blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
649d3305c8a94ba9233b0341f2e5877d71f30475
79ea04b61afc43231dfdc76f290356af46598914
/FRW/manager.py
284daa87f29a5c755671f1ad31ca4ef1eac95ffb
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
PearseT/Maya_scripts
21b3abd78b7c132e5b28182f23d181050ec2b112
037fe39b1b4928dce6f967c710ecc0d1d087502d
refs/heads/master
2020-06-03T04:23:17.990529
2019-12-03T13:46:30
2019-12-03T13:46:30
191,436,434
0
1
null
null
null
null
UTF-8
Python
false
false
26,731
py
# TODO: # importDeformerWeights to perform auto-binding for some of the more common deformers like skinCluster, cluster, etc. # quadruped import sys, os, imp, inspect, shutil, glob, platform, __main__ from functools import partial import maya.cmds as mc THIS_DIR, THIS_FILE = os.path.split(__file__) sys.path.append(THIS_DIR) THIS_FILE_NAME = os.path.splitext(THIS_FILE)[0] def __initialize(): global STAGING_DIR, ASSET_TYPES, EDITOR, CACHE STAGING_DIR = ASSET_TYPES = EDITOR = None CACHE = {} LIB_CACHE = {} def main(force=False): if force: if mc.dockControl("dc_FRW", ex=True) == True: mc.deleteUI("dc_FRW") if mc.window("w_FRW", ex=True): mc.deleteUI("w_FRW") if not mc.window("w_FRW", ex=True): a = mc.window("w_FRW", t="the Fastest Rig in the West") tl = mc.tabLayout() tab1 = mc.paneLayout(cn="horizontal3", st=1, shp=1, ps=[(1,1,1),(2,1,99),(3,1,1)]) mc.columnLayout(adj=True) mc.rowLayout(nc=5, adj=4) mc.iconTextButton(st="iconOnly", i1="QR_add.png", ann="create new asset", c=__createAsset_ui) mc.iconTextButton(st="iconOnly", i1="QR_delete.png", ann="delete selected asset", c=__deleteAsset) mc.iconTextButton(st="iconOnly", i1="CN_refresh.png", ann="update assets list", c=__update) mc.text(l="") mc.iconTextButton(st="iconOnly", i1="UVEditorSnapshot.png", ann="update icon", c=__icon) mc.setParent("..") mc.rowLayout(nc=3, adj=2) mc.textScrollList("tsl_type_FRW", w=100, h=200, sc=__updateNames) mc.textScrollList("tsl_name_FRW", w=170, h=200, sc=__updateIconAndPath) mc.image("img_FRW", w=200, h=200) mc.setParent("..") mc.rowLayout(nc=2, adj=1) mc.textField("tf_path_FRW", ed=False) mc.iconTextButton(st="iconOnly", i1="passSetRelationEditor.png", ann="edit", c=__edit) mc.setParent("..") mc.setParent("..") mc.scrollLayout("sl_inspector_FRW", bv=True) mc.setParent("..") mc.button("b_execute_FRW", l="execute", c=__execute) mc.setParent("..") tab2 = mc.scrollLayout(bv=True) mc.columnLayout("cl_library_FRW", adj=True, rs=5) mc.setParent("..") mc.setParent("..") tab3 = mc.scrollLayout(bv=True) mc.columnLayout("cl_extensions_FRW", adj=True, rs=5) mc.setParent("..") mc.setParent("..") mc.tabLayout(tl, e=True, tl=[(tab1, "builder"), (tab2, "library"), (tab3, "extensions")]) if not mc.dockControl("dc_FRW", ex=True): mc.dockControl("dc_FRW", l="the Fastest Rig in the West", con="w_FRW", aa=["left","right"], a="left", w=1) mc.dockControl("dc_FRW", e=True, fl=True) else: mc.dockControl("dc_FRW", e=True, vis=True) __initialize() __update() __library() __extensions() def __update(*arg): __config() si = None if mc.textScrollList("tsl_type_FRW", q=True, nsi=True): si = mc.textScrollList("tsl_type_FRW", q=True, si=True)[0] mc.textScrollList("tsl_type_FRW", e=True, ra=True) if os.path.isdir(STAGING_DIR): for d in os.listdir(STAGING_DIR): mc.textScrollList("tsl_type_FRW", e=True, a=d) if d == si: mc.textScrollList("tsl_type_FRW", e=True, si=d) __updateNames() def __config(): if not os.path.isfile(THIS_DIR+"/"+THIS_FILE_NAME+".cfg"): return f = open(THIS_DIR+"/"+THIS_FILE_NAME+".cfg") l = f.readlines() f.close() for line in l: line = line.strip() if "=" not in line: continue line = line.split("=") if len(line) != 2: continue key = line[0].strip() if key == "STAGING_DIR": global STAGING_DIR STAGING_DIR = THIS_DIR+"/staging/" value = eval(line[1].strip()) if type(value) == str or type(value) == unicode: if value[-1] != "/": value += "/" STAGING_DIR = value elif key == "ASSET_TYPES": global ASSET_TYPES ASSET_TYPES = eval(line[1].strip()) elif key == "EDITOR": global EDITOR EDITOR = line[1].strip() def __updateNames(): si = None if mc.textScrollList("tsl_name_FRW", q=True, nsi=True): si = mc.textScrollList("tsl_name_FRW", q=True, si=True)[0] mc.textScrollList("tsl_name_FRW", e=True, ra=True) if mc.textScrollList("tsl_type_FRW", q=True, nsi=True): t = mc.textScrollList("tsl_type_FRW", q=True, si=True)[0] if os.path.isdir(STAGING_DIR): for d in os.listdir(STAGING_DIR+"/"+t): mc.textScrollList("tsl_name_FRW", e=True, a=d) if d == si: mc.textScrollList("tsl_name_FRW", e=True, si=d) __updateIconAndPath() def __updateIconAndPath(): mc.textField("tf_path_FRW", e=True, tx="") mc.image("img_FRW", e=True, i=THIS_DIR+"/frw.png") if mc.textScrollList("tsl_type_FRW", q=True, nsi=True): t = mc.textScrollList("tsl_type_FRW", q=True, si=True)[0] if mc.textScrollList("tsl_name_FRW", q=True, nsi=True): n = mc.textScrollList("tsl_name_FRW", q=True, si=True)[0] f = STAGING_DIR+"/"+t+"/"+n+"/"+n+".py" if os.path.isfile(f): mc.textField("tf_path_FRW", e=True, tx=f) f = f[:-3]+".png" if os.path.isfile(f): mc.image("img_FRW", e=True, i=f) __updateInspector() # Updates the inspector according to the contents (functions and signatures) of the template script. # Stores useful information in a global cache, accessible from everywhere in the code. def __updateInspector(): global CACHE CACHE = {"index":{}, "function":{}, "execute":{}} mc.button("b_execute_FRW", e=True, en=False) l = mc.scrollLayout("sl_inspector_FRW", q=True, ca=True) or [] if len(l): mc.deleteUI(l) if mc.textScrollList("tsl_type_FRW", q=True, nsi=True): t = mc.textScrollList("tsl_type_FRW", q=True, si=True)[0] if mc.textScrollList("tsl_name_FRW", q=True, nsi=True): CACHE["name"] = mc.textScrollList("tsl_name_FRW", q=True, si=True)[0] CACHE["file"] = STAGING_DIR+t+"/"+CACHE["name"]+"/"+CACHE["name"]+".py" if os.path.isfile(CACHE["file"]): m = imp.load_source(CACHE["name"], CACHE["file"]) for n, o in inspect.getmembers(m, inspect.isfunction): CACHE["index"][o.__code__.co_firstlineno] = [n, inspect.getargspec(o)] ids = sorted(CACHE["index"].viewkeys()); c = len(ids) for i in range(c): if i == 0: mc.button("b_execute_FRW", e=True, en=True) fn = CACHE["index"][ids[i]][0] CACHE["function"][fn] = {"checkbox":None, "arguments":{}, "presets":{}} mc.rowLayout(nc=10, adj=2, p="sl_inspector_FRW") cb = mc.iconTextCheckBox(i="checkboxOff.png", si="checkboxOn.png", v=__loadStatePreset(fn), cc=partial(__saveStatePreset, ids[i])) CACHE["function"][fn]["checkbox"] = cb mc.text(l=CACHE["index"][ids[i]][0], w=250, al="left", fn="fixedWidthFont") ab = mc.iconTextButton(st="iconOnly", i1="fileOpen.png", ann="load preset", vis=False, c=partial(__loadAllArgPresets, ids[i])) eb = mc.iconTextButton(st="iconOnly", i1="fileSave.png", ann="save preset", vis=False, c=partial(__saveAllArgPresets, ids[i])) db = mc.iconTextButton(st="iconOnly", i1="QR_delete.png", ann="delete preset", vis=False, c=partial(__deleteAllArgPresets, ids[i])) rv = mc.iconTextButton(st="iconOnly", i1="RS_disable.png", ann="reset value", vis=False, c=partial(__resetAllArgValues, ids[i])) mc.text(l="", w=5) CACHE["function"][fn]["error"] = mc.image(i="RS_WarningOldCollection", vis=False) e = mc.iconTextButton(st="iconOnly", i1="timeplay.png", c=partial(__execute, ids[i])) CACHE["execute"][e] = CACHE["index"][ids[i]][0] mc.setParent("..") arg_nms = CACHE["index"][ids[i]][1][0]; c_nms = len(arg_nms) arg_val = CACHE["index"][ids[i]][1][3] or []; c_val = len(arg_val) offset = c_nms - c_val # arguments for j in range(offset): if j == 0: for s in [ab, eb, db, rv]: mc.iconTextButton(s, e=True, vis=True) tfg, img = __argumentWidget(j, ids[i], CACHE["index"][ids[i]][0], arg_nms[j], None) CACHE["function"][fn]["arguments"][arg_nms[j]] = tfg CACHE["function"][fn]["presets"][arg_nms[j]] = img # keyword arguments for j in range(c_val): if j == 0: for s in [ab, eb, db, rv]: mc.iconTextButton(s, e=True, vis=True) jj = j+offset tfg, img = __argumentWidget(jj, ids[i], CACHE["index"][ids[i]][0], arg_nms[jj], arg_val[j]) CACHE["function"][fn]["arguments"][arg_nms[jj]] = tfg CACHE["function"][fn]["presets"][arg_nms[jj]] = img if i < c-1: mc.separator(st="in", w=435, h=10, p="sl_inspector_FRW") # Load at once any available presets for the arguments of the inspected function. __loadArgPreset(ids[i], arg_nms) def __argumentWidget(i, idx, fn, arg_nam, arg_val, presets=True): mc.rowLayout(nc=2, adj=True) tfg = mc.textFieldGrp(l=arg_nam, tx=str(arg_val)) if presets: mc.popupMenu() mc.menuItem("load preset", i="folder-open.png", c=partial(__loadArgPreset, idx, [arg_nam])) mc.menuItem("save preset", i="UVTkSaveValue.png", c=partial(__saveArgPreset, idx, fn+"."+arg_nam)) mc.menuItem("delete preset", i="RS_delete.png", c=partial(__deleteArgPreset, idx, fn+"."+arg_nam)) mc.menuItem(d=True) mc.menuItem("reset value", i="RS_disable.png", c=partial(__resetArgValue, idx, arg_nam)) img = mc.image(i="Bookmark.png", vis=False) else: img = None mc.setParent("..") return tfg, img def __icon(*arg): if "file" not in CACHE.viewkeys(): return mc.select(cl=True) for e in mc.lsUI(ed=True): try: mc.viewFit(p=e) except: pass f = CACHE["file"][:-3]+".png" if os.path.isfile(f): os.remove(f) fmt = mc.getAttr("defaultRenderGlobals.imageFormat") mc.setAttr("defaultRenderGlobals.imageFormat", 32) i = mc.playblast(cf=f, fmt="image", cc=False, fr=1, v=False, orn=False, os=True, p=100, wh=[200,200], qlt=100) mc.setAttr("defaultRenderGlobals.imageFormat", fmt) mc.image("img_FRW", e=True, i=f) # edit build template def __edit(*arg): if "file" not in CACHE.viewkeys(): return if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return if platform.system() == "Windows": os.system("start "+EDITOR+" "+CACHE["file"]) else: os.system(EDITOR+" "+CACHE["file"]+"&") # edit library def __edit2(*arg): if not os.path.isfile(arg[0]): mc.confirmDialog(t=" ", m="File not found: "+arg[0], b="ok") return if platform.system() == "Windows": os.system("start "+EDITOR+" "+arg[0]) else: os.system(EDITOR+" "+arg[0]+"&") def __extensions(): l = mc.columnLayout("cl_extensions_FRW", q=True, ca=True) or [] if len(l) > 0: mc.deleteUI(l) mc.columnLayout(p="cl_extensions_FRW") mc.iconTextButton(st="iconOnly", i1="CN_refresh.png", ann="update", c=__extensions) mc.setParent("..") __main__.FRW_DIR = THIS_DIR d = THIS_DIR+"/extensions/" if not os.path.isdir(d): return for f in glob.glob(d+"*.py"): try: n = os.path.splitext(os.path.split(f)[1])[0] m = imp.load_source(n, f) fl = mc.frameLayout(l=n, bv=True, cll=True, mw=5, mh=5, p="cl_extensions_FRW") m.main() mc.setParent("..") mc.frameLayout(fl, e=True, cl=False) mc.frameLayout(fl, e=True, cl=True) except Exception as e: print("Extension: "+f) print(" Error: "+str(e)) def __library(): l = mc.columnLayout("cl_library_FRW", q=True, ca=True) or [] if len(l) > 0: mc.deleteUI(l) mc.columnLayout(p="cl_library_FRW") mc.iconTextButton(st="iconOnly", i1="CN_refresh.png", ann="update", c=__library) mc.setParent("..") if not os.path.isdir(THIS_DIR): return global LIB_CACHE LIB_CACHE = {} for f in glob.glob(THIS_DIR+"/*.py"): f = f.replace("\\", "/") n = os.path.splitext(os.path.split(f)[1])[0] try: m = imp.load_source(n, f) except Exception as e: print("Library: "+f) print(" Error: "+str(e)) continue fl = mc.frameLayout(l=n, bv=True, cll=True, cl=True, mw=15, mh=15, p="cl_library_FRW") mc.rowLayout(nc=2, adj=1) mc.textField(tx=f, ed=False) mc.iconTextButton(st="iconOnly", i1="passSetRelationEditor.png", ann="edit", c=partial(__edit2, f)) mc.setParent("..") mc.separator(st="in", w=420, h=10) LIB_CACHE[f] = {} for n, o in inspect.getmembers(m, inspect.isfunction): LIB_CACHE[f][o.__code__.co_firstlineno] = [n, inspect.getargspec(o)] ids = sorted(LIB_CACHE[f].viewkeys()); c = len(ids) for i in range(c): fn = LIB_CACHE[f][ids[i]][0] arg_nms = LIB_CACHE[f][ids[i]][1][0]; c_nms = len(arg_nms) arg_val = LIB_CACHE[f][ids[i]][1][3] or []; c_val = len(arg_val) mc.frameLayout(l=fn, bv=True, cll=True, cl=True, mw=5, mh=5, fn="smallPlainLabelFont") mc.rowLayout(nc=2, adj=1) mc.text(l="")#fn, al="left", fn="fixedWidthFont") e = mc.iconTextButton(st="iconOnly", i1="timeplay.png", c=partial(__execute2, f, ids[i])) mc.setParent("..") if c_nms > 0: LIB_CACHE[f][ids[i]].append({}) offset = c_nms - c_val # arguments for j in range(offset): LIB_CACHE[f][ids[i]][2][arg_nms[j]] = __argumentWidget(j, ids[i], LIB_CACHE[f][ids[i]][1][0], arg_nms[j], None, presets=False)[0] # keyword arguments for j in range(c_val): jj = j+offset LIB_CACHE[f][ids[i]][2][arg_nms[jj]] = __argumentWidget(jj, ids[i], LIB_CACHE[f][ids[i]][1][0], arg_nms[jj], arg_val[j], presets=False)[0] # if i < c-1: mc.separator(st="in", h=10) mc.setParent("..") mc.frameLayout(fl, e=True, cl=False) mc.frameLayout(fl, e=True, cl=True) # # argument presets # def __loadAllArgPresets(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return f = CACHE["file"][:-3]+".pre" if os.path.isfile(f): fn = CACHE["index"][arg[0]][0] f = open(f); lines = f.readlines(); f.close() for line in lines: line = line.strip() if "=" not in line: continue l = line.split("=") if not "." in l[0]: continue fn2, arg2 = l[0].strip().split(".") if fn != fn2: continue for arg in CACHE["function"][fn]["arguments"].viewkeys(): if arg != arg2: continue tfg = CACHE["function"][fn]["arguments"][arg] mc.textFieldGrp(tfg, e=True, tx=l[1].strip()) img = CACHE["function"][fn]["presets"][arg] mc.image(img, e=True, vis=True) def __saveAllArgPresets(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return fn = CACHE["index"][arg[0]][0] filepath = CACHE["file"][:-3]+".pre" if os.path.isfile(filepath): f = open(filepath); l = f.readlines(); f.close() for arg in CACHE["function"][fn]["arguments"].viewkeys(): add = False for i in range(len(l)): s = l[i].strip() if "=" not in s: continue l2 = s.split("=") if "." not in l2[0]: continue if fn+"."+arg != l2[0].strip(): continue add = True tfg = CACHE["function"][fn]["arguments"][arg] val = mc.textFieldGrp(tfg, q=True, tx=True) l[i] = fn+"."+arg+" = "+str(val)+"\n" img = CACHE["function"][fn]["presets"][arg] mc.image(img, e=True, vis=True) break if not add: tfg = CACHE["function"][fn]["arguments"][arg] val = mc.textFieldGrp(tfg, q=True, tx=True) l.append(fn+"."+arg+" = "+str(val)+"\n") img = CACHE["function"][fn]["presets"][arg] mc.image(img, e=True, vis=True) else: l = [] for arg in CACHE["function"][fn]["arguments"].viewkeys(): tfg = CACHE["function"][fn]["arguments"][arg] val = mc.textFieldGrp(tfg, q=True, tx=True) l.append(fn+"."+arg+" = "+str(val)+"\n") img = CACHE["function"][fn]["presets"][arg] mc.image(img, e=True, vis=True) f = open(filepath, "w"); f.writelines(l); f.close() def __deleteAllArgPresets(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return idx = arg[0] fn = CACHE["index"][idx][0] filepath = CACHE["file"][:-3]+".pre" if os.path.isfile(filepath): f = open(filepath); l = f.readlines(); f.close() for arg in CACHE["function"][fn]["arguments"].viewkeys(): for i in range(len(l)): s = l[i].strip() if "=" not in s: continue l2 = s.split("=") if "." not in l2[0]: continue if fn+"."+arg != l2[0].strip(): continue __resetArgValue(idx, arg) l.pop(i) img = CACHE["function"][fn]["presets"][arg] mc.image(img, e=True, vis=False) break f = open(filepath, "w"); f.writelines(l); f.close() def __resetAllArgValues(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return for arg2 in CACHE["function"][CACHE["index"][arg[0]][0]]["arguments"].viewkeys(): __resetArgValue(arg[0], arg2) def __loadStatePreset(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return True f = CACHE["file"][:-3]+".pre" if os.path.isfile(f): f = open(f); lines = f.readlines(); f.close() for line in lines: line = line.strip() if "=" not in line: continue l = line.split("=") if "." in l[0]: continue if arg[0] != l[0].strip(): continue return eval(l[1]) return True def __saveStatePreset(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return cb = CACHE["function"][CACHE["index"][arg[0]][0]]["checkbox"] val = str(mc.iconTextCheckBox(cb, q=True, v=True)) fn = CACHE["index"][arg[0]][0] filepath = CACHE["file"][:-3]+".pre" if os.path.isfile(filepath): add = False f = open(filepath); l = f.readlines(); f.close() for i in range(len(l)): s = l[i].strip() if "=" not in s: continue l2 = s.split("=") if "." in l2[0]: continue if fn != l2[0].strip(): continue add = True l[i] = fn+" = "+val+"\n" break if not add: l.append(fn+" = "+val+"\n") f = open(filepath, "w"); f.writelines(l); f.close() else: s = fn+" = "+val+"\n" f = open(filepath, "w"); f.write(s); f.close() def __loadArgPreset(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return f = CACHE["file"][:-3]+".pre" if not os.path.isfile(f): lines = [] else: f = open(f); lines = f.readlines(); f.close() idx = arg[0] fn = CACHE["index"][idx][0] args = arg[1] for arg in args: img = CACHE["function"][CACHE["index"][idx][0]]["presets"][arg] mc.image(img, e=True, vis=False) for line in lines: line = line.strip() if "=" not in line: continue l = line.split("=") if "." not in l[0]: continue fn2, arg2 = l[0].strip().split(".") if fn != fn2 or arg != arg2: continue tfg = CACHE["function"][CACHE["index"][idx][0]]["arguments"][arg] mc.textFieldGrp(tfg, e=True, tx=("=".join(s for s in l[1:])).strip()) mc.image(img, e=True, vis=True) def __saveArgPreset(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return idx = arg[0] fn, arg = arg[1].split(".") filepath = CACHE["file"][:-3]+".pre" if os.path.isfile(filepath): add = False f = open(filepath); l = f.readlines(); f.close() for i in range(len(l)): s = l[i].strip() if "=" not in s: continue l2 = s.split("=") if "." not in l2[0]: continue if fn+"."+arg != l2[0].strip(): continue add = True tfg = CACHE["function"][CACHE["index"][idx][0]]["arguments"][arg] val = mc.textFieldGrp(tfg, q=True, tx=True) l[i] = fn+"."+arg+" = "+str(val)+"\n" break if not add: tfg = CACHE["function"][CACHE["index"][idx][0]]["arguments"][arg] val = mc.textFieldGrp(tfg, q=True, tx=True) l.append(fn+"."+arg+" = "+str(val)+"\n") f = open(filepath, "w"); f.writelines(l); f.close() else: tfg = CACHE["function"][CACHE["index"][idx][0]]["arguments"][arg] val = mc.textFieldGrp(tfg, q=True, tx=True) s = fn+"."+arg+" = "+str(val)+"\n" f = open(filepath, "w"); f.write(s); f.close() img = CACHE["function"][CACHE["index"][idx][0]]["presets"][arg] mc.image(img, e=True, vis=True) def __deleteArgPreset(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return idx = arg[0] fn, arg = arg[1].split(".") filepath = CACHE["file"][:-3]+".pre" if os.path.isfile(filepath): f = open(filepath); l = f.readlines(); f.close() for i in range(len(l)): s = l[i].strip() if "=" not in s: continue l2 = s.split("=") if "." not in l2[0]: continue if fn+"."+arg == l2[0].strip(): l.pop(i) f = open(filepath, "w"); f.writelines(l); f.close() __resetArgValue(idx, arg) break img = CACHE["function"][CACHE["index"][idx][0]]["presets"][arg] mc.image(img, e=True, vis=False) def __resetArgValue(*arg): nms = CACHE["index"][arg[0]][1][0]; c_nms = len(nms) val = CACHE["index"][arg[0]][1][3] or []; c_val = len(val) offset = c_nms - c_val for i in range(c_nms): if arg[1] == nms[i]: break tfg = CACHE["function"][CACHE["index"][arg[0]][0]]["arguments"][arg[1]] if c_nms != c_val: if i < offset: mc.textFieldGrp(tfg, e=True, tx="None") else: mc.textFieldGrp(tfg, e=True, tx=str(val[i-offset])) else: mc.textFieldGrp(tfg, e=True, tx=str(val[i])) # # execute code from inspector # def __execute(*arg): if not os.path.isfile(CACHE["file"]): mc.confirmDialog(t=" ", m="File not found: "+CACHE["file"], b="ok") return cmd = CACHE["name"]+'=imp.load_source("'+CACHE["name"]+'", "'+CACHE["file"]+'")' print("import imp\n"+cmd); exec(cmd) for idx in sorted(CACHE["index"].viewkeys()): fn = CACHE["index"][idx][0] mc.image(CACHE["function"][fn]["error"], e=True, vis=False) if type(arg[0]) != int: if not mc.iconTextCheckBox(CACHE["function"][fn]["checkbox"], q=True, v=True): continue elif idx != arg[0]: continue cmd = CACHE["name"]+"."+fn+"("+__arguments(idx)+")" print(cmd) try: exec(cmd) except Exception as e: mc.image(CACHE["function"][fn]["error"], e=True, vis=True) raise Exception(e) if type(arg[0]) == bool: __icon() def __arguments(idx): arg = "" nms = CACHE["index"][idx][1][0]; cnt_nms = len(nms) val = CACHE["index"][idx][1][3] or []; cnt_val = len(val) off = cnt_nms-cnt_val for i in range(off): tfg = CACHE["function"][CACHE["index"][idx][0]]["arguments"][nms[i]] val = mc.textFieldGrp(tfg, q=True, tx=True) try: val = eval(val) except: val = '"'+val+'"' arg += str(val) if cnt_nms != cnt_val: arg += ", " for i in range(cnt_val): tfg = CACHE["function"][CACHE["index"][idx][0]]["arguments"][nms[i+off]] val = mc.textFieldGrp(tfg, q=True, tx=True) try: val = eval(val) except: val = '"'+val+'"' arg += nms[i+off]+"="+str(val) if i < cnt_val-1: arg += ", " return arg # # execute code from library # def __execute2(*arg): if not os.path.isfile(arg[0]): mc.confirmDialog(t=" ", m="File not found: "+arg[0], b="ok") return n = os.path.split(os.path.splitext(arg[0])[0])[1] cmd = n+'=imp.load_source("'+n+'", "'+arg[0]+'")' print("import imp\n"+cmd); exec(cmd) cmd = n+"."+LIB_CACHE[arg[0]][arg[1]][0]+"("+__arguments2(arg[0], arg[1])+")" print(cmd); exec(cmd) def __arguments2(f, idx): arg = "" nms = LIB_CACHE[f][idx][1][0]; cnt_nms = len(nms) val = LIB_CACHE[f][idx][1][3] or []; cnt_val = len(val) off = cnt_nms-cnt_val for i in range(off): tfg = LIB_CACHE[f][idx][2][nms[i]] val = mc.textFieldGrp(tfg, q=True, tx=True) try: val = eval(val) except: val = '"'+val+'"' arg += str(val) if cnt_nms != cnt_val: arg += ", " for i in range(cnt_val): tfg = LIB_CACHE[f][idx][2][nms[i+off]] val = mc.textFieldGrp(tfg, q=True, tx=True) try: val = eval(val) except: val = '"'+val+'"' arg += nms[i+off]+"="+str(val) if i < cnt_val-1: arg += ", " return arg # # create/delete assets # def __createAsset_ui(*arg): mc.layoutDialog(ui=__createAsset_dlg, t="create new asset") def __createAsset_dlg(): mc.columnLayout(adj=True) mc.rowLayout(nc=2, adj=2) mc.text(l="rig type", al="right", w=80) mc.optionMenu("om_rigType_FRW") for f in glob.glob(THIS_DIR+"/*.ma"): mc.menuItem(l=os.path.splitext(os.path.split(f)[1])[0]) mc.setParent("..") mc.rowLayout(nc=2, adj=2) mc.text(l="asset type", al="right", w=80) mc.optionMenu("om_assetType_FRW") for t in ASSET_TYPES: mc.menuItem(l=t) mc.setParent("..") mc.rowLayout(nc=2, adj=2) mc.text(l="asset name", al="right", w=80) mc.textField("tf_assetName_FRW") mc.setParent("..") mc.text(l="") mc.rowColumnLayout(nc=2, cw=[(1,148),(2,148)]) mc.button(l="create", c=__createAsset_stage) mc.button(l="cancel", c=__createAsset_cancel) mc.setParent("..") mc.setParent("..") def __createAsset_cancel(*arg): mc.layoutDialog(dis="cancel") def __createAsset_stage(*arg): n = mc.textField("tf_assetName_FRW", q=True, tx=True).strip() if not n: mc.confirmDialog(t=" ", m="Incorrect asset name.", b="ok") return rt = mc.optionMenu("om_rigType_FRW", q=True, v=True) at = mc.optionMenu("om_assetType_FRW", q=True, v=True) f = STAGING_DIR+at+"/"+n+"/"+n+".py" if os.path.isfile(f): result = mc.confirmDialog(t="overwrite existing asset", m="Asset with this name already exists. Do you want to overwrite it ?", b=["yes","no"], cb="no", ds="no", db="no") if result == "no": return createAsset(rt, at, n) mc.layoutDialog(dis="cancel") __update() mc.textScrollList("tsl_type_FRW", e=True, si=at) __updateNames() mc.textScrollList("tsl_name_FRW", e=True, si=n) __update() def createAsset(rigType, assetType, assetName): directory = STAGING_DIR+assetType+"/"+assetName+"/" try: os.makedirs(directory) except: pass if not os.path.isdir(directory): raise Exception("Cannot create directory: "+directory) filepath = directory+assetName+".py" try: shutil.copy(THIS_DIR+"/template.py", filepath) except: raise Exception("Cannot create file: "+filepath) try: os.makedirs(directory+"/weights") except: pass try: os.remove(filepath[:-3]+".pre") except: pass if not os.path.isfile(THIS_DIR+"/"+rigType+".py"): rigType = "generic" for f in glob.glob(THIS_DIR+"/"+rigType+".*"): ext = os.path.splitext(f)[1] if ext == ".py" or ext == ".pyc": continue shutil.copy(f, directory+assetName+ext) m = imp.load_source(rigType, THIS_DIR+"/"+rigType+".py") for n, o in inspect.getmembers(m, inspect.isfunction): if n == "main": args = inspect.getargspec(o) args1 = ", ".join((a+"="+str(b), a+'="'+str(b)+'"')[type(b) == str] for a,b in zip(args[0],args[3])) args2 = ", ".join(a+"="+a for a in args[0]) f = open(filepath); s = f.read(); f.close() s = s.replace("FRW_DIR", THIS_DIR).replace("FRW_RIG", rigType) s = s.replace("FRW_ARG2", args2).replace("FRW_ARG", args1) f = open(filepath, "w"); f.write(s); f.close() break print("Result: "+filepath) return filepath def __deleteAsset(*arg): if "file" not in CACHE.viewkeys(): return d = os.path.split(CACHE["file"])[0] if not os.path.isdir(d): mc.confirmDialog(t=" ", m="Invalid asset.", b="ok") return result = mc.confirmDialog(t="delete asset", m="Do you want to delete the selected asset ?", b=["yes","no"], cb="no", ds="no", db="no") if result == "no": return try: shutil.rmtree(d) except: raise Exception("Cannot delete directory: "+d) __update()
[ "pearsetoomey@gmail.com" ]
pearsetoomey@gmail.com
0a884db25123476946a8d29963a9b291c969e426
aa89d7e6dfcf1da91fd5dfed6b966f342c24cc16
/p.py
b4757ebf5434fb383faf678e34598c858773c642
[]
no_license
nanfeng-web/mine-pictures
6aad709904b07acd288603f793759b707e9f4b04
7a7cd2f3de63feacac7fd6824b9fc030eb8e23b3
refs/heads/main
2023-08-07T09:52:05.801232
2021-10-01T09:02:44
2021-10-01T09:02:44
399,729,566
1
0
null
2021-09-23T23:58:45
2021-08-25T07:29:52
null
UTF-8
Python
false
false
149
py
import requests response = requests.get("https://api.nmb.show/1985acg.php") file = open("paqu","wb") file.write(response.content) file.close()
[ "noreply@github.com" ]
noreply@github.com
f9dd6d91e8aaee9919ed20cb74c14fc6f2d22c8b
44c81d8cc9c148c93cf9a77faec345693059c973
/fetch.py
568adf1e9271c6ebe976f93a3b0c8306a2ea428a
[]
no_license
neoatlantis/currency-data
26566a5131b814f324153db451ae9f879fda9b72
c19bc94d6d6ba6706f625e94e176b77bee455b04
refs/heads/master
2020-06-10T19:02:58.973856
2016-12-08T06:35:46
2016-12-08T06:35:46
75,902,576
0
0
null
null
null
null
UTF-8
Python
false
false
1,231
py
#!/usr/bin/env python import os import time import requests import shelve import sys BASEPATH = os.path.realpath(os.path.dirname(sys.argv[0])) filepath = lambda *i: os.path.join(BASEPATH, *i) # check for api key try: apikeyFilepath = filepath('apikey') apikey = open(apikeyFilepath).read().strip() except: print "Put your API key at `openexchangerates.org` into file `apikey`." sys.exit(1) # check for database db = shelve.open(filepath('currencies.db'), flag='c') latest = 0 for key in db: timestamp = float(key) if timestamp > latest: latest = timestamp if time.time() - latest < 3000 and 'force' not in sys.argv: print "You are requesting too frequent. Abandoned to prevent API", print "exhaustion. Use `force` in command line to force a request." db.close() sys.exit(2) # fetch url url = "https://openexchangerates.org/api/latest.json?app_id=%s" % apikey try: req = requests.get(url) if req.status_code != 200: raise json = req.json() json = { 'rates': json['rates'], 'timestamp': json['timestamp'] } except: print "Failed fetching newest data. Abort." sys.exit(3) print json db[str(time.time())] = json db.close() sys.exit(0)
[ "contact@chaobai.li" ]
contact@chaobai.li
796a852c4ccdd0bc598e0b373567c854094d0cfd
45fb509bf21ac003a40fd404d7c0cc995e741672
/perceptron_algorithm/perceptron_algo_2nd_method.py
59807adb1a2c854110b8644f2b103f49899851f4
[]
no_license
FarahAgha/MachineLearning
0d17511f7495190dfd2368554428208c7d0eadf7
cf385135e016a63fb16bd326586fcd8ecb3c4355
refs/heads/master
2021-01-04T01:03:08.810401
2020-03-15T18:42:16
2020-03-15T18:42:16
240,314,331
0
0
null
null
null
null
UTF-8
Python
false
false
1,011
py
# Perceptron Algorithm perceptron_algo_2nd_method.py # See https://medium.com/@thomascountz/19-line-line-by-line-python-perceptron-b6f113b161f3 for details. import numpy as np class Perceptron(object): def __init__(self, no_of_inputs, threshold=100, learning_rate=0.01): self.threshold = threshold self.learning_rate = learning_rate self.weights = np.zeros(no_of_inputs + 1) def predict(self, inputs): summation = np.dot(inputs, self.weights[1:]) + self.weights[0] if summation > 0: activation = 1 else: activation = 0 return activation def train(self, training_inputs, labels): for _ in range(self.threshold): for inputs, label in zip(training_inputs, labels): prediction = self.predict(inputs) self.weights[1:] += self.learning_rate * (label - prediction) * inputs self.weights[0] += self.learning_rate * (label - prediction)
[ "you@example.com" ]
you@example.com
f85417abce36ad169336e4c143d0ed7ba2a666ea
1082d5cde908e101c51f69923212dcae4b4b60f4
/examples/sub_menu.py
9d7901f2f97b295d736199ba1b9a578957e289d8
[ "MIT" ]
permissive
SaxonRah/UnrealEnginePython
88039c62024d01672138c4adeecac0fc9729bed0
d5f3b2e7a42209af31cbbd47377633e8d452439c
refs/heads/master
2021-01-04T23:56:44.556697
2020-02-16T00:38:43
2020-02-16T00:38:43
240,805,780
7
1
MIT
2020-02-16T00:03:20
2020-02-16T00:03:19
null
UTF-8
Python
false
false
1,313
py
import unreal_engine as ue def open_submenu001(builder): builder.begin_section('submenu001', 'i am a tooltip') builder.add_menu_entry('sub_one', 'tooltip', lambda: ue.log('hello from submenu001')) builder.add_menu_entry('sub_one_2', 'tooltip 2', lambda: ue.log('hello again')) builder.end_section() def open_sub_submenu(builder): builder.begin_section('sub_submenu003', 'i am a tooltip for the submenu') builder.add_menu_entry('sub_sub_three', 'tooltip', lambda: ue.log('hello from sub_submenu003')) builder.end_section() def open_submenu002(builder): builder.begin_section('submenu002', 'i am a tooltip') builder.add_menu_entry('sub_two', 'tooltip', lambda: ue.log('hello from submenu002')) builder.add_sub_menu('sub sub menu', 'tooltip !', open_sub_submenu) builder.end_section() def open_menu(builder): builder.begin_section('test1', 'test2') builder.add_menu_entry('one', 'two', lambda: ue.log('ciao 1')) builder.add_sub_menu('i am a submenu', 'tooltip for the submenu', open_submenu001) builder.add_menu_entry('three', 'four', lambda: ue.log('ciao 2')) builder.add_sub_menu('i am another submenu', 'tooltip for the second submenu', open_submenu002) builder.end_section() ue.add_menu_bar_extension('SimpleMenuBarExtension', open_menu)
[ "roberto.deioris@gmail.com" ]
roberto.deioris@gmail.com
d77e5c51f77650cf17fab3e34a6d2b3c30310516
7672706c2d285a6eef5689381eef56dc3d6e779c
/assignment4_4.py
26bd85ba5395ef34dd76a3c0e7795f494e26d6ae
[]
no_license
AreRex14/netprog-assignment
3fbf2f949d774f3a957297d5cb11f18b94e00815
1057bc2485a98c260320dc45c01c91a3e3a6ef18
refs/heads/master
2020-12-26T21:27:11.902369
2020-02-01T17:29:00
2020-02-01T17:29:00
237,649,985
0
0
null
null
null
null
UTF-8
Python
false
false
656
py
import dns.resolver import json def MX_lookup(host): answers = dns.resolver.query(host, 'MX') servers = [] for rdata in answers: servers.append((rdata.preference, rdata.exchange)) servers_pref_ascend = sorted(servers, key=lambda server: server[0]) return servers_pref_ascend def JSON_lookup(host): answers = dns.resolver.query(host, 'MX') servers = [] for rdata in answers: servers.append((rdata.preference, rdata.exchange)) data = json.dump(json.load(servers), indent=4) return data if __name__ == '__main__': host = input("Enter a domain name to look up: ") mail_servers = MX_lookup(host) for s in mail_servers: print(s)
[ "arerifxynwa@gmail.com" ]
arerifxynwa@gmail.com
9a29224011fd3cca3b90735ed27fe0b1c8ed6bb9
699b767e854162231914f4bce177382a9880f221
/LinkedList/AddTwoNumbers.py
7f503cc9821d09b900119e244d002187998d27d2
[]
no_license
XiwangLi/LeetcodeArchive
a66dc32f0a7248ff05cbe09dd0095191fefc602f
3de4a48f9f7de2970cf02751c1620281bae0947d
refs/heads/master
2021-04-28T02:57:55.604505
2019-02-28T01:07:51
2019-02-28T01:07:51
122,128,291
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
class Solution(object): def addTwoNumbers(self, l1, l2): """ :type l1: ListNode :type l2: ListNode :rtype: ListNode """ head=ListNode(0) curr=head val=0 ten=0 while l1 or l2 or val: if l1: val+=l1.val l1=l1.next if l2: val+=l2.val l2=l2.next curr.next=ListNode(val%10) curr=curr.next val=val//10 return head.next
[ "xiwangli2010@gmail.com" ]
xiwangli2010@gmail.com
3b4b65765a6275e2b4fed60d9412aac3f7fb9665
d12b59b33df5c467abf081d48e043dac70cc5a9c
/ixnetwork_restpy/testplatform/sessions/ixnetwork/quicktest/passcriteria_985f11fda90dc3b8dac84a4a881b8740.py
6920d6cfe8478b76037b42d0c156e50d2daa5519
[ "MIT" ]
permissive
ajbalogh/ixnetwork_restpy
59ce20b88c1f99f95a980ff01106bda8f4ad5a0f
60a107e84fd8c1a32e24500259738e11740069fd
refs/heads/master
2023-04-02T22:01:51.088515
2021-04-09T18:39:28
2021-04-09T18:39:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,492
py
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class PassCriteria(Base): """This applies the Pass Criteria to each trial in the test and determines whether the trial passed or failed. The PassCriteria class encapsulates a required passCriteria resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'passCriteria' _SDM_ATT_MAP = { 'EnablePassFail': 'enablePassFail', } def __init__(self, parent): super(PassCriteria, self).__init__(parent) @property def EnablePassFail(self): """ Returns ------- - bool: If true, the pass fail criteria is set. """ return self._get_attribute(self._SDM_ATT_MAP['EnablePassFail']) @EnablePassFail.setter def EnablePassFail(self, value): self._set_attribute(self._SDM_ATT_MAP['EnablePassFail'], value) def update(self, EnablePassFail=None): """Updates passCriteria resource on the server. Args ---- - EnablePassFail (bool): If true, the pass fail criteria is set. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def Apply(self): """Executes the apply operation on the server. Applies the specified Quick Test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('apply', payload=payload, response_object=None) def ApplyAsync(self): """Executes the applyAsync operation on the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyAsync', payload=payload, response_object=None) def ApplyAsyncResult(self): """Executes the applyAsyncResult operation on the server. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyAsyncResult', payload=payload, response_object=None) def ApplyITWizardConfiguration(self): """Executes the applyITWizardConfiguration operation on the server. Applies the specified Quick Test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('applyITWizardConfiguration', payload=payload, response_object=None) def GenerateReport(self): """Executes the generateReport operation on the server. Generate a PDF report for the last succesfull test run. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('generateReport', payload=payload, response_object=None) def Run(self, *args, **kwargs): """Executes the run operation on the server. Starts the specified Quick Test and waits for its execution to finish. The IxNetwork model allows for multiple method Signatures with the same name while python does not. run(InputParameters=string)list ------------------------------- - InputParameters (str): The input arguments of the test. - Returns list(str): This method is synchronous and returns the result of the test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('run', payload=payload, response_object=None) def Start(self, *args, **kwargs): """Executes the start operation on the server. Starts the specified Quick Test. The IxNetwork model allows for multiple method Signatures with the same name while python does not. start(InputParameters=string) ----------------------------- - InputParameters (str): The input arguments of the test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None) def Stop(self): """Executes the stop operation on the server. Stops the currently running Quick Test. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('stop', payload=payload, response_object=None) def WaitForTest(self): """Executes the waitForTest operation on the server. Waits for the execution of the specified Quick Test to be completed. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } return self._execute('waitForTest', payload=payload, response_object=None)
[ "andy.balogh@keysight.com" ]
andy.balogh@keysight.com
1a406e49cacab5c4dcd0d7e60c97c70a3b1a7a36
bb05e1fafef1a62b85d5c97f10c9557cf7a240cc
/task_07_01.py
5bf2d6e493ddc44f970bb650a0474271f3285a79
[]
no_license
Nafani4/Home_work
3bbc192dc6a43c40fd0358dfec863241e7b3ab96
69ce5d4321b3fc6b4bf4db7191912c3d4f4f8907
refs/heads/master
2021-05-16T03:31:23.457108
2017-11-26T21:11:30
2017-11-26T21:11:30
105,476,626
0
0
null
null
null
null
UTF-8
Python
false
false
199
py
def fibonacci (num): x, y = 0, 1 for i in range(num): x, y = y, x + y yield x if __name__ == '__main__': print(fibonacci(10)) for i in fibonacci(10): print(i)
[ "grebennikov.mikhail@gmail.com" ]
grebennikov.mikhail@gmail.com
b6061c81fb9c14cfe8a4b4a93e891fc90327de11
38444340385ab91a9148b10db3a981246b4496ff
/app/forms.py
cf23a56282b7fbe1de24973ded5f0f3faf55254e
[]
no_license
dannzii/info3180-lab3
e27d7e82b18c27402f4e32ff2c8857f72b728b44
9a8c14c83ac8bad1c1895e05ebf03430caed6464
refs/heads/master
2020-04-22T06:15:11.017922
2019-02-14T20:28:16
2019-02-14T20:28:16
170,184,314
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
from flask_wtf import FlaskForm from wtforms import StringField, TextAreaField from wtforms.validators import DataRequired, Email class ContactForm(FlaskForm): name = StringField('Name', validators=[DataRequired()]) email = StringField('Email', validators=[DataRequired(), Email()]) subject = StringField('Subject', validators=[DataRequired()]) Text_Area = TextAreaField('Message', validators=[DataRequired()])
[ "34076867+dannzii@users.noreply.github.com" ]
34076867+dannzii@users.noreply.github.com
5e3d18247eb1b3e3f1789add50668361ee4ebffd
f894c0969d30437b27ef4d0d81a99660bab10716
/learn_python/Day1/assignment1/quickpython.py
ee38744c52832b0503f6d108f472fea9ba41d649
[]
no_license
AnandSankarR/Data_BootCamp_2018
364357e73a47e60990fd43dd37f427823f0b40ab
c5e4f818722864f8f56df5387a9f9cbe849ae3e4
refs/heads/master
2021-05-03T13:01:31.131736
2018-02-22T00:56:25
2018-02-22T00:56:25
120,506,879
0
0
null
null
null
null
UTF-8
Python
false
false
25
py
print("This File Works")
[ "anandsankar.r@gmail.com" ]
anandsankar.r@gmail.com
80830d2c4527373672b28a60f6897f9622dbb64d
4b2df7b62246133fd3c8af2529f6544dcf2b4350
/pushups/migrations/0005_auto_20181011_1118.py
b591fed36590ad62240012ec288faed71fe7cbe2
[]
no_license
MrMacchew/LOL_CTS
24b0904f2a4b2934d0c386511c269684cfe3b3ca
cf9c7e434d73365aded766ac8703cb02ddd06104
refs/heads/master
2020-04-01T03:02:19.267620
2018-10-20T07:51:37
2018-10-20T07:51:37
152,806,859
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
# Generated by Django 2.1.1 on 2018-10-11 17:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pushups', '0004_auto_20181011_1113'), ] operations = [ migrations.AlterField( model_name='match', name='accountId', field=models.IntegerField(default=None), ), ]
[ "mattcain@weber.edu" ]
mattcain@weber.edu
30bf23cbb12bb828a340c74a0d91fa08a504b30e
777e23a382d7dd84232795a929c4004c768d1837
/www/orm.py
beb91d24c8bdbfe88c890b3f0be0725751427fef
[]
no_license
Altkaka/Altkaka-Web
542126c2ec72453fb1ca8495892ef1bd4282f2e7
64773d579aa3097a1b3af2d071358105f388cf04
refs/heads/master
2021-05-04T19:14:23.648750
2017-10-12T08:40:16
2017-10-12T08:40:16
106,657,692
1
0
null
null
null
null
UTF-8
Python
false
false
13,659
py
import logging; logging.basicConfig(level = logging.INFO) import asyncio import aiomysql from myapis import APIError from myapis import * async def create_pool(loop, **kw): logging.info('create database connection pool...') global __pool __pool = await aiomysql.create_pool( host = kw.get('host','localhost'), port = kw.get('port',3306), user = kw['user'], password = kw['password'], db = kw['db'], charset = kw.get('charset', 'utf8'), autocommit = kw.get('autocommit', True), maxsize = kw.get('maxsize', 10), minsize = kw.get('minsize', 1), loop = loop ) async def select(sql, args, size=None): logging.info('select : SQL: %s', sql) logging.info('select : args: %s', args) global __pool async with __pool.get() as conn: async with conn.cursor(aiomysql.DictCursor) as cur: await cur.execute(sql.replace('?', '%s'), args or ()) if size: rs = await cur.fetchmany(size) else: rs = await cur.fetchall() logging.info('row returned: %s' % len(rs)) return rs async def execute(sql, args, autocommit = True): # logging.info('execute:SQL:',sql, 'args:',args) # global __pool # with (yield from __pool) as conn: # try: # cur = yield from conn.cursor() # yield from cur.execute(sql.replace('?', '%s'), args) # affected = cur.rowcount # yield from cur.close() # except BaseException as e: # raise # logging.ERROR(e.__context__) # return affected logging.info('execute : SQL: %s', sql) logging.info('execute : args: %s', args) global __pool async with __pool.get() as conn: if not autocommit: await conn.begin() try: async with conn.cursor(aiomysql.DictCursor) as cur: await cur.execute(sql.replace('?', '%s'), args) affected = cur.rowcount await cur.close() if not autocommit: await conn.commit() logging.info('commit success!') except BaseException as e: if not autocommit: await conn.rollback() raise finally: conn.close() return affected logging.info('rows returned: %s ' % affected) def create_args_string(len): return '?'+',?'*(len-1) class ModelMetaclass(type): def __new__(cls, name, bases, attrs): if name == 'Model': return type.__new__(cls, name, bases, attrs) tableName = attrs.get('__table__', None) or name logging.info('found model: %s (table: %s)' % (name, tableName)) mappings = dict() fields = [] primaryKey = None for k, v in attrs.items(): if isinstance(v, Field): logging.info('found mapping: %s ==> %s' % (k, v)) mappings[k] = v if v.primary_key: if primaryKey: raise APIError('Duplicate primary key for field: %s' % k) primaryKey = k else: fields.append(k) if not primaryKey: raise APIError('Primary key not found.') for k in mappings.keys(): attrs.pop(k) escaped_fields = list(map(lambda f: '`%s`' % f, fields)) attrs['__mappings__'] = mappings attrs['__table__'] = tableName attrs['__primary_key__'] = primaryKey attrs['__fields__'] = fields # 下列sql语句中的反引号是为了防止字段名称出现保留字报错而预留的,一般在进行mysql的sql语句撰写时,字段名称使用双引号防止报错 attrs['__select__'] = 'select `%s`, %s from `%s`' % (primaryKey, ','.join(escaped_fields), tableName) attrs['__insert__'] = 'insert into `%s` (%s, `%s`) values (%s)' % (tableName, ','.join(escaped_fields), primaryKey, create_args_string(len(escaped_fields)+1)) attrs['__update__'] = 'update `%s` set %s where `%s`=?' % (tableName, ','.join(map(lambda f: '`%s`=?' % (mappings.get(f).name or f), fields)), primaryKey) attrs['__delete__'] = 'delete from `%s` where `%s` = ?' % (tableName, primaryKey) return type.__new__(cls, name, bases, attrs) class Model(dict, metaclass=ModelMetaclass): def __init__(self, **kw): super(Model, self).__init__(**kw) def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(r"'Model' object has no attribute '%s' " % key) def __setattr__(self, key, value): self[key] = value def getValue(self, key): return getattr(self, key, None) def getValueOrDefault(self, key): value = getattr(self, key, None) if value is None: field = self.__mappings__[key] if field.default is not None: value = field.default() if callable(field.default) else field.default logging.debug('using default value for %s:%s' % (key, str(value))) setattr(self, key, value) return value @classmethod #根据主键查找记录 async def find(cls, pk): rs = await select('%s where `%s` = ?' % (cls.__select__, cls.__primary_key__), [pk], 1) if len(rs) == 0: return None logging.info('find rs:%s',rs[0]) return cls(**rs[0]) async def save(self): args = list(map(self.getValueOrDefault, self.__fields__)) args.append(self.getValueOrDefault(self.__primary_key__)) rows = await execute(self.__insert__, args) if rows != 1: logging.warning('faild to insert record: affected rows: %s' % rows) @classmethod #findAll() - 根据WHERE条件查找 async def findAll(cls, **kw): order_flag = False order_values = '' limit_flag = False limit_values = () logging.info('find-all beigin') logging.info('find-all: %s-%d', kw, len(kw)) if has_orders(kw): order_flag = True order_values = kw[has_orders(kw)] kw.pop(has_orders(kw)) if has_limit(kw): limit_flag = True limit_values = kw[has_limit(kw)] kw.pop(has_limit(kw)) values = list(kw.values()) values.append(limit_values[0]) values.append(limit_values[1]) if len(kw)==0: if order_flag and limit_flag: rs = await select('%s order by %s limit ? , ?' % (cls.__select__, order_values), values) elif order_flag and not limit_flag: rs = await select('%s order by %s' % (cls.__select__, order_values), list(kw.values())) elif not order_flag and limit_flag: rs = await select('%s limit ? , ?' % cls.__select__,values) else: rs = await select('%s ' % cls.__select__ , args=None) else: if order_flag and limit_flag: rs = await select('%s where %s order by %s limit ? , ?' % (cls.__select__, str_to_where(kw), order_values), values) elif order_flag and not limit_flag: rs = await select('%s where %s order by %s' % (cls.__select__, str_to_where(kw), order_values), list(kw.values())) elif not order_flag and limit_flag: rs = await select('%s where %s limit ? , ?' % (cls.__select__, str_to_where(kw)),values) else: rs = await select('%s where %s' % (cls.__select__, str_to_where(kw)), list(kw.values())) if len(rs) == 0: return None logging.info('find-all end results: %s',rs) return [cls(**r) for r in rs] @classmethod #findNumber() - 根据WHERE条件查找,但返回的是整数,适用于select count(*)类型的SQL async def findNumber(cls, **kw): if len(kw)==0: logging.info('%s' % cls.__select__) rs = await select('select count(*) from %s' % cls.__table__, args=None) else: rs = await select('select count(*) from %s where %s' % (cls.__table__, str_to_where(kw)), list(kw.values())) logging.info('findnumber:%s', rs[0]['count(*)']) if len(rs) == 0: return None return rs[0]['count(*)'] #根据主键插入 async def update(self): args = list(map(self.getValueOrDefault, self.__fields__)) args.append(self.getValueOrDefault(self.__primary_key__)) rows = await execute(self.__update__, args) return rows #根据主键删除 async def remove(self): args=[] args.append(self.getValueOrDefault(self.__primary_key__)) rows = await execute(self.__delete__, args) return rows class Field(object): def __init__(self, name, column_type, primary_key, default): self.name = name self.column_type = column_type self.primary_key = primary_key self.default = default def __str__(self): return '<%s, %s:%s>' % (self.__class__.__name__, self.column_type, self.name) class StringField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='varchar(100)'): super().__init__(name, ddl, primary_key, default) class TinyIntField(Field): def __init__(self, name=None, primary_key=False, default = None, ddl='tinyint'): super().__init__(name, ddl, primary_key, default) class SmallIntField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='smallint'): super().__init__(name, ddl, primary_key, default) class MediumIntField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='mediumint'): super().__init__(name, ddl, primary_key, default) class IntField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='int'): super().__init__(name, ddl, primary_key, default) class BigIntField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='bigint'): super().__init__(name, ddl, primary_key, default) class FloatField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='float'): super().__init__(name, ddl, primary_key, default) class DoubleField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='double'): super().__init__(name, ddl, primary_key, default) class DecimalField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='decimal(19,2)'): super().__init__(name, ddl, primary_key, default) class CharStringField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='char(100)'): super().__init__(name, ddl, primary_key, default) class TinyBlobField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='tinyblob'): super().__init__(name, ddl, primary_key, default) class TinyTextField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='tinytext'): super().__init__(name, ddl, primary_key, default) class BlobField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='blob'): super().__init__(name, ddl, primary_key, default) class TextField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='text'): super().__init__(name, ddl, primary_key, default) class MediumBlobField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='mediumblob'): super().__init__(name, ddl, primary_key, default) class MediumTextField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='mediumtext'): super().__init__(name, ddl, primary_key, default) class LongBlobField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='longblob'): super().__init__(name, ddl, primary_key, default) class longTextField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='longtext'): super().__init__(name, ddl, primary_key, default) class VarBinaryField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='varbinary(100)'): super().__init__(name, ddl, primary_key, default) class BinaryField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='binary(100)'): super().__init__(name, ddl, primary_key, default) class DateField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='date'): super().__init__(name, ddl, primary_key, default) class TimeField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='time'): super().__init__(name, ddl, primary_key, default) class YearField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='year'): super().__init__(name, ddl, primary_key, default) class DateTimeField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='datetime'): super().__init__(name, ddl, primary_key, default) class TimeStampField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='timestamp'): super().__init__(name, ddl, primary_key, default) class BooleanField(Field): def __init__(self, name=None, primary_key=False, default=None, ddl='boolean'): super().__init__(name, ddl, primary_key, default)
[ "dongjiwukl@163.com" ]
dongjiwukl@163.com
23c8d69f239e68820d41f4185adcd5f0106ad42c
799a1bbafe9ceb6fcf6530d176633a7f97980dad
/rosExploration/rrt_exploration/scripts/functions.py
ff7a90d07e7e15a5893aa3a916f02fcd97deeea5
[ "MIT" ]
permissive
dingjianfeng/rosExplorationNew
e6598ed4b0907d7bc8740acf4ea05d8bae9a1524
53b8b6bcdd3372c5e6fbaecae9f66f266dcf70c0
refs/heads/master
2021-09-01T06:38:27.366634
2017-12-25T11:45:22
2017-12-25T11:45:22
115,333,542
0
0
null
null
null
null
UTF-8
Python
false
