blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
5d85ec597bf50561c780343e1b57a17fe70cdec9
581c2beee0cf5656971987a19064524e3de7bc68
/distributions/lomax.py
6afe6b8af24109d2284426642b481f36d5ef196f
[ "MIT" ]
permissive
bballamudi/survival
ac6925b30ba3ca9ed574ba056d36830f9129114f
c86186b08e7896096b9d59a5013335f56283a7c4
refs/heads/master
2020-03-21T14:16:29.578172
2018-06-09T21:09:08
2018-06-09T21:09:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,123
py
import numpy as np from scipy.stats import lomax from distributions.basemodel import * class Lomax(Base): ''' We can instantiate a Lomax distribution (https://en.wikipedia.org/wiki/Lomax_distribution) with this class. ''' def __init__(self, k = None, lmb = None, ti = None, xi = None): ''' Instantiate a Lomax distribution. args: k: The shape parameter of the Lomax distribution. lmb: The scale parameter of the lomax distribution. ti: The uncensored samples for fitting the distribution. xi: The censored samples for fitting the distribution. ''' if ti is not None: self.train_org = ti self.train_inorg = xi self.newtonRh() else: self.train = [] self.test = [] self.train_org = [] self.train_inorg = [] self.k = k self.lmb = lmb self.params = [self.k, self.lmb] def determine_params(self, k, lmb, params): ''' Determines the parameters. Defined in basemodel.py ''' return super(Lomax, self).determine_params(k, lmb, params) def pdf(self,t,k=None,lmb=None,params=None): ''' The probability distribution function (PDF) of the Lomax distribution. args: t: The value at which the PDF is to be calculated. k: The shape parameter of the Lomax distribution. lmb: The scale parameter of the lomax distribution. ''' [k,lmb] = self.determine_params(k,lmb,params) return lmb*k/(1+lmb*t)**(k+1) def cdf(self,t,k=None,lmb=None,params=None): ''' The cumulative density functino of the Lomax distribution. Probability that the distribution is lower than a certain value. args: t: The value at which CDF is to be calculated. k: The shape parameter of the Lomax. lmb: The sclae parameter of the Lomax. params: A 2d array with the shape and scale parameters. ''' [k,lmb] = self.determine_params(k,lmb,params) return 1-(1+lmb*t)**-k def survival(self,t,k=None,lmb=None, params = None): ''' The survival function for the Lomax distribution. ''' [k,lmb] = self.determine_params(k,lmb,params) return (1+lmb*t)**-k def logpdf(self,t,k,lmb): ''' The logarithm of the PDF function. Handy for calculating log likelihood. args: t: The value at which function is to be calculated. l: The shape parameter. lmb: The scale parameter. ''' return np.log(k) + np.log(lmb) - (k+1)*np.log(1+lmb*t) def logsurvival(self,t,k,lmb): ''' The logarithm of the survival function. Handy for calculating log likelihood. args: t: The value at which function is to be calculated. l: The shape parameter. lmb: The scale parameter. ''' return -k*np.log(1+lmb*t) def loglik(self,t,x,k=0.5,lmb=0.3): ''' The logarithm of the likelihood function. args: t: The un-censored samples. x: The censored samples. l: The shape parameter. lmb: The scale parameter. ''' return sum(self.logpdf(t,k,lmb)) +sum(self.logsurvival(x,k,lmb)) def grad(self,t,x,k=0.5,lmb=0.3): ''' The gradient of the log-likelihood function. args: t: The un-censored samples. x: The censored samples. l: The shape parameter. lmb: The scale parameter. ''' n = len(t) m = len(x) delk = n/k - sum(np.log(1+lmb*t)) - sum(np.log(1+lmb*x)) dellmb = n/lmb -(k+1) * sum(t/(1+lmb*t)) -k*sum(x/(1+lmb*x)) return np.array([delk,dellmb]) def numerical_grad(self,t,x,k=None,lmb=None): ''' Calculates the gradient of the log-likelihood function numerically. args: t: The survival data. x: The censored data. k: The shape parameter. lmb: The scale parameter. ''' if k is None or lmb is None: k = self.k lmb = self.lmb eps = 1e-5 delk = (self.loglik(t,x,k+eps,lmb) - self.loglik(t,x,k-eps,lmb))/2/eps dellmb = (self.loglik(t,x,k,lmb+eps) - self.loglik(t,x,k,lmb-eps))/2/eps return np.array([delk, dellmb]) def hessian(self,t,x,k=0.5,lmb=0.3): ''' The hessian of the Loglikelihood function for Lomax. args: t: The un-censored samples. x: The censored samples. l: The shape parameter. lmb: The scale parameter. ''' n=len(t) delksq = -n/k**2 dellmbsq = -n/lmb**2 + (k+1)*sum((t/(1+lmb*t))**2) + k*sum((x/(1+lmb*x))**2) delklmb = -sum(t/(1+lmb*t)) - sum(x/(1+lmb*x)) hess = np.zeros([2,2]) hess[0,0] = delksq hess[1,1] = dellmbsq hess[0,1] = hess[1,0] = delklmb return hess def numerical_hessian(self,t,x,k=0.5,lmb=0.3): ''' Calculates the hessian of the log-likelihood function numerically. args: t: The survival data. x: The censored data. k: The shape parameter. lmb: The scale parameter. ''' eps = 1e-4 delksq = (self.loglik(t,x,k+2*eps,lmb) + self.loglik(t,x,k-2*eps,lmb) - 2*self.loglik(t,x,k,lmb))/4/eps/eps dellmbsq = (self.loglik(t,x,k,lmb+2*eps) + self.loglik(t,x,k,lmb-2*eps) - 2*self.loglik(t,x,k,lmb))/4/eps/eps dellmbk = (self.loglik(t,x,k+eps,lmb+eps) + self.loglik(t,x,k-eps,lmb-eps) - self.loglik(t,x,k+eps,lmb-eps) - self.loglik(t,x,k-eps,lmb+eps))/4/eps/eps hess = np.zeros([2,2]) hess[0,0] = delksq hess[1,1] = dellmbsq hess[0,1] = hess[1,0] = dellmbk return hess def gradient_descent(self, numIter=2001, params = np.array([.5,.3]), verbose=False): ''' Performs gradient descent to get the best fitting parameters for this Lomax given the censored and un-censored data. args: numIter: The maximum number of iterations for the iterative method. params: The initial guess for the shape and scale parameters respectively. verbose: Set to true for debugging. Shows progress as it fits data. ''' for i in range(numIter): lik = self.loglik(self.train_org,self.train_inorg,params[0],params[1]) directn = self.grad(self.train_org,self.train_inorg,params[0],params[1]) params2 = params for alp1 in [1e-8,1e-7,1e-5,1e-3,1e-2,.1]: params1 = params + alp1 * directn if(min(params1) > 0): lik1 = self.loglik(self.train_org,self.train_inorg,params1[0],params1[1]) if(lik1 > lik and np.isfinite(lik1)): lik = lik1 params2 = params1 params = params2 if i%100 == 0 and verbose: print("Iteration " + str(i) + " ,objective function: " + str(lik) + " \nparams = " + str(params) + " \nGradient = " + str(directn)) print("\n########\n") return params ''' def newtonRh(self, numIter=101, params = np.array([.1,.1]), verbose=False): """ Fits the parameters of a Lomax distribution to data (censored and uncensored). Uses the Newton Raphson method for explanation, see: https://www.youtube.com/watch?v=acsSIyDugP0 args: numIter: The maximum number of iterations for the iterative method. params: The initial guess for the shape and scale parameters respectively. verbose: Set to true for debugging. Shows progress as it fits data. """ for i in range(numIter): directn = self.grad(self.train_org,self.train_inorg,params[0],params[1]) if sum(abs(directn)) < 1e-5: if verbose: print("\nIt took: " + str(i) + " Iterations.\n Gradients - " + str(directn)) self.params = params [self.k, self.lmb] = params return params lik = self.loglik(self.train_org,self.train_inorg,params[0],params[1]) step = np.linalg.solve(self.hessian(self.train_org,self.train_inorg,params[0],params[1]),directn) params = params - step if min(params) < 0: print("Drastic measures") params = params + step # undo the effect of taking the step. params2 = params for alp1 in [1e-8,1e-7,1e-5,1e-3,1e-2,.1,.5,1.0]: params1 = params - alp1 * step if(max(params1) > 0): lik1 = self.loglik(self.train_org,self.train_inorg,params1[0],params1[1]) if(lik1 > lik and np.isfinite(lik1)): lik = lik1 params2 = params1 scale = alp1 params = params2 if i % 10 == 0 and verbose: print("Iteration " + str(i) + " ,objective function: " + str(lik) + " \nparams = " + str(params) + " \nGradient = " + str(directn) + "\n##\n\n") [self.k, self.lmb] = params self.params = params return params ''' def optimal_wait_threshold(self, intervention_cost, k=None, lmb=None): ''' Gets the optimal time one should wait for a Lomax recovery before intervention. args: intervention_cost: The cost of intervening. k: The shape parameter of this Lomax distribution. lmb: The scale parameter of this Lomax distribution. ''' if k is None or lmb is None: k = self.k lmb = self.lmb return (intervention_cost*k - 1/lmb) def expectedDT(self,tau,k,lmb,intervention_cost): ''' The expected downtime incurred when the waiting threshold is set to an arbitrary value. args: tau: The value we should set for the intervention threshold. k: The shape parameter of the current Lomax. lmb: The scale parameter of the current Lomax. intervention_cost: The cost of intervening. ''' return 1/lmb/(k-1) - (1/lmb/(k-1) + tau*k/(k-1))*1/(1+lmb*tau)**k + (tau + intervention_cost)*1/(1+lmb*tau)**k @staticmethod def expectedDT_s(tau,k,lmb,intervention_cost): ''' The expected downtime incurred when the waiting threshold is set to an arbitrary value (static version). args: tau: The value we should set for the intervention threshold. k: The shape parameter of the current Lomax. lmb: The scale parameter of the current Lomax. intervention_cost: The cost of intervening. ''' return 1/lmb/(k-1) - (1/lmb/(k-1) + tau*k/(k-1))*1/(1+lmb*tau)**k + (tau + intervention_cost)*1/(1+lmb*tau)**k def expectedT(self,tau,k=None,lmb=None,params=None): ''' The expected value of the Lomax conditional on it being less than tau. args: tau: Censor the Lomax here. k: The shape parameter of the current Lomax. lmb: The scale parameter of the current Lomax. params: A 2-d array with shape and scale parameters. ''' [k,lmb] = self.determine_params(k,lmb,params) return (1/lmb/(k-1) - (1/lmb/(k-1) + tau*k/(k-1))*1/(1+lmb*tau)**k)/(1-1/(1+lmb*tau)**k) def samples(self, k=None, lmb=None, size=1000, params=None): ''' Generates samples for the Lomax distribution. args: k: Shape of Lomax. lmb: Scale of Lomax. size: The number of simulations to be generated. params: A 2-d array with shape and scale parameters. ''' [k, lmb] = self.determine_params(k, lmb, params) return lomax.rvs(c=k, scale=(1 / lmb), size=size) @staticmethod def samples_s(k, lmb, size = 1000): return lomax.rvs(c=k, scale=(1 / lmb), size=size) def kappafn_k(self,t,x,lmb=0.1): n = len(t) return n/(sum(np.log(1+lmb*t)) + sum(np.log(1+lmb*x))) def kappafn_lmb(self,t,x,lmb=0.1): n = len(t) return (n/lmb - sum(t/(1+lmb*t)))/(sum(t/(1+lmb*t)) + sum(x/(1+lmb*x))) def bisection_fn(self,lmb=0.1): return self.kappafn_k(self.train_org,self.train_inorg,lmb) - self.kappafn_lmb(self.train_org,self.train_inorg,lmb) def bisection(self,a=1e-6,b=2000): n=1 while n < 10000: c=(a+b)/2 if self.bisection_fn(c) == 0 or (b-a)/2 < 1e-6: return c n=n+1 if (self.bisection_fn(c) > 0) == (self.bisection_fn(a) > 0): a=c else: b=c
[ "rohitpandey576@gmail.com" ]
rohitpandey576@gmail.com
cf44ce6aefffd95765ff8071f01abc34af978a80
41a0220bf117124bf281a50396582c0df1e0675f
/Pyrado/tests/environment_wrappers/test_action_delay.py
c04f64bbf23a9b2a2f2bfdc9db1d3b524b130d61
[ "BSD-3-Clause" ]
permissive
jacarvalho/SimuRLacra
c071dfc22d4f2c54a198405e8974d03333c9961d
a6c982862e2ab39a9f65d1c09aa59d9a8b7ac6c5
refs/heads/master
2022-11-24T20:08:52.376545
2020-08-03T09:01:35
2020-08-03T09:01:35
276,885,755
0
0
BSD-3-Clause
2020-07-03T11:39:21
2020-07-03T11:39:21
null
UTF-8
Python
false
false
2,392
py
import numpy as np import pytest from pyrado.spaces.box import BoxSpace from pyrado.environment_wrappers.action_delay import ActDelayWrapper from tests.environment_wrappers.mock_env import MockEnv @pytest.mark.wrappers def test_no_delay(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=0) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([4, 1])) assert mockenv.last_act == [4, 1] wenv.step(np.array([7, 5])) assert mockenv.last_act == [7, 5] @pytest.mark.wrappers def test_act_delay(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=2) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 1])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 4])) assert mockenv.last_act == [0, 0] wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 1] wenv.step(np.array([2, 3])) assert mockenv.last_act == [2, 4] @pytest.mark.wrappers def test_reset(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=1) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 4])) assert mockenv.last_act == [0, 0] wenv.step(np.array([4, 4])) assert mockenv.last_act == [0, 4] # The next action would be [4, 4], but now we reset again wenv.reset() wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 3])) assert mockenv.last_act == [1, 2] @pytest.mark.wrappers def test_domain_param(): mockenv = MockEnv(act_space=BoxSpace(-1, 1, shape=(2,))) wenv = ActDelayWrapper(mockenv, delay=1) # Reset to initialize buffer wenv.reset() # Perform some actions wenv.step(np.array([0, 1])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 4])) assert mockenv.last_act == [0, 1] # change the delay and reset wenv.domain_param = {'act_delay': 2} wenv.reset() wenv.step(np.array([1, 2])) assert mockenv.last_act == [0, 0] wenv.step(np.array([2, 3])) assert mockenv.last_act == [0, 0] wenv.step(np.array([8, 9])) assert mockenv.last_act == [1, 2]
[ "fabio.muratore@famura.net" ]
fabio.muratore@famura.net
81e69967751cb96ce288091f2fc4ea2ff7d9ae79
837d7fad3a4317fbc45345652cb0b0cee8aa310d
/Autonomous/pwmtester.py
f62fbebb490b9489e870a606e11f66962d5ae6ec
[]
no_license
IliasChekkori/BAUROV-Autonomous
0f0e17ece2a22e4929334fc2d08c177476c004f9
6bfe1e41c7328aad6ab9dffadfdbe193829e8213
refs/heads/master
2022-12-09T00:57:01.610265
2020-08-31T21:55:23
2020-08-31T21:55:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,149
py
# Import mavutil from pymavlink import mavutil # connection olusturma master = mavutil.mavlink_connection( '/dev/ttyACM0', baud=115200)# Raspberry pi ile pixhawk'ın iletişim kurabilmesi için # RC pwm değerlerini olusturuyoruz def set_rc_channel_pwm(id, pwm=1500): t, optional): Channel pwm value 1100-1900 """ if id < 1: print("Channel does not exist.") return #http://mavlink.org/messages/common#RC_CHANNELS_OVERRIDE if id < 9: rc_channel_values = [65535 for _ in range(8)] rc_channel_values[id - 1] = pwm master.mav.rc_channels_override_send( master.target_component, # target_component *rc_channel_values) # Rc channel listesi deger= int(input("Deger Giriniz: ")) #pwm değeri #1100 Maximum ileri geri #1900 Maximum hızda ileri #1500 = 0 pin= int(input("Channel giriniz: ")) #komutlari integer olarak giriniz, komutları buradan ogrenebilirsiniz https://www.ardusub.com/operators-manual/rc-input-and-output.html count = 0 while (count < 10000): set_rc_channel_pwm(pin, deger) count = count + 1
[ "noreply@github.com" ]
IliasChekkori.noreply@github.com
806045494341c3fa1fb96aa5bd0843029bd4e3fc
14dcb10e4b0e85b7c95c2f186fe2d4093c853ea0
/pygmt/tests/test_grd2cpt.py
a1afa97312a022480419107814f227db552fb897
[ "BSD-3-Clause" ]
permissive
xumi1993/pygmt
1f3f9a065544693bfbbdb688019f2988d12cdce2
a555ba705857aeb5e09046308b25574721fccf5f
refs/heads/master
2023-03-04T01:56:20.742803
2022-09-09T14:40:37
2022-09-09T14:40:37
213,913,126
1
0
BSD-3-Clause
2023-02-21T15:57:33
2019-10-09T12:30:33
Python
UTF-8
Python
false
false
1,902
py
""" Tests for grd2cpt. """ import os import pytest from pygmt import Figure, grd2cpt from pygmt.exceptions import GMTInvalidInput from pygmt.helpers import GMTTempFile from pygmt.helpers.testing import load_static_earth_relief @pytest.fixture(scope="module", name="grid") def fixture_grid(): """ Load the grid data from the sample earth_relief file. """ return load_static_earth_relief() @pytest.mark.mpl_image_compare def test_grd2cpt(grid): """ Test creating a CPT with grd2cpt to create a CPT based off a grid input and plot it with a color bar. """ fig = Figure() fig.basemap(frame="a", projection="W0/15c", region="d") grd2cpt(grid=grid) fig.colorbar(frame="a") return fig def test_grd2cpt_blank_output(grid): """ Use incorrect setting by passing in blank file name to output parameter. """ with pytest.raises(GMTInvalidInput): grd2cpt(grid=grid, output="") def test_grd2cpt_invalid_output(grid): """ Use incorrect setting by passing in invalid type to output parameter. """ with pytest.raises(GMTInvalidInput): grd2cpt(grid=grid, output=["some.cpt"]) def test_grd2cpt_output_to_cpt_file(grid): """ Save the generated static color palette table to a .cpt file. """ with GMTTempFile(suffix=".cpt") as cptfile: grd2cpt(grid=grid, output=cptfile.name) assert os.path.getsize(cptfile.name) > 0 def test_grd2cpt_unrecognized_data_type(): """ Test that an error will be raised if an invalid data type is passed to grid. """ with pytest.raises(GMTInvalidInput): grd2cpt(grid=0) def test_grd2cpt_categorical_and_cyclic(grid): """ Use incorrect setting by setting both categorical and cyclic to True. """ with pytest.raises(GMTInvalidInput): grd2cpt(grid=grid, cmap="batlow", categorical=True, cyclic=True)
[ "noreply@github.com" ]
xumi1993.noreply@github.com
952fd72ad5a8100025aa2e461084375532616b8e
677562bf6835be104204f32a6c9998d9a901f9fc
/from_scratch/detect_metadata/times.py
fefebd85201b58cd0821fa91c8c528a5f775d688
[]
no_license
santokalayil/neural_network
3cb2f843430e9f35e017edcde83ba13212d0f5cf
f453856214d027f55afc5c861784dc693a9bf2c6
refs/heads/main
2023-06-12T01:53:43.588403
2021-07-02T08:30:20
2021-07-02T08:30:20
382,281,787
0
0
null
null
null
null
UTF-8
Python
false
false
343
py
# import platform # to detect the operating system import os import time def get_last_modified_time(path_to_file): return os.path.getmtime(path_to_file) # time.ctime(os.path.getmtime(path_to_file)) def get_created_time(path_to_file): return os.path.getctime(path_to_file) # time.ctime(os.path.getctime(path_to_file))
[ "49450970+santokalayil@users.noreply.github.com" ]
49450970+santokalayil@users.noreply.github.com
3b937e27177d4b2213f47baa81c00973e7037be0
bc4910ecec94749697dbce5e7cf5093275411125
/src/generator/Cheetah/ErrorCatchers.py
500f2490d613628fe69f683fafa883f5d586e55d
[ "MIT" ]
permissive
se210/tracy
7e73a6f0d64f355842b9a11035c3720b4d40fde5
232a42ce1aefcffa1f8544c89d60a16ebd897033
refs/heads/master
2021-01-09T20:55:03.241111
2013-12-15T23:34:36
2013-12-15T23:34:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,838
py
#!/usr/bin/env python # $Id: ErrorCatchers.py,v 1.1 2006-09-06 09:50:08 skyostil Exp $ """ErrorCatcher class for Cheetah Templates Meta-Data ================================================================================ Author: Tavis Rudd <tavis@damnsimple.com> Version: $Revision: 1.1 $ Start Date: 2001/08/01 Last Revision Date: $Date: 2006-09-06 09:50:08 $ """ __author__ = "Tavis Rudd <tavis@damnsimple.com>" __revision__ = "$Revision: 1.1 $"[11:-2] import time from Cheetah.NameMapper import NotFound class Error(Exception): pass class ErrorCatcher: _exceptionsToCatch = (NotFound,) def __init__(self, templateObj): pass def exceptions(self): return self._exceptionsToCatch def warn(self, exc_val, code, rawCode, lineCol): return rawCode ## make an alias Echo = ErrorCatcher class BigEcho(ErrorCatcher): def warn(self, exc_val, code, rawCode, lineCol): return "="*15 + "&lt;" + rawCode + " could not be found&gt;" + "="*15 class KeyError(ErrorCatcher): def warn(self, exc_val, code, rawCode, lineCol): raise KeyError("no '%s' in this Template Object's Search List" % rawCode) class ListErrors(ErrorCatcher): """Accumulate a list of errors.""" _timeFormat = "%c" def __init__(self, templateObj): ErrorCatcher.__init__(self, templateObj) self._errors = [] def warn(self, exc_val, code, rawCode, lineCol): dict = locals().copy() del dict['self'] dict['time'] = time.strftime(self._timeFormat, time.localtime(time.time())) self._errors.append(dict) return rawCode def listErrors(self): """Return the list of errors.""" return self._errors
[ "sami.kyostila@unrealvoodoo.org" ]
sami.kyostila@unrealvoodoo.org
60ef6466e701d4230442b132a6b9adf2bb35bdfe
5247bbde8c929821480a8a2ceebc5039b3098ae0
/jobs/views.py
6f6ffe95680745faf8f06a3d359ad99ccae16ca4
[]
no_license
prinzana/Potfolios-django-project
dbb067b8208ba08603836c4d3420cdc1a0ed8548
5e532d1efbab5a92391537ce4f74adda022b6be2
refs/heads/master
2023-06-08T04:13:28.467640
2021-07-03T13:18:39
2021-07-03T13:18:39
382,620,932
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
from django.shortcuts import render from .models import Job def home(request): jobs = Job.objects return render(request, 'jobs/home.html', { 'jobs': jobs}) # Create your views here.
[ "prinzana@gmail.com" ]
prinzana@gmail.com
6673858896690ec1a546222c0f8b383b73cf8ac8
847273de4b1d814fab8b19dc651c651c2d342ede
/.history/Sudoku_II_007_20180621235112.py
41f8ce78220a122f130868148e83683e6dcb7b73
[]
no_license
Los4U/sudoku_in_python
0ba55850afcffeac4170321651620f3c89448b45
7d470604962a43da3fc3e5edce6f718076197d32
refs/heads/master
2020-03-22T08:10:13.939424
2018-07-04T17:21:13
2018-07-04T17:21:13
139,749,483
0
1
null
null
null
null
UTF-8
Python
false
false
5,084
py
from random import randint import copy sudoku1 = [ [5, 9, 8, 6, 1, 2, 3, 4, 7], [2, 1, 7, 9, 3, 4, 8, 6, 5], [6, 4, 3, 5, 8, 7, 1, 2, 9], [1, 6, 5, 4, 9, 8, 2, 7, 3], [3, 2, 9, 7, 6, 5, 4, 1, 8], [7, 8, 4, 3, 2, 1, 5, 9, 6], [8, 3, 1, 2, 7, 6, 9, 5, 4], [4, 7, 2, 8, 5, 9, 6, 3, 1], [9, 5, 6, 1, 4, 3, 7, " ", " "] ] sudoku2 = [ [9, 8, 7, 4, 3, 2, 5, 6, 1], [2, 4, 3, 5, 1, 6, 8, 7, 9], [5, 6, 1, 7, 9, 8, 4, 3, 2], [3, 9, 5, 6, 4, 7, 2, 1, 8], [8, 2, 4, 3, 5, 1, 6, 9, 7], [1, 7, 6, 2, 8, 9, 3, 4, 5], [7, 1, 2, 8, 6, 3, 9, 5, 4], [4, 3, 8, 9, 7, 5, 1, 2, 6], [' ', 5, ' ', ' ', 2, ' ', 7, ' ', ' '] ] sudoku3 = [ [9, 8, 7, 4, 3, 2, 5, 6, 1], [2, 4, 3, 5, 1, 6, 8, 7, 9], [5, 6, 1, 7, 9, 8, 4, 3, 2], [3, 9, 5, 6, 4, 7, 2, 1, 8], [8, 2, 4, 3, 5, 1, 6, 9, 7], [1, 7, 6, 2, 8, 9, 3, 4, 5], [7, 1, 2, 8, 6, 3, 9, 5, 4], [4, 3, 8, 9, 7, 5, 1, 2, 6], [' ', 5, ' ', ' ', 2, ' ', 7, ' ', ' '] ] def printSudoku(): i = 0 while i < 10: if i == 0: print(" 1 2 3 4 5 6 7 8 9") print(" -------------------------") elif i == 3 or i == 6 or i == 9: print(" -------------------------") line = "|" if i < 9: print(' {2} {1} {0[0]} {0[1]} {0[2]} {1} {0[3]} {0[4]} {0[5]} {1} {0[6]} {0[7]} {0[8]} {1}'.format(sudoku[i], line, i+1)) i = i + 1 print(" ") print(" %@@@@@@@ @@@ @@@ (@@@@@@@@@ ,@@@@2@@@@@ @@@, /@@@/ @@@, @@@ ") print(" @@@* @@@ @@@ (@@( /@@@# .@@@% (@@@ @@@, @@@% @@@, @@@. ") print(" @@@& @@@ @@@ (@@( @@@* @@@% #@@% @@@,.@@@. @@@, @@@. ") print(" ,@@@@@@* @@@ @@@ (@@( (@@% .@@@* ,@@@ @@@%@@% @@@, @@@. ") print(" /@@@@@# @@@ @@@ (@@( (@@% .@@@* ,@@@ @@@,@@@( @@@, @@@. ") print(" *@@@. @@@ .@@& (@@( @@@. @@@% &@@( @@@, &@@@. @@@* .@@@. ") print(" &, &@@@ #@@@. ,@@@, (@@( ,&@@@* ,@@@& .@@@@ @@@, (@@@/ #@@@* @@@# ") print(",@@@@@@@@( (@@@@@@@@% (@@@@@@@@@( #@@@@@@@@@, @@@, ,@@@% ,@@@@@@@@@. \n ") print("To start game input:") print(" r - to load random puzzle:") print(" 1 - to load chart nr 1:") print(" 2 - to load chart nr 2:") # print(" 3 - to load chart nr 3:") choice = input("Input here: ") print("\n\n\n\n") s = 0 if choice == "R" or choice == "r": listaSudoku = [sudoku1, sudoku2, sudoku3] sudoku_number = randint(0, 2) print("Plansza nr:", sudoku_number) s = sudoku_number sudoku = copy.deepcopy(listaSudoku[sudoku_number]) elif int(choice) == 1: s = 1 sudoku = copy.deepcopy(sudoku1) elif int(choice) == 2: s = 2 sudoku = copy.deepcopy(sudoku2) elif int(choice) == 3: s = 3 sudoku = copy.deepcopy(sudoku3) while True: # prints Sudoku until is solved # print("Your sudoku to solve:") printSudoku() print("\nInput 3 numbers in format a b c, np. 4 5 8") print(" a - row number") print(" b - column number ") print(" c - value") # vprint(" r - reset chart to start\n ") x = input("Input a b c: ") print("") numbers = " 0123456789" # conditions of entering the numbers ! if (len(x) != 5) or (str(x[0]) not in numbers) or (str(x[2]) not in numbers) or ( str(x[4]) not in numbers) or (str(x[1]) != " ") or (str(x[3]) != " "): if x == "r": # reset if s == 1: sudoku = copy.deepcopy(sudoku1) elif s == 2: sudoku = copy.deepcopy(sudoku2) elif s == 3: sudoku = copy.deepcopy(sudoku3) elif x == "h": # show: print(sudoku) print(sudoku1) else: print("Error - wrong number format \n ") continue else: sudoku[int(x[0])-1][int(x[2])-1] = int(x[4]) column1 = 0 column2 = 0 try: # check if sudoku is solved i = 0 list = [] while i < 9: # check are all column == 45 column = 0 for item in sudoku: column = column + item[i] list.append(column) i += 1 is45 = 0 # check if sudoku is solved for listElement in list: if listElement == 45: is45 = is45 + 1 # i = 0 for item in sudoku: if sum(item) == 45 and is45 == 9: i = i + 1 if i == 9: printSudoku() print(" @@@@@@@@@@@@@@@@@@@@@@@@@@@@@") print(" @@@@@@@@@@ YOU WIN @@@@@@@@@@") print(" @@@@@@@@@@@@@@@@@@@@@@@@@@@@@") break except TypeError: print()
[ "inz.kamil.wos@gmail.com" ]
inz.kamil.wos@gmail.com
66ec71bb988eb0d3f33c75d5c26df53404e2780b
6d77cf9932bf600ab89deae26b849221fdf88704
/Safe Marks/Interface/TeacherCommandLineInterface.py
0060d6cad337413098e7b4a29ad70bae1d24b7e9
[ "MIT" ]
permissive
mriduldhall/Safe-Marks
4cecc89bcc16c83b64602cc686ad3371e0f14580
3ea657c842fe30f084e0d70633d4319073bc82f0
refs/heads/main
2023-07-05T05:06:38.270423
2021-08-16T22:53:43
2021-08-16T22:53:43
307,712,616
0
0
null
null
null
null
UTF-8
Python
false
false
6,720
py
from HelperLibrary.Validator import Validator from HelperLibrary.Student import Student from HelperLibrary.StorageFunctions import StorageFunctions from Interface.SettingsCommandLineInterface import CLI as SettingsCLI from Interface.AccountCommandLineInterface import CLI as AccountCLI from datetime import datetime class LogoutMenuItem: def __init__(self): self.is_exit_initiated = False def execute(self): print("Logging out...") self.is_exit_initiated = True def exit_initiated(self): return self.is_exit_initiated class SettingsMenuItem: def __init__(self, singleton): self.singleton = singleton self.is_exit_initiated = False def execute(self): user_deleted = SettingsCLI(self.singleton).initiate() if user_deleted: self.is_exit_initiated = True def exit_initiated(self): return self.is_exit_initiated class YearEndMenuItem: def __init__(self): pass def execute(self): if Validator("year end").should_continue(): student_list = self.get_student_list() self.increase_year(student_list) @staticmethod def get_student_list(): student_list = StorageFunctions("students").list("name") return student_list @staticmethod def increase_year(student_list): for student_name in student_list: student = Student(student_name, None, None, None, None) student.recreate_student() if not student.leave_date: if student.year_group != 13: student.year_group += 1 student.student_controller.save_student_data(save_mark_sheet_data=False) student.student_controller.create_mark_sheets() else: student.year_group = None student.leave_date = datetime.now() student.student_controller.save_student_data(save_mark_sheet_data=False) @staticmethod def exit_initiated(): return False class ManageMenuItem: def __init__(self, admin): self.admin = admin def execute(self): if Validator("manage").should_continue(): work_on_new_student = True while work_on_new_student: message = Student(None, None, None, None, None).manage(self.admin) print(message) work_on_new_student = bool(int(input("Enter 1 to enter another name and work on another student or 0 to leave."))) @staticmethod def exit_initiated(): return False class ManageAccountsMenuItem: def __init__(self, singleton): self.singleton = singleton def execute(self): AccountCLI(self.singleton).initiate() @staticmethod def exit_initiated(): return False class CreateMenuItem: def __init__(self, singleton): self.singleton = singleton def execute(self): if Validator("create").should_continue(): continuation = True while continuation is True: menu_options = { "1": self.new_student, "2": self.old_student, } menu_choice = input("Enter 1 to create a new student or 2 to add an old student back(unarchive):") if menu_choice in menu_options.keys(): message = menu_options[menu_choice]() else: message = "Invalid choice" print(message) continuation = bool(int(input("Enter 1 to create another student and 0 to head back to main menu."))) def new_student(self): student = self.getstudentdetails() return student.create_new_student() @staticmethod def old_student(): return Student(None, None, None, None, None).create_old_student() @staticmethod def getstudentdetails(): valid = False while not valid: name = input("Enter student's name:").capitalize() birth_year = int(input("Enter student's year of birth:")) birth_month = int(input("Enter student's month of birth:")) birth_date = int(input("Enter student's date of birth:")) date_of_birth = datetime(birth_year, birth_month, birth_date) address = input("Enter student's address:") father_name = input("Enter student's father's name:") mother_name = input("Enter student's mother's name:") student = Student(name, date_of_birth, address, father_name, mother_name) valid, message = student.student_controller.validate_student_details() if message: print(message) return student @staticmethod def exit_initiated(): return False class CLI: def __init__(self, singleton): self.main_menu_dictionary = { "m": ManageMenuItem(singleton.admin), "s": SettingsMenuItem(singleton), "l": LogoutMenuItem() } self.admin_main_menu_dictionary = { "c": CreateMenuItem(singleton), "m": ManageMenuItem(singleton.admin), "a": ManageAccountsMenuItem(singleton), "y": YearEndMenuItem(), "s": SettingsMenuItem(singleton), "l": LogoutMenuItem() } self.disabled_main_menu_dictionary = { "s": SettingsMenuItem(singleton), "l": LogoutMenuItem(), } self.admin = singleton.admin self.enabled = singleton.enabled def initiate(self): exit_initiated = False while not exit_initiated: if not self.enabled: print("Your account has been marked disabled. Please contact an administrator to get this changed.") choice = input("Enter s for settings and l to logout:").lower() menu_item = self.disabled_main_menu_dictionary.get(choice) elif not self.admin: choice = input("Enter m to manage students and their mark sheets, s for settings and l to logout:").lower() menu_item = self.main_menu_dictionary.get(choice) else: choice = input("Enter c to create new students, m to manage students and their mark sheets, a to manage accounts, y to change academic year, s for settings and l to logout:").lower() menu_item = self.admin_main_menu_dictionary.get(choice) if menu_item is None: print("Please enter valid choice") continue menu_item.execute() exit_initiated = menu_item.exit_initiated()
[ "mriduldhall1@gmail.com" ]
mriduldhall1@gmail.com
5207bdfd9ec7ed6f7459b591d7345960cb085457
6a5ce7d885db1baa5a9d43b26f0ae623a5ef0f01
/azure-mgmt-web/azure/mgmt/web/models/domain_registration_input.py
864529f0239c7032c4baa763d7558207f03f1109
[ "Apache-2.0" ]
permissive
JammyBrand82/azure-sdk-for-python
333af194ff9143ec77f49203a5a71f15c399f278
c65e189cd41bd3464556b17bfcdee1303867996c
refs/heads/master
2021-01-17T18:31:10.661151
2016-03-17T21:03:08
2016-03-17T21:03:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,993
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .resource import Resource class DomainRegistrationInput(Resource): """ Domain registration input for validation Api :param str id: Resource Id :param str name: Resource Name :param str location: Resource Location :param str type: Resource type :param dict tags: Resource tags :param str domain_registration_input_name: Name of the domain :param Contact contact_admin: Admin contact information :param Contact contact_billing: Billing contact information :param Contact contact_registrant: Registrant contact information :param Contact contact_tech: Technical contact information :param str registration_status: Domain registration status. Possible values include: 'Active', 'Awaiting', 'Cancelled', 'Confiscated', 'Disabled', 'Excluded', 'Expired', 'Failed', 'Held', 'Locked', 'Parked', 'Pending', 'Reserved', 'Reverted', 'Suspended', 'Transferred', 'Unknown', 'Unlocked', 'Unparked', 'Updated', 'JsonConverterFailed' :param str provisioning_state: Domain provisioning state. Possible values include: 'Succeeded', 'Failed', 'Canceled', 'InProgress', 'Deleting' :param list name_servers: Name servers :param bool privacy: If true then domain privacy is enabled for this domain :param datetime created_time: Domain creation timestamp :param datetime expiration_time: Domain expiration timestamp :param datetime last_renewed_time: Timestamp when the domain was renewed last time :param bool auto_renew: If true then domain will renewed automatically :param bool ready_for_dns_record_management: If true then Azure can assign this domain to Web Apps. This value will be true if domain registration status is active and it is hosted on name servers Azure has programmatic access to :param list managed_host_names: All hostnames derived from the domain and assigned to Azure resources :param DomainPurchaseConsent consent: Legal agreement consent """ _validation = { 'location': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'domain_registration_input_name': {'key': 'properties.name', 'type': 'str'}, 'contact_admin': {'key': 'properties.contactAdmin', 'type': 'Contact'}, 'contact_billing': {'key': 'properties.contactBilling', 'type': 'Contact'}, 'contact_registrant': {'key': 'properties.contactRegistrant', 'type': 'Contact'}, 'contact_tech': {'key': 'properties.contactTech', 'type': 'Contact'}, 'registration_status': {'key': 'properties.registrationStatus', 'type': 'DomainStatus'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'ProvisioningState'}, 'name_servers': {'key': 'properties.nameServers', 'type': '[str]'}, 'privacy': {'key': 'properties.privacy', 'type': 'bool'}, 'created_time': {'key': 'properties.createdTime', 'type': 'iso-8601'}, 'expiration_time': {'key': 'properties.expirationTime', 'type': 'iso-8601'}, 'last_renewed_time': {'key': 'properties.lastRenewedTime', 'type': 'iso-8601'}, 'auto_renew': {'key': 'properties.autoRenew', 'type': 'bool'}, 'ready_for_dns_record_management': {'key': 'properties.readyForDnsRecordManagement', 'type': 'bool'}, 'managed_host_names': {'key': 'properties.managedHostNames', 'type': '[HostName]'}, 'consent': {'key': 'properties.consent', 'type': 'DomainPurchaseConsent'}, } def __init__(self, location, id=None, name=None, type=None, tags=None, domain_registration_input_name=None, contact_admin=None, contact_billing=None, contact_registrant=None, contact_tech=None, registration_status=None, provisioning_state=None, name_servers=None, privacy=None, created_time=None, expiration_time=None, last_renewed_time=None, auto_renew=None, ready_for_dns_record_management=None, managed_host_names=None, consent=None, **kwargs): super(DomainRegistrationInput, self).__init__(id=id, name=name, location=location, type=type, tags=tags, **kwargs) self.domain_registration_input_name = domain_registration_input_name self.contact_admin = contact_admin self.contact_billing = contact_billing self.contact_registrant = contact_registrant self.contact_tech = contact_tech self.registration_status = registration_status self.provisioning_state = provisioning_state self.name_servers = name_servers self.privacy = privacy self.created_time = created_time self.expiration_time = expiration_time self.last_renewed_time = last_renewed_time self.auto_renew = auto_renew self.ready_for_dns_record_management = ready_for_dns_record_management self.managed_host_names = managed_host_names self.consent = consent
[ "lmazuel@microsoft.com" ]
lmazuel@microsoft.com
7b881b0726eda7408694fbcacc36d669cda76453
f80c3df0b651e8bf327aac2fd9c6188205e136f5
/20201111_home/shortest_word.py
b161be4ee1430dd8837e613b7a37af878bafb1e3
[]
no_license
rudenko86/my_project
b57ec2e9a4987a1a4c66f911c6098247122ac189
96823443e34dcb12a11b02537cbb7e3c3ce24fc6
refs/heads/main
2023-01-21T04:16:34.697095
2020-11-21T19:33:57
2020-11-21T19:33:57
309,800,903
0
0
null
null
null
null
UTF-8
Python
false
false
1,992
py
''' знайти найкоротше слово і порахувати скільки разів воно зустрічається та вивести його (count) ''' a = """Октябрь уж наступил — уж роща отряхает Последние листы с нагих своих ветвей; Дохнул осенний хлад — дорога промерзает. Журча еще бежит за мельницу ручей, Но пруд уже застыл; сосед мой поспешает В отъезжие поля с охотою своей, И страждут озими от бешеной забавы, И будит лай собак уснувшие дубравы. Теперь моя пора: я не люблю весны; Скучна мне оттепель; вонь, грязь — весной я болен; Кровь бродит; чувства, ум тоскою стеснены. Суровою зимой я более доволен, Люблю ее снега; в присутствии луны Как легкий бег саней с подругой быстр и волен, Когда под соболем, согрета и свежа, Она вам руку жмет, пылая и дрожа! Как весело, обув железом острым ноги, Скользить по зеркалу стоячих, ровных рек! А зимних праздников блестящие тревоги?.. Но надо знать и честь; полгода снег да снег, Ведь это наконец и жителю берлоги, Медведю, надоест. Нельзя же целый век Кататься нам в санях с Армидами младыми Иль киснуть у печей за стеклами двойными""" b = a.split() shot_ = b[0] for i in b[1:]: if len(i) < len(shot_): shot_ = i print(shot_) c = b.count(shot_) print(c)
[ "19rudenko86@gmail.com" ]
19rudenko86@gmail.com
f2d1f00036574689cfdfe68843c9fadedb487026
68f0ce24fa285e6b3f6f931a5a5ff075fbd7f51e
/DeepLearning/TensorFlowMNISTLecture.py
51bbc94b37276e276e0b1f08d745499ee274cdfe
[]
no_license
Resolt/ML_Bootcamp
d8c26b29a49d8c1fd9767e4974d90db9fa10670d
2838017eab10a382c8ce655c73907dd394b0ea27
refs/heads/master
2020-04-03T10:24:23.428282
2018-11-07T22:23:28
2018-11-07T22:23:28
155,192,029
0
0
null
null
null
null
UTF-8
Python
false
false
1,719
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # PART 1 - READING AND EXPLORING MNIST DATA # LINK MNIST mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) print(mnist.train.images.shape) print(mnist.train.images[1].shape) # plt.imshow(mnist.train.images[1].reshape(28,28),cmap='gist_gray') # plt.show() ex = mnist.train.images[1].reshape(mnist.train.images[1].shape[0],1) print(ex) # sns.heatmap(ex) # plt.show() # PART 2 - x = tf.placeholder(dtype=tf.float32,shape=[None,784]) # PLACE HOLDER FOR THE INPUT - WE KNOW ITS 784, BUT WE HAVEN'T DECIDED ON BATCH SIZE W = tf.Variable(tf.zeros([784,10])) # THE WEIGHTS - 784 FOR THE PIXELS - 10 FOR EACH POSSIBLE VALUE (WE ARE LOOKING TO DETERMINE A NUMBER BETWEEN 0 and 9) b = tf.Variable(tf.zeros([10])) # BIASES y = tf.matmul(x,W) + b # THE OUTPUT y_true = tf.placeholder(tf.float32,shape=[None,10]) # THIS IS THE SAME AS y_train. WE DON'T KNOW THE BATCH SIZE JUST YET BUT WE DO KNOW THE POSSIBLE OUTPUTS cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true,logits=y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5) train = optimizer.minimize(cross_entropy) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for step in range(1000): batch_x,batch_y = mnist.train.next_batch(100) sess.run(train,feed_dict={x:batch_x,y_true:batch_y}) matches = tf.equal(tf.argmax(y,1),tf.argmax(y_true,1)) acc = tf.reduce_mean(tf.cast(matches,tf.float32)) print(sess.run(acc,feed_dict={x:mnist.test.images,y_true:mnist.test.labels}))
[ "pdmmichaelsen@gmail.com" ]
pdmmichaelsen@gmail.com
15d01b7c211b279668202291cd0412a2003cd5eb
eb8433e762930fdf0bc6519f67e176a4d29bef31
/okta/models/idp_policy_rule_action.py
52343d9048858b7dcdd70199d33336521324f95f
[ "Apache-2.0" ]
permissive
Mogost/okta-sdk-python
7cd7ba3afc3a851a91c764c61aa8cbddd8dee78d
0e71c4d6e78af872ee95ac2372e1d630858277b0
refs/heads/master
2023-03-17T06:27:41.901434
2023-03-15T14:31:56
2023-03-15T14:31:56
194,839,815
0
0
Apache-2.0
2023-03-16T23:27:18
2019-07-02T10:13:09
Python
UTF-8
Python
false
false
1,573
py
# flake8: noqa """ Copyright 2020 - Present Okta, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # AUTO-GENERATED! DO NOT EDIT FILE DIRECTLY # SEE CONTRIBUTOR DOCUMENTATION from okta.okta_object import OktaObject from okta.okta_collection import OktaCollection from okta.models import idp_policy_rule_action_provider\ as idp_policy_rule_action_provider class IdpPolicyRuleAction( OktaObject ): """ A class for IdpPolicyRuleAction objects. """ def __init__(self, config=None): super().__init__(config) if config: self.providers = OktaCollection.form_list( config["providers"] if "providers"\ in config else [], idp_policy_rule_action_provider.IdpPolicyRuleActionProvider ) else: self.providers = [] def request_format(self): parent_req_format = super().request_format() current_obj_format = { "providers": self.providers } parent_req_format.update(current_obj_format) return parent_req_format
[ "bretterer@gmail.com" ]
bretterer@gmail.com
2f745ad5a119f8562508a06dbe64d04423026c86
b553d0c3834e7246c9ff3c1fe9a206ce3ab88e90
/employee.py
d7b3d47a14e4dda6024e48a5f03f756d3b01fd86
[]
no_license
PapaKofi13/vscodes
c1eab9968251efe1359729e60234df47dfe02d17
331944fd6aba4c67f3125e884b33fbe6de1da565
refs/heads/master
2021-04-22T16:35:50.466684
2020-03-25T02:00:09
2020-03-25T02:00:09
249,862,216
0
0
null
null
null
null
UTF-8
Python
false
false
446
py
class Employee: def __init__(self, first, last, pay): self.first = first self.last = last self.pay = pay @property def email(self): return '{}.{}@email.com'.format(self.first,self.last) @property def fullname(self): return '{} {}'.format(self.first, self.last) def __repr__(self): return "Employee('{}','{}')".format(self.last, self.last, self.pay)
[ "micjay113@gmail.com" ]
micjay113@gmail.com
8de2961d32d5904a8cf7ca984a7b05b6c90d602e
ba1d95ed0bc04923b5f9816f2f75d45244941291
/task_2/task_2b/.ipynb_checkpoints/task2_v-checkpoint.py
340dfb3da50825e87bcb4e3d8c41b38a52ae8cbf
[]
no_license
emmilner/swarm_sim
67e951d44df0bf73e22d4c4ab4453a81ac7cce3f
2ed721cda2af98df7dffbe8f2ae876acf7fbedb5
refs/heads/master
2023-03-26T13:46:00.097756
2021-03-19T18:50:23
2021-03-19T18:50:23
288,507,177
1
0
null
null
null
null
UTF-8
Python
false
false
11,831
py
