blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
a2f63a96b80b0d24c88cb051e4b93ed7a5134671
2dcf0d5cc921745bd34610162e540632066dd919
/library/framesize.py
200b812e69468c2e02fe0fd9dd27b4a7a38d54b7
[]
no_license
ms412/pyIxia
0aac92cfe2239853e5e815db23816252b1eb6997
17913d810e859fb776882f203bea4135aec72b36
refs/heads/master
2021-06-25T14:53:45.102058
2017-09-11T15:09:06
2017-09-11T15:09:06
103,150,462
0
0
null
null
null
null
UTF-8
Python
false
false
11,825
py
import time from library.ixiaIf import TclClient from tools.logger import Logger class Framesize(object): def __init__(self, *args): self._api = TclClient() self._log = Logger() self._portlist=[] self._tclportlist ='' for item in args: self._portlist.append([self._api.chassisID(),item[0],item[1]]) for item in self._portlist: self._tclportlist = (self._tclportlist + '[list %d %d %d] ' % (item[0], item[1], item[2])) self._tclportlist=('[list %s]'%(self._tclportlist)) def __del__(self): self.disconnect() def createGroup(self): self._api.call('set group 12') self._api.call('portGroup create $group') for _port in self._portlist: self._api.call('portGroup add $group %d %d %d' % (_port[0], _port[1], _port[2])) # self._api.call('port setFactoryDefaults %d %d %d' % (_port[0], _port[1], _port[2])) self._api.call('portGroup write $group') self._api.call('portGroup setCommand $group resetStatistics') # self._api.call('portGroup write $group') time.sleep(2) def port(self,mode): print('port config',self._portlist) # self._api.call('set portlist %s'%(self._TclPortList())) # if self._api.call_rc('ixTakeOwnership portlist force') != 0: if self._api.call_rc('ixTakeOwnership %s force'%(self._tclportlist)) != 0: print('EXIT') exit() for _port in self._portlist: if '1Gbe-opt' in mode: print('config prot',_port) self._api.call('port setDefault') #optisch self._api.call('port setPhyMode 1 %d %d %d'% (_port[0], _port[1], _port[2])) self._api.call('port config -speed 1000') self._api.call('port config -advertise100FullDuplex false') self._api.call('port config -advertise100HalfDuplex false') self._api.call('port config -advertise10FullDuplex false') self._api.call('port config -advertise10HalfDuplex false') self._api.call('port config -advertise1000FullDuplex true') self._api.call('port config -speed 1000') self._api.call('port set %d %d %d' % (_port[0], _port[1], _port[2])) elif '1Gbe-el'in mode: self._api.call('port setDefault') # electrical self._api.call('port setPhyMode 0 %d %d %d' % (_port[0], _port[1], _port[2])) self._api.call('port config -speed 1000') self._api.call('port config -advertise100FullDuplex false') self._api.call('port config -advertise100HalfDuplex false') self._api.call('port config -advertise10FullDuplex false') self._api.call('port config -advertise10HalfDuplex false') self._api.call('port config -advertise1000FullDuplex true') self._api.call('port config -speed 1000') self._api.call('port set %d %d %d' % (_port[0], _port[1], _port[2])) else: print('nothing') def stat(self): for _port in self._portlist: self._api.call('stat setDefault') if self._api.call_rc('stat set %d %d %d' % (_port[0], _port[1], _port[2])) != 0: exit() # self._api.call('stat write %d %d %d' % (_port[0], _port[1], _port[2])) def felxibleTimestamp(self): for _port in self._portlist: self._api.call('flexibleTimestamp setDefault') self._api.call('flexibleTimestamp set %d %d %d' % (_port[0], _port[1], _port[2])) def filter(self): for _port in self._portlist: self._api.call('filter setDefault') self._api.call('filter config -captureTriggerFrameSizeFrom 12') self._api.call('filter config -captureTriggerFrameSizeTo 12') self._api.call('filter config -captureFilterFrameSizeFrom 12') self._api.call('filter config -captureFilterFrameSizeTo 12') self._api.call('filter setDefault') self._api.call('filter set %d %d %d' % (_port[0], _port[1], _port[2])) def filterPallette(self): for _port in self._portlist: self._api.call('filterPallette setDefault') self._api.call('filterPallette set %d %d %d' % (_port[0], _port[1], _port[2])) def capture(self): for _port in self._portlist: self._api.call('capture setDefault') self._api.call('capture set %d %d %d' % (_port[0], _port[1], _port[2])) def interfaceTable(self): # for _port in self._portlist: self._api.call('interfaceTable setDefault') self._api.call('interfaceTable write') self._api.call('interfaceTable write') self._api.call('interfaceTable clearAllInterfaces') self._api.call('interfaceTable write') def protocolServer(self): for _port in self._portlist: self._api.call('protocolServer setDefault') self._api.call('protocolServer set %d %d %d' % (_port[0], _port[1], _port[2])) def stream(self,framesize): self._api.call('stream setDefault') self._api.call('stream config -name %s'% 'TestStream') self._api.call('stream config -framesize %d'% int(framesize)) self._api.call('stream config -ifg 96.0') # self._api.call('stream config -ifgMIN 952.0') #self._api.call('stream config -ifgMAX 1016.0') # self._api.call('stream config -ibg 96.0') self._api.call('stream config -percentPacketRate 100.0') self._api.call('stream config -enableTimestamp true') self._api.call('stream config -patternType patternTypeRandom') self._api.call('stream config -dataPattern allOnes') self._api.call('stream config -pattern "FF FF"') self._api.call('stream config -frameType "FF FF"') self._api.call('stream config -dma stopStream') self._api.call('stream config -numFrames 1000') #required for lartency # self._api.call('stream config -fir true') for _port in self._portlist: self._api.call('stream set %d %d %d %d'%(_port[0], _port[1], _port[2],1)) def pauseFrame(self): self._api.call('stream setDefault') # self._api.call('stream config -name %s'% 'PauseStream') self._api.call('protocol setDefault') self._api.call('protocol config -name PauseStream') self._api.call('protocol config -ethernetType ethernetII') self._api.call('pauseControl setDefault') self._api.call('pauseControl config -da {01 80 C2 00 00 01}') self._api.call('pauseControl config -pauseTime 128') for _port in self._portlist: self._api.call('pauseControl set %d %d %d'%(_port[0], _port[1], _port[2])) for _port in self._portlist: self._api.call('stream set %d %d %d %d'%(_port[0], _port[1], _port[2],1)) def protocol(self): self._api.call('protocol setDefault') def packetGroup(self): self._api.call('packetGroup setDefault') self._api.call('packetGroup config -groupId 1') self._api.call('packetGroup config -groupOffset 16') self._api.call('packetGroup config -sequenceNumberOffset 28') self._api.call('packetGroup config -insertSequenceSignature true') for _port in self._portlist: self._api.call('packetGroup setTx %d %d %d %d'%(_port[0], _port[1], _port[2],1)) def dataInegrity(self): self._api.call('dataInegrity setDefault') self._api.call('dataIntegrity config -signatureOffset 12') self._api.call('dataIntegrity config -signature "08 71 18 00"') def result(self): _result = {} for _port in self._portlist: _str_port = (str(_port[0])+str(_port[1])+str(_port[2])) print(_str_port) _result[_str_port] = {} for _port in self._portlist: self._api.call_rc('capture get %d %d %d' % (_port[0],_port[1], _port[2])) self._api.call('capture cget -nPackets') for _port in self._portlist: self._api.call_rc('captureBuffer get %d %d %d' % (_port[0],_port[1],_port[2])) self._api.call_rc('captureBuffer getStatistics') print('Port %s Latency: %d' % (str(_port), int(self._api.call('captureBuffer cget -averageLatency')[0]))) for _port in self._portlist: self._api.call('stat get statAllStats %d %d %d'% (_port[0], _port[1], _port[2])) # print('Port %s LinkState: %d'% (str(_port), int(self._api.call('stat cget -link')[0]))) # print('Port %s txFrames: %d'% (str(_port), int(self._api.call('stat cget -framesSent')[0]))) # print('Port %s rxFrames: %d'% (str(_port), int(self._api.call('stat cget -framesReceived')[0]))) # print('Port %s txBytes: %d'% (str(_port), int(self._api.call('stat cget -bytesSent')[0]))) # print('Port %s rxBytes: %d'% (str(_port), int(self._api.call('stat cget -bytesReceived')[0]))) # print('Port %s Line Rate: %d'% (str(_port), int(self._api.call('stat cget -lineSpeed')[0]))) # _str_port = (str(_port[0]) + '-' + str(_port[1]) + '-' + str(_port[2])) _testResult = {} _testResult['txFrame'] = int(self._api.call('stat cget -framesSent')[0]) _testResult['rxFrame'] = int(self._api.call('stat cget -framesReceived')[0]) _testResult['txBytes'] = int(self._api.call('stat cget -bytesSent')[0]) _testResult['rxBytes'] = int(self._api.call('stat cget -bytesReceived')[0]) _str_port = (str(_port[0]) + str(_port[1]) + str(_port[2])) _result[_str_port] = _testResult # _testResult['PORT'] = _port # _resultList.append(_testResult) # print('RESULT',_result) return _result def framesizeTest(self,sizelist): _framesizeTest = {} self._api.call('set portList %s' % (self._tclportlist)) self.createGroup() self.port('1Gbe-opt') #self.pauseFrame() # _result = {} for framesize in sizelist: self.stat() self.felxibleTimestamp() self.filter() self.capture() self.filterPallette() self.interfaceTable() self.protocolServer() self.stream(framesize) if self._api.call_rc('ixWriteConfigToHardware portList') != 0: exit() time.sleep(10) if self._api.call_rc('ixCheckLinkState portList') != 0: exit() if self._api.call_rc('ixStartCapture portList') != 0: exit() if self._api.call_rc('ixStartTransmit portList') != 0: exit() time.sleep(10) if self._api.call_rc('ixStopCapture portList') != 0: exit() if self._api.call_rc('ixStopTransmit portList') != 0: exit() # _resultList = self.result() _framesizeTest[framesize] = self.result() # for item in _resultList: # print(item) # _port = item.get('PORT') # _str_port = (str(_port[0]) + '-' + str(_port[1]) + '-' + str(_port[2])) # print(_str_port) # _framesizeTest[_str_port]['FRAMESIZE'][framesize] = _str_port # print(_framesizeTest) # _testresult = self.result() # print('TESTRESULT', _testresult) return _framesizeTest def disconnect(self): if self._api.call_rc('ixClearOwnership %s' % (self._tclportlist)) != 0: exit()
[ "m.schiesser@gmail.com" ]
m.schiesser@gmail.com
188e8503cdd257dd7cab3babad6f8510a254137d
633944f913050debf0764c2a29cf3e88f912670e
/v8/depot_tools/bootstrap-3.8.0b1.chromium.1_bin/python3/lib/python3.8/email/mime/base.py
132e6913d660b6b7b332267152dbc43c4eddb1af
[ "BSD-3-Clause", "bzip2-1.0.6", "SunPro", "Apache-2.0" ]
permissive
bopopescu/V8-lgtm
0474c2ff39baf754f556ef57619ceae93e7320fd
da307e2f7abfca5fa0e860a809de6cd07fd1b72b
refs/heads/master
2022-02-16T19:10:54.008520
2019-09-25T07:51:13
2019-09-25T07:51:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
69
py
../../../../../.cipd/pkgs/2/_current/lib/python3.8/email/mime/base.py
[ "jundong.xjd@antfin.com" ]
jundong.xjd@antfin.com
921643a8d9159a227ee264036f1b48ce70509743
c295b7f65e424822c3909634e34ce97c64932a8e
/bab 2/server_udp.py
d691a69a64fc39f45922d460bc1b0e99c11eb95e
[]
no_license
imamsantosa/Jaringan_Komputer
e67345c0d6ce012694296ba74cf49ab5fccbccd8
8b60176710aafaacca93a0defde8c7c03d71b233
refs/heads/master
2021-01-10T09:42:41.244174
2016-03-14T17:46:56
2016-03-14T17:46:56
53,878,301
0
1
null
null
null
null
UTF-8
Python
false
false
311
py
from socket import * serverPort = 12000 serverSocket = socket(AF_INET, SOCK_DGRAM) serverSocket.bind(('', serverPort)) print "The server is ready to receive" while 1: message, clientAddress = serverSocket.recvfrom(2048) modifiedMessage = message.upper() serverSocket.sendto(modifiedMessage, clientAddress)
[ "imamsantosa123@gmail.com" ]
imamsantosa123@gmail.com
fbb1e388256a6d52fa2526a9bb88fff6647c0df9
e2b5849d011596687672d41b2446df2c6c65ee79
/ex049.py
a8dd4c42f7da9ab8c9de77489c9fe88f68cef447
[]
no_license
maroberto/CursoPython
ebdbe4b98f6246bdaafc7874ec06acf92a3887f6
e79af46242cb46d1189f882b0835cb9140099c4e
refs/heads/master
2023-03-28T08:14:18.878202
2021-04-04T16:26:34
2021-04-04T16:26:34
330,283,797
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
print(20 * '__') numero = int(input('Digite um número: ')) for i in range(1, 31): resultado = (numero * i) print('{} x {} = {}'.format(numero, i, resultado))
[ "63175966+maroberto@users.noreply.github.com" ]
63175966+maroberto@users.noreply.github.com
cd9815be7c9cc8ccdc4c8d46f182389f7124895a
0f6581b105ea7eb4b99dbff131378340a634e7ac
/pages/select_mall_page.py
a47f0ce03ea8ce69435593430a96ed74a92a928e
[]
no_license