false
7,206
py
#!/usr/bin/env python #coding=utf-8 import rospy import tf from numpy import array import actionlib from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from nav_msgs.srv import GetPlan from geometry_msgs.msg import PoseStamped from numpy import floor from numpy.linalg import norm from numpy import inf #________________________________________________________________________________ class robot: goal = MoveBaseGoal() start = PoseStamped() end = PoseStamped() def __init__(self,name): self.assigned_point=[] self.name=name self.global_frame=rospy.get_param('~global_frame','/map') #by ding self.listener=tf.TransformListener() self.listener.waitForTransform(self.global_frame, '/base_footprint', rospy.Time(0),rospy.Duration(10.0)) #by ding 不知道这个self.name要不要去掉 cond=0; while cond==0: try: (trans,rot) = self.listener.lookupTransform(self.global_frame, '/base_footprint', rospy.Time(0)) #by ding cond=1 except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): cond==0 self.position=array([trans[0],trans[1]]) self.assigned_point=self.position self.client=actionlib.SimpleActionClient('/move_base', MoveBaseAction) #by ding self.client.wait_for_server() robot.goal.target_pose.header.frame_id=self.global_frame robot.goal.target_pose.header.stamp=rospy.Time.now() rospy.wait_for_service('/move_base_node/GlobalPlanner/make_plan') #by ding 学习move_base 了解/NavfnROS/make_plan self.make_plan = rospy.ServiceProxy('/move_base_node/GlobalPlanner/make_plan', GetPlan) #by ding robot.start.header.frame_id=self.global_frame robot.end.header.frame_id=self.global_frame #获取位置坐标 def getPosition(self): cond=0; while cond==0: try: (trans,rot) = self.listener.lookupTransform(self.global_frame, '/base_footprint', rospy.Time(0)) #by ding cond=1 except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): cond==0 self.position=array([trans[0],trans[1]]) return self.position #发送目标点 def sendGoal(self,point): robot.goal.target_pose.pose.position.x=point[0] robot.goal.target_pose.pose.position.y=point[1] robot.goal.target_pose.pose.orientation.w = 1.0 self.client.send_goal(robot.goal) self.assigned_point=array(point) rospy.loginfo("the functions.py send goal"+robot.goal) #by ding #取消目标点 def cancelGoal(self): self.client.cancel_goal() self.assigned_point=self.getPosition() def getState(self): return self.client.get_state() def makePlan(self,start,end): robot.start.pose.position.x=start[0] robot.start.pose.position.y=start[1] robot.end.pose.position.x=end[0] robot.end.pose.position.y=end[1] start=self.listener.transformPose('/map', robot.start) #by ding end=self.listener.transformPose('/map', robot.end) #by ding #plan=self.make_plan(start = start, goal = end, tolerance = 0.0) plan=self.make_plan(start = start, goal = end, tolerance = 0.1) #tolerance的单位是meter by ding rospy.loginfo("the functions.py makeplan") #by ding return plan.plan.poses #________________________________________________________________________________ def index_of_point(mapData,Xp): #个人理解,可能有偏差,坐标点的索引 resolution=mapData.info.resolution Xstartx=mapData.info.origin.position.x Xstarty=mapData.info.origin.position.y width=mapData.info.width Data=mapData.data index=int( ( floor((Xp[1]-Xstarty)/resolution)*width)+( floor((Xp[0]-Xstartx)/resolution) )) return index def point_of_index(mapData,i): #索引处点的坐标 y=mapData.info.origin.position.y+(i/mapData.info.width)*mapData.info.resolution x=mapData.info.origin.position.x+(i-(i/mapData.info.width)*(mapData.info.width))*mapData.info.resolution return array([x,y]) #________________________________________________________________________________ def informationGain(mapData,point,r): #计算点的信息量 infoGain=0; index=index_of_point(mapData,point) r_region=int(r/mapData.info.resolution) init_index=index-r_region*(mapData.info.width+1) for n in range(0,2*r_region+1): start=n*mapData.info.width+init_index end=start+2*r_region limit=((start/mapData.info.width)+2)*mapData.info.width for i in range(start,end+1): if (i>=0 and i<limit and i<len(mapData.data)): if(mapData.data[i]==-1 and norm(array(point)-point_of_index(mapData,i))<=r): infoGain+=1 return infoGain*(mapData.info.resolution**2) #________________________________________________________________________________ def discount(mapData,assigned_pt,centroids,infoGain,r): index=index_of_point(mapData,assigned_pt) r_region=int(r/mapData.info.resolution) init_index=index-r_region*(mapData.info.width+1) for n in range(0,2*r_region+1): start=n*mapData.info.width+init_index end=start+2*r_region limit=((start/mapData.info.width)+2)*mapData.info.width for i in range(start,end+1): if (i>=0 and i<limit and i<len(mapData.data)): for j in range(0,len(centroids)): current_pt=centroids[j] if(mapData.data[i]==-1 and norm(point_of_index(mapData,i)-current_pt)<=r and norm(point_of_index(mapData,i)-assigned_pt)<=r): infoGain[j]-=1 #this should be modified, subtract the area of a cell, not 1 return infoGain #________________________________________________________________________________ def pathCost(path): if (len(path)>0): i=len(path)/2 p1=array([path[i-1].pose.position.x,path[i-1].pose.position.y]) p2=array([path[i].pose.position.x,path[i].pose.position.y]) return norm(p1-p2)*(len(path)-1) else: return inf #________________________________________________________________________________ def unvalid(mapData,pt): index=index_of_point(mapData,pt) r_region=5 init_index=index-r_region*(mapData.info.width+1) for n in range(0,2*r_region+1): start=n*mapData.info.width+init_index end=start+2*r_region limit=((start/mapData.info.width)+2)*mapData.info.width for i in range(start,end+1): if (i>=0 and i<limit and i<len(mapData.data)): if(mapData.data[i]==1): return True return False #________________________________________________________________________________ def Nearest(V,x): n=inf i=0 for i in range(0,V.shape[0]): n1=norm(V[i,:]-x) if (n1<n): n=n1 result=i return result #________________________________________________________________________________ def Nearest2(V,x): n=inf result=0 for i in range(0,len(V)): n1=norm(V[i]-x) if (n1<n): n=n1 return i #________________________________________________________________________________ def gridValue(mapData,Xp): resolution=mapData.info.resolution Xstartx=mapData.info.origin.position.x Xstarty=mapData.info.origin.position.y width=mapData.info.width Data=mapData.data # returns grid value at "Xp" location #map data: 100 occupied -1 unknown 0 free index=( floor((Xp[1]-Xstarty)/resolution)*width)+( floor((Xp[0]-Xstartx)/resolution) ) if int(index) < len(Data): return Data[int(index)] else: return 100
[ "623395241@qq.com" ]
623395241@qq.com
c4bbebeeaa1fede9542e856ca68e24409905d33f
c0f808504dd3d7fd27c39f1503fbc14c1d37bf9f
/sources/scipy-scipy-414c1ab/scipy/io/tests/test_wavfile.py
266775ecd99e28e8010c480d95ff5fce9e266339
[]
no_license
georgiee/lip-sync-lpc
7662102d4715e4985c693b316a02d11026ffb117
e931cc14fe4e741edabd12471713bf84d53a4250
refs/heads/master
2018-09-16T08:47:26.368491
2018-06-05T17:01:08
2018-06-05T17:01:08
5,779,592
17
4
null
null
null
null
UTF-8
Python
false
false
2,146
py
import os import tempfile import warnings import numpy as np from numpy.testing import assert_equal, assert_, assert_raises, assert_array_equal from numpy.testing.utils import WarningManager from scipy.io import wavfile def datafile(fn): return os.path.join(os.path.dirname(__file__), 'data', fn) def test_read_1(): warn_ctx = WarningManager() warn_ctx.__enter__() try: warnings.simplefilter('ignore', wavfile.WavFileWarning) rate, data = wavfile.read(datafile('test-44100-le-1ch-4bytes.wav')) finally: warn_ctx.__exit__() assert_equal(rate, 44100) assert_(np.issubdtype(data.dtype, np.int32)) assert_equal(data.shape, (4410,)) def test_read_2(): rate, data = wavfile.read(datafile('test-8000-le-2ch-1byteu.wav')) assert_equal(rate, 8000) assert_(np.issubdtype(data.dtype, np.uint8)) assert_equal(data.shape, (800, 2)) def test_read_fail(): fp = open(datafile('example_1.nc')) assert_raises(ValueError, wavfile.read, fp) fp.close() def _check_roundtrip(rate, dtype, channels): fd, tmpfile = tempfile.mkstemp(suffix='.wav') try: os.close(fd) data = np.random.rand(100, channels) if channels == 1: data = data[:,0] data = (data*128).astype(dtype) wavfile.write(tmpfile, rate, data) rate2, data2 = wavfile.read(tmpfile) assert_equal(rate, rate2) assert_(data2.dtype.byteorder in ('<', '=', '|'), msg=data2.dtype) assert_array_equal(data, data2) finally: os.unlink(tmpfile) def test_write_roundtrip(): for signed in ('i', 'u'): for size in (1, 2, 4, 8): if size == 1 and signed == 'i': # signed 8-bit integer PCM is not allowed continue for endianness in ('>', '<'): if size == 1 and endianness == '<': continue for rate in (8000, 32000): for channels in (1, 2, 5): dt = np.dtype('%s%s%d' % (endianness, signed, size)) yield _check_roundtrip, rate, dt, channels
[ "georgios@kaleadis.de" ]
georgios@kaleadis.de
179abd03f2ae118cfb2b85da6360707ead06748a
1b10b46afdf24b4ce4f2d57e315e09e17c0a9c2b
/winding_helix.py
51d16cff03b2651355fadbdb7bd2a560ed49af5b
[]
no_license
tthtlc/sansagraphics
e6aad1541dabc85b3871e1890c9f79aa33055355
113e559fb128c93ed1f02155ec74e76878b86c37
refs/heads/master
2021-01-15T15:52:35.126301
2020-03-30T16:58:57
2020-03-30T16:58:57
15,507,431
2
1
null
null
null
null
UTF-8
Python
false
false
3,415
py
# Pygame/PyopenGL example by Bastiaan Zapf, Apr 2009 ### From http://python-opengl-examples.blogspot.sg/ # # Draw an helix, wiggle it pleasantly # # Keywords: Alpha Blending, Textures, Animation, Double Buffer from OpenGL.GL import * from OpenGL.GLU import * from math import * # trigonometry import pygame # just to get a display # get an OpenGL surface pygame.init() pygame.display.set_mode((800,600), pygame.OPENGL|pygame.DOUBLEBUF) # How to catch errors here? done = False t=0 while not done: t=t+1 # for fun comment out these two lines glClearColor(0.0, 0.0, 0.0, 1.0) glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) # Get a perspective at the helix glMatrixMode(GL_PROJECTION); glLoadIdentity() gluPerspective(90,1,0.01,1000) gluLookAt(sin(t/200.0)*3,sin(t/500.0)*3,cos(t/200.0)*3,0,0,0,0,1,0) # Draw the helix (this ought to be a display list call) glMatrixMode(GL_MODELVIEW) # get a texture (this ought not to be inside the inner loop) texture=glGenTextures( 1 ) glBindTexture( GL_TEXTURE_2D, texture ); glTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE ); # set sane defaults for a plethora of potentially uninitialized # variables glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) # a texture #pulse = sin(t/30)*0.5+0.5 # try this one pulse = 0 texdata=[[[0.0,0,1,1], [0.0,0,0,0], [0.0,1,0,1], [0.0,0,0,0]], [[0.0,0,0,0], [pulse,pulse,pulse,1], [pulse,pulse,pulse,1], [0.0,0,0,0]], [[0.0,1,0,1], [1,pulse,pulse,1], [pulse,pulse,0,1], [0.0,0,0,0]], [[0.0,0,0,0], [0.0,0,0,0], [0.0,0,0,0], [0.0,0,0,0]]]; glTexImage2Df(GL_TEXTURE_2D, 0,4,0,GL_RGBA, texdata) glEnable(GL_BLEND); glBlendFunc (GL_SRC_ALPHA, GL_ONE); # XXX Why GL_ONE? # alternatively: # glEnable(GL_DEPTH_TEST); glEnable( GL_TEXTURE_2D ); # use the texture glBindTexture( GL_TEXTURE_2D, texture ); # vertices & texture data glBegin(GL_TRIANGLE_STRIP); #pulse2 = 0.5 for i in range(0,100): r=5.0 # try other values - integers as well R=10.0 d=1 # try other values j=i #pulse2 += 0.5 if (i%3==0): glTexCoord2f(0,i); glVertex3f( cos(i/r)*cos(j/R) + (-2.5+i*0.05)*sin(j/R), (-2.5+i*0.05)*cos(j/R) - cos(i/r)*sin(j/R), sin(i/r)); elif (i%3==1): glTexCoord2f(1,i); glVertex3f( cos(i/r + 3.14/2)*cos(j/R) + (-2.5+i*0.05)*sin(j/R), (-2.5+i*0.05)*cos(j/R) - cos(i/r)*sin(j/R), sin(i/r + 3.14/1)); else: glTexCoord2f(2,i); glVertex3f( cos(i/r + 3.14/1)*cos(j/R) + (-2.5+i*0.05)*sin(j/R), (-2.5+i*0.05)*cos(j/R) - cos(i/r)*sin(j/R), sin(i/r+3.14/1)); # glVertex3f( cos(i/r+3.14)*pulse2, -2.5+i*0.05+d+pulse2*1, sin(i/r+3.14)*pulse2); glEnd(); glFlush() glDeleteTextures(texture) pygame.display.flip()
[ "htmldeveloper@gmail.com" ]
htmldeveloper@gmail.com
affeefebfe3fea12f782e19ec9b4436fcfec1e64
8489a961a13492fea2ef76f18b86fa2ecaec93c2
/web_app_interface/marfSite/manage.py
67388189c584ba2d010e526d7c135676b6f18c5e
[]
no_license
kavanomo/teamMarf
84ff8496488cc8f27a997fddbd550798ee6218d4
461d23144d26e8836e04e6c930a961fccef28465
refs/heads/master
2020-03-30T05:14:15.681749
2019-03-15T03:33:35
2019-03-15T03:33:35
150,788,570
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'marfSite.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
[ "robbie.windsor+git@gmail.com" ]
robbie.windsor+git@gmail.com
84eeb4e216661d1b5592535c6727d2131a0709a8
5c84c379978ac4c663d6193ea2e4e156f1fc0922
/hard/149_maxpoints_on_a_line.py
ed5bf69070d34a3ddba151cc7ec4590f1eb836f8
[]
no_license
nraghuveer/leetcode
a46483a9fd7f990410d6b9132c618e5d54baf9a7
ca045ce2c6d23fb8f92ea9871565b21cbdbeef19
refs/heads/master
2021-07-01T15:43:43.249587
2020-10-15T17:47:38
2020-10-15T17:47:38
180,434,748
0
0
null
null
null
null
UTF-8
Python
false
false
1,806
py
# https://leetcode.com/problems/max-points-on-a-line/ # using slope ? # if two points have same slope => colinear # calculate slope for n points with n - 1 points => O(pow(n,2)) => not good from collections import defaultdict from typing import List def gcd(x,y): while y: x, y = y, x % y return x class Solution: def maxPoints(self, points: List[List[int]]) -> int: """Get max points from given points that are on given lines""" if not points: return 0 slope_map = defaultdict(int) l = len(points) max_count = 0 for i in range(l): curmax = overlap = vertical = 0 for j in range(i+1, l): # if same point, track this to update count if points[i] == points[j]: overlap += 1 # to avoid ZeroDivisionError elif points[i][0] == points[j][0]: vertical += 1 else: x = (points[j][1] - points[i][1]) y = (points[j][0] - points[i][0]) g = gcd(x,y) x = x/g y = y/g slope_map[(x,y)] += 1 curmax = max(curmax, slope_map[(x,y)]) # incase, zerodivisionerror cases are more => consider vertical curmax = max(curmax, vertical) # clear the dict, important # as the these slope are related with the points[i] slope_map.clear() # update the global count. max_count = max(max_count, curmax + overlap + 1) return max_count if __name__ == "__main__": solution = Solution() assert solution.maxPoints([[1,1],[2,2],[3,3]]) == 3 print('done')
[ "raghuveernaraharisetti@gmail.com" ]
raghuveernaraharisetti@gmail.com
b9bb003ddc62e1d45453d22efe039b1eb758af9c
20ae4d697181fb9810e13213313f97071e28e8ef
/parse/__main__.py
5fa9d49de4d1330cc22a9f8513310b2c9a4cc402
[]
no_license
software-opal/nz-local-election
79afb0ad34a81f5be5018abe0062f0c159c4156a
904cd985ef9b225bf3c92c82fcbd66c68b1aa43d
refs/heads/master
2020-08-03T02:16:59.057271
2019-09-28T06:19:21
2019-09-28T06:19:21
211,593,768
0
0
null
2020-06-07T08:06:50
2019-09-29T02:57:20
Python
UTF-8
Python
false
false
2,985
py
import itertools import json import pathlib from . import ( COUNCILLORS_URL_FORMATS, DHB_URLS, MAYOR_URLS, REGIONAL_COUNCILLORS_URL_FORMATS, ) from .load import InvalidPage, parse from .visit import Requester ROOT = pathlib.Path(__file__).parent.parent DATA = ROOT / "public/data" LOOKUP = ROOT / "src/assets/data_lookup.json" COMBINED = DATA / "combined.json" def candidates_json_safe(candidates): return [c.as_dict() for c in candidates] class Data: def __init__(self): self.r = Requester() self.data = {} self.grouped = {} self.named = {} def write(self): LOOKUP.write_text( json.dumps( {"grouped": self.grouped, "named": self.named}, sort_keys=True, indent=2 ) ) COMBINED.write_text(json.dumps(self.data, sort_keys=True, indent=2)) def persist(self, url): print(f"Requesting {url}") base_url, response = self.r.request(url) print(f" Parsing {len(response)} bytes of response") election = parse(base_url, response) fname = f"{election.id}.json" self.data[election.id] = election.as_dict() self.grouped.setdefault(election.type, {}).setdefault(election.region, {})[ election.electorate ] = election.id self.named[election.id] = fname (DATA / fname).write_text( json.dumps(election.as_dict(), sort_keys=True, indent=2) ) print(f" Written data to {fname}\n") return election, fname def main(): DATA.mkdir(parents=True, exist_ok=True) d = Data() for url_group in [DHB_URLS, MAYOR_URLS]: for url in url_group: try: d.persist(url) except InvalidPage: print("Page didn't represent an election") pass d.write() for url_format_group in [ COUNCILLORS_URL_FORMATS, REGIONAL_COUNCILLORS_URL_FORMATS, ]: for format in url_format_group: old_election_region = None for i in itertools.count(1): url = format.format(i) try: election, _ = d.persist(url) except InvalidPage: print("Page didn't represent an election") break if old_election_region is not None: assert ( old_election_region == election.region ), f"{old_election_region} != {election.region}" old_election_region = election.region d.write() akl_local_board_format = "https://www.policylocal.nz/candidates/CB_076{:02}" for i in itertools.count(3): url = akl_local_board_format.format(i) try: d.persist(url) except InvalidPage: print("Page didn't represent an election") break d.write() if __name__ == "__main__": main()
[ "leesdolphin@gmail.com" ]
leesdolphin@gmail.com
34659a2890a4b19d6a7a1abb7a98dd6fbe5adce9
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Ablation4_ch016_ep003_7_10/Gather2_W_fixGood_C_change/train/pyr_4s/L6/step10_a.py
2202753791e6d77741009c3408d45023e128a019
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
140,332
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_4side_L6 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] import Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.W_w_M_to_C_pyr.pyr_4s.L6.step10_a as W_w_M_to_C_p20_pyr from Exps_7_v3.doc3d.Ablation4_ch016_ep003_7_10.I_w_M_to_W_pyr.pyr_3s.L5.step10_a import ch032_1side_6__2side_5__3side_2__ep010 as I_w_M_to_W_p20_3s_L5_Good ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_v2 use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wz").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wy").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Wx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cx").copy(), mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_Cy").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1.kong_model.model_describe) .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# # "1" 3 6 10 15 21 28 36 45 55 # side1 OK 1 ch032_1side_1__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s1__2s1__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_1__2side_1__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") # 1 "3" 6 10 15 21 28 36 45 55 # side2 OK 4 ch032_1side_2__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s1__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_1__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s2__2s2__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_2__2side_2__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") # 1 3 "6" 10 15 21 28 36 45 55 # side3 OK 10 ch032_1side_3__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s1__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_1__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s2__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_2__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s3__2s3__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_3__2side_3__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") # 1 3 6 "10" 15 21 28 36 45 55 # side4 OK 20 ch032_1side_4__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s1__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_1__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s2__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_2__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s3__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_3__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s4__2s4__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_4__2side_4__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") # 1 3 6 10 "15" 21 28 36 45 55 # side5 OK 35 ch032_1side_5__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s1__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_1__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s2__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_2__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s3__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_3__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s4__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_4__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s5__2s5__3s5__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_5__2side_5__3side_5_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") # 1 3 6 10 15 "21" 28 36 45 55 # side6 OK 56 ch032_1side_6__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s1__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_1__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s2__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_2__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s2__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_2__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s2__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_2__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s3__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_3__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s4__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_4__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s5__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s5__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s5__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s5__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s5__3s5__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_5__3side_5_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s5__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s5__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s5__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s5__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s5__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_5_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s6__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s6__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s6__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s6__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s6__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s6__2s6__3s6__4s6") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_6__2side_6__3side_6_4side_6, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") # 1 3 6 10 15 21 "28" 36 45 55 # side7 OK 84 ch032_1side_7__2side_1__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_1__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s1__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_1__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_2__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s2__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_2__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_2__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s2__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_2__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_2__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s2__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_2__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_3__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s3__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_3__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_3__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s3__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_3__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_3__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s3__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_3__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s3__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s3__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s3__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_3__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s4__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_4__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s5__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s5__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s5__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s5__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s5__3s5__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_5__3side_5_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s5__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s5__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s5__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s5__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s5__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_5_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s6__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s6__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s6__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s6__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s6__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s6__3s6__4s6") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_6__3side_6_4side_6, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_1_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_1_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s1__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_1_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_2_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s2__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_2_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_2_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s2__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_2_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s3__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s3__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s3__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_3_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s4__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s4__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s4__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s4__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_4_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s5__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s5__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s5__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s5__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s5__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_5_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s6__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s6__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s6__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s6__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s6__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s6__4s6") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_6_4side_6, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_1_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s7__4s1") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_1, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_2_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s7__4s2") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_2, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s7__4s3") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_3, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s7__4s4") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_4, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s7__4s5") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_5, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s7__4s6") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_6, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_and_1s6_2s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end="ch032_1s7__2s7__3s7__4s7") .set_train_args(epochs= 1) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_multi_model_reload_exp_builders_dict(W_to_Cx_Cy=W_w_M_to_C_p20_pyr.ch032_1side_7__2side_7__3side_7_4side_7, I_to_Wx_Wy_Wz=I_w_M_to_W_p20_3s_L5_Good).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
[ "s89334roy@yahoo.com.tw" ]
s89334roy@yahoo.com.tw
80540c5cae67b520926b96635014c4e26aefccd2
2f1f7d0711e054a96f10e849bdac5efcb45c4f39
/deps/v8/SConstruct
c7b6cdd9f20818e0de94545202ba89fd4188bb46
[ "BSD-3-Clause", "MIT" ]
permissive
skyformat99/lbtt
ef25d0054ec539d6d77e25e5b0ce8febc4fdc0e8
6cf6418a639cc339615c3ecc6e78e1939a9cc1cb
refs/heads/master
2021-05-27T18:13:03.711188
2009-09-12T01:17:41
2009-09-12T01:17:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
28,173
# Copyright 2008 the V8 project authors. All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import platform import re import sys import os from os.path import join, dirname, abspath from types import DictType, StringTypes root_dir = dirname(File('SConstruct').rfile().abspath) sys.path.append(join(root_dir, 'tools')) import js2c, utils # ANDROID_TOP is the top of the Android checkout, fetched from the environment # variable 'TOP'. You will also need to set the CXX, CC, AR and RANLIB # environment variables to the cross-compiling tools. ANDROID_TOP = os.environ.get('TOP') if ANDROID_TOP is None: ANDROID_TOP="" # TODO: Sort these issues out properly but as a temporary solution for gcc 4.4 # on linux we need these compiler flags to avoid crashes in the v8 test suite # and avoid dtoa.c strict aliasing issues if os.environ.get('GCC_VERSION') == '44': GCC_EXTRA_CCFLAGS = ['-fno-tree-vrp'] GCC_DTOA_EXTRA_CCFLAGS = ['-fno-strict-aliasing'] else: GCC_EXTRA_CCFLAGS = [] GCC_DTOA_EXTRA_CCFLAGS = [] ANDROID_FLAGS = ['-march=armv5te', '-mtune=xscale', '-msoft-float', '-fpic', '-mthumb-interwork', '-funwind-tables', '-fstack-protector', '-fno-short-enums', '-fmessage-length=0', '-finline-functions', '-fno-inline-functions-called-once', '-fgcse-after-reload', '-frerun-cse-after-loop', '-frename-registers', '-fomit-frame-pointer', '-fno-strict-aliasing', '-finline-limit=64', '-MD'] ANDROID_INCLUDES = [ANDROID_TOP + '/bionic/libc/arch-arm/include', ANDROID_TOP + '/bionic/libc/include', ANDROID_TOP + '/bionic/libstdc++/include', ANDROID_TOP + '/bionic/libc/kernel/common', ANDROID_TOP + '/bionic/libc/kernel/arch-arm', ANDROID_TOP + '/bionic/libm/include', ANDROID_TOP + '/bionic/libm/include/arch/arm', ANDROID_TOP + '/bionic/libthread_db/include', ANDROID_TOP + '/frameworks/base/include', ANDROID_TOP + '/system/core/include'] ANDROID_LINKFLAGS = ['-nostdlib', '-Bdynamic', '-Wl,-T,' + ANDROID_TOP + '/build/core/armelf.x', '-Wl,-dynamic-linker,/system/bin/linker', '-Wl,--gc-sections', '-Wl,-z,nocopyreloc', '-Wl,-rpath-link=' + ANDROID_TOP + '/out/target/product/generic/obj/lib', ANDROID_TOP + '/out/target/product/generic/obj/lib/crtbegin_dynamic.o', ANDROID_TOP + '/prebuilt/linux-x86/toolchain/arm-eabi-4.2.1/lib/gcc/arm-eabi/4.2.1/interwork/libgcc.a', ANDROID_TOP + '/out/target/product/generic/obj/lib/crtend_android.o']; LIBRARY_FLAGS = { 'all': { 'CPPDEFINES': [''], 'CPPPATH': [join(root_dir, 'src')], 'regexp:native': { 'CPPDEFINES': ['V8_NATIVE_REGEXP'] }, 'mode:debug': { 'CPPDEFINES': ['V8_ENABLE_CHECKS'] } }, 'gcc': { 'all': { 'CCFLAGS': ['$DIALECTFLAGS', '$WARNINGFLAGS'], 'CXXFLAGS': ['$CCFLAGS', '-fno-rtti', '-fno-exceptions'], }, 'mode:debug': { 'CCFLAGS': ['-g', '-O0'], 'CPPDEFINES': ['ENABLE_DISASSEMBLER', 'DEBUG'], 'os:android': { 'CPPDEFINES': ['ENABLE_DEBUGGER_SUPPORT'], 'CCFLAGS': ['-mthumb'] } }, 'mode:release': { 'CCFLAGS': ['-O3', '-fomit-frame-pointer', '-fdata-sections', '-ffunction-sections'], 'os:android': { 'CCFLAGS': ['-mthumb', '-Os'], 'CPPDEFINES': ['SK_RELEASE', 'NDEBUG', 'ENABLE_DEBUGGER_SUPPORT'] } }, 'os:linux': { 'CCFLAGS': ['-ansi'] + GCC_EXTRA_CCFLAGS, 'library:shared': { 'CPPDEFINES': ['V8_SHARED'], 'LIBS': ['pthread'] } }, 'os:macos': { 'CCFLAGS': ['-ansi', '-mmacosx-version-min=10.4'], }, 'os:freebsd': { 'CPPPATH' : ['/usr/local/include'], 'LIBPATH' : ['/usr/local/lib'], 'CCFLAGS': ['-ansi'], }, 'os:win32': { 'CCFLAGS': ['-DWIN32'], 'CXXFLAGS': ['-DWIN32'], }, 'os:android': { 'CPPDEFINES': ['ANDROID', '__ARM_ARCH_5__', '__ARM_ARCH_5T__', '__ARM_ARCH_5E__', '__ARM_ARCH_5TE__'], 'CCFLAGS': ANDROID_FLAGS, 'WARNINGFLAGS': ['-Wall', '-Wno-unused', '-Werror=return-type', '-Wstrict-aliasing=2'], 'CPPPATH': ANDROID_INCLUDES, }, 'arch:ia32': { 'CPPDEFINES': ['V8_TARGET_ARCH_IA32'], 'CCFLAGS': ['-m32'], 'LINKFLAGS': ['-m32'] }, 'arch:arm': { 'CPPDEFINES': ['V8_TARGET_ARCH_ARM'] }, 'simulator:arm': { 'CCFLAGS': ['-m32'], 'LINKFLAGS': ['-m32'] }, 'arch:x64': { 'CPPDEFINES': ['V8_TARGET_ARCH_X64'], 'CCFLAGS': ['-m64'], 'LINKFLAGS': ['-m64'], }, 'prof:oprofile': { 'CPPDEFINES': ['ENABLE_OPROFILE_AGENT'] } }, 'msvc': { 'all': { 'CCFLAGS': ['$DIALECTFLAGS', '$WARNINGFLAGS'], 'CXXFLAGS': ['$CCFLAGS', '/GR-', '/Gy'], 'CPPDEFINES': ['WIN32'], 'LINKFLAGS': ['/INCREMENTAL:NO', '/NXCOMPAT', '/IGNORE:4221'], 'CCPDBFLAGS': ['/Zi'] }, 'verbose:off': { 'DIALECTFLAGS': ['/nologo'], 'ARFLAGS': ['/NOLOGO'] }, 'arch:ia32': { 'CPPDEFINES': ['V8_TARGET_ARCH_IA32', '_USE_32BIT_TIME_T'], 'LINKFLAGS': ['/MACHINE:X86'], 'ARFLAGS': ['/MACHINE:X86'] }, 'arch:x64': { 'CPPDEFINES': ['V8_TARGET_ARCH_X64'], 'LINKFLAGS': ['/MACHINE:X64'], 'ARFLAGS': ['/MACHINE:X64'] }, 'mode:debug': { 'CCFLAGS': ['/Od', '/Gm'], 'CPPDEFINES': ['_DEBUG', 'ENABLE_DISASSEMBLER', 'DEBUG'], 'LINKFLAGS': ['/DEBUG'], 'msvcrt:static': { 'CCFLAGS': ['/MTd'] }, 'msvcrt:shared': { 'CCFLAGS': ['/MDd'] } }, 'mode:release': { 'CCFLAGS': ['/O2'], 'LINKFLAGS': ['/OPT:REF', '/OPT:ICF'], 'msvcrt:static': { 'CCFLAGS': ['/MT'] }, 'msvcrt:shared': { 'CCFLAGS': ['/MD'] }, 'msvcltcg:on': { 'CCFLAGS': ['/GL'], 'LINKFLAGS': ['/LTCG'], 'ARFLAGS': ['/LTCG'], } } } } V8_EXTRA_FLAGS = { 'gcc': { 'all': { 'CXXFLAGS': [], #['-fvisibility=hidden'], 'WARNINGFLAGS': ['-Wall', '-Werror', '-W', '-Wno-unused-parameter', '-Wnon-virtual-dtor'] }, 'os:win32': { 'WARNINGFLAGS': ['-pedantic', '-Wno-long-long'] }, 'os:linux': { 'WARNINGFLAGS': ['-pedantic'], 'library:shared': { 'soname:on': { 'LINKFLAGS': ['-Wl,-soname,${SONAME}'] } } }, 'os:macos': { 'WARNINGFLAGS': ['-pedantic'] }, 'disassembler:on': { 'CPPDEFINES': ['ENABLE_DISASSEMBLER'] } }, 'msvc': { 'all': { 'WARNINGFLAGS': ['/WX', '/wd4355', '/wd4800'] }, 'library:shared': { 'CPPDEFINES': ['BUILDING_V8_SHARED'], 'LIBS': ['winmm', 'ws2_32'] }, 'arch:ia32': { 'WARNINGFLAGS': ['/W3'] }, 'arch:x64': { 'WARNINGFLAGS': ['/W2'] }, 'arch:arm': { 'CPPDEFINES': ['V8_TARGET_ARCH_ARM'], # /wd4996 is to silence the warning about sscanf # used by the arm simulator. 'WARNINGFLAGS': ['/wd4996'] }, 'disassembler:on': { 'CPPDEFINES': ['ENABLE_DISASSEMBLER'] } } } MKSNAPSHOT_EXTRA_FLAGS = { 'gcc': { 'os:linux': { 'LIBS': ['pthread'], }, 'os:macos': { 'LIBS': ['pthread'], }, 'os:freebsd': { 'LIBS': ['execinfo', 'pthread'] }, 'os:win32': { 'LIBS': ['winmm', 'ws2_32'], }, }, 'msvc': { 'all': { 'CPPDEFINES': ['_HAS_EXCEPTIONS=0'], 'LIBS': ['winmm', 'ws2_32'] } } } DTOA_EXTRA_FLAGS = { 'gcc': { 'all': { 'WARNINGFLAGS': ['-Werror', '-Wno-uninitialized'], 'CCFLAGS': GCC_DTOA_EXTRA_CCFLAGS } }, 'msvc': { 'all': { 'WARNINGFLAGS': ['/WX', '/wd4018', '/wd4244'] } } } CCTEST_EXTRA_FLAGS = { 'all': { 'CPPPATH': [join(root_dir, 'src')], 'LIBS': ['$LIBRARY'] }, 'gcc': { 'all': { 'LIBPATH': [abspath('.')] }, 'os:linux': { 'LIBS': ['pthread'], }, 'os:macos': { 'LIBS': ['pthread'], }, 'os:freebsd': { 'LIBS': ['execinfo', 'pthread'] }, 'os:win32': { 'LIBS': ['winmm', 'ws2_32'] }, 'os:android': { 'CPPDEFINES': ['ANDROID', '__ARM_ARCH_5__', '__ARM_ARCH_5T__', '__ARM_ARCH_5E__', '__ARM_ARCH_5TE__'], 'CCFLAGS': ANDROID_FLAGS, 'CPPPATH': ANDROID_INCLUDES, 'LIBPATH': [ANDROID_TOP + '/out/target/product/generic/obj/lib'], 'LINKFLAGS': ANDROID_LINKFLAGS, 'LIBS': ['log', 'c', 'stdc++', 'm'], 'mode:release': { 'CPPDEFINES': ['SK_RELEASE', 'NDEBUG'] } }, }, 'msvc': { 'all': { 'CPPDEFINES': ['_HAS_EXCEPTIONS=0'], 'LIBS': ['winmm', 'ws2_32'] }, 'library:shared': { 'CPPDEFINES': ['USING_V8_SHARED'] }, 'arch:ia32': { 'CPPDEFINES': ['V8_TARGET_ARCH_IA32'] }, 'arch:x64': { 'CPPDEFINES': ['V8_TARGET_ARCH_X64'] }, } } SAMPLE_FLAGS = { 'all': { 'CPPPATH': [join(abspath('.'), 'include')], 'LIBS': ['$LIBRARY'], }, 'gcc': { 'all': { 'LIBPATH': ['.'], 'CCFLAGS': ['-fno-rtti', '-fno-exceptions'] }, 'os:linux': { 'LIBS': ['pthread'], }, 'os:macos': { 'LIBS': ['pthread'], }, 'os:freebsd': { 'LIBPATH' : ['/usr/local/lib'], 'LIBS': ['execinfo', 'pthread'] }, 'os:win32': { 'LIBS': ['winmm', 'ws2_32'] }, 'os:android': { 'CPPDEFINES': ['ANDROID', '__ARM_ARCH_5__', '__ARM_ARCH_5T__', '__ARM_ARCH_5E__', '__ARM_ARCH_5TE__'], 'CCFLAGS': ANDROID_FLAGS, 'CPPPATH': ANDROID_INCLUDES, 'LIBPATH': [ANDROID_TOP + '/out/target/product/generic/obj/lib'], 'LINKFLAGS': ANDROID_LINKFLAGS, 'LIBS': ['log', 'c', 'stdc++', 'm'], 'mode:release': { 'CPPDEFINES': ['SK_RELEASE', 'NDEBUG'] } }, 'arch:ia32': { 'CCFLAGS': ['-m32'], 'LINKFLAGS': ['-m32'] }, 'arch:x64': { 'CCFLAGS': ['-m64'], 'LINKFLAGS': ['-m64'] }, 'simulator:arm': { 'CCFLAGS': ['-m32'], 'LINKFLAGS': ['-m32'] }, 'mode:release': { 'CCFLAGS': ['-O2'] }, 'mode:debug': { 'CCFLAGS': ['-g', '-O0'] }, 'prof:oprofile': { 'LIBPATH': ['/usr/lib32', '/usr/lib32/oprofile'], 'LIBS': ['opagent'] } }, 'msvc': { 'all': { 'LIBS': ['winmm', 'ws2_32'] }, 'verbose:off': { 'CCFLAGS': ['/nologo'], 'LINKFLAGS': ['/NOLOGO'] }, 'verbose:on': { 'LINKFLAGS': ['/VERBOSE'] }, 'library:shared': { 'CPPDEFINES': ['USING_V8_SHARED'] }, 'prof:on': { 'LINKFLAGS': ['/MAP'] }, 'mode:release': { 'CCFLAGS': ['/O2'], 'LINKFLAGS': ['/OPT:REF', '/OPT:ICF'], 'msvcrt:static': { 'CCFLAGS': ['/MT'] }, 'msvcrt:shared': { 'CCFLAGS': ['/MD'] }, 'msvcltcg:on': { 'CCFLAGS': ['/GL'], 'LINKFLAGS': ['/LTCG'], } }, 'arch:ia32': { 'CPPDEFINES': ['V8_TARGET_ARCH_IA32'], 'LINKFLAGS': ['/MACHINE:X86'] }, 'arch:x64': { 'CPPDEFINES': ['V8_TARGET_ARCH_X64'], 'LINKFLAGS': ['/MACHINE:X64'] }, 'mode:debug': { 'CCFLAGS': ['/Od'], 'LINKFLAGS': ['/DEBUG'], 'msvcrt:static': { 'CCFLAGS': ['/MTd'] }, 'msvcrt:shared': { 'CCFLAGS': ['/MDd'] } } } } D8_FLAGS = { 'gcc': { 'console:readline': { 'LIBS': ['readline'] }, 'os:linux': { 'LIBS': ['pthread'], }, 'os:macos': { 'LIBS': ['pthread'], }, 'os:freebsd': { 'LIBS': ['pthread'], }, 'os:android': { 'LIBPATH': [ANDROID_TOP + '/out/target/product/generic/obj/lib'], 'LINKFLAGS': ANDROID_LINKFLAGS, 'LIBS': ['log', 'c', 'stdc++', 'm'], }, 'os:win32': { 'LIBS': ['winmm', 'ws2_32'], }, }, 'msvc': { 'all': { 'LIBS': ['winmm', 'ws2_32'] } } } SUFFIXES = { 'release': '', 'debug': '_g' } def Abort(message): print message sys.exit(1) def GuessToolchain(os): tools = Environment()['TOOLS'] if 'gcc' in tools: return 'gcc' elif 'msvc' in tools: return 'msvc' else: return None OS_GUESS = utils.GuessOS() TOOLCHAIN_GUESS = GuessToolchain(OS_GUESS) ARCH_GUESS = utils.GuessArchitecture() SIMPLE_OPTIONS = { 'toolchain': { 'values': ['gcc', 'msvc'], 'default': TOOLCHAIN_GUESS, 'help': 'the toolchain to use (' + TOOLCHAIN_GUESS + ')' }, 'os': { 'values': ['freebsd', 'linux', 'macos', 'win32', 'android'], 'default': OS_GUESS, 'help': 'the os to build for (' + OS_GUESS + ')' }, 'arch': { 'values':['arm', 'ia32', 'x64'], 'default': ARCH_GUESS, 'help': 'the architecture to build for (' + ARCH_GUESS + ')' }, 'regexp': { 'values': ['native', 'interpreted'], 'default': 'native', 'help': 'Whether to use native or interpreted regexp implementation' }, 'snapshot': { 'values': ['on', 'off', 'nobuild'], 'default': 'off', 'help': 'build using snapshots for faster start-up' }, 'prof': { 'values': ['on', 'off', 'oprofile'], 'default': 'off', 'help': 'enable profiling of build target' }, 'library': { 'values': ['static', 'shared'], 'default': 'static', 'help': 'the type of library to produce' }, 'soname': { 'values': ['on', 'off'], 'default': 'off', 'help': 'turn on setting soname for Linux shared library' }, 'msvcrt': { 'values': ['static', 'shared'], 'default': 'static', 'help': 'the type of Microsoft Visual C++ runtime library to use' }, 'msvcltcg': { 'values': ['on', 'off'], 'default': 'on', 'help': 'use Microsoft Visual C++ link-time code generation' }, 'simulator': { 'values': ['arm', 'none'], 'default': 'none', 'help': 'build with simulator' }, 'disassembler': { 'values': ['on', 'off'], 'default': 'off', 'help': 'enable the disassembler to inspect generated code' }, 'sourcesignatures': { 'values': ['MD5', 'timestamp'], 'default': 'MD5', 'help': 'set how the build system detects file changes' }, 'console': { 'values': ['dumb', 'readline'], 'default': 'dumb', 'help': 'the console to use for the d8 shell' }, 'verbose': { 'values': ['on', 'off'], 'default': 'off', 'help': 'more output from compiler and linker' } } def GetOptions(): result = Options() result.Add('mode', 'compilation mode (debug, release)', 'release') result.Add('sample', 'build sample (shell, process)', '') result.Add('env', 'override environment settings (NAME0:value0,NAME1:value1,...)', '') result.Add('importenv', 'import environment settings (NAME0,NAME1,...)', '') for (name, option) in SIMPLE_OPTIONS.iteritems(): help = '%s (%s)' % (name, ", ".join(option['values'])) result.Add(name, help, option.get('default')) return result def GetVersionComponents(): MAJOR_VERSION_PATTERN = re.compile(r"#define\s+MAJOR_VERSION\s+(.*)") MINOR_VERSION_PATTERN = re.compile(r"#define\s+MINOR_VERSION\s+(.*)") BUILD_NUMBER_PATTERN = re.compile(r"#define\s+BUILD_NUMBER\s+(.*)") PATCH_LEVEL_PATTERN = re.compile(r"#define\s+PATCH_LEVEL\s+(.*)") patterns = [MAJOR_VERSION_PATTERN, MINOR_VERSION_PATTERN, BUILD_NUMBER_PATTERN, PATCH_LEVEL_PATTERN] source = open(join(root_dir, 'src', 'version.cc')).read() version_components = [] for pattern in patterns: match = pattern.search(source) if match: version_components.append(match.group(1).strip()) else: version_components.append('0') return version_components def GetVersion(): version_components = GetVersionComponents() if version_components[len(version_components) - 1] == '0': version_components.pop() return '.'.join(version_components) def GetSpecificSONAME(): SONAME_PATTERN = re.compile(r"#define\s+SONAME\s+\"(.*)\"") source = open(join(root_dir, 'src', 'version.cc')).read() match = SONAME_PATTERN.search(source) if match: return match.group(1).strip() else: return '' def SplitList(str): return [ s for s in str.split(",") if len(s) > 0 ] def IsLegal(env, option, values): str = env[option] for s in SplitList(str): if not s in values: Abort("Illegal value for option %s '%s'." % (option, s)) return False return True def VerifyOptions(env): if not IsLegal(env, 'mode', ['debug', 'release']): return False if not IsLegal(env, 'sample', ["shell", "process"]): return False if not IsLegal(env, 'regexp', ["native", "interpreted"]): return False if env['os'] == 'win32' and env['library'] == 'shared' and env['prof'] == 'on': Abort("Profiling on windows only supported for static library.") if env['prof'] == 'oprofile' and env['os'] != 'linux': Abort("OProfile is only supported on Linux.") if env['os'] == 'win32' and env['soname'] == 'on': Abort("Shared Object soname not applicable for Windows.") if env['soname'] == 'on' and env['library'] == 'static': Abort("Shared Object soname not applicable for static library.") for (name, option) in SIMPLE_OPTIONS.iteritems(): if (not option.get('default')) and (name not in ARGUMENTS): message = ("A value for option %s must be specified (%s)." % (name, ", ".join(option['values']))) Abort(message) if not env[name] in option['values']: message = ("Unknown %s value '%s'. Possible values are (%s)." % (name, env[name], ", ".join(option['values']))) Abort(message) class BuildContext(object): def __init__(self, options, env_overrides, samples): self.library_targets = [] self.mksnapshot_targets = [] self.cctest_targets = [] self.sample_targets = [] self.d8_targets = [] self.options = options self.env_overrides = env_overrides self.samples = samples self.use_snapshot = (options['snapshot'] != 'off') self.build_snapshot = (options['snapshot'] == 'on') self.flags = None def AddRelevantFlags(self, initial, flags): result = initial.copy() toolchain = self.options['toolchain'] if toolchain in flags: self.AppendFlags(result, flags[toolchain].get('all')) for option in sorted(self.options.keys()): value = self.options[option] self.AppendFlags(result, flags[toolchain].get(option + ':' + value)) self.AppendFlags(result, flags.get('all')) return result def AddRelevantSubFlags(self, options, flags): self.AppendFlags(options, flags.get('all')) for option in sorted(self.options.keys()): value = self.options[option] self.AppendFlags(options, flags.get(option + ':' + value)) def GetRelevantSources(self, source): result = [] result += source.get('all', []) for (name, value) in self.options.iteritems(): source_value = source.get(name + ':' + value, []) if type(source_value) == dict: result += self.GetRelevantSources(source_value) else: result += source_value return sorted(result) def AppendFlags(self, options, added): if not added: return for (key, value) in added.iteritems(): if key.find(':') != -1: self.AddRelevantSubFlags(options, { key: value }) else: if not key in options: options[key] = value else: prefix = options[key] if isinstance(prefix, StringTypes): prefix = prefix.split() options[key] = prefix + value def ConfigureObject(self, env, input, **kw): if (kw.has_key('CPPPATH') and env.has_key('CPPPATH')): kw['CPPPATH'] += env['CPPPATH'] if self.options['library'] == 'static': return env.StaticObject(input, **kw) else: return env.SharedObject(input, **kw) def ApplyEnvOverrides(self, env): if not self.env_overrides: return if type(env['ENV']) == DictType: env['ENV'].update(**self.env_overrides) else: env['ENV'] = self.env_overrides def PostprocessOptions(options): # Adjust architecture if the simulator option has been set if (options['simulator'] != 'none') and (options['arch'] != options['simulator']): if 'arch' in ARGUMENTS: # Print a warning if arch has explicitly been set print "Warning: forcing architecture to match simulator (%s)" % options['simulator'] options['arch'] = options['simulator'] def ParseEnvOverrides(arg, imports): # The environment overrides are in the format NAME0:value0,NAME1:value1,... # The environment imports are in the format NAME0,NAME1,... overrides = {} for var in imports.split(','): if var in os.environ: overrides[var] = os.environ[var] for override in arg.split(','): pos = override.find(':') if pos == -1: continue overrides[override[:pos].strip()] = override[pos+1:].strip() return overrides def BuildSpecific(env, mode, env_overrides): options = {'mode': mode} for option in SIMPLE_OPTIONS: options[option] = env[option] PostprocessOptions(options) context = BuildContext(options, env_overrides, samples=SplitList(env['sample'])) # Remove variables which can't be imported from the user's external # environment into a construction environment. user_environ = os.environ.copy() try: del user_environ['ENV'] except KeyError: pass library_flags = context.AddRelevantFlags(user_environ, LIBRARY_FLAGS) v8_flags = context.AddRelevantFlags(library_flags, V8_EXTRA_FLAGS) mksnapshot_flags = context.AddRelevantFlags(library_flags, MKSNAPSHOT_EXTRA_FLAGS) dtoa_flags = context.AddRelevantFlags(library_flags, DTOA_EXTRA_FLAGS) cctest_flags = context.AddRelevantFlags(v8_flags, CCTEST_EXTRA_FLAGS) sample_flags = context.AddRelevantFlags(user_environ, SAMPLE_FLAGS) d8_flags = context.AddRelevantFlags(library_flags, D8_FLAGS) context.flags = { 'v8': v8_flags, 'mksnapshot': mksnapshot_flags, 'dtoa': dtoa_flags, 'cctest': cctest_flags, 'sample': sample_flags, 'd8': d8_flags } # Generate library base name. target_id = mode suffix = SUFFIXES[target_id] library_name = 'v8' + suffix version = GetVersion() if context.options['soname'] == 'on': # When building shared object with SONAME version the library name. library_name += '-' + version env['LIBRARY'] = library_name # Generate library SONAME if required by the build. if context.options['soname'] == 'on': soname = GetSpecificSONAME() if soname == '': soname = 'lib' + library_name + '.so' env['SONAME'] = soname # Build the object files by invoking SCons recursively. (object_files, shell_files, mksnapshot) = env.SConscript( join('src', 'SConscript'), build_dir=join('obj', target_id), exports='context', duplicate=False ) context.mksnapshot_targets.append(mksnapshot) # Link the object files into a library. env.Replace(**context.flags['v8']) context.ApplyEnvOverrides(env) if context.options['library'] == 'static': library = env.StaticLibrary(library_name, object_files) else: # There seems to be a glitch in the way scons decides where to put # PDB files when compiling using MSVC so we specify it manually. # This should not affect any other platforms. pdb_name = library_name + '.dll.pdb' library = env.SharedLibrary(library_name, object_files, PDB=pdb_name) context.library_targets.append(library) d8_env = Environment() d8_env.Replace(**context.flags['d8']) shell = d8_env.Program('d8' + suffix, object_files + shell_files) context.d8_targets.append(shell) for sample in context.samples: sample_env = Environment(LIBRARY=library_name) sample_env.Replace(**context.flags['sample']) context.ApplyEnvOverrides(sample_env) sample_object = sample_env.SConscript( join('samples', 'SConscript'), build_dir=join('obj', 'sample', sample, target_id), exports='sample context', duplicate=False ) sample_name = sample + suffix sample_program = sample_env.Program(sample_name, sample_object) sample_env.Depends(sample_program, library) context.sample_targets.append(sample_program) cctest_program = env.SConscript( join('test', 'cctest', 'SConscript'), build_dir=join('obj', 'test', target_id), exports='context object_files', duplicate=False ) context.cctest_targets.append(cctest_program) return context def Build(): opts = GetOptions() env = Environment(options=opts) Help(opts.GenerateHelpText(env)) VerifyOptions(env) env_overrides = ParseEnvOverrides(env['env'], env['importenv']) SourceSignatures(env['sourcesignatures']) libraries = [] mksnapshots = [] cctests = [] samples = [] d8s = [] modes = SplitList(env['mode']) for mode in modes: context = BuildSpecific(env.Copy(), mode, env_overrides) libraries += context.library_targets mksnapshots += context.mksnapshot_targets cctests += context.cctest_targets samples += context.sample_targets d8s += context.d8_targets env.Alias('library', libraries) env.Alias('mksnapshot', mksnapshots) env.Alias('cctests', cctests) env.Alias('sample', samples) env.Alias('d8', d8s) if env['sample']: env.Default('sample') else: env.Default('library') # We disable deprecation warnings because we need to be able to use # env.Copy without getting warnings for compatibility with older # version of scons. Also, there's a bug in some revisions that # doesn't allow this flag to be set, so we swallow any exceptions. # Lovely. try: SetOption('warn', 'no-deprecated') except: pass Build()
[ "lucas@l3f.org" ]