''' Swarm Warehouse with Boxes Code: Displays a bird's eye view of a warehouse with robots moving around, avoiding the walls and each other. Boxes are picked up and moved to exit zone by robots. The boxes are requested to be delivered in a given sequence and that sequence is broadcast to the swarm. The robots will only pick up a box if it is the correct on in the sequence. They will then only pick up a new box when the sequence has moved on and the previous box has been delivered to the exit zone. ** Requires the script warehouse.py to be in the same folder as this script as it is called in the code ** Code authored by Emma Milner and Elliot Hogg The actual specification for the Toshiba robots is as follows: agent speed = 2 m/s agent acceleration 2 m/s/s diameter of agent is 250 mm width of warehouse is 5m height (depth) of warehouse is 5m ''' # Still to do # Consider other exit zone options e.g. square in the centre (so that wall avoidance doesn't come in) # if delivered change the number of boxes.num_boxes so don't have to keep plotting them? # avoid boxes if you already have a box import numpy as np import math import random from matplotlib import pyplot as plt from matplotlib import animation import scipy from scipy.spatial.distance import cdist, pdist, euclidean import pickle import warehouse import sys import os ### INPUTS ### #num_agents = 20 # Number of agents in swarm (default 50) radius = 12.5 # Radius of single agent (half of 25) width = 500 # Width of warehouse (100) height = 500 # Height (depth) of warehouse (100) speed = 2 # Agent speed (0.5) repulsion_distance = radius/2# Distance at which repulsion is first felt (3) #marker_size = 14 # Diameter of circular marker on plot of warehouse (14) #num_boxes = 3 box_radius = radius box_range = 2*box_radius # range at which a box can be picked up exit_width = int(0.2*width) # if it is too small then it will avoid the wall and be less likely to reach the exit zone ### R_rob = 15 R_box = 15 R_wall = 25 pick_up_prob = 100 # prob is <= this ani = True if ani == True: num_agents = 10 num_boxes = 50 p = 4 marker_size = width*0.5/20 #diameter class swarm(): def __init__(self,num_agents,p): self.speed = speed # Agent speed self.num_agents = num_agents self.check_r = np.ones(self.num_agents) self.heading = 0.0314*np.random.randint(-100,100,self.num_agents) self.rob_c = np.random.randint(box_radius*2,width-box_radius-exit_width,(self.num_agents,2)) self.counter = 0 self.rob_d = np.zeros((self.num_agents,2)) self.drop_off_prob = p self.beyond_r = np.zeros(self.num_agents) self.last_box = np.full(self.num_agents,-1) def iterate(self,boxes): # moves the positions forward in time dist = cdist(boxes.box_c, self.rob_c) qu_close_box = np.min(dist,1) < box_range qu_close_rob = np.min(dist,0) < box_range mins = np.argmin(dist,1) cf_box = qu_close_box*boxes.check_b cf_rob = qu_close_rob*self.check_r for b in range(boxes.num_boxes): if cf_box[b] == True and cf_rob[mins[b]] == True and self.last_box[mins[b]] != b : self.check_r[mins[b]] = 0 boxes.check_b[b] = 0 boxes.box_c[b] = self.rob_c[mins[b]] boxes.robot_carrier[b] = mins[b] random_walk(self,boxes) # the robots move using the random walk function self.rob_c = self.rob_c + self.rob_d boxes.box_d = np.zeros((boxes.num_boxes,2)) positions = np.insert(self.rob_d,self.num_agents,[0, 0],axis = 0 ) boxes.box_d = positions[boxes.robot_carrier] boxes.box_d = (boxes.box_d.T*boxes.gone).T boxes.box_c = boxes.box_c + boxes.box_d boxes.beyond_b[boxes.seq] = boxes.box_c.T[0,boxes.seq] > width - exit_width - radius sum_beyond = np.sum(boxes.beyond_b) if boxes.robot_carrier[boxes.seq] > self.num_agents: self.beyond_r[boxes.robot_carrier[boxes.seq]] = self.rob_c.T[0,boxes.robot_carrier[boxes.seq]] > width - exit_width - radius anti_check_b = boxes.check_b == 0 boxes.box_c.T[0] = boxes.box_c.T[0] + (boxes.gone*boxes.beyond_b*anti_check_b*200) boxes.gone = boxes.beyond_b == 0 anti_check_r = self.check_r == 0 self.check_r = self.check_r + self.beyond_r*anti_check_r boxes.delivered = sum_beyond # box_drop = np.random.randint(0,100,boxes.num_boxes) # prob = box_drop < self.drop_off_prob # don't drop if prob below 50 # prob[boxes.seq] = 0 # don't drop sequence box # prob_check_b = boxes.check_b == 0 # for b in range(boxes.num_boxes): # if prob_check_b[b]*prob[b] == 1: # self.last_box[boxes.robot_carrier[b]] = b # self.check_r[boxes.robot_carrier[b]] = 1 # boxes.check_b = boxes.check_b + (prob*prob_check_b) if boxes.box_c.T[0,boxes.seq] > width: boxes.seq += 1 class boxes(): def __init__(self,number_of_boxes,robots): self.num_boxes = number_of_boxes self.radius = box_radius self.check_b = np.ones(self.num_boxes) self.delivered = 0 self.box_c = np.random.randint(box_radius*2,width-box_radius-exit_width,(self.num_boxes,2)) self.box_d = np.zeros((self.num_boxes,2)) self.gone = np.ones(self.num_boxes) self.seq = 0 self.robot_carrier = np.full(self.num_boxes,robots.num_agents) self.beyond_b = np.zeros(self.num_boxes) ## Avoidance behaviour for avoiding the warehouse walls ## def avoidance(rob_c,map): # input the agent positions array and the warehouse map num_agents = len(rob_c) # num_agents is number of agents according to position array ## distance from agents to walls ## # distance from the vertical walls to your agent (horizontal distance between x coordinates) difference_in_x = np.array([map.planeh-rob_c[n][1] for n in range(num_agents)]) # distance from the horizontal walls to your agent (vertical distance between y coordinates) difference_in_y = np.array([map.planev-rob_c[n][0] for n in range(num_agents)]) # x coordinates are the first row (or column) of the agent positions transposed agentsx = rob_c.T[0] # y coordinates are the second row (or column) of the agent positions transposed agentsy = rob_c.T[1] ## Are the agents within the limits of the warehouse? # Check x coordinates are within the x boundaries # x_lower and x_upper give a bool value of: # TRUE if within the warehouse limits # FALSE if outside the warehouse limits x_lower_wall_limit = agentsx[:, np.newaxis] >= map.limh.T[0] # limh is for horizontal walls x_upper_wall_limit = agentsx[:, np.newaxis] <= map.limh.T[1] # Interaction combines the lower and upper limit information to give a TRUE or FALSE value to the agents depending on if it is IN/OUT the warehouse boundaries interaction = x_upper_wall_limit*x_lower_wall_limit # Fy is Force on the agent in y direction due to proximity to the horziontal walls # This equation was designed to be very high when the agent is close to the wall and close to 0 otherwise Fy = np.exp(-2*abs(difference_in_x) + R_wall) # The Force is zero if the interaction is FALSE meaning that the agent is safely within the warehouse boundary (so that is does not keep going forever if there is a mistake) Fy = Fy*difference_in_x*interaction # Same as x boundaries but now in y y_lower_wall_limit = agentsy[:, np.newaxis] >= map.limv.T[0] # limv is vertical walls y_upper_wall_limit = agentsy[:, np.newaxis] <= map.limv.T[1] interaction = y_lower_wall_limit*y_upper_wall_limit Fx = np.exp(-2*abs(difference_in_y) + R_wall) Fx = Fx*difference_in_y*interaction # For each agent the force in x and y is the sum of the forces from each wall Fx = np.sum(Fx, axis=1) Fy = np.sum(Fy, axis=1) # Combine x and y force vectors F = np.array([[Fx[n], Fy[n]] for n in range(num_agents)]) return F ## Movement function with agent-agent avoidance behaviours ## def random_walk(swarm,boxes): swarm.counter += 1 # Add noise to the heading function noise = 0.01*np.random.randint(-50,50,(swarm.num_agents)) swarm.heading += noise # Force for movement according to new chosen heading heading_x = 1*np.cos(swarm.heading) # move in x heading_y = 1*np.sin(swarm.heading) # move in y F_heading = -np.array([[heading_x[n], heading_y[n]] for n in range(0, swarm.num_agents)]) # Agent-agent avoidance r = repulsion_distance # distance at which repulsion is felt (set at start of code) # Compute (euclidean == cdist) distance between agents agent_distance = cdist(swarm.rob_c, swarm.rob_c) box_dist = cdist(boxes.box_c,swarm.rob_c) # Compute vectors between agents proximity_vectors = swarm.rob_c[:,:,np.newaxis]-swarm.rob_c.T[np.newaxis,:,:] proximity_to_boxes = boxes.box_c[:,:,np.newaxis] - swarm.rob_c.T[np.newaxis,:,:] F_box = R_box*r*np.exp(-box_dist/r)[:,np.newaxis,:]*proximity_to_boxes/(swarm.num_agents-1) F_box = np.sum(F_box,axis=0) not_free = swarm.check_r == 0 F_box[0] = not_free*F_box[0].T F_box[1] = not_free*F_box[1].T # Force on agent due to proximity to other agents F_agent = R_rob*r*np.exp(-agent_distance/r)[:,np.newaxis,:]*proximity_vectors/(swarm.num_agents-1) F_agent = np.sum(F_agent, axis =0).T # Sum of proximity forces # Force on agent due to proximity to walls F_wall_avoidance = avoidance(swarm.rob_c, swarm.map) # Forces added together F_agent += F_wall_avoidance + F_heading + F_box.T F_x = F_agent.T[0] # Force in x F_y = F_agent.T[1] # Force in y # New movement due to forces new_heading = np.arctan2(F_y, F_x) # new heading due to forces move_x = swarm.speed*np.cos(new_heading) # Movement in x due to forces move_y = swarm.speed*np.sin(new_heading) # Movement in y due to forces # Total change in movement of agent swarm.rob_d = -np.array([[move_x[n], move_y[n]] for n in range(0, swarm.num_agents)]) return swarm.rob_d # New agent positions #swarm.rob_c += M ########################################################## def set_up(time,r,b,p): swarm_group = swarm(r,p) box_group = boxes(b,swarm_group) warehouse_map = warehouse.map() warehouse_map.warehouse_map(width,height) warehouse_map.gen() swarm_group.map = warehouse_map swarm_group.iterate(box_group) while swarm_group.counter <= time: swarm_group.iterate(box_group) if box_group.delivered == box_group.num_boxes: return (1,swarm_group.counter) exit() sr = box_group.delivered #print(box_group.box_times) if sr > 0: sr = float(sr/box_group.num_boxes) return (sr,swarm_group.counter) if ani == True: swarm = swarm(num_agents,p) boxes = boxes(num_boxes,swarm) warehouse_map = warehouse.map() warehouse_map.warehouse_map(width,height) warehouse_map.gen() swarm.map = warehouse_map swarm.iterate(boxes) fig = plt.figure() ax = plt.axes(xlim=(0, width), ylim=(0, height)) dot, = ax.plot([swarm.rob_c[i,0] for i in range(swarm.num_agents)],[swarm.rob_c[i,1] for i in range(num_agents)], 'ko', markersize = marker_size, fillstyle = 'none') box, = ax.plot([boxes.box_c[i,0] for i in range(boxes.num_boxes)],[boxes.box_c[i,1] for i in range(boxes.num_boxes)], 'rs', markersize = marker_size-5) seq, = ax.plot([boxes.box_c[0,0]],[boxes.box_c[0,1]],'ks',markersize = marker_size-5) plt.axis('square') plt.axis([0,width,0,height]) def animate(i): swarm.iterate(boxes) dot.set_data([swarm.rob_c[n,0] for n in range(num_agents)],[swarm.rob_c[n,1] for n in range(num_agents)]) # for b in range(num_boxes): # plt.annotate(str(b), (boxes.box_c[b,0], boxes.box_c[b,1])) box.set_data([boxes.box_c[n,0] for n in range(boxes.num_boxes)],[boxes.box_c[n,1] for n in range(boxes.num_boxes)]) seq.set_data([boxes.box_c[boxes.seq,0],[boxes.box_c[boxes.seq,1]]]) plt.title("Time is "+str(swarm.counter)+"s") if boxes.delivered == boxes.num_boxes: exit() anim = animation.FuncAnimation(fig, animate, frames=500, interval=0.1) plt.xlabel("Warehouse width (cm)") plt.ylabel("Warehouse height (cm)") ex = [width-exit_width, width-exit_width] ey = [0, height] plt.plot(ex,ey,':') plt.show()
[ "emma.milner@bristol.ac.uk" ]
emma.milner@bristol.ac.uk
7626d2627355af9ccb92ffd060e7918314e2cfc9
0eeb5a7e502606fe505efcda7a9b6aaeab76252d
/Versione-3.0.1.0/MainInterface.spec
72bdf1ff74fa05115d2ead5ca81cf463869bb346
[]
no_license
Beezusburger/JaSONx
5b5fe917c6f3aa49140b8d27580ecbf10532b9af
adceb6c3fc62924f4a51886d305e66326a548baa
refs/heads/master
2020-04-02T21:53:59.720688
2018-11-12T10:52:45
2018-11-12T10:52:45
154,814,462
0
0
null
null
null
null
UTF-8
Python
false
false
1,032
spec
# -*- mode: python -*- block_cipher = None a = Analysis(['MainInterface.py'], pathex=['C:\\Users\\Juri Francia\\Dropbox\\Progetto JaSONx\\Progetto JaSONx\\Sorgenti JaSONx\\Versione 3.0.1.0'], binaries=[], datas=[], hiddenimports=[], hookspath=[], runtime_hooks=[], excludes=[], win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher, noarchive=False) pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher) exe = EXE(pyz, a.scripts, a.binaries, a.zipfiles, a.datas, [], name='MainInterface', debug=False, bootloader_ignore_signals=False, strip=False, upx=True, runtime_tmpdir=None, console=False , icon='C:\\Users\\Juri Francia\\Dropbox\\Progetto JaSONx\\Progetto JaSONx\\Sorgenti JaSONx\\Versione 3.0.1.0\\image\\logo_ico.ico')
[ "v.zagranovskyy@reply.it" ]
v.zagranovskyy@reply.it
d316fb99654c7e1da09a7124137e1d0eaca98eb7
877f3a0fac213a0f994203365884eaac8fba14f0
/planning/models.py
4303678fb918d798a5544afc7c1a559e1be234da
[]
no_license
hlorofilka/Mystash
ff609400994a15667be69caf51d8fc40907238b6
810e9a9f6726b80e3611ded23fa99338dd2a5012
refs/heads/master
2020-05-19T01:00:31.779798
2019-07-08T19:45:12
2019-07-08T19:45:12
184,747,392
0
0
null
2019-07-08T19:45:13
2019-05-03T11:55:38
Python
UTF-8
Python
false
false
3,513
py
import datetime from django.conf import settings from django.db import models from transactions.models import Transaction, Account from django.utils import timezone from django.core.validators import MaxValueValidator, MinValueValidator # Create your models here. class Period(models.Model): owner = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, null=True, blank=True, default = None) starts_at = models.DateField(default=datetime.date.today) ends_at = models.DateField(default= datetime.date.today() + datetime.timedelta(days=30)) goal = models.DecimalField(max_digits=20, decimal_places=2, default=0) def active_money(self): money = 0 act_accounts = Account.objects.filter(holder=self.owner, account_type ='active') pas_accounts = Account.objects.filter(holder=self.owner, account_type ='passive') for act_account in act_accounts: money += act_account.date_balance(self.starts_at) for pas_account in pas_accounts: money -= pas_account.date_balance(self.starts_at) return money def at_the_end(self): next_day = self.ends_at + datetime.timedelta(days=1) money = 0 act_accounts = Account.objects.filter(holder=self.owner, account_type ='active') pas_accounts = Account.objects.filter(holder=self.owner, account_type ='passive') for act_account in act_accounts: money += act_account.date_balance(next_day) for pas_account in pas_accounts: money -= pas_account.date_balance(next_day) return money def completion_rate(self): return float(self.at_the_end())/float(self.goal)*100 def duration(self): return (self.ends_at-self.starts_at).days+1 def free_money(self): mandatories = self.mandatorytransaction_set.all() free_sum = self.active_money() for mandatory in mandatories: free_sum += float(mandatory.transaction_type+ str(mandatory.amount)) return free_sum def max_daylimit(self): return self.free_money()/self.duration() def max_goal(self): return self.free_money() def daylimit(self): return round((self.free_money()-float(self.goal))/self.duration(), 2) def is_actual(self): return datetime.date.today >= self.starts_at and datetime.date.today <= self.ends_at def __str__(self): return self.starts_at.strftime("%d.%m.%Y")+"-"+ self.ends_at.strftime("%d.%m.%Y")+": the goal is "+ str(self.goal)+ " day limit is "+ str(self.daylimit()) class MandatoryTransaction(models.Model): period = models.ForeignKey(Period, on_delete=models.CASCADE, related_name="mandatorytransaction_set") title = models.CharField(max_length=200) transaction_type_choice = (('-', 'expense'), ('+', 'income')) transaction_type = models.CharField(max_length=1, choices=transaction_type_choice) amount = models.FloatField(validators=[MinValueValidator(0.0), MaxValueValidator(999999999999.99)], null=True, blank=True, default = 0) def money_left(self): transactions = self.transaction_set.all() balance = self.amount for transaction in transactions: balance = balance - (transaction.amount) return balance def is_completed(self): if self.money_left() <= 0: return True else: return False def __str__(self): return self.title+": "+self.transaction_type+str(self.amount)
[ "hlorofilk@mail.ru" ]
hlorofilk@mail.ru
45cfba7e9e4c299d0619bddc9ddc217fa2dc3b11
e7fc26a47929b983562dec490db403664d4389c9
/fun/times_3.py
53554ef469e8b470777793b8a5113b4a5761ffb8
[]
no_license
n-trance/practice
0ca4427c018cc9f4a440e98df425c3d5c63e5eb1
9674d385d9e561268fa404c7ee99e00b962c2d41
refs/heads/master
2021-01-17T08:25:53.041272
2017-11-06T11:16:24
2017-11-06T11:16:24
63,580,812
0
0
null
null
null
null
UTF-8
Python
false
false
989
py
''' given a list, get the largest number by multiplying all numbers. len(list) >= 3, integers ''' ''' proposed solution: 1. sort list (nlogn) 2. case: all values >= 0: - we pick last 3 case: all values <= 0: - we pick last 3 case: mix of numbers: - we pick last number - check if first list[0]*list[1] > list[n-2]*list[n-3] we pick the largest of the two *** solution is either: 0,1,n-1 or n-1,n-2,n-3 ''' l1 = [1,2,3] #6 l2 = [0,1,2,3,4] #24 l3 = [-4,-5,-3,0,-1] #0 l4 = [-4,-5,-3, -1] #-12 l5 = [-10, 7, 5, 10, 0] #350 l6 = [-10,0,-10,1,1,1] #100 def times_3(list): list = sorted(list) #nlogn n = len(list) first = list[0]*list[1]*list[n-1] # 0*1*n second = list[n-1]*list[n-2]*list[n-3] # n*n-1*n-2 if (first > second): return first else: return second print(times_3(l1)) print(times_3(l2)) print(times_3(l3)) print(times_3(l4)) print(times_3(l5)) print(times_3(l6))
[ "nethan.tran@gmail.com" ]
nethan.tran@gmail.com
53e7285ae5fb7e5cd1f11a10d46bf67cd9910935
7aa20b65a28a348273fa37e6347539cf2b28097b
/test/unit/test_configHelpers.py
b04693608209749de7eca428a4d06ce11ae9b1ae
[]
no_license
aburzinski/MSiA-423-Project
b3d3d4c5a75b57e28da809dfe5cef7e897f48bfc
76f126152407a48b73092e3914fa3a37e3581e36
refs/heads/master
2022-07-07T00:36:56.227554
2019-06-12T00:02:16
2019-06-12T00:02:16
180,415,904
0
2
null
2022-06-21T21:58:37
2019-04-09T17:19:02
Jupyter Notebook
UTF-8
Python
false
false
1,126
py
import sys import os sys.path.append(os.environ.get('PYTHONPATH')) import src.helpers.configHelpers as base def test_createDatabaseURI(): """Test the createDatabaseURI method""" # Test for incorrect dbtype dbtype = 'postgresql' dbname = 'test' host = '127.0.0.1' port = '5432' username = 'user' password = 'pw' try: base.createDatabaseURI(dbtype, host, dbname) assert False except ValueError: assert True # Test sqlite connection string dbtype = 'sqlite' dbname = 'test' host = '127.0.0.1' port = '5432' username = 'user' password = 'pw' expectedOutput = 'sqlite:///127.0.0.1/test.db' assert(base.createDatabaseURI(dbtype, host, dbname) == expectedOutput) # Test mysql connection string dbtype = 'mysql' dbname = 'test' host = '127.0.0.1' port = '3306' username = 'user' password = 'pw' expectedOutput = 'mysql+pymysql://user:pw@127.0.0.1:3306/test' assert(base.createDatabaseURI(dbtype, host, dbname, port=port, username=username, password=password) == expectedOutput)
[ "aburzinski2@gmail.com" ]
aburzinski2@gmail.com
504475257dbc623201bf094a2bc7a6bfbb28627f
9fd3d9f37c49c0080cf8d22486b2211f708830d8
/grupo6.py
ee24b9db09e011b1448de1fa799dd1847792fe4f
[]
no_license
tosh2/ia-mundial
7762288cc638a541ff7c9651fcb072c05adb63af
57fe100609c6f4836bf7b839e8e10c0e3b9d1e3b
refs/heads/master
2020-03-22T00:15:22.667885
2018-06-30T08:45:04
2018-06-30T08:45:04
139,233,574
0
0
null
null
null
null
UTF-8
Python
false
false
1,835
py
#!/usr/bin/env python3 # Grupo 8 - IA Junio 2018 # ./grupo6.py import math def fase_grupos(name): if name == "FRA": return [["AUS",2,1],["PER",1,0],["DIN",0,0]]; elif name == "ARG": return [["ISL",1,1],["CRO",0,3],["NIG",2,1]]; elif name == "URU": return [["EGY",1,0],["ARA",1,0],["RUS",3,0]]; elif name == "POR": return [["ESP",3,3],["MAR",1,0],["IRA",1,1]]; elif name == "ESP": return [["POR",3,3],["IRA",1,0],["MAR",2,2]]; elif name == "RUS": return [["ARA",5,0],["EGY",3,1],["URU",0,3]]; elif name == "CRO": return [["NIG",2,0],["ARG",3,0],["ISL",2,1]]; elif name == "DIN": return [["PER",1,0],["AUS",1,1],["FRA",0,0]]; elif name == "BRA": return [["SUI",1,1],["COS",2,0],["SER",2,0]]; elif name == "MEX": return [["ALE",1,0],["KOR",2,1],["SUE",0,3]]; elif name == "BEL": return [["PAN",3,0],["TUN",5,2],["ING",1,0]]; elif name == "JAP": return [["COL",2,1],["SEN",2,2],["POL",0,1]]; elif name == "SUE": return [["KOR",1,0],["ALE",1,2],["MEX",3,0]]; elif name == "SUI": return [["BRA",1,1],["SER",2,1],["COS",2,2]]; elif name == "COL": return [["JAP",1,2],["POL",3,0],["SEN",1,0]]; elif name == "ING": return [["TUN",2,0],["PAN",6,1],["BEL",0,1]]; def quiniela(lista_octavos): lista = lista_octavos while lista: partido = lista[0] grupo1 = fase_grupos(partido[0]) grupo2 = fase_grupos(partido[1]) goles_a_favor_equipo1 = 0.0 goles_a_favor_equipo2 = 0.0 while(grupo1): goles_a_favor_equipo1 += grupo1.pop(0)[1] while(grupo2): goles_a_favor_equipo2 += grupo2.pop(0)[1] print(partido[0] + " " + str(int(round(goles_a_favor_equipo1/3))) +"-"+ str(int(round(goles_a_favor_equipo2/3))) + " " + partido[1]) lista.pop(0) quiniela([['FRA','ARG'],['URU','POR'],['ESP','RUS'],['CRO','DIN'],['BRA','MEX'],['BEL','JAP'],['SUE','SUI'],['COL','ING']])
[ "josuetz21@gmail.com" ]
josuetz21@gmail.com
2af9f47d4deb43cc4c69c7bc021bb310907e4bcd
5ce657823418ff9d9c46598154fde03ab2f23d72
/data_preprocessing_and_visualization/Data_Preprocessing.py
4851f3e892159d651d742e98afafbd56c704ad17
[ "MIT" ]
permissive
ZTong1201/Ship-Detection-Project
feb6a5e57c893479eca4ea7b328f695f7b709f4f
abd49c99294f62d4530807f8ca48c0e3ae79dbb4
refs/heads/master
2020-05-16T00:12:55.638525
2019-05-27T23:59:15
2019-05-27T23:59:15
182,574,151
7
1
null
null
null
null
UTF-8
Python
false
false
19,757
py
# coding: utf-8 # # Data Preprocessing # I refer to U-net model with submission on the website: https://www.kaggle.com/hmendonca/u-net-model-with-submission. On Augment Data part, we can tweak the parameters to process images. For some detail, I am still trying to understand them. # In[6]: # Lets import some useful libraires import os import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from skimage.io import imread import matplotlib.pyplot as plt from matplotlib.cm import get_cmap from skimage.segmentation import mark_boundaries #from skimage.util import montage2d as montage from skimage.morphology import binary_opening, disk, label import gc; gc.enable() # memory is tight montage_rgb = lambda x: np.stack([montage(x[:, :, :, i]) for i in range(x.shape[3])], -1) ship_dir = '../input' train_image_dir = os.path.join(ship_dir, 'train_v2') test_image_dir = os.path.join(ship_dir, 'test_v2') def multi_rle_encode(img, **kwargs): ''' Encode connected regions as separated masks ''' labels = label(img) if img.ndim > 2: return [rle_encode(np.sum(labels==k, axis=2), **kwargs) for k in np.unique(labels[labels>0])] else: return [rle_encode(labels==k, **kwargs) for k in np.unique(labels[labels>0])] # ref: https://www.kaggle.com/paulorzp/run-length-encode-and-decode def rle_encode(img, min_max_threshold=1e-3, max_mean_threshold=None): ''' img: numpy array, 1 - mask, 0 - background Returns run length as string formated ''' if np.max(img) < min_max_threshold: return '' ## no need to encode if it's all zeros if max_mean_threshold and np.mean(img) > max_mean_threshold: return '' ## ignore overfilled mask pixels = img.T.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs) def rle_decode(mask_rle, shape=(768, 768)): ''' mask_rle: run-length as string formated (start length) shape: (height,width) of array to return Returns numpy array, 1 - mask, 0 - background ''' s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[0]*shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape(shape).T # Needed to align to RLE direction def masks_as_image(in_mask_list): # Take the individual ship masks and create a single mask array for all ships all_masks = np.zeros((768, 768), dtype = np.uint8) for mask in in_mask_list: if isinstance(mask, str): all_masks |= rle_decode(mask) return all_masks def masks_as_color(in_mask_list): # Take the individual ship masks and create a color mask array for each ships all_masks = np.zeros((768, 768), dtype = np.float) scale = lambda x: (len(in_mask_list)+x+1) / (len(in_mask_list)*2) ## scale the heatmap image to shift for i,mask in enumerate(in_mask_list): if isinstance(mask, str): all_masks[:,:] += scale(i) * rle_decode(mask) return all_masks # In[54]: test_image_dir # In[7]: masks = pd.read_csv(os.path.join('../input/', 'train_ship_segmentations_v2.csv')) not_empty = pd.notna(masks.EncodedPixels) print(not_empty.sum(), 'masks in', masks[not_empty].ImageId.nunique(), 'images') print((~not_empty).sum(), 'empty images in', masks.ImageId.nunique(), 'total images') masks.head() # # Split into training and validation groups # We stratify by the number of boats appearing so we have nice balances in each set # In[8]: masks['ships'] = masks['EncodedPixels'].map(lambda c_row: 1 if isinstance(c_row, str) else 0) unique_img_ids = masks.groupby('ImageId').agg({'ships': 'sum'}).reset_index() unique_img_ids['has_ship'] = unique_img_ids['ships'].map(lambda x: 1.0 if x>0 else 0.0) unique_img_ids['has_ship_vec'] = unique_img_ids['has_ship'].map(lambda x: [x]) # some files are too small/corrupt unique_img_ids['file_size_kb'] = unique_img_ids['ImageId'].map(lambda c_img_id: os.stat(os.path.join(train_image_dir, c_img_id)).st_size/1024) unique_img_ids = unique_img_ids[unique_img_ids['file_size_kb'] > 50] # keep only +50kb files unique_img_ids['file_size_kb'].hist() masks.drop(['ships'], axis=1, inplace=True) unique_img_ids.sample(7) # ### Examine Number of Ship Images # Here we examine how often ships appear and replace the ones without any ships with 0 # In[9]: unique_img_ids['ships'].hist(bins=unique_img_ids['ships'].max()) # # Undersample Empty Images # Here we undersample the empty images to get a better balanced group with more ships to try and segment # In[34]: SAMPLES_PER_GROUP = 4000 balanced_train_df = unique_img_ids.groupby('ships').apply(lambda x: x.sample(SAMPLES_PER_GROUP) if len(x) > SAMPLES_PER_GROUP else x) balanced_train_df['ships'].hist(bins=balanced_train_df['ships'].max()+1) print(balanced_train_df.shape[0], 'masks') # In[35]: from sklearn.model_selection import train_test_split train_ids, valid_ids = train_test_split(balanced_train_df, test_size = 0.2, stratify = balanced_train_df['ships']) train_df = pd.merge(masks, train_ids) valid_df = pd.merge(masks, valid_ids) print(train_df.shape[0], 'training masks') print(valid_df.shape[0], 'validation masks') # # Decode all the RLEs into Images # We make a generator to produce batches of images # In[36]: # Model parameters BATCH_SIZE = 48 EDGE_CROP = 16 GAUSSIAN_NOISE = 0.1 UPSAMPLE_MODE = 'SIMPLE' # downsampling inside the network NET_SCALING = (1, 1) # downsampling in preprocessing IMG_SCALING = (3, 3) # number of validation images to use VALID_IMG_COUNT = 900 # maximum number of steps_per_epoch in training MAX_TRAIN_STEPS = 9 MAX_TRAIN_EPOCHS = 99 AUGMENT_BRIGHTNESS = False # In[37]: def make_image_gen(in_df, batch_size = BATCH_SIZE): all_batches = list(in_df.groupby('ImageId')) out_rgb = [] out_mask = [] while True: np.random.shuffle(all_batches) for c_img_id, c_masks in all_batches: rgb_path = os.path.join(train_image_dir, c_img_id) c_img = imread(rgb_path) c_mask = np.expand_dims(masks_as_image(c_masks['EncodedPixels'].values), -1) if IMG_SCALING is not None: c_img = c_img[::IMG_SCALING[0], ::IMG_SCALING[1]] c_mask = c_mask[::IMG_SCALING[0], ::IMG_SCALING[1]] out_rgb += [c_img] out_mask += [c_mask] if len(out_rgb)>=batch_size: yield np.stack(out_rgb, 0)/255.0, np.stack(out_mask, 0) out_rgb, out_mask=[], [] # In[38]: train_gen = make_image_gen(train_df) train_x, train_y = next(train_gen) print('x', train_x.shape, train_x.min(), train_x.max()) print('y', train_y.shape, train_y.min(), train_y.max()) # In[39]: from skimage.util.montage import montage2d as montage #from skimage.util import montage2d as montage fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize = (30, 10)) batch_rgb = montage_rgb(train_x) batch_seg = montage(train_y[:, :, :, 0]) ax1.imshow(batch_rgb) ax1.set_title('Images') ax2.imshow(batch_seg) ax2.set_title('Segmentations') ax3.imshow(mark_boundaries(batch_rgb, batch_seg.astype(int))) ax3.set_title('Outlined Ships') fig.savefig('overview.png') # # Make the Validation Set # In[40]: get_ipython().run_cell_magic('time', '', 'valid_x, valid_y = next(make_image_gen(valid_df, VALID_IMG_COUNT))\nprint(valid_x.shape, valid_y.shape)') # # Augment Data # In[41]: from keras.preprocessing.image import ImageDataGenerator dg_args = dict(featurewise_center = False, samplewise_center = False, rotation_range = 45, # a value in degrees (0-180), a range within which to randomly rotate pictures width_shift_range = 0.1, # randomly translate pictures vertically or horizontally height_shift_range = 0.1, # randomly translate pictures vertically or horizontally shear_range = 0.01, # randomly applying shearing transformations zoom_range = [0.9, 1.25], horizontal_flip = True, #randomly flipping half of the images horizontally vertical_flip = True, fill_mode = 'reflect', # strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift. data_format = 'channels_last') # brightness can be problematic since it seems to change the labels differently from the images if AUGMENT_BRIGHTNESS: dg_args[' brightness_range'] = [0.5, 1.5] image_gen = ImageDataGenerator(**dg_args) if AUGMENT_BRIGHTNESS: dg_args.pop('brightness_range') label_gen = ImageDataGenerator(**dg_args) def create_aug_gen(in_gen, seed = None): np.random.seed(seed if seed is not None else np.random.choice(range(9999))) for in_x, in_y in in_gen: seed = np.random.choice(range(9999)) # keep the seeds syncronized otherwise the augmentation to the images is different from the masks g_x = image_gen.flow(255*in_x, batch_size = in_x.shape[0], seed = seed, shuffle=True) g_y = label_gen.flow(in_y, batch_size = in_x.shape[0], seed = seed, shuffle=True) yield next(g_x)/255.0, next(g_y) # In[42]: cur_gen = create_aug_gen(train_gen) t_x, t_y = next(cur_gen) print('x', t_x.shape, t_x.dtype, t_x.min(), t_x.max()) print('y', t_y.shape, t_y.dtype, t_y.min(), t_y.max()) # only keep first 9 samples to examine in detail t_x = t_x[:9] t_y = t_y[:9] fig, (ax1, ax2) = plt.subplots(1, 2, figsize = (20, 10)) ax1.imshow(montage_rgb(t_x), cmap='gray') ax1.set_title('images') ax2.imshow(montage(t_y[:, :, :, 0]), cmap='gray_r') ax2.set_title('ships') # In[26]: gc.collect() # # Build a Model # Here we use a slight deviation on the U-Net standard # In[43]: from keras import models, layers # Build U-Net model def upsample_conv(filters, kernel_size, strides, padding): return layers.Conv2DTranspose(filters, kernel_size, strides=strides, padding=padding) def upsample_simple(filters, kernel_size, strides, padding): return layers.UpSampling2D(strides) if UPSAMPLE_MODE=='DECONV': upsample=upsample_conv else: upsample=upsample_simple input_img = layers.Input(t_x.shape[1:], name = 'RGB_Input') pp_in_layer = input_img if NET_SCALING is not None: pp_in_layer = layers.AvgPool2D(NET_SCALING)(pp_in_layer) pp_in_layer = layers.GaussianNoise(GAUSSIAN_NOISE)(pp_in_layer) pp_in_layer = layers.BatchNormalization()(pp_in_layer) c1 = layers.Conv2D(8, (3, 3), activation='relu', padding='same') (pp_in_layer) c1 = layers.Conv2D(8, (3, 3), activation='relu', padding='same') (c1) p1 = layers.MaxPooling2D((2, 2)) (c1) c2 = layers.Conv2D(16, (3, 3), activation='relu', padding='same') (p1) c2 = layers.Conv2D(16, (3, 3), activation='relu', padding='same') (c2) p2 = layers.MaxPooling2D((2, 2)) (c2) c3 = layers.Conv2D(32, (3, 3), activation='relu', padding='same') (p2) c3 = layers.Conv2D(32, (3, 3), activation='relu', padding='same') (c3) p3 = layers.MaxPooling2D((2, 2)) (c3) c4 = layers.Conv2D(64, (3, 3), activation='relu', padding='same') (p3) c4 = layers.Conv2D(64, (3, 3), activation='relu', padding='same') (c4) p4 = layers.MaxPooling2D(pool_size=(2, 2)) (c4) c5 = layers.Conv2D(128, (3, 3), activation='relu', padding='same') (p4) c5 = layers.Conv2D(128, (3, 3), activation='relu', padding='same') (c5) u6 = upsample(64, (2, 2), strides=(2, 2), padding='same') (c5) u6 = layers.concatenate([u6, c4]) c6 = layers.Conv2D(64, (3, 3), activation='relu', padding='same') (u6) c6 = layers.Conv2D(64, (3, 3), activation='relu', padding='same') (c6) u7 = upsample(32, (2, 2), strides=(2, 2), padding='same') (c6) u7 = layers.concatenate([u7, c3]) c7 = layers.Conv2D(32, (3, 3), activation='relu', padding='same') (u7) c7 = layers.Conv2D(32, (3, 3), activation='relu', padding='same') (c7) u8 = upsample(16, (2, 2), strides=(2, 2), padding='same') (c7) u8 = layers.concatenate([u8, c2]) c8 = layers.Conv2D(16, (3, 3), activation='relu', padding='same') (u8) c8 = layers.Conv2D(16, (3, 3), activation='relu', padding='same') (c8) u9 = upsample(8, (2, 2), strides=(2, 2), padding='same') (c8) u9 = layers.concatenate([u9, c1], axis=3) c9 = layers.Conv2D(8, (3, 3), activation='relu', padding='same') (u9) c9 = layers.Conv2D(8, (3, 3), activation='relu', padding='same') (c9) d = layers.Conv2D(1, (1, 1), activation='sigmoid') (c9) # d = layers.Cropping2D((EDGE_CROP, EDGE_CROP))(d) # d = layers.ZeroPadding2D((EDGE_CROP, EDGE_CROP))(d) if NET_SCALING is not None: d = layers.UpSampling2D(NET_SCALING)(d) seg_model = models.Model(inputs=[input_img], outputs=[d]) seg_model.summary() # In[44]: import keras.backend as K from keras.optimizers import Adam from keras.losses import binary_crossentropy ## intersection over union def IoU(y_true, y_pred, eps=1e-6): if np.max(y_true) == 0.0: return IoU(1-y_true, 1-y_pred) ## empty image; calc IoU of zeros intersection = K.sum(y_true * y_pred, axis=[1,2,3]) union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3]) - intersection return -K.mean( (intersection + eps) / (union + eps), axis=0) # In[45]: from keras.callbacks import ModelCheckpoint, LearningRateScheduler, EarlyStopping, ReduceLROnPlateau weight_path="{}_weights.best.hdf5".format('seg_model') checkpoint = ModelCheckpoint(weight_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min', save_weights_only=True) reduceLROnPlat = ReduceLROnPlateau(monitor='val_loss', factor=0.33, patience=1, verbose=1, mode='min', min_delta=0.0001, cooldown=0, min_lr=1e-8) early = EarlyStopping(monitor="val_loss", mode="min", verbose=2, patience=20) # probably needs to be more patient, but kaggle time is limited callbacks_list = [checkpoint, early, reduceLROnPlat] # In[46]: def fit(): seg_model.compile(optimizer=Adam(1e-3, decay=1e-6), loss=IoU, metrics=['binary_accuracy']) step_count = min(MAX_TRAIN_STEPS, train_df.shape[0]//BATCH_SIZE) aug_gen = create_aug_gen(make_image_gen(train_df)) loss_history = [seg_model.fit_generator(aug_gen, steps_per_epoch=step_count, epochs=MAX_TRAIN_EPOCHS, validation_data=(valid_x, valid_y), callbacks=callbacks_list, workers=1 # the generator is not very thread safe )] return loss_history while True: loss_history = fit() if np.min([mh.history['val_loss'] for mh in loss_history]) < -0.2: break # In[47]: def show_loss(loss_history): epochs = np.concatenate([mh.epoch for mh in loss_history]) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(22, 10)) _ = ax1.plot(epochs, np.concatenate([mh.history['loss'] for mh in loss_history]), 'b-', epochs, np.concatenate([mh.history['val_loss'] for mh in loss_history]), 'r-') ax1.legend(['Training', 'Validation']) ax1.set_title('Loss') _ = ax2.plot(epochs, np.concatenate([mh.history['binary_accuracy'] for mh in loss_history]), 'b-', epochs, np.concatenate([mh.history['val_binary_accuracy'] for mh in loss_history]), 'r-') ax2.legend(['Training', 'Validation']) ax2.set_title('Binary Accuracy (%)') show_loss(loss_history) # In[48]: seg_model.load_weights(weight_path) seg_model.save('seg_model.h5') # In[49]: pred_y = seg_model.predict(valid_x) print(pred_y.shape, pred_y.min(axis=0).max(), pred_y.max(axis=0).min(), pred_y.mean()) # In[50]: fig, ax = plt.subplots(1, 1, figsize = (6, 6)) ax.hist(pred_y.ravel(), np.linspace(0, 1, 20)) ax.set_xlim(0, 1) ax.set_yscale('log', nonposy='clip') # # Prepare Full Resolution Model # Here we account for the scaling so everything can happen in the model itself # In[51]: if IMG_SCALING is not None: fullres_model = models.Sequential() fullres_model.add(layers.AvgPool2D(IMG_SCALING, input_shape = (None, None, 3))) fullres_model.add(seg_model) fullres_model.add(layers.UpSampling2D(IMG_SCALING)) else: fullres_model = seg_model fullres_model.save('fullres_model.h5') # # Visualize predictions # In[52]: def raw_prediction(img, path=test_image_dir): c_img = imread(os.path.join(path, c_img_name)) c_img = np.expand_dims(c_img, 0)/255.0 cur_seg = fullres_model.predict(c_img)[0] return cur_seg, c_img[0] def smooth(cur_seg): return binary_opening(cur_seg>0.99, np.expand_dims(disk(2), -1)) def predict(img, path=test_image_dir): cur_seg, c_img = raw_prediction(img, path=path) return smooth(cur_seg), c_img ## Get a sample of each group of ship count samples = valid_df.groupby('ships').apply(lambda x: x.sample(1)) fig, m_axs = plt.subplots(samples.shape[0], 4, figsize = (15, samples.shape[0]*4)) [c_ax.axis('off') for c_ax in m_axs.flatten()] for (ax1, ax2, ax3, ax4), c_img_name in zip(m_axs, samples.ImageId.values): first_seg, first_img = raw_prediction(c_img_name, train_image_dir) ax1.imshow(first_img) ax1.set_title('Image: ' + c_img_name) ax2.imshow(first_seg[:, :, 0], cmap=get_cmap('jet')) ax2.set_title('Model Prediction') reencoded = masks_as_color(multi_rle_encode(smooth(first_seg)[:, :, 0])) ax3.imshow(reencoded) ax3.set_title('Prediction Masks') ground_truth = masks_as_color(masks.query('ImageId=="{}"'.format(c_img_name))['EncodedPixels']) ax4.imshow(ground_truth) ax4.set_title('Ground Truth') fig.savefig('validation.png') # # Submission # In[57]: test_paths = np.array(os.listdir(test_image_dir)) print(len(test_paths), 'test images found') # In[58]: from tqdm import tqdm_notebook def pred_encode(img, **kwargs): cur_seg, _ = predict(img) cur_rles = multi_rle_encode(cur_seg, **kwargs) return [[img, rle] for rle in cur_rles if rle is not None] out_pred_rows = [] for c_img_name in tqdm_notebook(test_paths): out_pred_rows += pred_encode(c_img_name, min_max_threshold=1.0) # In[59]: sub = pd.DataFrame(out_pred_rows) sub.columns = ['ImageId', 'EncodedPixels'] sub = sub[sub.EncodedPixels.notnull()] sub.head() # In[60]: ## let's see what we got TOP_PREDICTIONS=5 fig, m_axs = plt.subplots(TOP_PREDICTIONS, 2, figsize = (9, TOP_PREDICTIONS*5)) [c_ax.axis('off') for c_ax in m_axs.flatten()] for (ax1, ax2), c_img_name in zip(m_axs, sub.ImageId.unique()[:TOP_PREDICTIONS]): c_img = imread(os.path.join(test_image_dir, c_img_name)) c_img = np.expand_dims(c_img, 0)/255.0 ax1.imshow(c_img[0]) ax1.set_title('Image: ' + c_img_name) ax2.imshow(masks_as_color(sub.query('ImageId=="{}"'.format(c_img_name))['EncodedPixels'])) ax2.set_title('Prediction') # In[ ]: sub1 = pd.read_csv('../input/sample_submission_v2.csv') sub1 = pd.DataFrame(np.setdiff1d(sub1['ImageId'].unique(), sub['ImageId'].unique(), assume_unique=True), columns=['ImageId']) sub1['EncodedPixels'] = None print(len(sub1), len(sub)) sub = pd.concat([sub, sub1]) print(len(sub)) sub.to_csv('submission.csv', index=False) sub.head()
[ "buaatzy@163.com" ]
buaatzy@163.com
f879c67c6bdc8c15835aa868bd0ccc952ad1aae4
5194f6fc9f0081464c4ed813aeba842324cf79a2
/services/experiments.py
6ebded81a4f7851d2d4cd67f4434be2ef2a36ec9
[]
no_license
ervindobri/MyoExercises
157d84932493b8d2c8c84e57294dd66d98f80274
f791cc919f88e7d4a974fb4d768d3cb3862cae60
refs/heads/master
2023-06-09T09:11:48.355232
2021-07-01T09:07:17
2021-07-01T09:07:17
333,781,252
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
import seaborn as sn import pandas as pd import matplotlib.pyplot as plt def accuracy(): labels = ["Tip Toe", "Toe Clenches", "Toe lift", "Rest"] # array = [[49,1,0,0], # [0, 45, 2, 3], # [0, 0, 49, 1], # [0, 0, 0, 50]] array = [[19, 1, 0, 0], [0, 19, 1, 0], [0, 0, 20, 0], [0, 0, 0, 20]] # array = [[20,0,0,0], # [2, 15, 3, 0], # [0, 2, 17, 1], # [0, 0, 0, 20]] df_cm = pd.DataFrame(array, range(4), range(4)) # plt.figure(figsize=(10,7)) sn.set(font_scale=1.4) # for label size sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}, xticklabels=labels, yticklabels=labels, cmap='Blues') # font size plt.yticks(rotation=0) plt.xticks(rotation=0) plt.show() def main(): accuracy() pass if __name__ == '__main__': main()
[ "dobriervin@yahoo.com" ]
dobriervin@yahoo.com
d3618680d0af7959816004d091cc9d1af9580b7a
e204ac41a9f8d91902f4392850b97e322d4b67c4
/assignment1/aipython/pythonDemo.py
eeb346ccdd81ebf98b17accd5d52c9f7b7566195
[]
no_license
smartworlding/COMP9414
39446a6035323d0215059247b70014ac5c8a024e
5de75804404a6fafdb280305b62ac729e278a60f
refs/heads/master
2023-03-15T19:46:50.550730
2021-01-05T05:32:20
2021-01-05T05:32:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,555
py
# pythonDemo.py - Some tricky examples # AIFCA Python3 code Version 0.8.1 Documentation at http://aipython.org # Artificial Intelligence: Foundations of Computational Agents # http://artint.info # Copyright David L Poole and Alan K Mackworth 2017. # This work is licensed under a Creative Commons # Attribution-NonCommercial-ShareAlike 4.0 International License. # See: http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en fun_list1 = [] for i in range(5): def fun1(e): return e+i fun_list1.append(fun1) fun_list2 = [] for i in range(5): def fun2(e,iv=i): return e+iv fun_list2.append(fun2) fun_list3 = [lambda e: e+i for i in range(5)] fun_list4 = [lambda e,iv=i: e+iv for i in range(5)] i=56 # in Shell do ## ipython -i pythonDemo.py # Try these (copy text after the comment symbol and paste in the Python prompt): # print([f(10) for f in fun_list1]) # print([f(10) for f in fun_list2]) # print([f(10) for f in fun_list3]) # print([f(10) for f in fun_list4]) def myrange(start, stop, step=1): """enumerates the values from start in steps of size step that are less than stop. """ assert step>0, "only positive steps implemented in myrange" i = start while i<stop: yield i i += step print("myrange(2,30,3):",list(myrange(2,30,3))) def ga(n): """generates square of even nonnegative integers less than n""" for e in range(n): if e%2==0: yield e*e a = ga(20) def myenumerate(enum): for i in range(len(enum)): yield i,enum[i] import matplotlib.pyplot as plt def myplot(min,max,step,fun1,fun2): plt.ion() # make it interactive plt.xlabel("The x axis") plt.ylabel("The y axis") plt.xscale('linear') # Makes a 'log' or 'linear' scale xvalues = range(min,max,step) plt.plot(xvalues,[fun1(x) for x in xvalues], label="The first fun") plt.plot(xvalues,[fun2(x) for x in xvalues], linestyle='--',color='k', label=fun2.__doc__) # use the doc string of the function plt.legend(loc="upper right") # display the legend def slin(x): """y=2x+7""" return 2*x+7 def sqfun(x): """y=(x-40)^2/10-20""" return (x-40)**2/10-20 # Try the following: # from pythonDemo import myplot, slin, sqfun # import matplotlib.pyplot as plt # myplot(0,100,1,slin,sqfun) # plt.legend(loc="best") # import math # plt.plot([41+40*math.cos(th/10) for th in range(50)], # [100+100*math.sin(th/10) for th in range(50)]) # plt.text(40,100,"ellipse?") # plt.xscale('log')
[ "yuki@yukideMacBook-Pro.local" ]
yuki@yukideMacBook-Pro.local
8f4065d632706b252e9aaa5aef0f380f65fed859
57c38487a6a689318c960fa7d6b0185f372241bc
/presalytics_ooxml_automation/models/theme_effect_map.py
d5e94240d7206cc938862efbf1be434f6ab396ab
[ "MIT" ]
permissive
presalytics/ooxml-automation-python-client
2c88bae455b7e567ebdb6a4ea106bbdcd192ac47
fa6100eef1743e43b4d25b3faac79d39fe32c9d7
refs/heads/master
2020-06-05T23:42:32.964361
2019-12-27T22:51:40
2019-12-27T22:51:40
192,575,331
0
0
null
null
null
null
UTF-8
Python
false
false
4,626
py
# coding: utf-8 """ OOXML Automation This API helps users convert Excel and Powerpoint documents into rich, live dashboards and stories. # noqa: E501 The version of the OpenAPI document: 0.1.0-no-tags Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from presalytics_ooxml_automation.configuration import Configuration class ThemeEffectMap(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'theme_id': 'str', 'intensity_id': 'int', 'id': 'str' } attribute_map = { 'theme_id': 'themeId', 'intensity_id': 'intensityId', 'id': 'id' } def __init__(self, theme_id=None, intensity_id=None, id=None, local_vars_configuration=None): # noqa: E501 """ThemeEffectMap - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._theme_id = None self._intensity_id = None self._id = None self.discriminator = None self.theme_id = theme_id if intensity_id is not None: self.intensity_id = intensity_id if id is not None: self.id = id @property def theme_id(self): """Gets the theme_id of this ThemeEffectMap. # noqa: E501 :return: The theme_id of this ThemeEffectMap. # noqa: E501 :rtype: str """ return self._theme_id @theme_id.setter def theme_id(self, theme_id): """Sets the theme_id of this ThemeEffectMap. :param theme_id: The theme_id of this ThemeEffectMap. # noqa: E501 :type: str """ self._theme_id = theme_id @property def intensity_id(self): """Gets the intensity_id of this ThemeEffectMap. # noqa: E501 :return: The intensity_id of this ThemeEffectMap. # noqa: E501 :rtype: int """ return self._intensity_id @intensity_id.setter def intensity_id(self, intensity_id): """Sets the intensity_id of this ThemeEffectMap. :param intensity_id: The intensity_id of this ThemeEffectMap. # noqa: E501 :type: int """ self._intensity_id = intensity_id @property def id(self): """Gets the id of this ThemeEffectMap. # noqa: E501 :return: The id of this ThemeEffectMap. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this ThemeEffectMap. :param id: The id of this ThemeEffectMap. # noqa: E501 :type: str """ self._id = id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ThemeEffectMap): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, ThemeEffectMap): return True return self.to_dict() != other.to_dict()
[ "kevin@chart-a-lot.com" ]
kevin@chart-a-lot.com
8e36a3c996cee7f73681b2a989b6f9f54858868b
d233c1e5852158c21ee98477616f097d4d64b527
/apg4b/1_22.py
2f8f53d803fe493c3fd4b4bac6e3be96a68121fd
[]
no_license
SILKYMAJOR/atcoder_repo
606ab1bfb04de8e750997da907b4a90e1be626fb
fa83edefce1ba9300932b13f99c69c0fee3a4db7
refs/heads/master
2020-07-23T11:06:56.737234
2020-01-01T14:57:30
2020-01-01T14:57:30
207,538,253
0
0
null
null
null
null
UTF-8
Python
false
false
190
py
from operator import itemgetter N = int(input()) num_list = [list(map(int, input().split())) for _ in range(N)] for line in sorted(num_list, key=itemgetter(1)): print(line[0], line[1])
[ "silky.major@gmail.com" ]
silky.major@gmail.com
a331b31ff9a44abb3e4d221a798044ccedbaaab3
976aef4484b41665f5e463da48c2bc83a4d192f6
/demo.py
c7494b0bca42d48a9c277b0416777d5dc309e86e
[]
no_license
selysse/MTS_Teta_hackathon
0b51da510db012e4353609a444691a4e4693c908
b5bcd2b735e6de66eb9a2e5482c22fe7adcdb8dd
refs/heads/master
2023-08-13T19:54:25.166246
2021-09-18T10:22:03
2021-09-18T10:22:03
407,819,824
1
0
null
null
null
null
UTF-8
Python
false
false
2,631
py
import streamlit as st import pandas as pd from random import randint import base64 import joblib def get_table_download_link(df): """Generates a link allowing the data in a given panda dataframe to be downloaded in: dataframe out: href string """ csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here return f'<a href="data:file/csv;base64,{b64}" download="answers.csv">Download answers.csv</a>' model = joblib.load('models/main_model.pickle') target_name = ['personal','technical'] def data_prep(t): df = t.copy() df["start_with_api"] = df["url"].str.contains("^api", regex=True).astype(int) df["has_userapi"] = df["url"].str.contains("userapi").astype(int) df["has_googleapis"] = df["url"].str.contains("googleapis").astype(int) df["size_of_url"] = df["url"].apply(lambda x: len(x)) df["size_of_url_split"] = df["url"].apply(lambda x: len(x.split("."))) df["clear_url"] = df["url"].apply(lambda x: x.replace(".", " ")) df["minus_count"] = df["url"].str.count("-") return df st.title('Demo of host classifier by _V3.0_') with st.form('text'): text_input = st.text_area('Enter host name here: ', 'yourHost.com') submit_button = st.form_submit_button('Predict label') if submit_button: if ' ' not in text_input and '.' in text_input and text_input[0]!='.': raw_data = pd.DataFrame({'url':[text_input]}) test_data = data_prep(raw_data) predict = model.predict(test_data.drop(columns=["url"])) st.markdown(f'Predicted label: **{target_name[predict[0]]}**' ' (probability: {:.3f} )'.format(model.predict_proba(test_data.drop(columns=["url"]))[0][predict][0])) else: st.write('Enter **correct** host') st.write('OR') with st.form('file'): uploaded_file = st.file_uploader("Upload a csv file", ["csv"]) file_button = st.form_submit_button('Predict labels') if uploaded_file: file = pd.read_csv(uploaded_file) if file_button: clmn = file.columns if len(clmn)!=1 and 'url' not in clmn: st.write('Wrong format of data, please upload data with column named "url" or with only one text column') else: if len(clmn)==1: file.columns=['url'] try: prep_file = pd.DataFrame({'url':file['url'].values}) test_data = data_prep(prep_file) predict = model.predict(test_data.drop(columns=["url"])) prep_file['Prediction']=predict st.write(prep_file) st.markdown(get_table_download_link(prep_file), unsafe_allow_html=True) except: st.write('Oops! You data format is wrong!\nPlease make sure your data constis of strings!')