langdawang678/Se2PO
ded5e9f97a329f39a6de8ffaebe92330eb598eff
96d7eb6b4e1774b06b2fd9a4781f9bee7d8f5ed6
refs/heads/master
2023-03-25T10:44:23.140843
2021-03-23T09:41:39
2021-03-23T09:41:39
346,628,227
0
0
null
null
null
null
UTF-8
Python
false
false
526
py
from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from locations.goods_lib_locations import GoodsLibLocations from common.base_page import BasePage class SelectMallPage(BasePage): # 退出元素是否存在 def get_elements_exists(self): try: WebDriverWait(self.driver, 10).until(EC.visibility_of_element_located(GoodsLibLocations.exit_link)) except: return False else: return True
[ "langdawang678@sina.com" ]
langdawang678@sina.com
02d981070765586c6c3e8bb8d57555ee7b1bed74
444a9480bce2035565332d4d4654244c0b5cd47b
/research/cv/repvgg/src/configs/parser.py
ae7dbe646e625e1fa38e245603b0503abce2f6d8
[ "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-proprietary-license" ]
permissive
mindspore-ai/models
7ede9c6454e77e995e674628204e1c6e76bd7b27
eab643f51336dbf7d711f02d27e6516e5affee59
refs/heads/master
2023-07-20T01:49:34.614616
2023-07-17T11:43:18
2023-07-17T11:43:18
417,393,380
301
92
Apache-2.0
2023-05-17T11:22:28
2021-10-15T06:38:37
Python
UTF-8
Python
false
false
1,155
py
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """parser function""" USABLE_TYPES = set([float, int]) def trim_preceding_hyphens(st): i = 0 while st[i] == "-": i += 1 return st[i:] def arg_to_varname(st: str): st = trim_preceding_hyphens(st) st = st.replace("-", "_") return st.split("=")[0] def argv_to_vars(argv): var_names = [] for arg in argv: if arg.startswith("-") and arg_to_varname(arg) != "config": var_names.append(arg_to_varname(arg)) return var_names
[ "977180923@qq.com" ]
977180923@qq.com
e1b448acf3b730cb600a2828622a2b86bc3e47d9
c9f4de7bf63df23325b477d3375a1bfb99865059
/main_a3.py
2a0057fd589f5aa522859a2167872c1f9d5d7b8e
[]
no_license
EliHill/TextAnalysis
440a15dca3f467ab5d79a234582a9ca3b4c7ab10
44b05bd1995290bbbd7972a1f8953aa5e75be37e
refs/heads/master
2020-09-30T16:24:18.911419
2019-12-06T19:52:17
2019-12-06T19:52:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,750
py
"""main_a3.py """ import re import os import math import nltk from nltk.corpus import brown from nltk.corpus import wordnet as wn from nltk.corpus import PlaintextCorpusReader from fsa import FSA # NLTK stoplist with 3136 words (multilingual) STOPLIST = set(nltk.corpus.stopwords.words()) # Vocabulary with 234,377 English words from NLTK ENGLISH_VOCABULARY = set(w.lower() for w in nltk.corpus.words.words()) # The five categories from Brown that we are using BROWN_CATEGORIES = ('adventure', 'fiction', 'government', 'humor', 'news') # Global place to store Brown vocabularies so you calculate them only once BROWN_VOCABULARIES = None def is_content_word(word): """A content word is not on the stoplist and its first character is a letter.""" return word.lower() not in STOPLIST and word[0].isalpha() class Text(object): def __init__(self, path, name=None): """Takes a file path, which is assumed to point to a file or a directory, extracts and stores the raw text and also stores an instance of nltk.text.Text.""" self.name = name if os.path.isfile(path): self.raw = open(path).read() elif os.path.isdir(path): corpus = PlaintextCorpusReader(path, '.*.mrg') self.raw = corpus.raw() self.text = nltk.text.Text( nltk.word_tokenize(self.raw)) def __len__(self): return len(self.text) def __getitem__(self, i): return self.text[i] def __str__(self): name = '' if self.name is None else " '%s'" % self.name return "<Text%s tokens=%s>" % (name, len(self)) def token_count(self): """Just return the length of the text.""" return len(self) def type_count(self): """Returns the type count, with minimal normalization by lower casing.""" # an alternative would be to use the method nltk.text.Text.vocab() return len(set([w.lower() for w in self.text])) def sentence_count(self): """Return number of sentences, using the simplistic measure of counting period, exclamation marks and question marks.""" # could also use nltk.sent.tokenize on self.raw return len([t for t in self.text if t in '.!?']) def most_frequent_content_words(self): """Return a list with the 25 most frequent content words and their frequencies. The list has (word, frequency) pairs and is ordered on the frequency.""" dist = nltk.FreqDist([w for w in self.text if is_content_word(w.lower())]) return dist.most_common(n=25) def most_frequent_bigrams(self, n=25): """Return a list with the 25 most frequent bigrams that only contain content words. The list returned should have pairs where the first element in the pair is the bigram and the second the frequency, as in ((word1, word2), frequency), these should be ordered on frequency.""" filtered_bigrams = [b for b in list(nltk.bigrams(self.text)) if is_content_word(b[0]) and is_content_word(b[1])] dist = nltk.FreqDist([b for b in filtered_bigrams]) return dist.most_common(n=n) def concordance(self, word): self.text.concordance(word) ## new methods for search part of assignment 3 def search(self, pattern): return re.finditer(pattern, self.raw) def find_sirs(self): answer = set() for match in self.search(r"\bSir \S+\b"): answer.add(match.group()) return sorted(answer) def find_brackets(self): answer = set() # use a non-greedy match on the characters between the brackets for match in self.search(r"([\(\[\{]).+?