lucas@l3f.org
954591c4ca9b4b8c04d67211df68bdaf6f07a24a
fdf616efcf505843621f830879ca3ff44e296772
/myproject/accounts/tests/test_view_signup.py
2c58c0ae28411268e1e00d0e5742581d73da65ba
[]
no_license
dym0080/learn-django
5cbab1c9696638ffe47a3335cf33d7638fe77523
2d9450098f516ed887de0a953b0945ee5047d9f5
refs/heads/master
2022-05-05T12:00:23.127079
2020-01-09T07:52:37
2020-01-09T07:52:37
228,332,281
0
0
null
2022-04-22T22:58:00
2019-12-16T07:53:45
Python
UTF-8
Python
false
false
2,749
py
from django.urls import reverse, resolve from django.contrib.auth.models import User # from django.contrib.auth.forms import UserCreationForm from django.test import TestCase from ..views import signup from ..forms import SignUpForm class SignUpTests(TestCase): def setUp(self): url = reverse('signup') self.response = self.client.get(url) def test_signup_status_code(self): self.assertEqual(self.response.status_code, 200) def test_signup_url_resolves_signup_view(self): view = resolve('/accounts/signup/') self.assertEqual(view.func, signup) def test_csrf(self): self.assertContains(self.response, 'csrfmiddlewaretoken') def test_contains_form(self): form = self.response.context.get('form') self.assertIsInstance(form, SignUpForm) def test_form_inputs(self): ''' The view must contain five inputs: csrf, username, email, password1, password2 ''' self.assertContains(self.response, '<input', 5) self.assertContains(self.response, 'type="text"', 1) self.assertContains(self.response, 'type="email"', 1) self.assertContains(self.response, 'type="password"', 2) class SuccessfulSignUpTests(TestCase): def setUp(self): url = reverse('signup') data = { 'username': 'john', 'email': 'john@doe.com', 'password1': 'abcdef123456', 'password2': 'abcdef123456' } self.response = self.client.post(url, data) self.home_url = reverse('home') def test_redirection(self): ''' A valid form submission should redirect the user to the home page ''' self.assertRedirects(self.response, self.home_url) def test_user_creation(self): self.assertTrue(User.objects.exists()) def test_user_authentication(self): ''' Create a new request to an arbitrary page. The resulting response should now have a `user` to its context, after a successful sign up. ''' response = self.client.get(self.home_url) user = response.context.get('user') self.assertTrue(user.is_authenticated) class InvalidSignUpTests(TestCase): def setUp(self): url = reverse('signup') self.response = self.client.post(url, {}) def test_signup_status_code(self): ''' An invalid form submission should return to the same page ''' self.assertEqual(self.response.status_code, 200) def test_form_errors(self): form = self.response.context.get('form') self.assertTrue(form.errors) def test_dont_create_user(self): self.assertFalse(User.objects.exists())
[ "308960474@qq.com" ]
308960474@qq.com
0dd2cef3dc56c4a4f8d361b8c08ba8662f40f907
1fd5f886a0cf83d30e95792036ffbafc2d3d12fe
/utils/affichage.py
a6992e28990667e0b213ae69265871a69cc8ca05
[]
no_license
constance-scherer/PLDAC_Recommandation_analyse_sous_titres
9a2358bdf4b564bceccedd9588f7f4d2cb8e8e67
92106d497ffceb65df35d3884dec1072913ce8d1
refs/heads/master
2020-04-20T06:59:08.606057
2019-05-29T10:50:21
2019-05-29T10:50:21
168,699,380
4
0
null
2019-02-10T16:42:26
2019-02-01T13:11:40
Jupyter Notebook
UTF-8
Python
false
false
524
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pandas as pd def get_hist(df, x_axis, y_axis, titre, colour, font_size=None, horizontal=False): if horizontal: hist = df.plot.barh(x=x_axis, y=y_axis, color=colour, title =titre, fontsize = font_size, edgecolor = "none").get_figure() else: hist = df.plot.bar(x=x_axis, y=y_axis, color=colour, title =titre, fontsize = font_size, edgecolor = "none").get_figure() path_fig = "img/"+titre+'.png' hist.savefig(path_fig, bbox_inches="tight")
[ "amina.djelloul@hotmail.fr" ]
amina.djelloul@hotmail.fr
8dfab12c043371b1ac8d6e3cf94c374f2d82fae4
bff707c5c0046350cc5a8f3d76b37c8403059380
/mysite/blog/migrations/0015_auto_20180831_2354.py
afb7c4fe8e7fdba1178521619a9d5e686c9ae0e2
[]
no_license
0xArt/PersonalSite
4c54259e72e3ef5971ad85490ea536e45b7603da
02b092477fa69b78aa813398c6d18a79b94a7f97
refs/heads/master
2020-04-05T16:24:21.044320
2019-04-04T00:51:54
2019-04-04T00:51:54
157,010,755
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
# Generated by Django 2.0.6 on 2018-09-01 06:54 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0014_auto_20180831_2352'), ] operations = [ migrations.AlterField( model_name='post', name='summary', field=models.CharField(max_length=400), ), ]
[ "artinisagholian@gmail.com" ]
artinisagholian@gmail.com
117fc293b953a162050b93cb0bc575cb49d741c8
30846dedeb87be7ba9894427122f6263fc99e67f
/courseSelection/urls.py
32ccc9fee82c3d18a272e7fc0c3b235ddc065d70
[]
no_license
nslam/jwsys
003f2f6e5e4942182f6c2f9c35237a6127bc8015
c6958e128109cdffd830d69fc3a9d0bae0fac3d3
refs/heads/master
2021-01-23T05:56:05.059336
2019-03-09T15:25:54
2019-03-09T15:25:54
93,001,593
4
8
null
2017-07-05T02:10:46
2017-06-01T00:50:34
HTML
UTF-8
Python
false
false
1,825
py
from django.conf.urls import url from django.views.generic import RedirectView from .views import student_views, instructor_views, manager_views, index_views urlpatterns = [ url(r'^$', index_views.index), # manager url(r'^manager$', RedirectView.as_view(url='manager/index')), url(r'^manager/index$', manager_views.show_manager), url(r'^manager/curriculum$',manager_views.set_curriculum_demand), url(r'^manager/curriculum/result$',manager_views.curriculum_demand_result), url(r'^manager/manualselection$', manager_views.manual_selection), url(r'^manager/selectiontime$', manager_views.set_time), url(r'^manager/selectiontime/timeresult$', manager_views.time_result), url(r'^manager/selectiontime/confirmresult$', manager_views.confirm_result), url(r'^manager/setting$', manager_views.other_setting), url(r'^manager/setting/result$', manager_views.other_setting_result), url(r'^manager/manualselection$', manager_views.manual_selection), url(r'^manager/manualselection/result$', manager_views.selection_result), # instructor url(r'^instructor$', RedirectView.as_view(url='instructor/index')), url(r'^instructor/index$', instructor_views.index), url(r'^instructor/studentlist$', instructor_views.studentlist), # student url(r'^student$', RedirectView.as_view(url='student/index')), url(r'^student/index$', student_views.index), url(r'^student/curriculum$', student_views.curriculum), url(r'^student/selection$', student_views.selection), url(r'^student/selection/drop$', student_views.dropcourse), url(r'^student/selection/coursedetails$', student_views.coursedetails), url(r'^student/selection/priority$', student_views.selectionpriority), url(r'^student/selection/result$', student_views.selectionresult), url(r'^student/schedule$', student_views.schedule), ]
[ "hanfei.ren@foxmail.com" ]
hanfei.ren@foxmail.com
92ed6a36ac6f7be76144f403a841125f2a79c943
633c18a9e1931f937f7f91f05ce9749a4ac169f6
/work_with_pythest/tests/test_math.py
05d5b8bf6daeef827b40a6d56148b1075e179af4
[]
no_license
borko81/python_scripts
fb3ff79377f19233e18d20f4f150735cdbe52c29
4e8ed38550f3b90bc00c07605d7e92822b079206
refs/heads/master
2022-07-07T19:26:52.467714
2022-06-24T15:46:57
2022-06-24T15:46:57
224,904,971
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
import pytest def test_one_plus_one(): assert 1 + 1 == 2 def test_one_plust_two(): a = 1 b = 2 c = 3 assert a + b == c def test_division_by_zero(): with pytest.raises(ZeroDivisionError) as e: num = 1 / 0 assert 'division' in str(e.value)
[ "bstoilov81@gmail.com" ]
bstoilov81@gmail.com
236f08e901aa2811beb0f5bc228a88b8b65cf996
caf1d3bd64bbece382fcad9c38da28f8bfd7b6ea
/rules.py
7788b1ed5ac7c146bbc9bc09e96d0aaab5aa965a
[]
no_license
PavelPylypenko/kz_tagging
bf5dc192f7a3d552d9edda97ec141050204e33df
a057d3e8c26ba914bf59bc7063519e4be4090f28
refs/heads/master
2022-11-25T16:23:01.810210
2020-08-06T09:33:06
2020-08-06T09:33:06
285,529,922
0
0
null
null
null
null
UTF-8
Python
false
false
11,701
py
NNATENDS = ['шык', 'шы', 'пыр', 'мпыр', 'алар', 'ашыщ', 'лар', 'елер', 'ды', 'рдан', 'рлан', 'рсақ', 'қтар', 'ылар', 'ылык', 'нші', 'лік', 'сшы', 'пша', 'хана', 'ашы', 'ші', 'паз', 'лық', 'йлар', 'қсы', 'ылық', 'ндық', 'ім', 'ар', 'ас', 'кер', 'уші', 'шілер', 'рік', 'ктер', 'қша', 'пан', 'лшы', 'дыр', 'тыр', 'рған', 'қай', 'алар', 'ылар', 'ңғы', 'ылар', 'ырақ', 'тік', 'ңдар', 'лын', 'ншақ', 'най', 'қтар', 'гер', 'рлер', 'ылар', 'ңіз', 'зші', 'шлер', 'гер', 'рлер', 'пкер', 'рлер', 'лігі', 'тур', 'турлер', 'ші', 'ілер', 'ншық', 'ын', 'шілік', 'ылық', 'дар', 'лық', 'ылар', 'шы', 'тар', 'гер', 'герлер', 'лер', 'ханалар', 'ілеп', 'паз', 'ік', 'іктер', 'керткіш', 'ту', 'ірткі', 'еп', 'ептер', 'сіз', 'уас', 'керу', 'ім', 'імде', 'башы', 'елер', 'пенділер', 'бек', 'кқор', 'шіл', 'ктер', 'ағасы', 'сы', 'лар', 'улар', 'тау'] NNILENDS = ['мның', 'енің', 'рдың', 'дың'] NNBAENDS = ['да', 'те', 'та', 'нда', 'нде', 'ға', 'ге', 'қа', 'ке', 'на', 'не', 'а', 'е', 'тік', 'еге ырға', 'рға', 'йға', 'ыға', 'аға', 'шаға', 'сіз', 'мға', 'ға'] NNTAENDS = ['мды', 'ені', 'рды', 'ырды', 'тты', 'ңды', 'керту', 'қы'] NNDJAENDS = ['да', 'зға', 'рда', 'еде'] NNSHIENDS = ['дан', 'ден', 'тан', 'тен', 'нан', 'нен', 'здан', 'зда', 'еден', 'рдан'] NNKOENDS = ['бен', 'здар', 'ммен', 'емен', 'рдан', 'мен', 'лармен', 'пен', 'нен', 'рмен', 'тпен', 'ңге', 'менен', 'ммен', 'мен', 'тармен', 'ілермен', 'герлермен', 'басшылық', 'іпқону', 'пенен'] SUB_ONE_SUF = ('тар', 'тер', 'дар', 'дер', 'лар', 'лер') SUB_PLURAL_SUFFS = ('ның', 'нің', 'дың', 'дін', 'тың', 'тің', 'ға', 'ге', 'қа', 'ке', 'а', 'е', 'на', 'не', 'ны', 'н', 'ні', 'ды', 'ді', 'ты', 'ті', 'да', 'де', 'нда', 'нде', 'та', 'те', 'дан', ' ден', ' тан', ' тен', ' нан', ' нен', 'мен', ' менен', ' бен', ' бенен', ' пен', ' пенен') SUB_SUFFIXES = ('ғай', 'гей', 'гер', 'ғи', 'ғой', 'дас', 'дес', 'дік', 'дық', 'кер', 'кес', 'қай', 'қар', 'қи', 'қой', 'қор', 'лас', 'лес', 'ліқ', 'лық', 'ман', 'паз', 'пана', 'сақ', 'тас', 'тес', 'тік', 'тық', 'хана', 'ша', 'шақ', 'ше', 'шек', 'ші', 'шік', 'шы', 'шық', 'ақ', 'ба', 'бе', 'ғақ', 'ғаш', 'гек', 'гі', 'ғіш', 'ғы', 'ғыш', 'дақ', 'дек', 'ек', 'ік', 'ім', 'іс', 'іш', 'к', 'кі', 'кіш', 'қ', 'қаш', 'қы', 'қыш', 'лақ', 'лек', 'м', 'ма', 'мақ', 'ме', 'мек', 'па', 'пақ', 'пе', 'пек', 'с', 'тақ', 'тек', 'уік', 'уық', 'ш', 'ық', 'ым', 'ыс', 'ыш', 'герлік', 'гіштік', 'ғыштық', 'дастық', 'дестік', 'ділік', 'дылық', 'кеәтік', 'қорлық', 'ластық', 'лестік', 'лілік', 'лылық', 'паздық', 'сақтық', 'сіздік', 'сыздық', 'тастық', 'тестік', 'тілік', 'тылық', 'шақтық', 'шілдік', 'шілік', 'шылдық', 'шылық', 'жан', 'ке', 'қан', 'сымақ', 'тай', 'ш', 'ша', 'шақ', 'ше', 'шік', 'шық') SUB_ONE_l1 = ['а', 'у', 'н'] SUB_ONE_l2 = ['ға', 'ге', 'қа', 'ке', 'на', 'не', 'ны', 'ні', 'ды', 'ді', 'ты', 'ті', 'да', 'де', 'та', 'те', ] SUB_ONE_l3 = ['ның', 'нің', 'дың', 'дін', 'тың', 'тің', 'нда', 'нде', 'дан', 'ден', 'тан', 'тен', 'нан', 'нен', 'мен', 'бен', 'пен'] SUB_ONE_l5 = ['менен', 'бенен', 'пенен'] OBJ_SUFFIXES = ('ға', 'ге', 'қа', 'ке', 'а', 'е', 'на', 'не', 'ны', 'н', 'ні', 'ды', 'ді', 'ты', 'ті') OBJ_ENDS = ('тар', 'тер', 'дар', 'дер', 'лар', 'лер') PRED_A_STARTS = ('тұр', 'отыр', 'жатыр', 'жүр') PRED_A_SUFFIXES = ('біз', 'бін', 'быз', 'бын', 'ды', 'міз', 'мін', 'мыз', 'мын', 'піз', 'пің', 'пыз', 'пын', 'сіз', 'сіздер', 'сіндер', 'сің', 'сыз', 'сыздар', 'сың', 'сыңдар', 'ті', 'ты') PRED_A_ENDS = ('п', 'ып', 'іп') PRED_B_SUFFIXES = ('ap', 'ер', 'ыр', 'ір', 'а', 'е', 'й', 'и') PRED_B_SUFFIX_ENDS = ('біз', 'бін', 'быз', 'бын', 'ды', 'міз', 'мін', 'мыз', 'мын', 'піз', 'пің', 'пыз', 'пын', 'сіз', 'сіздер', 'сіндер', 'сің', 'сыз', 'сыздар', 'сың', 'сыңдар', 'ті', 'ты') PRED_C_SUFFIXES = ('ap', 'ep', 'ыр', 'ір') PRED_C_POSS_SUFFIXES = ('', 'біз', 'бін', 'быз', 'бын', 'ды', 'міз', 'мін', 'мыз', 'мын', 'піз', 'пің', 'пыз', 'пын', 'сіз', 'сіздер', 'сіндер', 'сің', 'сыз', 'сыздар', 'сың', 'сыңдар', 'ті', 'ты') PRED_C_ADD = ('еді', 'е') PRED_D_ADD = ('еді', 'екен') PRED_D_POSS_SUFFIXES = ('біз', 'бін', 'быз', 'бын', 'ды', 'міз', 'мін', 'мыз', 'мын', 'піз', 'пің', 'пыз', 'пын', 'сіз', 'сіздер', 'сіндер', 'сің', 'сыз', 'сыздар', 'сың', 'сыңдар', 'ті', 'ты') PRED_D_SUFFIXES = ('ді', 'дік', 'діқ', 'дім', 'дің', 'ды', 'дык', 'дық', 'дым', 'дың', 'қ', 'ті', 'тік', 'тім', 'тің', 'ты', 'тык', 'тық', 'тым', 'тың', 'а', 'ай', 'ал', 'ан', 'ар', 'арыс', 'ға', 'ғал', 'ғар', 'ғе', 'ге', 'гер', 'гі', 'гіз', 'гіздір', 'гіле', 'гір', 'гіт', 'ғы', 'ғыз', 'ғыздыр', 'ғызыл', 'ғыла', 'ғыр', 'ғыт', 'да', 'дан', 'дар', 'дас', 'дастыр', 'де', 'ден', 'дендір', 'дес', 'діг', 'дік', 'дір', 'діргіз', 'дық', 'дыр', 'дырғыз', 'дырыл', 'е', 'ей', 'ел', 'ен', 'ер', 'й', 'іг', 'іғ', 'ік', 'ікіс', 'іл', 'іла', 'ілде', 'ілу', 'імсіре', 'ін', 'індір', 'ініс', 'іну', 'іңкіре', 'ір', 'ірде', 'іре', 'ірей', 'іріс', 'ірке', 'іркен', 'ірқе', 'іс', 'ісу', 'іт', 'ке', 'кер', 'кіз', 'кіле', 'кір', 'қа', 'қал', 'қан', 'қар', 'қе', 'қур', 'қыз', 'қыла', 'қыла', 'қыр', 'л', 'ла', 'лан', 'ландыр', 'лас', 'ластыр', 'лат', 'ле', 'лен', 'лендір', 'лес', 'лестір', 'лет', 'ліг', 'лік', 'лікіс', 'лін', 'ліс', 'лқа', 'лу', 'лығ', 'лық', 'лын', 'лыс', 'мала', 'меле', 'мсіре', 'мсыра', 'н', 'ні', 'ніл', 'ніс', 'ныл', 'ныс', 'ңгіре', 'ңғыра', 'ңкіре', 'ңқыра', 'ңра', 'ңре', 'р', 'ра', 'ре', 'с', 'са', 'сан', 'се', 'сен', 'сет', 'сетіл', 'сі', 'сін', 'сіре', 'стір', 'стыр', 'сы', 'сын', 'сыра', 'т', 'та', 'тан', 'тандыр', 'тас', 'те', 'тен', 'тендір', 'тес', 'тік', 'ттыр', 'тығ', 'тығс', 'тығыс', 'тық', 'тыр', 'тырыл', 'ура', 'ші', 'шы', 'ығ', 'ығыс', 'ық', 'ықыс', 'ыл', 'ыла', 'ылда', 'ылу', 'ылыс', 'ымсыра', 'ын', 'ындыр', 'ыну', 'ыныс', 'ыр', 'ыра', 'ырай', 'ырқа', 'ырқан', 'ырла', 'ыс', 'ысу', 'ыт', 'азы', 'ақта', 'ал', 'ала', 'аңғыра', 'аура', 'бала', 'бе', 'беле', 'би', 'бі', 'бы', 'дала', 'ди', 'ді', 'ды', 'екте', 'ел', 'еңгіре', 'еуре', 'жи', 'жіре', 'жыра', 'зы', 'і', 'ін', 'ірей', 'іс', 'іт', 'қи', 'лі', 'лы', 'ма', 'мала', 'меле', 'ми', 'мсіре', 'мсыра', 'ңра', 'ңре', 'палапеле', 'пи', 'пі', 'пы', 'ра', 'ре', 'си', 'сіре', 'сый', 'сыра', 'т', 'ти', 'ті', 'ты', 'усіре', 'усыра', 'ши', 'ші', 'шы', 'ы', 'ын', 'ыра', 'ырай', 'ыс', 'ыт') PRED_SUFFIXES = ('ді', 'дік', 'діқ', 'дім', 'дің', 'ды', 'дык', 'дық', 'дым', 'дың', 'қ', 'ті', 'тік', 'тім', 'тің', 'ты', 'тык', 'тық', 'тым', 'тың', 'а', 'ай', 'ал', 'ан', 'ар', 'арыс', 'ға', 'ғал', 'ғар', 'ғе', 'ге', 'гер', 'гі', 'гіз', 'гіздір', 'гіле', 'гір', 'гіт', 'ғы', 'ғыз', 'ғыздыр', 'ғызыл', 'ғыла', 'ғыр', 'ғыт', 'да', 'дан', 'дар', 'дас', 'дастыр', 'де', 'ден', 'дендір', 'дес', 'діг', 'дік', 'дір', 'діргіз', 'дық', 'дыр', 'дырғыз', 'дырыл', 'е', 'ей', 'ел', 'ен', 'ер', 'й', 'іг', 'іғ', 'ік', 'ікіс', 'іл', 'іла', 'ілде', 'ілу', 'імсіре', 'ін', 'індір', 'ініс', 'іну', 'іңкіре', 'ір', 'ірде', 'іре', 'ірей', 'іріс', 'ірке', 'іркен', 'ірқе', 'іс', 'ісу', 'іт', 'ке', 'кер', 'кіз', 'кіле', 'кір', 'қа', 'қал', 'қан', 'қар', 'қе', 'қур', 'қыз', 'қыла', 'қыла', 'қыр', 'л', 'ла', 'лан', 'ландыр', 'лас', 'ластыр', 'лат', 'ле', 'лен', 'лендір', 'лес', 'лестір', 'лет', 'ліг', 'лік', 'лікіс', 'лін', 'ліс', 'лқа', 'лу', 'лығ', 'лық', 'лын', 'лыс', 'мала', 'меле', 'мсіре', 'мсыра', 'н', 'ні', 'ніл', 'ніс', 'ныл', 'ныс', 'ңгіре', 'ңғыра', 'ңкіре', 'ңқыра', 'ңра', 'ңре', 'р', 'ра', 'ре', 'с', 'са', 'сан', 'се', 'сен', 'сет', 'сетіл', 'сі', 'сін', 'сіре', 'стір', 'стыр', 'сы', 'сын', 'сыра', 'т', 'та', 'тан', 'тандыр', 'тас', 'те', 'тен', 'тендір', 'тес', 'тік', 'ттыр', 'тығ', 'тығс', 'тығыс', 'тық', 'тыр', 'тырыл', 'ура', 'ші', 'шы', 'ығ', 'ығыс', 'ық', 'ықыс', 'ыл', 'ыла', 'ылда', 'ылу', 'ылыс', 'ымсыра', 'ын', 'ындыр', 'ыну', 'ыныс', 'ыр', 'ыра', 'ырай', 'ырқа', 'ырқан', 'ырла', 'ыс', 'ысу', 'ыт', 'азы', 'ақта', 'ал', 'ала', 'аңғыра', 'аура', 'бала', 'бе', 'беле', 'би', 'бі', 'бы', 'дала', 'ди', 'ді', 'ды', 'екте', 'ел', 'еңгіре', 'еуре', 'жи', 'жіре', 'жыра', 'зы', 'і', 'ін', 'ірей', 'іс', 'іт', 'қи', 'лі', 'лы', 'ма', 'мала', 'меле', 'ми', 'мсіре', 'мсыра', 'ңра', 'ңре', 'палапеле', 'пи', 'пі', 'пы', 'ра', 'ре', 'си', 'сіре', 'сый', 'сыра', 'т', 'ти', 'ті', 'ты', 'усіре', 'усыра', 'ши', 'ші', 'шы', 'ы', 'ын', 'ыра', 'ырай', 'ыс', 'ыт', 'ған', 'ген', 'қан', 'кен', 'қон', 'ға', 'ге', 'қа', 'ке', 'атын', 'етін', 'йтын', 'йтін')
[ "pavlo.pylypenko@anvileight.com" ]
pavlo.pylypenko@anvileight.com
c9830ab4f029b375f6bd3a3f24a0a151fc6d831a
0454d50b12960ef3a4a1f101f6d3bee585c7cfe9
/tests/parser/test_lieshu.py
99032d9cec5ead06d147eba826352df9a8959c42
[]
no_license
Syhen/hmqf_crawler_hy
7a99c05d1ac87bc293872aeb5efec450db3fb689
80508040340d1c5a9fd5192e2f5f623fd77cac08
refs/heads/master
2021-09-19T23:31:38.730466
2018-08-01T09:51:40
2018-08-01T09:51:40
111,872,551
1
3
null
2018-01-05T10:07:00
2017-11-24T03:36:46
Python
UTF-8
Python
false
false
1,586
py
# -*- coding: utf-8 -*- """ create on 2017-11-27 上午11:15 author @heyao """ import json from nose.tools import assert_list_equal, assert_is_instance, assert_dict_equal, assert_equal from content_market.parser.lieshu import Lieshu class TestLieshu(object): def setUp(self): self.lieshu = Lieshu() def tear_down(self): pass def test_chapter_list(self): with open('parser/data/lieshu/book_detail.html', 'r') as f: content = f.read().decode('utf-8') with open('parser/data/lieshu/chapters.json', 'r') as f: real_chapters = json.load(f) url = 'http://www.lieshu.cc' chapters = self.lieshu.parse_chapter_list(content, url) assert_is_instance(chapters, type((i for i in (1,)))) assert_list_equal(list(chapters), real_chapters) def test_chapter_content(self): with open('parser/data/lieshu/chapter_content.html', 'r') as f: content_page = f.read().decode('utf-8') with open('parser/data/lieshu/chapter_content.txt', 'r') as f: content = f.read().decode('utf-8') assert_equal(content, self.lieshu.parse_content(content_page)) def test_book_detail(self): with open('parser/data/lieshu/book_detail.html', 'r') as f: content = f.read().decode('utf-8') with open('parser/data/lieshu/book_detail.json', 'r') as f: book_detail = json.load(f) url = 'http://www.lieshu.cc/2/2732/' info = self.lieshu.parse_detail(content, url) assert_dict_equal(book_detail, dict(info))
[ "lushangkun1228@hotmail.com" ]
lushangkun1228@hotmail.com
db93795161562c704ef128162efea62145d2f060
0b80b985d83f9999658f0039472af20eec97f60d
/dl_code.py
b7742e3308dd4d4b5a68b20cf86e523350536631
[]
no_license
sahilm142/imdb-reviews-analysis
83955edc362fea056b5b01270f0936118d9d6da5
0f19fd0d02c3b734936b14f569d85f5a47e16c53
refs/heads/master
2020-05-15T12:18:33.109597
2019-04-19T20:38:03
2019-04-19T20:38:03
182,245,570
0
0
null
null
null
null
UTF-8
Python
false
false
2,094
py
# -*- coding: utf-8 -*- """ Created on Thu Mar 7 11:30:32 2019 @author: Sahil """ import numpy as np import pandas as pd import csv def create_dataset(folder_name,type_rev): ''' Column names 0: Type of review from top 250s 1: TV 2: Movies 1: Serial no of type 0 in top 250 2: Rating of review 3: Review 4: Sentiment Score (1-4: Negative->0 and 7-10: Positive-> 1) ''' for j in range(1,251): for i in [1,2,3,4,7,8,9,10]: try: datas = open(folder_name+"/"+str(j)+"/"+str(i)+".txt","r") df = pd.read_csv(datas,sep='\n',header=None) #datas = open("Data/"+str(j)+"/summary/"+str(i)+".txt","r") #df_summ = pd.read_csv(datas,sep='\n',header=None) except: print("Token {0}:{1}".format(j,i)) continue with open(folder_name+'.csv', 'a') as csvfile: k=0 while k<len(df): try: csv_writer = csv.writer(csvfile, delimiter=',') if i<5: csv_writer.writerow([type_rev,j,i,df[0][k],0]) else: csv_writer.writerow([type_rev,j,i,df[0][k],1]) k+=1 except: print("{0} {1} {2} ".format(j,i,len(df))) break # Review type 1: TV 2: MOVIES create_dataset("tv_250",1) create_dataset("movies_250",2) data_tv = pd.read_csv("tv_250.csv",header=None,encoding="latin-1") data_movies = pd.read_csv("movies_250.csv",header=None,encoding="latin-1") data = pd.concat([data_tv, data_movies]) # Reviews reviews = data.iloc[:,3].values for i in range(len(reviews)): with open("final_data/reviews.txt","a",encoding="latin-1") as f: f.writelines(reviews[i]+"\n") # Labels labels = data.iloc[:,4].values for i in range(len(labels)): with open("final_data/labels.txt","a") as f: f.writelines(labels[i]+"\n")
[ "sahil.mansoori.143@gmail.com" ]
sahil.mansoori.143@gmail.com
7373cab884ab98deb78bcd0b60f131314c4adecb
42a5c898a3a750c54dc746429e306b9f40a8638e
/pizza/orders/admin.py
bd3ee529187b49a87581f033cfc17e3d0e95696a
[]
no_license
selbieh/Pizza
16f4198714b88ad93f354e6c0eb98d92a19e364b
c10bd78b1318d7e81128e66fa67d09241618e00d
refs/heads/master
2022-05-18T04:25:46.431748
2020-01-13T13:45:59
2020-01-13T13:45:59
233,557,658
0
0
null
2022-04-22T22:59:33
2020-01-13T09:24:18
Python
UTF-8
Python
false
false
120
py
from django.contrib import admin from .models import orderPizzaItem,order admin.site.register([orderPizzaItem,order])
[ "selbieh@gmail.com" ]
selbieh@gmail.com
f7c3fccd2351d12f60914ebd2d253e3434834656
48a29c558eba558cff4c40171d14ae92a29bccaa
/matrix/zero_matrix.py
d8982f5c0e6ab831d934c5118283c2e7cef71fb4
[]
no_license
gammaseeker/DSA_Python
ea0a3cb526d7f71136c9a6134be0947c9be65ab0
70633cb7b53dbe628e7edd0fb2b6973872f90e50
refs/heads/master
2023-07-07T02:25:50.548688
2021-08-10T20:00:56
2021-08-10T20:00:56
196,867,646
0
0
null
null
null
null
UTF-8
Python
false
false
1,237
py
def zero_matrix(matrix): # Check if top row has 0 row_zero = False for col in range(0, len(matrix[0])): if matrix[0][col] == 0: row_zero = True # Check if first col has 0 col_zero = False for row in range(0, len(matrix)): if matrix[row][0] == 0: col_zero = True # Look for zeros and mark them in first row,col if len(matrix) > 1 and len(matrix[0]) > 1: for row in range(1, len(matrix)): for col in range(1, len(matrix[0])): if matrix[row][col] == 0: matrix[0][col] = 0 matrix[row][0] = 0 # Insert the zeros if len(matrix) > 1 and len(matrix[0]) > 1: for row in range(1, len(matrix)): for col in range(1, len(matrix[0])): if matrix[0][col] == 0 or matrix[row][0] == 0: matrix[row][col] = 0 if row_zero: for col in range(0, len(matrix[0])): matrix[0][col] = 0 if col_zero: for row in range(0, len(matrix)): matrix[row][0] = 0 test1 = [[1, 1, 1], [1, 0, 1], [1, 1, 1]] test2 = [[0,1,2,0],[3,4,5,2],[1,3,1,5]] zero_matrix(test1) print(test1) zero_matrix(test2) print(test2)
[ "jjiemjitpolchai9540@bths.edu" ]
jjiemjitpolchai9540@bths.edu
af01032059305357b2406966e9ed3d432d2a7f77
0be6bb93eda9c8fb1798bd99f15ef4acb04fc504
/src/pe0026.py
61df838294b1fd130e79832d9c2ff856ba97bc98
[]
no_license
neysene/project-euler
d7f9ec8c3a46fd7fd61eec4044632e6166146337
79f9170482000328dcddb4a34701b75ab8209638
refs/heads/master
2021-01-10T07:03:55.054443
2016-01-29T05:30:40
2016-01-29T05:30:40
49,287,376
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
if __name__ == '__main__': maxx, keep = 1, 3 for i in xrange(2, 1000): num, denom, flag = 10, i, True a = [] while flag: k = num%denom if k == 0: break elif k in a: if len(a) > maxx: maxx = len(a) keep = i break else: a.append(k) num = (k) * 10 print keep
[ "ismailgonul@gmail.com" ]
ismailgonul@gmail.com
1c90d3231346ed0d9f466ab115158842a74a22cb
af73bf48ac21f0cdbfe1dffc9fba09172dbcfd4a
/youtube_parser.py
2a9ae0a5a08ce1e77239d36f9b8adb55521b33c4
[ "MIT" ]
permissive
cborao/youtube-xml-parser
2d92e57d3d23339f9da74d90cfd7505dc75eacf3
0ed6377cf39ba59ec762589cb1f6399cb5786081
refs/heads/master
2023-06-05T10:10:45.294835
2021-06-22T16:55:12
2021-06-22T16:55:12
379,341,177
0
0
null
null
null
null
UTF-8
Python
false
false
2,324
py
#!/usr/bin/python3 # # Simple XML parser for YouTube XML channels # César Borao Moratinos # # Based on "ytparser.py" code: # # Jesus M. Gonzalez-Barahona # jgb @ gsyc.es # SARO and SAT subjects (Universidad Rey Juan Carlos) # 2020 # # The input is a valid channel ID. The parser produces a HTML document in standard output, with # the list of videos on the channel # from urllib.error import URLError from xml.sax.handler import ContentHandler from xml.sax import make_parser import sys import urllib.request videos = "" class YTHandler(ContentHandler): def __init__(self): self.inEntry = False self.inContent = False self.content = "" self.title = "" self.link = "" def startElement(self, name, attrs): if name == 'entry': self.inEntry = True elif self.inEntry: if name == 'title': self.inContent = True elif name == 'link': self.link = attrs.get('href') def endElement(self, name): global videos if name == 'entry': self.inEntry = False videos = videos \ + " <li><a href='" + self.link + "'>" \ + self.title + "</a></li>\n" elif self.inEntry: if name == 'title': self.title = self.content self.content = "" self.inContent = False def characters(self, chars): if self.inContent: self.content = self.content + chars # Loading parser and driver Parser = make_parser() Parser.setContentHandler(YTHandler()) # --- Main prog if __name__ == "__main__": PAGE = """ <!DOCTYPE html> <html lang="en"> <body> <h1>Youtube channel contents:</h1> <ul> {videos} </ul> </body> </html> """ if len(sys.argv) < 2: print("Usage: python youtube_parser.py <channel id>") print(" <channel id>: The unique ID of a youtube channel") sys.exit(1) # Reading the channel's xml file try: xmlFile = urllib.request.urlopen('https://www.youtube.com/feeds/videos.xml?channel_id=' + sys.argv[1]) Parser.parse(xmlFile) page = PAGE.format(videos=videos) print(page) except URLError: print("Introduce a valid channel Id")
[ "c.borao.2017@alumnos.urjc.es" ]
c.borao.2017@alumnos.urjc.es
40c19d84fb25f6fed0b4af8ac7f99c567eff0950
0d86664dd973242fdf895e515fe8df5847c03980
/analyze/extensions/com.castsoftware.html5.2.0.8-funcrel/js_file_filters.py
977bcb983f010c69e2264b2241d0ef05da06bb99
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain" ]
permissive
neel7h/engineering
2de1ed914be924aabf7d3133c28efd250fc08e13
4afd87d1700a34d662453860526aef5ba1201268
refs/heads/master
2022-02-18T06:32:43.532951
2019-10-03T08:41:39
2019-10-03T08:41:39
212,519,749
0
0
null
null
null
null
UTF-8
Python
false
false
9,701
py
''' Created on 26 nov. 2014 @author: iboillon ''' import os import json import re import cast.analysers from cast.application import open_source_file # @UnresolvedImport import traceback class FileFilter: def __init__(self): jsonPath = os.path.abspath(os.path.join(os.path.dirname(__file__), 'filters.json')) self.filters = json.loads(open_source_file(jsonPath).read()) self.last_matches_result = None def get_last_result(self): return self.last_matches_result if self.last_matches_result else '' def matches(self, filename, css = False): self.last_matches_result = None fname = filename.replace(os.sep, '/') for _filter in [ _filter for _filter in self.filters if _filter['type'] == 'FilePath' ]: pattern = _filter['value'].upper() if css and pattern.endswith(".JS"): pattern = pattern[0:-3] + '.CSS' if self.match_string(pattern, fname.upper()): self.last_matches_result = 'filepath matches pattern ' + pattern return True if filename.endswith('.cshtml.html'): # we skip .cshtml.html files because they are generated from .cshtml files cshtmlFilepath = filename[:-5] if os.path.isfile(cshtmlFilepath): self.last_matches_result = 'generated from .cshtml file' return True return False # matches a pattern token containing one or several stars with a string # A pattern token does not contain /. # Example: **/*toto*/** contains 3 pattern tokens: **, *toto* and ** def matches_token_with_star(self, patternToken, fnameToken): vals = patternToken.split('*') valsFound = [] oneValueNotFound = False l = len(vals) cmpt = 0 for val in vals: if val: if cmpt == 0: if not fnameToken.startswith(val): valsFound.append(False) oneValueNotFound = True else: valsFound.append(True) elif cmpt == l-1: if not fnameToken.endswith(val): valsFound.append(False) oneValueNotFound = True else: valsFound.append(True) else: if not val in fnameToken: valsFound.append(False) oneValueNotFound = True else: valsFound.append(True) else: valsFound.append(True) cmpt += 1 if not oneValueNotFound: # check that there are no / between matches i = 0 ok = True while i < l-1: middle = fnameToken[len(vals[i]):len(fnameToken)-len(vals[i+1])] if '/' in middle: ok = False i += 1 if ok: return True return False # matches a pattern corresponding to a file path with a string # Example: **/*toto*/** def match_string(self, pattern, fname): patternTokens = pattern.split('/') fnameTokens = fname.split('/') cmptFname = len(fnameTokens) - 1 doubleStarJustPassed = False for patternToken in reversed(patternTokens): if patternToken == '**': doubleStarJustPassed = True continue starPresent = False if '*' in patternToken: starPresent = True if doubleStarJustPassed: ok = False while cmptFname >= 0: fnameToken = fnameTokens[cmptFname] cmptFname -= 1 if not starPresent: if fnameToken == patternToken: ok = True break else: if self.matches_token_with_star(patternToken, fnameToken): ok = True break if not ok and cmptFname < 0: return False else: fnameToken = fnameTokens[cmptFname] if not starPresent: if not fnameToken == patternToken: return False else: if not self.matches_token_with_star(patternToken, fnameToken): return False cmptFname -= 1 doubleStarJustPassed = False if cmptFname >= 0 and patternTokens[0] != '**': return False return True class JSFileFilter(FileFilter): def __init__(self): FileFilter.__init__(self) def match_file(self, filename, bUTF8): nbLongLines = 0 maxLine = 0 nLine = 0 try: with open_source_file(filename) as f: for line in f: if nLine <= 15: for _filter in [ _filter for _filter in self.filters if _filter['type'] == 'FileContent' ]: try: if re.search(_filter['value'], line): self.last_matches_result = 'pattern found in file : ' + _filter['value'] return True except: cast.analysers.log.debug('Internal issue when filtering file: ' + str(filename) + ' line ' + str(nLine)) cast.analysers.log.debug(str(traceback.format_exc())) nLine += 1 l = len(line) if l > 400: nbLongLines += 1 if l > maxLine: maxLine = l except: cast.analysers.log.debug('Internal issue when filtering file: ' + str(filename)) cast.analysers.log.debug(str(traceback.format_exc())) # we check is the file can be a minified file if nLine == 0 or nbLongLines / nLine > 0.5 or (nbLongLines / nLine > 0.2 and maxLine > 10000): self.last_matches_result = 'minified file' return True return False def matches(self, filename): if FileFilter.matches(self, filename): return True try: return self.match_file(filename, True) except UnicodeDecodeError: return self.match_file(filename, False) return False class CssFileFilter(FileFilter): def __init__(self): FileFilter.__init__(self) def match_file(self, filename, bUTF8): nLine = 0 try: with open_source_file(filename) as f: for line in f: if nLine <= 15: for _filter in [ _filter for _filter in self.filters if _filter['type'] == 'CssFileContent' ]: try: if re.search(_filter['value'], line): self.last_matches_result = 'pattern found in file : ' + _filter['value'] return True except: pass else: break except: cast.analysers.log.debug('Internal issue when reading file: ' + str(filename)) cast.analysers.log.debug(str(traceback.format_exc())) return False def matches(self, filename): if FileFilter.matches(self, filename, True): return True try: return self.match_file(filename, True) except UnicodeDecodeError: return self.match_file(filename, False) return False class HtmlFileFilter(FileFilter): def __init__(self): FileFilter.__init__(self) def match_file(self, filename, bUTF8): nLine = 0 try: with open_source_file(filename) as f: for line in f: if nLine <= 15: for _filter in [ _filter for _filter in self.filters if _filter['type'] == 'HtmlFileContent' ]: try: if re.search(_filter['value'], line): self.last_matches_result = 'pattern found in file : ' + _filter['value'] return True except: pass else: break except: cast.analysers.log.debug('Internal issue when reading file: ' + str(filename)) cast.analysers.log.debug(str(traceback.format_exc())) return False def matches(self, filename): if FileFilter.matches(self, filename): return True try: return self.match_file(filename, True) except UnicodeDecodeError: return self.match_file(filename, False) return False
[ "a.kumar3@castsoftware.com" ]
a.kumar3@castsoftware.com
41cc8cb8ec10ccb8c7eb432e8f3cc4602df5f651
d043a51ff0ca2f9fb3943c3f0ea21c61055358e9
/python3网络爬虫开发实战/数据存储/MySQL实验/删除数据2.py
7af2d45b23cc102f658c4407ee7362981f7f0c80
[]
no_license
lj1064201288/dell_python
2f7fd9dbcd91174d66a2107c7b7f7a47dff4a4d5
529985e0e04b9bde2c9e0873ea7593e338b0a295
refs/heads/master
2020-03-30T03:51:51.263975
2018-12-11T13:21:13
2018-12-11T13:21:13
150,707,725
0
0
null
null
null
null
UTF-8
Python
false
false
382
py
import pymysql db = pymysql.connect(host="localhost", user='root', password='123456', port=3306, db='django') cursor = db.cursor() table = "friends" age = "age > 30" sql = 'DELETE FROM {table} WHERE {age}'.format(table=table, age=age) try: cursor.execute(sql) print("Successful...") db.commit() except: print("Failed...") db.rollback() finally: db.close()
[ "1064201288@qq.com" ]
1064201288@qq.com
181a7dc33b61cdc418e9314d9e6ba8faa6a0d378
0d7d344edf0dc4b905b12a96a004a773191aa26f
/visas/admin.py
b00da55229665e711a24d095008554baee723958
[]
no_license
BoughezalaMohamedAimen/Amine
ae615ca64c5d0c8977e26aee2906e606439250d5
6060d48ab1308c217fe1bd8bd419369f83cb733a
refs/heads/master
2020-06-27T11:57:30.682966
2019-08-04T22:56:41
2019-08-04T22:56:41
199,948,247
0
0
null
null
null
null
UTF-8
Python
false
false
110
py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Visa)
[ "mamoumou121@gmail.com" ]
mamoumou121@gmail.com
2d3d1b442af9336be133c309201d7efd2fff5c15
19692e21e740eca07b493cf4ebf22ad833ce827d
/lawsite_nogit/lawsite/wsgi.py
11149264db289cadfe32f7a73806afab1794e05b
[]
no_license
reedharder/bending_the_law
6033082d78175285983e98dc8cda0c9da72b97b2
bd85f6a3f91c3f9bb28da87177a5578a7fffb9c6
refs/heads/master
2020-04-09T11:55:49.036953
2016-08-05T15:58:47
2016-08-05T15:58:47
40,094,227
0
0
null
null
null
null
UTF-8
Python
false
false
565
py
""" WSGI config for lawsite project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "lawsite.settings") application = get_wsgi_application() ''' from whitenoise.django import DjangoWhiteNoise from dj_static import Cling application = Cling(get_wsgi_application()) application = DjangoWhiteNoise(application) '''
[ "reedharder@gmail.com" ]
reedharder@gmail.com
3a2925faeb0eaad7e3a73932dba72170f81fdccb
26629871a6c7eaa82dcf1d7f1adf8cae2ab24991
/DressitUp/Home/views.py
fccfbe31e43ed74692670d210e631723d6a742cb
[]
no_license
RonakNandanwar26/DressitUp
2421fb62ad5e47be36f66dc3920cafe49ee43eb9
4e7ac01a9411ad2b767efb2a80ad5dc6344449ab
refs/heads/master
2022-11-30T23:14:38.989536
2020-07-11T12:17:08
2020-07-11T12:17:08
278,849,777
0
0
null
2022-11-18T10:56:10
2020-07-11T11:39:51
Python
UTF-8
Python
false
false
2,563
py
from django.shortcuts import render, redirect, get_object_or_404 from .forms import ContactForm, ProfileForm, UserForm from django.contrib import messages from django.core.mail import send_mail from DressitUp import settings from products.forms import ProductForm # Create your views here. def home(request): template = 'Home/index.html' return render(request, template, {}) def list(request): template = 'Home/list.html' return render(request, template, {}) def about(request): template = 'Home/about.html' return render(request, template, {}) def shop(request): template = 'Home/shop.html' return render(request, template, {}) def contact(request): if request.method == "POST": form = ContactForm(request.POST or None) if form.is_valid(): contact_name = form.cleaned_data['name'] contact_email = form.cleaned_data['email'] sub = form.cleaned_data['subject'] content = form.cleaned_data['message'] print(contact_name) form.save() subject = 'Hello ' + contact_name + ' from DressitUp!' message = 'Stay Connected. We would love to hear you!' email_from = settings.EMAIL_HOST_USER email_to = [contact_email, ] send_mail(subject, message, email_from, email_to) messages.success(request, 'Form submitted successfully.') return redirect('Home:home') else: messages.error(request, 'Please correct the error below.') else: form = ContactForm() template = 'Home/contact.html' return render(request, template, {'form': form}) def profile(request): template = 'Home/profile.html' if request.method == 'POST': user_form = UserForm(request.POST or None, request.FILES or None, instance=request.user) profile_form = ProfileForm(request.POST or None, request.FILES or None, instance=request.user.profile) if user_form.is_valid() and profile_form.is_valid(): user_form.save() profile_form.save() messages.success(request, "Your Profile is Updated Successfully..") return redirect('Home:home') else: messages.error(request, 'Please Correct the error below') else: user_form = UserForm(instance=request.user) profile_form = ProfileForm(instance=request.user.profile) return render(request, template, {'user_form': user_form, 'profile_form': profile_form})
[ "ronaknandanwar1999@gmail.com" ]
ronaknandanwar1999@gmail.com
c47eb54349cc1aaf6624d4dd8dda17bbcb9f3a10
e1c4b32f23d8622be21db1445c9877f0de1680f1
/backend/app/controllers/home.py
c6b483330ecfcd0750b79fd1d46b35e43bca8be4
[]
no_license
AngCosmin/api-flask
8d212f0393b9a7590eeafd1b704f1a2b51bfe0a3
7c09d78cda9160b60a162ac15761ad5817c17917
refs/heads/master
2022-12-15T04:36:43.692837
2019-04-05T20:30:15
2019-04-05T20:30:15
179,749,615
0
0
null
2022-09-16T17:58:57
2019-04-05T20:24:59
Python
UTF-8
Python
false
false
133
py
from flask import Blueprint blueprint = Blueprint('home', __name__) @blueprint.route('/') def index(): return 'Hello World'
[ "cosminzorr@gmail.com" ]
cosminzorr@gmail.com
21f4eac2a5d60a2dfe080bd75652381d18460ec0
d37189d84ee0fe11969fb4b591899035a5533352
/fun2.py
1e86b8658e999401565ccd3b3f43d478390d1109
[]
no_license
KebadSew/scratch_python
5654e1fe2e13f88b630b26ace21e96bac3278da2
aa460807200a6eb3b64ba17549769c4b0d023572
refs/heads/master
2023-02-16T15:34:42.924669
2021-01-19T00:58:07
2021-01-19T00:58:07
293,111,352
0
0
null
null
null
null
UTF-8
Python
false
false
570
py
# create a function which prints sum of two input number parameters ''' def sum(x,y): print("Sum is ",x+y) sum(5, 7) # subtract def mekenes(x,y): print("Mekenes of x-y is ",x-y) mekenes(5, 7) ''' def sum(x, y, z): return x+y+z s = sum(8, 6, 2) # create a function which prints sum of two input number parameters ''' def sum(x,y): print("Sum is ",x+y) sum(5, 7) # subtract def mekenes(x,y): print("Mekenes of x-y is ",x-y) mekenes(5, 7) ''' def sum(x, y, z): return x+y+z s = sum(8, 6, 2) print("The sum of 8+6+2 is ", s)
[ "lingering.quest@gmail.com" ]
lingering.quest@gmail.com
3b5eb65cc24ada0602641c43bd8365025a109f61
43bd7dce16d5dd856d9755ee44b89316ab4dcfbd
/BakeryManagement/asgi.py
7aa89e87c3a4ee6687a9cd753db29c46f5d449c9
[]
no_license
rishabh-22/BakeryManagement
86bc0e478ed954c46e734afc0ee2f9261d46b2a7
0b75306f1db2f42e047d1e65a1baeaf62c29919e
refs/heads/master
2023-03-26T01:24:18.087439
2021-03-11T19:43:35
2021-03-11T19:43:35
344,091,099
1
0
null
null
null
null
UTF-8
Python
false
false
409
py
""" ASGI config for BakeryManagement project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'BakeryManagement.settings') application = get_asgi_application()
[ "rishabh.bh22@gmail.com" ]
rishabh.bh22@gmail.com
f2ebf591f742eb1433a9072d3c9826170e1cb8cd
2f73a3d4daac2aa2c38c3443b4f5555c49faa1c8
/Data.py
d8e917bf4fa96358299cdd241123799362a03919
[]
no_license
18021009/project
656b6c8f9a0120c1185493d04405660895db93e9
0133f412e50e3dadd13bd0028832babf846070e5
refs/heads/main
2023-05-07T17:08:41.529766
2021-06-01T04:06:38
2021-06-01T04:06:38
372,696,937
0
0
null
null
null
null
UTF-8
Python
false
false
4,718
py
from math import nan from os import name from Station import station import numpy as np import datetime import pandas as pd from Map import map from Point import point # standardline date data.csv to college.csv # ds = pd.read_csv('data.csv') def changeToDate(output_file): ds = pd.read_csv('data.csv') day_delta = datetime.timedelta(days=1) start_date = datetime.date(2019, 1, 1) end_date = datetime.date(2020, 1, 1) for i in range((end_date - start_date).days): day = start_date + i*day_delta _day = day.strftime('X%m/X%d/%Y').replace('X0','X').replace('X','') ds['time'] = ds['time'].replace({_day: day}) ds.to_csv(output_file, index=False) def buffer_data(input_file, buffer): dataStation = pd.read_csv(input_file) dataStation['wind_speed'] = nan dataStation['temperature'] = nan dataStation['satellite_NO2'] = nan dataStation["road_density"] = nan dataStation["relative_humidity"] = nan dataStation["pressure"] = nan dataStation["population_density"] = nan dataStation["pblh"] = nan dataStation["NDVI"] = nan dataStation["dpt"] = nan dataStationArray = dataStation.values dataStation = pd.DataFrame(dataStationArray, columns=['time', 'lat', 'long', 'NO2', 'name', 'wind_speed' + str(buffer), 'temperature' + str(buffer), 'satellite_NO2' + str(buffer), 'road_density' + str(buffer), 'relative_humidity' + str(buffer), 'pressure' + str(buffer), 'population_density' + str(buffer), 'pblh' + str(buffer), 'NDVI' + str(buffer), 'dpt' + str(buffer)]) dataStation.to_csv(input_file, float_format='{:f}'.format, index=False) changeToDate('buffer_1_data.csv') buffer_data('buffer_1_data.csv', 1) changeToDate('buffer_2_data.csv') buffer_data('buffer_2_data.csv', 2) changeToDate('buffer_3_data.csv') buffer_data('buffer_3_data.csv', 3) # a = pd.read_csv("buffer_1_data.csv") # b = pd.read_csv("buffer_2_data.csv") # merged = a.merge(b, on=['time', 'lat', 'long', 'name'], how='inner') # merged.to_csv('merge.csv', index=False) # c = pd.read_csv("merge.csv") # d = pd.read_csv("buffer_3_data.csv") # merged = c.merge(d, on=['time', 'lat', 'long', 'name'], how='inner') # merged.to_csv('merge.csv', index=False) # buffer_radius # _buffer_radius = 1 # dataStation = pd.read_csv('college.csv') # dataStation['wind_speed'] = -999.0 # dataStation["road_dens"] = -999.0 # dataStation["pp_dens"] = -999.0 # dataStation["earth_no2"] = -999.0 # dataStationArray = dataStation.values # # add wind speed to dataStationArray # start_date = datetime.date(2019, 1, 1) # end_date = datetime.date(2020, 1, 1) # day_delta = datetime.timedelta(days=1) # for i in range((end_date - start_date).days): # fileName = "WSPDCombine_" # day = start_date + i*day_delta # file = "map/wind_speed/" + fileName + day.strftime('%Y%m%d') + ".tif" # _map = map() # _map.setMap(file) # for data in dataStationArray: # if((data[0] == day.strftime('%Y-%m-%d'))): # _point = point(data[2], data[1]) # _point.set_position_on_matrix(_map) # _station = station(_point, _buffer_radius) # _station.setBufferValue(_map) # data[5] = np.float64(_station.bufferValue) # # add road to college.csv # _map = map() # _map.setMap('map/road_density/road_dens.tif') # for data in dataStationArray: # _point = point(data[2], data[1]) # _point.set_position_on_matrix(_map) # _station = station(_point, _buffer_radius) # _station.setBufferValue(_map) # data[6] = _station.bufferValue # # add population_density # _map = map() # _map.setMap('map/population_density/ppd.tif') # for data in dataStationArray: # _point = point(data[2], data[1]) # _point.set_position_on_matrix(_map) # _station = station(_point, _buffer_radius) # _station.setBufferValue(_map) # data[7] = _station.bufferValue # # add earth_no2 # for i in range((end_date - start_date).days): # fileName = "NO2_" # day = start_date + i*day_delta # file = "map/NO2/" + fileName + day.strftime('%Y%m%d') + ".tif" # _map = map() # _map.setMap(file) # for data in dataStationArray: # if((data[0] == day.strftime('%Y-%m-%d'))): # _point = point(data[2], data[1]) # _point.set_position_on_matrix(_map) # _station = station(_point, _buffer_radius) # _station.setBufferValue(_map) # data[8] = _station.bufferValue # newDataStation = pd.DataFrame(dataStationArray, columns=['time', 'lat', 'long', 'NO2', 'name', 'wind_speed', 'road_dens', 'pp_dens', 'earth_no2']) # newDataStation.to_csv('college_2.csv', float_format='{:f}'.format, index=False)
[ "myEmail@example.com" ]
myEmail@example.com
1ce65bae1f1abca5f6f1b6dcf3dd5b53a58ec9b5
a87ed28a5217101f57f387c8003ed73e4bb873d3
/cracking-the-code-interview/queue.py
deb62c3fb3c1dda57e89705ad3572c070f678842
[]
no_license
snahor/chicharron
82f65836258462a900f2dba6b4192a436e16e7d0
710e7114d8768965cd50556cbbeeed0e3604cf92
refs/heads/master
2021-01-24T14:11:32.235253
2017-07-19T06:06:42
2017-07-19T06:06:42
41,190,005
0
0
null
null
null
null
UTF-8
Python
false
false
1,003
py
from linked_list import Node class Queue: ''' >>> q = Queue() >>> q.enqueue(1) >>> q.enqueue(2) >>> q.enqueue(3) >>> q.dequeue() 1 >>> q.dequeue() 2 >>> q.enqueue(4) >>> q.enqueue(5) >>> q.dequeue() 3 >>> q.dequeue() 4 >>> q.dequeue() 5 >>> q.dequeue() ''' def __init__(self): self.head = None self.last = None def enqueue(self, value): node = Node(value) if not self.head: self.head = node self.last = node else: self.last.next = node self.last = node def dequeue(self): if not self.head: return None node = self.head self.head = node.next if self.last == node: self.last = node.next return node.value def is_empty(self): return self.head is None if __name__ == '__main__': import doctest doctest.testmod(optionflags=doctest.ELLIPSIS)
[ "hans.r.69@gmail.com" ]
hans.r.69@gmail.com
30295c60432b3dc86a5982db72a44530415d66b1
893577de9978f7868e7a3608ab697a320adf55f1
/python/Day1/problem1_3.py
9c71c686b36cf77b1e2c9ff80693415d699a73b8
[]
no_license
zealfory/xiyu-NLPTrainee
0d8c6ab80cfc7b3a00e886f340f34e5ed4650fc2
3e63bad5d53b478563003d0c78fa1cab63fcefb4
refs/heads/master
2020-06-13T15:24:30.589485
2019-08-26T08:15:22
2019-08-26T08:15:22
194,693,706
1
0
null
null
null
null
UTF-8
Python
false
false
1,079
py
def longestValidParentheses(s): """ :para s: str -- 字符串 :return: int -- 最长有效括号串长度 """ s_length = len(s) stack = [] start = 0 maxlen = 0 for i in range(s_length): # 左括号入栈 if s[i] == '(': stack.append(i) # 右括号 else: # 栈空则更改起始点 if len(stack) == 0: start = i + 1 continue # 栈非空则出栈 else: a = stack.pop() # 更新最大长度值 if len(stack) == 0: maxlen = max(i - start + 1, maxlen) else: maxlen = max(i-stack[-1], maxlen) return maxlen # test def main(): print(longestValidParentheses("(()")) print(longestValidParentheses(")()())")) if __name__ == "__main__": main()
[ "noreply@github.com" ]
noreply@github.com
b749d4bcecade6a4c865a8f3a69ebd30954dfe41
f09dc121f213f2881df3572288b7ee5b39246d73
/aliyun-python-sdk-config/aliyunsdkconfig/request/v20190108/GetSupportedResourceTypesRequest.py
8fb02d120fe982b0df0cc395179ce63061909e27
[ "Apache-2.0" ]
permissive
hetw/aliyun-openapi-python-sdk
2f31378ad6be0896fb8090423f607e9c7d3ae774
7443eacee9fbbaa93c7975c6dbec92d3c364c577
refs/heads/master
2023-01-19T22:42:36.214770
2020-12-04T10:55:14
2020-12-04T10:55:14
318,689,093
1
0
NOASSERTION
2020-12-05T03:03:03
2020-12-05T03:03:03
null
UTF-8
Python
false
false
1,296
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkconfig.endpoint import endpoint_data class GetSupportedResourceTypesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Config', '2019-01-08', 'GetSupportedResourceTypes','Config') self.set_method('GET') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional())
[ "sdk-team@alibabacloud.com" ]
sdk-team@alibabacloud.com
a6b9a81031ca5ebba259e3bfd9015c0ce85b1d1f
3e0abf5d310edec9ac8cd939b83518d5f1cb753c
/feature-a.py
e0ef5294caaa47e7af55eaf6dd68035d8175d3a2
[]
no_license
anushkhasingh30/git-1
ebc13f9974bee04650e7a6aa0e8313d1ebe5eaac
4516ce4a2ac811246c50a7b8012ff4a028959695
refs/heads/master
2023-06-25T00:04:15.593702
2021-07-27T10:38:00
2021-07-27T10:38:00
389,939,561
0
0
null
null
null
null
UTF-8
Python
false
false
19
py
print('feature a ')
[ "anushkhasingh30@gmail.com" ]
anushkhasingh30@gmail.com
46cda83c4132a39c6286332ab4240e378fc2e4e7
e4ab9d29abcadd76e4f540d3ea5487aff4259004
/lab_7.1.py
0255a13ca5b7f91bd5fb38e43f948cf43ecf9a42
[]
no_license
swyatik/python-KPI
83332ed2fa3a49acd6c521416a08c005f4be78d2
10adac7d76790256ebe72339455a0a081433d4f6
refs/heads/master
2020-06-04T22:27:10.463697
2019-06-16T16:52:02
2019-06-16T16:52:02
192,215,205
0
0
null
null
null
null
UTF-8
Python
false
false
1,796
py
class Sphere(object): def __init__(self, radius = 1.0, x = 0.0, y = 0.0, z = 0.0): self.radius = float(radius) self.x = float(x) self.y = float(y) self.z = float(z) def get_volume(self): v = 4 / 3 * 3.1415926535897932384626433 * self.radius ** 3 return v def get_square(self): s = 4 * 3.1415926535897932384626433 * (self.radius ** 2) return s def get_radius(self): return self.radius def get_center(self): return (self.x, self.y, self.z,) def set_radius(self, r): self.r = float(r) self.radius = r def set_center(self, x_new, y_new, z_new): self.x = float(x_new) self.y = float(y_new) self.z = float(z_new) def is_point_inside(self, x_1, y_1, z_1): self.x_1 = x_1 self.y_1 = y_1 self.z_1 = z_1 rn = ((self.x_1 - self.x) ** 2 + (self.y_1 - self.y) ** 2 + (self.z_1 - self.z) ** 2) ** 0.5 if rn > self.radius: return False else: return True s1 = Sphere() print(s1.radius, s1.x, s1.y, s1.z) print('V1 =', s1.get_volume()) print('S1 =', s1.get_square()) print('R =', s1.get_radius()) print('coordinates = ', s1.get_center()) s1.set_radius(5) print('R= %s' % (s1.get_radius())) s1.set_center(1025, 1026, 1027) print('coordinates=', s1.get_center()) print(s1.is_point_inside(1000, 1000, 1000), '\n') s0 = Sphere(0.5) # test sphere creation with radius and default center print(s0.get_center()) # (0.0, 0.0, 0.0) print(s0.get_volume()) # 0.523598775598 print(s0.is_point_inside(0, -1.5, 0)) # False s0.set_radius(1.6) print(s0.is_point_inside(0, -1.5, 0)) # True print(s0.get_radius()) # 1.6
[ "noreply@github.com" ]
noreply@github.com
6fe04aaf0e701031982130a0f867b59e8d83e3ec
42d18b5dba342099dae032ab2aa2bb19b995f9be
/ch/ch1/wxpy/helper/sendHelper.py
836277903d0cc0bfb05cfdad56a0430e3bb0d0a0
[]
no_license
wenyaodong777/python-workshop
4e38ee7f3c96e8cdac3804c980b735db304ffb18
5f7bb9aa227ec46c89f793f592f3c90e9cd50603
refs/heads/master
2020-05-26T18:14:58.354116
2019-05-24T00:52:32
2019-05-24T00:52:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
158
py
#!/usr/bin/python # -*- coding: UTF-8 -*- class WXSender(): def send(self, groups, content): for group in groups: group.send(content)
[ "wuchenbao@odc.cmbchina.cn" ]
wuchenbao@odc.cmbchina.cn
f9de853a23a36e10aefcbfd18bf0dfcea6055cfa
19d47d47c9614dddcf2f8d744d883a90ade0ce82
/pynsxt/swagger_client/models/ns_service_group_list_result.py
bbaee722d7f2d1956d8eea75ec65fa8637b79b2e
[]
no_license
darshanhuang1/pynsxt-1
9ed7c0da9b3a64e837a26cbbd8b228e811cee823