[ "xtrox@rambler.ru" ]
xtrox@rambler.ru
48b8766fe33d5f9dc24df0f1e39a1bbc72a63a1e
5c5770eef858cb2f13d1f128620db860fd590663
/main.py
1159929222c34fe736af6b7c6ffd266cb87b383a
[]
no_license
changjiang1017/1a
702b4513d70db8d86db2c20d1f5f56c54db4bb7b
bd7b413b8904973562845fa86f43284a52020c98
refs/heads/master
2023-09-03T09:41:41.008791
2021-10-17T09:15:09
2021-10-17T09:15:09
418,075,470
0
0
null
null
null
null
UTF-8
Python
false
false
922
py
def human_detect(): global hdc, hmd huskylens.init_mode(protocolAlgorithm.ALGORITHM_FACE_RECOGNITION) hdc = 0 hmd = False while True: if huskylens.is_appear(1, HUSKYLENSResultType_t.HUSKYLENS_RESULT_BLOCK): pass else: while hmd == False and hdc < 200: if pins.analog_read_pin(AnalogPin.P0) > 200: hmd = True hdc += 1 basic.pause(20) if hmd == True: basic.show_icon(IconNames.STICK_FIGURE) else: basic.show_icon(IconNames.HOUSE) hmd = False hdc = 0 ds = DS1302.create(DigitalPin.P13, DigitalPin.P14, DigitalPin.P15) huskylens.init_i2c() OLED.init(128, 64) Speech.Wait_XFS_Status(Speech.ChipStatus_Type.CHIPSTATUS_INITSUCCESSFUL) basic.show_icon(IconNames.SMALL_DIAMOND) human_detect() def on_forever(): pass basic.forever(on_forever)
[ "92668724+changjiang1017@users.noreply.github.com" ]
92668724+changjiang1017@users.noreply.github.com
8508d3ef621fd000d8fada20c67cbf511edfbb89
c62da4d4764de080a45decb14dde339075b61b8a
/python-features/statistics/normal-distribution-II.py
0b105a729e48b2a8ca833b229be08be5783bd192
[]
no_license
Aragor70/Algorithm-Examples
402faf92dcce6158743aec15641de8dfa2de2cfd
ec20d6b09e9ad328137a8c8921464a9945c7f386
refs/heads/master
2023-03-28T13:55:37.739302
2021-03-07T18:29:51
2021-03-07T18:29:51
321,797,504
0
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
# Part of 10 Days of Statistics at https://www.hackerrank.com/ # Objective # In this challenge, we practice calculating the normal distributions of Cumulative Probability. # The final grades for a Physics exam taken by a large group of students have a mean of 70 # and a standard deviation of 10. # If we can approximate the distribution of these grades by a normal distribution, what percentage of the students: # Scored higher than 80 (i.e., have a grade > 80)? # Passed the test (i.e., have a grade >= 60)? # Failed the test (i.e., have a grade < 60)? # Find and print the answer to each question on a new line, rounded to a scale of 2 decimal places. # Gauss error function => math.erf(x) # https://docs.python.org/3/library/math.html#math.erf import math def distribution(x, std, mean): return ( 0.5 * ( 1 + math.erf( ( x - mean) / ( 10 * (2 ** 0.5) ) )) ) value_A = distribution(80, 10, 70) value_B = distribution(60, 10, 70) print(round( (1 - value_A) * 100 , 2)) print(round( (1 - value_B) * 100 , 2)) print(round(value_B * 100, 2)) # python [filename].py
[ "mikis3@o2.pl" ]
mikis3@o2.pl
3faaee0a13a0f4cb3921d81806d5c867e0523a9f
caba36cdcd46d8d268f58d32ee6ebaecdd3ca66e
/Ferme/app/forms.py
b5e0848bebfeb867ae23dbb9a210a1f75401ca89
[]
no_license
kvzon1984/FermeV3.0_Portafolio
794d536fa3e0f10082d8a3790dda1f10476d5a35
3df5d75c95ebd1a3aa96bf18013ce27052fbe14c
refs/heads/master
2023-07-11T03:40:06.534668
2021-08-16T02:52:38
2021-08-16T02:52:38
364,424,998
0
0
null
null
null
null
UTF-8
Python
false
false
5,576
py
from django import forms from django.db.models import fields from django.forms import widgets from .models import Cliente, Empleado, FamiliaProducto, Producto,OrdenesCompra,Proveedor, TipoCliente, TipoProducto,Comuna from django.contrib.auth.forms import UserCreationForm class DateInput(forms.DateInput): input_type = 'date' class RegistroForm(forms.ModelForm): class Meta: model = Cliente fields = [ "pnombre", "snombre" , "appaterno", "apmaterno", "run_cliente", "dvrun", "fecha_nacimiento", "celular", "correo", "direccion", "id_comuna", "cod_tipo_cliente", "razon_social" ] labels = { "pnombre" : 'Primer nombre', "snombre" : '<br>Segundo nombre' , "appaterno" : '<br>Apellido paterno', "apmaterno" : '<br>Apellido materno', "run_cliente" : '<br>Rut Cliente', "dvrun" : '<br>dv' , "fecha_nacimiento": '<br>Fecha de nacimiento', "celular": '<br>Telefono', "correo": '<br>Email', "direccion" : '<br>Direccion', "id_comuna" : '<br>Comuna', "cod_tipo_cliente" : '<br>Tipo de Cliente', "razon_social" : '' } widgets = { 'run_cliente' : forms.TextInput(attrs={'class':'input','placeholder':'12345678'}), 'fecha_nacimiento': DateInput(), 'razon_social':forms.TextInput(attrs={'hidden':'hidden'}) } id_comuna = forms.ModelChoiceField( queryset= Comuna.objects.all(), label='<br>Comuna' ) cod_tipo_cliente = forms.ModelChoiceField( queryset= TipoCliente.objects.all(), label='<br>Tipo de Cliente' ) class UserPass(UserCreationForm): pass class AgregarProductoForm(forms.ModelForm): class Meta: model = Producto fields = [ 'descripcion', 'fecha_vencimiento', 'stock', 'stock_critico', 'precio', 'foto', 'cod_proveedor', 'cod_familia', 'cod_tipo_producto' ] labels = { "descripcion":'Nombre del producto', "fecha_vencimiento":'<br>Fecha de vencimiento', "stock":'<br>Stock', "stock_critico":' <br>Stock critico', "precio":' <br>Precio', "foto":' <br>Seleccione la imagen del producto' } widgets = { "descripcion": forms.TextInput(attrs={'class':'input','placeholder':'Ingrese el nombre del producto'}), "fecha_vencimiento":DateInput(attrs={'type':'date'}) } cod_tipo_producto = forms.ModelChoiceField( queryset = TipoProducto.objects.all(), label='<br>Tipo Productos' ) cod_proveedor = forms.ModelChoiceField( queryset = Proveedor.objects.all(), label='<br>Proveedor' ) cod_familia = forms.ModelChoiceField( queryset = FamiliaProducto.objects.all(), label='<br>Familia de producto' ) #agregar empleado #class EmpleadoAgregarOrdenCompra(forms.ModelForm): # class Meta: # model = Empleado # fields = { # 'id_cargo' #} class AgregarOrdenCompra(forms.ModelForm): class Meta: model = OrdenesCompra fields = [ 'cod_proveedor', 'run_empleado', 'estado', 'fecha_emision', 'fecha_recepcion' ] labels={ "cod_proveedor":'Codigo Proveedor ', "run_empleado":'<br>Rut Empleado', "estado":'<br>Estado Orden Compra', "fecha_emision":'<br>Fecha Emision', "fecha_recepcion":'<br>Fecha Recepcion', } widgets = { 'fecha_emision': DateInput(), 'fecha_recepcion': DateInput() } class ProveedorForm(forms.ModelForm): class Meta: model= Proveedor fields = [ 'run_proveedor','nom_proveedor','celular_proveedor' ] labels={ "run_proveedor":'Rut Proveedor ', "nom_proveedor":'<br>Nombre', "celular_proveedor":'<br>Celular ', } widgets = { "run_proveedor": forms.TextInput(attrs={'class':'input','placeholder':'12345678-1'}), "nom_proveedor": forms.TextInput(attrs={'class':'input','placeholder':'Ingrese Datos'}), "celular_proveedor": forms.TextInput(attrs={'class':'input','placeholder':'91234567'}), } class TipoProductoForm(forms.ModelForm): class Meta: model = TipoProducto fields = [ 'descripcion' ] labels={ 'descripcion': 'Nombre de Tipo Producto' } widgets = { "descripcion": forms.TextInput(attrs={'class':'input','placeholder':'Ingrese un tipo de producto','title':'Tipo de producto' }), } class FamiliaProductoForm(forms.ModelForm): class Meta: model = FamiliaProducto fields = [ 'descripcion' ] labels = { 'descripcion': 'Familia del producto' } widgets = {'descripcion': forms.TextInput(attrs={'class' : 'input'})}
[ "ivega.josue@gmail.com" ]
ivega.josue@gmail.com
b3a9c46f690b95732f118b30580ab5f528859ea7
fcca9d5118d87d815208dd881c7d87943ee4a932
/rclpy/test/test_callback_group.py
8538407f6c6ac63e6100fed7cf9a1c86c86f5dc5
[ "Apache-2.0" ]
permissive
Parallel-Hao/rclpy
fe1b4913f804ff4e5c3d5bb629cadf3bfb75352c
20dd7abd5bba11641d39056cc481bc89f9f961f7
refs/heads/Brand
2020-05-03T01:18:01.326845
2019-04-02T09:15:55
2019-04-02T09:15:55
178,333,300
0
1
Apache-2.0
2020-02-26T07:17:34
2019-03-29T04:39:14
Python
UTF-8
Python
false
false
3,938
py
# Copyright 2017 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from rcl_interfaces.srv import GetParameters import rclpy from rclpy.callback_groups import MutuallyExclusiveCallbackGroup from rclpy.callback_groups import ReentrantCallbackGroup from test_msgs.msg import Primitives class TestCallbackGroup(unittest.TestCase): @classmethod def setUpClass(cls): cls.context = rclpy.context.Context() rclpy.init(context=cls.context) cls.node = rclpy.create_node('TestCallbackGroup', namespace='/rclpy', context=cls.context) @classmethod def tearDownClass(cls): cls.node.destroy_node() rclpy.shutdown(context=cls.context) def test_reentrant_group(self): self.assertIsNotNone(self.node.handle) group = ReentrantCallbackGroup() t1 = self.node.create_timer(1.0, lambda: None, callback_group=group) t2 = self.node.create_timer(1.0, lambda: None, callback_group=group) self.assertTrue(group.can_execute(t1)) self.assertTrue(group.can_execute(t2)) self.assertTrue(group.beginning_execution(t1)) self.assertTrue(group.beginning_execution(t2)) def test_mutually_exclusive_group(self): self.assertIsNotNone(self.node.handle) group = MutuallyExclusiveCallbackGroup() t1 = self.node.create_timer(1.0, lambda: None, callback_group=group) t2 = self.node.create_timer(1.0, lambda: None, callback_group=group) self.assertTrue(group.can_execute(t1)) self.assertTrue(group.can_execute(t2)) self.assertTrue(group.beginning_execution(t1)) self.assertFalse(group.can_execute(t2)) self.assertFalse(group.beginning_execution(t2)) group.ending_execution(t1) self.assertTrue(group.can_execute(t2)) self.assertTrue(group.beginning_execution(t2)) def test_create_timer_with_group(self): tmr1 = self.node.create_timer(1.0, lambda: None) group = ReentrantCallbackGroup() tmr2 = self.node.create_timer(1.0, lambda: None, callback_group=group) self.assertFalse(group.has_entity(tmr1)) self.assertTrue(group.has_entity(tmr2)) def test_create_subscription_with_group(self): sub1 = self.node.create_subscription(Primitives, 'chatter', lambda msg: print(msg)) group = ReentrantCallbackGroup() sub2 = self.node.create_subscription( Primitives, 'chatter', lambda msg: print(msg), callback_group=group) self.assertFalse(group.has_entity(sub1)) self.assertTrue(group.has_entity(sub2)) def test_create_client_with_group(self): cli1 = self.node.create_client(GetParameters, 'get/parameters') group = ReentrantCallbackGroup() cli2 = self.node.create_client(GetParameters, 'get/parameters', callback_group=group) self.assertFalse(group.has_entity(cli1)) self.assertTrue(group.has_entity(cli2)) def test_create_service_with_group(self): srv1 = self.node.create_service(GetParameters, 'get/parameters', lambda req: None) group = ReentrantCallbackGroup() srv2 = self.node.create_service( GetParameters, 'get/parameters', lambda req: None, callback_group=group) self.assertFalse(group.has_entity(srv1)) self.assertTrue(group.has_entity(srv2)) if __name__ == '__main__': unittest.main()
[ "noreply@github.com" ]
Parallel-Hao.noreply@github.com
f7de7c2ef755e5893d687912c0b74ed7148a8d02
6b453d913b1ae6697da738ddae9df013e8128d91
/app/members/urls.py
1a117fa9f25eacf78656a78f5d5d3ef9928e11ec
[]
no_license
moorekwon/instagram
9703ecb1aed460ddec685c0bd06fe0fac3807548
aaeca79f0d2765a24dd780bb12848c2c7b76a009
refs/heads/master
2022-12-12T18:13:37.536048
2020-02-03T08:33:16
2020-02-03T08:33:16
229,711,643
0
0
null
2022-12-08T03:32:50
2019-12-23T08:39:38
Jupyter Notebook
UTF-8
Python
false
false
267
py
from django.urls import path from . import views app_name = 'members' urlpatterns = [ path('login/', views.login_view, name='login'), path('logout/', views.logout_view, name='logout-view'), path('naver-login/', views.naver_login, name='naver-login') ]
[ "raccoonhj33@gmail.com" ]
raccoonhj33@gmail.com
2dd0198f6e8c5fa6b71b472694204fc3ec02e9dd
acee409d0a45506c49d78d5e26f3e992b6eea856
/python/layer.py
5ec5c28d8f936826733430c6fce92ebe779d2d80
[ "Apache-2.0" ]
permissive
m-thirumal/aws-lambda-layer
d74a3cf8edf527d00da48c328dbf1a9ba5283bbe
032d875219c729f94c8a9b32f0240cdd18c36bf2
refs/heads/main
2023-06-18T00:53:44.245617
2021-07-18T07:04:05
2021-07-18T07:04:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
99
py
def layer_fun(): return "Hi, I am from layer_fun(), if you see me then your code is working!!!"
[ "m.thirumal@hotmail.com" ]
m.thirumal@hotmail.com
3ad8858aa59890f2add9d983a44c9c960eddbfa3
278b98798ab151565e728d34f598ff376fb0a332
/Amazon/code/BackEnd/delete_database.py
c0ff3986b0992c4299422c79a9fa04551e27523a
[]
no_license
xwgnick/MiniAmzon
aa453e6d134f5f8acfdca712da82d1fb9388879b
31139a47b6b96e9f949bc8e64c474df126d1c618
refs/heads/master
2022-07-24T23:32:44.264585
2020-05-22T20:56:29
2020-05-22T20:56:29
260,796,086
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
import psycopg2 conn = psycopg2.connect(database = 'wx50db', user = 'wx50', password = 'wx50', host = 'localhost', port = '5432') cur = conn.cursor() cur.execute("DELETE FROM amazonapp_warehouse") cur.execute("DELETE FROM amazonapp_cart") conn.commit()
[ "492251476xwg@gmail.com" ]
492251476xwg@gmail.com
977fd006132a5a85bddc68ea4d248132df0082ce
39827f381f095704902080c4291871020d7dfb24
/python-impl/bls_sig_g1.py
19bad1b29d98ce274a55faf1d96849e50270aab0
[ "Apache-2.0" ]
permissive
valerini/bls_sigs_ref
eee0ff6469e93adac36d084feffb83b011f3d78a
14faaa54a79583396f35475b7b1a27ec6d92c4cf
refs/heads/master
2020-07-04T22:18:59.124024
2019-08-04T21:58:22
2019-08-04T22:29:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,296
py
#!/usr/bin/python # # (C) Riad S. Wahby <rsw@cs.stanford.edu> from consts import g1suite from curve_ops import g2gen, point_mul, point_neg from hash_to_field import Hr from opt_swu_g1 import map2curve_osswu from pairing import multi_pairing from util import get_cmdline_options, print_g1_hex, print_g2_hex, print_tv_sig # sk must be bytes() def keygen(sk): x_prime = Hr(sk) return (x_prime, point_mul(x_prime, g2gen)) # signing as in # https://github.com/pairingwg/bls_standard/blob/master/minutes/spec-v1.md#basic-signature-in-g1 # sign takes in x_prime (the output of keygen), a message, and a ciphersuite id # returns a signature in G1 def sign(x_prime, msg, ciphersuite): P = map2curve_osswu(msg, ciphersuite) return point_mul(x_prime, P) # verification corresponding to sign() # returns True if the signature is correct, False otherwise def verify(pk, sig, msg, ciphersuite): P = map2curve_osswu(msg, ciphersuite) return multi_pairing((P, sig), (pk, point_neg(g2gen))) == 1 if __name__ == "__main__": def main(): opts = get_cmdline_options() ver_fn = verify if opts.verify else None for sig_in in opts.test_inputs: print_tv_sig(sig_in, g1suite, sign, keygen, print_g2_hex, print_g1_hex, ver_fn, opts.quiet) main()
[ "kwantam@gmail.com" ]
kwantam@gmail.com
53b6ae3c7727f0d5ac9dd683355813314ab047fb
a5a99f646e371b45974a6fb6ccc06b0a674818f2
/FWCore/Integration/test/testConcurrentIOVsESConcurrentSource_cfg.py
461e011539e736d1c861cfd0d22a1e3cbb9ecf66
[ "Apache-2.0" ]
permissive
cms-sw/cmssw
4ecd2c1105d59c66d385551230542c6615b9ab58
19c178740257eb48367778593da55dcad08b7a4f
refs/heads/master
2023-08-23T21:57:42.491143
2023-08-22T20:22:40
2023-08-22T20:22:40
10,969,551
1,006
3,696
Apache-2.0
2023-09-14T19:14:28
2013-06-26T14:09:07
C++
UTF-8
Python
false
false
1,527
py
import FWCore.ParameterSet.Config as cms process = cms.Process("TEST") process.source = cms.Source("EmptySource", firstRun = cms.untracked.uint32(1), firstLuminosityBlock = cms.untracked.uint32(1), firstEvent = cms.untracked.uint32(1), numberEventsInLuminosityBlock = cms.untracked.uint32(1), numberEventsInRun = cms.untracked.uint32(100) ) process.maxEvents.input = 8 process.options = dict( numberOfThreads = 4, numberOfStreams = 4, numberOfConcurrentRuns = 1, numberOfConcurrentLuminosityBlocks = 4, eventSetup = dict( numberOfConcurrentIOVs = 2 ) ) process.testESSource = cms.ESSource("TestESConcurrentSource", firstValidLumis = cms.vuint32(1, 4, 6, 7, 8, 9), iterations = cms.uint32(10*1000*1000), checkIOVInitialization = cms.bool(True), expectedNumberOfConcurrentIOVs = cms.uint32(2) ) process.concurrentIOVESProducer = cms.ESProducer("ConcurrentIOVESProducer") process.test = cms.EDAnalyzer("ConcurrentIOVAnalyzer", checkExpectedValues = cms.untracked.bool(False) ) process.testOther = cms.EDAnalyzer("ConcurrentIOVAnalyzer", checkExpectedValues = cms.untracked.bool(False), fromSource = cms.untracked.ESInputTag(":other") ) process.busy1 = cms.EDProducer("BusyWaitIntProducer",ivalue = cms.int32(1), iterations = cms.uint32(10*1000*1000)) process.p1 = cms.Path(process.busy1 * process.test * process.testOther) #process.add_(cms.Service("Tracer"))
[ "chrisdjones15@gmail.com" ]
chrisdjones15@gmail.com
1b0d06848054f92113d19ae82b5dd5c65a1d6a0f
1b026d5a0450ccee784e8fb0fc1216354716135c
/tarea_3/generar_respuestas.py
548084bbbaee3b47dd1507d108921834f4219436
[]
no_license
lross2k/tareas-electriciad-1
1752560b5a40b4ea5bf0ee70666b830841ca2d38
7914f7a2db9281d6f343fec7af193982b06c8561
refs/heads/master
2023-06-22T14:15:21.286328
2021-07-20T14:40:46
2021-07-20T14:40:46
294,838,156
0
0
null
null
null
null
UTF-8
Python
false
false
2,362
py
import csv import matplotlib.pyplot as plt import numpy as np # función usada para redondear valores reales a 3 decimales def redondear(func): func = "%.3f" % func return func # función encargada de calcular A, B, ..., H, I y retornar un array para el CSV def valores(t_x): # constantes A = -20 B = -2 C = -30 E = -5 G = 4 # dependientes de t_x D = (-20 * np.exp( -2 * (t_x + 0.5) ) + 30 ) * np.exp( 2 * (t_x + 0.5 ) ) F = (-30 + (-20 * np.exp( -2 * (t_x + 0.5) ) + 30 ) * np.exp( -2 ) + 5) * np.exp( 2 * (t_x + 1.5) ) H = H = -2 * 0.1 * D I = I = -2 * 0.1 * F t_x = "%0.1f" % t_x return [t_x, A, B, C, redondear(D), E, redondear(F), G, redondear(H), redondear(I)] # generar archivo CSV e introducir los datos para cada t_x with open("valores.csv", 'w', newline = '') as archivo: escribir = csv.writer(archivo) escribir.writerow(['tx','A','B','C','D','E','F','G','H','I']) for t_x in np.arange(0.1,1.1,0.1): escribir.writerow( valores(t_x) ) # gráficas fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True) t = np.arange(0, 4.5, 1e-1) # nombres para leyenda def nombres(t_x): nombre = "$t_x$ = %0.1fs" % t_x return nombre # gráfica de voltaje for t_x in np.arange(0.1,1.1,0.1): v_t = (t < (t_x + 0.5)) * -20 * np.exp( -2 * t ) + (t >= (t_x + 0.5)) * (t < (t_x + 1.5)) * (-30 + (-20 * np.exp( -2 *(t_x + 0.5) ) + 30 ) * np.exp( -2 * ( t - t_x - 0.5 ) ) ) + (t >= (t_x + 1.5)) * ( -5 + ( -30 + (-20 * np.exp( -2 * (t_x + 0.5) -2 ) +30 * np.exp(-2) +5 )) * np.exp( 2* (t_x + 1.5)) * np.exp( - 2 * t) ) ax1.plot(t,v_t,label = nombres(t_x)) ax1.set_ylabel('$V_C$ (V)') # gráfica de corriente for t_x in np.arange(0.1,1.1,0.1): i_t = (t < (t_x + 0.5)) * 4 * np.exp(-2 * t) + (t >= (t_x + 0.5)) * (t < (t_x + 1.5)) * -2 * 0.1 * (-20 * np.exp( -2 *(t_x + 0.5) ) + 30 ) * np.exp( -2 * t ) * np.exp( -2 * (- t_x - 0.5) ) + (t >= (t_x + 1.5)) * -2 * 0.1 * ( -5 + ( -30 + (-20 * np.exp( -2 * (t_x + 0.5) -2 ) +30 * np.exp(-2) +5 )) * np.exp( 2* (t_x + 1.5)) * np.exp( - 2 * t) ) ax2.plot(t,i_t) ax2.set_ylabel('$i_C$ (mA)') # dar formato a los subplots fig.legend(bbox_to_anchor=(0.17, 0.002, 0.7, 0.98),loc='upper left', fontsize = 'xx-small', ncol=5, mode="expand", borderaxespad=0.) plt.xlabel('Tiempo (s)') plt.savefig('graf.png') plt.show()
[ "luisross2000@outlook.com" ]
luisross2000@outlook.com
4b26d2288fe6cceaed839816ed06bdce9f6e52d8
f0ae65bddedea44b1e66f3d235a901e62afae3f2
/macgyyver_stuff/parse_input.py
9de1a35ebd5d51857f29e74f682675a2370a7704
[]
no_license
Brandon-Valley/my_movie_tools
d0a2ba91cda054c1b68709f1a9082028842e83a1
371742bfeaa0cfa2985ce06a6865f6ae09445029
refs/heads/master
2023-01-10T00:06:48.696103
2022-12-28T14:09:20
2022-12-28T14:09:20
221,057,903
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
import pyperclip INPUT_PATH = 'input.txt' def read_text_file(file_path): with open(file_path, 'r', encoding='utf-8') as text_file: # can throw FileNotFoundError result = tuple(l.rstrip() for l in text_file.readlines()) return result raw_in = read_text_file(INPUT_PATH) print(raw_in) in_str = '' for line in raw_in: in_str += line print(in_str) s_raw_in = in_str.split('"') print(s_raw_in) e_l = [] for elm_num, elm in enumerate(s_raw_in): if elm_num % 2 != 0: e_l.append(elm) print(e_l) pyperclip.copy(str(e_l)) spam = pyperclip.paste()
[ "bavvh8@mst.edu" ]
bavvh8@mst.edu
cd397df91774060d5ea6fd8a7135eecaae70687f
b785c5d007367903fda90a708264be5ac8f65d02
/task.py
b520806f366eb4d3440afd500cbd10be748e27e4
[]
no_license
Sakshichouhan2/Dice-roll
c23747fa34d3d4b256c65f14d7c1a5957b3debe2
0cf9b9662bd7951288d16dfa7c1011488c73c2bf
refs/heads/main
2023-03-03T11:20:58.676586
2021-02-16T07:26:48
2021-02-16T07:26:48
339,145,350
0
0
null
null
null
null
UTF-8
Python
false
false
829
py
'''“Dice-roll" that generates the random value between 1 and 6 every minute . and sends to Redis“Sender" that reads the value from Redis and pushes to SQS“Reader" that reads the value from SQS and prints it to the stdout. Ideally,A reader could be deployed in AWS.''' import random try: min_dice = 1 max_dice = 6 except: print('Input invalid program will revert to defaults.') again = True while again: print(random.randint(min_dice, max_dice)) dice_again = input('Want to roll the dice again? ') if dice_again.lower() == 'yes' or dice_again.lower() == 'y' or dice_again.upper() == "Yes" or dice_again.upper() == "Y": continue elif dice_again.lower() == 'no' or dice_again.lower() == 'n' or dice_again.upper() == "No" or dice_again.upper() == "N": exit()
[ "chouhansakshi88@gmail.com" ]
chouhansakshi88@gmail.com
e8c9a9436af9cb169a4756a1d72c4bf0258943d8
dc6c429e3fb5c85f5742d50c8d7e07ab24f138df
/supportgroup.py
a479f9d61a27eeae6b847dd3807a5b10920514ce
[]
no_license
sasqwatch/utils
47a57cc70f3819ef5525b1c3e687c8d16f6edb5b
c708440efb85ab720877d1fbb82447df9e55e8c6
refs/heads/master
2020-04-17T19:35:26.916041
2018-08-14T20:37:39
2018-08-14T20:37:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,964
py
#!/usr/bin/env python3 """ Updated this to allow changing processes other than self: https://gist.github.com/epinna/8ce25ac36a7710cdd1806764c647cf99 """ import argparse import os import re def update_argv(pid, newargs=None): with open('/proc/{}/cmdline'.format(pid), 'rb') as f: cmdline = f.read() cmdline_len = len(cmdline) - 1 if newargs is None: return cmdline_len with open('/proc/{}/maps'.format(pid)) as f: maps = f.read() stack_start, stack_end = [int(x, 16) for x in re.search('([0-9a-f]+)-([0-9a-f]+).*\[stack\]', maps).groups()] stack_size = stack_end - stack_start with open('/proc/{}/mem'.format(pid), 'rb+') as mem: mem.seek(stack_start) data = mem.read(stack_size) argv_addr = stack_start + data.find(cmdline) mem.seek(argv_addr) newargs = b'\x00'.join(newargs.strip(b'\x00').split(b' ')) if len(newargs) > cmdline_len: newargs = newargs[:cmdline_len] print('WARNING: You gave too many characters. Truncating to "{}"...'.format(newargs.decode().replace('\x00',' '))) newargs += b'\x00'*(cmdline_len - len(newargs) + 1) mem.write(newargs) return len(newargs) def main(): parser = argparse.ArgumentParser(description='Renames a process in process list. Must be root!') parser.add_argument('-p', '--pid', required=True, type=int, help='PID of process to rename') parser.add_argument('--rename', default=None, type=str, help='The name/args to rename the process') args = parser.parse_args() if args.rename is None: print('You can rename the process name for pid={} with {} characters'.format(args.pid, update_argv(args.pid))) else: update_argv(args.pid, newargs=args.rename.encode()) print('Process name updated!') return if __name__ == '__main__': if os.geteuid() != 0: print('You must run this as root!') else: main()
[ "noreply@github.com" ]
sasqwatch.noreply@github.com
43d3b7fcd74fe33c44b8d93e53d04867f5334898
04803c70bb97012b7d500a177ac0240fb2ddbe38
/1heptane/pdep/network4244_1.py
5145107f893228a8e18edf49ec3b8ccbfc48d9cc
[]
no_license
shenghuiqin/chpd
735e0415f6688d88579fc935459c1b0f53596d1d
396ba54629036e3f2be0b3fabe09b78c90d56939
refs/heads/master
2023-03-01T23:29:02.118150
2019-10-05T04:02:23
2019-10-05T04:02:23
192,084,217
0
0
null
2019-06-18T18:33:13
2019-06-15T13:52:28
HTML
UTF-8
Python
false
false
84,283
py
species( label = 'C=C([CH]C)C[CH]C(24171)', structure = SMILES('[CH2]C(=CC)C[CH]C'), E0 = (230.563,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,357.285,2038.33],'cm^-1')), HinderedRotor(inertia=(0.0814701,'amu*angstrom^2'), symmetry=1, barrier=(7.37999,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0814702,'amu*angstrom^2'), symmetry=1, barrier=(7.37999,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0013206,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0814701,'amu*angstrom^2'), symmetry=1, barrier=(7.37998,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.526491,'amu*angstrom^2'), symmetry=1, barrier=(47.6916,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.840817,0.0668233,-3.93337e-05,1.17465e-08,-1.46239e-12,27845.5,29.2386], Tmin=(100,'K'), Tmax=(1751.26,'K')), NASAPolynomial(coeffs=[12.8576,0.0393763,-1.58248e-05,2.79727e-09,-1.84852e-13,23636.5,-35.4691], Tmin=(1751.26,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(230.563,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(RCCJC) + radical(Allyl_P)"""), ) species( label = 'C3H6(72)', structure = SMILES('C=CC'), E0 = (5.9763,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,2750,2800,2850,1350,1500,750,1050,1375,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.497558,'amu*angstrom^2'), symmetry=1, barrier=(11.4398,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (42.0797,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(2218.31,'J/mol'), sigma=(4.982,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=1.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.31912,0.00817959,3.34736e-05,-4.36194e-08,1.58213e-11,749.325,9.54025], Tmin=(100,'K'), Tmax=(983.754,'K')), NASAPolynomial(coeffs=[5.36755,0.0170743,-6.35108e-06,1.1662e-09,-8.2762e-14,-487.138,-4.54468], Tmin=(983.754,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(5.9763,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(203.705,'J/(mol*K)'), label="""C3H6""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = 'CH3CHCCH2(18175)', structure = SMILES('C=C=CC'), E0 = (145.615,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2950,3100,1380,975,1025,1650,540,610,2055,2750,2800,2850,1350,1500,750,1050,1375,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.759584,'amu*angstrom^2'), symmetry=1, barrier=(17.4643,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (54.0904,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(2996.71,'J/mol'), sigma=(5.18551,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with Tc=468.08 K, Pc=48.77 bar (from Joback method)"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.74635,0.0218189,8.22353e-06,-2.14768e-08,8.55624e-12,17563.6,12.7381], Tmin=(100,'K'), Tmax=(1025.6,'K')), NASAPolynomial(coeffs=[6.82078,0.0192338,-7.45622e-06,1.36536e-09,-9.53195e-14,16028,-10.4333], Tmin=(1025.6,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(145.615,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(228.648,'J/(mol*K)'), label="""CH3CHCCH2""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C1([CH]C)CC1C(24224)', structure = SMILES('[CH2]C1([CH]C)CC1C'), E0 = (316.349,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.968205,0.0489647,2.86241e-05,-6.7546e-08,2.77792e-11,38172.7,27.7912], Tmin=(100,'K'), Tmax=(1002.45,'K')), NASAPolynomial(coeffs=[15.0332,0.0350469,-1.37018e-05,2.60034e-09,-1.88281e-13,33232.3,-50.6754], Tmin=(1002.45,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(316.349,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsCs) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclopropane) + radical(Cs_S) + radical(Neopentyl)"""), ) species( label = 'H(3)', structure = SMILES('[H]'), E0 = (211.792,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (1.00794,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1205.6,'J/mol'), sigma=(2.05,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,9.24385e-15,-1.3678e-17,6.66185e-21,-1.00107e-24,25472.7,-0.459566], Tmin=(100,'K'), Tmax=(3459.6,'K')), NASAPolynomial(coeffs=[2.5,9.20456e-12,-3.58608e-15,6.15199e-19,-3.92042e-23,25472.7,-0.459566], Tmin=(3459.6,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(211.792,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""H""", comment="""Thermo library: BurkeH2O2"""), ) species( label = '[CH2]C(C=CC)=CC(24268)', structure = SMILES('[CH2]C(C=CC)=CC'), E0 = (135.779,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([350,440,435,1725,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3000,3100,440,815,1455,1000,2995,3010,3025,975,987.5,1000,1300,1337.5,1375,400,450,500,1630,1655,1680,180],'cm^-1')), HinderedRotor(inertia=(0.729417,'amu*angstrom^2'), symmetry=1, barrier=(16.7707,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.729494,'amu*angstrom^2'), symmetry=1, barrier=(16.7725,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.729468,'amu*angstrom^2'), symmetry=1, barrier=(16.7719,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.729518,'amu*angstrom^2'), symmetry=1, barrier=(16.7731,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (95.1622,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.465196,0.0665121,-2.88623e-05,-8.26848e-09,7.50332e-12,16467.4,25.1769], Tmin=(100,'K'), Tmax=(1031.76,'K')), NASAPolynomial(coeffs=[14.9174,0.0329066,-1.26059e-05,2.29195e-09,-1.59489e-13,12291.6,-50.7825], Tmin=(1031.76,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(135.779,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(415.724,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + radical(Allyl_P)"""), ) species( label = 'C=CCC(=C)[CH]C(24175)', structure = SMILES('[CH2]C(=CC)CC=C'), E0 = (165.168,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2995,3025,975,1000,1300,1375,400,500,1630,1680,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,180,978.543],'cm^-1')), HinderedRotor(inertia=(0.075462,'amu*angstrom^2'), symmetry=1, barrier=(1.73502,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.754747,'amu*angstrom^2'), symmetry=1, barrier=(17.3531,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.754909,'amu*angstrom^2'), symmetry=1, barrier=(17.3568,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.75496,'amu*angstrom^2'), symmetry=1, barrier=(17.358,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (95.1622,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.681576,0.0618448,-2.07951e-05,-1.24754e-08,7.90273e-12,19994.1,27.5811], Tmin=(100,'K'), Tmax=(1063.47,'K')), NASAPolynomial(coeffs=[13.5977,0.0351299,-1.39558e-05,2.57106e-09,-1.79378e-13,16010.5,-41.3398], Tmin=(1063.47,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(165.168,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(415.724,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_P)"""), ) species( label = 'C=[C][CH]C(18176)', structure = SMILES('[CH2][C]=CC'), E0 = (361.056,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3100,440,815,1455,1000,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.352622,'amu*angstrom^2'), symmetry=1, barrier=(8.10748,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.828631,'amu*angstrom^2'), symmetry=1, barrier=(19.0519,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (54.0904,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.42015,0.030446,-1.69076e-05,4.64684e-09,-5.12013e-13,43485.7,14.8304], Tmin=(100,'K'), Tmax=(2065.83,'K')), NASAPolynomial(coeffs=[10.7464,0.014324,-5.20136e-06,8.69079e-10,-5.48385e-14,40045.6,-31.3799], Tmin=(2065.83,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(361.056,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(274.378,'J/(mol*K)'), comment="""Thermo library: DFT_QCI_thermo + radical(Cds_S) + radical(Allyl_P)"""), ) species( label = 'C3H6(T)(143)', structure = SMILES('[CH2][CH]C'), E0 = (284.865,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3100,440,815,1455,1000],'cm^-1')), HinderedRotor(inertia=(0.238389,'amu*angstrom^2'), symmetry=1, barrier=(5.48103,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00909639,'amu*angstrom^2'), symmetry=1, barrier=(22.1005,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (42.0797,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.93778,0.0190991,4.26842e-06,-1.44873e-08,5.74941e-12,34303.2,12.9695], Tmin=(100,'K'), Tmax=(1046.81,'K')), NASAPolynomial(coeffs=[5.93909,0.0171892,-6.69152e-06,1.21546e-09,-8.39795e-14,33151.2,-4.14888], Tmin=(1046.81,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(284.865,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(199.547,'J/(mol*K)'), label="""C3H6(T)""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C([CH]CC)=CC(24235)', structure = SMILES('[CH2]C([CH]CC)=CC'), E0 = (177.229,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.550561,0.0647337,-2.2494e-05,-1.02113e-08,6.70686e-12,21449.3,26.446], Tmin=(100,'K'), Tmax=(1097.32,'K')), NASAPolynomial(coeffs=[13.2783,0.0390642,-1.57369e-05,2.89635e-09,-2.00968e-13,17408.2,-41.8261], Tmin=(1097.32,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(177.229,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_S) + radical(Allyl_P)"""), ) species( label = '[CH2]CCC([CH2])=CC(24269)', structure = SMILES('[CH2]CCC([CH2])=CC'), E0 = (241.363,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3010,987.5,1337.5,450,1655,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,350,440,435,1725,1972.66,4000],'cm^-1')), HinderedRotor(inertia=(0.159683,'amu*angstrom^2'), symmetry=1, barrier=(9.37025,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.49658,'amu*angstrom^2'), symmetry=1, barrier=(29.1363,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.159684,'amu*angstrom^2'), symmetry=1, barrier=(9.37009,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.496523,'amu*angstrom^2'), symmetry=1, barrier=(29.1365,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.496531,'amu*angstrom^2'), symmetry=1, barrier=(29.1364,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.187715,0.0727305,-4.74989e-05,1.57475e-08,-2.11977e-12,29175.8,30.6649], Tmin=(100,'K'), Tmax=(1716.14,'K')), NASAPolynomial(coeffs=[17.3493,0.03273,-1.25364e-05,2.16563e-09,-1.41227e-13,23285.4,-61.3985], Tmin=(1716.14,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(241.363,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(RCCJ)"""), ) species( label = 'C[CH][CH]C(C)=CC(24270)', structure = SMILES('C[CH]C=C(C)[CH]C'), E0 = (167.977,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.82433,0.0581713,-7.43779e-06,-2.31978e-08,1.06492e-11,20327.2,24.7437], Tmin=(100,'K'), Tmax=(1080.15,'K')), NASAPolynomial(coeffs=[12.103,0.0405352,-1.6457e-05,3.05113e-09,-2.1296e-13,16483,-37.0552], Tmin=(1080.15,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(167.977,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_S) + radical(Allyl_S)"""), ) species( label = 'C[C]=C(C)C[CH]C(24271)', structure = SMILES('C[C]=C(C)C[CH]C'), E0 = (316.905,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2850,1437.5,1250,1305,750,350,3025,407.5,1350,352.5,2750,2762.5,2775,2787.5,2800,2812.5,2825,2837.5,2850,1350,1380,1410,1440,1470,1500,700,750,800,1000,1050,1100,1350,1375,1400,900,1000,1100,1685,370,350,440,435,1725,226.947,2510.41],'cm^-1')), HinderedRotor(inertia=(0.00327337,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202056,'amu*angstrom^2'), symmetry=1, barrier=(7.38475,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202063,'amu*angstrom^2'), symmetry=1, barrier=(7.38462,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202085,'amu*angstrom^2'), symmetry=1, barrier=(7.38462,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.202084,'amu*angstrom^2'), symmetry=1, barrier=(7.38457,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.02572,0.0541081,3.51348e-05,-1.85085e-07,1.69623e-10,38174.7,25.4701], Tmin=(100,'K'), Tmax=(419.643,'K')), NASAPolynomial(coeffs=[3.82194,0.0538254,-2.40443e-05,4.55016e-09,-3.16869e-13,37875.6,16.5975], Tmin=(419.643,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(316.905,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(RCCJC) + radical(Cds_S)"""), ) species( label = '[CH2]C(=[C]C)CCC(24272)', structure = SMILES('[CH2]C(=[C]C)CCC'), E0 = (273.958,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3000,3100,440,815,1455,1000,350,440,435,1725,248.252,248.351],'cm^-1')), HinderedRotor(inertia=(0.00273459,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00273508,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.132651,'amu*angstrom^2'), symmetry=1, barrier=(5.80247,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.295917,'amu*angstrom^2'), symmetry=1, barrier=(12.9452,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.483631,'amu*angstrom^2'), symmetry=1, barrier=(21.1565,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.524652,0.0721738,-4.79101e-05,1.65335e-08,-2.37732e-12,33077.7,28.115], Tmin=(100,'K'), Tmax=(1567.7,'K')), NASAPolynomial(coeffs=[13.7461,0.0384395,-1.56328e-05,2.80758e-09,-1.88477e-13,28932.3,-41.6152], Tmin=(1567.7,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(273.958,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Cds_S)"""), ) species( label = 'C=C[C](C)C[CH]C(19167)', structure = SMILES('C=C[C](C)C[CH]C'), E0 = (230.593,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,2950,3100,1380,975,1025,1650,360,370,350,2750,2850,1437.5,1250,1305,750,350,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.892072,0.0600801,-2.42405e-05,-2.45853e-10,1.86411e-12,27852.5,28.7245], Tmin=(100,'K'), Tmax=(1266.31,'K')), NASAPolynomial(coeffs=[10.3481,0.0418611,-1.64597e-05,2.92328e-09,-1.95921e-13,24523.5,-22.8164], Tmin=(1266.31,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(230.593,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(Allyl_T) + radical(RCCJC)"""), ) species( label = '[CH2][CH]CC(C)=CC(24273)', structure = SMILES('[CH2][CH]CC(C)=CC'), E0 = (284.31,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,237.749,2078.8],'cm^-1')), HinderedRotor(inertia=(0.00298216,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156111,'amu*angstrom^2'), symmetry=1, barrier=(6.26303,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00298224,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156122,'amu*angstrom^2'), symmetry=1, barrier=(6.26291,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.15611,'amu*angstrom^2'), symmetry=1, barrier=(6.26313,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.30307,0.064992,-4.06959e-05,1.49569e-08,-2.66661e-12,34286.8,29.0938], Tmin=(100,'K'), Tmax=(1129.12,'K')), NASAPolynomial(coeffs=[5.15778,0.0513364,-2.25549e-05,4.246e-09,-2.95091e-13,33416.3,10.029], Tmin=(1129.12,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(284.31,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(RCCJ) + radical(RCCJC)"""), ) species( label = '[CH2][C](C=C)CCC(3296)', structure = SMILES('[CH2]C=C([CH2])CCC'), E0 = (187.616,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.381084,0.0671752,-2.21408e-05,-1.56763e-08,9.82109e-12,22706,28.4379], Tmin=(100,'K'), Tmax=(1040.54,'K')), NASAPolynomial(coeffs=[14.9511,0.0364389,-1.42653e-05,2.62039e-09,-1.83185e-13,18305.7,-49.0072], Tmin=(1040.54,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(187.616,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Allyl_P)"""), ) species( label = 'C[CH]C[C]1CC1C(24274)', structure = SMILES('C[CH]C[C]1CC1C'), E0 = (308.738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.11982,0.0560976,-1.86944e-05,-2.77089e-09,2.09126e-12,37242,29.5612], Tmin=(100,'K'), Tmax=(1354.62,'K')), NASAPolynomial(coeffs=[9.83964,0.0424915,-1.70734e-05,3.04844e-09,-2.03921e-13,33765.6,-19.2655], Tmin=(1354.62,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(308.738,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclopropane) + radical(RCCJC) + radical(Tertalkyl)"""), ) species( label = '[CH2][C]1CC(C)C1C(24275)', structure = SMILES('[CH2][C]1CC(C)C1C'), E0 = (305.913,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.33424,0.0452312,2.59334e-05,-5.66379e-08,2.26382e-11,36900.5,26.8575], Tmin=(100,'K'), Tmax=(999.267,'K')), NASAPolynomial(coeffs=[10.3263,0.0410187,-1.54512e-05,2.8007e-09,-1.95369e-13,33516.7,-24.4571], Tmin=(999.267,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(305.913,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(444.824,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclobutane) + radical(Tertalkyl) + radical(Isobutyl)"""), ) species( label = 'CC=CC(C)=CC(24276)', structure = SMILES('CC=CC(C)=CC'), E0 = (-15.7206,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.366519,0.0700565,-4.05138e-05,8.23894e-09,5.44902e-13,-1751.78,25.2579], Tmin=(100,'K'), Tmax=(1181.85,'K')), NASAPolynomial(coeffs=[13.897,0.0369024,-1.44776e-05,2.6018e-09,-1.76919e-13,-5832.77,-46.0144], Tmin=(1181.85,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-15.7206,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H)"""), ) species( label = 'C=CCC(C)=CC(24277)', structure = SMILES('C=CCC(C)=CC'), E0 = (13.6692,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.601563,0.0651294,-3.13621e-05,2.39412e-09,1.73181e-12,1774.23,27.598], Tmin=(100,'K'), Tmax=(1226.09,'K')), NASAPolynomial(coeffs=[12.8372,0.0387397,-1.56269e-05,2.8372e-09,-1.93405e-13,-2242.99,-38.0726], Tmin=(1226.09,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(13.6692,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + group(Cds-CdsHH)"""), ) species( label = 'CH2(S)(23)', structure = SMILES('[CH2]'), E0 = (419.862,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1369.36,2789.41,2993.36],'cm^-1')), ], spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (14.0266,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(1197.29,'J/mol'), sigma=(3.8,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[4.19195,-0.00230793,8.0509e-06,-6.60123e-09,1.95638e-12,50484.3,-0.754589], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.28556,0.00460255,-1.97412e-06,4.09548e-10,-3.34695e-14,50922.4,8.67684], Tmin=(1000,'K'), Tmax=(3000,'K'))], Tmin=(200,'K'), Tmax=(3000,'K'), E0=(419.862,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), label="""CH2(S)""", comment="""Thermo library: Klippenstein_Glarborg2016"""), ) species( label = '[CH2]C(=C)C[CH]C(24278)', structure = SMILES('[CH2]C(=C)C[CH]C'), E0 = (266.588,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,3000,3100,440,815,1455,1000,180,1948.01],'cm^-1')), HinderedRotor(inertia=(0.0680026,'amu*angstrom^2'), symmetry=1, barrier=(27.1181,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(5.20297,'amu*angstrom^2'), symmetry=1, barrier=(119.627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.278491,'amu*angstrom^2'), symmetry=1, barrier=(6.40305,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.010536,'amu*angstrom^2'), symmetry=1, barrier=(119.627,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (82.1436,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.07974,0.0556446,-3.26018e-05,9.62163e-09,-1.15636e-12,32175.6,25.9137], Tmin=(100,'K'), Tmax=(1886.95,'K')), NASAPolynomial(coeffs=[14.3542,0.0275054,-1.02333e-05,1.71884e-09,-1.09339e-13,27165.9,-46.5569], Tmin=(1886.95,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(266.588,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(365.837,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(RCCJC) + radical(Allyl_P)"""), ) species( label = '[CH2]C(C)C(=C)[CH]C(24172)', structure = SMILES('[CH2]C(=CC)C([CH2])C'), E0 = (237.411,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([350,440,435,1725,3010,987.5,1337.5,450,1655,1380,1390,370,380,2900,435,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,4000],'cm^-1')), HinderedRotor(inertia=(0.0358237,'amu*angstrom^2'), symmetry=1, barrier=(17.0825,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(3.92092,'amu*angstrom^2'), symmetry=1, barrier=(90.1497,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.742218,'amu*angstrom^2'), symmetry=1, barrier=(17.065,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.172372,'amu*angstrom^2'), symmetry=1, barrier=(3.96316,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(3.93149,'amu*angstrom^2'), symmetry=1, barrier=(90.3926,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(3479.64,'J/mol'), sigma=(6.29859,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with Tc=543.51 K, Pc=31.6 bar (from Joback method)"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.441935,0.0682285,-3.06307e-05,-5.44961e-09,6.38237e-12,28690.7,29.4733], Tmin=(100,'K'), Tmax=(1022.38,'K')), NASAPolynomial(coeffs=[13.4828,0.0369601,-1.37359e-05,2.43177e-09,-1.6594e-13,24991.8,-38.7786], Tmin=(1022.38,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(237.411,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + longDistanceInteraction_noncyclic(CdCs-ST) + group(Cds-CdsCsH) + radical(Isobutyl) + radical(Allyl_P)"""), ) species( label = 'C[CH]CC[C]=CC(19228)', structure = SMILES('C[CH]CC[C]=CC'), E0 = (332.18,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3010,987.5,1337.5,450,1655,1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3025,407.5,1350,352.5,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.26714,0.0653856,-4.37282e-05,1.92202e-08,-4.37429e-12,40046,29.4112], Tmin=(100,'K'), Tmax=(906.265,'K')), NASAPolynomial(coeffs=[4.00506,0.0533011,-2.37267e-05,4.50669e-09,-3.1546e-13,39549.7,16.4718], Tmin=(906.265,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(332.18,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Cds_S) + radical(RCCJC)"""), ) species( label = 'CC=C1CC(C)C1(24256)', structure = SMILES('CC=C1CC(C)C1'), E0 = (31.5064,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[10.4891,-0.0122365,0.000145495,-1.38082e-07,3.18834e-11,3441.47,-17.0613], Tmin=(100,'K'), Tmax=(1694.81,'K')), NASAPolynomial(coeffs=[70.7806,0.0429634,-7.81564e-05,1.86507e-08,-1.3786e-12,-45359.2,-423.421], Tmin=(1694.81,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(31.5064,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(448.981,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + ring(methylenecyclobutane)"""), ) species( label = 'CHCH3(T)(95)', structure = SMILES('[CH]C'), E0 = (343.893,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2800,2850,1350,1500,750,1050,1375,1000,592.414,4000],'cm^-1')), HinderedRotor(inertia=(0.00438699,'amu*angstrom^2'), symmetry=1, barrier=(26.7685,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (28.0532,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.82363,-0.000909515,3.2138e-05,-3.7348e-08,1.3309e-11,41371.4,7.10948], Tmin=(100,'K'), Tmax=(960.812,'K')), NASAPolynomial(coeffs=[4.30487,0.00943069,-3.27559e-06,5.95121e-10,-4.27307e-14,40709.1,1.84202], Tmin=(960.812,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(343.893,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(128.874,'J/(mol*K)'), label="""CHCH3(T)""", comment="""Thermo library: DFT_QCI_thermo"""), ) species( label = '[CH2]C([CH2])=CC(24219)', structure = SMILES('[CH2]C([CH2])=CC'), E0 = (234.041,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([350,440,435,1725,2750,2800,2850,1350,1500,750,1050,1375,1000,3000,3033.33,3066.67,3100,415,465,780,850,1435,1475,900,1100,3010,987.5,1337.5,450,1655],'cm^-1')), HinderedRotor(inertia=(0.0177712,'amu*angstrom^2'), symmetry=1, barrier=(20.2255,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.87837,'amu*angstrom^2'), symmetry=1, barrier=(20.1954,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(4.61389,'amu*angstrom^2'), symmetry=1, barrier=(106.082,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (68.117,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.80244,0.0390483,-7.97741e-07,-2.45997e-08,1.16044e-11,28236,18.1778], Tmin=(100,'K'), Tmax=(1004.18,'K')), NASAPolynomial(coeffs=[10.9852,0.023482,-8.93213e-06,1.6381e-09,-1.15442e-13,25332.4,-31.4366], Tmin=(1004.18,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(234.041,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(295.164,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Allyl_P)"""), ) species( label = 'CH2(19)', structure = SMILES('[CH2]'), E0 = (381.563,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1032.72,2936.3,3459],'cm^-1')), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (14.0266,'amu'), collisionModel = TransportData(shapeIndex=2, epsilon=(1197.29,'J/mol'), sigma=(3.8,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0.0, comment="""GRI-Mech"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.8328,0.000224446,4.68033e-06,-6.04743e-09,2.59009e-12,45920.8,1.40666], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[3.16229,0.00281798,-7.56235e-07,5.05446e-11,5.65236e-15,46099.1,4.77656], Tmin=(1000,'K'), Tmax=(3000,'K'))], Tmin=(200,'K'), Tmax=(3000,'K'), E0=(381.563,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(58.2013,'J/(mol*K)'), label="""CH2""", comment="""Thermo library: Klippenstein_Glarborg2016"""), ) species( label = 'C[CH]C[C]=CC(24192)', structure = SMILES('C[CH]C[C]=CC'), E0 = (355.96,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2850,1437.5,1250,1305,750,350,3010,987.5,1337.5,450,1655,1685,370,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3025,407.5,1350,352.5,272.37,2221.18],'cm^-1')), HinderedRotor(inertia=(0.00227236,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.148422,'amu*angstrom^2'), symmetry=1, barrier=(7.81357,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.148424,'amu*angstrom^2'), symmetry=1, barrier=(7.81357,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.148422,'amu*angstrom^2'), symmetry=1, barrier=(7.81357,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (82.1436,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.25446,0.047533,-2.24803e-05,4.72442e-09,-3.81653e-13,42864.6,23.5426], Tmin=(100,'K'), Tmax=(2781.8,'K')), NASAPolynomial(coeffs=[19.681,0.022476,-8.96952e-06,1.48664e-09,-9.0685e-14,33168.8,-78.3599], Tmin=(2781.8,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(355.96,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(365.837,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsH) + group(Cds-CdsCsH) + radical(Cds_S) + radical(RCCJC)"""), ) species( label = 'C=CC(=C)C[CH]C(19164)', structure = SMILES('C=CC(=C)C[CH]C'), E0 = (204.351,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,3010,987.5,1337.5,450,1655,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3000,3050,3100,1330,1430,900,1050,1000,1050,1600,1700,350,440,435,1725,2750,2850,1437.5,1250,1305,750,350,325.967,325.97,325.971],'cm^-1')), HinderedRotor(inertia=(0.0234883,'amu*angstrom^2'), symmetry=1, barrier=(1.77106,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0234892,'amu*angstrom^2'), symmetry=1, barrier=(1.77113,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.194384,'amu*angstrom^2'), symmetry=1, barrier=(14.6567,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.19437,'amu*angstrom^2'), symmetry=1, barrier=(14.6566,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 2, opticalIsomers = 1, molecularWeight = (95.1622,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.607111,0.0653555,-3.42158e-05,2.15645e-09,2.88851e-12,24707.8,28.6688], Tmin=(100,'K'), Tmax=(1085.78,'K')), NASAPolynomial(coeffs=[13.0148,0.0349811,-1.34394e-05,2.40786e-09,-1.64502e-13,21109.4,-36.3749], Tmin=(1085.78,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(204.351,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(415.724,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + group(Cds-CdsHH) + radical(RCCJC)"""), ) species( label = '[CH2]CC(=C)C[CH]C(24279)', structure = SMILES('[CH2]CC(=C)C[CH]C'), E0 = (297.69,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3000,3100,440,815,1455,1000,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.924397,0.0658228,-3.85648e-05,1.14822e-08,-1.42991e-12,35915.3,31.5477], Tmin=(100,'K'), Tmax=(1740.2,'K')), NASAPolynomial(coeffs=[12.3144,0.039642,-1.59979e-05,2.8369e-09,-1.87928e-13,31951,-29.7127], Tmin=(1740.2,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(297.69,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(RCCJ) + radical(RCCJC)"""), ) species( label = 'C=C([CH][CH]C)CC(24280)', structure = SMILES('[CH2]C(=C[CH]C)CC'), E0 = (178.364,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.6455,0.0607146,-7.39766e-06,-2.83229e-08,1.36484e-11,21584.3,26.7698], Tmin=(100,'K'), Tmax=(1035.37,'K')), NASAPolynomial(coeffs=[13.8717,0.037755,-1.48994e-05,2.75541e-09,-1.93573e-13,17337.3,-44.7818], Tmin=(1035.37,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(178.364,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(Allyl_P) + radical(Allyl_S)"""), ) species( label = '[CH]=C(CC)C[CH]C(24281)', structure = SMILES('[CH]=C(CC)C[CH]C'), E0 = (339.54,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3025,407.5,1350,352.5,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,3120,650,792.5,1650,350,440,435,1725,287.341,1535.51],'cm^-1')), HinderedRotor(inertia=(0.0020416,'amu*angstrom^2'), symmetry=1, barrier=(0.119627,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.00203636,'amu*angstrom^2'), symmetry=1, barrier=(0.119657,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.153541,'amu*angstrom^2'), symmetry=1, barrier=(9.05865,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.154017,'amu*angstrom^2'), symmetry=1, barrier=(9.06246,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.155556,'amu*angstrom^2'), symmetry=1, barrier=(9.07373,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.883161,0.0678438,-4.23764e-05,1.39494e-08,-1.95975e-12,40949.3,30.3095], Tmin=(100,'K'), Tmax=(1550.14,'K')), NASAPolynomial(coeffs=[11.0007,0.0417364,-1.71136e-05,3.08472e-09,-2.07548e-13,37812.6,-22.9371], Tmin=(1550.14,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(339.54,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(Cds_P) + radical(RCCJC)"""), ) species( label = '[CH]=C([CH]C)CCC(24282)', structure = SMILES('[CH]C(=CC)CCC'), E0 = (255.302,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3010,987.5,1337.5,450,1655,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,350,440,435,1725,200,800,1066.67,1333.33,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.197486,0.0737448,-4.23702e-05,1.19747e-08,-1.37166e-12,30850.9,29.6804], Tmin=(100,'K'), Tmax=(1964.11,'K')), NASAPolynomial(coeffs=[18.3382,0.0368005,-1.41557e-05,2.39799e-09,-1.52706e-13,23724.9,-70.0837], Tmin=(1964.11,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(255.302,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + radical(AllylJ2_triplet)"""), ) species( label = '[CH2][CH]CC(=C)CC(24283)', structure = SMILES('[CH2][CH]CC(=C)CC'), E0 = (297.69,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([3025,407.5,1350,352.5,2750,2800,2850,1350,1500,750,1050,1375,1000,2950,3100,1380,975,1025,1650,350,440,435,1725,2750,2783.33,2816.67,2850,1425,1450,1225,1275,1270,1340,700,800,300,400,3000,3100,440,815,1455,1000,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.924397,0.0658228,-3.85648e-05,1.14822e-08,-1.42991e-12,35915.3,31.5477], Tmin=(100,'K'), Tmax=(1740.2,'K')), NASAPolynomial(coeffs=[12.3144,0.039642,-1.59979e-05,2.8369e-09,-1.87928e-13,31951,-29.7127], Tmin=(1740.2,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(297.69,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + radical(RCCJ) + radical(RCCJC)"""), ) species( label = 'C[CH][C]1CC(C)C1(24284)', structure = SMILES('C[CH][C]1CC(C)C1'), E0 = (304.414,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.43715,0.0453823,1.58051e-05,-3.8158e-08,1.38124e-11,36713.9,28.245], Tmin=(100,'K'), Tmax=(1112.49,'K')), NASAPolynomial(coeffs=[8.60969,0.045401,-1.90173e-05,3.56204e-09,-2.4894e-13,33521,-14.3007], Tmin=(1112.49,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(304.414,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(444.824,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-CsCsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + ring(Cyclobutane) + radical(Cs_S) + radical(Tertalkyl)"""), ) species( label = 'C=C(C=CC)CC(24285)', structure = SMILES('C=C(C=CC)CC'), E0 = (-2.34046,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.471798,0.065208,-1.89932e-05,-1.92017e-08,1.1352e-11,-143.675,25.9787], Tmin=(100,'K'), Tmax=(1018.92,'K')), NASAPolynomial(coeffs=[14.8445,0.0350786,-1.33469e-05,2.43062e-09,-1.69787e-13,-4437.52,-50.3286], Tmin=(1018.92,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-2.34046,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-(Cds-Cds)HHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-CdsCsH) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH)"""), ) species( label = 'C=CCC(=C)CC(24286)', structure = SMILES('C=CCC(=C)CC'), E0 = (27.0493,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.690396,0.0605209,-1.08892e-05,-2.34066e-08,1.17276e-11,3382.97,28.3746], Tmin=(100,'K'), Tmax=(1044.52,'K')), NASAPolynomial(coeffs=[13.4765,0.0373792,-1.47395e-05,2.7195e-09,-1.90466e-13,-696.74,-40.6109], Tmin=(1044.52,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(27.0493,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsHH) + group(Cs-(Cds-Cds)(Cds-Cds)HH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsCsH) + group(Cds-CdsHH) + group(Cds-CdsHH)"""), ) species( label = 'C=CC(=C)CCC(3302)', structure = SMILES('C=CC(=C)CCC'), E0 = (9.90489,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[0.429571,0.064938,-1.42316e-05,-2.68111e-08,1.46756e-11,1331.8,26.5681], Tmin=(100,'K'), Tmax=(999.682,'K')), NASAPolynomial(coeffs=[15.8208,0.033571,-1.2507e-05,2.27564e-09,-1.59971e-13,-3255.39,-55.2328], Tmin=(999.682,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(9.90489,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(440.667,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cds-Cds(Cds-Cds)Cs) + group(Cds-Cds(Cds-Cds)H) + group(Cds-CdsHH) + group(Cds-CdsHH)"""), ) species( label = 'C=[C]C(C)C[CH]C(19169)', structure = SMILES('C=[C]C(C)C[CH]C'), E0 = (336.454,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([1685,370,3025,407.5,1350,352.5,2750,2770,2790,2810,2830,2850,1350,1400,1450,1500,700,800,1000,1100,1350,1400,900,1100,2950,3100,1380,975,1025,1650,1380,1390,370,380,2900,435,2750,2850,1437.5,1250,1305,750,350,200,800,1600],'cm^-1')), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.156089,'amu*angstrom^2'), symmetry=1, barrier=(3.5888,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[1.0597,0.0647849,-3.73125e-05,1.09539e-08,-1.35798e-12,40570.8,30.3163], Tmin=(100,'K'), Tmax=(1715.74,'K')), NASAPolynomial(coeffs=[11.094,0.0413914,-1.68606e-05,3.00709e-09,-2.00057e-13,37127.5,-23.5102], Tmin=(1715.74,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(336.454,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(436.51,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-(Cds-Cds)CsCsH) + group(Cs-CsCsHH) + group(Cs-CsCsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(RCCJC) + radical(Cds_S)"""), ) species( label = 'C=C1CC(C)C1C(24267)', structure = SMILES('C=C1CC(C)C1C'), E0 = (35.7798,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (96.1702,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[9.99122,-0.0100132,0.000144281,-1.38728e-07,3.23306e-11,3980.95,-16.4526], Tmin=(100,'K'), Tmax=(1679.8,'K')), NASAPolynomial(coeffs=[69.3651,0.0437352,-7.79586e-05,1.86251e-08,-1.37959e-12,-43496.9,-415.639], Tmin=(1679.8,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(35.7798,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(448.981,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsCsH) + group(Cs-(Cds-Cds)CsCsH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cs-CsHHH) + group(Cds-CdsCsCs) + group(Cds-CdsHH) + ring(methylenecyclobutane)"""), ) species( label = 'C=[C]C[CH]C(2608)', structure = SMILES('C=[C]C[CH]C'), E0 = (391.986,'kJ/mol'), modes = [ HarmonicOscillator(frequencies=([2750,2850,1437.5,1250,1305,750,350,2950,3100,1380,975,1025,1650,1685,370,2750,2800,2850,1350,1500,750,1050,1375,1000,3025,407.5,1350,352.5,328.839,1764.65],'cm^-1')), HinderedRotor(inertia=(0.070318,'amu*angstrom^2'), symmetry=1, barrier=(5.38273,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0701107,'amu*angstrom^2'), symmetry=1, barrier=(5.38037,'kJ/mol'), semiclassical=False), HinderedRotor(inertia=(0.0702146,'amu*angstrom^2'), symmetry=1, barrier=(5.38499,'kJ/mol'), semiclassical=False), ], spinMultiplicity = 3, opticalIsomers = 1, molecularWeight = (68.117,'amu'), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.41566,0.0369675,-1.69643e-05,3.43217e-09,-2.57685e-13,47199.8,21.2179], Tmin=(100,'K'), Tmax=(2427.98,'K')), NASAPolynomial(coeffs=[16.5625,0.0166401,-6.24654e-06,9.9465e-10,-5.87348e-14,39452.1,-61.39], Tmin=(2427.98,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(391.986,'kJ/mol'), Cp0=(33.2579,'J/(mol*K)'), CpInf=(295.164,'J/(mol*K)'), comment="""Thermo group additivity estimation: group(Cs-CsCsHH) + group(Cs-(Cds-Cds)CsHH) + group(Cs-CsHHH) + group(Cds-CdsCsH) + group(Cds-CdsHH) + radical(RCCJC) + radical(Cds_S)"""), ) species( label = 'N2', structure = SMILES('N#N'), E0 = (-8.69489,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (28.0135,'amu'), collisionModel = TransportData(shapeIndex=1, epsilon=(810.913,'J/mol'), sigma=(3.621,'angstroms'), dipoleMoment=(0,'C*m'), polarizability=(1.76,'angstroms^3'), rotrelaxcollnum=4.0, comment="""PrimaryTransportLibrary"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[3.61263,-0.00100893,2.49898e-06,-1.43376e-09,2.58636e-13,-1051.1,2.6527], Tmin=(100,'K'), Tmax=(1817.04,'K')), NASAPolynomial(coeffs=[2.9759,0.00164141,-7.19722e-07,1.25378e-10,-7.91526e-15,-1025.84,5.53757], Tmin=(1817.04,'K'), Tmax=(5000,'K'))], Tmin=(100,'K'), Tmax=(5000,'K'), E0=(-8.69489,'kJ/mol'), Cp0=(29.1007,'J/(mol*K)'), CpInf=(37.4151,'J/(mol*K)'), label="""N2""", comment="""Thermo library: BurkeH2O2"""), ) species( label = 'Ne', structure = SMILES('[Ne]'), E0 = (-6.19738,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, molecularWeight = (20.1797,'amu'), collisionModel = TransportData(shapeIndex=0, epsilon=(1235.53,'J/mol'), sigma=(3.758e-10,'m'), dipoleMoment=(0,'C*m'), polarizability=(0,'angstroms^3'), rotrelaxcollnum=0, comment="""Epsilon & sigma estimated with fixed Lennard Jones Parameters. This is the fallback method! Try improving transport databases!"""), energyTransferModel = SingleExponentialDown(alpha0=(3.5886,'kJ/mol'), T0=(300,'K'), n=0.85), thermo = NASA(polynomials=[NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(200,'K'), Tmax=(1000,'K')), NASAPolynomial(coeffs=[2.5,0,0,0,0,-745.375,3.35532], Tmin=(1000,'K'), Tmax=(6000,'K'))], Tmin=(200,'K'), Tmax=(6000,'K'), E0=(-6.19738,'kJ/mol'), Cp0=(20.7862,'J/(mol*K)'), CpInf=(20.7862,'J/(mol*K)'), label="""Ne""", comment="""Thermo library: primaryThermoLibrary"""), ) transitionState( label = 'TS1', E0 = (230.563,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS2', E0 = (316.349,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS3', E0 = (368.728,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS4', E0 = (379.471,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS5', E0 = (379.499,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS6', E0 = (462.507,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS7', E0 = (355.665,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS8', E0 = (393.242,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS9', E0 = (433.138,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS10', E0 = (478.826,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS11', E0 = (318.267,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS12', E0 = (380.38,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS13', E0 = (338.493,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS14', E0 = (308.594,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS15', E0 = (645.922,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS16', E0 = (461.779,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS17', E0 = (355.664,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS18', E0 = (293.963,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS19', E0 = (255.536,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS20', E0 = (686.45,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS21', E0 = (397.346,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS22', E0 = (502.218,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS23', E0 = (238.847,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS24', E0 = (577.934,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS25', E0 = (737.523,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS26', E0 = (416.143,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS27', E0 = (411.495,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS28', E0 = (439.763,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS29', E0 = (484.725,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS30', E0 = (299.61,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS31', E0 = (344.133,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS32', E0 = (355.664,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS33', E0 = (293.963,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS34', E0 = (238.931,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS35', E0 = (238.931,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS36', E0 = (430.928,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS37', E0 = (238.847,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) transitionState( label = 'TS38', E0 = (735.879,'kJ/mol'), spinMultiplicity = 1, opticalIsomers = 1, ) reaction( label = 'reaction1', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C3H6(72)', 'CH3CHCCH2(18175)'], transitionState = 'TS1', kinetics = Arrhenius(A=(5e+12,'s^-1'), n=0, Ea=(0,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Exact match found for rate rule [RJJ] Euclidian distance = 0 family: 1,4_Linear_birad_scission"""), ) reaction( label = 'reaction2', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2]C1([CH]C)CC1C(24224)'], transitionState = 'TS2', kinetics = Arrhenius(A=(3.36329e+10,'s^-1'), n=0.535608, Ea=(85.7861,'kJ/mol'), T0=(1,'K'), comment="""Estimated using average of templates [R4_S_D;doublebond_intra;radadd_intra_csHNd] + [R4_S_D;doublebond_intra_HNd;radadd_intra_cs] for rate rule [R4_S_D;doublebond_intra_HNd;radadd_intra_csHNd] Euclidian distance = 1.0 family: Intra_R_Add_Exocyclic Ea raised from 83.4 to 85.8 kJ/mol to match endothermicity of reaction."""), ) reaction( label = 'reaction3', reactants = ['H(3)', '[CH2]C(C=CC)=CC(24268)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS3', kinetics = Arrhenius(A=(0.0272924,'m^3/(mol*s)'), n=2.81111, Ea=(21.1569,'kJ/mol'), T0=(1,'K'), Tmin=(303.03,'K'), Tmax=(2000,'K'), comment="""From training reaction 26 used for Cds-CdH_Cds-CsH;HJ Exact match found for rate rule [Cds-CdH_Cds-CsH;HJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction4', reactants = ['H(3)', 'C=CCC(=C)[CH]C(24175)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS4', kinetics = Arrhenius(A=(3.36e+08,'cm^3/(mol*s)'), n=1.56, Ea=(2.5104,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 9 used for Cds-HH_Cds-CsH;HJ Exact match found for rate rule [Cds-HH_Cds-CsH;HJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction5', reactants = ['C3H6(72)', 'C=[C][CH]C(18176)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS5', kinetics = Arrhenius(A=(0.00620445,'m^3/(mol*s)'), n=2.46568, Ea=(12.4666,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Cds-HH_Cds-Cs\H3/H;CJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction6', reactants = ['C3H6(T)(143)', 'CH3CHCCH2(18175)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS6', kinetics = Arrhenius(A=(0.00086947,'m^3/(mol*s)'), n=2.67356, Ea=(32.0272,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Ca_Cds-HH;CJ] Euclidian distance = 0 family: R_Addition_MultipleBond"""), ) reaction( label = 'reaction7', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2]C([CH]CC)=CC(24235)'], transitionState = 'TS7', kinetics = Arrhenius(A=(1.682e+10,'s^-1'), n=0.35, Ea=(125.102,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 160 used for R2H_S;C_rad_out_H/NonDeC;Cs_H_out_H/Cd Exact match found for rate rule [R2H_S;C_rad_out_H/NonDeC;Cs_H_out_H/Cd] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction8', reactants = ['[CH2]CCC([CH2])=CC(24269)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS8', kinetics = Arrhenius(A=(718000,'s^-1'), n=2.05, Ea=(151.879,'kJ/mol'), T0=(1,'K'), Tmin=(500,'K'), Tmax=(2000,'K'), comment="""From training reaction 147 used for R2H_S;C_rad_out_2H;Cs_H_out_H/NonDeC Exact match found for rate rule [R2H_S;C_rad_out_2H;Cs_H_out_H/NonDeC] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction9', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C[CH][CH]C(C)=CC(24270)'], transitionState = 'TS9', kinetics = Arrhenius(A=(1.09894e+08,'s^-1'), n=1.58167, Ea=(202.575,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R3H_SS_2Cd;C_rad_out_2H;XH_out] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction10', reactants = ['C[C]=C(C)C[CH]C(24271)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS10', kinetics = Arrhenius(A=(7.74e+09,'s^-1'), n=1.08, Ea=(161.921,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 198 used for R3H_DS;Cd_rad_out_Cs;Cs_H_out_2H Exact match found for rate rule [R3H_DS;Cd_rad_out_Cs;Cs_H_out_2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction11', reactants = ['[CH2]C(=[C]C)CCC(24272)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS11', kinetics = Arrhenius(A=(74200,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_single;Cs_H_out_1H] for rate rule [R4H_DSS;Cd_rad_out_Cs;Cs_H_out_H/NonDeC] Euclidian distance = 2.2360679775 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction12', reactants = ['C=C[C](C)C[CH]C(19167)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS12', kinetics = Arrhenius(A=(800000,'s^-1'), n=1.81, Ea=(149.787,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 101 used for R4H_SDS;C_rad_out_2H;Cs_H_out_2H Exact match found for rate rule [R4H_SDS;C_rad_out_2H;Cs_H_out_2H] Euclidian distance = 0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction13', reactants = ['[CH2][CH]CC(C)=CC(24273)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS13', kinetics = Arrhenius(A=(91273.5,'s^-1'), n=1.79, Ea=(54.1828,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5Hall;C_rad_out_2H;Cs_H_out_2H] for rate rule [R5HJ_1;C_rad_out_2H;Cs_H_out_2H] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction14', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2][C](C=C)CCC(3296)'], transitionState = 'TS14', kinetics = Arrhenius(A=(634768,'s^-1'), n=1.77, Ea=(78.0316,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5H_SSMS;C_rad_out_single;Cs_H_out_2H] for rate rule [R5H_SSMS;C_rad_out_H/NonDeC;Cs_H_out_2H] Euclidian distance = 2.0 Multiplied by reaction path degeneracy 3.0 family: intra_H_migration"""), ) reaction( label = 'reaction15', reactants = ['C3H6(T)(143)', 'C=[C][CH]C(18176)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS15', kinetics = Arrhenius(A=(7.46075e+06,'m^3/(mol*s)'), n=0.027223, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [Y_rad;Y_rad] Euclidian distance = 0 family: R_Recombination Ea raised from -14.4 to 0 kJ/mol."""), ) reaction( label = 'reaction16', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C[CH]C[C]1CC1C(24274)'], transitionState = 'TS16', kinetics = Arrhenius(A=(3.473e+12,'s^-1'), n=0.247, Ea=(231.216,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R3_D;doublebond_intra_secNd;radadd_intra_cs] for rate rule [R3_D;doublebond_intra_secNd_HNd;radadd_intra_cs2H] Euclidian distance = 1.41421356237 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction17', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['[CH2][C]1CC(C)C1C(24275)'], transitionState = 'TS17', kinetics = Arrhenius(A=(5.25757e+07,'s^-1'), n=1.165, Ea=(125.102,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R4_Cs_HH_D;doublebond_intra;radadd_intra_csHCs] Euclidian distance = 0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction18', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['CC=CC(C)=CC(24276)'], transitionState = 'TS18', kinetics = Arrhenius(A=(1.4874e+09,'s^-1'), n=1.045, Ea=(63.4002,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R3radExo;Y_rad;XH_Rrad_NDe] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction19', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=CCC(C)=CC(24277)'], transitionState = 'TS19', kinetics = Arrhenius(A=(6.37831e+09,'s^-1'), n=0.137, Ea=(24.9733,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5;Y_rad;XH_Rrad] for rate rule [R5radEndo;Y_rad;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction20', reactants = ['CH2(S)(23)', '[CH2]C(=C)C[CH]C(24278)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS20', kinetics = Arrhenius(A=(7.94e+13,'cm^3/(mol*s)','*|/',0.25), n=-0.324, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 4 used for carbene;Cd_pri Exact match found for rate rule [carbene;Cd_pri] Euclidian distance = 0 Multiplied by reaction path degeneracy 4.0 family: 1,2_Insertion_carbene Ea raised from -3.9 to 0 kJ/mol."""), ) reaction( label = 'reaction21', reactants = ['[CH2]C(C)C(=C)[CH]C(24172)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS21', kinetics = Arrhenius(A=(6.55606e+10,'s^-1'), n=0.64, Ea=(159.935,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [cCs(-HC)CJ;CsJ;C] for rate rule [cCs(-HC)CJ;CsJ-HH;C] Euclidian distance = 1.0 family: 1,2_shiftC"""), ) reaction( label = 'reaction22', reactants = ['C[CH]CC[C]=CC(19228)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS22', kinetics = Arrhenius(A=(1.74842e+09,'s^-1'), n=1.084, Ea=(170.038,'kJ/mol'), T0=(1,'K'), comment="""Estimated using average of templates [cCsCJ;CdsJ;C] + [cCs(-HH)CJ;CJ;C] for rate rule [cCs(-HH)CJ;CdsJ;C] Euclidian distance = 1.0 family: 1,2_shiftC"""), ) reaction( label = 'reaction23', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['CC=C1CC(C)C1(24256)'], transitionState = 'TS23', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), Tmin=(600,'K'), Tmax=(2000,'K'), comment="""Estimated using template [R4_SSS;C_rad_out_single;Cpri_rad_out_2H] for rate rule [R4_SSS;C_rad_out_H/NonDeC;Cpri_rad_out_2H] Euclidian distance = 2.0 family: Birad_recombination"""), ) reaction( label = 'reaction24', reactants = ['CHCH3(T)(95)', '[CH2]C([CH2])=CC(24219)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS24', kinetics = Arrhenius(A=(2.13464e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [C_rad/H2/Cd;Birad] Euclidian distance = 3.0 Multiplied by reaction path degeneracy 2.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) reaction( label = 'reaction25', reactants = ['CH2(19)', 'C[CH]C[C]=CC(24192)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS25', kinetics = Arrhenius(A=(1.06732e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [Cd_rad/NonDe;Birad] Euclidian distance = 3.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) reaction( label = 'reaction26', reactants = ['H(3)', 'C=CC(=C)C[CH]C(19164)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS26', kinetics = Arrhenius(A=(2.31e+08,'cm^3/(mol*s)'), n=1.64, Ea=(0,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 2544 used for Cds-HH_Cds-CdH;HJ Exact match found for rate rule [Cds-HH_Cds-CdH;HJ] Euclidian distance = 0 family: R_Addition_MultipleBond Ea raised from -2.0 to 0 kJ/mol."""), ) reaction( label = 'reaction27', reactants = ['[CH2]CC(=C)C[CH]C(24279)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS27', kinetics = Arrhenius(A=(1.72e+06,'s^-1'), n=1.99, Ea=(113.805,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 84 used for R2H_S;C_rad_out_2H;Cs_H_out_H/Cd Exact match found for rate rule [R2H_S;C_rad_out_2H;Cs_H_out_H/Cd] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction28', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=C([CH][CH]C)CC(24280)'], transitionState = 'TS28', kinetics = Arrhenius(A=(1.23617e+10,'s^-1'), n=1.04667, Ea=(209.2,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R3H_SS_2Cd;C_rad_out_H/NonDeC;XH_out] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction29', reactants = ['[CH]=C(CC)C[CH]C(24281)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS29', kinetics = Arrhenius(A=(1.846e+10,'s^-1'), n=0.74, Ea=(145.185,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""From training reaction 194 used for R3H_DS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC Exact match found for rate rule [R3H_DS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction30', reactants = ['[CH]=C([CH]C)CCC(24282)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS30', kinetics = Arrhenius(A=(74200,'s^-1'), n=2.23, Ea=(44.3086,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4H_DSS;Cd_rad_out_singleH;Cs_H_out_1H] for rate rule [R4H_DSS;Cd_rad_out_singleH;Cs_H_out_H/NonDeC] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction31', reactants = ['[CH2][CH]CC(=C)CC(24283)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS31', kinetics = Arrhenius(A=(262000,'s^-1'), n=1.62, Ea=(46.4424,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R5Hall;C_rad_out_2H;Cs_H_out_H/NonDeC] for rate rule [R5HJ_1;C_rad_out_2H;Cs_H_out_H/NonDeC] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 2.0 family: intra_H_migration"""), ) reaction( label = 'reaction32', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C[CH][C]1CC(C)C1(24284)'], transitionState = 'TS32', kinetics = Arrhenius(A=(5.25757e+07,'s^-1'), n=1.165, Ea=(125.102,'kJ/mol'), T0=(1,'K'), comment="""Estimated using an average for rate rule [R4_Cs_HH_D;doublebond_intra;radadd_intra_csHCs] Euclidian distance = 0 family: Intra_R_Add_Endocyclic"""), ) reaction( label = 'reaction33', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=C(C=CC)CC(24285)'], transitionState = 'TS33', kinetics = Arrhenius(A=(1.4874e+09,'s^-1'), n=1.045, Ea=(63.4002,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 1 used for R3radExo;Y_rad_NDe;XH_Rrad_NDe Exact match found for rate rule [R3radExo;Y_rad_NDe;XH_Rrad_NDe] Euclidian distance = 0 Multiplied by reaction path degeneracy 2.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction34', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=CCC(=C)CC(24286)'], transitionState = 'TS34', kinetics = Arrhenius(A=(9.63e+09,'s^-1'), n=0.137, Ea=(8.368,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Estimated using template [R5;Y_rad_NDe;XH_Rrad] for rate rule [R5radEndo;Y_rad_NDe;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction35', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=CC(=C)CCC(3302)'], transitionState = 'TS35', kinetics = Arrhenius(A=(9.63e+09,'s^-1'), n=0.137, Ea=(8.368,'kJ/mol'), T0=(1,'K'), Tmin=(300,'K'), Tmax=(1500,'K'), comment="""Estimated using template [R5;Y_rad_NDe;XH_Rrad] for rate rule [R5radEndo;Y_rad_NDe;XH_Rrad] Euclidian distance = 1.0 Multiplied by reaction path degeneracy 3.0 family: Intra_Disproportionation"""), ) reaction( label = 'reaction36', reactants = ['C=[C]C(C)C[CH]C(19169)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS36', kinetics = Arrhenius(A=(8.66e+11,'s^-1'), n=0.438, Ea=(94.4747,'kJ/mol'), T0=(1,'K'), comment="""From training reaction 5 used for cCs(-HC)CJ;CdsJ;C Exact match found for rate rule [cCs(-HC)CJ;CdsJ;C] Euclidian distance = 0 family: 1,2_shiftC"""), ) reaction( label = 'reaction37', reactants = ['C=C([CH]C)C[CH]C(24171)'], products = ['C=C1CC(C)C1C(24267)'], transitionState = 'TS37', kinetics = Arrhenius(A=(1.62e+12,'s^-1'), n=-0.305, Ea=(8.28432,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [R4_SSS;C_rad_out_single;Cpri_rad_out_single] for rate rule [R4_SSS;C_rad_out_H/NonDeC;Cpri_rad_out_H/NonDeC] Euclidian distance = 2.82842712475 family: Birad_recombination"""), ) reaction( label = 'reaction38', reactants = ['CHCH3(T)(95)', 'C=[C]C[CH]C(2608)'], products = ['C=C([CH]C)C[CH]C(24171)'], transitionState = 'TS38', kinetics = Arrhenius(A=(1.06732e+06,'m^3/(mol*s)'), n=0.472793, Ea=(0,'kJ/mol'), T0=(1,'K'), comment="""Estimated using template [Y_rad;Birad] for rate rule [Cd_rad/NonDe;Birad] Euclidian distance = 3.0 family: Birad_R_Recombination Ea raised from -3.5 to 0 kJ/mol."""), ) network( label = '4244', isomers = [ 'C=C([CH]C)C[CH]C(24171)', ], reactants = [ ('C3H6(72)', 'CH3CHCCH2(18175)'), ], bathGas = { 'N2': 0.5, 'Ne': 0.5, }, ) pressureDependence( label = '4244', Tmin = (300,'K'), Tmax = (2000,'K'), Tcount = 8, Tlist = ([302.47,323.145,369.86,455.987,609.649,885.262,1353.64,1896.74],'K'), Pmin = (0.01,'bar'), Pmax = (100,'bar'), Pcount = 5, Plist = ([0.0125282,0.0667467,1,14.982,79.8202],'bar'), maximumGrainSize = (0.5,'kcal/mol'), minimumGrainCount = 250, method = 'modified strong collision', interpolationModel = ('Chebyshev', 6, 4), activeKRotor = True, activeJRotor = True, rmgmode = True, )
[ "qin.she@husky.neu.edu" ]
qin.she@husky.neu.edu
f1853f12e58fde7c1eea2bc8c29c8d03481fe955
4e50d2345a2cfeb3c9ecb02187f88e753d1ed83c
/bin/00.raw_reads/test_rmAdaptor.py
a089a074dd4a77d7a66772f59516a1df8ad64515
[]
no_license
ms201420201029/real_metagenome_pipeline
7c7b54e5e8a798933387f960256ebb849e9c2200
e8f0b188f21975305565d06e4fefe4f4c9adc1f7
refs/heads/master
2020-04-05T06:41:34.349662
2018-12-04T05:48:52
2018-12-04T05:48:52
156,646,750
1
1
null
null
null
null
UTF-8
Python
false
false
9,642
py
