_dir) train_dataloader = torch.utils.data.DataLoader( dataset[datasets.Split.TRAIN], batch_size=args.batch_size, collate_fn=collate, num_workers=args.num_workers ) output = os.path.join(args.data_dir, 'output.pt') if torch.cuda.is_available(): model.cuda() map2cpu = lambda x: map2device(x) map2cuda = lambda x: map2device(x, model.device) else: map2cpu = lambda x: x map2cuda = lambda x: x with torch.no_grad(): batchs = [] for batch in tqdm(train_dataloader): batch = map2cuda(batch) loss, logits = model(**batch) batch.update(logits=logits) batchs.append(map2cpu(batch)) numpy.savez(output, data=convert2npy(batchs)) print("Done") def main(): parser = ArgumentParser() # add task level args parser = add_task_specific_args(parser) # add model specific args parser = Model.add_model_specific_args(parser) parser = optimization.add_optimizer_specific_args(parser) parser = Trainer.add_argparse_args(parser) # set task specific args parser.set_defaults(num_labels=2) args = parser.parse_args() if args.build_dataset: build_distill_dataset(args) else: common_train( args, metric=f'val_{task_info.metric_name}', model_class=Model, build_method=build_method, task=task_info.task_name ) if __name__ == '__main__': main()
[ "ylfeng@ir.hit.edu.cn" ]
ylfeng@ir.hit.edu.cn
6878d0f840206e6156c0f635965e8608c7f7bd8e
4ddb1cb60794f75b7f72074fee6002f4f7367043
/day22.py
e682b2491ffcafe21b85d17927c4bd51a18b548b
[]
no_license
shamayn/aoc2020
25032c84843e5ccb4472bb762ea88ab91b04f249
3a81253f0825180615d64dd6dae57a8a1ca9d28c
refs/heads/main
2023-02-15T08:54:59.214285
2021-01-18T02:39:40
2021-01-18T02:39:40
330,533,882
0
0
null
null
null
null
UTF-8
Python
false
false
3,613
py
from collections import deque TEST_INPUT = [ "Player 1:", "9", "2", "6", "3", "1", "Player 2:", "5", "8", "4", "7", "10", ] TEST_INFINITE_INPUT = [ "Player 1:", "43", "19", "Player 2:", "2", "29", "14", ] def playCombat(input): playerdecks = parseDecks(input) while len(playerdecks[1]) > 0 and len(playerdecks[2]) > 0: cards = [playerdecks[1].popleft(), playerdecks[2].popleft()] print("pop", cards) winindex = cards.index(max(cards)) + 1 playerdecks[winindex].append(max(cards)) playerdecks[winindex].append(min(cards)) print(1, list(playerdecks[1])) print(2, list(playerdecks[2])) wincards = list(playerdecks[winindex]) # 0 -> len # n-1 -> 1 score = getScore(wincards) print("SCORE", score) return score def getScore(cards): return sum([(len(cards) - i) * cards[i] for i, x in enumerate(cards)]) def parseDecks(input): playerid = 0 playerdeck0 = [] playerdeck1 = [] for line in input: if line.strip() == "": continue if line.startswith("Player"): playerid = int(line[7]) else: if playerid == 1: playerdeck0.append(int(line.strip())) elif playerid == 2: playerdeck1.append(int(line.strip())) return (playerdeck0, playerdeck1) #return playerdecks # if both players have at least as many cards in their own decks as the number on the card # they just dealt, the winner of the round is # determined by recursing into a sub-game of Recursive Combat. def playRecursiveCombat(input): (deck0, deck1) = parseDecks(input) (winner, score) = doPlayRC(deck0, deck1, 1) return score def doPlayRC(deck0, deck1, gameid): winindex = -1 score = 0 past_rounds_0 = [] past_rounds_1 = [] print("Playing Game", gameid) round = 1 while len(deck0) > 0 and len(deck1) > 0: print("Begin round", round) print(0, deck0) print(1, deck1) if deck0 in past_rounds_0 and deck1 in past_rounds_1 and \ past_rounds_0.index(deck0) == past_rounds_1.index(deck1): winindex = 0 windeck = deck0 score = getScore(deck0) print("The winner is player 0 by default, score", score) print("pastrounds") print(past_rounds_0) print(past_rounds_1) return (winindex, score) past_rounds_0.append(deck0) past_rounds_1.append(deck1) cards = [deck0[0], deck1[0]] deck0 = deck0[1:] deck1 = deck1[1:] print("pop", cards) if len(deck0) >= cards[0] and len(deck1) >= cards[1]: # move to subgame newdeck1 = deck0[0:cards[0]] newdeck2 = deck1[0:cards[1]] print("starting subgame with", newdeck1, newdeck2) (winindex, score) = doPlayRC(newdeck1, newdeck2, gameid+1) else: winindex = cards.index(max(cards)) if winindex == 1: deck1.append(cards[1]) deck1.append(cards[0]) score = getScore(deck1) elif winindex == 0: deck0.append(cards[0]) deck0.append(cards[1]) score = getScore(deck0) round += 1 print("Winner of this round, player", winindex) # print(0, playerdecks[0]) # print(1, playerdecks[1]) print("The winner of game", gameid, "is Player", winindex, "Score", score) return (winindex, score) def testPlayCombat(): result = 306 if playCombat(TEST_INPUT) == result: print("testPlayCombat Pass") else: print("testPlayCombat Fail") def testPlayRecursiveCombat(): result = 291 if playRecursiveCombat(TEST_INPUT) == result: print("testPlayRecursiveCombat Pass") else: print("testPlayRecursiveCombat Fail") #playRecursiveCombat(TEST_INFINITE_INPUT); def main(): #testPlayCombat() # testPlayRecursiveCombat() f = open('data/day22_input.txt', 'r') lines = f.readlines() #playCombat(lines) playRecursiveCombat(lines) if __name__ == '__main__': main()
[ "shamayn@gmail.com" ]
shamayn@gmail.com
226980fdf20772f3a2d26e3b993584790ded886b
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/303/usersdata/299/100769/submittedfiles/testes.py
b90b88a3a2fbbabb9a6af0cc8e965ec6c94201cb
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
4,871
py
from minha_bib import verificar_vitoria from minha_bib import sorteio from minha_bib import sorteio2 from minha_bib import maquinainteligente import time c=0 tabuleiro=[[1,2,3],[1,2,3],[1,2,3]] for i in range(0,3,1): for j in range(0,3,1): tabuleiro[i][j]=" " print('---------------------------------------') print('JOGO DA VELHA') print('Olá\nSeja Bem Vindo ao jogo da velha!') #JOGO ENTRE DUAS PESSOAS nome1=str(input('Qual seu nome(ou apelido)? ')) '''nome2=str(input('Qual o nome do segundo jogador? '))''' s1=str(input('Qual símbolo você deseja utilizar,'+nome1+'?[X/O]')) if s1=='X': s2='O' '''print('Ok, vamos começar,'+nome2+' ficará com "O"')''' else: s2='X' '''print('Ok, vamos começar,'+nome2+'ficará com "X"')''' print('Esse é o nosso tabuleiro \n',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) print('Você vai me informar a casa que quer jogar com números.\n E cada um desses números representa as seguintes casas:') print('00 | 01 | 02\n10 | 11 | 12\n20 | 21 | 22') print('E aí eu vou lá e substituo a casa pelo seu símbolo, por exemplo:\nO você me informa a seguinte jogada: 22') print('Eu vou lá e...') print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',s2) print('----------------------------------------------') #COMEÇO DO JOGO inicio=sorteio(0,1) if inicio==0: inicio=str('Usuário') else: inicio=str('Máquina') print('O vencedor do sorteio para incio foi '+inicio) if inicio=='Usuário': print('Então você começa') k=0 while k<10: k+=1 if k%2!=0: jogada=str(input('Qual a sua jogada '+nome1+'?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) while tabuleiro[i][j]!=" ": print('Jogada inválida') jogada=str(input('Qual a sua jogada?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) tabuleiro[i][j]=s1 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('PARABÉNS,VOCÊ VENCEU') break elif k%2==0: print('Minha vez') time.sleep(1) x=str(maquinainteligente(tabuleiro)) i=int(x[0]) j=int(x[1]) while tabuleiro[i][j]!=' ': i=int(sorteio2(0,2)) j=int(sorteio2(0,2)) tabuleiro[i][j] tabuleiro[i][j]=s2 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('Ahh, não foi dessa vez') break elif inicio=='Máquina': print('Então eu começo') for k in range(1,10,1): if k%2!=0: print('Minha vez') time.sleep(1) x=str(maquinainteligente(tabuleiro)) i=int(x[0]) j=int(x[1]) while tabuleiro[i][j]!=' ': i=int(sorteio2(0,2)) j=int(sorteio2(0,2)) tabuleiro[i][j] tabuleiro[i][j]=s2 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('Ahh, não foi dessa vez') break elif k%2==0: jogada=str(input('Qual a sua jogada '+nome1+'?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) while tabuleiro[i][j]!=" ": print('Jogada inválida') jogada=str(input('Qual a sua jogada?')) i=jogada[0] j=jogada[1] i=int(i) j=int(j) tabuleiro[i][j]=s1 print('',tabuleiro[0][0],'|',tabuleiro[0][1],'|',tabuleiro[0][2],'\n',tabuleiro[1][0],'|',tabuleiro[1][1],'|',tabuleiro[1][2],'\n',tabuleiro[2][0],'|',tabuleiro[2][1],'|',tabuleiro[2][2]) if verificar_vitoria(tabuleiro)==True: print('PARABÉNS,VOCÊ VENCEU') break elif k==9 and verificar_vitoria(tabuleiro)==False: print('ihhhh, Deu velha')
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
cf36801b7f70c2544b64f279314e448ea314e413
231684cab7d5254a1c41b797768989757d6f7359
/0x06-python-classes/4-square.py
d615b4952f77703977f1cd9a7ae017bf3d843a46
[]
no_license
gavazcal/holbertonschool-higher_level_programming
c937b224177f0101bcfcc0ee9183c782772ebfe9
a7ad9de29acf4c0cc837eaf4b8ab753f3a779fdb
refs/heads/master
2023-08-10T19:43:06.215169
2021-09-22T21:28:58
2021-09-22T21:28:58
319,359,143
0
1
null
null
null
null
UTF-8
Python
false
false
639
py
#!/usr/bin/python3 """defines a square class""" class Square: """square class""" def __init__(self, size=0): """creates instance size""" self.__size = size def area(self): """calculates square area""" return self.__size ** 2 @property def size(self): """size getter""" return self.__size @size.setter def size(self, value): """size setter""" try: self.__size = value if value < 0: raise ValueError("size must be >= 0") except TypeError: raise TypeError("size must be an integer")
[ "2392@holbertonschool.com" ]
2392@holbertonschool.com
5f6797cbc576bcd2cab29cfca37c302d8329420f
9afc5ffde1488d718ac8dec9acd0c5b2dddf390d
/src/mask.py
c3597754fb985b12f27837ca9a15aad361ec8b59
[]
no_license
pypaut/dobble-player
1b0b7255986dd08942014c2ff20b547f23aa4838
499a9d21dd61a2a6710cca7f42ae3e6b60b56461
refs/heads/master
2023-06-10T13:59:42.139290
2021-07-05T08:12:54
2021-07-05T08:12:54
383,062,638
0
0
null
null
null
null
UTF-8
Python
false
false
844
py
import cv2 as cv from src.utils import show_image def cards_mask(image, debug=False): """ Generate 2D mask for card presence on @image """ # Threshold gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) threshold = cv.inRange(gray, 170, 255) if debug: show_image("Threshold", threshold) # Floodfill tmp = threshold.copy() points = [ (0, 0), # Bottom left (tmp.shape[1] // 2, 0), # Bottom middle (tmp.shape[1] - 1, tmp.shape[0] - 1), # Top right ] for p in points: cv.floodFill(tmp, None, p, 255) if debug: show_image("Flood fill", tmp) # Invert floodfilled image inverted = cv.bitwise_not(tmp) if debug: show_image("Inverted", inverted) # Combine the two images to get the foreground. return threshold | inverted
[ "pypaut@hotmail.fr" ]
pypaut@hotmail.fr
a9b62fc19004fc5b0e65d895afed852291ef136d
9742f49edd518a3e053c363d8b09d1899b1b59d3
/VOCdevkit/makeTxt.py
006730baf3813a8181061b24c6793ea1d4adcb9f
[ "MIT" ]
permissive
1306298019/YOLOV4
7000a68917481d8974cfd65548e3ad213af250ed
5b790f036a94a30ea6337a3eebd83e8ea8023da4
refs/heads/main
2023-04-22T17:48:46.718475
2021-05-12T03:30:24
2021-05-12T03:30:24
366,579,250
0
0
null
null
null
null
UTF-8
Python
false
false
787
py
from sklearn.model_selection import train_test_split import os name_path = r'.\data\VOCdevkit2007\VOC2007\JPEGImages' name_list = os.listdir(name_path) names = [] for i in name_list: # 获取图像名 names.append(i.split('.')[0]) trainval,test = train_test_split(names,test_size=0.5,shuffle=10) val,train = train_test_split(trainval,test_size=0.5,shuffle=10) with open('ImageSets/Main/trainval.txt','w') as fw: for i in trainval: fw.write(i+'\n') with open('ImageSets/Main/test.txt','w') as fw: for i in test: fw.write(i+'\n') with open('ImageSets/Main/val.txt','w') as fw: for i in val: fw.write(i+'\n') with open('ImageSets/Main/train.txt','w') as fw: for i in train: fw.write(i+'\n') print('done!')
[ "noreply@github.com" ]
1306298019.noreply@github.com
af47c1a7f6ae89919ffdb24bffc208cb913e6ee9
f24543d25294be7802fd78eb58697f0b223a00ae
/flask_setup_example/flaskr/__init__.py
02c4a17c33f1fad50a3b5093b4e1a3aebcbea0c1
[]
no_license
blt1339/udacity_full_stack_web_developer
606e5fbff53b8b6ef5f7984c708b2d42fd052101
3a7c103a2bffce5b5e9f01c2b7c4f09510be403d
refs/heads/main
2023-07-08T23:24:05.694066
2021-08-03T00:08:21
2021-08-03T00:08:21
359,160,023
0
0
null
null
null
null
UTF-8
Python
false
false
487
py
# Import your dependencies from flask import Flask, jsonify # Define the create_app function def create_app(test_config=None): # Create and configure the app # Include the first parameter: Here, __name__is the name of the current Python module. app = Flask(__name__) @app.route('/') def hello_world(): return jsonify({'message':'Hello, World!'}) @app.route('/smiley') def smiley(): return ':-)' # Return the app instance return app
[ "blt1339@gmail.com" ]
blt1339@gmail.com
a7cd0c227a128b7a39f4db49d9085443bd6a2ca1
ef23a265f03c21c192707ebada89a4587c351a5e
/client/PeopleCounter.py
550eea656eff5c88b43ef874be170643d15907d0
[]
no_license
hadasg-vayyar/Walabot-MeetingRoom
73cb9c0845a58f13d0c6292467c0f73524d21d78
6191f8bbe18fcbb9dbedd1fd76c7f530efbaae80
refs/heads/master
2021-07-11T18:39:20.769223
2017-10-15T08:38:06
2017-10-15T08:38:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,861
py
from __future__ import print_function, division from datetime import datetime # used to the current time from math import sin, cos, radians, sqrt # used to calculate MAX_Y_VALUE import socket import WalabotAPI as wlbt try: input = raw_input except NameError: pass R_MIN, R_MAX, R_RES = 10, 60, 2 # SetArenaR parameters THETA_MIN, THETA_MAX, THETA_RES = -10, 10, 10 # SetArenaTheta parameters PHI_MIN, PHI_MAX, PHI_RES = -10, 10, 2 # SetArenaPhi parametes THRESHOLD = 15 # SetThreshold parametes MAX_Y_VALUE = R_MAX * cos(radians(THETA_MAX)) * sin(radians(PHI_MAX)) SENSITIVITY = 0.25 # amount of seconds to wait after a move has been detected TENDENCY_LOWER_BOUND = 0.1 # tendency below that won't count as entrance/exit IGNORED_LENGTH = 3 # len in cm to ignore targets in center of arena ASSUMED_FRAME_RATE = 10 # TODO: Need to be configured to real server's ip and port SERVER_ADDRESS = "127.0.0.1" SERVER_PORT = 9999 # TODO: Need to be configured to real room's name ROOM_NAME = "yellow" # TODO: Need to be configured to real room's max people. MAX_PEOPLE = 6 wlbt.Init() wlbt.SetSettingsFolder() def getNumOfPeopleInside(): """ Gets the current number of people in the room as input and returns it. Validate that the number is valid. Returns: num Number of people in the room that got as input """ num = input('- Enter current number of people in the room: ') if (not num.isdigit()) or (int(num) < 0): print('- Invalid input, try again.') return getNumOfPeopleInside() return int(num) def verifyWalabotIsConnected(): """ Check for Walabot connectivity. loop until detect a Walabot. """ while True: try: wlbt.ConnectAny() except wlbt.WalabotError as err: input("- Connect Walabot and press 'Enter'.") else: print('- Connection to Walabot established.') return def setWalabotSettings(): """ Configure Walabot's profile, arena (r, theta, phi), threshold and the image filter. """ wlbt.SetProfile(wlbt.PROF_TRACKER) wlbt.SetArenaR(R_MIN, R_MAX, R_RES) wlbt.SetArenaTheta(THETA_MIN, THETA_MAX, THETA_RES) wlbt.SetArenaPhi(PHI_MIN, PHI_MAX, PHI_RES) wlbt.SetThreshold(THRESHOLD) wlbt.SetDynamicImageFilter(wlbt.FILTER_TYPE_NONE) print('- Walabot Configured.') def startAndCalibrateWalabot(): """ Start the Walabot and calibrate it. """ wlbt.StartCalibration() print('- Calibrating...') while wlbt.GetStatus()[0] == wlbt.STATUS_CALIBRATING: wlbt.Trigger() wlbt.Start() print('- Calibration ended.\n- Ready!') def getDataList(): """ Detect and record a list of Walabot sensor targets. Stop recording and return the data when enough triggers has occured (according to the SENSITIVITY) with no detection of targets. Returns: dataList: A list of the yPosCm attribute of the detected sensor targets """ while True: wlbt.Trigger() targets = wlbt.GetTrackerTargets() if targets: targets = [max(targets, key=distance)] numOfFalseTriggers = 0 triggersToStop = ASSUMED_FRAME_RATE * SENSITIVITY while numOfFalseTriggers < triggersToStop: wlbt.Trigger() newTargets = wlbt.GetTrackerTargets() if newTargets: targets.append(max(newTargets, key=distance)) numOfFalseTriggers = 0 else: numOfFalseTriggers += 1 yList = [ t.yPosCm for t in targets if abs(t.yPosCm) > IGNORED_LENGTH] if yList: return yList def distance(t): return sqrt(t.xPosCm**2 + t.yPosCm**2 + t.zPosCm**2) def analizeAndAlert(dataList, numOfPeople): """ Analize a given dataList and print to the screen one of two results if occured: an entrance or an exit. Arguments: dataList A list of values numOfPeople The current number of people in the room returns: numOfPeople The new number of people in the room """ currentTime = datetime.now().strftime('%H:%M:%S') tendency = getTypeOfMovement(dataList) if tendency > 0: result = ': Someone has left!'.ljust(25) numOfPeople -= 1 elif tendency < 0: result = ': Someone has entered!'.ljust(25) numOfPeople += 1 else: # do not count as a valid entrance / exit result = ': Someone is at the door!'.ljust(25) numToDisplay = ' Currently '+str(numOfPeople)+' people in the room.' print(currentTime+result+numToDisplay) return numOfPeople def getTypeOfMovement(dataList): """ Calculate and return the type of movement detected. The movement only counts as a movement inside/outside if the tendency if above TENDENCY_LOWER_BOUND and if the we have at least of item from both sides of the door header. Arguments: dataList A list of values Returns: tendency if zero - not count as a valid entrance/exit if positive - counts as exiting the room if negative - counts as entering the room """ if dataList: velocity = getVelocity(dataList) tendency = (velocity * len(dataList)) / (2 * MAX_Y_VALUE) side1 = any(x > 0 for x in dataList) side2 = any(x < 0 for x in dataList) bothSides = side1 and side2 aboveLowerBound = abs(tendency) > TENDENCY_LOWER_BOUND if bothSides or aboveLowerBound: return tendency return 0 def getVelocity(data): """ Calculate velocity of a given set of values using linear regression. Arguments: data An iterator contains values. Returns: velocity The estimates slope. """ sumY = sumXY = 0 for x, y in enumerate(data): sumY, sumXY = sumY + y, sumXY + x*y if sumXY == 0: # no values / one values only / all values are 0 return 0 sumX = x * (x+1) / 2 # Gauss's formula - sum of first x natural numbers sumXX = x * (x+1) * (2*x+1) / 6 # sum of sequence of squares return (sumXY - sumX*sumY/(x+1)) / (sumXX - sumX**2/(x+1)) def stopAndDisconnectWalabot(): """ Stops Walabot and disconnect the device. """ wlbt.Stop() wlbt.Disconnect() def PeopleCounter(): """ Main function. init and configure the Walabot, get the current number of people from the user, start the main loop of the app. Walabot scan constantly and record sets of data (when peoples are near the door header). For each data set, the app calculates the type of movement recorded and acts accordingly. """ verifyWalabotIsConnected() numOfPeople = getNumOfPeopleInside() setWalabotSettings() startAndCalibrateWalabot() try: client_socket = socket.socket() client_socket.connect((SERVER_ADDRESS, SERVER_PORT)) while True: dataList = getDataList() numOfPeople = analizeAndAlert(dataList, numOfPeople) # Run this line in python2.7 # client_socket.send(json.dumps({"room": ROOM_NAME, "number_of_people": numOfPeople})) # Run this line in python3 client_socket.send(json.dumps({"name": ROOM_NAME, "number_of_people": numOfPeople, "max_people": MAX_PEOPLE} ).encode('UTF-8')) except socket.error: print("Server is currently unavailable.") except KeyboardInterrupt: pass finally: stopAndDisconnectWalabot() if __name__ == '__main__': PeopleCounter()
[ "noam.hoze@gmail.com" ]
noam.hoze@gmail.com
1b8532d3421a9dd5536b1e0debfc39c16e37a6c3
1bccf7d57c7aa8d48b84fff187de4b6ff2599cb6
/pandora_common/state_manager/scripts/state_manager/__init__.py
6d30fa3d4c6b665f9f74250df0145ce48aae504d
[]
no_license
skohlbr/pandora_ros_pkgs
733ed34edb5b6d46e59df4acb01288f28ef3b50f
eecaf082b47e52582c5f009eefbf46dd692aba4f
refs/heads/indigo-devel
2021-01-21T18:06:14.967943
2015-11-04T15:08:03
2015-11-04T15:08:03
53,413,573
0
1
null
2016-03-08T13:19:40
2016-03-08T13:19:40
null
UTF-8
Python
false
false
37
py
from state_client import StateClient
[ "pandora@ee.auth.gr" ]
pandora@ee.auth.gr
c519b85a50ace53148b8cf5fe0eafb56d732355b
4a683a1ee801d0ee05d4ac44407be162e70cbc06
/creat_key.py
45eb43722976f44e24146bfc9a7576408497f0f5
[]
no_license
aakash10897/aviation-using-neo4j
8b585dfca4166192aa558566b642c38b60ab6974
1d475bae042bb2ea2f9a6afa8788bd3d7cc260db
refs/heads/master
2020-07-01T18:17:06.888416
2019-08-23T18:57:47
2019-08-23T18:57:47
201,252,791
0
1
null
2019-08-14T09:19:08
2019-08-08T12:23:18
JavaScript
UTF-8
Python
false
false
321
py
import csv import sys def createKey(): inputfile = 'data2/routes.csv' outputfile = 'data2/routes_key.csv' with open(inputfile,'r') as inut, open(outputfile,'w') as oput: r = csv.reader(inut) w = csv.writer(oput) counter = 0 for row in r: counter =counter + 1 w.writerow(row+[str(counter)]) createKey()
[ "aakash.10897@gmail.com" ]
aakash.10897@gmail.com
5b86d1ba8124f7ae022306cd7979e8aa97754314
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/HdrqkdT4r9DeKPjCM_15.py
b8f9cf3d649052ff9b6b798b8d9e233d02626467
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
def is_polygonal(n): if n==1: return "0th of all" if n <= 3: return False list = [] for k in range(3, n): i=1 current=k+1 while current < n: i+=1 current += k*i if current == n: i = str(i) i += "th" if i[-2:-1]=="1" else {"1":"st","2":"nd","3":"rd"}.get(i[-1],"th") list.append("{ith} {k}-gonal number".format(ith=i,k=k)) return list
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
e3cb93d8809d1c926a15fdd21eca2bccf5ba4ac2
f7411485d2603aa8c2841f88bf5bfb2e1930951e
/Labs/Lab10/actor.py
76ab8c0f4c37c402d0f769ebec6983b93dd48568
[]
no_license
Johnspeanut/Computer_science_fundation_course
156e03e8cf6fcca4ddcbfaa837b8c55f95083045
79a13f3152c7e61d8d6cc10da2213a15c8a364e5
refs/heads/master
2023-05-13T01:55:10.171165
2021-05-31T07:00:31
2021-05-31T07:00:31
372,412,223
0
0
null
null
null
null
UTF-8
Python
false
false
437
py
class Actor: def __init__(self, lastname, show_collection): ''' Constructor -- creates an object of actor Parameters: self -- the current piece object firstname -- first name of actor, String lastname -- last name of actor, String show_collection -- show collection, list ''' self.lastname = lastname self.collection = show_collection
[ "pengqiong2015fall@hotmail.com" ]
pengqiong2015fall@hotmail.com
083c357cb60f0627ddb64b67ee8260e13ee2414f
67db81532a2ee0281d901b47a8ffdcfbb8a8199d
/interface/teacher_interface.py
0ad75f4dfd8939002e08f92167972ed6600d2c31
[]
no_license
liuqingzheng/courseSelection
a829df3c9948d127556b1adcc35068ff05ab92ab
a18d636a1899f72171c2e8bd463942d68f1a0b06
refs/heads/master
2020-03-11T06:19:58.805019
2018-05-26T10:42:11
2018-05-26T10:42:11
129,827,176
16
3
null
null
null
null
UTF-8
Python
false
false
1,431
py
import os from conf import setting from db import models from lib import common def check_course(teacher_name): ''' 查看教授的课程 :param teacher_name: :return: ''' teacher_obj = models.Teacher.get_obj_by_name(teacher_name) teach_course_list = teacher_obj.get_teach_course() return teach_course_list def check_all_course(): base_dir_course = os.path.join(setting.BASE_DB, 'course') course_list = common.get_all_file(base_dir_course) return course_list def choose_course(teacher_name, course_name): ''' 将该课程绑定到老师身上 :param teacher_name: :param course_name: :return: ''' teacher_obj = models.Teacher.get_obj_by_name(teacher_name) teacher_obj.bind_to_course(course_name) def check_student_by_course(course_name): ''' 查看课程下所有的学生 :param course_name: :return: ''' course_obj = models.Course.get_obj_by_name(course_name) return course_obj.student_name_list def change_student_scour(teacher_name, student_name, course_name, score): ''' 修改学生的成绩 :param teacher_name: :param student_name: :param course_name: :param score: :return: ''' teacher_obj = models.Teacher.get_obj_by_name(teacher_name) student_obj = models.Student.get_obj_by_name(student_name) teacher_obj.change_student_score(student_obj, course_name, score)
[ "306334678@qq.com" ]
306334678@qq.com
68dcb318fb7daab562bcb76eb37a28ff7014fe59
4e7c688741975346b277fdaa113fbe48563d4288
/main.py
cd381e078413f986c2e4af0f982093ba27f7db2a
[]
no_license
nathankong/deep_net_sparse
6d2aedfeb6b653d9be808af4ca987620ae415b9d
94bfb9e44a33ba8bc9774ad297eef73a1145b08a
refs/heads/master
2022-03-31T16:07:03.170324
2019-12-10T22:27:54
2019-12-10T22:27:54
225,716,786
0
0
null
null
null
null
UTF-8
Python
false
false
3,639
py
import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import pickle import os os.environ["TORCH_HOME"] = "/mnt/fs5/nclkong/deep_models/" import numpy as np import collections from functools import partial import torch import torch.nn as nn from torchvision.datasets import ImageFolder from ModelInfo import get_model_info from utils import plot_stats, image_loader, load_model, compute_statistics torch.manual_seed(0) if torch.cuda.is_available(): DEVICE = torch.device("cuda:0") else: DEVICE = torch.device("cpu") DEVICE = torch.device("cpu") print "Device:", DEVICE FIGURE_DIR = "./figures/" RESULTS_DIR = "./results/" def main(model_name, images_dir): # Load model m_info = get_model_info(model_name) feature_layer_dict = m_info.get_feature_layer_index_dictionary() classifier_layer_dict = m_info.get_classifier_layer_index_dictionary() layers_order = m_info.get_layers() m = load_model(model_name).to(DEVICE) # A dictionary that keeps saving the activations as they come activations = collections.defaultdict(list) def save_activation(name, mod, inp, out): #print name, out.cpu().size() activations[name].append(np.copy(out.cpu().detach().numpy())) # Get Conv2d/Pooling layer activations for i, module in enumerate(m.features): #if type(module)==nn.Conv2d or type(module)==nn.MaxPool2d: if type(module)==nn.Conv2d or type(module)==nn.ReLU or type(module)==nn.MaxPool2d: #if type(module)==nn.ReLU or type(module)==nn.MaxPool2d: name = feature_layer_dict[i] module.register_forward_hook(partial(save_activation, name)) #print i, module # Get FC layer activations for i, module in enumerate(m.classifier): if type(module)==nn.Linear: name = classifier_layer_dict[i] module.register_forward_hook(partial(save_activation, name)) #print i, module dataset = ImageFolder(images_dir, loader=partial(image_loader, DEVICE)) data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=False) m.eval() for step, (images,y) in enumerate(data_loader): # TODO: DEBUG, use 1/10 of the batches for now, for runtime if (step+1) % 1 == 0: print "Batch {}".format(step+1) _ = m(images) activations = {name: np.concatenate(outputs, axis=0) for name, outputs in activations.items()} n_feats_all = list() n_zero_mean_all = list() layer_feature_stds = list() for layer in layers_order: features = activations[layer] n_feats, n_zero_mean = compute_statistics(features) n_feats_all.append(n_feats) n_zero_mean_all.append(n_zero_mean) layer_feature_stds.append(features.std(axis=0)) # Save statistics results = dict() results["layers"] = layers_order results["statistics"] = dict() results["statistics"]["zero_mean_proportion"] = n_zero_mean_all results["statistics"]["num_features"] = n_feats_all results["statistics"]["feature_stds"] = layer_feature_stds results_fname = "{}_stats.pkl".format(model_name) pickle.dump(results, open(RESULTS_DIR + results_fname, "wb")) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, default="vgg19") parser.add_argument('--imagedir', type=str, default="./images/") args = parser.parse_args() model_name = args.model.lower() images_dir = args.imagedir.lower() print "Model:", model_name print "Image directory:", images_dir main(model_name, images_dir)