([\)\]\}])"): brackets = "%s%s" % (match.group(1), match.group(2)) # this tests for matching pairs if brackets in ['[]', '{}', '()']: answer.add(match.group()) return sorted(answer) def find_roles(self): answer = set() for match in re.finditer(r"^([A-Z]{2,}[^\:]+): ", self.raw, re.MULTILINE): answer.add(match.group(1)) return sorted(answer) def find_repeated_words(self): answer = set() for match in self.search(r"(\w{3,}) \1 \1"): answer.add(match.group()) return sorted(answer) def apply_fsa(self, fsa): i = 0 results = [] while i < len(self): match = fsa.consume(self.text[i:]) if match: results.append((i, match)) i += len(match) else: i += 1 return results class Vocabulary(): """Class to store all information on a vocabulary, where a vocabulary is created from a text. The vocabulary includes the text, a frequency distribution over that text, the vocabulary items themselves (as a set) and the sizes of the vocabulary and the text. We do not store POS and gloss, for those we rely on WordNet. The vocabulary is contrained to those words that occur in a standard word list. Vocabulary items are not normalized, except for being in lower case.""" def __init__(self, text): self.text = text.text # keeping the unfiltered list around for statistics self.all_items = set([w.lower() for w in text]) self.items = self.all_items.intersection(ENGLISH_VOCABULARY) # restricting the frequency dictionary to vocabulary items self.fdist = nltk.FreqDist(t.lower() for t in text if t.lower() in self.items) self.text_size = len(self.text) self.vocab_size = len(self.items) def __str__(self): return "<Vocabulary size=%d text_size=%d>" % (self.vocab_size, self.text_size) def __len__(self): return self.vocab_size def frequency(self, word): return self.fdist[word] def pos(self, word): # do not volunteer the pos for words not in the vocabulary if word not in self.items: return None synsets = wn.synsets(word) # somewhat arbitrary choice to make unknown words nouns, returning None # or 'UNKNOWN' would have been fine too. return synsets[0].pos() if synsets else 'n' def gloss(self, word): # do not volunteer the gloss (definition) for words not in the vocabulary if word not in self.items: return None synsets = wn.synsets(word) # make a difference between None for words not in vocabulary and words # in the vocabulary that do not have a gloss in WordNet return synsets[0].definition() if synsets else 'NO DEFINITION' def kwic(self, word): self.text.concordance(word)
[ "marc@cs.brandeis.edu" ]
marc@cs.brandeis.edu
30e9581244610151a0102ea2e8a41a7a363dc6cc
f4d2d1bb66ce2f371c734ab8a65f6257778fd68c
/Book/chap12.py
cc6f4de3925397eed282ceaa64e43e81d11690bb
[]
no_license
jdiodati20/hangman
0f849cb6cfe6261ee310a0dc5cf14d4da3fc1ac0
60dfecf5b2719d4c06686639cdc44104a1f50ba5
refs/heads/master
2020-04-28T19:28:31.842677
2019-03-13T23:26:43
2019-03-13T23:26:43
175,512,060
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
import math class apple: def __init__(self, color, size, shape, weight): self.c = color self.s = size self.sh = shape self.w = weight class circle: def __init__(self, radius): self.r = radius def area(self): return math.pi * self.r * self.r class triangle: def __init__(self, base, height): self.b = base self.h = height def area(self): return self.b * self.h * 0.5 class hexagon: def __init__(self, sideLength): self.l = sideLength def calculate_perimeter(self): return 6 * self.l cir = circle(1) a = cir.area() print(a) tri = triangle(3, 4) a1 = tri.area() print(a1) hexa = hexagon(6) a2 = hexa.calculate_perimeter() print(a2)
[ "jacksonpdiodati@Jacksons-MacBook-Pro.local" ]
jacksonpdiodati@Jacksons-MacBook-Pro.local
0b102b1d7919e1f87af000bac931cac71bb3410f
9554fddc76cfe7d95101ffe8e7ac16b7b090743e
/forms.py
2e954138dc88f4390310183beceabac3d7c8646d
[]
no_license
levicolquitt97/STQA-assignment-2
88712fc345317e66e24fba471054596c751fb7ef
2d7b92957894d3ddda77b7dc0fec0e0501306dd8
refs/heads/master
2021-04-24T03:35:55.228329
2020-04-04T19:29:25
2020-04-04T19:29:25
250,069,623
0
0
null
2020-04-04T19:29:26
2020-03-25T19:16:44
Python
UTF-8
Python
false
false
1,476
py
# LEVI COLQUITT # Assignment 3+4 STQA # 3/15/2020 #FORMS.py #This .py file creates the forms and grabs the user input. then it passes that to the main.py file for further use from flask_wtf import FlaskForm from wtforms import StringField, IntegerField, DecimalField, SubmitField from wtforms.validators import DataRequired, Length, InputRequired, NumberRange [] #Form that takes input for BMI page and also validates the input class BMIForm(FlaskForm): heightFeet = IntegerField('Height feet', validators=[InputRequired(), NumberRange(min=1, max=12)]) heightInches = IntegerField('Height inches', validators=[InputRequired(), NumberRange(min=0, max=12)]) weight = DecimalField('Weight in pounds', validators=[DataRequired(message='MUST BE VALID DECIMAL/INTEGER VALUE'), NumberRange(min=0, max=1000)]) submit = SubmitField('Calculate') #Form that takes input for retirement page and also validates the input class retirementForm(FlaskForm): age = IntegerField('current age:', validators=[InputRequired(), NumberRange(min=0, max=99)]) salary = IntegerField('Annual salary in $:', validators=[InputRequired(), NumberRange(min=0)]) percentSaved = IntegerField('Enter annual percent of salary saved:', validators=[InputRequired(), NumberRange(min=0, max=99)]) desiredSavingsGoal = IntegerField('Enter your desired savings goal:', validators=[InputRequired(), NumberRange(min=0)]) submit = SubmitField('Calculate')
[ "noreply@github.com" ]
noreply@github.com
c599481b7904761d4e4518acc651183692d4f2d5
2fd087fbc5faf43940153693823969df6c8ec665
/pyc_decrypted/latest/xml/etree/cElementTree.py
cf14d28fc01a58d8e8845641181b34f25ec71840
[]
no_license
mickeystone/DropBoxLibrarySRC
ed132bbffda7f47df172056845e5f8f6c07fb5de
2e4a151caa88b48653f31a22cb207fff851b75f8
refs/heads/master
2021-05-27T05:02:30.255399
2013-08-27T13:16:55
2013-08-27T13:16:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
74
py
#Embedded file name: xml/etree/cElementTree.py from _elementtree import *
[ "bizonix@me.com" ]
bizonix@me.com
9f1d77e5153cf7759b3748a02218bb0dd1d3d019
7ac0ad55050bcc0d583a6a2b11be999ae7577c50
/project04/wsgi.py
d440f640cb6c5b3b56380d7127c540a810912041
[]
no_license
baeseonghyeon/django-blog_project
0285935a80052799807670974722b2ba2d736b45
a5f89dbc23ead8f0296be05aadeb0943f7d44a86
refs/heads/master
2022-11-26T12:39:03.527254
2020-08-13T19:48:26
2020-08-13T19:48:26
170,460,817
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" WSGI config for project04 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'project04.settings') application = get_wsgi_application()
[ "tjdgusdkf@gmail.com" ]
tjdgusdkf@gmail.com
2ebebca7e2e70361c06ad04d94f701dab5a3c6d3
a753d3bd70c4686da5bb886d6652b889ae9d2d0d
/test14.py
8a8f97c9fa4cd21075dd4b1194269ea8192c643b
[]
no_license
sxttxkxnm/python
319ac8b11470976aaa14c03916ad8e3194d375e2