#!/usr/bin/env python #-*- coding: utf-8 -*- # Description: Remove adapter # Copyright (C) 20170721 Ruiyi Corporation # Email: lixr@realbio.cn import os, sys, argparse, gzip, math from Bio import SeqIO from multiprocessing import Pool from multiprocessing import cpu_count from time import time def read_params(args): parser = argparse.ArgumentParser(description="2017/07/21 by lixr") parser.add_argument('--out_prefix',dest='out_prefix',metavar="DIR",type=str,required=True, help="out file prefix") parser.add_argument('-r1', '--read1', dest='read1', metavar='DIR', type=str, required=True, help="read1.fastq") parser.add_argument('-r2', '--read2', dest='read2', metavar='DIR', type=str, required=True, help="read2.fastq") parser.add_argument('-a1', '--read1Adaptor', dest='read1Adaptor', metavar='string', type=str, required=True, help="AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC") parser.add_argument('-a2', '--read2Adaptor', dest='read2Adaptor', metavar='string', type=str, required=True, help="AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT") parser.add_argument('--type',dest="type",metavar='string',type=str,required=True, help="PE or SE") parser.add_argument('--mis_ratio',dest="mis_ratio",metavar="float",type=float,default=0.2, help="mis_ratio defult[0.2]") parser.add_argument('--mis_num', dest="mis_num", metavar="int", type=int, default=3, help="mis_ratio defult[3]") parser.add_argument('--out_type',dest="out_type",metavar="STRING",type=int,default=4, help="2 : two file out ; 4 : four file out.") parser.add_argument('--min_len',dest="min_len",metavar="min_len",type=int,default=99, help="min_len[100]") return vars(parser.parse_args()) def get_mistaken_count_max(seq_len, find_pos, adaptor_len, mis_ratio, mis_num): mis_count_max = adaptor_len * mis_ratio if seq_len - find_pos > adaptor_len else (seq_len - find_pos) * mis_ratio if mis_count_max < float(mis_num): mis_count_max = mis_num return math.ceil(mis_count_max) def match_adaptor(seq,seed): #seed_first index=-1 indexs = [] append = indexs.append while True: index = seq.find(seed,index+1)#从index+1位置开始找,如果找到返回索引,没找到则返回-1 if index == -1:#没找到 跳出 break append(index) return indexs def situation_1(read1,read2,adaptor1,adaptor2,min_len):#adaptor1 30个碱基匹配到read1,adaptor2 20个碱基匹配到read2 seq1 =read1.seq seq2 =read2.seq pos = seq1.find(adaptor1[0:30]) if len(adaptor1) > 30 else seq1.find(adaptor1) #截取30个碱基的adaptor1 if pos > min_len: #控制长度大于50 return True, read1[:pos], read2[:pos] # del seq1\seq2 pos2 = seq2.find(adaptor2[0:30]) if len(adaptor2) > 30 else seq2.find(adaptor2) if pos2 > min_len: #控制长度大于50 return True,read1[:pos2],read2[:pos2] if pos == -1 and pos2 == -1: return False, read1, read2 return True, None, None def situation_2(read1,read2,adaptor1,adaptor2): #四次匹配中只有0、1、2次匹配上的 seq1 = read1.seq seq2 = read2.seq true_num = 0 adaptor_read1_pos_1 = match_adaptor(seq1,adaptor1[0:7]) #考虑接头自连情况没有写【0:7】 adaptor_read1_pos_2 = match_adaptor(seq1,adaptor1[7:14]) adaptor_read2_pos_1 = match_adaptor(seq2,adaptor2[0:7]) adaptor_read2_pos_2 = match_adaptor(seq2,adaptor2[7:14]) if adaptor_read1_pos_1: true_num += 1 if adaptor_read1_pos_2: true_num += 1 if adaptor_read2_pos_1: true_num += 1 if adaptor_read2_pos_2: true_num += 1 if true_num == 0: #更严格是 true_num=1 删除了 return True,read1,read2 #clean reads else: return False,None,None def rmPE(read1,read2,adaptor1,adaptor2,mis_ratio,min_len,mis_num): result = situation_1(read1,read2,adaptor1,adaptor2,min_len) if result[0]: return False,result[1],result[2] #del seq1 and seq2 result = situation_2(read1,read2,adaptor1,adaptor2) if result[0]: return True,result[1],result[2] #clean seq1 and seq2 res_1 = rmSE(read1,adaptor1,mis_ratio,min_len,mis_num) if res_1[1] is None: return False,None,None res_2 = rmSE(read2,adaptor2,mis_ratio,min_len,mis_num) if res_1[0] and res_2[0]: return True,res_1[1],res_2[1] else: if res_2[1] is None: return False, None, None if res_1[2]>res_2[2]: return False,res_1[1][:res_2[2]],res_2[1] elif res_1[2]==res_2[2]: return False,res_1[1],res_2[1] else: return False,res_1[1],res_2[1][:res_1[2]] def rmSE(read,adaptor,mis_ratio,min_len,mis_num): seq = read.seq seed_len = 6 adaptor_len = len(adaptor) seq_len = len(seq) for i in [0,6,12]:#之前是【0,6,12】 seed = adaptor[i:i+seed_len] seed_count = seq.count(seed) if seed_count==0: continue pos = 0 for j in range(seed_count): find_pos = seq.find(seed,pos) mistaken_count_max =get_mistaken_count_max(seq_len, (find_pos-i), adaptor_len, mis_ratio, mis_num) mistaken_count = 0 _b = find_pos _e = find_pos + seed_len while(_b >= 0 and i >= find_pos - _b): if adaptor[i - find_pos + _b] != seq[_b]: mistaken_count += 1 if mistaken_count > mistaken_count_max: break _b -= 1 else : while(_e < seq_len and i - find_pos + _e < adaptor_len): if adaptor[ i - find_pos + _e ] != seq[_e]: mistaken_count += 1 if mistaken_count > mistaken_count_max: break _e += 1 else: if _b+1 > min_len: return False,read[:_b+1],_b+1 if (_b+1 >= 0) and (_b+1 <= min_len): return False,None,0 pos = find_pos + 1 return True,read,seq_len def rmAdaptor(type,read1_file,read2_file,adaptor1,adaptor2,out_prefix,out_type,mis_ratio,min_len,mis_num): total_read_num = 0 clean_read_num = 0 adaptor_read_num = 0 if type=='PE': read2_records = SeqIO.parse(gzip.open(read2_file,'rt'),'fastq') read1_out = open( '%s.1.fq'%out_prefix,'w' ) read2_out = open( '%s.2.fq'%out_prefix,'w' ) if out_type==4: read1_rm_out = open( '%s.1_rm.fq'%out_prefix,'w' ) read2_rm_out = open( '%s.2_rm.fq'%out_prefix,'w' ) for read1 in SeqIO.parse(gzip.open(read1_file,'rt'),'fastq'): total_read_num += 2 read2 = read2_records.__next__() rmPE_res = rmPE(read1,read2,adaptor1,adaptor2,mis_ratio,min_len,mis_num) if rmPE_res[0]: clean_read_num += 2 read1_out.write(rmPE_res[1].format('fastq'))#clean read read2_out.write(rmPE_res[2].format('fastq'))#clean read else: adaptor_read_num += 2 if (rmPE_res[1] is None) or (rmPE_res[2] is None): continue read1_rm_out.write(rmPE_res[1].format('fastq'))#adaptor read read2_rm_out.write(rmPE_res[2].format('fastq'))#adaptor read read1_rm_out.close() read2_rm_out.close() else: for read1 in SeqIO.parse(gzip.open(read1_file,'rt'),'fastq'): total_read_num += 2 read2 = read2_records.__next__() rmPE_res = rmPE(read1,read2,adaptor1,adaptor2,mis_ratio,min_len,mis_num) if rmPE_res[0]: clean_read_num += 2 read1_out.write(rmPE_res[1].format('fastq'))#clean read read2_out.write(rmPE_res[2].format('fastq'))#clean read else: adaptor_read_num += 2 if (rmPE_res[1] is None) or (rmPE_res[2] is None): continue read1_out.write(rmPE_res[1].format('fastq'))#adaptor read read2_out.write(rmPE_res[2].format('fastq'))#adaptor read read1_out.close() read2_out.close() return total_read_num,clean_read_num,adaptor_read_num if __name__ == '__main__': params = read_params(sys.argv) read1_file = params["read1"] read2_file = params["read2"] adaptor1 = params["read1Adaptor"][:30] adaptor2 = params["read2Adaptor"][:30] type = params["type"] out_prefix = params["out_prefix"] mis_ratio = params["mis_ratio"] out_type = params["out_type"] min_len = params["min_len"] mis_num = params["mis_num"] starttime = time() total_read_num,clean_read_num,adaptor_read_num = rmAdaptor(type,read1_file,read2_file,adaptor1,adaptor2,out_prefix,out_type,mis_ratio,min_len,mis_num) with open("%s_adaptor_statistical.tsv" % out_prefix,'w') as fqout: fqout.write("sampleName\ttotal_reads\tremain_reads\tadaptor_reads\n") fqout.write("%s\t%s\t%s\t%s\n" % (os.path.basename(out_prefix),total_read_num,clean_read_num,adaptor_read_num)) endtime = time() sys.stdout.write("use time %s second"%(endtime-starttime))
[ "1037080472@qq.com" ]
1037080472@qq.com
a1bbbf01277d38b11003413cc62221047eceb338
032edbd5eccee1896a207f6e0b0ba1d026d4e984
/codility/missing_integer.py
2096104854d56029219e6bedcc29d3932c6934e6
[ "MIT" ]
permissive
grzesk075/PythonSandbox
95812a69e1b53e1faea574c10ec8db6fc79a58d2
9fa879b4a15a971258c458bbfe55c7a899c95ce5
refs/heads/master
2021-06-10T11:35:06.781026
2019-11-20T14:10:18
2019-11-20T14:10:18
156,559,088
0
0
MIT
2021-04-20T17:46:55
2018-11-07T14:31:11
Python
UTF-8
Python
false
false
364
py
def solution(A): N = len(A) existent = [False] * (N + 1) anyExistent = False for i in A: if i < 1 or i > N: continue existent[i] = True anyExistent = True if not anyExistent: return 1 for i in range(1, N + 1): if existent[i] == False: return i return N + 1
[ "grzegorz.kuprianowicz@tomtom.com" ]
grzegorz.kuprianowicz@tomtom.com
61468b496b4ca341fc7f4f03f63f4d96fa02445f
de7071a20fccd71617ddb94edb979869d23d3c51
/hour.py
af88b1432b01a270eb30bb385700f61f99f3db6c
[]
no_license
nancygaooo/weChatWeDone
825628d734ec7b1050727c39e9ef712ff237bbc6
5322c9a35c4e1f7a1c62cff03420a1e80275e834
refs/heads/master
2023-05-25T17:58:09.309748
2019-11-14T03:09:25
2019-11-14T03:09:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,440
py
#!/usr/bin/python3 import json import matplotlib.pyplot as plt import time import collections # Python 字典类型转换为 JSON 对象 hi = 'data/a-hou.json' f = open(hi, encoding='utf-8') data = f.read() # 读文件 lists = json.loads(data) hoursDict = [ "00", "01", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", ] aDays = collections.OrderedDict() bDays = collections.OrderedDict() for h in hoursDict: aDays[h] = 0 for h in hoursDict: bDays[h] = 0 xB = [] yB = [] xA = [] yA = [] for item in lists: timeObj = time.localtime(item['msgCreateTime']) hour = time.strftime("%H", timeObj) timeFormat = time.strftime("%m-%d %H:%M", timeObj) if item['mesDes'] == 1: aDays.setdefault(hour, 0) aDays[hour] = aDays[hour] + 1 else: bDays.setdefault(hour, 0) bDays[hour] = bDays[hour] + 1 for numbers in aDays: xA.append(numbers) yA.append(aDays[numbers]) for number in bDays: xB.append(number) yB.append(bDays[number]) print(xA, yA) print(xB, yB) # exit() # plt.figure() plt.plot(xA, yA, label="a") plt.plot(xB, yB, label="b") plt.xlabel('hour') plt.ylabel('records') plt.legend() plt.show() # plt.savefig('day.jpg') # print("Python 原始数据:", repr(lists))
[ "zqbinary@foxmail.com" ]
zqbinary@foxmail.com
b3ca053e73670d9c89ef872531a9f1acbf7de96e
fbb1550dc5437d672ed0137bd7711eba3290dee3
/students/ethan_nguyen/Lesson09/charges_calc.py
4a7033c84e96e8d9333119ece0d76514c91d20b4
[]
no_license
JavaRod/SP_Python220B_2019
2cc379daf5290f366cf92dc317b9cf68e450c1b3
5dac60f39e3909ff05b26721d602ed20f14d6be3
refs/heads/master
2022-12-27T00:14:03.097659
2020-09-27T19:31:12
2020-09-27T19:31:12
272,602,608
1
0
null
2020-06-16T03:41:14
2020-06-16T03:41:13
null
UTF-8
Python
false
false
4,893
py
''' Returns total price paid for individual rentals ''' # pylint: disable=line-too-long, c0301 import argparse import json import datetime import math import logging def parse_cmd_arguments(): """ function to parse input and check for input requirements """ parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('-i', '--input', help='input JSON file', required=True) parser.add_argument('-o', '--output', help='ouput JSON file', required=True) parser.add_argument('-d', '--debug', help='logging for debug', required=True) return parser.parse_args() ARGS = parse_cmd_arguments() LOGLEV = int(ARGS.debug) def logger_decorator(level): """ decorator for the logger """ def logged_func(func): """ set up logger """ def wrapper(*args): """ function to set up logger and handler """ logger = logging.getLogger() # create a logger object if level > 0: if level == 1: logger.setLevel(logging.ERROR) elif level == 2: logger.setLevel(logging.WARNING) else: logger.setLevel(logging.DEBUG) else: logging.disable(logging.ERROR) # disable all logging log_format = "%(asctime)s %(filename)s:%(lineno)-3d %(levelname)s \ %(message)s" formatter = logging.Formatter(log_format) log_file = datetime.datetime.now().strftime("%Y-%m-%d")+".log" file_handler = logging.FileHandler(log_file) file_handler.setFormatter(formatter) file_handler.setLevel(logging.WARNING) console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) console_handler.setFormatter(formatter) logger.addHandler(file_handler) logger.addHandler(console_handler) if args: print("\twith args: {}".format(args)) print("Function {} called".format(func.__name__)) return func(*args) return wrapper return logged_func @logger_decorator(LOGLEV) def load_rentals_file(filename): """ function to check and load json file """ logging.debug("Load input json file") try: with open(filename) as file: try: data = json.load(file) except ValueError: logging.error("Decoding JSON has failed") exit(0) except FileNotFoundError: logging.error(f"File {filename} not found") exit(0) return data @logger_decorator(LOGLEV) def calculate_additional_fields(data): """ function to loop through json data and calculate required fields """ logging.debug("Start calculating additional fields") for value in data.values(): logging.debug(f"Proccessing record {value}") try: rental_start = datetime.datetime.strptime( value['rental_start'], '%m/%d/%y') rental_end = datetime.datetime.strptime( value['rental_end'], '%m/%d/%y') total_day = (rental_end - rental_start).days if total_day < 0: logging.warning("Negative total day. Let take absolute of it") total_day = abs(total_day) if total_day == 0: logging.warning(f"Rental start and end date are the same. Let set \ total rental days to 1 {value}") total_day = 1 value['total_days'] = total_day value['total_price'] = value['total_days'] * value['price_per_day'] value['sqrt_total_price'] = math.sqrt(value['total_price']) value['unit_cost'] = value['total_price'] / value['units_rented'] except ValueError: logging.warning(f"Missing rental start or end date. Value was {value}. \ Skipped this record gracefully.") continue except ZeroDivisionError: logging.warning(f"Tried to divide by zero. Value was {value}. Recovered \ gracefully.") continue return data @logger_decorator(LOGLEV) def save_to_json(filename, data): """ function to save json to disk """ logging.debug("Save output to json") try: with open(filename, 'w') as file: json.dump(data, file) except IOError: logging.error(f"Problem dumping {filename} file") exit(0) if __name__ == "__main__": DATA = load_rentals_file(ARGS.input) DATA = calculate_additional_fields(DATA) save_to_json(ARGS.output, DATA)
[ "ethanenguyen@hotmail.com" ]
ethanenguyen@hotmail.com
d7ff36848628a39077cf531d9bb5f4e27680db7f
e7508722c01cd5a3a88dcec1efae18d6c501c72f
/TestCase/test_practice_fixture.py
4affb7adab4669f439fb2d2f8f0efa9210921454
[]
no_license
heqiang1992/DT
e8bd2bace9458a0f13888e27c823befc19c9a4c7
00ad9369c02d21821c4d079babdbc16766c9bbfe
refs/heads/master
2021-10-29T14:52:21.540535
2021-10-23T09:24:24
2021-10-23T09:24:24
188,933,678
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import pytest @pytest.fixture(scope="function", params=None, autouse=False, ids=None, name=None) def beforetest(): print("fixture: beforetest setup#$%^&*()") @pytest.mark.usefixtures("beforetest") def test_hello(): print("hello")
[ "wenjing@edmodo.com" ]
wenjing@edmodo.com
5840a5608c466d0d4c2e178f14721ec7b50f2df9
f0e0bf9fe818cde5c76b5428723a6bd05679cd3c
/cronDeliveryAPI/orders/migrations/0013_auto_20200810_1042.py
4acb25f73c814b6790f0f25fa9a72a600427fd70
[]
no_license
murkhan13/DeliveryAPP
e4339d32b29f8f617ad7bf520cb28d34eaaaa58c
44e72be1fe32543acaef24de616ec34f69f04878
refs/heads/master
2023-02-20T04:54:15.968788
2021-01-18T09:28:33
2021-01-18T09:28:33
292,862,348
1
0
null
null
null
null
UTF-8
Python
false
false
457
py
# Generated by Django 3.0.8 on 2020-08-10 07:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0012_order_restaurant'), ] operations = [ migrations.AlterField( model_name='order', name='restaurant', field=models.CharField(blank=True, default=None, max_length=200, null=True, verbose_name='Ресторан'), ), ]
[ "merch.fade13@gmail.com" ]
merch.fade13@gmail.com
4524f3c6f3dc84c87fc21c014c6ff6b23468839b
552c0a423264ca47c48f24737d62c93b6cc5dd11
/cars/migrations/0016_auto_20160915_1632.py
eff29b8135828c0b5b4bfcf628f34bc5f6b05832
[]
no_license
YELLOWINC/car-maze
6dfa72e45dd493731547e964636818effccab14a
31b82ed01bcb2004fbe1d850c33f2f636b305457
refs/heads/master
2021-01-15T12:41:49.984750
2016-09-16T16:00:15
2016-09-16T16:00:15
68,349,329
1
0
null
null
null
null
UTF-8
Python
false
false
3,023
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-09-15 11:02 from __future__ import unicode_literals import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('cars', '0015_auto_20160915_0240'), ] operations = [ migrations.CreateModel( name='TestDrive', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(default=datetime.datetime(2016, 9, 15, 16, 32, 57, 251958))), ('flag', models.BooleanField(default=False)), ('scheduled', models.DateTimeField(blank=True, null=True)), ('confirmed', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('car', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='cars.Car')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Wishlist', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(default=datetime.datetime(2016, 9, 15, 16, 32, 57, 251011))), ('flag', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('car', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='cars.Car')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.RemoveField( model_name='userprofile', name='city', ), migrations.RemoveField( model_name='userprofile', name='state', ), migrations.RemoveField( model_name='userprofile', name='wishlist', ), migrations.AlterField( model_name='userprofile', name='DOB', field=models.CharField(max_length=11), ), migrations.AlterField( model_name='userprofile', name='district', field=models.CharField(choices=[('Ernakulam', 'Ernakulam'), ('Thriruvananthapuram', 'Thriruvananthapuram'), ('Kollam', 'Kollam'), ('Pathanamthitta', 'Pathanamthitta'), ('Alappuzha', 'Alappuzha'), ('Kottayam', 'Kottayam'), ('Idukki', 'Idukki'), ('Thissur', 'Thissur'), ('Palakkad', 'Palakkad'), ('Malappuram', 'Malappuram'), ('Kozhikode', 'Kozhikode'), ('Wayanad', 'Wayanad'), ('Kannur', 'Kannur'), ('Kasargod', 'Kasargod')], max_length=25), ), ]
[ "sreeshsmallya@gmail.com" ]
sreeshsmallya@gmail.com
575e43af3805628268f12c1376a7f55e5d8b3a55
1f3b9e7f0009460d86d6cd2e6664d927cb271fa8
/RRT_holonomic.py
f233feba5fe58265834cf4c65a52ec02d1327ab2
[]
no_license
gowrijsuria/RRT-PathPlanning
5cd8b9ebdaa8945db54c33553ad966704019c676
797ef75ebfc5badcb620fed9db3ee51c5b5825e7
refs/heads/main
2023-04-20T08:16:57.224236
2021-05-09T19:44:34
2021-05-09T19:44:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,683
py
import pygame from random import randint as ri pygame.init() import time import numpy as np screen = pygame.display.set_mode([500, 550]) SIDE_x = 20 SIDE_y = 40 WINDOW_width = 440 WINDOW_height = 400 GAME_border = 3 WHITE=(255,255,255) BLUE=(0,0,255) BLACK=(0,0,0) RED=(255,0,0) GREEN=(0,255,0) RAND=(120,120,120) YELLOW = (0,0,102) C1=(39,38,53) C2=(19,51,62) C3=(31,3,24) screen.fill(WHITE) INT_MAX = 100000000000000 robot_radius = 8 class Environment: def __init__ (self, colour, x, y, width, height): self.colour = colour self.x = x self.y = y self.width = width self.height = height def create(self,screen): pygame.draw.rect(screen, self.colour, [self.x, self.y,self.width ,self.height]) def point_inside_game(self,x,y): if x>SIDE_x+GAME_border and x<SIDE_x + WINDOW_width - GAME_border: if y>SIDE_y+GAME_border and y < SIDE_y + WINDOW_height - GAME_border: return(True) return(False) def random_point(self): #Random Point Generator x_random = ri(SIDE_x+GAME_border , SIDE_x + WINDOW_width - GAME_border - 1) y_random = ri(SIDE_y+GAME_border , SIDE_y + WINDOW_height - GAME_border - 1 ) return((x_random, y_random)) def point_inside_rec(self,xr,yr,wr,hr,x,y): # Point inside given Rectangle ? if x> xr and x < xr + wr: if y > yr and y < yr + hr: return(True) return(False) def p2p_dist(self,p1,p2): # Point to Point Distance x1,y1=p1 x2,y2=p2 return ( ( (x1-x2)**2 + (y1-y2)**2 )**0.5 ) def ClickText(self): # Text on Environment font = pygame.font.Font('freesansbold.ttf', 12) text = font.render('CLICK HERE', True, WHITE) textRect = text.get_rect() textRect.center = (75, 495) screen.blit(text, textRect) def DesText(self,s,x=315,y=485): # Description Text pygame.draw.rect(screen,WHITE,(125,470,500,30)) font = pygame.font.SysFont('segoeuisemilight', 15) text = font.render('%s'%(s), True, BLACK) textRect = text.get_rect() #textRect.center = (255, 460) textRect.center = (x, y) screen.blit(text, textRect) def ConfSpace(): #CS for circle pygame.draw.circle(screen,BLACK,(100,150),20+robot_radius) pygame.draw.circle(screen,BLACK,(360,300),30+robot_radius) #CS for rectangle pygame.draw.circle(screen,BLACK,(200,150),robot_radius) pygame.draw.circle(screen,BLACK,(300,200),robot_radius) pygame.draw.circle(screen,BLACK,(200,200),robot_radius) pygame.draw.circle(screen,BLACK,(300,150),robot_radius) # left side of rectangle pygame.draw.rect(screen,BLACK,(200-robot_radius,150,100,50)) # right side of rectangle pygame.draw.rect(screen,BLACK,(300,150,robot_radius,50)) # bottom side of rectangle pygame.draw.rect(screen,BLACK,(200,150-robot_radius,100,robot_radius)) # top side of rectangle pygame.draw.rect(screen,BLACK,(200,200,100,robot_radius)) def WheelTraj_holonomic(r, points): r=10 theta_list=[] print(len(points)) for i in range(len(points)-1): px,py=points[i] cx,cy=points[i+1] theta=np.arctan2((py-cy),(px-cx)) theta_list.append(float(theta)) cx1=cx+r*np.cos(theta) cy1=cy+r*np.sin(theta) cx2=cx+r*np.cos(theta-2*(np.pi/3)) cy2=cy+r*np.sin(theta-2*(np.pi/3)) cx3=cx+r*np.cos(theta+2*(np.pi/3)) cy3=cy+r*np.sin(theta+2*(np.pi/3)) px1=px+r*np.cos(theta) py1=py+r*np.sin(theta) px2=px+r*np.cos(theta-2*(np.pi/3)) py2=py+r*np.sin(theta-2*(np.pi/3)) px3=px+r*np.cos(theta+2*(np.pi/3)) py3=py+r*np.sin(theta+2*(np.pi/3)) pygame.draw.line(screen, C1, (cx1,cy1), (px1,py1), 3) pygame.draw.line(screen, C2, (cx2,cy2), (px2,py2), 3) pygame.draw.line(screen, C3, (cx3,cy3), (px3,py3), 3) if(len(theta_list)>1): theta_old=theta_list[-2] theta_new=theta_list[-1] step=(theta_new-theta_old)/10 for j in range(10): temp=theta_old+step*j pygame.draw.circle(screen, C1, (int(cx+r*np.cos(temp)), int(cy+r*np.sin(temp))), 1) pygame.draw.circle(screen, C2, (int(cx+r*np.cos(temp-2*(np.pi/3))), int(cy+r*np.sin(temp-2*(np.pi/3)))), 1) pygame.draw.circle(screen, C3, (int(cx+r*np.cos(temp+2*(np.pi/3))), int(cy+r*np.sin(temp+2*(np.pi/3)))), 1) def RRT(x,y,parent): if (x,y) not in parent and screen.get_at((x,y)) != (0,0,0,255): x_m,y_m=-1,-1 cur_min=INT_MAX for v in parent: if B1.p2p_dist(v,(x,y))<cur_min: x_m,y_m=v cur_min = B1.p2p_dist(v,(x,y)) good = True ans=[] theta=np.arctan2((y-y_m),(x-x_m)); for i in range(Step): x_mid=x_m+i*np.cos(theta) y_mid=y_m+i*np.sin(theta) if screen.get_at((int(x_mid),int(y_mid))) == (0,0,0,255): good=False break if(good): ans=[int(x_m+(Step)*np.cos(theta)),int(y_m+Step*np.sin(theta))] return(good,x_m,y_m,ans) return(False,-1,-1,[]) running = True #Environment for Game # Grid with random Obstacles pygame.draw.rect(screen,BLACK,(SIDE_x,SIDE_y,WINDOW_width,WINDOW_height),GAME_border) pygame.draw.rect(screen,BLACK,(200,150,100,50)) pygame.draw.circle(screen,BLACK,(100,150),20) pygame.draw.circle(screen,BLACK,(360,300),30) B1 = Environment(BLACK, 25, 470, 100, 50) B1.create(screen) OBS=dict() points = [] #Number of forward Steps towards random sampled point # Step = 10 Step = 30 #Start stores a single point [Starting point- RED Point] Start=[] #End stores a set of destination point [Destination point- Green Point] #Multiple points allowed to make the point appear bigger, and fast discovery, #due to huge number of pixels in this game End=set() #parent stores the graph parent=dict() level=0 B1.ClickText() B1.DesText("Instruction :",y=460) B1.DesText("Click the BLACK button below to view Configuration Space for Obstacles") while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False break if running==False: break m = pygame.mouse.get_pressed() x,y = pygame.mouse.get_pos() if m[0]==1: if B1.point_inside_rec(B1.x,B1.y, B1.width, B1.height,x,y): if level==0: level+=1 B1.colour=RED ConfSpace() B1.DesText("Click the RED button and select the STARTING POINT") elif level==1 and Start==[]: level+=1 B1.colour=GREEN B1.DesText("Click the GREEN button and select the DESTINATION POINT") elif level==2 and Start: level+=1 B1.colour=BLUE B1.DesText("Click the BLUE button to view the RRT path and wheel trajectories") elif level==3 and End!=set(): level+=1 B1.colour=BLUE B1.DesText("Path is being explored using RRT Algorithm with wheel trajectories") B1.create(screen) B1.ClickText() continue elif level==1: OBS[(x,y)]=1 elif level == 2 and Start==[]: if B1.point_inside_game(x,y): Start=(x,y) pygame.draw.circle(screen, RED, (x, y), 10) elif level == 3 : if B1.point_inside_game(x,y): End.add((x,y)) pygame.draw.circle(screen, GREEN, (x, y), 10) if level>=4: running = False break pygame.display.update() running = True parent[Start]=(-1,-1) Trace=[] Timer = time.time() while(running): for event in pygame.event.get(): if event.type == pygame.QUIT: running = False break x,y =B1.random_point() if (time.time() - Timer) > 5: Step=5 good,x_m,y_m,ans=RRT(x,y,parent) if good and ans: x_cur = ans[0] y_cur = ans[1] if screen.get_at((x_cur,y_cur)) != (0,0,0,255) and (x_cur,y_cur) not in parent: parent[(x_cur,y_cur)]=(x_m,y_m) if screen.get_at((x_cur,y_cur)) == (0, 255, 0, 255): Trace=(x_cur,y_cur) running = False pygame.draw.line(screen, BLUE, (x_cur,y_cur), (x_m,y_m), 2) pygame.display.update() running = True #This loop gets the route back to Start point while(Trace and running): for event in pygame.event.get(): if event.type == pygame.QUIT: running = False break while(Trace!=Start): points.append(Trace) x,y = parent[Trace] pygame.draw.line(screen, GREEN, (x,y), Trace, 2) Trace=(x,y) pygame.display.update() points.append(Start) WheelTraj_holonomic(robot_radius, points) #Quit pygame.quit()
[ "gowri.jsuria@gmail.com" ]
gowri.jsuria@gmail.com
7f4bc71f56886683d4b882f80e796b530ca7e98f
07561714394c112c846f8544e507db1e5c202344
/src/utils/utils.py
10099722e23b640e3be0ce7f2f74d878a041cb3d
[]
no_license
manojsukhavasi/kaggle-rsna-pneumonia-detection-challenge
ebd1438693f5c8beaa152b2928f94db5940445fd
42ee044d1b0132fc35d44751c00e9edf7cd04436
refs/heads/master
2020-03-28T22:21:06.353598
2018-09-19T17:57:39
2018-09-19T17:57:39
149,226,025
3
3
null
null
null
null
UTF-8
Python
false
false
437
py
from src.imports import * def read_dicom(path): """ Reads dicom and gives out RGB PIL Image """ pd = pydicom.read_file(path) img_arr = pd.pixel_array img_arr = img_arr/img_arr.max() img_arr = (255*img_arr).clip(0,255).astype(np.uint8) img = Image.fromarray(img_arr).convert('RGB') return img def clean_bb_boxes(preds): mask = preds[:,0]>0.5 preds[~mask] = torch.Tensor([]) return preds
[ "manoj.sukhavasi1@gmail.com" ]
manoj.sukhavasi1@gmail.com
77eee7cb521aa55ec25cc3b3b823f11e5014a79e
f404a58e558e813d7afaec9282e65127fa223d42
/tweet_updater/tweety.py
2532bd39cb88b4d76297f9a40a44288f1fc76eca
[]
no_license
zInnovationLab/sentiment-anaylsis-bluemix
153a33e72f8fe4d0179194c7236d9a9790e8fd91
252fc164bf66ac25d0354aa39c351086eb0c0456
refs/heads/master
2021-01-17T12:59:00.248428
2016-06-20T19:01:50
2016-06-20T19:01:50
58,948,854
0
1
null
null
null
null
UTF-8
Python
false
false
3,669
py
from datetime import date, timedelta import os import json import sys import tweepy import pymongo COLLECTION_NAME = 'tweets' # Gets the Mongo DB URL and DB from VCAP_SERVICES if present, else # assumes the Mongo instance is running locally url = 'mongodb://mongo_server:27017/tweets' if os.environ.has_key('VCAP_SERVICES'): vcapJson = json.loads(os.environ['VCAP_SERVICES']) for key, value in vcapJson.iteritems(): #Only find the services with the name todo-mongo-db, there should only be one mongoServices = filter(lambda s: s['name'].find('mongo') != -1, value) if len(mongoServices) != 0: mongoService = mongoServices[0] if "uri" in mongoService['credentials']: url = mongoService['credentials']['uri'] else: url = mongoService['credentials']['url'] client = pymongo.MongoClient(url) db = client.get_default_database() tweet_col = db[COLLECTION_NAME] twitter_key = os.environ.get('TWITTER_APIKEY', '''{ "consumer_key": "", "consumer_secret": "", "access_token": "", "access_token_secret": "" }''') twitter_key = json.loads(twitter_key) CONSUMER_KEY = twitter_key['consumer_key'] CONSUMER_SECRET = twitter_key['consumer_secret'] ACCESS_TOKEN = twitter_key['access_token'] ACCESS_TOKEN_SECRET = twitter_key['access_token_secret'] # https://dev.twitter.com/rest/reference/get/search/tweets TWEETS_PER_PAGE=100 # max until = date.today() - timedelta(days=7) # not used. also, has a 7 day limit result_type = 'mixed' # popular, mixed, recent. popular doesn't return many results # twitter auth auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN, ACCESS_TOKEN_SECRET) api = tweepy.API(auth) # call twitter api and return def get_tweets(query, max_id=None): if max_id: res_tweets = api.search(query, max_id=max_id, count=TWEETS_PER_PAGE, show_user=True, result_type=result_type) else: res_tweets = api.search(query, count=TWEETS_PER_PAGE, show_user=True, result_type=result_type) tweets = [] for tweet in res_tweets: #tweet = tweet._json t = {} try: t['id'] = str(tweet.id) t['favCount'] = tweet.favorite_count t['place'] = '' #tweet.place.coordinates if tweet.place else '' t['time'] = tweet.created_at.strftime('%c') t['text'] = tweet.text t['coord'] = tweet.coordinates if tweet.coordinates else '' except Exception, ex: print repr(ex) tweets.append(t) print t print '========================================================' return tweets def update_all(count): # collect tweets until we reach count #last_count = 0 with open("searches.txt", "rb") as searches: allsearches = searches.readlines() for query in allsearches: tweets = [] last_count = 0 print query while len(tweets) < count: if len(tweets) == 0: tweets = get_tweets(query) else: tweets += get_tweets(query, tweets[-1]['id']) print "found %d tweets" % len(tweets) if last_count == len(tweets): break # no progress last_count = len(tweets) # insert all results into mongo tweet_col.insert_many(tweets) if __name__ == "__main__": # get parameters if len(sys.argv) > 1: count = int(sys.argv[1]) else: print "USAGE: %s count" % sys.argv[0] sys.exit(8) update_all(count)
[ "ivandov@us.ibm.com" ]
ivandov@us.ibm.com
cfcfe9e9a35e6480dc98c66e8627b6ea00972a94
cab67e7629c8193b80f525245371065c8183d4d1
/venv/lib/python3.8/site-packages/arcade/examples/perf_test/stress_test_draw_moving_arcade.py
9552cc446755e9bac11c04e7fbd0aaf393f58d2a
[]
no_license
pablo2811/CVD-simulator
31bd9fbc9d4795d1332712fe0f8da6729d8918e7
17c6125d1efdca5abcb9b5957c435f55e28b0ae3
refs/heads/master
2022-12-28T16:58:16.531530
2020-10-12T18:25:54
2020-10-12T18:25:54
303,478,485
0
1
null
null
null
null
UTF-8
Python
false
false
7,019
py
""" Moving Sprite Stress Test Simple program to test how fast we can draw sprites that are moving Artwork from http://kenney.nl If Python and Arcade are installed, this example can be run from the command line with: python -m arcade.examples.stress_test_draw_moving """ import random import arcade import os import timeit import time import collections import pyglet # --- Constants --- SPRITE_SCALING_COIN = 0.25 SPRITE_NATIVE_SIZE = 128 SPRITE_SIZE = int(SPRITE_NATIVE_SIZE * SPRITE_SCALING_COIN) COIN_COUNT_INCREMENT = 500 STOP_COUNT = 10000 RESULTS_FILE = "stress_test_draw_moving_arcade.csv" SCREEN_WIDTH = 1800 SCREEN_HEIGHT = 1000 SCREEN_TITLE = "Moving Sprite Stress Test" class FPSCounter: def __init__(self): self.time = time.perf_counter() self.frame_times = collections.deque(maxlen=60) def tick(self): t1 = time.perf_counter() dt = t1 - self.time self.time = t1 self.frame_times.append(dt) def get_fps(self): total_time = sum(self.frame_times) if total_time == 0: return 0 else: return len(self.frame_times) / sum(self.frame_times) class Coin(arcade.Sprite): def update(self): """ Update the sprite. """ self.position = (self.position[0] + self.change_x, self.position[1] + self.change_y) class MyGame(arcade.Window): """ Our custom Window Class""" def __init__(self): """ Initializer """ # Call the parent class initializer super().__init__(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_TITLE) # Set the working directory (where we expect to find files) to the same # directory this .py file is in. You can leave this out of your own # code, but it is needed to easily run the examples using "python -m" # as mentioned at the top of this program. file_path = os.path.dirname(os.path.abspath(__file__)) os.chdir(file_path) # Variables that will hold sprite lists self.coin_list = None self.processing_time = 0 self.draw_time = 0 self.program_start_time = timeit.default_timer() self.sprite_count_list = [] self.fps_list = [] self.processing_time_list = [] self.drawing_time_list = [] self.last_fps_reading = 0 self.fps = FPSCounter() arcade.set_background_color(arcade.color.AMAZON) # Open file to save timings self.results_file = open(RESULTS_FILE, "w") def add_coins(self): # Create the coins for i in range(COIN_COUNT_INCREMENT): # Create the coin instance # Coin image from kenney.nl coin = Coin(":resources:images/items/coinGold.png", SPRITE_SCALING_COIN) # Position the coin coin.center_x = random.randrange(SPRITE_SIZE, SCREEN_WIDTH - SPRITE_SIZE) coin.center_y = random.randrange(SPRITE_SIZE, SCREEN_HEIGHT - SPRITE_SIZE) coin.change_x = random.randrange(-3, 4) coin.change_y = random.randrange(-3, 4) # Add the coin to the lists self.coin_list.append(coin) def setup(self): """ Set up the game and initialize the variables. """ # Sprite lists self.coin_list = arcade.SpriteList(use_spatial_hash=False) def on_draw(self): """ Draw everything """ # Start timing how long this takes draw_start_time = timeit.default_timer() arcade.start_render() self.coin_list.draw() # Display info on sprites # output = f"Sprite count: {len(self.coin_list):,}" # arcade.draw_text(output, 20, SCREEN_HEIGHT - 20, arcade.color.BLACK, 16) # # # Display timings # output = f"Processing time: {self.processing_time:.3f}" # arcade.draw_text(output, 20, SCREEN_HEIGHT - 40, arcade.color.BLACK, 16) # # output = f"Drawing time: {self.draw_time:.3f}" # arcade.draw_text(output, 20, SCREEN_HEIGHT - 60, arcade.color.BLACK, 16) # # fps = self.fps.get_fps() # output = f"FPS: {fps:3.0f}" # arcade.draw_text(output, 20, SCREEN_HEIGHT - 80, arcade.color.BLACK, 16) self.draw_time = timeit.default_timer() - draw_start_time self.fps.tick() def update(self, delta_time): # Start update timer start_time = timeit.default_timer() self.coin_list.update() for sprite in self.coin_list: if sprite.position[0] < 0: sprite.change_x *= -1 elif sprite.position[0] > SCREEN_WIDTH: sprite.change_x *= -1 if sprite.position[1] < 0: sprite.change_y *= -1 elif sprite.position[1] > SCREEN_HEIGHT: sprite.change_y *= -1 # Save the time it took to do this. self.processing_time = timeit.default_timer() - start_time # Total time program has been running total_program_time = int(timeit.default_timer() - self.program_start_time) # Print out stats, or add more sprites if total_program_time > self.last_fps_reading: self.last_fps_reading = total_program_time # It takes the program a while to "warm up", so the first # few seconds our readings will be off. So wait some time # before taking readings if total_program_time > 5: # We want the program to run for a while before taking # timing measurements. We don't want the time it takes # to add new sprites to be part of that measurement. So # make sure we have a clear second of nothing but # running the sprites, and not adding the sprites. if total_program_time % 2 == 1: # Take timings output = f"{total_program_time}, {len(self.coin_list)}, {self.fps.get_fps():.1f}, " \ f"{self.processing_time:.4f}, {self.draw_time:.4f}\n" self.results_file.write(output) print(output, end="") if len(self.coin_list) >= STOP_COUNT: pyglet.app.exit() return self.sprite_count_list.append(len(self.coin_list)) self.fps_list.append(round(self.fps.get_fps(), 1)) self.processing_time_list.append(self.processing_time) self.drawing_time_list.append(self.draw_time) # Now add the coins self.add_coins() def main(): """ Main method """ window = MyGame() window.setup() arcade.run() if __name__ == "__main__": main()
[ "fijalkowskipablo@gmail.com" ]
fijalkowskipablo@gmail.com
51b4c0c2bea9491a67c860e630caba768c5da03f
f87587a22c7cf4714f3130636a85fe81f8a0d448
/Python/Exercicios Coursera/Semana 3/Exercicio2_1.py
7209e23499b0bef93e5b00edc191af2a23021e1a
[]
no_license
fernandosergio/Documentacoes
6065dec7d9fbd67dc86280322247e53e8c95f29e
13d605cae58317bb1666294c1e8f3927755f4ce8
refs/heads/master
2023-04-01T10:47:13.076027
2021-04-05T19:43:54
2021-04-05T19:43:54
290,798,978
0
0
null
null
null
null
UTF-8
Python
false
false
414
py
x1 = int(input("Digite o valor do x1 no plano cartesiano: ")) y1 = int(input("Digite o valor do y1 no plano cartesiano: ")) x2 = int(input("Digite o valor do x2 no plano cartesiano: ")) y2 = int(input("Digite o valor do y2 no plano cartesiano: ")) import math valorx = (x1 - x2) ** 2 valory = (y1 - y2) ** 2 distancia = math.sqrt(valorx + valory) if distancia < 10 : print("perto") else: print("longe")
[ "46656725+fyzn@users.noreply.github.com" ]
46656725+fyzn@users.noreply.github.com
04a136eac2da6f980a9fdf007fe19353aec45133
b55b9b54c66522b214c9e2016c60dfb9dbcc0015
/tests/python/gaiatest/tests/test_browser_cell_data.py
0ea2e24dbd90fe830d3b35e72fed768b6823d239
[ "Apache-2.0" ]
permissive
enterstudio/gaia
92f5b6fb597eef52bcbd3db9e78066befa24bd1a
36bcd46a56e2d066d629e5e82681b1af063db0f7
refs/heads/master
2022-10-21T10:04:13.419441
2013-01-02T22:57:12
2013-01-02T22:58:44
109,246,945
0
0
NOASSERTION
2022-10-17T02:19:24
2017-11-02T09:56:57
JavaScript
UTF-8
Python
false
false
1,905
py
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from gaiatest import GaiaTestCase class TestBrowserCellData(GaiaTestCase): # Firefox/chrome locators _awesome_bar_locator = ("id", "url-input") _url_button_locator = ("id", "url-button") _throbber_locator = ("id", "throbber") _browser_frame_locator = ('css selector', 'iframe[mozbrowser]') def setUp(self): GaiaTestCase.setUp(self) self.data_layer.disable_wifi() self.data_layer.enable_cell_data() # launch the app self.app = self.apps.launch('Browser') def test_browser_cell_data(self): # https://moztrap.mozilla.org/manage/case/1328/ awesome_bar = self.marionette.find_element(*self._awesome_bar_locator) awesome_bar.click() awesome_bar.send_keys('http://mozqa.com/data/firefox/layout/mozilla.html') self.marionette.find_element(*self._url_button_locator).click() # Bump up the timeout due to slower cell data speeds self.wait_for_condition(lambda m: not self.is_throbber_visible(), timeout=40) browser_frame = self.marionette.find_element( *self._browser_frame_locator) self.marionette.switch_to_frame(browser_frame) heading = self.marionette.find_element('id', 'page-title') self.assertEqual(heading.text, 'We believe that the internet should be public, open and accessible.') def tearDown(self): # close the app if hasattr(self, 'app'): self.apps.kill(self.app) self.data_layer.disable_cell_data() GaiaTestCase.tearDown(self) def is_throbber_visible(self): return self.marionette.find_element(*self._throbber_locator).get_attribute('class') == 'loading'
[ "jgriffin@mozilla.com" ]
jgriffin@mozilla.com
45887ae16823fc001b1f21088f29542dcaf7bd15
7a9900b0591d8e87b58c4d5104d37f61898af681
/curses.py
fda8868696dbf4652c0bc2a1f51c209027ead248
[ "MIT" ]
permissive
greylurk/mr-v1
5ef9b70e59bf27f760a97074286a5b2d36966984
baad86be342e3d460ed746de99c421e3f0245f71
refs/heads/master
2021-01-20T12:09:58.266385
2014-03-19T14:06:13
2014-03-19T14:06:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
432
py
import curses import locale class ControlPanel: def __init__(self): self.sensors = [] self.actuators = [] self.screen = curses.initscr() curses.noecho() curses.cbreak() self.screen.keypad(1) locale.setLocale(locale.LC_ALL,'') def close(self): curses.nocbreak() self.screen.keypad(0) curses.echo() curses.endwin()
[ "adamn@sparkpi.(none)" ]
adamn@sparkpi.(none)
2d38cbbe7e6389f185c8e82dd8a4f4b9c64aeadd
12abdc9a83b03902b75429e73d17bbbb8a431110
/images/openstack/fs/openstack/environments/image_importer/bigip_image_import.py
5fec512f6b16cfbcef636369e58b9b70d7e8abee
[ "MIT" ]
permissive
jgruber/f5-super-netops-container
e52ff7a1c841d94498e944f35d91613d861d9e71
500b3f81c609d24b0901e557e8a9c1317df9526f
refs/heads/master
2021-01-21T20:59:33.645912
2017-11-21T22:50:36
2017-11-21T22:50:36
92,293,549
0
0
null
2017-05-24T13:10:13
2017-05-24T13:10:12
null
UTF-8
Python
false
false
26,712
py