[ "kongnathan@gmail.com" ]
kongnathan@gmail.com
c3abe5035eada595291caa229e664159b4743cb2
e9ef3cd143478660d098668a10e67544a42b5878
/Lib/corpuscrawler/crawl_thk.py
f49f58ce0e90e3a983f847f9a2de5a9de94840a2
[ "Apache-2.0" ]
permissive
google/corpuscrawler
a5c790c19b26e6397b768ce26cf12bbcb641eb90
10adaecf4ed5a7d0557c8e692c186023746eb001
refs/heads/master
2023-08-26T04:15:59.036883
2022-04-20T08:18:11
2022-04-20T08:18:11
102,909,145
119
40
NOASSERTION
2022-04-20T08:18:12
2017-09-08T22:21:03
Python
UTF-8
Python
false
false
809
py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, unicode_literals from corpuscrawler.util import crawl_bibleis def crawl(crawler): out = crawler.get_output(language='thk') crawl_bibleis(crawler, out, bible='THKBTL')
[ "sascha@brawer.ch" ]
sascha@brawer.ch
5acbbf066b8de964068c4efea6f60aa5238e4b13
62c7898fe58fdfa18fc6c445d7145fb625cd4412
/source/process_spatial_data.py
a9afed907e5c8e9e289324dd95a921bda0c65bfc
[]
no_license
xziyue/MCCNN-Playground
b9fa5cd2c530605f55db0d5bed4b2f99fc787122
f807d3164237bcb14fbeab3f7ea55a7073351ef7
refs/heads/master
2020-12-03T10:57:57.891328
2020-01-05T19:12:20
2020-01-05T19:12:20
231,290,469
0
0
null
null
null
null
UTF-8
Python
false
false
3,324
py
import os import subprocess as sp from source.rel_path import rootDir import re from shutil import copy2, move def _recursive_search_target(path, result): assert os.path.exists(path) allFiles = os.listdir(path) for filename in allFiles: fullname = os.path.join(path, filename) if os.path.isdir(fullname): _recursive_search_target(fullname, result) elif os.path.isfile(fullname): _, ext = os.path.splitext(fullname) if ext == '.pdbqt': result.append(fullname) def recursive_search_target(path): ret = [] _recursive_search_target(path, ret) return ret def get_autogrid4_template(id): rawTemplate = \ r'''npts 15 15 15 # num.grid points in xyz gridfld $$$$.maps.fld # grid_data_file spacing 1.0 # spacing(A) receptor_types A C HD N NA OA SA # receptor atom types ligand_types A C HD N NA OA SA # ligand atom types receptor $$$$.pdbqt # macromolecule gridcenter auto # xyz-coordinates or auto smooth 0.5 # store minimum energy w/in rad(A) map $$$$.A.map # atom-specific affinity map map $$$$.C.map # atom-specific affinity map map $$$$.HD.map # atom-specific affinity map map $$$$.N.map # atom-specific affinity map map $$$$.NA.map # atom-specific affinity map map $$$$.OA.map # atom-specific affinity map map $$$$.SA.map # atom-specific affinity map elecmap $$$$.e.map # electrostatic potential map dsolvmap $$$$.d.map # desolvation potential map dielectric -0.1465 # <0, AD4 distance-dep.diel;>0, constant ''' return re.sub(r'\${4}', id, rawTemplate) def run_autogrid4(targetFilename, outputPath): # get target id head1, _ = os.path.split(targetFilename) _, head2 = os.path.split(head1) id = head2 # get template pgfTemplate = get_autogrid4_template(id) autogridPath = os.path.join(rootDir, 'autogrid') autogridExecutable = os.path.join(autogridPath, 'autogrid4') tempPgfFilename = os.path.join(autogridPath, id + '.pgf') with open(tempPgfFilename, 'w') as outFile: outFile.write(pgfTemplate) # copy data tempTargetFilename = os.path.join(autogridPath, id + '.pdbqt') copy2(targetFilename, tempTargetFilename) # run autogrid4 sp.run([autogridExecutable, '-p', tempPgfFilename], check=True, cwd=autogridPath) # separate files relatedFiles = [] uselessFiles = [] for name in os.listdir(autogridPath): if name.startswith(id): if name.endswith('.map'): relatedFiles.append(name) else: uselessFiles.append(name) # move all files to target path for name in relatedFiles: move(os.path.join(autogridPath, name), outputPath) # delete useless files for name in uselessFiles: os.remove(os.path.join(autogridPath, name)) if __name__ == '__main__': # extract all features from the dataset targets = recursive_search_target(os.path.join(rootDir, 'data', 'spatial_features')) for target in targets: run_autogrid4(target, os.path.join(rootDir, 'data', 'grid_data'))
[ "xziyue@qq.com" ]
xziyue@qq.com
5eea65897e3ff96532bb28a2c4f116df82eb09cc
c3317daf3ded8b4c793e779075632b3d0bc748bb
/touch_file.py
d287577d3537240b6d4896b9d7e3f2f1929274be
[]
no_license
AarashFarahani/watching-directory
f68557c92788c9151b09ad8ca1c807df0310ac8e
c9b1f72c8f823951ed07f1e48b28052916261009
refs/heads/master
2020-12-20T03:22:09.520508
2020-02-03T08:16:14
2020-02-03T08:16:14
235,945,526
0
0
null
null
null
null
UTF-8
Python
false
false
1,468
py
import os import pyinotify from pathlib import Path import log_handler class MyEventHandler(pyinotify.ProcessEvent): def __init__(self, source, destination): self.source = source self.destination = destination def process_IN_CLOSE_WRITE(self, event): log_handler.info("%s has been added", event.name) _touch(self.source, self.destination, event.pathname, event.name) def _touch(source, destination, file_path, file_name): dest_path = destination + file_path.replace(source, '') dest_dir = dest_path.replace(file_name, '') try: if os.path.isdir(dest_dir) == False: os.makedirs(dest_dir) log_handler.info("%s directory has been made", dest_dir) Path(dest_path).touch() log_handler.info("%s has been touched", dest_path) except Exception as e: print(e) log_handler.error(e, exc_info=True) def start_watching(source, destination): wm = pyinotify.WatchManager() wm.add_watch(source, pyinotify.ALL_EVENTS, rec=True) # event handler eh = MyEventHandler(source, destination) # notifier notifier = pyinotify.Notifier(wm, eh) notifier.loop() def touch_exist_files(source, destination): dict = {} for r, d, f in os.walk(source): for file in f: dict[os.path.join(r, file)] = file for file_path, file_name in dict.items(): _touch(source, destination, file_path, file_name)
[ "noreply@github.com" ]
AarashFarahani.noreply@github.com
d2d771a77a5dabb499ec5f9b80115f57636340f4
fd4b76bac768ad313e0ca12cdcbe6918c5dd1233
/list/views.py
236166ef935d670ab55f1f2283923111129d7431
[]
no_license
PsalmsGlobal/ToDoApp
ebd95fec8f7ad704448dedd4c2299660101ebbfb
ae51b14d6bfc2e64a551d935ba9ad9b34bd3ca27
refs/heads/master
2023-04-14T15:28:46.501922
2021-04-15T14:46:05
2021-04-15T14:46:05
336,938,454
0
0
null
null
null
null
UTF-8
Python
false
false
1,648
py
from django.shortcuts import render, redirect from .models import MyList from .forms import MyListForm from django.contrib import messages from django.http import HttpResponseRedirect def home(request): if request.method == 'POST': form = MyListForm(request.POST or None) if form.is_valid(): form.save() all_items = MyList.objects.all messages.success(request, ('Item Has Been Added To List!!')) return render(request, 'home.html', {'all_items': all_items}) else: all_items = MyList.objects.all return render(request, 'home.html', {'all_items': all_items}) def about(request): context = {'first_name': 'Nhicoulous', 'last_name': 'Horford'} return render(request, 'about.html', context) def delete(request, List_id): item = MyList.objects.get(pk=List_id) item.delete() messages.success(request, ('Item Has Been Deleted')) return redirect('home') def cross_off(request, List_id): item = MyList.objects.get(pk=List_id) item.completed = True item.save() return redirect('home') def uncross(request, List_id): item = MyList.objects.get(pk=List_id) item.completed = False item.save() return redirect('home') def edit(request, List_id): if request.method == 'POST': item = MyList.objects.get(pk=List_id) form = MyListForm(request.POST or None, instance= item) if form.is_valid(): form.save() messages.success(request, ('Item Has Been Edited!')) return redirect('home') else: item = MyList.objects.get(pk=List_id) return render(request, 'edit.html', {'item': item}) def back(request): return render(request, 'home.html')
[ "noreply@github.com" ]
PsalmsGlobal.noreply@github.com
efc34d950ca51f5ceeb25007b700dbcb9a79a6bc
f7e4b3e8010241b31aa9c772a7d6bfec3454dcf2
/ipcs.py
e34d276efc73cd3d126afcd8f861c9ed76837cc3
[]
no_license
MR414N-ID/IPCS
74294500cc6d0daf4d38f27d058b39588c319225
f233e21c00e0fddce54da2797d8782ea666db3c9
refs/heads/master
2022-11-23T02:38:22.451130
2020-07-24T12:26:38
2020-07-24T12:26:38
278,318,219
0
0
null
null
null
null
UTF-8
Python
false
false
2,111
py
#Jangan ganti author , hargai creator cape loh buat nya import LIST from LIST.id import * from LIST.it import * from LIST.jp import * from LIST.us import * from LIST.fr import * from LIST.kr import * from LIST.de import * from LIST.tr import * import requests,re,os b="\033[0;34m" g="\033[1;32m" w="\033[1;37m" r="\033[1;31m" y="\033[1;33m" cyan = "\033[0;36m" lgray = "\033[0;37m" dgray = "\033[1;30m" ir = "\033[0;101m" reset = "\033[0m" def main(): os.system('clear') print("{} ____ ").format(r) print(" _[]_/____\__n_ ") print(" |_____.--.__()_|") print(" |I //# \\\ |") print("{} |P \\\__// | ").format(w) print(" |CS '--' | ") print("{} '--------------'------{}----------------------. ").format(r,w) print("{} | {}Author : {}MR.414N {} | {}INDO{}N{}{}ESIA | ").format(r,w,r,w,r,ir,reset,w) print("{} | {}TEAM : {}CYBER CRIMINAL PUBLIC {}| {}082292838634 {} |").format(r,w,w,w,lgray,w) print("{} '------------------------------------{}-------' ").format(r,w) print (" {}[ 1 ] {}Italy").format(r,w) print (" {}[ 2 ] {}Indonesia").format(r,w) print (" {}[ 3 ] {}Japan").format(r,w) print (" {}[ 4 ] {}United States").format(r,w) print (" {}[ 5 ] {}France").format(r,w) print (" {}[ 6 ] {}Korea").format(r,w) print (" {}[ 7 ] {}German").format(r,w) print (" {}[ 8 ] {}Turkey").format(r,w) print (" {}[ 9 ] {}Exit").format(r,w) print "" select = input("\033[1;31m[ \033[1;37mSelect@Number \033[1;31m]\033[1;37m> ") filtering(select) def filtering(pilih): if pilih == 1: italy() elif pilih == 2: indonesia() elif pilih == 3: japan() elif pilih == 4: unitedstates() elif pilih == 5: france() elif pilih == 6: korea() elif pilih == 7: german() elif pilih == 8: turkey() elif pilih == 9: print (r+"Exiting ..."+w) os.sys.exit() else: print (r+"Exiting ..."+w) os.sys.exit() if __name__ == '__main__': main()
[ "noreply@github.com" ]
MR414N-ID.noreply@github.com
2f8b6c78d6f72f8ff2235dd0556ce46aafda9f3b
2a7224df36ea68c5ece24d410d97a9c336baa0a8
/dags/utils/db.py
98967c56ec1a74279db58cf4865b7e5939817885
[ "MIT" ]
permissive
jsmithdataanalytics/house_price_tracker
aaa7bc12a45caa4dc1fe26963ad0539264ac8b83
a4795db21c25c014f45ff6742c5bb30ad26ded75
refs/heads/master
2023-05-08T22:24:00.764398
2020-04-29T06:28:51
2020-04-29T06:28:51
257,061,766
1
0
MIT
2021-06-02T01:32:12
2020-04-19T17:32:27
Python
UTF-8
Python
false
false
1,859
py
import sqlite3 from typing import List, Dict, Iterable from os import environ db_filename = environ['DATABASE_URL'][10:] def select_all(table_name: str): connection = sqlite3.connect(db_filename) connection.row_factory = sqlite3.Row with connection: cursor = connection.execute(f'SELECT * FROM `{table_name}`') result = [dict(row) for row in cursor.fetchall()] connection.close() return result def insert_or_replace(table_name: str, items: Iterable[Dict]): InsertOrReplaceBuffer(table_name=table_name, size=500).run(items) class InsertOrReplaceBuffer: def __init__(self, table_name: str, size: int): self.table_name = table_name self.size = size self.data: List[Dict] = [] def __len__(self): return len(self.data) def __is_full(self): return len(self) >= self.size def __append(self, item: Dict): if self.__is_full(): self.__flush() self.data.append(item) def __flush(self): print(f'Uploading batch of {len(self)} {self.table_name.lower()} to database...') column_names = list(self.data[0].keys()) values = [tuple(item[column_name] for column_name in column_names) for item in self.data] column_names_string = ', '.join([f'`{column_name}`' for column_name in column_names]) placeholders_string = ', '.join(['?'] * len(column_names)) query = f'REPLACE INTO `{self.table_name}` ({column_names_string}) VALUES ({placeholders_string})' connection = sqlite3.connect(db_filename) with connection: connection.executemany(query, values) connection.close() print('Done.') self.data = [] def run(self, iterable: Iterable): for item in iterable: self.__append(item) self.__flush()
[ "jsmithdataanalytics@gmail.com" ]
jsmithdataanalytics@gmail.com
1c00d1285fb51001a7306edf2f7a7c849d622ad2
e072275351f45031c2f30235864a471e689280c5
/shipping_addresses/forms.py
d78428382c70d689f7fec35ac54be09dfc8ef13e
[]
no_license
nluiscuadros24/Exportellus
764dbca7e0fda0d80b92661801d7a8c2a9f9cd0a
9a3b01af51d02c09f89bba2b9b180a484e89d6aa
refs/heads/master
2022-11-27T01:57:28.461546
2020-08-06T05:44:42
2020-08-06T05:44:42
285,472,305
0
0
null
null
null
null
UTF-8
Python
false
false
1,369
py
from django.forms import ModelForm from .models import ShippingAddress class ShippingAddressForm(ModelForm): class Meta: model = ShippingAddress fields = [ 'line1', 'line2', 'city', 'state', 'country', 'postal_code', 'reference' ] labels = { 'line1': 'Calle 1', 'line2': 'Calle 2', 'city': 'Ciudad', 'state': 'Estado', 'country': 'País', 'postal_code': 'Código postal', 'reference': 'Referencias' } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['line1'].widget.attrs.update({ 'class': 'form-control' }) #Dic self.fields['line2'].widget.attrs.update({ 'class': 'form-control' }) self.fields['city'].widget.attrs.update({ 'class': 'form-control' }) self.fields['state'].widget.attrs.update({ 'class': 'form-control' }) self.fields['country'].widget.attrs.update({ 'class': 'form-control' }) self.fields['postal_code'].widget.attrs.update({ 'class': 'form-control', 'placeholder': '0000' }) self.fields['reference'].widget.attrs.update({ 'class': 'form-control' })
[ "luiscuadrosa@gmail.com" ]
luiscuadrosa@gmail.com
779a502f8d520ab2b65985fd08af1a4fb8b521d9
d17616959f48f6438ed95d62e6f8cfbd17f4451e
/KerasRFCN/Utils.py
53e0c2d39c7f39fbec30caa95a6b47b878559842
[ "MIT" ]
permissive
mitulrm/FaceRFCN
8365df0690303502ec44fde5182be8def3141d65
5e1fdaf197b3a93c22a82d9476a3f9a1c804e398
refs/heads/master
2020-05-15T20:35:54.496866
2019-08-20T02:41:35
2019-08-20T02:41:35
182,484,924
1
0
null
null
null
null
UTF-8
Python
false
false
27,603
py
""" Keras RFCN Copyright (c) 2018 Licensed under the MIT License (see LICENSE for details) Written by parap1uie-s@github.com """ import sys import os import math import random import numpy as np import tensorflow as tf import scipy.misc import skimage.color import skimage.io import urllib.request import shutil import keras.backend as K from keras.callbacks import Callback ############################################################ # Bounding Boxes ############################################################ # def extract_bboxes(mask): # """Compute bounding boxes. # mask: [height, width, num_instances]. Mask pixels are either 1 or 0. # Returns: bbox array [num_instances, (y1, x1, y2, x2)]. # """ # boxes = np.zeros([mask.shape[-1], 4], dtype=np.int32) # for i in range(mask.shape[-1]): # m = mask[:, :, i] # # Bounding box. # horizontal_indicies = np.where(np.any(m, axis=0))[0] # vertical_indicies = np.where(np.any(m, axis=1))[0] # if horizontal_indicies.shape[0]: # x1, x2 = horizontal_indicies[[0, -1]] # y1, y2 = vertical_indicies[[0, -1]] # # x2 and y2 should not be part of the box. Increment by 1. # x2 += 1 # y2 += 1 # else: # # No mask for this instance. Might happen due to # # resizing or cropping. Set bbox to zeros # x1, x2, y1, y2 = 0, 0, 0, 0 # boxes[i] = np.array([y1, x1, y2, x2]) # return boxes.astype(np.int32) def compute_iou(box, boxes, box_area, boxes_area): """Calculates IoU of the given box with the array of the given boxes. box: 1D vector [y1, x1, y2, x2] boxes: [boxes_count, (y1, x1, y2, x2)] box_area: float. the area of 'box' boxes_area: array of length boxes_count. Note: the areas are passed in rather than calculated here for efficency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) union = box_area + boxes_area[:] - intersection[:] iou = intersection / union return iou def compute_overlaps(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. For better performance, pass the largest set first and the smaller second. """ # Areas of anchors and GT boxes area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0])) for i in range(overlaps.shape[1]): box2 = boxes2[i] overlaps[:, i] = compute_iou(box2, boxes1, area2[i], area1) return overlaps def non_max_suppression(boxes, scores, threshold): """Performs non-maximum supression and returns indicies of kept boxes. boxes: [N, (y1, x1, y2, x2)]. Notice that (y2, x2) lays outside the box. scores: 1-D array of box scores. threshold: Float. IoU threshold to use for filtering. """ assert boxes.shape[0] > 0 if boxes.dtype.kind != "f": boxes = boxes.astype(np.float32) # Compute box areas y1 = boxes[:, 0] x1 = boxes[:, 1] y2 = boxes[:, 2] x2 = boxes[:, 3] area = (y2 - y1) * (x2 - x1) # Get indicies of boxes sorted by scores (highest first) ixs = scores.argsort()[::-1] pick = [] while len(ixs) > 0: # Pick top box and add its index to the list i = ixs[0] pick.append(i) # Compute IoU of the picked box with the rest iou = compute_iou(boxes[i], boxes[ixs[1:]], area[i], area[ixs[1:]]) # Identify boxes with IoU over the threshold. This # returns indicies into ixs[1:], so add 1 to get # indicies into ixs. remove_ixs = np.where(iou > threshold)[0] + 1 # Remove indicies of the picked and overlapped boxes. ixs = np.delete(ixs, remove_ixs) ixs = np.delete(ixs, 0) return np.array(pick, dtype=np.int32) def apply_box_deltas(boxes, deltas): """Applies the given deltas to the given boxes. boxes: [N, (y1, x1, y2, x2)]. Note that (y2, x2) is outside the box. deltas: [N, (dy, dx, log(dh), log(dw))] """ boxes = boxes.astype(np.float32) # Convert to y, x, h, w height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] center_y = boxes[:, 0] + 0.5 * height center_x = boxes[:, 1] + 0.5 * width # Apply deltas center_y += deltas[:, 0] * height center_x += deltas[:, 1] * width height *= np.exp(deltas[:, 2]) width *= np.exp(deltas[:, 3]) # Convert back to y1, x1, y2, x2 y1 = center_y - 0.5 * height x1 = center_x - 0.5 * width y2 = y1 + height x2 = x1 + width return np.stack([y1, x1, y2, x2], axis=1) def box_refinement_graph(box, gt_box): """Compute refinement needed to transform box to gt_box. box and gt_box are [N, (y1, x1, y2, x2)] """ box = tf.cast(box, tf.float32) gt_box = tf.cast(gt_box, tf.float32) height = box[:, 2] - box[:, 0] width = box[:, 3] - box[:, 1] center_y = box[:, 0] + 0.5 * height center_x = box[:, 1] + 0.5 * width gt_height = gt_box[:, 2] - gt_box[:, 0] gt_width = gt_box[:, 3] - gt_box[:, 1] gt_center_y = gt_box[:, 0] + 0.5 * gt_height gt_center_x = gt_box[:, 1] + 0.5 * gt_width dy = (gt_center_y - center_y) / height dx = (gt_center_x - center_x) / width dh = tf.log(gt_height / height) dw = tf.log(gt_width / width) result = tf.stack([dy, dx, dh, dw], axis=1) return result def box_refinement(box, gt_box): """Compute refinement needed to transform box to gt_box. box and gt_box are [N, (y1, x1, y2, x2)]. (y2, x2) is assumed to be outside the box. """ box = box.astype(np.float32) gt_box = gt_box.astype(np.float32) height = box[:, 2] - box[:, 0] width = box[:, 3] - box[:, 1] center_y = box[:, 0] + 0.5 * height center_x = box[:, 1] + 0.5 * width gt_height = gt_box[:, 2] - gt_box[:, 0] gt_width = gt_box[:, 3] - gt_box[:, 1] gt_center_y = gt_box[:, 0] + 0.5 * gt_height gt_center_x = gt_box[:, 1] + 0.5 * gt_width dy = (gt_center_y - center_y) / height dx = (gt_center_x - center_x) / width dh = np.log(gt_height / height) dw = np.log(gt_width / width) return np.stack([dy, dx, dh, dw], axis=1) ############################################################ # Dataset ############################################################ class Dataset(object): """The base class for dataset classes. To use it, create a new class that adds functions specific to the dataset you want to use. For example: class CatsAndDogsDataset(Dataset): def load_cats_and_dogs(self): ... def load_bbox(self, image_id): ... def image_reference(self, image_id): ... See COCODataset and ShapesDataset as examples. """ def __init__(self, class_map=None): self._image_ids = [] self.image_info = [] # Background is always the first class self.class_info = [{"source": "", "id": 0, "name": "BG"}] self.source_class_ids = {} def add_class(self, source, class_id, class_name): assert "." not in source, "Source name cannot contain a dot" # Does the class exist already? for info in self.class_info: if info['source'] == source and info["id"] == class_id: # source.class_id combination already available, skip return # Add the class self.class_info.append({ "source": source, "id": class_id, "name": class_name, }) def add_image(self, source, image_id, path, **kwargs): image_info = { "id": image_id, "source": source, "path": path, } image_info.update(kwargs) self.image_info.append(image_info) def image_reference(self, image_id): """Return a link to the image in its source Website or details about the image that help looking it up or debugging it. Override for your dataset, but pass to this function if you encounter images not in your dataset. """ return "" def prepare(self, class_map=None): """Prepares the Dataset class for use. TODO: class map is not supported yet. When done, it should handle mapping classes from different datasets to the same class ID. """ def clean_name(name): """Returns a shorter version of object names for cleaner display.""" return ",".join(name.split(",")[:1]) # Build (or rebuild) everything else from the info dicts. self.num_classes = len(self.class_info) self.class_ids = np.arange(self.num_classes) self.class_names = [clean_name(c["name"]) for c in self.class_info] self.num_images = len(self.image_info) self._image_ids = np.arange(self.num_images) self.class_from_source_map = {"{}.{}".format(info['source'], info['id']): id for info, id in zip(self.class_info, self.class_ids)} # Map sources to class_ids they support self.sources = list(set([i['source'] for i in self.class_info])) self.source_class_ids = {} # Loop over datasets for source in self.sources: self.source_class_ids[source] = [] # Find classes that belong to this dataset for i, info in enumerate(self.class_info): # Include BG class in all datasets if i == 0 or source == info['source']: self.source_class_ids[source].append(i) def map_source_class_id(self, source_class_id): """Takes a source class ID and returns the int class ID assigned to it. For example: dataset.map_source_class_id("coco.12") -> 23 """ return self.class_from_source_map[source_class_id] def get_source_class_id(self, class_id, source): """Map an internal class ID to the corresponding class ID in the source dataset.""" info = self.class_info[class_id] assert info['source'] == source return info['id'] def append_data(self, class_info, image_info): self.external_to_class_id = {} for i, c in enumerate(self.class_info): for ds, id in c["map"]: self.external_to_class_id[ds + str(id)] = i # Map external image IDs to internal ones. self.external_to_image_id = {} for i, info in enumerate(self.image_info): self.external_to_image_id[info["ds"] + str(info["id"])] = i @property def image_ids(self): return self._image_ids def source_image_link(self, image_id): """Returns the path or URL to the image. Override this to return a URL to the image if it's availble online for easy debugging. """ return self.image_info[image_id]["path"] def load_image(self, image_id): """Load the specified image and return a [H,W,3] Numpy array. """ # Load image image = skimage.io.imread(self.image_info[image_id]['path']) # If grayscale. Convert to RGB for consistency. if image.ndim != 3: image = skimage.color.gray2rgb(image) return image def load_bbox(self, image_id): """Load instance bbox for the given image. Different datasets use different ways to store bbox. Override this method to load instance bbox and return them in the form of am array of binary bbox of shape [height, width, instances]. Returns: bbox: A bool array of shape [height, width, instance count] with a binary bbox per instance. class_ids: a 1D array of class IDs of the instance bbox. """ # Override this function to load a bbox from your dataset. # Otherwise, it returns an empty bbox. bbox = np.empty([0, 0, 0]) class_ids = np.empty([0], np.int32) return bbox, class_ids def resize_image(image, min_dim=None, max_dim=None, padding=False): """ Resizes an image keeping the aspect ratio. min_dim: if provided, resizes the image such that it's smaller dimension == min_dim max_dim: if provided, ensures that the image longest side doesn't exceed this value. padding: If true, pads image with zeros so it's size is max_dim x max_dim Returns: image: the resized image window: (y1, x1, y2, x2). If max_dim is provided, padding might be inserted in the returned image. If so, this window is the coordinates of the image part of the full image (excluding the padding). The x2, y2 pixels are not included. scale: The scale factor used to resize the image padding: Padding added to the image [(top, bottom), (left, right), (0, 0)] """ # Default window (y1, x1, y2, x2) and default scale == 1. h, w = image.shape[:2] window = (0, 0, h, w) scale = 1 # Scale? if min_dim: # Scale up but not down scale = max(1, min_dim / min(h, w)) # Does it exceed max dim? if max_dim: image_max = max(h, w) if round(image_max * scale) > max_dim: scale = max_dim / image_max # Resize image and mask if scale != 1: image = scipy.misc.imresize( image, (round(h * scale), round(w * scale))) # Need padding? if padding: # Get new height and width h, w = image.shape[:2] top_pad = (max_dim - h) // 2 bottom_pad = max_dim - h - top_pad left_pad = (max_dim - w) // 2 right_pad = max_dim - w - left_pad padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)] image = np.pad(image, padding, mode='constant', constant_values=0) window = (top_pad, left_pad, h + top_pad, w + left_pad) return image, window, scale, padding def resize_bbox(boxes, scale, padding): """Resizes a bbox using the given scale and padding. Typically, you get the scale and padding from resize_image() to ensure both, the image and the bbox, are resized consistently. scale: bbox scaling factor padding: Padding to add to the bbox in the form [(top, bottom), (left, right), (0, 0)] """ top_pad = padding[0][0] left_pad = padding[1][0] resized_boxes = [] for box in boxes: temp_new_box = box * scale y1 = temp_new_box[0] + top_pad x1 = temp_new_box[1] + left_pad y2 = temp_new_box[2] + top_pad x2 = temp_new_box[3] + left_pad resized_boxes.append((y1,x1,y2,x2)) return np.array(resized_boxes) ############################################################ # Anchors ############################################################ def generate_anchors(scales, ratios, shape, feature_stride, anchor_stride): """ scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128] ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2] shape: [height, width] spatial shape of the feature map over which to generate anchors. feature_stride: Stride of the feature map relative to the image in pixels. anchor_stride: Stride of anchors on the feature map. For example, if the value is 2 then generate anchors for every other feature map pixel. """ # Get all combinations of scales and ratios scales, ratios = np.meshgrid(np.array(scales), np.array(ratios)) scales = scales.flatten() ratios = ratios.flatten() # Enumerate heights and widths from scales and ratios heights = scales / np.sqrt(ratios) widths = scales * np.sqrt(ratios) # Enumerate shifts in feature space shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride shifts_x, shifts_y = np.meshgrid(shifts_x, shifts_y) # Enumerate combinations of shifts, widths, and heights box_widths, box_centers_x = np.meshgrid(widths, shifts_x) box_heights, box_centers_y = np.meshgrid(heights, shifts_y) # Reshape to get a list of (y, x) and a list of (h, w) box_centers = np.stack( [box_centers_y, box_centers_x], axis=2).reshape([-1, 2]) box_sizes = np.stack([box_heights, box_widths], axis=2).reshape([-1, 2]) # Convert to corner coordinates (y1, x1, y2, x2) boxes = np.concatenate([box_centers - 0.5 * box_sizes, box_centers + 0.5 * box_sizes], axis=1) return boxes def generate_pyramid_anchors(scales, ratios, feature_shapes, feature_strides, anchor_stride): """Generate anchors at different levels of a feature pyramid. Each scale is associated with a level of the pyramid, but each ratio is used in all levels of the pyramid. Returns: anchors: [N, (y1, x1, y2, x2)]. All generated anchors in one array. Sorted with the same order of the given scales. So, anchors of scale[0] come first, then anchors of scale[1], and so on. """ # Anchors # [anchor_count, (y1, x1, y2, x2)] anchors = [] for i in range(len(scales)): anchors.append(generate_anchors(scales[i], ratios, feature_shapes[i], feature_strides[i], anchor_stride)) return np.concatenate(anchors, axis=0) ############################################################ # Miscellaneous ############################################################ def trim_zeros(x): """It's common to have tensors larger than the available data and pad with zeros. This function removes rows that are all zeros. x: [rows, columns]. """ assert len(x.shape) == 2 return x[~np.all(x == 0, axis=1)] def compute_ap(gt_boxes, gt_class_ids, pred_boxes, pred_class_ids, pred_scores, iou_threshold=0.5): """Compute Average Precision at a set IoU threshold (default 0.5). Returns: mAP: Mean Average Precision precisions: List of precisions at different class score thresholds. recalls: List of recall values at different class score thresholds. overlaps: [pred_boxes, gt_boxes] IoU overlaps. """ # Trim zero padding and sort predictions by score from high to low # TODO: cleaner to do zero unpadding upstream gt_boxes = trim_zeros(gt_boxes) pred_boxes = trim_zeros(pred_boxes) pred_scores = pred_scores[:pred_boxes.shape[0]] indices = np.argsort(pred_scores)[::-1] pred_boxes = pred_boxes[indices] pred_class_ids = pred_class_ids[indices] pred_scores = pred_scores[indices] # Compute IoU overlaps [pred_boxes, gt_boxes] overlaps = compute_overlaps(pred_boxes, gt_boxes) # Loop through ground truth boxes and find matching predictions match_count = 0 pred_match = np.zeros([pred_boxes.shape[0]]) gt_match = np.zeros([gt_boxes.shape[0]]) for i in range(len(pred_boxes)): # Find best matching ground truth box sorted_ixs = np.argsort(overlaps[i])[::-1] for j in sorted_ixs: # If ground truth box is already matched, go to next one if gt_match[j] == 1: continue # If we reach IoU smaller than the threshold, end the loop iou = overlaps[i, j] if iou < iou_threshold: break # Do we have a match? if pred_class_ids[i] == gt_class_ids[j]: match_count += 1 gt_match[j] = 1 pred_match[i] = 1 break # Compute precision and recall at each prediction box step precisions = np.cumsum(pred_match) / (np.arange(len(pred_match)) + 1) recalls = np.cumsum(pred_match).astype(np.float32) / len(gt_match) # Pad with start and end values to simplify the math precisions = np.concatenate([[0], precisions, [0]]) recalls = np.concatenate([[0], recalls, [1]]) # Ensure precision values decrease but don't increase. This way, the # precision value at each recall threshold is the maximum it can be # for all following recall thresholds, as specified by the VOC paper. for i in range(len(precisions) - 2, -1, -1): precisions[i] = np.maximum(precisions[i], precisions[i + 1]) # Compute mean AP over recall range indices = np.where(recalls[:-1] != recalls[1:])[0] + 1 mAP = np.sum((recalls[indices] - recalls[indices - 1]) * precisions[indices]) return mAP, precisions, recalls, overlaps def compute_recall(pred_boxes, gt_boxes, iou): """Compute the recall at the given IoU threshold. It's an indication of how many GT boxes were found by the given prediction boxes. pred_boxes: [N, (y1, x1, y2, x2)] in image coordinates gt_boxes: [N, (y1, x1, y2, x2)] in image coordinates """ # Measure overlaps overlaps = compute_overlaps(pred_boxes, gt_boxes) iou_max = np.max(overlaps, axis=1) iou_argmax = np.argmax(overlaps, axis=1) positive_ids = np.where(iou_max >= iou)[0] matched_gt_boxes = iou_argmax[positive_ids] recall = len(set(matched_gt_boxes)) / gt_boxes.shape[0] return recall, positive_ids # ## Batch Slicing # Some custom layers support a batch size of 1 only, and require a lot of work # to support batches greater than 1. This function slices an input tensor # across the batch dimension and feeds batches of size 1. Effectively, # an easy way to support batches > 1 quickly with little code modification. # In the long run, it's more efficient to modify the code to support large # batches and getting rid of this function. Consider this a temporary solution def batch_slice(inputs, graph_fn, batch_size, names=None): """Splits inputs into slices and feeds each slice to a copy of the given computation graph and then combines the results. It allows you to run a graph on a batch of inputs even if the graph is written to support one instance only. inputs: list of tensors. All must have the same first dimension length graph_fn: A function that returns a TF tensor that's part of a graph. batch_size: number of slices to divide the data into. names: If provided, assigns names to the resulting tensors. """ if not isinstance(inputs, list): inputs = [inputs] outputs = [] for i in range(batch_size): inputs_slice = [x[i] for x in inputs] output_slice = graph_fn(*inputs_slice) if not isinstance(output_slice, (tuple, list)): output_slice = [output_slice] outputs.append(output_slice) # Change outputs from a list of slices where each is # a list of outputs to a list of outputs and each has # a list of slices outputs = list(zip(*outputs)) if names is None: names = [None] * len(outputs) result = [tf.stack(o, axis=0, name=n) for o, n in zip(outputs, names)] if len(result) == 1: result = result[0] return result ############################################################ # Data Formatting ############################################################ def compose_image_meta(image_id, image_shape, window, active_class_ids): """Takes attributes of an image and puts them in one 1D array. Use parse_image_meta() to parse the values back. image_id: An int ID of the image. Useful for debugging. image_shape: [height, width, channels] window: (y1, x1, y2, x2) in pixels. The area of the image where the real image is (excluding the padding) active_class_ids: List of class_ids available in the dataset from which the image came. Useful if training on images from multiple datasets where not all classes are present in all datasets. """ meta = np.array( [image_id] + # size=1 list(image_shape) + # size=3 list(window) + # size=4 (y1, x1, y2, x2) in image cooredinates list(active_class_ids) # size=num_classes ) return meta # Two functions (for Numpy and TF) to parse image_meta tensors. def parse_image_meta(meta): """Parses an image info Numpy array to its components. See compose_image_meta() for more details. """ image_id = meta[:, 0] image_shape = meta[:, 1:4] window = meta[:, 4:8] # (y1, x1, y2, x2) window of image in in pixels active_class_ids = meta[:, 8:] return image_id, image_shape, window, active_class_ids def parse_image_meta_graph(meta): """Parses a tensor that contains image attributes to its components. See compose_image_meta() for more details. meta: [batch, meta length] where meta length depends on NUM_CLASSES """ image_id = meta[:, 0] image_shape = meta[:, 1:4] window = meta[:, 4:8] active_class_ids = meta[:, 8:] return [image_id, image_shape, window, active_class_ids] def mold_image(images, config): """Takes RGB images with 0-255 values and subtraces the mean pixel and converts it to float. Expects image colors in RGB order. """ return images.astype(np.float32) - config.MEAN_PIXEL def unmold_image(normalized_images, config): """Takes a image normalized with mold() and returns the original.""" return (normalized_images + config.MEAN_PIXEL).astype(np.uint8) ''' class GradientsCallback(Callback): def on_batch_end(self, batch, logs): weights = self.model.trainable_weights # weight tensors gradients = self.model.optimizer.get_gradients(self.model.total_loss, weights) # gradient tensors input_tensors = self.model.inputs + self.model.sample_weights + self.model.targets + [K.learning_phase()] get_gradients = K.function(inputs=input_tensors, outputs=gradients) inputs = [x, x_off, np.ones(len(x)), y, 0] grads = get_gradients(inputs) with open('gradients.txt','w') as f: f.write('grads') ''' def log(text, array=None): """Prints a text message. And, optionally, if a Numpy array is provided it prints it's shape, min, and max values. """ if array is not None: text = text.ljust(25) text += ("shape: {:20} ".format(str(array.shape))) if array.size: text += ("min: {:10.5f} max: {:10.5f}".format(array.min(),array.max())) else: text += ("min: {:10} max: {:10}".format("","")) text += " {}".format(array.dtype) print(text) def denorm_boxes(boxes, shape): """Converts boxes from normalized coordinates to pixel coordinates. boxes: [N, (y1, x1, y2, x2)] in normalized coordinates shape: [..., (height, width)] in pixels Note: In pixel coordinates (y2, x2) is outside the box. But in normalized coordinates it's inside the box. Returns:[N, (y1, x1, y2, x2)] in pixel coordinates """ h, w = shape scale = np.array([h - 1, w - 1, h - 1, w - 1]) shift = np.array([0, 0, 1, 1]) return np.around(np.multiply(boxes, scale) + shift).astype(np.int32)
[ "mitulmodi15@gmail.com" ]
mitulmodi15@gmail.com
dd8266083726914414d608f3cacd125395994324
7ef29543c9e8305f181084cede03d8cec50508f1
/docker_vnc_immutable/immutableworkstation3.py
61d3ee59bb7a0be59a34ef246f878368298cc05d
[ "MIT" ]
permissive
mikadosoftware/workstation
6168ba7f8f8357d73e7792a3c65c0daec37222e7
9c8b19bc5d6c596843da30f58f1dad6a60c7e989
refs/heads/master
2023-02-21T03:45:54.209770
2023-02-08T08:41:36
2023-02-08T08:41:36
138,070,951
477
29
MIT
2023-02-07T21:53:32
2018-06-20T18:28:07
Python
UTF-8
Python
false
false
13,917
py
#!/usr/bin/python3 #! -*- coding:utf-8 -*- """ ImmutableWorkstation ==================== This is a single entry point for the `immutableworkstation` project. The project is pretty simple - I want to have a consistent, immutable workstation on any host machine I am developing on - so I am using a docker instance on a host machine - the instance is my development "machine", and it can be rebuilt from consistent templates - this script helps control all that - its supposed to be easier to get started than a bunch of poorly documneted shell scripts. * the start and stopping of the dev instance. * the compilation of the docker image * vsarious config and templates used to build to docker image. This script does quite a lot, and needs to be installed on the host machine - do so using pip3 install docopt python3 setup.py install (I will launch it on PyPI soon) Once this is done, you should be able to run ./immutableworkstation.py usage ----- We expect to have a config .ini file. This is for ease of specifying things like volume mappings. By default the config file is at `~/immuntableworkstation/config.ini` [ ] Implement expect-style testing so we can automate testing. [x] put the home dir into git seperate to rest of pacakge (ie thats the indivudal part) [ ] put blog.mikadosoftware onto AWS and run this testing with docker on it. [ ] migrate rest of the articles there. [x] create a plain docker instance and just import devstation, see if it works (ie clean install) [ ] run the get github projects into one place [ ] podman system prune : clean up a lot of cruft in docker areas. [x] remove priviledged access with auser name remapping [ ] improve using https://github.com/mviereck/x11docker """ ##### imports ##### import logging, sys from docopt import docopt import subprocess import time import os from pprint import pprint as pp from mikado.core import config import shutil import json import lib_config import operator ##### Module setup ##### # TODO: split out logging into common module log = logging.getLogger(__name__) log.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) log.addHandler(handler) DRYRUN = False PDB = False OCI_CMD = 'sudo docker' OCI_CMD = 'podman' #: usage defintons DOCOPT_HELP = """immutableworkstation Usage: immutableworkstation.py showconfig [options] immutableworkstation.py createDockerfile --templatedir=<path> [options] immutableworkstation.py start tagname [options] immutableworkstation.py stop tagname [options] immutableworkstation.py login tagname [options] immutableworkstation.py buildAnyDocker <path_to_dockerfile> <context_dir> [options] immutableworkstation.py status immutableworkstation.py test immutableworkstation.py (-h | --help ) Options: -h --help Show this screen -d --dryrun dryrun --configfile=<configpath> path 2 config ini file --tagname=<tagname> Name to tag --instancename=<instancename> --username=<username> --volumearray=<volumearray> """ def parse_docopt(argsd): '''We want to split into args (<val>), options (--left) and commands (foo.py fire) ''' args = [] options = [] commands = [] active_commmands = [] # we assume only one command at a time? for k,i in argsd.items(): if k.startswith("--"): options.append({k:i}) elif k.startswith("<"): args.append({k:i}) else: commands.append({k:i}) # active_commands = [list(d.keys())[0] for d in commands if list(d.values())[0]] return args, options, commands, active_commands ############### Config def build_sshcmd(): """Create the command used to connect to running docker via ssh.""" return "ssh -X {username}@{localhost} -p {ssh_port}".format(**CONFD) def build_dockerrun(latest=True): """create the command used to start docker instance. tagname of image name of running instance """ _latest = LATEST if latest else NEXT instance_name = "run_{}_{}".format(CONFD["instance_name"], _latest) image_name = "{}:{}".format(CONFD["tagname"], _latest) vols = "" for hostpath, mountpath in CONFD["volumes"].items(): vols += "-v {}:{} ".format(hostpath, mountpath) return [ "{} container prune -f".format(OCI_CMD), """{OCI_CMD} run -d \ {vols} \ --name {instance_name} \ --device /dev/snd \ -p {ssh_port}:22 \ --privileged \ {tagname}:{_latest} """.format( OCI_CMD=OCI_CMD, vols=vols, instance_name=instance_name, ssh_port=CONFD["ssh_port"], _latest=_latest, tagname=CONFD["tagname"], ), ] def build_docker_build(latest=True): """Create command used to (re)build the container. We store the Dockerfile (as that name) in dir .next or .latest so that we can have various templates and assets and so on in the 'context' directory. """ tmpl = "{} build -t {{tagname}}:{{tagtag}} {{pathtodockerfile}} --squash".format(OCI_CMD) _latest = LATEST if latest else NEXT pathtodockerfile = os.path.join(CONFD["devstation_config_root"], "." + _latest) return tmpl.format( tagname=CONFD["tagname"], tagtag=_latest, pathtodockerfile=pathtodockerfile ) def build_docker_any_build(path_to_dockerfile, context_dir): """Create command used to (re)build the container. """ tmpl = "{} build -t {{tagname}}:{{tagtag}} -f {{path_to_dockerfile}} {{context_dir}} --squash".format(OCI_CMD) return tmpl.format( tagname='anybuild', tagtag='0.1', path_to_dockerfile=path_to_dockerfile, context_dir=context_dir ) def read_subprocess(cmd): """Run a command and return output """ result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True, shell=True) txt = result.stdout return txt def run_subprocess(cmd, shell=None): """Run the given command in a subprocess.""" if DRYRUN: telluser(cmd) else: log.info(cmd) subprocess.run(cmd, shell=True) def spawn_sibling_console(): """This script is best thought of as a launcher for other shells we shall be working in. We want to interact with the console, not this script much. I have played with fork'ing a child console, then passing `fd` 0,1,2 over to it. But the easiest way seems to be to assume this is a GUI workstation, and people are using a terminal program (like Konsole) - so we just spawn konsole and run -e """ sshcmd = '{} "{}" &'.format(CONFD["terminal_command"], build_sshcmd()) log.info(sshcmd) run_subprocess(sshcmd) def handle_start(args): """Perform cmsd needed to start the docker and login I really need to monitor the success of the underlying cmds, instead of brute force sleep. [ ] {milestone} stop using sleep, monitor the subprocess for return values. """ # do start up here cmds = build_dockerrun(args["latest"]) for cmd in cmds: # TODO get better solution than sleep run_subprocess(cmd, shell=True) time.sleep(8) # brute force give docker time to complete its stuff. time.sleep(10) # As above, but let docker catch up before login handle_login(args) ############### Config # This is a 'well-known' location CONFIGDIR = os.path.join(os.path.expanduser("~"), ".immutableworkstation") CONFIGLOCATION = os.path.join( os.path.expanduser("~"), ".immutableworkstation/config.ini" ) def handle_showconfig(args): print(args['--configfile']) #lib_config.show_config(confd=CONFD) def handle_login(args): spawn_sibling_console() def handle_createDockerfile(args): makeDocker(args['--templatedir']) def handle_buildDocker(args): """Trigger the processes to create new dockerfile and then build image. """ makeDocker(latest=args["latest"]) cmd = build_docker_build(latest=args["latest"]) run_subprocess(cmd) def parse_volumearray(args): ''' COnvert volumne array to usable instructions >>> parse_volumearray(args) ''' x = ['~/data=/var/data', '~/projects=/var/projects', '~/secrets=/var/secrets:ro', '~/Dropbox=/var/Dropbox'] return x def handle_buildAnyDocker(args): """Trigger the processes to create new dockerfile and then build image. """ #import pdb;pdb.set_trace() cmd = build_docker_any_build(args['<path_to_dockerfile>'], args['<context_dir>']) run_subprocess(cmd) def handle_status(args): """Show container status. """ cmd = "{} container ls".format(OCI_CMD) run_subprocess(cmd) cmd = "{} inspect run_devstation_next".format(OCI_CMD) txt = read_subprocess(cmd) jsond = json.loads(txt) ipaddress = jsond[0]['NetworkSettings']['IPAddress'] print('Use this ip address {}'.format(ipaddress)) def handle_stop(args): """Kill the specified instance. """ _latest = LATEST if args["latest"] else NEXT #: rewrite so this is not in two places instance_name = "run_{}_{}".format(CONFD["instance_name"], _latest) cmd = "{} container kill {}".format(OCI_CMD, instance_name) run_subprocess(cmd) def hasValidConfig(): """This is a placeholder for future development on checking curr env. """ has_config_file = os.path.isfile(CONFIGLOCATION) return all([has_config_file]) def gatherinfo(): questions = { "username": "What username should be the default (only) on your immutable workstation?" } answers = {} for label, question in questions.items(): answer = input(question) answers[label] = answer return answers def handle_quickstart(args): """We have a starter config on github. Pull that down and put in users homedir, then alter based on questions. I am spending too long yak shaving on this app, and so will just print instructions and look to automate it later. """ helpmsg = "" if hasValidConfig(): helpmsg += """You appear to have an existing config in {}. Please adjust it manually - view docs for help.""".format( CONFIGLOCATION ) if not hasValidConfig(): helpmsg += """ In the future this app will walk you through a series of questions, but for now please can you download and unzip into {} the starter config stored at {}. You should have a directory layout like:: .immutableworkstation | -config.ini | -.next/ -.latest/ You should copy these into *your* github repo, and then update the templates to your needs, as you find a new package to be added to your workstation, adjust the config needed. """.format( CONFIGDIR, STARTER_CONFIG_URL ) telluser(helpmsg) def handle_unknown(command, e, args): telluser(f"Unknown request. We got command: {command} and error: {e}. Full args were {args}") def makeDocker(templatesdir): """Take a .skeleton file, and replace defined markup with contents of txt files Based on 'dockerfile.skeleton', replace any instance of {{ python }} with the contents of file `templates\python.template` This is an *extremely* simple templating tool. It is *not* supposed to have the complexity even of Jinja2. Its supposed to be really dumb. Lucky I wrote it then :-). """ pathtodockerfile = os.path.join(templatesdir, "../Dockerfile") skeleton = "dockerfile.skeleton" outputs = "" with open(os.path.join(templatesdir, skeleton)) as fo: for line in fo: if line.find("{{") == 0: file = line.replace("{{", "").replace("}}", "").strip() filepath = os.path.join(templatesdir, file + ".template") txt = open(filepath).read() outputs += "\n### {}\n{}\n".format(line, txt) else: outputs += "{}".format(line) fo = open(pathtodockerfile, "w") fo.write(outputs) fo.close() telluser("Written new Dockerfile at {}".format(pathtodockerfile)) def telluser(msg): """ aggregate print stmts into one place.""" # handle my weird formatting print(msg) def build_current_confd(args, options, commands, active_commands): print("args", args, '----\n') print("options", options, '----\n') print("commands", commands, '----\n') print("active commands", active_commands, '----\n') volumes = parse_volumearray(options) import sys; sys.exit() def run(argsd): #: start with quickstart as it may be our only options #: [ ] make this safer with .get args, options, commands, active_commands = parse_docopt(argsd) build_current_confd(args, options, commands, active_commands) for active_command in active_commands: try: # in current module, prepend handle_ to the name of the active command and # look for that in current module, if it exists, call it current_module = sys.modules[__name__] fn = operator.attrgetter('handle_{}'.format(active_command))(current_module) fn.__call__(argsd) except Exception as e: handle_unknown(active_command, e, argsd) def runtests(): import doctest doctest.testmod() teststr = ''' [default] tagname = workstation instance_name = devstation localhost = 127.0.0.1 username = pbrian ssh_port = 2222 terminal_command = /usr/bin/konsole -e volume_array: ~/secrets=/var/secrets:ro ~/secrets2=/var/secrets2:ro ''' def main(): global DRYRUN args = docopt(DOCOPT_HELP) if args.get("--dryrun", False): DRYRUN = True run(args) if __name__ == "__main__": main()
[ "paul@mikadosoftware.com" ]
paul@mikadosoftware.com
d18f96dd0867f55e3239dacad3182148cccd426e
d02aac5fd9864b2f446c048a48c0370292cdf148
/captcha_data.py
6d919a12f192429da318e56f35e7c9d435ee5262
[]
no_license
sayaadit/captcha_breaker
81677018be269d3a82162f48e3bf0ad91bd03270
827274a5d8f6054b11242b50d4284039f6550152
refs/heads/master
2020-05-24T04:00:18.114397
2019-05-16T18:49:56
2019-05-16T18:49:56
187,083,988
0
0
null
null
null
null
UTF-8
Python
false
false
2,713
py
import glob, os import numpy as np import cv2 import random class OCR_data(object): def __init__(self, num, data_dir, num_classes, batch_size=50, len_code=5, height=60, width=180, resize_height=24, resize_width=88, num_channels=1): self.num = num self.data_dir = data_dir self.num_classes = num_classes self.batch_size = batch_size self.len_code = len_code self.height = height self.width = width self.resize_height = resize_height self.resize_width = resize_width self.num_channels = num_channels self.index_in_epoch = 0 self._imgs = [] self._labels = [] for pathAndFilename in glob.iglob(os.path.join(data_dir, '*.png')): img, label = self.create_captcha(pathAndFilename) self._imgs.append(img) self._labels.append(label) self._imgs = np.array(self._imgs).reshape((-1, resize_height, resize_width, num_channels)).astype( np.float32) self._labels = np.array(self._labels) def create_captcha(self, pathAndFilename): img = cv2.imread(pathAndFilename, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (self.resize_width, self.resize_height), interpolation=cv2.INTER_AREA) filename, ext = os.path.splitext(os.path.basename(pathAndFilename)) label = self.create_label(filename) return (img, label) def create_label(self, filename): label = [] for c in filename: ascii_code = ord(c) if ascii_code < 58: char_value = ascii_code - 48 else: char_value = ascii_code - 87 label.append(char_value) return self.dense_to_one_hot(label, self.num_classes) def dense_to_one_hot(self, labels_dense, num_classes): num_labels = len(labels_dense) index_offest = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offest + labels_dense] = 1 labels_one_hot = labels_one_hot.reshape(num_labels * num_classes) return labels_one_hot def next_batch(self, batch_size): start = self.index_in_epoch self.index_in_epoch += batch_size if self.index_in_epoch > self.num: perm = np.arange(self.num) np.random.shuffle(perm) self._imgs = self._imgs[perm] self._labels = self._labels[perm] start = 0 self.index_in_epoch = batch_size assert batch_size <= self.num end = self.index_in_epoch return self._imgs[start:end], self._labels[start:end]
[ "sayaadit9@gmail.com" ]
sayaadit9@gmail.com
a3a738a23827197ecf696191edae4ca0e4645061
3f9aff869095b986e99b50b996b172ea946ee667
/python_code.py
ffc6055f970c7256040159792f1d5b4980c8ce90
[]
no_license
ssmitha21/repo_1
a0a822c256b56df2fbfed1da41008aa4ff0db2e5
905f11b4ca6948baf54a9bbb708b2692be21c761
refs/heads/master
2020-11-26T02:03:48.325768
2019-12-19T20:33:59
2019-12-19T20:33:59
228,931,907
0
0
null
null
null
null
UTF-8
Python
false
false
23
py
print("Hello Githib!")