fb1091dff1af7f8b8f01aec715682dea60765eb8
refs/heads/master
2020-05-25T14:51:09.932853
2018-05-16T12:43:48
2018-05-16T12:43:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,282
py
# coding: utf-8 """ NSX API VMware NSX REST API # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.list_result import ListResult # noqa: F401,E501 from swagger_client.models.ns_service_group import NSServiceGroup # noqa: F401,E501 from swagger_client.models.resource_link import ResourceLink # noqa: F401,E501 from swagger_client.models.self_resource_link import SelfResourceLink # noqa: F401,E501 class NSServiceGroupListResult(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { '_self': 'SelfResourceLink', 'links': 'list[ResourceLink]', 'schema': 'str', 'cursor': 'str', 'sort_ascending': 'bool', 'sort_by': 'str', 'result_count': 'int', 'results': 'list[NSServiceGroup]' } attribute_map = { '_self': '_self', 'links': '_links', 'schema': '_schema', 'cursor': 'cursor', 'sort_ascending': 'sort_ascending', 'sort_by': 'sort_by', 'result_count': 'result_count', 'results': 'results' } def __init__(self, _self=None, links=None, schema=None, cursor=None, sort_ascending=None, sort_by=None, result_count=None, results=None): # noqa: E501 """NSServiceGroupListResult - a model defined in Swagger""" # noqa: E501 self.__self = None self._links = None self._schema = None self._cursor = None self._sort_ascending = None self._sort_by = None self._result_count = None self._results = None self.discriminator = None if _self is not None: self._self = _self if links is not None: self.links = links if schema is not None: self.schema = schema if cursor is not None: self.cursor = cursor if sort_ascending is not None: self.sort_ascending = sort_ascending if sort_by is not None: self.sort_by = sort_by if result_count is not None: self.result_count = result_count self.results = results @property def _self(self): """Gets the _self of this NSServiceGroupListResult. # noqa: E501 :return: The _self of this NSServiceGroupListResult. # noqa: E501 :rtype: SelfResourceLink """ return self.__self @_self.setter def _self(self, _self): """Sets the _self of this NSServiceGroupListResult. :param _self: The _self of this NSServiceGroupListResult. # noqa: E501 :type: SelfResourceLink """ self.__self = _self @property def links(self): """Gets the links of this NSServiceGroupListResult. # noqa: E501 The server will populate this field when returing the resource. Ignored on PUT and POST. # noqa: E501 :return: The links of this NSServiceGroupListResult. # noqa: E501 :rtype: list[ResourceLink] """ return self._links @links.setter def links(self, links): """Sets the links of this NSServiceGroupListResult. The server will populate this field when returing the resource. Ignored on PUT and POST. # noqa: E501 :param links: The links of this NSServiceGroupListResult. # noqa: E501 :type: list[ResourceLink] """ self._links = links @property def schema(self): """Gets the schema of this NSServiceGroupListResult. # noqa: E501 :return: The schema of this NSServiceGroupListResult. # noqa: E501 :rtype: str """ return self._schema @schema.setter def schema(self, schema): """Sets the schema of this NSServiceGroupListResult. :param schema: The schema of this NSServiceGroupListResult. # noqa: E501 :type: str """ self._schema = schema @property def cursor(self): """Gets the cursor of this NSServiceGroupListResult. # noqa: E501 Opaque cursor to be used for getting next page of records (supplied by current result page) # noqa: E501 :return: The cursor of this NSServiceGroupListResult. # noqa: E501 :rtype: str """ return self._cursor @cursor.setter def cursor(self, cursor): """Sets the cursor of this NSServiceGroupListResult. Opaque cursor to be used for getting next page of records (supplied by current result page) # noqa: E501 :param cursor: The cursor of this NSServiceGroupListResult. # noqa: E501 :type: str """ self._cursor = cursor @property def sort_ascending(self): """Gets the sort_ascending of this NSServiceGroupListResult. # noqa: E501 :return: The sort_ascending of this NSServiceGroupListResult. # noqa: E501 :rtype: bool """ return self._sort_ascending @sort_ascending.setter def sort_ascending(self, sort_ascending): """Sets the sort_ascending of this NSServiceGroupListResult. :param sort_ascending: The sort_ascending of this NSServiceGroupListResult. # noqa: E501 :type: bool """ self._sort_ascending = sort_ascending @property def sort_by(self): """Gets the sort_by of this NSServiceGroupListResult. # noqa: E501 Field by which records are sorted # noqa: E501 :return: The sort_by of this NSServiceGroupListResult. # noqa: E501 :rtype: str """ return self._sort_by @sort_by.setter def sort_by(self, sort_by): """Sets the sort_by of this NSServiceGroupListResult. Field by which records are sorted # noqa: E501 :param sort_by: The sort_by of this NSServiceGroupListResult. # noqa: E501 :type: str """ self._sort_by = sort_by @property def result_count(self): """Gets the result_count of this NSServiceGroupListResult. # noqa: E501 Count of results found (across all pages), set only on first page # noqa: E501 :return: The result_count of this NSServiceGroupListResult. # noqa: E501 :rtype: int """ return self._result_count @result_count.setter def result_count(self, result_count): """Sets the result_count of this NSServiceGroupListResult. Count of results found (across all pages), set only on first page # noqa: E501 :param result_count: The result_count of this NSServiceGroupListResult. # noqa: E501 :type: int """ self._result_count = result_count @property def results(self): """Gets the results of this NSServiceGroupListResult. # noqa: E501 Paged collection of NSServiceGroups # noqa: E501 :return: The results of this NSServiceGroupListResult. # noqa: E501 :rtype: list[NSServiceGroup] """ return self._results @results.setter def results(self, results): """Sets the results of this NSServiceGroupListResult. Paged collection of NSServiceGroups # noqa: E501 :param results: The results of this NSServiceGroupListResult. # noqa: E501 :type: list[NSServiceGroup] """ if results is None: raise ValueError("Invalid value for `results`, must not be `None`") # noqa: E501 self._results = results def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, NSServiceGroupListResult): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "tcraft@pivotal.io" ]
tcraft@pivotal.io
a7ac6aca6ae6303875db1502f4c7a1f188290a7d
bead792530ab007addd60ce777e9ce19bc45cc74
/inception-google/utils.py
b797d03ecbf9e46c79fdd3249d8fbd5b928d25c1
[]
no_license
knowmefly/Youth-AI-SelfImprovement
aefb47bf13284509372cfd6c1ea14a81e2be21ce
bb15cdc07dc6c231b5d44acae088f98a44f97761
refs/heads/master
2020-04-25T04:26:20.997249
2019-03-06T20:33:08
2019-03-06T20:33:08
172,510,073
2
1
null
null
null
null
UTF-8
Python
false
false
1,371
py
# -*- coding: utf-8 -*- import tensorflow as tf slim = tf.contrib.slim # 定义默认的arg scope def inception_arg_scope(weight_decay=0.00004, use_batch_norm=True, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, activation_fn=tf.nn.relu, batch_norm_updates_collections=tf.GraphKeys.UPDATE_OPS): # 指定正则化函数的参数 batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'updates_collections': batch_norm_updates_collections, 'fused': None, } if use_batch_norm: normalizer_fn = slim.batch_norm normalizer_params = batch_norm_params else: normalizer_fn = None normalizer_params = {} # 为卷积层和全连接层的权重设置 weight_decay with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay)): with slim.arg_scope( [slim.conv2d], weights_initializer=slim.variance_scaling_initializer(), activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params) as sc: return sc
[ "knowmefly@qq.com" ]
knowmefly@qq.com
31377b78b9aa2c2a50c21500d418eb84e8d65b07
ae5bc58aea259f9e633398b99e9705c89a0cea3d
/tasks/viewpoint_select/utils_data.py
15883db86b9b6068ef4ef746b53f5f631cafb115
[ "MIT-0" ]
permissive
ayshrv/visitron
3bacefd4cf62c66864cfcdba4e24af7a576590dd
2f30e6c002ed021d2be209a94a5e77c2d7e2117f
refs/heads/main
2023-06-03T17:47:06.905510
2021-06-30T22:18:55
2021-06-30T22:18:55
302,179,557
1
0
NOASSERTION
2021-06-30T22:59:18
2020-10-07T22:56:49
Python
UTF-8
Python
false
false
20,796
py
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import base64 import csv import json import logging import math import os import pickle import re import sys import time from itertools import chain import lmdb import networkx as nx import numpy as np from tqdm import tqdm csv.field_size_limit(sys.maxsize) logger = logging.getLogger(__name__) def load_nav_graphs(scans): """ Load connectivity graph for each scan """ def distance(pose1, pose2): """ Euclidean distance between two graph poses """ return ( (pose1["pose"][3] - pose2["pose"][3]) ** 2 + (pose1["pose"][7] - pose2["pose"][7]) ** 2 + (pose1["pose"][11] - pose2["pose"][11]) ** 2 ) ** 0.5 graphs = {} for scan in scans: with open("connectivity/%s_connectivity.json" % scan) as f: G = nx.Graph() positions = {} data = json.load(f) for i, item in enumerate(data): if item["included"]: for j, conn in enumerate(item["unobstructed"]): if conn and data[j]["included"]: positions[item["image_id"]] = np.array( [item["pose"][3], item["pose"][7], item["pose"][11]] ) assert data[j]["unobstructed"][ i ], "Graph should be undirected" G.add_edge( item["image_id"], data[j]["image_id"], weight=distance(item, data[j]), ) nx.set_node_attributes(G, values=positions, name="position") graphs[scan] = G return graphs def get_data_root(dataset_type="NDH"): if dataset_type == "NDH": data_root = "srv/task_data/NDH/data/" elif dataset_type == "CVDN": data_root = "srv/task_data/CVDN/data/" elif dataset_type == "R2R": data_root = "srv/task_data/R2R/data/R2R_" elif dataset_type == "R4R": data_root = "srv/task_data/R4R/data/R4R_" elif dataset_type == "RxR": data_root = "srv/task_data/RxR/data" elif dataset_type == "PretrainNDH": data_root = "srv/task_data/pretrain_data/NDH_" elif dataset_type == "PretrainR2R": data_root = "srv/task_data/pretrain_data/R2R_" elif dataset_type == "PretrainR4R": data_root = "srv/task_data/pretrain_data/R4R_" elif dataset_type == "PretrainRxR": data_root = "srv/task_data/pretrain_data/RxR_" else: raise NotImplementedError return data_root def load_datasets(splits, dataset_type="NDH"): data = [] data_root = get_data_root(dataset_type) if dataset_type == "RxR": import jsonlines assert splits == ["train"] with jsonlines.open(f"{data_root}/rxr_train_guide.jsonl") as f: for line in f.iter(): data.append(line) return data for split in splits: assert split in ["train", "val_seen", "val_unseen", "test"] with open(data_root + "%s.json" % split) as f: data += json.load(f) return data def load_classifier_data(splits): data = [] raw_data = [] data_root = get_data_root("CVDN") for split in splits: assert split in ["train", "val_seen", "val_unseen", "test"] data_path = data_root + "%s.json" % split with open(data_path) as f: items = json.load(f) raw_data.extend(items) for item in raw_data: item["inst_idx"] = str(item["idx"]) item["planner_path"] = item["planner_nav_steps"] item["player_path"] = item["nav_steps"] item["nav_history"] = item["player_path"] heading, elevation = 2.0, 17.5 if "nav_camera" in item and len(item["nav_camera"]) > 0: nav_camera = item["nav_camera"][0] if "message" in nav_camera: heading = nav_camera["message"][-1]["heading"] elevation = nav_camera["message"][-1]["elevation"] item["start_pano"] = { "heading": heading, "elevation": elevation, "pano": item["planner_nav_steps"][0], } dialog = {0: []} last_timestep = 0 for index, turn in enumerate(item["dialog_history"]): if index % 2 == 0: assert turn["role"] == "navigator" timestep = turn["nav_idx"] message = turn["message"] dialog_history = dialog[last_timestep] dialog_history.append(message) dialog[timestep] = dialog_history last_timestep = timestep else: if timestep != turn["nav_idx"]: logger.info( "Timestep for oracle and navigator mismatch, correcting it. " f"Timestep: {timestep} turn['nav_idx']: {turn['nav_idx']}" ) assert turn["role"] == "oracle" message = turn["message"] dialog_history = dialog[timestep] dialog_history.append(message) dialog[timestep] = dialog_history item["dialog_history"] = dialog item["request_locations"] = list(dialog.keys()) data.append(item) return data def load_gameplay_data(splits): data = [] data_root = get_data_root("CVDN") for split in splits: assert split in ["train", "val_seen", "val_unseen", "test"] logger.info("Using CVDN for " + split + "!\n\n\n") data_source = data_root + split + ".json" with open(data_source) as f: items = json.load(f) new_items = [] for item in items: item["inst_idx"] = item["idx"] item["planner_path"] = item["planner_nav_steps"] item["player_path"] = item["nav_steps"] item["nav_history"] = item["player_path"] heading, elevation = 2.0, 17.5 if "nav_camera" in item and len(item["nav_camera"]) > 0: nav_camera = item["nav_camera"][0] if "message" in nav_camera: heading = nav_camera["message"][-1]["heading"] elevation = nav_camera["message"][-1]["elevation"] item["start_pano"] = { "heading": heading, "elevation": elevation, "pano": item["planner_nav_steps"][0], } nav_ins, ora_ins, request_locations, nav_seen, ora_seen, nav_idx = ( [], [], {}, [], [], 0, ) for index, turn in enumerate(item["dialog_history"]): if turn["role"] == "navigator": nav_ins.append(turn["message"]) if len(ora_seen) > 0: request_locations[nav_idx] = [ " ".join(nav_seen), " ".join(ora_seen), index, ] ora_seen = [] nav_seen = [] nav_seen.append(turn["message"]) else: ora_ins.append(turn["message"]) if len(nav_seen) > 0: nav_idx = int(turn["nav_idx"]) ora_seen.append(turn["message"]) if len(ora_seen) > 0: request_locations[nav_idx] = [ nav_seen[-1], ora_seen[-1], len(item["dialog_history"]), ] # [' '.join(nav_seen), ' '.join(ora_seen), len(item['dialog_history'])] item["nav_instructions"] = " ".join(nav_ins) item["ora_instructions"] = " ".join(ora_ins) if ( len(item["nav_instructions"]) == 0 or len(item["ora_instructions"]) == 0 ): continue item["request_locations"] = request_locations item["inst_idx"] = str(item["inst_idx"]) assert len(item["player_path"]) > 1, item["player_path"] new_items.append(item) data += new_items return data def save_preprocessed_data(data, splits, version, dataset_type="NDH"): data_root = get_data_root(dataset_type) combined_split = "_".join(splits) path = f"{data_root}{combined_split}_preprocessed_{version}.pickle" logger.info(f"Saving preprocessed data to {path}") with open(path, "wb") as handle: pickle.dump(data, handle, protocol=-1) def check_and_load_preprocessed_data(splits, version, dataset_type="NDH"): if dataset_type == "NDH": data_root = "srv/task_data/NDH/data/" elif dataset_type == "R2R": data_root = "srv/task_data/R2R/data/R2R_" elif dataset_type == "R4R": data_root = "srv/task_data/R4R/data/R4R_" elif dataset_type == "RxR": data_root = "srv/task_data/RxR/data/RxR_" elif dataset_type == "PretrainNDH": data_root = "srv/task_data/pretrain_data/NDH_" elif dataset_type == "PretrainR2R": data_root = "srv/task_data/pretrain_data/R2R_" elif dataset_type == "PretrainR4R": data_root = "srv/task_data/pretrain_data/R4R_" elif dataset_type == "PretrainRxR": data_root = "srv/task_data/pretrain_data/RxR_" else: raise NotImplementedError combined_split = "_".join(splits) path = f"{data_root}{combined_split}_preprocessed_{version}.pickle" if os.path.exists(path) and os.path.isfile(path): logger.info(f"Loading preprocessed data from {path}") t_s = time.time() with open(path, "rb") as handle: data = pickle.load(handle) t_e = time.time() logger.info( "Loaded Image Features from {} in time: {:0.2f} mins".format( path, (t_e - t_s) / 60.0 ) ) return data return False def truncate_dialogs(sentences, amount, left=True): """ Truncate `dialogs` at a token-level TO the specified `amount` FROM the direction specified by `left` Consider length of each dialog to be len(dialog) + 1 as `[QUES]` or `[ANS]` tag needs to be counted as well. """ if amount is None: return sentences if (len(list(chain(*sentences))) + len(sentences)) <= amount: return sentences if left: reversed_sentences = sentences[::-1] reversed_truncated_sentences = [] amount_appended = 0 for turn in reversed_sentences: if amount_appended < amount: remaining_amount = amount - amount_appended if (len(turn) + 1) <= remaining_amount: reversed_truncated_sentences.append(turn) amount_appended += len(turn) + 1 else: reversed_truncated_sentences.append(turn[-remaining_amount + 1 :]) amount_appended += len(turn[-remaining_amount + 1 :]) + 1 break # can break out of the loop at this point truncated_sentences = reversed_truncated_sentences[::-1] return truncated_sentences else: truncated_sentences = [] amount_appended = 0 for turn in sentences: if amount_appended < amount: remaining_amount = amount - amount_appended if (len(turn) + 1) <= remaining_amount: truncated_sentences.append(turn) amount_appended += len(turn) + 1 else: truncated_sentences.append(turn[: remaining_amount - 1]) amount_appended += len(turn[: remaining_amount - 1]) + 1 break # can break out of the loop at this point return truncated_sentences def read_tsv_img_features(path=None, feature_size=2048, blind=False): if path: logger.info("Loading image features from %s" % path) if blind: logger.info("... and zeroing them out for 'blind' evaluation") tsv_fieldnames = [ "scanId", "viewpointId", "image_w", "image_h", "vfov", "features", ] features = {} with open(path, "rt") as tsv_in_file: reader = csv.DictReader( tsv_in_file, delimiter="\t", fieldnames=tsv_fieldnames ) for item in reader: image_h = int(item["image_h"]) image_w = int(item["image_w"]) vfov = int(item["vfov"]) long_id = item["scanId"] + "_" + item["viewpointId"] if not blind: features[long_id] = np.frombuffer( base64.b64decode(item["features"]), dtype=np.float32 ).reshape((36, feature_size)) else: features[long_id] = np.zeros((36, feature_size), dtype=np.float32) else: logger.info("Image features not provided") features = None image_w = 640 image_h = 480 vfov = 60 dictionary = { "features": features, "image_w": image_w, "image_h": image_h, "vfov": vfov, } return dictionary def timeSince(since, percent): now = time.time() s = now - since es = s / percent rs = es - s return "%s (- %s)" % (asMinutes(s), asMinutes(rs)) def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return "%dm %ds" % (m, s) def load_detector_classes(UPDOWN_DATA="srv/detector_classes_attributes"): classes = ["__background__"] with open(os.path.join(UPDOWN_DATA, "objects_vocab.txt")) as f: for object in f.readlines(): classes.append(object.split(",")[0].lower().strip()) return classes class FeaturesReader: def __init__(self, path, use_lmdb=True, in_memory=False): self.use_lmdb = use_lmdb if not self.use_lmdb: ( self.keys, self.features, self.region_tokens, self.image_w, self.image_h, self.vfov, ) = self.load_features_from_pickle(path) else: img_feature_path = path + ".lmdb" logger.info(f"Loading lmdb features from {img_feature_path}") # open database self.env = lmdb.open( img_feature_path, readonly=True, readahead=False, max_readers=1, lock=False, ) # get keys with self.env.begin(write=False) as txn: self.keys = pickle.loads(txn.get("keys".encode())) key = self.keys[0] with self.env.begin(write=False) as txn: item = pickle.loads(txn.get(key)) self.image_w = item["image_w"] self.image_h = item["image_h"] self.vfov = item["vfov"] region_labels_path = path + "-region_labels.pickle" with open(region_labels_path, "rb") as handle: self.region_tokens = pickle.load(handle) logger.info(f"Loaded region labels from {region_labels_path}") # get viewpoints self.viewpoints = {} for key in self.keys: scan_id, viewpoint_id, feature_view_index = key.decode().split("_") if scan_id not in self.viewpoints: self.viewpoints[scan_id] = set() self.viewpoints[scan_id].add(viewpoint_id) def load_features_from_pickle(self, path): t_s = time.time() img_feature_path = path + ".pickle" logger.info(f"Loading Image Features from {img_feature_path}") with open(img_feature_path, "rb") as f: loaded_feature_data = pickle.load(f) image_w = loaded_feature_data[0]["image_w"] image_h = loaded_feature_data[0]["image_h"] vfov = loaded_feature_data[0]["vfov"] keys = [] features = {} region_tokens = {} for item in loaded_feature_data: long_id = ( f"{item['scanId']}_{item['viewpointId']}_{item['featureViewIndex']}" ).encode() features[long_id] = item["features"] region_tokens[long_id] = item["region_tokens"] keys.append(long_id) t_e = time.time() logger.info( "Loaded Image Features from {} in time: {:0.2f} mins".format( img_feature_path, (t_e - t_s) / 60.0 ) ) return keys, features, region_tokens, image_w, image_h, vfov def __len__(self): return len(self.keys) def __getitem__(self, key): if key not in self.keys: raise TypeError(f"invalid key: {key}") if self.use_lmdb: # load from disk with self.env.begin(write=False) as txn: item = pickle.loads(txn.get(key)) return item["features"] else: return self.features[key] def get_region_tokens(self, key): if key not in self.keys: raise TypeError(f"invalid key: {key}") return self.region_tokens[key] def get_encoding_for_oscar(tokenizer, obs): truncate_dialog = True use_oscar_settings = True TAR_BACK = False pad_token_id = 0 cls_token_segment_id = 0 pad_token_segment_id = 0 sep_token_segment_id = 0 tar_token_segment_id = 1 ques_token_segment_id = 2 ans_token_segment_id = 3 MAX_SEQ_LENGTH = 512 MAX_DIALOG_LEN = 512 - 4 # including [QUES]s and [ANS]s MAX_TARGET_LENGTH = 4 - 2 # [CLS], [TAR], [SEP] after QA and before Action # # TOTAL 768 new_obs = [] for item in obs: instruction = item["instructions"] target = instruction.split("<TAR>")[1] rest = instruction.split("<TAR>")[0] dialog_history = re.split("<NAV>|<ORA>", rest) dialog_history = [item for item in dialog_history if item != ""] token_target = tokenizer.tokenize(target) token_target = token_target[:MAX_TARGET_LENGTH] token_dialog_history = [] for turn in dialog_history: token_turn = tokenizer.tokenize(turn) token_dialog_history.append(token_turn) if truncate_dialog: # max_seq_length - 4 as accounting for [CLS], [TAR], Target, [SEP] token_dialog_history = truncate_dialogs( token_dialog_history, amount=MAX_DIALOG_LEN, left=True ) tokens = [tokenizer.cls_token] segment_ids = [cls_token_segment_id] if not TAR_BACK: if use_oscar_settings: sep_token = tokenizer.sep_token else: sep_token = tokenizer.tar_token tokens += [sep_token] + token_target segment_ids += [tar_token_segment_id] * (len(token_target) + 1) for i, turn in enumerate(token_dialog_history): if use_oscar_settings: sep_token = tokenizer.sep_token segment_id = sep_token_segment_id else: if i % 2 == 0: sep_token = tokenizer.ques_token segment_id = ques_token_segment_id else: sep_token = tokenizer.ans_token segment_id = ans_token_segment_id tokens += [sep_token] + turn segment_ids += [segment_id] * (len(turn) + 1) if TAR_BACK: if use_oscar_settings: sep_token = tokenizer.sep_token else: sep_token = tokenizer.tar_token tokens += [sep_token] + token_target segment_ids += [tar_token_segment_id] * (len(token_target) + 1) tokens += [tokenizer.sep_token] segment_ids += [sep_token_segment_id] tokens += [pad_token_id] * (MAX_SEQ_LENGTH - len(tokens) - 1) segment_ids += [pad_token_segment_id] * (MAX_SEQ_LENGTH - len(segment_ids) - 1) token_ids = tokenizer.convert_tokens_to_ids(tokens) new_obs.append({"instr_encoding": token_ids, "segment_ids": segment_ids}) # "tokens": tokens return new_obs
[ "shrivastava.ayush1996@gmail.com" ]
shrivastava.ayush1996@gmail.com
516909e27870935ab937ccd022e1ac2e00a7cc98
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/synthetic/sieve-big-2404.py
36bdabeba62a66987aa786e8dfdb76e27f414dcd
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
31,752
py
# A resizable list of integers class Vector(object): items: [int] = None size: int = 0 def __init__(self:"Vector"): self.items = [0] # Returns current capacity def capacity(self:"Vector") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector", idx: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector") -> int: return self.size # A resizable list of integers class Vector2(object): items: [int] = None items2: [int] = None size: int = 0 size2: int = 0 def __init__(self:"Vector2"): self.items = [0] # Returns current capacity def capacity(self:"Vector2") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector2") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector2") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector2", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector2", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector2", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector2", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector2", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector2", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector2", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector2", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector2") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector2") -> int: return self.size # A resizable list of integers class Vector3(object): items: [int] = None items2: [int] = None items3: [int] = None size: int = 0 size2: int = 0 size3: int = 0 def __init__(self:"Vector3"): self.items = [0] # Returns current capacity def capacity(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector3") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector3") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector3") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector3", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector3", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector3", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector3", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector3", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector3", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector3", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector3", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector3", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector3", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector3", idx: int, idx2: int) -> int: return $Member[idx] # Retrieves an item at a given index def get3(self:"Vector3", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector3") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector3") -> int: return self.size # A resizable list of integers class Vector4(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 def __init__(self:"Vector4"): self.items = [0] # Returns current capacity def capacity(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector4") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector4") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector4") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector4", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector4", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector4", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector4", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector4", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector4", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector4", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector4", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector4", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector4", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector4", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector4", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector4", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector4", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector4") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector4") -> int: return self.size # A resizable list of integers class Vector5(object): items: [int] = None items2: [int] = None items3: [int] = None items4: [int] = None items5: [int] = None size: int = 0 size2: int = 0 size3: int = 0 size4: int = 0 size5: int = 0 def __init__(self:"Vector5"): self.items = [0] # Returns current capacity def capacity(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity2(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity3(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity4(self:"Vector5") -> int: return len(self.items) # Returns current capacity def capacity5(self:"Vector5") -> int: return len(self.items) # Increases capacity of vector by one element def increase_capacity(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity2(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity3(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity4(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Increases capacity of vector by one element def increase_capacity5(self:"Vector5") -> int: self.items = self.items + [0] return self.capacity() # Appends one item to end of vector def append(self:"Vector5", item: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append2(self:"Vector5", item: int, item2: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append3(self:"Vector5", item: int, item2: int, item3: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append4(self:"Vector5", item: int, item2: int, item3: int, item4: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends one item to end of vector def append5(self:"Vector5", item: int, item2: int, item3: int, item4: int, item5: int) -> object: if self.size == self.capacity(): self.increase_capacity() self.items[self.size] = item self.size = self.size + 1 # Appends many items to end of vector def append_all(self:"Vector5", new_items: [int]) -> object: item:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all2(self:"Vector5", new_items: [int], new_items2: [int]) -> object: item:int = 0 item2:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all3(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all4(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 for item in new_items: self.append(item) # Appends many items to end of vector def append_all5(self:"Vector5", new_items: [int], new_items2: [int], new_items3: [int], new_items4: [int], new_items5: [int]) -> object: item:int = 0 item2:int = 0 item3:int = 0 item4:int = 0 item5:int = 0 for item in new_items: self.append(item) # Removes an item from the middle of vector def remove_at(self:"Vector5", idx: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at2(self:"Vector5", idx: int, idx2: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at3(self:"Vector5", idx: int, idx2: int, idx3: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Removes an item from the middle of vector def remove_at5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> object: if idx < 0: return while idx < self.size - 1: self.items[idx] = self.items[idx + 1] idx = idx + 1 self.size = self.size - 1 # Retrieves an item at a given index def get(self:"Vector5", idx: int) -> int: return self.items[idx] # Retrieves an item at a given index def get2(self:"Vector5", idx: int, idx2: int) -> int: return self.items[idx] # Retrieves an item at a given index def get3(self:"Vector5", idx: int, idx2: int, idx3: int) -> int: return self.items[idx] # Retrieves an item at a given index def get4(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int) -> int: return self.items[idx] # Retrieves an item at a given index def get5(self:"Vector5", idx: int, idx2: int, idx3: int, idx4: int, idx5: int) -> int: return self.items[idx] # Retrieves the current size of the vector def length(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length2(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length3(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length4(self:"Vector5") -> int: return self.size # Retrieves the current size of the vector def length5(self:"Vector5") -> int: return self.size # A faster (but more memory-consuming) implementation of vector class DoublingVector(Vector): doubling_limit:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector2(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector2") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector3(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector3") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector4(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector4") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # A faster (but more memory-consuming) implementation of vector class DoublingVector5(Vector): doubling_limit:int = 1000 doubling_limit2:int = 1000 doubling_limit3:int = 1000 doubling_limit4:int = 1000 doubling_limit5:int = 1000 # Overriding to do fewer resizes def increase_capacity(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity2(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity3(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity4(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Overriding to do fewer resizes def increase_capacity5(self:"DoublingVector5") -> int: if (self.capacity() <= self.doubling_limit // 2): self.items = self.items + self.items else: # If doubling limit has been reached, fall back to # standard capacity increases self.items = self.items + [0] return self.capacity() # Makes a vector in the range [i, j) def vrange(i:int, j:int) -> Vector: v:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange2(i:int, j:int, i2:int, j2:int) -> Vector: v:Vector = None v2:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange3(i:int, j:int, i2:int, j2:int, i3:int, j3:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange4(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v def vrange5(i:int, j:int, i2:int, j2:int, i3:int, j3:int, i4:int, j4:int, i5:int, j5:int) -> Vector: v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None v = DoublingVector() while i < j: v.append(i) i = i + 1 return v # Sieve of Eratosthenes (not really) def sieve(v:Vector) -> object: i:int = 0 j:int = 0 k:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve2(v:Vector, v2:Vector) -> object: i:int = 0 i2:int = 0 j:int = 0 j2:int = 0 k:int = 0 k2:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve3(v:Vector, v2:Vector, v3:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 j:int = 0 j2:int = 0 j3:int = 0 k:int = 0 k2:int = 0 k3:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve4(v:Vector, v2:Vector, v3:Vector, v4:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 def sieve5(v:Vector, v2:Vector, v3:Vector, v4:Vector, v5:Vector) -> object: i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 j:int = 0 j2:int = 0 j3:int = 0 j4:int = 0 j5:int = 0 k:int = 0 k2:int = 0 k3:int = 0 k4:int = 0 k5:int = 0 while i < v.length(): k = v.get(i) j = i + 1 while j < v.length(): if v.get(j) % k == 0: v.remove_at(j) else: j = j + 1 i = i + 1 # Input parameter n:int = 50 n2:int = 50 n3:int = 50 n4:int = 50 n5:int = 50 # Data v:Vector = None v2:Vector = None v3:Vector = None v4:Vector = None v5:Vector = None i:int = 0 i2:int = 0 i3:int = 0 i4:int = 0 i5:int = 0 # Crunch v = vrange(2, n) v2 = vrange(2, n) v3 = vrange(2, n) v4 = vrange(2, n) v5 = vrange(2, n) sieve(v) # Print while i < v.length(): print(v.get(i)) i = i + 1
[ "647530+Virtlink@users.noreply.github.com" ]
647530+Virtlink@users.noreply.github.com
5b82ca7833330ee0646d306a6cef65cb5c33df37
762742b3c5cb5706e93e12dbdc3f8c46fc65f0db
/Packs/GreyNoise/Integrations/GreyNoise/GreyNoise_test.py
bc42620c600a89f5bf9c62f42f621c88f3b2320f
[ "MIT" ]
permissive
EmersonElectricCo/content
018f95f7fe7de13819e093a3661587a18407e348
82c82bbee7d428f0b14991a88c67672e2c02f5af
refs/heads/master
2021-06-17T04:54:22.938033
2021-05-06T16:39:59
2021-05-06T16:39:59
161,693,191
2
0
MIT
2018-12-18T15:16:49
2018-12-13T20:47:26
Python
UTF-8
Python
false
false
8,763
py
import pytest import json import GreyNoise from test_data.input_data import ( # type: ignore parse_code_and_body_data, get_ip_reputation_score_data, test_module_data, ip_reputation_command_data, ip_quick_check_command_data, generate_advanced_query_data, query_command_data, get_ip_context_data_data, stats_command_data, riot_command_response_data ) class DummyResponse: """ Dummy Response object of requests.response for unit testing. """ def __init__(self, headers, text, status_code): self.headers = headers self.text = text self.status_code = status_code def json(self): """ Dummy json method. """ return json.loads(self.text) @pytest.mark.parametrize("input_data, expected_output", parse_code_and_body_data) def test_parse_code_and_body(input_data, expected_output): """ Tests various combinations of error codes and messages. """ response = GreyNoise.parse_code_and_body(input_data) assert response == expected_output @pytest.mark.parametrize("input_data, expected_output", get_ip_reputation_score_data) def test_get_ip_reputation_score(input_data, expected_output): """ Tests various combinations of GreyNoise classification data. """ response = GreyNoise.get_ip_reputation_score(input_data) assert response == expected_output @pytest.mark.parametrize("api_key, api_response, status_code, expected_output", test_module_data) def test_test_module(api_key, api_response, status_code, expected_output, mocker): """ Tests test_module for GreyNoise integration. """ client = GreyNoise.Client(api_key, "dummy_server", 10, "proxy", False, "dummy_integration") if isinstance(api_key, str) and api_key == "true_key": mocker.patch('greynoise.GreyNoise._request', return_value=api_response) response = GreyNoise.test_module(client) assert response == expected_output else: dummy_response = DummyResponse({}, api_response, status_code) mocker.patch('requests.Session.get', return_value=dummy_response) with pytest.raises(Exception) as err: _ = GreyNoise.test_module(client) assert str(err.value) == expected_output @pytest.mark.parametrize("args, test_scenario, api_response, status_code, expected_output", ip_reputation_command_data) def test_ip_reputation_command(args, test_scenario, api_response, status_code, expected_output, mocker): """ Tests various combinations of vald and invalid responses for IPReputation command. """ client = GreyNoise.Client("true_api_key", "dummy_server", 10, "proxy", False, "dummy_integration") dummy_response = DummyResponse( { "Content-Type": "application/json" }, json.dumps(api_response), status_code ) if test_scenario == "positive": mocker.patch('requests.Session.get', return_value=dummy_response) response = GreyNoise.ip_reputation_command(client, args) assert response[0].outputs == expected_output else: mocker.patch('requests.Session.get', return_value=dummy_response) with pytest.raises(Exception) as err: _ = GreyNoise.ip_reputation_command(client, args) assert str(err.value) == expected_output @pytest.mark.parametrize("args, test_scenario, api_response, status_code, expected_output", ip_quick_check_command_data) def test_ip_quick_check_command(args, test_scenario, api_response, status_code, expected_output, mocker): """ Tests various combinations of valid and invalid responses for ip-quick-check command. """ client = GreyNoise.Client("true_api_key", "dummy_server", 10, "proxy", False, "dummy_integration") dummy_response = DummyResponse( { "Content-Type": "application/json" }, json.dumps(api_response), status_code ) if test_scenario == "positive": mocker.patch('requests.Session.get', return_value=dummy_response) response = GreyNoise.ip_quick_check_command(client, args) assert response.outputs == expected_output elif test_scenario == "negative" and status_code == 200: mocker.patch('requests.Session.get', return_value=dummy_response) response = GreyNoise.ip_quick_check_command(client, args) with open('test_data/quick_check.md') as f: expected_hr = f.read() assert response.readable_output == expected_hr elif test_scenario == "negative": mocker.patch('requests.Session.get', return_value=dummy_response) with pytest.raises(Exception) as err: _ = GreyNoise.ip_quick_check_command(client, args) assert str(err.value) == expected_output elif test_scenario == "custom": mocker.patch('greynoise.GreyNoise.quick', return_value=api_response) with pytest.raises(Exception) as err: _ = GreyNoise.ip_quick_check_command(client, args) assert str(err.value) == expected_output @pytest.mark.parametrize("args, expected_output", generate_advanced_query_data) def test_generate_advanced_query(args, expected_output): """ Tests various combinations of command arguments to generate GreyNoise advanced_query for query/stats command. """ response = GreyNoise.generate_advanced_query(args) assert response == expected_output @pytest.mark.parametrize("args, test_scenario, api_response, status_code, expected_output", query_command_data) def test_query_command(args, test_scenario, api_response, status_code, expected_output, mocker): """ Tests various combinations of valid and invalid responses for query command. """ client = GreyNoise.Client("true_api_key", "dummy_server", 10, "proxy", False, "dummy_integration") dummy_response = DummyResponse( { "Content-Type": "application/json" }, json.dumps(api_response), status_code ) mocker.patch('requests.Session.get', return_value=dummy_response) if test_scenario == "positive": response = GreyNoise.query_command(client, args) assert response.outputs[GreyNoise.QUERY_OUTPUT_PREFIX['IP']] == expected_output['data'] else: with pytest.raises(Exception) as err: _ = GreyNoise.query_command(client, args) assert str(err.value) == expected_output @pytest.mark.parametrize("args, test_scenario, api_response, status_code, expected_output", stats_command_data) def test_stats_command(args, test_scenario, api_response, status_code, expected_output, mocker): """ Tests various combinations of valid and invalid responses for stats command. """ client = GreyNoise.Client("true_api_key", "dummy_server", 10, "proxy", False, "dummy_integration") dummy_response = DummyResponse( { "Content-Type": "application/json" }, json.dumps(api_response), status_code ) mocker.patch('requests.Session.get', return_value=dummy_response) if test_scenario == "positive": response = GreyNoise.stats_command(client, args) assert response.outputs == expected_output else: with pytest.raises(Exception) as err: _ = GreyNoise.stats_command(client, args) assert str(err.value) == expected_output @pytest.mark.parametrize("input_data, expected_output", get_ip_context_data_data) def test_get_ip_context_data(input_data, expected_output): """ Tests various combinations for converting ip-context and query command responses from sdk to Human Readable format. """ response = GreyNoise.get_ip_context_data(input_data) assert response == expected_output @pytest.mark.parametrize("test_scenario, status_code, input_data, expected", riot_command_response_data) def test_riot_command(mocker, test_scenario, status_code, input_data, expected): """ Test various inputs for riot command """ client = GreyNoise.Client(api_key="true_api_key", api_server="dummy_server", timeout=10, proxy="proxy", use_cache=False, integration_name="dummy_integration") dummy_response = DummyResponse( { "Content-Type": "application/json" }, json.dumps(expected["raw_data"]), status_code ) mocker.patch('requests.Session.get', return_value=dummy_response) if test_scenario == "positive": response = GreyNoise.riot_command(client, input_data) assert response.outputs == expected["raw_data"] else: with pytest.raises(Exception) as err: _ = GreyNoise.riot_command(client, input_data) assert str(err.value) == expected["error_message"].format(input_data["ip"])
[ "noreply@github.com" ]
noreply@github.com
91c2e382f455de622a8bfb58b1df4f5bbe6b01ff
e13a79dec2668c1870b3fea05f071fe872d400f0
/pde/storage/tests/test_generic_storages.py
474649dd328980f34d7df91ecac637408b9e3bd6
[ "MIT" ]
permissive
yiweizhang1025/py-pde
b27cc0b058b50d6af921e1ea84bf59a5bb0ff370
3862a35505b9ce4d62557bc65dfedd40638a90f3
refs/heads/master
2023-03-14T17:21:07.004742
2021-03-15T15:33:47
2021-03-15T15:33:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,739
py
""" .. codeauthor:: David Zwicker <david.zwicker@ds.mpg.de> """ import functools import numpy as np import pytest from pde import DiffusionPDE, FileStorage, MemoryStorage, UnitGrid from pde.fields import FieldCollection, ScalarField, Tensor2Field, VectorField from pde.tools.misc import module_available def test_storage_write(tmp_path): """ test simple memory storage """ dim = 5 grid = UnitGrid([dim]) field = ScalarField(grid) storage_classes = {"MemoryStorage": MemoryStorage} if module_available("h5py"): file_path = tmp_path / "test_storage_write.hdf5" storage_classes["FileStorage"] = functools.partial(FileStorage, file_path) for name, storage_cls in storage_classes.items(): storage = storage_cls(info={"a": 1}) storage.start_writing(field, info={"b": 2}) storage.append(field.copy(data=np.arange(dim)), 0) storage.append(field.copy(data=np.arange(dim)), 1) storage.end_writing() assert not storage.has_collection np.testing.assert_allclose(storage.times, np.arange(2)) for f in storage: np.testing.assert_array_equal(f.data, np.arange(dim)) for i in range(2): np.testing.assert_array_equal(storage[i].data, np.arange(dim)) assert {"a": 1, "b": 2}.items() <= storage.info.items() storage = storage_cls() storage.clear() for i in range(3): storage.start_writing(field) storage.append(field.copy(data=np.arange(dim) + i), i) storage.end_writing() np.testing.assert_allclose( storage.times, np.arange(3), err_msg="storage class: " + name ) def test_storage_truncation(tmp_path): """ test whether simple trackers can be used """ file = tmp_path / "test_storage_truncation.hdf5" for truncate in [True, False]: storages = [MemoryStorage()] if module_available("h5py"): storages.append(FileStorage(file)) tracker_list = [s.tracker(interval=0.01) for s in storages] grid = UnitGrid([8, 8]) state = ScalarField.random_uniform(grid, 0.2, 0.3) pde = DiffusionPDE() pde.solve(state, t_range=0.1, dt=0.001, tracker=tracker_list) if truncate: for storage in storages: storage.clear() pde.solve(state, t_range=[0.1, 0.2], dt=0.001, tracker=tracker_list) times = np.arange(0.1, 0.201, 0.01) if not truncate: times = np.r_[np.arange(0, 0.101, 0.01), times] for storage in storages: msg = f"truncate={truncate}, storage={storage}" np.testing.assert_allclose(storage.times, times, err_msg=msg) assert not storage.has_collection def test_storing_extract_range(tmp_path): """ test methods specific to FieldCollections in memory storage """ sf = ScalarField(UnitGrid([1])) storage_classes = {"MemoryStorage": MemoryStorage} if module_available("h5py"): file_path = tmp_path / "test_storage_write.hdf5" storage_classes["FileStorage"] = functools.partial(FileStorage, file_path) for storage_cls in storage_classes.values(): # store some data s1 = storage_cls() s1.start_writing(sf) s1.append(sf.copy(data=np.array([0])), 0) s1.append(sf.copy(data=np.array([2])), 1) s1.end_writing() np.testing.assert_equal(s1[0].data, 0) np.testing.assert_equal(s1[1].data, 2) np.testing.assert_equal(s1[-1].data, 2) np.testing.assert_equal(s1[-2].data, 0) with pytest.raises(IndexError): s1[2] with pytest.raises(IndexError): s1[-3] # test extraction s2 = s1.extract_time_range() assert s2.times == list(s1.times) np.testing.assert_allclose(s2.data, s1.data) s3 = s1.extract_time_range(0.5) assert s3.times == s1.times[:1] np.testing.assert_allclose(s3.data, s1.data[:1]) s4 = s1.extract_time_range((0.5, 1.5)) assert s4.times == s1.times[1:] np.testing.assert_allclose(s4.data, s1.data[1:]) def test_storing_collection(tmp_path): """ test methods specific to FieldCollections in memory storage """ grid = UnitGrid([2, 2]) f1 = ScalarField.random_uniform(grid, 0.1, 0.4, label="a") f2 = VectorField.random_uniform(grid, 0.1, 0.4, label="b") f3 = Tensor2Field.random_uniform(grid, 0.1, 0.4, label="c") fc = FieldCollection([f1, f2, f3]) storage_classes = {"MemoryStorage": MemoryStorage} if module_available("h5py"): file_path = tmp_path / "test_storage_write.hdf5" storage_classes["FileStorage"] = functools.partial(FileStorage, file_path) for storage_cls in storage_classes.values(): # store some data storage = storage_cls() storage.start_writing(fc) storage.append(fc, 0) storage.append(fc, 1) storage.end_writing() assert storage.has_collection assert storage.extract_field(0)[0] == f1 assert storage.extract_field(1)[0] == f2 assert storage.extract_field(2)[0] == f3 assert storage.extract_field(0)[0].label == "a" assert storage.extract_field(0, label="new label")[0].label == "new label" assert storage.extract_field(0)[0].label == "a" # do not alter label assert storage.extract_field("a")[0] == f1 assert storage.extract_field("b")[0] == f2 assert storage.extract_field("c")[0] == f3 with pytest.raises(ValueError): storage.extract_field("nonsense") def test_storage_apply(tmp_path): """ test the apply function of StorageBase """ grid = UnitGrid([2]) field = ScalarField(grid) storage_classes = {"None": None, "MemoryStorage": MemoryStorage} if module_available("h5py"): file_path = tmp_path / "test_storage_apply.hdf5" storage_classes["FileStorage"] = functools.partial(FileStorage, file_path) s1 = MemoryStorage() s1.start_writing(field, info={"b": 2}) s1.append(field.copy(data=np.array([0, 1])), 0) s1.append(field.copy(data=np.array([1, 2])), 1) s1.end_writing() for name, storage_cls in storage_classes.items(): out = None if storage_cls is None else storage_cls() s2 = s1.apply(lambda x: x + 1, out=out) assert storage_cls is None or s2 is out assert len(s2) == 2 np.testing.assert_allclose(s2.times, s1.times) assert s2[0] == ScalarField(grid, [1, 2]), name assert s2[1] == ScalarField(grid, [2, 3]), name # test empty storage s1 = MemoryStorage() s2 = s1.apply(lambda x: x + 1) assert len(s2) == 0 def test_storage_copy(tmp_path): """ test the copy function of StorageBase """ grid = UnitGrid([2]) field = ScalarField(grid) storage_classes = {"None": None, "MemoryStorage": MemoryStorage} if module_available("h5py"): file_path = tmp_path / "test_storage_apply.hdf5" storage_classes["FileStorage"] = functools.partial(FileStorage, file_path) s1 = MemoryStorage() s1.start_writing(field, info={"b": 2}) s1.append(field.copy(data=np.array([0, 1])), 0) s1.append(field.copy(data=np.array([1, 2])), 1) s1.end_writing() for name, storage_cls in storage_classes.items(): out = None if storage_cls is None else storage_cls() s2 = s1.copy(out=out) assert storage_cls is None or s2 is out assert len(s2) == 2 np.testing.assert_allclose(s2.times, s1.times) assert s2[0] == s1[0], name assert s2[1] == s1[1], name # test empty storage s1 = MemoryStorage() s2 = s1.copy() assert len(s2) == 0
[ "david.zwicker@ds.mpg.de" ]
david.zwicker@ds.mpg.de
45bb0f11373a3220f0f4387907cff7b0eee4e3f3
dc72589c38ba179524c2ee2e408c4f37b77cabf3
/backend/lizz_mob_jul15_dev_7685/urls.py
8827abab37592bfacf837a0176cebcca38cae754
[]
no_license
crowdbotics-apps/lizz-mob-jul15-dev-7685
