blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
f4fb165252962fe02564d44fc8d8a6cb9eaef1e9
c591f5676468a7447f0e4f104c4889debb35c051
/resources/idc/__init__.py
4a6431ad2c6890dd3d7348b37981f6a9a2f2b983
[]
no_license
zhagyilig/Adahome
3f3bc1b664bd65964b8befa78405c07da3c8a228
76f08be7c21e90bb58803aa1c11be59f66332f42
refs/heads/dev
2022-12-12T11:51:30.341859
2019-07-10T04:22:12
2019-07-10T04:22:12
149,948,322
2
4
null
2022-12-08T01:01:36
2018-09-23T04:39:23
HTML
UTF-8
Python
false
false
3,671
py
# coding=utf-8 # author: zhangyiling from django.shortcuts import render from django.views.generic import TemplateView, ListView from django.contrib.auth.mixins import LoginRequiredMixin # 登陆验证 from django.shortcuts import redirect # 页面跳转 from django.shortcuts import reverse # 反转解析url的'name=' from django.http import HttpResponse from resources.models import Idc import json from resources.forms import CreateIdcForm ''' 1. 添加idc, 使用模版视图 ''' class AddidcTemView(LoginRequiredMixin, TemplateView): template_name = 'resources/idc/add_idc.html' def post(self, request): ''' 获取添加idc表单提交的数据 :param request: :return: ''' # print(request.POST) # 打印表单提交的数据 # print(reverse('success', kwargs={'next': 'user_list'})) # 输出: /dashboard/success/user_list/ # print(redirect('success', next='user_list')) # 输出: <HttpResponseRedirect status_code=302, "text/html; charset=utf-8", url="/dashboard/success/user_list/"> # reverse # redirect: 两个的区别:reverse传入的是字典信息:kwargs;而redirect是arg,kwargs """ 更新使用django表单验证 # 第一步: 获取表单数据 name = request.POST.get('name', '') idc_name = request.POST.get('idc_name', '') address = request.POST.get('address', '') phone = request.POST.get('phone', '') email = request.POST.get('email', '') username = request.POST.get('username', '') # 第二步: 验证数据, 这里只是简单的校验 error_msg = [] if not name: error_msg.append('idc简称不能为空') if not idc_name: error_msg.append('idc_name不能为空') if error_msg: # print(error_msg) return redirect('error', next='add_idc', msg=json.dumps(error_msg, ensure_ascii=False)) # 第三步: 实例化 idc = Idc() idc.name = name idc.idc_name = idc_name idc.address = address idc.phone = phone idc.email = email idc.username = username try: idc.save() except Exception as e: return redirect('error', next='idc_list', msg=e.args) return redirect('success', next='idc_list') # 返回成功页面;next是success的关键参数名 # return redirect('error', next='user_list', msg='这是错误页面测试')# 返回错误页面;next/msg是error的关键参数名 """ # 使用django表单验证 idcform = CreateIdcForm(request.POST) # request.POST 表单提交的数据 # print('idcform %s' %idcform) if idcform.is_valid(): # 验证数据 idc = Idc(**idcform.cleaned_data) # cleaned_data 获取数据 try: idc.save() return redirect('success', next='idc_list') except Exception as e: return redirect('error', next='idc_list', msg=e.args) else: # print(json.dumps(json.loads(idcform.errors.as_json()), ensure_ascii=False)) # return HttpResponse('') error_msg = json.dumps(json.loads(idcform.errors.as_json()), ensure_ascii=False) return redirect('error', next='idc_list', msg=error_msg) ''' 2.idc 详细信息列表, 使用ListView ''' class IdcListView(LoginRequiredMixin, ListView): template_name = 'resources/idc/idc_list.html' model = Idc paginate_by = 10 # 一个页面5个条目 ordering = 'id' # 列表按id排序
[ "YilingZhang@YilingZhang.local" ]
YilingZhang@YilingZhang.local
986bf659063dbb4023eaaf094cd1d3cccd06ebdb
44dbb043e52f00c9a797b1bea8f1df50dd621842
/os-example-4.py
69064074cfa33ba2ae8384a237bc9351ebad664a
[]
no_license
peterdocter/standardmodels
140c238d3bef31db59641087e3f3d5413d4baba1
7addc313c16b416d0970461998885833614570ad
refs/heads/master
2020-12-30T16:59:30.489486
2016-12-13T06:32:03
2016-12-13T06:32:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
import os # where are we? cwd = os.getcwd() print "1", cwd # go down os.chdir("samples") print "2", os.getcwd() # go back up os.chdir(os.pardir) print "3", os.getcwd()
[ "415074476@qq.com" ]
415074476@qq.com
95b2abdf3b691a753c2587061a681df8fd8851d1
bb33e6be8316f35decbb2b81badf2b6dcf7df515
/source/res/scripts/client/messenger/proto/xmpp/extensions/chat.py
567a173fdee232fd567d9e3a472d0a0c272f68b0
[]
no_license
StranikS-Scan/WorldOfTanks-Decompiled
999c9567de38c32c760ab72c21c00ea7bc20990c
d2fe9c195825ececc728e87a02983908b7ea9199
refs/heads/1.18
2023-08-25T17:39:27.718097
2022-09-22T06:49:44
2022-09-22T06:49:44
148,696,315
103
39
null
2022-09-14T17:50:03
2018-09-13T20:49:11
Python
UTF-8
Python
false
false
9,509
py
# Python bytecode 2.7 (decompiled from Python 2.7) # Embedded file name: scripts/client/messenger/proto/xmpp/extensions/chat.py import calendar from datetime import datetime import json import time from debug_utils import LOG_CURRENT_EXCEPTION from messenger.proto.xmpp.extensions import PyExtension, PyHandler, PyQuery from messenger.proto.xmpp.extensions.dataform import DataForm, Field from messenger.proto.xmpp.extensions.ext_constants import XML_NAME_SPACE as _NS from messenger.proto.xmpp.extensions.ext_constants import XML_TAG_NAME as _TAG from messenger.proto.xmpp.extensions.shared_handlers import IQHandler from messenger.proto.xmpp.extensions.shared_queries import MessageQuery from messenger.proto.xmpp.extensions.shared_queries import PresenceQuery from messenger.proto.xmpp.extensions.wg_items import WgSharedExtension from messenger.proto.xmpp.gloox_constants import IQ_TYPE, CHAT_STATE, MESSAGE_TYPE_ATTR, PRESENCE from messenger.proto.xmpp.wrappers import ChatMessage class ChatStateExtension(PyExtension): def __init__(self, state=CHAT_STATE.UNDEFINED): super(ChatStateExtension, self).__init__(state) self.setXmlNs(_NS.CHAT_STATES) @classmethod def getDefaultData(cls): return CHAT_STATE.UNDEFINED def getXPath(self, index=None, suffix='', name=None): if self.getName() == CHAT_STATE.UNDEFINED: paths = [] getXPath = super(ChatStateExtension, self).getXPath for state in CHAT_STATE.RANGE: paths.append(getXPath(index, suffix, state)) name = paths else: name = super(ChatStateExtension, self).getXPath(index, suffix, name) return name def parseTag(self, pyGlooxTag): result = pyGlooxTag.filterXPath('|'.join(CHAT_STATE.RANGE)) if result: state = result[0].getTagName() if state not in CHAT_STATE.RANGE: state = self.getDefaultData() else: state = self.getDefaultData() return state class DelayExtension(PyExtension): def __init__(self): super(DelayExtension, self).__init__(_TAG.DELAY) self.setXmlNs(_NS.DELAY) @classmethod def getDefaultData(cls): return time.time() def parseTag(self, pyGlooxTag): stamp = pyGlooxTag.findAttribute('stamp') if stamp: try: tm = time.strptime(stamp, '%Y-%m-%dT%H:%M:%SZ') tm = tm[0:8] + (0,) sentAt = calendar.timegm(tm) except ValueError: try: dt = datetime.strptime(stamp, '%Y-%m-%dT%H:%M:%S.%fZ') sentAt = calendar.timegm(dt.timetuple()) + dt.microsecond / 1000000.0 except ValueError: LOG_CURRENT_EXCEPTION() sentAt = self.getDefaultData() else: sentAt = self.getDefaultData() return sentAt class MessageIDExtension(PyExtension): def __init__(self): super(MessageIDExtension, self).__init__(_TAG.WG_MESSAGE_ID) self.setXmlNs(_NS.WG_MESSAGE_ID) @classmethod def getDefaultData(cls): pass def parseTag(self, pyGlooxTag): return pyGlooxTag.findAttribute('uuid') class ChatHistoryQuery(PyExtension): def __init__(self, jid, limit): super(ChatHistoryQuery, self).__init__(_TAG.QUERY) self.setXmlNs(_NS.WG_PRIVATE_HISTORY) self.setAttribute('with', str(jid)) self.setAttribute('limit', limit) class PrivateHistoryItem(PyExtension): def __init__(self): super(PrivateHistoryItem, self).__init__(_TAG.WG_PRIVATE_HISTORY) self.setXmlNs(_NS.WG_PRIVATE_HISTORY) @classmethod def getDefaultData(cls): return ('', False) def parseTag(self, pyGlooxTag): requestID = pyGlooxTag.findAttribute('request-id') isFinal = pyGlooxTag.findAttribute('final') if isFinal: isFinal = json.loads(isFinal) else: isFinal = False return (requestID, isFinal) class _MucPrivilegesExtension(PyExtension): def __init__(self, affiliation='', role=''): super(_MucPrivilegesExtension, self).__init__(_TAG.WG_MUC_PRIVILEGES) self.setAttribute('affiliation', affiliation) self.setAttribute('role', role) @classmethod def getDefaultData(cls): pass def parseTag(self, pyGlooxTag): affiliation = pyGlooxTag.findAttribute('affiliation') or 'none' role = pyGlooxTag.findAttribute('role') or 'none' return (affiliation, role) class MessageWgSharedExtension(WgSharedExtension): def __init__(self, includeNS=True): super(MessageWgSharedExtension, self).__init__(includeNS) self.setChild(_MucPrivilegesExtension()) @classmethod def getDefaultData(cls): return super(MessageWgSharedExtension, cls).getDefaultData() def parseTag(self, pyGlooxTag): info = super(MessageWgSharedExtension, self).parseTag(pyGlooxTag) affiliation, role = self._getChildData(pyGlooxTag, 0, _MucPrivilegesExtension.getDefaultData()) info['affiliation'] = affiliation info['role'] = role return info class _MessageCustomExtension(PyExtension): def __init__(self, msgType, state=CHAT_STATE.UNDEFINED): super(_MessageCustomExtension, self).__init__(_TAG.MESSAGE) self.setAttribute('type', msgType) self.setChild(ChatStateExtension(state)) self.setChild(MessageWgSharedExtension(False)) self.setChild(DelayExtension()) self.setChild(MessageIDExtension()) self.setChild(PrivateHistoryItem()) @classmethod def getDefaultData(cls): return ChatMessage() def parseTag(self, pyGlooxTag): message = ChatMessage() message.state = self._getChildData(pyGlooxTag, 0, ChatStateExtension.getDefaultData()) info = self._getChildData(pyGlooxTag, 1, MessageWgSharedExtension.getDefaultData()) if info: message.accountDBID = info['dbID'] message.accountName = info['name'] message.accountRole = info['role'] message.accountAffiliation = info['affiliation'] message.sentAt = self._getChildData(pyGlooxTag, 2, DelayExtension.getDefaultData()) message.uuid = self._getChildData(pyGlooxTag, 3, MessageIDExtension.getDefaultData()) message.requestID, message.isFinalInHistory = self._getChildData(pyGlooxTag, 4, PrivateHistoryItem.getDefaultData()) return message class ChatMessageHolder(MessageQuery): def __init__(self, msgType, to, msgBody='', state=CHAT_STATE.UNDEFINED): if state: ext = ChatStateExtension(state) else: ext = None super(ChatMessageHolder, self).__init__(msgType, to, msgBody, ext) return class MessageHandler(PyHandler): __slots__ = ('_typeAttr',) def __init__(self, typeAttr): self._typeAttr = typeAttr super(MessageHandler, self).__init__(_MessageCustomExtension(self._typeAttr, CHAT_STATE.UNDEFINED)) def getFilterString(self): return "/{0}[@type='{1}']".format(self._ext.getName(), self._typeAttr) class ChatMessageHandler(MessageHandler): def __init__(self): super(ChatMessageHandler, self).__init__(MESSAGE_TYPE_ATTR.CHAT) class GetChatHistoryQuery(PyQuery): def __init__(self, jid, limit): super(GetChatHistoryQuery, self).__init__(IQ_TYPE.GET, ChatHistoryQuery(jid, limit)) class MUCEntryQuery(PresenceQuery): def __init__(self, to): super(MUCEntryQuery, self).__init__(PRESENCE.AVAILABLE, to) class MUCLeaveQuery(PresenceQuery): def __init__(self, to): super(MUCLeaveQuery, self).__init__(PRESENCE.UNAVAILABLE, to) class OwnerConfigurationForm(PyExtension): def __init__(self, fields=None): super(OwnerConfigurationForm, self).__init__(_TAG.QUERY) self.setXmlNs(_NS.MUC_OWNER) self.setChild(DataForm(fields)) @classmethod def getDefaultData(cls): return DataForm.getDefaultData() def parseTag(self, pyGlooxTag): return self._getChildData(pyGlooxTag, 0, DataForm.getDefaultData()) class OwnerConfigurationFormQuery(PyQuery): def __init__(self, to): super(OwnerConfigurationFormQuery, self).__init__(IQ_TYPE.GET, OwnerConfigurationForm(), to) class OwnerConfigurationFormSet(PyQuery): def __init__(self, to, fields): super(OwnerConfigurationFormSet, self).__init__(IQ_TYPE.SET, OwnerConfigurationForm(fields), to) class OwnerConfigurationFormHandler(IQHandler): def __init__(self): super(OwnerConfigurationFormHandler, self).__init__(OwnerConfigurationForm()) class UserRoomConfigurationFormSet(OwnerConfigurationFormSet): def __init__(self, to, room, password=''): fields = (Field('text-single', 'muc#roomconfig_roomname', room), Field('boolean', 'muc#roomconfig_persistentroom', 1), Field('boolean', 'muc#roomconfig_publicroom', 1), Field('boolean', 'muc#roomconfig_membersonly', 0), Field('boolean', 'muc#roomconfig_allowinvites', 1), Field('boolean', 'muc#roomconfig_survive_reboot', 1)) if password: fields += (Field('boolean', 'muc#roomconfig_passwordprotectedroom', 1), Field('text-single', 'muc#roomconfig_roomsecret', password)) super(UserRoomConfigurationFormSet, self).__init__(to, fields)
[ "StranikS_Scan@mail.ru" ]
StranikS_Scan@mail.ru
a497ba217122e7b18367fa57adc6a0602064311d
eb333acea85364d39f2811ae368dd35bc84392f0
/exts/counting.py
0b1623741328e7c6745febe4359c2f8f373a044b
[]
no_license
blueeidk/vendetta
7312b37e469ba2abbb46be07ba84365086f0cac3
e697dd3ebc224d50399dd8c4c0ee1d8f67085151
refs/heads/master
2023-04-12T19:22:13.009886
2021-05-10T20:29:42
2021-05-10T20:29:42
366,365,871
0
0
null
2021-05-11T12:01:11
2021-05-11T11:58:46
null
UTF-8
Python
false
false
1,939
py
import discord from discord.ext import commands, tasks from discord import Webhook, AsyncWebhookAdapter class Counting(commands.Cog): def __init__(self, bot): self.bot = bot self.current_num = -1 self.fetch_num.start() def cog_unload(self): self.fetch_num.cancel() @tasks.loop(seconds=60*1) async def fetch_num(self): await self.bot.wait_until_ready() channel = self.bot.get_channel(self.bot.config["counting_channel"]) async for message in channel.history(limit=100): try: self.current_num = int(message.content) break except ValueError: continue if self.current_num == -1: self.current_num = 0 @commands.Cog.listener() async def on_message(self, message): if message.channel.id == self.bot.config["counting_channel"] and not message.author.bot: await message.delete() try: if int(message.content) != self.current_num + 1: raise ValueError except ValueError: webhook = Webhook.from_url(self.bot.config["counting_webhookurl"], adapter=AsyncWebhookAdapter(self.bot.session)) await webhook.send(message.content, username=message.author.name, avatar_url=message.author.avatar_url) self.current_num = 0 await message.channel.send("Looks like someone made a mistake! Lets start again:") await message.channel.send("0") return webhook = Webhook.from_url(self.bot.config["counting_webhookurl"], adapter=AsyncWebhookAdapter(self.bot.session)) await webhook.send(message.content, username=message.author.name, avatar_url=message.author.avatar_url) self.current_num += 1 def setup(bot): bot.add_cog(Counting(bot))
[ "niteblock@gmail.com" ]
niteblock@gmail.com
8bacb8e843f98006b0d409848f10edb92140f035
f160cf4eb335ea799559312ac3d43a60c2c5848b
/library/zip_extract.py
e1f1faecce940706c2ead17d0b449c0c1525aa28
[ "MIT" ]
permissive
baseplate-admin/Machine-Learning-Source-Code
c3389e0acb81e1f4c8e4c0cc763fcbc3781ef94e
a2203033d525c17b31584b52527c30e2c8aad1c4
refs/heads/master
2022-11-21T04:33:41.307477
2020-07-10T15:46:32
2020-07-10T15:46:32
277,730,993
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
def zip_extract(): import os from zipfile import ZipFile def zip_function(): print("We are extracting ZIP!!!") where_is_zip=input("What is your zip location?") what_is_zip_name=input("What is your zip name?") what_is_zip_extension=input("What is your ZIP format?") zip_join=os.path.join(where_is_zip,what_is_zip_name+ '.'+ what_is_zip_extension) with ZipFile(zip_join,"r") as zip: zip.extractall() zip.printdir() print("Enter a Number or It will cause ValueError.") how_many_zip=int(input('How many zip do you want to extract?')) try: print(""" This is a number!! Lets Go!!! """) for i in range(how_many_zip): ask_if_zip_extract=input(""" Do you want to extract zip? Enter 0 to skip extracting zip. Enter 1 to to extract ZIP. """) if int(ask_if_zip_extract)==0: zip_function(2) elif int(ask_if_zip_extract)==1: zip_function(1) else: print("Theres a problem with zip extract.") except Exception as e: print(e)
[ "61817579+baseplate-admin@users.noreply.github.com" ]
61817579+baseplate-admin@users.noreply.github.com
76b07fab07edb0667ffdda682c409887fdab50cc
2cf99a155405b48bf14f872e1980ed948079e5dd
/test/test_router.py
a30b567e256a3ea2fe3ba97d23c6ab0b5d1539e8
[ "MIT" ]
permissive
marrow/web.dispatch.route
c15309a26023d068b8f84ea4bbc221b674c1e6b8
92494bcad2e2a9a52d2e51eecfab910d829cc2de
refs/heads/master
2021-01-25T04:01:46.245851
2016-02-15T07:54:36
2016-02-15T07:54:36
32,564,808
0
0
null
null
null
null
UTF-8
Python
false
false
1,820
py
# encoding: utf-8 import pytest from web.dispatch.route.router import __DYNAMIC__, Router from sample import Root @pytest.fixture def router(): return Router.from_object(Root) def test_dynamic_repr(): assert repr(__DYNAMIC__) == '<dynamic element>' def test_router_singleton(): assert Router.from_object(Root) is Router.from_object(Root) def test_invalid_route(): router = Router() with pytest.raises(ValueError): router.parse("{bad:/}") class TestRouterSample(object): def test_single_static(self, router): assert len(router.routes) == 1 # There's only a single top-level element. assert 'user' in router.routes # It's "user". assert len(router.routes['user']) == 2 # Which has a terminus and dynamic continuation. assert router.routes['user'][None] == Root.root # The terminus is the "root" method. assert router.routes['user'][None](Root()) == "I'm all people." # It really is. def test_dynamic_username(self, router): assert __DYNAMIC__ in router.routes['user'] dynamic = router.routes['user'][__DYNAMIC__] assert len(dynamic) == 1 assert list(dynamic.keys())[0].match("GothAlice") # The regular expression matches. assert len(list(dynamic.values())[0]) == 2 assert list(dynamic.values())[0][None] == Root.user assert list(dynamic.values())[0][None](Root(), "GothAlice") == "Hi, I'm GothAlice" def test_dynamic_username_action(self, router): assert __DYNAMIC__ in router.routes['user'] dynamic = router.routes['user'][__DYNAMIC__] assert len(dynamic) == 1 assert list(dynamic.keys())[0].match("GothAlice") # The regular expression matches. assert len(list(dynamic.values())[0]) == 2 assert list(dynamic.values())[0][None] == Root.user assert list(dynamic.values())[0][None](Root(), "GothAlice") == "Hi, I'm GothAlice"
[ "alice@gothcandy.com" ]
alice@gothcandy.com
05fd2afde8a2efa035b5c2ee861b1f0e9b62fc97
8bdf78e902a02e3bd175e759fc98fd37277247af
/youtube_dl/extractor/mangomolo.py
2db503f2b13dc8499a6f665ef97d3e09cfcdf35b
[ "Unlicense", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-public-domain" ]
permissive
oxidius2/youtube-dl
191f5bde4992313308d2ab010cdb82ecd0d1b654
30d9e20938fa91ece09c376b67030647215d48df
refs/heads/master
2017-03-20T13:01:36.106539
2016-09-16T21:06:55
2016-09-16T21:06:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,832
py
# coding: utf-8 from __future__ import unicode_literals import base64 from .common import InfoExtractor from ..compat import compat_urllib_parse_unquote from ..utils import ( int_or_none, ) class MangomoloBaseIE(InfoExtractor): def _get_real_id(self, page_id): return page_id def _real_extract(self, url): page_id = self._get_real_id(self._match_id(url)) webpage = self._download_webpage(url, page_id) hidden_inputs = self._hidden_inputs(webpage) m3u8_entry_protocol = 'm3u8' if self._IS_LIVE else 'm3u8_native' format_url = self._html_search_regex( [ r'file\s*:\s*"(https?://[^"]+?/playlist.m3u8)', r'<a[^>]+href="(rtsp://[^"]+)"' ], webpage, 'format url') formats = self._extract_wowza_formats( format_url, page_id, m3u8_entry_protocol, ['smil']) self._sort_formats(formats) return { 'id': page_id, 'title': self._live_title(page_id) if self._IS_LIVE else page_id, 'uploader_id': hidden_inputs.get('userid'), 'duration': int_or_none(hidden_inputs.get('duration')), 'is_live': self._IS_LIVE, 'formats': formats, } class MangomoloVideoIE(MangomoloBaseIE): IE_NAME = 'mangomolo:video' _VALID_URL = r'https?://admin\.mangomolo.com/analytics/index\.php/customers/embed/video\?.*?\bid=(?P<id>\d+)' _IS_LIVE = False class MangomoloLiveIE(MangomoloBaseIE): IE_NAME = 'mangomolo:live' _VALID_URL = r'https?://admin\.mangomolo.com/analytics/index\.php/customers/embed/index\?.*?\bchannelid=(?P<id>(?:[A-Za-z0-9+/=]|%2B|%2F|%3D)+)' _IS_LIVE = True def _get_real_id(self, page_id): return base64.b64decode(compat_urllib_parse_unquote(page_id).encode()).decode()
[ "remitamine@gmail.com" ]
remitamine@gmail.com
97d55e2aec24c8c3c273787b6a0bfb6e207c6ee0
c261f0e98eedb4f0d85e92bd6ab8f4ae47096269
/lifeservice/schedule117/04美食下载团购糯米/getNuomiOtherCinemaMap.py
7e6d7d90119847ca9a6a6e964889df38e7707452
[]
no_license
ShenDezhou/CPP
24379fe24f3c8588a7859ee586527d5cc6bfbe73
933c1e764a6ed2879b26aa548ff67153ca026bf6
refs/heads/master
2021-01-11T22:09:24.900695
2017-04-05T02:04:07
2017-04-05T02:04:07
78,928,291
0
1
null
null
null
null
GB18030
Python
false
false
1,328
py
#coding=gb2312 nuomiCinemaMap = dict() otherCinemaMap = dict() input = '/fuwu/Merger/Output/movie/cinema_movie_rel.table' for line in open(input): segs = line.strip('\n').decode('gb2312', 'ignore').split('\t') cinemaid, source, ting = segs[1], segs[3], segs[9] if source.find(u'糯米') != -1: if cinemaid not in nuomiCinemaMap: nuomiCinemaMap[cinemaid] = [] if ting not in nuomiCinemaMap[cinemaid]: nuomiCinemaMap[cinemaid].append(ting) else: if cinemaid not in otherCinemaMap: otherCinemaMap[cinemaid] = [] if ting not in otherCinemaMap[cinemaid]: otherCinemaMap[cinemaid].append(ting) # 糯米影院的厅名称是否都被包含 for cinemaid in otherCinemaMap: if cinemaid not in nuomiCinemaMap: #print ('#%s\t%s\t%s' % (cinemaid, u'糯米', '\t'.join(nuomiCinemaMap[cinemaid]))).encode('gb2312', 'ignore') continue noMatchTingList = [] for ting in nuomiCinemaMap[cinemaid]: if ting not in otherCinemaMap[cinemaid]: noMatchTingList.append(ting) if len(noMatchTingList) == 0: continue # 存在不一致的情况 normTing = '\t'.join(otherCinemaMap[cinemaid]) noMatchTing = '\t'.join(noMatchTingList) print ('%s\t%s\t%s' % (cinemaid, u'非糯米', normTing)).encode('gb2312', 'ignore') print ('%s\t%s\t%s' % (cinemaid, u'糯米', noMatchTing)).encode('gb2312', 'ignore')
[ "bangtech@sina.com" ]
bangtech@sina.com
2cbf9ce5648b670ee81e72a542610d78690a54f4
1097ed333a4000634e68a590ee6ffc6129ae61e3
/written_examination/matrix8.py
017cb25ae0dcc0f546bd9b3cf05825723bb344a7
[ "MIT" ]
permissive
AutuanLiu/Code-Storm2019
1bbe890c7ca0d033c32348173bfebba612623a90
8efc7c5475fd888f7d86c3b08a3c1c9e55c1ac30
refs/heads/master
2020-04-23T07:03:08.975232
2019-10-24T08:56:26
2019-10-24T08:56:26
170,995,032
1
0
null
null
null
null
UTF-8
Python
false
false
2,513
py
def getSum(i, j, n, m, maps): # [i, j]单阵入口,[n,m]矩阵维度数,maps矩阵 queue, sump, maps[i][j] = [[i, j]], maps[i][j], 0 # 初始化队列 while queue: x, y = queue[0][0], queue[0][1] # 获取队列头元素 for dx, dy in zip((-1, -1, 0, 1, 1, 1, 0, -1), (0, 1, 1, 1, 0, -1, -1, -1)): # 8个方向 nx, ny = x + dx, y + dy if -1 < nx < n and -1 < ny < m and maps[nx][ny] != 0: queue.append([nx, ny]) # 入队 sump += maps[nx][ny] # 累计兵力 maps[nx][ny] = 0 # 累计过的单个区域兵力为0 del queue[0] # 出队 return sump # 返回单阵的兵力总和 if __name__ == '__main__': maps = [[34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 30], [0, 23, 10, 5, 5, 0, 0, 0, 5, 5, 5, 5, 5, 0, 0, 0, 30, 0, 40, 0], [0, 9, 0, 0, 5, 0, 0, 0, 4, 4, 4, 4, 4, 0, 0, 0, 0, 30, 0, 0], [0, 8, 7, 7, 0, 5, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 7, 0, 9, 0], [0, 9, 0, 0, 5, 0, 5, 0, 0, 12, 12, 0, 0, 0, 0, 10, 0, 0, 0, 9], [0, 0, 0, 0, 5, 0, 0, 5, 0, 12, 12, 0, 0, 5, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 5, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0], [40, 30, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 10, 0], [0, 0, 20, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 5, 6, 5, 10, 10, 0], [40, 30, 3, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 10, 0], [0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 17, 0, 0, 6, 5, 7, 7, 0], [0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], [0, 20, 0, 0, 7, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 10, 0, 0, 0], [0, 20, 0, 0, 7, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 10, 0, 0, 0], [0, 20, 0, 0, 7, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 10, 0, 0, 0], [0, 30, 0, 7, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 10, 0, 50], [0, 40, 7, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 50, 0], [43, 30, 25, 10, 50, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0, 0, 0, 50, 0, 0]] n, m = 20, 20 # 输入行列 army = [] for i in range(20): for j in range(20): if maps[i][j] != 0: army.append(getSum(i, j, n, m, maps)) # 获取每个单阵的兵力和 print('每个单阵兵力和:', army) print('单阵兵力最多为:', max(army)) print('单阵兵力最少为:', min(army))
[ "autuanliu@163.com" ]
autuanliu@163.com
a31be73325befa7634569a9b289ebac7e238c219
f4bdd0d988ed63ed314f5703abd3543cded9f49e
/Amazon/Reviews & Big Data Analytics/Amazon_LDA.py
32ae2a94f52d0aa94ba4eaf229433dab27abf4ff
[]
no_license
jessicakaye/Python-Projects
643f0e1808163187cfe3db7d5adff800e2e3a98c
8365e84f110b53df2bd54604f2206e9bc1f09617
refs/heads/master
2022-05-02T07:37:09.591545
2022-03-10T01:28:39
2022-03-10T01:28:39
253,980,412
0
0
null
null
null
null
UTF-8
Python
false
false
8,244
py
# Amazon_LDA.py # 4/28/20 # @jessicakaye # Used to conduct LDA on the top 10 most reviewed Amazon products in a dataset import pandas as pd import numpy as np from matplotlib import pyplot as plt import seaborn as sns from wordcloud import WordCloud from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from time import time from time import time import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from sklearn.decomposition import LatentDirichletAllocation from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from wordcloud import WordCloud pd.set_option('display.max_columns', None) # Load the dataset! df = pd.read_json('AmazonData_text_processed_full.json', lines = True) print(df) print(df.describe()) # Let's drop those duplicates df.drop_duplicates(['overall', 'reviewText', 'reviewTime', 'asin', 'reviewerID'], inplace=True) #plot for all of the products plt.figure(figsize=(16,10)) ax = sns.countplot(x='asin', data = df, palette = 'Set1', order=df['asin'].value_counts().index) plt.xlabel('ASIN', fontsize=12) plt.ylabel('Count', fontsize=12) total = float(len(df)) for p in ax.patches: height = p.get_height() ax.text(p.get_x()+p.get_width()/2., height + 10, '{}'.format(height), ha="center") plt.title("Count of Reviews Per ASIN") plt.savefig("Count of Reviews Per ASIN.png") #Distribution of Ratings! plt.figure() ax = sns.countplot(x='overall', data=df, palette='Set1', order=df['overall'].value_counts().index) plt.xlabel('overall', fontsize=12) plt.ylabel('Count', fontsize=12) total = float(len(df)) for p in ax.patches: height = p.get_height() ax.text(p.get_x() + p.get_width() / 2., height + 10, '{0:.0%}'.format(height / total), ha="center") plt.title("Count of Reviews Per Rating") plt.savefig("Count of Reviews Per Rating.png") # Distribution of NPS Categories! plt.figure() ax = sns.countplot(x='nps_category', data=df, palette='Set1', order=df['nps_category'].value_counts().index) plt.xlabel('nps_category', fontsize=12) plt.ylabel('Count', fontsize=12) total = float(len(df)) for p in ax.patches: height = p.get_height() ax.text(p.get_x() + p.get_width() / 2., height + 10, '{0:.0%}'.format(height / total), ha="center") plt.title("Count of Reviews Per NPS Category") plt.savefig("Count of Reviews Per NPS Category.png") # Let's create a wordcloud! wordcloud = WordCloud(background_color="white", max_words=5000, contour_width=3, contour_color='steelblue') wordcloud.generate(df['filtered'].to_string()) # plot the wordcloud! plt.figure(figsize=(16,10)) plt.imshow(wordcloud, interpolation="bilinear") plt.savefig('wordcloudoftop10products') # Let's optimize our df and try using CountVectorizer # I already have these columns from text processing in Spark, but I want to try the following in sklearn amazon_df = df.drop(labels=['raw_features', 'features'], axis=1) # Let's create a list of all of the different ASINs list_asins = amazon_df.asin.unique() sns.set_style('whitegrid') # Helper function def plot_10_most_common_words(asin, count_data, count_vectorizer): words = count_vectorizer.get_feature_names() total_counts = np.zeros(len(words)) for t in count_data: total_counts += t.toarray()[0] count_dict = (zip(words, total_counts)) count_dict = sorted(count_dict, key=lambda x: x[1], reverse=True)[0:10] words = [w[0] for w in count_dict] counts = [w[1] for w in count_dict] x_pos = np.arange(len(words)) plt.figure(2, figsize=(15, 15 / 1.6180)) plt.subplot(title=f'10 most common words for {asin}') sns.set_context("notebook", font_scale=1.25, rc={"lines.linewidth": 2.5}) sns.barplot(x_pos, counts, palette='husl') plt.xticks(x_pos, words, rotation=90) plt.xlabel('words') plt.ylabel('counts') plt.tight_layout() plt.savefig(f'{asin}_topwords.png') def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): message = "Topic #%d: " % topic_idx message += " ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]]) print(message) print() def topics_words(model, feature_names, n_top_words): topics = [] words =[] for topic_idx, topic in enumerate(model.components_): topics.append(topic_idx) words.append([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]]) new_df = pd.DataFrame(list(zip(topics, words)), columns=['topicID', 'words']) return new_df n_top_words = 6 n_components = 7 all_words_and_topics = pd.DataFrame(columns=['topicID', 'words', 'asin', 'num documents']) all_asins_df = pd.DataFrame(columns=list(amazon_df.columns.values)) # We want to find the top words per product. Let's create a loop. for asin in list_asins: asin_df = amazon_df.loc[amazon_df['asin'] == str(asin)] asin_df.reset_index(inplace=True) # Initialise the count vectorizer with the English stop words # We are going to use the raw term count for LDA print("Extracting tf features for LDA...") stop_words = ENGLISH_STOP_WORDS cv = CountVectorizer(stop_words='english', analyzer=lambda x:[w for w in x if w not in stop_words]) # Fit and transform the processed titles t0 = time() count_vector = cv.fit_transform(asin_df['filtered']) print("done in %0.3fs." % (time() - t0)) print() # Materialize the sparse data data_dense = count_vector.todense() # Compute Sparsicity = Percentage of Non-Zero cells print("Sparsicity: ", ((data_dense > 0).sum() / data_dense.size) * 100, "%") # Visualise the 10 most common words plot_10_most_common_words(asin, count_vector, cv) print("Fitting LDA models with tf features...") lda = LatentDirichletAllocation(n_components=n_components, learning_method='online') t0 = time() # This is the Document - Topic Matrix lda_output = lda.fit_transform(count_vector) print("done in %0.3fs." % (time() - t0)) print("\nTopics in LDA model:") tf_feature_names = cv.get_feature_names() print_top_words(lda, tf_feature_names, n_top_words) # Log Likelihood: Higher the better print("Log Likelihood: ", lda.score(count_vector)) # Perplexity: Lower the better. Perplexity = exp(-1. * log-likelihood per word) print("Perplexity: ", lda.perplexity(count_vector)) # See model parameters # print(lda.get_params()) # column names topicnames = ["Topic" + str(i) for i in range(lda.n_components)] # index names docnames = ["Doc" + str(i) for i in range(asin_df.shape[0])] # Make the pandas dataframe df_document_topic = pd.DataFrame(np.round(lda_output, 2), columns=topicnames)#, index=docnames) # Get dominant topic for each document dominant_topic = np.argmax(df_document_topic.values, axis=1) df_document_topic['dominant_topic_weight'] = np.amax(df_document_topic, axis=1) df_document_topic['dominant_topic'] = dominant_topic print(df_document_topic) asin_df = asin_df.join(df_document_topic['dominant_topic'].astype('int'), how = 'inner') asin_df = asin_df.join(df_document_topic['dominant_topic_weight'], how='inner') all_asins_df = pd.concat([all_asins_df, asin_df]) #What is the topic distribution across documents? df_topic_distribution = df_document_topic['dominant_topic'].value_counts().reset_index(name="num documents") df_topic_distribution.columns = ['topicID', 'num documents'] print(df_topic_distribution) asintw = topics_words(lda, tf_feature_names, n_top_words) asintw['asin'] = asin asintw = asintw.merge(df_topic_distribution, on = "topicID", how = "inner") all_words_and_topics = pd.concat([all_words_and_topics, asintw]) print(all_words_and_topics) print(all_asins_df) all_asins_df.to_csv('all_asins_and_indices.csv') all_words_and_topics.to_csv('all_words_and_topics.csv') # # # # plt.show()
[ "noreply@github.com" ]
noreply@github.com
e2a2d639b617529303a24cb365818a069f9e4628
423e396e226494c34f99851cc050d929f3f144c8
/posts/admin.py
cb3ff4597adc8ff8a87e027e420a3d4c0b3387da
[]
no_license
Marihuana-Kox/hw05_final
1ff1a34cdcb9d66fe715ffbf8d9f5fb0d0ca2820
77a20ac2571fec13b979e763859de6f2bce43537
refs/heads/master
2022-12-09T13:53:21.195711
2020-03-10T17:45:21
2020-03-10T17:45:21
243,992,895
0
0
null
2022-12-08T07:24:27
2020-02-29T15:27:50
Python
UTF-8
Python
false
false
1,129
py
from django.contrib import admin from .models import Post, Group, Comment class PostAdmin(admin.ModelAdmin): # перечисляем поля, которые должны отображаться в админке list_display = ("pk", "text", "pub_date", "author") # добавляем интерфейс для поиска по тексту постов search_fields = ("text",) # добавляем возможность фильтрации по дате list_filter = ("pub_date", "author") # это свойство сработает для всех колонок: где пусто - там будет эта строка empty_value_display = '-пусто-' class CommentAdmin(admin.ModelAdmin): list_display = ("pk", "text", "author", "created") search_fields = ("text",) list_filter = ("created", "author") # при регистрации модели Post источником конфигурации для неё назначаем класс PostAdmin admin.site.register(Post, PostAdmin) admin.site.register(Group) admin.site.register(Comment, CommentAdmin)
[ "yakuhs@yandex.ru" ]
yakuhs@yandex.ru
897350387fa941830a98c5edbca3834b1d382a04
77e0adf27f8ce8ada31937045d31d063f6661434
/noteapp/serializers.py
d79624bd60e6d29c39a0ea99f8d0c5c9c37ab2a7
[]
no_license
naveenijeri/urbanstop_drf
f84185d6e1ba043e96535e67429d1cf421430eee
33dfe71507cc02d85e5e1b1e19efc40eed24c4f4
refs/heads/master
2021-09-23T09:22:58.472057
2020-03-14T08:31:26
2020-03-14T08:31:26
247,235,337
0
0
null
2021-09-22T18:43:36
2020-03-14T07:56:29
Python
UTF-8
Python
false
false
1,354
py
from .models import NoteModel,UserModel from rest_framework import serializers class UserModelSerializer(serializers.ModelSerializer): class Meta: model=UserModel fields=('username',) class NoteModelSerializer(serializers.ModelSerializer): user_note = UserModelSerializer(many=True) class Meta: model=NoteModel fields=('id','note_text','created_date','updated_date','user_note') def create(self, validated_data): user_data = validated_data.pop('user_note') note = NoteModel.objects.create(**validated_data) for user_data in user_data: UserModel.objects.create(notemodel=note, **user_data) return note def update(self, instance, validated_data): user_data = validated_data.pop('user_note') users = (instance.user_note).all() users = list(users) instance.note_text = validated_data.get('note_text', instance.note_text) instance.created_date = validated_data.get('created_date', instance.created_date) instance.updated_date = validated_data.get('updated_date', instance.updated_date) instance.save() for user_data in user_data: user = users.pop(0) user.username = user_data.get('username', user.username) user.save() return instance
[ "naveen.ijeri123@gmail.com" ]
naveen.ijeri123@gmail.com
ada7809ed008445486cb53ed74ffb2f3f533ab06
c05ed32f1ef7e1eb7d73efd674e7d1fd710ad171
/daily-coding-problems/problem429.py
f131f4e79b05103324b498c75f6d6f5240e45cd3
[]
no_license
carlhinderer/python-exercises
c8367517fdf835fa1117f96dbfee3dccc596afa6
4e09bbb4c4e2bd5644ed50e997db9f3c289a18f7
refs/heads/master
2021-06-01T16:17:00.389134
2021-02-09T18:21:01
2021-02-09T18:21:01
150,902,917
0
0
null
2021-04-20T20:33:11
2018-09-29T21:03:36
Python
UTF-8
Python
false
false
533
py
# Problem 429 # Medium # Asked by Stitch Fix # # Pascal's triangle is a triangular array of integers constructed with the # following formula: # # The first row consists of the number 1. # # For each subsequent row, each element is the sum of the numbers directly # above it, on either side. # # For example, here are the first few rows: # # 1 # 1 1 # 1 2 1 # 1 3 3 1 # 1 4 6 4 1 # # Given an input k, return the kth row of Pascal's triangle. # # Bonus: Can you do this using only O(k) space? #
[ "carl.hinderer4@gmail.com" ]
carl.hinderer4@gmail.com
7352b0e05bca2fbe6125d96a47f9b75c32c44715
542b256178e8f0d9a30423fc6eed23b021cf4a64
/Mask_RCNN-master/model.py
8dc408116a11f74ca04d412646ebcdb46547ce55
[ "MIT" ]
permissive
gtagency/Project_Nucleus
caed1b9cec3e49a93f43b501e4e6de7e3cbe3ad5
a14632a682915f3f389af53817f692cf6e57357d
refs/heads/master
2021-04-28T01:11:22.146707
2018-05-11T01:00:47
2018-05-11T01:00:47
122,269,451
2
1
null
null
null
null
UTF-8
Python
false
false
111,323
py
""" Mask R-CNN The main Mask R-CNN model implemenetation. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import os import sys import glob import random import math import datetime import itertools import json import re import logging from collections import OrderedDict import numpy as np import scipy.misc import tensorflow as tf import keras import keras.backend as K import keras.layers as KL import keras.initializers as KI import keras.engine as KE import keras.models as KM import utils # Requires TensorFlow 1.3+ and Keras 2.0.8+. from distutils.version import LooseVersion assert LooseVersion(tf.__version__) >= LooseVersion("1.3") assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8') ############################################################ # Utility Functions ############################################################ def log(text, array=None): """Prints a text message. And, optionally, if a Numpy array is provided it prints it's shape, min, and max values. """ if array is not None: text = text.ljust(25) text += ("shape: {:20} min: {:10.5f} max: {:10.5f}".format( str(array.shape), array.min() if array.size else "", array.max() if array.size else "")) print(text) class BatchNorm(KL.BatchNormalization): """Batch Normalization class. Subclasses the Keras BN class and hardcodes training=False so the BN layer doesn't update during training. Batch normalization has a negative effect on training if batches are small so we disable it here. """ def call(self, inputs, training=None): return super(self.__class__, self).call(inputs, training=False) ############################################################ # Resnet Graph ############################################################ # Code adopted from: # https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py def identity_block(input_tensor, kernel_size, filters, stage, block, use_bias=True): """The identity_block is the block that has no conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(axis=3, name=bn_name_base + '2a')(x) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(axis=3, name=bn_name_base + '2b')(x) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(axis=3, name=bn_name_base + '2c')(x) x = KL.Add()([x, input_tensor]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2), use_bias=True): """conv_block is the block that has a conv layer at shortcut # Arguments input_tensor: input tensor kernel_size: defualt 3, the kernel size of middle conv layer at main path filters: list of integers, the nb_filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names Note that from stage 3, the first conv layer at main path is with subsample=(2,2) And the shortcut should have subsample=(2,2) as well """ nb_filter1, nb_filter2, nb_filter3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = KL.Conv2D(nb_filter1, (1, 1), strides=strides, name=conv_name_base + '2a', use_bias=use_bias)(input_tensor) x = BatchNorm(axis=3, name=bn_name_base + '2a')(x) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same', name=conv_name_base + '2b', use_bias=use_bias)(x) x = BatchNorm(axis=3, name=bn_name_base + '2b')(x) x = KL.Activation('relu')(x) x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c', use_bias=use_bias)(x) x = BatchNorm(axis=3, name=bn_name_base + '2c')(x) shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides, name=conv_name_base + '1', use_bias=use_bias)(input_tensor) shortcut = BatchNorm(axis=3, name=bn_name_base + '1')(shortcut) x = KL.Add()([x, shortcut]) x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x) return x def resnet_graph(input_image, architecture, stage5=False): assert architecture in ["resnet50", "resnet101"] # Stage 1 x = KL.ZeroPadding2D((3, 3))(input_image) x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x) x = BatchNorm(axis=3, name='bn_conv1')(x) x = KL.Activation('relu')(x) C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) # Stage 2 x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') # Stage 3 x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') # Stage 4 x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') block_count = {"resnet50": 5, "resnet101": 22}[architecture] for i in range(block_count): x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i)) C4 = x # Stage 5 if stage5: x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') else: C5 = None return [C1, C2, C3, C4, C5] ############################################################ # Proposal Layer ############################################################ def apply_box_deltas_graph(boxes, deltas): """Applies the given deltas to the given boxes. boxes: [N, 4] where each row is y1, x1, y2, x2 deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)] """ # Convert to y, x, h, w height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] center_y = boxes[:, 0] + 0.5 * height center_x = boxes[:, 1] + 0.5 * width # Apply deltas center_y += deltas[:, 0] * height center_x += deltas[:, 1] * width height *= tf.exp(deltas[:, 2]) width *= tf.exp(deltas[:, 3]) # Convert back to y1, x1, y2, x2 y1 = center_y - 0.5 * height x1 = center_x - 0.5 * width y2 = y1 + height x2 = x1 + width result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out") return result def clip_boxes_graph(boxes, window): """ boxes: [N, 4] each row is y1, x1, y2, x2 window: [4] in the form y1, x1, y2, x2 """ # Split corners wy1, wx1, wy2, wx2 = tf.split(window, 4) y1, x1, y2, x2 = tf.split(boxes, 4, axis=1) # Clip y1 = tf.maximum(tf.minimum(y1, wy2), wy1) x1 = tf.maximum(tf.minimum(x1, wx2), wx1) y2 = tf.maximum(tf.minimum(y2, wy2), wy1) x2 = tf.maximum(tf.minimum(x2, wx2), wx1) clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes") clipped.set_shape((clipped.shape[0], 4)) return clipped class ProposalLayer(KE.Layer): """Receives anchor scores and selects a subset to pass as proposals to the second stage. Filtering is done based on anchor scores and non-max suppression to remove overlaps. It also applies bounding box refinement deltas to anchors. Inputs: rpn_probs: [batch, anchors, (bg prob, fg prob)] rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] Returns: Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)] """ def __init__(self, proposal_count, nms_threshold, anchors, config=None, **kwargs): """ anchors: [N, (y1, x1, y2, x2)] anchors defined in image coordinates """ super(ProposalLayer, self).__init__(**kwargs) self.config = config self.proposal_count = proposal_count self.nms_threshold = nms_threshold self.anchors = anchors.astype(np.float32) def call(self, inputs): # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1] scores = inputs[0][:, :, 1] # Box deltas [batch, num_rois, 4] deltas = inputs[1] deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4]) # Base anchors anchors = self.anchors # Improve performance by trimming to top anchors by score # and doing the rest on the smaller subset. pre_nms_limit = min(6000, self.anchors.shape[0]) ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, name="top_anchors").indices scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) anchors = utils.batch_slice(ix, lambda x: tf.gather(anchors, x), self.config.IMAGES_PER_GPU, names=["pre_nms_anchors"]) # Apply deltas to anchors to get refined anchors. # [batch, N, (y1, x1, y2, x2)] boxes = utils.batch_slice([anchors, deltas], lambda x, y: apply_box_deltas_graph(x, y), self.config.IMAGES_PER_GPU, names=["refined_anchors"]) # Clip to image boundaries. [batch, N, (y1, x1, y2, x2)] height, width = self.config.IMAGE_SHAPE[:2] window = np.array([0, 0, height, width]).astype(np.float32) boxes = utils.batch_slice(boxes, lambda x: clip_boxes_graph(x, window), self.config.IMAGES_PER_GPU, names=["refined_anchors_clipped"]) # Filter out small boxes # According to Xinlei Chen's paper, this reduces detection accuracy # for small objects, so we're skipping it. # Normalize dimensions to range of 0 to 1. normalized_boxes = boxes / np.array([[height, width, height, width]]) # Non-max suppression def nms(normalized_boxes, scores): indices = tf.image.non_max_suppression( normalized_boxes, scores, self.proposal_count, self.nms_threshold, name="rpn_non_max_suppression") proposals = tf.gather(normalized_boxes, indices) # Pad if needed padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0) proposals = tf.pad(proposals, [(0, padding), (0, 0)]) return proposals proposals = utils.batch_slice([normalized_boxes, scores], nms, self.config.IMAGES_PER_GPU) return proposals def compute_output_shape(self, input_shape): return (None, self.proposal_count, 4) ############################################################ # ROIAlign Layer ############################################################ def log2_graph(x): """Implementatin of Log2. TF doesn't have a native implemenation.""" return tf.log(x) / tf.log(2.0) class PyramidROIAlign(KE.Layer): """Implements ROI Pooling on multiple levels of the feature pyramid. Params: - pool_shape: [height, width] of the output pooled regions. Usually [7, 7] - image_shape: [height, width, channels]. Shape of input image in pixels Inputs: - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized coordinates. Possibly padded with zeros if not enough boxes to fill the array. - Feature maps: List of feature maps from different levels of the pyramid. Each is [batch, height, width, channels] Output: Pooled regions in the shape: [batch, num_boxes, height, width, channels]. The width and height are those specific in the pool_shape in the layer constructor. """ def __init__(self, pool_shape, image_shape, **kwargs): super(PyramidROIAlign, self).