[ "ssmitha_21@yahoo.com" ]
ssmitha_21@yahoo.com
3d32dcf93fd427ca48693b5eae480d0cd2609d04
b295b72d3f9471e1badf2d1568fa4748007403bd
/api-examples/impala/create_impala_datasource.py
092e3b637a3045ad3fe15126b6422e37d2521d04
[ "Apache-2.0" ]
permissive
Zoomdata/zoomdata-tools
ed4fa11ebc83697bb0cd75087d718117d1d7e824
a411396e29cea5198dce4f389d30fa5ebf86effa
refs/heads/master
2022-05-02T17:56:39.215640
2022-04-05T09:06:58
2022-04-05T09:06:58
70,515,227
3
10
Apache-2.0
2022-04-05T09:06:59
2016-10-10T18:07:58
Python
UTF-8
Python
false
false
1,872
py
#!/usr/bin/env python from base_classes.zoomdata_api_base import ZoomdataRequest from base_classes.zoomdata_api_impala import ImpalaDatasource zoomdataBaseURL = raw_input("Enter the Zoomdata instance URL (https://<server>:<port>/zoomdata): ") adminUser = raw_input("Enter the Zoomdata administrator username (typically 'admin'): ") adminPassword = raw_input("Enter the password for the Zoomdata administrator: ") connectionID = raw_input("Enter the Zoomdata connection ID to use: ") connectorTypeInput = raw_input("Is this connector an EDC? (yes or no): ") if connectorTypeInput.lower() == "yes": connectorType = "EDC2" else: connectorType = "IMPALA" collectionName = raw_input("Enter the Impala collection name, or custom SQL statement: ") customSQL = raw_input("Did you enter a custom SQL statement in the previous step? (yes or no): ") if customSQL.lower() == "yes": customSQLFlag = "true" else: customSQLFlag = "false" schemaName = raw_input("Enter the Impala schema name that contains the collection: ") debug = raw_input("Do you want to enable verbose output (debug mode; prints all API request data to the console)? (yes or no): ") sourceName = raw_input("Finally, enter a name for the new datasource: ") # Create the Zoomdata server request zoomdataServerRequest = ZoomdataRequest(zoomdataBaseURL, adminUser, adminPassword) # Enable verbose output if desired if debug.lower() == "yes": zoomdataServerRequest.enableDebug() # Initialize the source object source = ImpalaDatasource(sourceName, zoomdataServerRequest, connectionID, collectionName, schemaName, customSQLFlag, connectorType=connectorType) # Finally, create the source in Zoomdata source.create() # Uncomment the line below to delete the datasource after creation (for testing purposes) #source.delete() # Return the Zoomdata source id of the newly created source print "source: "+source.id
[ "boyd@zoomdata.com" ]
boyd@zoomdata.com
a4807335c903336469b5249d53ae61d78e699610
a21131c2ef7cd2a4a6a27d3fcef132ba3fdc9756
/path_context_reader.py
c9424ebf391dca42abf666c0be8f79024f41cfd6
[ "MIT" ]
permissive
eladn/code2vec
3cfb9a14bc3f720720a0cdb933832778dd04d7a7
32dabfa21200be35f0e7beeb0dc536edb549f021
refs/heads/master
2020-04-28T05:31:16.767427
2019-09-18T08:53:33
2019-09-18T08:53:33
175,023,515
0
1
MIT
2019-03-11T14:58:18
2019-03-11T14:58:17
null
UTF-8
Python
false
false
11,627
py
import tensorflow as tf from typing import Dict, Tuple, NamedTuple, Union, Optional, Iterable from config import Config from vocabularies import Code2VecVocabs import abc from functools import reduce from enum import Enum class EstimatorAction(Enum): Train = 'train' Evaluate = 'evaluate' Predict = 'predict' @property def is_train(self): return self is EstimatorAction.Train @property def is_evaluate(self): return self is EstimatorAction.Evaluate @property def is_predict(self): return self is EstimatorAction.Predict @property def is_evaluate_or_predict(self): return self.is_evaluate or self.is_predict class ReaderInputTensors(NamedTuple): """ Used mostly for convenient-and-clear access to input parts (by their names). """ path_source_token_indices: tf.Tensor path_indices: tf.Tensor path_target_token_indices: tf.Tensor context_valid_mask: tf.Tensor target_index: Optional[tf.Tensor] = None target_string: Optional[tf.Tensor] = None path_source_token_strings: Optional[tf.Tensor] = None path_strings: Optional[tf.Tensor] = None path_target_token_strings: Optional[tf.Tensor] = None class ModelInputTensorsFormer(abc.ABC): """ Should be inherited by the model implementation. An instance of the inherited class is passed by the model to the reader in order to help the reader to construct the input in the form that the model expects to receive it. This class also enables conveniently & clearly access input parts by their field names. eg: 'tensors.path_indices' instead if 'tensors[1]'. This allows the input tensors to be passed as pure tuples along the computation graph, while the python functions that construct the graph can easily (and clearly) access tensors. """ @abc.abstractmethod def to_model_input_form(self, input_tensors: ReaderInputTensors): ... @abc.abstractmethod def from_model_input_form(self, input_row) -> ReaderInputTensors: ... class PathContextReader: def __init__(self, vocabs: Code2VecVocabs, config: Config, model_input_tensors_former: ModelInputTensorsFormer, estimator_action: EstimatorAction, repeat_endlessly: bool = False): self.vocabs = vocabs self.config = config self.model_input_tensors_former = model_input_tensors_former self.estimator_action = estimator_action self.repeat_endlessly = repeat_endlessly self.CONTEXT_PADDING = ','.join([self.vocabs.token_vocab.special_words.PAD, self.vocabs.path_vocab.special_words.PAD, self.vocabs.token_vocab.special_words.PAD]) self.csv_record_defaults = [[self.vocabs.target_vocab.special_words.OOV]] + \ ([[self.CONTEXT_PADDING]] * self.config.MAX_CONTEXTS) # initialize the needed lookup tables (if not already initialized). self.create_needed_vocabs_lookup_tables(self.vocabs) self._dataset: Optional[tf.data.Dataset] = None @classmethod def create_needed_vocabs_lookup_tables(cls, vocabs: Code2VecVocabs): vocabs.token_vocab.get_word_to_index_lookup_table() vocabs.path_vocab.get_word_to_index_lookup_table() vocabs.target_vocab.get_word_to_index_lookup_table() @tf.function def process_input_row(self, row_placeholder): parts = tf.io.decode_csv( row_placeholder, record_defaults=self.csv_record_defaults, field_delim=' ', use_quote_delim=False) # Note: we DON'T apply the filter `_filter_input_rows()` here. tensors = self._map_raw_dataset_row_to_input_tensors(*parts) # make it batched (first batch axis is going to have dimension 1) tensors_expanded = ReaderInputTensors( **{name: None if tensor is None else tf.expand_dims(tensor, axis=0) for name, tensor in tensors._asdict().items()}) return self.model_input_tensors_former.to_model_input_form(tensors_expanded) def process_and_iterate_input_from_data_lines(self, input_data_lines: Iterable) -> Iterable: for data_row in input_data_lines: processed_row = self.process_input_row(data_row) yield processed_row def get_dataset(self, input_data_rows: Optional = None) -> tf.data.Dataset: if self._dataset is None: self._dataset = self._create_dataset_pipeline(input_data_rows) return self._dataset def _create_dataset_pipeline(self, input_data_rows: Optional = None) -> tf.data.Dataset: if input_data_rows is None: assert not self.estimator_action.is_predict dataset = tf.data.experimental.CsvDataset( self.config.data_path(is_evaluating=self.estimator_action.is_evaluate), record_defaults=self.csv_record_defaults, field_delim=' ', use_quote_delim=False, buffer_size=self.config.CSV_BUFFER_SIZE) else: dataset = tf.data.Dataset.from_tensor_slices(input_data_rows) dataset = dataset.map( lambda input_line: tf.io.decode_csv( tf.reshape(tf.cast(input_line, tf.string), ()), record_defaults=self.csv_record_defaults, field_delim=' ', use_quote_delim=False)) if self.repeat_endlessly: dataset = dataset.repeat() if self.estimator_action.is_train: if not self.repeat_endlessly and self.config.NUM_TRAIN_EPOCHS > 1: dataset = dataset.repeat(self.config.NUM_TRAIN_EPOCHS) dataset = dataset.shuffle(self.config.SHUFFLE_BUFFER_SIZE, reshuffle_each_iteration=True) dataset = dataset.map(self._map_raw_dataset_row_to_expected_model_input_form, num_parallel_calls=self.config.READER_NUM_PARALLEL_BATCHES) batch_size = self.config.batch_size(is_evaluating=self.estimator_action.is_evaluate) if self.estimator_action.is_predict: dataset = dataset.batch(1) else: dataset = dataset.filter(self._filter_input_rows) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(buffer_size=40) # original: tf.contrib.data.AUTOTUNE) -- got OOM err; 10 seems promising. return dataset def _filter_input_rows(self, *row_parts) -> tf.bool: row_parts = self.model_input_tensors_former.from_model_input_form(row_parts) assert all(tensor.shape == (self.config.MAX_CONTEXTS,) for tensor in {row_parts.path_source_token_indices, row_parts.path_indices, row_parts.path_target_token_indices, row_parts.context_valid_mask}) # FIXME: Does "valid" here mean just "no padding" or "neither padding nor OOV"? I assumed just "no padding". any_word_valid_mask_per_context_part = [ tf.not_equal(tf.reduce_max(row_parts.path_source_token_indices, axis=0), self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]), tf.not_equal(tf.reduce_max(row_parts.path_target_token_indices, axis=0), self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]), tf.not_equal(tf.reduce_max(row_parts.path_indices, axis=0), self.vocabs.path_vocab.word_to_index[self.vocabs.path_vocab.special_words.PAD])] any_contexts_is_valid = reduce(tf.logical_or, any_word_valid_mask_per_context_part) # scalar if self.estimator_action.is_evaluate: cond = any_contexts_is_valid # scalar else: # training word_is_valid = tf.greater( row_parts.target_index, self.vocabs.target_vocab.word_to_index[self.vocabs.target_vocab.special_words.OOV]) # scalar cond = tf.logical_and(word_is_valid, any_contexts_is_valid) # scalar return cond # scalar def _map_raw_dataset_row_to_expected_model_input_form(self, *row_parts) -> \ Tuple[Union[tf.Tensor, Tuple[tf.Tensor, ...], Dict[str, tf.Tensor]], ...]: tensors = self._map_raw_dataset_row_to_input_tensors(*row_parts) return self.model_input_tensors_former.to_model_input_form(tensors) def _map_raw_dataset_row_to_input_tensors(self, *row_parts) -> ReaderInputTensors: row_parts = list(row_parts) target_str = row_parts[0] target_index = self.vocabs.target_vocab.lookup_index(target_str) contexts_str = tf.stack(row_parts[1:(self.config.MAX_CONTEXTS + 1)], axis=0) split_contexts = tf.compat.v1.string_split(contexts_str, sep=',', skip_empty=False) # dense_split_contexts = tf.sparse_tensor_to_dense(split_contexts, default_value=self.vocabs.token_vocab.special_words.PAD) sparse_split_contexts = tf.sparse.SparseTensor( indices=split_contexts.indices, values=split_contexts.values, dense_shape=[self.config.MAX_CONTEXTS, 3]) dense_split_contexts = tf.reshape( tf.sparse.to_dense(sp_input=sparse_split_contexts, default_value=self.vocabs.token_vocab.special_words.PAD), shape=[self.config.MAX_CONTEXTS, 3]) # (max_contexts, 3) path_source_token_strings = tf.squeeze( tf.slice(dense_split_contexts, begin=[0, 0], size=[self.config.MAX_CONTEXTS, 1]), axis=1) # (max_contexts,) path_strings = tf.squeeze( tf.slice(dense_split_contexts, begin=[0, 1], size=[self.config.MAX_CONTEXTS, 1]), axis=1) # (max_contexts,) path_target_token_strings = tf.squeeze( tf.slice(dense_split_contexts, begin=[0, 2], size=[self.config.MAX_CONTEXTS, 1]), axis=1) # (max_contexts,) path_source_token_indices = self.vocabs.token_vocab.lookup_index(path_source_token_strings) # (max_contexts, ) path_indices = self.vocabs.path_vocab.lookup_index(path_strings) # (max_contexts, ) path_target_token_indices = self.vocabs.token_vocab.lookup_index(path_target_token_strings) # (max_contexts, ) # FIXME: Does "valid" here mean just "no padding" or "neither padding nor OOV"? I assumed just "no padding". valid_word_mask_per_context_part = [ tf.not_equal(path_source_token_indices, self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]), tf.not_equal(path_target_token_indices, self.vocabs.token_vocab.word_to_index[self.vocabs.token_vocab.special_words.PAD]), tf.not_equal(path_indices, self.vocabs.path_vocab.word_to_index[self.vocabs.path_vocab.special_words.PAD])] # [(max_contexts, )] context_valid_mask = tf.cast(reduce(tf.logical_or, valid_word_mask_per_context_part), dtype=tf.float32) # (max_contexts, ) assert all(tensor.shape == (self.config.MAX_CONTEXTS,) for tensor in {path_source_token_indices, path_indices, path_target_token_indices, context_valid_mask}) return ReaderInputTensors( path_source_token_indices=path_source_token_indices, path_indices=path_indices, path_target_token_indices=path_target_token_indices, context_valid_mask=context_valid_mask, target_index=target_index, target_string=target_str, path_source_token_strings=path_source_token_strings, path_strings=path_strings, path_target_token_strings=path_target_token_strings )
[ "eladnah@gmail.com" ]
eladnah@gmail.com
29a911f8facee7df9b6c2801468794f26212fdd0
542323b41107b68e1e4ee910817beca684439497
/pjViz/Visual/node.py
e8a96e500ca55dae8a3a717a0f50375edbf71438
[]
no_license
Twoods01/programVisualization
08ef1778353535272db0937233e035f3348b64ac
c1f86de13380c71c4b734dc3eb4c785b63ad1c3f
refs/heads/master
2016-08-03T21:43:13.670679
2015-06-11T18:07:17
2015-06-11T18:07:17
30,376,764
0
0
null
null
null
null
UTF-8
Python
false
false
5,422
py
__author__ = 'twoods0129' import operator as op import pyglet from pjViz.constants import Constants import pjViz.Utils.vectorMath as vm import pjViz.Utils.spline as spline init_radius = 150 node_height = 70 node_width = 114 x_offset = node_width / 2 y_offset = node_height / 2 node_vertices = {} class Node: texture = pyglet.image.load('Visual/rr.png').get_texture() #Construct a new Node given a MethodDeclaration which it represents, and a parent if it has one def __init__(self, method, parent=None, visible=True): #Array of child nodes self.child_branches = [] #Array of parent nodes self.parents = [] #Array of child nodes self.children= [] if parent is not None: self.parents.append(parent) #Hash of number of times this node has been visited by other nodes # key is the node, value is the number of visits self.visit_count = {} #Hash of splines which form the path from this node to its parents #key is the parent node, value is the Spline self.splines = {} #x,y location on screen self.x = -1 self.y = -1 #Branch and index of this node self.branch = 0 self.index = 0 #The method which this node represents self.method = method self.radius = init_radius self.visible = visible def add_parent(self, parent): self.parents.append(parent) parent.children.append(self) #Print for debugging def write(self): print(self.method.name) print(' child branches ' + str(self.child_branches)) print(' parents ' + str(map(lambda x: x.method.name, self.parents))) print(' children ' + str(map(lambda x: x.method.name, self.children))) #Set x,y position of this node def set_position(self, x, y): self.x = x self.y = y #Draw the node with the given color def draw(self, color, additional_draw_task=None, texture=True): if not self.visible: if additional_draw_task != None: additional_draw_task() return pyglet.gl.glPushMatrix() pyglet.gl.glTranslatef(self.x, self.y, 0) #Check if we've drawn a node of this color before, if not create a vertex list for it if not color in node_vertices: node_vertices[color] = pyglet.graphics.vertex_list_indexed(4, [0, 1, 2, 0, 2, 3], ('v3i', (-57, -35, 0, 57, -35, 0, 57, 35, 0, -57, 35, 0)), ('t2f', (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0)), ('c4B', (color[0], color[1], color[2], 255) * 4)) if texture: pyglet.gl.glEnable(Node.texture.target) pyglet.gl.glBindTexture(Node.texture.target, Node.texture.id) node_vertices[color].draw(pyglet.gl.GL_TRIANGLES) if additional_draw_task != None: pyglet.gl.glPopMatrix() additional_draw_task() pyglet.gl.glPushMatrix() pyglet.gl.glTranslatef(self.x, self.y, 0) #Label it with method name pyglet.text.Label(self.method.name + "()", font_name= Constants.font, font_size=12, x = 0, y = 0, anchor_y = 'center', anchor_x= 'center').draw() if texture: pyglet.gl.glDisable(Node.texture.target) pyglet.gl.glPopMatrix() def add_branch(self, branch_num): self.child_branches.append(branch_num) #Returns true if this node has been given a location, otherwise false def placed(self): return self.x != -1 and self.y != -1 #Returns a vector containing the direction from self to node def get_direction(self, node): return vm.normalize(map(op.sub, (node.x, node.y), (self.x, self.y))) #Given x, y coordinate and current camera position determine if that coordinate is inside the node def hit(self, x, y): return x > self.x - x_offset and x < self.x + node_width - x_offset\ and y > self.y - y_offset and y < self.y + node_height - y_offset #Connect current node to |node| UNUSED def connect(self, color=[237, 255, 228]): pyglet.gl.glLineWidth(3) for p in self.parents: pyglet.graphics.draw(2, pyglet.gl.GL_LINES, ('v2i', (int(self.x), int(self.y), int(p.x), int(p.y))), ('c3B', (color[0], color[1], color[2]) * 2)) #Draw an edge from self to node, using a spline def draw_edge(self, node, color=[255, 255, 255], up=False, control=None): pyglet.gl.glLineWidth(3) if not node in self.splines: self.splines[node] = spline.Spline(self, node, up=up, control=control) if not self in node.splines: node.splines[self] = self.splines[node] self.splines[node].draw(color)
[ "twoods0129@gmail.com" ]
twoods0129@gmail.com
132f9d82eb8b31115fe7d76fe9d57fb3439e4fa5
cba6b7debfa923fc05e97dce02584f579d4fcba6
/gremlin-python/src/main/jython/gremlin_python/process/traversal.py
1afaa6c5d8081c3097a421e5f5843ff6fffa6c3e
[ "Apache-2.0", "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
sri-desai/TinkerPop
74367e39051c24815203b1588f4d1464f1a061fa
06902258499cf62e82c5661dd21091bfa8b875ae
refs/heads/master
2021-07-25T22:28:09.089307
2017-11-09T03:17:24
2017-11-09T03:17:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,013
py
''' Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from aenum import Enum from .. import statics from ..statics import long class Traversal(object): def __init__(self, graph, traversal_strategies, bytecode): self.graph = graph self.traversal_strategies = traversal_strategies self.bytecode = bytecode self.side_effects = TraversalSideEffects() self.traversers = None self.last_traverser = None def __repr__(self): return str(self.bytecode) def __eq__(self, other): if isinstance(other, self.__class__): return self.bytecode == other.bytecode else: return False def __iter__(self): return self def __next__(self): if self.traversers is None: self.traversal_strategies.apply_strategies(self) if self.last_traverser is None: self.last_traverser = next(self.traversers) object = self.last_traverser.object self.last_traverser.bulk = self.last_traverser.bulk - 1 if self.last_traverser.bulk <= 0: self.last_traverser = None return object def toList(self): return list(iter(self)) def toSet(self): return set(iter(self)) def iterate(self): while True: try: self.nextTraverser() except StopIteration: return self def nextTraverser(self): if self.traversers is None: self.traversal_strategies.apply_strategies(self) if self.last_traverser is None: return next(self.traversers) else: temp = self.last_traverser self.last_traverser = None return temp def next(self, amount=None): if amount is None: return self.__next__() else: count = 0 tempList = [] while count < amount: count = count + 1 try: temp = self.__next__() except StopIteration: return tempList tempList.append(temp) return tempList def promise(self, cb=None): self.traversal_strategies.apply_async_strategies(self) future_traversal = self.remote_results future = type(future_traversal)() def process(f): try: traversal = f.result() except Exception as e: future.set_exception(e) else: self.traversers = iter(traversal.traversers) self.side_effects = traversal.side_effects if cb: try: result = cb(self) except Exception as e: future.set_exception(e) else: future.set_result(result) else: future.set_result(self) future_traversal.add_done_callback(process) return future Barrier = Enum('Barrier', ' normSack') statics.add_static('normSack', Barrier.normSack) Cardinality = Enum('Cardinality', ' list_ set_ single') statics.add_static('single', Cardinality.single) statics.add_static('list_', Cardinality.list_) statics.add_static('set_', Cardinality.set_) Column = Enum('Column', ' keys values') statics.add_static('keys', Column.keys) statics.add_static('values', Column.values) Direction = Enum('Direction', ' BOTH IN OUT') statics.add_static('OUT', Direction.OUT) statics.add_static('IN', Direction.IN) statics.add_static('BOTH', Direction.BOTH) GraphSONVersion = Enum('GraphSONVersion', ' V1_0 V2_0 V3_0') statics.add_static('V1_0', GraphSONVersion.V1_0) statics.add_static('V2_0', GraphSONVersion.V2_0) statics.add_static('V3_0', GraphSONVersion.V3_0) GryoVersion = Enum('GryoVersion', ' V1_0 V3_0') statics.add_static('V1_0', GryoVersion.V1_0) statics.add_static('V3_0', GryoVersion.V3_0) Operator = Enum('Operator', ' addAll and_ assign div max min minus mult or_ sum sumLong') statics.add_static('sum', Operator.sum) statics.add_static('minus', Operator.minus) statics.add_static('mult', Operator.mult) statics.add_static('div', Operator.div) statics.add_static('min', Operator.min) statics.add_static('max', Operator.max) statics.add_static('assign', Operator.assign) statics.add_static('and_', Operator.and_) statics.add_static('or_', Operator.or_) statics.add_static('addAll', Operator.addAll) statics.add_static('sumLong', Operator.sumLong) Order = Enum('Order', ' decr incr keyDecr keyIncr shuffle valueDecr valueIncr') statics.add_static('incr', Order.incr) statics.add_static('decr', Order.decr) statics.add_static('keyIncr', Order.keyIncr) statics.add_static('valueIncr', Order.valueIncr) statics.add_static('keyDecr', Order.keyDecr) statics.add_static('valueDecr', Order.valueDecr) statics.add_static('shuffle', Order.shuffle) Pick = Enum('Pick', ' any none') statics.add_static('any', Pick.any) statics.add_static('none', Pick.none) Pop = Enum('Pop', ' all_ first last mixed') statics.add_static('first', Pop.first) statics.add_static('last', Pop.last) statics.add_static('all_', Pop.all_) statics.add_static('mixed', Pop.mixed) Scope = Enum('Scope', ' global_ local') statics.add_static('global_', Scope.global_) statics.add_static('local', Scope.local) T = Enum('T', ' id key label value') statics.add_static('label', T.label) statics.add_static('id', T.id) statics.add_static('key', T.key) statics.add_static('value', T.value) class P(object): def __init__(self, operator, value, other=None): self.operator = operator self.value = value self.other = other @staticmethod def between(*args): return P("between", *args) @staticmethod def eq(*args): return P("eq", *args) @staticmethod def gt(*args): return P("gt", *args) @staticmethod def gte(*args): return P("gte", *args) @staticmethod def inside(*args): return P("inside", *args) @staticmethod def lt(*args): return P("lt", *args) @staticmethod def lte(*args): return P("lte", *args) @staticmethod def neq(*args): return P("neq", *args) @staticmethod def not_(*args): return P("not_", *args) @staticmethod def outside(*args): return P("outside", *args) @staticmethod def test(*args): return P("test", *args) @staticmethod def within(*args): return P("within", *args) @staticmethod def without(*args): return P("without", *args) def and_(self, arg): return P("and", self, arg) def or_(self, arg): return P("or", self, arg) def __eq__(self, other): return isinstance(other, self.__class__) and self.operator == other.operator and self.value == other.value and self.other == other.other def __repr__(self): return self.operator + "(" + str(self.value) + ")" if self.other is None else self.operator + "(" + str(self.value) + "," + str(self.other) + ")" def and_(self, arg): return P("and", self, arg) def or_(self, arg): return P("or", self, arg) def __eq__(self, other): return isinstance(other, self.__class__) and self.operator == other.operator and self.value == other.value and self.other == other.other def __repr__(self): return self.operator + "(" + str(self.value) + ")" if self.other is None else self.operator + "(" + str(self.value) + "," + str(self.other) + ")" def between(*args): return P.between(*args) statics.add_static('between',between) def eq(*args): return P.eq(*args) statics.add_static('eq',eq) def gt(*args): return P.gt(*args) statics.add_static('gt',gt) def gte(*args): return P.gte(*args) statics.add_static('gte',gte) def inside(*args): return P.inside(*args) statics.add_static('inside',inside) def lt(*args): return P.lt(*args) statics.add_static('lt',lt) def lte(*args): return P.lte(*args) statics.add_static('lte',lte) def neq(*args): return P.neq(*args) statics.add_static('neq',neq) def not_(*args): return P.not_(*args) statics.add_static('not_',not_) def outside(*args): return P.outside(*args) statics.add_static('outside',outside) def test(*args): return P.test(*args) statics.add_static('test',test) def within(*args): return P.within(*args) statics.add_static('within',within) def without(*args): return P.without(*args) statics.add_static('without',without) ''' TRAVERSER ''' class Traverser(object): def __init__(self, object, bulk=None): if bulk is None: bulk = long(1) self.object = object self.bulk = bulk def __repr__(self): return str(self.object) def __eq__(self, other): return isinstance(other, self.__class__) and self.object == other.object ''' TRAVERSAL SIDE-EFFECTS ''' class TraversalSideEffects(object): def keys(self): return set() def get(self, key): raise KeyError(key) def __getitem__(self, key): return self.get(key) def __repr__(self): return "sideEffects[size:" + str(len(self.keys())) + "]" ''' TRAVERSAL STRATEGIES ''' class TraversalStrategies(object): global_cache = {} def __init__(self, traversal_strategies=None): self.traversal_strategies = traversal_strategies.traversal_strategies if traversal_strategies is not None else [] def add_strategies(self, traversal_strategies): self.traversal_strategies = self.traversal_strategies + traversal_strategies def apply_strategies(self, traversal): for traversal_strategy in self.traversal_strategies: traversal_strategy.apply(traversal) def apply_async_strategies(self, traversal): for traversal_strategy in self.traversal_strategies: traversal_strategy.apply_async(traversal) def __repr__(self): return str(self.traversal_strategies) class TraversalStrategy(object): def __init__(self, strategy_name=None, configuration=None): self.strategy_name = type(self).__name__ if strategy_name is None else strategy_name self.configuration = {} if configuration is None else configuration def apply(self, traversal): return def apply_async(self, traversal): return def __eq__(self, other): return isinstance(other, self.__class__) def __hash__(self): return hash(self.strategy_name) def __repr__(self): return self.strategy_name ''' BYTECODE ''' class Bytecode(object): def __init__(self, bytecode=None): self.source_instructions = [] self.step_instructions = [] self.bindings = {} if bytecode is not None: self.source_instructions = list(bytecode.source_instructions) self.step_instructions = list(bytecode.step_instructions) def add_source(self, source_name, *args): instruction = [source_name] for arg in args: instruction.append(self.__convertArgument(arg)) self.source_instructions.append(instruction) def add_step(self, step_name, *args): instruction = [step_name] for arg in args: instruction.append(self.__convertArgument(arg)) self.step_instructions.append(instruction) def __eq__(self, other): if isinstance(other, self.__class__): return self.source_instructions == other.source_instructions and self.step_instructions == other.step_instructions else: return False def __convertArgument(self,arg): if isinstance(arg, Traversal): self.bindings.update(arg.bytecode.bindings) return arg.bytecode elif isinstance(arg, dict): newDict = {} for key in arg: newDict[self.__convertArgument(key)] = self.__convertArgument(arg[key]) return newDict elif isinstance(arg, list): newList = [] for item in arg: newList.append(self.__convertArgument(item)) return newList elif isinstance(arg, set): newSet = set() for item in arg: newSet.add(self.__convertArgument(item)) return newSet elif isinstance(arg, tuple) and 2 == len(arg) and isinstance(arg[0], str): self.bindings[arg[0]] = arg[1] return Binding(arg[0],self.__convertArgument(arg[1])) else: return arg def __repr__(self): return (str(self.source_instructions) if len(self.source_instructions) > 0 else "") + \ (str(self.step_instructions) if len(self.step_instructions) > 0 else "") ''' BINDINGS ''' class Bindings(object): def of(self,key,value): if not isinstance(key, str): raise TypeError("Key must be str") return (key,value) class Binding(object): def __init__(self,key,value): self.key = key self.value = value def __eq__(self, other): return isinstance(other, self.__class__) and self.key == other.key and self.value == other.value def __hash__(self): return hash(self.key) + hash(self.value) def __repr__(self): return "binding[" + self.key + "=" + str(self.value) + "]"
[ "srinivas.desai491@gmail.com" ]
srinivas.desai491@gmail.com
a2a3823e6435408a754b473b37f7233309d5ef3f
4754d6b05b7eb255983f58474164d8690f4d8684
/figurines/tests/test_views.py
4ad1ab56cb491358a3a1c8c3bb9812ce62ef1085
[]
no_license
pythonmentor/benjamin-p13
4f629be3cd9b2e8af6934fb69dfca63d6a294346
ada744761d3a3c6ecde1aec5db20770960cb2146
refs/heads/master
2023-01-24T17:10:30.235330
2020-11-30T17:29:09
2020-11-30T17:29:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,155
py
from django.test import TestCase from django.urls import reverse from figurines.models import Category, DidYouSee, Figurine from users.models import User class FigurineTestViews(TestCase): def setUp(self): self.user_test = User.objects.create_user( username="UserTest", password="PaswordOfTheTest&120" ) category_figurine = Category.objects.create( name="super heroes" ) figurine = Figurine.objects.create( figurine_number="1", category=category_figurine, name="batman" ) figurine.user.add(self.user_test) return super().setUp() def test_figurine_add_figurine(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post( "/figurines/add_figurine/", {"figurine_number": "31", "category": "World of Warcraft", "name": "Thrall"}, ) self.assertEqual(response.status_code, 302) self.assertTemplateUsed('figurines/collection.html') def test_figurine_collection_user(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.get('/figurines/collection/') self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/collection.html') def test_figurine_search_with_all_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") response = self.client.get('/figurines/search/?all=all') user_figurine = user.figurine_set.all() self.assertQuerysetEqual( response.context['figurines_list'], [repr(figurine) for figurine in user_figurine] ) self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_search_without_all_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") user_figurine = user.figurine_set.all().delete() response = self.client.get('/figurines/search/?all=all') self.assertFalse(response.context['figurines_list']) self.assertContains(response, 'Pas de résultat.') self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_search_with_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") response = self.client.get('/figurines/search/?q=batman') user_figurine = user.figurine_set.filter(name__icontains='batman') self.assertQuerysetEqual( response.context['figurines_list'], [repr(figurine) for figurine in user_figurine] ) self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_search_without_all_figurines(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") user = User.objects.get(username="UserTest") user_figurine = user.figurine_set.filter(name__icontains='batman').delete() response = self.client.get('/figurines/search/?q=batman') self.assertFalse(response.context['figurines_list']) self.assertContains(response, 'Pas de résultat.') self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/search.html') def test_figurine_did_you_see(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.get("/figurines/did_you_see/") self.assertEqual(response.status_code, 200) self.assertTemplateUsed("figurines/did_you_see.html") def test_create_question(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post( "/figurines/create_question", { "title": "Je recherche batman", "text": "Bonjour, je recherche Batman", "date": "03/07/2020", }, ) self.assertRedirects(response, '/figurines/did_you_see/') response = self.client.get('/figurines/did_you_see/') self.assertContains(response, 'Je recherche batman') self.assertTemplateUsed('figurines/did_you_see.html') def test_can_respond_to_question(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post( "/figurines/create_question", { "title": "Je recherche batman2", "text": "Bonjour, je recherche Batman2", "date": "03/07/2020", }, ) post = DidYouSee.objects.get(title='Je recherche batman2') response_second_message = self.client.post( f"/figurines/create_question/{post.id}", { "title": "J'ai batman2", "text": "j'ai batman", "date": "20/07/2020", } ) response_detail = self.client.get(f'/figurines/post_detail/{post.id}/') self.assertContains(response_detail, "j'ai batman") self.assertTemplateUsed('figurines/post_detail.html') def test_post_detail(self): self.client.force_login(self.user_test) user = User.objects.get(username="UserTest") post = DidYouSee( author=user, title="Je recherche batman", text="Bonjour, j'ai trouvé Batman", ) post.save() post.parent = post post.save() response = self.client.get( f"/figurines/post_detail/{post.id}" ) self.assertContains(response, "Je recherche batman") self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/post_detail.html') """ def test_delete_figurine(self): self.client.login(username="UserTest", password="PaswordOfTheTest&120") response = self.client.post('/figurines/collection/?q=logan') user = User.objects.get(username="UserTest") self.assertEqual(response.status_code, 200) self.assertTemplateUsed('figurines/collection.html') """ # def test_report_post(self): # self.client.login(username="UserTest", password="PaswordOfTheTest&120") # response = self.client.post( # "/figurines/post_detail/51/", # { # "title": "Je recherche batman", # "text": "Bonjour, j'ai trouvé Batman", # }, # ) # self.assertEqual(response.status_code, 200) # self.assertTemplateUsed('figurines/report_post.html')