cbcab97908bd568acc68b606d4c5becdb160364c
a41e88b463169443bcfdf12cf356a958c44f3400
refs/heads/master
2022-11-17T22:30:15.286209
2020-07-16T17:54:10
2020-07-16T17:54:10
280,012,855
0
0
null
null
null
null
UTF-8
Python
false
false
1,958
py
"""lizz_mob_jul15_dev_7685 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), ] admin.site.site_header = "lizz mob jul15" admin.site.site_title = "lizz mob jul15 Admin Portal" admin.site.index_title = "lizz mob jul15 Admin" # swagger api_info = openapi.Info( title="lizz mob jul15 API", default_version="v1", description="API documentation for lizz mob jul15 App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
[ "team@crowdbotics.com" ]
team@crowdbotics.com
04da31593f90e147dd4899029a36daa0fe6f87e5
867d946a375a3ad9808af45c15e8b2ea3274da0f
/Scripts/Linux/SQLTimeBasedColumns.py
4bf2980aab49ca6f4911ed4cfa193946ca4187bf
[]
no_license
AmatheraeWorld/AmatheraeWorld
5985a6731221d375750d30ca22c59fe3aed52a1f
1b32d2d2fed410c9c486c1cbc21dc8fa0ac8d1a7
refs/heads/master
2023-06-16T13:41:32.443881
2021-07-11T20:26:51
2021-07-11T20:26:51
265,905,582
1
1
null
null
null
null
UTF-8
Python
false
false
1,147
py
#!/usr/bin/python3 import requests, time, sys, signal from pwn import * def def_handler(sig, frame): log.faiulure("Saliendo") sys.exit(1) signal.signal(signal.SIGINT, def_handler) url = 'http://admin.cronos.htb/index.php' burp = {'http': 'http://127.0.0.1:8080'} s = r'0123456789abcdefghijklmnopqrstuvwxyz' result = '' def check(payload): data_post = { 'username': '%s' % payload, 'password': 'test' } time_start = time.time() content = requests.post(url, data=data_post) time_end = time.time() if time_end - time_start > 5: return 1 p2 = log.progress("Payload") for j in range(0,5): p1 = log.progress("Columnas [%d]" % j) for i in range (1, 10): for c in s: payload = "' or if(substr((select column_name from information_schema.columns where table_schema='admin' and table_name='users' limit %d,1),%d,1)='%c',sleep(5),1)-- -" % (j, i, c) p2.status("%s" % payload) if check(payload): result += c p1.status("%s" % result) break p1.success("%s" % result) result = ''
[ "noreply@github.com" ]
noreply@github.com
241b062d29b2a2e895a396fb385dd2ffb44bab96
3ff9821b1984417a83a75c7d186da9228e13ead9
/No_1410_HTML Entity Parser/by_re_replacement.py
c017682935944a4f3a73df684c4c097a91d80e6d
[ "MIT" ]
permissive
brianchiang-tw/leetcode
fd4df1917daef403c48cb5a3f5834579526ad0c2
6978acfb8cb767002cb953d02be68999845425f3
refs/heads/master
2023-06-11T00:44:01.423772
2023-06-01T03:52:00
2023-06-01T03:52:00
222,939,709
41
12
null
null
null
null
UTF-8
Python
false
false
3,076
py
''' Description: HTML entity parser is the parser that takes HTML code as input and replace all the entities of the special characters by the characters itself. The special characters and their entities for HTML are: Quotation Mark: the entity is &quot; and symbol character is ". Single Quote Mark: the entity is &apos; and symbol character is '. Ampersand: the entity is &amp; and symbol character is &. Greater Than Sign: the entity is &gt; and symbol character is >. Less Than Sign: the entity is &lt; and symbol character is <. Slash: the entity is &frasl; and symbol character is /. Given the input text string to the HTML parser, you have to implement the entity parser. Return the text after replacing the entities by the special characters. Example 1: Input: text = "&amp; is an HTML entity but &ambassador; is not." Output: "& is an HTML entity but &ambassador; is not." Explanation: The parser will replace the &amp; entity by & Example 2: Input: text = "and I quote: &quot;...&quot;" Output: "and I quote: \"...\"" Example 3: Input: text = "Stay home! Practice on Leetcode :)" Output: "Stay home! Practice on Leetcode :)" Example 4: Input: text = "x &gt; y &amp;&amp; x &lt; y is always false" Output: "x > y && x < y is always false" Example 5: Input: text = "leetcode.com&frasl;problemset&frasl;all" Output: "leetcode.com/problemset/all" Constraints: 1 <= text.length <= 10^5 The string may contain any possible characters out of all the 256 ASCII characters. ''' import re class Solution: def entityParser(self, text: str) -> str: html_symbol = [ '&quot;', '&apos;', '&gt;', '&lt;', '&frasl;', '&amp;'] formal_symbol = [ '"', "'", '>', '<', '/', '&'] for html_sym, formal_sym in zip(html_symbol, formal_symbol): text = re.sub( html_sym , formal_sym, text ) return text # n : the character length of input, text. ## Time Complexity: O( n ) # # The overhead in time is the cost of string replacement, which is of O( n ). ## Space Complexity: O( n ) # # The overhead in space is the storage for output string, which is of O( n ). from collections import namedtuple TestEntry = namedtuple('TestEntry', 'text') def test_bench(): test_data = [ TestEntry( text = "&amp; is an HTML entity but &ambassador; is not." ), TestEntry( text = "and I quote: &quot;...&quot;" ), TestEntry( text = "Stay home! Practice on Leetcode :)" ), TestEntry( text = "x &gt; y &amp;&amp; x &lt; y is always false" ), TestEntry( text = "leetcode.com&frasl;problemset&frasl;all" ), ] # expected output: ''' & is an HTML entity but &ambassador; is not. and I quote: "..." Stay home! Practice on Leetcode :) x > y && x < y is always false leetcode.com/problemset/all ''' for t in test_data: print( Solution().entityParser( text = t.text) ) return if __name__ == '__main__': test_bench()
[ "brianchiang1988@icloud.com" ]
brianchiang1988@icloud.com
72f601d574e8d581120332421e096abfc29920f1
3280dd107a70e7d3637bfcfc2819f9b1477ed99a
/Myquizproject/Myquizproject/urls.py
55bd04fcaf038ecb464df39accb26f55b4cbb00c
[]
no_license
pooja666-v/pv_Quiz_repo
80b9cc3cb1c45a48e30f9e4f15392bbdf02bf22b
fc59c7fb7a92549b8cea3fac0f4cb451bdbcc2f7
refs/heads/master
2023-05-26T23:17:45.797984
2021-06-15T13:01:31
2021-06-15T13:01:31
376,889,813
0
0
null
null
null
null
UTF-8
Python
false
false
3,568
py
"""Myquizproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from quiz import views from django.contrib.auth.views import LogoutView,LoginView urlpatterns = [ path('admin/', admin.site.urls), path('teacher/',include('teacher.urls')), path('student/',include('student.urls')), path('',views.home_view,name=''), path('logout', LogoutView.as_view(template_name='quiz/logout.html'),name='logout'), path('aboutus', views.aboutus_view), path('contactus', views.contactus_view), path('afterlogin', views.afterlogin_view,name='afterlogin'), path('adminclick', views.adminclick_view), path('adminlogin', LoginView.as_view(template_name='quiz/adminlogin.html'),name='adminlogin'), path('admin-dashboard', views.admin_dashboard_view,name='admin-dashboard'), path('admin-teacher', views.admin_teacher_view,name='admin-teacher'), path('admin-view-teacher', views.admin_view_teacher_view,name='admin-view-teacher'), path('update-teacher/<int:pk>', views.update_teacher_view,name='update-teacher'), path('delete-teacher/<int:pk>', views.delete_teacher_view,name='delete-teacher'), path('admin-view-pending-teacher', views.admin_view_pending_teacher_view,name='admin-view-pending-teacher'), path('admin-view-teacher-salary', views.admin_view_teacher_salary_view,name='admin-view-teacher-salary'), path('approve-teacher/<int:pk>', views.approve_teacher_view,name='approve-teacher'), path('reject-teacher/<int:pk>', views.reject_teacher_view,name='reject-teacher'), path('admin-student', views.admin_student_view,name='admin-student'), path('admin-view-student', views.admin_view_student_view,name='admin-view-student'), path('admin-view-student-marks', views.admin_view_student_marks_view,name='admin-view-student-marks'), path('admin-view-marks/<int:pk>', views.admin_view_marks_view,name='admin-view-marks'), path('admin-check-marks/<int:pk>', views.admin_check_marks_view,name='admin-check-marks'), path('update-student/<int:pk>', views.update_student_view,name='update-student'), path('delete-student/<int:pk>', views.delete_student_view,name='delete-student'), path('admin-course', views.admin_course_view,name='admin-course'), path('admin-add-course', views.admin_add_course_view,name='admin-add-course'), path('admin-view-course', views.admin_view_course_view,name='admin-view-course'), path('delete-course/<int:pk>', views.delete_course_view,name='delete-course'), path('admin-question', views.admin_question_view,name='admin-question'), path('admin-add-question', views.admin_add_question_view,name='admin-add-question'), path('admin-view-question', views.admin_view_question_view,name='admin-view-question'), path('view-question/<int:pk>', views.view_question_view,name='view-question'), path('delete-question/<int:pk>', views.delete_question_view,name='delete-question'), ]
[ "poojavasawade98@gmail.com" ]
poojavasawade98@gmail.com
233d511497513d1530a9e8ff0eb47948dc21f5d0
d33065f76aa1a59142794364bb65526771ee71b3
/PDS/tcpstats
0bf7c29658d2db29425445bd767ee5578cad4f0f
[]
no_license
annaostroukh/University-projects
31e300aa0674e13a6d3cb83dc4ccc0161e98bb02
d16e64030f4230107130d770e3c15e472aed7319
refs/heads/master
2021-01-11T14:14:20.619238
2017-02-07T14:50:46
2017-02-07T14:50:46
81,216,867
0
1
null
null
null
null
UTF-8
Python
false
false
10,103
#!/usr/bin/env python2.7 import datetime from decimal import Decimal import socket import struct import sys import webbrowser import dpkt from dpkt.tcp import TCP from dpkt.ethernet import Ethernet from dpkt.ip import IP, IP_PROTO_TCP import json def main(): computeTCPStat() # function parse a packet capture # @filename is a name of file which we parse # return file_entries - list of dictionaries with parsed tcp data def fileParse(filename): f = open(filename, 'rb') # opening a packet file pcap = dpkt.pcap.Reader(f) # reading a packet file packet_counter = 0 # counter of packets in a file file_entries = [] # list of dictionaries of tcp data entries keys = ('packet #', 'time', 'len', 'seq', 'ack', 'window', 'scale factor', 'payload', 'sum', 'flags', 'source', 'source ip', 'destination', 'destination ip') # keys for each value in dictionary for timestamp, buf in pcap: packet_counter += 1 eth = Ethernet(buf) if eth.type != dpkt.ethernet.ETH_TYPE_IP: # if not an IP packet continue ip = eth.data dst_ip = socket.inet_ntoa(ip.dst) src_ip = socket.inet_ntoa(ip.src) if ip.p != IP_PROTO_TCP: # if not a TCP packet print ("No TCP packet found") continue tcp = ip.data # Allow to decode flags fin_flag = (tcp.flags & dpkt.tcp.TH_FIN) != 0 syn_flag = (tcp.flags & dpkt.tcp.TH_SYN) != 0 rst_flag = (tcp.flags & dpkt.tcp.TH_RST) != 0 psh_flag = (tcp.flags & dpkt.tcp.TH_PUSH) != 0 ack_flag = (tcp.flags & dpkt.tcp.TH_ACK) != 0 urg_flag = (tcp.flags & dpkt.tcp.TH_URG) != 0 ece_flag = (tcp.flags & dpkt.tcp.TH_ECE) != 0 cwr_flag = (tcp.flags & dpkt.tcp.TH_CWR) != 0 # human-readable definitions of flags flags = (("FIN " if fin_flag else "") + ("SYN " if syn_flag else "") + ("RST " if rst_flag else "") + ("PSH " if psh_flag else "") + ("ACK " if ack_flag else "") + ("URG " if urg_flag else "") + ("ECE " if ece_flag else "") + ("CWR " if cwr_flag else "")) # define window scale factor option_list = dpkt.tcp.parse_opts(tcp.opts) for option in option_list: if option[0] == 3: WSCALE = struct.unpack(">b", option[1]) time = Decimal(datetime.datetime.utcfromtimestamp(timestamp).strftime('%S.%f')) # tulip with values of each packet in dictionary data = (packet_counter, time, len(buf), tcp.seq, tcp.ack, tcp.win, WSCALE[0], len(tcp.data), tcp.sum, flags, tcp.sport, src_ip, tcp.dport, dst_ip) tcp_data = dict(zip(keys, data)) # matching keys with values and adding entries to the dictionary file_entries.append(tcp_data) # creating a list of dictionaries with parsed tcp data f.close() return file_entries def computeTCPStat(): print ("Parsing a file...") file_entries = fileParse(filename) timeVal = [] # list of dictionaries with time values outputDict =[] # output dictionary keysTime = ('packet #', 'time', 'delta') curTime = 0 # current time for speed measurements print ("Analysing statistics...") for i in range(len(file_entries)): # Setting up reference packet according to SYN flag (TCP connection initiated) if file_entries[i]['flags'] == 'SYN ': refPacket = file_entries[i]['packet #'] timeVal.append({'packet #': refPacket, 'time': Decimal(0.000000), 'delta': Decimal(0.000000)}) # Setting up reference time and adding reference packet to dictionary # Computing delta and reference time for refPacket in range(len(file_entries) - refPacket): delta = file_entries[refPacket+1]['time'] - file_entries[refPacket]['time'] # Time delta from reference packet time = delta + Decimal(timeVal[refPacket]['time']) # Time since reference packet packet = refPacket+2 # Saving time statistics to dictionary dataTime = (packet, time, abs(delta)) timeVal.append(dict(zip(keysTime, dataTime))) # Getting the receiver and sender parameters of a TCP connection for i in range(len(file_entries)): if file_entries[i]['flags'] == 'SYN ': receiverIP = file_entries[i]['destination ip'] receiverWinScale = pow(2, file_entries[i]['scale factor']) if file_entries[i]['flags'] == 'SYN ACK ': senderIP = file_entries[i]['destination ip'] senderWinScale = pow(2, file_entries[i]['scale factor']) # Receiver window for i in range(len(file_entries)): if (file_entries[i]['flags'] != 'SYN ' and file_entries[i]['flags'] != 'SYN ACK ') and file_entries[i]['destination ip'] == receiverIP and file_entries[i]['packet #'] == timeVal[i]['packet #']: recWin = file_entries[i]['window'] * receiverWinScale timeRecWin = timeVal[i]['time'] dataRec = (str(timeRecWin), str(recWin)) keysRec = ('ReceiverTime', 'RecWin') outputDict.append(dict(zip(keysRec, dataRec))) # Sender window for i in range(len(file_entries)): if (file_entries[i]['flags'] != 'SYN ' and file_entries[i]['flags'] != 'SYN ACK ') and file_entries[i]['destination ip'] == senderIP and file_entries[i]['packet #'] == timeVal[i]['packet #']: sendWin = file_entries[i]['window'] * senderWinScale timeSendWin = timeVal[i]['time'] dataSend = (str(timeSendWin), str(sendWin)) keysSend = ('SenderTime', 'SenderWin') outputDict.append(dict(zip(keysSend, dataSend))) # Round trip time for i in range(len(file_entries)): # Receiver RTT if file_entries[i]['flags'] == 'ACK ' and file_entries[i]['destination ip'] == receiverIP and file_entries[i]['packet #'] == timeVal[i]['packet #']: if file_entries[i]['seq'] == file_entries[i-1]['ack'] and file_entries[i-1]['flags'] != 'SYN ACK ' and file_entries[i-1]['flags'] != 'FIN ACK ': rtt = timeVal[i-1]['delta'] seqNumber = file_entries[i-1]['seq'] dataRtt = (str(rtt * 1000), str(seqNumber)) # Saving rtt converted to [ms] keysRtt = ('RTT', 'Sequence') outputDict.append(dict(zip(keysRtt, dataRtt))) # Slow start for i in range(len(file_entries)): # Receiver SS (packets from server) if (file_entries[i]['flags'] == 'SYN ACK ' or file_entries[i]['flags'] == 'ACK ' or file_entries[i]['flags'] == 'FIN ACK ') and file_entries[i]['source ip'] == receiverIP and file_entries[i]['packet #'] == timeVal[i]['packet #']: if file_entries[i]['flags'] == 'SYN ACK ': time = 0 # setting reference time according to the first SYN ACK packet if file_entries[i]['flags'] == 'ACK ' or file_entries[i]['flags'] == 'FIN ACK ': time = time + timeVal[i]['delta'] # time on X-axis will show how RTT is changing since time reference seqNumberSS = file_entries[i]['seq'] dataSS = (str(time), str(seqNumberSS)) keysSS = ('TimeSS', 'SequenceSS') outputDict.append(dict(zip(keysSS, dataSS))) # Sender SS (packets from client) if (file_entries[i]['flags'] == 'SYN ' or file_entries[i]['flags'] == 'ACK ' or file_entries[i]['flags'] == 'FIN ACK ') and file_entries[i]['source ip'] == senderIP and file_entries[i]['packet #'] == timeVal[i]['packet #']: seqNumberSS = file_entries[i]['seq'] timeSS = timeVal[i]['time'] dataSS = (str(timeSS), str(seqNumberSS)) keysSS = ('TimeSSsen', 'SequenceSSsen') outputDict.append(dict(zip(keysSS, dataSS))) # Speed of TCP connection in interval 0.01 s timerRange = int((int(timeVal[-1]['time'])+1)/0.01) # setting up a required amount of steps to look through packets for timer in range(timerRange): lastTime = curTime curTime = curTime + 0.01 byte = 0 # bytes of receiver byteSen = 0 # bytes of sender bytes =[] bytesSen = [] for i in range(len(timeVal)): # Receiver speed if lastTime <= timeVal[i]['time'] <= curTime and file_entries[i]['source ip'] == receiverIP and file_entries[i]['packet #'] == timeVal[i]['packet #']: byte = byte + file_entries[i]['len'] time = lastTime bytes.append(byte) # Sender speed elif lastTime <= timeVal[i]['time'] <= curTime and file_entries[i]['source ip'] == senderIP and file_entries[i]['packet #'] == timeVal[i]['packet #']: byteSen = byteSen + file_entries[i]['len'] timeSen = lastTime bytesSen.append(byteSen) # computing receiver bytes if bytes: bytessum = max(bytes) else: time = lastTime bytessum = 0 dataSp = (str(time), str(bytessum)) keysSp = ('Time', 'BytesRec') outputDict.append(dict(zip(keysSp, dataSp))) # computing sender bytes if bytesSen: bytessumSen = max(bytesSen) else: timeSen = lastTime bytessumSen = 0 dataSpSen = (str(timeSen), str(bytessumSen)) keysSpSen = ('TimeSen', 'BytesSen') outputDict.append(dict(zip(keysSpSen, dataSpSen))) # Exporting statistics to JSON log file print ("Exporting statistics...") file = open("log.json", "w") json.dump(outputDict, file, indent = 1) file.close() if __name__ == "__main__": if len(sys.argv)>1: filename = sys.argv[1] main()
[ "annaostroukh@gmail.com" ]
annaostroukh@gmail.com
a0805ca69c9facac7d1aacfd3d9aa666d1741f76
94a27c14e31aeac3fe16980240e19634837679a8
/max-frequency.py
a9828419afb5ee165a3274267b910be6b95e359b
[]
no_license
EEmery/anomaly-detection
73762045eb317f0dc565f1199b28c61ce8fe1756
3fbb098ea483c85a7f0bec46ca33c3b3b417dbbf
refs/heads/master
2020-04-05T23:28:35.698159
2017-09-10T00:35:39
2017-09-10T00:35:39
83,551,646
0
0
null
null
null
null
UTF-8
Python
false
false
2,148
py
# Imports necessary libraries print "Importing packages\n" import pandas as pd import matplotlib.pyplot as plt from warnings import filterwarnings from numpy import nan # Ignores warnings filterwarnings("ignore") input_file_path = "Data/preprocessed_v2/not-normalized/" periods = ['WEEK', 'MONTH', 'QUARTER', 'SEMESTER'] periods_amounts = [53, 12, 4, 2] file_names = ['weekly', 'monthly', 'quarterly', 'semesterly'] # Iterates over all periods for period, period_amount, file_name in zip(periods, periods_amounts, file_names): print "Making " + file_name + " analysis" # Opens file (related to the period) periodic_analysis = pd.read_csv(input_file_path + file_name + '_analysis.csv') # Remover YEAR necessity by increasing period limits periodic_analysis[period] = periodic_analysis[period] + (periodic_analysis['YEAR'] - 2015) * period_amount # Slices data frame to get only necessary columns periodic_analysis = periodic_analysis[['ID', period, 'FREQUENCY', 'GE_MEAN', 'GNV_MEAN', 'GP_MEAN', 'DO_MEAN']] # Reshapes data frame to desired shape periodic_analysis = periodic_analysis.set_index(['ID', period]) periodic_analysis = periodic_analysis.stack().unstack(1) # Gets the period of higher frequency max_frequencies = periodic_analysis.loc(axis=0)[:, 'FREQUENCY'].idxmax(axis=1).reset_index().rename(columns={0:'STAMP'}) # Creates a data frame for final results result_df = pd.DataFrame(columns = ['ID', 'GE_MEAN', 'GNV_MEAN', 'GP_MEAN', 'DO_MEAN']) # Iterates over the ID's for i, ID, STAMP in zip(range(len(max_frequencies)), max_frequencies['ID'], max_frequencies['STAMP']): data = periodic_analysis.loc(axis=0)[ID].ix[1:, STAMP] # Gets the means from the higher frequency period row = [ID] for mean in ['GE_MEAN', 'GNV_MEAN', 'GP_MEAN', 'DO_MEAN']: # Iterates over all fule type means try: row.append(data[mean]) # Appends to final result except KeyError: row.append(nan) result_df.loc[i] = row # Appends to result data frame # Show some data if period == 'MONTH': print len(result_df) periodic_analysis.loc['741NKH'].T.plot.bar() plt.show()
[ "emeryecs@gmail.com" ]
emeryecs@gmail.com
e65631e729c8549976a81aa1a8b98e467e8c7c78
228dd278c875b9539908afffefcfe5b130a28a62
/v2/src/code/measure_service2.py
44431c1f5d47dc6869ce58091850202aa7bda78f
[]
no_license
sheriefvt/MARS-services
57d9ca81f1f606ca8a8938e75b41fb806a36f8b9
a5f6b6140b0c8a30cd083a41a465f0bc999017a1
refs/heads/master
2021-04-30T12:50:53.156082
2018-02-13T02:06:11
2018-02-13T02:06:11
121,283,295
0
0
null
null
null
null
UTF-8
Python
false
false
5,415
py
__author__ = 'Sherif Abdelhamid' #Measure Service Version 1.0 Beta from bottle import get, post, request, run # or route import os import threading import time import networkx as nx import sqlite3 import json import datetime import ConfigParser,io with open ('mars.config', "r") as myfile: data=myfile.read() config = ConfigParser.RawConfigParser(allow_no_value=True) config.readfp(io.BytesIO(data)) server = config.get("MARS_configuration", "server") host = config.get("MARS_configuration", "host") port = config.get("MARS_configuration", "port") port2 = config.get("MARS_configuration", "port2") port3 = config.get("MARS_configuration", "port3") database_path = config.get("MARS_configuration", "database") index_path1 = config.get("MARS_configuration", "index1") index_path2 = config.get("MARS_configuration", "index2") file_path = config.get("MARS_configuration", "uploadfile") qsub_path = config.get("MARS_configuration", "qsub") graph_path = config.get("MARS_configuration", "graph") code_path = config.get("MARS_configuration", "code") output_path = config.get("MARS_configuration", "output") qlog_path = config.get("MARS_configuration", "qlog") class MyError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) ##End point to call the measure service to compute a specific measure on a network. @get('/graphservice/measure/compute') def do_compute(): gname = request.query.get('graph') mid = request.query.get('measure') p = getmeasureinfo(mid) if p[3]=='None': par='' else: par = p[3] ts = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d--%H:%M:%S') if p[1]=="networkx": tmp=networkx_qsub(gname,p[0],ts,par) elif p[1] == "galib": tmp = galib_qsub(gname,p[2],ts,par,p[0]) elif p[1] == "standalone": tmp = cplus_qsub(gname,p[2],ts,par,p[0]) elif p[1] == "sql": tmp =sql_qsub(gname,ts,p[5],p[2],p[4],p[0]) name =qsub_path +gname+"-"+mid+'.qsub' f1 = open(name, "w") f1.write(tmp) f1.close() if os.path.exists(name): qb = threading.Thread(name='qsub_worker', target=qsub_worker(name)) qb.start() return ##Function to create qsub file for calculating degree within DBMS def sql_qsub(gname,ts,dbname,sqlstmt,target,m): tmp2=sqlstmt.format(g=gname) tmp='''#!/bin/bash #PBS -lwalltime=10:00:00 #PBS -W group_list=sipcinet #PBS -q sfx_q #PBS -N {gname}-{measure}-MARS #PBS -o {qp}{graph_name}{ti}.qlog cd $PBS_O_WORKDIR sqlite3 {dp} 'update {g}_{tr} set {mn} = ({sq})' '''.format(g=gname,mn=dbname,ti=ts,tr=target,sq=tmp2,dp=database_path,measure=m,qp=qlog_path) return tmp ##Function to create qsub file for calculating different measures using networkx library. Currently, it calculates the degree, # betweeness_centrality, clustering, load_centrality, node_clique_number, and closeness_centrality. def networkx_qsub(gname,command,ts,parameter): tmp='''#!/bin/bash #PBS -lwalltime=10:00:00 #PBS -W group_list=sipcinet #PBS -q sfx_q #PBS -N {graph_name}-{measure}-MARS #PBS -o {qp}{graph_name}{ti}.qlog cd $PBS_O_WORKDIR export PATH=/home/sipcinet/edison/python-2.7.9/bin:$PATH python {cp}measure.py {gp}{graph_name} {op}{graph_name}_{measure}.out {measure} {graph_name} {pr} '''.format(graph_name=gname,measure=command,ti=ts,cp=code_path,op=output_path,pr=parameter,gp=graph_path,qp=qlog_path) return tmp ##Function to create qsub file for calculating keshell using code provided by Chris Kulhman. Code is an executable. def cplus_qsub(gname,mname,ts,parameter,command): tmp='''#!/bin/bash #PBS -lwalltime=10:00:00 #PBS -W group_list=sipcinet #PBS -q sfx_q #PBS -N {graph_name}-{cmd}-MARS #PBS -o {qp}{graph_name}{ti}.qlog cd $PBS_O_WORKDIR export PATH=/home/sipcinet/edison/python-2.7.9/bin:$PATH {cp}{measure} {gp}{graph_name}.uel {pr} {op}{graph_name}_{cmd}.out '''.format(graph_name=gname,measure=mname,ti=ts,cp=code_path,gp=graph_path,pr=parameter,cmd=command,op=output_path,qp=qlog_path) return tmp ##Function to create qsub file for calculating clustering coef. using code provided by Maliq. Code is an executable def galib_qsub(gname,mname,ts,parameter,cmd2): tmp='''#!/bin/sh #PBS -l walltime=10:00:00 #PBS -l nodes=10:ppn=1 #PBS -W group_list=ndssl #PBS -q ndssl_q #PBS -A ndssl #PBS -N {graph_name}-{cmd}-MARS #PBS -o {qp}{graph_name}{ti}.qlog #PBS -j oe . /etc/profile.d/modules.sh module add mvapich2/gcc #module add mpiexec time mpiexec -f $PBS_NODEFILE {cp}{command} {gp}{graph_name}.gph {op}{graph_name}_{cmd}.out {pr} exit; '''.format(graph_name=gname,command=mname,cp=code_path,ti=ts,pr=parameter,cmd=cmd2,gp=graph_path,op=output_path,qp=qlog_path) return tmp ##Load measure information from DB def getmeasureinfo(m): db = sqlite3.connect(database_path) c = db.cursor() sqlt = ("select id,package,command,parameter,target from measure where id='{c}'").format(c=m) c.execute(sqlt) data = c.fetchone() return data ##Submit qsub job request def qsub_worker(name): os.system('qsub {filename}'.format(filename=name)) run(server=server,host=host, port=port3,debug=True)
[ "sherif@cos.io" ]
sherif@cos.io
7f083320d95a03e5d1511f9b21545afc2344cbca
3f0a0ee646326530c4cd6996276e8c819dfab65c
/battleship.py
5bcc8530ea64006f289500c7ec2e3a8ebc74e6fa
[]
no_license
kidisty/Python-1
bde878603283a6b3b966296ad2d4b0f89f70000f
203cd35b07633610b3773c0100c342386e636935
refs/heads/master
2022-11-12T07:11:15.072699
2020-07-06T09:59:33
2020-07-06T09:59:33
277,503,399
0
0
null
null
null
null
UTF-8
Python
false
false
1,215
py
import random board = [] for x in range(5): board.append(["O"] * 5) def print_board(board): for row in board: print " ".join(row) print "Let's play Battleship!" print_board(board) def random_row(board): return random.randint(0, len(board) - 1) def random_col(board): return random.randint(0, len(board[0]) - 1) ship_row = random_row(board) ship_col = random_col(board) # print ship_row # print ship_col turn = 0 # Everything from here on should go in your for loop! # Be sure to indent four spaces! for turn in range(4): guess_row = input("Guess Row:") guess_col = input("Guess Col:") if guess_row == ship_row and guess_col == ship_col: print "Congratulations! You sunk my battleship!" break else: if (guess_row < 0 or guess_row > 4) or (guess_col < 0 or guess_col > 4): print "Oops, that's not even in the ocean." elif(board[guess_row][guess_col] == "X"): print "You guessed that one already." else: print "You missed my battleship!" board[guess_row][guess_col] = "X" # Print (turn + 1) here! if turn > 4: print "Game Over" print turn + 1 print_board(board)
[ "kidistyohannes@kidists-MacBook-Pro.local" ]
kidistyohannes@kidists-MacBook-Pro.local
dcbe927e6b4d7e84a65d80d415af4b07cbf43625
7e64b95e39d9a0a95e25eae82b01bfef2b6e550c
/benchmarking/model_one_job_batched.py
03714abbeeabd1ced60e64916c8e2a06568264bb
[ "MIT" ]
permissive
yuGithuuub/scCODA_reproducibility
a927075d9cbca2b0f1ff4d9ad74b872e286591dc
1f2565eca4bc9e6ccd16aa6885ccde6c19caa196
refs/heads/main
2023-01-23T03:23:04.559234
2020-12-10T15:14:19
2020-12-10T15:14:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,832
py
# Only relevant for server execution import pickle as pkl import sys import os import benchmark_utils as add dataset_path = sys.argv[1] save_path = sys.argv[2] model_name = sys.argv[3] count = int(sys.argv[4]) if sys.argv[5] == "True": keep_sccoda_results = True else: keep_sccoda_results = False print("model name:", model_name) file_name = os.listdir(dataset_path)[count] if model_name == "ALDEx2_alr": kwargs = {"server": True, "method": "we.eBH", "mc_samples": 128, "denom": [5], "alpha": 0.05, "fdr_correct": False} elif model_name == "ALDEx2": kwargs = {"server": True, "method": "we.eBH", "mc_samples": 128, "alpha": 0.05, "fdr_correct": False} elif model_name in ["simple_dm", "scCODA"]: kwargs = {"num_results": 20000, "n_burnin": 5000, "num_adapt_steps": 4000, "keep_sccoda_results": keep_sccoda_results} elif model_name in ["alr_ttest", "alr_wilcoxon"]: kwargs = {"reference_index": 4, "alpha": 0.05, "fdr_correct": True} elif model_name in ["Haber", "ttest", "clr_ttest", "dirichreg"]: kwargs = {"alpha": 0.05, "fdr_correct": True} elif model_name == "scdc": kwargs = {"server": True} else: kwargs = {} if keep_sccoda_results: results, effects = add.model_on_one_datafile(dataset_path+file_name, model_name, **kwargs) results = add.get_scores(results) save = {"results": results, "effects": effects} else: results = add.model_on_one_datafile(dataset_path+file_name, model_name, **kwargs) results = add.get_scores(results) save = results with open(save_path + model_name + "_results_" + str(count) + ".pkl", "wb") as f: pkl.dump(save, f)
[ "johannes.ostner@online.de" ]
johannes.ostner@online.de
c0fc1c5fe7e20c2b73669f3d38ce4eff71b3fa44
400f4a13784f93029dbe035392ba62f0956f1c1f
/sampler.py
8ec1187020e92427b9f63246e08ea5c919a22c2b
[ "MIT" ]
permissive
ussama-azizun/Masked_Face_Recognition
5e3516ec0d99380ef22decdd06c536bfe79a6cd1
2dc572573ebd9ac208314690b529ed69addf0913
refs/heads/master
2023-07-13T03:49:27.553385
2021-08-03T07:51:35
2021-08-03T07:51:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,331
py
from torch.utils.data.sampler import Sampler import itertools import numpy as np def samples(df): label_to_samples = [] samples = [] label = 0 for index, row in df.iterrows(): if index == 0: samples.append(index) label = row['target'] else: if row['target'] != label: label_to_samples.append(samples) samples = [] label = row['target'] samples.append(index) return label_to_samples class PKSampler(Sampler): def __init__(self, data_source, p=15, k=20): super().__init__(data_source) self.p = p self.k = k self.data_source = data_source def __iter__(self): pk_count = len(self) // (self.p * self.k) for _ in range(pk_count): labels = np.random.choice(np.arange(len(self.data_source.label_to_samples)), self.p, replace=False) for l in labels: indices = self.data_source.label_to_samples[l] replace = True if len(indices) < self.k else False for i in np.random.choice(indices, self.k, replace=replace): yield i def __len__(self): pk = self.p * self.k samples = ((len(self.data_source) - 1) // pk + 1) * pk return samples def grouper(iterable, n): it = itertools.cycle(iter(iterable)) for _ in range((len(iterable) - 1) // n + 1): yield list(itertools.islice(it, n)) # full label coverage per 'epoch' class PKSampler2(Sampler): def __init__(self, data_source, p=15, k=20): super().__init__(data_source) self.p = p self.k = k self.data_source = data_source def __iter__(self): rand_labels = np.random.permutation(np.arange(len(self.data_source.label_to_samples))) for labels in grouper(rand_labels, self.p): for l in labels: indices = self.data_source.label_to_samples[l] replace = True if len(indices) < self.k else False for j in np.random.choice(indices, self.k, replace=replace): yield j def __len__(self): num_labels = len(self.data_source.label_to_samples) samples = ((num_labels - 1) // self.p + 1) * self.p * self.k return samples
[ "samyuan101234@gmail.com" ]
samyuan101234@gmail.com
ab0c75ec1d40b45a73b6375c1400520dda72e2cd
1b9c4798836f7c38782995422efcdbe7b48ed459
/fashion/urls.py
96ad507ae51d691eb26decda0c9b1a42c8cd09c4
[]
no_license
risa4an/fashion-blog
44ccff27dbe330665f1eeae460d636f6e8fe2d0d
aa46877246aa61b28dfdaea2e495c8e887a24f06
refs/heads/master
2022-12-22T10:38:48.718814
2020-09-16T19:56:55
2020-09-16T19:56:55
260,867,007
0
0
null
null
null
null
UTF-8
Python
false
false
1,138
py
"""fashion URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf.urls.static import static from django.contrib import admin from django.urls import path, include from django.conf.urls import include, url from fashion import settings from fashion.apps.accounts import views urlpatterns = [ path('articles/', include('articles.urls'), name = 'home'), path('admin/', admin.site.urls), path('', include('accounts.urls')), path('photographers/', include('photographers.urls')) ] static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "katya.risunova@gmail.com" ]
katya.risunova@gmail.com
499cc74e02d9c9125a27b10ac84169ce55f05be3
7998125d3b2d3d1427f0715e9d7283b3108625c1
/wcics/server/forms/forms/admin/topics/create.py
f6fdf0312231da71bbd9d63bced8582cbde4eebd
[ "MIT" ]
permissive
CS-Center/CS-Center
042b74e1c1b829a241260159ee40bf9ffa5a7027
3cd09f29d214406e6618fc67b9faf59a18f3f11b
refs/heads/master
2021-07-03T00:12:38.569492
2020-09-16T20:38:39
2020-09-16T20:38:39
209,430,258
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
# -*- coding: utf-8 -*- from wcics.server.forms.validator_sets import * from flask_wtf import FlaskForm from wtforms import StringField, SubmitField, TextAreaField class TopicSudoCreateForm(FlaskForm): tid = StringField("ID", admin_topic_create_tid) name = StringField("Name", admin_topic_create_name) description = TextAreaField("Description", admin_topic_create_description) submit = SubmitField("Create")
[ "keenan@cscenter.ca" ]
keenan@cscenter.ca
c08ce6dd49ab813444d35c3c9349c72f052e228b
5e255ad1360c90478393744586663741a9569c21
/linebot/models/base.py
164fca9d9e9240236cfe90b9b6b2b37ba835814f
[ "Apache-2.0" ]
permissive
line/line-bot-sdk-python
d76268e8b542060d6eccbacc5dbfab16960ecc35
cffd35948238ae24982173e30b1ea1e595bbefd9
refs/heads/master
2023-08-31T22:12:31.698183
2023-08-28T01:10:09
2023-08-28T01:10:09
70,553,423
1,898
1,181
Apache-2.0
2023-09-11T05:14:07
2016-10-11T03:42:26
Python
UTF-8
Python
false
false
4,121
py
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """linebot.models.base module.""" import json from .. import utils class Base(object): """Base class of model. Suitable for JSON base data. """ def __init__(self, **kwargs): """__init__ method. :param kwargs: """ pass def __str__(self): """__str__ method.""" return self.as_json_string() def __repr__(self): """__repr__ method.""" return str(self) def __eq__(self, other): """__eq__ method. :param other: """ return other and self.as_json_dict() == other.as_json_dict() def __ne__(self, other): """__ne__ method. :param other: """ return not self.__eq__(other) def as_json_string(self): """Return JSON string from this object. :rtype: str """ return json.dumps(self.as_json_dict(), sort_keys=True) def as_json_dict(self): """Return dictionary from this object. :return: dict """ data = {} for key, value in self.__dict__.items(): camel_key = utils.to_camel_case(key) if isinstance(value, (list, tuple, set)): data[camel_key] = list() for item in value: if hasattr(item, 'as_json_dict'): data[camel_key].append(item.as_json_dict()) else: data[camel_key].append(item) elif hasattr(value, 'as_json_dict'): data[camel_key] = value.as_json_dict() elif value is not None: data[camel_key] = value return data @classmethod def new_from_json_dict(cls, data, use_raw_message=False): """Create a new instance from a dict. :param data: JSON dict :param bool use_raw_message: Using original Message key as attribute """ if use_raw_message: return cls(use_raw_message=use_raw_message, **data) new_data = {utils.to_snake_case(key): value for key, value in data.items()} return cls(**new_data) @staticmethod def get_or_new_from_json_dict(data, cls): """Get `cls` object w/ deserialization from json if needed. If data is instance of cls, return data. Else if data is instance of dict, create instance from dict. Else, return None. :param data: :param cls: :rtype: object """ if isinstance(data, cls): return data elif isinstance(data, dict): return cls.new_from_json_dict(data) return None @staticmethod def get_or_new_from_json_dict_with_types( data, cls_map, type_key='type', use_raw_message=False ): """Get `cls` object w/ deserialization from json by using type key hint if needed. If data is instance of one of cls, return data. Else if data is instance of dict, create instance from dict. Else, return None. :param data: :param cls_map: :param type_key: :rtype: object :param bool use_raw_message: Using original Message key as attribute """ if isinstance(data, tuple(cls_map.values())): return data elif isinstance(data, dict): type_val = data[type_key] if type_val in cls_map: return cls_map[type_val].new_from_json_dict(data, use_raw_message=use_raw_message) return None
[ "noreply@github.com" ]
noreply@github.com
0e0fbfff7cc2527f4cf77872685c1eba72a8441b
368f19de1a70535f3938da92d7278c0296a1b142
/fb/manage.py
fa01778819c491bc93750de929e949753879bf33
[]
no_license
viveksoundrapandi/chrome-aldown
82a5f3c679108a146f0c9fd76d8809b868a2933b
7a1915534ed90bc647e9775178a6f16a7be8e7a1
refs/heads/master
2022-11-05T02:12:32.272354
2022-10-07T11:29:36
2022-10-07T11:29:36
5,950,897
0
1
null
2022-10-07T11:29:37
2012-09-25T14:03:40
Python
UTF-8
Python
false
false
245
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "fb.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "vivekhas3@gmail.com" ]
vivekhas3@gmail.com
1db2de63ecb9a8bd60c598385a262b6e2b0785b9
a20f8ae0c129927318792ec4547d534dbe38871a
/model/pcnn_att_adam.py
053182fb9d612e4235924547884f5d4eb3d5a2cb
[ "MIT" ]
permissive
zhaohuiqiang/ONRE
dbc82abc31271c690252d3f2f5cf799c5f871f83
736fc5ff6f12be590d02cb66abb82c1616e1327c
refs/heads/master
2020-03-31T17:14:35.197909
2018-11-20T01:00:47
2018-11-20T01:00:47
152,414,099
0
0
null
null
null
null
UTF-8
Python
false
false
1,028
py
from framework import Framework import tensorflow as tf FLAGS = tf.app.flags.FLAGS def pcnn_att_adam(is_training): if is_training: framework = Framework(is_training=True) else: framework = Framework(is_training=False) word_embedding = framework.embedding.word_embedding() pos_embedding = framework.embedding.pos_embedding() embedding = framework.embedding.concat_embedding(word_embedding, pos_embedding) x = framework.encoder.pcnn(embedding, FLAGS.hidden_size, framework.mask, activation=tf.nn.relu) logit, repre = framework.selector.attention(x, framework.scope, framework.label_for_select) if is_training: loss = framework.classifier.softmax_cross_entropy(logit) output = output(logit) framework.init_train_model(loss, output, optimizer=tf.train.AdamOptimizer) framework.load_train_data() framework.train() else: framework.init_test_model(tf.nn.softmax(logit)) framework.load_test_data() framework.test()
[ "346091714@qq.com" ]
346091714@qq.com
dd169cb46861b1832b662aacb471b515ebccff0e
afeed161a0bd0e92cdcfcf3c580db8f78719bae8
/Milestone_One/bs4_scrape.py
9fd1671a4ae3045c68b4492451484a6c4a36dccb
[]
no_license
changjung1995/WQD7005_Data_Mining
07046b0c8088123c29c0a0eb65126570515b291d
3e214835ff527b6e3d2fefa442efae4c60ae527a
refs/heads/master
2023-05-27T15:10:29.562769
2020-06-20T06:46:01
2020-06-20T06:46:01
246,978,227
0
1
null
2023-05-22T22:45:37
2020-03-13T03:11:35
Jupyter Notebook
UTF-8
Python
false
false
2,317
py
# -*- coding: utf-8 -*- """ @author: Tan Chang Jung & Tan Sia Hong """ #%% import requests from bs4 import BeautifulSoup from datetime import date import time import pandas as pd #%% headers = {'User-Agent' : 'Chrome/74.0.3729.169'} # select the top 20 from the ranking of cryptocurrencies cryptocurrency = ['bitcoin','ethereum','xrp','bitcoin-cash','tether', 'bitcoin-sv','litecoin','eos','binance-coin','neo', 'chainlink','cardano','stellar','tron','unus-sed-leo', 'monero','huobi-token','ethereum-classic','crypto-com-coin', 'dash'] #%% # capture today date today = date.today().strftime("%Y%m%d") # format the base url link base_url = 'https://coinmarketcap.com/currencies/{}/historical-data/?start=20100101&end=' + today # header heading = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume', 'Market Capacity'] for cc in cryptocurrency: url = base_url.format(cc) response = requests.get(url, headers = headers) soup = BeautifulSoup(response.content, 'html.parser') #find html code for table table = soup.find_all('div', class_='cmc-table__table-wrapper-outer') table = table[2] data = [] for rows in table.find_all('tr'): row = {} for cols, head in zip(rows.find_all('td'), heading): row[head] = cols.text.replace('\n','').strip() data.append(row) time.sleep(5) df = pd.DataFrame(data) df = df.drop(df.index[0]) # remove empty row df["Date"] = pd.to_datetime(df["Date"]).dt.strftime('%Y-%m-%d') df['Open'] = df['Open'].str.replace(',','') df['Open'] = df['Open'].astype('float64').round(2) df['High'] = df['High'].str.replace(',','') df['High'] = df['High'].astype('float64').round(2) df['Low'] = df['Low'].str.replace(',','') df['Low'] = df['Low'].astype('float64').round(2) df['Close'] = df['Close'].str.replace(',','') df['Close'] = df['Close'].astype('float64').round(2) df['Volume'] = df['Volume'].str.replace(',','') df['Volume'] = df['Volume'].astype('float64').round(2) df['Market Capacity'] = df['Market Capacity'].str.replace(',','') df['Market Capacity'] = df['Market Capacity'].astype('float64').round(2) # save to csv df.to_csv(cc + '.csv', index = False)
[ "wqd190008@siswa.um.edu.my" ]
wqd190008@siswa.um.edu.my
56b5c5e6c185d48ef5ff9fdb8aa7c49f34eb9f35
055b8c0176f9036061c9abd56e18db28eb69111f
/venv/bin/pip2.7
ff662bae4ff3be2065482ea43c0d8cb0caa9a617
[]
no_license
patientplatypus/pythonsimpleskeleton
0b56cc589db7ca91ecd7160b28f3556c3e3e153b
8bb70d549b8c367fe39ebe73685fd765032e13f7
refs/heads/master
2021-05-12T08:38:20.330403
2018-01-13T21:30:34
2018-01-13T21:30:34
117,291,647
0
0
null
null
null
null
UTF-8
Python
false
false
253
7
#!/Users/patientplatypus/Documents/python_play/venv/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from pip import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "pweyand@gmail.com" ]
pweyand@gmail.com
038676f976925f63daee208e21804295dadcdee2
0581b790cf9feda6638084fca19a03137baa3ce1
/Tron_niezainstalowany/Setup.py
e06af08aadc6917f538a6f807b07a7b5e67e0520
[]
no_license
Frax123/TRON-GAME-PYTHON
127eb4878093eb6419aaa3a7b051f5f54caf1343
2524efe0c9718d13f1cd8e74882fe316179d6d4e
refs/heads/master
2020-05-04T21:54:46.401725
2019-04-04T12:35:33
2019-04-04T12:35:33
179,493,063
0
0
null
null
null
null
UTF-8
Python
false
false
374
py
# -*- coding: utf-8 -*- import cx_Freeze executables = [cx_Freeze.Executable('Tron.py')] cx_Freeze.setup(name = 'Tron', options = {'build_exe':{'packages': ['pygame'], 'include_files' : ['Red_player.png', 'Blue_player.png', 'Icon.png', 'Wybuch.png']}}, description = 'Tron: First Chapter', executables = executables)
[ "noreply@github.com" ]
noreply@github.com
f76d5f3aec244f5d33fcd7e2887d2eb61bb5658a
0b25b1c2ea3e3f05ea388e1105cd2fab50e7ba54
/mysite/blog/forms.py
68ba9afdb13950be95db2f366aa5aebf783e6d1c
[]
no_license
webclinic017/Django-project
f8337aeb296d12760143951635d0297c13313a50
e757aef633c63aaf857afd1f274d42d16703ca0c
refs/heads/master
2022-12-25T17:30:14.503627
2020-10-12T08:47:08
2020-10-12T08:47:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
from django import forms from .models import Comment class EmailPostForm(forms.Form): name = forms.CharField() email = forms.EmailField() to = forms.EmailField() comments = forms.CharField(required=False, widget=forms.Textarea) class CommentForm(forms.ModelForm): class Meta: model = Comment fields = ('name', 'email', 'body')
[ "moreshubham203@gmail.com" ]
moreshubham203@gmail.com
bd0794483225cac132025003cb18438963984fcf
178998aecae2aa9d52e43b702abd52fd6ba58b2b
/0517/defT.py
6a4a7b45c745ddf7f69c664c45c1027a1ac5f75a
[]
no_license
www111111/git-new
34d664cad5084d9d016f25131eb0d5a8f719d7d1
3fd96e79b3c3a67afbc6227db1c69294f75848c0
refs/heads/master
2020-03-17T10:30:24.560482
2018-05-28T12:24:20
2018-05-28T12:24:20
133,514,309
0
0
null
null
null
null
UTF-8
Python
false
false
182
py
def sum(): a=int(input('a')) b=input('+') c=int(input('c')) e=input('+') d=int(input('d')) if(b=='+' and e=='+'): sum=a+c+d return(sum)
[ "1337872746@qq.com" ]
1337872746@qq.com
cc1984673c8ca18f83d4bb875b6a0454c72c78f0
d7bd5d5fd6114ceec28b190434958c5d3e8d0b8a
/install_nltk.py
046937c12c7ca4cddcc380ea6f28482a1457f08d
[]
no_license
jay-cleveland/reddit_data_acquisition
1c2529c6063a47c163aa73449004df433f7811b0
c1e78b3328c87c7bff034cc63723076a7da89354
refs/heads/master
2022-10-16T08:52:12.591232
2022-09-30T02:08:33
2022-09-30T02:08:33
105,435,874
0
0
null
null
null
null
UTF-8
Python
false
false
89
py
import nltk def main(): nltk.download('punkt') nltk.download('all-corpora') main()
[ "clevelanjk18@uww.edu" ]
clevelanjk18@uww.edu
241ccb6c7c4ae0c34b892c9d317fbd849d3ea4ef
7fba01da6426480612d7cef9ceb2e15f3df6d01c
/PYTHON/pythonDesafios/venv/lib/python3.9/site-packages/santos/santos.py
b862f2661c3fd15467cd45185f3ff2200ba50eaa
[ "MIT" ]
permissive
Santos1000/Curso-Python
f320fec1e7ced4c133ade69acaa798d431e14113
549223a1633f6f619c87554dd8078cf7841bb1df
refs/heads/main
2023-05-26T12:01:23.868814
2021-05-26T13:22:58
2021-05-26T13:22:58
371,039,290
0
0
null
null
null
null
UTF-8
Python
false
false
9,153
py
__author__ = 'anderson' # -*- coding: utf-8 -*- from threading import Thread from datetime import datetime from exceptions import TaskException import logging log = logging.getLogger(__name__) class ControlJobs: __jobs = [] def stop(self, jobname): log.debug("Job name %s" % jobname) log.debug(self.__jobs) for idx, th in enumerate(self.__jobs): if jobname in th: th[jobname]._stop() del self.__jobs[idx] break def addjob(self, job): self.__jobs.append(job) log.debug(self.__jobs) stopjobs = ControlJobs() class TaskScheduling(Thread): """ Os parâmetros aceitos são: seconds, minutes, hour, time_of_the_day, day_of_the_week, day_of_the_month Descrição: O parâmetro seconds define que a função será executada repetidamente na frequência do valor passado em segundos ex: seconds="20", será executado de 20 em 20 segundos O parâmetro minutes define que a função será executada repetidamente na frequência do valor passado em minutos ex: minutes="20", será executado de 20 em 20 minutos O parâmetro hour define que a função será executada repetidamente na frequência do valor passado em horas ex: hour="2", será executado de 2 em 2 horas obs: Esses três parâmetros não podem ser combinados, nem entre e nem com os dois abaixo. O parâmetro time_of_the_day define que a função será executada todo dia em um horário específico, que deve ser passado no seguinte formato hh:mm:ss.(hh: 0..23 ; mm: 0..59, ss: 0..59) ex: time_of_the_day="14:15:00", será executada todo dia às quartoze horas e quinze minutos O parâmetro day_of_the_week define que a função será executada no dia da semana passado como valor. Os valores possíveis são: Su(Sunday/Domingo), M(Monday/Segunda), Tu(Tuesday/Terça), W(Wednesday/Quarta), Th(Thursday/Quinta), F(Friday/Sexta), Sa(Saturday/Sábado) em maiúsculo. Tem que ser combinado com o parâmetro time_of_the_day para especificar a hora, minuto e segundo daquele dia da semana. ex: day_of_the_week="W" time_of_the_day="22:00:00", Será executado toda quarta às vinte e dua horas. Exemplos de uso: Basta decorar a função ou método da classe que se queira agendar. @TaskScheduling(seconds="30") def do_something(a): print("Print do_something: %s" % a) import time time.sleep(6) print("terminou do_something") do_something() ***************************************** class Teste(object): @TaskScheduling(time_of_the_day="08:30:00") def some_function(self, a): print("Print some_function: %s" % a) import time print("Função some_function") time.sleep(10) print("terminou some_function") obj = Teste() obj.some_function("b") """ days = {"M": 0, "Tu": 1, "W": 2, "Th": 3, "F": 4, "Sa": 5, "Su": 6} #recebe os parametros do decorator def __init__(self, *arguments, **argumentsMap): Thread.__init__(self) self.args = arguments self.argumentsMap = argumentsMap self.threadname = argumentsMap["name"] self.execute = False log.debug("Arguments: %r:" % self.argumentsMap) #É o decorador de verdade, recebe a função decorada, como é uma classe preciso implementar o método call def __call__(self, function): self.function = function #recebe os argumentos da função decorada def task(*functionargs, **functionArgumentsMap): self.functionargs = functionargs self.functionArgumentsMap = functionArgumentsMap stopjobs.addjob({self.threadname: self}) self.start() return task def run(self): try: log.debug("JOB RUNNING") import time self.execute = True while self.execute: interval = self.calculateInterval() log.debug("Interval: %r in seconds" % interval) time.sleep(interval) self.function(*self.functionargs, **self.functionArgumentsMap) except TaskException as t: log.debug(t) def _stop(self): log.debug("STOP") self.execute = False return self.execute def calculateInterval(self): """ É responsável por determinar o tempo em segundos da próxima tarefa. Quando o parâmetro para determinar o tempo da pŕoxima tarefa for time_of_the_day é chamado o método auxCalculate para determinar tal tempo. :return: """ if "day_of_the_week" in self.argumentsMap: if "hour" in self.argumentsMap or "minutes" in self.argumentsMap or "seconds" in self.argumentsMap: raise TaskException("Parametros extras que não combinam") if "time_of_the_day" in self.argumentsMap: return self.calculateDayOfTheWeek(self.argumentsMap["day_of_the_week"], self.argumentsMap["time_of_the_day"]) else: raise TaskException("Parâmetro time_of_the_day não está presente") elif "time_of_the_day" in self.argumentsMap: if "hour" in self.argumentsMap or "minutes" in self.argumentsMap or "seconds" in self.argumentsMap: raise TaskException("Parametros extras que não combinam") return self.auxCalculate(self.argumentsMap["time_of_the_day"])[0] elif "hour" in self.argumentsMap: if "seconds" in self.argumentsMap or "minutes" in self.argumentsMap: raise TaskException("Parametros extras que não combinam") return int(self.argumentsMap["hour"]) * 3600 elif "minutes" in self.argumentsMap: if "seconds" in self.argumentsMap: raise TaskException("Parametros extras que não combinam") else: return int(self.argumentsMap["minutes"]) * 60 elif "seconds" in self.argumentsMap: log.debug("seconds") return int(self.argumentsMap["seconds"]) else: raise TaskException("Parâmetro(s): %r inválidos" % self.argumentsMap) def calculateDayOfTheWeek(self, day_of_the_week, time_of_the_day): entrada = day_of_the_week weekday = datetime.now().weekday() dif = self.days[entrada] - weekday sleep, diference = self.auxCalculate(time_of_the_day) if self.days[entrada] == weekday: if diference > 0: return sleep else: return sleep + (6 * (24*3600)) #24 horas para segundo elif self.days[entrada] > weekday: if diference > 0: return sleep + (dif * (24*3600)) else: #Se a entrada já é o dia seguinte, basta retornar o sleep pois já está calculada o tempo para o horário do outro dia. if dif == 1: return sleep else: return sleep + ((dif-1) * (24*3600)) #24 horas para segundo else: #numero de dias de diferença resp = 7 - abs(dif) if diference > 0: return sleep + (resp * (24*3600)) else: #Se a entrada já é o dia seguinte, basta retornar o sleep pois já está calculada o tempo para o horário do outro dia. if resp == 1: return sleep else: return sleep + ((resp-1) * (24*3600)) #24 horas para segundo def auxCalculate(self, time_of_the_day): """ Essa método retorno o tempo em segundos para que a tarefa seja sempre executada na hora escolhida. :param time_of_the_day: :return: sleep_time """ try: times = [3600, 60, 1] one_day_has = '24:00:00'.split(":") time_day = sum([a*b for a, b in zip(times, [int(i) for i in one_day_has])]) aux_time = time_of_the_day.split(":") time_want = sum([a*b for a, b in zip(times, [int(i) for i in aux_time])]) #Transforma o tempo atual para segundos hjf = datetime.now().strftime("%H:%M:%S").split(":") now = sum([a*b for a, b in zip(times, [int(i) for i in hjf])]) #diferença entre o tempo atual e o tempo desejado em segundos diference = time_want - now sleep_time = None if diference < 0: #só será executado no outro dia sleep_time = time_day - (diference * (-1)) else: #ainda será executado no mesmo dia sleep_time = diference except TaskException as t: log.debug(t) return sleep_time, diference
[ "83990871+Santos1000@users.noreply.github.com" ]