__init__(**kwargs) self.pool_shape = tuple(pool_shape) self.image_shape = tuple(image_shape) def call(self, inputs): # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords boxes = inputs[0] # Feature Maps. List of feature maps from different level of the # feature pyramid. Each is [batch, height, width, channels] feature_maps = inputs[1:] # Assign each ROI to a level in the pyramid based on the ROI area. y1, x1, y2, x2 = tf.split(boxes, 4, axis=2) h = y2 - y1 w = x2 - x1 # Equation 1 in the Feature Pyramid Networks paper. Account for # the fact that our coordinates are normalized here. # e.g. a 224x224 ROI (in pixels) maps to P4 image_area = tf.cast( self.image_shape[0] * self.image_shape[1], tf.float32) roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area))) roi_level = tf.minimum(5, tf.maximum( 2, 4 + tf.cast(tf.round(roi_level), tf.int32))) roi_level = tf.squeeze(roi_level, 2) # Loop through levels and apply ROI pooling to each. P2 to P5. pooled = [] box_to_level = [] for i, level in enumerate(range(2, 6)): ix = tf.where(tf.equal(roi_level, level)) level_boxes = tf.gather_nd(boxes, ix) # Box indicies for crop_and_resize. box_indices = tf.cast(ix[:, 0], tf.int32) # Keep track of which box is mapped to which level box_to_level.append(ix) # Stop gradient propogation to ROI proposals level_boxes = tf.stop_gradient(level_boxes) box_indices = tf.stop_gradient(box_indices) # Crop and Resize # From Mask R-CNN paper: "We sample four regular locations, so # that we can evaluate either max or average pooling. In fact, # interpolating only a single value at each bin center (without # pooling) is nearly as effective." # # Here we use the simplified approach of a single value per bin, # which is how it's done in tf.crop_and_resize() # Result: [batch * num_boxes, pool_height, pool_width, channels] pooled.append(tf.image.crop_and_resize( feature_maps[i], level_boxes, box_indices, self.pool_shape, method="bilinear")) # Pack pooled features into one tensor pooled = tf.concat(pooled, axis=0) # Pack box_to_level mapping into one array and add another # column representing the order of pooled boxes box_to_level = tf.concat(box_to_level, axis=0) box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1) box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range], axis=1) # Rearrange pooled features to match the order of the original boxes # Sort box_to_level by batch then box index # TF doesn't have a way to sort by two columns, so merge them and sort. sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1] ix = tf.nn.top_k(sorting_tensor, k=tf.shape( box_to_level)[0]).indices[::-1] ix = tf.gather(box_to_level[:, 2], ix) pooled = tf.gather(pooled, ix) # Re-add the batch dimension pooled = tf.expand_dims(pooled, 0) return pooled def compute_output_shape(self, input_shape): return input_shape[0][:2] + self.pool_shape + (input_shape[1][-1], ) ############################################################ # Detection Target Layer ############################################################ def overlaps_graph(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. """ # 1. Tile boxes2 and repeate boxes1. This allows us to compare # every boxes1 against every boxes2 without loops. # TF doesn't have an equivalent to np.repeate() so simulate it # using tf.tile() and tf.reshape. b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1), [1, 1, tf.shape(boxes2)[0]]), [-1, 4]) b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1]) # 2. Compute intersections b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1) b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1) y1 = tf.maximum(b1_y1, b2_y1) x1 = tf.maximum(b1_x1, b2_x1) y2 = tf.minimum(b1_y2, b2_y2) x2 = tf.minimum(b1_x2, b2_x2) intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0) # 3. Compute unions b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) union = b1_area + b2_area - intersection # 4. Compute IoU and reshape to [boxes1, boxes2] iou = intersection / union overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]]) return overlaps def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config): """Generates detection targets for one image. Subsamples proposals and generates target class IDs, bounding box deltas, and masks for each. Inputs: proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might be zero padded if there are not enough proposals. gt_class_ids: [MAX_GT_INSTANCES] int class IDs gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type. Returns: Target ROIs and corresponding class IDs, bounding box shifts, and masks. rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded. deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))] Class-specific bbox refinements. masks: [TRAIN_ROIS_PER_IMAGE, height, width). Masks cropped to bbox boundaries and resized to neural network output size. Note: Returned arrays might be zero padded if not enough target ROIs. """ # Assertions asserts = [ tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals], name="roi_assertion"), ] with tf.control_dependencies(asserts): proposals = tf.identity(proposals) # Remove zero padding proposals, _ = trim_zeros_graph(proposals, name="trim_proposals") gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes") gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros, name="trim_gt_class_ids") gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2, name="trim_gt_masks") # Handle COCO crowds # A crowd box in COCO is a bounding box around several instances. Exclude # them from training. A crowd box is given a negative class ID. crowd_ix = tf.where(gt_class_ids < 0)[:, 0] non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0] crowd_boxes = tf.gather(gt_boxes, crowd_ix) crowd_masks = tf.gather(gt_masks, crowd_ix, axis=2) gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix) gt_boxes = tf.gather(gt_boxes, non_crowd_ix) gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2) # Compute overlaps matrix [proposals, gt_boxes] overlaps = overlaps_graph(proposals, gt_boxes) # Compute overlaps with crowd boxes [anchors, crowds] crowd_overlaps = overlaps_graph(proposals, crowd_boxes) crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1) no_crowd_bool = (crowd_iou_max < 0.001) # Determine postive and negative ROIs roi_iou_max = tf.reduce_max(overlaps, axis=1) # 1. Positive ROIs are those with >= 0.5 IoU with a GT box positive_roi_bool = (roi_iou_max >= 0.5) positive_indices = tf.where(positive_roi_bool)[:, 0] # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds. negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0] # Subsample ROIs. Aim for 33% positive # Positive ROIs positive_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) positive_indices = tf.random_shuffle(positive_indices)[:positive_count] positive_count = tf.shape(positive_indices)[0] # Negative ROIs. Add enough to maintain positive:negative ratio. r = 1.0 / config.ROI_POSITIVE_RATIO negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count negative_indices = tf.random_shuffle(negative_indices)[:negative_count] # Gather selected ROIs positive_rois = tf.gather(proposals, positive_indices) negative_rois = tf.gather(proposals, negative_indices) # Assign positive ROIs to GT boxes. positive_overlaps = tf.gather(overlaps, positive_indices) roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1) roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment) roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment) # Compute bbox refinement for positive ROIs deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes) deltas /= config.BBOX_STD_DEV # Assign positive ROIs to GT masks # Permute masks to [N, height, width, 1] transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1) # Pick the right mask for each ROI roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment) # Compute mask targets boxes = positive_rois if config.USE_MINI_MASK: # Transform ROI corrdinates from normalized image space # to normalized mini-mask space. y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1) gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1) gt_h = gt_y2 - gt_y1 gt_w = gt_x2 - gt_x1 y1 = (y1 - gt_y1) / gt_h x1 = (x1 - gt_x1) / gt_w y2 = (y2 - gt_y1) / gt_h x2 = (x2 - gt_x1) / gt_w boxes = tf.concat([y1, x1, y2, x2], 1) box_ids = tf.range(0, tf.shape(roi_masks)[0]) masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes, box_ids, config.MASK_SHAPE) # Remove the extra dimension from masks. masks = tf.squeeze(masks, axis=3) # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with # binary cross entropy loss. masks = tf.round(masks) # Append negative ROIs and pad bbox deltas and masks that # are not used for negative ROIs with zeros. rois = tf.concat([positive_rois, negative_rois], axis=0) N = tf.shape(negative_rois)[0] P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0) rois = tf.pad(rois, [(0, P), (0, 0)]) roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)]) roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)]) deltas = tf.pad(deltas, [(0, N + P), (0, 0)]) masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)]) return rois, roi_gt_class_ids, deltas, masks class DetectionTargetLayer(KE.Layer): """Subsamples proposals and generates target box refinement, class_ids, and masks for each. Inputs: proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might be zero padded if there are not enough proposals. gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs. gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type Returns: Target ROIs and corresponding class IDs, bounding box shifts, and masks. rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs. target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw), class_id)] Class-specific bbox refinements. target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width) Masks cropped to bbox boundaries and resized to neural network output size. Note: Returned arrays might be zero padded if not enough target ROIs. """ def __init__(self, config, **kwargs): super(DetectionTargetLayer, self).__init__(**kwargs) self.config = config def call(self, inputs): proposals = inputs[0] gt_class_ids = inputs[1] gt_boxes = inputs[2] gt_masks = inputs[3] # Slice the batch and run a graph for each slice # TODO: Rename target_bbox to target_deltas for clarity names = ["rois", "target_class_ids", "target_bbox", "target_mask"] outputs = utils.batch_slice( [proposals, gt_class_ids, gt_boxes, gt_masks], lambda w, x, y, z: detection_targets_graph( w, x, y, z, self.config), self.config.IMAGES_PER_GPU, names=names) return outputs def compute_output_shape(self, input_shape): return [ (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # rois (None, 1), # class_ids (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # deltas (None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0], self.config.MASK_SHAPE[1]) # masks ] def compute_mask(self, inputs, mask=None): return [None, None, None, None] ############################################################ # Detection Layer ############################################################ def clip_to_window(window, boxes): """ window: (y1, x1, y2, x2). The window in the image we want to clip to. boxes: [N, (y1, x1, y2, x2)] """ boxes[:, 0] = np.maximum(np.minimum(boxes[:, 0], window[2]), window[0]) boxes[:, 1] = np.maximum(np.minimum(boxes[:, 1], window[3]), window[1]) boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], window[2]), window[0]) boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], window[3]), window[1]) return boxes def refine_detections_graph(rois, probs, deltas, window, config): """Refine classified proposals and filter overlaps and return final detections. Inputs: rois: [N, (y1, x1, y2, x2)] in normalized coordinates probs: [N, num_classes]. Class probabilities. deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific bounding box deltas. window: (y1, x1, y2, x2) in image coordinates. The part of the image that contains the image excluding the padding. Returns detections shaped: [N, (y1, x1, y2, x2, class_id, score)] where coordinates are in image domain. """ # Class IDs per ROI class_ids = tf.argmax(probs, axis=1, output_type=tf.int32) # Class probability of the top class of each ROI indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1) class_scores = tf.gather_nd(probs, indices) # Class-specific bounding box deltas deltas_specific = tf.gather_nd(deltas, indices) # Apply bounding box deltas # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates refined_rois = apply_box_deltas_graph( rois, deltas_specific * config.BBOX_STD_DEV) # Convert coordiates to image domain # TODO: better to keep them normalized until later height, width = config.IMAGE_SHAPE[:2] refined_rois *= tf.constant([height, width, height, width], dtype=tf.float32) # Clip boxes to image window refined_rois = clip_boxes_graph(refined_rois, window) # Round and cast to int since we're deadling with pixels now refined_rois = tf.to_int32(tf.rint(refined_rois)) # TODO: Filter out boxes with zero area # Filter out background boxes keep = tf.where(class_ids > 0)[:, 0] # Filter out low confidence boxes if config.DETECTION_MIN_CONFIDENCE: conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0] keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), tf.expand_dims(conf_keep, 0)) keep = tf.sparse_tensor_to_dense(keep)[0] # Apply per-class NMS # 1. Prepare variables pre_nms_class_ids = tf.gather(class_ids, keep) pre_nms_scores = tf.gather(class_scores, keep) pre_nms_rois = tf.gather(refined_rois, keep) unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0] def nms_keep_map(class_id): """Apply Non-Maximum Suppression on ROIs of the given class.""" # Indices of ROIs of the given class ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0] # Apply NMS class_keep = tf.image.non_max_suppression( tf.to_float(tf.gather(pre_nms_rois, ixs)), tf.gather(pre_nms_scores, ixs), max_output_size=config.DETECTION_MAX_INSTANCES, iou_threshold=config.DETECTION_NMS_THRESHOLD) # Map indicies class_keep = tf.gather(keep, tf.gather(ixs, class_keep)) # Pad with -1 so returned tensors have the same shape gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0] class_keep = tf.pad(class_keep, [(0, gap)], mode='CONSTANT', constant_values=-1) # Set shape so map_fn() can infer result shape class_keep.set_shape([config.DETECTION_MAX_INSTANCES]) return class_keep # 2. Map over class IDs nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids, dtype=tf.int64) # 3. Merge results into one list, and remove -1 padding nms_keep = tf.reshape(nms_keep, [-1]) nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0]) # 4. Compute intersection between keep and nms_keep keep = tf.sets.set_intersection(tf.expand_dims(keep, 0), tf.expand_dims(nms_keep, 0)) keep = tf.sparse_tensor_to_dense(keep)[0] # Keep top detections roi_count = config.DETECTION_MAX_INSTANCES class_scores_keep = tf.gather(class_scores, keep) num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count) top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1] keep = tf.gather(keep, top_ids) # Arrange output as [N, (y1, x1, y2, x2, class_id, score)] # Coordinates are in image domain. detections = tf.concat([ tf.to_float(tf.gather(refined_rois, keep)), tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis], tf.gather(class_scores, keep)[..., tf.newaxis] ], axis=1) # Pad with zeros if detections < DETECTION_MAX_INSTANCES gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0] detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT") return detections class DetectionLayer(KE.Layer): """Takes classified proposal boxes and their bounding box deltas and returns the final detection boxes. Returns: [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] where coordinates are in image domain """ def __init__(self, config=None, **kwargs): super(DetectionLayer, self).__init__(**kwargs) self.config = config def call(self, inputs): rois = inputs[0] mrcnn_class = inputs[1] mrcnn_bbox = inputs[2] image_meta = inputs[3] # Run detection refinement graph on each item in the batch _, _, window, _ = parse_image_meta_graph(image_meta) detections_batch = utils.batch_slice( [rois, mrcnn_class, mrcnn_bbox, window], lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config), self.config.IMAGES_PER_GPU) # Reshape output # [batch, num_detections, (y1, x1, y2, x2, class_score)] in pixels return tf.reshape( detections_batch, [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6]) def compute_output_shape(self, input_shape): return (None, self.config.DETECTION_MAX_INSTANCES, 6) # Region Proposal Network (RPN) def rpn_graph(feature_map, anchors_per_location, anchor_stride): """Builds the computation graph of Region Proposal Network. feature_map: backbone features [batch, height, width, depth] anchors_per_location: number of anchors per pixel in the feature map anchor_stride: Controls the density of anchors. Typically 1 (anchors for every pixel in the feature map), or 2 (every other pixel). Returns: rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax) rpn_probs: [batch, H, W, 2] Anchor classifier probabilities. rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be applied to anchors. """ # TODO: check if stride of 2 causes alignment issues if the featuremap # is not even. # Shared convolutional base of the RPN shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu', strides=anchor_stride, name='rpn_conv_shared')(feature_map) # Anchor Score. [batch, height, width, anchors per location * 2]. x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid', activation='linear', name='rpn_class_raw')(shared) # Reshape to [batch, anchors, 2] rpn_class_logits = KL.Lambda( lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x) # Softmax on last dimension of BG/FG. rpn_probs = KL.Activation( "softmax", name="rpn_class_xxx")(rpn_class_logits) # Bounding box refinement. [batch, H, W, anchors per location, depth] # where depth is [x, y, log(w), log(h)] x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid", activation='linear', name='rpn_bbox_pred')(shared) # Reshape to [batch, anchors, 4] rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x) return [rpn_class_logits, rpn_probs, rpn_bbox] def build_rpn_model(anchor_stride, anchors_per_location, depth): """Builds a Keras model of the Region Proposal Network. It wraps the RPN graph so it can be used multiple times with shared weights. anchors_per_location: number of anchors per pixel in the feature map anchor_stride: Controls the density of anchors. Typically 1 (anchors for every pixel in the feature map), or 2 (every other pixel). depth: Depth of the backbone feature map. Returns a Keras Model object. The model outputs, when called, are: rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax) rpn_probs: [batch, W, W, 2] Anchor classifier probabilities. rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be applied to anchors. """ input_feature_map = KL.Input(shape=[None, None, depth], name="input_rpn_feature_map") outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride) return KM.Model([input_feature_map], outputs, name="rpn_model") ############################################################ # Feature Pyramid Network Heads ############################################################ def fpn_classifier_graph(rois, feature_maps, image_shape, pool_size, num_classes): """Builds the computation graph of the feature pyramid network classifier and regressor heads. rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized coordinates. feature_maps: List of feature maps from diffent layers of the pyramid, [P2, P3, P4, P5]. Each has a different resolution. image_shape: [height, width, depth] pool_size: The width of the square feature map generated from ROI Pooling. num_classes: number of classes, which determines the depth of the results Returns: logits: [N, NUM_CLASSES] classifier logits (before softmax) probs: [N, NUM_CLASSES] classifier probabilities bbox_deltas: [N, (dy, dx, log(dh), log(dw))] Deltas to apply to proposal boxes """ # ROI Pooling # Shape: [batch, num_boxes, pool_height, pool_width, channels] x = PyramidROIAlign([pool_size, pool_size], image_shape, name="roi_align_classifier")([rois] + feature_maps) # Two 1024 FC layers (implemented with Conv2D for consistency) x = KL.TimeDistributed(KL.Conv2D(1024, (pool_size, pool_size), padding="valid"), name="mrcnn_class_conv1")(x) x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_class_bn1')(x) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(1024, (1, 1)), name="mrcnn_class_conv2")(x) x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_class_bn2')(x) x = KL.Activation('relu')(x) shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2), name="pool_squeeze")(x) # Classifier head mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes), name='mrcnn_class_logits')(shared) mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"), name="mrcnn_class")(mrcnn_class_logits) # BBox head # [batch, boxes, num_classes * (dy, dx, log(dh), log(dw))] x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'), name='mrcnn_bbox_fc')(shared) # Reshape to [batch, boxes, num_classes, (dy, dx, log(dh), log(dw))] s = K.int_shape(x) mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x) return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox def build_fpn_mask_graph(rois, feature_maps, image_shape, pool_size, num_classes): """Builds the computation graph of the mask head of Feature Pyramid Network. rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized coordinates. feature_maps: List of feature maps from diffent layers of the pyramid, [P2, P3, P4, P5]. Each has a different resolution. image_shape: [height, width, depth] pool_size: The width of the square feature map generated from ROI Pooling. num_classes: number of classes, which determines the depth of the results Returns: Masks [batch, roi_count, height, width, num_classes] """ # ROI Pooling # Shape: [batch, boxes, pool_height, pool_width, channels] x = PyramidROIAlign([pool_size, pool_size], image_shape, name="roi_align_mask")([rois] + feature_maps) # Conv layers x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv1")(x) x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_mask_bn1')(x) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv2")(x) x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_mask_bn2')(x) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv3")(x) x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_mask_bn3')(x) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv4")(x) x = KL.TimeDistributed(BatchNorm(axis=3), name='mrcnn_mask_bn4')(x) x = KL.Activation('relu')(x) x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"), name="mrcnn_mask_deconv")(x) x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"), name="mrcnn_mask")(x) return x ############################################################ # Loss Functions ############################################################ def smooth_l1_loss(y_true, y_pred): """Implements Smooth-L1 loss. y_true and y_pred are typicallly: [N, 4], but could be any shape. """ diff = K.abs(y_true - y_pred) less_than_one = K.cast(K.less(diff, 1.0), "float32") loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) return loss def rpn_class_loss_graph(rpn_match, rpn_class_logits): """RPN anchor classifier loss. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG. """ # Squeeze last dim to simplify rpn_match = tf.squeeze(rpn_match, -1) # Get anchor classes. Convert the -1/+1 match to 0/1 values. anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32) # Positive and Negative anchors contribute to the loss, # but neutral anchors (match value = 0) don't. indices = tf.where(K.not_equal(rpn_match, 0)) # Pick rows that contribute to the loss and filter out the rest. rpn_class_logits = tf.gather_nd(rpn_class_logits, indices) anchor_class = tf.gather_nd(anchor_class, indices) # Crossentropy loss loss = K.sparse_categorical_crossentropy(target=anchor_class, output=rpn_class_logits, from_logits=True) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox): """Return the RPN bounding box loss graph. config: the model config object. target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))]. Uses 0 padding to fill in unsed bbox deltas. rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, -1=negative, 0=neutral anchor. rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] """ # Positive anchors contribute to the loss, but negative and # neutral anchors (match value of 0 or -1) don't. rpn_match = K.squeeze(rpn_match, -1) indices = tf.where(K.equal(rpn_match, 1)) # Pick bbox deltas that contribute to the loss rpn_bbox = tf.gather_nd(rpn_bbox, indices) # Trim target bounding box deltas to the same length as rpn_bbox. batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1) target_bbox = batch_pack_graph(target_bbox, batch_counts, config.IMAGES_PER_GPU) # TODO: use smooth_l1_loss() rather than reimplementing here # to reduce code duplication diff = K.abs(target_bbox - rpn_bbox) less_than_one = K.cast(K.less(diff, 1.0), "float32") loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) return loss def mrcnn_class_loss_graph(target_class_ids, pred_class_logits, active_class_ids): """Loss for the classifier head of Mask RCNN. target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero padding to fill in the array. pred_class_logits: [batch, num_rois, num_classes] active_class_ids: [batch, num_classes]. Has a value of 1 for classes that are in the dataset of the image, and 0 for classes that are not in the dataset. """ target_class_ids = tf.cast(target_class_ids, 'int64') # Find predictions of classes that are not in the dataset. pred_class_ids = tf.argmax(pred_class_logits, axis=2) # TODO: Update this line to work with batch > 1. Right now it assumes all # images in a batch have the same active_class_ids pred_active = tf.gather(active_class_ids[0], pred_class_ids) # Loss loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=target_class_ids, logits=pred_class_logits) # Erase losses of predictions of classes that are not in the active # classes of the image. loss = loss * pred_active # Computer loss mean. Use only predictions that contribute # to the loss to get a correct mean. loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active) return loss def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox): """Loss for Mask R-CNN bounding box refinement. target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))] target_class_ids: [batch, num_rois]. Integer class IDs. pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))] """ # Reshape to merge batch and roi dimensions for simplicity. target_class_ids = K.reshape(target_class_ids, (-1,)) target_bbox = K.reshape(target_bbox, (-1, 4)) pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4)) # Only positive ROIs contribute to the loss. And only # the right class_id of each ROI. Get their indicies. positive_roi_ix = tf.where(target_class_ids > 0)[:, 0] positive_roi_class_ids = tf.cast( tf.gather(target_class_ids, positive_roi_ix), tf.int64) indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1) # Gather the deltas (predicted and true) that contribute to loss target_bbox = tf.gather(target_bbox, positive_roi_ix) pred_bbox = tf.gather_nd(pred_bbox, indices) # Smooth-L1 Loss loss = K.switch(tf.size(target_bbox) > 0, smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox), tf.constant(0.0)) loss = K.mean(loss) loss = K.reshape(loss, [1, 1]) return loss def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks): """Mask binary cross-entropy loss for the masks head. target_masks: [batch, num_rois, height, width]. A float32 tensor of values 0 or 1. Uses zero padding to fill array. target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded. pred_masks: [batch, proposals, height, width, num_classes] float32 tensor with values from 0 to 1. """ # Reshape for simplicity. Merge first two dimensions into one. target_class_ids = K.reshape(target_class_ids, (-1,)) mask_shape = tf.shape(target_masks) target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3])) pred_shape = tf.shape(pred_masks) pred_masks = K.reshape(pred_masks, (-1, pred_shape[2], pred_shape[3], pred_shape[4])) # Permute predicted masks to [N, num_classes, height, width] pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2]) # Only positive ROIs contribute to the loss. And only # the class specific mask of each ROI. positive_ix = tf.where(target_class_ids > 0)[:, 0] positive_class_ids = tf.cast( tf.gather(target_class_ids, positive_ix), tf.int64) indices = tf.stack([positive_ix, positive_class_ids], axis=1) # Gather the masks (predicted and true) that contribute to loss y_true = tf.gather(target_masks, positive_ix) y_pred = tf.gather_nd(pred_masks, indices) # Compute binary cross entropy. If no positive ROIs, then return 0. # shape: [batch, roi, num_classes] loss = K.switch(tf.size(y_true) > 0, K.binary_crossentropy(target=y_true, output=y_pred), tf.constant(0.0)) loss = K.mean(loss) loss = K.reshape(loss, [1, 1]) return loss ############################################################ # Data Generator ############################################################ def load_image_gt(dataset, config, image_id, augment=False, use_mini_mask=False): """Load and return ground truth data for an image (image, mask, bounding boxes). augment: If true, apply random image augmentation. Currently, only horizontal flipping is offered. use_mini_mask: If False, returns full-size masks that are the same height and width as the original image. These can be big, for example 1024x1024x100 (for 100 instances). Mini masks are smaller, typically, 224x224 and are generated by extracting the bounding box of the object and resizing it to MINI_MASK_SHAPE. Returns: image: [height, width, 3] shape: the original shape of the image before resizing and cropping. class_ids: [instance_count] Integer class IDs bbox: [instance_count, (y1, x1, y2, x2)] mask: [height, width, instance_count]. The height and width are those of the image unless use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE. """ # Load image and mask image = dataset.load_image(image_id) mask, class_ids = dataset.load_mask(image_id) shape = image.shape image, window, scale, padding = utils.resize_image( image, min_dim=config.IMAGE_MIN_DIM, max_dim=config.IMAGE_MAX_DIM, padding=config.IMAGE_PADDING) mask = utils.resize_mask(mask, scale, padding) # Random horizontal flips. if augment: if random.randint(0, 1): image = np.fliplr(image) mask = np.fliplr(mask) # Bounding boxes. Note that some boxes might be all zeros # if the corresponding mask got cropped out. # bbox: [num_instances, (y1, x1, y2, x2)] bbox = utils.extract_bboxes(mask) # Active classes # Different datasets have different classes, so track the # classes supported in the dataset of this image. active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32) source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]] active_class_ids[source_class_ids] = 1 # Resize masks to smaller size to reduce memory usage if use_mini_mask: mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE) # Image meta data image_meta = compose_image_meta(image_id, shape, window, active_class_ids) return image, image_meta, class_ids, bbox, mask def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config): """Generate targets for training Stage 2 classifier and mask heads. This is not used in normal training. It's useful for debugging or to train the Mask RCNN heads without using the RPN head. Inputs: rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes. gt_class_ids: [instance count] Integer class IDs gt_boxes: [instance count, (y1, x1, y2, x2)] gt_masks: [height, width, instance count] Grund truth masks. Can be full size or mini-masks. Returns: rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (y, x, log(h), log(w))]. Class-specific bbox refinements. masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped to bbox boundaries and resized to neural network output size. """ assert rpn_rois.shape[0] > 0 assert gt_class_ids.dtype == np.int32, "Expected int but got {}".format( gt_class_ids.dtype) assert gt_boxes.dtype == np.int32, "Expected int but got {}".format( gt_boxes.dtype) assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format( gt_masks.dtype) # It's common to add GT Boxes to ROIs but we don't do that here because # according to XinLei Chen's paper, it doesn't help. # Trim empty padding in gt_boxes and gt_masks parts instance_ids = np.where(gt_class_ids > 0)[0] assert instance_ids.shape[0] > 0, "Image must contain instances." gt_class_ids = gt_class_ids[instance_ids] gt_boxes = gt_boxes[instance_ids] gt_masks = gt_masks[:, :, instance_ids] # Compute areas of ROIs and ground truth boxes. rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * \ (rpn_rois[:, 3] - rpn_rois[:, 1]) gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * \ (gt_boxes[:, 3] - gt_boxes[:, 1]) # Compute overlaps [rpn_rois, gt_boxes] overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0])) for i in range(overlaps.shape[1]): gt = gt_boxes[i] overlaps[:, i] = utils.compute_iou( gt, rpn_rois, gt_box_area[i], rpn_roi_area) # Assign ROIs to GT boxes rpn_roi_iou_argmax = np.argmax(overlaps, axis=1) rpn_roi_iou_max = overlaps[np.arange( overlaps.shape[0]), rpn_roi_iou_argmax] # GT box assigned to each ROI rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax] rpn_roi_gt_class_ids = gt_class_ids[rpn_roi_iou_argmax] # Positive ROIs are those with >= 0.5 IoU with a GT box. fg_ids = np.where(rpn_roi_iou_max > 0.5)[0] # Negative ROIs are those with max IoU 0.1-0.5 (hard example mining) # TODO: To hard example mine or not to hard example mine, that's the question # bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0] bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] # Subsample ROIs. Aim for 33% foreground. # FG fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) if fg_ids.shape[0] > fg_roi_count: keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False) else: keep_fg_ids = fg_ids # BG remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0] if bg_ids.shape[0] > remaining: keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) else: keep_bg_ids = bg_ids # Combine indicies of ROIs to keep keep = np.concatenate([keep_fg_ids, keep_bg_ids]) # Need more? remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0] if remaining > 0: # Looks like we don't have enough samples to maintain the desired # balance. Reduce requirements and fill in the rest. This is # likely different from the Mask RCNN paper. # There is a small chance we have neither fg nor bg samples. if keep.shape[0] == 0: # Pick bg regions with easier IoU threshold bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] assert bg_ids.shape[0] >= remaining keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) assert keep_bg_ids.shape[0] == remaining keep = np.concatenate([keep, keep_bg_ids]) else: # Fill the rest with repeated bg rois. keep_extra_ids = np.random.choice( keep_bg_ids, remaining, replace=True) keep = np.concatenate([keep, keep_extra_ids]) assert keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE, \ "keep doesn't match ROI batch size {}, {}".format( keep.shape[0], config.TRAIN_ROIS_PER_IMAGE) # Reset the gt boxes assigned to BG ROIs. rpn_roi_gt_boxes[keep_bg_ids, :] = 0 rpn_roi_gt_class_ids[keep_bg_ids] = 0 # For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement. rois = rpn_rois[keep] roi_gt_boxes = rpn_roi_gt_boxes[keep] roi_gt_class_ids = rpn_roi_gt_class_ids[keep] roi_gt_assignment = rpn_roi_iou_argmax[keep] # Class-aware bbox deltas. [y, x, log(h), log(w)] bboxes = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.NUM_CLASSES, 4), dtype=np.float32) pos_ids = np.where(roi_gt_class_ids > 0)[0] bboxes[pos_ids, roi_gt_class_ids[pos_ids]] = utils.box_refinement( rois[pos_ids], roi_gt_boxes[pos_ids, :4]) # Normalize bbox refinements bboxes /= config.BBOX_STD_DEV # Generate class-specific target masks. masks = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.MASK_SHAPE[0], config.MASK_SHAPE[1], config.NUM_CLASSES), dtype=np.float32) for i in pos_ids: class_id = roi_gt_class_ids[i] assert class_id > 0, "class id must be greater than 0" gt_id = roi_gt_assignment[i] class_mask = gt_masks[:, :, gt_id] if config.USE_MINI_MASK: # Create a mask placeholder, the size of the image placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool) # GT box gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id] gt_w = gt_x2 - gt_x1 gt_h = gt_y2 - gt_y1 # Resize mini mask to size of GT box placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = \ np.round(scipy.misc.imresize(class_mask.astype(float), (gt_h, gt_w), interp='nearest') / 255.0).astype(bool) # Place the mini batch in the placeholder class_mask = placeholder # Pick part of the mask and resize it y1, x1, y2, x2 = rois[i].astype(np.int32) m = class_mask[y1:y2, x1:x2] mask = scipy.misc.imresize( m.astype(float), config.MASK_SHAPE, interp='nearest') / 255.0 masks[i, :, :, class_id] = mask return rois, roi_gt_class_ids, bboxes, masks def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config): """Given the anchors and GT boxes, compute overlaps and identify positive anchors and deltas to refine them to match their corresponding GT boxes. anchors: [num_anchors, (y1, x1, y2, x2)] gt_class_ids: [num_gt_boxes] Integer class IDs. gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)] Returns: rpn_match: [N] (int32) matches between anchors and GT boxes. 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. """ # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32) # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))] rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4)) # Handle COCO crowds # A crowd box in COCO is a bounding box around several instances. Exclude # them from training. A crowd box is given a negative class ID. crowd_ix = np.where(gt_class_ids < 0)[0] if crowd_ix.shape[0] > 0: # Filter out crowds from ground truth class IDs and boxes non_crowd_ix = np.where(gt_class_ids > 0)[0] crowd_boxes = gt_boxes[crowd_ix] gt_class_ids = gt_class_ids[non_crowd_ix] gt_boxes = gt_boxes[non_crowd_ix] # Compute overlaps with crowd boxes [anchors, crowds] crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes) crowd_iou_max = np.amax(crowd_overlaps, axis=1) no_crowd_bool = (crowd_iou_max < 0.001) else: # All anchors don't intersect a crowd no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool) # Compute overlaps [num_anchors, num_gt_boxes] overlaps = utils.compute_overlaps(anchors, gt_boxes) # Match anchors to GT Boxes # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive. # If an anchor overlaps a GT box with IoU < 0.3 then it's negative. # Neutral anchors are those that don't match the conditions above, # and they don't influence the loss function. # However, don't keep any GT box unmatched (rare, but happens). Instead, # match it to the closest anchor (even if its max IoU is < 0.3). # # 1. Set negative anchors first. They get overwritten below if a GT box is # matched to them. Skip boxes in crowd areas. anchor_iou_argmax = np.argmax(overlaps, axis=1) anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1 # 2. Set an anchor for each GT box (regardless of IoU value). # TODO: If multiple anchors have the same IoU match all of them gt_iou_argmax = np.argmax(overlaps, axis=0) rpn_match[gt_iou_argmax] = 1 # 3. Set anchors with high overlap as positive. rpn_match[anchor_iou_max >= 0.7] = 1 # Subsample to balance positive and negative anchors # Don't let positives be more than half the anchors ids = np.where(rpn_match == 1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2) if extra > 0: # Reset the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # Same for negative proposals ids = np.where(rpn_match == -1)[0] extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - np.sum(rpn_match == 1)) if extra > 0: # Rest the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) rpn_match[ids] = 0 # For positive anchors, compute shift and scale needed to transform them # to match the corresponding GT boxes. ids = np.where(rpn_match == 1)[0] ix = 0 # index into rpn_bbox # TODO: use box_refinement() rather than duplicating the code here for i, a in zip(ids, anchors[ids]): # Closest gt box (it might have IoU < 0.7) gt = gt_boxes[anchor_iou_argmax[i]] # Convert coordinates to center plus width/height. # GT Box gt_h = gt[2] - gt[0] gt_w = gt[3] - gt[1] gt_center_y = gt[0] + 0.5 * gt_h gt_center_x = gt[1] + 0.5 * gt_w # Anchor a_h = a[2] - a[0] a_w = a[3] - a[1] a_center_y = a[0] + 0.5 * a_h a_center_x = a[1] + 0.5 * a_w # Compute the bbox refinement that the RPN should predict. rpn_bbox[ix] = [ (gt_center_y - a_center_y) / a_h, (gt_center_x - a_center_x) / a_w, np.log(gt_h / a_h), np.log(gt_w / a_w), ] # Normalize rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV ix += 1 return rpn_match, rpn_bbox def generate_random_rois(image_shape, count, gt_class_ids, gt_boxes): """Generates ROI proposals similar to what a region proposal network would generate. image_shape: [Height, Width, Depth] count: Number of ROIs to generate gt_class_ids: [N] Integer ground truth class IDs gt_boxes: [N, (y1, x1, y2, x2)] Ground truth boxes in pixels. Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels. """ # placeholder rois = np.zeros((count, 4), dtype=np.int32) # Generate random ROIs around GT boxes (90% of count) rois_per_box = int(0.9 * count / gt_boxes.shape[0]) for i in range(gt_boxes.shape[0]): gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i] h = gt_y2 - gt_y1 w = gt_x2 - gt_x1 # random boundaries r_y1 = max(gt_y1 - h, 0) r_y2 = min(gt_y2 + h, image_shape[0]) r_x1 = max(gt_x1 - w, 0) r_x2 = min(gt_x2 + w, image_shape[1]) # To avoid generating boxes with zero area, we generate double what # we need and filter out the extra. If we get fewer valid boxes # than we need, we loop and try again. while True: y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box * 2, 2)) x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box * 2, 2)) # Filter out zero area boxes threshold = 1 y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:rois_per_box] x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:rois_per_box] if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box: break # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape # into x1, y1, x2, y2 order x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) box_rois = np.hstack([y1, x1, y2, x2]) rois[rois_per_box * i:rois_per_box * (i + 1)] = box_rois # Generate random ROIs anywhere in the image (10% of count) remaining_count = count - (rois_per_box * gt_boxes.shape[0]) # To avoid generating boxes with zero area, we generate double what # we need and filter out the extra. If we get fewer valid boxes # than we need, we loop and try again. while True: y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2)) x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2)) # Filter out zero area boxes threshold = 1 y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:remaining_count] x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:remaining_count] if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count: break # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape # into x1, y1, x2, y2 order x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) global_rois = np.hstack([y1, x1, y2, x2]) rois[-remaining_count:] = global_rois return rois def data_generator(dataset, config, shuffle=True, augment=True, random_rois=0, batch_size=1, detection_targets=False): """A generator that returns images and corresponding target class ids, bounding box deltas, and masks. dataset: The Dataset object to pick data from config: The model config object shuffle: If True, shuffles the samples before every epoch augment: If True, applies image augmentation to images (currently only horizontal flips are supported) random_rois: If > 0 then generate proposals to be used to train the network classifier and mask heads. Useful if training the Mask RCNN part without the RPN. batch_size: How many images to return in each call detection_targets: If True, generate detection targets (class IDs, bbox deltas, and masks). Typically for debugging or visualizations because in trainig detection targets are generated by DetectionTargetLayer. Returns a Python generator. Upon calling next() on it, the generator returns two lists, inputs and outputs. The containtes of the lists differs depending on the received arguments: inputs list: - images: [batch, H, W, C] - image_meta: [batch, size of image meta] - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral) - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. - gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width are those of the image unless use_mini_mask is True, in which case they are defined in MINI_MASK_SHAPE. outputs list: Usually empty in regular training. But if detection_targets is True then the outputs list contains target class_ids, bbox deltas, and masks. """ b = 0 # batch item index image_index = -1 image_ids = np.copy(dataset.image_ids) error_count = 0 # Anchors # [anchor_count, (y1, x1, y2, x2)] anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, config.RPN_ANCHOR_RATIOS, config.BACKBONE_SHAPES, config.BACKBONE_STRIDES, config.RPN_ANCHOR_STRIDE) # Keras requires a generator to run indefinately. while True: try: # Increment index to pick next image. Shuffle if at the start of an epoch. image_index = (image_index + 1) % len(image_ids) if shuffle and image_index == 0: np.random.shuffle(image_ids) # Get GT bounding boxes and masks for image. image_id = image_ids[image_index] image, image_meta, gt_class_ids, gt_boxes, gt_masks = \ load_image_gt(dataset, config, image_id, augment=augment, use_mini_mask=config.USE_MINI_MASK) # Skip images that have no instances. This can happen in cases # where we train on a subset of classes and the image doesn't # have any of the classes we care about. if not np.any(gt_class_ids > 0): continue # RPN Targets rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors, gt_class_ids, gt_boxes, config) # Mask R-CNN Targets if random_rois: rpn_rois = generate_random_rois( image.shape, random_rois, gt_class_ids, gt_boxes) if detection_targets: rois, mrcnn_class_ids, mrcnn_bbox, mrcnn_mask =\ build_detection_targets( rpn_rois, gt_class_ids, gt_boxes, gt_masks, config) # Init batch arrays if b == 0: batch_image_meta = np.zeros( (batch_size,) + image_meta.shape, dtype=image_meta.dtype) batch_rpn_match = np.zeros( [batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype) batch_rpn_bbox = np.zeros( [batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype) batch_images = np.zeros( (batch_size,) + image.shape, dtype=np.float32) batch_gt_class_ids = np.zeros( (batch_size, config.MAX_GT_INSTANCES), dtype=np.int32) batch_gt_boxes = np.zeros( (batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32) if config.USE_MINI_MASK: batch_gt_masks = np.zeros((batch_size, config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], config.MAX_GT_INSTANCES)) else: batch_gt_masks = np.zeros( (batch_size, image.shape[0], image.shape[1], config.MAX_GT_INSTANCES)) if random_rois: batch_rpn_rois = np.zeros( (batch_size, rpn_rois.shape[0], 4), dtype=rpn_rois.dtype) if detection_targets: batch_rois = np.zeros( (batch_size,) + rois.shape, dtype=rois.dtype) batch_mrcnn_class_ids = np.zeros( (batch_size,) + mrcnn_class_ids.shape, dtype=mrcnn_class_ids.dtype) batch_mrcnn_bbox = np.zeros( (batch_size,) + mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype) batch_mrcnn_mask = np.zeros( (batch_size,) + mrcnn_mask.shape, dtype=mrcnn_mask.dtype) # If more instances than fits in the array, sub-sample from them. if gt_boxes.shape[0] > config.MAX_GT_INSTANCES: ids = np.random.choice( np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False) gt_class_ids = gt_class_ids[ids] gt_boxes = gt_boxes[ids] gt_masks = gt_masks[:, :, ids] # Add to batch batch_image_meta[b] = image_meta batch_rpn_match[b] = rpn_match[:, np.newaxis] batch_rpn_bbox[b] = rpn_bbox batch_images[b] = mold_image(image.astype(np.float32), config) batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_ids batch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxes batch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masks if random_rois: batch_rpn_rois[b] = rpn_rois if detection_targets: batch_rois[b] = rois batch_mrcnn_class_ids[b] = mrcnn_class_ids batch_mrcnn_bbox[b] = mrcnn_bbox batch_mrcnn_mask[b] = mrcnn_mask b += 1 # Batch full? if b >= batch_size: inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox, batch_gt_class_ids, batch_gt_boxes, batch_gt_masks] outputs = [] if random_rois: inputs.extend([batch_rpn_rois]) if detection_targets: inputs.extend([batch_rois]) # Keras requires that output and targets have the same number of dimensions batch_mrcnn_class_ids = np.expand_dims( batch_mrcnn_class_ids, -1) outputs.extend( [batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask]) yield inputs, outputs # start a new batch b = 0 except (GeneratorExit, KeyboardInterrupt): raise except: # Log it and skip the image logging.exception("Error processing image {}".format( dataset.image_info[image_id])) error_count += 1 if error_count > 5: raise ############################################################ # MaskRCNN Class ############################################################ class MaskRCNN(): """Encapsulates the Mask RCNN model functionality. The actual Keras model is in the keras_model property. """ def __init__(self, mode, config, model_dir): """ mode: Either "training" or "inference" config: A Sub-class of the Config class model_dir: Directory to save training logs and trained weights """ assert mode in ['training', 'inference'] self.mode = mode self.config = config self.model_dir = model_dir self.set_log_dir() self.keras_model = self.build(mode=mode, config=config) def build(self, mode, config): """Build Mask R-CNN architecture. input_shape: The shape of the input image. mode: Either "training" or "inference". The inputs and outputs of the model differ accordingly. """ assert mode in ['training', 'inference'] # Image size must be dividable by 2 multiple times h, w = config.IMAGE_SHAPE[:2] if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6): raise Exception("Image size must be dividable by 2 at least 6 times " "to avoid fractions when downscaling and upscaling." "For example, use 256, 320, 384, 448, 512, ... etc. ") # Inputs input_image = KL.Input( shape=config.IMAGE_SHAPE.tolist(), name="input_image") input_image_meta = KL.Input(shape=[None], name="input_image_meta") if mode == "training": # RPN GT input_rpn_match = KL.Input( shape=[None, 1], name="input_rpn_match", dtype=tf.int32) input_rpn_bbox = KL.Input( shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32) # Detection GT (class IDs, bounding boxes, and masks) # 1. GT Class IDs (zero padded) input_gt_class_ids = KL.Input( shape=[None], name="input_gt_class_ids", dtype=tf.int32) # 2. GT Boxes in pixels (zero padded) # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates input_gt_boxes = KL.Input( shape=[None, 4], name="input_gt_boxes", dtype=tf.float32) # Normalize coordinates h, w = K.shape(input_image)[1], K.shape(input_image)[2] image_scale = K.cast(K.stack([h, w, h, w], axis=0), tf.float32) gt_boxes = KL.Lambda(lambda x: x / image_scale)(input_gt_boxes) # 3. GT Masks (zero padded) # [batch, height, width, MAX_GT_INSTANCES] if config.USE_MINI_MASK: input_gt_masks = KL.Input( shape=[config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], None], name="input_gt_masks", dtype=bool) else: input_gt_masks = KL.Input( shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None], name="input_gt_masks", dtype=bool) # Build the shared convolutional layers. # Bottom-up Layers # Returns a list of the last layers of each stage, 5 in total. # Don't create the thead (stage 5), so we pick the 4th item in the list. _, C2, C3, C4, C5 = resnet_graph(input_image, "resnet101", stage5=True) # Top-down Layers # TODO: add assert to varify feature map sizes match what's in config P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5) P4 = KL.Add(name="fpn_p4add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5), KL.Conv2D(256, (1, 1), name='fpn_c4p4')(C4)]) P3 = KL.Add(name="fpn_p3add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4), KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)]) P2 = KL.Add(name="fpn_p2add")([ KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3), KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)]) # Attach 3x3 conv to all P layers to get the final feature maps. P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2) P3 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p3")(P3) P4 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p4")(P4) P5 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p5")(P5) # P6 is used for the 5th anchor scale in RPN. Generated by # subsampling from P5 with stride of 2. P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5) # Note that P6 is used in RPN, but not in the classifier heads. rpn_feature_maps = [P2, P3, P4, P5, P6] mrcnn_feature_maps = [P2, P3, P4, P5] # Generate Anchors self.anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, config.RPN_ANCHOR_RATIOS, config.BACKBONE_SHAPES, config.BACKBONE_STRIDES, config.RPN_ANCHOR_STRIDE) # RPN Model rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE, len(config.RPN_ANCHOR_RATIOS), 256) # Loop through pyramid layers layer_outputs = [] # list of lists for p in rpn_feature_maps: layer_outputs.append(rpn([p])) # Concatenate layer outputs # Convert from list of lists of level outputs to list of lists # of outputs across levels. # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] outputs = list(zip(*layer_outputs)) outputs = [KL.Concatenate(axis=1, name=n)(list(o)) for o, n in zip(outputs, output_names)] rpn_class_logits, rpn_class, rpn_bbox = outputs # Generate proposals # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates # and zero padded. proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\ else config.POST_NMS_ROIS_INFERENCE rpn_rois = ProposalLayer(proposal_count=proposal_count, nms_threshold=config.RPN_NMS_THRESHOLD, name="ROI", anchors=self.anchors, config=config)([rpn_class, rpn_bbox]) if mode == "training": # Class ID mask to mark class IDs supported by the dataset the image # came from. _, _, _, active_class_ids = KL.Lambda(lambda x: parse_image_meta_graph(x), mask=[None, None, None, None])(input_image_meta) if not config.USE_RPN_ROIS: # Ignore predicted ROIs and use ROIs provided as an input. input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4], name="input_roi", dtype=np.int32) # Normalize coordinates to 0-1 range. target_rois = KL.Lambda(lambda x: K.cast( x, tf.float32) / image_scale[:4])(input_rois) else: target_rois = rpn_rois # Generate detection targets # Subsamples proposals and generates target outputs for training # Note that proposal class IDs, gt_boxes, and gt_masks are zero # padded. Equally, returned rois and targets are zero padded. rois, target_class_ids, target_bbox, target_mask =\ DetectionTargetLayer(config, name="proposal_targets")([ target_rois, input_gt_class_ids, gt_boxes, input_gt_masks]) # Network Heads # TODO: verify that this handles zero padded ROIs mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ fpn_classifier_graph(rois, mrcnn_feature_maps, config.IMAGE_SHAPE, config.POOL_SIZE, config.NUM_CLASSES) mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps, config.IMAGE_SHAPE, config.MASK_POOL_SIZE, config.NUM_CLASSES) # TODO: clean up (use tf.identify if necessary) output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois) # Losses rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")( [input_rpn_match, rpn_class_logits]) rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")( [input_rpn_bbox, input_rpn_match, rpn_bbox]) class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")( [target_class_ids, mrcnn_class_logits, active_class_ids]) bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")( [target_bbox, target_class_ids, mrcnn_bbox]) mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")( [target_mask, target_class_ids, mrcnn_mask]) # Model inputs = [input_image, input_image_meta, input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks] if not config.USE_RPN_ROIS: inputs.append(input_rois) outputs = [rpn_class_logits, rpn_class, rpn_bbox, mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask, rpn_rois, output_rois, rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss] model = KM.Model(inputs, outputs, name='mask_rcnn') else: # Network Heads # Proposal classifier and BBox regressor heads mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\ fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, config.IMAGE_SHAPE, config.POOL_SIZE, config.NUM_CLASSES) # Detections # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in image coordinates detections = DetectionLayer(config, name="mrcnn_detection")( [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta]) # Convert boxes to normalized coordinates # TODO: let DetectionLayer return normalized coordinates to avoid # unnecessary conversions h, w = config.IMAGE_SHAPE[:2] detection_boxes = KL.Lambda( lambda x: x[..., :4] / np.array([h, w, h, w]))(detections) # Create masks for detections mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps, config.IMAGE_SHAPE, config.MASK_POOL_SIZE, config.NUM_CLASSES) model = KM.Model([input_image, input_image_meta], [detections, mrcnn_class, mrcnn_bbox, mrcnn_mask, rpn_rois, rpn_class, rpn_bbox], name='mask_rcnn') # Add multi-GPU support. if config.GPU_COUNT > 1: from parallel_model import ParallelModel model = ParallelModel(model, config.GPU_COUNT) return model def find_last(self): """Finds the last checkpoint file of the last trained model in the model directory. Returns: log_dir: The directory where events and weights are saved checkpoint_path: the path to the last checkpoint file """ # Get directory names. Each directory corresponds to a model dir_names = next(os.walk(self.model_dir))[1] key = self.config.NAME.lower() dir_names = filter(lambda f: f.startswith(key), dir_names) dir_names = sorted(dir_names) if not dir_names: return None, None # Pick last directory dir_name = os.path.join(self.model_dir, dir_names[-1]) # Find the last checkpoint checkpoints = next(os.walk(dir_name))[2] checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints) checkpoints = sorted(checkpoints) if not checkpoints: return dir_name, None checkpoint = os.path.join(dir_name, checkpoints[-1]) return dir_name, checkpoint def load_weights(self, filepath, by_name=False, exclude=None): """Modified version of the correspoding Keras function with the addition of multi-GPU support and the ability to exclude some layers from loading. exlude: list of layer names to excluce """ import h5py from keras.engine import topology if exclude: by_name = True if h5py is None: raise ImportError('`load_weights` requires h5py.') f = h5py.File(filepath, mode='r') if 'layer_names' not in f.attrs and 'model_weights' in f: f = f['model_weights'] # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. keras_model = self.keras_model layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers # Exclude some layers if exclude: layers = filter(lambda l: l.name not in exclude, layers) if by_name: topology.load_weights_from_hdf5_group_by_name(f, layers) else: topology.load_weights_from_hdf5_group(f, layers) if hasattr(f, 'close'): f.close() # Update the log directory self.set_log_dir(filepath) def get_imagenet_weights(self): """Downloads ImageNet trained weights from Keras. Returns path to weights file. """ from keras.utils.data_utils import get_file TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\ 'releases/download/v0.2/'\ 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5' weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models', md5_hash='a268eb855778b3df3c7506639542a6af') return weights_path def compile(self, learning_rate, momentum): """Gets the model ready for training. Adds losses, regularization, and metrics. Then calls the Keras compile() function. """ # Optimizer object optimizer = keras.optimizers.SGD(lr=learning_rate, momentum=momentum, clipnorm=5.0) # Add Losses # First, clear previously set losses to avoid duplication self.keras_model._losses = [] self.keras_model._per_input_losses = {} loss_names = ["rpn_class_loss", "rpn_bbox_loss", "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"] for name in loss_names: layer = self.keras_model.get_layer(name) if layer.output in self.keras_model.losses: continue self.keras_model.add_loss( tf.reduce_mean(layer.output, keep_dims=True)) # Add L2 Regularization # Skip gamma and beta weights of batch normalization layers. reg_losses = [keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32) for w in self.keras_model.trainable_weights if 'gamma' not in w.name and 'beta' not in w.name] self.keras_model.add_loss(tf.add_n(reg_losses)) # Compile self.keras_model.compile(optimizer=optimizer, loss=[ None] * len(self.keras_model.outputs)) # Add metrics for losses for name in loss_names: if name in self.keras_model.metrics_names: continue layer = self.keras_model.get_layer(name) self.keras_model.metrics_names.append(name) self.keras_model.metrics_tensors.append(tf.reduce_mean( layer.output, keep_dims=True)) def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1): """Sets model layers as trainable if their names match the given regular expression. """ # Print message on the first call (but not on recursive calls) if verbose > 0 and keras_model is None: log("Selecting layers to train") keras_model = keras_model or self.keras_model # In multi-GPU training, we wrap the model. Get layers # of the inner model because they have the weights. layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\ else keras_model.layers for layer in layers: # Is the layer a model? if layer.__class__.__name__ == 'Model': print("In model: ", layer.name) self.set_trainable( layer_regex, keras_model=layer, indent=indent + 4) continue if not layer.weights: continue # Is it trainable? trainable = bool(re.fullmatch(layer_regex, layer.name)) # Update layer. If layer is a container, update inner layer. if layer.__class__.__name__ == 'TimeDistributed': layer.layer.trainable = trainable else: layer.trainable = trainable # Print trainble layer names if trainable and verbose > 0: log("{}{:20} ({})".format(" " * indent, layer.name, layer.__class__.__name__)) def set_log_dir(self, model_path=None): """Sets the model log directory and epoch counter. model_path: If None, or a format different from what this code uses then set a new log directory and start epochs from 0. Otherwise, extract the log directory and the epoch counter from the file name. """ # Set date and epoch counter as if starting a new model self.epoch = 0 now = datetime.datetime.now() # If we have a model path with date and epochs use them if model_path: # Continue from we left of. Get epoch and date from the file name # A sample model path might look like: # /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5 regex = r".*/\w+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})/mask\_rcnn\_\w+(\d{4})\.h5" m = re.match(regex, model_path) if m: now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)), int(m.group(4)), int(m.group(5))) self.epoch = int(m.group(6)) + 1 # Directory for training logs self.log_dir = os.path.join(self.model_dir, "{}{:%Y%m%dT%H%M}".format( self.config.NAME.lower(), now)) # Path to save after each epoch. Include placeholders that get filled by Keras. self.checkpoint_path = os.path.join(self.log_dir, "mask_rcnn_{}_*epoch*.h5".format( self.config.NAME.lower())) self.checkpoint_path = self.checkpoint_path.replace( "*epoch*", "{epoch:04d}") def train(self, train_dataset, val_dataset, learning_rate, epochs, layers): """Train the model. train_dataset, val_dataset: Training and validation Dataset objects. learning_rate: The learning rate to train with epochs: Number of training epochs. Note that previous training epochs are considered to be done alreay, so this actually determines the epochs to train in total rather than in this particaular call. layers: Allows selecting wich layers to train. It can be: - A regular expression to match layer names to train - One of these predefined values: heaads: The RPN, classifier and mask heads of the network all: All the layers 3+: Train Resnet stage 3 and up 4+: Train Resnet stage 4 and up 5+: Train Resnet stage 5 and up """ assert self.mode == "training", "Create model in training mode." # Pre-defined layer regular expressions layer_regex = { # all layers but the backbone "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # From a specific Resnet stage and up "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", # All layers "all": ".*", } if layers in layer_regex.keys(): layers = layer_regex[layers] # Data generators train_generator = data_generator(train_dataset, self.config, shuffle=True, batch_size=self.config.BATCH_SIZE) val_generator = data_generator(val_dataset, self.config, shuffle=True, batch_size=self.config.BATCH_SIZE, augment=False) # Callbacks callbacks = [ keras.callbacks.TensorBoard(log_dir=self.log_dir, histogram_freq=0, write_graph=True, write_images=False), keras.callbacks.ModelCheckpoint(self.checkpoint_path, verbose=0, save_weights_only=True), ] # Train log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate)) log("Checkpoint Path: {}".format(self.checkpoint_path)) self.set_trainable(layers) self.compile(learning_rate, self.config.LEARNING_MOMENTUM) # Work-around for Windows: Keras fails on Windows when using # multiprocessing workers. See discussion here: # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009 if os.name is 'nt': workers = 0 else: workers = max(self.config.BATCH_SIZE // 2, 2) self.keras_model.fit_generator( train_generator, initial_epoch=self.epoch, epochs=epochs, steps_per_epoch=self.config.STEPS_PER_EPOCH, callbacks=callbacks, validation_data=next(val_generator), validation_steps=self.config.VALIDATION_STEPS, max_queue_size=100, #workers=workers, use_multiprocessing=True, ) self.epoch = max(self.epoch, epochs) def mold_inputs(self, images): """Takes a list of images and modifies them to the format expected as an input to the neural network. images: List of image matricies [height,width,depth]. Images can have different sizes. Returns 3 Numpy matricies: molded_images: [N, h, w, 3]. Images resized and normalized. image_metas: [N, length of meta data]. Details about each image. windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the original image (padding excluded). """ molded_images = [] image_metas = [] windows = [] for image in images: # Resize image to fit the model expected size # TODO: move resizing to mold_image() molded_image, window, scale, padding = utils.resize_image( image, min_dim=self.config.IMAGE_MIN_DIM, max_dim=self.config.IMAGE_MAX_DIM, padding=self.config.IMAGE_PADDING) molded_image = mold_image(molded_image, self.config) # Build image_meta image_meta = compose_image_meta( 0, image.shape, window, np.zeros([self.config.NUM_CLASSES], dtype=np.int32)) # Append molded_images.append(molded_image) windows.append(window) image_metas.append(image_meta) # Pack into arrays molded_images = np.stack(molded_images) image_metas = np.stack(image_metas) windows = np.stack(windows) return molded_images, image_metas, windows def unmold_detections(self, detections, mrcnn_mask, image_shape, window): """Reformats the detections of one image from the format of the neural network output to a format suitable for use in the rest of the application. detections: [N, (y1, x1, y2, x2, class_id, score)] mrcnn_mask: [N, height, width, num_classes] image_shape: [height, width, depth] Original size of the image before resizing window: [y1, x1, y2, x2] Box in the image where the real image is excluding the padding. Returns: boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels class_ids: [N] Integer class IDs for each bounding box scores: [N] Float probability scores of the class_id masks: [height, width, num_instances] Instance masks """ # How many detections do we have? # Detections array is padded with zeros. Find the first class_id == 0. zero_ix = np.where(detections[:, 4] == 0)[0] N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0] # Extract boxes, class_ids, scores, and class-specific masks boxes = detections[:N, :4] class_ids = detections[:N, 4].astype(np.int32) scores = detections[:N, 5] masks = mrcnn_mask[np.arange(N), :, :, class_ids] # Compute scale and shift to translate coordinates to image domain. h_scale = image_shape[0] / (window[2] - window[0]) w_scale = image_shape[1] / (window[3] - window[1]) scale = min(h_scale, w_scale) shift = window[:2] # y, x scales = np.array([scale, scale, scale, scale]) shifts = np.array([shift[0], shift[1], shift[0], shift[1]]) # Translate bounding boxes to image domain boxes = np.multiply(boxes - shifts, scales).astype(np.int32) # Filter out detections with zero area. Often only happens in early # stages of training when the network weights are still a bit random. exclude_ix = np.where( (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] if exclude_ix.shape[0] > 0: boxes = np.delete(boxes, exclude_ix, axis=0) class_ids = np.delete(class_ids, exclude_ix, axis=0) scores = np.delete(scores, exclude_ix, axis=0) masks = np.delete(masks, exclude_ix, axis=0) N = class_ids.shape[0] # Resize masks to original image size and set boundary threshold. full_masks = [] for i in range(N): # Convert neural network mask to full size mask full_mask = utils.unmold_mask(masks[i], boxes[i], image_shape) full_masks.append(full_mask) full_masks = np.stack(full_masks, axis=-1)\ if full_masks else np.empty((0,) + masks.shape[1:3]) return boxes, class_ids, scores, full_masks def detect(self, images, verbose=0): """Runs the detection pipeline. images: List of images, potentially of different sizes. Returns a list of dicts, one dict per image. The dict contains: rois: [N, (y1, x1, y2, x2)] detection bounding boxes class_ids: [N] int class IDs scores: [N] float probability scores for the class IDs masks: [H, W, N] instance binary masks """ assert self.mode == "inference", "Create model in inference mode." assert len( images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE" if verbose: log("Processing {} images".format(len(images))) for image in images: log("image", image) # Mold inputs to format expected by the neural network molded_images, image_metas, windows = self.mold_inputs(images) if verbose: log("molded_images", molded_images) log("image_metas", image_metas) # Run object detection detections, mrcnn_class, mrcnn_bbox, mrcnn_mask, \ rois, rpn_class, rpn_bbox =\ self.keras_model.predict([molded_images, image_metas], verbose=0) # Process detections results = [] for i, image in enumerate(images): final_rois, final_class_ids, final_scores, final_masks =\ self.unmold_detections(detections[i], mrcnn_mask[i], image.shape, windows[i]) results.append({ "rois": final_rois, "class_ids": final_class_ids, "scores": final_scores, "masks": final_masks, }) return results def ancestor(self, tensor, name, checked=None): """Finds the ancestor of a TF tensor in the computation graph. tensor: TensorFlow symbolic tensor. name: Name of ancestor tensor to find checked: For internal use. A list of tensors that were already searched to avoid loops in traversing the graph. """ checked = checked if checked is not None else [] # Put a limit on how deep we go to avoid very long loops if len(checked) > 500: return None # Convert name to a regex and allow matching a number prefix # because Keras adds them automatically if isinstance(name, str): name = re.compile(name.replace("/", r"(\_\d+)*/")) parents = tensor.op.inputs for p in parents: if p in checked: continue if bool(re.fullmatch(name, p.name)): return p checked.append(p) a = self.ancestor(p, name, checked) if a is not None: return a return None def find_trainable_layer(self, layer): """If a layer is encapsulated by another layer, this function digs through the encapsulation and returns the layer that holds the weights. """ if layer.__class__.__name__ == 'TimeDistributed': return self.find_trainable_layer(layer.layer) return layer def get_trainable_layers(self): """Returns a list of layers that have weights.""" layers = [] # Loop through all layers for l in self.keras_model.layers: # If layer is a wrapper, find inner trainable layer l = self.find_trainable_layer(l) # Include layer if it has weights if l.get_weights(): layers.append(l) return layers def run_graph(self, images, outputs): """Runs a sub-set of the computation graph that computes the given outputs. outputs: List of tuples (name, tensor) to compute. The tensors are symbolic TensorFlow tensors and the names are for easy tracking. Returns an ordered dict of results. Keys are the names received in the input and values are Numpy arrays. """ model = self.keras_model # Organize desired outputs into an ordered dict outputs = OrderedDict(outputs) for o in outputs.values(): assert o is not None # Build a Keras function to run parts of the computation graph inputs = model.inputs if model.uses_learning_phase and not isinstance(K.learning_phase(), int): inputs += [K.learning_phase()] kf = K.function(model.inputs, list(outputs.values())) # Run inference molded_images, image_metas, windows = self.mold_inputs(images) # TODO: support training mode? # if TEST_MODE == "training": # model_in = [molded_images, image_metas, # target_rpn_match, target_rpn_bbox, # gt_boxes, gt_masks] # if not config.USE_RPN_ROIS: # model_in.append(target_rois) # if model.uses_learning_phase and not isinstance(K.learning_phase(), int): # model_in.append(1.) # outputs_np = kf(model_in) # else: model_in = [molded_images, image_metas] if model.uses_learning_phase and not isinstance(K.learning_phase(), int): model_in.append(0.) outputs_np = kf(model_in) # Pack the generated Numpy arrays into a a dict and log the results. outputs_np = OrderedDict([(k, v) for k, v in zip(outputs.keys(), outputs_np)]) for k, v in outputs_np.items(): log(k, v) return outputs_np ############################################################ # Data Formatting ############################################################ def compose_image_meta(image_id, image_shape, window, active_class_ids): """Takes attributes of an image and puts them in one 1D array. image_id: An int ID of the image. Useful for debugging. image_shape: [height, width, channels] window: (y1, x1, y2, x2) in pixels. The area of the image where the real image is (excluding the padding) active_class_ids: List of class_ids available in the dataset from which the image came. Useful if training on images from multiple datasets where not all classes are present in all datasets. """ meta = np.array( [image_id] + # size=1 list(image_shape) + # size=3 list(window) + # size=4 (y1, x1, y2, x2) in image cooredinates list(active_class_ids) # size=num_classes ) return meta def parse_image_meta_graph(meta): """Parses a tensor that contains image attributes to its components. See compose_image_meta() for more details. meta: [batch, meta length] where meta length depends on NUM_CLASSES """ image_id = meta[:, 0] image_shape = meta[:, 1:4] window = meta[:, 4:8] # (y1, x1, y2, x2) window of image in in pixels active_class_ids = meta[:, 8:] return [image_id, image_shape, window, active_class_ids] def mold_image(images, config): """Takes RGB images with 0-255 values and subtraces the mean pixel and converts it to float. Expects image colors in RGB order. """ return images.astype(np.float32) - config.MEAN_PIXEL def unmold_image(normalized_images, config): """Takes a image normalized with mold() and returns the original.""" return (normalized_images + config.MEAN_PIXEL).astype(np.uint8) ############################################################ # Miscellenous Graph Functions ############################################################ def trim_zeros_graph(boxes, name=None): """Often boxes are represented with matricies of shape [N, 4] and are padded with zeros. This removes zero boxes. boxes: [N, 4] matrix of boxes. non_zeros: [N] a 1D boolean mask identifying the rows to keep """ non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool) boxes = tf.boolean_mask(boxes, non_zeros, name=name) return boxes, non_zeros def batch_pack_graph(x, counts, num_rows): """Picks different number of values from each row in x depending on the values in counts. """ outputs = [] for i in range(num_rows): outputs.append(x[i, :counts[i]]) return tf.concat(outputs, axis=0)
[ "will.crawford@live.com" ]
will.crawford@live.com
846876364bc01fda2b044a0b561e2709369cd56c
268d9c21243e12609462ebbd6bf6859d981d2356
/Python/python_stack/Django/BeltReview/main/apps/books/models.py
fddd59aa3b548da3b7fdfa2c3d3484b1350a19f0
[]
no_license
dkang417/cdj
f840962c3fa8e14146588eeb49ce7dbd08b8ff4c
9966b04af1ac8a799421d97a9231bf0a0a0d8745
refs/heads/master
2020-03-10T03:29:05.053821
2018-05-23T02:02:07
2018-05-23T02:02:07
129,166,089
0
0
null
null
null
null
UTF-8
Python
false
false
1,886
py
from __future__ import unicode_literals from django.db import models from django import forms from django.core.exceptions import ValidationError # Create your models here. class UserManager(models.Manager): def basic_validator(self,postData): errors={} #validate password if len(postData['password']) < 8: errors["password"] = "password should be more than 8 characters" #checks that the passwords match if postData['password'] != postData['confirm']: errors["confirm"] = "passwords do not match" return errors class User(models.Model): name = models.CharField(max_length=255) alias = models.CharField(max_length=255) email = models.CharField(max_length=255) password = models.CharField(max_length=255) created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True) objects = UserManager() class AuthorManager(models.Manager): def validate_author(request, postData): errors = {} return errors class Author(models.Model): author = models.CharField(max_length=255) objects = AuthorManager() class BookManager(models.Manager): def validate_book(request,postData): errors = {} return errors class Book(models.Model): title = models.CharField(max_length=255) author = models.ForeignKey(Author, related_name="books") created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True) objects = BookManager() class ReviewManager(models.Manager): def validate_review(request, postData): errors = {} return errors class Review(models.Model): rating = models.IntegerField() comment = models.TextField() created_at = models.DateTimeField(auto_now_add = True) updated_at = models.DateTimeField(auto_now = True) book = models.ForeignKey(Book, related_name="reviews") user = models.ForeignKey(User, related_name="reviews") objects = ReviewManager()
[ "dkang417@gmail.com" ]
dkang417@gmail.com
254a54f04d7e2527304887a3982a7456e97068b4
a088c5e4c4c2e6c722ba2df47c35f4f98d540412
/eduzen_bot/plugins/messages/inline.py
3469090624de031336b06b61a3e51716ad9cbd40
[]
no_license
mikael85/bot
c884602363dba9efb716940981494987fa37e3d3
86751cf57061ae317804cfc19806ebb15d9ac8b4
refs/heads/master
2020-11-30T02:15:42.221636
2019-08-24T16:39:01
2019-08-24T16:39:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,283
py
import logging from uuid import uuid4 from telegram import InlineQueryResultArticle, InputTextMessageContent, ParseMode from telegram.utils.helpers import escape_markdown logger = logging.getLogger() def code_markdown(bot, update): query = update.inline_query.query if not query: return results = [ InlineQueryResultArticle( id=uuid4(), title="code", input_message_content=InputTextMessageContent( f"```\n{query}\n```", parse_mode=ParseMode.MARKDOWN ), ), InlineQueryResultArticle( id=uuid4(), title="Caps", input_message_content=InputTextMessageContent(query.upper()) ), InlineQueryResultArticle( id=uuid4(), title="Bold", input_message_content=InputTextMessageContent( "*{}*".format(escape_markdown(query)), parse_mode=ParseMode.MARKDOWN ), ), InlineQueryResultArticle( id=uuid4(), title="Italic", input_message_content=InputTextMessageContent( "_{}_".format(escape_markdown(query)), parse_mode=ParseMode.MARKDOWN ), ), ] bot.answer_inline_query(update.inline_query.id, results)
[ "eduardo.a.enriquez@gmail.com" ]
eduardo.a.enriquez@gmail.com
78e09543d9fe810959a5f9c88d88fc9890e0a11d
228a253a698fd8ceb0af4e63187ee201004aca4e
/IotServer.py
d6306058174631582c8a438fc2b709bd31389722
[]
no_license
mtpajula/iotLocalNetworkServer
4b16a5d93f5dcaab98afaec1e37a317d35bb4649
aa3c0187dff14c4bf568afa554f82cf13a2500f5
refs/heads/master
2021-05-11T14:34:57.921236
2018-02-23T17:40:29
2018-02-23T17:40:29
117,707,883
0
0
null
null
null
null
UTF-8
Python
false
false
3,580
py
# -*- coding: utf-8 -*- from IotServerDevice import * from time import sleep import copy import sys class IotServer: wait = 10 def __init__(self): self.d = IotServerDevice() def printer(self, category, message): if category == "t1": print("\n") print(message) print("======================================") elif category == "t2": print("\n") print(message) print("--------------------------------------") elif category == "p": print(message) elif category == "error": print(" ! ERROR: " + message) ''' run in terminal command mode Example: IotServer.py device=server command="reset devices" ''' def send_command(self, device, command): self.printer("p","Run in terminal command mode") #self.printer("t1","Load devices from db") self.d.collect_iot(True) for d in self.d.c.devices: if d.name == device: d.receive_command('command', command) if self.d.name == device: self.d.receive_command('command', command) # Send messages to db self.send_message(); def close_db(self): self.d.db.con.conn.close() def send_message(self): self.printer("t1","Send messages to db") self.d.db.set_messages(self.d.c.devices) self.d.db.set_messages([self.d]) ''' run in normal mode ''' def run(self, schedule = False): self.printer("p","Run in normal mode") # Get devs from db #self.printer("t1","Load devices from db") self.d.collect_iot(True) # get commands self.printer("t1","Get commands") self.d.db.get_commands(self.d.c.devices) self.d.db.get_commands([self.d]) # Send messages to db self.send_message(); ''' run in schedule mode ''' def runSchedule(self): self.printer("p","Run in schedule mode") # Get devs from db #self.printer("t1","Load devices from db") self.d.collect_iot(True) # Get scheduled commands self.printer("t1","Get scheduled commands") self.d.db.get_schedules(self.d.c.devices) self.d.db.get_schedules([self.d]) # get commands self.printer("t1","Get commands") self.d.db.get_commands(self.d.c.devices) self.d.db.get_commands([self.d]) # Send messages to db self.send_message(); ''' run in status mode ''' def runStatus(self): self.printer("p","Run in status mode") # Get devs from db #self.printer("t1","Load devices from db") self.d.collect_iot(True) # save statuses to db self.printer("t1","Save statuses to db") self.d.db.set_status(self.d.c.devices) self.d.db.set_status([self.d]) # Send messages to db self.send_message(); if __name__ == '__main__': iot = IotServer() if "schedule" in sys.argv: iot.runSchedule() iot.close_db() sys.exit() if "status" in sys.argv: iot.runStatus() iot.close_db() sys.exit() c = None d = None for ar in sys.argv: if "command=" in ar: arp = ar.split("=") c = arp[1] elif "device=" in ar: arp = ar.split("=") d = arp[1] if c != None and d != None: iot.send_command(d,c) iot.close_db() sys.exit() iot.run() iot.close_db()
[ "mtpajula@gmail.com" ]
mtpajula@gmail.com
67b528a1d4897d406c2df773535234cf98e46ce4
b7ada17734345131348d541d269c171ffbf88508
/Clase 15-11-2019/EJM EXCEPCIONES.py
ffef2497de09d7ed5d0c969e35a71e143b8da847
[]
no_license
PatrickPuente/Curso-Python-CEC-EPN
709094e0e10c26b5bb4883649383c9660b227c32
83c9e4f85ca939f12d4fc536e46f58c4470ffa0d
refs/heads/master
2020-09-11T16:18:56.670104
2019-11-16T17:43:50
2019-11-16T17:43:50
222,123,485
2
2
null
null
null
null
UTF-8
Python
false
false
640
py
import math '''try: y = 1/0 except ZeroDivisionError: print("Zero Division") except ArithmeticError: print("Arithmetic Problem") print("THE END") #VAriantes def badFun(n): try: return 1/n except ArithmeticError: print("Arithmetic Problem") return None badFun(0) print("THE END")''' '''def badFun(n): try: return n/0 except: print("I did it again") raise try: badFun(0) except ArithmeticError: print("dasdsa")''' x = float(input("Enter a Number: ")) assert x>=0.0 x = math.sqrt(x) print(x)
[ "noreply@github.com" ]
noreply@github.com
9616bdcb9ebc14028225fac131ca2aa6763cfb91
9e3205c13404f6bf2b36c96af7d0a9d2532596a0
/cart_pole/dqn.py
a37de3641dfad0cf9d3e7d3c578e6d83d554f348
[]
no_license
mminhou/openai
fce2da3e1b49da0b99a55087cc97e8890fb5a1f7
05418b83218f4f2b29d70deef4a41cde7ad6941e
refs/heads/master
2020-03-11T07:36:33.644382
2018-04-17T07:04:13
2018-04-17T07:04:13
129,861,281
0
0
null
null
null
null
UTF-8
Python
false
false
3,109
py
import numpy as np import random as random from collections import deque from cnn_tensorflow import CNN # See https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf for model description class DQN: def __init__(self, num_actions, observation_shape, dqn_params, cnn_params): self.num_actions = num_actions self.epsilon = dqn_params['epsilon'] self.gamma = dqn_params['gamma'] self.mini_batch_size = dqn_params['mini_batch_size'] # memory self.memory = deque(maxlen=dqn_params['memory_capacity']) # initialize network self.model = CNN(num_actions, observation_shape, cnn_params) print("model initialized") def select_action(self, observation): """ Selects the next action to take based on the current state and learned Q. Args: observation: the current state """ if random.random() < self.epsilon: # with epsilon probability select a random action action = np.random.randint(0, self.num_actions) else: # select the action a which maximizes the Q value obs = np.array([observation]) q_values = self.model.predict(obs) action = np.argmax(q_values) return action def update_state(self, action, observation, new_observation, reward, done): """ Stores the most recent action in the replay memory. Args: action: the action taken observation: the state before the action was taken new_observation: the state after the action is taken reward: the reward from the action done: a boolean for when the episode has terminated """ transition = {'action': action, 'observation': observation, 'new_observation': new_observation, 'reward': reward, 'is_done': done} self.memory.append(transition) def get_random_mini_batch(self): """ Gets a random sample of transitions from the replay memory. """ rand_idxs = random.sample(range(len(self.memory)), self.mini_batch_size) mini_batch = [] for idx in rand_idxs: mini_batch.append(self.memory[idx]) return mini_batch def train_step(self): """ Updates the model based on the mini batch """ if len(self.memory) > self.mini_batch_size: mini_batch = self.get_random_mini_batch() Xs = [] ys = [] actions = [] for sample in mini_batch: y_j = sample['reward'] # for nonterminals, add gamma*max_a(Q(phi_{j+1})) term to y_j if not sample['is_done']: new_observation = sample['new_observation'] new_obs = np.array([new_observation]) q_new_values = self.model.predict(new_obs) action = np.max(q_new_values) y_j += self.gamma*action action = np.zeros(self.num_actions) action[sample['action']] = 1 observation = sample['observation'] Xs.append(observation.copy()) ys.append(y_j) actions.append(action.copy()) Xs = np.array(Xs) ys = np.array(ys) actions = np.array(actions) self.model.train_step(Xs, ys, actions)
[ "exit19093@gmail.com" ]
exit19093@gmail.com
66d3b82f69e86c48f0251452cf320598139f48d5
f7108e688415975baf5e3290d9b210585e4faaed
/monkeybat2.1/date.py
04e20469868384d3244bafb377ee7322bf43019a
[]
no_license
lijiansheng325/python-2019
20ef1a960bc1cd8f09c0133eafda2755d273e2a4
a577992d71d7d36a93d9cbb7658887c9152173f1
refs/heads/master
2020-04-19T03:30:48.426503
2019-01-30T09:12:02
2019-01-30T09:12:02
167,936,368
0
1
null
null
null
null
UTF-8
Python
false
false
1,231
py
class Date(object): def __init__(self, day=0, month=0, year=0): self.day = day self.month = month self.year = year def __str__(self): return "{0}-{1}-{2}".format(self.year, self.month, self.day) @classmethod def from_string(cls, date_as_string): year, month, day = map(int, date_as_string.split('-')) date1 = cls(day, month, year) return date1 @staticmethod def is_date_valid(date_as_string): year, month, day = map(int, date_as_string.split('-')) return day <= 31 and month <= 12 and year <= 3999 @staticmethod def millenium(month, day): return Date(month, day, 2000) class DateTime(Date): def __str__(self): return "{0}-{1}-{2} - 00:00:00PM".format(self.year, self.month, self.day) if __name__=="__main__": s='3000-09-11' if Date.is_date_valid(s): date1 = Date.from_string(s) print date1 date2 = DateTime.from_string(s) print date2 millenium_new_year1 = Date.millenium(1, 1) print millenium_new_year1 millenium_new_year2 = DateTime.millenium(10, 10) print millenium_new_year2
[ "lijiansheng325@163.com" ]
lijiansheng325@163.com
2bfac6ff84eb132dbe0ca2d7e60294830f89405d
697948f1b4e889258d64e4b641aa00f352c915d2
/model/relation_prediction_semantic_loss/mydataloader.py
e0c59029b30751d753cdaf9484117914bd70a388
[]
no_license
cheunglei/myLENSR
6c8ad0376d907396b2db53f9ac42c76a001cd2eb
063e50cc66dcc4390423150af89e95a9e0d2493a
refs/heads/master
2021-03-21T02:02:16.576945
2020-05-18T08:02:47
2020-05-18T08:02:47
247,254,279
0
0
null
null
null
null
UTF-8
Python
false
false
2,456
py
from torch.utils.data import Dataset, DataLoader from torch import Tensor import numpy as np import pickle as pk class VRD_dataset(Dataset): def __init__(self, train_set_keys, image_features_train, annotation_train, information): self.train_set_keys = train_set_keys self.image_features_train = image_features_train self.annotation_train = annotation_train self.information = information def __len__(self): return len(self.train_set_keys) def __getitem__(self, idx): img = self.train_set_keys[idx] pairs = list(self.annotation_train[img].keys()) x = [] y = [] info = [] for i in range(len(pairs)): key = pairs[i] relation = self.annotation_train[img][key] if relation == 100: if np.random.random() < 0.01 and (self.information[img][key][1][1] != self.information[img][key][2][1]): x.append(self.image_features_train[img][key]) y.append(relation) info.append(self.information[img][key]) else: x.append(self.image_features_train[img][key]) y.append(relation) info.append(self.information[img][key]) x = Tensor(x) y = Tensor(y).long() # print ('debug',img,pairs,x,y,info) return x, y, info class VRD_dataset_test(Dataset): def __init__(self, train_set_keys, image_features_train, annotation_train, information): self.train_set_keys = train_set_keys self.image_features_train = image_features_train self.annotation_train = annotation_train self.information = information def __len__(self): return len(self.train_set_keys) def __getitem__(self, idx): # print(idx) img = self.train_set_keys[idx] pairs = list(self.annotation_train[img].keys()) x = [] y = [] info = [] for i in range(len(pairs)): key = pairs[i] relation = self.annotation_train[img][key] if self.information[img][key][1][1] != self.information[img][key][2][1]: x.append(self.image_features_train[img][key]) y.append(relation) info.append(self.information[img][key]) x = Tensor(x) y = Tensor(y).long() # print ('debug',img,pairs,x,y,info) return x, y, info
[ "948594226@qq.com" ]
948594226@qq.com
52722c46ff54f9d588bdd4cd1a24506d64dacd60
bcc2d156334d3680561b17cec82cbc31a5ea07ad
/String/22. Generate Parentheses.py
2431fefda0dcde528d7eafd0b65a378afe0ebe31
[]
no_license
kevinsshah/Leetcode
72b14e226b6881bcd18913b2fa132b0e3f8dd6ef
4419f46e6f6b1d96ff8b7066fce687cfa88e65a0
refs/heads/master
2020-03-25T23:00:49.851183
2018-09-08T04:13:27
2018-09-08T04:13:27
144,255,457
0
0
null
null
null
null
UTF-8
Python
false
false
2,129
py
# Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses. # # For example, given n = 3, a solution set is: # # [ # "((()))", # "(()())", # "(())()", # "()(())", # "()()()" # ] class Solution(object): def generateParenthesis(self, n): """ :type n: int :rtype: List[str] """ # def helper(A = []): # if len(A) == 2*n: # if isValid(A): # ans.append("".join(A)) # else: # A.append("(") # helper(A) # A.pop() # A.append(")") # helper(A) # A.pop() # def isValid(A): # bal = 0 # for c in A: # if c == "(": # bal+=1 # else: # bal -= 1 # if bal < 0: # return False # return bal == 0 # ans = [] # helper() # return ans # def backtrack(S = '', left = 0, right = 0): # if len(S) == 2*n: # ans.append(S) # return # if left < n: # backtrack(S+"(", left + 1, right) # if right < left: # backtrack(S+")", left, right + 1) # ans = [] # backtrack() # return ans ans = [] def helper(left, right, string, ans): if right < left: return if not left and not right: ans.append(string) return if left: helper(left - 1, right, string + "(", ans) if right: helper(left, right - 1, string + ")", ans) helper(n, n, "", ans) return ans
[ "shah.kevi@husky.neu.edu" ]
shah.kevi@husky.neu.edu
1f43b2642f2cdbd247d3109f36b3583af0b787b8
adc53c3aa155a93610261353df13ae0b25393f7a
/src/app/api/files.py
d9c2ebc273e444cc8a6e6769f8eb359a3c004451
[]
no_license
alvinTaoOps/geofiles-api
fe9b95a63117cbfcceb7e404c0bd7c94b2bedfbe
66bb1bd09d57f294a40ed8aec13ab58a2234ca6f
refs/heads/master
2023-07-18T10:52:19.939089
2021-04-27T16:55:41
2021-04-27T16:55:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,897
py