[ "benjamin.rejaud@gmail.com" ]
benjamin.rejaud@gmail.com
2e33e0e16030e96cb4126bce18cbe60adc5220f1
4adc5b30bdd5ed6388746f9822d9b0e6f1879a69
/geeksforgeeks_ArrayInsertEnd.py
0ae2df6e160a0b16f7f498110c8e80577ff5559f
[]
no_license
praveengadiyaram369/geeksforgeeks_submissions
1a69a609ef27819e60174aad4709a8b11d7b10ab
f546faedf048a57e8cee34cb141dd13c377b7ba5
refs/heads/master
2022-12-27T15:40:39.692379
2020-10-03T07:03:39
2020-10-03T07:03:39
286,435,728
1
0
null
null
null
null
UTF-8
Python
false
false
108
py
# _Array insert at end def insertAtEnd(arr, sizeOfArray, element): arr.append(element) return arr
[ "praveengadiyaram@gmail.com" ]
praveengadiyaram@gmail.com
0ea64af5b9f481b06e417b65c708cd5668bc733a
1f71eac5d7514e24def7e5e231c5ef7487bf9c0a
/links/schema_registry.py
ba9ea8977c623da1050e5118badb9dd80b1347f3
[]
no_license
stefanfoulis/Arkestra
b68f212c4c83ab2c66ea98313c5f1291f897e56d
bddd11ae98b633b5e7bfaf2fa98ae6f98b039130
refs/heads/master
2021-01-15T18:45:57.398106
2011-03-07T12:52:03
2011-03-07T12:52:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,986
py
from django.http import HttpResponse from django.utils import simplejson from django.db.models import get_model from django.db.models import Q from django.db.models.query import QuerySet from django.db.models import ForeignKey from django.utils.safestring import mark_safe from django.utils.encoding import smart_str, smart_unicode import operator from django.http import HttpResponse, HttpResponseNotFound from django.contrib.auth.decorators import login_required from django.contrib.contenttypes.models import ContentTypeManager, ContentType from django.conf import settings #WIDGETRY_AVAILABLE = 'widgetry' in settings.INSTALLED_APPS from widgetry.utils import traverse_object from widgetry.views import search, WrapperFactory, SearchItemWrapper, call_if_callable from widgetry import signals as widgetry_signals class LinkWrapper(SearchItemWrapper): # gets default identifier, title, description and thumbnail methods # from SearchItemWrapper def text(self): return call_if_callable( getattr( self.obj, 'text', self.title()) ) def short_text(self): return call_if_callable( getattr( self.obj, 'short_text', self.text()) ) def url(self): return call_if_callable( getattr( self.obj, 'get_absolute_url', "" ) ) def metatag(self): return call_if_callable( getattr( self.obj, 'metatag', 'no metatag defined') ) def heading(self): return call_if_callable( getattr( self.obj, 'heading', 'no heading defined') ) ATTRIBUTES = [ 'identifier', 'title', 'description', 'thumbnail_url', 'text', 'short_text', 'url', 'metadata', 'heading', ] class MyWrapperFactory(WrapperFactory): pass wrapper_factory = MyWrapperFactory(LinkWrapper, ATTRIBUTES) class Registry(object): def __init__(self): self.wrappers = dict() self.content_types = dict() self.discovered = False # these signals make sure that whenever a widgetry function is used # the schemas from links are actually registered widgetry_signals.search_request.connect(self.discover_links_schemas) widgetry_signals.get_wrapper.connect(self.discover_links_schemas) def register(self, klasses, search_fields, **kwargs): if not isinstance(klasses, list): klasses = [klasses] if not search_fields: raise Exception("link schema registration: search_fields are missing") for klass in klasses: wrapper = wrapper_factory.build('%sAutoGenerated' % klass.__name__, search_fields, kwargs) self.register_wrapper(klass, wrapper) def register_wrapper(self, klasses, wrapper): if not isinstance(klasses, list): klasses = [klasses] for klass in klasses: #print u"registering %s to %s" % (klass, wrapper) self.wrappers[klass] = wrapper self.content_types[klass] = ContentType.objects.get_for_model(klass) # also register any links with the search/autocomplete system if not search.is_registered(klass): # but only if it is not registered yet #print u"schema: %s is already registerd for search, not adding" % klass search.register_wrapper(klass, wrapper) def get_wrapper(self, model_or_string): self.discover_links_schemas() #print "get wrapper %s" % model_or_string if isinstance(model_or_string, str): app_label, model_name = model_or_string.split('.') content_type = ContentType.objects.get(app_label=app_label, model=model_name) model = content_type.model_class() else: model = model_or_string #print "return wrapper for %s" % model #print self.wrappers if model in self.wrappers: wrapper = self.wrappers[model] else: wrapper = LinkWrapper #print " wrapper: %s" % wrapper return wrapper def is_registered(self, model): self.discover_links_schemas() return model in self.wrappers def content_type_choices(self): self.discover_links_schemas() choices = [('','----')] #q_obj = None for model_class, content_type in self.content_types.items(): #new_q = Q(app_label = model_class._meta.app_name, ) choices.append((content_type.pk, u"%s: %s" % (content_type.app_label.replace('_', ' '), content_type.name))) return choices def discover_links_schemas(self, *args, **kwargs): ''' run through all installed apps to find link schema definitions. This needs to get called rather late, because it needs access to models and admin ''' if self.discovered: return for app in settings.INSTALLED_APPS: __import__(app, {}, {}, ['link_schemas']) self.discovered = True schema = Registry()
[ "daniele@apple-juice.co.uk" ]
daniele@apple-juice.co.uk
891cf68c8f2e5a2d7b2c3c9baf3fd45f36ba1c93
3e3a835ee885eb9a71fd35ea58acd04361f72f47
/python基础/复习.py/石头剪刀布.py
df86dfa2ef1429a31cb3268c524f245a54ab4e82
[]
no_license
hanfang302/py-
dbb259f24e06fbe1a900df53ae6867acb8cb54ea
dd3be494ccef5100c0f06ed936f9a540d8ca0995
refs/heads/master
2020-03-16T01:59:57.002135
2018-05-07T12:02:21
2018-05-07T12:02:21
132,454,341
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
player = int(input('请出拳 石头(1),剪刀(2),布(3):')) computer = 2 if ((player == 1 and computer == 2) or (player == 2 and computer == 3) or (player == 3 and computer == 1)): print('电脑输了') elif player == computer: print('心有灵犀,再来一局') else: print('不行,我要和你决战到底')
[ "hanfang123@aliyun.com" ]
hanfang123@aliyun.com
92d3f6d6dc1e477f6b89f1665b180bf5ab4360da
968913bda3879ef316100410cdb2b01333ac14a8
/004_Algorithm_Implementations_In_Python/data_structures/queue/queue_on_list.py
898ffac3a9c7c1fda92bb8b75af1826ee7ec17f0
[ "MIT" ]
permissive
sm2774us/2021_Interview_Prep
02b6a81ee52f3cb14d9e060839a01aadd84e231f
c6689411a4334d53c88581a296e57c314b50f46c
refs/heads/main
2023-03-02T05:30:17.156821
2021-01-26T04:31:02
2021-01-26T04:31:02
332,603,676
2
0
null
null
null
null
UTF-8
Python
false
false
1,213
py
"""Queue represented by a python list""" class Queue(): def __init__(self): self.entries = [] self.length = 0 self.front=0 def __str__(self): printed = '<' + str(self.entries)[1:-1] + '>' return printed """Enqueues {@code item} @param item item to enqueue""" def put(self, item): self.entries.append(item) self.length = self.length + 1 """Dequeues {@code item} @requirement: |self.length| > 0 @return dequeued item that was dequeued""" def get(self): self.length = self.length - 1 dequeued = self.entries[self.front] #self.front-=1 #self.entries = self.entries[self.front:] self.entries = self.entries[1:] return dequeued """Rotates the queue {@code rotation} times @param rotation number of times to rotate queue""" def rotate(self, rotation): for i in range(rotation): self.put(self.get()) """Enqueues {@code item} @return item at front of self.entries""" def front(self): return self.entries[0] """Returns the length of this.entries""" def size(self): return self.length
[ "sm2774us@gmail.com" ]
sm2774us@gmail.com
0e3d3dd2945ef2e53a134724fa8bbc66d98afb65
0e96dde7517fbbccffcb93a3c4bd324fefcbed0a
/index/migrations/0002_auto_20210708_1042.py
064bb0952af48b0b143c1aad29c85a803f9eff67
[]
no_license
phoby20/heatmap-analytics
b70c5c45674f0f3928f7b3c07954e558490fa263
38366d05a3480eee884c50dc1791660985acb659
refs/heads/master
2023-06-18T22:07:51.562849
2021-07-14T05:43:16
2021-07-14T05:43:16
385,824,130
0
0
null
null
null
null
UTF-8
Python
false
false
590
py
# Generated by Django 3.2.3 on 2021-07-08 10:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('index', '0001_initial'), ] operations = [ migrations.AlterField( model_name='movehistory', name='id', field=models.AutoField(primary_key=True, serialize=False), ), migrations.AlterField( model_name='pointcount', name='id', field=models.AutoField(primary_key=True, serialize=False), ), ]
[ "phoby20@hotmail.com" ]
phoby20@hotmail.com
7d8b5b232c28c669043a2e65a6cbec7643049db9
3fc53a89ff5d9fc8643255b36887db17085cbdc8
/penguinlifelines/settings.py
a80156f0db44c2a401a709f068316931ab6842f0
[]
no_license
eamonnmag/PenguinLifelines
9dd94396b8f706c9d68dacc8aca84583a38a2bae
a88ecb8b032479fd74420f72ee602ef79fb27a8a
refs/heads/master
2021-01-23T07:34:37.058261
2014-09-17T09:11:17
2014-09-17T09:11:17
14,091,069
0
0
null
null
null
null
UTF-8
Python
false
false
5,847
py
# Django settings for penguinlifelines project. import os DEBUG = True TEMPLATE_DEBUG = DEBUG PROJECT_ROOT = os.path.join(os.path.abspath(os.path.dirname(__file__)), '') ADMINS = ( # ('Your Name', 'your_email@example.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'uploader.db', # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'Europe/London' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media/').replace('\\','/') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '/site_media/' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = 'b&amp;#^ir@x%(o_8+676)r^z8rak8@5g##$ag%%%-&amp;rk&amp;ozmcbp%q' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader' ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'penguinlifelines.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'penguinlifelines.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. PROJECT_ROOT + 'multiuploader/', ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: 'grappelli', 'django.contrib.admin', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', 'profiles', 'registration', 'multiuploader', 'sorl.thumbnail', 'django.contrib.flatpages', 'app', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } MULTI_FILE_DELETE_URL = 'multi_delete' MULTI_IMAGE_URL = 'multi_image' MULTI_IMAGES_FOLDER = 'multiuploader_images'
[ "eamonnmag@gmail.com" ]
eamonnmag@gmail.com
b2493c69029aa36ecfe9427d2df847afc4e33904
687c0094ea4f20a7d779f6b50e44e86ee6b9dd51
/hadoop/client.py
d931c6db8daf62344bfa024c6ce73a44274cb02d
[]
no_license
d0r1h/Aut0Infra
aa90f65aa292a2924e5ba118dedeb79f016a3ae9
ad2f475400ebb97d352d1e68d4c62d565504d5ed
refs/heads/master
2023-01-28T11:06:17.056688
2020-12-10T03:38:46
2020-12-10T03:38:46
311,212,153
0
0
null
null
null
null
UTF-8
Python
false
false
38
py
def client(): print('I am client')
[ "59r@protonmail.com" ]
59r@protonmail.com
6ad1ec33ed60cb67164cba8e6c216bf23b7eff14
09592939eaf88d46f7d2d760d9587cb9fc22707e
/entity/cards/LETLT_083/LETLT_083.py
c575c2ef97600aa10d16c30ba708043ebfac001e
[ "MIT" ]
permissive
fulln/lushi_script
5deb2fb99956988ee4884836443f74277b361939
f2c5250f6ce7e3ea2b8d3ba280d999ae8c7beb8b
refs/heads/main
2023-09-04T16:50:24.696142
2021-11-24T03:44:41
2021-11-24T03:44:41
431,565,901
0
0
MIT
2021-11-24T17:04:06
2021-11-24T17:04:05
null
UTF-8
Python
false
false
470
py
# -*- coding: utf-8 -*- from hearthstone.entities import Entity from entity.spell_entity import SpellEntity class LETLT_083(SpellEntity): """ 剧烈爆发 对本回合中已经行动过的敌人造成10点伤害。在下一场战斗开始时,重复此伤害。 """ def __init__(self, entity: Entity): super().__init__(entity) self.damage = 0 self.range = 0 def play(self, game, hero, target): pass
[ "gg48@qq.com" ]
gg48@qq.com
09b392b45aef0ce2b082eaa210be15285a463e0c
45015c94a4376a4af66e4134f0552288cd15a2d8
/services/authentication_service.py
ee9f1e65813dcf31637b0a0974cb9c00e4c7b390
[]
no_license
Anubhav722/trello
971111af8cbc1f6c344ace200e2741e809e9a1fa
600b5410cde7fd2a51720fa4ca7cc2ecfbff322e
refs/heads/master
2023-07-13T18:24:51.937539
2021-08-21T13:22:17
2021-08-21T13:22:17
398,563,384
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
class AuthenticationService: def __init__(self, ttl): self.tokens = {} # Map<token_id, user_obj> def renew_token(self, token_id): pass def authenticate_request(self, token_id, timestamp): pass def register_user(self, ): pass
[ "anubhavs286@gmail.com" ]
anubhavs286@gmail.com
52cf3aac7e139b3a4d760b80cc223a9bd88e323d
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03496/s023860422.py
3418e271fe6d39c5afd0834fa668eb6252fedf15
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
553
py
n = int(input()) a = list(map(int,input().split())) mi = a[0] mii = 1 ma = a[0] mai = 1 for i in range(n): if a[i] > ma: ma = a[i] mai = i+1 if a[i] < mi: mi = a[i] mii = i+1 if mi >= 0: print(n-1) for i in range(1,n): print(i,i+1) elif ma <= 0: print(n-1) for i in range(n,1,-1): print(i,i-1) elif abs(ma) >= abs(mi): print(n*2-1) for i in range(n): print(mai,i+1) for i in range(1,n): print(i,i+1) else: print(n*2-1) for i in range(n): print(mii,i+1) for i in range(n,1,-1): print(i,i-1)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
295327d0390c539e66194d54fcb18c86e0801f85
a13b01ff29782857a4d14e771da58e10601648af
/first_look.py
327512e724057a78b67efb887a4dea43171022a2
[]
no_license
HappyLantern/DeepLearningWithPython
d6c8f4d088982dd95b4f417ecf9cf65621d0b6db
2f3cacfed7b0261927c074bc77024edabad83df8
refs/heads/master
2020-08-14T06:47:25.540771
2019-10-14T18:23:40
2019-10-14T18:23:40
215,116,435
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
# Solving the classification problem of the MNIST dataset. # Digits of 28x28 pixels that belong to 0,..,9 from keras.datasets import mnist from keras import models from keras import layers from keras.utils import to_categorical (train_images, train_labels), (test_images, test_labels) = mnist.load_data() network = models.Sequential() network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,))) network.add(layers.Dense(10, activation='softmax')) network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28 * 28)) test_images = test_images.astype('float32') / 255 print(train_labels.shape) train_labels = to_categorical(train_labels) print(train_labels.shape) test_labels = to_categorical(test_labels) network.fit(train_images, train_labels, epochs=5, batch_size=128) test_loss, test_acc = network.evaluate(test_images, test_labels) print('test_acc:', test_acc)
[ "Kevinjohansson1995@gmail.com" ]
Kevinjohansson1995@gmail.com
538b671955b4ac1fa9cf8fb82d290212541efada
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/djDJHv3nwWsRM9mtu_15.py
d8d00d9f36be6af88a931dc7bc4cd7cb6aa76d74
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
def validate_spelling(txt): return "".join(txt.split(". ")[:-1]).lower() == txt.split(". ")[-1][:-1].lower()
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
6f541be782c903bc9b6347e681942a1e1f3f53a9
d7c9f9ff75fabfcd4e42fedfc594ed38e4258481
/ExperimentalModels/demo_pySSA.py
ad594053ae28f6ada2e5247277675df83f182d8a
[ "MIT" ]
permissive
johnabel/circadian_tools
b034b78bd716007659b61f257977f39abd3ff6b3
d7ec5f798e2215331761857f5138941b764c03a8
refs/heads/master
2021-03-22T00:12:47.705529
2018-05-22T16:00:37
2018-05-22T16:00:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,235
py
# -*- coding: utf-8 -*- """ Created on Sat Apr 19 12:19:48 2014 @author: john abel """ import numpy as np import casadi as cs import pdb import stochkit_resources as stk import modelbuilder as mb import pylab as pl import circadiantoolbox_raw as ctb import Bioluminescence as bl EqCount = 11 ParamCount = 46 modelversion='deg_sync_v9_0_stochkit' #initial values y0in = np.array([ 0.09909523, 0.70371313, 0.2269922 , 0.10408456, 0.00490967, 0.86826377, 0.89688085, 0.06720938, 0.42133251, 0.00728958, 0.47681956]) #known period (not necessary for running but useful for analysis sometimes) period = 23.7000 #omega parameter for stochkit vol=200 #parameter values param=[0.2846151688657202 , 0.232000177516616 , 0.088617203761593 , 0.30425468 , 0.210097869 , 0.4353107703541283 , 1.003506668772474 , 1.088997860405459 , 0.0114281138 , 1.37671691 , 2.6708076060464903 , 0.034139448 , 2.679624716511808 , 0.769392535473404 , 2.54809178 , 0.0770156091097623 , 0.305050587159186 , 0.0636139454 , 0.102828479472142 , 0.0021722217886776 , 3.4119930083042749 , 0.313135234185038 , 0.129134295035583 , 0.086393910969617 , 0.1845394740887122 , 0.1918543699832282 , 2.93509002 , 0.668784664 , 1.08399453 , 0.368097886 , 1.1283479292931928 , 0.305037169 , 0.530015145234027 , 0.317905521992663 , 0.3178454269093350 , 3.1683607 , 0.531341137364938 , 0.807082897 , 0.251529761689481 , 0.1805825385998701 , 1.418566520274632 , 0.835185094 , 0.376214021 , 0.285090232 , 0.27563398 , 1.113098655804457 ] def StochModel(): #================================================================== # Stochastic Model Setup #================================================================== print 'Now converting model to StochKit XML format...' #Converts concentration to population for initial values y0in_stoch = (vol*y0in).astype(int) #collects state and parameter array to be converted to species and parameter objects, #makes copies of the names so that they are on record species_array = ['p', 'c1', 'c2', 'vip', 'P', 'C1', 'C2', 'eVIP', 'C1P', 'C2P', 'CREB'] param_array = ['vtpr' , 'vtc1r' , 'vtc2r' , 'knpr' , 'kncr' , 'vdp' , 'vdc1' , 'vdc2' , 'kdp' , 'kdc' , 'vdP' , 'kdP' , 'vdC1' , 'vdC2' , 'kdC' , 'vdC1n' , 'vdC2n' , 'kdCn' , 'vaCP' , 'vdCP' , 'ktlnp', 'vtpp' , 'vtc1p' , 'vtc2p' , 'vtvp' , 'vtvr' , 'knpp' , 'kncp' , 'knvp' , 'knvr' , 'vdv' , 'kdv' , 'vdVIP' , 'kdVIP' , 'vgpcr' , 'kgpcr' , 'vdCREB', 'kdCREB', 'ktlnv' , 'vdpka' , 'vgpka' , 'kdpka' , 'kgpka' , 'kdc1' , 'kdc2' , 'ktlnc'] #duplicated for names later state_names=species_array[:] param_names=param_array[:] #Names model SSAmodel = stk.StochKitModel(name=modelversion) #SSAmodel.units='concentration' #creates SSAmodel class object SSA_builder = mb.SSA_builder(species_array,param_array,y0in_stoch,param,SSAmodel,vol) # REACTIONS #per mRNA SSA_builder.SSA_MM('per mRNA activation','vtpp',km=['knpp'],Prod=['p'],Act=['CREB']) SSA_builder.SSA_MM('per mRNA repression','vtpr',km=['knpr'],Prod=['p'],Rep=['C1P','C2P']) SSA_builder.SSA_MM('per mRNA degradation','vdp',km=['kdp'],Rct=['p']) #cry1 mRNA SSA_builder.SSA_MM('c1 mRNA activation','vtc1p',km=['kncp'],Prod=['c1'],Act=['CREB']) SSA_builder.SSA_MM('c1 mRNA repression','vtc1r',km=['kncr'],Prod=['c1'],Rep=['C1P','C2P']) SSA_builder.SSA_MM('c1 mRNA degradation','vdc1',km=['kdc'],Rct=['c1']) #cry2 mRNA SSA_builder.SSA_MM('c2 mRNA activation','vtc2p',km=['kncp'],Prod=['c2'],Act=['CREB']) SSA_builder.SSA_MM('c2 mRNA repression','vtc2r',km=['kncr'],Prod=['c2'],Rep=['C1P','C2P']) SSA_builder.SSA_MM('c2 mRNA degradation','vdc2',km=['kdc'],Rct=['c2']) #vip mRNA SSA_builder.SSA_MM('vip mRNA activation','vtvp',km=['knvp'],Prod=['vip'],Act=['CREB']) SSA_builder.SSA_MM('vip mRNA repression','vtvr',km=['knvr'],Prod=['vip'],Rep=['C1P','C2P']) SSA_builder.SSA_MM('vip mRNA degradation','vdv',km=['kdv'],Rct=['vip']) #CRY1, CRY2, PER, VIP creation and degradation SSA_builder.SSA_MA_tln('PER translation' ,'P' ,'ktlnp','p') SSA_builder.SSA_MA_tln('CRY1 translation','C1' ,'ktlnc','c1') SSA_builder.SSA_MA_tln('CRY2 translation','C2' ,'ktlnc','c2') SSA_builder.SSA_MA_tln('VIP translation' ,'eVIP','ktlnv','vip') SSA_builder.SSA_MM('PER degradation','vdP',km=['kdP'],Rct=['P']) SSA_builder.SSA_MM('C1 degradation','vdC1',km=['kdC'],Rct=['C1']) SSA_builder.SSA_MM('C2 degradation','vdC2',km=['kdC'],Rct=['C2']) SSA_builder.SSA_MA_deg('eVIP degradation','eVIP','kdVIP') #CRY1 CRY2 complexing SSA_builder.SSA_MA_complex('CRY1-P complex','C1','P','C1P','vaCP','vdCP') SSA_builder.SSA_MA_complex('CRY2-P complex','C2','P','C2P','vaCP','vdCP') SSA_builder.SSA_MM('C1P degradation','vdC1n',km=['kdCn'],Rct=['C1P','C2P']) SSA_builder.SSA_MM('C2P degradation','vdC2n',km=['kdCn'],Rct=['C2P','C1P']) #VIP/CREB Pathway SSA_builder.SSA_MM('CREB formation','vgpka',km=['kgpka'],Prod=['CREB'],Act=['eVIP']) SSA_builder.SSA_MM('CREB degradation','vdCREB',km=['kdCREB'],Rct=['CREB']) # END REACTIONS #stringSSAmodel = SSAmodel.serialize() #print stringSSAmodel return SSAmodel,state_names,param_names def main(): #Creates SSA version of model. SSAmodel,state_names,param_names=StochModel() #calls and runs stochkit trajectories = stk.stochkit(SSAmodel,job_id='test',t=75,number_of_trajectories=100,increment=0.1) #evaluation bit StochEval = stk.StochEval(trajectories,state_names,param_names,vol) StochEval.PlotAvg('p',color='blue') pl.show() pdb.set_trace() if __name__ == "__main__": main()
[ "j.h.abel01@gmail.com" ]
j.h.abel01@gmail.com
a4fab23437c5dd0c8fbf1273ea1ba4a8c0b3042a
54ba669ca04cf7422134b7183787f86caccb5516
/TeslaStationRoute.py
e39308e6a37b9d9b4165578ee78ca66bd9826b45
[]
no_license
aakashparwani/ConsumerComplaints_VisualizationReport
4757968526970330e94453fc45c6d72fa71105fc
90604dc2529c42f35f12e6c769dee05df39e1836
refs/heads/master
2021-01-12T04:13:29.658738
2017-06-17T00:23:51
2017-06-17T00:23:51
77,546,680
0
0
null
null
null
null
UTF-8
Python
false
false
8,206
py
# coding: utf-8 # 1. Find route between two Tesla Supercharging Stations "55 Parsonage Rd. & 150th Ave and 147th St" -- Google Maps API # # In order to use the Google Maps - Directions API, you need to create an account with Google and get your API key, go to: https://developers.google.com/maps/documentation/directions/ and then go to "get a key". # In[12]: # first import all the important packages import plotly.plotly as py py.sign_in("aakashparwani", "ob2ncx7bg1") from plotly.graph_objs import * import mapbox import numpy as np import requests import copy import googlemaps mapbox_access_token = 'pk.eyJ1IjoiYWFrYXNocGFyd2FuaSIsImEiOiJjaXZzdnN2MHIwM3FwMnlvMXVtdDc1MWh0In0.kyKt29LCvJC8UjEPUvPl4w' # In[13]: #now request all the Tesla Supercharging Stations present in USA from the Tesla website. r = requests.get('https://www.tesla.com/findus?redirect=no#/bounds/49.38,-66.94,25.82,-124.38999999999999?search=supercharger,&name=United%20States') r_copy = copy.deepcopy(r.text) supercharger_locations = {} #look for particular country data. valid_countries = ['United States','Canada'] # define the parameters that will be used to locate the stations on google maps. params_for_locations = ['postal_code":"', 'country":"', 'latitude":"', 'longitude":"'] # now traverse the fetched stations data and copy it in supercharger_locations dictionary that will be used in coming steps. while True: # add address line to the dictionary index = r_copy.find('address_line_1":"') if index == -1: break index += len('address_line_1":"') index_end = index while r_copy[index_end] != '"': index_end += 1 address_line_1 = r_copy[index:index_end] address_line_1 = str(address_line_1) supercharger_locations[address_line_1] = {} for param in params_for_locations: index = r_copy.find(param) if index == -1: break index += len(param) index_end = index while r_copy[index_end] != '"': index_end += 1 supercharger_locations[address_line_1][param[0:-3]] = r_copy[index:index_end] r_copy = r_copy[index_end:len(r.text)] # slice off the traversed code #clean all the data which has important parameters "postal code & country" missing. all_keys = list(supercharger_locations.keys()) for key in all_keys: if '\\' in supercharger_locations[key] or supercharger_locations[key] == '' or supercharger_locations[key]['postal_code'] == '' or supercharger_locations[key]['country'] not in valid_countries: del supercharger_locations[key] # In[14]: #let us check data of start address for v in supercharger_locations.keys(): if v=='55 Parsonage Rd.': print (supercharger_locations[v]['latitude'], supercharger_locations[v]['longitude'], supercharger_locations[v]['postal_code'], supercharger_locations[v]['country']) # In[15]: #let us check data of end address for v in supercharger_locations.keys(): if v=='150th Ave and 147th St': print (supercharger_locations[v]['latitude'], supercharger_locations[v]['longitude'], supercharger_locations[v]['postal_code'], supercharger_locations[v]['country']) # In[16]: # define function that will take "start address & end address" as input and will draw route between them. def plot_route_between_tesla_stations(address_start, address_end, zoom=3, endpt_size=6): start = (supercharger_locations[address_start]['latitude'], supercharger_locations[address_start]['longitude']) end = (supercharger_locations[address_end]['latitude'], supercharger_locations[address_end]['longitude']) directions = gmaps.directions(start, end) steps = [] steps.append(start) # add starting coordinate to trip for index in range(len(directions[0]['legs'][0]['steps'])): start_coords = directions[0]['legs'][0]['steps'][index]['start_location'] steps.append((start_coords['lat'], start_coords['lng'])) if index == len(directions[0]['legs'][0]['steps']) - 1: end_coords = directions[0]['legs'][0]['steps'][index]['end_location'] steps.append((end_coords['lat'], end_coords['lng'])) steps.append(end) # add ending coordinate to trip data = Data([ Scattermapbox( lat=[item_x[0] for item_x in steps], lon=[item_y[1] for item_y in steps], mode='markers+lines', marker=Marker( size=[endpt_size] + [4 for j in range(len(steps) - 2)] + [endpt_size] ), ) ]) layout = Layout( autosize=True, hovermode='closest', mapbox=dict( accesstoken=mapbox_access_token, bearing=0, style='streets', center=dict( lat=np.mean([float(step[0]) for step in steps]), lon=np.mean([float(step[1]) for step in steps]), ), pitch=0, zoom=zoom ), ) fig = dict(data=data, layout=layout) return fig # get the google map api key in order to call the Google API. gmap_api_key = 'AIzaSyDzrUYQwoyb4I0i2bhl3CzALP031n4yLac' gmaps = googlemaps.Client(gmap_api_key) # define start address address_start = '55 Parsonage Rd.' # define end address address_end = '150th Ave and 147th St' zoom=12.2 endpt_size=20 fig = plot_route_between_tesla_stations(address_start, address_end, zoom=9, endpt_size=20) # plot route between stations py.iplot(fig, filename='tesla-driving-directions-between-superchargers') ##############################NEED TO WORK: MAP BOX DIRECTION API CODE################# def plot_route1_between_tesla_stations(address_start, address_end, zoom=3, endpt_size=6): start = (supercharger_locations[address_start]['latitude'], supercharger_locations[address_start]['longitude']) end = (supercharger_locations[address_end]['latitude'], supercharger_locations[address_end]['longitude']) startv = round(float(start[0]), 5) startv1 = round(float(start[1]), 5) endv = round(float(end[0]), 5) endv1 = round(float(end[1]), 5) points = [{ "type": "Feature", "properties": {}, "geometry": { "type": "Point", "coordinates": [ startv, startv1]}}, { "type": "Feature", "properties": {}, "geometry": { "type": "Point", "coordinates": [ endv, endv1]}}] directions = mapbox.Directions(access_token=mapbox_access_token).directions(points) steps = [] steps.append(start) # add starting coordinate to trip for index in range(len(directions[0]['legs'][0]['steps'])): start_coords = directions[0]['legs'][0]['steps'][index]['start_location'] steps.append((start_coords['lat'], start_coords['lng'])) if index == len(directions[0]['legs'][0]['steps']) - 1: end_coords = directions[0]['legs'][0]['steps'][index]['end_location'] steps.append((end_coords['lat'], end_coords['lng'])) steps.append(end) # add ending coordinate to trip data = Data([ Scattermapbox( lat=[item_x[0] for item_x in steps], lon=[item_y[1] for item_y in steps], mode='markers+lines', marker=Marker( size=[endpt_size] + [4 for j in range(len(steps) - 2)] + [endpt_size] ), ) ]) layout = Layout( autosize=True, hovermode='closest', mapbox=dict( accesstoken=mapbox_access_token, bearing=0, style='streets', center=dict( lat=np.mean([float(step[0]) for step in steps]), lon=np.mean([float(step[1]) for step in steps]), ), pitch=0, zoom=zoom ), ) fig = dict(data=data, layout=layout) return fig # define start address address_start = '55 Parsonage Rd.' # define end address address_end = '150th Ave and 147th St' zoom=12.2 endpt_size=20 fig = plot_route1_between_tesla_stations(address_start, address_end, zoom=9, endpt_size=20) #py.iplot(fig, filename='tesla-driving-directions-between-superchargers_mapbox')
[ "noreply@github.com" ]
aakashparwani.noreply@github.com
c5beb6a5ce0818e96720a154c9ed0db1dcb62b79
d344a8c6872d6b906e7d32a7ea9b210cd76a7ae5
/venv/Scripts/pip3.7-script.py
5feb926f753ba8c8ebdc097707b785bc570735df
[]
no_license
hardikmaru193/TextUtils
9988c155d6fedcf75823a28b5263dc01e35ea03e
557356fee3ca8cd1d2ca40dbdbb3f382b8c08e9b
refs/heads/master
2020-07-17T16:04:53.316466
2019-09-03T10:54:50
2019-09-03T10:54:50
206,050,051
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
#!C:\Users\hardi\PycharmProjects\TextUtils\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip3.7' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip3.7')() )
[ "hardikmaru.job@gmail.com" ]
hardikmaru.job@gmail.com
83c14b747a531d75e73f4488a2e4d14b5ade425f
8569401c096695c5c8b8f3c6c75fb23d2fc3b753
/contextual_bandit.py
e9a8649c698e7f0e7933b0d6699ae608e6e46b9e
[]
no_license
stabbysaur/reinforcement
2d3ede1012217789088075340708c08863385a9d
ac46a5c9caca2e5f11c4dd67917f0151dca0be71
refs/heads/master
2020-03-30T21:58:37.044978
2018-10-19T00:38:41
2018-10-19T00:38:41
151,649,120
0
0
null
null
null
null
UTF-8
Python
false
false
3,864
py
""" 2018-10-16 Exercise from Arthur Juliani's RL tutorial (adapted for Pytorch) Part 1.5: Contextual bandits! """ import numpy as np import torch import torch.nn as nn from torch.autograd import Variable import pdb """ CONTEXT BLOCK: There are now contexts!! Each "context" refers to a different bandit. Each bandit has 4 arms. The NN needs to learn which arm to pull for each bandit!! This now has states / actions / rewards but the action taken does not determine the next state. Almost at the full RL problem! Note that this network uses a POLICY GRADIENT approach (rather than value-based approaches). The network updates towards the correct action, not the value of an action in a given state. """ class contextual_bandit(): """taken straight from the blog post :)""" def __init__(self): self.state = 0 # List out our bandits. Currently arms 4, 2, and 1 (respectively) are the most optimal. self.bandits = np.array([[0.2, 0, -0.0, -5], [0.1, -5, 1, 0.25], [-5, 5, 5, 5]]) self.num_bandits = self.bandits.shape[0] self.num_actions = self.bandits.shape[1] def getBandit(self): self.state = np.random.randint(0, len(self.bandits)) # Returns a random state for each episode. return self.state def pullArm(self, action): # Get a random number. bandit = self.bandits[self.state, action] result = np.random.randn(1) if result > bandit: # return a positive reward. return 1 else: # return a negative reward. return -1 """set up NN!""" class SimpleNN(nn.Module): def __init__(self, n_inputs, n_classes): super(SimpleNN, self).__init__() self.fc1 = nn.Linear(n_inputs, n_classes, bias=False) # nn_init.uniform_(self.fc1.weight, 0.0, 0.1) self.act1 = nn.Sigmoid() def forward(self, X): output = self.fc1(X) output = self.act1(output) return output bandit = contextual_bandit() agent = SimpleNN(n_inputs=bandit.num_bandits, n_classes=bandit.num_actions) optimizer = torch.optim.SGD(agent.parameters(), lr=0.05) episodes = 10000 epsilon = 0.1 rewards = [] for ep in range(episodes): """get a bandit!!""" band_vector = np.zeros(bandit.num_bandits) band = bandit.getBandit() band_vector[band] = 1 band_vector = torch.from_numpy(band_vector).float() """pass into agent!!""" actions = agent.forward(band_vector) # this is the current weighting of arms for the given bandit (=state) if np.random.rand(1) < epsilon: selected = np.random.randint(0, bandit.num_actions - 1) else: selected = torch.argmax(actions).item() # pick the best action in the state """get reward from taking an action!!!""" reward = bandit.pullArm(selected) """calculate loss!""" loss = -torch.log(actions[selected]) * reward # same as the non-contextual bandit optimizer.zero_grad() loss.backward() optimizer.step() rewards.append(reward) if ep % 100 == 0: print("Episode {0}!".format(ep)) print(sum(rewards) / (ep + 1.)) """check for whether the agent converged to the right arms for each bandit""" for band in range(bandit.num_bandits): """get a bandit!!""" band_vector = np.zeros(bandit.num_bandits) band_vector[band] = 1 band_vector = torch.from_numpy(band_vector).float() """pass into agent!!""" actions = agent.forward(band_vector) # this is the current weighting of arms for the given bandit (=state) print("The agent thinks action " + str(torch.argmax(actions).item() + 1) + " for bandit " + str(band + 1) + " is the most promising....") if torch.argmax(actions).item() == np.argmin(bandit.bandits[band]): print("...and it was right!") else: print("...and it was wrong!")