# coding=utf-8 # Copyright 2016 F5 Networks Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import glob import zipfile import tarfile import time import re import requests import paramiko import socket import uuid import keystoneclient.v3.client as ksclient import keystoneauth1 import neutronclient.v2_0.client as netclient import novaclient.client as compclient import glanceclient.v2.client as gclient import heatclient.client as heatclient UBUNTU_IMAGE = 'http://cloud-images.ubuntu.com/trusty/current/' + \ 'trusty-server-cloudimg-amd64-disk1.img' BIGIP_TAR_IMAGE = 'bigipzips.tar' WEB_SERVER_TEMPLATE = './bigip_image_importer_webserver.yaml' # GIT copy is out of date with Ubuntu repo # F5_IMAGE_TEMPLATE = 'https://raw.githubusercontent.com/F5Networks/' + \ # 'f5-openstack-heat/master/f5_supported/ve/images/' + \ # 'patch_upload_ve_image.yaml' F5_IMAGE_TEMPLATE = './patch_upload_ve_image.yaml' CONTAINERFORMAT = 'bare' DISKFORMAT = 'qcow2' VE_PROPS = { '.*ALL.qcow2.zip$': { 'metadata': { 'os_product': 'F5 TMOS Virtual Edition for All Modules. ' + '160G disk, 8 or 16G RAM, 4 or 8 vCPUs.' }, 'min_disk': 160, 'min_ram': 8192 }, '.*LTM.qcow2.zip$': { 'metadata': { 'os_product': 'F5 TMOS Virtual Edition for Local Traffic Manager. ' + '40G disk, 4 or 8G RAM, 2 or 4 vCPUs.' }, 'min_disk': 40, 'min_ram': 4096 }, '.*LTM_1SLOT.qcow2.zip$': { 'metadata': { 'os_product': 'F5 TMOS Virtual Edition for Local Traffic Manager. ' + ' - Small Footprint Single Version. 8G disk, 2G RAM, 1 vCPUs.' }, 'min_disk': 8, 'min_ram': 2048 }, '^iWorkflow': { 'metadata': { 'os_product': 'F5 TMOS Virtual Edition for iWorkflow ' + 'Orchestration Services. 160G disk, 4G RAM, 2 vCPUs.' }, 'min_disk': 160, 'min_ram': 4096 }, '^BIG-IQ.*qcow2.zip': { 'metadata': { 'os_product': 'F5 TMOS Virtual Edition for BIG-IQ ' + 'Configuration Management Server. 160G disk, 4G RAM, 2 vCPUs.' }, 'min_disk': 160, 'min_ram': 4096 }, '^BIG-IQ.*LARGE.qcow2.zip': { 'metadata': { 'os_product': 'F5 TMOS Virtual Edition for BIG-IQ ' + 'Configuration Management Server. 500G disk, 4G RAM, 2 vCPUs.' }, 'min_disk': 500, 'min_ram': 4096 } } def _make_bigip_inventory(): if 'IMAGE_DIR' not in os.environ: return None bigip_images = {} # BIGIP and BIG-IQ Image Packages for f5file in glob.glob("%s/BIG*.zip" % os.environ['IMAGE_DIR']): vepackage = zipfile.ZipFile(f5file) filename = os.path.basename(f5file) for packed in vepackage.filelist: if packed.filename.startswith(filename[:8]) and \ packed.filename.endswith('qcow2'): f5_version = 13 if filename not in bigip_images: bigip_images[filename] = {'image': None, 'datastor': None, 'readyimage': None, 'file': f5file, 'archname': filename} if packed.filename.find('DATASTOR') > 0: bigip_images[filename]['datastor'] = packed.filename elif packed.filename.find('BIG-IQ') > 0: bigip_images[filename]['image'] = packed.filename else: last_dash = filename.rfind('-') first_dot = filename.find('.') f5_version = int(filename[last_dash+1:first_dot]) if f5_version < 13: bigip_images[filename]['image'] = packed.filename else: bigip_images[filename]['readyimage'] = packed.filename # iWorkflow Image Packages for f5file in glob.glob("%s/iWorkflow*.zip" % os.environ['IMAGE_DIR']): vepackage = zipfile.ZipFile(f5file) filename = os.path.basename(f5file) for packed in vepackage.filelist: if packed.filename.startswith(filename[:8]) and \ packed.filename.endswith('qcow2'): f5_version = 13 if filename not in bigip_images: bigip_images[filename] = {'image': None, 'datastor': None, 'readyimage': None, 'file': f5file, 'archname': filename} if packed.filename.find('DATASTOR') > 0: bigip_images[filename]['datastor'] = packed.filename elif packed.filename.find('Workflow') > 0: bigip_images[filename]['image'] = packed.filename else: last_dash = filename.rfind('-') first_dot = filename.find('.') f5_version = int(filename[last_dash+1:first_dot]) if f5_version < 13: bigip_images[filename]['image'] = packed.filename else: bigip_images[filename]['readyimage'] = packed.filename return bigip_images def _images_needing_import(bigip_images): image_names = bigip_images.keys() for image in image_names: final_image_name = image.replace('.qcow2.zip', '') gc = _get_glance_client() for uploaded_image in gc.images.list(): if uploaded_image.name == final_image_name: del bigip_images[image] return bigip_images def _get_keystone_session(project_name=None): auth_url = str(os.environ['OS_AUTH_URL']).replace('2.0', '3') project_domain_id = 'default' if 'OS_DOMAIN_ID' in os.environ: project_domain_id = os.environ['OS_DOMAIN_ID'] user_domain_id = 'default' if 'OS_USER_DOMAIN_ID' in os.environ: user_domain_id = os.environ['OS_USER_DOMAIN_ID'] from keystoneauth1.identity import v3 if not project_name: project_name = os.environ['OS_TENANT_NAME'] auth = v3.Password(username=os.environ['OS_USERNAME'], password=os.environ['OS_PASSWORD'], project_name=project_name, user_domain_id=user_domain_id, project_domain_id=project_domain_id, auth_url=auth_url) sess = keystoneauth1.session.Session(auth=auth, verify=False) return sess def _get_keystone_client(): return ksclient.Client(session=_get_keystone_session()) def _get_neutron_client(): return netclient.Client(session=_get_keystone_session()) def _get_nova_client(): return compclient.Client('2.1', session=_get_keystone_session()) def _get_glance_client(): return gclient.Client(session=_get_keystone_session()) def _get_heat_client(tenant_name=None, tenant_id=None): kc = _get_keystone_client() if tenant_id: tenant_name = kc.projects.get(tenant_id).name if not tenant_name: tenant_name = os.environ['OS_TENANT_NAME'] if not tenant_id: tenant_id = kc.projects.find(name=tenant_name).id ks = _get_keystone_session(project_name=tenant_name) heat_sid = kc.services.find(type='orchestration').id heat_url = kc.endpoints.find(service_id=heat_sid, interface='public').url heat_url = heat_url.replace('%(tenant_id)s', tenant_id) return heatclient.Client('1', endpoint=heat_url, token=ks.get_token()) def _download_file(url): local_filename = url.split('/')[-1] cached_file = "%s/%s" % (os.environ['IMAGE_DIR'], local_filename) if os.path.isfile(cached_file): return cached_file r = requests.get(url) f = open(cached_file, 'wb') for chunk in r.iter_content(chunk_size=512 * 1024): if chunk: f.write(chunk) f.close() return cached_file def _upload_image_to_glance(local_file_name, image_name, is_public): gc = _get_glance_client() visibility = 'private' if is_public: visibility = 'public' img_model = gc.images.create( name=image_name, disk_format=DISKFORMAT, container_format=CONTAINERFORMAT, visibility=visibility ) gc.images.upload(img_model.id, open(local_file_name, 'rb')) return img_model.id def _get_import_image_id(): gc = _get_glance_client() importer_id = None image_name = 'f5-Image-Importer' for image in gc.images.list(): if image.name == image_name: importer_id = image.id if not importer_id: local_filename = _download_file(UBUNTU_IMAGE) importer_id = _upload_image_to_glance(local_filename, image_name, False) return importer_id def _get_external_net_id(): nc = _get_neutron_client() ext_id = None for net in nc.list_networks()['networks']: if net['router:external']: ext_id = net['id'] return ext_id def _allocate_floating_ip(port_id): ext_id = _get_external_net_id() if ext_id and port_id: floating_obj = {'floatingip': {'floating_network_id': ext_id, 'port_id': port_id}} nc = _get_neutron_client() floating_ip = nc.create_floatingip(floating_obj) return floating_ip['floatingip']['floating_ip_address'] def _create_web_server(download_server_image, ext_net): image_importer_web_server_template = open(WEB_SERVER_TEMPLATE, 'r').read() hc = _get_heat_client() web_server_stack_id = hc.stacks.create( disable_rollback=True, parameters={'external_network': ext_net, 'web_app_image': download_server_image}, stack_name='image_importer_web_server', environment={}, template=image_importer_web_server_template )['stack']['id'] stack_completed = ['CREATE_COMPLETE', 'CREATE_FAILED', 'DELETE_COMPLETE'] print " " while True: s = hc.stacks.get(web_server_stack_id) print '\tImage importer status: %s \r' % s.stack_status, if s.stack_status in stack_completed: if s.stack_status == 'CREATE_FAILED': print "Image importer web server create failed" sys.exit(1) if s.stack_status == 'DELETE_COMPLETE': print "Image importer web server was deleted" sys.exit(1) break else: sys.stdout.flush() time.sleep(5) print " " return web_server_stack_id def _is_port_open(ip, port): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((ip, int(port))) s.shutdown(2) return True except: return False def _make_bigip_zip_tar_file(bigip_images): tar_file_name = "%s/%s" % (os.environ['IMAGE_DIR'], BIGIP_TAR_IMAGE) tar = tarfile.open(tar_file_name, 'w') for image in bigip_images: tar.add(bigip_images[image]['file'], arcname=bigip_images[image]['archname']) tar.close() def sftp_print_totals(transferred, toBeTransferred): percent_uploaded = 100 * float(transferred)/float(toBeTransferred) print '\tTransferred: %d of %d bytes [%d%%]\r' % ( transferred, toBeTransferred, int(percent_uploaded)), def _upload_bigip_zips_to_web_server(web_server_floating_ip, bigip_images): print " " # wait for web server to answer SSH while True: if _is_port_open(web_server_floating_ip, 22): print "\tSSH is reachable on web server\n" time.sleep(10) break time.sleep(5) ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(web_server_floating_ip, username='ubuntu', password='openstack') ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command( 'sudo rm /var/www/html/index.html' ) for image in bigip_images: zip_file = bigip_images[image]['file'] transport = paramiko.Transport((web_server_floating_ip, 22)) transport.connect(username='ubuntu', password='openstack') scp = paramiko.SFTPClient.from_transport(transport) print "\tscp %s to server %s" % (zip_file, web_server_floating_ip) print " " scp.put(zip_file, '/tmp/%s' % image, callback=sftp_print_totals) print "\n" # deploy the image to the web servers ssh_stdin, ssh_stdout, ssh_stderr = ssh.exec_command( 'sudo mv /tmp/%s /var/www/html/' % image ) print "\tAvailable http://%s/%s" % (web_server_floating_ip, image) print "\n" def _get_heat_output_value(stack_id, output_name): hc = _get_heat_client() stack = hc.stacks.get(stack_id) for output in stack.outputs: if output['output_key'] == output_name: return output['output_value'] return None def _create_glance_images(f5_heat_template_file, download_server_image, web_server_stack_id, bigip_images): f5_image_template = open(f5_heat_template_file, 'r').read() image_prep_key = "importer_%s" % uuid.uuid4() cc = _get_nova_client() cc.keypairs.create(image_prep_key) print " " for image in bigip_images: if bigip_images[image]['image']: image_name = bigip_images[image]['image'] glance_image_name = image_name.replace('.qcow2', '') final_image_name = image.replace('.qcow2.zip', '') gc = _get_glance_client() create_image = True for uploaded_image in gc.images.list(): if uploaded_image.name == final_image_name: create_image = False if not create_image: print "\tImage with name %s exists. Skipping." % \ final_image_name else: print "\tCreating image for %s" % image hc = _get_heat_client() private_network = _get_heat_output_value(web_server_stack_id, 'import_network_id') web_server_floating_ip = _get_heat_output_value( web_server_stack_id, 'web_server_public_ip') f5_ve_image_url = "http://%s/%s" % (web_server_floating_ip, image) ipu = "https://github.com/F5Networks/" + \ "f5-openstack-image-prep.git" image_stack_id = hc.stacks.create( disable_rollback=True, parameters={"onboard_image": download_server_image, "flavor": "m1.medium", "use_config_drive": True, "private_network": private_network, "f5_image_import_auth_url": os.environ[ 'OS_AUTH_URL'], "f5_image_import_tenant": os.environ[ 'OS_TENANT_NAME'], "f5_image_import_user": os.environ[ 'OS_USERNAME'], "f5_image_import_password": os.environ[ 'OS_PASSWORD'], "image_prep_url": ipu, "f5_ve_image_name": image_name, "f5_ve_image_url": f5_ve_image_url, "image_prep_key": image_prep_key, "apt_cache_proxy_url": None, "os_distro": "mitaka" }, stack_name="image_importer", environment={}, template=f5_image_template )['stack']['id'] stack_completed = ['CREATE_COMPLETE', 'CREATE_FAILED', 'DELETE_COMPLETE'] while True: s = hc.stacks.get(image_stack_id) print '\tImage importer status: %s \r' % s.stack_status, sys.stdout.flush() if s.stack_status in stack_completed: if s.stack_status == 'CREATE_FAILED': print "\tImage importer web server create failed" print " " cc = _get_nova_client() cc.keypairs.delete(image_prep_key) sys.exit(1) if s.stack_status == 'DELETE_COMPLETE': print "\tImage importer web server was deleted" print " " cc = _get_nova_client() cc.keypairs.delete(image_prep_key) sys.exit(1) break else: time.sleep(5) print " " print "\tSUCCESS - Image patched and uploaded." hc = _get_heat_client() hc.stacks.delete(image_stack_id) # Fix the name to reflect the actual BIG-IP release name gc = _get_glance_client() for uploaded_image in gc.images.list(): if uploaded_image.name == glance_image_name: image_properties = { 'os_vendor': 'F5 Networks', 'os_name': 'F5 Traffic Management Operating System' } for ve_type in VE_PROPS: p = re.compile(ve_type) match = p.match(image) if match: image_properties.update( VE_PROPS[ve_type]['metadata']) min_disk = 0 min_ram = 0 if 'min_disk' in VE_PROPS[ve_type]: min_disk = VE_PROPS[ve_type]['min_disk'] if 'min_ram' in VE_PROPS[ve_type]: min_ram = VE_PROPS[ve_type]['min_ram'] gc.images.update(uploaded_image.id, name=final_image_name, visibility='public', min_disk=min_disk, min_ram=min_ram, **image_properties) # Let last image stack delete stack_completed = ['DELETE_COMPLETE'] hc = _get_heat_client() while True: s = hc.stacks.get(image_stack_id) print '\tImage importer status: %s \r' % s.stack_status, sys.stdout.flush() if s.stack_status in stack_completed: break else: time.sleep(5) # Add readyimage if defined if bigip_images[image]['readyimage']: gc = _get_glance_client() image_name = bigip_images[image]['readyimage'] glance_image_name = image_name.replace('.qcow2', '') final_image_name = image.replace('.qcow2.zip', '') create_image = True for uploaded_image in gc.images.list(): if uploaded_image.name == final_image_name: create_image = False if not create_image: print "\tImage with name %s exists. Skipping." % \ final_image_name else: print "\tCreating Ready image %s" % glance_image_name vepackage = zipfile.ZipFile(bigip_images[image]['file']) vepackage.extract(bigip_images[image]['readyimage']) image_id = _upload_image_to_glance( bigip_images[image]['readyimage'], glance_image_name, True ) # Fix the name to reflect the actual BIG-IP release name gc = _get_glance_client() for uploaded_image in gc.images.list(): if uploaded_image.name == glance_image_name: image_properties = { 'os_vendor': 'F5 Networks', 'os_name': 'F5 Traffic Management Operating System' } for ve_type in VE_PROPS: p = re.compile(ve_type) match = p.match(image) if match: image_properties.update( VE_PROPS[ve_type]['metadata']) min_disk = 0 min_ram = 0 if 'min_disk' in VE_PROPS[ve_type]: min_disk = VE_PROPS[ve_type]['min_disk'] if 'min_ram' in VE_PROPS[ve_type]: min_ram = VE_PROPS[ve_type]['min_ram'] gc.images.update(uploaded_image.id, name=final_image_name, visibility='public', min_disk=min_disk, min_ram=min_ram, **image_properties) os.unlink(bigip_images[image]['readyimage']) # Add datastor if defined if bigip_images[image]['datastor']: gc = _get_glance_client() datastor_name = bigip_images[image]['datastor'].replace( '.qcow2', '') create_datastor_image = True for uploaded_image in gc.images.list(): if uploaded_image.name == datastor_name: create_datastor_image = False break if create_datastor_image: print "\tCreating Datastor image %s" % datastor_name vepackage = zipfile.ZipFile(bigip_images[image]['file']) vepackage.extract(bigip_images[image]['datastor']) properties = {'os_vendor': 'F5 Networks', 'os_name': 'F5 TMOS Datastor Volume'} image_id = _upload_image_to_glance( bigip_images[image]['datastor'], datastor_name, True ) gc.images.update( image_id, name=datastor_name, disk_format=DISKFORMAT, container_format=CONTAINERFORMAT, visibility='public', **properties ) os.unlink(bigip_images[image]['datastor']) print "\n" cc = _get_nova_client() cc.keypairs.delete(image_prep_key) def main(): print "Finding F5 image zip archives" bigip_images = _make_bigip_inventory() if not bigip_images: print "No TMOS zip archives. Please place F5 zip files " + \ " in the directory associaed wtih ENV variable IMAGE_DIR" sys.exit(1) bigip_images = _images_needing_import(bigip_images) if not bigip_images: print "All images already imported" sys.exit(1) # external network print "Finding external networking" ext_net = _get_external_net_id() if not ext_net: print "No external network found. You need an network " \ "with router:external attribute set to True" sys.exit(1) # get supported Image template print "Downloading F5 image patch Heat template" # GIT copy is out of date with Ubuntu repo # f5_heat_template_file = _download_file(F5_IMAGE_TEMPLATE) f5_heat_template_file = F5_IMAGE_TEMPLATE # create the download glance image print "Getting image to build importer guest instance" download_server_image = _get_import_image_id() # create web server as an image repo print "Creating web server for F5 image repo" web_server_stack_id = _create_web_server(download_server_image, ext_net) web_server_floating_ip = _get_heat_output_value(web_server_stack_id, 'web_server_public_ip') print "\tweb server available at: %s \n" % web_server_floating_ip # upload F5 images to the repo # print "Creating upload F5 image package for web server" # _make_bigip_zip_tar_file(bigip_images) print "Uploading F5 zip files to web server" _upload_bigip_zips_to_web_server(web_server_floating_ip, bigip_images) # use the F5 supported Heat template to patch images print "Creating F5 images" _create_glance_images(f5_heat_template_file, download_server_image, web_server_stack_id, bigip_images) hc = _get_heat_client() hc.stacks.delete(web_server_stack_id) gc = _get_glance_client() gc.images.delete(download_server_image) print "\nImages Imported Successfully\n" if __name__ == "__main__": main()
[ "john.t.gruber@gmail.com" ]
john.t.gruber@gmail.com
d50964d905b178c47097b874498131eb270eef94
83513a7452a401e83cfcf77af6996317ad88396b
/Assignments/A7/Q1 & Q2 code & pictures/test_opera.py
01b8ae5f5132bdd3dcdd6165ebb9b7a4a8928038
[]
no_license
sunying2018/persp-analysis_A18
3d332b9baf067474fd0f5c080e1cf0a3ead4aada
92fd765f3e2a27f82375e5ae3e73983e674d1fc7
refs/heads/master
2020-03-30T17:46:07.394879
2018-12-14T21:33:10
2018-12-14T21:33:10
151,469,049
0
0
null
2018-10-03T19:32:23
2018-10-03T19:32:23
null
UTF-8
Python
false
false
722
py
import opera import pytest def test_operate(): assert opera.operate(6, 8, '+')== 14, "failed on '+'" assert opera.operate(6, 8, '-')== -2, "failed on'-'" assert opera.operate(6, 8, '*')== 48, "failed on '*'" assert opera.operate(6, 8, '/')== 3/4, "failed on '/'" with pytest.raises(ZeroDivisionError) as err1: opera.operate(6, 0, '/') assert err1.value.args[0] == "division by zero is undefined" with pytest.raises(TypeError) as err2: opera.operate(6, 0, 0) assert err2.value.args[0] == "oper must be a string" with pytest.raises(ValueError) as err3: opera.operate(6, 0, '!=') assert err3.value.args[0] == "oper must be one of '+', '/', '-', or '*'"
[ "sunying2018@uchicago.edu" ]
sunying2018@uchicago.edu
0e9d3792679e9cf7dee7540715ef45bb4f3fb891
8173234f279a012d0cb813473f2e7ce15573ab5e
/code/python/rummySkeleton.py
dff16cf7459555ab543c9959be0badf194baa23f
[]
no_license
Rvansolkem/ESU-SoftwareEngineering
31bb3a4950082d62462927f43c485cc698141540
cbb2b913fc73914c0989b093e210c01be2a277bc
refs/heads/master
2023-01-19T23:34:04.010267
2020-11-24T00:48:35
2020-11-24T00:48:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,142
py
from Card import Card from Deck import Deck from tkinter import * from tkinter.ttk import * from PIL import ImageTk,Image def makeCanvas(root, w=0, h=0, x=0, y=0, place=False, grid=False): #if place is true then use .place not .grid or .pack (.pack is the default) #if place then use x and y for placement #use w and h for size c=Canvas(root, width=w, height=h) if grid: c.grid(y,x) return c def makeFrame(root, w=0, h=0, x=0, y=0, place=False, grid=False): f=Frame(root, width=w, height=h) if grid: f.grid(y,x) return f def checkMove(move): #check game state in order to make sure all preconditions are met #for some event to occur pass root=Tk() windowHeight = root.winfo_screenheight() windowWidth = root.winfo_screenwidth() handHeight=int(windowHeight/6) deckHeight = int(windowHeight / 3) deckWidth=int(windowWidth / 5) card_x=int(windowWidth/8) card_y=int(handHeight*4/5) ################# main game components #################### oppponentHandCanvas=makeCanvas(root, grid=True, w=windowWidth, h=handHeight, x=0,y=0)#need x and y as well? middleFrame=makeFrame(root, grid=True, w=windowWidth, h=int(windowHeight/2), x=0,y=1) playerHand=makeCanvas(root, grid=True, w=windowWidth, h=handHeight, x=0, y=2) bottomFrame=makeFrame(root, grid=True, w=windowWidth, h=handHeight, x=0, y=4) ############################## opponentHand Components ####################### ############################## middleFrame Components ####################### deckCanvas=makeCanvas(middleFrame, w=deckWidth, h=deckHeight, grid=True, x=0, y=0) discardCanvas=makeCanvas(middleFrame, w=deckWidth, h=deckHeight, grid=True, x=1,y=0) meldFrame=makeFrame(middleFrame, h=int(windowHeight/2),w=int(windowWidth/2), grid=True, x=2, y=0) ########## deck canvas components ########## ############################## playerHand components ###################### ############################## bottomFrame components ####################### #if gin include knock and dont include meld #if not gin includ emeld dont include knock #need saveBtn, meldBtn, quitBtn, discardBtn, ??
[ "smcrowley8@gmail.com" ]
smcrowley8@gmail.com
d1f476ff0ad10c262739f805be8f65639d917508
d1991c1b97cf0913ffab05d9821e3778f2616b36
/models/modelws.py
153c9068dd79ec4d195fc51bf0ba4c7b13c03b7b
[ "MIT" ]
permissive
zhaozunjin/DMPHN-v2-Deblur
d70fd443ef2b1bc5787e1d9fe09807a759365c0b
0e84aab9c07a880b16dec8ee182868db93cd1d12
refs/heads/master
2020-11-25T08:34:27.026364
2020-09-17T09:09:05
2020-09-17T09:09:05
228,576,078
16
1
MIT
2020-06-21T05:59:54
2019-12-17T09:04:57
Python
UTF-8
Python
false
false
10,143
py
from __future__ import print_function import torch import torch.nn as nn from torch.nn import init import torch.nn.functional as F import os class ConvBlock(nn.Sequential): def __init__(self, in_channel, out_channel, ker_size, padd, stride): super(ConvBlock,self).__init__() self.add_module('conv',nn.Conv2d(in_channel ,out_channel,kernel_size=ker_size,stride=stride,padding=padd)), self.add_module('norm',nn.BatchNorm2d(out_channel)), self.add_module('LeakyRelu',nn.LeakyReLU(0.2, inplace=True)) class ResBlock(nn.Sequential): def __init__(self,in_channel, out_channel, kernel_size, padding, stride): super(ResBlock,self).__init__() self.add_module('Conv1', nn.Conv2d(in_channel, out_channel, kernel_size, padding, stride)) self.add_module('Relu', nn.ReLU(inplace=True)) self.add_module('Conv2', nn.Conv2d(in_channel, out_channel, kernel_size, padding, stride)) class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() # Conv1 self.layer1 = nn.Conv2d(3, 32, kernel_size=3, padding=1) self.layer2 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, padding=1) ) self.layer3 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, padding=1) ) self.layer4 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, padding=1) ) # Conv2 self.layer5 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1) self.layer6 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1) ) self.layer7 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1) ) self.layer8 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1) ) # Conv3 self.layer9 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) self.layer10 = nn.Sequential( nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1) ) self.layer11 = nn.Sequential( nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1) ) self.layer12 = nn.Sequential( nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1) ) def forward(self, x): # 修改Conv1的连接方式 output_layer1 = self.layer1(x) output_layer2 = self.layer2(output_layer1) output_layer3 = self.layer3(output_layer2 + output_layer1) + output_layer2 + output_layer1 output_layer4 = self.layer4( output_layer3 + output_layer2 + output_layer1) + output_layer3 + output_layer2 + output_layer1 # 修改Conv2的连接方式 output_layer5 = self.layer5(output_layer4) output_layer6 = self.layer6(output_layer5) output_layer7 = self.layer7(output_layer6 + output_layer5) + output_layer6 + output_layer5 output_layer8 = self.layer8( output_layer7 + output_layer6 + output_layer5) + output_layer7 + output_layer6 + output_layer5 # 修改Conv3的连接方式 output_layer9 = self.layer9(output_layer8) output_layer10 = self.layer10(output_layer9) output_layer11 = self.layer11(output_layer10 + output_layer9) + output_layer10 + output_layer9 output_layer12 = self.layer12( output_layer11 + output_layer10 + output_layer9) + output_layer11 + output_layer10 + output_layer9 return output_layer12 class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() # Deconv3 self.layer13 = nn.Sequential( nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1) ) self.layer14 = nn.Sequential( nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, padding=1) ) self.layer16 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1) # Deconv2 self.layer17 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1) ) self.layer18 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, padding=1) ) self.layer20 = nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1) # Deconv1 self.layer21 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, padding=1) ) self.layer22 = nn.Sequential( nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, padding=1) ) self.layer24 = nn.Conv2d(32, 3, kernel_size=3, padding=1) def forward(self, x): # 修改Deconv3的连接方式 output_layer13 = self.layer13(x) output_layer14 = self.layer14(output_layer13 + x) + output_layer13 + x # output_layer15 = self.layer15(output_layer14+output_layer13 + x) + output_layer14+output_layer13 + x output_layer16 = self.layer16(output_layer14) # 修改Deconv2的连接方式 output_layer17 = self.layer17(output_layer16) output_layer18 = self.layer18(output_layer17 + output_layer16) + output_layer17 + output_layer16 # output_layer19 = self.layer19(output_layer18+output_layer17 + output_layer16) + output_layer18+output_layer17 + output_layer16 output_layer20 = self.layer20(output_layer18) # 修改Conv1的连接方式 output_layer21 = self.layer21(output_layer20) output_layer22 = self.layer22(output_layer21 + output_layer20) + output_layer21 + output_layer20 # output_layer23 = self.layer22(output_layer22+output_layer21 + output_layer20) + output_layer22+output_layer21 + output_layer20 output_layer24 = self.layer24(output_layer22) return output_layer24 class WSDMPHN(nn.Module): def __init__(self): super(WSDMPHN, self).__init__() self.images = {} self.feature = {} self.residual = {} self.encoder_lv4_1 = Encoder() self.encoder_lv4_2 = Encoder() self.encoder_lv4_3 = Encoder() self.encoder_lv4_4 = Encoder() self.decoder_lv4_1 = Decoder() self.decoder_lv4_2 = Decoder() # self.encoder_lv4 = Encoder() # self.decoder_lv4 = Decoder() self.encoder_lv2_1 = Encoder() self.encoder_lv2_2 = Encoder() self.decoder_lv2_1 = Decoder() # self.encoder_lv2 = Encoder() # self.decoder_lv2 = Decoder() self.encoder_lv1_1 = Encoder() self.decoder_lv1_1 = Decoder() def divide_patchs(self, images): H = images.size(2) W = images.size(3) self.images['lv1_1'] = images self.images['lv2_1'] = self.images['lv1_1'][:, :, 0:int(H / 2), :] self.images['lv2_2'] = self.images['lv1_1'][:, :, int(H / 2):H, :] self.images['lv4_1'] = self.images['lv2_1'][:, :, :, 0:int(W / 2)] self.images['lv4_2'] = self.images['lv2_1'][:, :, :, int(W / 2):W] self.images['lv4_3'] = self.images['lv2_2'][:, :, :, 0:int(W / 2)] self.images['lv4_4'] = self.images['lv2_2'][:, :, :, int(W / 2):W] def forward(self, input_generator): self.divide_patchs(input_generator) # level3 self.feature['lv4_1'] = self.encoder_lv4_1(self.images['lv4_1']) self.feature['lv4_2'] = self.encoder_lv4_2(self.images['lv4_2']) self.feature['lv4_3'] = self.encoder_lv4_3(self.images['lv4_3']) self.feature['lv4_4'] = self.encoder_lv4_4(self.images['lv4_4']) self.feature['lv4_top'] = torch.cat((self.feature['lv4_1'], self.feature['lv4_2']), 3) self.feature['lv4_bottom'] = torch.cat((self.feature['lv4_3'], self.feature['lv4_4']), 3) # self.feature['lv4'] = torch.cat((self.feature['lv4_top'], self.feature['lv4_bottom']), 2) self.residual['lv4_top'] = self.decoder_lv4_1(self.feature['lv4_top']) self.residual['lv4_bottom'] = self.decoder_lv4_2(self.feature['lv4_bottom']) # level2 self.feature['lv2_1'] = self.encoder_lv2_1(self.images['lv2_1']+self.residual['lv4_top'])+self.feature['lv4_top'] self.feature['lv2_2'] = self.encoder_lv2_2(self.images['lv2_2']+self.residual['lv4_bottom'])+self.feature['lv4_bottom'] self.feature['lv2'] = torch.cat((self.feature['lv2_1'], self.feature['lv2_2']), 2) self.residual['lv2'] = self.decoder_lv2_1(self.feature['lv2']) # level1 self.feature['lv1'] = self.encoder_lv1_1(self.images['lv1_1'] + self.residual['lv2'])+self.feature['lv2'] self.residual['lv1'] = self.decoder_lv1_1(self.feature['lv1']) return self.residual['lv1'] class StackShareNet(nn.Module): def __init__(self): super(StackShareNet, self).__init__() self.basicnet = WSDMPHN() def forward(self, x): x1 = self.basicnet(x) x2 = self.basicnet(x1) x3 = self.basicnet(x2) return x1, x2, x3
[ "1763020129@qq.com" ]
1763020129@qq.com
dfd28d04bd20cdbae0bd324f5eaf1c036da10434
480e33f95eec2e471c563d4c0661784c92396368
/RecoMuon/MuonIdentification/python/me0MuonConverter_cfi.py
83b6632c7cca09219c2dcc76760b07daa2dbaeab
[ "Apache-2.0" ]
permissive
cms-nanoAOD/cmssw
4d836e5b76ae5075c232de5e062d286e2026e8bd
4eccb8a758b605875003124dd55ea58552b86af1
refs/heads/master-cmsswmaster
2021-01-23T21:19:52.295420
2020-08-27T08:01:20
2020-08-27T08:01:20
102,867,729
7
14
Apache-2.0
2022-05-23T07:58:09
2017-09-08T14:03:57
C++
UTF-8
Python
false
false
98
py
import FWCore.ParameterSet.Config as cms me0MuonConverting = cms.EDProducer("ME0MuonConverter")
[ "dnash@cern.ch" ]
dnash@cern.ch
eef2fd51f950be206cbc573c1a40bacd5f6323e1
b1088a69760332dff5c27479c7c46f0dfda11e2c
/venv/Scripts/pip-script.py
45cb9845d8d236ebbbfa6754518f669d650412db
[]
no_license
JUSADAM1/FightingGame
66e5117b5ff84f71c1db4983bc9a7754207f4261
0e8691d72eec95433994b9e7a92b2b9dae7dd6fd
refs/heads/master
2020-05-03T20:28:45.001845
2019-04-08T20:43:19
2019-04-08T20:43:19
178,803,795
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
#!C:\Users\justy\PycharmProjects\FightingGame\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==10.0.1','console_scripts','pip' __requires__ = 'pip==10.0.1' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==10.0.1', 'console_scripts', 'pip')() )
[ "justy@DESKTOP-NAT2PHA" ]
justy@DESKTOP-NAT2PHA
20aa6256635712125cec7cde82d9edd48783816b
58a686c0a752db0f9084659a7f93d5b4f35a065c
/web_idea/apps.py
3ad06d0a73b08e922fed17edcaef47f32b83f3ed
[ "MIT" ]
permissive
Dimas4/Web-IDEA-Python-Django
5322ae013eb9b6803c175886f152654ed9469402
9cf17150d422979470e3d865a381309a83d8e875
refs/heads/master
2020-04-10T04:45:33.843338
2018-12-07T11:58:34
2018-12-07T11:58:34
160,808,256
0
0
null
null
null
null
UTF-8
Python
false
false
90
py
from django.apps import AppConfig class WebIdeaConfig(AppConfig): name = 'web_idea'
[ "ivanshatukho@yandex.ru" ]
ivanshatukho@yandex.ru
724778ba9809a4764fe8fb9db59911050b386395
8329282a8fda056d705c1af6dbcd0de1ed7ca25e
/.history/textutiles/textutiles/views_20210522223732.py
629f8ff15d006894a027b5cc2f0bacbc0ca08e6f
[]
no_license
ritikalohia/Django-beginners-
c069b16867407ef883bb00c6faf4f601921c118a
829e28ab25201853de5c71a10ceff30496afea52
refs/heads/main
2023-05-04T03:34:29.082656
2021-05-22T17:38:21
2021-05-22T17:38:21
369,869,599
0
0
null
null
null
null
UTF-8
Python
false
false
2,627
py
#created from django.http import HttpResponse from django.shortcuts import render def index(request): #params = {'name' : 'Ritika', 'place' : 'Mars'} return render(request, 'index.html') #return HttpResponse("Home") def contact(request): return render(request, 'contact.html') def about(request): return render(request, 'about_us.html') def analyze(request): #get the text in head djtext = request.GET.post('text', 'default' ) #check checkbox values removepunc = request.GET.get('removepunc', 'off') fullcaps = request.GET.get('fullcaps', 'off') newlineremover = request.GET.get('newlineremover', 'off') spaceremover = request.GET.get('spaceremover', 'off'), charcount = request.GET.get('charcount', 'off') if removepunc == "on": #analyzed = djtext punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_''' analyzed = "" for char in djtext: if char not in punctuations: analyzed = analyzed + char params ={'purpose':'removed punctuations', 'analyzed_text': analyzed} #analyze the text return render(request, 'analyze.html', params) elif(fullcaps == "on"): analyzed ="" for char in djtext: analyzed = analyzed + char.upper() params ={'purpose':'changed to UPPERCASE', 'analyzed_text': analyzed} #analyze the text djtext = analyzed #return render(request, 'analyze.html', params) if(newlineremover== "on"): analyzed ="" for char in djtext: if char != '\n' and char !="\r": analyzed = analyzed + char params ={'purpose':'Removed new lines', 'analyzed_text': analyzed} #analyze the text djtext = analyzed #return render(request, 'analyze.html', params) if(spaceremover== "on"): analyzed ="" for index, char in enumerate(djtext): if not djtext[index] == " " and djtext[index+1]==" ": analyzed = analyzed + char params ={'purpose':'extra space removed', 'analyzed_text': analyzed} #analyze the text djtext = analyzed #return render(request, 'analyze.html', params) if(charcount== "on"): a=0 for char in djtext: a = a + 1 params ={'purpose':'extra space removed', 'analyzed_text': a} #analyze the text #return render(request, 'analyze.html', params) else: return HttpResponse("Error") # def capfirst(request): # return HttpResponse("capitalize first")
[ "rtklohia@gmail.com" ]
rtklohia@gmail.com
c6a0f515e4061baa17af3a79b41c463f25758ff0
92429015d9a1f1cea9b9bf2c9f1a8a7a07586af5
/option.py
6e7b7892e37aa810a008bdf082451b08034a0125
[]
no_license
arthur-qiu/adv_vis
46a953ce6c3d562137c8e566bc9b523e25bc5bbd
ba46c00cf38ca5186d7db84844892036ed714eaf
refs/heads/master
2021-01-03T23:00:45.065108
2020-04-05T03:47:01
2020-04-05T03:47:01
240,272,320
0
0
null
null
null
null
UTF-8
Python
false
false
4,099
py
import argparse import os class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(description='Trains a CIFAR Classifier', formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False def initialize(self): self.parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100'], help='Choose between CIFAR-10, CIFAR-100.') self.parser.add_argument('--model', '-m', type=str, default='wrn', choices=['wrn'], help='Choose architecture.') # Optimization options self.parser.add_argument('--epochs', '-e', type=int, default=50, help='Number of epochs to train.') self.parser.add_argument('--start_epoch', type=int, default=1, help='The start epoch to train. Design for restart.') self.parser.add_argument('--learning_rate', '-lr', type=float, default=0.1, help='The initial learning rate.') self.parser.add_argument('--batch_size', '-b', type=int, default=128, help='Batch size.') self.parser.add_argument('--test_bs', type=int, default=128) self.parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.') self.parser.add_argument('--decay', '-d', type=float, default=0.0005, help='Weight decay (L2 penalty).') self.parser.add_argument('--epoch_step', default='[40,42,44,46,48]', type=str, help='json list with epochs to drop lr on') self.parser.add_argument('--lr_decay_ratio', default=0.2, type=float) # Checkpoints self.parser.add_argument('--save', '-s', type=str, default='./logs/cifar10_adv', help='Folder to save checkpoints.') self.parser.add_argument('--load', '-l', type=str, default='', help='Checkpoint path to resume / test.') self.parser.add_argument('--test', '-t', action='store_true', help='Test only flag.') self.parser.add_argument('--dataroot', default='.', type=str) # Acceleration self.parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.') self.parser.add_argument('--prefetch', type=int, default=1, help='Pre-fetching threads.') # Adversarial setting self.parser.add_argument('--epsilon', type=float, default=8 / 255, help='perturbation') self.parser.add_argument('--num_steps', type=int, default=7, help='perturb number of steps') self.parser.add_argument('--step_size', type=float, default=2 / 255, help='perturb step size') self.parser.add_argument('--test_num_steps', type=int, default=20, help='test perturb number of steps') self.parser.add_argument('--test_step_size', type=float, default=2 / 255, help='test perturb step size') # Others self.parser.add_argument('--random_seed', type=int, default=1) def parse(self, save=True): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') # save to the disk # Make save directory if not os.path.exists(self.opt.save): os.makedirs(self.opt.save) if not os.path.isdir(self.opt.save): raise Exception('%s is not a dir' % self.opt.save) if save and not self.opt.test: file_name = os.path.join(self.opt.save, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt
[ "Arthur" ]
Arthur
955308df4fc4b863683301eafeeab3ece4016421
c25dad937d53dba30119b3c841ba27ab7542d90b
/adjust_data/adjust_data_functions.py
1b0c3a6347738c8fcfdf0b51a67ff6365148af29
[]
no_license
webclinic017/Financial_Machine_Learning
546ad883cefc0f9e2400ddda121db3147b7274d9
33489128315c87e7378ff0da6ab52712177afcd9
refs/heads/master
2023-07-31T17:24:11.433057
2021-09-14T13:28:30
2021-09-14T13:28:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,127
py
""" Name : adjust_data_functions.py in Project: Financial_ML Author : Simon Leiner Date : 18.05.2021 Description: Pca transformation of the given variables """ from sklearn.preprocessing import RobustScaler from sklearn.decomposition import PCA import pandas as pd import seaborn as sns from scipy.stats import norm import matplotlib.pyplot as plt import warnings # disable some warnings warnings.filterwarnings(category=FutureWarning,action="ignore") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Checked: Function works def pca_analysis(data_cleaner): """ This function computes a principal component analysis for dimensionality reduction. :param data_cleaner: list with 2 pd.DataFrame: data_cleaner :return: list with 2 pd.DataFrame: data_cleaner Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimensional space. The input data is centered but not scaled for each feature before applying the SVD. For further Inforamtion See: # https: // stats.stackexchange.com / questions / 55718 / pca - and -the - train - test - split # https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues # https://stackoverflow.com/questions/55441022/how-to-aply-the-same-pca-to-train-and-test-set # https: // towardsdatascience.com / pca - using - python - scikit - learn - e653f8989e60 """ # create scaler build_model scaler_model = RobustScaler() # create pca build_model # choose the minimum number of principal components such that 95% of the variance is retained. pca_model = PCA(.95) # for each dataframe do: for i in range(len(data_cleaner)): # get the df df = data_cleaner[i] # get the X features X = df.drop(["t"], axis=1) # for the training data do if i == 0: # fit the scaler build_model scaler_model.fit(X) # fit the pca build_model pca_model.fit(X) # for the testing data do: else: pass # only transform the data with the already fitted scler build_model X = scaler_model.transform(X) # only transform the data with the already fitted pca build_model principal_components = pca_model.transform(X) # save them in a dataframe principal_df = pd.DataFrame(data=principal_components, index=df.index) # only print for the training data if i == 0: print(f"{principal_components.shape[1]} Principal components explain 95 % of the training datasets variance.") print("-" * 10) # add the y column finalDf = pd.concat([principal_df, df[['t']]], axis=1) # only plot for the training data if i == 0: # plotting plt.subplot(2, 1, 1) plt.title(f"First 2 Principal Components that explain the most variance:") sns.scatterplot(data=finalDf, x=finalDf.iloc[:,0], y=finalDf.iloc[:,1], hue=finalDf['t'],palette=["red","green"]) plt.xlabel("PC1") plt.ylabel("PC2") # plotting plt.subplot(2, 1, 2) plt.title(f"Distribution of the PCA transformed returns:") sns.distplot(principal_df, fit=norm) plt.show() # set the data data_cleaner[i] = finalDf # return the data return data_cleaner # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Checked: Function works def transform_supervies_learning(df,days_predict_into_future): """ This function transforms a time series into a supervised learning problem. :param df: pd.DataFrame: information of Labels :param days_predict_into_future: integer: number of days to predict in the future :return: pd.DataFrame: Adjusted and transformed df """ print(f"The time series containes {len(df.Label)} datapoints.") print("-" * 10) # rename a column df.rename({"Label": "t"}, inplace=True, axis=1) # number of days to look backward and convert into columns: make a 2 : 3 split numberdays_back = int(len(df["t"]) / 3) # transform the dataframe, so we can use him properly for i in range(days_predict_into_future, numberdays_back): df['t-' + str(i)] = df["t"].shift(i) # remove the nan values : delete many rows, because we shifted the infromation into the columns and the last row, because we have t+1 df.dropna(inplace=True) # note: t and t+1 must also be accounted for print(f"Transforming the data into {numberdays_back+2} columns.") print("-" * 10) print(f"The dataframe contains {df.shape[0]} rows and {df.shape[1]} columns. A total of {df.shape[0] * df.shape[1]} datapoints.") print("-" * 10) return df # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
[ "simon.leiner1@gmail.com" ]
simon.leiner1@gmail.com
313ca3e1c98c38562546e6407aa1547744c5cc05
d83b3d9898973ec8f9dbcc5a2299eede9b6c435f
/x10project/exchange/exchangebl/bittrexbl.py
45b1f12f4f348d3e946902ea7fc48be9d4b1a1ae
[]
no_license
fintechclub/x10python
333e914c440cc8f995a2b97619a62735298d9fc8
dc3a52a7531e5e8114a9c708accbdc2e7bff2d60
refs/heads/master
2022-12-08T06:09:17.924359
2018-09-06T13:00:28
2018-09-06T13:00:28
138,585,164
0
4
null
2022-12-08T02:18:55
2018-06-25T11:22:35
Python
UTF-8
Python
false
false
3,614
py
from x10project import BaseExchangeBL from bittrex.bittrex import * import pprint #https://github.com/ericsomdahl/python-bittrex class BittrexLogic(BaseExchangeBL): def __init__(self, account_name=None, api_key=None, api_secret=''): super().__init__("bittrex", account_name, api_key, api_secret) self.bittrexClient = Bittrex(self.api_key, self.api_secret, api_version=API_V1_1) def getTicker(self, symbol): self.bittrexClient.get_ticker() def getMarketSummaries(self): result = self.bittrexClient.get_market_summaries() return result['result'] def getTickers(self, symbols): market_symbols = self.getMarketSummaries() result = dict() for item in market_symbols: base_c, rated_c = item['MarketName'].split('-') if base_c == 'BTC' and self._findInList(symbols, rated_c) == True: result[rated_c] = item['Last'] return result def _findInList(self, arr, elem): for item in arr: if item == elem: return True return False def getOrders(self): orders = self.bittrexClient.get_open_orders() if orders['success'] == False: return None return [(item['Exchange'], item['OrderType'], item['Limit'], item['Quantity']) for item in orders['result']] def getBalances(self): full_balances = self.bittrexClient.get_balances() if full_balances['success'] == False: return None return [(item['Currency'], item['Balance'], item['Available']) for item in full_balances['result'] if item['Balance'] > 0] def _balancesToString(self, balances): result='' for item in balances: result += '🔹 Инструмент: {:s},\n Количество: {:.2f}\n'.format(item[0], item[1]) return result def _ordersToString(self, orders): result='' for item in orders: result += '{:s} Инструмент: {:s},\n Тип ордера: {:s}\n Количество: {:.2f}\n Цена: {:.7f}\n'.format( '🔴' if item[1]=='LIMIT_SELL' else '🔵', item[0], item[1], item[3], item[2]) return result if result != '' else 'Отсутствуют' def getCommonAccountInfo(self): balances = self.getBalances() orders = self.getOrders() tickers = self.getTickers( [item[0] for item in balances] ) est_balance = sum(item[1] * tickers[item[0]] for item in balances if item[0] != 'BTC' and item[0] != 'USDT') est_balance += sum(item[1] for item in balances if item[0] == 'BTC') ''' print(colored("\n---Balance---", "green")) pprint.pprint(balance) print(colored("\n---My Orders---", "green")) pprint.pprint(orders) ''' return "Рассчетный баланс: {:.4f}, \nДанные по балансу: \n{:s} \nОткрытые ордера:\n{:s}".format(est_balance, self._balancesToString(balances), self._ordersToString(orders))
[ "kda.biz83@gmail.com" ]
kda.biz83@gmail.com
8f6d2d076198fade4cd55609075354f9fec895db
a633fe67ddf4fc2097fbf5cdbc91d1ec73ac02b3
/volume-sizer.py
54998da4a36756471e6fe65a6cff6ba614b78f3b
[]
no_license
mchad1/azure-volume-sizing
07b4b85794f6d28ef06beeb8e439701845f4bbba
f17909b506cda40ed8be5faec36b09cea1fb036a
refs/heads/master
2022-11-25T05:57:25.853339
2020-08-03T17:19:17
2020-08-03T17:19:17
284,761,186
0
0
null
null
null
null
UTF-8
Python
false
false
9,845
py