673dfc94e5c88307b179b9f35b93441fef305be6
refs/heads/master
2023-06-19T10:57:37.420321
2021-07-19T13:38:10
2021-07-19T13:38:10
336,190,015
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
import os choice = 0 filename = '' def menu(): global choice print('Menu\n1.Open Calculator\n2.Open Notepad\n3.Exit') choice = input('Select Menu : ') def opennotepad(): filename= 'C:\\Windows\\SysWOW64\\notepad.exe' print('Memoradum writing %s'%filename) os.system(filename) def opencalculator(): filename= 'C:\\Windows\\SysWOW64\\calc.exe' print('Calculate Number %s'%filename) os.system(filename) while True: menu() if choice == '1': opencalculator() elif choice == '2': opennotepad() else: break
[ "poom_1004@outlook.co.th" ]
poom_1004@outlook.co.th
f2462d67b16186954cf4e1db3efde0ad37bf674f
4f0ecde0978d1b65ae229c855c9488fb067f4ea9
/kakao/kakao_2020/kakao_1/__init__.py
2b51456dc8302910c9386534cbde9aa2e2eca95d
[]
no_license
LazyRichard/coding-test
6d84a8a5287d987c23537162b4276a71d06de216
c2fa6c6b307db6e0b3049a12e585c3cb7d1b8e24
refs/heads/master
2021-05-19T23:41:02.648174
2021-04-29T07:51:35
2021-04-29T07:51:35
252,088,390
0
0
null
null
null
null
UTF-8
Python
false
false
1,018
py
from typing import List def solution(test_input: str) -> int: if len(test_input) == 1: return 1 answer: List[int] = [] for i in range(1, (len(test_input) // 2) + 1): temp: List[str] = [] for j in range(0, len(test_input), i): temp.append(test_input[j:(j + i)]) answer.append(len(compress(temp))) return min(answer) def compress(word_list: List[str]) -> str: answer: str = "" test_ch: str = "" cnt:int = 1 for ch in word_list: if not test_ch: test_ch = ch else: if test_ch == ch: cnt = cnt + 1 elif test_ch != ch and cnt == 1: answer = answer + test_ch test_ch = ch else: answer = answer + "{}{}".format(cnt, test_ch) test_ch = ch cnt = 1 if cnt > 1: answer = answer + "{}{}".format(cnt, test_ch) else: answer = answer + test_ch return answer
[ "sof.midnight@live.co.kr" ]
sof.midnight@live.co.kr
0223df23506f1891097b5f5e23917c56f25fef27
536204654bec325282191eede91def85cf8f9ecf
/tuia/exceptions.py
ed7f2543d365f392c6d2f560876676844e4cf0d8
[ "BSD-3-Clause", "BSD-2-Clause" ]
permissive
kiddfz/QTAF
0b5450f47c09f453096a139993ada1383e5c7002
8bb4367b3c3e43ac3499daa56f825eea0a279054
refs/heads/master
2021-04-06T05:25:10.993145
2017-11-15T05:19:59
2017-11-15T05:19:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,142
py
# -*- coding: utf-8 -*- # # Tencent is pleased to support the open source community by making QTA available. # Copyright (C) 2016THL A29 Limited, a Tencent company. All rights reserved. # Licensed under the BSD 3-Clause License (the "License"); you may not use this # file except in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. # ''' 异常模块定义 ''' #2012/03/16 pear 初稿,创建 class ControlNotFoundError(Exception): '''控件没有找到 ''' pass class ControlAmbiguousError(Exception): '''找到多个控件 ''' pass class ControlExpiredError(Exception): '''控件失效错误 ''' pass class TimeoutError(Exception): '''超时异常 ''' pass
[ "eeelin@tencent.com" ]
eeelin@tencent.com
7ff960b1f5fe2ab8db39e70e382084c495881cb8
1b12e6096c47312b67fa6ff223216945d2efb70c
/sandbox/vtk/selection/myinteractor.py
139202e49f1fe0d1418bde34dcae5a42beb929c2
[ "Apache-2.0" ]
permissive
rboman/progs
6e3535bc40f78d692f1f63b1a43193deb60d8d24
03eea35771e37d4b3111502c002e74014ec65dc3
refs/heads/master
2023-09-02T17:12:18.272518
2023-08-31T15:40:04
2023-08-31T15:40:04
32,989,349
5
2
Apache-2.0
2022-06-22T10:58:38
2015-03-27T14:04:01
MATLAB
UTF-8
Python
false
false
4,329
py
# -*- coding: utf-8 -*- import vtk colors = vtk.vtkNamedColors() class MyInteractorStyle(vtk.vtkInteractorStyleTrackballCamera): def __init__(self, parent=None): """register to event listening """ self.AddObserver("LeftButtonPressEvent", self.leftButtonPressEvent) self.selection = None self.selected_mapper = vtk.vtkDataSetMapper() self.selected_actor = vtk.vtkActor() self.dataset = None def select_one(self): # get the mouse click position clickPos = self.GetInteractor().GetEventPosition() # crete a picker and pick at that position picker = vtk.vtkCellPicker() picker.Pick(clickPos[0], clickPos[1], 0, self.GetDefaultRenderer()) print("pick") print(f"\tcell id = {picker.GetCellId()}") print(f"\t3D pick position = {picker.GetPickPosition()}") print(f"\t2D mouse position = {picker.GetSelectionPoint()[:2]}") # the picking could be empty # in that case, we leave the routine if picker.GetDataSet(): print(f"\tdataset = {picker.GetDataSet().GetClassName()}") else: print(f"\tdataset = None") return # no cell has been picked => quit if picker.GetCellId()==-1: return # cell type - we can pick triangles, but also tetras cell_type = picker.GetDataSet().GetCellType( picker.GetCellId() ) print(f"\tcell type = { vtk.vtkCellTypes.GetClassNameFromTypeId( cell_type )}") if(cell_type != vtk.VTK_TRIANGLE ): print("\tWRONG CELL TYPE") return # we can pick the wrong ugrid (the red one) # we store the right one at the first successful picking if self.dataset == None: self.dataset = picker.GetDataSet() if picker.GetDataSet() != self.dataset: print(f"\tPICKED WRONG DATASET!") return # -- cree un "vtkSelectionNode" (données de selection + type de selection) ids = vtk.vtkIdTypeArray() ids.SetNumberOfComponents(1) ids.InsertNextValue(picker.GetCellId()) selectionNode = vtk.vtkSelectionNode() selectionNode.SetFieldType(vtk.vtkSelectionNode.CELL) # CELL,POINT,FIELD,VERTEX,EDGE,ROW selectionNode.SetContentType(vtk.vtkSelectionNode.INDICES) # SELECTIONS,GLOBALIDS,PEDIGREEIDS,VALUES,INDICES,FRUSTUM, # LOCATIONS,THRESHOLDS,BLOCKS,QUERY selectionNode.SetSelectionList(ids) # -- cree une "vtkSelection" (la sélection en elle-même) # c'est un ensemble de "noeuds de selection" if not self.selection: self.selection = vtk.vtkSelection() self.selection.AddNode(selectionNode) else: self.selection.Union(selectionNode) print( f"\tThere are {self.selection.GetNumberOfNodes()} 'selection nodes'.") # -- DISPLAY: cree une "vtkExtractSelection" extractSelection = vtk.vtkExtractSelection() extractSelection.SetInputData(0, picker.GetDataSet()) # extractSelection.SetInputConnection(0, filt.GetOutputPort()) # cas d'un filtre