[ "vicious.narcoleptic@gmail.com" ]
vicious.narcoleptic@gmail.com
d4dc403b25d1c1e99ae62c8c28e7834c02eab079
90e52dabd2e5450a46f61896b8b53bf3b6353e18
/Python/Python_day2/ex4.py
56673ac871a9e25c372b5cc52165ce24bf42b8b8
[]
no_license
ATzitz/Main-Github
0c20ebb04be6e99c8130462e900a1060cb287fd4
2d065c8f6efc2daa8a965cc1b8f52000d4ad1aac
refs/heads/master
2021-05-03T22:53:18.422192
2016-11-29T13:38:39
2016-11-29T13:38:39
71,696,574
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
a=input("Enter 10 digit Number :" ) la=list(x for x in a) lz=[] lm=[] lk=[] count=0 b,c,d,=0,0,0 for x in la: if int(x)%3==2: lz.append(x) strz = ' '.join(str(e) for e in lz) if int(x)%3==1: lm.append(x) strm = ' '.join(str(e) for e in lm) if int(x)%3==0: lk.append(x) strk = ' '.join(str(e) for e in lk) print( strm, '\n ',strz, '\n ', strk)
[ "a.tzitzeras@gmail.com" ]
a.tzitzeras@gmail.com
b3afdc5ed5a2cd8de578e1fd31eb490f17a5db95
2455062787d67535da8be051ac5e361a097cf66f
/Producers/BSUB/TrigProd_amumu_a5_dR5/trigger_amumu_producer_cfg_TrigProd_amumu_a5_dR5_499.py
14a070c95d6dc5d7822dce37415383786cbf8e82
[]
no_license
kmtos/BBA-RecoLevel
6e153c08d5ef579a42800f6c11995ee55eb54846
367adaa745fbdb43e875e5ce837c613d288738ab
refs/heads/master
2021-01-10T08:33:45.509687
2015-12-04T09:20:14
2015-12-04T09:20:14
43,355,189
0
0
null
null
null
null
UTF-8
Python
false
false
3,360
py
import FWCore.ParameterSet.Config as cms process = cms.Process("PAT") #process.load("BBA/Analyzer/bbaanalyzer_cfi") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.load('Configuration.EventContent.EventContent_cff') process.load("Configuration.Geometry.GeometryRecoDB_cff") process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load("PhysicsTools.PatAlgos.producersLayer1.patCandidates_cff") process.load("PhysicsTools.PatAlgos.selectionLayer1.selectedPatCandidates_cff") from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, 'MCRUN2_71_V1::All', '') process.load("Configuration.StandardSequences.MagneticField_cff") #################### # Message Logger #################### process.MessageLogger.cerr.FwkReport.reportEvery = cms.untracked.int32(100) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) ) ## switch to uncheduled mode process.options.allowUnscheduled = cms.untracked.bool(True) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(500) ) #################### # Input File List #################### # Input source process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring('root://eoscms//eos/cms/store/user/ktos/RECO_Step3_amumu_a5/RECO_Step3_amumu_a5_499.root'), secondaryFileNames = cms.untracked.vstring() ) ############################################################ # Defining matching in DeltaR, sorting by best DeltaR ############################################################ process.mOniaTrigMatch = cms.EDProducer("PATTriggerMatcherDRLessByR", src = cms.InputTag( 'slimmedMuons' ), matched = cms.InputTag( 'patTrigger' ), # selections of trigger objects matchedCuts = cms.string( 'type( "TriggerMuon" ) && path( "HLT_Mu16_TkMu0_dEta18_Onia*")' ), # input does not yet have the 'saveTags' parameter in HLT maxDPtRel = cms.double( 0.5 ), # no effect here maxDeltaR = cms.double( 0.3 ), #### selection of matches maxDeltaEta = cms.double( 0.2 ), # no effect here resolveAmbiguities = cms.bool( True ),# definition of matcher output resolveByMatchQuality = cms.bool( True )# definition of matcher output ) # talk to output module process.out = cms.OutputModule("PoolOutputModule", fileName = cms.untracked.string("file:RECO_Step3_amumu_a5_TrigProd_499.root"), outputCommands = process.MINIAODSIMEventContent.outputCommands ) process.out.outputCommands += [ 'drop *_*_*_*', 'keep *_*slimmed*_*_*', 'keep *_pfTausEI_*_*', 'keep *_hpsPFTauProducer_*_*', 'keep *_hltTriggerSummaryAOD_*_*', 'keep *_TriggerResults_*_HLT', 'keep *_patTrigger*_*_*', 'keep *_prunedGenParticles_*_*', 'keep *_mOniaTrigMatch_*_*' ] ################################################################################ # Running the matching and setting the the trigger on ################################################################################ from PhysicsTools.PatAlgos.tools.trigTools import * switchOnTrigger( process ) # This is optional and can be omitted. switchOnTriggerMatching( process, triggerMatchers = [ 'mOniaTrigMatch' ]) process.outpath = cms.EndPath(process.out)
[ "kmtos@ucdavis.edu" ]
kmtos@ucdavis.edu
2b2498877b3efcf756b777b0a07744d9728de1a6
fcf3db349562825a7f8d6713a3092cefa03e6d3d
/fastdtwtest.py
2c3ca15200519570b9937304ee31e692c98e8e91
[]
no_license
nhorcher/final_project498rc3
12728316d2a8dcb2d9b302c42eaf01f643faf636
157dafe297f289bfb45aa2ea604ddb8922499300
refs/heads/master
2020-03-12T08:53:39.831445
2018-05-08T20:21:12
2018-05-08T20:21:12
130,539,027
0
0
null
2018-05-06T19:41:55
2018-04-22T05:45:41
Python
UTF-8
Python
false
false
1,775
py
import numpy as np from scipy.spatial.distance import euclidean from scipy.interpolate import spline import scipy.fftpack from scipy.signal import savgol_filter from fastdtw import fastdtw import matplotlib.pyplot as plt import sys import os import pandas as pd folder = sys.argv[1] file = 'gyroscope.csv'; path = os.path.join(folder,file) f = open(path) d = pd.read_csv(f) f.close() t = d['Time'] x = d['X'] y = d['Y'] z = d['Z'] # reset time to start at 0 t = np.array(t) t = t-t[0] lin = np.linspace(-2,2,1000) sinc = -4*np.sinc(lin) ## Spline smoothing ## Toooooo slow # t_sm = np.array(t) # z_sm = np.array(z) # Takes forever to run # t_smooth = np.linspace(t_sm.min(), t_sm.max(), len(t)) # z_smooth = spline(t, z, t_smooth) ## FFT method, fast and smooth, but loses peaks w = scipy.fftpack.rfft(z) f = scipy.fftpack.rfftfreq(len(t), t[1]-t[0]) spectrum = w**2 cutoff_idx = spectrum < (spectrum.max()/5) w2 = w.copy() w2[cutoff_idx] = 0 y2 = scipy.fftpack.irfft(w2) ## SavGol Filter # savgol3 = savgol_filter(z,249,3) # savgol5 = savgol_filter(z,249,5) savgol6 = savgol_filter(z,249,6) # savgol6[abs(savgol6) < 1] = 0 ## DTW # Not really a well developed library. too hard to figure out # distance, path = fastdtw(z[100:300], sinc, dist=euclidean) # xpath = [z[100+i[0]] for i in path] # ypath = [sinc[i[1]] for i in path] # print(distance) plt.figure() plt.plot(z, label='Original') # plt.plot(z_smooth, label='Splining') # plt.plot(savgol3, label='SavGol3') # plt.plot(savgol5, label='SavGol5') plt.plot(savgol6, label='SavGol6') # plt.plot(y2, label='FFTMethod') plt.plot(np.linspace(0,200,1000),sinc, label='match') # plt.plot(xpath, z[100:300], label='xpath') # plt.plot(np.linspace(100,len(ypath),300)ypath, label='ypath') plt.legend() plt.show()
[ "nick.horcher@gmail.com" ]
nick.horcher@gmail.com
bdcfdb621e28558b0c8a4dc4927343f24aa750cc
84010059524cbf5229a872aa2b857735e0bbd2b6
/locallibrary/locallibrary/locallibrary/urls.py
c86f12cdb2e2ff9c8337d579036f3ab3e832557a
[]
no_license
sergeykool37/web_site_django
976aa61317dc14fa358129af18aaf0b965e14f9a
4b340f8c80fb78b2c83c99180bba8619b204b506
refs/heads/master
2022-10-28T10:59:44.729695
2020-06-21T10:54:31
2020-06-21T10:54:31
273,824,024
0
0
null
null
null
null
UTF-8
Python
false
false
1,141
py
"""locallibrary URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include urlpatterns = [ path('admin/', admin.site.urls), ] urlpatterns += [ path('catalog/', include('catalog.urls')), ] from django.views.generic import RedirectView urlpatterns += [ path('', RedirectView.as_view(url='/catalog/', permanent=True)), ] from django.conf import settings from django.conf.urls.static import static urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)
[ "sergeykool37@gmail.com" ]
sergeykool37@gmail.com
94fbe3b06ebbbbfc7744c597c80accaa9f252602
10565593bd79c3a86ee074b7e08dc1cd35885e24
/ds_validation_viirs.py
8b12b313ac5320b9f20b7cb10edcb2c61d57784d
[]
no_license
fangbin08/SMAP
528e3995692eef87731f5fc010687dc4fc9dfd60
d2b196f9af0ee8158a5380fbe23a2206546eded8
refs/heads/master
2022-10-18T01:51:45.804054
2022-10-07T07:00:29
2022-10-07T07:00:29
190,057,817
11
5
null
null
null
null
UTF-8
Python
false
false
44,764
py
import os import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mticker plt.rcParams["font.family"] = "serif" import h5py import calendar import datetime import glob import pandas as pd import rasterio from scipy import stats from statsmodels.graphics.tsaplots import plot_acf import skill_metrics as sm import cartopy.crs as ccrs from cartopy.io.shapereader import Reader from cartopy.feature import ShapelyFeature from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import itertools # Ignore runtime warning import warnings warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=RuntimeWarning) ######################################################################################### # (Function 1) Subset the coordinates table of desired area def coordtable_subset(lat_input, lon_input, lat_extent_max, lat_extent_min, lon_extent_max, lon_extent_min): lat_output = lat_input[np.where((lat_input <= lat_extent_max) & (lat_input >= lat_extent_min))] row_output_ind = np.squeeze(np.array(np.where((lat_input <= lat_extent_max) & (lat_input >= lat_extent_min)))) lon_output = lon_input[np.where((lon_input <= lon_extent_max) & (lon_input >= lon_extent_min))] col_output_ind = np.squeeze(np.array(np.where((lon_input <= lon_extent_max) & (lon_input >= lon_extent_min)))) return lat_output, row_output_ind, lon_output, col_output_ind #################################################################################################################################### # 0. Input variables # Specify file paths # Path of current workspace path_workspace = '/Users/binfang/Documents/SMAP_Project/smap_codes' # Path of GIS data path_gis_data = '/Users/binfang/Documents/SMAP_Project/data/gis_data' # Path of source LTDR NDVI data path_ltdr = '/Volumes/MyPassport/SMAP_Project/Datasets/LTDR/Ver5' # Path of Land mask path_lmask = '/Volumes/MyPassport/SMAP_Project/Datasets/Lmask' # Path of model data path_model = '/Volumes/MyPassport/SMAP_Project/Datasets/model_data' # Path of source MODIS data path_modis = '/Volumes/MyPassport/SMAP_Project/NewData/MODIS/HDF' # Path of source output MODIS data path_modis_op = '/Volumes/MyPassport/SMAP_Project/NewData/MODIS/Output' # Path of MODIS data for SM downscaling model input path_modis_model_ip = '/Volumes/MyPassport/SMAP_Project/NewData/MODIS/Model_Input' # Path of SM model output path_model_op = '/Volumes/MyPassport/SMAP_Project/Datasets/SMAP_ds/Model_Output' # Path of downscaled SM path_smap_sm_ds = '/Volumes/MyPassport/SMAP_Project/Datasets/MODIS/Downscale' # Path of 9 km SMAP SM path_smap = '/Volumes/MyPassport/SMAP_Project/Datasets/SMAP' # Path of ISMN path_ismn = '/Volumes/MyPassport/SMAP_Project/Datasets/ISMN/Ver_1/processed_data' # Path of processed data path_processed = '/Volumes/MyPassport/SMAP_Project/Datasets/processed_data' # Path of GPM data path_gpm = '/Volumes/MyPassport/SMAP_Project/Datasets/GPM' # Path of Results path_results = '/Users/binfang/Documents/SMAP_Project/results/results_200810' folder_400m = '/400m/' folder_1km = '/1km/' folder_9km = '/9km/' smap_sm_9km_name = ['smap_sm_9km_am', 'smap_sm_9km_pm'] # Generate a sequence of string between start and end dates (Year + DOY) start_date = '2015-04-01' end_date = '2019-12-31' year = 2019 - 2015 + 1 start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d').date() end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d').date() delta_date = end_date - start_date date_seq = [] date_seq_doy = [] for i in range(delta_date.days + 1): date_str = start_date + datetime.timedelta(days=i) date_seq.append(date_str.strftime('%Y%m%d')) date_seq_doy.append(str(date_str.timetuple().tm_year) + str(date_str.timetuple().tm_yday).zfill(3)) # Count how many days for a specific year yearname = np.linspace(2015, 2019, 5, dtype='int') monthnum = np.linspace(1, 12, 12, dtype='int') monthname = np.arange(1, 13) monthname = [str(i).zfill(2) for i in monthname] daysofyear = [] for idt in range(len(yearname)): if idt == 0: f_date = datetime.date(yearname[idt], monthnum[3], 1) l_date = datetime.date(yearname[idt], monthnum[-1], 31) delta_1y = l_date - f_date daysofyear.append(delta_1y.days + 1) else: f_date = datetime.date(yearname[idt], monthnum[0], 1) l_date = datetime.date(yearname[idt], monthnum[-1], 31) delta_1y = l_date - f_date daysofyear.append(delta_1y.days + 1) daysofyear = np.asarray(daysofyear) # Find the indices of each month in the list of days between 2015 - 2018 nlpyear = 1999 # non-leap year lpyear = 2000 # leap year daysofmonth_nlp = np.array([calendar.monthrange(nlpyear, x)[1] for x in range(1, len(monthnum)+1)]) ind_nlp = [np.arange(daysofmonth_nlp[0:x].sum(), daysofmonth_nlp[0:x+1].sum()) for x in range(0, len(monthnum))] daysofmonth_lp = np.array([calendar.monthrange(lpyear, x)[1] for x in range(1, len(monthnum)+1)]) ind_lp = [np.arange(daysofmonth_lp[0:x].sum(), daysofmonth_lp[0:x+1].sum()) for x in range(0, len(monthnum))] ind_iflpr = np.array([int(calendar.isleap(yearname[x])) for x in range(len(yearname))]) # Find out leap years # Generate a sequence of the days of months for all years daysofmonth_seq = np.array([np.tile(daysofmonth_nlp[x], len(yearname)) for x in range(0, len(monthnum))]) daysofmonth_seq[1, :] = daysofmonth_seq[1, :] + ind_iflpr # Add leap days to February # daysofmonth_seq_cumsum = np.cumsum(daysofmonth_seq, axis=1) # ind_init = daysofmonth_seq_cumsum[2, :] # ind_end = daysofmonth_seq_cumsum[8, :] - 1 # ind_gpm = np.stack((ind_init, ind_end), axis=1) # ind_gpm[0, :] = ind_gpm[0, :] - 90 daysofmonth_seq_cumsum = np.cumsum(daysofmonth_seq, axis=0) ind_init = daysofmonth_seq_cumsum[2, :] ind_end = daysofmonth_seq_cumsum[8, :] ind_gpm = np.stack((ind_init, ind_end), axis=1) # Extract the indices of the months between April - September date_seq_month = np.array([int(date_seq[x][4:6]) for x in range(len(date_seq))]) monthnum_conus = monthnum[3:9] date_seq_doy_conus_ind = np.where((date_seq_month >= 4) & (date_seq_month <= 9))[0] date_seq_doy_conus = [date_seq_doy[date_seq_doy_conus_ind[x]] for x in range(len(date_seq_doy_conus_ind))] # Load in geo-location parameters os.chdir(path_workspace) f = h5py.File("ds_parameters.hdf5", "r") varname_list = ['lat_conus_max', 'lat_conus_min', 'lon_conus_max', 'lon_conus_min', 'cellsize_400m', 'cellsize_9km', 'lat_conus_ease_1km', 'lon_conus_ease_1km', 'lat_conus_ease_9km', 'lon_conus_ease_9km', 'lat_world_ease_9km', 'lon_world_ease_9km', 'lat_conus_ease_400m', 'lon_conus_ease_400m', 'row_conus_ease_9km_ind', 'col_conus_ease_9km_ind', 'lat_world_geo_10km', 'lon_world_geo_10km'] for x in range(len(varname_list)): var_obj = f[varname_list[x]][()] exec(varname_list[x] + '= var_obj') del(var_obj) f.close() ######################################################################################################################## # 1. Read SM data in CONUS # 1.1 Load the site lat/lon from Excel files and Locate the SMAP 400m, 1/9 km SM positions by lat/lon of ISMN in-situ data # Find the indices of the days between April - Sepetember month_list = np.array([int(date_seq[x][4:6]) for x in range(len(date_seq))]) month_list_ind = np.where((month_list >= 4) & (month_list <= 9))[0] month_list_ind = month_list_ind + 2 #First two columns are lat/lon ismn_list = sorted(glob.glob(path_ismn + '/[A-Z]*.xlsx')) coords_all = [] df_table_am_all = [] df_table_pm_all = [] for ife in range(14, len(ismn_list)): df_table_am = pd.read_excel(ismn_list[ife], index_col=0, sheet_name='AM') df_table_pm = pd.read_excel(ismn_list[ife], index_col=0, sheet_name='PM') netname = os.path.basename(ismn_list[ife]).split('_')[1] netname = [netname] * df_table_am.shape[0] coords = df_table_am[['lat', 'lon']] coords_all.append(coords) df_table_am_value = df_table_am.iloc[:, month_list_ind] df_table_am_value.insert(0, 'network', netname) df_table_pm_value = df_table_pm.iloc[:, month_list_ind] df_table_pm_value.insert(0, 'network', netname) df_table_am_all.append(df_table_am_value) df_table_pm_all.append(df_table_pm_value) del(df_table_am, df_table_pm, df_table_am_value, df_table_pm_value, coords, netname) print(ife) df_coords = pd.concat(coords_all) df_table_am_all = pd.concat(df_table_am_all) df_table_pm_all = pd.concat(df_table_pm_all) new_index = [df_coords.index[x].title() for x in range(len(df_coords.index))] # Capitalize each word df_coords.index = new_index df_table_am_all.index = new_index df_table_pm_all.index = new_index rec_list = ['Smap-Ok', 'Tony_Grove_Rs', 'Bedford_5_Wnw', 'Harrison_20_Sse', 'John_Day_35_Wnw'] rec_post_list = ['SMAP-OK', 'Tony_Grove_RS', 'Bedford_5_WNW', 'Harrison_20_SSE', 'John_Day_35_WNW'] # rec_list_ind = [np.where(df_table_am_all.index == rec_list[x])[0][0] for x in range(len(rec_list))] for x in range(1, len(rec_list)): df_table_am_all.rename(index={rec_list[x]: rec_post_list[x]}, inplace=True) df_table_pm_all.rename(index={rec_list[x]: rec_post_list[x]}, inplace=True) df_coords.rename(index={rec_list[x]: rec_post_list[x]}, inplace=True) ######################################################################################################################## # 1.2 Extract 400 m, 1 km / 9 km SMAP by lat/lon # Locate the SM pixel positions stn_lat_all = np.array(df_coords['lat']) stn_lon_all = np.array(df_coords['lon']) stn_row_400m_ind_all = [] stn_col_400m_ind_all = [] stn_row_1km_ind_all = [] stn_col_1km_ind_all = [] stn_row_9km_ind_all = [] stn_col_9km_ind_all = [] for idt in range(len(stn_lat_all)): stn_row_400m_ind = np.argmin(np.absolute(stn_lat_all[idt] - lat_conus_ease_400m)).item() stn_col_400m_ind = np.argmin(np.absolute(stn_lon_all[idt] - lon_conus_ease_400m)).item() stn_row_400m_ind_all.append(stn_row_400m_ind) stn_col_400m_ind_all.append(stn_col_400m_ind) stn_row_1km_ind = np.argmin(np.absolute(stn_lat_all[idt] - lat_conus_ease_1km)).item() stn_col_1km_ind = np.argmin(np.absolute(stn_lon_all[idt] - lon_conus_ease_1km)).item() stn_row_1km_ind_all.append(stn_row_1km_ind) stn_col_1km_ind_all.append(stn_col_1km_ind) stn_row_9km_ind = np.argmin(np.absolute(stn_lat_all[idt] - lat_world_ease_9km)).item() stn_col_9km_ind = np.argmin(np.absolute(stn_lon_all[idt] - lon_world_ease_9km)).item() stn_row_9km_ind_all.append(stn_row_9km_ind) stn_col_9km_ind_all.append(stn_col_9km_ind) del(stn_row_400m_ind, stn_col_400m_ind, stn_row_1km_ind, stn_col_1km_ind, stn_row_9km_ind, stn_col_9km_ind) # 1.3 Extract 400 m SMAP SM (2019) smap_400m_sta_all = [] tif_files_400m_name_ind_all = [] for iyr in [3, 4]: # range(yearname): os.chdir(path_smap + folder_400m + str(yearname[iyr])) tif_files = sorted(glob.glob('*.tif')) # Extract the file name tif_files_name = [os.path.splitext(tif_files[x])[0].split('_')[-1] for x in range(len(tif_files))] tif_files_name_1year_ind = [date_seq_doy_conus.index(item) for item in tif_files_name if item in date_seq_doy_conus] date_seq_doy_conus_1year_ind = [tif_files_name.index(item) for item in tif_files_name if item in date_seq_doy_conus] tif_files_400m_name_ind_all.append(tif_files_name_1year_ind) del(tif_files_name, tif_files_name_1year_ind) smap_400m_sta_1year = [] for idt in range(len(date_seq_doy_conus_1year_ind)): src_tf = rasterio.open(tif_files[date_seq_doy_conus_1year_ind[idt]]).read() smap_400m_sta_1day = src_tf[:, stn_row_400m_ind_all, stn_col_400m_ind_all] smap_400m_sta_1year.append(smap_400m_sta_1day) del(src_tf, smap_400m_sta_1day) print(tif_files[date_seq_doy_conus_1year_ind[idt]]) smap_400m_sta_all.append(smap_400m_sta_1year) del(smap_400m_sta_1year, date_seq_doy_conus_1year_ind) tif_files_400m_name_ind_all = np.concatenate(tif_files_400m_name_ind_all) smap_400m_sta_all = np.concatenate(smap_400m_sta_all) # Fill the extracted SMAP SM into the proper position of days smap_400m_sta_am = np.empty((df_table_am_all.shape[0], df_table_am_all.shape[1]-1), dtype='float32') smap_400m_sta_am[:] = np.nan for idt in range(len(tif_files_400m_name_ind_all)): smap_400m_sta_am[:, tif_files_400m_name_ind_all[idt]] = smap_400m_sta_all[idt, 0, :] # 1.4 Extract 1km SMAP SM (2019) smap_1km_sta_all = [] tif_files_1km_name_ind_all = [] for iyr in [3, 4]: # range(yearname): os.chdir(path_smap + folder_1km + '/nldas/' + str(yearname[iyr])) tif_files = sorted(glob.glob('*.tif')) # Extract the file name tif_files_name = [os.path.splitext(tif_files[x])[0].split('_')[-1] for x in range(len(tif_files))] tif_files_name_1year_ind = [date_seq_doy_conus.index(item) for item in tif_files_name if item in date_seq_doy_conus] date_seq_doy_conus_1year_ind = [tif_files_name.index(item) for item in tif_files_name if item in date_seq_doy_conus] tif_files_1km_name_ind_all.append(tif_files_name_1year_ind) del(tif_files_name, tif_files_name_1year_ind) smap_1km_sta_1year = [] for idt in range(len(date_seq_doy_conus_1year_ind)): src_tf = rasterio.open(tif_files[date_seq_doy_conus_1year_ind[idt]]).read() smap_1km_sta_1day = src_tf[:, stn_row_1km_ind_all, stn_col_1km_ind_all] smap_1km_sta_1year.append(smap_1km_sta_1day) del(src_tf, smap_1km_sta_1day) print(tif_files[date_seq_doy_conus_1year_ind[idt]]) smap_1km_sta_all.append(smap_1km_sta_1year) del(smap_1km_sta_1year, date_seq_doy_conus_1year_ind) tif_files_1km_name_ind_all = np.concatenate(tif_files_1km_name_ind_all) smap_1km_sta_all = np.concatenate(smap_1km_sta_all) # Fill the extracted SMAP SM into the proper position of days smap_1km_sta_am = np.empty((df_table_am_all.shape[0], df_table_am_all.shape[1]-1), dtype='float32') smap_1km_sta_am[:] = np.nan for idt in range(len(tif_files_1km_name_ind_all)): smap_1km_sta_am[:, tif_files_1km_name_ind_all[idt]] = smap_1km_sta_all[idt, 0, :] # 1.5 Extract 9km SMAP SM (2019) smap_9km_sta_am = np.empty((df_table_am_all.shape[0], df_table_am_all.shape[1]-1), dtype='float32') smap_9km_sta_am[:] = np.nan for iyr in [3, 4]: #range(len(yearname)): smap_9km_sta_am_1year = [] for imo in range(3, 9):#range(len(monthname)): smap_9km_sta_am_1month = [] # Load in SMAP 9km SM data smap_file_path = path_smap + folder_9km + 'smap_sm_9km_' + str(yearname[iyr]) + monthname[imo] + '.hdf5' # Find the if the file exists in the directory if os.path.exists(smap_file_path) == True: f_smap_9km = h5py.File(smap_file_path, "r") varname_list_smap = list(f_smap_9km.keys()) smap_9km_sta_am_1month = f_smap_9km[varname_list_smap[0]][()] smap_9km_sta_am_1month = smap_9km_sta_am_1month[stn_row_9km_ind_all, stn_col_9km_ind_all, :] print(smap_file_path) f_smap_9km.close() else: pass smap_9km_sta_am_1year.append(smap_9km_sta_am_1month) del(smap_9km_sta_am_1month) smap_9km_sta_am_1year = np.concatenate(smap_9km_sta_am_1year, axis=1) smap_9km_sta_am[:, iyr*183:(iyr+1)*183] = smap_9km_sta_am_1year del(smap_9km_sta_am_1year) # Save variables var_name_val = ['smap_400m_sta_am', 'smap_1km_sta_am', 'smap_9km_sta_am'] with h5py.File('/Users/binfang/Downloads/Processing/VIIRS/smap_validation_conus_viirs.hdf5', 'w') as f: for x in var_name_val: f.create_dataset(x, data=eval(x)) f.close() ######################################################################################################################## # 2. Scatterplots # Site ID # COSMOS: 0, 11, 25, 28, 34, 36, 42, 44 # SCAN: 250, 274, 279, 286, 296, 351, 362, 383 # SOILSCAPE: 860, 861, 870, 872, 896, 897, 904, 908 # USCRN: 918, 926, 961, 991, 1000,1002, 1012, 1016 # Number of sites for each SM network # COSMOS 52 # iRON 9 # PBO_H2O 140 # RISMA 9 # SCAN 188 # SNOTEL 404 # SOILSCAPE 119 # USCRN 113 # Load in the saved parameters f_mat = h5py.File('/Users/binfang/Downloads/Processing/VIIRS/smap_validation_conus_viirs.hdf5', 'r') varname_list = list(f_mat.keys()) for x in range(len(varname_list)): var_obj = f_mat[varname_list[x]][()] exec(varname_list[x] + '= var_obj') del(var_obj) f_mat.close() # os.chdir(path_results + '/single') ismn_sm_am = np.array(df_table_am_all.iloc[:, 1:]) ismn_sm_pm = np.array(df_table_pm_all.iloc[:, 1:]) # 2.1 single plots # stat_array_allnan = np.empty([3, 6], dtype='float32') # stat_array_allnan[:] = np.nan stat_array_400m = [] stat_array_1km = [] stat_array_9km = [] ind_slc_all = [] for ist in range(len(ismn_sm_am)): x = ismn_sm_am[ist, :].flatten() y1 = smap_400m_sta_am[ist, :].flatten() y2 = smap_1km_sta_am[ist, :].flatten() y3 = smap_9km_sta_am[ist, :].flatten() ind_nonnan = np.where(~np.isnan(x) & ~np.isnan(y1) & ~np.isnan(y2) & ~np.isnan(y3))[0] if len(ind_nonnan) > 5: x = x[ind_nonnan] y1 = y1[ind_nonnan] y2 = y2[ind_nonnan] y3 = y3[ind_nonnan] slope_1, intercept_1, r_value_1, p_value_1, std_err_1 = stats.linregress(x, y1) y1_estimated = intercept_1 + slope_1 * x number_1 = len(y1) r_sq_1 = r_value_1 ** 2 ubrmse_1 = np.sqrt(np.mean((x - y1_estimated) ** 2)) bias_1 = np.mean(x - y1) conf_int_1 = std_err_1 * 1.96 # From the Z-value stdev_1 = np.std(y1) stat_array_1 = [number_1, r_sq_1, ubrmse_1, stdev_1, bias_1, p_value_1, conf_int_1] slope_2, intercept_2, r_value_2, p_value_2, std_err_2 = stats.linregress(x, y2) y2_estimated = intercept_2 + slope_2 * x number_2 = len(y2) r_sq_2 = r_value_2 ** 2 ubrmse_2 = np.sqrt(np.mean((x - y2_estimated) ** 2)) bias_2 = np.mean(x - y2) conf_int_2 = std_err_2 * 1.96 # From the Z-value stdev_2 = np.std(y2) stat_array_2 = [number_2, r_sq_2, ubrmse_2, stdev_2, bias_2, p_value_2, conf_int_2] slope_3, intercept_3, r_value_3, p_value_3, std_err_3 = stats.linregress(x, y3) y3_estimated = intercept_3 + slope_3 * x number_3 = len(y3) r_sq_3 = r_value_3 ** 2 ubrmse_3 = np.sqrt(np.mean((x - y3_estimated) ** 2)) bias_3 = np.mean(x - y3) conf_int_3 = std_err_3 * 1.96 # From the Z-value stdev_3 = np.std(y3) stat_array_3 = [number_3, r_sq_3, ubrmse_3, stdev_3, bias_3, p_value_3, conf_int_3] if ubrmse_1 - ubrmse_3 < 0: fig = plt.figure(figsize=(11, 6.5)) fig.subplots_adjust(hspace=0.2, wspace=0.2) ax = fig.add_subplot(111) ax.scatter(x, y1, s=20, c='m', marker='s', label='400 m') ax.scatter(x, y2, s=20, c='b', marker='o', label='1 km') ax.scatter(x, y3, s=20, c='g', marker='^', label='9 km') ax.plot(x, intercept_1+slope_1*x, '-', color='m') ax.plot(x, intercept_2+slope_2*x, '-', color='b') ax.plot(x, intercept_3+slope_3*x, '-', color='g') plt.xlim(0, 0.4) ax.set_xticks(np.arange(0, 0.5, 0.1)) plt.ylim(0, 0.4) ax.set_yticks(np.arange(0, 0.5, 0.1)) ax.tick_params(axis='both', which='major', labelsize=13) ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c=".3") plt.grid(linestyle='--') plt.legend(loc='upper left', prop={'size': 13}) # plt.title(network_name[ist], fontsize=18, fontweight='bold') # plt.show() # plt.savefig(path_results + '/validation/single_plots/' + df_table_am_all['network'][ist] + '_' + df_table_am_all.index[ist] # + '_(' + str(ist) + ')' + '.png') plt.close(fig) stat_array_400m.append(stat_array_1) stat_array_1km.append(stat_array_2) stat_array_9km.append(stat_array_3) ind_slc_all.append(ist) print(ist) del(stat_array_1, stat_array_2, stat_array_3) else: pass else: pass stat_array_400m = np.array(stat_array_400m) stat_array_1km = np.array(stat_array_1km) stat_array_9km = np.array(stat_array_9km) columns_validation = ['number', 'r_sq', 'ubrmse', 'stdev', 'bias', 'p_value', 'conf_int'] index_validation = df_coords.index[ind_slc_all] # index_validation = ['COSMOS', 'SCAN', 'USCRN'] # stat_array_400m = np.concatenate((id, stat_array_400m), axis=1) # stat_array_1km = np.concatenate((id, stat_array_1km), axis=1) # stat_array_9km = np.concatenate((id, stat_array_9km), axis=1) df_stat_400m = pd.DataFrame(stat_array_400m, columns=columns_validation, index=index_validation) # df_stat_400m = pd.concat([df_table_am_all['network'][ind_slc_all], df_stat_400m], axis=1) df_stat_1km = pd.DataFrame(stat_array_1km, columns=columns_validation, index=index_validation) # df_stat_1km = pd.concat([df_table_am_all['network'][ind_slc_all], df_stat_1km], axis=1) df_stat_9km = pd.DataFrame(stat_array_9km, columns=columns_validation, index=index_validation) # df_stat_9km = pd.concat([df_table_am_all['network'][ind_slc_all], df_stat_9km], axis=1) writer_400m = pd.ExcelWriter(path_results + '/validation/stat_400m.xlsx') writer_1km = pd.ExcelWriter(path_results + '/validation/stat_1km.xlsx') writer_9km = pd.ExcelWriter(path_results + '/validation/stat_9km.xlsx') df_stat_400m.to_excel(writer_400m) df_stat_1km.to_excel(writer_1km) df_stat_9km.to_excel(writer_9km) writer_400m.save() writer_1km.save() writer_9km.save() # ubrmse_diff = stat_array_400m[:, 2] - stat_array_9km[:, 2] # ubrmse_diff_ind = np.where(ubrmse_diff<0)[0] # ubrmse_good = df_table_am_all['network'][ubrmse_diff_ind] stn_slc_all = df_table_am_all['network'][ind_slc_all] stn_slc_all_unique = stn_slc_all.unique() stn_slc_all_group = [np.where(stn_slc_all == stn_slc_all_unique[x]) for x in range(len(stn_slc_all_unique))] # 2.2 subplots # COSMOS: 3, 41 # SCAN: 211, 229, 254, 258, 272, 280, 298, 330, 352, 358 # SNOTEL: 427, 454, 492, 520, 522, 583, 714, 721, 750, 755 # USCRN: 914, 918, 920, 947, 952, 957, 961, 985, 1002, 1016 network_name = ['COSMOS', 'SCAN', 'SNOTEL', 'USCRN'] site_ind = [[3, 9, 23, 36, 41, 44], [211, 229, 254, 258, 272, 280, 298, 330, 352, 358], [427, 454, 492, 520, 522, 583, 714, 721, 750, 755], [914, 918, 920, 947, 952, 957, 961, 985, 1002, 1016]] # network_name = list(stn_slc_all_unique) # site_ind = stn_slc_all_group for inw in range(1, len(site_ind)): fig = plt.figure(figsize=(11, 11)) plt.subplots_adjust(left=0.1, right=0.95, bottom=0.08, top=0.92, hspace=0.25, wspace=0.25) for ist in range(len(site_ind[inw])): x = ismn_sm_am[site_ind[inw][ist], :].flatten() x[x == 0] = np.nan y1 = smap_400m_sta_am[site_ind[inw][ist], :].flatten() y2 = smap_1km_sta_am[site_ind[inw][ist], :].flatten() y3 = smap_9km_sta_am[site_ind[inw][ist], :].flatten() ind_nonnan = np.where(~np.isnan(x) & ~np.isnan(y1) & ~np.isnan(y2) & ~np.isnan(y3))[0] x = x[ind_nonnan] y1 = y1[ind_nonnan] y2 = y2[ind_nonnan] y3 = y3[ind_nonnan] slope_1, intercept_1, r_value_1, p_value_1, std_err_1 = stats.linregress(x, y1) y1_estimated = intercept_1 + slope_1 * x number_1 = len(y1) r_sq_1 = r_value_1 ** 2 ubrmse_1 = np.sqrt(np.mean((x - y1_estimated) ** 2)) bias_1 = np.mean(x - y1) conf_int_1 = std_err_1 * 1.96 # From the Z-value stat_array_1 = [number_1, r_sq_1, ubrmse_1, bias_1, p_value_1, conf_int_1] slope_2, intercept_2, r_value_2, p_value_2, std_err_2 = stats.linregress(x, y2) y2_estimated = intercept_2 + slope_2 * x number_2 = len(y2) r_sq_2 = r_value_2 ** 2 ubrmse_2 = np.sqrt(np.mean((x - y2_estimated) ** 2)) bias_2 = np.mean(x - y2) conf_int_2 = std_err_2 * 1.96 # From the Z-value stat_array_2 = [number_2, r_sq_2, ubrmse_2, bias_2, p_value_2, conf_int_2] slope_3, intercept_3, r_value_3, p_value_3, std_err_3 = stats.linregress(x, y3) y3_estimated = intercept_3 + slope_3 * x number_3 = len(y3) r_sq_3 = r_value_3 ** 2 ubrmse_3 = np.sqrt(np.mean((x - y3_estimated) ** 2)) bias_3 = np.mean(x - y3) conf_int_3 = std_err_3 * 1.96 # From the Z-value stat_array_3 = [number_3, r_sq_3, ubrmse_3, bias_3, p_value_3, conf_int_3] ax = fig.add_subplot(len(site_ind[inw])//2, 2, ist+1) sc1 = ax.scatter(x, y1, s=20, c='m', marker='s', label='400 m') sc2 = ax.scatter(x, y2, s=20, c='b', marker='o', label='1 km') sc3 = ax.scatter(x, y3, s=20, c='g', marker='^', label='9 km') ax.plot(x, intercept_1+slope_1*x, '-', color='m') ax.plot(x, intercept_2+slope_2*x, '-', color='b') ax.plot(x, intercept_3+slope_3*x, '-', color='g') plt.xlim(0, 0.4) ax.set_xticks(np.arange(0, 0.5, 0.1)) plt.ylim(0, 0.4) ax.set_yticks(np.arange(0, 0.5, 0.1)) ax.tick_params(axis='both', which='major', labelsize=13) ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c=".3") plt.grid(linestyle='--') ax.text(0.01, 0.35, df_table_am_all.index[site_ind[inw][ist]].replace('_', ' '), fontsize=13) # add all legends together handles = [sc1] + [sc2] + [sc3] labels = [l.get_label() for l in handles] # leg = plt.legend([sc1, sc2, sc3], labels, loc=(-0.6, 3.55), mode="expand", borderaxespad=0, ncol=3, prop={"size": 13}) leg = plt.legend([sc1, sc2, sc3], labels, loc=(-0.6, 6.1), mode="expand", borderaxespad=0, ncol=3, prop={"size": 13}) fig.text(0.52, 0.01, 'In Situ SM ($\mathregular{m^3/m^3)}$', ha='center', fontsize=16, fontweight='bold') fig.text(0.02, 0.4, 'SMAP SM ($\mathregular{m^3/m^3)}$', rotation='vertical', fontsize=16, fontweight='bold') plt.suptitle(network_name[inw], fontsize=21, y=0.99, fontweight='bold') plt.show() plt.savefig(path_results + '/validation/subplots/' + network_name[inw] + '.png') plt.close(fig) ######################################################################################################################## # 3. Time-series plots # 3.1 Locate the corresponding GPM 10 km data located by lat/lon of in-situ data # df_slc_coords = pd.read_csv(path_results + '/slc_coords.csv', index_col=0) # slc_coords = np.array(df_slc_coords.iloc[:, 1:]) stn_row_10km_ind_all = [] stn_col_10km_ind_all = [] for ist in range(df_coords.shape[0]): stn_row_10km_ind = np.argmin(np.absolute(df_coords.iloc[ist, 0] - lat_world_geo_10km)).item() stn_col_10km_ind = np.argmin(np.absolute(df_coords.iloc[ist, 1] - lon_world_geo_10km)).item() stn_row_10km_ind_all.append(stn_row_10km_ind) stn_col_10km_ind_all.append(stn_col_10km_ind) del(stn_row_10km_ind, stn_col_10km_ind) # Extract the GPM data by indices gpm_precip_ext_all = [] for iyr in [3, 4]:#range(len(yearname)-1): f_gpm = h5py.File(path_gpm + '/gpm_precip_' + str(yearname[iyr]) + '.hdf5', 'r') varname_list_gpm = list(f_gpm.keys()) for x in range(len(varname_list_gpm)): var_obj = f_gpm[varname_list_gpm[x]][()] exec(varname_list_gpm[x] + '= var_obj') del (var_obj) f_gpm.close() exec('gpm_precip = gpm_precip_10km_' + str(yearname[iyr])) gpm_precip_ext = gpm_precip[stn_row_10km_ind_all, stn_col_10km_ind_all, :] gpm_precip_ext_all.append(gpm_precip_ext) print(iyr) del(gpm_precip, gpm_precip_ext) ind_gpm = ind_gpm[-2:, :] gpm_precip_ext_all = [gpm_precip_ext_all[x][:, ind_gpm[x, 0]:ind_gpm[x, 1]] for x in range(len(gpm_precip_ext_all))] gpm_precip_ext_all = np.concatenate(gpm_precip_ext_all, axis=1) gpm_precip_ext = np.empty((1034, 549), dtype='float32') gpm_precip_ext[:] = np.nan gpm_precip_ext = np.concatenate((gpm_precip_ext, gpm_precip_ext_all), axis=1) # index = df_slc_sites.index # columns = df_table_am_all.columns[1:] # df_gpm_precip_ext = pd.DataFrame(gpm_precip_ext_all, index=index, columns=columns) # df_gpm_precip_ext.to_csv(path_results + '/gpm_precip_ext.csv', index=True) # 3.2 Make the time-series plots # df_gpm_precip = pd.read_csv(path_results + '/gpm_precip_ext.csv', index_col=0) # gpm_precip_ext = np.array(df_gpm_precip) # site_ind = [[0, 11, 25, 28, 34, 36, 42, 44], [250, 274, 279, 286, 296, 351, 362, 383], # [860, 861, 870, 872, 896, 897, 904, 908], [918, 926, 961, 991, 1000, 1002, 1012, 1016]] # network_name = ['COSMOS', 'SCAN', 'SOILSCAPE', 'USCRN'] network_name = ['COSMOS', 'SCAN', 'SNOTEL', 'USCRN'] site_ind = [[9, 23, 36, 41, 44], [229, 254, 280, 330, 352], [492, 520, 522, 714, 721], [947, 957, 985, 1002, 1016]] # Find the indices from df_gpm_precip # df_gpm_precip_ind = [df_gpm_precip.index.get_loc(df_table_am_all.index[site_ind[y][x]]) for y in range(len(site_ind)) for x in range(len(site_ind[y]))] # df_gpm_precip_ind = [df_gpm_precip_ind[:8], df_gpm_precip_ind[8:16], df_gpm_precip_ind[16:24], df_gpm_precip_ind[24:]] for inw in range(len(site_ind)): fig = plt.figure(figsize=(13, 8)) plt.subplots_adjust(left=0.08, right=0.88, bottom=0.08, top=0.92, hspace=0.35, wspace=0.25) for ist in range(len(site_ind[inw])): x = ismn_sm_am[site_ind[inw][ist], 549:] y1 = smap_400m_sta_am[site_ind[inw][ist], 549:] y2 = smap_1km_sta_am[site_ind[inw][ist], 549:] y3 = smap_9km_sta_am[site_ind[inw][ist], 549:] z = gpm_precip_ext[site_ind[inw][ist], 549:] # ind_nonnan = np.where(~np.isnan(x) & ~np.isnan(y1) & ~np.isnan(y2))[0] # x = x[ind_nonnan] # y1 = y1[ind_nonnan] # y2 = y2[ind_nonnan] # z = z[ind_nonnan] ax = fig.add_subplot(5, 1, ist+1) lns1 = ax.plot(x, c='k', marker='+', label='In-situ', markersize=3, linestyle='None') lns2 = ax.plot(y1, c='m', marker='s', label='400 m', markersize=2, linestyle='None') lns3 = ax.plot(y2, c='b', marker='o', label='1 km', markersize=2, linestyle='None') lns4 = ax.plot(y3, c='g', marker='^', label='9 km', markersize=2, linestyle='None') ax.text(310, 0.4, df_table_am_all.index[site_ind[inw][ist]].replace('_', ' '), fontsize=11) plt.xlim(0, len(x)//2) ax.set_xticks(np.arange(0, len(x)//2*3, (len(x))//2)) ax.set_xticklabels([]) labels = ['2018', '2019'] mticks = ax.get_xticks() ax.set_xticks((mticks[:-1] + mticks[1:]) / 2, minor=True) ax.tick_params(axis='x', which='minor', length=0) ax.set_xticklabels(labels, minor=True) plt.ylim(0, 0.5) ax.set_yticks(np.arange(0, 0.6, 0.2)) ax.tick_params(axis='y', labelsize=10) ax2 = ax.twinx() ax2.set_ylim(0, 64, 8) ax2.invert_yaxis() lns5 = ax2.bar(np.arange(len(x)), z, width=0.8, color='royalblue', label='Precip') ax2.tick_params(axis='y', labelsize=10) # add all legends together handles = lns1+lns2+lns3+lns4+[lns5] labels = [l.get_label() for l in handles] # handles, labels = ax.get_legend_handles_labels() plt.gca().legend(handles, labels, loc='center left', bbox_to_anchor=(1.04, 6)) fig.text(0.5, 0.01, 'Days', ha='center', fontsize=16, fontweight='bold') fig.text(0.02, 0.4, 'SM ($\mathregular{m^3/m^3)}$', rotation='vertical', fontsize=16, fontweight='bold') fig.text(0.96, 0.4, 'GPM Precip (mm/day)', rotation='vertical', fontsize=16, fontweight='bold') plt.suptitle(network_name[inw], fontsize=19, y=0.97, fontweight='bold') plt.savefig(path_results + '/validation/subplots/' + network_name[inw] + '_tseries' + '.png') plt.close(fig) ######################################################################################################################## # 4. Make CONUS maps for R^2 df_stats = pd.read_csv(path_results + '/validation/stat_all.csv', index_col=0) stn_coords_ind = [np.where(df_coords.index == df_stats.index[x])[0][0] for x in range(len(df_stats))] df_coords_slc = df_coords.iloc[stn_coords_ind] # df_coords_slc = df_table_am_all.iloc[stn_coords_ind] stn_lat = [df_coords_slc.iloc[x]['lat'] for x in range(len(df_stats))] stn_lon = [df_coords_slc.iloc[x]['lon'] for x in range(len(df_stats))] # site_ind = [[3, 9, 23, 36, 41, 44], [211, 229, 254, 258, 272, 280, 298, 330, 352, 358], [427, 454, 492, 520, 522, 583, 714, 721, 750, 755], # [914, 918, 920, 947, 952, 957, 961, 985, 1002, 1016]] site_ind = [[3, 9, 23, 36, 41, 44], [211, 229, 254, 258, 272, 280, 298, 330, 352, 358], [427, 454, 492, 520, 522, 583, 714, 721, 750, 755], [914, 918, 920, 947, 952, 957, 961, 985, 1002, 1016]] site_ind_flat = list(itertools.chain(*site_ind)) site_ind_name = df_table_am_all.iloc[site_ind_flat] site_ind_name = site_ind_name['network'] df_stats_slc_ind = [np.where(df_stats.index == site_ind_name.index[x])[0][0] for x in range(len(site_ind_flat))] df_stats_slc = df_stats.iloc[df_stats_slc_ind] df_stats_slc_full = pd.concat([site_ind_name, df_stats_slc], axis=1) # Write to file writer_stn = pd.ExcelWriter(path_results + '/validation/stat_stn.xlsx') df_stats_slc_full.to_excel(writer_stn) writer_stn.save() # Write coordinates and network to files # df_coords_full = pd.concat([df_table_am_all['network'].to_frame().reset_index(drop=True, inplace=True), # df_coords.reset_index(drop=True, inplace=True)], axis=1) df_coords.iloc[ind_slc_all].to_csv(path_results + '/df_coords.csv', index=True) df_table_am_all_slc = df_table_am_all.iloc[ind_slc_all] df_network = df_table_am_all_slc['network'].to_frame() df_network.to_csv(path_results + '/df_network.csv', index=True) # 4.1 Make the maps # Extract state name and center coordinates shp_records = Reader(path_gis_data + '/cb_2015_us_state_500k/cb_2015_us_state_500k.shp').records() shp_records = list(shp_records) state_name = [shp_records[x].attributes['STUSPS'] for x in range(len(shp_records))] # name_lon = [(shp_records[x].bounds[0] + shp_records[x].bounds[2])/2 for x in range(len(shp_records))] # name_lat = [(shp_records[x].bounds[1] + shp_records[x].bounds[3])/2 for x in range(len(shp_records))] shape_conus = ShapelyFeature(Reader(path_gis_data + '/cb_2015_us_state_500k/cb_2015_us_state_500k.shp').geometries(), ccrs.PlateCarree(), edgecolor='black', facecolor='none') shape_conus_geometry = list(Reader(path_gis_data + '/cb_2015_us_state_500k/cb_2015_us_state_500k.shp').geometries()) name_coords = [shape_conus_geometry[x].representative_point().coords[:] for x in range(len(shape_conus_geometry))] c_rsq_400m = df_stats['r_sq_400m'].tolist() c_rmse_400m = df_stats['ubrmse_400m'].tolist() c_rsq_1km = df_stats['r_sq_1km'].tolist() c_rmse_1km = df_stats['ubrmse_1km'].tolist() c_rsq_9km = df_stats['r_sq_9km'].tolist() c_rmse_9km = df_stats['ubrmse_9km'].tolist() # 4.1.1 R^2 fig = plt.figure(figsize=(10, 12), dpi=100, facecolor='w', edgecolor='k') plt.subplots_adjust(left=0.05, right=0.88, bottom=0.05, top=0.95, hspace=0.1, wspace=0.1) # 400 m ax1 = fig.add_subplot(3, 1, 1, projection=ccrs.PlateCarree()) ax1.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax1.add_feature(shape_conus) sc1 = ax1.scatter(stn_lon, stn_lat, c=c_rsq_400m, s=40, marker='^', edgecolors='k', cmap='jet') sc1.set_clim(vmin=0, vmax=1) ax1.text(-123, 27, '400 m', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax1.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') # 1 km ax2 = fig.add_subplot(3, 1, 2, projection=ccrs.PlateCarree()) ax2.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax2.add_feature(shape_conus) sc2 = ax2.scatter(stn_lon, stn_lat, c=c_rsq_1km, s=40, marker='^', edgecolors='k', cmap='jet') sc2.set_clim(vmin=0, vmax=1) ax2.text(-123, 27, '1 km', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax2.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') # 9 km ax3 = fig.add_subplot(3, 1, 3, projection=ccrs.PlateCarree()) ax3.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax3.add_feature(shape_conus) sc3 = ax3.scatter(stn_lon, stn_lat, c=c_rsq_9km, s=40, marker='^', edgecolors='k', cmap='jet') sc3.set_clim(vmin=0, vmax=1) ax3.text(-123, 27, '9 km', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax3.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') cbar_ax = fig.add_axes([0.9, 0.2, 0.02, 0.6]) cbar = fig.colorbar(sc3, cax=cbar_ax, extend='both') cbar.ax.locator_params(nbins=5) cbar.ax.tick_params(labelsize=14) plt.suptitle('$\mathregular{R^2}$', fontsize=20, y=0.98, fontweight='bold') plt.savefig(path_results + '/validation/' + 'r2_map.png') plt.close(fig) # 4.1.2 RMSE fig = plt.figure(figsize=(10, 12), dpi=100, facecolor='w', edgecolor='k') plt.subplots_adjust(left=0.05, right=0.88, bottom=0.05, top=0.95, hspace=0.1, wspace=0.1) # 400 m ax1 = fig.add_subplot(3, 1, 1, projection=ccrs.PlateCarree()) ax1.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax1.add_feature(shape_conus) sc1 = ax1.scatter(stn_lon, stn_lat, c=c_rmse_400m, s=40, marker='^', edgecolors='k', cmap='jet') sc1.set_clim(vmin=0, vmax=0.3) ax1.text(-123, 27, '400 m', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax1.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') # 1 km ax2 = fig.add_subplot(3, 1, 2, projection=ccrs.PlateCarree()) ax2.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax2.add_feature(shape_conus) sc2 = ax2.scatter(stn_lon, stn_lat, c=c_rmse_1km, s=40, marker='^', edgecolors='k', cmap='jet') sc2.set_clim(vmin=0, vmax=0.3) ax2.text(-123, 27, '1 km', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax2.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') # 9 km ax3 = fig.add_subplot(3, 1, 3, projection=ccrs.PlateCarree()) ax3.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax3.add_feature(shape_conus) sc3 = ax3.scatter(stn_lon, stn_lat, c=c_rmse_9km, s=40, marker='^', edgecolors='k', cmap='jet') sc3.set_clim(vmin=0, vmax=0.3) ax3.text(-123, 27, '9 km', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax3.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') cbar_ax = fig.add_axes([0.9, 0.2, 0.02, 0.6]) cbar = fig.colorbar(sc3, cax=cbar_ax, extend='both') cbar.set_label('$\mathregular{(m^3/m^3)}$', fontsize=14) cbar.ax.locator_params(nbins=6) cbar.ax.tick_params(labelsize=14) plt.suptitle('RMSE', fontsize=20, y=0.98, fontweight='bold') plt.savefig(path_results + '/validation/' + 'rmse_map.png') plt.close(fig) # 4.1.3 R^2 and RMSE map c_rsq_400m_3net = c_rsq_400m[0:88] + c_rsq_400m[255:] c_rmse_400m_3net = c_rmse_400m[0:88] + c_rmse_400m[255:] stn_lon_3net = stn_lon[0:88] + stn_lon[255:] stn_lat_3net = stn_lat[0:88] + stn_lat[255:] fig = plt.figure(figsize=(10, 8), dpi=150, facecolor='w', edgecolor='k') plt.subplots_adjust(left=0.05, right=0.88, bottom=0.05, top=0.95, hspace=0.1, wspace=0.1) # R^2 ax1 = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree()) ax1.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax1.add_feature(shape_conus) sc1 = ax1.scatter(stn_lon_3net, stn_lat_3net, c=c_rsq_400m_3net, s=40, marker='^', edgecolors='k', cmap='jet') sc1.set_clim(vmin=0, vmax=1) ax1.text(-123, 27, '$\mathregular{R^2}$', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax1.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') cbar_ax1 = fig.add_axes([0.9, 0.52, 0.015, 0.43]) cbar1 = fig.colorbar(sc1, cax=cbar_ax1, extend='both') cbar1.ax.locator_params(nbins=5) cbar1.ax.tick_params(labelsize=12) # RMSE ax2 = fig.add_subplot(2, 1, 2, projection=ccrs.PlateCarree()) ax2.set_extent([-125, -67, 25, 50], ccrs.PlateCarree()) ax2.add_feature(shape_conus) sc2 = ax2.scatter(stn_lon_3net, stn_lat_3net, c=c_rmse_400m_3net, s=40, marker='^', edgecolors='k', cmap='jet') sc2.set_clim(vmin=0, vmax=0.3) ax2.text(-123, 27, 'RMSE', fontsize=16, fontweight='bold') for x in range(len(shp_records)): ax2.annotate(s=state_name[x], xy=name_coords[x][0], horizontalalignment='center') cbar_ax2 = fig.add_axes([0.9, 0.05, 0.015, 0.43]) cbar2 = fig.colorbar(sc2, cax=cbar_ax2, extend='both') cbar2.ax.locator_params(nbins=6) cbar2.ax.tick_params(labelsize=12) cbar2.set_label('$\mathregular{(m^3/m^3)}$', fontsize=14) plt.savefig(path_results + '/validation/' + 'r2_rmse_map.png') plt.close(fig) ######################################################################################################################## # 5. Taylor diagram df_stats = pd.read_csv(path_results + '/validation/stat_all.csv', index_col=0) stn_coords_ind = [np.where(df_coords.index == df_stats.index[x])[0][0] for x in range(len(df_stats))] stdev_400m = np.array(df_stats['stdev_400m']) rmse_400m = np.array(df_stats['ubrmse_400m']) r_400m = np.array(np.sqrt(df_stats['r_sq_400m'])) stdev_1km = np.array(df_stats['stdev_1km']) rmse_1km = np.array(df_stats['ubrmse_1km']) r_1km = np.array(np.sqrt(df_stats['r_sq_1km'])) stdev_9km = np.array(df_stats['stdev_9km']) rmse_9km = np.array(df_stats['ubrmse_9km']) r_9km = np.array(np.sqrt(df_stats['r_sq_9km'])) # 5.1 Plot together fig = plt.figure(figsize=(7, 14), dpi=100, facecolor='w', edgecolor='k') # 400 m plt.subplots_adjust(left=0.05, right=0.99, bottom=0.05, top=0.9, hspace=0.2, wspace=0.2) ax1 = fig.add_subplot(3, 1, 1) sm.taylor_diagram(stdev_400m, rmse_400m, r_400m, markerColor='k', markerSize=10, alpha=0.0, markerLegend='off', tickRMS=np.arange(0, 0.15, 0.03), colRMS='tab:green', styleRMS=':', widthRMS=1.0, titleRMS='on', titleRMSDangle=40.0, showlabelsRMS='on', tickSTD=np.arange(0, 0.12, 0.03), axismax=0.12, colSTD='black', styleSTD='-.', widthSTD=1.0, titleSTD='on', colCOR='tab:blue', styleCOR='--', widthCOR=1.0, titleCOR='on') plt.xticks(np.arange(0, 0.15, 0.05)) ax1.text(0.1, 0.12, '400 m', fontsize=16, fontweight='bold') # 1 km ax2 = fig.add_subplot(3, 1, 2) sm.taylor_diagram(stdev_1km, rmse_1km, r_1km, markerColor='k', markerSize=10, alpha=0.0, markerLegend='off', tickRMS=np.arange(0, 0.15, 0.03), colRMS='tab:green', styleRMS=':', widthRMS=1.0, titleRMS='on', titleRMSDangle=40.0, showlabelsRMS='on', tickSTD=np.arange(0, 0.12, 0.03), axismax=0.12, colSTD='black', styleSTD='-.', widthSTD=1.0, titleSTD='on', colCOR='tab:blue', styleCOR='--', widthCOR=1.0, titleCOR='on') plt.xticks(np.arange(0, 0.15, 0.05)) ax2.text(0.1, 0.12, '1 km', fontsize=16, fontweight='bold') # 9 km ax3 = fig.add_subplot(3, 1, 3) sm.taylor_diagram(stdev_9km, rmse_9km, r_9km, markerColor='k', markerSize=10, alpha=0.0, markerLegend='off', tickRMS=np.arange(0, 0.15, 0.03), colRMS='tab:green', styleRMS=':', widthRMS=1.0, titleRMS='on', titleRMSDangle=40.0, showlabelsRMS='on', tickSTD=np.arange(0, 0.12, 0.03), axismax=0.12, colSTD='black', styleSTD='-.', widthSTD=1.0, titleSTD='on', colCOR='tab:blue', styleCOR='--', widthCOR=1.0, titleCOR='on') plt.xticks(np.arange(0, 0.15, 0.05)) ax3.text(0.1, 0.12, '9 km', fontsize=16, fontweight='bold') plt.savefig(path_results + '/validation/' + 'td.png') # 5.2 Plot 400 m stdev_400m_3net = np.concatenate((stdev_400m[0:88], stdev_400m[255:])) rmse_400m_3net = np.concatenate((rmse_400m[0:88], rmse_400m[255:])) r_400m_3net = np.concatenate((r_400m[0:88], r_400m[255:])) fig = plt.figure(figsize=(5, 5), dpi=200, facecolor='w', edgecolor='k') # plt.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9, hspace=0.2, wspace=0.2) # ax1 = fig.add_subplot(3, 1, 1) sm.taylor_diagram(stdev_400m_3net, rmse_400m_3net, r_400m_3net, markerColor='k', markerSize=10, alpha=0.0, markerLegend='off', tickRMS=np.arange(0, 0.15, 0.03), colRMS='tab:green', styleRMS=':', widthRMS=1.0, titleRMS='on', titleRMSDangle=40.0, showlabelsRMS='on', tickSTD=np.arange(0, 0.12, 0.03), axismax=0.12, colSTD='black', styleSTD='-.', widthSTD=1.0, titleSTD='on', colCOR='tab:blue', styleCOR='--', widthCOR=1.0, titleCOR='on') plt.xticks(np.arange(0, 0.15, 0.05)) # plt.text(0.1, 0.12, '400 m', fontsize=16, fontweight='bold') plt.savefig(path_results + '/validation/' + 'td_400m.png') ######################################################################################################################## # 6 Classify the stations df_stat_1km = pd.read_excel(path_results + '/validation/stat_1km.xlsx', index_col=0)
[ "noreply@github.com" ]
fangbin08.noreply@github.com
abd8712565c86b38cf0f645f8ce46f74fa9d024c
f5af6d2d6f63ff5fcd985fee19043b181316f7e3
/models.py
59f89672061266d541052ba261689c4c9125b1a1
[]
no_license
xnuray98s/FSND-capstone
bb3c7bff887093c53e909bda0be528dd2787fc2c
9528366e6e7a4e980770009f09e1b066e950acc2
refs/heads/main
2023-07-24T06:56:40.200989
2021-09-06T11:16:04
2021-09-06T11:16:04
403,443,975
0
0
null
null
null
null
UTF-8
Python
false
false
4,656
py
import os from sqlalchemy import Column, String, Integer, create_engine from flask_sqlalchemy import SQLAlchemy import json database_name = "casting" database_path_locally = "postgresql://{}:{}@{}/{}".format( "postgres", "postgres", "localhost:5432", database_name ) db = SQLAlchemy() """ setup_db(app) binds a flask application and a SQLAlchemy service """ # change the path to database_path_locally def setup_db( app, database_path=os.environ["DATABASE_URL"].replace( "postgres://", "postgresql://"), ): app.config["SQLALCHEMY_DATABASE_URI"] = database_path app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False db.app = app db.init_app(app) db.create_all() def insert_dummy_values_for_test(): movie1 = Movie( title="I Am Legend", image="https://images.moviesanywhere.com/56c992f18d66817a14cd68de04a10e57/2838a862-a8a4-4f54-9a22-bc2fba7264a3.jpg", cast="Will Smith, Alice Braga, Charlie Tahan, Salli Richardson-Whitfield", plot="Years after a plague kills most of humanity and transforms the rest into monsters, the sole survivor in New York City struggles valiantly to find a cure.", genres="Drama, Horror, Sci-Fi", rating="PG-13", imdb="7.2", release="2007", ) movie2 = Movie( title="Avatar", image="https://i.pinimg.com/originals/32/f1/1b/32f11b88771756b748a427428565afdd.jpg", cast="Sam Worthington, Zoe Saldana, Sigourney Weaver, Stephen Lang", plot="A paraplegic marine dispatched to the moon Pandora on a unique mission becomes torn between following his orders and protecting the world he feels is his home.", genres="Action, Adventure, Fantasy", rating="PG-13", imdb="7.9", release="2009", ) actor1 = Actor( name="Will Smith", image="https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcQbuF86tSHODHWHJRusio04zBWZHRNgFJdu-jyiWgkIbBC4-tuT", gender="m", nationality="American", dob=1968, movie="I Am Legend", ) actor2 = Actor( name="Sam Worthington", image="https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcRRyYPpSOn_kpXBtE4wJ50MCIJ9J7bBAq8_swh03mb1kml7lGqF", gender="m", nationality="Australian", dob=1976, movie="Avatar", ) db.drop_all() db.create_all() movie1.insert() movie2.insert() actor1.insert() actor2.insert() class Movie(db.Model): __tablename__ = "movies" id = Column(Integer, primary_key=True) title = Column(String) image = Column(String) cast = Column(String) plot = Column(String) genres = Column(String) rating = Column(String) imdb = Column(String) release = Column(String) def __init__(self, title, image, cast, plot, genres, rating, imdb, release): self.title = title self.image = image self.cast = cast self.plot = plot self.genres = genres self.rating = rating self.imdb = imdb self.release = release def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { "id": self.id, "title": self.title, "image": self.image, "cast": self.cast, "plot": self.plot, "genres": self.genres, "rating": self.rating, "imdb": self.imdb, "release": self.release, } class Actor(db.Model): __tablename__ = "actors" id = Column(Integer, primary_key=True) name = Column(String) image = Column(String) gender = Column(String) nationality = Column(String) dob = Column(String) movie = Column(String) def __init__(self, name, image, gender, nationality, dob, movie): self.name = name self.image = image self.gender = gender self.nationality = nationality self.dob = dob self.movie = movie def insert(self): db.session.add(self) db.session.commit() def update(self): db.session.commit() def delete(self): db.session.delete(self) db.session.commit() def format(self): return { "id": self.id, "name": self.name, "image": self.image, "gender": self.gender, "nationality": self.nationality, "dob": self.dob, "movie": self.movie, }
[ "66944976+xnuray98s@users.noreply.github.com" ]
66944976+xnuray98s@users.noreply.github.com
9eebd51cd8523865c63b5ea9bc13a91b30809bd9
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/I_w_M_to_Wxyz_focus_Z_ok/wiColorJ/pyr_Tcrop255_pad20_jit15/Sob_k15_s001_EroM_Mae_s001/pyr_5s/L5/step10_a.py
e6c87465892d874e7e738fd489c714ca918ab17a
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
140,087