from typing import Optional, List from fastapi import APIRouter, status, UploadFile, File, Header, Request from ..db import files as files_repository from ..utils.Exceptions import raise_422_exception, raise_401_exception, raise_404_exception, raise_410_exception from ..utils.http import HTTPFactory from ..core.validator import Validator, SupportedFormat from ..core.convertors.helper_functions import convert_to_geojson as to_geojson, convert_to_cad as to_cad, \ convert_to_shp as to_shp from fastapi.responses import FileResponse from pathlib import Path from geojson_pydantic.features import FeatureCollection from .schemas import FileRecord, PublicFile import os router = APIRouter() async def file_request_handler(file_uuid: str, request: Request, token: Optional[str] = Header(None)): if not request.state.user: raise_401_exception() file_record = await files_repository.get_one(file_uuid) if not file_record: raise_410_exception() if file_record.get("user_id") != request.state.user["user_id"]: raise_401_exception() if not Path(file_record.get("path")).exists(): raise_410_exception() return FileRecord.parse_obj(dict(file_record)) @router.post("/upload/", status_code=status.HTTP_201_CREATED) async def create_upload_file(request: Request, file: UploadFile = File(...), token: Optional[str] = Header(None)): filename, file_extension = os.path.splitext(file.filename) if file_extension not in Validator.SUPPORTED_FORMAT: raise_422_exception() if not request.state.user: raise_401_exception() file_uuid = await files_repository.create_from_request(file, file_extension, request.state.user) return file_uuid @router.get("/{file_uuid}", status_code=status.HTTP_200_OK) async def download_file(request: Request, file_uuid: str, token: Optional[str] = Header(None)): file_record = await file_request_handler(file_uuid, request) return FileResponse( file_record.path, media_type=SupportedFormat.get_mime_type(file_record.type), filename=file_record.file_name) @router.get("/{file_uuid}/format", status_code=status.HTTP_200_OK) async def get_allowed_formats(request: Request, file_uuid: str, token: Optional[str] = Header(None)): file_record = await file_request_handler(file_uuid, request) available_format = SupportedFormat.get_available_format(file_record.type) urls = [f"/{file_uuid}/to{export_format}" for export_format in available_format] return urls @router.get("/{file_uuid}/toGEOJSON", response_model=FeatureCollection, status_code=status.HTTP_200_OK) async def convert_to_geojson(request: Request, file_uuid: str, token: Optional[str] = Header(None)): file_record = await file_request_handler(file_uuid, request) geojson_response = await to_geojson(file_record, stream=False) if not geojson_response: raise_422_exception() file_name = f"{os.path.splitext(file_record.file_name)[0]}.json" return FileResponse( geojson_response, media_type='application/json', filename=file_name) @router.get("/{file_uuid}/toCAD", status_code=status.HTTP_200_OK) async def convert_to_dwg(request: Request, file_uuid: str, token: Optional[str] = Header(None)): file_record = await file_request_handler(file_uuid, request) dwg_response = await to_cad(file_record) if not dwg_response: raise_422_exception() file_name = f"{os.path.splitext(file_record.file_name)[0]}.dxf" return FileResponse( dwg_response, media_type='application/dxf', filename=file_name) @router.get("/{file_uuid}/toSHP", status_code=status.HTTP_200_OK) async def convert_to_shp(request: Request, file_uuid: str, token: Optional[str] = Header(None)): file_record = await file_request_handler(file_uuid, request) shp_response = await to_shp(file_record) if not shp_response: raise_422_exception() file_name = f"{os.path.splitext(file_record.file_name)[0]}.zip" return FileResponse( shp_response, media_type='application/zip', filename=file_name) @router.get("/{file_uuid}/stream/geojson", response_model=FeatureCollection, status_code=status.HTTP_200_OK) async def convert_to_geojson(request: Request, file_uuid: str, token: Optional[str] = Header(None)): file_record = await file_request_handler(file_uuid, request) geojson_response = await to_geojson(file_record, stream=True) if not geojson_response: raise_422_exception() return FeatureCollection.parse_raw(geojson_response) @router.get("/", status_code=status.HTTP_200_OK, response_model=List[PublicFile]) async def retrieve_users_files(request: Request, token: Optional[str] = Header(None)): if not request.state.user: raise_401_exception() users_files = await files_repository.retrieve_users_files(request.state.user["user_id"]) return users_files
[ "jossefaz@protonmail.com" ]
jossefaz@protonmail.com
a926afb7922e05c0385c644c79fe80df6e229e01
ff983c83c59011c91ef1d28ef0b6ce6bfd843d8e
/cola.py
9f4af97d65cbd2e4bbb9bc14d98eccfe9ac5f6b7
[]
no_license
jiterman/Flights-Manager
7af81f025342988ef5a9497dd79f0849e87ba43c
197d49aa3f012846521d3e06a992fcf0d8b2b9d9
refs/heads/master
2022-11-05T11:43:53.566874
2020-06-22T01:09:16
2020-06-22T01:09:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
328
py
class Cola: def __init__(self): self.items = [] def encolar(self, x): self.items.append(x) def desencolar(self): if self.esta_vacia(): raise ValueError("La cola esta vacia") return self.items.pop(0) def esta_vacia(self): return len(self.items) == 0
[ "noreply@github.com" ]
noreply@github.com
12d896a3fb16ddce598c3c26b8715790f3f41155
bb7ee0c29834864964a445cc7cc68a742937791c
/file_crawler_w_yts_downloader.py
667d19c6ff4a1df526fb6ea31d1ddfe5ce354fed
[]
no_license
quadcube/Automated-Yify-Subtitle-Downloader
6a5ef01f70cb44e77f602bf8fac529c9f3436cf1
2254fccdebe61fa2871123267556b11cd75bb4c7
refs/heads/master
2020-08-23T08:38:44.358378
2020-04-12T14:18:36
2020-04-12T14:18:36
216,580,113
0
0
null
null
null
null
UTF-8
Python
false
false
12,176
py
import os import re import urllib import logging import requests # pip install requests from zipfile import ZipFile from html2text import HTML2Text # pip install html2text log_path = "/Users/quadcube/Project/Subtitle Tool" log_name = "file_crawler_w_yts_downloader" logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s", handlers=[logging.FileHandler("{0}/{1}.log".format(log_path, log_name)), logging.StreamHandler()]) logger = logging.getLogger() root_dir = "/Volumes/GoogleDrive/My Drive/Server Backup/WD_MyBookLive_2TB/Public/Shared Videos/" #os.getcwd() root_url = "http://www.yifysubtitles.com" # 1) www.yifysubtitles.com 2) yts-subs.com (need refinement) srt_language = ['English'] srt_manual_select = False refresh_yts_srt = False # if YTS movie files are found, rename any srt files (.backup) in that folder and download the best srt remove_invalid_srt = True invalid_srt_size_threshold = 1024 # remove anything less than 1024 bytes if remove_invalid_srt = True valid_movie_file_ext = ['.mp4', '.m4v', '.avi', '.mkv', '.mov', '.webm', '.flv', '.vob', '.rm', '.rmvb', '.wmv', '.m4v', '.mpeg', '.mpg', '.m2v', '.MTS', '.M2TS', '.TS'] def html2text(url): raw_html = requests.get(url) raw_html.raise_for_status() # raise exception if status code is not 200 h = HTML2Text() h.ignore_links = False return h.handle(raw_html.text) # html2text translate html to readable text def main(): counter_movie = 0 counter_movie_w_srt = 0 counter_movie_dl_srt = 0 counter_movie_dl_srt_failed = 0 counter_movie_no_srt = 0 counter_no_movie = 0 for dir_name, subdir_list, file_list in os.walk(root_dir): # crawl thru current directory if '/' in dir_name[len(root_dir):] or dir_name == root_dir: continue # only transverse one level deep else: logger.debug('Found dir: {}'.format(dir_name)) found_srt = False counter_movie += 1 for file_name in file_list: if file_name.lower().endswith('.srt'): if refresh_yts_srt == True and ('yts' in file_name.lower() or 'yify' in file_name.lower()): logger.debug('Renaming srt file_list: {}'.format(file_list)) os.rename(dir_name + '/' + file_name, dir_name + '/' + file_name[:-4] + '.backup') # rename .srt to .backup break else: logger.debug('Found file_list: {}'.format(file_list)) if remove_invalid_srt == True: if os.stat(dir_name + '/' + file_name).st_size < invalid_srt_size_threshold: logger.info('Removing file {}'.format(file_name)) os.remove(dir_name + '/' + file_name) break found_srt = True counter_movie_w_srt += 1 break if found_srt == False: try: found_movie = False dir_name_list = dir_name[len(root_dir):].split("(", maxsplit=1) dir_name_year = dir_name_list[1].split(")", maxsplit=1)[0] search_query = dir_name_list[0].strip() # remove year and lead, trailing whitespace as yifisubtitle.com search query will return nothing for i in range(search_query.count(' ') + 1): # i = 0, .replace() does nothing if root_url == "http://www.yifysubtitles.com": text_html = html2text(root_url + '/search?' + urllib.parse.urlencode({'q':search_query.replace(' ', ': ', i).replace(': ', ' ', i-1)})) # Try diff combinations of ":" in the search query else: # yts-subs.com text_html = html2text(root_url + '/search/' + urllib.parse.quote(search_query).replace(' ', ': ', i).replace(': ', ' ', i-1)) relevant_results = re.findall('\/movie-imdb\/.+\)\n+.\n+.+\n+.+year', text_html) for result in relevant_results: result_list = result.split(')\n\n[\n\n### ', maxsplit=1) result_link = result_list[0] result_name = result_list[1].split('\n\n')[0] for j in range(5): if result[-5 - j].isdigit(): # as long as not digit, backtrack until digit is found result_year = result[-8 - j:-4 - j] break if result_name.lower() == search_query.lower().replace(' ', ': ', i).replace(': ', ' ', i-1) and dir_name_year == result_year: logger.info('Found movie: {} Year: {}'.format(result_name, result_year)) found_movie = True break if found_movie == True: break if found_movie == True: text_html = html2text(root_url + result_link) #print(repr(text_html)) relevant_results = re.findall('\s\s\n\d{1,}\s?\|\s\s?\w+\s?\|\s\s?\[\s?subtitle\s.+\d\)\s\s\n\s\s\n', text_html, re.DOTALL) #re.findall('\s\s\n\d{1,}\s?\|\s\s?\w+\s?\|\s\s?\[\s?subtitle\s.+####\sTrailer', text_html, re.DOTALL) if len(relevant_results) > 1: logger.warning('Relevant result more than 1. {}'.format(dir_name)) if len(relevant_results) == 0: logger.warning('No srt found on {}! {}'.format(root_url, dir_name)) else: relevant_results = relevant_results[0].split(' \n') subtitle_results = {} subtitle_num = 0 for result in relevant_results: if result != '': if result[0].isnumeric(): result = result.replace('\n', '').replace(' ', '').split('|') # first remove the annoying \n, spaces and split according to tags if result[1] in srt_language: result_title_link = result[2].replace('[subtitle', '').split('](/subtitles') subtitle_results[subtitle_num] = {'Rate': int(result[0]), 'Lang': result[1], 'Title': result_title_link[0], 'Link': '/subtitle' + result_title_link[1][:-1] + '.zip', 'Uploader': result[4][1:].split('](')[0] if result[3] == '' else result[3]} #if srt_manual_select == True: logger.info('({}) {}'.format(subtitle_num, subtitle_results[subtitle_num])) subtitle_num += 1 if subtitle_num > 0: # check whether there's any filtered srt if srt_manual_select == True and subtitle_num > 0: while True: try: user_selection = int(input('Select subtitle (e.g. 0/1/2/...)')) if user_selection < len(subtitle_results): break else: raise except: print('Option is not valid!') subtitle_results = subtitle_results[user_selection] else: # Auto srt selection subtitle_yts_rank = (None, 0) # subtitle_key, rating subtitle_rank = (None, 0) # subtitle_key, rating for subtitle_key, subtitle_value in subtitle_results.items(): if subtitle_yts_rank[1] <= subtitle_value['Rate'] and ('yts' in subtitle_value['Title'].lower() or 'yify' in subtitle_value['Title'].lower()): #prioritize YTS tags in title, since most movie files are obtained from YTS' subtitle_yts_rank = (subtitle_key, subtitle_value['Rate']) elif subtitle_rank[1] <= subtitle_value['Rate']: subtitle_rank = (subtitle_key, subtitle_value['Rate']) if subtitle_yts_rank[0] == None: # if YTS srt is not available, use non-YTS subtitle_yts_rank = subtitle_rank subtitle_results = subtitle_results[subtitle_yts_rank[0]] logger.info(subtitle_results) logger.debug(file_list) movie_name = None for file_name in file_list: for file_type in valid_movie_file_ext: if file_name.endswith(file_type): found_movie = file_name.replace(file_type, '.srt') break if found_movie != None: with open(dir_name + '/temp_srt.zip', 'wb') as srt_zip_file: srt_zip_file.write(requests.get(root_url + subtitle_results['Link']).content) # TODO: yts-subs.com subtitles come from www.yifysubtitles.com, hence root_url won't work. with ZipFile(dir_name + '/temp_srt.zip') as srt_zip_file: srt_zip_file_list = srt_zip_file.namelist() for srt_file in srt_zip_file_list: if srt_file.lower().endswith('.srt'): srt_zip_file.extract(srt_file, dir_name) break os.rename(dir_name + '/' + srt_file, dir_name + '/' + found_movie) # rename srt to match movie file os.remove(dir_name + '/temp_srt.zip') counter_movie_dl_srt += 1 else: logger.warning('No filtered srt found on {}! {}'.format(root_url, dir_name)) counter_movie_no_srt += 1 else: logger.warning('No movie found on {}! {}'.format(root_url, dir_name)) counter_no_movie += 1 except Exception as error: logger.exception(error) counter_movie_dl_srt_failed += 1 #logger.info(text_html) # Errors caused by line 57 is due to missing year info in dir_name # Errors caused by bad html response code, ignore since there's nothing to do about it logger.debug('Current stat -> Movie: {}\tMovie w srt: {}\tMovie dl srt: {}\tMovie dl srt failed: {}\tMovie no srt failed: {}\tNo movie: {}'.format(counter_movie, counter_movie_w_srt, counter_movie_dl_srt, counter_movie_dl_srt_failed, counter_movie_no_srt, counter_no_movie)) logger.info('Final stat -> Movie: {}\tMovie w srt: {}\tMovie dl srt: {}\tMovie dl srt failed: {}\tMovie no srt failed: {}\tNo movie: {}'.format(counter_movie, counter_movie_w_srt, counter_movie_dl_srt, counter_movie_dl_srt_failed, counter_movie_no_srt, counter_no_movie)) logging.info('Completed. Exiting...') if __name__== "__main__": main()
[ "noreply@github.com" ]
noreply@github.com
2e2d00ecfeb31b0168a0130af2aa68e6f2967de9
aa245f4e900ab0f27eee9b0fb2d7c9f7d4172269
/tests/test_utils.py
5c5bd201679fb0fdf8b3403da887b2dcab97dcbe
[ "MIT" ]
permissive
Vetrovec/chainee
ed4edd4e92637b29fcf5ff0493de6f6983e66e98
3a1a300f86ad8aeb385d8de7f766dd035c039f04
refs/heads/master
2022-04-05T13:54:38.804711
2020-02-01T14:11:16
2020-02-01T14:11:16
235,657,376
0
0
null
null
null
null
UTF-8
Python
false
false
3,992
py
from unittest import TestCase import chainee.utils as utils class TestUtils(TestCase): def test_is_hex_string(self): self.assertTrue(utils.is_hex_string("AbCdeF1234567890"), "is hex") self.assertFalse(utils.is_hex_string("abcdefg"), "is not hex") def test_validate_private_key(self): self.assertTrue( utils.validate_private_key("685CF62751CEF607271ED7190b6a707405c5b07ec0830156e748c0c2ea4a2cfe"), "is valid private key" ) self.assertFalse( utils.validate_private_key("0000000000000000000000000000000000000000000000000000000000000000"), "is not valid private key" ) self.assertFalse( utils.validate_private_key("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"), "is not valid private key" ) def test_validate_address(self): self.assertTrue( utils.validate_address("0000000000000000000000000000000000000000"), "is valid address" ) self.assertTrue( utils.validate_address("c70f4891d2ce22b1f62492605c1d5c2fc1a8ef47"), "is valid address" ) self.assertFalse( utils.validate_address("1234567890"), "is not valid address" ) self.assertFalse( utils.validate_address("abcdefghijklmnopqrstuvwxyzabcdefghijklmn"), "is not valid address" ) def test_sha3(self): self.assertEqual( utils.sha3("abcdef"), "8b8a2a6bc589cd378fc57f47d5668c58b31167b2bf9e632696e5c2d50fc16002" ) self.assertEqual( utils.sha3("test", False), "36f028580bb02cc8272a9a020f4200e346e276ae664e45ee80745574e2f5ab80" ) def test_generate_private_key(self): self.assertTrue( utils.validate_private_key(utils.generate_private_key()), "should generate valid private key" ) def test_get_pub_key(self): self.assertEqual( utils.get_pub_key("685cf62751cef607271ed7190b6a707405c5b07ec0830156e748c0c2ea4a2cfe"), "6b2cc423e68813a13b4f0b3c7666939d20f845a40104a3c85db2d8a3bcfd9517620075fac7de10a94073ab9a09a9a8dd28bb44adaaf24bf334a6c6258524dd08" ) def test_address_from_public(self): self.assertEqual( utils.address_from_public("6b2cc423e68813a13b4f0b3c7666939d20f845a40104a3c85db2d8a3bcfd9517620075fac7de10a94073ab9a09a9a8dd28bb44adaaf24bf334a6c6258524dd08"), "c70f4891d2ce22b1f62492605c1d5c2fc1a8ef47" ) def test_address_from_private(self): self.assertEqual( utils.address_from_private("685cf62751cef607271ed7190b6a707405c5b07ec0830156e748c0c2ea4a2cfe"), "c70f4891d2ce22b1f62492605c1d5c2fc1a8ef47" ) def test_sign(self): self.assertEqual( utils.sign("abcdef", "685cf62751cef607271ed7190b6a707405c5b07ec0830156e748c0c2ea4a2cfe"), "b90e97baea96a2120a53d3ba34201705891e79beb8b86cfaf26a4e467264ac6e2481ffed9036a8403161d1d0bf7a7485f6e190d1ffdc1bccefd74fe6c547b30a01" ) self.assertEqual( utils.sign("test", "685cf62751cef607271ed7190b6a707405c5b07ec0830156e748c0c2ea4a2cfe", False), "6f2dfa18ba808d126ef8d7664cbb5331a4464f6ab739f82981a179e47569550636daa57960b6bfeef2981ea61141ce34b2febe811394ce3b46ffde0ce121516101" ) def test_recover(self): self.assertEqual( utils.recover("abcdef", "b90e97baea96a2120a53d3ba34201705891e79beb8b86cfaf26a4e467264ac6e2481ffed9036a8403161d1d0bf7a7485f6e190d1ffdc1bccefd74fe6c547b30a01"), "c70f4891d2ce22b1f62492605c1d5c2fc1a8ef47" ) self.assertEqual( utils.recover("test", "6f2dfa18ba808d126ef8d7664cbb5331a4464f6ab739f82981a179e47569550636daa57960b6bfeef2981ea61141ce34b2febe811394ce3b46ffde0ce121516101", False), "c70f4891d2ce22b1f62492605c1d5c2fc1a8ef47" )
[ "stepan.vetrovec@gmail.com" ]
stepan.vetrovec@gmail.com
b96c59645e8a2d9a6c3fc4d83acb6984da618953
dfe50c0041a5dc23b63ea39369d115a8b74c56f0
/array_167.py
e396760dac8bbbcd6d360a390f08503b38081aa2
[]
no_license
cainingning/leetcode
1c624caf6330d2e1af4835741e5f0748c3f9513b
09b7121628df824f432b8cdd25c55f045b013c0b
refs/heads/master
2021-07-07T14:28:09.207501
2019-02-22T08:48:55
2019-02-22T08:48:55
142,756,206
1
0
null
null
null
null
UTF-8
Python
false
false
513
py
class Solution: def twoSum(self, numbers, target): """ :type numbers: List[int] :type target: int :rtype: List[int] """ l_index = 0 r_index = len(numbers) - 1 while l_index < r_index: if numbers[l_index] + numbers[r_index] == target: return [l_index, r_index] elif numbers[l_index] + numbers[r_index] < target: l_index += 1 else: r_index -= 1 return []
[ "499814159@qq.com" ]
499814159@qq.com
79e2b660e292e440ae352f3b6b11c484f59e6ad4
ad00e2f10ae396a02ded81d90e31e90a8999fbc8
/kaggle/DigitRecognizer/tensorflow-cnn2.py
c32ba7704e1c74578cabd9e8f115fde48eed94a7
[]
no_license
yixiaoyang/SmallData
a8c2f8525cf12b6c2e719c5aca0dee1580ce7215
6643ac67a150e1d7fdb924c8dde501f8c72fd40f
refs/heads/master
2021-01-17T09:55:31.630233
2020-04-02T18:19:26
2020-04-02T18:19:26
59,277,497
0
0
null
null
null
null
UTF-8
Python
false
false
7,728
py
# coding: utf-8 #!/usr/bin/python import tensorflow as tf import pandas as pd import numpy as np import time class DigitsModelCNN(object): def __init__(self): self.train_input = tf.placeholder(tf.float32, shape=[None,784]) self.train_out = tf.placeholder(tf.float32, shape=[None,10]) self.keep_prob = tf.placeholder(tf.float32) self.sess = tf.Session() # 21000 =》100*210 self.batch_size = 100 self.epochs = 210*16 self.learn_rate = 5e-4 ''' @func Computes a 2-D convolution given 4-D input and filter tensors. @param input 4-D input tensor of shape [batch, in_height, in_width, in_channels] filter 4-D filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels] @return ''' def conv2d(self, input, filter, stride_w=1, stride_h=1): return tf.nn.conv2d(input, filter, strides=[1,stride_w,stride_h,1], padding='SAME') ''' @func Performs the max pooling on the input. @param input 4-D Tensor with shape [batch, height, width, channels] and type tf.float32 ksize A list of ints that has length >= 4. The size of the window for each dimension of the input tensor. strides A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor @return ''' def max_pool_2x2(self, input, stride_w=2, stride_h=2): return tf.nn.max_pool(input, ksize=[1,2,2,1], strides=[1,stride_w,stride_h,1], padding="SAME") ''' @func outputs random values from a truncated normal distribution. ''' def init_w(self,shape): # the standard deviation is 0.1 value = tf.truncated_normal(shape=shape, stddev=0.1) return tf.Variable(value) ''' @func outputs random values as bias ''' def init_b(self,shape): value = tf.constant(0.1, shape=shape) return tf.Variable(value) ''' @note LeNet-5 Architecture layer operation feature-maps kernel stride size activation in input 1(gray image) - - 28*28 - C1 convolution 16 5*5 1 28*28 relu S2 avg pool 16 2*2 2 14*14 relu C3 convolution 32 3*3 1 14*14 relu S4 avg pool 32 2*2 2 7*7 relu F5 full connected - - - 256 relu out full connected - - - 10 - ''' def build(self): self.train_input = tf.placeholder(tf.float32, shape=[None,784]) self.input = tf.reshape(self.train_input, [-1, 28, 28, 1]) self.f_c1 = self.init_w([5,5,1,16]) self.b_c1 = self.init_b([16]) self.c1 = tf.nn.relu(self.conv2d(self.input, self.f_c1) + self.b_c1) self.s2 = self.max_pool_2x2(self.c1) self.f_c3 = self.init_w([5,5,16,32]) self.b_c3 = self.init_b([32]) self.c3 = tf.nn.relu(self.conv2d(self.s2, self.f_c3) + self.b_c3) self.s4 = self.max_pool_2x2(self.c3) self.w_f5 = self.init_w([7*7*32, 256]) self.b_f5 = self.init_b([256]) self.x_f5 = tf.reshape(self.s4, [-1,7*7*32]) self.f5 = tf.nn.relu(tf.matmul(self.x_f5, self.w_f5) + self.b_f5) # out@10 self.f5_drop = tf.nn.dropout(self.f5, self.keep_prob) self.w_out = self.init_w([256,10]) self.b_out = self.init_b([10]) self.out = tf.nn.softmax(tf.matmul(self.f5_drop, self.w_out) + self.b_out) self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.out, labels=self.train_out)) self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learn_rate).minimize(self.loss) predict = tf.equal(tf.argmax(self.out,1), tf.argmax(self.train_out,1)) self.accuracy = tf.reduce_mean(tf.cast(predict, tf.float32)) def train(self, train_x, train_y, test_x, test_y, keep_prob=0.1): print("start training") self.sess.run(tf.global_variables_initializer()) batch_start = 0 batch_end = batch_start + self.batch_size print(self.train_input.shape) print(self.train_out.shape) for epoch in range(self.epochs): _, loss, prob = self.sess.run([self.optimizer, self.loss, self.out],feed_dict={ self.train_input : train_x[batch_start:batch_end], self.train_out: train_y[batch_start:batch_end], self.keep_prob : keep_prob }) if epoch %100 == 0: train_accuracy = self.sess.run(self.accuracy, feed_dict={ self.train_input: train_x[0:1024], self.train_out: train_y[0:1024], self.keep_prob: 1.0 }) validate_accuracy = self.sess.run(self.accuracy, feed_dict={ self.train_input: test_x, self.train_out: test_y, self.keep_prob: 1.0 }) print("epoch %d, training accuracy %g, validate accuracy %g" % (epoch, train_accuracy, validate_accuracy)) batch_start = batch_end batch_end = batch_start + self.batch_size if(batch_end > train_x.shape[0]): print("reset batch") batch_start = 0 batch_end = batch_start + self.batch_size train_x, train_y = self.permutation(train_x, train_y) print("training done") def permutation(selfself, x, y): sequence = np.random.permutation(x.shape[0]) return x[sequence], y[sequence] def info(self): print("c1,s2,c3,s4,c5 shape:") print(self.c1.shape) print(self.s2.shape) print(self.c3.shape) print(self.s4.shape) print(self.f5.shape) print('-'*16) print(train_x.shape) print(train_y.shape) def dense_to_one_hot(labels_dense, num_classes): num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def load_data(filename, train_data=True, split=0.9): data_frame = pd.read_csv(filename) # (42000, 785) print(data_frame.shape) train_data_len = data_frame.shape[0] train_data_split = int(train_data_len*split) print(train_data_split) train_x = data_frame.iloc[:train_data_split, 1:].values train_x = train_x.astype(np.float) train_x = np.multiply(train_x, 1.0/255.0) train_y = data_frame.iloc[:train_data_split, 0].values train_y = dense_to_one_hot(train_y,10) validate_x = data_frame.iloc[train_data_split:, 1:].values validate_x = validate_x.astype(np.float) validate_x = np.multiply(validate_x, 1.0/255.0) validate_y = data_frame.iloc[train_data_split:, 0].values validate_y = dense_to_one_hot(validate_y,10) print(train_x.shape) print(train_y.shape) print(validate_x.shape) print(validate_y.shape) return train_x, train_y, validate_x, validate_y train_x, train_y, validate_x, validate_y = load_data('./data/train.csv') print(train_y.shape) print(train_y[0:4,]) cnn = DigitsModelCNN() cnn.build() cnn.info() time_start = time.time() cnn.train(train_x, train_y, validate_x, validate_y) time_end = time.time() print("total training time:") print(time_end-time_start)
[ "hityixiaoyang@gmail.com" ]
hityixiaoyang@gmail.com
066a5edb911a9b5069125b1aee9dfad1bbc78dbb
7d74195bd00cbe8516670c8fe718e983106c9830
/src/data_types/test_collections_ordereddict.py
ee4fe8c69fee1eec3bc707d6f7b10d39022930d8
[]
no_license
masa4u/example_python
7ab3d48020855ad493336afcd8d0c02eb3104b2b
7bdee4cb8e90255b20353f7f95d3e879f6462638
refs/heads/master
2021-01-18T14:10:56.539659
2017-03-28T12:52:08
2017-03-28T12:52:08
30,511,470
0
0
null
null
null
null
UTF-8
Python
false
false
147
py
d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2} from collections import OrderedDict print OrderedDict(sorted(d.items(), key=lambda t:t[0]))
[ "masa4u@gmail.com" ]
masa4u@gmail.com
1c9cb402c43d4cdc6747cd94f70df60e1fb424bf
4276667227d01d225bcc083e9d82439d52f6cd6c
/10.io_code/4.serialization.py
8781bf10dcf222c4764dafc10d9adcaa30f0cc42
[]
no_license
JianxiangChan/python_learning
82e24498e96369c1a25c7cb557e80f7baf5e7961
488e6f6cb0591b8fce9261b072346c745b19cb2d
refs/heads/master
2020-06-05T22:01:54.429817
2019-12-16T14:40:14
2019-12-16T14:40:14
192,557,623
0
0
null
null
null
null
UTF-8
Python
false
false
1,035
py
# -*- coding: utf-8 -*- import pickle d = dict(name = 'bob', age = 20, score = 88) print(pickle.dumps(d)) #use of dumps with open('dump.txt','wb') as f: pickle.dump(d,f) with open('dump.txt','rb') as f: d = pickle.load(f) print(d) import json d = dict(name = 'bob', age = 20, score = 88) print(json.dumps(d)) class Student(object): def __init__(self,name,age,score): self.name = name self.age = age self.score = score s = Student('bob', 20 , 80) def student2dict(std): return { 'name' : std.name, 'age' : std.age, 'score' : std.score } print(json.dumps(s, default = student2dict)) print(json.dumps(s, default = lambda obj: obj.__dict__)) s = json.dumps(s, default = lambda obj: obj.__dict__) def dict2student(d): return Student(d['name'],d['age'],d['score']) print(json.loads(s , object_hook = dict2student)) obj = dict(name='小明', age=20) s = json.dumps(obj, ensure_ascii=False) print(s) s = json.dumps(obj) print(s)
[ "15651898806@163.com" ]
15651898806@163.com
7e0772e81bc42eb837cd3dce54f0f187bcad8970
3505132210ee8e48c2f216400aed6c2478075a86
/feature_selection/find_signature.py~
e0d9df6158e852a573058dd3eaff86b9c629a9bd
[]
no_license
yutsai84/Enron_POI_identifier
7610da2403a63857c3963977096fef9565a95b3f
03a27f997641fd97eaa78aec446b9b3704fd15df
refs/heads/master
2019-04-03T12:10:48.198921
2018-04-23T02:47:28
2018-04-23T02:47:28
66,225,617
0
0
null
null
null
null
UTF-8
Python
false
false
2,252
#!/usr/bin/python import pickle import numpy numpy.random.seed(42) ### The words (features) and authors (labels), already largely processed. ### These files should have been created from the previous (Lesson 10) ### mini-project. words_file = "../text_learning/your_word_data.pkl" authors_file = "../text_learning/your_email_authors.pkl" word_data = pickle.load( open(words_file, "r")) authors = pickle.load( open(authors_file, "r") ) ### test_size is the percentage of events assigned to the test set (the ### remainder go into training) ### feature matrices changed to dense representations for compatibility with ### classifier functions in versions 0.15.2 and earlier from sklearn import cross_validation features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(word_data, authors, test_size=0.1, random_state=42) from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') features_train = vectorizer.fit_transform(features_train) features_test = vectorizer.transform(features_test).toarray() ### a classic way to overfit is to use a small number ### of data points and a large number of features; ### train on only 150 events to put ourselves in this regime features_train = features_train[:150].toarray() labels_train = labels_train[:150] ### your code goes here from sklearn import tree clf=tree.DecisionTreeClassifier() clf.fit(features_train,labels_train) pred=clf.predict(features_test) print "pred=",pred import sklearn accuracy=sklearn.metrics.accuracy_score(pred,labels_test) print "accuracy:\t",accuracy #print importance>0.2 and its index importances=clf.feature_importances_ import numpy as np #indices=np.argsort(importances)[::-1] #sort descending #print "Feature ranking:" #for i in range(10): # print "{} feature No.{} ({})".format(i+1,indices[i],importances[indices[i]]) for i in range(len(importances)): if importances[i]>=0.2: print "Feature No.{} with importance {}".format(i,importances[i]) #the output is 33614,0.76 #print which feature cause the problem print "the features cause the problem: "vectorizer.get_feature_names()[i]
[ "yuchengtsai84@gmail.com" ]
yuchengtsai84@gmail.com
051bf23137383141aa82658c92056367cacb34f9
d5c159e43758e5bee418a75cbb856ff2bbd9e285
/bitcoinexp/routing.py
586038d988de0a21eb789a7c4e7609f61940d059
[]
no_license
okcdbu/bitcoinexperiment
b2b1ab3f54de12fb215be890cf6f4d587bcaa146
46af6018210fddc64464a4a867540efc894b5b01
refs/heads/master
2023-05-24T06:33:43.703070
2021-06-08T08:11:19
2021-06-08T08:11:19
350,988,298
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
from flask import Flask, render_template from bitcoinexp.trading import get_chart_data, run from flask_socketio import SocketIO import threading app = Flask(__name__) socketio = SocketIO(app) thread_lock = threading.Lock() @app.route("/") @app.route("/chart") def chart_visualization(): return render_template('chart.html') @socketio.on("connect") def init_data(): data = get_chart_data("BTC") jsondata = data.to_json(orient='records') # get json data like {{open,high,low,close,date},...} worker = threading.Thread(target=run, args=(socketio,)) worker.start() socketio.emit('response', jsondata)
[ "okcdbu@gmail.com" ]
okcdbu@gmail.com
c78554bfaf8bee6f13777307c2c97139d339f973
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02390/s457532968.py
390a81631bac8de1e3a93db961d2ef9a82cb8ed1
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
146
py
import sys line = sys.stdin.readline() inp = int(line) h,mod = inp//3600, inp%3600 m,mod = mod//60, mod%60 s = mod print ("%d:%d:%d" % (h,m,s))
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
dc6217c8436382f7a1d6ad3ae9face803e235091
931f1a920913dc21ea6cb5b4b591e05259abf490
/input_files/create_text_hdfs.py
414999ed6bf77e3288c4a4c21af9200eeb0fa107
[]
no_license
cgeroux/big_data_benchmark
f7bf3dbce55ae234c4548704f74710fa2f57cfef
b612665d0bda6e20283148fd9ba7be398f8d24d2
refs/heads/master
2021-01-10T13:34:19.043658
2017-10-12T15:24:04
2017-10-12T15:24:04
53,532,177
0
0
null
null
null
null
UTF-8
Python
false
false
7,341
py
#!/usr/bin/env python import random import optparse as op from subprocess import Popen, PIPE,list2cmdline import os def addParserOptions(parser): """Adds command line options """ #these options apply globally parser.add_option("-f",dest="forceOverwrite",default=False,action="store_true" ,help="Forces overwriting of an existing output file [not default].") parser.add_option("--line-length",dest="lineLength",type="int",default=80 ,help="Set the length of lines in the file [default: %default]") parser.add_option("--lines-split",dest="splitLines",default=True ,action="store_true" ,help="Separate file into lines of length LINELENGTH or less [default].") parser.add_option("--lines-not-split",dest="splitLines",default=True ,action="store_false" ,help="File will be a single line [not default].") parser.add_option("--file-size",dest="fileSize",type="int",default=1000 ,help="The size of the file in bytes [default: %default bytes]") parser.add_option("-o",dest="outputFileName",type="string" ,default="generated.txt",help="Specify the name of the output file " +"and path within HDFS [default: \"%default\"].") parser.add_option("--seed-file",dest="seedFile",default=1,help="Seed used " +"for randomly choosing words from the dictionary [default: %default].") parser.add_option("--dictionary-file",dest="dictionaryFile",type="string" ,default="english-wordlist.txt" ,help="Specify a file containing a list of words separated by newlines " +"to be used as the language dictionary. This option has no effect if " +"the option --randomly-generate-dict is specified " +"[default: \"%default\"].") parser.add_option("--randomly-generate-dict",dest="genDict",default=False ,action="store_true",help="If set will create a dictionary by selecting" +" random letters for NUMWORDS words of a randomly chosen word length " +"between MINWORDLENGTH and MAXWORDLENGTH. See \"Randomly generated " +"dictionary options\" [default: %default].") parser.add_option("--hdfs-upload-size",dest="hdfsUploadSize",type="int" ,default=100000000 ,help="Size in bytes between uploads to HDFS [default: %default].") randDictGroup=op.OptionGroup(parser,"Randomly generated dictionary options") randDictGroup.add_option("--min-word-length",dest="minWordLength",default=1 ,type="int",help="Sets the minimum word length [default: %default].") randDictGroup.add_option("--max-word-length",dest="maxWordLength",default=10 ,type="int",help="Sets the maximum word length [default: %default].") randDictGroup.add_option("--num-words",dest="numWords",default=1000 ,type="int",help="Sets the maximum word length [default: %default].") randDictGroup.add_option("--seed-dict",dest="seedDict",default=1,help="Seed used " +"for randomly generating dictionary [default: %default].") parser.add_option_group(randDictGroup) def parseOptions(): """Parses command line options """ parser=op.OptionParser(usage="Usage: %prog [options]" ,version="%prog 1.0",description=r"Randomly generates the content of a text file in HDFS.") #add options addParserOptions(parser) #parse command line options return parser.parse_args() def createGiberishDict(numWords,minWordLength,maxWordLength,seed=1): """Creates a dictionary of numWords created by randomly selecting a word length between minWordLength and maxWordLength and the populating it with randomly selected lower case letters. """ characterLow=97 characterHigh=122 random.seed(seed) #create a dictionary of words dictionary={} for i in range(numWords): length=random.randint(minWordLength,maxWordLength) word="" for j in range(length): character=chr(random.randint(characterLow,characterHigh)) word+=character dictionary[i]=word return dictionary def loadDictFromFile(fileName): """Loads a dicionary from a file containing words seperated by newline characters. """ dictionary={} count=0 for line in open(fileName,'r'): line=line.strip() line=line.replace("(a)","") if len(line)>0: dictionary[count]=line.strip() count+=1 return dictionary def performCommand(cmd,throwOnError=True): #upload file to HDFS process=Popen(cmd,stdout=PIPE,stderr=PIPE) stdout,stderr=process.communicate() returnCode=process.returncode if throwOnError: if (returnCode!=0): raise Exception("error encounter while executing command " +str(cmd)+" got stdout=\""+str(stdout)+"\" and stderr=\"" +str(stderr)+"\" and return code="+str(returnCode)) return returnCode def main(): #parse command line options (options,args)=parseOptions() #create a dictionary to use to construct the file if options.genDict: dictionary=createGiberishDict(options.numWords ,options.minWordLength,options.maxWordLength ,seed=options.seedDict) else: dictionary=loadDictFromFile(options.dictionaryFile) #should check if the hdfs file is there and remove it if it is cmd=["hdfs","dfs","-stat",options.outputFileName] returnCode=performCommand(cmd,throwOnError=False)#throwOnError=False since we will handle the error here if(returnCode==0): overwrite=False if not options.forceOverwrite: #check if we should overwrite it overWriteResponse=raw_input("File exists, overwrite? (y/n)") if overWriteResponse in ["y","Y","Yes","T","True","1"]: overwrite=True else: overwrite=True #remove the file if overwrite: cmd=["hdfs","dfs","-rm",options.outputFileName] performCommand(cmd) else: print "Not overwriting pre-existing file in HDFS \"" \ +options.outputFileName+"\"" quit() #create the command to upload to HDFS tempFileName="tmp.txt" cmd=["hdfs","dfs","-appendToFile",tempFileName,options.outputFileName] #create file from the dictionary sizeTotal=0 sizeToUpload=0 f=open(tempFileName,'w') lenDict=len(dictionary.keys())-1 random.seed(options.seedFile) sizePerHDFAppend=options.hdfsUploadSize while(sizeTotal<options.fileSize): #create a line to add to the file line="" lineLen=0 while(True): wordKey=random.randint(0,lenDict) word=dictionary[wordKey] lineLen+=len(word)+1 if lineLen<options.lineLength: line+=word+" " else: break #write the line to the file if options.splitLines: line+="\n" f.write(line) sizeTotal+=len(line) sizeToUpload+=len(line) #if temporary file big enough upload to HDFS if sizeToUpload>=sizePerHDFAppend: print "uploading "+str(sizeToUpload)+" bytes to hdfs" #close the file f.close() #upload file to HDFS performCommand(cmd) #remove file after upload and open a new file for the next chunk os.remove(tempFileName) f=open(tempFileName,'w') sizeToUpload=0 #close the temporary file f.close() #upload any extra content written to the temporary file since last upload if sizeToUpload>0: print "uploading remaining "+str(sizeToUpload)+" bytes to hdfs" performCommand(cmd) #remove temporary file os.remove(tempFileName) if __name__ == "__main__": main()
[ "chris.m.geroux@gmail.com" ]
chris.m.geroux@gmail.com
2e77e1bf2950b9ae5d4e921023ac91b6785e05f8
7474675ad1a50bd41792ef9c4de09924acbc8f17
/KNN/iris.py
85f0cf2fd3a28cafc5e979950791eb122826a8a8
[]
no_license
itsmefarhan/MachineLearning
5f2b756e31ab199701ac8f223c420634a0d04478
6df397f583222575ac9035350e76f6a9b9c0a2eb
refs/heads/master
2020-09-05T09:24:56.605009
2019-11-11T20:07:39
2019-11-11T20:07:39
220,056,068
0
1
null
null
null
null
UTF-8
Python
false
false
603
py
import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import confusion_matrix dataset = load_iris() # print(dataset.keys()) # print(dataset.data) X_train, X_test, y_train, y_test = train_test_split(dataset['data'], dataset['target'], test_size = 0.2, random_state = 0) model = KNeighborsClassifier() model.fit(X_train, y_train) y_predict = model.predict(X_test) accuracy = model.score(X_test, y_test) print(accuracy) cm = confusion_matrix(y_test, y_predict) print(cm)
[ "farhan.farooq@live.com" ]
farhan.farooq@live.com
f23488ded619c675fe870811001ad1b85b57c931
4eaf9f8ef3eb2addf6a4fb0a6bc4f41b8584bbc6
/Week10/src/button.py
626572ee8c47c89608c588dd40fe26a8514f7b33
[ "MIT" ]
permissive
Kids-Hack-Labs/Winter2021
3d6afd99ae0c77ae7a9767d08c6f89b9e92da34e
4c66d5cf05045d2724db2393a0c2c581f314f903
refs/heads/main
2023-04-01T13:45:45.200124
2021-04-07T04:32:14
2021-04-07T04:32:14
329,418,025
0
0
null
null
null
null
UTF-8
Python
false
false
1,819
py
from pygame import Color, Rect, Surface import pygame.mouse as pm from src.text_generator import TextGenerator class Button(): STATES = ("NONE","OUT","HOVER","DOWN","UP") def __init__(self, button_text, text_info, button_info, func): self.colours = {Button.STATES[1]:button_info["out"], Button.STATES[2]:button_info["hover"], Button.STATES[3]:button_info["down"], Button.STATES[4]:button_info["up"]} self.rect = Rect(button_info["rect"]) self.surf = Surface(self.rect.size) self.text_surf = TextGenerator.generate_text(button_text, text_info, None) self.text_rect = self.text_surf.get_rect() self.text_rect.center = (self.rect.width/2, self.rect.height/2) self.on_click = func self.current_state = Button.STATES[1] self.previous_state = Button.STATES[1] self.active = True def update(self, delta): if self.active: self.current_state = self.check_states() if self.previous_state == Button.STATES[3] and\ self.current_state == Button.STATES[2]: self.on_click() self.previous_state = self.current_state def render(self,target): self.surf.fill(self.colours[self.current_state]) self.surf.blit(self.text_surf, self.text_rect) target.blit(self.surf, self.rect) def check_states(self): mouse_pos = pm.get_pos() mouse_buttons = pm.get_pressed() if not self.rect.collidepoint(mouse_pos): return Button.STATES[1] else: if not mouse_buttons[0]: return Button.STATES[2] else: return Button.STATES[3] def deactivate(self): self.active = False
[ "hercules.diascampos@kidshacklabs.com" ]
hercules.diascampos@kidshacklabs.com
b8a62fa93f2532714aacb95518a96010cd6afe03
fffa7b13491deadfc649dfd035099ef764d8d303
/api/tests/mathematical_object_detail.py
3ecfae51fd020c715c1a8504027fcc57a26800f4
[ "MIT" ]
permissive
Gawaboumga/OEMS
3b12b8bebbe4b29716e8be4e22034ec394af36da
1e60fa1f350f4cf1ca2e48072e0b4228eeb15024
refs/heads/master
2022-12-14T11:15:55.797241
2019-01-22T10:22:42
2019-01-22T10:22:42
147,358,167
0
0
MIT
2022-12-08T01:26:59
2018-09-04T14:20:58
Python
UTF-8
Python
false
false
4,231
py
from rest_framework import status from rest_framework.test import APITestCase from django.test import override_settings from django.urls import reverse from oems.settings import TEST_MEDIA_ROOT from api.models import MathematicalObject from api.tests import utils @override_settings(MEDIA_ROOT=TEST_MEDIA_ROOT) class MathematicalObjectDetailTests(APITestCase): def test_retrieve_small_mathematical_object(self): utils.log_as(self, utils.UserType.STAFF) representation = 'test' type = 'S' data = { 'latex': representation, 'type': type, } response = self.client.post(reverse('api:mathematical_objects'), data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) response = self.client.get(reverse('api:mathematical_object', kwargs={'pk': response.data['id']})) self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.data self.assertEqual(representation, response_data['latex']) self.assertEqual(type, response_data['type']) def test_retrieve_full_mathematical_object(self): utils.log_as(self, utils.UserType.STAFF) representation = 'test' type = 'S' function = 'function' name = 'name' tag = 'tag' convergence_radius = '|z < 1|' data = { 'latex': representation, 'type': type, 'functions': [{'function': function}], 'names': [{'name': name}], 'tags': [{'tag': tag}], 'convergence_radius': convergence_radius } response = self.client.post(reverse('api:mathematical_objects'), data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) response = self.client.get(reverse('api:mathematical_object', kwargs={'pk': response.data['id']})) self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.data self.assertEqual(representation, response_data['latex']) self.assertEqual(type, response_data['type']) self.assertEqual(function, response_data['functions'][0]['function']) self.assertEqual(name, response_data['names'][0]['name']) self.assertEqual(tag, response_data['tags'][0]['tag']) self.assertEqual(convergence_radius, response_data['convergence_radius']) def test_put_small_mathematical_object(self): utils.log_as(self, utils.UserType.STAFF) representation = 'test' type = 'S' data = { 'latex': representation, 'type': type, } response = self.client.post(reverse('api:mathematical_objects'), data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) new_type = 'P' data['type'] = new_type response = self.client.put(reverse('api:mathematical_object', kwargs={'pk': response.data['id']}), data, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.data self.assertEqual(representation, response_data['latex']) self.assertEqual(new_type, response_data['type']) def test_delete_full_mathematical_object(self): utils.log_as(self, utils.UserType.STAFF) representation = 'test' type = 'S' function = 'function' name = 'name' tag = 'tag' convergence_radius = '|z < 1|' data = { 'latex': representation, 'type': type, 'functions': [{'function': function}], 'names': [{'name': name}], 'tags': [{'tag': tag}], 'convergence_radius': convergence_radius } response = self.client.post(reverse('api:mathematical_objects'), data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) response = self.client.delete(reverse('api:mathematical_object', kwargs={'pk': response.data['id']}), data, format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(MathematicalObject.objects.count(), 0)
[ "yourihubaut@hotmail.com" ]
yourihubaut@hotmail.com
3e4331ea4515d8ab9a244201033c44ae2211e3db
d4cd2476f8fa8a7d94e183a68bd0678971310c5b
/checkio/06_Ice_Base/06_IceBase_04_FunnyAddition.py
9030b3fb8d1063f001b7c9e2d024d3d76144968e
[]
no_license
gwqw/LessonsSolution
b495579f6d5b483c30d290bfa8ef0a2e29515985
0b841b1ae8867890fe06a5f0dcee63db9a3319a3
refs/heads/master
2020-07-05T19:15:53.758725
2019-10-01T11:34:44
2019-10-01T11:34:44
202,744,145
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
def checkio(data): """The sum of two integer elements""" return sum(data) if __name__ == '__main__': assert checkio([5, 5]) == 10, 'First' assert checkio([7, 1]) == 8, 'Second' print('All ok')
[ "=" ]
=
1d6ae632a35692b47fe5e5803717396272bfc1bd
ba84b4776efbfd114be6e489e206c61bcc93cf1d
/ScoreChanger.py
bcee5df8c7cda74ef7a3328cc951dd1ab5fdc825
[]
no_license
ReiraH/Pinball-Machine
5ad94267e3d4eb642aa03e4d4606e05cc6417431
c4baee924bb8655a1464f6eebd0df0887bf95615
refs/heads/master
2020-03-21T05:20:39.219845
2018-06-21T11:03:06
2018-06-21T11:03:06
138,156,415
0
0
null
2018-06-21T11:03:07
2018-06-21T10:35:23
null
UTF-8
Python
false
false
8,332
py