83990871+Santos1000@users.noreply.github.com
90fcefb5891a9d1a1d6662ad1e564dc05696dc70
3eadfce7b2238f7d25256976e939b4d0e6c49ebb
/switchhello_pd.py
d744975e787c98bdb695c2c9c35d6bbe9cb98a3e
[ "BSD-2-Clause" ]
permissive
kyab/kazu
591d3fc40a9845c9e8d6a22ae1fb1aef8a4441ba
9ae0c3cec8ba09770b039825d99cdc53a627b6fd
refs/heads/master
2021-01-19T04:02:07.279051
2016-06-24T23:40:40
2016-06-24T23:40:40
61,918,052
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
import RPi.GPIO as G import time import os import signal import sys print "switchhello_pd started." COUNT = 5 PIN_LED = 17 PIN_SWITCH = 27 def signal_handler(signal, frame): G.cleanup() print "GPIO cleanup done." sys.exit(0) def wait_and_shout(): G.wait_for_edge(PIN_SWITCH, G.RISING) print "SWITCH PUSHED" if G.input(PIN_SWITCH): print "HIGH" else: print "LOW" G.output(PIN_LED,True) os.system("aplay -q -D hw:0 ./one.wav &") time.sleep(0.1) G.output(PIN_LED,False) G.setmode(G.BCM) G.setup(PIN_LED, G.OUT) G.setup(PIN_SWITCH, G.IN, pull_up_down = G.PUD_DOWN) signal.signal(signal.SIGINT, signal_handler) while True: try: wait_and_shout() except: pass G.cleanup()
[ "kyossi212@gmail.com" ]
kyossi212@gmail.com
52f20985a5f0c10e33313979e29aaeaca9acc59f
d806dd4a6791382813d2136283a602207fb4b43c
/sirius/blueprints/api/remote_service/tula/test/script.py
c571a235f8d6348648f5a6cb22945332ad0645a8
[]
no_license
MarsStirner/sirius
5bbf2a03dafb7248db481e13aff63ff989fabbc2
8839460726cca080ca8549bacd3a498e519c8f96
refs/heads/master
2021-03-24T12:09:14.673193
2017-06-06T16:28:53
2017-06-06T16:28:53
96,042,947
0
0
null
null
null
null
UTF-8
Python
false
false
11,263
py
#! coding:utf-8 """ @author: BARS Group @date: 25.10.2016 """ from sirius.app import app from sirius.blueprints.api.local_service.risar.active.test.test_data import \ get_mr_appointment_data from sirius.blueprints.api.local_service.risar.passive.test.request import \ send_event_remote, request_local from sirius.blueprints.api.local_service.risar.passive.test.test_data import \ get_sch_ticket_data_required, get_send_to_mis_card_data, \ get_send_to_mis_first_ticket25_data, get_send_to_mis_measures_data, \ get_send_to_mis_epicrisis_data, get_send_to_mis_second_ticket25_data, \ get_send_to_mis_pc_ticket25_data, get_send_to_mis_first_checkup_data, \ get_send_to_mis_second_checkup_data, get_send_to_mis_pc_checkup_data from sirius.blueprints.api.remote_service.tula.passive.checkup_first_ticket25.test.request import \ edit_checkup_first_ticket25 from sirius.blueprints.api.remote_service.tula.passive.checkup_first_ticket25.test.test_data import \ get_first_ticket25_data_more from sirius.blueprints.api.remote_service.tula.passive.childbirth.test.request import \ create_childbirth, edit_childbirth from sirius.blueprints.api.remote_service.tula.passive.childbirth.test.test_data import \ get_childbirth_data_required, get_childbirth_data_more from sirius.blueprints.api.remote_service.tula.passive.client.test.request import \ create_client, edit_client from sirius.blueprints.api.remote_service.tula.passive.client.test.test_data import \ get_client_data_required, get_client_data_more from sirius.blueprints.api.remote_service.tula.passive.doctor.test.request import \ create_doctor, edit_doctor, delete_doctor from sirius.blueprints.api.remote_service.tula.passive.doctor.test.test_data import \ get_doctor_data_required, get_doctor_data_more from sirius.blueprints.api.remote_service.tula.passive.hospitalization.test.request import \ create_hospitalization, edit_hospitalization from sirius.blueprints.api.remote_service.tula.passive.hospitalization.test.test_data import \ get_meas_hosp_data_required, get_meas_hosp_data_more from sirius.blueprints.api.remote_service.tula.passive.organization.test.request import \ create_organization, edit_organization, delete_organization from sirius.blueprints.api.remote_service.tula.passive.organization.test.test_data import \ get_organization_data_required, get_organization_data_more from sirius.blueprints.api.remote_service.tula.passive.research.test.request import \ create_research, edit_research from sirius.blueprints.api.remote_service.tula.passive.research.test.test_data import \ get_meas_research_data_required, get_meas_research_data_more from sirius.blueprints.api.remote_service.tula.passive.specialists_checkup.test.request import \ create_sp_checkup, edit_sp_checkup from sirius.blueprints.api.remote_service.tula.passive.specialists_checkup.test.test_data import \ get_sp_checkup_data_required, get_sp_checkup_data_more from sirius.blueprints.api.test.connect import make_login, release_token risar_session = None sirius_session = (None, None) class _TestTula: def test_mr_auth(self): global risar_session if risar_session: return with app.app_context(): with make_login() as sess: risar_session = sess print 'test_risar_auth', sess def test_full_cycle(self, testapp): ext_org_id = org_id = 111 # mis_to_mr_organisation(testapp, ext_org_id) ext_doctor_id = doctor_id = 112 # mis_to_mr_doctor(testapp, ext_org_id, ext_doctor_id) ext_client_id = 113 # mis_to_mr_client(testapp, ext_client_id) client_id = 110 sch_ticket_id = 3928 # 09:00 23.11.16 Тестовый Пользователь (акушер-гинеколог) # создать запись на прием в вебе (http://10.1.2.13:6600/patients/search/) # mr_to_mis_sch_ticket(testapp, org_id, doctor_id, client_id, sch_ticket_id) # card_id = !mr_create_card(testapp, client_id) card_id = 468 # создать карту в вебе # 690 ext_card_id = 222 # mr_to_mis_card(testapp, client_id, card_id) # !mr_create_first_checkup(testapp, card_id) first_checkup_id = 4345 # создать первичный осмотр в вебе second_checkup_id = 0 # создать вторичный осмотр в вебе pc_checkup_id = 0 # создать осмотр ПЦ в вебе # mr_to_mis_first_checkup(testapp, card_id, first_checkup_id) # mr_to_mis_first_ticket25(testapp, card_id, first_checkup_id) ext_first_checkup_id = 222 # mr_to_mis_second_ticket25(testapp, card_id, second_checkup_id) # mr_to_mis_pc_ticket25(testapp, card_id, pc_checkup_id) # mr_to_mis_first_checkup(testapp, card_id, first_checkup_id) # mr_to_mis_second_checkup(testapp, card_id, second_checkup_id) # mr_to_mis_pc_checkup(testapp, card_id, pc_checkup_id) # создать направления в вебе - осмотр, госпитализация, исследования # mr_to_mis_measures(testapp, card_id) # ch_event_measure_id = 6255 # res_event_measure_id = 6258 ext_ch_event_measure_id = 117 ext_res_event_measure_id = 118 ext_sp_checkup_id = 114 # mis_to_mr_meas_sp_checkup(testapp, ext_card_id, ext_org_id, ext_doctor_id, # ext_ch_event_measure_id, ext_sp_checkup_id) # ext_hosp_id = 115 # mis_to_mr_meas_hosp(testapp, card_id, ext_org_id, ext_doctor_id, ext_ch_event_measure_id, ext_hosp_id) ext_research_id = 116 # mis_to_mr_meas_research(testapp, ext_card_id, ext_org_id, ext_doctor_id, # ext_res_event_measure_id, ext_research_id) # mis_to_mr_first_ticket25(testapp, ext_card_id, ext_org_id, ext_doctor_id, ext_first_checkup_id) # mis_to_mr_second_ticket25 # mis_to_mr_pc_ticket25 # mis_to_mr_childbirth(testapp, ext_card_id, ext_org_id, ext_doctor_id) # mr_to_mis_epicrisis(testapp, card_id) def mis_to_mr_organisation(testapp, org_id): # create_organization(testapp, risar_session, get_organization_data_required(org_id)) # delete_organization(testapp, risar_session, org_id) edit_organization(testapp, risar_session, org_id, get_organization_data_more(org_id)) def mis_to_mr_doctor(testapp, org_id, doctor_id): # create_doctor(testapp, risar_session, get_doctor_data_required(org_id, doctor_id)) # delete_doctor(testapp, risar_session, org_id, doctor_id) edit_doctor(testapp, risar_session, org_id, doctor_id, get_doctor_data_more(org_id, doctor_id)) def mis_to_mr_client(testapp, client_id): # create_client(testapp, risar_session, get_client_data_required(client_id)) edit_client(testapp, risar_session, client_id, get_client_data_more(client_id)) def mr_make_appointment(testapp, client_id, ticket_id, doctor_id): is_delete = False make_appointment(risar_session, get_mr_appointment_data(client_id, ticket_id, doctor_id, is_delete)) def mr_to_mis_sch_ticket(testapp, org_id, doctor_id, client_id, ticket_id): is_delete = False send_event_remote(testapp, risar_session, get_sch_ticket_data_required( is_delete, client_id, ticket_id, org_id, doctor_id )) # def mr_create_card(testapp, client_id, sch_client_ticket_id=None): # res = create_card(risar_session, client_id, sch_client_ticket_id) # card_id = res['result']['card_id'] # return card_id def mr_to_mis_card(testapp, client_id, card_id): is_create = False request_local(testapp, risar_session, get_send_to_mis_card_data(client_id, card_id, is_create)) # def mr_create_first_checkup(testapp, card_id): # res = create_first_checkup(risar_session, card_id, get_first_checkup_data_required()) # checkup_id = res['result']['checkup_id'] # return checkup_id def mr_to_mis_first_ticket25(testapp, card_id, checkup_id): is_create = True request_local(testapp, risar_session, get_send_to_mis_first_ticket25_data(card_id, checkup_id, is_create)) def mr_to_mis_second_ticket25(testapp, card_id, checkup_id): is_create = True request_local(testapp, risar_session, get_send_to_mis_second_ticket25_data(card_id, checkup_id, is_create)) def mr_to_mis_pc_ticket25(testapp, card_id, checkup_id): is_create = True request_local(testapp, risar_session, get_send_to_mis_pc_ticket25_data(card_id, checkup_id, is_create)) def mr_to_mis_first_checkup(testapp, card_id, checkup_id): is_create = True request_local(testapp, risar_session, get_send_to_mis_first_checkup_data(card_id, checkup_id, is_create)) def mr_to_mis_second_checkup(testapp, card_id, checkup_id): is_create = True request_local(testapp, risar_session, get_send_to_mis_second_checkup_data(card_id, checkup_id, is_create)) def mr_to_mis_pc_checkup(testapp, card_id, checkup_id): is_create = True request_local(testapp, risar_session, get_send_to_mis_pc_checkup_data(card_id, checkup_id, is_create)) def mr_to_mis_measures(testapp, card_id): is_create = True request_local(testapp, risar_session, get_send_to_mis_measures_data(card_id, is_create)) def mis_to_mr_meas_sp_checkup(testapp, card_id, org_id, doctor_id, event_measure_id, sp_checkup_id): create_sp_checkup(testapp, risar_session, card_id, get_sp_checkup_data_required( org_id, doctor_id, event_measure_id, sp_checkup_id)) # edit_sp_checkup(testapp, risar_session, card_id, sp_checkup_id, get_sp_checkup_data_more( # org_id, doctor_id, event_measure_id, sp_checkup_id)) def mis_to_mr_meas_hosp(testapp, card_id, org_id, doctor_id, event_measure_id, meas_hosp_id): create_hospitalization(testapp, risar_session, card_id, get_meas_hosp_data_required( org_id, doctor_id, event_measure_id, meas_hosp_id)) edit_hospitalization(testapp, risar_session, card_id, meas_hosp_id, get_meas_hosp_data_more( org_id, doctor_id, event_measure_id, meas_hosp_id)) def mis_to_mr_meas_research(testapp, card_id, org_id, doctor_id, event_measure_id, meas_research_id): create_research(testapp, risar_session, card_id, get_meas_research_data_required( org_id, doctor_id, event_measure_id, meas_research_id)) # edit_research(testapp, risar_session, card_id, meas_research_id, get_meas_research_data_more( # org_id, doctor_id, event_measure_id, meas_research_id)) def mis_to_mr_first_ticket25(testapp, card_id, org_id, doctor_id, checkup_id): edit_checkup_first_ticket25(testapp, risar_session, card_id, checkup_id, get_first_ticket25_data_more( org_id, doctor_id, checkup_id)) def mis_to_mr_childbirth(testapp, card_id, org_id, doctor_id): # create_childbirth(testapp, risar_session, card_id, get_childbirth_data_required(org_id, doctor_id)) edit_childbirth(testapp, risar_session, card_id, get_childbirth_data_more(org_id, doctor_id)) def mr_to_mis_epicrisis(testapp, card_id): is_create = False request_local(testapp, risar_session, get_send_to_mis_epicrisis_data(card_id, is_create))
[ "paschenko@bars-open.ru" ]
paschenko@bars-open.ru
c19d323dd79ed8200a36279528eb8fd77c5d502e
b3122fec6858e1b4474889bc0b58cbdbec40ac34
/DZ5/DZ5_5.py
bb40fae277a8a97cfcacfb80f5a0604210a86293
[]
no_license
Mehalich/git-geekbrains
edb05ceb7643e02d1334d118d6e304720a266066
e6833de99b5c2c37a4d16b7856fa85ba1f17117a
refs/heads/main
2023-04-30T00:54:10.232243
2021-05-16T16:51:52
2021-05-16T16:51:52
359,473,465
1
0
null
2021-05-16T16:54:21
2021-04-19T13:40:34
Python
UTF-8
Python
false
false
536
py
""" 5. Создать (программно) текстовый файл, записать в него программно набор чисел, разделенных пробелами. Программа должна подсчитывать сумму чисел в файле и выводить ее на экран. """ f = open("DZ5_5.txt", "w+") f.write("1 2 3 4 5 6 7 8 9 0") f.seek(0) line = f.readlines() result = 0 line = str(line[0]) line = line.split() for step in line: result += int(step) print(result) f.close()
[ "yakovlev_mv@mail.ru" ]
yakovlev_mv@mail.ru
4fb0d462d89a6686b3a67fd657cc1c0eb304bb7f
38d1ef01184bbdb3898b8cf495eeee48eaa1a30a
/Newton_Optimization/newton_linesearch.py
537cf2deab73ebdd2706c24882b81d41bace2821
[]
no_license
LenCewa/MasterThesis
39c86c8ab3c752fedc445fea14368bbd74ca8f3a
b2d4d67b7ae2f363dd627ecb4355de1ae6ef04a3
refs/heads/master
2020-06-16T15:47:29.971151
2020-04-15T09:29:43
2020-04-15T09:29:43
195,626,164
0
1
null
null
null
null
UTF-8
Python
false
false
3,840
py
import numpy as np import matplotlib.pyplot as plt from Fourier import * from util import * # Init Params for Fourier-Classes N = 5 omega = 1 T = (2 * jnp.pi) / omega step_size = 0.001 iterations = 450 fourier = Fourier(T, omega, step_size, N, iterations, [], []) d_fourier = dFourier(T, omega, step_size, N, iterations, [], []) dd_fourier = ddFourier(T, omega, step_size, N, iterations, [], []) def L(x, y): fx = fourier.predict(fourier.coefficients, x) return np.abs(y - fx)**2 def dL(x, y): fx = fourier.predict(fourier.coefficients, x) dfx = d_fourier.predict(fourier.coefficients, x) return 2 * (y - fx) * (-dfx) def ddL(x, y): fx = fourier.predict(fourier.coefficients, x) dfx = d_fourier.predict(fourier.coefficients, x) ddfx = dd_fourier.predict(fourier.coefficients, x) return 2 * (dfx**2 - (y - fx) * ddfx) def newton_optimization_linesearch(y, x0, iterations, alpha0, damping0): res = [jnp.array([x0])] err = [] alpha = alpha0 damping = damping0 roh = [1.2, 0.5, 1, 0.5, 0.01] for k in range(iterations): x = res[k] fx = fourier.predict(fourier.coefficients, x) dfx = dL(x,y) ddfx = ddL(x,y) i = 0 err += [np.linalg.norm(y - fx)] if err[k] < 1e-3: break d = -dfx / (ddfx + damping) fx_alphad = fourier.predict(fourier.coefficients, x + alpha * d) while fx_alphad > (fx + roh[4]*dfx * alpha * d): print("Iteration: ", k , " while-loop: ", i) print("f(x + alpha * d) = ", fx_alphad, " > f(x) + r*f'(x) = ", fx + roh[4]*dfx) i += 1 alpha = roh[1]*alpha # Optionally: damping = roh[2]*damping d = -dfx / (ddfx + damping) fx_alphad = fourier.predict(fourier.coefficients, x + alpha * d) x = x + alpha * d res += [x] alpha = np.min([roh[0], alpha, 1]) # Optinally: damping = roh[3] * damping return res, err t = jnp.linspace(0, 10*np.pi, num=1000) x0 = 2 y0 = fourier.predict(fourier.coefficients, x0) const_y0 = np.full(len(t), y0) f = fourier.batched_predict(fourier.coefficients, t) df = d_fourier.batched_predict(fourier.coefficients, t) ddf = dd_fourier.batched_predict(fourier.coefficients, t) const_0 = np.full(len(t), 0) # Run Newton Optimization steps = 20 x_start = 1.5 alpha0 = 1 damping0 = 0.999 res, err = newton_optimization_linesearch(y0[0], x_start, steps, alpha0, damping0) fx_t = [] ex_t = [] for x in res: pred = fourier.predict(fourier.coefficients, x)[0] fx_t += [pred] ex_t += [(y0 - pred)**2] print(res) print(err) L = L(t, y0) dL = dL(t, y0) ddL = ddL(t, y0) fig, axs = plt.subplots(3, 2) fig.suptitle("Newton Line Search: x* = " + str(x0) + ", y* = " + str(y0[0]) + ", x0 = " + str(x_start) + " ||| steps = " + str(steps)) axs[0, 0].plot(t, f) axs[0, 0].plot(t, const_y0, 'tab:red') axs[0, 0].plot(res, fx_t, 'k.-') axs[0, 0].plot(res[-2], fx_t[-2], 'ro') axs[0, 0].plot(res[-1], fx_t[-1], 'g*') axs[0, 0].set_title('f and y*') axs[1, 0].plot(t, df, 'tab:orange') axs[1, 0].set_title('df') axs[2, 0].plot(t, ddf, 'tab:green') axs[2, 0].set_title('ddf') axs[0, 1].plot(t, L) axs[0, 1].plot(t, const_0, 'tab:red') axs[0, 1].plot(res, ex_t, 'k.-') axs[0, 1].plot(res[-2], ex_t[-2], 'ro') axs[0, 1].plot(res[-1], ex_t[-1], 'g*') axs[0, 1].set_title('L') axs[1, 1].plot(t, dL, 'tab:orange') axs[1, 1].plot(t, const_0, 'tab:red') axs[1, 1].set_title('dL') axs[2, 1].plot(t, ddL, 'tab:green') axs[2, 1].set_title('ddL') for ax in axs.flat: ax.set(xlabel='x-label', ylabel='y-label') # Hide x labels and tick labels for top plots and y ticks for right plots. # for ax in axs.flat: # ax.label_outer() plt.show() #plt.savefig("LineSearchFigs/Newton_LineSearch_x0=" + str(x_start) + ".png")
[ "len13@hotmail.de" ]
len13@hotmail.de
832a298328bc29b34d0110a3029f906ad483a34d
37c3b81ad127c9e3cc26fa9168fda82460ca9bda
/Baekjoon/boj_20055_컨베이어 벨트 위의 로봇.py
dfdb3152402dc2cfac4c545e7cd087fba933dcf0
[]
no_license
potomatoo/TIL
5d85b69fdaed68966db7cfe2a565b7c64ed3e816
395dc190fa13e5ed036e1e3c7d9e0bc2e1ee4d6c
refs/heads/master
2021-07-08T16:19:40.410097
2021-04-19T02:33:40
2021-04-19T02:33:40
238,872,774
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
def work(): global cnt while True: board.rotate(1) robot.rotate(1) robot[N-1] = 0 for i in range(N-2, -1, -1): if robot[i] and not robot[i+1] and board[i+1] > 0: board[i+1] -= 1 robot[i+1] = 1 robot[i] = 0 robot[N-1] = 0 if not robot[0] and board[0] > 0: board[0] -= 1 robot[0] = 1 flag = 0 for i in range(len(board)): if board[i] == 0: flag += 1 if flag >= K: break cnt += 1 from collections import deque N, K = map(int, input().split()) board = deque(map(int, input().split())) cnt = 1 robot = deque([0] * len(board)) work() print(cnt)
[ "duseh73@gmail.com" ]
duseh73@gmail.com
7951551b827a4fe78a0de05909e4bf7b4a989c18
34dd52bca544fd483606667fd9f867d6af68ef28
/exercise2/classification05.py
5146516b8e14e60c85d27ad8f4ef7e39f92cd66d
[]
no_license
Anderbone/CS918NaturalLanguageProcessing
8e68bd4a61758c2f127a344152fc1ad74f972e4c
ef1e68685e85e76354040c7359c2f29b0da7eff6
refs/heads/master
2020-05-24T18:15:00.075093
2019-05-18T21:26:42
2019-05-18T21:26:42
187,406,366
1
0
null
null
null
null
UTF-8
Python
false
false
14,174
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import testsets import evaluation import twokenize import sklearn.feature_extraction from nltk.classify.scikitlearn import SklearnClassifier import sklearn import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer import textPreprocessor01 import nltk from nltk.stem import * from nltk.probability import FreqDist from nltk.corpus import sentiwordnet as swn from gensim.models import word2vec # import word2vecReader from sklearn.naive_bayes import GaussianNB, MultinomialNB from sklearn.pipeline import Pipeline from sklearn import svm from sklearn.externals import joblib from sklearn.feature_extraction import DictVectorizer from sklearn.linear_model import LogisticRegression from sklearn import preprocessing import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn import tree from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier # TODO: load training data def read_training_data(training_data): id_gts = {} with open(training_data, 'r', encoding='utf-8') as f: for line in f: fields = line.split('\t') tweetid = fields[0] gt = fields[1] content = fields[2].strip() id_gts[tweetid] = gt, content return id_gts # traindic = read_training_data('twitter-training-data1.txt') # traindic = read_training_data('twitter-training-data_small.txt') traindic = read_training_data('twitter-training-data.txt') # input here def perprocessing(tdic): new_dic = {} for line in tdic: id = line gt = tdic[line][0] raw = ' '.join(twokenize.tokenizeRawTweetText(tdic[line][1])) text = twokenize.normalizeTextForTagger(raw) text_tk = twokenize.tokenize(text) telist = [] for word in text_tk: word = word.lower() ps = nltk.stem.PorterStemmer() word = ps.stem(word) telist.append(word) newtext = ' '.join(telist) # print(newtext) newtext = textPreprocessor01.replaceall(newtext) new_dic[id] = gt, newtext return new_dic # print(new_dic) def get_train_corpus(new_dic): traincorpus = [] for line in new_dic: traincorpus.append(new_dic[line][1]) return traincorpus def get_split_corpus(new_dic): split_traincorpus = [] for line in new_dic: split_traincorpus.append(new_dic[line][1].split()) return split_traincorpus # tdic = read_training_data('twitter-training-data.txt') # print(tdic) # for i in tdic: # print(i) #id # print(tdic[i]) # print(tdic[i][0]) # gt. positive/negative # print(tdic[i][1]) # content # print(corpus) # print(split_corpus) # TODO extract features def get_vect(): vect = CountVectorizer(stop_words='english' ,lowercase=True) # vect = CountVectorizer(stop_words='english', min_df= ,lowercase=True) # vectorizer = CountVectorizer(stop_words='english', ngram_range=(1, 2)) X = vect.fit_transform(train_corpus) return vect, X def get_train_ngrams(): # vectorizer = CountVectorizer(stop_words='english') # vect = CountVectorizer(stop_words='english') # # vectorizer = CountVectorizer(stop_words='english', ngram_range=(1, 2)) # X = vect.fit_transform(corpus) # print(vectorizer.vocabulary_) X = get_vect()[1] # print(vectorizer.vocabulary_.keys()) # print('ngram----') # print(X.todense()) # print(len(X.todense())) # X.todense() # print(X.toarray()) return np.array(X.todense()) def get_test_ngrams(corpus): vect = get_vect()[0] X = vect.transform(corpus) b = X.todense() return np.array(b) def get_tfidf(corpus): # vectorizer = CountVectorizer(stop_words='english') # vectorizer = CountVectorizer(stop_words='english', ngram_range=(1, 2)) vect = get_vect()[0] tfidf = TfidfVectorizer(vocabulary=list(vect.vocabulary_.keys()), min_df=0.6, lowercase=True, stop_words='english') tfs = tfidf.fit_transform(corpus) # X = vect.fit_transform(corpus) # print(vectorizer.vocabulary_) # print(vectorizer.vocabulary_.keys()) tt = tfs.todense() # print('tfid..') # print(len(tt)) return np.array(tt) # maybe it's wrong def wordembedding(split_corpus): # model = word2vec.Word2Vec(sentences, \ # workers=num_workers, \ # size=num_features, \ # min_count=min_word_count, \ # window=context, # sample=downsampling) model = word2vec.Word2Vec(split_corpus, size=50, min_count=1) # To make the model memory efficient model.init_sims(replace=True) # Saving the model for later use. Can be loaded using Word2Vec.load() model_name = "wordembedding_features" model.save(model_name) # print(model['may']) # print('word embedding --------------') # print(model.wv.syn0) # print(model.wv.vocab) # print(len(model.wv.vocab)) # print(model.wv.index2word) print(len(model.wv.index2word)) print(len(model.wv.syn0)) # right here def word_embedding2(split_corpus): # print('word embedding2 --------------------') all = [] for i in split_corpus: # print(i) model = word2vec.Word2Vec([i], size=300, min_count=1) # print(model.vocabulary) # print(model.wv.vocab) # s = model.wv.syn0 s = model.wv.vectors ans = list(map(sum, zip(*s))) # sum of them all.append(ans) return np.array(all) def senti_bi_lexicon(split_corpus): def inputfile(file): with open(file, 'r') as my_file: words = [every_line.rstrip() for every_line in my_file] return words def count_p_n(mylist): pos_num = 0 neg_num = 0 positive = inputfile('positive-words.txt') negative = inputfile('negative-words.txt') p_dic = FreqDist(positive) n_dic = FreqDist(negative) for word in mylist: pos_num += p_dic[word] neg_num += n_dic[word] return pos_num, neg_num P_N = [] for line in split_corpus: p_num_all = n_num_all = 0 p_n_num = count_p_n(line) p_num_all += p_n_num[0] n_num_all += p_n_num[1] P_N.append([p_num_all, n_num_all]) # print('sent..') # print(len(P_N)) return np.array(P_N) def get_url(split_corpus): url = [] for i in split_corpus: num = i.count('URLLINK') url.append([num]) # print(url) # print(len(url)) return np.array(url) def get_mention(split_corpus): men = [] for i in split_corpus: num = i.count('USERMENTION') men.append([num]) # print(url) # print(len(url)) return np.array(men) def get_face(split_corpus): face = [] for i in split_corpus: numi = i.count('HAPPYFACE') numj = i.count('SADFACE') face.append([numi, numj]) # print(url) # print(len(url)) return np.array(face) newdic = perprocessing(traindic) train_corpus = get_train_corpus(newdic) split_corpus = get_split_corpus(newdic) # print(split_corpus) F1 = get_train_ngrams() F2 = get_tfidf(train_corpus) F3 = senti_bi_lexicon(split_corpus) # print(F3) F4 = word_embedding2(split_corpus) # print(F4) F5 = get_url(split_corpus) # print(F5) F6 = get_mention(split_corpus) F7 = get_face(split_corpus) # print(F7) # print(F7) # X = np.concatenate((F3, F4, F5, F7), axis=1) # X = np.concatenate((F3, F1, F5, F7), axis=1) # print(X) # labels_to_array = {"positive": 1, "negative": -1, "neutral": 0} labels_to_array = {"positive": 0, "negative": 2, "neutral": 1} labels = [labels_to_array[newdic[tweet][0]] for tweet in newdic] # print(labels) # print('5.Y..') Y = np.array(labels) # X3 = F5 # print(F3) # X = F1 # X = F2 # X = F4 # X5 = F5 # X35 = np.concatenate((X3, X5), axis=1) # X = F5 # X = F6 # print(F5) # print(F6) # X = np.concatenate((F1, F2, F3, F4, F5, F6, F7), axis=1) # X = np.concatenate((F1, F3), axis=1) # X = F7 for classifier in ['MNB','Naive Bayes', 'Decision Tree', 'Logistic Regression', 'Random Forest', 'KNN']: # for classifier in ['Naive Bayes', 'Decision Tree', 'Logistic Regression', 'Random Forest', 'KNN']: # You may rename the names of the classifiers to something more descriptive if classifier == 'Naive Bayes': print('Training ' + classifier) # TODO: extract features for training classifier1 # TODO: train sentiment classifier1 # X = F1 # Y = Y.reshape(Y.size, 1) X = np.concatenate((F3, F5, F4, F7), axis=1) model = GaussianNB() model.fit(X, Y) # vec = DictVectorizer(sparse=False) # svm_clf = svm.SVC(kernel='linear') # model = Pipeline([('vectorizer', vec), ('svm', svm_clf)]) # model = svm.SVC() elif classifier == 'MNB': print('Training ' + classifier) # TODO: extract features for training classifier3 # TODO: train sentiment classifier3 # model = SklearnClassifier(MultinomialNB()) # model.train(X) X = F1 # base_model = MultinomialNB(alpha=1) # model = OnevsRestClassifier(base_model).fit(X,Y) model = MultinomialNB(alpha=1, class_prior=None, fit_prior=True) # model.fit(np.array(X), np.array(Y)) # print(X) model.fit(X, Y) # joblib.dump(model, 'F3_and_SVM.pkl') elif classifier == 'Decision Tree': print('Training ' + classifier) # TODO: extract features for training classifier2 # TODO: train sentiment classifier2 # X = F3 X = np.concatenate((F3, F4, F7), axis=1) model = tree.DecisionTreeClassifier() model.fit(X, Y) # lr = Pipeline([('sc', StandardScaler()), # ('clf', LogisticRegression())]) # y_hat = lr.predict(x_test) # y_hat = y_hat.reshape(x1.shape) elif classifier == 'Logistic Regression': print('Training ' + classifier) # TODO: extract features for training classifier3 # TODO: train sentiment classifier3 X = np.concatenate((F3, F4,F5, F7), axis=1) model = LogisticRegression() # model.fit(x, y.ravel()) model.fit(X, Y) elif classifier == 'Random Forest': print('Training ' + classifier) # TODO: extract features for training classifier3 # TODO: train sentiment classifier3 model = RandomForestClassifier(n_estimators=100, random_state=0) # forest = RandomForestClassifier(criterion='entropy', # n_estimators = 10, # random_state = 1, # n_jobs = 2) X = F2 model.fit(X, Y) elif classifier == 'KNN': print('Training ' + classifier) # TODO: extract features for training classifier3 # TODO: train sentiment classifier3 model = KNeighborsClassifier(n_neighbors=5, p=2) # model = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski') X = F3 model.fit(X, Y) # mymodel = model for testset in testsets.testsets: # TODO: classify tweets in test set # if testset == 'twitter-test1.txt': test = read_training_data(testset) testdic = perprocessing(test) t_corpus = get_train_corpus(testdic) ts_corpus = get_split_corpus(testdic) tF1 = get_test_ngrams(t_corpus) tF2 = get_tfidf(t_corpus) tF3 = senti_bi_lexicon(ts_corpus) tF4 = word_embedding2(ts_corpus) tF5 = get_url(ts_corpus) tF6 = get_mention(ts_corpus) tF7 = get_face(ts_corpus) if classifier == 'Naive Bayes': Xt = np.concatenate((tF3, tF4, tF5, tF7), axis=1) elif classifier == 'MNB': Xt = tF1 elif classifier == 'Logistic Regression': Xt = np.concatenate((tF3, tF4, tF5, tF7), axis=1) # Xt = tF4 elif classifier == 'KNN': Xt = tF3 elif classifier == 'Decision Tree': Xt = np.concatenate((tF3, tF7, tF4), axis=1) elif classifier == 'Random Forest': Xt = tF2 # ans_num = model.predict(t_F3) # model = joblib.load('F3_and_SVM.pkl') # ans_num = model.predict(t_F3) # ans_num = model.predict(t_F5) # Xt = np.concatenate((tF1, tF2, tF3, tF4, tF5, tF6), axis=1) # Xt = np.concatenate((tF1, tF2, tF3, tF4, tF5, tF6, tF7), axis=1) # Xt = np.concatenate((tF1, tF3, tF5, tF6, tF7), axis=1) # Xt = np.concatenate((tF3, tF1, tF5, tF7), axis=1) # Xt = np.concatenate((tF1), axis=1) # Xt = tF7 # Xt = tF1 ans_num = model.predict(Xt) # ans_num = model.predict(t_F1) # ans_num = model.predict(t_F2) # # print(ans) # # print(len(ans)) array_to_labels = {0: "positive", 2: "negative", 1: "neutral"} labels = [array_to_labels[i] for i in ans_num] # # print(labels) # # ans_dic = {} predictions = dict(zip(list(testdic.keys()), labels)) # print(ans_dictionary) # predictions = {'163361196206957578': 'neutral', '768006053969268950': 'neutral', '742616104384772304': 'neutral', ' # 102313285628711403': 'neutral', '653274888624828198': 'neutral'} # TODO: Remove this line, 'predictions' should be populated with the outputs of your classifier # predictions = ans_dictionary evaluation.evaluate(predictions, testset, classifier) evaluation.confusion(predictions, testset, classifier)
[ "noreply@github.com" ]
noreply@github.com
5defb566e1ea2c00089fc94bb725b27db106978b
c092a30eb6e977cd021cb5d2670c5d3b4a3ac062
/markliu/settings.py
27f0f08471f7ec9cf0430cc6c6cdaba2053df9bd
[]
no_license
joskid/personal-django-blog
28a1789034f92091e622079b583d3aa1e33c0c8c
917a4182e9af49967280608f6a4378c8b386bb91
refs/heads/master
2020-12-25T02:30:36.280993
2012-12-14T15:52:59
2012-12-14T15:52:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,043
py
# Django settings for the blog markliu.me import os import socket import sys import dj_database_url # Test to see if local_settings exists. If it doesn't exist then this is on the live host. if os.path.isfile('local_settings.py'): LIVEHOST = False else: LIVEHOST = True USE_STATICFILES = False PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) ADMINS = ( ('Mark Liu', 'markwayneliu@gmail.com'), ) MANAGERS = ADMINS if LIVEHOST: DEBUG = os.environ.get('DJANGO_DEBUG', '').lower() == "true" # Heroku settings: https://devcenter.heroku.com/articles/django#database-settings DATABASES = {'default': dj_database_url.config(default='postgres://localhost')} # Django storages AWS_STORAGE_BUCKET_NAME = os.environ['AWS_STORAGE_BUCKET_NAME'] AWS_ACCESS_KEY_ID = os.environ['AWS_ACCESS_KEY_ID'] AWS_SECRET_ACCESS_KEY = os.environ['AWS_SECRET_ACCESS_KEY'] USE_STATICFILES = True S3_URL = 'https://s3.amazonaws.com/{0}/'.format(AWS_STORAGE_BUCKET_NAME) # URL prefix for static files. STATIC_URL = S3_URL GOOGLE_WEBMASTER_KEY = os.environ['GOOGLE_WEBMASTER_KEY'] SECRET_KEY = os.environ['SECRET_KEY'] DISQUS_API_KEY = os.environ['DISQUS_API_KEY'] DELICIOUS_PASSWORD = os.environ['DELICIOUS_PASSWORD'] MEDIA_ROOT = '' MEDIA_URL = '' else: DEBUG = True DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(PROJECT_ROOT, 'mark-liu.db'), 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', } } # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media/') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash if there is a path component (optional in other cases). # Examples: "http://media.lawrence.com", "http://example.com/media/" MEDIA_URL = 'http://127.0.0.1:8000/media/' # URL prefix for admin media -- CSS, JavaScript and images. Make sure to use a # trailing slash. # Examples: "http://foo.com/media/", "/media/". ADMIN_MEDIA_PREFIX = '/media/admin/' STATIC_URL = '/media/' # Django storages AWS_ACCESS_KEY_ID = '' # To use this to upload files to S3, this should be defined in local_settings.py AWS_SECRET_ACCESS_KEY = '' # To use this to upload files to S3, this should be defined in local_settings.py if 'collectstatic' in sys.argv: USE_STATICFILES = True STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, './media/'), ) TEMPLATE_DEBUG = DEBUG # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # Make this unique, and don't share it with anybody. # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ] MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Debug toolbar. This goes after any middleware that encodes the response's content. 'debug_toolbar.middleware.DebugToolbarMiddleware', ) ROOT_URLCONF = 'markliu.urls' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. os.path.join(PROJECT_ROOT, 'templates/'), ) INSTALLED_APPS = ( 'django.contrib.staticfiles', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.markup', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.admin', 'django.contrib.flatpages', 'south', 'coltrane', 'tagging', 'debug_toolbar', 'disqus', 'django_twitter_tags', 'google_webmaster', 'django_posterous', ) # INTERNAL_IPS is used for django-debug-toolbar. #INTERNAL_IPS = ('127.0.0.1',) # For django-debug-toolbar. DEBUG_TOOLBAR_CONFIG = { 'INTERCEPT_REDIRECTS': False, } DELICIOUS_USER = 'mliu7' DISQUS_WEBSITE_SHORTNAME = 'markliusblog' DJANGO_POSTEROUS_SITE_NAME = 'wiscospike' # The site name of your posterous site (yoursitename.posterous.com) DJANGO_POSTEROUS_BLOG_MODULE = 'coltrane' # The module of your django blog DJANGO_POSTEROUS_BLOG_MODEL = 'Entry' # The model where the blog posts are stored DJANGO_POSTEROUS_TITLE_FIELD = 'title' # The name of the title field within your blog model DJANGO_POSTEROUS_BODY_FIELD = 'body_html' # The name of the field where your post will be stored DJANGO_POSTEROUS_DATE_FIELD = 'pub_date' # The name of the field where the date of the post will be stored DJANGO_POSTEROUS_AUTHOR_FIELD = 'author' # The name of the field where the author of the post will be stored ############################################################################## # Django-storages DEFAULT_FILE_STORAGE = 'storages.backends.s3boto.S3BotoStorage' if USE_STATICFILES: STATICFILES_STORAGE = DEFAULT_FILE_STORAGE AWS_QUERYSTRING_AUTH = False AWS_HEADERS = { 'Cache-Control': 'max-age=3600', } try: from local_settings import * except ImportError: pass
[ "markwayneliu@gmail.com" ]
markwayneliu@gmail.com
7b1bd474762dbf9fa0ad77e916a9a288222c806a
44494598f8edcee0319f3b4ef69b704fbf6d88f2
/code/twurtle/src/TestDCMotorRobot.py
aad26a3b8a287a62bb2e513d1e4b4b865f1e0879
[]
no_license
whaleygeek/pyws
3cebd7e88b41e14d9c1e4dbb8148de63dadbdd57
e60724646e49287f1e12af609f325ac228b31512
refs/heads/master
2021-01-02T09:01:47.644851
2014-09-02T19:47:20
2014-09-02T19:47:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
168
py
# This is mainly to test that the packaging has worked for robot correctly import robot r = robot.MotorRobot(robot.DCMotorDrive(a1=11, a2=12, b1=13, b2=14)) r.test()
[ "david@thinkingbinaries.com" ]
david@thinkingbinaries.com
a5f5ad934ab6b4548d185c57b55e75a4fe701d2d
75dcb56e318688499bdab789262839e7f58bd4f6
/_algorithms_challenges/pybites/bitesofpy-master/!201-300/239/test_fizzbuzz.py
374796ea04fb39da68675115964e7be47e23b93c
[]
no_license
syurskyi/Algorithms_and_Data_Structure
9a1f358577e51e89c862d0f93f373b7f20ddd261
929dde1723fb2f54870c8a9badc80fc23e8400d3
refs/heads/master
2023-02-22T17:55:55.453535
2022-12-23T03:15:00
2022-12-23T03:15:00
226,243,987
4
1
null
2023-02-07T21:01:45
2019-12-06T04:14:10
Jupyter Notebook
UTF-8
Python
false
false
483
py
from fizzbuzz import fizzbuzz # write one or more pytest functions below, they need to start with test_ def test_fizzbuzz_base(): assert fizzbuzz(1) == 1 assert fizzbuzz(2) == 2 def test_fizzbuzz_fizz(): assert fizzbuzz(3) == 'Fizz' assert fizzbuzz(6) == 'Fizz' def test_fizzbuzz_buzz(): assert fizzbuzz(5) == 'Buzz' assert fizzbuzz(10) == 'Buzz' def test_fizzbuzz_fizzbuzz(): assert fizzbuzz(15) == 'Fizz Buzz' assert fizzbuzz(30) == 'Fizz Buzz'
[ "sergejyurskyj@yahoo.com" ]
sergejyurskyj@yahoo.com
6a0a01d92744efe31045b17e0d9e6e64dba5448a
8b2c5420f7e331fb6e48f3efd3cfc8a714291d4d
/finances/settings.py
7a343222fcdb21fb5e62ad3f6c5589226c6c6412
[]
no_license
jjjggg092/finalproject
bc297c8b623937f28565591138534c762bf36560
1159ca8ae47b364f84586e39176b678c3feb42f9
refs/heads/master
2021-06-22T12:27:34.707772
2019-12-10T23:13:46
2019-12-10T23:13:46
227,138,704
0
0
null
2021-06-10T22:22:57
2019-12-10T14:18:49
Python
UTF-8
Python
false
false
3,124
py
""" Django settings for finances project. Generated by 'django-admin startproject' using Django 2.0.3. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'c1+b$@a%ptdh=4=5i_4*6oa@k3*8+ezwc6__c^o!fszwf1=0gq' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'money.apps.MoneyConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'finances.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'finances.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/'
[ "jhon.goyes@yahoo.com" ]
jhon.goyes@yahoo.com
00c5033bfa5fe0ed63fc2a721b1cf2c87e5f7225
8acbb01acf5c69806037669868bd07062cf2f7a0
/Django_demo/settings.py
6a7d0c4495dd4313bc760832cf389b1e0c8847c1
[]
no_license
godhunter1993/Django
958c3ffe9c3bc28fbf0aa9f905a1867f52f7c4e4
e44c48f7c9e5aa1e5d484de3775d9902f5377b5f
refs/heads/master
2020-03-20T19:33:23.521774
2018-06-17T09:32:54
2018-06-17T09:32:54
137,642,783
1
0
null
null
null
null
UTF-8
Python
false
false
3,256
py
""" Django settings for Django_demo project. Generated by 'django-admin startproject' using Django 2.0.2. For more information on this file, see https://docs.djangoproject.com/en/2.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '9anr*r86&2jplaj1i$$!)u1-)1x^4brr85=xcg78d68)i0pu17' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'learn', 'people', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', #'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Django_demo.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Django_demo.wsgi.application' # Database # https://docs.djangoproject.com/en/2.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.0/howto/static-files/ STATIC_URL = '/static/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media').replace('\\', '/') # media即为图片上传的根路径 MEDIA_URL = '/media/'
[ "15150568410@139.com" ]
15150568410@139.com
892e7b51d8d330acc1612ca799d59c9a0d25beb4
4b2450b65f5802f524ddb8701baa0e71c929889b
/listanelement.py
873b5eef153b5eefbef4658036e49176c3427331
[]
no_license
joedave1/python
21e89dd0638156a3600bfb7fbf7422c73a79fc51
ae51152a663aa2e512c5be7f6134c4b35d78e88d
refs/heads/master
2020-06-29T11:22:05.627400
2019-08-16T08:51:14
2019-08-16T08:51:14
200,520,497
0
0
null
null
null
null
UTF-8
Python
false
false
301
py
x=input("Enter a commc seperated list values: ").split(",") color=list(x) print("The first color is %s and the last color is %s"%(color[0],color[-1]))x=input("Enter a commc seperated list values: ").split(",") color=list(x) print("The first color is %s and the last color is %s"%(color[0],color[-1]))
[ "noreply@github.com" ]
noreply@github.com
16d09cbbcb9e2143dfe40093700361425c5394ed
d92bad5384d80cf0f7e073bb7484b06514174f7a
/code/run_emcee_plPeak_noEvol_no190412.py
11ac3c75f9e4fae05fd3c145fe2fe6164833c64e
[]
no_license
tcallister/BBH-spin-q-correlations
2abe399dc927a4cdbb47ac92ad6005cb3450e676
63dc9bbf9ca0c84a94ec0c616f8c2b3cfcceed26
refs/heads/main
2023-06-12T00:22:12.803326
2021-06-29T20:35:45
2021-06-29T20:35:45
348,101,610
2
1
null
null
null
null
UTF-8
Python
false
false
3,874
py
import numpy as np import glob import emcee as mc import h5py import sys from support import * from likelihoods import * # -- Set prior bounds -- priorDict = { 'lmbda':(-5,4), 'mMax':(60,100), 'm0':(20,100), 'sigM':(1,10), 'fPeak':(0,1), 'bq':(-2,10), 'sig_kappa':6., 'mu':(-1,1), 'log_sigma':(-1.5,0.5), 'mMin':5. } # Dicts with samples: sampleDict = np.load("/home/thomas.callister/RedshiftDistributions/BBH-spin-q-correlations/input/sampleDict.pickle") sampleDict.pop('S190412m') mockDetections = h5py.File('/home/thomas.callister/RedshiftDistributions/BBH-spin-q-correlations/input/o3a_bbhpop_inj_info.hdf','r') ifar_1 = mockDetections['injections']['ifar_gstlal'].value ifar_2 = mockDetections['injections']['ifar_pycbc_bbh'].value ifar_3 = mockDetections['injections']['ifar_pycbc_full'].value detected = (ifar_1>1) + (ifar_2>1) + (ifar_3>1) m1_det = mockDetections['injections']['mass1_source'].value[detected] m2_det = mockDetections['injections']['mass2_source'].value[detected] s1z_det = mockDetections['injections']['spin1z'].value[detected] s2z_det = mockDetections['injections']['spin2z'].value[detected] z_det = mockDetections['injections']['redshift'].value[detected] mockDetectionsO1O2 = h5py.File('/home/thomas.callister/RedshiftDistributions/BBH-spin-q-correlations/input/injections_O1O2an_spin.h5','r') m1_det = np.append(m1_det,mockDetectionsO1O2['mass1_source']) m2_det = np.append(m2_det,mockDetectionsO1O2['mass2_source']) s1z_det = np.append(s1z_det,mockDetectionsO1O2['spin1z']) s2z_det = np.append(s2z_det,mockDetectionsO1O2['spin2z']) z_det = np.append(z_det,mockDetectionsO1O2['redshift']) pop_reweight = injection_weights(m1_det,m2_det,s1z_det,s2z_det,z_det,mMin=priorDict['mMin']) injectionDict = { 'm1':m1_det, 'm2':m2_det, 's1z':s1z_det, 's2z':s2z_det, 'z':z_det, 'weights':pop_reweight } nWalkers = 32 output = "/home/thomas.callister/RedshiftDistributions/BBH-spin-q-correlations/code/output/emcee_samples_plPeak_noEvol_no190412" # Search for existing chains old_chains = np.sort(glob.glob("{0}_r??.npy".format(output))) # If no chain already exists, begin a new one if len(old_chains)==0: run_version = 0 # Initialize walkers from random positions in mu-sigma2 parameter space initial_lmbdas = np.random.random(nWalkers)*(-2.) initial_mMaxs = np.random.random(nWalkers)*20.+80. initial_m0s = np.random.random(nWalkers)*10.+30 initial_sigMs = np.random.random(nWalkers)*4+1. initial_fs = np.random.random(nWalkers) initial_bqs = np.random.random(nWalkers)*2. initial_ks = np.random.normal(size=nWalkers,loc=0,scale=1)+2. initial_mus = np.random.random(nWalkers)*0.05 initial_sigmas = np.random.random(nWalkers)*0.5-1. initial_walkers = np.transpose([initial_lmbdas,initial_mMaxs,initial_m0s,initial_sigMs,initial_fs,initial_bqs,initial_ks,initial_mus,initial_sigmas]) # Otherwise resume existing chain else: # Load existing file and iterate run version old_chain = np.load(old_chains[-1]) run_version = int(old_chains[-1][-6:-4])+1 # Strip off any trailing zeros due to incomplete run goodInds = np.where(old_chain[0,:,0]!=0.0)[0] old_chain = old_chain[:,goodInds,:] # Initialize new walker locations to final locations from old chain initial_walkers = old_chain[:,-1,:] print('Initial walkers:') print(initial_walkers) # Dimension of parameter space dim = 9 # Run nSteps = 10000 sampler = mc.EnsembleSampler(nWalkers,dim,logp_powerLawPeak_noEvol,args=[sampleDict,injectionDict,priorDict],threads=16) for i,result in enumerate(sampler.sample(initial_walkers,iterations=nSteps)): if i%10==0: np.save("{0}_r{1:02d}.npy".format(output,run_version),sampler.chain) np.save("{0}_r{1:02d}.npy".format(output,run_version),sampler.chain)
[ "thomas.a.callister@gmail.com" ]
thomas.a.callister@gmail.com
22e5a66e84c47b3691015f299972b4f9e43427f4
71c331e4b1e00fa3be03b7f711fcb05a793cf2af
/QA-System-master/SpeechToText_test/google-cloud-sdk/lib/googlecloudsdk/third_party/apis/firestore/v1/firestore_v1_client.py
ac370070865d488484aa602c2024b65bf41079fa
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
iofh/QA-System
568228bb0c0adf9ec23b45cd144d61049e720002
af4a8f1b5f442ddf4905740ae49ed23d69afb0f6
refs/heads/master
2022-11-27T23:04:16.385021
2020-08-12T10:11:44
2020-08-12T10:11:44
286,980,492
0
0
null
null
null
null
UTF-8
Python
false
false
39,606
py