extractSelection.SetInputData(1, self.selection) extractSelection.Update() # build a ugrid for display selected = vtk.vtkUnstructuredGrid() selected.ShallowCopy(extractSelection.GetOutput()) print( f"\tThere are {selected.GetNumberOfPoints()} points in the selection.") print( f"\tThere are {selected.GetNumberOfCells()} cells in the selection.") self.selected_mapper.SetInputData(selected) self.selected_actor.SetMapper(self.selected_mapper) self.selected_actor.GetProperty().EdgeVisibilityOn() self.selected_actor.GetProperty().SetColor( colors.GetColor3d('red') ) self.selected_actor.GetProperty().SetLineWidth(3) self.GetDefaultRenderer().AddActor(self.selected_actor) # global - n'est pas ajouté si il l'a deja été print(f'nb of actors = {self.GetDefaultRenderer().GetActors().GetNumberOfItems()}') def leftButtonPressEvent(self, obj, event): """custom event """ self.select_one() self.OnLeftButtonDown() # calls vtk.vtkInteractorStyleTrackballCamera
[ "romain.boman@gmail.com" ]
romain.boman@gmail.com
869d7648d5fa41c0f2565d64f68aac7d9ec636dc
8221b7f8740ebff0ae44f3fee48fd06c79483617
/Physics/Electron.py
2f1f3d9a93ffc7d82886123d8a89a7d9c94c4938
[]
no_license
austinh2001/CyclotronHonorsProject
16b5e31540a85b2c01a87f6efbf4f1a663195e25
7544513dbc442c59a67a3aafced5aeea7f55360e
refs/heads/main
2023-04-02T05:06:26.652334
2021-03-25T00:31:56
2021-03-25T00:31:56
351,251,192
1
0
null
2021-03-25T00:18:21
2021-03-24T23:26:36
Python
UTF-8
Python
false
false
1,279
py
import pygame from Physics.Particle import Particle from Physics.Vector import Vector from Physics.CoordinateSystem import CoordinateSystem from Physics.Force import Force, CREATEFORCE, NONE, CONSTANTFORCE, EARTHGRAVITY, SQUARELAW, CUBELAW, GRAVITATIONALFORCE, ELECTRICFORCE class Electron(Particle): def __init__(self, coordinateSystem = None, position_vector = Vector(2,[0,0]), velocity = Vector(2,[0,0])): if(coordinateSystem is None): self.coordinateSystem = CoordinateSystem([pygame.display.get_surface().get_size()[0] / 2, pygame.display.get_surface().get_size()[1] / 2], 100,"PPM", pygame.display.get_surface().get_size()) else: self.coordinateSystem = coordinateSystem self.timer = 0 self.pathPoints = [] self.position_vector = position_vector self.velocity = velocity self.mass = float(9.1093837015e-31) self.charge = (-1) * float(1.60217662e-19) self.netForce = Vector(2, [0, 0]) self.acceleration = self.netForce * (1/self.mass) pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load("Electron.png") self.center_pixel_displacement_vector = Vector(2,self.image.get_rect().topleft) - Vector(2, self.image.get_rect().center)
[ "austinh2001@gmail.com" ]
austinh2001@gmail.com
1cca891eba9b94cc67116cdbe896d24da3809e90
d67a5cc21cd8a22a707a46621a1f5bcaa89baff1
/imports.py
31c9bb3e888db5c254bf7a846aad80e5637cc11c
[]
no_license
Evotushon/Evotushon-s-Guardian-Bot
c9891ce32538d6bab3013d37902d1ccc3a1844a7
9973690fee777c44fbcedc62def619fc2309e9d3
refs/heads/master
2023-08-19T14:55:00.874019
2021-10-20T14:45:17
2021-10-20T14:45:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
import discord import os import dotenv from dotenv import load_dotenv from discord import embeds from discord.ext import commands import random from discord.player import FFmpegPCMAudio import asyncio import time import traceback import sys import discord from discord.ext.commands import Bot from discord.enums import Status from discord.ext import commands from discord.utils import get import utils
[ "danielspa2019@gmail.com" ]
danielspa2019@gmail.com
3ed16fe01640223215e8ecb9dd68102306c1c59b
592498a0e22897dcc460c165b4c330b94808b714
/1000번/1406_에디터.py
a89e92eec4a01dc869414b5d997fc614f0d9d6f9
[]
no_license
atom015/py_boj
abb3850469b39d0004f996e04aa7aa449b71b1d6
42b737c7c9d7ec59d8abedf2918e4ab4c86cb01d
refs/heads/master
2022-12-18T08:14:51.277802
2020-09-24T15:44:52
2020-09-24T15:44:52
179,933,927
0
0
null
null
null
null
UTF-8
Python
false
false
469
py
from collections import deque import sys ip = sys.stdin.readline lst = deque(list(ip().strip())) rst = deque([]) for i in range(int(ip())): cmd = ip().strip() if cmd[0] == 'L': if len(lst): rst.appendleft(lst.pop()) elif cmd[0] == 'D': if len(rst): lst.append(rst.popleft()) elif cmd[0] == 'B': if len(lst): lst.pop() else: lst.append(cmd[2]) for i in lst+rst: print(i,end='')
[ "zeezlelove@gmail.com" ]
zeezlelove@gmail.com
2fac5ac1386dcc3835fa66a4a1a7bf2e0b51315d
1bb50dc75cd1de2f68de7947f08965538e9b5f7b
/app/core/models.py
bb5009a28104125c3b02483dad835d6cbbcd1b50
[ "MIT" ]
permissive
victorstevan/recipe-app-api
73a7e77adcc608aa873a36686f73b7e19553c781
be56d255e7e065478c542c57c59987105709fd0d
refs/heads/main
2023-03-04T11:58:53.377068
2021-02-15T01:04:51
2021-02-15T01:04:51
338,922,399
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
from django.db import models from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, \ PermissionsMixin class UserManager(BaseUserManager): def create_user(self, email, password=None, **extra_fields): """Creates and saves a new User""" if not email: raise ValueError('Users must have an email adress') user = self.model(email=self.normalize_email(email), **extra_fields) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): """Creates and saves a new super user""" user = self.create_user(email, password) user.is_staff = True user.is_superuser = True user.save(using=self._db) return user class User(AbstractBaseUser, PermissionsMixin): """Custom user model that supports using email instead of username""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserManager() USERNAME_FIELD = 'email'
[ "victorstevan@discente.ufg.br" ]
victorstevan@discente.ufg.br
9006babf1473dae988d40f9aa1ea76ff377e10e2
76c81dd2a7e65f292fc7fa46f23eebaa5a40e799
/luckysheet_obj/luckysheet_obj/wsgi.py
1670bfc804a91201a6b2a8c77b3fead8bdb2aa90
[]
no_license
billlaw6/luckysheet_django
2631374d20d4cf1d7ac78213cdb339fec6158abc
bc9ebd89bcfb5cfbf7bcdcb7e168210b183df172
refs/heads/main
2023-05-01T14:39:34.723875
2021-05-15T08:20:08
2021-05-15T08:20:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for luckysheet_obj project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'luckysheet_obj.settings') application = get_wsgi_application()