import RPi.GPIO as GPIO from time import sleep class ScoreChanger(object): HIGH = 0 LOW = 1 digitOnes = 24 digitTens = 23 digitHundreds = 15 digitThousands = 18 A = 0 B = 0 C = 0 D = 0 active = False GPIO.setmode(GPIO.BCM) GPIO.setup(digitOnes, GPIO.OUT) GPIO.output(digitOnes, LOW) GPIO.setup(digitTens, GPIO.OUT) GPIO.output(digitTens, LOW) GPIO.setup(digitHundreds, GPIO.OUT) GPIO.output(digitHundreds, LOW) GPIO.setup(digitThousands, GPIO.OUT) GPIO.output(digitThousands, LOW) print "HI I AM A SCORECHANGER!!!!" state = 0 coilActive = False timeEnabled = 0.0 maxTimeEnabled = 0.07 def changeScore(self,score, deltaTime): if self.state == 0: inputString = str(score) while(inputString.__len__() != 4): inputString = "0" + inputString ScoreArray = list(inputString) self.newA = int(ScoreArray[0]) self.atemp = self.newA self.newB = int(ScoreArray[1]) self.btemp = self.newB self.newC = int(ScoreArray[2]) self.ctemp = self.newC self.newD = int(ScoreArray[3]) self.dtemp = self.newD print str(self.newD) if self.newA < self.A: self.newA += 10 if self.newB < self.B: self.newB += 10 if self.newC < self.C: self.newC += 10 if self.newD < self.D: self.newD += 10 self.state = 1 elif self.state == 1: if self.coilActive == False: if self.newA > self.A: self.timeEnabled+=deltaTime if(self.timeEnabled>self.maxTimeEnabled): GPIO.output(self.digitThousands, self.HIGH) self.coilActive = True self.timeEnabled = 0.0 self.newA-=1 else: self.state = 2 else: self.timeEnabled += deltaTime if self.timeEnabled > self.maxTimeEnabled: GPIO.output(self.digitThousands, self.LOW) self.coilActive = False self.timeEnabled = 0 elif self.state == 2: if self.coilActive == False: if self.newB > self.B: self.timeEnabled+=deltaTime if(self.timeEnabled>self.maxTimeEnabled): GPIO.output(self.digitHundreds, self.HIGH) self.coilActive = True self.timeEnabled = 0.0 self.newB-=1 else: self.state = 3 else: self.timeEnabled += deltaTime if self.timeEnabled > self.maxTimeEnabled: GPIO.output(self.digitHundreds, self.LOW) self.coilActive = False self.timeEnabled = 0 elif self.state == 3: if self.coilActive == False: if self.newC > self.C: self.timeEnabled+=deltaTime if(self.timeEnabled>self.maxTimeEnabled): GPIO.output(self.digitTens, self.HIGH) self.coilActive = True self.timeEnabled = 0.0 self.newC-=1 else: self.state = 4 else: self.timeEnabled += deltaTime if self.timeEnabled > self.maxTimeEnabled: GPIO.output(self.digitTens, self.LOW) self.coilActive = False self.timeEnabled = 0 elif self.state == 4: if self.coilActive == False: if self.newD > self.D: self.timeEnabled+=deltaTime if(self.timeEnabled>self.maxTimeEnabled): GPIO.output(self.digitOnes, self.HIGH) self.coilActive = True self.timeEnabled = 0.0 self.newD-=1 else: self.state = 5 else: self.timeEnabled += deltaTime if self.timeEnabled > self.maxTimeEnabled: GPIO.output(self.digitOnes, self.LOW) self.coilActive = False self.timeEnabled = 0 elif self.state == 5: self.A = self.atemp self.B = self.btemp self.C = self.ctemp self.D = self.dtemp self.state = 0 def changeScoreOld(self,score): if self.active == False: self.active = True print "Program started" print "set input function" inputString = str(score) while(inputString.__len__() != 4): inputString = "0" + inputString ScoreArray = list(inputString) newA = int(ScoreArray[0]) atemp = newA newB = int(ScoreArray[1]) btemp = newB newC = int(ScoreArray[2]) ctemp = newC newD = int(ScoreArray[3]) dtemp = newD print str(newD) if newA < self.A: newA += 10 if newB < self.B: newB += 10 if newC < self.C: newC += 10 if newD < self.D: newD += 10 print "HI I AM A SCORECHANGER!!!! Score: "+ inputString + "Last Score: " + str(self.A)+ str(self.B)+ str(self.C)+ str(self.D) while(newA > self.A): GPIO.output(self.digitThousands, self.HIGH) sleep(0.15) GPIO.output(self.digitThousands, self.LOW) sleep(0.15) newA-=1 while(newB > self.B): GPIO.output(self.digitHundreds, self.HIGH) sleep(0.15) GPIO.output(self.digitHundreds, self.LOW) sleep(0.15) newB-=1 while(newC > self.C): GPIO.output(self.digitTens, self.HIGH) sleep(0.15) GPIO.output(self.digitTens, self.LOW) sleep(0.15) newC-=1 while(newD > self.D): GPIO.output(self.digitOnes, self.HIGH) sleep(0.15) GPIO.output(self.digitOnes, self.LOW) sleep(0.15) newD-=1 self.A = atemp self.B = btemp self.C = ctemp self.D = dtemp self.active = False def resetScoreReels(self): oneAmount = 10 - self.D tenAmount = 10 - self.C hundredAmount = 10 - self.B thousandAmount = 10 - self.A if oneAmount != 10: for ones in range(0,oneAmount): GPIO.output(digitOnes, HIGH) sleep(0.1) GPIO.output(digitOnes, LOW) sleep(0.1) if tenAmount != 10: for tens in range(0,tenAmount): GPIO.output(digitTens, HIGH) sleep(0.1) GPIO.output(digitTens, LOW) sleep(0.1) if hundredAmount != 10: for hundreds in range(0,hundredAmount): GPIO.output(digitHundreds, HIGH) sleep(0.1) GPIO.output(digitHundreds, LOW) sleep(0.1) if thousandAmount != 10: for thousands in range(0,thousandAmount): GPIO.output(digitThousands, HIGH) sleep(0.1) GPIO.output(digitThousands, LOW) sleep(0.1)
[ "noreply@github.com" ]
noreply@github.com
60c21ecdefa93da86c1761960a9774855f951f81
fab44b6672152764ad965291d645223ccbe6186a
/Undergrad_research(Machine Learning) Project/Machine Learning_undergraduate research project/lab2-part1/debugging2.py
4e814c85f717f68d4f752899d62cf392491012d2
[]
no_license
AndanteKim/AP_Archive
45149c410dcdc8d4f2cd64422091de00f451f34b
bcec25375edc5c2f44598bd9f48a6de49e108d35
refs/heads/master
2023-02-23T20:33:08.650315
2021-01-28T23:51:23
2021-01-28T23:51:23
276,733,907
0
0
null
null
null
null
UTF-8
Python
false
false
2,201
py
#!/usr/bin/env python # This script is full of common errors you're likely to run into. # To fix it, you need to debug it. Look at the error messages, use print # statements, and trace your code by hand on paper to find and fix the bugs. # This scripts calculates the fibonacci sequence in four different ways. # Be sure to read the description at the top of each function. # The goal is not to change the way in which the code is written but to find # all the semantic and syntax errors. #---------------- import numpy # This function prints the first n numbers of the fibonacci sequence #def print_n_fibonacci(n): # a = 1. # b = 1. # print a # print b # counter = 2 # for i in range(n): # newa = b # b = a+b # a = newa # print b # counter +=1 # print 'This function requested ', n, 'numbers and printed ',counter,'numbers' #print 'output for print_n_fibonacc where n =',10,':' #print_n_fibonacci(10) #print # This function prints the fibonacci sequence up to the number 610 #def print_fibonacci_upto610() : # a,b = 1.,1. # print a # print b # while b < 610: # a,b = b,a+b # print b #print 'output for print_fibonacci_upto610:' #print_fibonacci_upto610() #print # This function creates a list which contains the first n numbers of the # fibonacci sequence and returns this list #def create_fibonacci_list_uptoN(n): # fibonacci = [1.,1.] # for i in range(n): # fibonacci.append(fibonacci[i]+fibonacci[i+1]) # return fibonacci #print 'list return from create_fibonacci_list_uptoN where n =',10,':' #fib = create_fibonacci_list_uptoN(10) #print fib #print 'The length of the returned list is', len(fib) #print # This function creates a numpy array which contais the fibonacci sequence # up to the number 610 def create_fibonacci_array_upto610(): counter = 1 fibonacci = numpy.array([1.,1.]) while fibonacci[counter] < 610. : fibonacci = numpy.append(fibonacci, fibonacci[counter-1] + fibonacci[counter]) counter += 1 return fibonacci print 'array return from create_fibonacci_array_upto610:' fib = create_fibonacci_array_upto610() print fib
[ "54167881+AndanteKim@users.noreply.github.com" ]
54167881+AndanteKim@users.noreply.github.com
d9a464be1a3be2b144f34de63add4214c3cfc0dd
6cfc109684e689fd4fba01380f95ebdde567531d
/Lab2/prueba.py
58c38427b1d982a7c6a10fd06c3ffd5445836209
[]
no_license
jaoc1811/CI2692
83291c70277dbe05dc076f9bffcb5db44a9c9864
ab185a695c0a7722ccdd8317e4d4130853e9c9ae
refs/heads/master
2020-03-18T20:32:45.852537
2018-05-29T00:58:17
2018-05-29T00:58:17
131,191,841
0
0
null
null
null
null
UTF-8
Python
false
false
2,992
py
from common.base.basic import read_file from common.base.basic import Random def mergesort(A): # Busca la cantidad de elementos del arreglo. r = len(A) # Si el arreglo es unitario esta ordenado por definicion. if 1 == r: return A # Crea dos nuevos sub-arreglos ordenados. # L para el sub-arreglo de la izquierda (Left). # R para el sub-arreglo de la derecha (Right). L = mergesort(A[:(r/2)]) R = mergesort(A[(r/2):]) # Delvuelve el arreglo ordenado. return merge(L,R) def merge(L,R): # Crea un nuevo arreglo vacio donde se guardaran los valores ordenados. array = [] # Inicializa las variable para iterar sobre los sub-arreglos. i,j = 0,0 # Inicializa las variables para ver si los arreglos ya han sido recorridos. a,b = len(L),len(R) # Mientras el valor del iterador este en el rango del sub arreglo, entra en el condicional. while (i < a or j < b): # El condicional fue implementado de esta manera ya que las guardias en python son # deterministas. De esta forma la tercera y la cuarta guardia no dan error ya que # entra en la primera o segunda guardia si el indice a comparar esta fuera del rango # del arreglo. if (i >= a): # Chequea si ya recorrio el arreglo L completo. array.append(R[j]) j += 1 elif (j >= b): # Chequea si ya recorrio el arreglo R completo. array.append(L[i]) i += 1 elif (L[i] <= R[j]): # Asigna el menor de los elementos. array.append(L[i]) i += 1 elif (R[j] < L[i]): # Asigna el menor de los elementos. array.append(R[j]) j += 1 #print array return array def insertion_sort(A): for i in range(1, len(A)): key = A[i] j = i - 1 while j >= 0 and A[j] > key: A[j+1] = A[j] j = j - 1 A[j+1] = key def freivalds(n, A, B, C): def multiply(n, A, Z): # Crea el vector a retornar R = n * [0] # Recorre los elementos del vector R y las filas de la matriz A for i in range(n): # Recorre los elementos del vector Z y los elementos de la fila i de A for j in range(n): R[i] = R[i] + (A[i][j] * Z[j]) return R # Genera un vector Z lleno de ceros y unos Z = n * [n] for i in range(n): Z[i] = Random(0,1) # Multiplica B x Z, luego A x (B x Z) y C x Z # Obteniendo 2 vectores x1 y x2 de largo n Y = multiply(n, B, Z) x1 = multiply(n, A, Y) x2 = multiply(n, C, Z) # Chequea si A x (B x Z) = C x Z return x1 == x2 def amplified_freivalds(k, n, A, B, C): for i in range(k): r = freivalds(n, A, B, C) if r == False: return False return True def problema_3_8(A, x): B = mergesort(A) print B R = False for i in range(len(B) - 1): start = i + 1 end = len(B) - 1 while start < end: mid = (start + end) / 2 if B[mid] + B[i] == x: R = True break elif B[mid] + B[i] < x: start = mid + 1 elif B[mid] + B[i] > x: end = mid - 1 if B[start] + B[i] == x: R = True return R A = [ Random(0,2) for i in range(100)] x = 71 #print A print mergesort(A) #print problema_3_8(A,x)
[ "jaoc1811@gmail.com" ]
jaoc1811@gmail.com
ab9064ed0cf5cdd9c40ea7d1980c735a9bd402c3
ed98cf758a1aebb7a4415502a3672dcd5d480f91
/app/email.py
24033cf66ce2aa9d49a15899dba09de47e85f155
[ "MIT" ]
permissive
eclectic-coding/microblog
541a4e7c187def2a3511b8d7fc69cddb7e3e3b51
7193bb04d3073bb918aeb1e437fd72869555c467
refs/heads/main
2023-04-28T01:56:32.835458
2021-05-16T18:05:53
2021-05-16T18:05:53
356,620,088
0
0
MIT
2021-05-16T18:05:54
2021-04-10T15:20:27
Python
UTF-8
Python
false
false
940
py
from threading import Thread from flask import render_template from flask_mail import Message from app import app, mail def send_async_email(app, msg): with app.app_context(): mail.send(msg) def send_email(subject, sender, recipients, text_body, html_body): msg = Message(subject, sender=sender, recipients=recipients) msg.body = text_body msg.html = html_body Thread(target=send_async_email, args=(app, msg)).start() def send_password_reset_email(user): token = user.get_reset_password_token() send_email('[Microblog] Reset Your Password', sender=app.config['ADMINS'][0], recipients=[user.email], text_body=render_template('email/reset_password.txt', user=user, token=token), html_body=render_template('email/reset_password.html', user=user, token=token))
[ "noreply@github.com" ]
noreply@github.com
bddd1e68745eb9d0c4be78f83fbe5b77dccf95e0
bff3b19be6408c671b99a8c08f8faee932460686
/afnd6.py
69873feb97141fca01ad456deafbdc69854124d0
[]
no_license
OrionVi1998/Automatas
47591e9bb9548674e2a885cc348bf300d0eaafb4
3969ad25b66684c635d10138ffd71adf61d21e7c
refs/heads/master
2023-05-28T01:58:27.042093
2021-06-15T22:35:27
2021-06-15T22:35:27
376,657,207
0
0
null
2021-06-15T22:30:50
2021-06-13T23:10:41
Python
UTF-8
Python
false
false
637
py
grafo = { 0: [(0, "a"), (0, "b"), (1, "a")], 1: [(2, "b")], 2: [(3, "b")], 3: [] } grafo2 = { 0: [(1, "a"), (2, "a")], 1: [(3, "b")], 2: [(5, "b")], 3: [(4, "a")], 4: [(1, "b")], 5: [(2, "a")] } def bfs(start): queue = [(start, "")] visited = [] while len(queue) > 0: estado = queue.pop(0) neighbours = grafo.get(estado[0]) print("estado ", estado, "vecinos: ", neighbours) for edge in neighbours: if edge not in visited: visited.append(edge) queue.append(edge) print(edge) bfs(0)
[ "octaviov1998@gmail.com" ]
octaviov1998@gmail.com
2a200f3a2374864f5dfb04e9acef5ed89b61e21d
30b3fe3e33c090099f8d86e498b80e70da069822
/solution.py
9605a5aca6066e2072a43573499ef3283f88859a
[]
no_license
selvaramkumar/leetcode1451
5e967d2b6d89e7ce5c7345dcdbef3478e3fcb20a
bebf87f5beca2aa791fcd8f3b00ae1e6cf87364c
refs/heads/main
2023-02-07T08:46:21.077083
2021-01-05T14:23:29
2021-01-05T14:23:29
327,020,442
3
0
null
null
null
null
UTF-8
Python
false
false
747
py
from collections import OrderedDict class Solution: def arrangeWords(self, text: str) -> str: temp=text.split(" ") dict1={} for i in temp: if not len(i) in dict1: dict1[len(i)]=i else : dict1[len(i)]=dict1[len(i)]+" "+i res="" dict2=OrderedDict(sorted(dict1.items())) count=0 for key,value in dict2.items(): if count>=1: res=res+" "+value[0].lower() + value[1:] count=count+1 else: res=res+value[0].upper() + value[1:] count=count+1 return res s=Solution() str1="Keep calm and code on" print(s.arrangeWords(str1))
[ "sselvaramkumar@gmail.com" ]
sselvaramkumar@gmail.com
4d876adb17ed372668e9f24105bb83023429a2af
ef9368cc0b4f1bfad3abae292be5c7677f11a8e4
/EazyHacks/urls.py
8cc74321382162d1e9bd6f86e1997887ef30302c
[]
no_license
prnvshrn/EazyHacks
89fc519c034fb4c8c75ea91c7a83b50ce77d2a63
212c66c80de4bf4eb3eb76dda4479abcfe67d873
refs/heads/master
2021-09-05T21:26:55.891948
2018-01-31T04:36:36
2018-01-31T04:36:36
115,707,094
3
0
null
null
null
null
UTF-8
Python
false
false
1,229
py
"""EazyHacks URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from EazyHacks import views from django.conf.urls import url urlpatterns = [ path('admin/', admin.site.urls), url(r'^$', views.openLogin, name='login'), url(r'^AddHack.html/', views.openAddHack, name='add_hack'), url(r'^BrowseHack.html/(?P<hack_type>[0-9]+)/', views.openBrowseHack, name='browse_hack'), url(r'^HackDetails.html/(?P<hack_id>[0-9]+)/', views.openHackDetails, name='hack_details'), url(r'^HackDetails.html/', views.openLogin ,name='hack_base'), url(r'^Logout/',views.logOut,name='logout') ]
[ "prnvshrn@gmail.com" ]
prnvshrn@gmail.com
a95329335b970233b588cd83bb48ba1a20a06e5b
97e833b79e40f798019e45829d4c3eb91b852438
/telegraph/appos.py
0326616f7c814a68bea716949be213b918db56f4
[]
no_license
AwkwardLiSFan/news-tone
b6069d6abb55b6e4eb8caf38ff27669669d66560
fd55786991c3c1c4d4cbe3585026b14992bec69f
refs/heads/main
2023-06-22T10:43:57.793472
2021-07-21T10:58:45
2021-07-21T10:58:45
388,087,137
0
0
null
null
null
null
UTF-8
Python
false
false
1,288
py
appos_list = { "aren't" : "are not", "can't" : "cannot", "couldn't" : "could not", "didn't" : "did not", "doesn't" : "does not", "don't" : "do not", "hadn't" : "had not", "hasn't" : "has not", "haven't" : "have not", "he'd" : "he would", "he'll" : "he will", "he's" : "he is", "i'd" : "I would", "i'd" : "I had", "i'll" : "I will", "i'm" : "I am", "isn't" : "is not", "it's" : "it is", "it'll":"it will", "i've" : "I have", "let's" : "let us", "mightn't" : "might not", "mustn't" : "must not", "shan't" : "shall not", "she'd" : "she would", "she'll" : "she will", "she's" : "she is", "shouldn't" : "should not", "that's" : "that is", "there's" : "there is", "they'd" : "they would", "they'll" : "they will", "they're" : "they are", "they've" : "they have", "we'd" : "we would", "we're" : "we are", "weren't" : "were not", "we've" : "we have", "what'll" : "what will", "what're" : "what are", "what's" : "what is", "what've" : "what have", "where's" : "where is", "who'd" : "who would", "who'll" : "who will", "who're" : "who are", "who's" : "who is", "who've" : "who have", "won't" : "will not", "wouldn't" : "would not", "you'd" : "you would", "you'll" : "you will", "you're" : "you are", "you've" : "you have", "'re": " are", "wasn't": "was not", "we'll":" will", "didn't": "did not" }
[ "noreply@github.com" ]
noreply@github.com
b7ba80089f455b58d92760039c26578e86a680f3
3b380acf42684aaaa3201c241456e43920a40c1d
/paradeground/units/__init__.py
19c57c101368292a30f2e9093d01635cbcbbd3f7
[]
no_license
warp-one/electron
484245c45a7947f5bbe3b87020b62df74eb884ca
0147b3ff2e6320147562161ec2c9edea784b4015
refs/heads/master
2021-01-24T03:18:24.758276
2016-09-28T19:22:11
2016-09-28T19:22:11
41,637,456
0
0
null
null
null
null
UTF-8
Python
false
false
7,473
py
from math import sqrt, pi, sin, cos, tan, degrees from random import randint import pyglet from tools import * from units.behavior import * from units.behavior import states from selection import selectiontriangle as st import settings class Status(object): name = "Buff" def __init__(self, unit): self.unit = unit self.active = False def trigger(self): pass def update(self, dt): pass class Speed(Status): name = "Speed" def __init__(self, unit, max_speed=600, acceleration=20, speed_bonus=30): super(Speed, self).__init__(unit) self.deceleration = acceleration self.max_speed = 600 self.zones = set() self.speed_bonus = speed_bonus def trigger(self, zone): self.zones.add(zone) def deactivate(self, zone): return #self.zones.discard(zone) def update(self, dt): active = False if self.zones: max_speed = min([max([z.top_speed for z in self.zones]), self.unit.MAX_SPEED]) acceleration = max([z.acceleration for z in self.zones]) active = True else: max_speed = self.max_speed speed_normal = (self.unit.current_speed - self.unit.BASE_SPEED)/(max_speed - self.unit.BASE_SPEED) if active: if self.unit.current_speed < max_speed: self.unit.current_speed += min(acceleration, max_speed - self.unit.current_speed) self.unit.flat_poly.colors = [self.unit.color[i%3] + int((255 - x)*speed_normal) if not randint(0, 5) else self.unit.color[i%3] for i, x in enumerate(self.unit.flat_poly.colors)] else: if self.unit.current_speed > self.unit.BASE_SPEED: inactive_cap = max_speed - self.speed_bonus if self.unit.current_speed > inactive_cap: self.unit.current_speed = inactive_cap else: self.unit.current_speed -= min(self.deceleration/16, self.unit.current_speed - self.unit.BASE_SPEED) self.unit.flat_poly.colors = [self.unit.color[i%3] + int((255 - x)*speed_normal) if not randint(0, 5) else int(self.unit.color[i%3]) for i, x in enumerate(self.unit.flat_poly.colors)] else: self.unit.flat_poly.colors = [int(self.unit.color[i%3]*.69) for i, x in enumerate(self.unit.flat_poly.colors)] self.zones.clear() class BasicUnit(pyglet.sprite.Sprite): ROTATION_RATE = 1 * pi/180 # radians = degrees * pi/180 size = 32 radius = size/2 w = size h = size BASE_SPEED = 300.0 # pixels per frame MAX_SPEED = 600.0 solid = True image_factor = 1 selection_scale = 2 * image_factor immobile = False def __init__(self, team=None, *args, **kwargs): super(BasicUnit, self).__init__(*args, **kwargs) self.team = team self.name = None self.id = 0 # grid self.prev = None self.next = None self.graphics = [] self.group = settings.FOREGROUND self.sgroup = settings.MIDGROUND self.rotate_tick = .1 #1 * pi/180. self.rotation = 0 self.velocity = 0. self.selectable = False self.selected = False self.selection_indicator = None self.selection_rotation = 0 self.current_speed = self.BASE_SPEED self.statuses = {} def select(self): if self.selectable and not self.is_selected(): self.selected = True self.selection_indicator = st.SelectionTriangle(self) self.graphics.append(self.selection_indicator.graphic) def deselect(self): if self.is_selected(): self.selected = False if self.selection_indicator: self.graphics.remove(self.selection_indicator.graphic) self.selection_indicator.graphic.delete() self.selection_indicator = None def is_selected(self): if self.selected: return True else: return False def suicide(self): #self.spawn_death_animation() for g in self.graphics: g.delete() self.delete() def update(self, dt): self.rotation -= .01 while self.rotation < 0: self.rotation += 360 for s in self.statuses: self.statuses[s].update(dt) self.velocity = self.current_speed * dt self.tick_graphics(dt) def get_location(self): return self.x, self.y def tick_selection_rotation(self): self.selection_rotation += self.ROTATION_RATE def init_graphics(self): pass def tick_graphics(self, dt): if self.selection_indicator: self.selection_indicator.update(dt) self.tick_selection_rotation() def handle_collision(self, collider): return self.solid class ActiveUnit(BasicUnit): def __init__(self, *args, **kwargs): super(ActiveUnit, self).__init__(*args, **kwargs) self.current_destination = (0, 0) self.dx, self.dy = 0, 0 self.old_x, self.old_y = 0, 0 def move(self, dx, dy): self.dx, self.dy = dx, dy self.old_x, self.old_y = self.x, self.y def rotate(self, dx, dy): position = self.old_x, self.old_y mark = self.x + dx, self.y + dy # heading = get_angle_in_radians(position, mark) # self.rotation = heading def arrive(self): self.current_destination = (0, 0) self.brain.set_state("idleing") self.stop() self.leash_point = self.get_location() def stop(self): self.dx, self.dy = 0, 0 def receive_command(self, target, command=None, origin=(0, 0)): if command == "MOVE": x = target[0] + self.x - origin[0] y = target[1] + self.y - origin[1] self.current_destination = (x, y) self.brain.set_state("movecommand") elif command == "STOP": self.current_destination = self.x, self.y self.stop() self.brain.set_state("idleing") else: self.current_destination = target self.brain.set_state("movecommand") def update(self, dt): super(ActiveUnit, self).update(dt) class ThinkingUnit(ActiveUnit): def __init__(self, *args, **kwargs): super(ThinkingUnit, self).__init__(*args, **kwargs) self.brain = StateMachine() self.leash_point = (0, 0) self.alert_range = 200 self.target = None self.wait_count = 0 idleing_state = states.UnitStateIdleing(self) chasing_state = states.UnitStateChasing(self) waiting_state = states.UnitStateWaiting(self) command_state = states.UnitStateMoveCommand(self) self.brain.add_state(idleing_state) self.brain.add_state(chasing_state) self.brain.add_state(waiting_state) self.brain.add_state(command_state) self.brain.set_state("idleing") def update(self, dt): super(ThinkingUnit, self).update(dt) self.brain.think()
[ "wrschuller@gmail.com" ]
wrschuller@gmail.com
1e5c3dec3126452c25e701e2cef0ece2a6572176
7556fc49cef701861ce456c962181c8a4d8522ce
/employee/models.py
e51481d0fb408a74056a647258631f3c29935d3c
[]
no_license
km-pythoner/job_market_cms
7fa708e6bc0f14ac0936e863c971e2e62c0f6ed0
2e18f8822f6938098bcff7317dd9350d4d837540
refs/heads/master
2021-09-09T19:50:54.551274
2018-03-19T10:05:52
2018-03-19T10:05:52
125,135,156
0
0
null
null
null
null
UTF-8
Python
false
false
178
py
from datetime import datetime from django.db import models from users.models import UserProfile from employer.models import JobInfo class EmployeeInfo(models.Model): pass
[ "jj19901030" ]
jj19901030
caff9c7cb685bc07ae6b58176aa41c8d83544348
9f0a4262c4402201df1cdd5674a679543f4a50b5
/shaderLibrary_maya2017/resources/__init__.py
05e522a865f16bd93dd2591fa2f1e5a4d20967ec
[]
no_license
subing85/subins-toolkits
611b6b3b3012ccb023096f6e21d18d2bda5a534b
d02af1289ec3ee5bce6fa3d78c134a8847113aa6
refs/heads/master
2022-07-12T17:19:57.411454
2022-07-01T20:37:16
2022-07-01T20:37:16
168,826,548
11
2
null
2022-07-02T01:03:34
2019-02-02T11:51:25
Mathematica
UTF-8
Python
false
false
1,087
py
import os from shaderLibrary_maya2017.utils import platforms CURRENT_PATH = os.path.dirname(__file__) MODULE = platforms.get_tool_kit()[0] def getInputPath(module=None): return os.path.join( CURRENT_PATH, "inputs", "{}.json".format(module) ) def getIconPath(): return os.path.join(CURRENT_PATH, "icons") def getPreferencePath(): return os.path.join(getWorkspacePath(), "preference") def getWorkspacePath(): return os.path.join(os.getenv("HOME"), "Documents", MODULE) def getPublishDirectory(): return os.path.join( os.environ["HOME"], "Walk_cycle", "characters" ) def getResourceTypes(): data = { "preference": getPreferencePath(), "shader": getWorkspacePath(), "generic": None, } return data def getToolKitLink(): return "https://www.subins-toolkits.com" def getToolKitHelpLink(): return "https://vimeo.com/314966208" def getDownloadLink(): return "https://www.subins-toolkits.com/shader-library" # end ####################################################################
[ "subing85@gmail.com" ]
subing85@gmail.com
4f17a87004d2e33cbb26f6d49b7cb84a0b7ffef9
70532360ddfdd8006bf7044c117403ce837cef0a
/code/Rplot.py
cd1f9b2b402c74ca5ecf9502d4eba1665cd10a9b
[]
no_license
wsgan001/campus_wifi_analysis
09a7944f5019f726682925c8785cdf5f7d8c469a
c470135691ff8faad3cb4755301e4f59389e2c5a
refs/heads/master
2020-03-10T11:09:05.579870
2017-03-03T07:13:57
2017-03-03T07:13:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,312
py
# -*- coding: utf-8 -*- import fileinput user = {} for line in fileinput.input("../data/select/select_a"): mac = line.strip().split(" ")[0] user[mac] = True fileinput.close() with open("../data/plot/R_trace_all","w") as f: f.write("mac time dura\n") for line in fileinput.input("../data/feature/trace_all_statistic_filter"): part = line.strip().split(" ") mac, objs = part[0], part[3:] if user.has_key(mac): for one in objs: tag, rto = one.split("@")[0], str(int(one.split("@")[1].split(",")[0])/42) if tag in ["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19","20","21","22","23"]: f.write(mac+" "+tag+" "+rto+"\n") fileinput.close() with open("../data/plot/R_trace_online","w") as f: f.write("mac time dura\n") for line in fileinput.input("../data/feature/trace_online_statistic_filter"): part = line.strip().split(" ") mac, objs = part[0], part[3:] if user.has_key(mac): for one in objs: tag, rto = one.split("@")[0], str(int(one.split("@")[1].split(",")[0])/42) if tag in ["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19","20","21","22","23"]: f.write(mac+" "+tag+" "+rto+"\n") fileinput.close() jac = {} for line in fileinput.input("../data/jaccount/jaccount_taged"): part = line.strip().split(" ") dev, mac, sex, sta, col, age = part[0], part[1], part[2], part[3], part[4], int(part[5]) if dev == "mobile": jac[mac] = {'sex':sex, 'sta':sta, 'col':col, 'age':age} if sex == "男性": jac[mac]['sex'] = "Male" elif sex == "女性": jac[mac]['sex'] = "Female" if age <= 20: jac[mac]['age'] = "<=20" elif age > 20 and age <=22 : jac[mac]['age'] = "21~22" elif age > 22: jac[mac]['age'] = ">=23" if col == "电子信息与电气工程学院": jac[mac]['col'] = "TOP1" elif col == "机械与动力工程学院": jac[mac]['col'] = "TOP2" elif col == "材料科学与工程学院": jac[mac]['col'] = "TOP3" elif col == "船舶海洋与建筑工程学院": jac[mac]['col'] = "TOP4" elif col == "安泰经济与管理学院": jac[mac]['col'] = "TOP5" fileinput.close() with open("../data/plot/R_trace_all_cor","w") as f: f.write("mac Acad Adm Ath Cant Hosp Lib Soc Supp Teach Other sex age\n") for line in fileinput.input("../data/feature/trace_all_statistic_filter"): part = line.strip().split(" ") mac, objs, user = part[0], part[3:], {"Acad":"0","Adm":"0","Ath":"0","Cant":"0","Hosp":"0","Lib":"0","Soc":"0","Supp":"0","Teach":"0","Other":"0"} for one in objs: tag, rto = one.split("@")[0], one.split("@")[1].split(",")[0] if tag in ["Acad","Adm","Ath","Cant","Hosp","Lib","Soc","Supp","Teach","Other"]: user[tag] = rto f.write(mac+' '+user['Acad']+' '+user['Adm']+' '+user['Ath']+' '+user['Cant']+' '+user['Hosp']+' '+user['Lib']+' '+user['Soc']+' '+user['Supp']+' '+user['Teach']+' '+user['Other']+' '+jac[mac]['sex']+' '+jac[mac]['age']+'\n') fileinput.close() with open("../data/plot/R_trace_online_cor","w") as f: f.write("mac Acad Adm Ath Cant Hosp Lib Soc Supp Teach Other sex age\n") for line in fileinput.input("../data/feature/trace_online_statistic_filter"): part = line.strip().split(" ") mac, objs, user = part[0], part[3:], {"Acad":"0","Adm":"0","Ath":"0","Cant":"0","Hosp":"0","Lib":"0","Soc":"0","Supp":"0","Teach":"0","Other":"0"} for one in objs: tag, rto = one.split("@")[0], one.split("@")[1].split(",")[0] if tag in ["Acad","Adm","Ath","Cant","Hosp","Lib","Soc","Supp","Teach","Other"]: user[tag] = rto f.write(mac+' '+user['Acad']+' '+user['Adm']+' '+user['Ath']+' '+user['Cant']+' '+user['Hosp']+' '+user['Lib']+' '+user['Soc']+' '+user['Supp']+' '+user['Teach']+' '+user['Other']+' '+jac[mac]['sex']+' '+jac[mac]['age']+'\n') fileinput.close() # 1:renren, 2:baidu, 3:sina, 4:taobao, 5:qq mapping = {'1':'1','2':'1','3':'1','27':'1','46':'1','64':'1','69':'1',\ '5':'2','6':'2','21':'2','22':'2','26':'2','60':'2','63':'2','70':'2','77':'2','80':'2','93':'2','98':'2',\ '11':'3','15':'3','16':'3','17':'3','23':'3','24':'3','28':'3','29':'3','51':'3','82':'3','84':'3',\ '19':'4','23':'4','36':'4','39':'4','42':'4','56':'4','57':'4','58':'4','59':'4',\ '20':'5','31':'5','41':'5','45':'5','48':'5','86':'5',\ } with open("../data/plot/R_trace_http_cor","w") as f: f.write("mac renren baidu sina taobao qq sex age\n") for line in fileinput.input("../data/feature/trace_http_statistic_filter"): part = line.strip().split(" ") mac, objs, user = part[0], part[3:], {"renren":0,"baidu":0,"sina":0,"taobao":0,"qq":0} for one in objs: tag, rto = one.split("@")[0], int(one.split("@")[1].split(",")[1]) if len(tag.split("+")) == 2 and tag.split("+")[0] == "WD" and ":" in tag: tag = tag.split("+")[1] hst, typ = tag.split(":")[0], tag.split(":")[1] if mapping.has_key(hst): top = mapping[hst] if top == "1": user['renren'] += rto elif top == "2": user['baidu'] += rto elif top == "3": user['sina'] += rto elif top == "4": user['taobao'] += rto elif top == "5": user['qq'] += rto f.write(mac+' '+str(user['renren'])+' '+str(user['baidu'])+' '+str(user['sina'])+' '+str(user['taobao'])+' '+str(user['qq'])+' '+jac[mac]['sex']+' '+jac[mac]['age']+'\n') fileinput.close()
[ "mqiang@splunk.com" ]
mqiang@splunk.com
3f8ff7bf52aee9a81f937005bb281f95f35481df
4b5d7d9131cd342d0d54130d217cb10eff7c1bff
/lab4/algorithmTests.py
904f07e9267a8788aa66254840d2d128f0696911
[]
no_license
sklaboi/ochrona-danych-laboratorium
48f8b02d2ab73d764e869c4a3a001088d34134e2
7701cc1e29afb2b7b3d8fb0a25a95b7d00d4d61d
refs/heads/master
2021-05-26T18:10:36.085276
2012-04-02T10:22:49
2012-04-02T10:22:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
620
py
#!/usr/bin/python import sys import random import math import hashlib from Crypto.Cipher import DES,AES import time des = DES.new("key12345") des = DES.new("key12345",DES.MODE_CBC) #encrypted = des.encrypt("secret12") #print encrypted aes = AES.new("1234567890123456",AES.MODE_CFB) encrypted = aes.encrypt("test") #print encrypted haslo = sys.argv[1] random.seed(time.time()) sol = "" for s in range(8): sol += str(random.randint(0,9)) print "sol:" print sol print "pass:" password = hashlib.sha224(haslo).hexdigest() for i in range(1000): password = hashlib.sha224(password+str(sol)).hexdigest() print password
[ "gwiazdal@volt.iem.pw.edu.pl" ]
gwiazdal@volt.iem.pw.edu.pl
43c10cdae7648e4ba849bdb25a0d0584082480de
a1678f80efe56423d08bea6a2843633b8a81dd34
/DSALGO_String/firstNonRpeatingCharacterInStream.py
d49f0701ab89e0eff461dd81e21982da2b3f07ca
[]
no_license
NIDHISH99444/CodingNinjas
af60aa93dbfcf050e727949d41201f72973b0608
b77b652cf0bf9b098ef9da4eff5eaecb7bfeaea5
refs/heads/master
2021-05-17T03:50:45.376843
2020-05-03T17:25:01
2020-05-03T17:25:01
250,608,228
2
1
null
null
null
null
UTF-8
Python
false
false
485
py
from _collections import deque def firstNonRepeating(string): dict=[0]*26 q=deque() for i in range(len(string)): dict[ord(string[i])-ord('a')]+=1 q.append(string[i]) while len(q)!=0: if dict[ord(q[0])-ord('a')]>1: q.popleft() else: print(q[0],end=" ") break if len(q)==0: print("-1",end=" ") print() firstNonRepeating("aabc") firstNonRepeating("aac")
[ "nidhish99444@gmail.com" ]
nidhish99444@gmail.com
2ec70de8b0fa6c526ab26722c4d947d9f7a07da4
241c347e5842c19bb298b8422a4bc68e64350d66
/machine_learner.py
7fa09bca40979c59a871e5e4fa1155713a8286a7
[]
no_license
ThePianoDentist/dota_talent_stats
92956c43356ea8e8d752c15f1294978eff026545
e2c3d1cec51d1e8b426c804f0331ee1221e3208b
refs/heads/master
2021-01-23T03:43:12.700928
2017-09-29T12:49:54
2017-09-29T12:49:54
86,113,759
0
0
null
null
null
null
UTF-8
Python
false
false
6,309
py
import random from keras.models import Sequential from keras.layers import Dense import numpy import itertools seed = 7 # random seed fixed so can reproduce things numpy.random.seed(seed) # TODO abstract model stuff away so can literally just give our hero id, and team and enemy ids. # TODO i.e dont hardcode these numpy.zeros(230) everywhere class Model: def __init__(self, inputs, outputs, model, alpha, test_inputs, test_outputs): self.model = model self.inputs = inputs self.outputs = outputs self.ignoreHeroes = False self.alpha = alpha # for http://stats.stackexchange.com/a/136542 self.test_inputs = test_inputs self.test_outputs = test_outputs def _net_predict(self, input_): if self.ignoreHeroes: input_ = input_[-4:] return self.model.predict(numpy.array([input_])) @property def neuron_upper_limit(self): # TODO assumes only 1 output field upper_limit = len(self.inputs) / (self.alpha * (len(self.inputs[0]) + 1)) return upper_limit def evaluate(self): scores = self.model.evaluate(self.inputs, self.outputs) # print("Evaluation: \n") # print(scores) # print("%s: %.2f%%" % (self.model.metrics_names[1], scores[1] * 100)) def predict(self, our_hero, friendly_heroes, enemy_heroes): inputs = numpy.empty(230) inputs.fill(-1.0) for h in friendly_heroes: inputs[DiscreteHeroModel.hero_id_to_index(h, our_hero.id, True)] = 1.0 for h in enemy_heroes: inputs[DiscreteHeroModel.hero_id_to_index(h, our_hero.id, False)] = 1.0 skill_trees = [list(i) for i in itertools.product([-1.0, 1.0], repeat=4)] for sk_tree in skill_trees: temp_inputs = inputs temp_inputs[-4:] = sk_tree prediction = self._net_predict(temp_inputs) rounded = [round(x[0], 4) for x in prediction] print("\nSkill tree:") print(temp_inputs[-4:]) print("\nPrediction: ") print(rounded) def test(self): # TODO whats the best way to measure accuracy? # do i need to be checking std_devs of inaccuracies as well? inaccuracy = 0.0 actual_out_sum = predicted_out_sum = 0.0 for i, input_ in enumerate(self.test_inputs): predicted_out = self._net_predict(input_)[0] actual_out = self.test_outputs[i] inaccuracy += abs(actual_out - predicted_out) predicted_out_sum += predicted_out actual_out_sum += actual_out #inaccuracy /= len(self.test_outputs) inaccuracy = abs(actual_out_sum - predicted_out_sum) / len(self.test_inputs) print("Actual winrate: ", actual_out_sum/ len(self.test_inputs)) print("Predicted winrate: ", predicted_out_sum / len(self.test_inputs)) return inaccuracy class SimpleModel(Model): pass class RandomForestDeicisonTreeModel(Model): "does the 100 or so branches for each choice make this kind of hard? / poor performance?" "could do same thing and turn it into binary choices to choose a hero or not" "but just trading width for height" pass class DiscreteHeroModel(Model): def __init__(self, inputs, outputs, alpha=2, test_inputs=None, test_outputs=None, ignore_heroes=False): """ :param inputs: the discrete representations of possible heros - plus the 4 talent choices - 0.5 represents never chose that talent :param outputs: 1 for win. 0 for loss :) """ self.ignoreHeroes = ignore_heroes # TODO tidy how inheritance occurring. how consturctors behave. this is messy if self.ignoreHeroes: self.inputs = numpy.array([inp[-4:] for inp in inputs]) self.test_inputs = numpy.array([inp[-4:] for inp in test_inputs]) dimension = 4 else: self.inputs = numpy.array(inputs) self.test_inputs = numpy.array(test_inputs) dimension = 230 self.outputs = numpy.array(outputs) self.test_outputs = numpy.array(test_outputs) self.model = Sequential() # TODO 80, 40, 72000. whats a number ¯\_(ツ)_/¯ self.model.add(Dense(115, input_dim=dimension, init='uniform', activation='relu')) #self.model.add(Dense(260, input_dim=230, init='uniform', activation='relu')) # self.model.add(Dense(133, init='uniform', activation='relu')) # self.model.add(Dense(8, init='uniform', activation='relu')) self.model.add(Dense(1, init='uniform', activation='sigmoid')) # print(len(self.inputs)) # print(len(self.outputs)) self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) self.model.fit(self.inputs, self.outputs, epochs=150, batch_size=100)#, verbose=0) super().__init__(self.inputs, self.outputs, self.model, alpha, self.test_inputs, self.test_outputs) @staticmethod def hero_id_to_index(hero_id, our_hero_id, friendly): start = 0 if friendly else 113 if hero_id < our_hero_id: return start + hero_id - 1 # hero_ids start at 1, not 0 else: return start + hero_id - 2 # we 'jump over' our_hero in the array class DecomposedHeroModel(Model): pass class Net: def __init__(self, inputs, outputs): self.inputs = inputs self.outputs = outputs # inputs # 4 friendly team-mates # our hero # 5 enemies # # ouput w/l # hmmmmmmmmmmmmmm # so the input arent numerical values where differences have meaning...they're just ids # this isnt really a machine learning problem? # this is more, we have different estimates with different errors # how to combine to make most accurate guess :/ # as in we may have a game with these exact heroes and won it. but that 100% is less reliable # than 1000s of games with a few hero matches with maybe 60% winrate # so standard error = standard deviation / sqrt(sample size) model = Sequential() # random note: rectifier funcs over sigmoids > performance (dont do for output layer)
[ "jbknight07@gmail.com" ]
jbknight07@gmail.com
10a39221f5994440bcf13c5a105678bdd1ad321e
08f60e7f496e76a4c6d5d8f6b671eb65fe7f4c7e
/env/Scripts/rst2man.py
cf0ea6a096d96e11d05be44d0d3c7949c0e96b1a
[]
permissive
Cell5/nfckey
dca892a0d647a3594fbb9af00615e388a8b54758
15a052e4877ad8eb4d71de3c92b2285e3e7d9d57
refs/heads/master
2022-11-27T03:45:29.944031
2018-11-16T09:38:01
2018-11-16T09:38:01
156,221,618
0
1
BSD-3-Clause
2022-11-19T01:38:13
2018-11-05T13:23:52
JavaScript
UTF-8
Python
false
false
629
py
#!c:\xampp\htdocs\nfckey\env\scripts\python.exe # Author: # Contact: grubert@users.sf.net # Copyright: This module has been placed in the public domain. """ man.py ====== This module provides a simple command line interface that uses the man page writer to output from ReStructuredText source. """ import locale try: locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description from docutils.writers import manpage description = ("Generates plain unix manual documents. " + default_description) publish_cmdline(writer=manpage.Writer(), description=description)
[ "exride@gmail.com" ]
exride@gmail.com
64ebd8dc8dee1409f7462da7e97b36589440ca93
897d82d4953ed7b609746a0f252f3f3440b650cb
/evening/20200615/demo3.py
fb8a2467fdd7cd54f0e4530ae9c506eeaa9352c6
[]
no_license
haiou90/aid_python_core
dd704e528a326028290a2c18f215b1fd399981bc
bd4c7a20950cf7e22e8e05bbc42cb3b3fdbe82a1
refs/heads/master
2022-11-26T19:13:36.721238
2020-08-07T15:05:17
2020-08-07T15:05:17
285,857,695
0
0
null
null
null
null
UTF-8
Python
false
false
947
py
class GParent: pass class Parent(GParent): def __init__(self,atk,hp): self.atk = atk self.hp = hp def attack(self,target): pass def damage(self,value): pass #玩家攻击敌人 敌人受伤,还可能死亡 class Player(Parent,GParent): def attack(self,target): print('黑虎掏心') target.damage(self.atk) def damage(self,value): print('小样你敢打我!') self.hp -= value if self.hp <= 0: print('太菜了') class Enemy(Parent): def attack(self,target): print('普通攻击第一式') target.damage(self.atk) def damage(self,value): print('玩家打人啦') self.hp -= value if self.hp <= 0: print('a~~~~') print('爆装备') p1 = Player(50,100) e1 = Enemy(10,100) p1.attack(e1) e1.attack(p1) e1.attack(p1) e1.attack(p1) e1.attack(p1) p1.attack(e1)
[ "caoho@outlook.com" ]
caoho@outlook.com
39b26a09d6fbe8fddb9e0b8211cadb3d9dd28529
f418f6f3a4f1e6574103b4426150c6a26e233bfe
/criteo/src/xgboost.py
c52aa05e8e393e239ef1a069b3f22698c0755499
[]
no_license
fengqi0423/hahaha
495b8e6916cb553ce8dbeb02673b5c41489b93ab
4bdd96a81eb1165bc0eb05ab41b0f1ac3c9cde8a
refs/heads/master
2021-01-10T19:23:47.828477
2014-09-23T03:30:44
2014-09-23T03:30:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,098
py
# Author: Tianqi Chen, Bing Xu # module for xgboost import ctypes import os # optinally have scipy sparse, though not necessary import numpy import numpy.ctypeslib import scipy.sparse as scp # set this line correctly XGBOOST_PATH = '/usr/local/lib/libxgboostpy.so' # entry type of sparse matrix class REntry(ctypes.Structure): _fields_ = [("findex", ctypes.c_uint), ("fvalue", ctypes.c_float) ] # load in xgboost library xglib = ctypes.cdll.LoadLibrary(XGBOOST_PATH) xglib.XGDMatrixCreate.restype = ctypes.c_void_p xglib.XGDMatrixNumRow.restype = ctypes.c_ulong xglib.XGDMatrixGetLabel.restype = ctypes.POINTER( ctypes.c_float ) xglib.XGDMatrixGetWeight.restype = ctypes.POINTER( ctypes.c_float ) xglib.XGDMatrixGetRow.restype = ctypes.POINTER( REntry ) xglib.XGBoosterCreate.restype = ctypes.c_void_p xglib.XGBoosterPredict.restype = ctypes.POINTER( ctypes.c_float ) def ctypes2numpy( cptr, length ): # convert a ctypes pointer array to numpy assert isinstance( cptr, ctypes.POINTER( ctypes.c_float ) ) res = numpy.zeros( length, dtype='float32' ) assert ctypes.memmove( res.ctypes.data, cptr, length * res.strides[0] ) return res # data matrix used in xgboost class DMatrix: # constructor def __init__(self, data=None, label=None, missing=0.0, weight = None): # force into void_p, mac need to pass things in as void_p self.handle = ctypes.c_void_p( xglib.XGDMatrixCreate() ) if data == None: return if isinstance(data,str): xglib.XGDMatrixLoad(self.handle, ctypes.c_char_p(data.encode('utf-8')), 1) elif isinstance(data,scp.csr_matrix): self.__init_from_csr(data) elif isinstance(data, numpy.ndarray) and len(data.shape) == 2: self.__init_from_npy2d(data, missing) else: try: csr = scp.csr_matrix(data) self.__init_from_csr(csr) except: raise Exception("can not intialize DMatrix from"+str(type(data))) if label != None: self.set_label(label) if weight !=None: self.set_weight(weight) # convert data from csr matrix def __init_from_csr(self,csr): assert len(csr.indices) == len(csr.data) xglib.XGDMatrixParseCSR( self.handle, ( ctypes.c_ulong * len(csr.indptr) )(*csr.indptr), ( ctypes.c_uint * len(csr.indices) )(*csr.indices), ( ctypes.c_float * len(csr.data) )(*csr.data), len(csr.indptr), len(csr.data) ) # convert data from numpy matrix def __init_from_npy2d(self,mat,missing): data = numpy.array( mat.reshape(mat.size), dtype='float32' ) xglib.XGDMatrixParseMat( self.handle, data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), mat.shape[0], mat.shape[1], ctypes.c_float(missing) ) # destructor def __del__(self): xglib.XGDMatrixFree(self.handle) # load data from file def load(self, fname, silent=True): xglib.XGDMatrixLoad(self.handle, ctypes.c_char_p(fname.encode('utf-8')), int(silent)) # load data from file def save_binary(self, fname, silent=True): xglib.XGDMatrixSaveBinary(self.handle, ctypes.c_char_p(fname.encode('utf-8')), int(silent)) # set label of dmatrix def set_label(self, label): xglib.XGDMatrixSetLabel(self.handle, (ctypes.c_float*len(label))(*label), len(label) ) # set group size of dmatrix, used for rank def set_group(self, group): xglib.XGDMatrixSetGroup(self.handle, (ctypes.c_uint*len(group))(*group), len(group) ) # set weight of each instances def set_weight(self, weight): xglib.XGDMatrixSetWeight(self.handle, (ctypes.c_float*len(weight))(*weight), len(weight) ) # get label from dmatrix def get_label(self): length = ctypes.c_ulong() labels = xglib.XGDMatrixGetLabel(self.handle, ctypes.byref(length)) return ctypes2numpy( labels, length.value ); # get weight from dmatrix def get_weight(self): length = ctypes.c_ulong() weights = xglib.XGDMatrixGetWeight(self.handle, ctypes.byref(length)) return ctypes2numpy( weights, length.value ); # clear everything def clear(self): xglib.XGDMatrixClear(self.handle) def num_row(self): return xglib.XGDMatrixNumRow(self.handle) # append a row to DMatrix def add_row(self, row): xglib.XGDMatrixAddRow(self.handle, (REntry*len(row))(*row), len(row) ) # get n-throw from DMatrix def __getitem__(self, ridx): length = ctypes.c_ulong() row = xglib.XGDMatrixGetRow(self.handle, ridx, ctypes.byref(length) ); return [ (int(row[i].findex),row[i].fvalue) for i in range(length.value) ] class Booster: """learner class """ def __init__(self, params={}, cache=[]): """ constructor, param: """ for d in cache: assert isinstance(d,DMatrix) dmats = ( ctypes.c_void_p * len(cache) )(*[ d.handle for d in cache]) self.handle = ctypes.c_void_p( xglib.XGBoosterCreate( dmats, len(cache) ) ) self.set_param( {'seed':0} ) self.set_param( params ) def __del__(self): xglib.XGBoosterFree(self.handle) def set_param(self, params, pv=None): if isinstance(params,dict): for k, v in params.items(): xglib.XGBoosterSetParam( self.handle, ctypes.c_char_p(k.encode('utf-8')), ctypes.c_char_p(str(v).encode('utf-8'))) elif isinstance(params,str) and pv != None: xglib.XGBoosterSetParam( self.handle, ctypes.c_char_p(params.encode('utf-8')), ctypes.c_char_p(str(pv).encode('utf-8')) ) else: for k, v in params: xglib.XGBoosterSetParam( self.handle, ctypes.c_char_p(k.encode('utf-8')), ctypes.c_char_p(str(v).encode('utf-8')) ) def update(self, dtrain): """ update """ assert isinstance(dtrain, DMatrix) xglib.XGBoosterUpdateOneIter( self.handle, dtrain.handle ) def boost(self, dtrain, grad, hess, bst_group = -1): """ update """ assert len(grad) == len(hess) assert isinstance(dtrain, DMatrix) xglib.XGBoosterBoostOneIter( self.handle, dtrain.handle, (ctypes.c_float*len(grad))(*grad), (ctypes.c_float*len(hess))(*hess), len(grad), bst_group ) def update_interact(self, dtrain, action, booster_index=None): """ beta: update with specified action""" assert isinstance(dtrain, DMatrix) if booster_index != None: self.set_param('interact:booster_index', str(booster_index)) xglib.XGBoosterUpdateInteract( self.handle, dtrain.handle, ctypes.c_char_p(str(action)) ) def eval_set(self, evals, it = 0): for d in evals: assert isinstance(d[0], DMatrix) assert isinstance(d[1], str) dmats = ( ctypes.c_void_p * len(evals) )(*[ d[0].handle for d in evals]) evnames = ( ctypes.c_char_p * len(evals) )( *[ctypes.c_char_p(d[1].encode('utf-8')) for d in evals]) xglib.XGBoosterEvalOneIter( self.handle, it, dmats, evnames, len(evals) ) def eval(self, mat, name = 'eval', it = 0 ): self.eval_set( [(mat,name)], it) def predict(self, data, bst_group = -1): length = ctypes.c_ulong() preds = xglib.XGBoosterPredict( self.handle, data.handle, ctypes.byref(length), bst_group) return ctypes2numpy( preds, length.value ) def save_model(self, fname): """ save model to file """ xglib.XGBoosterSaveModel(self.handle, ctypes.c_char_p(fname.encode('utf-8'))) def load_model(self, fname): """load model from file""" xglib.XGBoosterLoadModel( self.handle, ctypes.c_char_p(fname.encode('utf-8')) ) def dump_model(self, fname, fmap=''): """dump model into text file""" xglib.XGBoosterDumpModel( self.handle, ctypes.c_char_p(fname.encode('utf-8')), ctypes.c_char_p(fmap.encode('utf-8'))) def train(params, dtrain, num_boost_round = 10, evals = [], obj=None): """ train a booster with given paramaters """ bst = Booster(params, [dtrain]+[ d[0] for d in evals ] ) if obj == None: for i in range(num_boost_round): bst.update( dtrain ) if len(evals) != 0: bst.eval_set( evals, i ) else: # try customized objective function for i in range(num_boost_round): pred = bst.predict( dtrain ) grad, hess = obj( pred, dtrain ) bst.boost( dtrain, grad, hess ) if len(evals) != 0: bst.eval_set( evals, i ) return bst
[ "feng.qi@hulu.com" ]