"""Generated client library for firestore version v1.""" # NOTE: This file is autogenerated and should not be edited by hand. from apitools.base.py import base_api from googlecloudsdk.third_party.apis.firestore.v1 import firestore_v1_messages as messages class FirestoreV1(base_api.BaseApiClient): """Generated client library for service firestore version v1.""" MESSAGES_MODULE = messages BASE_URL = 'https://firestore.googleapis.com/' MTLS_BASE_URL = 'https://firestore.mtls.googleapis.com/' _PACKAGE = 'firestore' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform', 'https://www.googleapis.com/auth/datastore'] _VERSION = 'v1' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'FirestoreV1' _URL_VERSION = 'v1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new firestore handle.""" url = url or self.BASE_URL super(FirestoreV1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.projects_databases_collectionGroups_fields = self.ProjectsDatabasesCollectionGroupsFieldsService(self) self.projects_databases_collectionGroups_indexes = self.ProjectsDatabasesCollectionGroupsIndexesService(self) self.projects_databases_collectionGroups = self.ProjectsDatabasesCollectionGroupsService(self) self.projects_databases_documents = self.ProjectsDatabasesDocumentsService(self) self.projects_databases_operations = self.ProjectsDatabasesOperationsService(self) self.projects_databases = self.ProjectsDatabasesService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects = self.ProjectsService(self) class ProjectsDatabasesCollectionGroupsFieldsService(base_api.BaseApiService): """Service class for the projects_databases_collectionGroups_fields resource.""" _NAME = 'projects_databases_collectionGroups_fields' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesCollectionGroupsFieldsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets the metadata and configuration for a Field. Args: request: (FirestoreProjectsDatabasesCollectionGroupsFieldsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1Field) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/fields/{fieldsId}', http_method='GET', method_id='firestore.projects.databases.collectionGroups.fields.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsFieldsGetRequest', response_type_name='GoogleFirestoreAdminV1Field', supports_download=False, ) def List(self, request, global_params=None): r"""Lists the field configuration and metadata for this database. Currently, FirestoreAdmin.ListFields only supports listing fields that have been explicitly overridden. To issue this query, call FirestoreAdmin.ListFields with the filter set to `indexConfig.usesAncestorConfig:false`. Args: request: (FirestoreProjectsDatabasesCollectionGroupsFieldsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1ListFieldsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/fields', http_method='GET', method_id='firestore.projects.databases.collectionGroups.fields.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+parent}/fields', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsFieldsListRequest', response_type_name='GoogleFirestoreAdminV1ListFieldsResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates a field configuration. Currently, field updates apply only to. single field index configuration. However, calls to FirestoreAdmin.UpdateField should provide a field mask to avoid changing any configuration that the caller isn't aware of. The field mask should be specified as: `{ paths: "index_config" }`. This call returns a google.longrunning.Operation which may be used to track the status of the field update. The metadata for the operation will be the type FieldOperationMetadata. To configure the default field settings for the database, use the special `Field` with resource name: `projects/{project_id}/databases/{database_id}/collectionGroups/__default__/fields/*`. Args: request: (FirestoreProjectsDatabasesCollectionGroupsFieldsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/fields/{fieldsId}', http_method='PATCH', method_id='firestore.projects.databases.collectionGroups.fields.patch', ordered_params=['name'], path_params=['name'], query_params=['updateMask'], relative_path='v1/{+name}', request_field='googleFirestoreAdminV1Field', request_type_name='FirestoreProjectsDatabasesCollectionGroupsFieldsPatchRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) class ProjectsDatabasesCollectionGroupsIndexesService(base_api.BaseApiService): """Service class for the projects_databases_collectionGroups_indexes resource.""" _NAME = 'projects_databases_collectionGroups_indexes' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesCollectionGroupsIndexesService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a composite index. This returns a google.longrunning.Operation. which may be used to track the status of the creation. The metadata for the operation will be the type IndexOperationMetadata. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes', http_method='POST', method_id='firestore.projects.databases.collectionGroups.indexes.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}/indexes', request_field='googleFirestoreAdminV1Index', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesCreateRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a composite index. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes/{indexesId}', http_method='DELETE', method_id='firestore.projects.databases.collectionGroups.indexes.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets a composite index. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1Index) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes/{indexesId}', http_method='GET', method_id='firestore.projects.databases.collectionGroups.indexes.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesGetRequest', response_type_name='GoogleFirestoreAdminV1Index', supports_download=False, ) def List(self, request, global_params=None): r"""Lists composite indexes. Args: request: (FirestoreProjectsDatabasesCollectionGroupsIndexesListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleFirestoreAdminV1ListIndexesResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/collectionGroups/{collectionGroupsId}/indexes', http_method='GET', method_id='firestore.projects.databases.collectionGroups.indexes.list', ordered_params=['parent'], path_params=['parent'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+parent}/indexes', request_field='', request_type_name='FirestoreProjectsDatabasesCollectionGroupsIndexesListRequest', response_type_name='GoogleFirestoreAdminV1ListIndexesResponse', supports_download=False, ) class ProjectsDatabasesCollectionGroupsService(base_api.BaseApiService): """Service class for the projects_databases_collectionGroups resource.""" _NAME = 'projects_databases_collectionGroups' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesCollectionGroupsService, self).__init__(client) self._upload_configs = { } class ProjectsDatabasesDocumentsService(base_api.BaseApiService): """Service class for the projects_databases_documents resource.""" _NAME = 'projects_databases_documents' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesDocumentsService, self).__init__(client) self._upload_configs = { } def BatchGet(self, request, global_params=None): r"""Gets multiple documents. Documents returned by this method are not guaranteed to be returned in the same order that they were requested. Args: request: (FirestoreProjectsDatabasesDocumentsBatchGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BatchGetDocumentsResponse) The response message. """ config = self.GetMethodConfig('BatchGet') return self._RunMethod( config, request, global_params=global_params) BatchGet.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:batchGet', http_method='POST', method_id='firestore.projects.databases.documents.batchGet', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:batchGet', request_field='batchGetDocumentsRequest', request_type_name='FirestoreProjectsDatabasesDocumentsBatchGetRequest', response_type_name='BatchGetDocumentsResponse', supports_download=False, ) def BeginTransaction(self, request, global_params=None): r"""Starts a new transaction. Args: request: (FirestoreProjectsDatabasesDocumentsBeginTransactionRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BeginTransactionResponse) The response message. """ config = self.GetMethodConfig('BeginTransaction') return self._RunMethod( config, request, global_params=global_params) BeginTransaction.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:beginTransaction', http_method='POST', method_id='firestore.projects.databases.documents.beginTransaction', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:beginTransaction', request_field='beginTransactionRequest', request_type_name='FirestoreProjectsDatabasesDocumentsBeginTransactionRequest', response_type_name='BeginTransactionResponse', supports_download=False, ) def Commit(self, request, global_params=None): r"""Commits a transaction, while optionally updating documents. Args: request: (FirestoreProjectsDatabasesDocumentsCommitRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (CommitResponse) The response message. """ config = self.GetMethodConfig('Commit') return self._RunMethod( config, request, global_params=global_params) Commit.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:commit', http_method='POST', method_id='firestore.projects.databases.documents.commit', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:commit', request_field='commitRequest', request_type_name='FirestoreProjectsDatabasesDocumentsCommitRequest', response_type_name='CommitResponse', supports_download=False, ) def CreateDocument(self, request, global_params=None): r"""Creates a new document. Args: request: (FirestoreProjectsDatabasesDocumentsCreateDocumentRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Document) The response message. """ config = self.GetMethodConfig('CreateDocument') return self._RunMethod( config, request, global_params=global_params) CreateDocument.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{collectionId}', http_method='POST', method_id='firestore.projects.databases.documents.createDocument', ordered_params=['parent', 'collectionId'], path_params=['collectionId', 'parent'], query_params=['documentId', 'mask_fieldPaths'], relative_path='v1/{+parent}/{collectionId}', request_field='document', request_type_name='FirestoreProjectsDatabasesDocumentsCreateDocumentRequest', response_type_name='Document', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a document. Args: request: (FirestoreProjectsDatabasesDocumentsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}', http_method='DELETE', method_id='firestore.projects.databases.documents.delete', ordered_params=['name'], path_params=['name'], query_params=['currentDocument_exists', 'currentDocument_updateTime'], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesDocumentsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets a single document. Args: request: (FirestoreProjectsDatabasesDocumentsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Document) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}', http_method='GET', method_id='firestore.projects.databases.documents.get', ordered_params=['name'], path_params=['name'], query_params=['mask_fieldPaths', 'readTime', 'transaction'], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesDocumentsGetRequest', response_type_name='Document', supports_download=False, ) def List(self, request, global_params=None): r"""Lists documents. Args: request: (FirestoreProjectsDatabasesDocumentsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListDocumentsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}/{collectionId}', http_method='GET', method_id='firestore.projects.databases.documents.list', ordered_params=['parent', 'collectionId'], path_params=['collectionId', 'parent'], query_params=['mask_fieldPaths', 'orderBy', 'pageSize', 'pageToken', 'readTime', 'showMissing', 'transaction'], relative_path='v1/{+parent}/{collectionId}', request_field='', request_type_name='FirestoreProjectsDatabasesDocumentsListRequest', response_type_name='ListDocumentsResponse', supports_download=False, ) def ListCollectionIds(self, request, global_params=None): r"""Lists all the collection IDs underneath a document. Args: request: (FirestoreProjectsDatabasesDocumentsListCollectionIdsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListCollectionIdsResponse) The response message. """ config = self.GetMethodConfig('ListCollectionIds') return self._RunMethod( config, request, global_params=global_params) ListCollectionIds.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}:listCollectionIds', http_method='POST', method_id='firestore.projects.databases.documents.listCollectionIds', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}:listCollectionIds', request_field='listCollectionIdsRequest', request_type_name='FirestoreProjectsDatabasesDocumentsListCollectionIdsRequest', response_type_name='ListCollectionIdsResponse', supports_download=False, ) def Listen(self, request, global_params=None): r"""Listens to changes. Args: request: (FirestoreProjectsDatabasesDocumentsListenRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListenResponse) The response message. """ config = self.GetMethodConfig('Listen') return self._RunMethod( config, request, global_params=global_params) Listen.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:listen', http_method='POST', method_id='firestore.projects.databases.documents.listen', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:listen', request_field='listenRequest', request_type_name='FirestoreProjectsDatabasesDocumentsListenRequest', response_type_name='ListenResponse', supports_download=False, ) def Patch(self, request, global_params=None): r"""Updates or inserts a document. Args: request: (FirestoreProjectsDatabasesDocumentsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Document) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) Patch.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}', http_method='PATCH', method_id='firestore.projects.databases.documents.patch', ordered_params=['name'], path_params=['name'], query_params=['currentDocument_exists', 'currentDocument_updateTime', 'mask_fieldPaths', 'updateMask_fieldPaths'], relative_path='v1/{+name}', request_field='document', request_type_name='FirestoreProjectsDatabasesDocumentsPatchRequest', response_type_name='Document', supports_download=False, ) def Rollback(self, request, global_params=None): r"""Rolls back a transaction. Args: request: (FirestoreProjectsDatabasesDocumentsRollbackRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Rollback') return self._RunMethod( config, request, global_params=global_params) Rollback.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:rollback', http_method='POST', method_id='firestore.projects.databases.documents.rollback', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:rollback', request_field='rollbackRequest', request_type_name='FirestoreProjectsDatabasesDocumentsRollbackRequest', response_type_name='Empty', supports_download=False, ) def RunQuery(self, request, global_params=None): r"""Runs a query. Args: request: (FirestoreProjectsDatabasesDocumentsRunQueryRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (RunQueryResponse) The response message. """ config = self.GetMethodConfig('RunQuery') return self._RunMethod( config, request, global_params=global_params) RunQuery.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents/{documentsId}/{documentsId1}:runQuery', http_method='POST', method_id='firestore.projects.databases.documents.runQuery', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1/{+parent}:runQuery', request_field='runQueryRequest', request_type_name='FirestoreProjectsDatabasesDocumentsRunQueryRequest', response_type_name='RunQueryResponse', supports_download=False, ) def Write(self, request, global_params=None): r"""Streams batches of document updates and deletes, in order. Args: request: (FirestoreProjectsDatabasesDocumentsWriteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (WriteResponse) The response message. """ config = self.GetMethodConfig('Write') return self._RunMethod( config, request, global_params=global_params) Write.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/documents:write', http_method='POST', method_id='firestore.projects.databases.documents.write', ordered_params=['database'], path_params=['database'], query_params=[], relative_path='v1/{+database}/documents:write', request_field='writeRequest', request_type_name='FirestoreProjectsDatabasesDocumentsWriteRequest', response_type_name='WriteResponse', supports_download=False, ) class ProjectsDatabasesOperationsService(base_api.BaseApiService): """Service class for the projects_databases_operations resource.""" _NAME = 'projects_databases_operations' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesOperationsService, self).__init__(client) self._upload_configs = { } def Cancel(self, request, global_params=None): r"""Starts asynchronous cancellation on a long-running operation. The server. makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Clients can use Operations.GetOperation or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an Operation.error value with a google.rpc.Status.code of 1, corresponding to `Code.CANCELLED`. Args: request: (FirestoreProjectsDatabasesOperationsCancelRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Cancel') return self._RunMethod( config, request, global_params=global_params) Cancel.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations/{operationsId}:cancel', http_method='POST', method_id='firestore.projects.databases.operations.cancel', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:cancel', request_field='googleLongrunningCancelOperationRequest', request_type_name='FirestoreProjectsDatabasesOperationsCancelRequest', response_type_name='Empty', supports_download=False, ) def Delete(self, request, global_params=None): r"""Deletes a long-running operation. This method indicates that the client is. no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns `google.rpc.Code.UNIMPLEMENTED`. Args: request: (FirestoreProjectsDatabasesOperationsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations/{operationsId}', http_method='DELETE', method_id='firestore.projects.databases.operations.delete', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesOperationsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Gets the latest state of a long-running operation. Clients can use this. method to poll the operation result at intervals as recommended by the API service. Args: request: (FirestoreProjectsDatabasesOperationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations/{operationsId}', http_method='GET', method_id='firestore.projects.databases.operations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsDatabasesOperationsGetRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) def List(self, request, global_params=None): r"""Lists operations that match the specified filter in the request. If the. server doesn't support this method, it returns `UNIMPLEMENTED`. NOTE: the `name` binding allows API services to override the binding to use different resource name schemes, such as `users/*/operations`. To override the binding, API services can add a binding such as `"/v1/{name=users/*}/operations"` to their service configuration. For backwards compatibility, the default name includes the operations collection id, however overriding users must ensure the name binding is the parent resource, without the operations collection id. Args: request: (FirestoreProjectsDatabasesOperationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningListOperationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}/operations', http_method='GET', method_id='firestore.projects.databases.operations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+name}/operations', request_field='', request_type_name='FirestoreProjectsDatabasesOperationsListRequest', response_type_name='GoogleLongrunningListOperationsResponse', supports_download=False, ) class ProjectsDatabasesService(base_api.BaseApiService): """Service class for the projects_databases resource.""" _NAME = 'projects_databases' def __init__(self, client): super(FirestoreV1.ProjectsDatabasesService, self).__init__(client) self._upload_configs = { } def ExportDocuments(self, request, global_params=None): r"""Exports a copy of all or a subset of documents from Google Cloud Firestore. to another storage system, such as Google Cloud Storage. Recent updates to documents may not be reflected in the export. The export occurs in the background and its progress can be monitored and managed via the Operation resource that is created. The output of an export may only be used once the associated operation is done. If an export operation is cancelled before completion it may leave partial data behind in Google Cloud Storage. Args: request: (FirestoreProjectsDatabasesExportDocumentsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('ExportDocuments') return self._RunMethod( config, request, global_params=global_params) ExportDocuments.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}:exportDocuments', http_method='POST', method_id='firestore.projects.databases.exportDocuments', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:exportDocuments', request_field='googleFirestoreAdminV1ExportDocumentsRequest', request_type_name='FirestoreProjectsDatabasesExportDocumentsRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) def ImportDocuments(self, request, global_params=None): r"""Imports documents into Google Cloud Firestore. Existing documents with the. same name are overwritten. The import occurs in the background and its progress can be monitored and managed via the Operation resource that is created. If an ImportDocuments operation is cancelled, it is possible that a subset of the data has already been imported to Cloud Firestore. Args: request: (FirestoreProjectsDatabasesImportDocumentsRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (GoogleLongrunningOperation) The response message. """ config = self.GetMethodConfig('ImportDocuments') return self._RunMethod( config, request, global_params=global_params) ImportDocuments.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/databases/{databasesId}:importDocuments', http_method='POST', method_id='firestore.projects.databases.importDocuments', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}:importDocuments', request_field='googleFirestoreAdminV1ImportDocumentsRequest', request_type_name='FirestoreProjectsDatabasesImportDocumentsRequest', response_type_name='GoogleLongrunningOperation', supports_download=False, ) class ProjectsLocationsService(base_api.BaseApiService): """Service class for the projects_locations resource.""" _NAME = 'projects_locations' def __init__(self, client): super(FirestoreV1.ProjectsLocationsService, self).__init__(client) self._upload_configs = { } def Get(self, request, global_params=None): r"""Gets information about a location. Args: request: (FirestoreProjectsLocationsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Location) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations/{locationsId}', http_method='GET', method_id='firestore.projects.locations.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1/{+name}', request_field='', request_type_name='FirestoreProjectsLocationsGetRequest', response_type_name='Location', supports_download=False, ) def List(self, request, global_params=None): r"""Lists information about the supported locations for this service. Args: request: (FirestoreProjectsLocationsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListLocationsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1/projects/{projectsId}/locations', http_method='GET', method_id='firestore.projects.locations.list', ordered_params=['name'], path_params=['name'], query_params=['filter', 'pageSize', 'pageToken'], relative_path='v1/{+name}/locations', request_field='', request_type_name='FirestoreProjectsLocationsListRequest', response_type_name='ListLocationsResponse', supports_download=False, ) class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(FirestoreV1.ProjectsService, self).__init__(client) self._upload_configs = { }
[ "ige-public@hotmail.com" ]
ige-public@hotmail.com
524246a6a70b4894f83eeaef95da242ddd7c0ae0
d5ab427f918849fabb5a6cc7efc15ebc71e3f9de
/graph.py
31f3a8d623c797c9295444433c22b6b9108a29e8
[]
no_license
wizacass/Intelektika_Proj
d189194b1f93e03614536fc272b704ad48cafb5e
76700550eaeaa5483ee37a337455014a912bcbb4
refs/heads/master
2023-05-09T06:35:53.806076
2021-05-25T15:46:13
2021-05-25T15:46:13
370,747,206
0
0
null
null
null
null
UTF-8
Python
false
false
2,682
py
import matplotlib.pyplot as plt import numpy as np import math from collections import Counter class Grapher: def __init__(self, dataset: str): self.dataset = dataset def histo(self, attribute, binary=False): if binary: counter = Counter(attribute.values) plt.bar(counter.keys(), counter.values()) else: counts, bins = np.histogram(attribute.values) plt.hist(bins[:-1], bins, weights=counts) plt.xlabel(attribute.name) plt.ylabel("Count") plt.savefig(f"results/graphs/{self.dataset}/{attribute.name}.png") plt.clf() def scatter(self, attributeX, attributeY): plt.xlabel(attributeX.name) plt.ylabel(attributeY.name) plt.scatter(attributeX.values, attributeY.values, alpha=0.5) plt.savefig( f"results/graphs/{self.dataset}/{attributeX.name} on {attributeY.name}.png") plt.clf() def splom(self, attributes): count = len(attributes) r = range(0, count) for i in r: for j in r: ax = plt.subplot2grid((count, count), (i, j)) ax.set_axis_off() if i != j: ax.scatter( attributes[i].values, attributes[j].values, s=0.5, alpha=0.25 ) plt.savefig( f"results/graphs/{self.dataset}/splom.png", dpi=1200 ) plt.clf() def bar_plot(self, attribute, label=""): counter = Counter(attribute.values) plt.bar(counter.keys(), counter.values()) plt.xlabel(attribute.name) plt.ylabel("Count") plt.savefig( f"results/graphs/{self.dataset}/bar_{attribute.name} {label}.png") plt.clf() def box_plot(self, attributes: list, labelX: str, labelY: str): plt.boxplot(attributes) plt.xticks([1, 2], ["True", "False"]) plt.xlabel(labelX) plt.ylabel(labelY) plt.savefig( f"results/graphs/{self.dataset}/box_{labelX} on {labelY}.png") plt.clf() def correlation_matrix(self, correlation_data: list, labels: list): plt.matshow(correlation_data) plt.colorbar() plt.xticks(range(0, len(correlation_data[0])), labels, rotation=45) plt.yticks(range(0, len(correlation_data[1])), labels, rotation=45) plt.savefig( f"results/graphs/{self.dataset}/correlation_matrix.png") plt.clf() def __column_count(self, size): count = 1 + 3.22 * (math.log(math.e) ** size) return int(round(count))
[ "visak.pet0@gmail.com" ]
visak.pet0@gmail.com
7e9ed44cfcf4dfe7080d14f4c8a120d31b1b1584
c025d4f76f37d4792299dd7239320d3327e1f7b2
/main test2
d175c5cb1966ce95b9d57093b43581e040469229
[]
no_license
vadiz/TESTBOT
c49ac3faae4ad55e6448d1d5d0fe831e827f9d1d
6ada4413a2767077db366b8dfc95d93df533b944
refs/heads/master
2021-09-05T21:28:00.296686
2018-01-31T04:51:34
2018-01-31T04:51:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
103,997
#coding:utf-8 import telebot, config from telebot import types import datetime from datetime import date import time import os import sys import subprocess import string import re import random from collections import Counter knownUsers = [] # todo: save these in a file, userStep = {} # so they won't reset every time the bot restarts def get_user_step(uid): if uid in userStep: return userStep[uid] else: knownUsers.append(uid) userStep[uid] = 0 return 0 def listener(messages): for m in messages: if m.content_type == 'text': date = datetime.date.today() print (str(m.chat.first_name) + " [" + str(m.chat.id) + "]: " + m.text) vremya = time.asctime(time.localtime(time.time())) print (vremya) spisok = [str(vremya) + '-' + str(m.chat.first_name) + " [" + str(m.chat.id) + "]: " + m.text] filename = str(date) + "_" + m.chat.first_name +'.txt' spisok2 = open("/home/makar/rabotayet/Bot_working/logs/" + filename, 'a') for index in spisok: spisok2.write(index + '\n') spisok2.close bot=telebot.TeleBot(config.TOKEN) bot.set_update_listener(listener) def main(): @bot.message_handler(commands=["start"]) def handle_text(message): user_markup = telebot.types.ReplyKeyboardMarkup(True, False) priv = ('Привет;)', 'Давай работать, что-ли?:Р', 'Хочешь аккаунтов?)', 'Мамбы, вк!! Легко и просто!!!', 'Нажми на кно... Хотя нет, не нажим... Жми, короче, я согласен...Может...', 'Давай нажимать кнопочки и ломать меня))', 'Люблю, когда нажимают кнопочки))', 'Надоели хачики? Попроси картиночку!!') #orig_mamba = open('mambaorig.txt', 'r+') rab_mamba = open('mamba.txt', 'r+') mamba_list = (rab_mamba.read()) mambalist = mamba_list.split('\n') mambishche = [x for x in mambalist if x != ''] mambaresultat = str(len(mambishche)) print(mambaresultat) #omambalist = (orig_mamba.read()) #omamba_list = omambalist.split('\n') #result = [] #for index in mambishche: # if index in omamba_list: # result.append(index) #print(len(result)) #mambaresultat = str(len(result)) ############# #orig_vk = open('vkorig.txt', 'r+') rab_vk = open('vk.txt', 'r+') vk_list = (rab_vk.read()) vklist = vk_list.split('\n') vk_proverka = [x for x in vklist if x != ''] vkresultat = str(len(vk_proverka)) print(vkresultat) #ovk_list = (orig_vk.read()) #ovklist = ovk_list.split('\n') #vkresult = [] #for index in vk_proverka: # if index in ovklist: # vkresult.append(index) #print(vkresult) #print(len(vkresult)) #vkresultat = str(len(vkresult)) ############ #orig_mamba_ua = open('mambaorigua.txt', 'r+') rab_mamba_ua = open('mambaua.txt', 'r+') mamba_list_ua = (rab_mamba_ua.read()) mambalist_ua = mamba_list_ua.split('\n') mambishche_ua = [x for x in mambalist_ua if x != ''] mambauaresult = str(len(mambishche_ua)) print(mambauaresult) #omambalist_ua = (orig_mamba_ua.read()) #omamba_list_ua = omambalist_ua.split('\n') #mamba_ua_result = [] #for index in mambishche_ua: # if index in omamba_list_ua: # mamba_ua_result.append(index) #print(len(mamba_ua_result)) #mambauaresult = str(len(mamba_ua_result)) ############# #orig_vkua = open('vkorigua.txt', 'r+') rab_vkua = open('vkkiev.txt', 'r+') vk_list_ua = (rab_vkua.read()) vklist_ua = vk_list_ua.split('\n') vk_proverka_ua = [x for x in vklist_ua if x != ''] vkuaresultat = str(len(vk_proverka_ua)) print(vkuaresultat) #ovk_list_ua = (orig_vkua.read()) #ovklist_ua = ovk_list_ua.split('\n') #vkresult_ua = [] #for index in vk_proverka_ua: # if index in ovklist_ua: # vkresult_ua.append(index) #print(len(vkresult_ua)) #vkuaresultat = str(len(vkresult_ua)) user_markup.row('Нужна мамба на Киев') user_markup.row('Получить вк Киев') user_markup.row('Получить мамбу МСК') user_markup.row('Получить вк МСК') user_markup.row('КНОПКА') bot.send_message(message.from_user.id, random.choice(priv), reply_markup=user_markup) bot.send_message(message.chat.id, 'У меня есть в наличии много вкусностей:)\n') bot.send_message(message.chat.id, 'Mamba.ru: ' + mambaresultat + '\nVk.com: ' + vkresultat + '\nMamba.UA: ' + mambauaresult + '\nvk.com(ua): ' + vkuaresultat) @bot.message_handler(func=lambda message: message.text == "КНОПКА") def handle_text(message): user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(message.from_user.id, 'Иди ко мне, сладкая...') kartink = random.choice(os.listdir("/home/makar/rabotayet/Bot_working/kartinki/")) kartinka = "/home/makar/rabotayet/Bot_working/kartinki/" + kartink print (kartink) print (kartinka) bot.send_photo(message.from_user.id, open(kartinka, 'rb')) @bot.message_handler(commands=["help"]) def start(message): bot.send_message(message.chat.id, '') @bot.message_handler(func=lambda message: message.text == "На главную") def handle_text(message): user_markup = telebot.types.ReplyKeyboardMarkup(True, False) #orig_mamba = open('mambaorig.txt', 'r+') rab_mamba = open('mamba.txt', 'r+') mamba_list = (rab_mamba.read()) mambalist = mamba_list.split('\n') mambishche = [x for x in mambalist if x != ''] mambaresultat = str(len(mambishche)) print(mambaresultat) #omambalist = (orig_mamba.read()) #omamba_list = omambalist.split('\n') #result = [] #for index in mambishche: # if index in omamba_list: # result.append(index) #print(len(result)) #mambaresultat = str(len(result)) ############# #orig_vk = open('vkorig.txt', 'r+') rab_vk = open('vk.txt', 'r+') vk_list = (rab_vk.read()) vklist = vk_list.split('\n') vk_proverka = [x for x in vklist if x != ''] vkresultat = str(len(vk_proverka)) print(vkresultat) #ovk_list = (orig_vk.read()) #ovklist = ovk_list.split('\n') #vkresult = [] #for index in vk_proverka: # if index in ovklist: # vkresult.append(index) #print(vkresult) #print(len(vkresult)) #vkresultat = str(len(vkresult)) ############ #orig_mamba_ua = open('mambaorigua.txt', 'r+') rab_mamba_ua = open('mambaua.txt', 'r+') mamba_list_ua = (rab_mamba_ua.read()) mambalist_ua = mamba_list_ua.split('\n') mambishche_ua = [x for x in mambalist_ua if x != ''] mambauaresult = str(len(mambishche_ua)) print(mambauaresult) #omambalist_ua = (orig_mamba_ua.read()) #omamba_list_ua = omambalist_ua.split('\n') #mamba_ua_result = [] #for index in mambishche_ua: # if index in omamba_list_ua: # mamba_ua_result.append(index) #print(len(mamba_ua_result)) #mambauaresult = str(len(mamba_ua_result)) ############# #orig_vkua = open('vkorigua.txt', 'r+') rab_vkua = open('vkkiev.txt', 'r+') vk_list_ua = (rab_vkua.read()) vklist_ua = vk_list_ua.split('\n') vk_proverka_ua = [x for x in vklist_ua if x != ''] vkuaresultat = str(len(vk_proverka_ua)) print(vkuaresultat) #ovk_list_ua = (orig_vkua.read()) #ovklist_ua = ovk_list_ua.split('\n') #vkresult_ua = [] #for index in vk_proverka_ua: # if index in ovklist_ua: # vkresult_ua.append(index) #print(len(vkresult_ua)) #vkuaresultat = str(len(vkresult_ua)) user_markup.row('Нужна мамба на Киев') user_markup.row('Получить вк Киев') user_markup.row('Получить мамбу МСК') user_markup.row('Получить вк МСК') user_markup.row('КНОПКА') glavn = ('Опять мы тут, продолжим же)', 'Что-нибудь еще?', 'Продолжаем.', 'Ну, что еще?','Меня разорили...','Я снова потерял часть себя:(','Желаете еще чего-нибудь?') bot.send_message(message.from_user.id, random.choice(glavn), reply_markup=user_markup) bot.send_message(message.chat.id, 'Теперь у меня: \n' +'Mamba.ru: ' + mambaresultat + '\nVk.com: ' + vkresultat + '\nMamba.UA: ' + mambauaresult + '\nvk.com(ua): ' + vkuaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Нужна мамба на Киев") def handle_text(message): #orig_mamba_ua = open('mambaorigua.txt', 'r+') rab_mamba_ua = open('mambaua.txt', 'r+') mamba_list_ua = (rab_mamba_ua.read()) mambalist_ua = mamba_list_ua.split('\n') mambishche_ua = [x for x in mambalist_ua if x != ''] mambauaresult = str(len(mambishche_ua)) print(mambauaresult) #omambalist_ua = (orig_mamba_ua.read()) #omamba_list_ua = omambalist_ua.split('\n') #mamba_ua_result = [] #for index in mambishche_ua: # if index in omamba_list_ua: # mamba_ua_result.append(index) #print(len(mamba_ua_result)) #mambauaresult = str(len(mamba_ua_result)) if mambauaresult == '1' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одна мамба') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько нужно? \nОстаток: " + mambauaresult, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одна мамба") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mambaua) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() elif mambauaresult == '2' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одна мамба') user_markup.row('Две мамбы') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько нужно? \nОстаток: " + mambauaresult, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одна мамба") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mambaua) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Две мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua) bot.send_message(m.chat.id, mambaua1, reply_markup=user_markup) print (mambaua) print (mambaua1) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() elif mambauaresult == '3' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одна мамба') user_markup.row('Две мамбы') user_markup.row('Три мамбы') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько нужно? \nОстаток: " + mambauaresult, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одна мамба") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mambaua) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Две мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua) bot.send_message(m.chat.id, mambaua1, reply_markup=user_markup) print (mambaua) print (mambaua1) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Три мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] mambaua2 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это уже дело)) \n '+mambaua) bot.send_message(m.chat.id, mambaua1) bot.send_message(m.chat.id, mambaua2, reply_markup=user_markup) print (mambaua) print (mambaua1) print (mambaua2) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() elif mambauaresult == '4' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одна мамба') user_markup.row('Две мамбы') user_markup.row('Три мамбы') user_markup.row('Четыре мамбы') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько нужно? \nОстаток: " + mambauaresult, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одна мамба") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mambaua) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Две мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua) bot.send_message(m.chat.id, mambaua1, reply_markup=user_markup) print (mambaua) print (mambaua1) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Три мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] mambaua2 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это уже дело)) \n '+mambaua) bot.send_message(m.chat.id, mambaua1) bot.send_message(m.chat.id, mambaua2, reply_markup=user_markup) print (mambaua) print (mambaua1) print (mambaua2) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Четыре мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] mambaua2 = uaaccount.pop (0) del uaaccount[0] mambaua3 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это сильно)) \n '+mambaua) bot.send_message(m.chat.id, mambaua1) bot.send_message(m.chat.id, mambaua2) bot.send_message(m.chat.id, mambaua3, reply_markup=user_markup) print (mambaua) print (mambaua1) print (mambaua2) print (mambaua3) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() elif mambauaresult == '0' : user_markup.row('На главную') bot.send_message(message.chat.id, "Не осталось совсем, реально, ждите, пока закинут. \nАкков: " + mambaresult, reply_markup=user_markup) else : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одна мамба') user_markup.row('Две мамбы') user_markup.row('Три мамбы') user_markup.row('Четыре мамбы') user_markup.row('Пять мамб') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько нужно? \nВ наличии: " + mambauaresult, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одна мамба") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mambaua) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Две мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mambaua) bot.send_message(m.chat.id, mambaua1, reply_markup=user_markup) print (mambaua) print (mambaua1) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Три мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] mambaua2 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это уже дело)) \n '+mambaua) bot.send_message(m.chat.id, mambaua1) bot.send_message(m.chat.id, mambaua2, reply_markup=user_markup) print (mambaua) print (mambaua1) print (mambaua2) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Четыре мамбы") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] mambaua2 = uaaccount.pop (0) del uaaccount[0] mambaua3 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это сильно)) \n '+mambaua) bot.send_message(m.chat.id, mambaua1) bot.send_message(m.chat.id, mambaua2) bot.send_message(m.chat.id, mambaua3, reply_markup=user_markup) print (mambaua) print (mambaua1) print (mambaua2) print (mambaua3) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Пять мамб") def command_text_hi(m): uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() mambaua = uaaccount.pop (0) del uaaccount[0] mambaua1 = uaaccount.pop (0) del uaaccount[0] mambaua2 = uaaccount.pop (0) del uaaccount[0] mambaua3 = uaaccount.pop (0) del uaaccount[0] mambaua4 = uaaccount.pop (0) del uaaccount[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, если ты справишься с ними... \n '+mambaua) bot.send_message(m.chat.id, mambaua1) bot.send_message(m.chat.id, mambaua2) bot.send_message(m.chat.id, mambaua3) bot.send_message(m.chat.id, mambaua4, reply_markup=user_markup) print (mambaua) print (mambaua1) print (mambaua2) print (mambaua3) print (mambaua4) print (uaaccount) uamamba = open('mambaua.txt', 'w') for index in uaaccount: uamamba.write(index + '\n') uamamba.close uamamba = open('mambaua.txt', 'r+') uaspisok = (uamamba.read()) uaaccount = uaspisok.split('\n') print (uaaccount) uamamba.close() @bot.message_handler(func=lambda message: message.text == "Получить вк Киев") def handle_text(message): #orig_vkua = open('vkorigua.txt', 'r+') rab_vkua = open('vkkiev.txt', 'r+') vk_list_ua = (rab_vkua.read()) vklist_ua = vk_list_ua.split('\n') vk_proverka_ua = [x for x in vklist_ua if x != ''] vkuaresultat = str(len(vk_proverka_ua)) print(vkuaresultat) #ovk_list_ua = (orig_vkua.read()) #ovklist_ua = ovk_list_ua.split('\n') #vkresult_ua = [] #for index in vk_proverka_ua: # if index in ovklist_ua: # vkresult_ua.append(index) #print(len(vkresult_ua)) #vkuaresultat = str(len(vkresult_ua)) if vkuaresultat == '1': user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1 акк') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + vkuaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == '1 акк') def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vkkiev) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vkkiev) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() elif vkuaresultat == '2' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1 акк') user_markup.row('2 акка') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + vkuaresultat, reply_markup=user_markup) bot.send_message(message.chat.id, "Сколько? \nОстаток: " + vkuaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == '1 акк') def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vkkiev) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vkkiev) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "2 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vkkiev) bot.send_message(m.chat.id, vkkiev1,reply_markup=user_markup) print (vkkiev+' '+vkkiev1) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() elif vkuaresultat == '3' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1 акк') user_markup.row('2 акка') user_markup.row('3 акка') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + vkuaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == '1 акк') def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vkkiev) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vkkiev) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "2 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vkkiev) bot.send_message(m.chat.id, vkkiev1,reply_markup=user_markup) print (vkkiev+' '+vkkiev1) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "3 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev2 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'О, мастер своего дела?;) \n' +vkkiev) bot.send_message(m.chat.id, vkkiev1) bot.send_message(m.chat.id, vkkiev2, reply_markup=user_markup) print (vkkiev+' '+vkkiev1+' '+vkkiev2) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() elif vkuaresultat == '4' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1 акк') user_markup.row('2 акка') user_markup.row('3 акка') user_markup.row('4 акка') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + vkuaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == '1 акк') def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vkkiev) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vkkiev) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "2 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vkkiev) bot.send_message(m.chat.id, vkkiev1,reply_markup=user_markup) print (vkkiev+' '+vkkiev1) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "3 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev2 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'О, мастер своего дела?;) \n' +vkkiev) bot.send_message(m.chat.id, vkkiev1) bot.send_message(m.chat.id, vkkiev2, reply_markup=user_markup) print (vkkiev+' '+vkkiev1+' '+vkkiev2) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "4 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev2 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev3 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, раз так хочешь... \n' +vkkiev) bot.send_message(m.chat.id, vkkiev1) bot.send_message(m.chat.id, vkkiev2) bot.send_message(m.chat.id, vkkiev3, reply_markup=user_markup) print (vkkiev+" "+vkkiev1+" "+vkkiev2+" "+vkkiev3) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() elif vkuaresultat == '0': user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(message.chat.id, "Закончились, совсем. \nАкков: " + vkuaresultat, reply_markup=user_markup) else: user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1 акк') user_markup.row('2 акка') user_markup.row('3 акка') user_markup.row('4 акка') user_markup.row('5 акков') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + vkuaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == '1 акк') def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vkkiev) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vkkiev) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "2 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vkkiev) bot.send_message(m.chat.id, vkkiev1,reply_markup=user_markup) print (vkkiev+' '+vkkiev1) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "3 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev2 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'О, мастер своего дела?;) \n' +vkkiev) bot.send_message(m.chat.id, vkkiev1) bot.send_message(m.chat.id, vkkiev2, reply_markup=user_markup) print (vkkiev+' '+vkkiev1+' '+vkkiev2) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "4 акка") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev2 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev3 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, раз так хочешь... \n' +vkkiev) bot.send_message(m.chat.id, vkkiev1) bot.send_message(m.chat.id, vkkiev2) bot.send_message(m.chat.id, vkkiev3, reply_markup=user_markup) print (vkkiev+" "+vkkiev1+" "+vkkiev2+" "+vkkiev3) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "5 акков") def command_text_hi(m): vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() vkkiev = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev1 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev2 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev3 = vkkiev_list.pop (0) del vkkiev_list[0] vkkiev4 = vkkiev_list.pop (0) del vkkiev_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ого, а сравишься?) \n' +vkkiev) bot.send_message(m.chat.id, vkkiev1) bot.send_message(m.chat.id, vkkiev2) bot.send_message(m.chat.id, vkkiev3) bot.send_message(m.chat.id, vkkiev4, reply_markup=user_markup) print (vkkiev+' '+vkkiev1+' '+vkkiev2+' '+vkkiev3+' '+vkkiev4) print (vkkiev_list) vkkiev = open('vkkiev.txt', 'w') for index in vkkiev_list: vkkiev.write(index + '\n') vkkiev.close vkkiev = open('vkkiev.txt', 'r+') svkkiev = (vkkiev.read()) vkkiev_list = svkkiev.split('\n') print (vkkiev_list) vkkiev.close() @bot.message_handler(func=lambda message: message.text == "Получить мамбу МСК") def handle_text(message): #orig_mamba = open('mambaorig.txt', 'r+') rab_mamba = open('mamba.txt', 'r+') mamba_list = (rab_mamba.read()) mambalist = mamba_list.split('\n') mambishche = [x for x in mambalist if x != ''] mambaresultat = str(len(mambishche)) print(mambaresultat) #omambalist = (orig_mamba.read()) #omamba_list = omambalist.split('\n') #result = [] #for index in mambishche: # if index in omamba_list: # result.append(index) #print(len(result)) #mambaresultat = str(len(result)) ############# if mambaresultat == '1': user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одну') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + mambaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одну") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mamba) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() elif mambaresultat == '2' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одну') user_markup.row('Две') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + mambaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одну") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mamba) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Две") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba) bot.send_message(m.chat.id, mamba1, reply_markup=user_markup) print (mamba) print (mamba1) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() elif mambaresultat == '3' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одну') user_markup.row('Две') user_markup.row('Три') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + mambaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одну") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mamba) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Две") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba) bot.send_message(m.chat.id, mamba1, reply_markup=user_markup) print (mamba) print (mamba1) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Три") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] mamba2 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это уже дело)) \n '+mamba) bot.send_message(m.chat.id, mamba1) bot.send_message(m.chat.id, mamba2, reply_markup=user_markup) print (mamba) print (mamba1) print (mamba2) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() elif mambaresultat == '4' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одну') user_markup.row('Две') user_markup.row('Три') user_markup.row('Четыре') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + mambaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одну") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mamba) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Две") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba) bot.send_message(m.chat.id, mamba1, reply_markup=user_markup) print (mamba) print (mamba1) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Три") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] mamba2 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это уже дело)) \n '+mamba) bot.send_message(m.chat.id, mamba1) bot.send_message(m.chat.id, mamba2, reply_markup=user_markup) print (mamba) print (mamba1) print (mamba2) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Четыре") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] mamba2 = a.pop (0) del a[0] mamba3 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это сильно)) \n '+mamba) bot.send_message(m.chat.id, mamba1) bot.send_message(m.chat.id, mamba2) bot.send_message(m.chat.id, mamba3, reply_markup=user_markup) print (mamba) print (mamba1) print (mamba2) print (mamba3) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) A = s.split('\n') print (a) f.close() elif mambaresultat == '0': user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(message.chat.id, "Закончились", reply_markup=user_markup) else: user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('Одну') user_markup.row('Две') user_markup.row('Три') user_markup.row('Четыре') user_markup.row('Пять') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОстаток: " + mambaresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "Одну") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba, reply_markup=user_markup) bot.send_message(m.chat.id, 'Работай хорошо, тогда у тебя всегда будут свежие и красивые аккаунты;)') print (mamba) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Две") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Держи: \n '+mamba) bot.send_message(m.chat.id, mamba1, reply_markup=user_markup) print (mamba) print (mamba1) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Три") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] mamba2 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это уже дело)) \n '+mamba) bot.send_message(m.chat.id, mamba1) bot.send_message(m.chat.id, mamba2, reply_markup=user_markup) print (mamba) print (mamba1) print (mamba2) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Четыре") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] mamba2 = a.pop (0) del a[0] mamba3 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Это сильно)) \n '+mamba) bot.send_message(m.chat.id, mamba1) bot.send_message(m.chat.id, mamba2) bot.send_message(m.chat.id, mamba3, reply_markup=user_markup) print (mamba) print (mamba1) print (mamba2) print (mamba3) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) A = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Пять") def command_text_hi(m): f = open('mamba.txt', 'r+') s = (f.read()) a = s.split('\n') print (a) f.close() mamba = a.pop (0) del a[0] mamba1 = a.pop (0) del a[0] mamba2 = a.pop (0) del a[0] mamba3 = a.pop (0) del a[0] mamba4 = a.pop (0) del a[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, если ты справишься с ними... \n '+mamba) bot.send_message(m.chat.id, mamba1) bot.send_message(m.chat.id, mamba2) bot.send_message(m.chat.id, mamba3) bot.send_message(m.chat.id, mamba4, reply_markup=user_markup) print (mamba) print (mamba1) print (mamba2) print (mamba3) print (mamba4) print (a) f = open('mamba.txt', 'w') for index in a: f.write(index + '\n') f.close f = open('mamba.txt', 'r+') s = (f.read()) A = s.split('\n') print (a) f.close() @bot.message_handler(func=lambda message: message.text == "Получить вк МСК") def handle_text(message): #orig_vk = open('vkorig.txt', 'r+') rab_vk = open('vk.txt', 'r+') vk_list = (rab_vk.read()) vklist = vk_list.split('\n') vk_proverka = [x for x in vklist if x != ''] vkresultat = str(len(vk_proverka)) print(vkresultat) #ovk_list = (orig_vk.read()) #ovklist = ovk_list.split('\n') #vkresult = [] #for index in vk_proverka: # if index in ovklist: # vkresult.append(index) #print(vkresult) #print(len(vkresult)) #vkresultat = str(len(vkresult)) if vkresultat == '1' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1') user_markup.row('На главную') bot.send_message(message.chat.id, "Последний, заберешь? ", reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "1") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vk) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vk) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() elif vkresultat == '2' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1') user_markup.row('2') user_markup.row('На главную') bot.send_message(message.chat.id, "Только две есть \nДаже докажу: " + vkresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "1") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vk) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vk) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "2") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vk) bot.send_message(m.chat.id, vk1,reply_markup=user_markup) print (vk+' '+vk1) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() elif vkresultat == '3' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1') user_markup.row('2') user_markup.row('3') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \n Это все, что есть: " + vkresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "1") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vk) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vk) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "2") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vk) bot.send_message(m.chat.id, vk1,reply_markup=user_markup) print (vk+' '+vk1) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "3") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] vk2 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'О, мастер своего дела?;) \n' +vk) bot.send_message(m.chat.id, vk1) bot.send_message(m.chat.id, vk2, reply_markup=user_markup) print (vk+' '+vk1+' '+vk2) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() elif vkresultat == '4' : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1') user_markup.row('2') user_markup.row('3') user_markup.row('4') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nОсталось: " + vkresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "1") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vk) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vk) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "2") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vk) bot.send_message(m.chat.id, vk1,reply_markup=user_markup) print (vk+' '+vk1) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "3") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] vk2 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'О, мастер своего дела?;) \n' +vk) bot.send_message(m.chat.id, vk1) bot.send_message(m.chat.id, vk2, reply_markup=user_markup) print (vk+' '+vk1+' '+vk2) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "4") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] vk2 = vkmsk_list.pop (0) del vkmsk_list[0] vk3 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, раз так хочешь... \n' +vk) bot.send_message(m.chat.id, vk1) bot.send_message(m.chat.id, vk2) bot.send_message(m.chat.id, vk3, reply_markup=user_markup) print (vk+" "+vk1+" "+vk2+" "+vk3) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() elif vkresultat == '0' : user_markup.row('На главную') bot.send_message(message.chat.id, "Больше нет, ждите, пока зальют.", reply_markup=user_markup) else : user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('1') user_markup.row('2') user_markup.row('3') user_markup.row('4') user_markup.row('5') user_markup.row('На главную') bot.send_message(message.chat.id, "Сколько? \nВ сухом остатке у нас: " + vkresultat, reply_markup=user_markup) @bot.message_handler(func=lambda message: message.text == "1") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Лови:) \n' +vk) bot.send_message(m.chat.id, 'Нужно будет еще что-нибудь - приходи.', reply_markup=user_markup) print (vk) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "2") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, два так два. Мне не жалко...\n' +vk) bot.send_message(m.chat.id, vk1,reply_markup=user_markup) print (vk+' '+vk1) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "3") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] vk2 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'О, мастер своего дела?;) \n' +vk) bot.send_message(m.chat.id, vk1) bot.send_message(m.chat.id, vk2, reply_markup=user_markup) print (vk+' '+vk1+' '+vk2) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "4") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] vk2 = vkmsk_list.pop (0) del vkmsk_list[0] vk3 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ну, раз так хочешь... \n' +vk) bot.send_message(m.chat.id, vk1) bot.send_message(m.chat.id, vk2) bot.send_message(m.chat.id, vk3, reply_markup=user_markup) print (vk+" "+vk1+" "+vk2+" "+vk3) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() @bot.message_handler(func=lambda message: message.text == "5") def command_text_hi(m): vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() vk = vkmsk_list.pop (0) del vkmsk_list[0] vk1 = vkmsk_list.pop (0) del vkmsk_list[0] vk2 = vkmsk_list.pop (0) del vkmsk_list[0] vk3 = vkmsk_list.pop (0) del vkmsk_list[0] vk4 = vkmsk_list.pop (0) del vkmsk_list[0] user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row('На главную') bot.send_message(m.chat.id, 'Ого, а сравишься?) \n' +vk) bot.send_message(m.chat.id, vk1) bot.send_message(m.chat.id, vk2) bot.send_message(m.chat.id, vk3) bot.send_message(m.chat.id, vk4, reply_markup=user_markup) print (vk+' '+vk1+' '+vk2+' '+vk3+' '+vk4) print (vkmsk_list) vkmsk = open('vk.txt', 'w') for index in vkmsk_list: vkmsk.write(index + '\n') vkmsk.close vkmsk = open('vk.txt', 'r+') svkmsk = (vkmsk.read()) vkmsk_list = svkmsk.split('\n') print (vkmsk_list) vkmsk.close() if __name__=="__main__": bot.polling() if __name__=="__main__": main()