[ "lq65535@163.com" ]
lq65535@163.com
9adbe52821ece3b44f5dca11058f29fcf7f0c162
4c5de0652ef4a88dbdba8a4c338aa78a341d2938
/ixia52xx/src/driver.py
efa8989c776b9e0376631ae9c7bc4e97a928a7c5
[]
no_license
QualiSystemsLab/Ixia52xx-Shell
9788aad8ae676a7cc66d5289c2e69ceeccfcd587
ee9226ed3ac38cb792702b91a00be7b3ed9ea27f
refs/heads/master
2021-01-20T22:31:13.741873
2016-08-08T19:58:30
2016-08-08T19:58:30
64,963,233
1
0
null
null
null
null
UTF-8
Python
false
false
5,004
py
from cloudshell.shell.core.resource_driver_interface import ResourceDriverInterface from cloudshell.shell.core.driver_context import InitCommandContext, ResourceCommandContext, AutoLoadResource, AutoLoadAttribute, AutoLoadDetails from cloudshell.api.cloudshell_api import CloudShellAPISession import requests from requests.auth import HTTPBasicAuth from requests.packages.urllib3.exceptions import InsecureRequestWarning import json import inject class Ixia52XxDriver (ResourceDriverInterface): def cleanup(self): """ Destroy the driver session, this function is called everytime a driver instance is destroyed This is a good place to close any open sessions, finish writing to log files """ pass def __init__(self): """ ctor must be without arguments, it is created with reflection at run time """ pass def initialize(self, context): """ Initialize the driver session, this function is called everytime a new instance of the driver is created This is a good place to load and cache the driver configuration, initiate sessions etc. :param InitCommandContext context: the context the command runs on """ pass # The ApplyConnectivityChanges function is intended to be used for using switches as connectivity providers # for other devices. If the Switch shell is intended to be used a DUT only there is no need to implement it def ApplyConnectivityChanges(self, context, request): """ Configures VLANs on multiple ports or port-channels :param ResourceCommandContext context: The context object for the command with resource and reservation info :param str request: A JSON object with the list of requested connectivity changes :return: a json object with the list of connectivity changes which were carried out by the switch :rtype: str """ """ :type context: drivercontext.ResourceCommandContext :type json: str """ session = CloudShellAPISession(host=context.connectivity.server_address, token_id=context.connectivity.admin_auth_token, domain="Global") requestJson = json.loads(request) #Build Response response = {"driverResponse":{"actionResults":[]}} for actionResult in requestJson['driverRequest']['actions']: actionResultTemplate = {"actionId":None, "type":None, "infoMessage":"", "errorMessage":"", "success":"True", "updatedInterface":"None"} actionResultTemplate['type'] = str(actionResult['type']) actionResultTemplate['actionId'] = str(actionResult['actionId']) response["driverResponse"]["actionResults"].append(actionResultTemplate) return 'command_json_result=' + str(response) + '=command_json_result_end' pass def get_inventory(self, context): """ Discovers the resource structure and attributes. :param AutoLoadCommandContext context: the context the command runs on :return Attribute and sub-resource information for the Shell resource :rtype: AutoLoadDetails """ session = CloudShellAPISession(host=context.connectivity.server_address, token_id=context.connectivity.admin_auth_token, domain="Global") pw = session.DecryptPassword(context.resource.attributes['Password']).Value un = context.resource.attributes["User"] ip = context.resource.address port = str(context.resource.attributes["API Port"]) prefix = str(context.resource.attributes["API Access"]) url = prefix+"://"+ip+":"+port+"/api" sub_resources = [] attributes = [AutoLoadAttribute('', 'Model', 'Ixia 58xx'),AutoLoadAttribute('', 'Vendor', 'Ixia')] # get all ports requests.packages.urllib3.disable_warnings(InsecureRequestWarning) portsRequest = requests.get(url+'/ports', auth=HTTPBasicAuth(un,pw), verify=False) portsObj = json.loads(portsRequest.text) # loop thru each port and learn more for port in portsObj: portRequest = requests.get(url+'/ports/'+str(port['id']), auth=HTTPBasicAuth(un,pw), verify=False) portObj = json.loads(portRequest.text) sub_resources.append(AutoLoadResource(model='NTO Port', name=portObj['default_name'], relative_address=str(port['id']))) attributes.append(AutoLoadAttribute(str(port['id']), 'Port Speed', portObj['media_type'])) attributes.append(AutoLoadAttribute(str(port['id']), 'Serial Number', portObj['uuid'])) attributes.append(AutoLoadAttribute(str(port['id']), 'Port Description', str(portObj['name']) + " " + str(portObj['description']))) return AutoLoadDetails(sub_resources,attributes) pass
[ "chris@grabosky.net" ]
chris@grabosky.net
b29cd8cd90efb7cd3c3dcc4d135b53ae21c536a5
f8104b29a8d0dbeb407060e494a206ca69335aeb
/tools/datasets/buildchange/json2coco_city_trainval.py
dabe0ff848ca135aa66f2af774888c1dc40685b2
[]
no_license
Sebastixian/wwtool
c19f665f96e8b942e94af47db590f5bb28072f06
2f462a3d028b766234d62a3ef706a0f08f10680a
refs/heads/master
2023-06-01T04:21:22.066639
2021-06-25T07:40:13
2021-06-25T07:40:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,213
py