import sys sys.path.append(sys.path[0] + "/lib") import argparse import json import math import os import requests from datetime import datetime def quota_and_servicelevel_parser(): if os.path.exists('servicelevel_and_quotas.json'): with open('servicelevel_and_quotas.json','r') as config_file: price_and_bw_hash = json.load(config_file) return price_and_bw_hash else: print('\Error, the servicelevel_and_quotas.json file could not be found\n') exit() #Return epoch def date_to_epoch(created = None, now = None): #Split the created string for now becuase I don't know how to use Z if now: #Convert creation time string to datetime created = str(datetime.now()).split('.')[0] #Convert creation time string to datetime created = datetime.strptime(str(created), '%Y-%m-%d %H:%M:%S') else: created = created.split('.')[0] #Convert creation time string to datetime created = datetime.strptime(created, '%Y-%m-%dT%H:%M:%S') #Return creation time in epoch return datetime.timestamp(created) def command_line(): parser = argparse.ArgumentParser(prog='cvs-aws.py',description='%(prog)s is used to issue commands to your NetApp Cloud Volumes Service on your behalf.') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--volSize',action='store_const',const=True,) parser.add_argument('--gigabytes','-g',type=str,help='Volume gigabytes in Gigabytes, value accepted between 100 and 102,400. Supports volSize') parser.add_argument('--bandwidth','-b',type=str,help='Volume bandwidth requirements in Megabytes per second. If unknown enter 0 and maximum\ bandwidth is assigned. Supports volSize') arg = vars(parser.parse_args()) #Preview sets of the automation to simulate the command and return simulated results, if not entered assume False if arg['bandwidth']: bandwidth = arg['bandwidth'] else: bandwidth = None if arg['gigabytes']: gigabytes = arg['gigabytes'] else: gigabytes = None if arg['volSize']: volSize( bandwidth = bandwidth, gigabytes = gigabytes) ########################################################## # Volume Commands ########################################################## def volSize( bandwidth = None, gigabytes = None, ): if gigabytes and bandwidth: error = False error_value = {} local_error = is_number(gigabytes) if local_error == True: error = True error_value['gigabytes_integer'] = 'Capacity was not a numeric value' elif int(gigabytes) < 100 or int(gigabytes) > 102400: error = True error_value['size'] = 'Capacity was either smaller than 100GiB or greater than 102,400GiB' local_error = is_number(bandwidth) if local_error == True: error = True error_value['bw_integer'] = 'Bandwidth was not a numeric value' elif int(bandwidth) < 0: error = True error_value['bw'] = ('Negative value entered: %s, requested values must be => 0. If value == 0 or value > 4500 then maximum bandwidth will be assigned' % (bandwidth)) servicelevel, quotainbytes, bandwidthMiB, cost = servicelevel_and_quota_lookup(bwmb = bandwidth, gigabytes = gigabytes) if error == False: volume_sizing(bandwidth = bandwidthMiB, cost = cost, quota_in_bytes = quotainbytes, servicelevel = servicelevel ) else: print('The volSize command failed, see the following json output for the cause:\n') pretty_hash(error_value) volSize_error_message() else: print('Error Bandwidth: %s, GiB: %s'%(bandwidth,gigabytes)) ########################################################## # Primary Functions ########################################################## def is_number(number = None): try: int(number) local_error = False except: local_error = True return local_error ''' verify characters are allowable, only letters, numbers, and - are allowed ''' def is_ord(my_string = None, position = None): if position == 0: if ord(my_string) >= 65 and ord(my_string) <= 90 or ord(my_string) >= 97 and ord(my_string) <= 122: value = False else: value = True else: if ord(my_string) >= 65 and ord(my_string) <= 90 or ord(my_string) >= 97 and ord(my_string) <= 122\ or ord(my_string) >= 48 and ord(my_string) <= 57 or ord(my_string) == 45: value = False else: value = True return value ########################################################## # Volume Functions ########################################################## ''' Issue call to create volume ''' def volume_sizing(bandwidth = None, cost = None, quota_in_bytes = None, servicelevel = None): print('\n\tserviceLevel:%s ($%s)\ \n\tallocatedCapacityGiB:%s\ \n\tavailableBandwidthMiB:%s' % (servicelevel,cost,int(quota_in_bytes) / 2**30,bandwidth)) ''' Determine the best gigabytes and service level based upon input input == bandwidth in MiB, gigabytes in GiB output == service level and gigabytes in GiB ''' def servicelevel_and_quota_lookup(bwmb = None, gigabytes = None): servicelevel_and_quota_hash = quota_and_servicelevel_parser() bwmb = float(bwmb) gigabytes = float(gigabytes) standard_cost_per_gb = float(servicelevel_and_quota_hash['prices']['standard']) premium_cost_per_gb = float(servicelevel_and_quota_hash['prices']['premium']) ultra_cost_per_gb = float(servicelevel_and_quota_hash['prices']['ultra']) standard_bw_per_gb = float(servicelevel_and_quota_hash['bandwidth']['standard']) premium_bw_per_gb = float(servicelevel_and_quota_hash['bandwidth']['premium']) ultra_bw_per_gb = float(servicelevel_and_quota_hash['bandwidth']['ultra']) ''' if bwmb == 0, then the user didn't know the bandwidth, so set to maximum which we've seen is 3800MiB/s. ''' if bwmb == 0 or bwmb > int(servicelevel_and_quota_hash['max_bandwidth']['max']): bwmb = int(servicelevel_and_quota_hash['max_bandwidth']['max']) ''' convert mb to kb ''' bwkb = bwmb * 1024.0 ''' gigabytes needed based upon bandwidth needs ''' standard_gigabytes_by_bw = bwkb / standard_bw_per_gb if standard_gigabytes_by_bw < gigabytes: standard_cost = gigabytes * standard_cost_per_gb else: standard_cost = standard_gigabytes_by_bw * standard_cost_per_gb premium_gigabytes_by_bw = bwkb / premium_bw_per_gb if premium_gigabytes_by_bw < gigabytes: premium_cost = gigabytes * premium_cost_per_gb else: premium_cost = premium_gigabytes_by_bw * premium_cost_per_gb ultra_gigabytes_by_bw = bwkb / ultra_bw_per_gb if ultra_gigabytes_by_bw < gigabytes: ultra_cost = gigabytes * ultra_cost_per_gb else: ultra_cost = ultra_gigabytes_by_bw * ultra_cost_per_gb ''' calculate right service level and gigabytes based upon cost ''' cost_hash = {'standard':standard_cost,'premium':premium_cost,'ultra':ultra_cost} capacity_hash = {'standard':standard_gigabytes_by_bw,'premium':premium_gigabytes_by_bw,'ultra':ultra_gigabytes_by_bw} bw_hash = {'standard':standard_bw_per_gb,'premium':premium_bw_per_gb,'ultra':ultra_bw_per_gb} lowest_price = min(cost_hash.values()) print('lowest_price:%s,Cheapest_Service_level:%s'%(cost_hash,lowest_price)) for key in cost_hash.keys(): if cost_hash[key] == lowest_price: servicelevel = key if capacity_hash[key] < gigabytes: gigabytes = int(math.ceil(gigabytes)) bandwidthKiB = int(math.ceil(gigabytes)) * bw_hash[servicelevel] else: gigabytes = int(math.ceil(capacity_hash[key])) bandwidthKiB = int(math.ceil(capacity_hash[key])) * bw_hash[servicelevel] ''' convert from Bytes to GiB ''' gigabytes *= 2**30 bandwidthMiB = int(bandwidthKiB / 1024) if bandwidthMiB > int(servicelevel_and_quota_hash['max_bandwidth'][servicelevel]): bandwidthMiB = int(servicelevel_and_quota_hash['max_bandwidth'][servicelevel]) break return servicelevel, gigabytes, bandwidthMiB, lowest_price ''' Calculate the bandwidth based upon passed in service level and quota ''' def bandwidth_calculator(servicelevel = None, quotaInBytes = None): servicelevel_and_quota_hash = quota_and_servicelevel_parser() ''' gigabytes converted from Bytes to KiB ''' #quotaInBytes *= 2**30 if servicelevel in servicelevel_and_quota_hash['bandwidth'].keys(): capacityGiB = quotaInBytes / 2**30 bandwidthMiB = (capacityGiB * servicelevel_and_quota_hash['bandwidth'][servicelevel]) / 1024 else: bandwidthMiB = None capacityGiB = None return bandwidthMiB, capacityGiB def volSize_error_message(): print('\nThe following volSize flags are required:\ \n\t--gigabytes | -g [0 < X <= 102,400]\t#Allocated volume capacity in Gigabyte\ \n\t--bandwidth | -b [0 <= X <= 4500]\t#Requested maximum volume bandwidth in Megabytes') exit() '''MAIN''' command_line()
[ "mchad@netapp.com" ]
mchad@netapp.com
e0ada9a3ea0f7e8137969f157413b9f0dad2b729
7dc45e620fda52abb073eb3499ebf772293c993a
/RunInkaRun_Ejecutable/exe.win-amd64-3.6/Entities/Entities.py
27a126bdd077ce2bbda4ccf0d6718887a31e9f28
[]
no_license
EduLara97/Proyecto_Juego_SW2
3e0f82a07e47acc1fab8be179f766d8b6045ba14
f2f0e37cedffb4e2de428ba29393d57899d3b619
refs/heads/master
2021-08-22T07:24:41.951831
2017-11-29T16:07:09
2017-11-29T16:07:09
105,581,768
2
3
null
2017-11-27T14:16:40
2017-10-02T20:30:21
Python
UTF-8
Python
false
false
16,534
py
from random import randrange import pygame as pg from pygame import * from GeneralInformation import * vec = pg.math.Vector2 class Spritesheet: # utility class for loading and parsing spritesheets def __init__(self, filename): self.sspritesheet = pg.image.load(filename).convert() def get_image(self, x, y, width, height): # grab an image out of a larger spritesheet image = pg.Surface((width, height)) image.blit(self.sspritesheet, (0, 0), (x, y, width, height)) image = pg.transform.scale(image, (60, 80)) return image class Player(pg.sprite.Sprite): def __init__(self, game, x, y): pg.sprite.Sprite.__init__(self) self.game = game self.walking = False self.current_frame = 0 self.last_update = 0 self.load_images() self.image = self.standing_frames[0] self.rect = self.image.get_rect() self.rect.center = (WIDTH / 2, HEIGHT / 2) self.propiedades = Propiedades.get_instance() self.vida = self.propiedades.vida_personaje self.pos = vec(x, y) self.vel = vec(0, 0) self.acc = vec(0, 0) def load_images(self): self.standing_frames = [self.game.sprites.get_image(0, 0, 200, 200)] for frame in self.standing_frames: frame.set_colorkey(BLACK) self.walk_frames_r = [self.game.sprites.get_image(200, 0, 200, 200), self.game.sprites.get_image(400, 0, 200, 200), self.game.sprites.get_image(600, 0, 200, 200)] """self.game.sprites.get_image(200, 0, 200, 200), self.game.sprites.get_image(200, 200, 200, 200), self.game.sprites.get_image(200, 400, 200, 200), self.game.sprites.get_image(200, 600, 200, 200)""" self.walk_frames_l = [] for frame in self.walk_frames_r: frame.set_colorkey(BLACK) self.walk_frames_l.append(pg.transform.flip(frame, True, False)) def jump(self): # jump only if standing on a platform pg.mixer.Sound.play(pg.mixer.Sound("assets/audio/jump.wav")) self.rect.x += 1 hits = pg.sprite.spritecollide(self, self.game.platforms, False) self.rect.x -= 1 if hits: self.vel.y = -PLAYER_JUMP def update(self): self.animate() self.acc = vec(0, PLAYER_GRAV) keys = pg.key.get_pressed() if keys[pg.K_LEFT]: self.acc.x = - self.propiedades.player_acc if keys[pg.K_RIGHT]: self.acc.x = self.propiedades.player_acc # APPLY FRICTION self.acc.x += self.vel.x * PLAYER_FRICTION # equations of motion self.vel += self.acc if abs(self.vel.x) < 0.1: self.vel.x = 0 self.pos += self.vel + 0.5 * self.acc self.rect.midbottom = self.pos def animate(self): now = pg.time.get_ticks() if self.vel.x != 0: self.walking = True else: self.walking = False # show walk animation if self.walking and now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % \ len(self.walk_frames_l) bottom = self.rect.bottom if self.vel.x > 0: self.image = self.walk_frames_r[self.current_frame] else: self.image = self.walk_frames_l[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom # show idle animation if not self.walking and now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % len(self.standing_frames) bottom = self.rect.bottom self.image = self.standing_frames[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom def disminuirVida(self, disminucion): self.vida -= disminucion return self.vida class Serpiente(pg.sprite.Sprite): def __init__(self, game, x, y): pg.sprite.Sprite.__init__(self) self.game = game self.walking = False self.current_frame = 0 self.last_update = 0 self.load_images() self.image = self.standing_frames[0] self.rect = self.image.get_rect() self.rect.center = (WIDTH / 2, HEIGHT / 2) self.pos = vec(x, y) self.vel = vec(0, 0) self.acc = vec(0, 0) self.movimiento = True def load_images(self): self.standing_frames = [pg.transform.scale(self.game.sprites_serpientes.get_image(0, 0, 165, 90.5), SERPIENTE_PROP)] for frame in self.standing_frames: frame.set_colorkey(WHITE) self.walk_frames_r = [pg.transform.scale(self.game.sprites_serpientes.get_image(165, 0, 165, 90.5), SERPIENTE_PROP), pg.transform.scale(self.game.sprites_serpientes.get_image(330, 0, 165, 90.5), SERPIENTE_PROP), pg.transform.scale(self.game.sprites_serpientes.get_image(495, 0, 165, 90.5), SERPIENTE_PROP)] self.walk_frames_l = [] for frame in self.walk_frames_r: frame.set_colorkey(WHITE) self.walk_frames_l.append(pg.transform.flip(frame, True, False)) def cambiarMovimiento(self): self.movimiento = not self.movimiento def update(self): self.animate() self.acc = vec(0, PLAYER_GRAV) if self.movimiento: self.acc.x = -SERP_ACC else: self.acc.x = SERP_ACC # APPLY FRICTION self.acc.x += self.vel.x * PLAYER_FRICTION # equations of motion self.vel += self.acc if abs(self.vel.x) < 0.1: self.vel.x = 0 self.pos += self.vel + 0.5 * self.acc self.rect.midbottom = self.pos def animate(self): now = pg.time.get_ticks() if self.vel.x != 0: self.walking = True else: self.walking = False # show walk animation if self.walking: if now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % \ len(self.walk_frames_l) bottom = self.rect.bottom if self.vel.x > 0: self.image = self.walk_frames_r[self.current_frame] else: self.image = self.walk_frames_l[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom # show idle animation if not self.walking: if now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % len(self.standing_frames) bottom = self.rect.bottom self.image = self.standing_frames[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom class Soldado(pg.sprite.Sprite): def __init__(self, game, x, y): pg.sprite.Sprite.__init__(self) self.game = game self.current_frame = 0 self.last_update = 0 self.load_images() self.image = self.standing_frames[0] self.rect = self.image.get_rect() self.rect.center = (WIDTH / 2, HEIGHT / 2) self.pos = vec(x, y) self.vel = vec(0, 0) self.acc = vec(0, 0) self.movimiento = True def load_images(self): self.standing_frames = [pg.transform.scale(self.game.sprites_soldado.get_image(0, 0, 200, 200), SOLDADO_PROP)] for frame in self.standing_frames: frame.set_colorkey(BLACK) self.walk_frames_r = [pg.transform.scale(self.game.sprites_soldado.get_image(200, 0, 200, 200), SOLDADO_PROP), pg.transform.scale(self.game.sprites_soldado.get_image(400, 0, 200, 200), SOLDADO_PROP), pg.transform.scale(self.game.sprites_soldado.get_image(600, 0, 200, 200), SOLDADO_PROP)] self.walk_frames_l = [] for frame in self.walk_frames_r: frame.set_colorkey(BLACK) self.walk_frames_l.append(pg.transform.flip(frame, True, False)) def update(self): self.animate() self.acc = vec(0, PLAYER_GRAV) if self.movimiento: self.acc.x = -SERP_ACC else: self.acc.x = SERP_ACC # APPLY FRICTION self.acc.x += self.vel.x * PLAYER_FRICTION # equations of motion self.vel += self.acc if abs(self.vel.x) < 0.1: self.vel.x = 0 self.pos += self.vel + 0.5 * self.acc self.rect.midbottom = self.pos def cambiarMovimiento(self): self.movimiento = not self.movimiento def animate(self): now = pg.time.get_ticks() if self.vel.x != 0: self.walking = True else: self.walking = False # show walk animation if self.walking and now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % \ len(self.walk_frames_l) bottom = self.rect.bottom if self.vel.x > 0: self.image = self.walk_frames_r[self.current_frame] else: self.image = self.walk_frames_l[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom # show idle animation if not self.walking and now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % len(self.standing_frames) bottom = self.rect.bottom self.image = self.standing_frames[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom class Boss(pg.sprite.Sprite): def __init__(self, game, x, y): pg.sprite.Sprite.__init__(self) self.game = game self.current_frame = 0 self.last_update = 0 self.load_images() self.image = self.standing_frames[0] self.rect = self.image.get_rect() self.rect.center = (WIDTH / 2, HEIGHT / 2) self.pos = vec(x, y) self.vel = vec(0, 0) self.acc = vec(0, 0) self.vida = BOOS_VIDA self.movimiento = True def load_images(self): self.standing_frames = [pg.transform.scale(self.game.sprites_boss.get_image(0, 0, 200, 200), SOLDADO_PROP)] for frame in self.standing_frames: frame.set_colorkey(BLACK) self.walk_frames_r = [pg.transform.scale(self.game.sprites_boss.get_image(200, 0, 200, 200), SOLDADO_PROP), pg.transform.scale(self.game.sprites_boss.get_image(400, 0, 200, 200), SOLDADO_PROP), pg.transform.scale(self.game.sprites_boss.get_image(600, 0, 200, 200), SOLDADO_PROP)] self.walk_frames_l = [] for frame in self.walk_frames_r: frame.set_colorkey(BLACK) self.walk_frames_l.append(pg.transform.flip(frame, True, False)) def update(self): self.animate() self.acc = vec(0, PLAYER_GRAV) if self.movimiento: self.acc.x = -SERP_ACC else: self.acc.x = SERP_ACC # APPLY FRICTION self.acc.x += self.vel.x * PLAYER_FRICTION # equations of motion self.vel += self.acc if abs(self.vel.x) < 0.1: self.vel.x = 0 self.pos += self.vel + 0.5 * self.acc self.rect.midbottom = self.pos def cambiarMovimiento(self): self.movimiento = not self.movimiento def animate(self): now = pg.time.get_ticks() if self.vel.x != 0: self.walking = True else: self.walking = False # show walk animation if self.walking and now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % \ len(self.walk_frames_l) bottom = self.rect.bottom if self.vel.x > 0: self.image = self.walk_frames_r[self.current_frame] else: self.image = self.walk_frames_l[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom # show idle animation if not self.walking and now - self.last_update > 200: self.last_update = now self.current_frame = (self.current_frame + 1) % len(self.standing_frames) bottom = self.rect.bottom self.image = self.standing_frames[self.current_frame] self.rect = self.image.get_rect() self.rect.bottom = bottom def disminuirVida(self): self.vida -= 1 return self.vida class Platform(pg.sprite.Sprite): def __init__(self, esce, x, y, w, h): pg.sprite.Sprite.__init__(self) self.image = pg.image.load("assets/images/terrenos/" + esce).convert() self.image = pg.transform.scale(self.image, (w, h)) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Moneda(pg.sprite.Sprite): def __init__(self, x, y): pg.sprite.Sprite.__init__(self) self.image = pg.image.load("assets/images/objetos/moneda.gif").convert() self.image = pg.transform.scale(self.image, COINS_PROP) self.image.set_colorkey(WHITE) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Terreno(pg.sprite.Sprite): def __init__(self, x, y, w, h): pg.sprite.Sprite.__init__(self) self.image = pg.image.load("assets/images/terrenos/terreno.png").convert() self.image = pg.transform.scale(self.image, (w, self.image.get_height()+h)) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Cartel(pg.sprite.Sprite): def __init__(self, x, y): pg.sprite.Sprite.__init__(self) self.image = pg.image.load("assets/images/objetos/cartel1.png").convert() self.image = pg.transform.scale(self.image, CARTEL_PROP) self.image.set_colorkey(BLACK) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Checkpoint(pg.sprite.Sprite): def __init__(self, x, y): pg.sprite.Sprite.__init__(self) self.image = pg.image.load("assets/images/objetos/llama_1.gif").convert() self.image = pg.transform.scale(self.image, (100, 80)) self.image.set_colorkey(WHITE) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Rocon(pg.sprite.Sprite): def __init__(self, x, y): pg.sprite.Sprite.__init__(self) self.image = pg.image.load("assets/images/obstaculos/rocon.png").convert() self.image = pg.transform.scale(self.image, (50, 200)) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y class Camera: def __init__(self, width, height): self.camera = pg.Rect(0, 0, width, height) self.width = width self.height = height def apply(self, entity): return entity.rect.move(self.camera.topleft) def update(self, target): x = -target.rect.x + int(WIDTH / 2) y = -target.rect.y + 490 # limit scrolling to map size x = min(0, x) # left y = min(0, y) # right self.camera = pg.Rect(x, y, self.width, self.height)
[ "edu.lara.lev@gmail.com" ]
edu.lara.lev@gmail.com
e254aa45d97a2f3ff329c8b06be41ad5a4e0aec5
3acb90a1e97a0e851c6e4b1b57dda78ec5e3e3b4
/problems/deep_copy_graph.py
0b0caab3f09a04fb8519c76e677dd80b5c5b183b
[]
no_license
jhyang12345/algorithm-problems
fea3c6498cff790fc4932404b5bbab08a6d4a627
704355013de9965ec596d2e0115fd2ca9828d0cb
refs/heads/master
2023-05-15T10:26:52.685471
2021-06-01T14:57:38
2021-06-01T14:57:38
269,333,379
0
0
null
null
null
null
UTF-8
Python
false
false
1,641
py
# Given a node in a connected directional graph, create a copy of it. # # Here's an example and some starter code. class Node: def __init__(self, value, adj=None): self.value = value self.adj = adj # Variable to help print graph self._print_visited = set() if self.adj is None: self.adj = [] # Able to print graph def __repr__(self): if self in self._print_visited: return '' else: self._print_visited.add(self) final_str = '' for n in self.adj: final_str += f'{n}\n' self._print_visited.remove(self) return final_str + f'({self.value}, ({[n.value for n in self.adj]}))' def deep_copy_graph(graph_node, visited=None): dummy_node = Node(0) queue = [graph_node, dummy_node] graph = {} visited = [graph_node, dummy_node] dummy_map = {} while queue: cur = queue.pop(0) dummy = queue.pop(0) dummy_map[cur] = dummy dummy.value = cur.value visited.append(cur) for node in cur.adj: if node not in visited: queue.append(node) new_dummy = Node(0) queue.append(new_dummy) dummy.adj.append(new_dummy) else: dummy.adj.append(dummy_map[node]) return dummy_node n5 = Node(5) n4 = Node(4) n3 = Node(3, [n4]) n2 = Node(2) n1 = Node(1, [n5]) n5.adj = [n3] n4.adj = [n3, n2] n2.adj = [n4] graph_copy = deep_copy_graph(n1) print(graph_copy) # (2, ([4])) # (4, ([3, 2])) # (3, ([4])) # (5, ([3])) # (1, ([5]))
[ "jhyang12345@naver.com" ]
jhyang12345@naver.com
efa07d57ac7d1b5f748e8b5e108f68d9ecc11029
444c42503bf34df6dbd1e74d8c66e78c9d6b2564
/ansible/models.py
d129b1053aedc7d86022363058e6f25489ed9b37
[]
no_license
liyanwei4408866/DjangoDemo
0ee8b189093c5ba351cb22c8cfbe7ec118d0a5c6
5e3ed793191a88e1c2a83b045e6d6eadc5cf66c3
refs/heads/master
2020-05-15T11:12:59.494731
2019-04-19T07:00:10
2019-04-19T07:00:10
182,217,112
0
0
null
null
null
null
UTF-8
Python
false
false
1,887
py
from django.db import models # Create your models here. class Grade(models.Model): gname = models.CharField(max_length=20) gdate = models.DateTimeField() ggirlnum = models.IntegerField() gboynum = models.IntegerField() isDelete = models.BooleanField(default=False) def __str__(self): return self.gname class Meta: db_table:"grade" class StudentManager(models.Manager): def get_queryset(self): models.Manager.get_queryset(self) return super(StudentManager, self).get_queryset().filter(isDelete=False) def createStudent(self, name, age, gender, contend): stu = self.model() stu.sname=name stu.sage=age stu.sgender=gender stu.scontend=contend return stu class Student(models.Model): # 自定义模型管理器 # stuObj = models.Manager() stuObj2 = StudentManager() sname = models.CharField(max_length=20) sgender = models.BooleanField(default=True) sage = models.IntegerField(db_column="sage") scontend = models.CharField(max_length=20) isDelete = models.BooleanField(default=False) sgrade = models.ForeignKey("Grade", on_delete=models.CASCADE) createTime = models.DateTimeField(auto_now_add=True) # auto_now_add 新增时赋值 updateTime = models.DateTimeField(auto_now=True) # auto_now 修改时赋值 def __str__(self): return self.sname class Meta: db_table:"student" # 设置表名,默认为appname_classname ordering:['-createTime'] # 默认排序 + asc - desc # 定义一个类方法创建对象 cls==Stundent @classmethod def createStudent(cls, name, age, gender, contend): stu = cls(sname=name , sage=age , sgender=gender, scontend=contend) return stu
[ "Administrator@XL-20170505IAOA" ]
Administrator@XL-20170505IAOA
53e8ea169d0cfd5c2042f9ade08153f4669354fc
65b4522c04c2be071c2d42095956fe950fe1cebe
/inversions/inversion10/iter2/run5/analysis/pred_disp/create_predicted_disp_database.py
608cb3ba2bafea964917232a2b235b12007f7f0a
[]
no_license
geodesy/viscojapan
ac0cd93f7a2134cd2651623b94879dcc21c0c46a
03e70265b56eb5994e73bcb6066f0be338e42f27
refs/heads/master
2021-03-03T18:19:07.779601
2015-07-16T03:50:49
2015-07-16T03:50:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
import sqlite3 import numpy as np import viscojapan as vj pred = vj.inv.DispPred( file_G0 = '../../../green_function/G0_He50km_VisM6.3E18_Rake83.h5', result_file = '../../outs/nrough_05_naslip_11.h5', fault_file = '../../../fault_model/fault_bott80km.h5', files_Gs = ['../../../green_function/G1_He50km_VisM1.0E19_Rake83.h5', '../../../green_function/G2_He60km_VisM6.3E18_Rake83.h5', '../../../green_function/G3_He50km_VisM6.3E18_Rake90.h5' ], nlin_par_names = ['log10(visM)','log10(He)','rake'], file_incr_slip0 = '../../slip0/v1/slip0.h5', ) writer = vj.inv.PredDispToDatabaseWriter( pred_disp = pred ) writer.create_database() writer.insert_all()
[ "zy31415@gmail.com" ]
zy31415@gmail.com
5e6eab96a36af8362b1089b13514cebebf213f95
11812a0cc7b818292e601ecdd4aa4c4e03d131c5
/100days_of_python/day32/main.py
2d1a1c5e6332bb4dae8a588642e9e2d964c7be13
[]
no_license
SunshineFaxixi/Python_Learning
f1e55adcfa898489cc9146ccfb220f0b48a31a22
ab3ca44d013311b6de02124091acc4c36a83c4d9
refs/heads/master
2021-08-16T05:47:29.963118
2021-01-04T13:48:30
2021-01-04T13:48:30
238,857,341
1
0
null
2020-03-03T13:53:08
2020-02-07T06:21:46
HTML
UTF-8
Python
false
false
1,364
py
##################### Extra Hard Starting Project ###################### import pandas from datetime import datetime import os import random import smtplib MY_EMAIL = "xxhan2018@163.com" MY_PASSWORD = "TXHTVGKIOLEHXVCI" today = datetime.now() today_tuple = (today.month, today.day) all_birth_info = pandas.read_csv("birthdays.csv") birthday_dict = {(data_row["month"], data_row["day"]): data_row for (index, data_row) in all_birth_info.iterrows()} # 2. Check if today matches a birthday in the birthdays.csv if today_tuple in birthday_dict: # 3. If step 2 is true, pick a random letter from letter templates and replace the [NAME] with the person's actual name from birthdays.csv birthday_person = birthday_dict[today_tuple] file_path = f"letter_templates/letter_{random.randint(1, 3)}.txt" with open(file_path) as data: content = data.read() content = content.replace("[NAME]", birthday_person["name"]) # print(content) # 4. Send the letter generated in step 3 to that person's email address. with smtplib.SMTP("smtp.163.com") as connection: connection.starttls() connection.login(user=MY_EMAIL, password=MY_PASSWORD) connection.sendmail( from_addr=MY_EMAIL, to_addrs=birthday_person["email"], msg=f"Subject: Happy Birthday!\n\n{content}" )
[ "xxhan2018@163.com" ]
xxhan2018@163.com
c16b7296ae527faae7b03ce58aac6dd19ea48438
45ea73115f79affcd5d3770fc49b8f94dee7e903
/python/windchill.py
91bb82ca9982816d268e03589451e4fbfc787ede
[]
no_license
Gamertoc/University-precourse
85033037a4536c7ee9974db2d26c78cd13f08d5e
feeaec10c45f2bfb4c72d8c5f3f1a77887f37641
refs/heads/master
2020-08-15T08:30:42.124899
2019-10-15T14:11:03
2019-10-15T14:11:03
215,309,320
0
0
null
null
null
null
UTF-8
Python
false
false
545
py
import math T = float(input('Temperature in °C (integer): ')) v = float(input('Speed in km/h (integer): ')) while T != int(T): T = input('Try again! Temperature in °C: ') while v != int(v): v = input('Try again! Speed in km/h: ') Wold = 33 + (.478 + .237*math.sqrt(v) - .0124*v) * (T-33) Wnew = 13.12 + .6215*T -11.37*(v**0.16) + .3965*T*(v**0.16) Wold = (int(Wold*10))/10 Wnew = (int(Wnew*10))/10 print('Windchill temperature in °C (old method): ', Wold) print('Windchill temperature in °C (new method): ', Wnew)
[ "noreply@github.com" ]
Gamertoc.noreply@github.com
0487d2a65c915d43cdd636edbad2f5aaa02af497
e556419a56549f8d42e60bda98df519335e70246
/main_affectation.py
30b3f69360e9d324d4ede62c5913773774a4ae4b
[]
no_license
Brandone123/Projet_RO
cf7f1964de7c9fe41d2bee0f92ae4a35ab30353f
3523b3e067631132128971cb9bf4276965edd4fd
refs/heads/master
2022-11-06T13:13:50.499059
2020-06-22T10:27:53
2020-06-22T10:27:53
272,175,783
0
0
null
null
null
null
UTF-8
Python
false
false
2,364
py
from PyQt5.QtWidgets import QMainWindow, QMessageBox, QSpacerItem, QPushButton, QSpinBox, QHBoxLayout, QApplication # from PyQt5.QtGui import Q from PyQt5 import QtGui from PyQt5.QtCore import pyqtSlot from munkres import Munkres, print_matrix from AffectionWindow import Ui_MainWindow import sys class MainAffectation(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super().__init__(parent) self.setupUi(self) self.cell_list = [] @pyqtSlot() def on_pushButtonGenMatrix_clicked(self): col = self.spinBoxCol.value() row = self.spinBoxRow.value() self.create_matrix_row(col, row) def create_matrix_row(self, row, col): for i in range(1, row+1): hLayout = QHBoxLayout() hSpacer = QSpacerItem(40, 20) hLayout.addItem(hSpacer) row_list = [] for j in range(1, col+1): spinBox = QSpinBox() object_name = 'spinBox_{}_{}'.format(i, j) row_list.append(spinBox) spinBox.setObjectName(object_name) spinBox.setMinimum(-999) spinBox.setMaximum(999) hLayout.addWidget(spinBox) self.cell_list.append(row_list) hLayout.addItem(hSpacer) self.verticalLayoutMatrix.addLayout(hLayout) verticalSpacer = QSpacerItem(20, 40) self.verticalLayoutMatrix.addItem(verticalSpacer) pushButtonCompute = QPushButton('Compute') self.verticalLayoutMatrix.addWidget(pushButtonCompute) pushButtonCompute.clicked.connect(self.compute_affectation) def compute_affectation(self): matrix = self.get_matrix(self.cell_list) munkres = Munkres() indexes = munkres.compute(matrix) display_result = 'Resultat : {} \n Cout : {}'.format( str(indexes), sum([matrix[i[0]][i[1]] for i in indexes])) self.labelResult.setText(str(display_result)) def get_matrix(self, cell_list): matrix = [] for row in cell_list: m_row = [] for col in row: m_row.append(col.value()) matrix.append(m_row) return matrix if __name__ == '__main__': app = QApplication(sys.argv) win = MainAffectation() win.show() sys.exit(app.exec_())
[ "noreply@github.com" ]
Brandone123.noreply@github.com
a1cd97ecced854a2187a5ae65068a685c323438c
c7e09ffb1bc9b95e266ef89984b39abfbd6976cd
/mcts/mcts_model.py
ed593186bcc4b1dd7e81c5a1a5b73991289776ed
[]
no_license
liyunlon008/RuleBasedModelV2
c5bac60e10c6ab80b1f738c05850401fc5f72073
bf5c7e042d15090053086523c4e2f112bc799b06
refs/heads/master
2022-05-09T03:01:26.756576
2019-08-14T03:25:20
2019-08-14T03:25:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,787
py
from __future__ import absolute_import import sys import os sys.path.insert(0, os.path.join('..')) from game.engine import Agent, Game, Card from mcts.tree_policy import tree_policy from mcts.default_policy import default_policy from mcts.backup import backup from mcts.tree import Node, State from mcts.get_moves_prune import get_moves from mcts.get_bestchild import get_bestchild import numpy as np from collections import Counter import time class MctsModel(Agent): def __init__(self, player_id): super(MctsModel, self).__init__(player_id) root = Node(None, None) self.current_node = root def choose(self, state): # start = time.time() # 定位current_node cards_out = self.game.cards_out length = len(cards_out) # 判断是否定位到current_node的flag flag = 0 if length > 2: # 前两步对手选择的move out1 = self.list_to_card(cards_out[length-2][1]) out2 = self.list_to_card(cards_out[length-1][1]) for child in self.current_node.get_children(): if self.compare(child.state.action, out1): self.current_node = child flag = 1 break if flag == 1: for child in self.current_node.get_children(): if self.compare(child.state.action, out2): self.current_node = child flag = 2 break my_id = self.player_id if flag != 2: root = Node(None, None) self.current_node = root # 下家id next_id = (my_id + 1) % 3 # 下下家id next_next_id = (my_id + 2) % 3 my_card = self.card_list_to_dict(self.get_hand_card()) # 下家牌 next_card = self.card_list_to_dict(self.game.players[next_id].get_hand_card()) # 下下家牌 next_next_card = self.card_list_to_dict(self.game.players[next_next_id].get_hand_card()) last_move = self.trans_card(Card.visual_card(self.game.last_move)) last_p = self.game.last_pid moves_num = len(get_moves(my_card, last_move)) state = State(my_id, my_card, next_card, next_next_card, last_move, -1, moves_num, None, last_p) self.current_node.set_state(state) # 搜索 computation_budget = 2000 for i in range(computation_budget): expand_node = tree_policy(self.current_node, my_id) reward = default_policy(expand_node, my_id) backup(expand_node, reward) best_next_node = get_bestchild(self.current_node, my_id) move = best_next_node.get_state().action self.current_node = best_next_node new_move = self.card_to_list(move) hand_card = [] for i, n in enumerate(Card.all_card_name): hand_card.extend([n] * self.get_hand_card()[i]) print("Player {}".format(self.player_id), ' ', hand_card, end=' // ') print(Card.visual_card(new_move)) # end = time.time() # dur = end - start # print('cost: {}'.format(dur)) return new_move, None @staticmethod # 用于比较两个无序的list def compare(s, t): return Counter(s) == Counter(t) @staticmethod def trans_card(before): after = [] for card in before: after.append(int(card)) return after @staticmethod def card_list_to_dict(card_list): # e.g. [3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0] -> ['3':3, '4':3, '5':0, '6':0, '7':0, '8':0, '9':0, '10':0, '11':0, '12':0, '13':0, '1':1, '2':1, '14':0, '15':0] card_name = Card.all_card_name card_dict = dict(zip(card_name, card_list)) return card_dict @staticmethod def card_to_list(before): # e.g. [3, 3, 3, 4, 4, 4, 1, 2] -> [3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0] # index = [str(i) for i in range(3, 14)] + ['1', '2', '14', '15'] tem = [0] * 15 for card in before: tem[card - 1] += 1 tem = tem[2:-2] + tem[:2] + tem[-2:] return tem @staticmethod def list_to_card(before): # e.g. [3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0] -> [3, 3, 3, 4, 4, 4, 1, 2] cards = [i for i in range(3, 14)] + [1, 2, 14, 15] card = [] for i, j in enumerate(before): card += ([cards[i]] * j) return card class RandomModel(Agent): def choose(self, state): valid_moves = self.get_moves() # player i [手牌] // [出牌] hand_card = [] for i, n in enumerate(Card.all_card_name): hand_card.extend([n]*self.get_hand_card()[i]) # print("Player {}".format(self.player_id), ' ', hand_card, end=' // ') i = np.random.choice(len(valid_moves)) move = valid_moves[i] # print(Card.visual_card(move)) return move, None if __name__=="__main__": # game = Game([RandomModel(i) for i in range(3)]) game = Game([RandomModel(0), MctsModel(1), RandomModel(2)]) # win_count = [0, 0, 0] for i_episode in range(1): game.game_reset() # game.show() for i in range(100): pid, state, cur_moves, cur_move, winner, info = game.step() #game.show() if winner != -1: print(str(i_episode) + ': ' + 'Winner:{}'.format(winner)) # win_count[winner] += 1 break # print(win_count)
[ "625283021@qq.com" ]
625283021@qq.com
9c12a9dc49718c2d3211144a328a690531b52177
122c0ce4b8709872f8ffa962708b26806a0b41ee
/PackEXEC/Eten.py
684f34b545e3d9687c3fe22ee5534ef9cffaa50c
[]
no_license
Sniper099/WorkTest
de1d6729a01890706053e7c8434aac34421c59c9
5377f5cc7d3ed89f597be9ea0e39b8a148656737
refs/heads/master
2022-05-30T12:04:15.027020
2020-04-22T23:15:50
2020-04-22T23:15:50
256,840,217
0
3
null
null
null
null
UTF-8
Python
false
false
2,348
py
import numpy as np import sys def Itener(zon): Nu=int(input('Veuillez entrez le nombre de sites visités ou que vous voulez visiter :\t' )) #nombre de site parcorrue SI=['Tour Hassan','Oudaya','Chellah','Le Musee Mohammed VI','Musee Belghazi','Musee Maroc Telecom','Village de poterie Oulja','Ancienne Medina Rabat','Oued Bouregreg','Jardin exotique'] dictioI={'Tour Hassan': 0, 'Oudaya': 1, 'Chellah': 2, 'Le Musee Mohammed VI': 3, 'Musee Belghazi': 4, 'Musee Maroc Telecom': 5, 'Village de poterie Oulja': 6, 'Ancienne Medina Rabat': 7, 'Oued Bouregreg': 8, 'Jardin exotique': 9} SII=['Ein Zarqa','Mirleft','Quissariat Neqra','Ouad Assaka','Targa','Sidi Boulfdayl','Al Aqwass','Qasr Khalifi'] dictioII={'Ein Zarqa': 0, 'Mirleft': 1, 'Quissariat Neqra': 2,'Ouad Assaka': 3,'Targa': 4,'Sidi Boulfdayl': 5,'Al Aqwass': 6,'Qasr Khalifi': 7} S=[] D=0 #La distance if zon=='Rabat-Sale': print('Veuillez choisir parmis les sites disponibles :') for i in SI: print('>>>Site Touristique :' + i) for i in range(Nu): site=str(input('Veuillez preciser le site touristique visité/à visiter : \n')) while (site not in dictioI): site=str(input('Vous avez mal ecrit le site! Essayer une autre fois SVP! \n')) S.append(site) matrix= np.loadtxt('Matrix1.txt', usecols=range(10)) #on importe notre matrice a l'aide de numpy pour pouvoire faire des traitements for i in range(len(S)-1): D+=matrix[dictioI[S[i]]][dictioI[S[i+1]]] print("la distance de cet intineraire est: " + str(D) +"km \n") if zon=='Tiznit': print('Veuillez choisir parmis les sites disponibles :') for i in SII: print('>>>Site Touristique :' + i) for i in range(Nu): site = str(input('Veuillez preciser le site touristique visité/à visiter : \n')) while (site not in dictioII): site = str(input('Vous avez mal ecrit le site! Essayer une autre fois SVP! \n')) S.append(site) matrix= np.loadtxt('Matrix2.txt', usecols=range(8)) for i in range(len(S)-1): D+=matrix[dictioII[S[i]]][dictioII[S[i+1]]] print('Vous avez parcorru ou vous allez parcourir est de Distance de : ' + str(D) + 'km \n')
[ "nj.nava.99@gmail.com" ]
nj.nava.99@gmail.com
6037784afde9a814b4a03625736d447476252e24
1e164c6d208e7c82870f37d1f2cc2206373e3ce1
/venv/Scripts/django-admin.py
107d5b5a4b6df634137dc021f7bb8fdb85634e7c
[]
no_license
SAGAR0071/Realestate
d152a35452b438fbb801458189a07133bec50611
32030d933d114ecd6580d039c901866ea3fbd08e
refs/heads/master
2021-04-04T06:47:23.864348
2020-03-19T07:28:45
2020-03-19T07:28:45
248,433,790
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
#!C:\Users\You know that\PycharmProjects\Django\venv\Scripts\python.exe from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "sagarscimox@gmail.com" ]
sagarscimox@gmail.com
23c0b017aab6fb2fba920cde4cd27a7b1878240f
a8b71966826f9119b264bdd32b60b218c795bd92
/test_AirportWeatherAPI.py
548f21fa4114ce7436a9a3114961749a31c1cc8c
[]
no_license
BUEC500C1/api-design-lijunwei19
f19d929fb9fb8c1598929303a24ca41b478f9fa7
209f8a2be61ded47844f65d1f2b4ce7373ed691d
refs/heads/master
2020-12-27T22:42:52.976680
2020-02-05T19:21:33
2020-02-05T19:21:33
238,090,706
0
2
null
2020-02-05T18:58:38
2020-02-04T00:28:47
Python
UTF-8
Python
false
false
301
py
from AirportWeatherAPI import airport_Weather import pytest def test_airport_weather(): assert "message" not in airport_Weather("Total Rf Heliport") assert "message" not in airport_Weather("Aero B Ranch Airport") assert "message" not in airport_Weather("Newport Hospital & Clinic Heliport")
[ "jlyc8@bu.edu" ]
jlyc8@bu.edu
02e52b31e058e832bbd4fe48a9863e3d6f212388
275b36012933d9471db4abcfa4631d1da3e69361
/tests/test_dice_interface/test_dice_tensorflow.py
cd8e36609a2c35052944a818c342bcba0d518de4
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
gaugup/DiCE
bad277c17ba62daf2ba41e6c2fc26844c986f33e
41dfde376ec3e5471d8e04899e639d2621b987f3
refs/heads/master
2023-03-02T11:05:00.561852
2021-02-11T23:45:24
2021-02-11T23:45:24
337,927,184
0
0
MIT
2021-02-11T23:45:25
2021-02-11T04:17:20
null
UTF-8
Python
false
false
4,858
py
import numpy as np import pytest import dice_ml from dice_ml.utils import helpers tf = pytest.importorskip("tensorflow") @pytest.fixture def tf_exp_object(): backend = 'TF'+tf.__version__[0] dataset = helpers.load_adult_income_dataset() d = dice_ml.Data(dataframe=dataset, continuous_features=['age', 'hours_per_week'], outcome_name='income') ML_modelpath = helpers.get_adult_income_modelpath(backend=backend) m = dice_ml.Model(model_path= ML_modelpath, backend=backend) exp = dice_ml.Dice(d, m) return exp class TestDiceTensorFlowMethods: @pytest.fixture(autouse=True) def _initiate_exp_object(self, tf_exp_object, sample_adultincome_query): self.exp = tf_exp_object # explainer object self.exp.do_cf_initializations(total_CFs=4, algorithm="DiverseCF", features_to_vary="all") # initialize required params for CF computations # prepare query isntance for CF optimization query_instance = self.exp.data_interface.prepare_query_instance(query_instance=sample_adultincome_query, encoding='one-hot') self.query_instance = np.array([query_instance.iloc[0].values], dtype=np.float32) init_arrs = self.exp.initialize_CFs(self.query_instance, init_near_query_instance=True) # initialize CFs self.desired_class = 1 # desired class is 1 # setting random feature weights np.random.seed(42) weights = np.random.rand(len(self.exp.data_interface.encoded_feature_names)) weights = np.array([weights], dtype=np.float32) if tf.__version__[0] == '1': for i in range(4): self.exp.dice_sess.run(self.exp.cf_assign[i], feed_dict={self.exp.cf_init: init_arrs[i]}) self.exp.feature_weights = tf.Variable(self.exp.minx, dtype=tf.float32) self.exp.dice_sess.run(tf.assign(self.exp.feature_weights, weights)) else: self.exp.feature_weights_list = tf.constant([weights], dtype=tf.float32) @pytest.mark.parametrize("yloss, output",[("hinge_loss", 4.6711), ("l2_loss", 0.9501), ("log_loss", 3.6968)]) def test_yloss(self, yloss, output): if tf.__version__[0] == '1': loss1 = self.exp.compute_yloss(method=yloss) loss1 = self.exp.dice_sess.run(loss1, feed_dict={self.exp.target_cf: np.array([[1]])}) else: self.exp.target_cf_class = np.array([[self.desired_class]], dtype=np.float32) self.exp.yloss_type = yloss loss1 = self.exp.compute_yloss().numpy() assert pytest.approx(loss1, abs=1e-4) == output def test_proximity_loss(self): if tf.__version__[0] == '1': loss2 = self.exp.compute_proximity_loss() loss2 = self.exp.dice_sess.run(loss2, feed_dict={self.exp.x1: self.query_instance}) else: self.exp.x1 = tf.constant(self.query_instance, dtype=tf.float32) loss2 = self.exp.compute_proximity_loss().numpy() assert pytest.approx(loss2, abs=1e-4) == 0.0068 # proximity loss computed for given query instance and feature weights. @pytest.mark.parametrize("diversity_loss, output",[("dpp_style:inverse_dist", 0.0104), ("avg_dist", 0.1743)]) def test_diversity_loss(self, diversity_loss, output): if tf.__version__[0] == '1': loss3 = self.exp.compute_diversity_loss(diversity_loss) loss3 = self.exp.dice_sess.run(loss3) else: self.exp.diversity_loss_type = diversity_loss loss3 = self.exp.compute_diversity_loss().numpy() assert pytest.approx(loss3, abs=1e-4) == output def test_regularization_loss(self): loss4 = self.exp.compute_regularization_loss() if tf.__version__[0] == '1': loss4 = self.exp.dice_sess.run(loss4) else: loss4 = loss4.numpy() assert pytest.approx(loss4, abs=1e-4) == 0.2086 # regularization loss computed for given query instance and feature weights. def test_final_cfs_and_preds(self, sample_adultincome_query): """ Tets correctness of final CFs and their predictions for sample query instance. """ dice_exp = self.exp.generate_counterfactuals(sample_adultincome_query, total_CFs=4, desired_class="opposite") test_cfs = [[70.0, 'Private', 'Masters', 'Single', 'White-Collar', 'White', 'Female', 51.0, 0.534], [19.0, 'Self-Employed', 'Doctorate', 'Married', 'Service', 'White', 'Female', 44.0, 0.815], [47.0, 'Private', 'HS-grad', 'Married', 'Service', 'White', 'Female', 45.0, 0.589], [36.0, 'Private', 'Prof-school', 'Married', 'Service', 'White', 'Female', 62.0, 0.937]] assert dice_exp.final_cfs_list == test_cfs preds = [np.round(preds.flatten().tolist(), 3)[0] for preds in dice_exp.final_cfs_preds] assert pytest.approx(preds, abs=1e-3) == [0.534, 0.815, 0.589, 0.937]
[ "noreply@github.com" ]
gaugup.noreply@github.com
6000dedcf91921ea9a5a6cba05ff8fe17f2ae918
221d1ad342677d2fac8aa3f8d5c60e059a6316c9
/pm4py/objects/log/util/dataframe_utils.py
e8318a1daaeaa367f7ae496fe27ab3a705aca2da
[]
no_license
niklasadams/explainable_concept_drift_pm
06ff651fbdebece4adf96f94bfb4d1026da14c48
6bf84d727ab0bae76716a04ad28c7de73250c89d
refs/heads/main
2023-08-26T18:21:49.955080
2021-10-29T18:53:48
2021-10-29T18:53:48
314,514,571
4
0
null
null
null
null
UTF-8
Python
false
false
7,643
py