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_5side_L5 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_I_gt_W_ch_norm_v2 use_loss_obj = [mae_s001_sobel_k15_s001_EroseM_loss_info_builder.set_loss_target("UNet_z").copy(), mae_s001_sobel_k15_s001_EroseM_loss_info_builder.set_loss_target("UNet_y").copy(), mae_s001_sobel_k15_s001_EroseM_loss_info_builder.set_loss_target("UNet_x").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ################################## ### 1side1 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_1__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side2 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_2__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_2__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side3 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_3__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_3__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_3__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side4 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_4__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_4__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_4__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_4__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 1side5 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_5__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_5__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_5__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_5__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_5__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################################## ### 5side6 ################################## # "1" 3 6 10 15 21 28 36 45 55 # 2side1 OK 1 ch032_1side_6__2side_1__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # 2side2 OK 4 ch032_1side_6__2side_2__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # 2side3 OK 10 ch032_1side_6__2side_3__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # 2side4 OK 20 ch032_1side_6__2side_4__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 "15" 21 28 36 45 55 # 2side5 OK 35 ch032_1side_6__2side_5__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") # 1 3 6 10 15 "21" 28 36 45 55 # 2side6 OK 56 ch032_1side_6__2side_6__3side_1_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_1_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_2_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_2_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900, it_save_fq=900 * 2, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1_5s1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
[ "s89334roy@yahoo.com.tw" ]
s89334roy@yahoo.com.tw
0433f6b760f294fc900f09f2cf37f4c06fc0cd3d
d4aae842e09692196df8004d0eac18cfc76b57ed
/catch for main loop.py
35c648717e44a36775b4d24f81bb600fed422656
[]
no_license
Jeffwuzh/Morse-Code-Interpreter-with-Blink-Recognition
3ae6d626873f583dbb51f1a89b4200cfacc18344
9ee049b1404efe05e9fc789887e444811607f9b1
refs/heads/main
2023-05-30T09:40:58.835335
2021-06-11T12:29:35
2021-06-11T12:29:35
376,014,612
0
0
null
null
null
null
UTF-8
Python
false
false
15,030
py
# -*- coding: utf-8 -*- """Copy of catch.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1XWI48mjxp9aONWMYfVUcqJQ_dvPGcWYm """ from google.colab import drive drive.mount('/content/drive') !pip install catch22 !pip install -U scikit-learn pip install delayed from scipy.io import wavfile import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split def streaming_classifier_Noraml(samplerate,Y): xtime = np.array(range(0, len(Y)))/int(samplerate*0.5) window_size = int(samplerate*0.5) increment = int(window_size/3) thresh = 150 predicted_labels = [] # stores predicted lower_interval = 0 # used to increment window max_time = int(max(xtime) * int(samplerate*0.5)) predicted = [] # initialing signal vector counter = 0 is_event = [] while (max_time > lower_interval + window_size): if max_time < lower_interval + window_size + increment: upper_interval = max_time else: upper_interval = lower_interval + window_size interval = Y[lower_interval:upper_interval] xinterval = xtime[lower_interval:upper_interval] # gets corresponding time zerocrossing = (np.diff(np.sign(interval)) != 0).sum() Mean_value = np.mean(interval) standarddeviation = round(np.std(interval),3) abssum = sum(map(abs, interval))/10000 #print(abssum,standarddeviation,counter,lower_interval,upper_interval) # If it is a event, recored it as True and add one to counter if abssum > thresh and upper_interval != max_time: is_event.append(True) counter = counter + 1 lower_interval = lower_interval + increment # If ends, and the counter is greater than 0 which means it has event not finished elif upper_interval == max_time and counter > 0: begin_time = lower_interval - increment * counter end_time = max_time predicted.append([begin_time,end_time,end_time-begin_time,Y[begin_time:end_time]]) #print(begin_time,end_time) lower_interval = lower_interval + increment # If it is not a event, back to its previous one and adjust whether its previous is event or not else: is_event.append(False) if len(is_event) == 1: lower_interval = lower_interval + increment elif is_event[-2] == True: begin_time = lower_interval - increment * counter end_time = lower_interval - increment + window_size predicted.append([begin_time,end_time,end_time-begin_time,Y[begin_time:end_time]]) #print(begin_time,end_time,end_time-begin_time) lower_interval = end_time else: lower_interval = lower_interval + increment counter = 0 df = pd.DataFrame(predicted,columns=['begin','end','Long','Values']) return df #return predicted,eventtime """## Noraml Blink test""" pathlist_1 = ["/content/drive/MyDrive/Data3888/blinking/blink_olli_bot_v1.wav", "/content/drive/MyDrive/Data3888/blinking/blinking_jack_top_v1.wav", "/content/drive/MyDrive/Data3888/blinking/blinking_jack_top_v2.wav", "/content/drive/MyDrive/Data3888/blinking/blinking_ollie_top_v1.wav"] Normal_blink=[] for i in pathlist_1: samplerate, Y = wavfile.read(i) result = streaming_classifier_Noraml(samplerate,Y) Normal_blink.append(result) Normal_blink = pd.concat(Normal_blink) Normal_blink['Type'] = "Normal" for i in pathlist_1: samplerate, Y = wavfile.read(i) xtime = np.array(range(0, len(Y)))/samplerate plt.figure(figsize=(20,5)) plt.plot(xtime, Y) result = streaming_classifier_Noraml(samplerate,Y) for i in range(0,len(result)): begin = int(result.iloc[i].at['begin']) end = int(result.iloc[i].at['end']) Y = result.iloc[i].at['Values'] xtime = np.array(range(begin, begin+len(Y)))/samplerate plt.plot(xtime, Y, color='red') """## Long Blink test""" pathlist_2 = ["/content/drive/MyDrive/Data3888/blinking/longblinkinh_ollie_bot_v2.wav", "/content/drive/MyDrive/Data3888/blinking/longblink_olli_top_v1.wav", "/content/drive/MyDrive/Data3888/blinking/longblink_jack_top_v1.wav"] Long_blink=[] for i in pathlist_2: samplerate, Y = wavfile.read(i) result = streaming_classifier_Noraml(samplerate,Y) Long_blink.append(result) Long_blink = pd.concat(Long_blink) Long_blink['Type'] = "Long" for i in pathlist_2: samplerate, Y = wavfile.read(i) xtime = np.array(range(0, len(Y)))/samplerate plt.figure(figsize=(20,5)) plt.plot(xtime, Y) result = streaming_classifier_Noraml(samplerate,Y) for i in range(0,len(result)): begin = int(result.iloc[i].at['begin']) end = int(result.iloc[i].at['end']) Y = result.iloc[i].at['Values'] xtime = np.array(range(begin, begin+len(Y)))/samplerate plt.plot(xtime, Y, color='red') """## Double test""" pathlist_3 = ["/content/drive/MyDrive/Data3888/double_blink/doubleblink_jack_top_v1.wav", "/content/drive/MyDrive/Data3888/double_blink/doublelink_jack_bot_v1.wav", "/content/drive/MyDrive/Data3888/double_blink/doublelink_jack_bot_v2.wav", "/content/drive/MyDrive/Data3888/double_blink/doublelink_jack_top_v2.wav"] Double_blink=[] for i in pathlist_3: samplerate, Y = wavfile.read(i) result = streaming_classifier_Noraml(samplerate,Y) Double_blink.append(result) Double_blink = pd.concat(Double_blink) Double_blink['Type'] = "Double" for i in pathlist_3: samplerate, Y = wavfile.read(i) xtime = np.array(range(0, len(Y)))/samplerate plt.figure(figsize=(20,7)) plt.plot(xtime, Y) result = streaming_classifier_Noraml(samplerate,Y) for i in range(0,len(result)): begin = int(result.iloc[i].at['begin']) end = int(result.iloc[i].at['end']) Y = result.iloc[i].at['Values'] xtime = np.array(range(begin, begin+len(Y)))/samplerate plt.plot(xtime, Y, color='red') """# Combine table and Features ## Catch22 """ EventFrame = pd.concat([Normal_blink,Long_blink,Double_blink], ignore_index=True) flawed=EventFrame.index[[0,26, 35, 45, 46, 48, 54, 72, 75, 147, 148, 149, 150, 151, 152, 153, 154, 161, 162, 165, 166, 167,168, 169, 170, 171, 172, 174, 175, 176, 177, 178, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 198, 200, 201,202, 203, 204, 206, 213, 214,221, 222, 231, 280]] EventFrame=EventFrame.drop(flawed) EventFrame """## Peak and Withs""" import matplotlib.pyplot as plt from scipy.signal import find_peaks def peaks(y): #gives the number of peaks y=np.array(y) peaks, properties = find_peaks(abs(y),height=1700, width=200) return sum(np.diff(peaks)>400)+1 def betweenlastpeaks(y): #gives diff in indexes of first and last peak y=np.array(y) peaks, properties = find_peaks(abs(y),height=1700, width=200) if len(peaks)==0: return 0 return peaks[-1]-peaks[0] col = [ 'Type', 'Len_between_peaks', 'Peaks', 'DN_HistogramMode_5', 'DN_HistogramMode_10', 'CO_f1ecac', 'CO_FirstMin_ac', 'CO_HistogramAMI_even_2_5', 'CO_trev_1_num', 'MD_hrv_classic_pnn40', 'SB_BinaryStats_mean_longstretch1', 'SB_TransitionMatrix_3ac_sumdiagcov', 'PD_PeriodicityWang_th0_01', 'CO_Embed2_Dist_tau_d_expfit_meandiff', 'IN_AutoMutualInfoStats_40_gaussian_fmmi', 'FC_LocalSimple_mean1_tauresrat', 'DN_OutlierInclude_p_001_mdrmd', 'DN_OutlierInclude_n_001_mdrmd', 'SP_Summaries_welch_rect_area_5_1', 'SB_BinaryStats_diff_longstretch0', 'SB_MotifThree_quantile_hh', 'SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1', 'SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1', 'SP_Summaries_welch_rect_centroid', 'FC_LocalSimple_mean3_stderr'] df=pd.DataFrame(columns= col) from catch22 import catch22_all for i in range(0,len(EventFrame)): current_row = EventFrame[i:i+1] current_type = current_row['Type'].to_string().split()[1] Y = sum(current_row["Values"]).tolist() t = catch22_all(Y) features = t["values"] features.insert(0,current_type) features.insert(1,peaks(Y)) features.insert(1,betweenlastpeaks(Y)) df.loc[i]=features df """# Modles Selection""" from sklearn.model_selection import train_test_split #from sklearn.datasets import make_classification from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score """##Random Forest""" #this is from a feature selection algorihtmn, ive harcoded it since it might change and only need this for the main loop to trina selected_feat=['Len_between_peaks', 'Peaks', 'CO_f1ecac', 'CO_FirstMin_ac', 'SB_TransitionMatrix_3ac_sumdiagcov', 'SP_Summaries_welch_rect_area_5_1', 'SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1', 'SP_Summaries_welch_rect_centroid'] rfselected=df[selected_feat] rfselected #note- higher than before! y= df['Type'] import delayed from sklearn.ensemble import RandomForestClassifier RDF = RandomForestClassifier(n_estimators=100) x_train,x_test,y_train,y_test = train_test_split(rfselected,y,test_size=0.2,random_state=1) model = RandomForestClassifier(n_estimators=100).fit(x_train, y_train) print("Training set score: {:.3f}".format(model.score(x_train, y_train))) print("Test set score: {:.3f}".format(model.score(x_test, y_test))) """# Fuction rewrite""" from scipy.io import wavfile import pandas as pd from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import KFold import catch22 ######### # samplerate and Y can be change to streaming file path if neend # modle can be use as any model ######### def get_features(eventin): amount=eventin.tolist() col= ['Len_between_peaks', 'Peaks', 'CO_f1ecac', 'CO_FirstMin_ac', 'SB_TransitionMatrix_3ac_sumdiagcov', 'SP_Summaries_welch_rect_area_5_1', 'SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1', 'SP_Summaries_welch_rect_centroid'] insidedf=pd.DataFrame(columns=col) row=[] row.append(betweenlastpeaks(amount)) row.append(peaks(amount)) row.append(catch22.CO_f1ecac(amount)) row.append(catch22.CO_FirstMin_ac(amount)) row.append(catch22.SB_TransitionMatrix_3ac_sumdiagcov(amount)) row.append(catch22.SP_Summaries_welch_rect_area_5_1(amount)) row.append(catch22.SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1(amount)) row.append(catch22.SP_Summaries_welch_rect_centroid(amount)) insidedf.loc[0] = row return insidedf.iloc[0:1] #1 for long blink, #0 for blink, -1 for double , -2 def eventlist(eventclassify): if eventclassify=="Normal": return 0 if eventclassify=="Double": return -1 if eventclassify=="Long": return 1 def streaming_classifier(samplerate,Y,model): ## def streaming_classifier(path,model): ## samplerate, Y = wavfile.read(path) xtime = np.array(range(0, len(Y)))/int(samplerate*0.5) window_size = int(samplerate*0.5) increment = int(window_size/3) thresh = 150 predicted_labels = [] # stores predicted lower_interval = 0 # used to increment window max_time = int(max(xtime) * int(samplerate*0.5)) predicted = [] # initialing signal vector counter = 0 is_event = [] while (max_time > lower_interval + window_size): if max_time < lower_interval + window_size + increment: upper_interval = max_time else: upper_interval = lower_interval + window_size interval = Y[lower_interval:upper_interval] xinterval = xtime[lower_interval:upper_interval] # gets corresponding time zerocrossing = (np.diff(np.sign(interval)) != 0).sum() Mean_value = np.mean(interval) standarddeviation = round(np.std(interval),3) abssum = sum(map(abs, interval))/10000 #print(abssum,standarddeviation,counter,lower_interval,upper_interval) # If it is a event, recored it as True and add one to counter if abssum > thresh and upper_interval != max_time: is_event.append(True) counter = counter + 1 lower_interval = lower_interval + increment # If ends, and the counter is greater than 0 which means it has event not finished elif upper_interval == max_time and counter > 0: begin_time = lower_interval - increment * counter end_time = max_time #ADD EVENT INTO LIST AND PRINT THE prediction current_value = Y[begin_time:end_time] # Predict by model y_pred=model.predict(get_features(current_value))[0] predicted.append([begin_time,end_time,end_time-begin_time,Y[begin_time:end_time],y_pred]) print(y_pred) predicted_labels.append(eventlist(y_pred)) ###################################### # Moss code recognition application is added here ###################################### lower_interval = lower_interval + increment # If it is not a event, back to its previous one and adjust whether its previous is event or not else: is_event.append(False) if len(is_event) == 1: lower_interval = lower_interval + increment elif is_event[-2] == True: begin_time = lower_interval - increment * counter end_time = lower_interval - increment + window_size #ADD EVENT INTO LIST AND PRINT THE prediction current_value = Y[begin_time:end_time] # Predict by model y_pred=model.predict(get_features(current_value))[0] predicted.append([begin_time,end_time,end_time-begin_time,Y[begin_time:end_time],y_pred]) print(y_pred) predicted_labels.append(eventlist(y_pred)) ######################################### # Moss code recognition application is added here ######################################### #print(begin_time,end_time,end_time-begin_time) lower_interval = end_time else: lower_interval = lower_interval + increment counter = 0 df = pd.DataFrame(predicted,columns=['begin','end','Long','Values',"type"]) return df, predicted_labels #example of how to run it: #sample rate (aka 10000), Y is the actual values from spikerbox busamplerate, Y = wavfile.read("/content/drive/MyDrive/Data3888/blinking/blinking_jack_top_v1.wav") #Train the model prior, it is just the #Output is a(dataframe - Currently still have the dataframe since useful for analysis later), b(list of 0, 1 and -1 - no 2 yet since unsrue if want it) a,b=streaming_classifier(busamplerate,Y, model) print(b)
[ "noreply@github.com" ]
Jeffwuzh.noreply@github.com
439a97a92d842d7709709585d9ab7de7ba40a8fc
015dd47b2fdf23fd6bab8281686e1fee22057a38
/apps/articles/models.py
7862afacd7d2e1ed2affe02fa4ca24620d2a0871
[]
no_license
Simonskiii/backGround
d3b8929ea0db09552dad58e220d8229fbc97636d
bf4d396a71ecd001245bad2cf3644cd42fce69e7
refs/heads/master
2023-03-17T11:20:48.913256
2019-11-19T13:11:32
2019-11-19T13:11:32
222,699,425
0
0
null
null
null
null
UTF-8
Python
false
false
3,579
py
from django.db import models from datetime import datetime from ckeditor.fields import RichTextField from django.contrib.auth import get_user_model import factory from faker import Factory User = get_user_model() fake = Factory.create() # Create your models here. class ArticleCatergory(models.Model): name = models.CharField(default="", max_length=30, verbose_name="类别名", help_text="类别名") code = models.CharField(default="", max_length=30, verbose_name="类别code", help_text="类别code") parent_category = models.ForeignKey("self", null=True, blank=True, verbose_name="父类目级别", help_text="父目录", related_name="sub_cat", on_delete=models.CASCADE) is_tab = models.BooleanField(default=False, verbose_name="是否导航", help_text="是否导航") add_time = models.DateTimeField(default=datetime.now, verbose_name="添加时间") class Meta: verbose_name = "商品类别" verbose_name_plural = verbose_name def __str__(self): return self.name class Article(models.Model): name = models.CharField(default='', max_length=50, verbose_name='题目', help_text='题目', null=True) category = models.ForeignKey(ArticleCatergory, verbose_name='文章类别', on_delete=models.CASCADE, default='') content = RichTextField('文章内容') click_num = models.IntegerField(default=0, verbose_name='点击数') fav_num = models.IntegerField(default=0, verbose_name='喜欢数') aritcle_brief = models.TextField(max_length=500, verbose_name="文章概述", default='') article_front_image = models.ImageField(upload_to="article/images/", null=True, blank=True, verbose_name="封面图") is_hot = models.BooleanField(default=False, verbose_name="是否热门") is_anonymous = models.BooleanField(default=False, verbose_name='是否匿名') # author = models.ForeignKey(User, verbose_name='作者', on_delete=models.SET_DEFAULT, default='') author = models.CharField(max_length=20, default='', verbose_name='作者', help_text='作者') class Meta: verbose_name = '文章' verbose_name_plural = verbose_name def __str__(self): return self.name class ArticleShow(models.Model): name = models.ForeignKey(Article, on_delete=models.SET_DEFAULT, verbose_name='文章名', help_text='文章名', default='') User = models.ForeignKey(User, on_delete=models.CASCADE, verbose_name='用户', help_text='用户', default='') class ArticleImage(models.Model): """ 商品轮播图 """ articles = models.ForeignKey(Article, verbose_name="文章", related_name="images", on_delete=models.CASCADE) image = models.ImageField(upload_to="", verbose_name="图片", null=True, blank=True) add_time = models.DateTimeField(default=datetime.now, verbose_name="添加时间") class Meta: verbose_name = '封面图' verbose_name_plural = verbose_name def __str__(self): return self.articles.name # import random # class ArticleCatergoryFactory(factory.DjangoModelFactory): # class Meta: # model = ArticleCatergory # name = fake.word() # li = [] # for i in name.split(" "): # li.append(i[0]) # code = "".join('1') # catergory_type = random.randint(1,3) # # # class ArticleFactory(factory.django.DjangoModelFactory): # class Meta: # model = Article # author = fake.name() # content = fake.text() # name = fake.word() # category = factory.SubFactory(ArticleCatergoryFactory)
[ "3017209256@tju.edu.cn" ]
3017209256@tju.edu.cn
f86f1440c1dfce4772c26f8bd9d40aeb6c368956
27a066c48096e30e3cf4a795edf6e8387f63728b
/mysite/django_vises/runtimes/misc.py
dbb4cc342ce1012cbf1a9397f2dea0e09cf202d4
[]
no_license
26huitailang/django-tutorial
2712317c3f7514743e90fb4135e5fe3fed5def90
28a0b04ee3b9ca7e2d6e84e522047c63b0d19c8f
refs/heads/master
2023-01-07T11:55:37.003245
2019-09-04T09:19:50
2019-09-04T09:19:50
113,199,279
1
0
null
2023-01-03T15:24:01
2017-12-05T15:27:52
Python
UTF-8
Python
false
false
2,885
py
#!/usr/bin/env python # coding=utf-8 # import glob import os import operator from django.utils.six import text_type # copy from rest_framework # Header encoding (see RFC5987) HTTP_HEADER_ENCODING = 'iso-8859-1' def get_request_client_ip_address(request): """获取 request 请求来源 ip address, 支持 nginx 使用 X-Real-IP/X-FORWARDED-FOR 传递来源 ip 地址 """ ip = request.META.get('X-Real-IP') or request.META.get('HTTP_X_FORWARDED_FOR') if ip: ip = ip.split(',')[0] else: ip = request.META.get('REMOTE_ADDR') return ip def get_authorization_header(request): """ Return request's 'Authorization:' header, as a bytestring. Hide some test client ickyness where the header can be unicode. """ auth = request.META.get('HTTP_AUTHORIZATION', b'') if isinstance(auth, text_type): # Work around django test client oddness auth = auth.encode(HTTP_HEADER_ENCODING) return auth def get_authorization_token_from_header(request): """ Return request's 'Authorization:' token """ keyword = 'Token' auth = get_authorization_header(request).split() if not auth or auth[0].lower() != keyword.lower().encode(): return None # if len(auth) == 1: # msg = _('Invalid token header. No credentials provided.') # raise exceptions.AuthenticationFailed(msg) # elif len(auth) > 2: # msg = _('Invalid token header. Token string should not contain spaces.') # raise exceptions.AuthenticationFailed(msg) # # try: # token = auth[1].decode() # except UnicodeError: # msg = _('Invalid token header. Token string should not contain invalid characters.') # raise exceptions.AuthenticationFailed(msg) if len(auth) != 2: return None try: token = auth[1].decode() except UnicodeError: return None return token def str_to_boolean(text): """将字符转为布尔值,if条件可以扩展""" if text.lower() in ['false']: return False elif text.lower() in ['true']: return True def sort_dict_list(dict_to_sort: dict = None, sort_key='', reverse=False) -> list: sorted_list = sorted(dict_to_sort, key=operator.itemgetter(sort_key), reverse=reverse) return sorted_list def get_local_suite_img_list(suite_path: str = None, format='jpg') -> list: """获取本地suite的图片列表""" if suite_path is None: return [] # 复杂的路径glob匹配不了 # img_file_list = glob.glob('{}/*.{}'.format(suite_path, format)) files_list = os.listdir(suite_path) img_file_list = list(filter(lambda x: x.endswith(format), files_list)) return img_file_list def get_local_suite_count(suite_path: str = None) -> int: """本地suite图片数量""" return len(get_local_suite_img_list(suite_path))
[ "26huitailang@gmail.com" ]
26huitailang@gmail.com
f1674b141e3d17158f2bb2d03ed0e3b467a50143
59c9c2286af3be35a3deb50c1eed0c75a2169bc2
/Server/app/api_helper.py
764fa7aed31126b49dd7e5d03fa9d77b9c9ea1cb
[ "MIT" ]
permissive
chauandvi4/Kid-friendlyThingTranslator
e0252bd6363429eed89a2042a15ed91b33a3b165
685bd5cb3d1dd3b4c39a35d5f7fc96c45ad1aa75
refs/heads/main
2023-05-31T01:02:20.926999
2021-07-05T02:40:56
2021-07-05T02:40:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,916
py
import decouple from yolov3.yolo import ImageLabeler from yolov3.image_converter import string_to_image, to_rgb from word_definition.memory_dictionary import MemoryDictionary from word_definition.database_dictionary import DatabaseDictionary from env_access import env_accessor from app.model import * from fastapi import Body from google.cloud import vision from google.auth.exceptions import DefaultCredentialsError import mysql.connector import cv2 import logging import time from enum import Enum class ApiHelper: class DbId(Enum): User = env_accessor.database_user Dictionary = env_accessor.database_dictionary def __init__(self): self._create_conns() self._create_google_cloud_client() self._create_yolov3_image_labeler() self._create_memory_dictionary() self._create_database_dictionary() def _create_conns(self): self._db_conns = {} for db_id in self.DbId: db_name = db_id.value is_success = False while not is_success: try: logging.info("Connecting to %s database...", db_name) self._db_conns[db_id] = mysql.connector.connect( host=env_accessor.host_database, user=env_accessor.username_database, password=env_accessor.password_database, database=db_name ) logging.info("Connected to %s database", db_name) is_success = True except mysql.connector.Error as err: logging.error("Failed to connect to %s database: %s", db_name, str(err)) time_to_retry = 5 logging.info("Retry connecting in %d seconds", time_to_retry) time.sleep(time_to_retry) def _create_google_cloud_client(self): logging.info("Instantiating a Google Cloud Vision Client...") try: logging.info("Instantiating a Google Cloud Vision Client by default credentials...") self._gg_cloud_vision_client = vision.ImageAnnotatorClient() except DefaultCredentialsError as err: logging.warning("Failed to instantiate a Google Cloud Vision Client by default credentials: %s", str(err)) try: logging.info("Instantiating a Google Cloud Vision Client by environment variable...") self._gg_cloud_vision_client = vision.ImageAnnotatorClient.from_service_account_json( env_accessor.google_credential ) except (decouple.UndefinedValueError, FileNotFoundError) as err: logging.warning("Failed to instantiate a Google Cloud Vision Client: %s", str(err)) self._gg_cloud_vision_client = None return logging.info("Google Cloud Vision Client instantiated") def _create_yolov3_image_labeler(self): try: logging.info("Loading YOLO from disk...") self._yolov3_image_labeler = ImageLabeler( labels_path=env_accessor.path_yolov3_names, config_path=env_accessor.path_yolov3_config, weights_path=env_accessor.path_yolov3_weights ) logging.info("Loaded YOLO") except decouple.UndefinedValueError as err: logging.warning("Failed to load YOLO") self._yolov3_image_labeler = None def _create_memory_dictionary(self): try: logging.info("Loading a Memory Dictionary...") self._memory_word_dictionary = MemoryDictionary(env_accessor.path_json_definition_common_word) logging.info("Loaded a Memory Dictionary") except MemoryError as err: logging.warning("Failed to load a Memory Dictionary: %s", str(err)) self._memory_word_dictionary = None def _create_database_dictionary(self): try: logging.info("Loading a Database Dictionary...") self._database_word_dictionary = DatabaseDictionary(self._db_conns[self.DbId.Dictionary]) logging.info("Loaded a Database Dictionary") except Exception as e: logging.error("Failed to load a Database Dictionary: %s", str(e)) def is_user_login_info_exist(self, data: UserLoginSchema) -> bool: cursor = self._db_conns[self.DbId.User].cursor() sql = "SELECT email FROM Accounts WHERE email = %s AND passphrase = %s" param = (data.email, data.password) cursor.execute(sql, param) return cursor.fetchone() is not None def get_user_name(self, email: str) -> str: cursor = self._db_conns[self.DbId.User].cursor() sql = "SELECT name FROM Accounts WHERE email = %s" param = (email,) cursor.execute(sql, param) res = cursor.fetchone() return res[0] if res is not None else "" def create_user(self, user: UserSignupSchema = Body(...)) -> bool: conn = self._db_conns[self.DbId.User] cursor = conn.cursor() sql = "INSERT INTO Accounts(email, passphrase, name) VALUES (%s, %s, %s)" param = (user.email, user.password, user.name) try: cursor.execute(sql, param) conn.commit() return True except mysql.connector.errors.IntegrityError: return False def label_image_by_gg_cloud_vision(self, image_base64: str) -> str: if self._gg_cloud_vision_client is None: return "" image = to_rgb(string_to_image(image_base64)) _, encoded_image = cv2.imencode('.jpg', image) image = vision.Image(content=encoded_image.tobytes()) # Try using GG Cloud service try: # Performs label detection on the image file response = self._gg_cloud_vision_client.label_detection(image=image) labels = response.label_annotations if response.error.message: return "" return labels[0].description if labels else "" except Exception as err: logging.warning("Failed to use Google Cloud Vision: %s", str(err)) def label_image_by_yolov3(self, image_base64: str) -> str: if self._yolov3_image_labeler is None: return "" image = to_rgb(string_to_image(image_base64)) # Performs label detection on the image file return self._yolov3_image_labeler.label_image(image) def define_word_by_memory_dictionary(self, word: str) -> str: return self._memory_word_dictionary.define(word) def define_word_by_database_dictionary(self, word: str) -> str: return self._database_word_dictionary.define(word) def __del__(self): for conn in self._db_conns.values(): conn.close()
[ "phu.nguyenpfoem@hcmut.edu.vn" ]
phu.nguyenpfoem@hcmut.edu.vn