[ "makarishche@gmail.com" ]
makarishche@gmail.com
1e84c539079a73cab67e9517c9c96f370c7348f8
4b8cde0ef35b67618eea421c20a7cf0c6882b75b
/motor-surprise-rage.py
1b1a3ca04300174a8af7d846534b8936bad235e5
[]
no_license
MeRuslan/thesis_work
57aa2006711e33db33d47b576a0cce047045fa66
935b15c611c65f77eae26c5d768ad3f363873832
refs/heads/master
2021-01-21T21:06:58.803983
2017-06-19T13:35:12
2017-06-19T13:35:12
94,780,166
0
0
null
null
null
null
UTF-8
Python
false
false
26,085
py
from func import * # ATTTENTION! Maybe there are some mistakes in neuron parameters! logger = logging.getLogger('neuromodulation') startbuild = datetime.datetime.now() nest.ResetKernel() nest.SetKernelStatus({'overwrite_files': True, 'local_num_threads': 8, 'resolution': 0.1}) generate_neurons(1000) # Init parameters of our synapse models DOPA_synparams_ex['vt'] = nest.Create('volume_transmitter')[0] DOPA_synparams_in['vt'] = nest.Create('volume_transmitter')[0] SERO_synparams_in['vt'] = nest.Create('volume_transmitter')[0] SERO_synparams_ex['vt'] = nest.Create('volume_transmitter')[0] NORA_synparams_ex['vt'] = nest.Create('volume_transmitter')[0] nest.CopyModel('static_synapse', gen_static_syn, static_syn) nest.CopyModel('stdp_synapse', glu_synapse, STDP_synparams_Glu) nest.CopyModel('stdp_synapse', gaba_synapse, STDP_synparams_GABA) nest.CopyModel('stdp_synapse', ach_synapse, STDP_synparams_ACh) nest.CopyModel('stdp_dopamine_synapse', dopa_synapse_ex, DOPA_synparams_ex) nest.CopyModel('stdp_dopamine_synapse', dopa_synapse_in, DOPA_synparams_in) nest.CopyModel('stdp_serotonin_synapse', sero_synapse_ex, SERO_synparams_ex) nest.CopyModel('stdp_serotonin_synapse', sero_synapse_in, SERO_synparams_in) nest.CopyModel('stdp_noradrenaline_synapse', nora_synapse_ex, NORA_synparams_ex) ## - my .50 logger.debug("* * * Start connection initialisation") #################################################################### # * * * ventral pathway * * * connect(ldt[ldt_Ach], thalamus[thalamus_Glu], syn_type=ACh, weight_coef=0.005) connect(ldt[ldt_Ach], bnst[bnst_Ach], syn_type=ACh, weight_coef=0.005) connect(ldt[ldt_Ach], lc[lc_N0], syn_type=ACh, weight_coef=0.005) connect(ldt[ldt_Ach], prefrontal[pfc_Glu0], syn_type=ACh, weight_coef=0.005) connect(thalamus[thalamus_Glu], motor[motor_Glu0], syn_type=Glu, weight_coef=0.005) connect(thalamus[thalamus_Glu], motor[motor_Glu1], syn_type=Glu, weight_coef=0.005) connect(thalamus[thalamus_Glu], motor[motor_5HT], syn_type=Glu, weight_coef=0.005) connect(motor[motor_Glu0], lc[lc_N0], syn_type=Glu, weight_coef=0.005) connect(motor[motor_Glu1], lc[lc_N0], syn_type=Glu, weight_coef=0.005) connect(prefrontal[pfc_Glu0], lc[lc_N0], syn_type=Glu, weight_coef=0.005) connect(prefrontal[pfc_Glu1], bnst[bnst_Glu], syn_type=Glu, weight_coef=0.005) connect(bnst[bnst_Glu], bnst[bnst_GABA], syn_type=Glu, weight_coef=0.005) connect(bnst[bnst_Ach], amygdala[amygdala_Ach], syn_type=ACh, weight_coef=0.005) connect(bnst[bnst_GABA], hypothalamus[hypothalamus_pvn_GABA], syn_type=GABA, weight_coef=0.005) connect(amygdala[amygdala_Ach], lc[lc_Ach], syn_type=ACh, weight_coef=0.005) connect(amygdala[amygdala_GABA], bnst[bnst_GABA], syn_type=GABA, weight_coef=0.005) connect(amygdala[amygdala_Glu], striatum[striatum_D1], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], striatum[striatum_D2], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], striatum[striatum_tan], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], striatum[striatum_5HT], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], striatum[striatum_Ach], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], striatum[striatum_GABA], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], nac[nac_GABA1], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], nac[nac_GABA0], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], nac[nac_5HT], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], nac[nac_NA], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], nac[nac_Ach], syn_type=Glu, weight_coef=0.005) connect(amygdala[amygdala_Glu], nac[nac_DA], syn_type=Glu, weight_coef=0.005) connect(hypothalamus[hypothalamus_pvn_GABA], motor[motor_Glu0], syn_type=GABA, weight_coef=0.005) connect(hypothalamus[hypothalamus_pvn_GABA], motor[motor_Glu1], syn_type=GABA, weight_coef=0.005) connect(hypothalamus[hypothalamus_pvn_GABA], motor[motor_5HT], syn_type=GABA, weight_coef=0.005) # inside LC connect(lc[lc_Ach], lc[lc_GABA], syn_type=ACh, weight_coef=0.005) connect(lc[lc_Ach], lc[lc_N0], syn_type=ACh, weight_coef=0.005) connect(lc[lc_Ach], lc[lc_N1], syn_type=ACh, weight_coef=0.005) connect(lc[lc_D1], lc[lc_N0], syn_type=DA_ex, weight_coef=0.005) connect(lc[lc_D2], lc[lc_N1], syn_type=DA_in, weight_coef=0.005) connect(lc[lc_GABA], lc[lc_N0], syn_type=GABA, weight_coef=0.005) # * * * dorsal pathway * * * connect(pgi[pgi_Glu], lc[lc_N0], syn_type=Glu, weight_coef=0.005) connect(pgi[pgi_Glu], lc[lc_N1], syn_type=Glu, weight_coef=0.005) connect(pgi[pgi_GABA], lc[lc_GABA], syn_type=GABA, weight_coef=0.005) connect(prh[prh_GABA], lc[lc_GABA], syn_type=GABA, weight_coef=0.005) connect(striatum[striatum_tan], lc[lc_GABA], syn_type=GABA, weight_coef=0.005) connect(vta[vta_DA0], lc[lc_D1], syn_type=DA_ex, weight_coef=0.005) connect(vta[vta_DA0], lc[lc_D2], syn_type=DA_in, weight_coef=0.005) connect(vta[vta_DA1], striatum[striatum_tan], syn_type=DA_ex, weight_coef=0.005) connect(vta[vta_DA1], striatum[striatum_GABA], syn_type=DA_ex, weight_coef=0.005) wse = 0.001 wsi = 0.5 # # * * * NIGROSTRIATAL PATHWAY* * * connect(motor[motor_Glu0], striatum[striatum_D1], syn_type=Glu, weight_coef=0.005) connect(motor[motor_Glu0], snc[snc_DA], syn_type=Glu, weight_coef=0.005) connect(motor[motor_Glu0], striatum[striatum_D2], syn_type=Glu, weight_coef=0.05) connect(motor[motor_Glu0], thalamus[thalamus_Glu], syn_type=Glu, weight_coef=0.003) # 0.0008 connect(motor[motor_Glu0], prefrontal[pfc_5HT], syn_type=Glu, weight_coef=0.003) ######not in the diagram connect(motor[motor_Glu0], motor[motor_5HT], syn_type=Glu, weight_coef=0.003) ######not in the diagram connect(motor[motor_Glu0], stn[stn_Glu], syn_type=Glu, weight_coef=7) connect(motor[motor_Glu1], striatum[striatum_D1], syn_type=Glu) connect(motor[motor_Glu1], striatum[striatum_D2], syn_type=Glu) connect(motor[motor_Glu0], thalamus[thalamus_Glu], syn_type=Glu) connect(motor[motor_Glu1], stn[stn_Glu], syn_type=Glu) connect(motor[motor_Glu1], nac[nac_GABA0], syn_type=GABA) connect(striatum[striatum_tan], striatum[striatum_D1], syn_type=GABA) connect(striatum[striatum_tan], striatum[striatum_D2], syn_type=Glu) connect(striatum[striatum_D1], snr[snr_GABA], syn_type=GABA, weight_coef=0.001) connect(striatum[striatum_D1], gpi[gpi_GABA], syn_type=GABA, weight_coef=0.001) connect(striatum[striatum_D1], gpe[gpe_GABA], syn_type=GABA, weight_coef=0.005) connect(striatum[striatum_D2], gpe[gpe_GABA], syn_type=GABA, weight_coef=1) connect(gpe[gpe_GABA], stn[stn_Glu], syn_type=GABA, weight_coef=0.0001) connect(gpe[gpe_GABA], striatum[striatum_D1], syn_type=GABA, weight_coef=0.001) connect(gpe[gpe_GABA], striatum[striatum_D2], syn_type=GABA, weight_coef=0.3) connect(gpe[gpe_GABA], gpi[gpi_GABA], syn_type=GABA, weight_coef=0.0001) connect(gpe[gpe_GABA], snr[snr_GABA], syn_type=GABA, weight_coef=0.0001) connect(stn[stn_Glu], snr[snr_GABA], syn_type=Glu, weight_coef=0.2) connect(stn[stn_Glu], gpi[gpi_GABA], syn_type=Glu, weight_coef=0.2) connect(stn[stn_Glu], gpe[gpe_GABA], syn_type=Glu, weight_coef=0.3) connect(stn[stn_Glu], snc[snc_DA], syn_type=Glu, weight_coef=0.01) connect(gpi[gpi_GABA], thalamus[thalamus_Glu], syn_type=GABA, weight_coef=1) # weight_coef=3) connect(snr[snr_GABA], thalamus[thalamus_Glu], syn_type=GABA, weight_coef=1) # weight_coef=3) connect(thalamus[thalamus_Glu], motor[motor_Glu1], syn_type=Glu) connect(thalamus[thalamus_Glu], stn[stn_Glu], syn_type=Glu, weight_coef=1) # 005 connect(thalamus[thalamus_Glu], striatum[striatum_D1], syn_type=Glu, weight_coef=0.001) connect(thalamus[thalamus_Glu], striatum[striatum_D2], syn_type=Glu, weight_coef=0.001) connect(thalamus[thalamus_Glu], striatum[striatum_tan], syn_type=Glu, weight_coef=0.001) connect(thalamus[thalamus_Glu], striatum[striatum_Ach], syn_type=Glu, weight_coef=0.001) connect(thalamus[thalamus_Glu], striatum[striatum_GABA], syn_type=Glu, weight_coef=0.001) connect(thalamus[thalamus_Glu], striatum[striatum_5HT], syn_type=Glu, weight_coef=0.001) connect(thalamus[thalamus_Glu], nac[nac_GABA0], syn_type=Glu) connect(thalamus[thalamus_Glu], nac[nac_GABA1], syn_type=Glu) connect(thalamus[thalamus_Glu], nac[nac_Ach], syn_type=Glu) connect(thalamus[thalamus_Glu], nac[nac_DA], syn_type=Glu) connect(thalamus[thalamus_Glu], nac[nac_5HT], syn_type=Glu) connect(thalamus[thalamus_Glu], nac[nac_NA], syn_type=Glu) # * * * INTEGRATED PATHWAY * * * connect(prefrontal[pfc_Glu0], vta[vta_DA0], syn_type=Glu) connect(prefrontal[pfc_Glu0], nac[nac_GABA1], syn_type=Glu) connect(prefrontal[pfc_Glu1], vta[vta_GABA2], syn_type=Glu) connect(prefrontal[pfc_Glu1], nac[nac_GABA1], syn_type=Glu) connect(amygdala[amygdala_Glu], nac[nac_GABA0], syn_type=Glu) connect(amygdala[amygdala_Glu], nac[nac_GABA1], syn_type=Glu) connect(amygdala[amygdala_Glu], nac[nac_Ach], syn_type=Glu) connect(amygdala[amygdala_Glu], nac[nac_DA], syn_type=Glu) connect(amygdala[amygdala_Glu], nac[nac_5HT], syn_type=Glu) connect(amygdala[amygdala_Glu], nac[nac_NA], syn_type=Glu) connect(amygdala[amygdala_Glu], striatum[striatum_D1], syn_type=Glu, weight_coef=0.3) connect(amygdala[amygdala_Glu], striatum[striatum_D2], syn_type=Glu, weight_coef=0.3) connect(amygdala[amygdala_Glu], striatum[striatum_tan], syn_type=Glu, weight_coef=0.3) connect(amygdala[amygdala_Glu], striatum[striatum_Ach], syn_type=Glu, weight_coef=0.3) connect(amygdala[amygdala_Glu], striatum[striatum_5HT], syn_type=Glu, weight_coef=0.3) connect(amygdala[amygdala_Glu], striatum[striatum_GABA], syn_type=Glu, weight_coef=0.3) # * * * MESOCORTICOLIMBIC PATHWAY * * * connect(nac[nac_Ach], nac[nac_GABA1], syn_type=ACh) connect(nac[nac_GABA0], nac[nac_GABA1], syn_type=GABA, ) connect(nac[nac_GABA1], vta[vta_GABA2], syn_type=GABA, ) connect(vta[vta_GABA0], prefrontal[pfc_Glu0], syn_type=GABA, ) connect(vta[vta_GABA0], pptg[pptg_GABA], syn_type=GABA, ) connect(vta[vta_GABA1], vta[vta_DA0], syn_type=GABA, ) connect(vta[vta_GABA1], vta[vta_DA1], syn_type=GABA, ) connect(vta[vta_GABA2], nac[nac_GABA1], syn_type=GABA, ) connect(pptg[pptg_GABA], vta[vta_GABA0], syn_type=GABA, ) connect(pptg[pptg_GABA], snc[snc_GABA], syn_type=GABA, weight_coef=0.005) connect(pptg[pptg_ACh], vta[vta_GABA0], syn_type=ACh) connect(pptg[pptg_ACh], vta[vta_DA1], syn_type=ACh) connect(pptg[pptg_Glu], vta[vta_GABA0], syn_type=Glu) connect(pptg[pptg_Glu], vta[vta_DA1], syn_type=Glu) connect(pptg[pptg_ACh], striatum[striatum_D1], syn_type=ACh, weight_coef=0.3) connect(pptg[pptg_ACh], snc[snc_GABA], syn_type=ACh, weight_coef=0.005) connect(pptg[pptg_Glu], snc[snc_DA], syn_type=Glu, weight_coef=0.005) if noradrenaline_flag: logger.debug("* * * Making neuromodulating connections...") # vt_ex = nest.Create('volume_transmitter') # vt_in = nest.Create('volume_transmitter') # NORA_synparams_ex['vt'] = vt_ex[0] # NORA_synparams_in['vt'] = vt_in[0] connect(nts[nts_a1], lc[lc_N0], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a1], bnst[bnst_Glu], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a2], lc[lc_N1], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a2], striatum[striatum_tan], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a2], striatum[striatum_GABA], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a2], amygdala[amygdala_Glu], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a2], amygdala[amygdala_Ach], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a2], amygdala[amygdala_GABA], syn_type=NA_ex, weight_coef=0.005) connect(nts[nts_a2], bnst[bnst_Glu], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N0], motor[motor_Glu0], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N0], motor[motor_Glu1], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N0], prefrontal[pfc_Glu1], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N0], vta[vta_a1], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N0], ldt[ldt_a1], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N0], ldt[ldt_a2], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N1], striatum[striatum_tan], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N1], striatum[striatum_GABA], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N1], rn[rn_a1], syn_type=NA_ex, weight_coef=0.005) connect(lc[lc_N1], rn[rn_a2], syn_type=NA_ex, weight_coef=0.005) connect(rn[rn_a1], rn[rn_dr], syn_type=NA_ex, weight_coef=0.005) connect(rn[rn_a2], rn[rn_mnr], syn_type=NA_ex, weight_coef=0.005) connect(rn[rn_a2], rn[rn_rpa], syn_type=NA_ex, weight_coef=0.005) connect(rn[rn_a2], rn[rn_rmg], syn_type=NA_ex, weight_coef=0.005) # connect(vta[vta_a1], vta[vta_DA1], syn_type=NA_in, weight_coef=0.005) if serotonin_flag: # * * * AFFERENT PROJECTIONS * * connect(vta[vta_5HT], rn[rn_dr], syn_type=SERO_ex, weight_coef=wse) connect(septum[septum_5HT], rn[rn_dr], syn_type=SERO_ex, weight_coef=wse) connect(septum[septum_5HT], rn[rn_mnr], syn_type=SERO_ex, weight_coef=wse) connect(prefrontal[pfc_5HT], rn[rn_dr], syn_type=SERO_ex, weight_coef=wse) connect(prefrontal[pfc_5HT], rn[rn_mnr], syn_type=SERO_ex, weight_coef=wse) connect(hypothalamus[hypothalamus_5HT], rn[rn_rmg], syn_type=SERO_ex, weight_coef=wse) connect(hypothalamus[hypothalamus_5HT], rn[rn_rpa], syn_type=SERO_ex, weight_coef=wse) connect(periaqueductal_gray[periaqueductal_gray_5HT], rn[rn_rmg], syn_type=SERO_ex, weight_coef=wse) connect(periaqueductal_gray[periaqueductal_gray_5HT], rn[rn_rpa], syn_type=SERO_ex, weight_coef=wse) connect(bnst[bnst_5HT], rn[rn_rpa], syn_type=SERO_ex, weight_coef=wse) connect(amygdala[amygdala_5HT], rn[rn_rpa], syn_type=SERO_ex, weight_coef=wse) connect(amygdala[amygdala_5HT], rn[rn_rmg], syn_type=SERO_ex, weight_coef=wse) connect(hippocampus[hippocampus_5HT], rn[rn_dr], syn_type=SERO_ex, weight_coef=wse) # * * * EFFERENT PROJECTIONS * * * connect(rn[rn_dr], striatum[striatum_5HT], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], striatum[striatum_D2], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], striatum[striatum_GABA], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], striatum[striatum_Ach], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], nac[nac_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], nac[nac_GABA0], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], nac[nac_GABA1], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], nac[nac_Ach], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], nac[nac_DA], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], snr[snr_GABA], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], septum[septum_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], thalamus[thalamus_5HT], syn_type=SERO_in, weight_coef=wsi) # ? tune weights connect(rn[rn_dr], thalamus[thalamus_Glu], syn_type=SERO_in, weight_coef=wsi) # ? tune weights connect(rn[rn_dr], lateral_cortex[lateral_cortex_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], entorhinal_cortex[entorhinal_cortex_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], prefrontal[pfc_5HT], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], prefrontal[pfc_Glu0], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], prefrontal[pfc_Glu1], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], prefrontal[pfc_DA], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], prefrontal[pfc_NA], syn_type=SERO_in, weight_coef=wsi) # !!! connect(rn[rn_dr], lateral_tegmental_area[lateral_tegmental_area_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], lc[lc_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], lc[lc_N0], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], bnst[bnst_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], bnst[bnst_Glu], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], bnst[bnst_GABA], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], bnst[bnst_Ach], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], hippocampus[hippocampus_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], amygdala[amygdala_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], amygdala[amygdala_Glu], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], amygdala[amygdala_GABA], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_dr], amygdala[amygdala_Ach], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], vta[vta_5HT], syn_type=SERO_in, weight_coef=wsi) # !!! 0.005 connect(rn[rn_mnr], vta[vta_a1], syn_type=SERO_in, weight_coef=wsi) # !!! 0.005 connect(rn[rn_mnr], vta[vta_DA1], syn_type=SERO_in, weight_coef=wsi) # !!! 0.005 connect(rn[rn_mnr], thalamus[thalamus_5HT], syn_type=SERO_in, weight_coef=wsi) # ? connect(rn[rn_mnr], thalamus[thalamus_Glu], syn_type=SERO_in, weight_coef=wsi) # ? tune weights 0.005 connect(rn[rn_mnr], prefrontal[pfc_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], prefrontal[pfc_Glu0], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], prefrontal[pfc_Glu1], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], motor[motor_Glu0], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], motor[motor_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], insular_cortex[insular_cortex_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], medial_cortex[medial_cortex_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], neocortex[neocortex_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], hypothalamus[hypothalamus_5HT], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], hypothalamus[hypothalamus_pvn_GABA], syn_type=SERO_in, weight_coef=wsi) connect(rn[rn_mnr], hippocampus[hippocampus_5HT], syn_type=SERO_in, weight_coef=wsi) # * * * THALAMOCORTICAL PATHWAY * * * connect(thalamus[thalamus_5HT], prefrontal[pfc_5HT], syn_type=SERO_in, weight_coef=wse) connect(thalamus[thalamus_5HT], motor[motor_5HT], syn_type=SERO_ex, weight_coef=wse) connect(thalamus[thalamus_5HT], motor[motor_Glu0], syn_type=SERO_ex, weight_coef=wse) connect(prefrontal[pfc_5HT], thalamus[thalamus_5HT], syn_type=SERO_in, weight_coef=wsi) # main was 0.005 connect(motor[motor_5HT], thalamus[thalamus_5HT], syn_type=SERO_in, weight_coef=wsi) # main was 0.005 if dopamine_flag: logger.debug("* * * Making neuromodulating connections...") # NIGROSTRIATAL connect(snc[snc_DA], striatum[striatum_D1], syn_type=DA_ex) connect(snc[snc_DA], gpe[gpe_GABA], syn_type=DA_ex) connect(snc[snc_DA], stn[stn_Glu], syn_type=DA_ex) connect(snc[snc_DA], nac[nac_GABA0], syn_type=DA_ex) connect(snc[snc_DA], nac[nac_GABA1], syn_type=DA_ex) connect(snc[snc_DA], striatum[striatum_D2], syn_type=DA_in) connect(snc[snc_DA], striatum[striatum_tan], syn_type=DA_in) # MESOCORTICOLIMBIC connect(vta[vta_DA0], striatum[striatum_D1], syn_type=DA_ex) connect(vta[vta_DA0], striatum[striatum_D2], syn_type=DA_in) connect(vta[vta_DA0], prefrontal[pfc_Glu0], syn_type=DA_ex) connect(vta[vta_DA0], prefrontal[pfc_Glu1], syn_type=DA_ex) connect(vta[vta_DA1], nac[nac_GABA0], syn_type=DA_ex) connect(vta[vta_DA1], nac[nac_GABA1], syn_type=DA_ex) if dopamine_flag and serotonin_flag and noradrenaline_flag: # * * * DOPAMINE INTERACTION * * * connect(prefrontal[pfc_5HT], prefrontal[pfc_DA], syn_type=SERO_ex, weight_coef=wse) connect(prefrontal[pfc_DA], vta[vta_5HT], syn_type=DA_in, weight_coef=0.005) connect(prefrontal[pfc_DA], vta[vta_DA1], syn_type=DA_in, weight_coef=0.005) # connect(vta[vta_5HT], vta[vta_DA1], syn_type=SERO_in, weight_coef=0.005) connect(vta[vta_5HT], vta[vta_DA1], syn_type=SERO_ex, weight_coef=wse) connect(vta[vta_DA1], prefrontal[pfc_5HT], syn_type=DA_ex, weight_coef=0.005) connect(vta[vta_DA1], prefrontal[pfc_DA], syn_type=DA_ex, weight_coef=0.005) # connect(vta[vta_DA1], striatum[striatum_5HT], syn_type=DOPA_in, weight_coef=0.005) connect(vta[vta_DA1], striatum[striatum_5HT], syn_type=DA_ex, weight_coef=0.005) # connect(vta[vta_DA1], striatum[striatum_DA], syn_type=DOPA_in, weight_coef=0.005) connect(vta[vta_DA1], striatum[striatum_D1], syn_type=DA_ex, weight_coef=0.005) # connect(vta[vta_DA1], nac[nac_5HT], syn_type=DOPA_in, weight_coef=0.005) connect(vta[vta_DA1], nac[nac_5HT], syn_type=DA_ex, weight_coef=0.005) # connect(vta[vta_DA1], nac[nac_DA], syn_type=DOPA_in, weight_coef=0.005) connect(vta[vta_DA1], nac[nac_DA], syn_type=DA_ex, weight_coef=0.005) # connect(striatum[striatum_5HT], striatum[striatum_DA], syn_type=SERO_in, weight_coef=0.005) connect(striatum[striatum_5HT], striatum[striatum_D1], syn_type=SERO_ex, weight_coef=wse) # ??????????????????????????????????? D1, D2? # connect(striatum[striatum_DA], snr[snr_GABA], syn_type=DOPA_in, weight_coef=0.005) connect(striatum[striatum_D1], snr[snr_GABA], syn_type=DA_ex, weight_coef=0.005) # connect(striatum[striatum_DA], snc[snc_DA], syn_type=DOPA_in, weight_coef=0.005) connect(striatum[striatum_D1], snc[snc_GABA], syn_type=DA_ex, weight_coef=0.005) connect(striatum[striatum_D1], snc[snc_DA], syn_type=DA_ex, weight_coef=0.005) connect(nac[nac_5HT], nac[nac_DA], syn_type=SERO_ex, weight_coef=wse) connect(snr[snr_GABA], snc[snc_DA], syn_type=SERO_in, weight_coef=wsi) connect(snc[snc_GABA], striatum[striatum_5HT], syn_type=DA_in, weight_coef=0.005) # ? connect(snc[snc_DA], striatum[striatum_5HT], syn_type=DA_in, weight_coef=0.005) connect(snc[snc_DA], striatum[striatum_D1], syn_type=DA_in, weight_coef=0.005) connect(snc[snc_DA], nac[nac_5HT], syn_type=DA_in, weight_coef=0.005) connect(snc[snc_DA], nac[nac_DA], syn_type=DA_in, weight_coef=0.005) connect(lc[lc_5HT], lc[lc_D1], syn_type=SERO_ex, weight_coef=0.005) connect(lc[lc_D1], rn[rn_dr], syn_type=DA_ex, weight_coef=0.005) # * * * NORADRENALINE INTERACTION * * * connect(lc[lc_5HT], lc[lc_N0], syn_type=SERO_in, weight_coef=0.005) connect(lc[lc_5HT], lc[lc_N1], syn_type=SERO_in, weight_coef=0.005) # * * * EFFERENT * * * # * * * CORTICOSPINAL TRACT * * * # connect(motor[motor_Glu1], medulla[medulla_GABA], syn_type=GABA, weight_coef=0.01) connectIn(motor[motor_Glu1], spine[spine_Glu1], syn_type=Glu) connectIn(spine[spine_Glu1], nmj[nmj_Glu], syn_type=Glu) # # * * * CORTICOBULBAR TRACT * * * connect(motor[motor_Glu0], medulla[medulla_GABA], syn_type=Glu) # # * * * RETICULOSPINAL TRACT * * * connect(pons[pons_Glu], spine[spine_GABA], syn_type=Glu) connect(medulla[medulla_GABA], spine[spine_GABA], syn_type=GABA) # * * * AFFERENT * * * # * * * SPINOTHALAMIC TRACT * * * connect(cellBodies[cellBodies_Glu], spine[spine_Glu2], syn_type=Glu) connect(spine[spine_Glu2], thalamus[thalamus_Glu], syn_type=Glu) logger.debug("* * * Attaching spike generators...") # #################################surprise connect_generator(nts[nts_a1], 0., 250., rate=250, coef_part=1) connect_generator(nts[nts_a2], 0., 250., rate=250, coef_part=1) connect_generator(prh[prh_GABA], 0., 250., rate=250, coef_part=1) connect_generator(pgi[pgi_GABA], 0., 250., rate=250, coef_part=1) connect_generator(pgi[pgi_Glu], 0., 250., rate=250, coef_part=1) connect_generator(ldt[ldt_a1], 0., 250., rate=250, coef_part=1) connect_generator(ldt[ldt_a2], 0., 250., rate=250, coef_part=1) connect_generator(ldt[ldt_Ach], 0., 250., rate=250, coef_part=1) connect_generator(lc[lc_N0], 0., 250., rate=250, coef_part=1) connect_generator(lc[lc_N1], 0., 250., rate=250, coef_part=1) connect_generator(prefrontal[pfc_5HT], 0., 250., rate=250, coef_part=1) connect_generator(motor[motor_5HT], 0., 250., rate=250, coef_part=1) connect_generator(rn[rn_dr], 0., 250., rate=250, coef_part=1) connect_generator(rn[rn_mnr], 0., 250., rate=250, coef_part=1) connect_generator(cellBodies[cellBodies_Glu], 200., 500., rate=250, coef_part=1) # # ############################anger/rage # connect_generator(nts[nts_a1], 400., 600., rate=250, coef_part=1) # connect_generator(nts[nts_a2], 400., 600., rate=250, coef_part=1) # connect_generator(prh[prh_GABA], 400., 600., rate=250, coef_part=1) # connect_generator(pgi[pgi_GABA], 400., 600., rate=250, coef_part=1) # connect_generator(pgi[pgi_Glu], 400., 600., rate=250, coef_part=1) # connect_generator(ldt[ldt_a1], 400., 600., rate=250, coef_part=1) # connect_generator(ldt[ldt_a2], 400., 600., rate=250, coef_part=1) # connect_generator(ldt[ldt_Ach], 400., 600., rate=250, coef_part=1) # connect_generator(lc[lc_N0], 400., 600., rate=250, coef_part=1) # # connect_generator(lc[lc_N1], 400., 600., rate=250, coef_part=1) # # connect_generator(motor[motor_Glu0], 400., 600., rate=250, coef_part=1) # connect_generator(pptg[pptg_GABA], 400., 600., rate=250, coef_part=1) # connect_generator(pptg[pptg_Glu], 400., 600., rate=250, coef_part=1) # connect_generator(pptg[pptg_ACh], 400., 600., rate=250, coef_part=1) # connect_generator(amygdala[amygdala_Glu], 400., 600., rate=250, coef_part=1) # connect_generator(snc[snc_DA], 400., 600., rate=250, coef_part=1) # connect_generator(vta[vta_DA0], 400., 600., rate=250, coef_part=1) ##connect_generator(pons[pons_5HT], 400., 600., rate=250, coef_part=1) ##connect_generator(periaqueductal_gray[periaqueductal_gray_5HT], 400., 600., rate=250, coef_part=1) ##connect_generator(reticular_formation[reticular_formation_5HT], 400., 600., rate=250, coef_part=1) logger.debug("* * * Attaching spikes detector") for part in getAllParts(): connect_detector(part) logger.debug("* * * Attaching multimeters") for part in getAllParts(): connect_multimeter(part) del generate_neurons, connect, connect_generator, connect_detector, connect_multimeter endbuild = datetime.datetime.now() simulate() get_log(startbuild, endbuild) save(GUI=status_gui)
[ "guyfulla@gmail.com" ]
guyfulla@gmail.com
77aee12c7c33e199445d96492a54a4d8c66a7a51
3a4cc16bf5fa10feedbb26623f1df14594f05a25
/jogodedados.py
abd944c9571c6f8756414a25fd04e1fdaa173ffe
[]
no_license
edsoncpsilva/Curso-Python
12f89ae0049e7909cab5e98ff9adbf3dfa003d25
939ccccb9f3beb5ee7a72fa96dfd0240fbd185fa
refs/heads/master
2020-03-24T02:21:57.707429
2018-08-17T20:19:45
2018-08-17T20:19:45
142,372,961
0
0
null
null
null
null
UTF-8
Python
false
false
1,272
py
#==> jogo de dados de 6 lados #importar biblioteca import random #variaveis sair = 's' qtd = 0 #loop de interacao while (sair == 's'): #interacao print() numero = int(input('Digite o numero que irá sair entre 1 e 6?:' )) nro_sorte = random.randrange(1, 7) if numero == nro_sorte: print('Acertei, estou com sorte!!!!') print() exit() if numero > nro_sorte: print('você digitou um numero Maior, tente novamente') print() if numero < nro_sorte: print('você digitou um numero Menor, tente novamente') print() print('-'*70) print('==> Numero Sorteado:' + str(nro_sorte)) print('-'*70) #validar opcao de SAIR ok = 'nok' while (ok == 'nok'): sair = input('Deseja Continuar Tentando (s/n): ') if sair == 's': ok = 'ok' if sair == 'S': sair = 's' ok = 'ok' if sair == 'n': ok = 'ok' if sair == 'N': sair = 'n' ok = 'ok' if ok == 'nok': print('Opcao Invalida, digite apenas "S" ou "N"') #controlar quantidade de tentativas if sair == 's': qtd = qtd + 1 if qtd == 4: print() print('********************************************') print('***** excedeu a qtd de tentativas de 2 *****') print('********************************************') sair = 'n' print() print('Fim de Jogo !!!!')
[ "noreply@github.com" ]
noreply@github.com
1a701ab367bd7353d683543ba01c68dafb9c47e1
3536b829b5733807ffca9849e7ad463c43979c09
/sc2bot/agents/battle_agent.py
22e9a7bbc1b8d9e4a1550ce87856884d6aaf1e26
[]
no_license
alanxzhou/sc2bot
9b8d33dacc32074a70b8b4007f60801d6ff8037c
0eb2a3f733ea31250e29a123213b407ad9189a40
refs/heads/master
2020-09-04T17:40:32.608263
2020-03-16T23:32:59
2020-03-16T23:32:59
219,835,624
1
0
null
null
null
null
UTF-8
Python
false
false
12,381
py
from abc import ABC, abstractmethod import copy from collections import deque import pickle import matplotlib.pyplot as plt import numpy as np import os import time from pysc2.agents.scripted_agent import _xy_locs from pysc2.agents.base_agent import BaseAgent from pysc2.lib import actions from pysc2.lib import features from sc2bot.utils.epsilon import Epsilon from sc2bot.utils.replay_memory import ReplayMemory, Transition from sc2bot.models.nn_models import FeatureCNN, FeatureCNNFCLimited, FeatureCNNFCBig, BeaconCNN2 from sc2bot.agents.rl_agent import BaseRLAgent import torch import torch.nn as nn import torch.optim as optim _PLAYER_RELATIVE = features.SCREEN_FEATURES.player_relative.index _PLAYER_FRIENDLY = 1 _PLAYER_NEUTRAL = 3 # beacon/minerals _PLAYER_HOSTILE = 4 _NO_OP = actions.FUNCTIONS.no_op.id _MOVE_SCREEN = actions.FUNCTIONS.Move_screen.id _ATTACK_SCREEN = actions.FUNCTIONS.Attack_screen.id _SELECT_ARMY = actions.FUNCTIONS.select_army.id _NOT_QUEUED = [0] _SELECT_ALL = [0] _SELECT_POINT = actions.FUNCTIONS.select_point.id _UNIT_TYPE = 6 _SELECTED = 7 _UNIT_HIT_POINTS = 8 FUNCTIONS = actions.FUNCTIONS _PLAYER_ENEMY = features.PlayerRelative.ENEMY class BattleAgent(BaseRLAgent): """ Agent where the entire army is selected """ def __init__(self, save_name=None, load_name=None): super(BattleAgent, self).__init__(save_name=save_name, load_name=load_name) self.initialize_model(FeatureCNNFCBig(3, screen_size=self._screen_size)) self.steps_before_training = 5000 self.obs = None self.features = [_PLAYER_RELATIVE, _UNIT_TYPE, _UNIT_HIT_POINTS] self.train_q_per_step = 1 def run_loop(self, env, max_frames=0, max_episodes=10000, save_checkpoints=500, evaluate_checkpoints=10): """A run loop to have agents and an environment interact.""" total_frames = 0 start_time = time.time() action_spec = env.action_spec() observation_spec = env.observation_spec() self.setup(observation_spec, action_spec) try: while self.n_episodes < max_episodes: obs = env.reset()[0] # remove unit selection from the equation by selecting the entire army on every new game. select_army = actions.FunctionCall(_SELECT_ARMY, [[False]]) obs = env.step([select_army])[0] self.reset() episode_reward = 0 while True: total_frames += 1 self.obs = obs.observation["feature_screen"][self.features] s = np.expand_dims(self.obs, 0) if max_frames and total_frames >= max_frames: print("max frames reached") return if obs.last(): print(f"Episode {self.n_episodes + 1}:\t total frames: {total_frames} Epsilon: {self._epsilon.value()}") self._epsilon.increment() break action = self.get_action(s, unsqueeze=False) env_actions = self.get_env_action(action, obs, command=_ATTACK_SCREEN) try: obs = env.step([env_actions])[0] r = obs.reward - 10 except ValueError as e: print(e) obs = env.step([actions.FunctionCall(_NO_OP, [])])[0] r = obs.reward - 1000 episode_reward += r s1 = np.expand_dims(obs.observation["feature_screen"][self.features], 0) done = r > 0 if self._epsilon.isTraining: transition = Transition(s, action, s1, r, done) self._memory.push(transition) if total_frames % self.train_q_per_step == 0 and total_frames > self.steps_before_training and self._epsilon.isTraining: self.train_q(squeeze=True) if total_frames % self.target_q_update_frequency == 0 and total_frames > self.steps_before_training and self._epsilon.isTraining: self._Qt = copy.deepcopy(self._Q) if evaluate_checkpoints > 0 and ((self.n_episodes % evaluate_checkpoints) - (evaluate_checkpoints - 1) == 0 or self.n_episodes == 0): print('Evaluating...') self._epsilon.isTraining = False # we need to make sure that we act greedily when we evaluate self.run_loop(env, max_episodes=max_episodes, evaluate_checkpoints=0) self._epsilon.isTraining = True if evaluate_checkpoints == 0: # this should only activate when we're inside the evaluation loop self.reward.append(episode_reward) print(f'Evaluation Complete: Episode reward = {episode_reward}') break self.n_episodes += 1 if len(self._loss) > 0: self.loss.append(self._loss[-1]) self.max_q.append(self._max_q[-1]) if self.n_episodes % save_checkpoints == 0: if self.n_episodes > 0: self.save_data(episodes_done=self.n_episodes) except KeyboardInterrupt: pass finally: print("finished") elapsed_time = time.time() - start_time try: print("Took %.3f seconds for %s steps: %.3f fps" % ( elapsed_time, total_frames, total_frames / elapsed_time)) except: print("Took %.3f seconds for %s steps" % (elapsed_time, total_frames)) class BattleAgentBeacon(BattleAgent): def __init__(self, save_name=None, load_name=None): super(BattleAgentBeacon, self).__init__(save_name=save_name, load_name=load_name) self.initialize_model(BeaconCNN2()) self.features = _PLAYER_RELATIVE def run_loop(self, env, max_frames=0, max_episodes=10000, save_checkpoints=500, evaluate_checkpoints=10): """A run loop to have agents and an environment interact.""" total_frames = 0 start_time = time.time() action_spec = env.action_spec() observation_spec = env.observation_spec() self.setup(observation_spec, action_spec) try: while self.n_episodes < max_episodes: obs = env.reset()[0] # remove unit selection from the equation by selecting the entire army on every new game. select_army = actions.FunctionCall(_SELECT_ARMY, [[False]]) obs = env.step([select_army])[0] self.reset() episode_reward = 0 while True: total_frames += 1 self.obs = obs.observation["feature_screen"][self.features] s = np.expand_dims(self.obs, 0) if max_frames and total_frames >= max_frames: print("max frames reached") return if obs.last(): print(f"Episode {self.n_episodes + 1}:\t total frames: {total_frames} Epsilon: {self._epsilon.value()}") self._epsilon.increment() break action = self.get_action(s, unsqueeze=True) env_actions = self.get_env_action(action, obs, command=_ATTACK_SCREEN) try: obs = env.step([env_actions])[0] r = obs.reward - 10 except ValueError as e: print(e) obs = env.step([actions.FunctionCall(_NO_OP, [])])[0] r = obs.reward - 1000 episode_reward += r s1 = np.expand_dims(obs.observation["feature_screen"][self.features], 0) done = r > 0 if self._epsilon.isTraining: transition = Transition(s, action, s1, r, done) self._memory.push(transition) if total_frames % self.train_q_per_step == 0 and total_frames > self.steps_before_training and self._epsilon.isTraining: self.train_q(squeeze=False) if total_frames % self.target_q_update_frequency == 0 and total_frames > self.steps_before_training and self._epsilon.isTraining: self._Qt = copy.deepcopy(self._Q) if evaluate_checkpoints > 0 and ((self.n_episodes % evaluate_checkpoints) - (evaluate_checkpoints - 1) == 0 or self.n_episodes == 0): print('Evaluating...') self._epsilon.isTraining = False # we need to make sure that we act greedily when we evaluate self.run_loop(env, max_episodes=max_episodes, evaluate_checkpoints=0) self._epsilon.isTraining = True if evaluate_checkpoints == 0: # this should only activate when we're inside the evaluation loop self.reward.append(episode_reward) print(f'Evaluation Complete: Episode reward = {episode_reward}') break self.n_episodes += 1 if len(self._loss) > 0: self.loss.append(self._loss[-1]) self.max_q.append(self._max_q[-1]) if self.n_episodes % save_checkpoints == 0: if self.n_episodes > 0: self.save_data(episodes_done=self.n_episodes) except KeyboardInterrupt: pass finally: print("finished") elapsed_time = time.time() - start_time try: print("Took %.3f seconds for %s steps: %.3f fps" % ( elapsed_time, total_frames, total_frames / elapsed_time)) except: print("Took %.3f seconds for %s steps" % (elapsed_time, total_frames)) class BattleAgentLimited(BattleAgent): def __init__(self, save_name=None, load_name=None): super(BattleAgentLimited, self).__init__(save_name=save_name, load_name=load_name) self.steps_before_training = 256 self.features = [_PLAYER_RELATIVE, _UNIT_TYPE, _UNIT_HIT_POINTS] self.radius = 15 self._screen_size = 64 self.initialize_model(FeatureCNNFCLimited(len(self.features), self.radius, screen_size=64)) def get_action(self, s, unsqueeze=True): # greedy if np.random.rand() > self._epsilon.value(): s = torch.from_numpy(s).to(self.device) if unsqueeze: s = s.unsqueeze(0).float() else: s = s.float() with torch.no_grad(): self._action = self._Q(s).squeeze().cpu().data.numpy() return self._action.argmax() # explore else: action = np.random.randint(0, self.radius ** 2) return action def get_env_action(self, action, obs, command=_MOVE_SCREEN): relative_action = np.unravel_index(action, [self.radius, self.radius]) y_friendly, x_friendly = (obs.observation["feature_screen"][_PLAYER_RELATIVE] == _PLAYER_FRIENDLY).nonzero() # y_enemy, x_enemy = (obs.observation["feature_screen"][_PLAYER_RELATIVE] == _PLAYER_HOSTILE).nonzero() if len(x_friendly) > 0: action = [int(relative_action[1] - self.radius/2 + round(x_friendly.mean())), int(relative_action[0] - self.radius/2 + round(y_friendly.mean()))] friendly_coordinates = np.vstack((x_friendly, y_friendly)).T if bool(np.sum(np.all(action == friendly_coordinates, axis=1))): command = _MOVE_SCREEN elif abs(sum(action)) < 2: command = _MOVE_SCREEN else: # action = [int(relative_action[1] - self.radius/2), int(relative_action[0] - self.radius/2)] return actions.FunctionCall(_NO_OP, []) if command in obs.observation["available_actions"]: return actions.FunctionCall(command, [[0], action]) else: return actions.FunctionCall(_NO_OP, [])
[ "alanzhou93@gmail.com" ]
alanzhou93@gmail.com
39ef41ca372b8c23e5a544cffabddd8ade50fad0
bb462a56300aff06f6265e500804a4ecc7e290c4
/mod_int.py
74edcf9d02e8596531719f955e0156a7cf5b6c2b
[ "CC0-1.0" ]
permissive
nohtaray/competitive-programming.py
6d4f0b5b6dde3dfee5a12674a1d0143d760b3644
7d38884007541061ddd69d617a69a0d9bc6176fa
refs/heads/master
2023-06-15T01:17:41.744771
2023-05-27T14:37:04
2023-05-27T14:37:04
180,506,267
1
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
def ModInt(mod): class _ModInt: def __init__(self, value): self.value = value % mod def __add__(self, other): if isinstance(other, _ModInt): return _ModInt(self.value + other.value) else: return _ModInt(self.value + other) def __sub__(self, other): if isinstance(other, _ModInt): return _ModInt(self.value - other.value) else: return _ModInt(self.value - other) def __radd__(self, other): return self.__add__(other) def __mul__(self, other): if isinstance(other, _ModInt): return _ModInt(self.value * other.value) else: return _ModInt(self.value * other) def __truediv__(self, other): raise NotImplementedError() def __int__(self): return self.value def __repr__(self): return str(self.value) return _ModInt if __name__ == '__main__': MI7 = ModInt(mod=7) assert int(MI7(1) + MI7(8)) == 2 assert int(MI7(1) + 8) == 2 assert int(8 + MI7(1)) == 2
[ "ydt.hran2@gmail.com" ]
ydt.hran2@gmail.com
ef9b5b666e8749d77a7b64d744affbcd8a64a543
963cac9e78c4b742f7e7800200de8d1582799955
/test/veetou/parserTests.py
797c7be4f0f217a2fd7bbe13910a3ec1cd8fde32
[]
no_license
ptomulik/veetou
c79ceb3ca3d7ef7b261b2219489b6f0a7a83e1fa
b30be2a604f4426f832ec9805547ecd6cc9083fe
refs/heads/master
2021-01-22T17:28:57.271251
2019-01-05T01:46:43
2020-05-04T16:23:44
85,016,513
0
1
null
null
null
null
UTF-8
Python
false
false
3,386
py
#!/usr/bin/env python3 # -*- coding: utf8 -*- import unittest import veetou.parser as parser class Test__Parser(unittest.TestCase): def test__funcions_symbols__1(self): self.assertIs(parser.dictmatcher , parser.functions_.dictmatcher) self.assertIs(parser.fullmatch , parser.functions_.fullmatch) self.assertIs(parser.fullmatchdict , parser.functions_.fullmatchdict) self.assertIs(parser.ifullmatch , parser.functions_.ifullmatch) self.assertIs(parser.imatch , parser.functions_.imatch) self.assertIs(parser.imatcher , parser.functions_.imatcher) self.assertIs(parser.match , parser.functions_.match) self.assertIs(parser.matchdict , parser.functions_.matchdict) self.assertIs(parser.matcher , parser.functions_.matcher) self.assertIs(parser.permutexpr , parser.functions_.permutexpr) self.assertIs(parser.reentrant , parser.functions_.reentrant) self.assertIs(parser.scatter , parser.functions_.scatter) self.assertIs(parser.search , parser.functions_.search) self.assertIs(parser.searchpd , parser.functions_.searchpd) self.assertIs(parser.skipemptylines , parser.functions_.skipemptylines) def test__parsererror_symbols__1(self): self.assertIs(parser.ParserError, parser.parsererror_.ParserError) def test__parser_symbols__1(self): self.assertIs(parser.Parser, parser.parser_.Parser) self.assertIs(parser.RootParser, parser.parser_.RootParser) def test__addressparser__1(self): self.assertIs(parser.AddressParser, parser.addressparser_.AddressParser) def test__contactparser__1(self): self.assertIs(parser.ContactParser, parser.contactparser_.ContactParser) def test__footerparser__1(self): self.assertIs(parser.FooterParser, parser.footerparser_.FooterParser) def test__headerparser__1(self): self.assertIs(parser.HeaderParser, parser.headerparser_.HeaderParser) def test__keymapparser__1(self): self.assertIs(parser.KeyMapParser, parser.keymapparser_.KeyMapParser) def test__pageparser__1(self): self.assertIs(parser.PageParser, parser.pageparser_.PageParser) def test__preambleparser__1(self): self.assertIs(parser.PreambleParser, parser.preambleparser_.PreambleParser) def test__reportparser__1(self): self.assertIs(parser.ReportParser, parser.reportparser_.ReportParser) def test__sheetparser__1(self): self.assertIs(parser.SheetParser, parser.sheetparser_.SheetParser) def test__summaryparser__1(self): self.assertIs(parser.SummaryParser, parser.summaryparser_.SummaryParser) def test__tableparser__1(self): self.assertIs(parser.TableParser, parser.tableparser_.TableParser) def test__tbodyparser__1(self): self.assertIs(parser.TbodyParser, parser.tbodyparser_.TbodyParser) def test__thparser__1(self): self.assertIs(parser.ThParser, parser.thparser_.ThParser) def test__trparser__1(self): self.assertIs(parser.TrParser, parser.trparser_.TrParser) if __name__ == '__main__': unittest.main() # Local Variables: # # tab-width:4 # # indent-tabs-mode:nil # # End: # vim: set syntax=python expandtab tabstop=4 shiftwidth=4:
[ "ptomulik@meil.pw.edu.pl" ]
ptomulik@meil.pw.edu.pl
9305c3a78026026cae6e03d11b5982d9cee7f094
0617c812e9bf58a2dbc1c1fef35e497b054ed7e4
/venv/Lib/site-packages/pyrogram/raw/functions/stats/get_megagroup_stats.py
320398dd3f9fb86f271aeb14aaca77b3bc298f8c
[]
no_license
howei5163/my_framework
32cf510e19a371b6a3a7c80eab53f10a6952f7b2
492c9af4ceaebfe6e87df8425cb21534fbbb0c61
refs/heads/main
2023-01-27T14:33:56.159867
2020-12-07T10:19:33
2020-12-07T10:19:33
306,561,184
1
0
null
null
null
null
UTF-8
Python
false
false
2,553
py
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2020 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. from io import BytesIO from pyrogram.raw.core.primitives import Int, Long, Int128, Int256, Bool, Bytes, String, Double, Vector from pyrogram.raw.core import TLObject from pyrogram import raw from typing import List, Union, Any # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # class GetMegagroupStats(TLObject): # type: ignore """Telegram API method. Details: - Layer: ``117`` - ID: ``0xdcdf8607`` Parameters: channel: :obj:`InputChannel <pyrogram.raw.base.InputChannel>` dark (optional): ``bool`` Returns: :obj:`stats.MegagroupStats <pyrogram.raw.base.stats.MegagroupStats>` """ __slots__: List[str] = ["channel", "dark"] ID = 0xdcdf8607 QUALNAME = "pyrogram.raw.functions.stats.GetMegagroupStats" def __init__(self, *, channel: "raw.base.InputChannel", dark: Union[None, bool] = None) -> None: self.channel = channel # InputChannel self.dark = dark # flags.0?true @staticmethod def read(data: BytesIO, *args: Any) -> "GetMegagroupStats": flags = Int.read(data) dark = True if flags & (1 << 0) else False channel = TLObject.read(data) return GetMegagroupStats(channel=channel, dark=dark) def write(self) -> bytes: data = BytesIO() data.write(Int(self.ID, False)) flags = 0 flags |= (1 << 0) if self.dark is not None else 0 data.write(Int(flags)) data.write(self.channel.write()) return data.getvalue()
[ "houwei5163" ]
houwei5163
3e43c121fa98f0c8fd7478f5ac8cd4cfe08fcd43
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/sql/azure-mgmt-sql/generated_samples/transparent_data_encryption_list.py
3e2275f884eabc284c7627538174b4de0a236e32
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,661
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.sql import SqlManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-sql # USAGE python transparent_data_encryption_list.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = SqlManagementClient( credential=DefaultAzureCredential(), subscription_id="00000000-1111-2222-3333-444444444444", ) response = client.transparent_data_encryptions.list_by_database( resource_group_name="security-tde-resourcegroup", server_name="securitytde", database_name="testdb", ) for item in response: print(item) # x-ms-original-file: specification/sql/resource-manager/Microsoft.Sql/preview/2022-08-01-preview/examples/TransparentDataEncryptionList.json if __name__ == "__main__": main()
[ "noreply@github.com" ]
noreply@github.com
98afb32b4a54532746127c0a78d01a693fc7d98a
21899ea0e94cb58f8ac99b7c731f59e0232839eb
/src/python/T0/WMBS/Oracle/Subscriptions/HaveJobGroup.py
59ece2561182f2a6ec7589262150c04280d86513
[ "Apache-2.0" ]
permissive
dmwm/T0
a6ee9d61abc05876fc24f8af69fe932a2f542d21
1af91d0b1971b7d45ea7378e754f2218ff9a8474
refs/heads/master
2023-08-16T10:55:27.493160
2023-08-11T09:38:03
2023-08-11T09:38:03
4,423,801
9
54
Apache-2.0
2023-09-14T11:43:30
2012-05-23T18:33:56
Python
UTF-8
Python
false
false
687
py
""" _HaveJobGroup_ Oracle implementation of HaveJobGroup For a given subscription check if there is an existing job group """ from WMCore.Database.DBFormatter import DBFormatter class HaveJobGroup(DBFormatter): sql = """SELECT 1 FROM wmbs_jobgroup WHERE wmbs_jobgroup.subscription = :subscription AND ROWNUM = 1 """ def execute(self, subscription, conn = None, transaction = False): results = self.dbi.processData(self.sql, { 'subscription' : subscription }, conn = conn, transaction = transaction)[0].fetchall() return ( len(results) > 0 and results[0][0] == 1 )
[ "Dirk.Hufnagel@cern.ch" ]
Dirk.Hufnagel@cern.ch