feng.qi@hulu.com
67539a56c45da689a06a5d0dbec167da20875c44
0f85c7bfd4f29bcd856adc316cecc097fda744dc
/tests/test_ensure_db_indexes.py
b76b5876506cd87e0fd1691da623de883de60b0f
[ "MIT" ]
permissive
yandex/yandex-taxi-testsuite
260f46731c9888a9efcc3372c3d92329f2fb4d56
8befda8c13ef58d83b2ea7d0444e34de0f67ac7f
refs/heads/develop
2023-08-31T23:28:31.874786
2023-08-14T16:00:53
2023-08-14T16:00:53
244,937,107
150
41
MIT
2023-09-13T16:34:07
2020-03-04T15:35:09
Python
UTF-8
Python
false
false
2,916
py
import pymongo import pytest from testsuite.databases.mongo import ensure_db_indexes @pytest.fixture(scope='session') def mongodb_collections(): return ['sharded_collection'] @pytest.mark.parametrize( 'index_from_yaml, arg_and_kwargs', [ ({'key': 'field'}, ('field', {'background': True})), ( {'key': 'field', 'background': False}, ('field', {'background': False}), ), ( { 'key': 'field', 'expireAfterSeconds': 2592000, 'sparse': True, 'unique': True, 'name': 'name', }, ( 'field', { 'expireAfterSeconds': 2592000, 'sparse': True, 'unique': True, 'name': 'name', 'background': True, }, ), ), ( { 'key': [ {'name': 'field', 'type': 'ascending'}, {'name': 'field_2', 'type': 'descending'}, {'name': 'field_3', 'type': '2d'}, {'name': 'field_4', 'type': '2dsphere'}, {'name': 'field_5', 'type': 'hashed'}, {'name': 'field_6', 'type': 'ascending'}, {'name': 'field_7', 'type': 'text'}, ], }, ( [ ('field', pymongo.ASCENDING), ('field_2', pymongo.DESCENDING), ('field_3', pymongo.GEO2D), ('field_4', pymongo.GEOSPHERE), ('field_5', pymongo.HASHED), ('field_6', pymongo.ASCENDING), ('field_7', pymongo.TEXT), ], {'background': True}, ), ), ( { 'key': 'field', 'partialFilterExpression': { 'is_added_to_balance': {'$eq': 'holded'}, }, }, ( 'field', { 'partialFilterExpression': { 'is_added_to_balance': {'$eq': 'holded'}, }, 'background': True, }, ), ), ], ) def test_arg_and_kwargs_generation(index_from_yaml, arg_and_kwargs): # pylint: disable=protected-access assert ( ensure_db_indexes._get_args_for_ensure_func(index_from_yaml) == arg_and_kwargs ) def test_sharded_collection(mongodb, pytestconfig): if not pytestconfig.option.no_sharding: return mongodb.sharded_collection.insert({'_id': 'foo', '_shard_id': 0}) with pytest.raises(pymongo.errors.WriteError): mongodb.sharded_collection.insert({'_id': 'bar'})
[ "vitja@yandex-team.ru" ]
vitja@yandex-team.ru
864225aab249cfde9e18603e2f560f35df07377d
acce415d18f324fdcbd2df9d4bfae003c0b6560a
/user/urls.py
8650a041a0109d2dcf93a0c0ff42c65a91bffd75
[]
no_license
borsden/kanban
c9b08d34b779975b4cf3b8cc67e0e03f7816d37a
be0bfd22b8af61f78c407025b1706e57e5389ba4
refs/heads/master
2016-08-11T20:25:20.803053
2016-02-18T05:49:16
2016-02-18T05:49:16
48,171,355
0
0
null
null
null
null
UTF-8
Python
false
false
592
py
# coding=utf-8 from django.conf.urls import patterns, url import views urlpatterns = patterns('', url(r'^current_user/$', views.CurrentUser.as_view()), url(r'^update_user/$', views.UpdateUser.as_view()), url(r'^login/$', views.LoginUser.as_view(), name='login'), url(r'^logout/$', views.LogoutUser.as_view()), url(r'^change_avatar/$', views.ChangeAvatar.as_view()), url(r'^change_password/$', views.ChangePassword.as_view()), )
[ "borsden@gmail.com" ]
borsden@gmail.com
74b61650487cc870cd8e9dd2cda6ff92a8231e9d
fac2ed23a092fe8c07c30c6542f977e2244d57e3
/문24.py
bc6d66ba577e4c6c0f17f198a2fd390df6fccb99
[]
no_license
rhkdgh815/rhkdgh815
d1fcf9b192ffb8eb1ccc4a2dd3d2d7997342ed8d
5cb6380ba17fcc1bbffced4d8f0f5aab259ad155
refs/heads/master
2023-08-01T23:58:50.459446
2021-09-28T05:55:50
2021-09-28T05:55:50
403,934,722
0
0
null
null
null
null
UTF-8
Python
false
false
203
py
n1 = int(input()) n2 = int(input()) odd_sum = 0 even_ sum = 0 for i in range(n1+n2+1): if i % 2 == 1 : odd_sum += i else: even_sum += i print("짝수:",even_sum,"홀수:",odd_sum)
[ "80893010+rhkdgh815@users.noreply.github.com" ]
80893010+rhkdgh815@users.noreply.github.com
f34988ec1779777e353d26f3d66f85407eee93b7
91ad7dcbb7db4066e1bbcba01affa0a46eba1439
/Plotter.py
b44ae256fcf4ed3cc63627793a4930bcdab84531
[]
no_license
dcakagi/PnPSolver
54e4c6f79037989e309aefe7debe670fee36ef5a
d77344034497cdd47e4605cfa21df7c10dbd729b
refs/heads/master
2023-07-24T07:57:28.141307
2021-09-03T20:54:46
2021-09-03T20:54:46
393,401,691
0
0
null
null
null
null
UTF-8
Python
false
false
11,830
py
import numpy as np import matplotlib.pyplot as plt from matplotlib.offsetbox import AnnotationBbox, TextArea class ErrorPlotter: def __init__(self, plots: list, error_window_size: int, error_units_: str, time_units_: str, secondary_axes: bool=False): ''' Class to be used for plotting errors. Default settings will plot some provided error(s) vs. time, although a different variable can be plotted along the x-axis by providing the data in the first argument of the update_plot() function :param plots: List of plots to be graphed. Names of error plots provided in list will be the default main y-axes labels, with secondary y-axes tracking the percent error :param error_window_size: Number of prior timesteps to be used to calculate the mean error :param error_units_: Units for measuring absolute error (m, cm, rad, etc.) :param time_units_: Units of time to be plotted along the x-axis if plotting error vs. time :param secondary_axes: Show secondary axis of percent error on plots ''' self.state = None self.num_plots = len(plots) self.fig, self.axs = plt.subplots(self.num_plots, 1) self.lines = [] self.times = [] self.twins = [] self.twin_lines = [] self.error_data = {} self.perc_error_data = {} self.window_size = error_window_size self.error_units = error_units_ self.time_units = time_units_ self.error_window = None self.perc_error_window = None self.annotation_boxes = [] self.annotations = [] self.second_axis = secondary_axes idx = 0 for ax in self.axs: ax.set_ylabel(plots[idx] + " (" + self.error_units + ")") if self.second_axis: twin = ax.twinx() self.twins.append(twin) twin.set_ylabel(str(plots[idx] + " (Percent)")) idx += 1 self.axs[-1].set_xlabel("Time (" + self.time_units + ")") plt.ion() self.init = False def set_title(self, title): self.axs[0].set_title(title) def set_xlabel(self, label): self.axs[-1].set_xlabel(label) def set_main_ylabels(self, *labels): idx = 0 for ax in self.axs: ax.set_ylabel(labels[idx]) idx += 1 def set_secondary_ylabels(self, *labels): if not self.second_axis: return idx = 0 for twin in self.twins: twin.set_ylabel(labels[idx]) idx += 1 def get_average_errors(self): error = np.mean(self.error_window, axis=1) perc_error = None if self.second_axis: perc_error = np.mean(self.perc_error_window, axis=1) return [error, perc_error] def update_plot(self, time: float, *in_data: float): ''' :param time: Timestep associated with updated data if plotting error vs. time, OR other independent variable (i.e. range) to plot error against :param data: Data to be plotted. If plotting secondary axis of percent error, use form (error_i, percent_error_i, ...) for n plots ''' plt.ion() self.times.append(time) if self.second_axis: data = in_data[0:-1:2] perc_data = in_data[1::2] else: data = in_data perc_data = None if not self.init: self.error_window = np.array(data).reshape(-1, 1) self.perc_error_window = None if self.second_axis: self.perc_error_window = np.array(perc_data).reshape(-1, 1) ave_errors = self.get_average_errors() for idx in range(0, len(data)): self.error_data[idx] = [data[idx]] line, = self.axs[idx].plot(time, data[idx], "r-") self.lines.append(line) ave_error = ave_errors[0][idx] self.annotations.append([TextArea("Absolute Error (" + str(self.window_size) + " window): " + str("{:.3f} ".format(ave_error)) + self.error_units)]) ab = AnnotationBbox(self.annotations[idx][0], (0.01, 0.9), xycoords='axes fraction', alpha=1.0, pad=0.1, box_alignment=(0, 0)) self.axs[idx].add_artist(ab) if self.second_axis: self.axs[idx].tick_params(axis="y", colors=line.get_color()) self.axs[idx].yaxis.label.set_color(line.get_color()) self.perc_error_data[idx] = [perc_data[idx]] twin_line, = self.twins[idx].plot(time, perc_data[idx], "b-", zorder=1) self.twin_lines.append(twin_line) self.twins[idx].tick_params(axis="y", colors=twin_line.get_color()) self.twins[idx].yaxis.label.set_color(twin_line.get_color()) self.axs[idx].set_zorder(self.twins[idx].get_zorder()+1) self.axs[idx].patch.set_visible(False) ave_perc_error = ave_errors[1][idx] self.annotations[idx].append(TextArea("Percent Error (" + str(self.window_size) + " window): " + str("{:.3f}%".format(ave_perc_error)))) ab1 = AnnotationBbox(self.annotations[idx][1], (0.01, 0.8), xycoords='axes fraction', alpha=1.0, pad=0.1, box_alignment=(0, 0)) self.axs[idx].add_artist(ab1) self.init = True return # Check if window(s) is/are at maximum size, delete oldest points if needed if self.error_window.shape[1] == self.window_size: self.error_window = np.delete(self.error_window, 0, 1) if self.second_axis: self.perc_error_window = np.delete(self.perc_error_window, 0, 1) self.error_window = np.append(self.error_window, np.array(data).reshape(-1, 1), axis=1) if self.second_axis: self.perc_error_window = np.append(self.perc_error_window, np.array(perc_data).reshape(-1, 1), axis=1) for idx in range(0, len(data)): ave_errors = self.get_average_errors() self.error_data[idx].append(data[idx]) self.lines[idx].set_data(self.times, self.error_data[idx]) ave_error = ave_errors[0][idx] self.annotations[idx][0].set_text("Absolute Error (" + str(self.window_size) + " window): " + str("{:.3f} ".format(ave_error)) + self.error_units) self.axs[idx].relim() self.axs[idx].autoscale_view(True, True, True) if self.second_axis: self.perc_error_data[idx].append(perc_data[idx]) self.twin_lines[idx].set_data(self.times, self.perc_error_data[idx]) ave_perc_error = ave_errors[1][idx] self.annotations[idx][1].set_text("Percent Error (" + str(self.window_size) + " window): " + str("{:.3f}%".format(ave_perc_error))) self.twins[idx].relim() #self.twins[idx].set_ylim(0, 100) self.twins[idx].autoscale_view(True, True, True) #plt.show() plt.pause(0.0000001) class PosePlotter: def __init__(self, plots: [list], units: str, time_units: str, use_estimates: bool=True): ''' :param plots: List of variable lists to plot on each axis. If a single variable is to be graphed it will be plotted vs time :param units: Measurement units of plotted data (used for axis labeling) :param time_units: Units of time to be plotted along the x-axis ''' self.num_plots = len(plots) self.fig, self.axs = plt.subplots(1, self.num_plots) self.units = units self.time_units = time_units self.times = [] self.data_lines = [] self.est_lines = [] self.data = {} self.est_data = {} self.plots = plots self.use_estimates = use_estimates idx = 0 for ax in self.axs: if len(plots[idx]) == 1: ax.set_ylabel(plots[idx][0] + " (" + self.units + ")") ax.set_xlabel("Time (" + self.time_units + ")") elif len(plots[idx]) == 2: ax.set_xlabel(plots[idx][0] + " (" + self.units + ")") ax.set_ylabel(plots[idx][1] + " (" + self.units + ")") else: pass # Does not handle plotting three dimensions idx += 1 plt.ion() self.init = False def update_plot(self, time: float, *in_data: float): ''' :param time: Timestep associated with updated data :param data: Data to be plotted, matching order of variables provided to class constructor, in form (data_i, est_data_i, ...) ''' plt.ion() self.times.append(time) if self.use_estimates: data = in_data[0:-1:2] est_data = in_data[1::2] else: data = in_data est_data = None if not self.init: for d in range(len(data)): self.data[d] = [data[d]] if self.use_estimates: self.est_data[d] = [est_data[d]] data_idx = 0 for p in range(self.num_plots): if len(self.plots[p]) == 1: data_line, = self.axs[p].plot(self.times, self.data[data_idx], "b-") self.data_lines.append(data_line) if self.use_estimates: est_line, = self.axs[p].plot(self.times, self.est_data[data_idx], "r-") self.est_lines.append(est_line) self.axs[p].legend([self.data_lines[p], self.est_lines[p]], ["Actual " + self.plots[p][0], "Estimated " + self.plots[p][0]]) data_idx += 1 elif len(self.plots[p]) == 2: data_line, = self.axs[p].plot(self.data[data_idx], self.data[data_idx + 1], "b-") self.data_lines.append(data_line) if self.use_estimates: est_line, = self.axs[p].plot(self.est_data[data_idx], self.est_data[data_idx + 1], "r-") self.est_lines.append(est_line) self.axs[p].legend([self.data_lines[p], self.est_lines[p]], ["Actual " + self.plots[p][0] + ", " + self.plots[p][1], "Estimated " + self.plots[p][1] + ", " + self.plots[p][1]]) data_idx += 2 else: pass # No 3D plotting implemented self.init = True else: for d in range(len(data)): self.data[d].append(data[d]) if self.use_estimates: self.est_data[d].append(est_data[d]) data_idx = 0 for p in range(self.num_plots): if len(self.plots[p]) == 1: self.data_lines[p].set_data(self.times, self.data[data_idx]) if self.use_estimates: self.est_lines[p].set_data(self.times, self.est_data[data_idx]) data_idx += 1 elif len(self.plots[p]) == 2: self.data_lines[p].set_data(self.data[data_idx], self.data[data_idx + 1]) if self.use_estimates: self.est_lines[p].set_data(self.est_data[data_idx], self.est_data[data_idx + 1]) data_idx += 2 self.axs[p].relim() self.axs[p].autoscale_view(True, True, True) plt.pause(0.00001) def set_xlabel(self, plot_idx, label): self.axs[plot_idx].set_xlabel(label) def set_ylabel(self, plot_idx, label): self.axs[plot_idx].set_ylabel(label)
[ "dcakagi@gmail.com" ]
dcakagi@gmail.com
4f2b19ca6ea2aa053e8a9553366d01288860bf6f
5ee1c8378e374dd239752bcc79b44bcbbd89559a
/wsgi.py
3368c2fb6bbe0e361458b3fcc7990de7fce240c8
[ "Apache-2.0" ]
permissive
mahdikord/kordba
302bdaf03afddef04c3e9b860c096a8d0f29514a
20c71f636cfb4e49265c0f7984ac3373cd2e7ba4
refs/heads/master
2021-01-10T07:49:14.110378
2016-02-07T08:22:08
2016-02-07T08:22:08
51,240,456
0
0
null
null
null
null
UTF-8
Python
false
false
40,537
py
#!/usr/bin/env python import os def application(environ, start_response): ctype = 'text/plain' if environ['PATH_INFO'] == '/health': response_body = "1" elif environ['PATH_INFO'] == '/env': response_body = ['%s: %s' % (key, value) for key, value in sorted(environ.items())] response_body = '\n'.join(response_body) else: ctype = 'text/html' response_body = '''<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <title>Welcome to OpenShift</title> <style> /*! * Bootstrap v3.0.0 * * Copyright 2013 Twitter, Inc * Licensed under the Apache License v2.0 * http://www.apache.org/licenses/LICENSE-2.0 * * Designed and built with all the love in the world @twitter by @mdo and @fat. */ .logo { background-size: cover; height: 58px; width: 180px; margin-top: 6px; background-image: url(); } .logo a { display: block; width: 100%; height: 100%; } *, *:before, *:after { -moz-box-sizing: border-box; box-sizing: border-box; } aside, footer, header, hgroup, section{ display: block; } body { color: #404040; font-family: "Helvetica Neue",Helvetica,"Liberation Sans",Arial,sans-serif; font-size: 14px; line-height: 1.4; } html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%; } ul { margin-top: 0; } .container { margin-right: auto; margin-left: auto; padding-left: 15px; padding-right: 15px; } .container:before, .container:after { content: " "; /* 1 */ display: table; /* 2 */ } .container:after { clear: both; } .row { margin-left: -15px; margin-right: -15px; } .row:before, .row:after { content: " "; /* 1 */ display: table; /* 2 */ } .row:after { clear: both; } .col-sm-6, .col-md-6, .col-xs-12 { position: relative; min-height: 1px; padding-left: 15px; padding-right: 15px; } .col-xs-12 { width: 100%; } @media (min-width: 768px) { .container { width: 750px; } .col-sm-6 { float: left; } .col-sm-6 { width: 50%; } } @media (min-width: 992px) { .container { width: 970px; } .col-md-6 { float: left; } .col-md-6 { width: 50%; } } @media (min-width: 1200px) { .container { width: 1170px; } } a { color: #069; text-decoration: none; } a:hover { color: #EA0011; text-decoration: underline; } hgroup { margin-top: 50px; } footer { margin: 50px 0 25px; font-size: 11px; } h1, h2, h3 { color: #000; line-height: 1.38em; margin: 1.5em 0 .3em; } h1 { font-size: 25px; font-weight: 300; border-bottom: 1px solid #fff; margin-bottom: .5em; } h1:after { content: ""; display: block; width: 100%; height: 1px; background-color: #ddd; } h2 { font-size: 19px; font-weight: 400; } h3 { font-size: 15px; font-weight: 400; margin: 0 0 .3em; } p { margin: 0 0 2em; } p + h2 { margin-top: 2em; } html { background: #f5f5f5; height: 100%; } code { background-color: white; border: 1px solid #ccc; padding: 1px 5px; color: #888; } pre { display: block; padding: 13.333px 20px; margin: 0 0 20px; font-size: 13px; line-height: 1.4; background-color: #fff; border-left: 2px solid rgba(120,120,120,0.35); white-space: pre; white-space: pre-wrap; word-break: normal; word-wrap: break-word; overflow: auto; font-family: Menlo,Monaco,"Liberation Mono",Consolas,monospace !important; } </style> </head> <body> <section class='container'> <hgroup> <h1>Welcome to your Python application on OpenShift</h1> </hgroup> <div class="row"> <section class='col-xs-12 col-sm-6 col-md-6'> <section> <h2>Deploying code changes</h2> <p>OpenShift uses A <a href="http://git-scm.com/">Git version control system</a> for your source code, and grants you access to it via the Secure Shell (SSH) protocol. In order to upload and download code to your application you need to give us your <a href="https://developers.openshift.com/en/managing-remote-connection.html">public SSH key</a>. You can upload it within the web console or install the <a href="https://developers.openshift.com/en/managing-client-tools.html">RHC command line tool</a> and run <code>rhc setup</code> to generate and upload your key automatically.</p> <h3>Working in your local Git repository</h3> <p>If you created your application from the command line and uploaded your SSH key, rhc will automatically download a copy of that source code repository (Git calls this 'cloning') to your local system.</p> <p>If you created the application from the web console, you'll need to manually clone the repository to your local system. Copy the application's source code Git URL and then run:</p> <pre>$ git clone &lt;git_url&gt; &lt;directory_to_create&gt; # Within your project directory # Commit your changes and push to OpenShift $ git commit -a -m 'Some commit message' $ git push</pre> <ul> <li><a href="https://developers.openshift.com/en/managing-modifying-applications.html">Learn more about deploying and building your application</a></li> <li>See the README file in your local application Git repository for more information on the options for deploying applications.</li> </ul> </section> </section> <section class="col-xs-12 col-sm-6 col-md-6"> <h2>Managing your application</h2> <h3>Web Console</h3> <p>You can use the OpenShift web console to enable additional capabilities via cartridges, add collaborator access authorizations, designate custom domain aliases, and manage domain memberships.</p> <h3>Command Line Tools</h3> <p>Installing the <a href="https://developers.openshift.com/en/managing-client-tools.html">OpenShift RHC client tools</a> allows you complete control of your cloud environment. Read more on how to manage your application from the command line in our <a href="https://www.openshift.com/user-guide">User Guide</a>. </p> <h2>Development Resources</h2> <ul> <li><a href="https://developers.openshift.com/en/python-overview.html">Getting Started with Python on OpenShift</a></li> <li><a href="https://developers.openshift.com">Developer Center</a></li> <li><a href="https://www.openshift.com/user-guide">User Guide</a></li> <li><a href="https://help.openshift.com">Help Center</a></li> <li><a href="http://stackoverflow.com/questions/tagged/openshift">Stack Overflow questions for OpenShift</a></li> <li><a href="http://git-scm.com/documentation">Git documentation</a></li> </ul> </section> </div> <footer> <div class="logo"><a href="https://www.openshift.com/"></a></div> </footer> </section> </body> </html>''' response_body = response_body.encode('utf-8') status = '200 OK' response_headers = [('Content-Type', ctype), ('Content-Length', str(len(response_body)))] # start_response(status, response_headers) return [response_body ] # # Below for testing only # if __name__ == '__main__': from wsgiref.simple_server import make_server httpd = make_server('localhost', 8051, application) # Wait for a single request, serve it and quit. httpd.handle_request()
[ "devmwheeler@live.com" ]
devmwheeler@live.com
2b527ae08f8f0e1fc6300048d9138a988209d9aa
3e3ce865b7746732fe4298435cfe5cb8b23f46e7
/venv1/bin/easy_install-2.7
5fdfe2bb8764ea291ec2e732b2cdb5cb68fd2aab
[]
no_license
siddharth12456/Plivo
ba48735ff1edb655737ed569d65db5619cd7f4b4
a6bd537b88add841325b88cd953b60b35636ddd4
refs/heads/master
2021-07-19T11:46:37.090810
2020-04-20T08:16:07
2020-04-20T15:46:01
132,721,649
0
0
null
2020-04-20T15:46:03
2018-05-09T07:52:32
Python
UTF-8
Python
false
false
278
7
#!/home/siddharth/PycharmProjects/PlivoAPI/venv1/bin/python2.7 # -*- coding: utf-8 -*- import re import sys from setuptools.command.easy_install import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "sroy@sentient-energy.com" ]
sroy@sentient-energy.com
7ef0e32c2bc08328f7dda3f11c84b48d28e808b8
34096e5f3d6569e3aaee794bf8ccc0b04f2c8c8f
/docusign_esign/models/envelope_transfer_rule.py
9850e0af941d967df7254ce7324591c2361dd884
[ "MIT" ]
permissive
hunk/docusign-python-client
5c96de8a08973fe1744d902b2a3873a7376a62c7
a643c42c1236715e74eef6fc279a1b29da1b5455
refs/heads/master
2021-06-14T06:41:23.298368
2020-04-01T05:51:08
2020-04-01T05:51:08
254,482,059
0
0
MIT
2020-04-09T21:28:23
2020-04-09T21:28:23
null
UTF-8
Python
false
false
9,506
py
# coding: utf-8 """ DocuSign REST API The DocuSign REST API provides you with a powerful, convenient, and simple Web services API for interacting with DocuSign. OpenAPI spec version: v2.1 Contact: devcenter@docusign.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class EnvelopeTransferRule(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, carbon_copy_original_owner=None, enabled=None, envelope_transfer_rule_id=None, event_type=None, from_group=None, from_user=None, modified_date=None, modified_user=None, to_folder=None, to_user=None): """ EnvelopeTransferRule - a model defined in Swagger :param dict swaggerTypes: The key is attribute name and the value is attribute type. :param dict attributeMap: The key is attribute name and the value is json key in definition. """ self.swagger_types = { 'carbon_copy_original_owner': 'str', 'enabled': 'str', 'envelope_transfer_rule_id': 'str', 'event_type': 'str', 'from_group': 'Group', 'from_user': 'UserInformation', 'modified_date': 'str', 'modified_user': 'UserInformation', 'to_folder': 'Folder', 'to_user': 'UserInformation' } self.attribute_map = { 'carbon_copy_original_owner': 'carbonCopyOriginalOwner', 'enabled': 'enabled', 'envelope_transfer_rule_id': 'envelopeTransferRuleId', 'event_type': 'eventType', 'from_group': 'fromGroup', 'from_user': 'fromUser', 'modified_date': 'modifiedDate', 'modified_user': 'modifiedUser', 'to_folder': 'toFolder', 'to_user': 'toUser' } self._carbon_copy_original_owner = carbon_copy_original_owner self._enabled = enabled self._envelope_transfer_rule_id = envelope_transfer_rule_id self._event_type = event_type self._from_group = from_group self._from_user = from_user self._modified_date = modified_date self._modified_user = modified_user self._to_folder = to_folder self._to_user = to_user @property def carbon_copy_original_owner(self): """ Gets the carbon_copy_original_owner of this EnvelopeTransferRule. :return: The carbon_copy_original_owner of this EnvelopeTransferRule. :rtype: str """ return self._carbon_copy_original_owner @carbon_copy_original_owner.setter def carbon_copy_original_owner(self, carbon_copy_original_owner): """ Sets the carbon_copy_original_owner of this EnvelopeTransferRule. :param carbon_copy_original_owner: The carbon_copy_original_owner of this EnvelopeTransferRule. :type: str """ self._carbon_copy_original_owner = carbon_copy_original_owner @property def enabled(self): """ Gets the enabled of this EnvelopeTransferRule. :return: The enabled of this EnvelopeTransferRule. :rtype: str """ return self._enabled @enabled.setter def enabled(self, enabled): """ Sets the enabled of this EnvelopeTransferRule. :param enabled: The enabled of this EnvelopeTransferRule. :type: str """ self._enabled = enabled @property def envelope_transfer_rule_id(self): """ Gets the envelope_transfer_rule_id of this EnvelopeTransferRule. :return: The envelope_transfer_rule_id of this EnvelopeTransferRule. :rtype: str """ return self._envelope_transfer_rule_id @envelope_transfer_rule_id.setter def envelope_transfer_rule_id(self, envelope_transfer_rule_id): """ Sets the envelope_transfer_rule_id of this EnvelopeTransferRule. :param envelope_transfer_rule_id: The envelope_transfer_rule_id of this EnvelopeTransferRule. :type: str """ self._envelope_transfer_rule_id = envelope_transfer_rule_id @property def event_type(self): """ Gets the event_type of this EnvelopeTransferRule. :return: The event_type of this EnvelopeTransferRule. :rtype: str """ return self._event_type @event_type.setter def event_type(self, event_type): """ Sets the event_type of this EnvelopeTransferRule. :param event_type: The event_type of this EnvelopeTransferRule. :type: str """ self._event_type = event_type @property def from_group(self): """ Gets the from_group of this EnvelopeTransferRule. :return: The from_group of this EnvelopeTransferRule. :rtype: Group """ return self._from_group @from_group.setter def from_group(self, from_group): """ Sets the from_group of this EnvelopeTransferRule. :param from_group: The from_group of this EnvelopeTransferRule. :type: Group """ self._from_group = from_group @property def from_user(self): """ Gets the from_user of this EnvelopeTransferRule. :return: The from_user of this EnvelopeTransferRule. :rtype: UserInformation """ return self._from_user @from_user.setter def from_user(self, from_user): """ Sets the from_user of this EnvelopeTransferRule. :param from_user: The from_user of this EnvelopeTransferRule. :type: UserInformation """ self._from_user = from_user @property def modified_date(self): """ Gets the modified_date of this EnvelopeTransferRule. :return: The modified_date of this EnvelopeTransferRule. :rtype: str """ return self._modified_date @modified_date.setter def modified_date(self, modified_date): """ Sets the modified_date of this EnvelopeTransferRule. :param modified_date: The modified_date of this EnvelopeTransferRule. :type: str """ self._modified_date = modified_date @property def modified_user(self): """ Gets the modified_user of this EnvelopeTransferRule. :return: The modified_user of this EnvelopeTransferRule. :rtype: UserInformation """ return self._modified_user @modified_user.setter def modified_user(self, modified_user): """ Sets the modified_user of this EnvelopeTransferRule. :param modified_user: The modified_user of this EnvelopeTransferRule. :type: UserInformation """ self._modified_user = modified_user @property def to_folder(self): """ Gets the to_folder of this EnvelopeTransferRule. :return: The to_folder of this EnvelopeTransferRule. :rtype: Folder """ return self._to_folder @to_folder.setter def to_folder(self, to_folder): """ Sets the to_folder of this EnvelopeTransferRule. :param to_folder: The to_folder of this EnvelopeTransferRule. :type: Folder """ self._to_folder = to_folder @property def to_user(self): """ Gets the to_user of this EnvelopeTransferRule. :return: The to_user of this EnvelopeTransferRule. :rtype: UserInformation """ return self._to_user @to_user.setter def to_user(self, to_user): """ Sets the to_user of this EnvelopeTransferRule. :param to_user: The to_user of this EnvelopeTransferRule. :type: UserInformation """ self._to_user = to_user def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
[ "noreply@github.com" ]
noreply@github.com
6ed312e707abaa007c3cd93e7fdc80401b65f139
f736f2392c6de4b8c6cd9d9bdff6de5c05d4a278
/blog/coments/api/serializers.py
5aa0958b3467c1a910fc2f7c2bcccf44198519e5
[]
no_license
ricardocastilloisc/cursoDjangoBlog
a36f20021f72dc1b7b819c4f863e649707b3736a
13bac0f3811e7fafc3f21ed979b53cf36aae6d91
refs/heads/main
2023-06-27T19:33:26.977679
2021-07-26T14:59:26
2021-07-26T14:59:26
389,442,992
0
0
null
null
null
null
UTF-8
Python
false
false
232
py
from rest_framework import serializers from coments.models import Comment class CommentSerializer(serializers.ModelSerializer): class Meta: model = Comment fields = ['id','content', 'created_at', 'user', 'post']
[ "ricardocastilloisc@gmail.com" ]
ricardocastilloisc@gmail.com
bac58cc9c2e873327fcf4652f7150e09e1f24dbc
9ee12b1d04a458ab84a042acc317c483bf10b53e
/TinyImagenet/keras_alexnet.py
e447fe8fade498b338e4828802796951bcbea1cb
[]
no_license
cvasfi/light-cnns
c938aa952444894575253e1885bcea2d1b09c68c
e181e6aac1aac3e499c5318143b3fffba54186e7
refs/heads/master
2021-01-21T10:49:22.172196
2017-10-19T19:11:52
2017-10-19T19:11:52
101,991,275
0
0
null
null
null
null
UTF-8
Python
false
false
2,489
py
from __future__ import division import six from keras.models import Model from keras.layers import ( Input, Activation, Dense, Flatten ) from keras.layers.convolutional import ( Conv2D, MaxPooling2D, AveragePooling2D ) from keras.layers.merge import add from keras.layers.normalization import BatchNormalization from keras.regularizers import l2 from keras import backend as K from keras.layers.advanced_activations import PReLU from keras.layers.core import Dropout def _conv_relu(**conv_params): filters = conv_params["filters"] kernel_size = conv_params["kernel_size"] strides = conv_params.setdefault("strides", (1, 1)) kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal") padding = conv_params.setdefault("padding", "same") kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-4)) def f(input): conv = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer)(input) return PReLU()(conv) return f class AlexNetBuilder(object): @staticmethod def build(input_shape, num_outputs): # Permute dimension order if necessary if K.image_dim_ordering() == 'tf': input_shape = (input_shape[1], input_shape[2], input_shape[0]) input = Input(shape=input_shape) c1 = _conv_relu(filters=96, kernel_size=(3, 3), strides=(1, 1))(input) p1 = MaxPooling2D()(c1) c2 = _conv_relu(filters=256, kernel_size=(5, 5), strides=(1, 1))(p1) p2 = MaxPooling2D()(c2) c3 = _conv_relu(filters=384, kernel_size=(3, 3), strides=(1, 1))(p2) c4 = _conv_relu(filters=385, kernel_size=(3, 3), strides=(1, 1))(c3) c5 = _conv_relu(filters=256, kernel_size=(3, 3), strides=(1, 1))(c4) p3 = MaxPooling2D()(c5) fl = Flatten()(p3) fc1 = Dense(units=4096)(fl) fc1_d = Dropout(rate=0.5)(fc1) fc1_a= PReLU()(fc1_d) fc2 = Dense(units=4096)(fc1_a) fc2_a = Dropout(rate=0.5)(fc2) fc2_d= PReLU()(fc2_a) output = Dense(units=200,activation="softmax")(fc2_d) model = Model(inputs=input, outputs=output) return model @staticmethod def buildAlexnet(input_shape, num_outputs): return AlexNetBuilder.build(input_shape, num_outputs)
[ "yunus.ec@gmail.com" ]
yunus.ec@gmail.com
2694809627d8fe84439bbd9857953fd90a2c72a8
8a62bbff9378187a898f336532bb49de18cb88e4
/2020-phone-bpe-attention/scripts/create-phone-bpe-lexicon.py
9cc4eba43457fe7795861e94c644ea94d3b34626
[]
no_license
rwth-i6/returnn-experiments
e2cdecb67febe646d702282ced8c290f1dd8edd0
a46021329c030af361e0becb25ea92afca9610ce
refs/heads/master
2023-06-08T08:56:11.891782
2023-05-30T12:46:45
2023-05-30T12:46:45
67,426,132
159
52
null
2023-05-30T12:46:46
2016-09-05T14:07:48
Python
UTF-8
Python
false
false
13,569
py
#!/usr/bin/env python3 import xml.etree.ElementTree as ET from xml.dom import minidom import codecs from returnn.LmDataset import Lexicon from argparse import ArgumentParser """ create Lexicon, given bpe Vocab, lexicon and applied phones_bpe """ def convert(string_num): if isinstance(string_num, str) and string_num.startswith("0"): return "zero " + convert(string_num[1:]) num = int(string_num) units = ("", "one ", "two ", "three ", "four ","five ", "six ", "seven ","eight ", "nine ", "ten ", "eleven ", "twelve ", "thirteen ", "fourteen ", "fifteen ","sixteen ", "seventeen ", "eighteen ", "nineteen ") tens =("", "", "twenty ", "thirty ", "forty ", "fifty ","sixty ","seventy ","eighty ","ninety ") if num<0: return "minus "+convert(-num) if num<20: return units[num] if num<100: return tens[num // 10] +units[int(num % 10)] if num<1000: return units[num // 100] +"hundred " +convert(int(num % 100)) if num<1000000: return convert(num // 1000) + "thousand " + convert(int(num % 1000)) if num < 1000000000: return convert(num // 1000000) + "million " + convert(int(num % 1000000)) return convert(num // 1000000000)+ "billion "+ convert(int(num % 1000000000)) def hasNumber(inputString): return any(char.isdigit() for char in inputString) def separate(iString): prev_char = iString[0] tmp = [] new = iString[0] for x, i in enumerate(iString[1:]): if i.isalpha() and prev_char.isalpha(): new += i elif i.isnumeric() and prev_char.isnumeric(): new += i else: tmp.append(new) new = i prev_char = i if x == len(iString)-2: tmp.append(new) new = '' if len(iString) > 1: return tmp return [iString] def to_unicode_list(input_l): res = [] for item in input_l: res.append(to_unicode(item)) return res def to_unicode(input): text = input.split() result = "" for k in text: result += phone_to_unicode[k] return result # map phone into unicode phone_to_unicode = {'[LAUGHTER]': 'L', '[NOISE]': 'N', '[SILENCE]': 'S', '[VOCALIZEDNOISE]': 'V', 'aa': 'a', 'ae': 'à', 'ah': 'á', 'ao': 'â', 'aw': 'ã', 'ax': 'ä', 'ay': 'å', 'b': 'b', 'ch': 'c', 'd': 'd', 'dh': 'ď', 'eh': 'e', 'el': 'è', 'en': 'é', 'er': 'ê', 'ey': 'ë', 'f': 'f', 'g': 'g', 'hh': 'h', 'ih': 'i', 'iy': 'ì', 'jh': 'j', 'k': 'k', 'l': 'l', 'm': 'm', 'n': 'n', 'ng': 'ñ', 'ow': 'o', 'oy': 'ò', 'p': 'p', 'r': 'r', 's': 's', 'sh': 'ś', 't': 't', 'th': 'ţ', 'uh': 'u', 'uw': 'ù', 'v': 'v', 'w': 'w', 'y': 'y', 'z': 'z', 'zh': 'ź', ' ': ' ', '#1': '#1', # disambiquate symbols for homophones '#2': '#2', '#3': '#3', '#4': '#4', '#5': '#5', '#6': '#6', '#7': '#7', '#8': '#8', '#9': '#9', '#10': '#10', '#11': '#11', '#12': '#12', '#13': '#13', '#14': '#14', } def main(): arg_parser = ArgumentParser() arg_parser.add_argument("--bpe_vocab", required=True) arg_parser.add_argument("--lexicon", required=True) arg_parser.add_argument("--phones_bpe", required=True) arg_parser.add_argument("--bpe", action="store_true") arg_parser.add_argument("--char", action="store_true") arg_parser.add_argument("--charbpe", action="store_true") arg_parser.add_argument("--disamb", action="store_true") arg_parser.add_argument("--output", required=True) args = arg_parser.parse_args() #if single char or phon need to comment the optional arg phones_bpe since if we dont use bpe bpe1k_file = args.bpe_vocab lexicon_file = args.lexicon phones_bpe_file = args.phones_bpe def create_specialTree(input): if input == "</s>": lemma = ET.SubElement(lex_root, 'lemma', special="sentence-end") orth = ET.SubElement(lemma, 'orth') synt = ET.SubElement(lemma, 'synt') tok = ET.SubElement(synt, 'tok') orth.text = '[SENTENCE-END]' tok.text = input eval = ET.SubElement(lemma, 'eval') elif input == "<s>": lemma = ET.SubElement(lex_root, 'lemma', special="sentence-begin") orth = ET.SubElement(lemma, 'orth') synt = ET.SubElement(lemma, 'synt') tok = ET.SubElement(synt, 'tok') orth.text = '[SENTENCE-BEGIN]' tok.text = input eval = ET.SubElement(lemma, 'eval') elif input == "<unk>": lemma = ET.SubElement(lex_root, 'lemma', special="unknown") orth = ET.SubElement(lemma, 'orth') synt = ET.SubElement(lemma, 'synt') tok = ET.SubElement(synt, 'tok') orth.text = '[UNKNOWN]' tok.text = input eval = ET.SubElement(lemma, 'eval') # read the input phonemes file and parse it into dictionary # output dictionary seq with codecs.open(bpe1k_file, 'rU', 'utf-8') as file: seq = {} for line in file: if line.startswith(('{', '}')): continue line = line.replace(',', '') line = line.replace('\'', '') key, value = line.strip().split(':') value = value.strip() seq[key] = value # create the xml file structure special_sign = ["L", "N", "S", "V"] extra_sign = ["</s>", "<s>", "<unk>"] # old lexicon handle lex = Lexicon(lexicon_file) count = 0 temp_lemmas = [] for word in lex.lemmas: count += 1 if count > 9: if args.char: if hasNumber(lex.lemmas[word]['orth']): word_ = "" list_ = separate(lex.lemmas[word]['orth']) for item in list_: if item.isdigit(): word_ += convert(item) temp_lemmas.append(word_.strip()) else: temp_lemmas.append(lex.lemmas[word]['orth']) # create new lexicon root # create phonemes xml tree lex_root = ET.Element('lexicon') phone_inventory = ET.SubElement(lex_root, 'phoneme-inventory') for key, v in sorted(seq.items()): if key not in extra_sign: phone = ET.SubElement(phone_inventory, 'phoneme') p_sym = ET.SubElement(phone, 'symbol') p_var = ET.SubElement(phone, 'variation') if key in special_sign: p_var.text = 'none' if key == "L": p_sym.text = "[LAUGHTER]" elif key == "N": p_sym.text = "[NOISE]" elif key == "V": p_sym.text = "[VOCALIZEDNOISE]" else: p_sym.text = "[SILENCE]" else: p_var.text = 'context' p_sym.text = key else: if key == "<s>": create_specialTree(key) elif key == "</s>": create_specialTree(key) elif key == "<unk>": create_specialTree(key) for item in ["[NOISE]", "[VOCALIZEDNOISE]", "[LAUGHTER]"]: lemma = ET.SubElement(lex_root, 'lemma') orth = ET.SubElement(lemma, 'orth') phon = ET.SubElement(lemma, 'phon', score="0.0") phon.text = item orth.text = item synt = ET.SubElement(lemma, 'synt') eval = ET.SubElement(lemma, 'eval') # mapping phone sequences to word phon_dict = {} if args.char: for word in lex.lemmas: if hasNumber(word): word_ = "" list_ = separate(word) for item in list_: if item.isdigit(): word_ += convert(item) phon_dict[word] = word_ else: phon_dict[word] = word #print(word, phon_dict[word]) else: for word in lex.lemmas: len_phons = len(lex.lemmas[word]["phons"]) list_of_phons = [] for x in range(len_phons): list_of_phons.append(lex.lemmas[word]["phons"][x]["phon"]) if args.bpe: phon_dict[word] = to_unicode_list(list_of_phons) #phone bpe else: phon_dict[word] = list_of_phons #single phone if args.disamb: duplicates = {} # phone -> count for word, phones in sorted(phon_dict.items()): for phone in phones: if phone in duplicates: phon_dict[word].remove(phone) phon_dict[word].insert(0, '%s #%s' % (phone, duplicates[phone])) #bpe close#, not bpe far # duplicates[phone] += 1 else: duplicates[phone] = 1 # auxiliary write a output file with open('word_phone.txt', 'w') as f: print(phon_dict, file=f) with open('file_to_map.txt', 'w') as file: file.write('{\n') for key, value in phon_dict.items(): file.write('{}:{},\n'.format(key, value)) file.write('}\n') with open('file_to_map.txt', 'r') as inp: with open('file_output.txt', 'w') as out: for i in range(6): inp.readline() for line in inp: if line.startswith('}'): break line = line.replace(',', '') _, right = line.split(':') lst = right[1:-2].split(',') lst = [x.replace("'", "") for x in lst] output = ' '.join(lst) out.write('{}\n'.format(output)) #for other add \n, without for SingleChar # here is the checkpoint, where ./subword-nmt/apply_bpe.py is called # with input files: codes file and phone sequences that to be map (e.g file_output.txt) # generate output: phones_bpe_file that will be used further with open(phones_bpe_file, 'r') as file_r: res_ = [] for line in file_r: ls = line.strip().split() phon_seq = [] merge = [] for item in ls: if '@@' in item: merge.append(item) else: merge.append(item) phon_seq.append(' '.join(merge)) merge = [] res_.append(phon_seq) dict_tmp = list(phon_dict.items()) for idx, x in enumerate(res_): dict_tmp[4+idx] = (dict_tmp[4+idx][0], x) phon_dict = dict(dict_tmp) with open('unicode_phone.txt', 'w') as f: print(phon_dict, file=f) # we want to add same words (ignoring case) to the same lemma so we create a dict from orth to # lemma to add a similar orth to the same lemma later. phon should be added only once to the lemma # so we do that when we create the lemma if args.char: orth_to_lemma = {} # dict from orth to lemma for idx, elem in enumerate(temp_lemmas): elem_lower = elem.lower() # wenn schon drinne ist, gucken wir einfach nach if elem_lower in orth_to_lemma: lemma = orth_to_lemma[elem_lower] else: # wenn nicht, berechnet! lemma = ET.SubElement(lex_root, 'lemma') orth_to_lemma[elem_lower] = lemma #assert elem_lower in phon_dict res = "" for char in list(elem): res+=char res+=" " phon = ET.SubElement(lemma, 'phon') phon.text = res.strip() orth = ET.SubElement(lemma, 'orth') orth.text = elem # single char # if args.char: # orth_to_lemma = {} # for idx, elem in enumerate(temp_lemmas): # elem_lower = elem.lower() # lemma = ET.SubElement(lex_root, 'lemma') # orth = ET.SubElement(lemma, 'orth') # orth.text = elem # if elem_lower in orth_to_lemma: # lemma = orth_to_lemma[elem_lower] # else: # res = "" # for c in list(elem): # res+= c # res+= " " # phon = ET.SubElement(lemma, 'phon') # res = res + "<eow>" # phon.text = res # else: # orth_to_lemma = {} # for idx, elem in enumerate(temp_lemmas): # elem_lower = elem.lower() # lemma = ET.SubElement(lex_root, 'lemma') # orth = ET.SubElement(lemma, 'orth') # orth.text = elem # if elem_lower in orth_to_lemma: # lemma = orth_to_lemma[elem_lower] # else: # for p in phon_dict[elem_lower]: # phon = ET.SubElement(lemma, 'phon') # phon.text = p else: orth_to_lemma = {} # dict from orth to lemma for idx, elem in enumerate(temp_lemmas): elem_lower = elem.lower() # wenn schon drinne ist, gucken wir einfach nach if elem_lower in orth_to_lemma: lemma = orth_to_lemma[elem_lower] else: # wenn nicht, berechnet! lemma = ET.SubElement(lex_root, 'lemma') orth_to_lemma[elem_lower] = lemma assert elem_lower in phon_dict for p in phon_dict[elem_lower]: phon = ET.SubElement(lemma, 'phon') phon.text = p orth = ET.SubElement(lemma, 'orth') orth.text = elem if(args.output): my_data = minidom.parseString(ET.tostring(lex_root)).toprettyxml(indent=" ") with open(args.output, "w") as f: f.write(my_data) if __name__ == '__main__': import better_exchook better_exchook.install() main()
[ "thomas.ng@rwth-aachen.de" ]
thomas.ng@rwth-aachen.de
2ed8d0c47dc05eb342a5011b55fde809be7ece77
b038128c5ecd477403f1396ae7f5be29d6ade668
/dataset/dataset.py
25e313a0f9865d75871717ce8397d6f655d704c2
[]
no_license
BAfsharmanesh/Kaggle_Indoor_Location_Navigation
82fe8768b0a81f2bbc6e4a7c4d7d4f204f686b33
e9379061c0a0cda1a02f9e373c967a4c48f487f6
refs/heads/main
2023-04-30T19:36:38.876825
2021-05-16T21:48:41
2021-05-16T21:48:41
367,980,247
0
0
null
2021-05-16T20:40:34
2021-05-16T20:36:18
Python
UTF-8
Python
false
false
5,444
py
import pandas as pd from icecream import ic from pytorch_lightning import LightningDataModule from torch.utils.data import Dataset, DataLoader from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import StratifiedKFold #,StratifiedGroupKFold from config import Config from utils.utils import time_function import numpy as np class IndoorDataset(Dataset): def __init__(self, data, bssid_feats, rssi_feats, flag='TRAIN'): self.data = data self.flag = flag self.bssid_feats = bssid_feats self.rssi_feats = rssi_feats def __len__(self): return self.data.shape[0] def __getitem__(self, index): tmp_data = self.data.iloc[index] if self.flag == 'TRAIN': return { 'BSSID_FEATS': tmp_data[self.bssid_feats].values.astype(int), 'RSSI_FEATS': tmp_data[self.rssi_feats].values.astype(np.float32), 'site_id': tmp_data['site_id'].astype(int), 'x': tmp_data['x'], 'y': tmp_data['y'], 'floor': tmp_data['floor'], } elif self.flag == 'TEST': return { 'BSSID_FEATS': tmp_data[self.bssid_feats].values.astype(int), 'RSSI_FEATS': tmp_data[self.rssi_feats].values.astype(np.float32), 'site_id': tmp_data['site_id'].astype(int) } class IndoorDataModule(LightningDataModule): def __init__(self, train_data, test_data, kfold=False): self.train_data = train_data self.test_data = test_data self.kfold = kfold def set_fold_num(self, fold_num): self.fold_num = fold_num def _init_feats(self): self.bssid_feats = [f'bssid_{i}' for i in range(Config.num_wifi_feats)] self.rssi_feats = [f'rssi_{i}' for i in range(Config.num_wifi_feats)] def _init_wifi_bssids(self): wifi_bssids = [] for i in range(100): wifi_bssids += self.train_data[f'bssid_{i}'].values.tolist() wifi_bssids += self.test_data[f'bssid_{i}'].values.tolist() self.wifi_bssids = list(set(wifi_bssids)) self.wifi_bssids_size = len(self.wifi_bssids) def _init_transforms(self): self.wifi_bssids_encoder = LabelEncoder() self.wifi_bssids_encoder.fit(self.wifi_bssids) self.site_id_encoder = LabelEncoder() self.site_id_encoder = self.site_id_encoder.fit( self.train_data['site_id']) self.rssi_normalizer = StandardScaler() self.rssi_normalizer.fit(self.train_data[self.rssi_feats]) def _transform(self, data): for bssid_feat in self.bssid_feats: data[bssid_feat] = self.wifi_bssids_encoder.transform( data[bssid_feat]) data['site_id'] = self.site_id_encoder.transform(data['site_id']) data[self.rssi_feats] = self.rssi_normalizer.transform( data[self.rssi_feats]) return data def _kfold(self): ''' Group Kfold wrt path and Stratified Kfold wrt site_id ''' skf = StratifiedKFold(n_splits=Config.fold_num, shuffle=True, random_state=Config.seed) self.train_data['site_id_f'] = self.train_data['site_id'] + self.train_data['floor'].astype(str) for n, (train_index, val_index) in enumerate( skf.split( X = self.train_data['path'], y = self.train_data['path'] ) ): self.train_data.loc[val_index, 'kfold'] = int(n) @time_function def prepare_data(self): # Init cross validation if self.kfold: self._kfold() # Init preprocessing self._init_feats() self._init_wifi_bssids() self._init_transforms() self.site_id_dim = len(self.train_data['site_id'].unique()) self.train_data = self._transform(self.train_data) self.test_data = self._transform(self.test_data) @time_function def setup(self, stage=None): # Assign train/val datasets for use in dataloaders if stage == 'fit' or stage is None: if self.kfold: train_df = self.train_data[self.train_data['kfold'] != self.fold_num].reset_index(drop=True) val_df = self.train_data[self.train_data['kfold'] == self.fold_num].reset_index(drop=True) self.train = IndoorDataset( train_df, self.bssid_feats, self.rssi_feats, flag="TRAIN") self.val = IndoorDataset( val_df, self.bssid_feats, self.rssi_feats, flag="TRAIN") # Assign test dataset for use in dataloader(s) if stage == 'test' or stage is None: self.test = IndoorDataset( self.test_data, self.bssid_feats, self.rssi_feats, flag="TEST") def train_dataloader(self): return DataLoader(self.train, batch_size=Config.train_batch_size, num_workers=Config.num_workers, shuffle=True, pin_memory=True) def val_dataloader(self): return DataLoader(self.val, batch_size=Config.val_batch_size, num_workers=Config.num_workers, shuffle=True, pin_memory=True) def test_dataloader(self): return DataLoader(self.test, batch_size=Config.val_batch_size, num_workers=Config.num_workers, shuffle=False, pin_memory=True)