from pm4py.util import constants from pm4py.objects.log.log import EventStream from pm4py.objects.conversion.log import converter as log_converter import pandas as pd from pm4py.util.vers_checker import check_pandas_ge_024 from enum import Enum from pm4py.util import exec_utils from pm4py.util import points_subset from pm4py.util import xes_constants LEGACY_PARQUET_TP_REPLACER = "AAA" LEGACY_PARQUET_CASECONCEPTNAME = "caseAAAconceptAAAname" class Parameters(Enum): PARTITION_COLUMN = "partition_column" CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY MANDATORY_ATTRIBUTES = "mandatory_attributes" MAX_NO_CASES = "max_no_cases" MIN_DIFFERENT_OCC_STR_ATTR = 5 MAX_DIFFERENT_OCC_STR_ATTR = 50 def insert_partitioning(df, num_partitions, parameters=None): """ Insert the partitioning in the specified dataframe Parameters ------------- df Dataframe num_partitions Number of partitions parameters Parameters of the algorithm Returns ------------- df Partitioned dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) partition_column = exec_utils.get_param_value(Parameters.PARTITION_COLUMN, parameters, "@@partitioning") df[partition_column] = df[case_id_key].rank(method='dense', ascending=False).astype(int) % num_partitions return df def legacy_parquet_support(df, parameters=None): """ For legacy support, Parquet files columns could not contain a ":" that has been arbitrarily replaced by a replacer string. This string substitutes the replacer to the : Parameters --------------- dataframe Dataframe parameters Parameters of the algorithm """ if parameters is None: parameters = {} df.columns = [x.replace(LEGACY_PARQUET_TP_REPLACER, ":") for x in df.columns] return df def table_to_stream(table, parameters=None): """ Converts a Pyarrow table to an event stream Parameters ------------ table Pyarrow table parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} dict0 = table.to_pydict() keys = list(dict0.keys()) # for legacy format support if LEGACY_PARQUET_CASECONCEPTNAME in keys: for key in keys: dict0[key.replace(LEGACY_PARQUET_TP_REPLACER, ":")] = dict0.pop(key) stream = EventStream([dict(zip(dict0, i)) for i in zip(*dict0.values())]) return stream def table_to_log(table, parameters=None): """ Converts a Pyarrow table to an event log Parameters ------------ table Pyarrow table parameters Possible parameters of the algorithm """ if parameters is None: parameters = {} stream = table_to_stream(table, parameters=parameters) return log_converter.apply(stream, parameters=parameters) def convert_timestamp_columns_in_df(df, timest_format=None, timest_columns=None): """ Convert all dataframe columns in a dataframe Parameters ----------- df Dataframe timest_format (If provided) Format of the timestamp columns in the CSV file timest_columns Columns of the CSV that shall be converted into timestamp Returns ------------ df Dataframe with timestamp columns converted """ needs_conversion = check_pandas_ge_024() for col in df.columns: if timest_columns is None or col in timest_columns: if df[col].dtype == 'object': try: if timest_format is None: if needs_conversion: df[col] = pd.to_datetime(df[col], utc=True) else: df[col] = pd.to_datetime(df[col]) else: if needs_conversion: df[col] = pd.to_datetime(df[col], utc=True, format=timest_format) else: df[col] = pd.to_datetime(df[col]) except ValueError: # print("exception converting column: "+str(col)) pass return df def sample_dataframe(df, parameters=None): """ Sample a dataframe on a given number of cases Parameters -------------- df Dataframe parameters Parameters of the algorithm, including: - Parameters.CASE_ID_KEY - Parameters.CASE_ID_TO_RETAIN Returns ------------- sampled_df Sampled dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) max_no_cases = exec_utils.get_param_value(Parameters.MAX_NO_CASES, parameters, 100) case_ids = list(df[case_id_key].unique()) case_id_to_retain = points_subset.pick_chosen_points_list(min(max_no_cases, len(case_ids)), case_ids) return df[df[case_id_key].isin(case_id_to_retain)] def automatic_feature_selection_df(df, parameters=None): """ Performs an automatic feature selection on dataframes, keeping the features useful for ML purposes Parameters --------------- df Dataframe parameters Parameters of the algorithm Returns --------------- featured_df Dataframe with only the features that have been selected """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value(Parameters.CASE_ID_KEY, parameters, constants.CASE_CONCEPT_NAME) mandatory_attributes = exec_utils.get_param_value(Parameters.MANDATORY_ATTRIBUTES, parameters, set(df.columns).intersection( {constants.CASE_CONCEPT_NAME, xes_constants.DEFAULT_NAME_KEY, xes_constants.DEFAULT_TIMESTAMP_KEY})) min_different_occ_str_attr = exec_utils.get_param_value(Parameters.MIN_DIFFERENT_OCC_STR_ATTR, parameters, 5) max_different_occ_str_attr = exec_utils.get_param_value(Parameters.MAX_DIFFERENT_OCC_STR_ATTR, parameters, 50) cols_dtypes = {x: str(df[x].dtype) for x in df.columns} other_attributes_to_retain = set() no_all_cases = df[case_id_key].nunique() for x, y in cols_dtypes.items(): attr_df = df.dropna(subset=[x]) this_cases = attr_df[case_id_key].nunique() # in any case, keep attributes that appears at least once per case if this_cases == no_all_cases: if "float" in y or "int" in y: # (as in the classic log version) retain always float/int attributes other_attributes_to_retain.add(x) elif "object" in y: # (as in the classic log version) keep string attributes if they have enough variability, but not too much # (that would be hard to explain) unique_val_count = df[x].nunique() if min_different_occ_str_attr <= unique_val_count <= max_different_occ_str_attr: other_attributes_to_retain.add(x) else: # not consider the attribute after this feature selection if it has other types (for example, date) pass attributes_to_retain = mandatory_attributes.union(other_attributes_to_retain) return df[attributes_to_retain]
[ "niklas.adams@pads.rwth-aachen.de" ]
niklas.adams@pads.rwth-aachen.de
7ca5e6cecede89720beb07c78961edf828316a33
2f59f4b22c2012ad6965b1dc694d48dc056362b4
/prepare_data.py
e0bedff263a0aa6fb9ddd0cd93a71f857ecb9bf3
[]
no_license
vudaoanhtuan/neural-machine-translation
8538a7ff733d1bad90045dced9945ec286230fe6
1cea5e1a4b03017c3a1f3f0fffb750991e61fd2e
refs/heads/master
2020-05-18T19:24:13.444063
2019-05-02T15:48:24
2019-05-02T15:48:24
184,608,068
1
0
null
null
null
null
UTF-8
Python
false
false
925
py
import torch from torchtext.data import Field, Dataset, Iterator, BucketIterator, ReversibleField from torchtext.datasets import TranslationDataset from preprocess import preprocess, tokenize def tokenize_word(text): text = preprocess(text) return tokenize(text) SRC = Field( tokenize=tokenize_word, lower=True, batch_first=True ) TRG = Field( tokenize=tokenize_word, init_token='<sos>', eos_token='<eos>', lower=True, batch_first=True ) fields = [('src', SRC), ('trg', TRG)] ds = TranslationDataset('lang.', ('en', 'de'), fields) train_ds, test_ds = ds.split(0.9) SRC.build_vocab(ds) TRG.build_vocab(ds) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') batch_size = 32 train_iter = BucketIterator( train_ds, batch_size=batch_size, device=device ) test_iter = BucketIterator( test_ds, batch_size=batch_size, device=device )
[ "vudaoanhtuan@gmail.com" ]
vudaoanhtuan@gmail.com
517b7bcb9f4f6b5045ecd44c559702ab5df05680
9a82885b4617b666e1ac1c976377790b759cd64e
/myfit/migrations/0010_device_owner_log_files_location.py
582fb68a7b1b841c1b99bd71de6e70de24e1400e
[]
no_license
lukbor2/myfitapp
94ba4b7b0acc796a15fab11471e120b21218d9d5
0020bfd3d37de637121773d21464ac92f77da9e8
refs/heads/master
2021-04-26T21:54:23.585351
2018-05-15T03:43:23
2018-05-15T03:43:23
122,386,186
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
# Generated by Django 2.0.2 on 2018-04-14 21:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('myfit', '0009_auto_20180313_0233'), ] operations = [ migrations.AddField( model_name='device_owner', name='log_files_location', field=models.CharField(blank=True, max_length=500, null=True), ), ]
[ "lukbor2@gmail.com" ]
lukbor2@gmail.com
7b9023674047f9c5e60aa18006c5f6c23a0bf7f2
15d4c666e1fa5133cd9fdf0e373410fcc0f14d1c
/Mini_Projects/hw1/testing/matrix.py
eb4d1dc6971f9e64e7a1342e51f00cfd786689c3
[ "MIT" ]
permissive
twyunting/CSC-676_Computer-Vision
86df53cfb63b7acb213cec9e831d1d5e345a443c
7786477f805c37d38afaef1f7438ce3c6e2c1f3c
refs/heads/master
2023-08-12T07:31:46.138909
2021-10-10T20:23:12
2021-10-10T20:23:12
332,000,716
0
1
null
null
null
null
UTF-8
Python
false
false
7,700
py
# adding the packages """ import cv2 import math import numpy as np import matplotlib.pyplot as plt from scipy.signal import convolve2d as conv2d import scipy.sparse as sps from PIL import Image # Package for fast equation solving from sys import platform import sparseqr """ # World parameters alpha = 35*math.pi/180; img = cv2.imread('img2.png') print(type(img)) img = img[:, :, ::-1].astype(np.float32) nrows, ncols, colors = img.shape ground = (np.min(img, axis=2) > 110).astype(np.float32) foreground = (ground == 0).astype(np.float32) m = np.mean(img, 2) kern = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=np.float32) dmdx = conv2d(m, kern, 'same') dmdy = conv2d(m, kern.transpose(), 'same') mag = np.sqrt(dmdx**2 + dmdy**2) mag[0, :] = 0 mag[-1, :] = 0 mag[:, 0] = 0 mag[:, -1] = 0 theta = np.arctan2(dmdx, dmdy) edges = mag >= 30 edges = edges * foreground ## Occlusion and contact edges pi = math.pi vertical_edges = edges*((theta<115*pi/180)*(theta>65*pi/180)+(theta<-65*pi/180)*(theta>-115*pi/180)); horizontal_edges = edges * (1-vertical_edges) kern = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=np.float32) horizontal_ground_to_foreground_edges = (conv2d(ground, kern, 'same'))>0; horizontal_foreground_to_ground_edges = (conv2d(foreground, kern, 'same'))>0; vertical_ground_to_foreground_edges = vertical_edges*np.abs(conv2d(ground, kern.transpose(), 'same'))>0 occlusion_edges = edges*(vertical_ground_to_foreground_edges + horizontal_ground_to_foreground_edges) contact_edges = horizontal_edges*(horizontal_foreground_to_ground_edges); E = np.concatenate([vertical_edges[:,:,None], horizontal_edges[:,:,None], np.zeros(occlusion_edges.shape)[:,:,None]], 2) # Plot plt.figure() plt.subplot(2,2,1) plt.imshow(img.astype(np.uint8)) plt.axis('off') plt.title('Input image') plt.subplot(2,2,2) plt.imshow(edges == 0, cmap='gray') plt.axis('off') plt.title('Edges') # Normals K = 3 ey, ex = np.where(edges[::K, ::K]) ex *= K ey *= K plt.figure() plt.subplot(2,2,3) plt.imshow(np.max(mag)-mag, cmap='gray') dxe = dmdx[::K, ::K][edges[::K, ::K] > 0] dye = dmdy[::K, ::K][edges[::K, ::K] > 0] n = np.sqrt(dxe**2 + dye**2) dxe = dxe/n dye = dye/n plt.quiver(ex, ey, dxe, -dye, color='r') plt.axis('off') plt.title('Normals') plt.show() # Edges and boundaries plt.figure() plt.subplot(2,2,1) plt.imshow(img.astype(np.uint8)) plt.axis('off') plt.title('Input image') plt.subplot(2,2,2) plt.imshow(E+(edges == 0)[:, :, None]) plt.axis('off') plt.title('Edges') plt.subplot(2,2,3) plt.imshow(1-(occlusion_edges>0), cmap='gray') plt.axis('off') plt.title('Occlusion boundaries') plt.subplot(2,2,4) plt.imshow(1-contact_edges, cmap='gray') plt.axis('off') plt.title('Contact boundaries'); # testing the correct matrix total = [] for i in range(-2, 2): for j in range(-2, 2): for k in range(-2, 2): a = np.array([i, j, k]) total.append(a) res = [] for i in total: for j in total: for k in total: res.append(np.array([i, j, k])) # print(np.shape(res[0])) Nconstraints = nrows*ncols*20 Aij = np.zeros((3, 3, Nconstraints)) ii = np.zeros((Nconstraints, 1)); jj = np.zeros((Nconstraints, 1)); b = np.zeros((Nconstraints, 1)); V = np.zeros((nrows, ncols)) # Create linear contraints c = 0 for i in range(1, nrows-1): for j in range(1, ncols-1): if ground[i,j]: # Y = 0 Aij[:,:,c] = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) ii[c] = i jj[c] = j b[c] = 0 V[i,j] = 0 c += 1 # increment constraint counter else: # Check if current neirborhood touches an edge edgesum = np.sum(edges[i-1:i+2,j-1:j+2]) # Check if current neirborhood touches ground pixels groundsum = np.sum(ground[i-1:i+2,j-1:j+2]) # Check if current neirborhood touches vertical pixels verticalsum = np.sum(vertical_edges[i-1:i+2,j-1:j+2]) # Check if current neirborhood touches horizontal pixels horizontalsum = np.sum(horizontal_edges[i-1:i+2,j-1:j+2]) # Orientation of edge (average over edge pixels in current # neirborhood) nx = np.sum(dmdx[i-1:i+2,j-1:j+2]*edges[i-1:i+2,j-1:j+2])/edgesum ny = np.sum(dmdy[i-1:i+2,j-1:j+2]*edges[i-1:i+2,j-1:j+2])/edgesum if contact_edges[i, j]: # dY/dy = 0 Aij[:,:,c] = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) ii[c] = i jj[c] = j b[c] = 0 c += 1 # increment constraint counter if verticalsum > 0 and groundsum == 0: # dY/Dy = 1/cos a Aij[:,:,c] = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])/8; ii[c] = i jj[c] = j b[c] = 1/np.cos(alpha) c += 1 # increment constraint counter if horizontalsum > 0 and groundsum == 0 and verticalsum == 0: #(x,y belongs to horizontal edge) # dY/dt = 0 Aij[:,:,c] = a # Fill out the kernel (need to revise it! 3 by 3 matrix) ii[c] = i jj[c] = j b[c] = 0 c += 1 # increment constraint counter if groundsum == 0: # laplacian = 0 # 0.1 is a weight to reduce the strength of this constraint Aij[:,:,c] = 0.1*np.array([[0, 0, 0], [-1, 2, -1], [0, 0, 0]]); ii[c] = i jj[c] = j b[c] = 0 c += 1 # increment constraint counter Aij[:,:,c] = 0.1*np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]); # question 4 ii[c] = i; jj[c] = j; b[c] = 0; c = c+1; # increment constraint counter Aij[:,:,c] = 0.1*np.array([[0, -1, 1], [0, 1, -1], [0, 0, 0]]); ii[c] = i; jj[c] = j; b[c] = 0; c = c+1; # increment constraint counter def sparseMatrix(i, j, Aij, imsize): """ Build a sparse matrix containing 2D linear neighborhood operators Input: Aij = [ni, nj, nc] nc: number of neighborhoods with contraints i: row index j: column index imsize: [nrows ncols] Returns: A: a sparse matrix. Each row contains one 2D linear operator """ ni, nj, nc = Aij.shape nij = ni*nj a = np.zeros((nc*nij)) m = np.zeros((nc*nij)) n = np.zeros((nc*nij)) grid_range = np.arange(-(ni-1)/2, 1+(ni-1)/2) jj, ii = np.meshgrid(grid_range, grid_range) ii = ii.reshape(-1,order='F') jj = jj.reshape(-1,order='F') k = 0 for c in range(nc): # Get matrix index x = (i[c]+ii) + (j[c]+jj)*nrows a[k:k+nij] = Aij[:,:,c].reshape(-1,order='F') m[k:k+nij] = c n[k:k+nij] = x k += nij m = m.astype(np.int32) n = n.astype(np.int32) A = sps.csr_matrix((a, (m, n))) return A ii = ii[:c] jj = jj[:c] Aij = Aij[:,:,:c] b = b[:c] A = sparseMatrix(ii, jj, Aij, nrows) Y = sparseqr.solve( A, b , tolerance=0) Y = np.reshape(Y, [nrows, ncols], order='F') # Transfrom vector into image # Recover 3D world coordinates x, y = np.meshgrid(np.arange(ncols), np.arange(nrows)) x = x.astype(np.float32) y = y.astype(np.float32) x -= nrows/2 y -= ncols/2 # Final coordinates X = x Z = Y*np.cos(alpha)/np.sin(alpha) - y/np.sin(alpha) Y = -Y Y = np.maximum(Y, 0); E = occlusion_edges.astype(np.float32); E[E > 0] = np.nan; Z = Z+E; # remove occluded edges plt.figure() plt.subplot(2,2,1) plt.imshow(img[1:-1, 1:-1].astype(np.uint8)) plt.axis('off') plt.title('Edges') plt.subplot(2,2,2) plt.imshow(Z[1:-1, 1:-1], cmap='gray') plt.axis('off') plt.title('Z') plt.subplot(2,2,3) plt.imshow(Y[1:-1, 1:-1], cmap='gray') plt.axis('off') plt.title('Y') plt.subplot(2,2,4) plt.imshow(X[1:-1, 1:-1], cmap='gray') plt.axis('off') plt.title('X')
[ "yc6705a@american.edu" ]
yc6705a@american.edu
1c1cf34d45653ee87041cd214a18294d6564ba82
786de007822aca1e092b81928543b3dae230d99e
/problem_011.py
0659fedbfb47b0c53d26a286236c6ec83309ea3d
[]
no_license
ycao-cit/leetcode
4109bcd2c50403f1000136ef10dee4e32b90b0a2
a1e5dc64979fa601662c1057b396e72f38cfd70e
refs/heads/master
2021-01-11T04:24:18.765305
2017-01-30T01:15:23
2017-01-30T01:15:23
71,197,603
0
0
null
null
null
null
UTF-8
Python
false
false
913
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2016 Yi Cao <ycao16@uw.edu> # # Distributed under terms of the GNU General Public License 3.0 license. """ Container With Most Water URL: https://leetcode.com/problems/container-with-most-water/ """ class Solution(object): def maxArea(self, height): """ :type height: List[int] :rtype: int """ i = 0 j = len(height) - 1 max_area = 0 while (j > i): max_area = max(max_area, min(height[i], height[j]) * (j - i)) if height[i] < height[j]: k = i while (k < j and height[k] <= height[i]): k += 1 i = k else: k = j while (k > i and height[k] <= height[j]): k -= 1 j = k return max_area
[ "ycao16@uw.edu" ]
ycao16@uw.edu
53d165f828a7c30f169e4ad05cb402581160f7ca
7079e1759dd5213fe072017a0fd8bca8620badff
/common/com.py
0fda1b30951b94027eb7b80958ea441e4a88d5d6
[]
no_license
wanhui1994/skx
82e23c310f18d2a4d704d8dba81068135da6286e
a7cb0772af8bf0bc20b3cd7c7729908533481683
refs/heads/master
2020-06-07T14:23:35.377435
2019-06-21T06:14:16
2019-06-21T06:14:16
193,040,853
0
0
null
null
null
null
UTF-8
Python
false
false
3,742
py
#coding=utf-8 from selenium import webdriver from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.common.exceptions import NoSuchElementException from pyvirtualdisplay import Display from selenium.webdriver.support.select import Select import os class Comm(): def __init__(self,browser='ff'): try: if browser == 'ff' or browser == 'Firefox': self.driver = webdriver.Firefox() elif browser == 'ch' or browser == 'Chrome': self.driver = webdriver.Chrome() elif browser == 'ie' or browser == 'IE': self.driver = webdriver.Ie() except ValueError: print('Please enter the correct browser name!(Supported browsers are: Firefox、Chrome and Ie)') # url打开 def openurl(self,url): self.driver.get(url) self.driver.maximize_window() #最大化浏览器 # 定义元素获取 def element(self,locator): # element = WebDriverWait(self.driver, 30, 1).until(lambda x: x.find_element(*locator)) #方案1 try: element=self.driver.find_element(*locator) # *号是把两个参数分开传值 方案2 return element except NoSuchElementException as msg: print('元素查找异常:%s'%msg) # 点击功能 def click(self,locator): element = self.element(locator) element.click() # 清空功能 def clear(self,locator): element = self.element(locator) element.clear() # 输入信息 def send(self,locator,txt): element = self.element(locator) #element.clear() element.send_keys(txt) #下拉菜单元素获取-value def downmenuvalue (self,locator,num): Select(self.element(locator)).select_by_value(num) #下拉菜单元素获取-option(text文本) def downmenutext (self,locator,text): Select(self.element(locator)).select_by_visible_text(text) #日期控件 def datetime(self,date,locator,text): # 去掉元素的readonly属性,date就是日期控件的id js='document.getElementById("'+date+'").removeAttribute("readonly");' self.driver.execute_script(js) self.clear(locator) self.send(locator,text) #输入日期 #上传文件(通过控件上传) def uploadfile(self,loc,path): self.click(loc) os.system(path) #选择导入的excel文件 # 获取元素上的文字 def text(self,locator): element = self.element(locator).text return element # 显示等待元素出现 def WebDriver(self,timeout,method): try: WebDriverWait(self.driver,timeout,5).until(method) print('查找到元素了') except Exception as msg: print("元素未找到") # 隐示等待出现 def implicitly(self,value): self.driver.implicitly_wait(value) #截图 def screenshot1(self,path): self.driver.get_screenshot_as_file(path) # 停止页面加载,并且刷新页面 def page_timeout(self,num): self.driver.set_page_load_timeout(num) # 关闭当前页面 def clos(self): self.driver.close() def quit(self): self.driver.quit() #浏览器后台运行--静默模式 def silent (self): display = Display(visible=0, size=(800, 600)) display.start() #-----------------判断------------------- #title判断 def title(self,name): title = EC.title_is(name) #判断title完全等于 def title_contains(self,name): title_contains = EC.title_contains(name) #判断title包含
[ "2353231116@qq.com" ]
2353231116@qq.com
bd4e433309484011267564b7b1b2a7e81669bcd0
734ba54960c6150164bfccc91063512066cc2fbf
/CodeSamples-Python/LPTHW-PythonCourse-ex18-NamesVariablesCodeFunctions-Functions.py
85606394d2aac8ecf110289480b8dfcb43fd0283
[]
no_license
cikent/Portfolio
8cff76e7249ac83bcbe11034357b6b07e3007c9d
e5c4261c2c452f01656c7af612498fd1fe099289
refs/heads/master
2021-06-22T13:18:21.320010
2020-03-29T23:54:21
2020-03-29T23:54:21
224,490,142
1
0
null
2021-06-02T01:25:44
2019-11-27T18:09:41
Python
UTF-8
Python
false
false
740
py
# this one is like your scripts with argv # define the function print_two def print_two(*args): arg1, arg2 = args print(f"arg1: {arg1}, arg2: {arg2}") # ok, that *args is actually pointless, we can just do this # define the function print_two_again def print_two_again(arg1, arg2): print(f"arg1: {arg1}, arg2: {arg2}") # this just takes one argument # define the function print_one def print_one(arg1): print(f"arg1: {arg1}") # this one takes no arguments # define the function print_none def print_none(): print("I got nothin'.") # execute each of the newly created functions by passing in the correct # of arguments print_two("Zed", "Shaw") print_two_again("Zed", "Shaw") print_one("First!") print_none()
[ "noreply@github.com" ]
cikent.noreply@github.com
55bb3d82b80185533da7d4c85f2c8e6589933ab4
cd4eb25911d3e3b092aa97aaa7b8fbba6c3a0704
/lang/python/asyncio/chain.py
aa8d41fb55cb2b5319e1e90b9a6e8a96e55ad630
[ "MIT" ]
permissive
liuyang1/test
29bb142982d2ef0d79b71e8fe5f5e0d51ec5258e
9a154e0161a1a33baad53f7223ee72e702532001
refs/heads/master
2023-08-05T08:56:50.526414
2023-07-21T05:49:53
2023-07-21T11:16:09
26,949,326
9
1
null
null
null
null
UTF-8
Python
false
false
399
py
import asyncio @asyncio.coroutine def compute(x, y): print("Compute %s + %s ..." % (x, y)) # yield from asyncio.sleep(1.0) return x + y @asyncio.coroutine def print_sum(x, y): result = yield from compute(x, y) print("%s + %s = %s" % (x, y, result)) loop = asyncio.get_event_loop() loop.run_until_complete(print_sum(1, 2)) loop.run_until_complete(print_sum(3, 2)) loop.close()
[ "liuyang1@mail.ustc.edu.cn" ]
liuyang1@mail.ustc.edu.cn
8ea5c0269ada1927409543ec2f0976260b434299
d11843388d4002e246c2281956570ce1acfe2774
/alembic/versions/a283be5badc2_revision_of_nullable_fields_spotify_id_.py
1707de564c1a0f3ec47ebb3d7e2a33b9d76ee704
[]
no_license
Gorillaz322/SpotifyHistory
a067128a0f843773b02605cd1e43b664e79853a0
933ce1bd9ec4117fff7b1d8b5ee60fe26fc6e482
refs/heads/master
2021-05-13T17:53:40.654581
2018-02-21T18:04:23
2018-02-21T18:04:23
116,839,474
2
0
null
null
null
null
UTF-8
Python
false
false
2,343
py
"""Revision of nullable fields/Spotify_id for song Revision ID: a283be5badc2 Revises: e9f3b4345181 Create Date: 2018-02-21 19:46:35.323702 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'a283be5badc2' down_revision = 'e9f3b4345181' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('albums', 'artist_id', existing_type=sa.INTEGER(), nullable=False) op.alter_column('albums', 'name', existing_type=sa.VARCHAR(length=64), nullable=False) op.alter_column('artists', 'name', existing_type=sa.VARCHAR(length=64), nullable=False) op.alter_column('plays', 'duration', existing_type=sa.INTEGER(), nullable=False) op.alter_column('plays', 'song_id', existing_type=sa.INTEGER(), nullable=False) op.add_column('songs', sa.Column('spotify_id', sa.String(length=128), nullable=False)) op.alter_column('songs', 'album_id', existing_type=sa.INTEGER(), nullable=False) op.alter_column('songs', 'name', existing_type=sa.VARCHAR(length=64), nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('songs', 'name', existing_type=sa.VARCHAR(length=64), nullable=True) op.alter_column('songs', 'album_id', existing_type=sa.INTEGER(), nullable=True) op.drop_column('songs', 'spotify_id') op.alter_column('plays', 'song_id', existing_type=sa.INTEGER(), nullable=True) op.alter_column('plays', 'duration', existing_type=sa.INTEGER(), nullable=True) op.alter_column('artists', 'name', existing_type=sa.VARCHAR(length=64), nullable=True) op.alter_column('albums', 'name', existing_type=sa.VARCHAR(length=64), nullable=True) op.alter_column('albums', 'artist_id', existing_type=sa.INTEGER(), nullable=True) # ### end Alembic commands ###
[ "jyvylo5@gmail.com" ]
jyvylo5@gmail.com
8dc513728068e9e929518340bb44a7718efc33eb
3122ac39f1ce0a882b48293a77195476299c2a3b
/clients/python/generated/swaggyjenkins/models/extension_class_container_impl1links.py
71b82d350f0fa80dde4f8cb80c78f8b7b2e3c3c7
[ "MIT" ]
permissive
miao1007/swaggy-jenkins
4e6fe28470eda2428cbc584dcd365a21caa606ef
af79438c120dd47702b50d51c42548b4db7fd109
refs/heads/master
2020-08-30T16:50:27.474383
2019-04-10T13:47:17
2019-04-10T13:47:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,766
py
# coding: utf-8 """ Swaggy Jenkins Jenkins API clients generated from Swagger / Open API specification # noqa: E501 OpenAPI spec version: 1.1.1 Contact: blah@cliffano.com Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class ExtensionClassContainerImpl1links(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { '_self': 'Link', '_class': 'str' } attribute_map = { '_self': 'self', '_class': '_class' } def __init__(self, _self=None, _class=None): # noqa: E501 """ExtensionClassContainerImpl1links - a model defined in OpenAPI""" # noqa: E501 self.__self = None self.__class = None self.discriminator = None if _self is not None: self._self = _self if _class is not None: self._class = _class @property def _self(self): """Gets the _self of this ExtensionClassContainerImpl1links. # noqa: E501 :return: The _self of this ExtensionClassContainerImpl1links. # noqa: E501 :rtype: Link """ return self.__self @_self.setter def _self(self, _self): """Sets the _self of this ExtensionClassContainerImpl1links. :param _self: The _self of this ExtensionClassContainerImpl1links. # noqa: E501 :type: Link """ self.__self = _self @property def _class(self): """Gets the _class of this ExtensionClassContainerImpl1links. # noqa: E501 :return: The _class of this ExtensionClassContainerImpl1links. # noqa: E501 :rtype: str """ return self.__class @_class.setter def _class(self, _class): """Sets the _class of this ExtensionClassContainerImpl1links. :param _class: The _class of this ExtensionClassContainerImpl1links. # noqa: E501 :type: str """ self.__class = _class def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ExtensionClassContainerImpl1links): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "cliffano@gmail.com" ]
cliffano@gmail.com
dca160553e252568b51df4a76fc3e773fdcfa0e5
4caf210180227f535f476ae372afd1d3a2f01313
/artsycharts/urls.py
823089ca34f6c3100540c43a6335ffc744fd3bd4
[]
no_license
BWStearns/ArtsyCharts
d7afddd9dfaaa0cecac69893d2ca8176387f653d
c32efae6ca22f0478d747b47a9c04d5b8e105769
refs/heads/master
2021-01-21T00:17:52.706917
2014-12-22T21:13:18
2014-12-22T21:13:18
28,325,785
1
0
null
null
null
null
UTF-8
Python
false
false
642
py
# Django from django.conf.urls import patterns, include, url from django.contrib import admin from django.contrib.auth.models import User # External # Internal from charts.api import router from charts import views urlpatterns = patterns('', # Examples: # url(r'^$', 'artsycharts.views.home', name='home'), # url(r'^blog/', include('blog.urls')), # Actual html views url(r'^collections/(\d+)/$', views.collection_view, ), # API and Admin stuff url(r'^', include(router.urls)), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^admin/', include(admin.site.urls)), )
[ "brianw.stearns@gmail.com" ]
brianw.stearns@gmail.com
9c1157855677e70e2dbb83ed160ef13773bf4c30
f917c2a60653e01e330dcad6d98d23eb38fc79d2
/Lab6/Q1&2/Lab06_Q1functions.py
593c8645f8f061a57b99cd6819e074796061870e
[]
no_license
rundong-zhou/PHY407-Projects
652f60907c631935775b0708bfa44a852d63f91d
9509c74cd2cad732888fb4424765766ab60aeb5f
refs/heads/master
2023-02-16T15:14:44.578399
2021-01-13T23:27:16
2021-01-13T23:27:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
820
py
# -*- coding: utf-8 -*- """ Created on Wed Oct 21 05:51:45 2020 @author: Zirui Wan """ import numpy as np # define constants G = 1 M = 10 L = 2 def f(r, t): """ Function calculate first-order derivatives for the RK4 algorithm. INPUT: r[floats]: array of the state of the system: 4 variables (x, y, vx, vy) t[float]: time OUTPUT: fr[floats]: array of first-order derivatives for the 4 variables """ # extract x, y, vx, vy information from the state array x = r[0] y = r[1] vx = r[2] vy = r[3] # calculate radius of orbit squared rsq = x**2 + y**2 # calculate first-order derivatives fx = vx fy = vy fvx = -G*M*x/rsq/np.sqrt(rsq + L**2/4) fvy = -G*M*y/rsq/np.sqrt(rsq + L**2/4) fr = np.array([fx, fy, fvx, fvy]) return fr
[ "71141331+nazeda-cc@users.noreply.github.com" ]
71141331+nazeda-cc@users.noreply.github.com
40c34bd9c99fb2039166995b23dec6a86c82f436
b02c88bcad352811d22cadacd2aa573c426a2ca3
/scrapers/settings.py
06a6ae3c2620e357e3388b52d97f309471c0bf4b
[ "Apache-2.0" ]
permissive
frankier/ties445
9e24c3e415b4a07584c41e0e4a3f241b133463b8
4ceee5390d81aedc0fb3904803797584dd5084b8
refs/heads/master
2020-12-31T07:18:42.938988
2016-05-17T18:45:14
2016-05-17T18:45:14
56,767,440
0
0
null
null
null
null
UTF-8
Python
false
false
3,085
py
# -*- coding: utf-8 -*- # Scrapy settings for scrapers project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'scrapers' SPIDER_MODULES = ['scrapers.spiders'] NEWSPIDER_MODULE = 'scrapers.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'scrapers (+http://www.yourdomain.com)' # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS=32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY=3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN=16 #CONCURRENT_REQUESTS_PER_IP=16 # Disable cookies (enabled by default) #COOKIES_ENABLED=False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED=False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'scrapers.middlewares.MyCustomSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { 'scrapy.downloadermiddlewares.decompression.DecompressionMiddleware': 1, 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': 1, } # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'scrapers.pipelines.SomePipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html # NOTE: AutoThrottle will honour the standard settings for concurrency and delay #AUTOTHROTTLE_ENABLED=True # The initial download delay #AUTOTHROTTLE_START_DELAY=5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY=60 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG=False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED=True #HTTPCACHE_EXPIRATION_SECS=0 #HTTPCACHE_DIR='httpcache' #HTTPCACHE_IGNORE_HTTP_CODES=[] #HTTPCACHE_STORAGE='scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "frankie@robertson.name" ]
frankie@robertson.name
d42c2fb57540b52754abd4678d2b2e19c8cd9368
4e5c57cd961ccfd0e5ea4a488fe5ba21525f34c1
/manage.py
3ece816a1d26f68f9c14f1a4ed52da8fc25b2158
[]
no_license
kk5678/NewsInterface
56cb2c91d898725841ad226f71d27cebcead91c6
d3abce01c148b98a5ecd00e3ba958253fe5be7eb
refs/heads/master
2023-07-06T20:57:06.674636
2021-08-18T15:40:02
2021-08-18T15:40:02
397,651,100
0
0
null
null
null
null
UTF-8
Python
false
false
669
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'NewsInterface.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "827799307@qq.com" ]
827799307@qq.com
5e6bc2d33224e5db9d7abdcf3df63cae6323d06d
71d3f67eabe240d9f1f5010e8cd8cd0e693eef76
/cfg/pose_prediction.cfg
0ef450999df50fab4254c5d434c9234d15e81cc7
[ "BSD-3-Clause" ]
permissive
asr-ros/asr_recognizer_prediction_ism
0eb656969519b6edd626c31c95b1c5b643d02e4b
bebed25c3b28d52b8360137cab2b52905018cda2
refs/heads/master
2021-03-16T10:10:26.277799
2020-01-06T11:18:30
2020-01-06T11:18:30
73,502,940
1
0
null
null
null
null
UTF-8
Python
false
false
890
cfg
#!/usr/bin/env python2 from dynamic_reconfigure.parameter_generator_catkin import * PACKAGE = "asr_recognizer_prediction_ism" gen = ParameterGenerator() size_enum = gen.enum([ gen.const("best_path", int_t, 0, "Best Path"), gen.const("old_prediction_non_normalized", int_t, 1, "old_prediction_non_normalized"), gen.const("old_prediction_normalized", int_t, 2, "old_prediction_normalized"), gen.const("random_path", int_t, 3, "random_path"), gen.const("shortest_path", int_t, 4, "shortest_path")], "An enum to set size") gen.add("posePredictor", int_t, 0, "Choose Posepredictor.", 4, 0, 4, edit_method=size_enum) gen.add("enableVisualization", bool_t, 0, "toggle Visualization.", True) exit(gen.generate(PACKAGE, "asr_recognizer_prediction_ism", "pose_prediction"))
[ "ujdhi@student.kit.edu" ]
ujdhi@student.kit.edu
f3c255111173fd934609d2f484fe11d84a6389c5
9ea9eafd07b918e893de6362517b8043806b1e18
/arktours/wsgi.py
8b514d7f20025d309a523537a0ae390a8c2fbb33
[]
no_license
Muhanguzi/ArkTours
b508a19fa2148695d17f9b1728356a3e0d642b9b
f8ced1e89d757c26ab09cda2d1346d703ed77984
refs/heads/master
2020-12-24T15:22:56.563425
2014-08-10T05:22:14
2014-08-10T05:22:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
457
py
""" WSGI config for arktours project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "arktours.settings") from whitenoise.django import DjangoWhiteNoise application = DjangoWhiteNoise(get_wsgi_application())
[ "daniel@daniel-M.(none)" ]
daniel@daniel-M.(none)
592216a6120e78bdd900efa5d1643a5167d856e3
f87ba5b342e3ec212a9dd5d661acefb3aa7cff6c
/ComPDF.py
ea7038fcf6c8b9c2bd13287a68098c71defe884d
[]
no_license
JackLuguibin/CompoundPdf
e7d496abf234709b0ed6b4398e9ceeb44051c2a0
f1e57313ec0a5efaf5572826ff920b4254e1e86d
refs/heads/master
2020-11-28T14:49:09.943578
2019-12-24T03:03:04
2019-12-24T03:03:04
229,850,240
4
1
null
null
null
null
UTF-8
Python
false
false
2,052
py
# -*- coding: utf-8 -*- """ Created on Wed Dec 18 17:20:44 2019 @author: Administrator """ import os, sys, codecs from argparse import ArgumentParser, RawTextHelpFormatter from PyPDF2 import PdfFileReader, PdfFileWriter, PdfFileMerger def getfilenames(filepath='',filelist_out=[],file_ext='all'): # 遍历filepath下的所有文件,包括子目录下的文件 for fpath, dirs, fs in os.walk(filepath): for f in fs: fi_d = os.path.join(fpath, f) if file_ext == 'all': filelist_out.append(fi_d) elif os.path.splitext(fi_d)[1] == file_ext: filelist_out.append(fi_d) else: pass return filelist_out def mergefiles(path, output_filename, import_bookmarks=False): # 遍历目录下的所有pdf将其合并输出到一个pdf文件中,输出的pdf文件默认带书签,书签名为之前的文件名 # 默认情况下原始文件的书签不会导入,使用import_bookmarks=True可以将原文件所带的书签也导入到输出的pdf文件中 merger = PdfFileMerger() filelist = getfilenames(filepath=path, file_ext='.pdf') if len(filelist) == 0: print("当前目录及子目录下不存在pdf文件") sys.exit() for filename in filelist: f = codecs.open(filename, 'rb') file_rd = PdfFileReader(f) short_filename = os.path.basename(os.path.splitext(filename)[0]) if file_rd.isEncrypted == True: print('不支持的加密文件:%s'%(filename)) continue merger.append(file_rd, bookmark=short_filename, import_bookmarks=import_bookmarks) print('合并文件:%s'%(filename)) f.close() out_filename=os.path.join(os.path.abspath(path), output_filename) merger.write(out_filename) print('合并后的输出文件:%s'%(out_filename)) merger.close() path = "在这里填写pdf所在的地址" output_filename = "填写输出文件名.pdf" mergefiles(path, output_filename, import_bookmarks=False)
[ "782056183@qq.com" ]
782056183@qq.com
7d460e74d46fd859249367c10120406c2cf0c1df
de33f9dfbfd365b821a4e9a2abc4f74360ec9458
/pythonModuleException/exception_divide2.py
c5d5e6e65e5f5a68e070a8de4d0ce92ab1f92a3d
[]
no_license
youjin9209/2016_embeded_raspberry-pi
8dea655915ed2bf2fcbe570b9c23f2c18803c10f
20de2d6e88a9cd8e2eece1c092cb6c633b0334d5
refs/heads/master
2021-01-12T12:09:49.963918
2016-12-06T05:14:01
2016-12-06T05:14:01
72,323,520
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
def devide(m, n): try: result = m/n except ZeroDivisionError: print("not devided by zero") except: print("raise error not by zerodivision") else: return result finally: print("division") if __name__ == "__main__": res = devide(3,2) print(res) print () res = devide(3,0) print(res) print() res = devide(None,2) print(res)
[ "youjin9200@naver.com" ]
youjin9200@naver.com
8502202133de46f0b14432650b3f149cdc966efe
687efc817c868a20109c634a9556640fca4deda6
/challenges/strings/string_formatting.py
729a62ca3311baad5db74f534b123a76de5fc0e1
[]
no_license
Sai-Ram-Adidela/hackerrank
56625bf813e6d7b4b863b76979ac5c2048360c80
2dff2dbb1e02b0c3e182556e79d2140ff960b232
refs/heads/master
2020-03-11T12:56:24.961576
2019-09-30T07:19:07
2019-09-30T07:19:07
130,011,087
1
0
null
2018-05-01T17:06:40
2018-04-18T05:56:37
Python
UTF-8
Python
false
false
127
py
def dec_to_oct(n): n = int(input()) for i in range(1, n): print(i+' '+dec_to_oct(i)+' '+dec_to_hex(i)+' '+dec_to_bin(i))
[ "noreply@github.com" ]
Sai-Ram-Adidela.noreply@github.com
b91e68161a2024087f0f3b6f4fad6853f99e03bf
ad1bf558a6337fa51a745c15e9810bc1c2aa5aa2
/Source/manage.py
993e54bd76ae2f07d265dae8f01060e8ae31f126
[]
no_license
Slemaire-PNI/taketwo_logparser
1c8f9e343b5c91f6487b298d644401b90b554217
b4e78d021a78458bfaf12a1c532b3aba48d7420b
refs/heads/main
2023-06-17T17:14:09.796794
2021-07-09T06:45:33
2021-07-09T06:45:33
384,341,567
0
0
null
null
null
null
UTF-8
Python
false
false
665
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'logparser.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "simon.lemaire@visiercorp.com" ]
simon.lemaire@visiercorp.com
747f6e3bbe97d7d158aac09fcaafe66708f7f141
ba1df9c61dc827dc865f8a8bb06653e85d80d1e7
/venv/Scripts/futurize-script.py
124e769fbb87ef3f752618b93d9da78a6b79f3d5
[]
no_license
Netdea/Tool-D
fb55a952d88c75e0e8ea8cf3a1eb2dd781b9119f
8af0b8af0e864df907901ef345a52fd2ec9aa556
refs/heads/master
2023-06-11T12:03:55.881628
2021-07-04T11:42:07
2021-07-04T11:42:07
382,797,508
1
0
null
null
null
null
UTF-8
Python
false
false
1,019
py
#!"c:\users\khant thu\pycharmprojects\pythonproject5\venv\scripts\python.exe" # EASY-INSTALL-ENTRY-SCRIPT: 'future==0.18.2','console_scripts','futurize' import re import sys # for compatibility with easy_install; see #2198 __requires__ = 'future==0.18.2' try: from importlib.metadata import distribution except ImportError: try: from importlib_metadata import distribution except ImportError: from pkg_resources import load_entry_point def importlib_load_entry_point(spec, group, name): dist_name, _, _ = spec.partition('==') matches = ( entry_point for entry_point in distribution(dist_name).entry_points if entry_point.group == group and entry_point.name == name ) return next(matches).load() globals().setdefault('load_entry_point', importlib_load_entry_point) if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(load_entry_point('future==0.18.2', 'console_scripts', 'futurize')())
[ "deadnet8@gmail.com" ]
deadnet8@gmail.com
38782df3260494c0dda9dbe844b891579898536b
3a63f1dc94044df0d5e3f8f2e89445e14af34691
/lapidary/checkpoint/CheckpointConvert.py
794f1be2463ac77c0098026c549ef75e125925ea
[ "MIT" ]
permissive
eltsai/lapidary
aeb191612dbce087a0adadad52e80dfe2048a58a
05c8c1aaa0e865bb6406cc44e0b72c59444fafba
refs/heads/master
2022-02-16T18:36:46.428166
2019-08-28T15:53:56
2019-08-28T15:53:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,159
py
#! /usr/bin/env python3 import gzip, json, mimetypes, os, progressbar, resource, shutil import subprocess from argparse import ArgumentParser from elftools.elf.elffile import ELFFile from multiprocessing import cpu_count, Pool, Lock, Process from pathlib import Path from pprint import pprint from progressbar import ProgressBar from time import sleep from lapidary.utils import * from lapidary.checkpoint.Checkpoints import GDBCheckpoint class GDBCheckpointConverter: def __init__(self, gdb_checkpoint): assert isinstance(gdb_checkpoint, GDBCheckpoint) assert gdb_checkpoint.is_valid_checkpoint() self.gdb_checkpoint = gdb_checkpoint self.mappings = self.gdb_checkpoint.get_mappings() @staticmethod def compress_memory_image(file_path): subprocess.call(['gzip', '-f', str(file_path)]) gzip_path = Path(str(file_path) + '.gz') gzip_path.rename(file_path) def create_pmem_file(self): with self.gdb_checkpoint.get_pmem_file_handle() as pmem_raw,\ self.gdb_checkpoint.get_core_file_handle() as core: core_elf = ELFFile(core) pgsize = resource.getpagesize() idx = 0 # Write out whole file as zeros first pmem_raw.truncate(self.mappings['mem_size']) # Check for shared object files for vaddr, mapping_dict in self.mappings.items(): if vaddr == 0 or vaddr == 'mem_size': continue maybe_file = Path(mapping_dict['name']) if maybe_file.exists() and maybe_file.is_file(): for s in core_elf.iter_segments(): if s['p_type'] != 'PT_LOAD': continue elf_start_vaddr = int(s['p_vaddr']) elf_max_vaddr = elf_start_vaddr + int(s['p_memsz']) if elf_start_vaddr <= vaddr and vaddr < elf_max_vaddr: continue else: with maybe_file.open('rb') as shared_object: offset = int(mapping_dict['offset']) size = int(mapping_dict['size']) paddr = int(mapping_dict['paddr']) shared_object.seek(offset, 0) pmem_raw.seek(paddr, 0) buf = shared_object.read(size) pmem_raw.write(buf) # Load everything else for s in core_elf.iter_segments(): if s['p_type'] != 'PT_LOAD': continue assert s['p_filesz'] == s['p_memsz'] assert s['p_memsz'] % pgsize == 0 if s['p_vaddr'] in self.mappings: mapping = self.mappings[s['p_vaddr']] paddr = int(mapping['paddr']) pmem_raw.seek(paddr, 0) mem = s.data() assert len(mem) == s['p_memsz'] #print('{}: {} -> {}, size {}'.format(os.getpid(), s['p_vaddr'], paddr, len(mem))) pmem_raw.write(mem) return self.gdb_checkpoint.pmem_file ################################################################################ def convert_checkpoint(gdb_checkpoint, force_recreate): assert isinstance(gdb_checkpoint, GDBCheckpoint) if gdb_checkpoint.pmem_file_exists() and not force_recreate: return None converter = GDBCheckpointConverter(gdb_checkpoint) pmem_out_file = converter.create_pmem_file() assert pmem_out_file.exists() return pmem_out_file def add_arguments(parser): parser.add_argument('--pool-size', '-p', default=cpu_count(), help='Number of threads to run at a time.') parser.add_argument('--checkpoint-dir', '-d', help='Directory that contains all checkpoints.') parser.add_argument('--num-checkpoints', '-n', default=None, type=int, help='Number of checkpoints to simulate. If None, then all.') parser.add_argument('--force', '-f', default=False, action='store_true', help='Override existing checkpoints. Disabled by default') parser.add_argument('--no-compression', '-x', default=False, action='store_true', help='Do not compress pmem file. Faster, but space intensive') def main(): parser = ArgumentParser(description='Convert gdb core dumps into gem5 pmem files.') add_arguments(parser) args = parser.parse_args() checkpoint_dir = Path(args.checkpoint_dir) assert checkpoint_dir.exists() pool_args = [] for checkpoint_subdir in utils.get_directory_entries_by_time(checkpoint_dir): if checkpoint_subdir.is_dir(): checkpoint = GDBCheckpoint(checkpoint_subdir) if checkpoint.is_valid_checkpoint(): pool_args += [ (checkpoint, args.force) ] else: print('{} is not a valid checkpoint, skipping.'.format(checkpoint)) if args.num_checkpoints is not None: pool_args = utils.select_evenly_spaced(pool_args, args.num_checkpoints) with Pool(int(args.pool_size)) as pool: bar = ProgressBar(max_value=len(pool_args)) lock = Lock() def update_bar(pmem_file_dest): try: lock.acquire() bar.update(update_bar.num_complete) update_bar.num_complete += 1 if pmem_file_dest is not None: update_bar.newly_created += 1 if update_bar.compress: gzip_proc = Process(target=GDBCheckpointConverter.compress_memory_image, args=(pmem_file_dest,)) update_bar.gzip_procs += [gzip_proc] gzip_proc.start() finally: lock.release() update_bar.num_complete = 0 update_bar.newly_created = 0 update_bar.gzip_procs = [] update_bar.compress = not args.no_compression bar.start() def fail(e): raise e results = [] for args in pool_args: result = pool.apply_async(convert_checkpoint, args, callback=update_bar, error_callback=fail) results += [result] all_ready = False while not all_ready: all_ready = True for result in [r for r in results if not r.ready()]: result.wait(0.1) if not result.ready(): all_ready = False sleep(1) bar.finish() progressbar.streams.flush() for gzip_proc in update_bar.gzip_procs: if gzip_proc is not None: gzip_proc.join() print('\n{}/{} newly created, {}/{} already existed.'.format( update_bar.newly_created, len(pool_args), len(pool_args) - update_bar.newly_created, len(pool_args))) return 0 if __name__ == '__main__': exit(main())
[ "ian.gl.neal@gmail.com" ]
ian.gl.neal@gmail.com