[ "noreply@github.com" ]
noreply@github.com
3eee818cb29ce487b694fea16caba653f9d645ec
629f909ebe19b22d068ec1a4719c9eb303ed2826
/python_iugu/request/plan_request.py
9d483102bd3f8d101761bc3b7ad17dd17da24c93
[ "MIT" ]
permissive
guiflemes/python_iugu
f564ce3e653b228a6e71e82f5f26b1b364eb7f76
e7efca84e76ebd5b99773f4e57a14f991fbcb520
refs/heads/master
2023-05-05T05:25:42.631921
2021-05-21T18:00:16
2021-05-21T18:00:16
327,623,059
2
1
null
null
null
null
UTF-8
Python
false
false
534
py
from __future__ import annotations from dataclasses import dataclass from typing import Optional from python_iugu import enuns @dataclass class PlanRequest: name: str = None identifier: str = None interval: int = None interval_type: enuns.IntervalType = None value_cents: int = None payable_with: enuns.PayableWith = None features: Optional[FeatureRequest] = None billing_days: int = None max_cycles: int = None @dataclass class FeatureRequest: name: str identifier: str value: str
[ "guilherme@campusinc.com.br" ]
guilherme@campusinc.com.br
317b8373cde4e8566b57759adc99ca00c1e5885f
d59a459f3b3bccfb6204a3f803fa465ea1297811
/ipynbhpc/PBS.py
3895e450292927f8ff6d1597d02e93c764db13c6
[]
no_license
rainwoodman/ipynbhpc
90fbce679b5ae5886222b90984f5453aeceefceb
338973766328d5c83896daec18ae7e81514ae3b8
refs/heads/master
2021-01-20T00:58:26.675992
2015-05-24T18:46:54
2015-05-24T18:46:54
34,808,897
0
0
null
null
null
null
UTF-8
Python
false
false
1,125
py
import subprocess import numpy import xml.etree.ElementTree as ET import re import time def submit(string): pipe = subprocess.Popen(['qsub'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout = pipe.communicate(string)[0] match = re.match('([0-9]*)\..*', stdout) if pipe.returncode or not match: raise Exception("qsub failed: %s", stdout) return match.group(1) def status(jobid): """ returns R, Q, E, C, or U(for unknown, eg jobid is not in qstat""" try: xml = subprocess.check_output(['qstat', '-x', str(jobid)]) tree = ET.fromstring(xml) ele = tree.find('Job/job_state') return ele.text except subprocess.CalledProcessError: return 'U' def delete(jobid): return subprocess.check_call(['qdel', str(jobid)]) def wait(jobid): timeout = 10. if not isinstance(jobid, (list, tuple, set)): while status(jobid) in 'RQ': time.sleep(timeout) timeout *= 1.2 if timeout > 60.: timeout = 60. else: for job in jobid: wait(job)
[ "yfeng1@berkeley.edu" ]
yfeng1@berkeley.edu
2aa3c4884a4fb9cc6a1dfb40a23627bc7126d8ab
4e248704293e8b229d51cce077263364a98bb45f
/Lexical_analyzer/train.py
46c35de8df5855ddcc221f0d83b0e0491e7537a1
[]
no_license
VincentLee-EN/FibreTextAnalyzer
0ba5c70c899f2f85aae6180ba75bb1031c6fd15d
2de3f9d4f18498d24be829e0f9d3a6f2c373a82c
refs/heads/master
2020-05-16T02:45:42.072795
2019-05-02T14:02:52
2019-05-02T14:02:52
181,429,225
0
0
null
null
null
null
UTF-8
Python
false
false
6,112
py
#encoding=utf8 import time import numpy as np import tensorflow as tf from tensorflow.contrib import crf import Lexical_analyzer.cws.model as modelDef from Lexical_analyzer.cws.data import Data tf.app.flags.DEFINE_string('dict_path', 'data/your_dict.pkl', 'dict path') tf.app.flags.DEFINE_string('train_data', 'data/your_train_data.pkl', 'train data path') tf.app.flags.DEFINE_string('ckpt_path', 'checkpoints/cws.finetune.ckpt/', 'checkpoint path') tf.app.flags.DEFINE_integer('embed_size', 256, 'embedding size') tf.app.flags.DEFINE_integer('hidden_size', 512, 'hidden layer node number') tf.app.flags.DEFINE_integer('batch_size', 64, 'batch size') tf.app.flags.DEFINE_integer('epoch', 9, 'training epoch') tf.app.flags.DEFINE_float('lr', 0.01, 'learning rate') tf.app.flags.DEFINE_string('save_path','checkpoints/cws.ckpt/','new model save path') FLAGS = tf.app.flags.FLAGS class BiLSTMTrain(object): def __init__(self, data_train=None, data_valid=None, data_test=None, model=None): self.data_train = data_train self.data_valid = data_valid self.data_test = data_test self.model = model def train(self): config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) ## finetune ## # ckpt = tf.train.latest_checkpoint(FLAGS.ckpt_path) # saver = tf.train.Saver() # saver.restore(sess, ckpt) # print('-->finetune the ckeckpoint:'+ckpt+'...') ############## max_epoch = 5 tr_batch_size = FLAGS.batch_size max_max_epoch = FLAGS.epoch # Max epoch display_num = 5 # Display 5 pre epoch tr_batch_num = int(self.data_train.y.shape[0] / tr_batch_size) # tr_batch_num = tr_batch_size display_batch = int(tr_batch_num / display_num) saver = tf.train.Saver(max_to_keep=10) for epoch in range(max_max_epoch): _lr = FLAGS.lr if epoch > max_epoch: _lr *= 1 print('EPOCH %d, lr=%g' % (epoch + 1, _lr)) start_time = time.time() _losstotal = 0.0 show_loss = 0.0 for batch in range(tr_batch_num): fetches = [self.model.loss, self.model.train_op] X_batch, y_batch = self.data_train.next_batch(tr_batch_size) feed_dict = {self.model.X_inputs: X_batch, self.model.y_inputs: y_batch, self.model.lr: _lr, self.model.batch_size: tr_batch_size, self.model.keep_prob: 0.5} _loss, _ = sess.run(fetches, feed_dict) _losstotal += _loss show_loss += _loss if (batch + 1) % display_batch == 0: valid_acc = self.test_epoch(self.data_valid, sess) # valid print('\ttraining loss=%g ; valid acc= %g ' % (show_loss / display_batch, valid_acc)) show_loss = 0.0 mean_loss = _losstotal / tr_batch_num if (epoch + 1) % 1 == 0: # Save once per epoch save_path = saver.save(sess, self.model.model_save_path+'_plus', global_step=(epoch + 1)) print('the save path is ', save_path) print('\ttraining %d, loss=%g ' % (self.data_train.y.shape[0], mean_loss)) print('Epoch training %d, loss=%g, speed=%g s/epoch' % ( self.data_train.y.shape[0], mean_loss, time.time() - start_time)) # testing print('**TEST RESULT:') test_acc = self.test_epoch(self.data_test, sess) print('**Test %d, acc=%g' % (self.data_test.y.shape[0], test_acc)) sess.close() def test_epoch(self, dataset=None, sess=None): _batch_size = 500 _y = dataset.y data_size = _y.shape[0] batch_num = int(data_size / _batch_size) correct_labels = 0 total_labels = 0 fetches = [self.model.scores, self.model.length, self.model.transition_params] for i in range(batch_num): X_batch, y_batch = dataset.next_batch(_batch_size) feed_dict = {self.model.X_inputs: X_batch, self.model.y_inputs: y_batch, self.model.lr: 1e-5, self.model.batch_size: _batch_size, self.model.keep_prob: 1.0} test_score, test_length, transition_params = sess.run(fetches=fetches, feed_dict=feed_dict) for tf_unary_scores_, y_, sequence_length_ in zip( test_score, y_batch, test_length): tf_unary_scores_ = tf_unary_scores_[:sequence_length_] y_ = y_[:sequence_length_] viterbi_sequence, _ = crf.viterbi_decode( tf_unary_scores_, transition_params) correct_labels += np.sum(np.equal(viterbi_sequence, y_)) total_labels += sequence_length_ accuracy = correct_labels / float(total_labels) return accuracy def main(_): Data_ = Data(dict_path=FLAGS.dict_path, train_data=FLAGS.train_data) print('Corpus loading completed:',FLAGS.train_data) data_train, data_valid, data_test = Data_.builderTrainData() print('The training set, verification set, and test set split are completed!') model = modelDef.BiLSTMModel(max_len=Data_.max_len, vocab_size=Data_.word2id.__len__()+1, class_num= Data_.tag2id.__len__(), model_save_path=FLAGS.save_path, embed_size=FLAGS.embed_size, hs=FLAGS.hidden_size) print('Model definition completed!') train = BiLSTMTrain(data_train, data_valid, data_test, model) train.train() print('Model training completed!') if __name__ == '__main__': tf.app.run()
[ "2392539432@qq.com" ]
2392539432@qq.com
7cd9fa50c093dbb5c2b3d3496f38b231a56fb61e
7ed70a9ee30990c5a195ddc96ebb8b3c174d4f6d
/hello/world.py
0b79d944ce10636eccb90edcaae841f2818cfaa7
[]
no_license
greenwell0912/helloworld-scripts
f69eee8462d226d3fe4286826832b4e0de8b2d9c
e75ed883ee0066ae6052b8e875aecbd6e1a079a0
refs/heads/master
2020-03-10T20:17:01.811318
2018-04-15T05:06:34
2018-04-15T05:06:34
129,567,053
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
#!/usr/bin/env python # -*- coding: utf-8 -*- def main(): print("hello world!") if __name__ == '__main__': main()
[ "hiroki6357@gmail.com" ]
hiroki6357@gmail.com
334f16eca95422f71e3a8b64fd17fd7ac3057b10
da6df71f4bc31fae2874285ecfe688540d724910
/pipelines/communication.py
7fed316af16a903c6e0f2902402af1aa48c2a015
[]
no_license
joseilberto/dog_bark_detection
67be5551e1735e9bc03f3dcd4db60388f7e8af05
1ff993bc703727c38ed0463e546e539763c869e7
refs/heads/master
2023-03-11T01:32:42.215274
2021-02-20T22:29:52
2021-02-20T22:29:52
236,839,762
4
2
null
null
null
null
UTF-8
Python
false
false
2,446
py
from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from os.path import basename import email import numpy as np import smtplib import ssl def create_body(files, message): """ Create the body of the e-mail from the keys in message and """ pattern_message = message["pattern"] bark_messages = message["body_start"] for file in files: filename = basename(file) name, date, hour, minute, seconds = "".join(filename.split(".")[0]).split("_") bark_messages += pattern_message(name, hour, minute, seconds, date) return bark_messages + message["body_end"] + message["signature"] def send_files(files, sender, receiver, message, send_all = False): """ Parameters: files (list of strings): All the files that will be sent to the receiver. sender (dict): Dictionary with the data from sender (email, password, port and smtp server). receiver (dict): Dictionary with the data from receiver (email). message (dict): Dict containing the data to be used in the body of the text. send_all (bool): Determine if it sends all files or randomly select two of them. """ context = ssl.create_default_context() email_msg = MIMEMultipart() email_msg["From"] = sender["email"] email_msg["To"] = receiver["email"] email_msg["Subject"] = message["subject"] email_msg.attach(MIMEText(message["body"], "plain")) send_files = (np.random.choice(files, size = 2, replace = False) if not send_all else files) for file in send_files: with open(file, "rb") as attachment: part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) encoders.encode_base64(part) part.add_header("Content-disposition", f"attachment; filename= {basename(file)}",) email_msg.attach(part) text = email_msg.as_string() with smtplib.SMTP_SSL(sender["smtp_server"], sender["port"], context = context) as server: server.login(sender["email"], sender["password"]) server.sendmail(sender["email"], receiver["email"], text) print("{} File(s) sent from {} to {}".format(len(send_files), sender["email"], receiver["email"]))
[ "ilbertofjunior@gmail.com" ]
ilbertofjunior@gmail.com
831c204ef9a4257ac6f36dc2e05da942d2a695c0
c59aafd22b33cad444d5702f23dd987ab8d29a69
/src/fcn/__init__.py
6c283a41bc672f44f0cc7127e5dea94d0a700541
[]
no_license
pbecker93/DLRC-Unicorns
9ddd0396f2c7d43de28903d3ddc92a430f59623e
9a7956e7e401b1330ed62d7120ce73ea0465d8c2
refs/heads/master
2021-07-13T15:23:25.011871
2017-10-17T08:49:46
2017-10-17T08:49:46
106,546,851
2
0
null
null
null
null
UTF-8
Python
false
false
41
py
from .fcn_vgg import FCN __all__=['FCN']
[ "roel.wier@gmail.com" ]
roel.wier@gmail.com
6bcb9db3729f35fb8aec94089af0cb9395cbe3a6
df513473a78ec2714025a43d673988e73d89dc9e
/IAM/detach_policy_group.py
5b6926588309e84ec94664993b1c106c3aa09ec9
[]
no_license
sgouda0412/AWS-With-Python
dfcef51c07696d13a46c63236cfcd130b4916256
b3abfa7d324e17d22f81c7e53afc34df6f5d484c
refs/heads/master
2023-03-17T18:18:49.692190
2020-03-04T13:35:48
2020-03-04T13:35:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
489
py
import boto3 #detach policy from group using client iam = boto3.client('iam') # IAM low level client object response = iam.detach_group_policy( GroupName='group1', PolicyArn='arn:aws:iam::aws:policy/AdministratorAccess' ) print(response) #detach policy from group using resource iam = boto3.resource('iam') #resource representing an AWS IAM group = iam.Group('group2') response = group.detach_policy( PolicyArn='arn:aws:iam::aws:policy/AmazonS3FullAccess' ) print(response)
[ "mogal.mahesh33@gmail.com" ]
mogal.mahesh33@gmail.com
be8bec20e05cbf5aa26e1cb824b5be2ffe259628
541cfbacae0805d6ef61041a23b9854c15be0d55
/join_cases.py
6c9a2063c9bf65acaa6e1515742da7e32673e713
[]
no_license
qdouasbin/postproc_explo_airbus
1b37444fe577d8527e71b35a580a2638c4c5b8fe
64f102973bb3f13660c7e0ab557fa0ffe793c07a
refs/heads/main
2023-06-05T11:15:11.673524
2021-07-01T10:29:29
2021-07-01T10:29:29
375,285,056
0
0
null
null
null
null
UTF-8
Python
false
false
1,360
py
import os import glob import numpy as np import pandas as pd def join_subdirectory_csv_files(prefix, extension): """ 1. Seek for csv files according to prefix.extension rule 2. concatenate all files 3. drop duplicates 4. re-index 5. dump clean concatenated file """ # Find all csv files in subdirectories all_filenames = [_file for _file in sorted(glob.glob('*/{}.{}'.format(prefix, extension)))] # combine all files in the list # combined_csv = pd.concat([pd.read_csv(f) for f in all_filenames]) combined_csv = pd.read_csv(all_filenames[0]) for _idx, _file in enumerate(all_filenames): if _idx: print("\t > %s" % _file) _df = pd.read_csv(_file) # combined_csv.merge(_df, how="inner") combined_csv = pd.merge_ordered(combined_csv, _df, fill_method="ffill") # Drop duplicates combined_csv = combined_csv.drop_duplicates().reset_index(drop=True) # export to csv combined_csv.to_csv("%s.csv" % prefix, index=False, encoding='utf-8-sig') if __name__ == "__main__": # Join all csv files needed here extension = "csv" prefixes = ["avbp_local_probe_0", "avbp_mmm", "avbp_venting"] for prefix in prefixes: print(" > Joining %s.%s" % (prefix, extension)) join_subdirectory_csv_files(prefix, extension)
[ "qdouasbin@cerfacs.fr" ]
qdouasbin@cerfacs.fr
a78acddf6eebc59cad1ebc0e8fdaf53ee0ce2702
44a7101ae18c84ffa0e3c674763ba7b500937773
/root/Desktop/Scripts/pyinstaller-1.5.1/bh_sshRcmd/bh_sshRcmd.spec
66707266787869a8fdd977ad9985b57711fe3880
[]
no_license
Draft2007/Scripts
cbaa66ce0038f3370c42d93da9308cbd69fb701a
0dcc720a1edc882cfce7498ca9504cd9b12b8a44
refs/heads/master
2016-09-05T20:05:46.601503
2015-06-23T00:05:02
2015-06-23T00:05:02
37,945,893
7
2
null
null
null
null
UTF-8
Python
false
false
561
spec
# -*- mode: python -*- a = Analysis([os.path.join(HOMEPATH,'support/_mountzlib.py'), os.path.join(HOMEPATH,'support/useUnicode.py'), '/usr/local/tools/bh_sshRcmd.py'], pathex=['/usr/local/tools/pyinstaller-1.5.1']) pyz = PYZ(a.pure) exe = EXE( pyz, a.scripts, a.binaries, a.zipfiles, a.datas, name=os.path.join('dist', 'bh_sshRcmd'), debug=False, strip=False, upx=True, console=1 ) app = BUNDLE(exe, name=os.path.join('dist', 'bh_sshRcmd.app'))
[ "root@localhost.localdomain" ]
root@localhost.localdomain
b93f375f3cedfc8c8ea2bc3dcac1516cf225aaa1
f7bbc8246a49480f58b5295a14fd0955c32c093c
/Desktop/python trader/backtest data/strategy8.py
361e722ad7fd1f00cc1ece891ce450ffab5d9c49
[]
no_license
jobeSoffa/pythonTrader
cf66ea38cc95b1695e0ac66e13a713a81db78e2a
6ef7b97d6dcb3726f65538bdbe6641bdb92bb6d3
refs/heads/master
2020-04-09T04:53:56.805565
2018-12-04T09:43:27
2018-12-04T09:43:27
160,042,254
0
1
null
null
null
null
UTF-8
Python
false
false
3,890
py
import trade import candleCompressor import candle class strategy8(object): highestBalance = 1000 highestDrawdown = 0 shouldPrint = True inBuy = False totalTrades = 0 winCounter = 0 lossCount = 0 com = 0 #.0001 pip = .0001 otherPip = 1/pip maxTrades = 30 tempArr = [] candleArr = [] momArr = [] balance = 1000 tr = trade.Trader() #cmp = candleCompressor.candleCompressor() currentCandle = 0 length = 118 #strategy variables riskReward = 8 stopLoss = 10 lotSizePercent = .001 movingAverage = 10 candles = 3 #number of 15m candles, 16 = 4hr shouldPrint = False def __init__(self, percent,cad,pip,length,shouldPrint): self.shouldPrint = shouldPrint self.length = length self.lotSizePercent = percent self.candles = cad self.pip = pip self.otherPip = 1/self.pip self.tr = trade.Trader() self.candleArr = [] self.tempArr = [] self.balance = 1000 def getNumTrades(self): return self.totalTrades def getWinRate(self): return self.tr.getWinRate() def drawdown(self,c): if (self.balance+self.closeAll(c) > self.highestBalance): self.highestBalance = self.balance+self.closeAll(c) if ((self.highestBalance - (self.balance+self.closeAll(c))) / self.highestBalance > self.highestDrawdown): self.highestDrawdown = (self.highestBalance - (self.balance+self.closeAll(c))) / self.highestBalance return self.highestDrawdown def update(self, h, l, print,c): self.balance += self.tr.update(h, l, self.balance, print,c) def len(self): return len(self.candleArr) def closeAll(self,c): total = self.tr.closeAll(c) return total def calMomentum(self, length, arr): farCandle = arr[len(arr)-1-length].getClose() thisCandle = arr[len(arr)-1].getClose() return thisCandle - farCandle def calMomentum2(self, length, arr): farCandle = arr[len(arr)-1-length] thisCandle = arr[len(arr)-1] return thisCandle - farCandle def nextCandle(self,cand): self.tempArr.append(cand) self.currentCandle +=1 self.drawdown(cand.getClose()) if(self.currentCandle == self.candles): thisCand = candleCompressor.candleCompressor().compress(self.tempArr) thisMom = 0 momOfMom = 0 if(len(self.candleArr)>self.length+1): #print("trade here") if(len(self.candleArr)> self.length): thisMom = self.calMomentum(self.length,self.candleArr) self.momArr.append(thisMom) if(len(self.momArr) > 3): momOfMom = self.calMomentum2(1,self.momArr) if(thisMom > 0 and momOfMom > 0 and not thisMom == 0 and not momOfMom == 0 and self.inBuy == False): #print("buy") self.balance += self.tr.crossClose(thisCand.getClose(),self.shouldPrint) self.tr.crossOpen(thisCand.getClose(), self.com, True, self.balance, self.lotSizePercent,self.shouldPrint) self.totalTrades += 1 self.inBuy = True elif(thisMom < 0 and momOfMom < 0 and not thisMom == 0 and not momOfMom == 0 and self.inBuy ==True): #print("sell") self.balance += self.tr.crossClose(thisCand.getClose(),self.shouldPrint) self.tr.crossOpen(thisCand.getClose(), self.com, False, self.balance, self.lotSizePercent,self.shouldPrint) self.totalTrades += 1 self.inBuy = False self.candleArr.append(thisCand) self.currentCandle = 0 self.tempArr = []
[ "otisjobe123@gmail.com" ]
otisjobe123@gmail.com
21d9a316ce6cfdf96f3a9f5edaacf77894c81bf4
e9d52dcf101aea0327c6b0d7e5244c91dfd62cf6
/spexy/adv/samples/simple.py
e2df8a641ff75635616d8894582fa8f83e6bf7dd
[]
no_license
drufat/spexy
6eba9f44a5539245486cd4ef8fefd24bdb7ade6a
53255009c1830501986afbf6688142ddefe17b9a
refs/heads/master
2021-09-18T19:51:47.313946
2018-07-19T05:09:02
2018-07-19T05:09:02
100,453,374
2
1
null
null
null
null
UTF-8
Python
false
false
179
py
# Copyright (C) 2010-2016 Dzhelil S. Rufat. All Rights Reserved. from sympy import sin, cos def V(x, y): return (-sin(y), sin(x)) def p(x, y): return -cos(x) * cos(y)
[ "drufat@caltech.edu" ]
drufat@caltech.edu
77576f4bd93940f460a967a46375dcb841c71094
4a418036130cb63caa503719b4162cce9753459b
/nemo/collections/nlp/modules/common/transformer/transformer_modules.py
63998217f09b5eaa659f8bbb583c263a6befd154
[ "Apache-2.0" ]
permissive
kssteven418/Q-ASR
89a7dac24d74556453e7b54b26289fd1466070c4
aa1ec2ef78fd7606f8f365dfe3e66691a0e48178
refs/heads/qasr
2023-08-05T15:43:42.493513
2021-10-11T20:06:53
2021-10-11T20:06:53
353,027,973
33
1
Apache-2.0
2021-03-30T17:33:26
2021-03-30T14:20:56
Jupyter Notebook
UTF-8
Python
false
false
8,624
py
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch from torch import nn from torch.nn.functional import gelu __all__ = ["TransformerEmbedding"] class FixedPositionalEncoding(nn.Module): """ Fixed positional encoding (embedding layer) from sine and cosine functions of different frequencies according to https://arxiv.org/abs/1706.03762 Args: hidden_size: size of the embeddings in the model, also known as d_model max_sequence_length: maximum allowed length of the input sequence """ def __init__(self, hidden_size, max_sequence_length=512): super().__init__() pos_enc = torch.zeros(max_sequence_length, hidden_size) position = torch.arange(0.0, max_sequence_length).unsqueeze(1) coef = -math.log(10000.0) / hidden_size div_term = torch.exp(coef * torch.arange(0.0, hidden_size, 2)) pos_enc[:, 0::2] = torch.sin(position * div_term) pos_enc[:, 1::2] = torch.cos(position * div_term) pos_enc.div_(math.sqrt(hidden_size)) self.register_buffer('pos_enc', pos_enc) def forward(self, position_ids): return torch.embedding(self.pos_enc, position_ids) class TransformerEmbedding(nn.Module): """ Embedding from token and position embeddings. Optionally add token_type embedding (e.g. type of the sentence in BERT). Args: vocab_size: size of the vocabulary hidden_size: size of the embeddings in the model, also known as d_model max_sequence_length: maximum allowed length of the input sequence num_token_types: number of different token types (e.g. tokens of sentence A and tokens of sentence B in BERT) embedding_dropout: probability of dropout applied to embeddings learn_positional_encodings: whether to learn positional encodings or use fixed (sine-cosine) ones """ def __init__( self, vocab_size, hidden_size, max_sequence_length=512, num_token_types=2, embedding_dropout=0.0, learn_positional_encodings=False, ): super().__init__() self.max_sequence_length = max_sequence_length self.token_embedding = nn.Embedding(vocab_size, hidden_size, padding_idx=0) if learn_positional_encodings: self.position_embedding = nn.Embedding(max_sequence_length, hidden_size) else: self.position_embedding = FixedPositionalEncoding(hidden_size, max_sequence_length) self.token_type_embedding = nn.Embedding(num_token_types, hidden_size) self.layer_norm = nn.LayerNorm(hidden_size, eps=1e-5) self.dropout = nn.Dropout(embedding_dropout) def forward(self, input_ids, token_type_ids=None, start_pos=0): seq_length = input_ids.size(1) if seq_length > self.max_sequence_length: raise ValueError( f"Input sequence is longer than maximum allowed sequence length for positional encoding. " f"Got {seq_length} and {self.max_sequence_length}" ) position_ids = torch.arange( start=start_pos, end=start_pos + seq_length, dtype=torch.long, device=input_ids.device ) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) token_embeddings = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = token_embeddings + position_embeddings if token_type_ids is not None: token_type_embeddings = self.token_type_embedding(token_type_ids) embeddings = embeddings + token_type_embeddings embeddings = self.layer_norm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MultiHeadAttention(nn.Module): """ Multi-head scaled dot-product attention layer. Args: hidden_size: size of the embeddings in the model, also known as d_model num_attention_heads: number of heads in multi-head attention attn_score_dropout: probability of dropout applied to attention scores attn_layer_dropout: probability of dropout applied to the output of the whole layer, but before layer normalization """ def __init__(self, hidden_size, num_attention_heads, attn_score_dropout=0.0, attn_layer_dropout=0.0): super().__init__() if hidden_size % num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number " "of attention heads (%d)" % (hidden_size, num_attention_heads) ) self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.attn_head_size = int(hidden_size / num_attention_heads) self.attn_scale = math.sqrt(math.sqrt(self.attn_head_size)) self.query_net = nn.Linear(hidden_size, hidden_size) self.key_net = nn.Linear(hidden_size, hidden_size) self.value_net = nn.Linear(hidden_size, hidden_size) self.out_projection = nn.Linear(hidden_size, hidden_size) self.attn_dropout = nn.Dropout(attn_score_dropout) self.layer_dropout = nn.Dropout(attn_layer_dropout) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attn_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, queries, keys, values, attention_mask): # attention_mask is needed to hide the tokens which correspond to [PAD] # in the case of BERT, or to hide the future tokens in the case of # vanilla language modeling and translation query = self.query_net(queries) key = self.key_net(keys) value = self.value_net(values) query = self.transpose_for_scores(query) / self.attn_scale key = self.transpose_for_scores(key) / self.attn_scale value = self.transpose_for_scores(value) # for numerical stability we pre-divide query and key by sqrt(sqrt(d)) attention_scores = torch.matmul(query, key.transpose(-1, -2)) if attention_mask is not None: attention_scores = attention_scores + attention_mask.to(attention_scores.dtype) attention_probs = torch.softmax(attention_scores, dim=-1) attention_probs = self.attn_dropout(attention_probs) context = torch.matmul(attention_probs, value) context = context.permute(0, 2, 1, 3).contiguous() new_context_shape = context.size()[:-2] + (self.hidden_size,) context = context.view(*new_context_shape) # output projection output_states = self.out_projection(context) output_states = self.layer_dropout(output_states) return output_states class PositionWiseFF(nn.Module): """ Position-wise feed-forward network of Transformer block. Args: hidden_size: size of the embeddings in the model, also known as d_model inner_size: number of neurons in the intermediate part of feed-forward net, usually is (4-8 x hidden_size) in the papers ffn_dropout: probability of dropout applied to net output hidden_act: activation function used between two linear layers """ def __init__(self, hidden_size, inner_size, ffn_dropout=0.0, hidden_act="relu"): super().__init__() self.dense_in = nn.Linear(hidden_size, inner_size) self.dense_out = nn.Linear(inner_size, hidden_size) self.layer_dropout = nn.Dropout(ffn_dropout) ACT2FN = {"gelu": gelu, "relu": torch.relu} self.act_fn = ACT2FN[hidden_act] def forward(self, hidden_states): output_states = self.dense_in(hidden_states) output_states = self.act_fn(output_states) output_states = self.dense_out(output_states) output_states = self.layer_dropout(output_states) return output_states
[ "noreply@github.com" ]
noreply@github.com
03a7b76aa472ee4f249b294ee548e8d4b9c4d794
a923a44d3c4815f645ca2ba84f973083c5dc29a1
/audio.py
7022ffd8026fa3ee5f185d610030341c99efd1f5
[]
no_license
unparalleled-ysj/T2-TF2
49ca50fe1e844b64c75d91a22d294b83c7c449a9
5c0c22a569c68d6f63648c5f545fd78ffb261033
refs/heads/master
2022-11-13T17:20:33.963871
2020-07-06T04:15:52
2020-07-06T04:15:52
277,436,909
0
0
null
null
null
null
UTF-8
Python
false
false
3,498
py
import librosa import librosa.filters import numpy as np from scipy import signal from scipy.io import wavfile num_mels = 80 n_fft = 1024 sample_rate = 16000 hop_size = 200 win_size = 800 preemphasis_value = 0.97 min_level_db = -120 ref_level_db = 20 power = 1.2 griffin_lim_iters = 60 fmax = 7600 fmin = 50 max_abs_value = 4. def dc_notch_filter(wav): # code from speex notch_radius = 0.982 den = notch_radius ** 2 + 0.7 * (1 - notch_radius) ** 2 b = np.array([1, -2, 1]) * notch_radius a = np.array([1, -2 * notch_radius, den]) return signal.lfilter(b, a, wav) def load_wav(path, sr): return librosa.core.load(path, sr=sr)[0] def save_wav(wav, path): wav = dc_notch_filter(wav) wav = wav / np.abs(wav).max() * 0.999 f1 = 0.5 * 32767 / max(0.01, np.max(np.abs(wav))) f2 = np.sign(wav) * np.power(np.abs(wav), 0.95) wav = f1 * f2 #proposed by @dsmiller wavfile.write(path, sample_rate, wav.astype(np.int16)) def preemphasis(wav, k): return signal.lfilter([1, -k], [1], wav) def inv_preemphasis(wav, k): return signal.lfilter([1], [1, -k], wav) def get_hop_size(): return hop_size def linearspectrogram(wav): D = _stft(preemphasis(wav, preemphasis_value)) S = _amp_to_db(np.abs(D)) - ref_level_db return _normalize(S) def melspectrogram(wav): D = _stft(preemphasis(wav, preemphasis_value)) S = _amp_to_db(_linear_to_mel(np.abs(D))) - ref_level_db return _normalize(S) def inv_linear_spectrogram(linear_spectrogram): '''Converts linear spectrogram to waveform using librosa''' D = _denormalize(linear_spectrogram) S = _db_to_amp(D + ref_level_db) #Convert back to linear return inv_preemphasis(_griffin_lim(S ** power), preemphasis_value) def inv_mel_spectrogram(mel_spectrogram): '''Converts mel spectrogram to waveform using librosa''' D = _denormalize(mel_spectrogram) S = _mel_to_linear(_db_to_amp(D + ref_level_db)) # Convert back to linear return inv_preemphasis(_griffin_lim(S ** power), preemphasis_value) def _griffin_lim(S): '''librosa implementation of Griffin-Lim Based on https://github.com/librosa/librosa/issues/434 ''' angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex) y = _istft(S_complex * angles) for i in range(griffin_lim_iters): angles = np.exp(1j * np.angle(_stft(y))) y = _istft(S_complex * angles) return y def _stft(y): return librosa.stft(y=y, n_fft=n_fft, hop_length=get_hop_size(), win_length=win_size) def _istft(y): return librosa.istft(y, hop_length=get_hop_size(), win_length=win_size) # Conversions _mel_basis = None _inv_mel_basis = None def _linear_to_mel(spectogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectogram) def _mel_to_linear(mel_spectrogram): global _inv_mel_basis if _inv_mel_basis is None: _inv_mel_basis = np.linalg.pinv(_build_mel_basis()) return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram)) def _build_mel_basis(): assert fmax <= sample_rate // 2 return librosa.filters.mel(sample_rate, n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) def _amp_to_db(x): min_level = np.exp(min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _db_to_amp(x): return np.power(10.0, (x) * 0.05) def _normalize(S): return (2 * max_abs_value) * ((S - min_level_db) / (-min_level_db)) - max_abs_value def _denormalize(D): return (((D + max_abs_value) * -min_level_db / (2 * max_abs_value)) + min_level_db)
[ "unparalleled.ysj@qq.com" ]
unparalleled.ysj@qq.com
e603161e2e56683dbefc6a30f0d9444b0da60f3e
d220e6b1a15dc384567ec30c0d80dcc51566fdac
/app/scrape/reload_series.py
bf0a9a83d7be959a0addde763d2546e2e2feed84
[ "Apache-2.0" ]
permissive
cs373n/idb
481c7dae6bdb22bb5955c368b94c32e954fe9062
274d843609fc8958d65bfd0c04c90a67acc70ccb
refs/heads/master
2020-06-25T08:33:17.558044
2018-04-12T07:04:12
2018-04-12T07:04:12
94,237,770
2
16
null
2017-07-21T15:18:44
2017-06-13T17:11:10
JavaScript
UTF-8
Python
false
false
5,062
py
import requests, json, time, datetime, hashlib from models import db, Series, Event, Character, Creator class MarvelRequest(): def __init__(self): self.publicKey = "" self.privateKey = "" self.timeStamp = str(datetime.datetime.utcnow()) self.baseurl = "http://gateway.marvel.com/v1/public/" # Marvel requires MD5 hash code for server side access # Must be ts+publickey+privatekey def compute_md5(self): return hashlib.md5((self.timeStamp + self.privateKey + self.publicKey).encode('utf-8')).hexdigest() def request(self, endpoint, offset): # Parameters for the call to Marvel API payload = { "ts": self.timeStamp, "apikey": self.publicKey, "hash": self.compute_md5(), "offset": offset} # Make the HTTP request, return a Response object return requests.get(self.baseurl + endpoint, params=payload) def main(): #fcharacters = open('series_characters2.txt', 'a') #fcreators = open('series_creators2.txt', 'a') #fevents = open('series_events2.txt', 'a') marvel = MarvelRequest() """ json.loads(String) takes in json formatted string, and outputs data according to the conversion table at json library website """ index = 0 for offset in range(0, 10000, 20): response = marvel.request("series", offset) # No trailing slash allowed here print(response.status_code) assert response.status_code == 200 series = json.loads(response.text) idNum = 0 title = "" desc = "" path = "" start = "" end = "" numCreators = "" numChars = "" numComics = "" numEvents = "" for series_meta_keys, series_meta_data in series['data'].items(): # series_meta_keys: offset, limit, total, count, results[] from Marvel # JSON structure if series_meta_keys == 'results': for series in series_meta_data: if series['id'] != "": for series_attribute_keys, series_attribute in series.items(): # now stepping through title, description, thumbnail, etc. if series_attribute_keys == 'id': idNum = int(series_attribute) # idNum = idNum.encode('utf-8') elif series_attribute_keys == 'title': title = series_attribute title = title.encode('utf-8') # print('Title: ' + title) elif series_attribute_keys == 'description': if series_attribute != None: """ Error arose when using str(description) and transferring output to text file: You must not use str(...) to strip away unicode symbols that often appear in Marvel descriptions! """ desc = series_attribute desc = desc.encode('utf-8') # print('Description: ' + desc) elif series_attribute_keys == 'startYear': # print("Start Year: " + str(series_attribute)) start = str(series_attribute) elif series_attribute_keys == 'endYear': # print("End Year: " + str(series_attribute)) end = str(series_attribute) elif series_attribute_keys == 'thumbnail': path = str(series_attribute['path']) temp = path.split('/') for v in temp : if v == 'image_not_available': path = None if path != None: path = str(path) + '.' + str(series_attribute['extension']) # print (path) if series_attribute_keys == 'creators': # print("Comics in series: " + str(series_attribute['available'])) numCreators = int(series_attribute['available']) #creator_ids = [series['id']] #for creator_uri in series_attribute['items']: # resource_path = creator_uri['resourceURI'].split('/') # creator_ids.append(int(resource_path[-1])) #fcreators.write(str(creator_ids) + '\n') elif series_attribute_keys == 'characters': # print("Characters in series: " + str(series_attribute['available'])) numChars = int(series_attribute['available']) #character_ids = [series['id']] #for character in series_attribute['items']: # resource_path = character['resourceURI'].split('/') # # character_ids.append(int(resource_path[-1])) #fcharacters.write(str(character_ids) + '\n') elif series_attribute_keys == 'comics': numComics = int(series_attribute['available']) elif series_attribute_keys == 'events': numEvents = str(series_attribute['available']) #event_ids = [series['id']] #for event in series_attribute['items']: # resource_path = event['resourceURI'].split('/') # event_ids.append(int(resource_path[-1])) #fevents.write(str(event_ids) + '\n') newEntry = Series(idNum, title, desc, start, end, path, numCreators, numChars, numComics, numEvents) db.session.merge(newEntry) db.session.commit() index += 1 print("processed series " + str(index)) if __name__ == '__main__': main()
[ "saketsingh2018@gmail.com" ]
saketsingh2018@gmail.com
c23b86d447f850e4bd75066d30e311f702ae67d0
9b92b21f39870e1b8a0de6bc94ff08a66690b1ea
/sources/webapp/SyncronisationDAO.py
bf64956c5930f3244b62286e3d037dc75d5ef9a1
[]
no_license
sebastiansIT/HTML5Podcatcher
ac5bb3cf128d4785f478b43e23ea57c62cfadce0
f1d9f446df0333eec3ef59219b28d683b7f17c5f
refs/heads/master
2023-06-25T19:01:39.039093
2021-05-08T05:51:47
2021-05-08T05:51:47
10,554,866
8
1
null
2023-03-04T03:04:49
2013-06-07T17:10:11
JavaScript
UTF-8
Python
false
false
1,925
py
import sqlite3 import datetime import SyncronisationModel import cgi, cgitb cgitb.enable() class Sqlite3DAO: def __init__(self, fileName): self.dbFileName = fileName def DataBaseInitialisation(): connection = sqlite3.connect(self.dbFileName) cursor = connection.cursor() sql = "CREATE TABLE SyncPoints(ID INTEGER PRIMARY KEY, Key VARCHAR(100) UNIQUE, Value TEXT) " cursor.execute(sql) connection.commit() connection.close() def Select(self, key=None): connection = sqlite3.connect(self.dbFileName) cursor = connection.cursor() sql = "SELECT ID, Key, Value FROM SyncPoints" try: if key != None: sql = sql + " WHERE Key = ?" cursor.execute(sql, (key,)) entries = [] for row in cursor: entry = SyncronisationModel.Point(row[0], row[1], row[2]) entries.append(entry) except: entries = ["error"] connection.commit() connection.close() return entries def Insert(self, key, value): connection = sqlite3.connect(self.dbFileName) cursor = connection.cursor() sql = "INSERT INTO SyncPoints(Key, Value) VALUES (?, ?)" cursor.execute(sql, (key, value)) connection.commit() connection.close() return self.Select(key=key) def Update(self, key, value): connection = sqlite3.connect(self.dbFileName) cursor = connection.cursor() sql = "UPDATE SyncPoints SET Value = ? WHERE Key = ?" cursor.execute(sql, (value, key)) connection.commit() connection.close() return self.Select(key) def Delete(self, key): connection = sqlite3.connect(self.dbFileName) cursor = connection.cursor() sql = "DELETE FROM SyncPoints WHERE Key = ?" cursor.execute(sql, (key,)) connection.commit() connection.close() def Save(self, key, value): if len(self.Select(key)) > 0: #return [SyncronisationModel.Point(7, "test", "{test}")] return self.Update(key, value) else: return self.Insert(key, value)
[ "sebastian@human-injection.de" ]
sebastian@human-injection.de
d811f5d03ae12bdeb567632e2d82b3ecccc87751
a1e3e7cf1d27b85d9472c6353e7646d37528b241
/q11.py
3ea7528239387d3ae6df885be655e4e6ebe1b32f
[]
no_license
osama1998H/standerdLearnd-string
421148f81c2c604f6c75dac568ff1faeb20922ce
0af39cd2fd43be45bb54aca2826bc8bf56e399ed
refs/heads/main
2023-09-01T04:21:52.499680
2021-05-15T19:54:50
2021-05-15T19:54:50
365,533,408
0
0
null
2023-08-29T08:31:40
2021-05-08T14:21:53
Python
UTF-8
Python
false
false
325
py
string = input("enter the string: ") def del_odd(string: str)->str: new_string = "" string = [i for i in string] for i in string: if string.index(i) % 2 != 0: string.remove(i) for i in string: new_string += i return new_string new_string = del_odd(string) print(new_string)
[ "osamamuhammed555@gmail.com" ]
osamamuhammed555@gmail.com
87990ee7c013adfed4d8152d526bab78f47feee2
9550ce4a80169d21b556b22679a9462f98438e32
/app/urls.py
32f3b1ab973c04cbcb9ce11ea3ea6d0850315945
[ "Apache-2.0" ]
permissive
erics1996/questionnaire_django
87cc44bd745eb810861349effc126ed3dfbd6508
1006c61eba1e9efec0801299938eb13c16a0b292
refs/heads/master
2022-12-15T04:47:39.042594
2020-09-02T17:34:33
2020-09-02T17:34:33
284,580,189
0
0
Apache-2.0
2020-09-02T17:34:34
2020-08-03T02:02:20
Python
UTF-8
Python
false
false
300
py
from django.contrib import admin from django.urls import path, re_path from .views import backend urlpatterns = [ path('', backend.IndexView.as_view()), re_path('survey/(?P<pk>\d+)/', backend.SurveyDetailView.as_view()), re_path('(?P<pk>\d+)/download/', backend.DownloadView.as_view()) ]
[ "erics1996@yeah.net" ]
erics1996@yeah.net
e7057bc48d0c58e842a5c16fe3711fae0386968b
5c534f0a3912ef002834398c765ed1e3f98c9173
/Quotes/test.py
1b8164565ecfabfdb0762a61f09b818a5961c220
[]
no_license
ormanya/Supyiel
894c2acc7f05683f1cd9101a413f3c93fd69d149
77e291c5b73da2e292f6b38ff40aa2b3d70915cb
refs/heads/master
2023-03-13T13:58:20.944904
2023-03-02T16:53:02
2023-03-02T16:53:02
80,935,297
8
0
null
2022-11-10T18:06:34
2017-02-04T17:24:40
Python
UTF-8
Python
false
false
1,871
py
### # Copyright (c) 2008,2012 Kevin Funk # Copyright (c) 2014-2015 James Lu # Copyright (c) 2016-2017 Ormanya # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### from supybot.test import * import os class QuotesTestCase(PluginTestCase): plugins = ('Quotes',) def testTay(self): self.assertNotError("tay") # vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79:
[ "liriel@sekrit.me" ]
liriel@sekrit.me
fd3fd13935a93c20f91027c39f5327878e821fa3
c72fb291300941c756c4fe4e7bbd443880214367
/files/models.py
a6c1f3b0d75882226cbe0bbd77c225b9a7167397
[]
no_license
garywangcn/django-3dshow
1e4893331b70630cb989b62fb95d58703cc9bc9d
4dad878ebbf13de89facd73c0d6d57860a01a0df
refs/heads/master
2021-05-11T10:23:59.516091
2018-01-24T09:33:42
2018-01-24T09:33:42
118,099,361
0
0
null
null
null
null
UTF-8
Python
false
false
458
py
from django.db import models # Create your models here. class Document(models.Model): name = models.CharField(max_length=255, blank=False) description = models.CharField(max_length=1000, null=True, blank=False) picture = models.FileField(upload_to='documents/') modelpackage = models.FileField(upload_to='documents/') uploaded_at = models.DateTimeField(auto_now_add=True) def __str__(self): return self.name
[ "15818651704@163.com" ]
15818651704@163.com
8f634225763e18482cad60471aa5f39cadda7853
a00eab2cfe9566641c4c5ec99909490543e734d5
/BackPropagation/solutions/compare_loss_acc.py
abf09d21879aa494b1838e53417b23696449f17b
[]
no_license
indianvalantine/High-Dimensional-Deep-Learning
55823c1d80ffee2e50bc20fcdf24f24cc6de8c14
47ee6263f40496e7ab5f6a030508ecd531732cb5
refs/heads/master
2022-12-27T21:00:28.090851
2020-09-28T14:04:44
2020-09-28T14:04:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
792
py
history = keras_model.history.history fig = plt.figure(figsize=(20,5)) ax = fig.add_subplot(1,2,1) ax.plot(history["loss"], label="keras", color="red") ax.plot(history["val_loss"], label="keras_test", linestyle="dashed" ,color="red") ax.plot(losses, label="numpy", color="blue") ax.plot(losses_test, label="numpy_test", color="blue") ax.set_xlabel("Epochs") ax.set_ylabel("Loss") ax.set_title("Training loss") ax.legend(loc='best') ax = fig.add_subplot(1,2,2) ax.plot(history["acc"], label="keras", color="red") ax.plot(history["val_acc"], label="keras_test", linestyle="dashed" ,color="red") ax.plot(accuracies, label="numpy", color="blue") ax.plot(accuracies, label="numpy_test", color="blue") ax.set_ylabel("accuracy") ax.set_xlabel("Epochs") ax.legend(loc='best') ax.set_title("Accuracy")
[ "brendan.guillouet@gmail.com" ]
brendan.guillouet@gmail.com
6925f9d279dd7fc2386a10b7f0527b1c88816f95
a4ea525e226d6c401fdb87a6e9adfdc5d07e6020
/src/azure-cli/azure/cli/command_modules/servicebus/aaz/latest/servicebus/topic/_list.py
751ddf434b8c609435a955fc4eaa4a17a49bdf38
[ "MIT", "BSD-3-Clause", "LGPL-2.0-or-later", "GPL-1.0-or-later", "MPL-2.0", "LGPL-2.1-only", "Apache-2.0", "LGPL-2.1-or-later", "BSD-2-Clause" ]
permissive
Azure/azure-cli
13340eeca2e288e66e84d393fa1c8a93d46c8686
a40fd14ad0b6e89720a2e58d4d9be3a6ce1535ca
refs/heads/dev
2023-08-17T06:25:37.431463
2023-08-17T06:00:10
2023-08-17T06:00:10
51,040,886
4,018
3,310
MIT
2023-09-14T11:11:05
2016-02-04T00:21:51
Python
UTF-8
Python
false
false
10,902
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # # Code generated by aaz-dev-tools # -------------------------------------------------------------------------------------------- # pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * @register_command( "servicebus topic list", ) class List(AAZCommand): """List all the topics in a namespace. """ _aaz_info = { "version": "2022-01-01-preview", "resources": [ ["mgmt-plane", "/subscriptions/{}/resourcegroups/{}/providers/microsoft.servicebus/namespaces/{}/topics", "2022-01-01-preview"], ] } def _handler(self, command_args): super()._handler(command_args) return self.build_paging(self._execute_operations, self._output) _args_schema = None @classmethod def _build_arguments_schema(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super()._build_arguments_schema(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.namespace_name = AAZStrArg( options=["--namespace-name"], help="The namespace name", required=True, fmt=AAZStrArgFormat( max_length=50, min_length=6, ), ) _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) _args_schema.skip = AAZIntArg( options=["--skip"], help="Skip is only used if a previous operation returned a partial result. If a previous response contains a nextLink element, the value of the nextLink element will include a skip parameter that specifies a starting point to use for subsequent calls.", fmt=AAZIntArgFormat( maximum=1000, minimum=0, ), ) _args_schema.top = AAZIntArg( options=["--top"], help="May be used to limit the number of results to the most recent N usageDetails.", fmt=AAZIntArgFormat( maximum=1000, minimum=1, ), ) return cls._args_schema def _execute_operations(self): self.pre_operations() self.TopicsListByNamespace(ctx=self.ctx)() self.post_operations() @register_callback def pre_operations(self): pass @register_callback def post_operations(self): pass def _output(self, *args, **kwargs): result = self.deserialize_output(self.ctx.vars.instance.value, client_flatten=True) next_link = self.deserialize_output(self.ctx.vars.instance.next_link) return result, next_link class TopicsListByNamespace(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [200]: return self.on_200(session) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ServiceBus/namespaces/{namespaceName}/topics", **self.url_parameters ) @property def method(self): return "GET" @property def error_format(self): return "MgmtErrorFormat" @property def url_parameters(self): parameters = { **self.serialize_url_param( "namespaceName", self.ctx.args.namespace_name, required=True, ), **self.serialize_url_param( "resourceGroupName", self.ctx.args.resource_group, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "$skip", self.ctx.args.skip, ), **self.serialize_query_param( "$top", self.ctx.args.top, ), **self.serialize_query_param( "api-version", "2022-01-01-preview", required=True, ), } return parameters @property def header_parameters(self): parameters = { **self.serialize_header_param( "Accept", "application/json", ), } return parameters def on_200(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200 ) _schema_on_200 = None @classmethod def _build_schema_on_200(cls): if cls._schema_on_200 is not None: return cls._schema_on_200 cls._schema_on_200 = AAZObjectType() _schema_on_200 = cls._schema_on_200 _schema_on_200.next_link = AAZStrType( serialized_name="nextLink", ) _schema_on_200.value = AAZListType() value = cls._schema_on_200.value value.Element = AAZObjectType() _element = cls._schema_on_200.value.Element _element.id = AAZStrType( flags={"read_only": True}, ) _element.location = AAZStrType( flags={"read_only": True}, ) _element.name = AAZStrType( flags={"read_only": True}, ) _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.system_data = AAZObjectType( serialized_name="systemData", flags={"read_only": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = cls._schema_on_200.value.Element.properties properties.accessed_at = AAZStrType( serialized_name="accessedAt", flags={"read_only": True}, ) properties.auto_delete_on_idle = AAZStrType( serialized_name="autoDeleteOnIdle", ) properties.count_details = AAZObjectType( serialized_name="countDetails", ) properties.created_at = AAZStrType( serialized_name="createdAt", flags={"read_only": True}, ) properties.default_message_time_to_live = AAZStrType( serialized_name="defaultMessageTimeToLive", ) properties.duplicate_detection_history_time_window = AAZStrType( serialized_name="duplicateDetectionHistoryTimeWindow", ) properties.enable_batched_operations = AAZBoolType( serialized_name="enableBatchedOperations", ) properties.enable_express = AAZBoolType( serialized_name="enableExpress", ) properties.enable_partitioning = AAZBoolType( serialized_name="enablePartitioning", ) properties.max_message_size_in_kilobytes = AAZIntType( serialized_name="maxMessageSizeInKilobytes", ) properties.max_size_in_megabytes = AAZIntType( serialized_name="maxSizeInMegabytes", ) properties.requires_duplicate_detection = AAZBoolType( serialized_name="requiresDuplicateDetection", ) properties.size_in_bytes = AAZIntType( serialized_name="sizeInBytes", flags={"read_only": True}, ) properties.status = AAZStrType() properties.subscription_count = AAZIntType( serialized_name="subscriptionCount", flags={"read_only": True}, ) properties.support_ordering = AAZBoolType( serialized_name="supportOrdering", ) properties.updated_at = AAZStrType( serialized_name="updatedAt", flags={"read_only": True}, ) count_details = cls._schema_on_200.value.Element.properties.count_details count_details.active_message_count = AAZIntType( serialized_name="activeMessageCount", flags={"read_only": True}, ) count_details.dead_letter_message_count = AAZIntType( serialized_name="deadLetterMessageCount", flags={"read_only": True}, ) count_details.scheduled_message_count = AAZIntType( serialized_name="scheduledMessageCount", flags={"read_only": True}, ) count_details.transfer_dead_letter_message_count = AAZIntType( serialized_name="transferDeadLetterMessageCount", flags={"read_only": True}, ) count_details.transfer_message_count = AAZIntType( serialized_name="transferMessageCount", flags={"read_only": True}, ) system_data = cls._schema_on_200.value.Element.system_data system_data.created_at = AAZStrType( serialized_name="createdAt", ) system_data.created_by = AAZStrType( serialized_name="createdBy", ) system_data.created_by_type = AAZStrType( serialized_name="createdByType", ) system_data.last_modified_at = AAZStrType( serialized_name="lastModifiedAt", ) system_data.last_modified_by = AAZStrType( serialized_name="lastModifiedBy", ) system_data.last_modified_by_type = AAZStrType( serialized_name="lastModifiedByType", ) return cls._schema_on_200 class _ListHelper: """Helper class for List""" __all__ = ["List"]
[ "noreply@github.com" ]
noreply@github.com
56667ede08c017457c4c2cb5392283faa5332663
ba4c50d4b03e097f71e5af8ba639721fcb7e1fc5
/plot_tp6_2.py
f9bb738ef4835ca9238907b8192312d55c1bd760
[]
no_license
EricHorvat/itbaSSfinal
0b1b4bc0c6de03b4a6376f2d0a9c9cd3fb310884
76f4bfed0c341da474595cc4d35c1a30ddd41506
refs/heads/master
2020-04-07T01:30:29.438910
2018-12-13T03:28:46
2018-12-13T03:28:46
157,943,531
0
0
null
null
null
null
UTF-8
Python
false
false
1,952
py
import matplotlib.pyplot as plt import numpy as np import json def parse_filee(filename): with open(filename,"r") as file: return json.loads(file.readline()) def plot_surfacee(dss,dvelocities): fig = plt.figure() ax = plt.gca() oavg = [] ostd = [] for index, ds in enumerate(dss): o = [] x = np.arange(0,len(ds[0])) for d in ds: o.append(d[-1]) o = np.array(o) dd = np.array(np.asarray(ds)) davg= np.average(dd, axis=0) oavg.append(np.average(o)) ostd.append(np.std(o)) ax.plot(x,davg) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) legends = ["0.8 m/s","1.45 m/s","2.1 m/s","2.75 m/s","3.4 m/s","4.05 m/s","4.7 m/s","5.35 m/s","6.0 m/s"] # Put a legend to the right of the current axis ax.legend(legends, loc='center left', bbox_to_anchor=(1, 0.5)) plt.xlabel("Particulas egresadas") plt.ylabel("Tiempo [s]") plt.savefig('2.png') fig = plt.figure() ax = plt.gca() ax.errorbar(dvelocities,oavg,yerr=ostd, fmt='o') ax.errorbar(dvelocities,oavg, fmt='o') plt.xlabel("Velocidad deseada [m/s]") plt.ylabel("Tiempo de salida [s]") plt.savefig('2_t.png') plt.close() def mains(): #desired_velocities = [1.45,2.1,2.75,3.4,4.05,4.7,5.35,6.0] desired_velocities = [0.8,1.45,2.1,2.75,3.4,4.05,4.7,5.35,6.0] #desired_velocities = [0.8,1.45,2.1,2.1 + 0.65/3,2.75 - 0.65/3,2.75,2.75 + 0.65/3,3.4 - 0.65/3,3.4,4.05,4.7,5.35,6.0] #desired_velocities = [2.1,2.1 + 0.65/3,2.75 - 0.65/3,2.75,2.75 + 0.65/3,3.4 - 0.65/3,3.4] ds = [] for dvel in desired_velocities: d = [] for i in range(0,5): d.append(parse_filee("people-" + str("%0.2f" % dvel) + "dVel-"+ str(i) + "time.txt")) ds.append(d) plot_surfacee(ds,desired_velocities) if __name__ == '__main__': mains()
[ "eric.nahuel.horvat@gmail.com" ]
eric.nahuel.horvat@gmail.com
e39dd51fde7cd071010f467f6c281e6f42fb42b2
1968f0d6064a6947538a54371b01b13c425a56c4
/errorsOnSite.py
0e08966c7400df0732547c458ae33be2fc3b7b0b
[]
no_license
pahkao/coursera1
ef695543625dfdb1fa50a78bd62b16eed600944a
2506e3f54258da83c9e19e1498825bd799c3d152
refs/heads/master
2022-09-12T06:15:44.159155
2020-05-30T21:57:15
2020-05-30T21:57:15
255,118,343
0
0
null
null
null
null
UTF-8
Python
false
false
2,760
py
# #### Импорты import re from pprint import pprint #!pip install pyaspeller from pyaspeller import Word from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys options = Options() options.add_argument("start-maximized") options.add_argument("disable-infobars") options.add_argument("--disable-extensions") options.add_argument("--headless") browser = webdriver.Chrome(options=options, executable_path=ChromeDriverManager().install()) # #### Парсинг check_url = 'http://station-l.ru/' browser.get(check_url) all_urls = [check_url] for a in browser.find_elements_by_tag_name('a'): a = a.get_attribute('href') if type(a) == str and 'jivosite' not in a and re.match('.+\.(jpg|pdf|png)$', a) == None: domain = re.sub('https:\/\/(w{3}\.)?(.+?)\/.*', r'\2', check_url ) a = re.sub('(.*)(\?|\#)', r'\1', a) try: if domain in a and a not in all_urls: all_urls.append(a) except: continue all_urls def get_words(body): unique_words_list = [] for frase in body.split('\n'): frase = frase.split(' ') for word in frase: word = re.sub('[^ёЁа-яА-Яa-zA-Z0-9-–—]', '', word) if word not in unique_words_list and re.match('(^\d+$)|(^\W+$)|(^$)', word) == None: unique_words_list.append(word) return sorted(unique_words_list) body = {} for url in all_urls: print(url) browser.get(url) browser.find_element_by_tag_name('body').send_keys(Keys.END) # scroll page to bottom body[url] = '' body[url] += ' ' + browser.find_element_by_tag_name('body').text if len(browser.find_elements_by_tag_name('div')) != 0: for div in browser.find_elements_by_tag_name('div'): try: body[url] += ' ' + div.text except: continue print(f'Слов для проверки на странице {url}: {len(get_words(body[url]))}\n') # #### Проверка for url in body: errors = {} print(url) for clean_word in get_words(body[url]): try: check = Word(clean_word) if check.correct == False: if clean_word not in errors: errors[clean_word] = {} errors[clean_word]['variants'] = check.variants errors[clean_word]['count'] = 1 else: errors[clean_word]['count'] += 1 except Exception as e: print(f'Что-то пошло не так: {e}, слово: {clean_word}') continue pprint(errors) print('\n') browser.quit()
[ "olkhovskiy91@gmail.com" ]
olkhovskiy91@gmail.com
21064aaea82657175bb68471f1411164393e0210
657c80336bce1cc6158cd349ce208c5e680a4d0d
/contrib/projection/tests/projection/base_projection.py
de53d6895412de112d31a959926d9cdb47b6ef9c
[ "BSD-3-Clause" ]
permissive
Xinmudotmoe/pyglet
b37628618647bf3b1e3d7db28202a5e14c60450c
144257c365ca85528c6a4c5bed8141e683d7a9b6
refs/heads/master
2021-05-29T22:05:40.676643
2015-10-24T05:55:49
2015-10-24T05:55:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
429
py
#!/usr/bin/python # $Id:$ from pyglet.gl import * def fillrect(x, y, width, height): glBegin(GL_QUADS) glVertex2f(x, y) glVertex2f(x + width, y) glVertex2f(x + width, y + height) glVertex2f(x, y + height) glEnd() def rect(x, y, width, height): glBegin(GL_LINE_LOOP) glVertex2f(x, y) glVertex2f(x + width, y) glVertex2f(x + width, y + height) glVertex2f(x, y + height) glEnd()
[ "leif.theden@gmail.com" ]
leif.theden@gmail.com
dc0f1debf616d07e130ae2adb13b8209fd2e2f74
99afa83eda09cf552466ddf90314cb01d07b166a
/testapp/models.py
c1fa45c2c96048893e614bf9142070231858f126
[]
no_license
jithinvijayan007/Lithoera
358c9a6191d6510ac07229e7a92eadd89d70e14f
33e3639e882f79b12541f92070dad74483fdfa72
refs/heads/master
2023-01-05T18:29:37.388869
2020-11-02T11:58:27
2020-11-02T11:58:27
309,316,888
0
0
null
null
null
null
UTF-8
Python
false
false
1,764
py
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager # Create your models here. class MyAccountManager(BaseUserManager): def create_user(self, email, username, password=None): if not email: raise ValueError('Users must have an email address') if not username: raise ValueError('Users must have a username') user = self.model( email=self.normalize_email(email), username=username, ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, username, password): user = self.create_user( email=self.normalize_email(email), password=password, username=username, ) user.is_admin = True user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class Account(AbstractBaseUser): email = models.EmailField(verbose_name="email", max_length=60, unique=True) username = models.CharField(max_length=30, unique=True) date_joined = models.DateTimeField(verbose_name='date joined', auto_now_add=True) last_login = models.DateTimeField(verbose_name='last login', auto_now=True) is_admin = models.BooleanField(default=False) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) is_superuser = models.BooleanField(default=False) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username'] objects = MyAccountManager() def __str__(self): return self.email # For checking permissions. to keep it simple all admin have ALL permissons def has_perm(self, perm, obj=None): return self.is_admin # Does this user have permission to view this app? (ALWAYS YES FOR SIMPLICITY) def has_module_perms(self, app_label): return True
[ "jithinvijayan007@gmail.com" ]
jithinvijayan007@gmail.com
09ee4a21ddc1b92f8f3846d847e7be6be388b97a
a8fd86dce16f7fec7a5f00ecf97270fb7a8243b9
/phylo3.py
02e5ff23a7be96c9c780ec7e9b98ff7b8ab5952b
[]
no_license
tomopfuku/mammalian_morphological_clocks
8a8f68b498297f95b9222843de416912c50e2e3a
80b3179cb8101ac654e516f71282d7bbba288934
refs/heads/master
2022-10-18T02:39:54.477321
2017-11-28T17:07:34
2017-11-28T17:07:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,086
py
PREORDER = 0; POSTORDER = 1 BRANCHLENGTH = 0; INTERNODES = 1 #trying to deprecate this. class Node: def __init__(self): self.data = {} self.isroot = False self.istip = False self.label = None self.length = 0 self.old_length = 0 self.parent = None self.children = [] self.nchildren = 0 self.comment = None #self.charst = 0. #self.sigsq = 0. #self.rate_class = 0 self.height = None self.number = 0 self.occurrences = None self.num_occurrences = None def get_newick_repr(self,showbl=False,show_rate=False): ret = "" for i in range(len(self.children)): if i == 0: ret += "(" ret += self.children[i].get_newick_repr(showbl,show_rate) if i == len(self.children)-1: ret += ")" else: ret += "," if self.label != None: ret += self.label if showbl == True: ret += ":" + str(self.length) if show_rate ==True: ret += ":" + str(self.sigsq) return ret def add_child(self, child): assert child not in self.children self.children.append(child) child.parent = self self.nchildren += 1 def remove_child(self, child): assert child in self.children self.children.remove(child) child.parent = None self.nchildren -= 1 def prune_from_node(self): for i in self.descendants("POSTORDER"): if len(self.children) == 0: self.prune() def leaves(self): return [ n for n in self.iternodes() if n.istip ] def iternodes(self, order=PREORDER, v=None): if order == PREORDER: yield self #print [i.label for i in self.children] for child in self.children: for d in child.iternodes(order): yield d if order == POSTORDER: yield self """ def postorder_nodes(self): [yield d for d in child.postorder_nodes() for child in self.children] yield self """ def descendants(self, order=PREORDER, v=None): if v is None: v = [] #assert order in ("PREORDER", "POSTORDER") for child in self.children: if order == PREORDER: v.append(child) else: v.insert(0, child) if child.children: child.descendants(order, v) return v def find_descendant(self, label): if label == self.label: return self else: for child in self.children: n = child.find_descendant(label) if n: return n return None def prune(self): p = self.parent if p: p.remove_child(self) return p def graft(self, node): parent = self.parent parent.remove_child(self) n = Node() n.add_child(self) n.add_child(node) parent.add_child(n) def leaf_distances(self, store=None, measure=BRANCHLENGTH): if store is None: store = {} leaf2len = {} if self.children: for child in self.children: if measure == BRANCHLENGTH: assert child.length is not None dist = child.length elif measure == INTERNODES: dist = 1 else: raise "InvalidMeasure" child.leaf_distances(store, measure) if child.istip: leaf2len[child.label] = dist else: for k, v in store[child].items(): leaf2len[k] = v + dist else: leaf2len[self] = {self.label: 0} store[self] = leaf2len return store def rootpath(self): n = self while 1: yield n if n.parent: n = n.parent else: break def tip_labels(self): labs = [] for i in self.leaves(): labs.append(i.label) return labs def nnodes(self, type="internal"): n = 0 if type == "internal": for i in self.iternodes(): if i.istip or i == self: continue n += 1 elif type == "all": for i in self.iternodes(): n+=1 elif type == "tips": for i in self.iternodes(): if i.istip: n+=1 return n """ # this returns all possible NNIs for a single bifurcating node with bifurcating children # tree should probably be deep copied before using this """ def nni_set(self): if len(self.children) != 2 or len(self.descendants()) < 3: print "this only works on bifurcating selfs that parent multiple subtrees (ie. does not lead to only terminal edges)" return None subtrees = [] for child in self.children: if child.istip == False: assert len(child.children) == 2 for sub in child.children: subtrees.append(sub) subtrees += [i for i in self.children if i.istip] #add terminal subtree child --> 'c' in (a,b),c)) assert len(subtrees) == 3 or len(subtrees) == 4 nni_trees = [] for c1 in subtrees: for c2 in subtrees: p1 = c1.parent p2 = c2.parent if c1 == c2 or p1 == p2: #can't swap subtrees with same parent continue p1.remove_child(c1) p1.add_child(c2) p2.remove_child(c2) p2.add_child(c1) c1.parent = p2 #swap subtrees c2.parent = p1 nni_trees.append(self.get_newick_repr()) nni_trees = list(set(nni_trees)) #remove duplicates #print len(nni_trees) return nni_trees def reroot(oldroot, newroot): oldroot.isroot = False newroot.isroot = True v = [] n = newroot while 1: v.append(n) if not n.parent: break n = n.parent #print [ x.label for x in v ] v.reverse() for i, cp in enumerate(v[:-1]): node = v[i+1] # node is current node; cp is current parent #print node.label, cp.label cp.remove_child(node) node.add_child(cp) cp.length = node.length return newroot def getMRCATraverseFromPath(path1, curn2): mrca = None #find first match between this node and the first one parent = curn2 x = True; while x == True: for i in range(len(path1)): if parent == path1[i]: mrca = parent x = False break parent = parent.parent return mrca
[ "cfukuchi@umich.edu" ]
cfukuchi@umich.edu
f5d215c564dfad6c96246bd529b6f6afd273eafa
beac917ee396ffb33c4f13d2ceff188c3bf5148e
/app/evaluation.py
bdc7f21c84bae0c079063d2953eca979513fa410
[]
no_license
Boj3alex/rpn-calculator
75532b25b312feed163e7f0bf1e45887c35ad417
705c21e250a1105ae02ab4e620546e77fd1d805f
refs/heads/master
2023-01-09T06:50:19.879472
2020-08-31T17:46:26
2020-08-31T17:46:26
290,067,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,376
py
import re floating_point_regex = '[0-9]*\.[0-9]*' def do_operation(element1, element2, operator): if operator == '+': return element1 + element2 if operator == '-': return element1 - element2 if operator == '*': return element1 * element2 if operator == '/': return int(element1 / element2) if operator == '%': return element1 % element2 def rpn_evaluation(rpn_exp): results_list = [] operator_list = ['+', '-', '*', '/', '%'] try: for element in rpn_exp.split(): if element in operator_list: operator2 = results_list.pop() operator1 = results_list.pop() results_list.append(do_operation(operator1, operator2, element)) elif element.isnumeric(): results_list.append(int(element)) elif re.search(floating_point_regex, element): raise Exception('Floating-point numbers are not accepted.') else: raise Exception('Invalid character') except IndexError: print('Invalid RPN expression') return results_list.pop() if len(results_list) > 0 else 0 if __name__ == '__main__': print('Type the RPN expression that you want to evaluate:') rpn_exp = input() print('The result of the RPN expression is:', rpn_evaluation(rpn_exp))
[ "noreply@github.com" ]
noreply@github.com
6e890dcf23489e8e89080c6b65f3762b23bdff4d
72a22cde6b6ca91255f25a931909502115e4e47c
/Alfred/SwitchLayoutWorkflow/set.py
4ae6ae60a0486bf6d86b48325f6a942a3ddc711a
[]
no_license
DATADEER/dvorak-mac-setup
52de6f0062e75981cf6a0c6bc91de92f6095b24a
2f5d0eb450be9c02fd74285cd526715abe358941
refs/heads/master
2020-05-17T08:00:25.408894
2020-03-15T11:42:10
2020-03-15T11:42:10
183,594,669
0
0
null
null
null
null
UTF-8
Python
false
false
864
py
import sys import json from os.path import expanduser from collections import OrderedDict import subprocess CHOSEN_PROFILE = sys.argv[1] CONFIG_PATH = '.config/karabiner/karabiner.json' home = expanduser("~") config = {} with open('{}/{}'.format(home, CONFIG_PATH)) as conf_file: config = json.load(conf_file, object_pairs_hook=OrderedDict) for profile in config['profiles']: profile['selected'] = profile['name'] == CHOSEN_PROFILE with open('{}/{}'.format(home, CONFIG_PATH), 'w') as conf_file: conf_file.write(json.dumps(config, indent=4, separators=(',', ': '))) #log available keyboard layouts with issw -l if(CHOSEN_PROFILE == "DVORAK" ): #switch to US Layout subprocess.run(["/usr/local/bin/issw", "com.apple.keylayout.US"]) else: #switch to DEUTSCH Layout subprocess.run(["/usr/local/bin/issw", "com.apple.keylayout.German"])
[ "konto@datadeer.de" ]
konto@datadeer.de
da3f5d0d4b3c71ac3db45cece6411a3233f8b68a
f576f0ea3725d54bd2551883901b25b863fe6688
/sdk/webpubsub/azure-mgmt-webpubsub/generated_samples/web_pub_sub_replicas_create_or_update.py
81ff6144e4226d349866642540011deb03744386
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
Azure/azure-sdk-for-python
02e3838e53a33d8ba27e9bcc22bd84e790e4ca7c
c2ca191e736bb06bfbbbc9493e8325763ba990bb
refs/heads/main
2023-09-06T09:30:13.135012
2023-09-06T01:08:06
2023-09-06T01:08:06
4,127,088
4,046
2,755
MIT
2023-09-14T21:48:49
2012-04-24T16:46:12
Python
UTF-8
Python
false
false
1,920
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from azure.identity import DefaultAzureCredential from azure.mgmt.webpubsub import WebPubSubManagementClient """ # PREREQUISITES pip install azure-identity pip install azure-mgmt-webpubsub # USAGE python web_pub_sub_replicas_create_or_update.py Before run the sample, please set the values of the client ID, tenant ID and client secret of the AAD application as environment variables: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET. For more info about how to get the value, please see: https://docs.microsoft.com/azure/active-directory/develop/howto-create-service-principal-portal """ def main(): client = WebPubSubManagementClient( credential=DefaultAzureCredential(), subscription_id="00000000-0000-0000-0000-000000000000", ) response = client.web_pub_sub_replicas.begin_create_or_update( resource_group_name="myResourceGroup", resource_name="myWebPubSubService", replica_name="myWebPubSubService-eastus", parameters={ "location": "eastus", "properties": {}, "sku": {"capacity": 1, "name": "Premium_P1", "tier": "Premium"}, "tags": {"key1": "value1"}, }, ).result() print(response) # x-ms-original-file: specification/webpubsub/resource-manager/Microsoft.SignalRService/preview/2023-06-01-preview/examples/WebPubSubReplicas_CreateOrUpdate.json if __name__ == "__main__": main()
[ "noreply@github.com" ]
noreply@github.com
6d625de9d95abca7e287fd3c385bb06c6b57b4f9
82cd87ea45ce91bf7cc6d60a8536c39676ca7689
/eval.py
20f28b8bec5eb3d1c886dcc50f2a24ac59a6e38f
[ "MIT", "Apache-2.0" ]
permissive
gtesei/ebm-anatomy
2be6bde61eeaa558198755b2535bbd4ec1958ef5
24c819b7239f554c8edc46c09085e129922962d2
refs/heads/master
2022-08-30T02:46:37.456060
2020-05-20T02:35:44
2020-05-20T02:35:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,642
py
############################## # ## EVALUATE TRAINED EBM ## # ############################## import torch as t import torchvision.transforms as tr import torchvision.datasets as datasets import matplotlib.pyplot as plt import json import os from nets import VanillaNet, NonlocalNet from utils import download_flowers_data, plot_ims # directory for experiment results EXP_DIR = './out_eval/flowers_convergent_eval_1/' # json file with experiment config CONFIG_FILE = './config_locker/eval_flowers_convergent.json' ####################### # ## INITIAL SETUP ## # ####################### # load experiment config with open(CONFIG_FILE) as file: config = json.load(file) # make directory for saving results if os.path.exists(EXP_DIR): # prevents overwriting old experiment folders by accident raise RuntimeError('Folder "{}" already exists. Please use a different "EXP_DIR".'.format(EXP_DIR)) else: os.makedirs(EXP_DIR) for folder in ['code']: os.mkdir(EXP_DIR + folder) # save copy of code in the experiment folder def save_code(): def save_file(file_name): file_in = open('./' + file_name, 'r') file_out = open(EXP_DIR + 'code/' + os.path.basename(file_name), 'w') for line in file_in: file_out.write(line) for file in ['eval.py', 'nets.py', 'utils.py', CONFIG_FILE]: save_file(file) save_code() # set seed for cpu and CUDA, get device t.manual_seed(config['seed']) if t.cuda.is_available(): t.cuda.manual_seed_all(config['seed']) device = t.device('cuda' if t.cuda.is_available() else 'cpu') #################### # ## EVAL SETUP # ## #################### print('Setting up network...') # set up network net_bank = {'vanilla': VanillaNet, 'nonlocal': NonlocalNet} f = net_bank[config['net_type']](n_c=config['im_ch']) # load saved weights f.load_state_dict(t.load(config['net_weight_path'], map_location=lambda storage, loc: storage.cpu())) # put net on device f.to(device) # temperature from training if config['train_epsilon'] > 0: temp = config['temp_factor'] * (config['train_epsilon'] ** 2) / 2 else: temp = config['temp_factor'] print('Processing initial MCMC states...') if config['mcmc_init'] == 'uniform': q = 2 * t.rand([config['batch_size'], config['im_ch'], config['im_sz'], config['im_sz']]).to(device) - 1 elif config['mcmc_init'] == 'gaussian': q = t.randn([config['batch_size'], config['im_ch'], config['im_sz'], config['im_sz']]).to(device) else: # make tensor of training data if config['mcmc_init'] == 'flowers': download_flowers_data() data = {'cifar10': lambda path, func: datasets.CIFAR10(root=path, transform=func, download=True), 'mnist': lambda path, func: datasets.MNIST(root=path, transform=func, download=True), 'flowers': lambda path, func: datasets.ImageFolder(root=path, transform=func)} transform = tr.Compose([tr.Resize(config['im_sz']), tr.CenterCrop(config['im_sz']), tr.ToTensor(), tr.Normalize(tuple(0.5*t.ones(config['im_ch'])), tuple(0.5*t.ones(config['im_ch'])))]) q = t.stack([x[0] for x in data[config['mcmc_init']]('./data/' + config['mcmc_init'], transform)]).to(device) # get a random sample of initial states from image bank x_s_t_0 = q[t.randperm(q.shape[0])[0:config['batch_size']]] ################################ # ## FUNCTIONS FOR SAMPLING ## # ################################ # langevin equation without MH adjustment def langevin_grad(): x_s_t = t.autograd.Variable(x_s_t_0.clone(), requires_grad=True) # sampling records grads = t.zeros(config['num_mcmc_steps'], config['batch_size']) ens = t.zeros(config['num_mcmc_steps'], config['batch_size']) # iterative langevin updates of MCMC samples for ell in range(config['num_mcmc_steps']): en = f(x_s_t) / temp ens[ell] = en.detach().cpu() grad = t.autograd.grad(en.sum(), [x_s_t])[0] if config['epsilon'] > 0: x_s_t.data += - ((config['epsilon']**2)/2) * grad + config['epsilon'] * t.randn_like(x_s_t) grads[ell] = ((config['epsilon']**2)/2) * grad.view(grad.shape[0], -1).norm(dim=1).cpu() else: x_s_t.data += - grad grads[ell] = grad.view(grad.shape[0], -1).norm(dim=1).cpu() if ell == 0 or (ell + 1) % config['log_freq'] == 0 or (ell + 1) == config['num_mcmc_steps']: print('Step {} of {}. Ave. En={:>14.9f} Ave. Grad={:>14.9f}'. format(ell+1, config['num_mcmc_steps'], ens[ell].mean(), grads[ell].mean())) return x_s_t.detach(), ens, grads # langevin equation with MH adjustment def langevin_mh(): x_s_t = t.autograd.Variable(x_s_t_0.clone(), requires_grad=True) # sampling records ens = t.zeros(config['num_mcmc_steps'], config['batch_size']) grads = t.zeros(config['num_mcmc_steps'], config['batch_size']) accepts = t.zeros(config['num_mcmc_steps']) # iterative langevin updates of MCMC samples for ell in range(config['num_mcmc_steps']): # get energy and gradient of current states en = f(x_s_t) / temp ens[ell] = en.detach().cpu() grad = t.autograd.grad(en.sum(), [x_s_t])[0] grads[ell] = ((config['epsilon'] ** 2)/2) * grad.view(grad.shape[0], -1).norm(dim=1).cpu() # get initial gaussian momenta p = t.randn_like(x_s_t) # get proposal states x_prop = x_s_t - ((config['epsilon'] ** 2)/2) * grad + config['epsilon'] * p # update momentum en_prop = f(x_prop) / temp grad_prop = t.autograd.grad(en_prop.sum(), [x_prop])[0] p_prop = p - (config['epsilon'] / 2) * (grad + grad_prop) # joint energy of states and auxiliary momentum variables joint_en_orig = en + 0.5 * t.sum((p ** 2).view(x_s_t.shape[0], -1), 1) joint_en_prop = en_prop + 0.5 * t.sum((p_prop ** 2).view(x_s_t.shape[0], -1), 1) # accept or reject states_prop using MH acceptance ratio accepted_proposals = t.rand_like(en) < t.exp(joint_en_orig - joint_en_prop) # update only states with accepted proposals x_s_t.data[accepted_proposals] = x_prop.data[accepted_proposals] accepts[ell] = float(accepted_proposals.sum().cpu()) / float(config['batch_size']) if ell == 0 or (ell + 1) % config['log_freq'] == 0 or (ell + 1) == config['num_mcmc_steps']: print('Step {} of {}. Ave. En={:>14.9f} Ave. Grad={:>14.9f} Accept Rate={:>14.9f}'. format(ell+1, config['num_mcmc_steps'], ens[ell].mean(), grads[ell].mean(), accepts[ell])) return x_s_t.detach(), ens, grads, accepts ################################### # ## SAMPLE FROM LEARNED MODEL ## # ################################### print('Sampling for {} Langevin steps.'.format(config['num_mcmc_steps'])) if config['use_mh_langevin']: x_s_t, en_record, grad_record, accept_record = langevin_mh() plt.plot(accept_record.numpy()) plt.savefig(EXP_DIR + 'accept.png') plt.close() else: x_s_t, en_record, grad_record = langevin_grad() # visualize initial and synthesized images plot_ims(EXP_DIR + 'initial_states.png', x_s_t_0) plot_ims(EXP_DIR + 'sample_states.png', x_s_t) # plot diagnostics plt.plot(en_record.numpy()) plt.title('Energy over sampling path') plt.xlabel('Langevin step') plt.ylabel('energy') plt.savefig(EXP_DIR + 'en.png') plt.close() plt.plot(grad_record.numpy()) plt.title('Gradient magnitude over sampling path') plt.xlabel('Langevin step') plt.ylabel('Gradient magnitude') plt.savefig(EXP_DIR + 'grad.png') plt.close()
[ "point0bar1@gmail.com" ]
point0bar1@gmail.com
ecc3ad925d8cd3f872845d9ba866ab7860df6f03
328578dc61ddfef9959e0cc6b8a0c4f95c272423
/web_crawler_demo/data_store_demo/csv_store.py
79f47abd403a63b79bcc1e47ef62387b5dde5190
[]
no_license
newiflin/web_crawle
0a5bb3b0b4226d5993b39b256d2d51ececc26a4b
83d09119bc25be3b425cfcf5fb1c84a57a3dab67
refs/heads/master
2020-05-21T18:21:19.472825
2019-07-28T09:09:09
2019-07-28T09:09:09
186,131,589
0
0
null
null
null
null
UTF-8
Python
false
false
1,516
py
import pandas as pd import csv #csv文件 保存含分隔符的文本 with open('data.csv', 'w') as csvfile: writer = csv.writer(csvfile, delimiter=' ') #delimiter指定分隔符 writer.writerow(['id', 'name', 'old']) writer.writerow(['101', 'Bob', '23']) writer.writerow(['102', 'Tim', '22']) writer.writerow(['103', 'Lisa', '30']) with open('data.csv', 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(['id', 'name', 'old']) writer.writerows([['101', 'Bob', '23'], ['102', 'Tim', '22'], ['103', 'Lisa', '30']]) with open('data.csv', 'w') as csvfile: #字典的方式写入 fieldnames = ['id', 'name', 'old'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() writer.writerow({'id': '101', 'name': 'Bob', 'old': '23'}) writer.writerow({'id': '102', 'name': 'Tim', 'old': '22'}) writer.writerow({'id': '103', 'name': 'Lisa', 'old': '30'}) with open('data.csv', 'a', encoding='utf-8') as csvfile: #字典的方式写入 fieldnames = ['id', 'name', 'old'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() writer.writerow({'id': '201', 'name': 'newiflin', 'old': '23'}) writer.writerow({'id': '202', 'name': '思绪', 'old': '25'}) writer.writerow({'id': '203', 'name': '紫薯', 'old': '19'}) with open('data.csv', 'r', encoding='utf-8') as csvfile: reader = csv.reader(csvfile) for row in reader: print(row) df = pd.read_csv('data.csv') print(df)
[ "newiflin@gmail.com" ]
newiflin@gmail.com
30fed9cd0fbcc9ea11672e3c32d6f34d4cb8d46f
20bf84daa3894ee5625413140913350328d0d3b1
/data_example/practice_data.py
6a4e521b4dc3ac4857f6e6c145d5fff70c2e6cb1
[]
no_license
jinsuyun/DataAnalytics
f9d28c424946fd2279cfbfe4ca2ffb314156ad97
8c60c7352aaebb421bc54e20934550e95096482f
refs/heads/master
2020-06-18T23:11:35.589302
2019-07-31T08:51:17
2019-07-31T08:51:17
196,487,005
0
0
null
null
null
null
UTF-8
Python
false
false
1,379
py
import pandas as pd df = pd.read_csv('adult.data', header=None) # data basic print("SIZE") print(df.size) print("SHAPE") print(df.shape) # 몇 x 몇 인지 print("BEFORE COLUMNS") print(df.columns) df.columns = ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'wage'] print("AFTER COLUMNS") print(df.columns) print("DTYPES") print(df.dtypes) print("HEAD") print(df.head()) print("TAIL") print(df.tail()) # data summary print("DESCRIBE") print(df.describe()) #describe() - 각 attribute마다 요약한 정보를 제공 print("MEAN") print(df.mean()) # mean() - 6개의 데이터에서 평균값(14개의 데이터 중 numerical 데이터 6개) print("MODE") print(df.mode()) # mode() - 카테고리에 해당하는 데이터만 mode # Details print("EDUCATION UNIQUE") print(df.education.unique()) # 컬럼이름 education에 해당하는 모든 값 print("EDUCATION VALUE COUNT") print(df.education.value_counts()) # 값에 대한 카운트 print("WAGE VALUE COUNT") print(df['wage'].value_counts()) print("WAGE AGE MEAN") print(df.groupby(['wage'])['age'].mean()) # age의 평균값 print("WAGE AGE STD") print(df.groupby(['wage'])['age'].std()) # age의 std값 print("CAPITAL GAIN CORR AGE") print(df['capital-gain'].corr(df['age']))
[ "say2dbs@ajou.ac.kr" ]
say2dbs@ajou.ac.kr
3a46b739fdd3269370d45b82b4103d66bc0a5353
1718a0e60b3df6bb23ea50e57bc2a39e268c0d53
/store_app/views.py
a452b60bee841fcbf43da93e842bf057b9cac01a
[]
no_license
ckizer86/final
551be3fc3e0e6021a5103acc645238f0d5ddc905
c6fd0fd8ffe46c23d9fe6f6b7138cce44b32fa1c
refs/heads/main
2023-05-28T18:50:48.939996
2021-06-08T23:36:27
2021-06-08T23:36:27
374,507,562
0
0
null
null
null
null
UTF-8
Python
false
false
21,172
py
from django.db.models import fields from django.shortcuts import render, redirect from django.http.response import JsonResponse, HttpResponse from django.views.generic import FormView from django.urls import reverse from django.conf import settings from django.http.response import JsonResponse from django.views.decorators.csrf import csrf_exempt import stripe from django.contrib import messages import bcrypt from time import gmtime, localtime, strftime from datetime import date, datetime from .models import * import ast # payments/views.py @csrf_exempt def stripe_webhook(request): stripe.api_key = settings.STRIPE_SECRET_KEY endpoint_secret = settings.STRIPE_ENDPOINT_SECRET payload = request.body sig_header = request.META['HTTP_STRIPE_SIGNATURE'] event = None try: event = stripe.Webhook.construct_event( payload, sig_header, endpoint_secret ) except ValueError as e: # Invalid payload return HttpResponse(status=400) except stripe.error.SignatureVerificationError as e: # Invalid signature return HttpResponse(status=400) # Handle the checkout.session.completed event if event['type'] == 'checkout.session.completed': print("Payment was successful.") # TODO: run some custom code here return HttpResponse(status=200) def SuccessView(request): return render(request, "success.html") def CancelledView(request): return render(request, "cancelled.html") @csrf_exempt def create_checkout_session(request): if request.method == 'GET': domain_url = 'http://localhost:8000/' stripe.api_key = settings.STRIPE_SECRET_KEY try: # Create new Checkout Session for the order # Other optional params include: # [billing_address_collection] - to display billing address details on the page # [customer] - if you have an existing Stripe Customer ID # [payment_intent_data] - capture the payment later # [customer_email] - prefill the email input in the form # For full details see https://stripe.com/docs/api/checkout/sessions/create # ?session_id={CHECKOUT_SESSION_ID} means the redirect will have the session ID set as a query param checkout_session = stripe.checkout.Session.create( client_reference_id=request.user.id if request.user.is_authenticated else None, success_url=domain_url + 'success?session_id={CHECKOUT_SESSION_ID}', cancel_url=domain_url + 'cancelled/', payment_method_types=['card'], mode='payment', line_items=[ { 'name': 'T-shirt', 'quantity': 1, 'currency': 'usd', 'amount': '2000', } ] ) return JsonResponse({'sessionId': checkout_session['id']}) except Exception as e: return JsonResponse({'error': str(e)}) # new @csrf_exempt def stripe_config(request): if request.method == 'GET': stripe_config = {'publicKey': settings.STRIPE_PUBLISHABLE_KEY} return JsonResponse(stripe_config, safe=False) # Create your views here. def index(request): context={ "all_products": Product.objects.all(), "all_categories": Category.objects.all(), "all_stores": Store.objects.all(), } return render(request, "index.html", context) def login_page(request): if "user_id" in request.session: return redirect ('/dashboard') return render(request, "login.html") def login(request): if request.method == "POST": errors = User.objects.loginvalidation(request.POST) if errors: for error in errors.values(): messages.error(request,error) return redirect('/login') email = request.POST['email'] logged_user = User.objects.filter(email=email) logged_user = logged_user[0] if bcrypt.checkpw(request.POST['pw'].encode(), logged_user.password.encode()): request.session["user_id"] = logged_user.id request.session["username"] = f"{logged_user.first_name} {logged_user.last_name}" return redirect('/dashboard') else: messages.error(request, "Invalid password") return redirect('/login') return redirect('/login') def register_page(request): return render(request, "register.html") def register(request): if request.method == "POST": errors = User.objects.registervalidation(request.POST) if errors: for error in errors.values(): messages.error(request,error) return redirect('/register') first_name = request.POST['first_name'] last_name = request.POST['last_name'] email = request.POST['email'] password = bcrypt.hashpw(request.POST["pw"].encode(), bcrypt.gensalt()).decode() dob = request.POST['dob'] address_1 = request.POST['address1'] address_2 = request.POST['address2'] city = request.POST['city'] state = request.POST['state'] zip = request.POST['zip'] user = User.objects.create(first_name=first_name, last_name=last_name, email=email, password=password, dob=dob, address_1=address_1, address_2=address_2, city=city, state=state, zip=zip) request.session["user_id"] = user.id request.session["username"] = f"{user.first_name} {user.last_name}" return redirect('/dashboard') return redirect('/register') def category(request, id): cat = Category.objects.get(id=id) context={ "catproducts": cat.product.all(), "all_categories": Category.objects.all(), "category": cat, } return render(request, "category.html", context) def product(request, id): productid = id productinfo = Product.objects.get(id=productid) if "user_id" not in request.session: context = { "product": productinfo, "all_categories": Category.objects.all(), } return render(request, "product.html", context) userid = request.session["user_id"] user = User.objects.get(id=userid) context = { "product": productinfo, "all_categories": Category.objects.all(), "likes": productinfo.likes.filter(id=userid), "user": user, } return render(request, "product.html", context) def addcat(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') if request.method == "POST": errors = User.objects.catvalidation(request.POST) if errors: for error in errors.values(): messages.error(request,error) return redirect('/admin/add_product') name = request.POST['name'] Category.objects.create(name=name) return redirect('/admin/add_product') return redirect('/admin') def addcart(request): if "user_id" not in request.session: return redirect ('/login') if request.method == "POST": userid = request.session["user_id"] pid = request.POST['pid'] quantity = int(request.POST['quantity']) user = User.objects.get(id=userid) product = Product.objects.get(id=pid) product.stock = product.stock - quantity product.save() name = product.name amount = product.amount pic = product.pic total = user.total for count in range(0, quantity): count += 1 cart = Cart.objects.create(user=user, pid=pid, pic=pic, name=name, amount=amount) user.total = user.total + product.amount user.save() return redirect('/cart') def removecart(request,id): if "user_id" not in request.session: return redirect ('/login') pid = id userid = request.session["user_id"] user = User.objects.get(id=userid) cart = user.usecart.all() product = Product.objects.get(id=pid) for item in cart: if item.pid == pid: rid = item.id removeitem = Cart.objects.get(id=rid) product.stock += 1 product.save() user.total = user.total - product.amount user.save() removeitem.delete() return redirect('/cart') return redirect('/cart') def cart(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) subtotal = user.total tax = float(subtotal * .0825) shipping = float(5.00) total = float(subtotal + tax + shipping) context = { "all_categories": Category.objects.all(), "cart_products": user.usecart.all(), "user": user, "subtotal": subtotal, "shipping": shipping, "tax": tax, "total": total, } return render(request, "cart.html", context) def likeditems(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) context = { "liked_products": user.userlike.all(), "all_categories": Category.objects.all(), } return render(request, "like.html", context) def likeitem(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if request.method == "POST": id = request.POST['postid'] product = Product.objects.get(id=id) product.likes.add(user) return redirect(f'/product/{id}') return redirect('/') def unlikeitem(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if request.method == "POST": id = request.POST['postid'] product = Product.objects.get(id=id) product.likes.remove(user) return redirect(f'/product/{id}') return redirect('/') def dashboard(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level == 3: return redirect('/admin') if "user_id" not in request.session: return redirect ('/login') return render(request, "dashboard.html") def accountinfo(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) month = '{:02d}'.format(user.dob.month) day = '{:02d}'.format(user.dob.day) context = { "user": user, "month": month, "day": day, } return render(request, "accountinfo.html", context) def accountupdate(request): if request.method == "POST": first_name = request.POST['first_name'] last_name = request.POST['last_name'] email = request.POST['email'] password = bcrypt.hashpw(request.POST["new_pw"].encode(), bcrypt.gensalt()).decode() dob = request.POST['dob'] address1 = request.POST['address1'] address2 = request.POST['address2'] city = request.POST['city'] state = request.POST['state'] zip = request.POST['zip'] userid = request.session["user_id"] user = User.objects.get(id=userid) user.first_name = first_name user.last_name = last_name user.email = email user.password = password user.dob = dob user.address_1 = address1 user.address_2 = address2 user.city = city user.state = state user.zip = zip user.save() return redirect('/dashboard/account') return redirect('/') def recentorders(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) userorders = user.userorders.all() context={ "userorders": userorders, } return render(request, "recentorders.html", context) def submitorder(request): if "user_id" not in request.session: return redirect ('/login') if request.method == "POST": userid = request.session["user_id"] user = User.objects.get(id=userid) subtotal = ast.literal_eval(request.POST['subtotal']) tax = ast.literal_eval(request.POST['tax']) shipping = ast.literal_eval(request.POST['shipping']) usercart = user.usecart.all() productlist = {"product":[]} total = float(subtotal + tax + shipping) for product in usercart: rid = product.id productid = Cart.objects.get(id=rid) pid = productid.pid orderproduct = Product.objects.get(id=pid) pamount = str("{:.2f}".format(orderproduct.amount)) prodid = str(orderproduct.id) productlist["product"].append('Product ID: ' + prodid + ' - ' + orderproduct.name + " : " + pamount) destroyitem = Cart.objects.get(id=rid) destroyitem.delete() Order.objects.create(product=productlist, user=user, subtotal=subtotal, tax=tax, total=total, shipping=shipping) user.total = 0 user.save() return redirect('/dashboard') return redirect('/') def vieworder(request, id): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) for order in user.userorders.all(): if order.id == id: order = Order.objects.get(id=id) product_dict = ast.literal_eval(order.product) context = { "order":order, "productlist": product_dict, } return render(request, "vieworder.html", context) return redirect('/dashboard') def admindash(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') return render(request, "admindashboard.html") def adminneworders(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') context ={ "orders":Order.objects.all(), } return render(request, "adminneworders.html", context) def adminpastorders(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') context ={ "orders":Order.objects.all(), } return render(request, "adminpastorders.html", context) def adminvieworder(request, id): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') order = Order.objects.get(id=id) product_dict = ast.literal_eval(order.product) context = { "order": order, "productlist": product_dict, } return render(request, "adminvieworder.html", context) def updatetracking(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') if request.method == "POST": tracking = request.POST['tracking'] oid = request.POST['oid'] order = Order.objects.get(id=oid) order.tracking = tracking order.save() return redirect(f'/admin/order/{oid}') return redirect('/admin') def products(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') context = { "all_products": Product.objects.all(), "all_categories": Category.objects.all(), } return render(request, "products.html", context) def addprod(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') context = { 'all_categories': Category.objects.all(), } return render(request, "addproduct.html", context) def addingprod(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') if request.method == "POST": errors = Product.objects.createproduct(request.POST) if errors: for error in errors.values(): messages.error(request,error) return redirect('/admin/add_product') name = request.POST['name'] desc = request.POST['desc'] amount = request.POST['amt'] pic = request.POST['pic'] stock = request.POST['stock'] product = Product.objects.create(name=name, desc=desc, amount=amount, pic=pic, stock=stock) categories = request.POST.getlist('categories') for category in categories: product.categories.add(category) return redirect(f'/product/{product.id}') return redirect('/admin/products') def editprod(request, id): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') product = Product.objects.get(id=id) thesecats = product.categories.all() context = { "product": product, "excats": Category.objects.exclude(product=id), "currentcats": thesecats, } return render(request, "editproduct.html", context) def edittingprod(request): if request.method == "POST": name = request.POST['name'] desc = request.POST['desc'] amount = request.POST['amt'] pic = request.POST['pic'] stock = request.POST['stock'] id = request.POST['pid'] all_categories = Category.objects.all() product = Product.objects.get(id=id) for category in all_categories: product.categories.remove(category) categories = request.POST.getlist('categories') for newcategory in categories: product.categories.add(newcategory) product.name = name product.desc = desc product.amount = amount product.pic = pic product.stock = stock product.save() return redirect(f'/admin/product/edit/{id}') return redirect('/') def storeinfo(request): if "user_id" not in request.session: return redirect ('/login') userid = request.session["user_id"] user = User.objects.get(id=userid) if user.level != 3: return redirect('/dashboard') context = { "store": Store.objects.all() } return render(request, "store.html", context) def createstore(request): if request.method == "POST": name = request.POST['storename'] address1 = request.POST['address1'] address2 = request.POST['address2'] city = request.POST['city'] state = request.POST['state'] zip = request.POST['zip'] Store.objects.create(name=name, address_1=address1, address_2=address2, city=city, state=state, zip=zip) return redirect('/admin/store') return redirect('/') def editstore(request): if request.method == "POST": name = request.POST['storename'] address1 = request.POST['address1'] address2 = request.POST['address2'] city = request.POST['city'] state = request.POST['state'] zip = request.POST['zip'] storeid = request.POST['storeid'] store = Store.objects.get(id=storeid) store.name = name store.address_1 = address1 store.address_2 = address2 store.city = city store.state = state store.zip = zip store.save() return redirect('/admin/store') return redirect('/') def logout(request): request.session.flush() return redirect('/')
[ "ckizer86@yahoo.com" ]
ckizer86@yahoo.com