import argparse import os import cv2 import json import csv import shutil import numpy as np import wwtool import os import cv2 import mmcv class SIMPLETXT2COCO(): def __init__(self, imgpath=None, annopath=None, imageset_file=None, image_format='.jpg', anno_format='.txt', data_categories=None, data_info=None, data_licenses=None, data_type="instances", groundtruth=True, small_object_area=0, sub_anno_fold=False, cities=None): super(SIMPLETXT2COCO, self).__init__() self.imgpath = imgpath self.annopath = annopath self.image_format = image_format self.anno_format = anno_format self.categories = data_categories self.info = data_info self.licenses = data_licenses self.type = data_type self.small_object_area = small_object_area self.small_object_idx = 0 self.groundtruth = groundtruth self.max_object_num_per_image = 0 self.sub_anno_fold = sub_anno_fold self.imageset_file = imageset_file self.imgpaths, self.annotpaths = [], [] for label_fn in os.listdir(annopath): basename = wwtool.get_basename(label_fn) self.imgpaths.append(os.path.join(imgpath, basename + '.png')) self.annotpaths.append(os.path.join(annopath, basename + '.json')) def get_image_annotation_pairs(self): images = [] annotations = [] index = 0 progress_bar = mmcv.ProgressBar(len(self.imgpaths)) imId = 0 for imgfile, annofile in zip(self.imgpaths, self.annotpaths): # imgpath = os.path.join(self.imgpath, name + self.image_format) # annotpath = os.path.join(self.annopath, name + self.anno_format) name = wwtool.get_basename(imgfile) annotations_coco = self.__generate_coco_annotation__(annofile, imgfile) # if annotation is empty, skip this annotation if annotations_coco != [] or self.groundtruth == False: height, width, channels = 1024, 1024, 3 images.append({"date_captured": "2019", "file_name": name + self.image_format, "id": imId + 1, "license": 1, "url": "http://jwwangchn.cn", "height": height, "width": width}) for annotation in annotations_coco: index = index + 1 annotation["image_id"] = imId + 1 annotation["id"] = index annotations.append(annotation) imId += 1 if imId % 500 == 0: print("\nImage ID: {}, Instance ID: {}, Small Object Counter: {}, Max Object Number: {}".format(imId, index, self.small_object_idx, self.max_object_num_per_image)) progress_bar.update() return images, annotations def __generate_coco_annotation__(self, annotpath, imgpath): """ docstring here :param self: :param annotpath: the path of each annotation :param return: dict() """ objects = self.__simpletxt_parse__(annotpath, imgpath) coco_annotations = [] for object_struct in objects: bbox = object_struct['bbox'] segmentation = object_struct['segmentation'] label = object_struct['label'] roof_bbox = object_struct['roof_bbox'] building_bbox = object_struct['building_bbox'] roof_mask = object_struct['roof_mask'] footprint_mask = object_struct['footprint_mask'] ignore_flag = object_struct['ignore_flag'] offset = object_struct['offset'] iscrowd = object_struct['iscrowd'] width = bbox[2] height = bbox[3] area = height * width if area <= self.small_object_area and self.groundtruth: self.small_object_idx += 1 continue coco_annotation = {} coco_annotation['bbox'] = bbox coco_annotation['segmentation'] = [segmentation] coco_annotation['category_id'] = label coco_annotation['area'] = np.float(area) coco_annotation['roof_bbox'] = roof_bbox coco_annotation['building_bbox'] = building_bbox coco_annotation['roof_mask'] = roof_mask coco_annotation['footprint_mask'] = footprint_mask coco_annotation['ignore_flag'] = ignore_flag coco_annotation['offset'] = offset coco_annotation['iscrowd'] = iscrowd coco_annotations.append(coco_annotation) return coco_annotations def __simpletxt_parse__(self, label_file, image_file): """ (xmin, ymin, xmax, ymax) """ annotations = mmcv.load(label_file)['annotations'] # roof_mask, footprint_mask, roof_bbox, building_bbox, label, ignore, offset objects = [] for annotation in annotations: object_struct = {} roof_mask = annotation['roof'] roof_polygon = wwtool.mask2polygon(roof_mask) roof_bound = roof_polygon.bounds # xmin, ymin, xmax, ymax footprint_mask = annotation['footprint'] footprint_polygon = wwtool.mask2polygon(footprint_mask) footprint_bound = footprint_polygon.bounds building_xmin = np.minimum(roof_bound[0], footprint_bound[0]) building_ymin = np.minimum(roof_bound[1], footprint_bound[1]) building_xmax = np.maximum(roof_bound[2], footprint_bound[2]) building_ymax = np.maximum(roof_bound[3], footprint_bound[3]) building_bound = [building_xmin, building_ymin, building_xmax, building_ymax] xmin, ymin, xmax, ymax = list(roof_bound) bbox_w = xmax - xmin bbox_h = ymax - ymin object_struct['bbox'] = [xmin, ymin, bbox_w, bbox_h] object_struct['roof_bbox'] = object_struct['bbox'] xmin, ymin, xmax, ymax = list(building_bound) bbox_w = xmax - xmin bbox_h = ymax - ymin object_struct['building_bbox'] = [xmin, ymin, bbox_w, bbox_h] object_struct['roof_mask'] = roof_mask object_struct['footprint_mask'] = footprint_mask object_struct['ignore_flag'] = annotation['ignore'] object_struct['offset'] = annotation['offset'] object_struct['segmentation'] = roof_mask object_struct['label'] = 1 object_struct['iscrowd'] = object_struct['ignore_flag'] objects.append(object_struct) return objects def parse_args(): parser = argparse.ArgumentParser(description='MMDet test detector') parser.add_argument( '--imagesets', type=str, nargs='+', choices=['trainval', 'test']) parser.add_argument( '--release_version', default='v1', type=str) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() # basic dataset information info = {"year" : 2019, "version" : "1.0", "description" : "SIMPLETXT-Building-COCO", "contributor" : "Jinwang Wang", "url" : "jwwangchn.cn", "date_created" : "2019" } licenses = [{"id": 1, "name": "Attribution-NonCommercial", "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/" }] original_simpletxt_class = {'building': 1} converted_simpletxt_class = [{'supercategory': 'none', 'id': 1, 'name': 'building', }] # dataset's information image_format='.png' anno_format='.txt' core_dataset_name = 'buildchange' cities = ['sampling'] # sub_city_folds = {'shanghai': ['arg']} # cities = ['shanghai', 'beijing', 'jinan', 'haerbin', 'chengdu'] release_version = 'v2' groundtruth = True for idx, city in enumerate(cities): anno_name = [core_dataset_name, release_version, 'trainval', city, 'roof_footprint'] print("Begin processing: {}".format("_".join(anno_name))) imgpath = f'./data/{core_dataset_name}/{release_version}/{city}/images' annopath = f'./data/{core_dataset_name}/{release_version}/{city}/labels_json' save_path = f'./data/{core_dataset_name}/{release_version}/coco/annotations' if not os.path.exists(save_path): os.makedirs(save_path) simpletxt2coco = SIMPLETXT2COCO(imgpath=imgpath, annopath=annopath, image_format=image_format, anno_format=anno_format, data_categories=converted_simpletxt_class, data_info=info, data_licenses=licenses, data_type="instances", groundtruth=groundtruth, small_object_area=0, cities=cities) images, annotations = simpletxt2coco.get_image_annotation_pairs() json_data = {"info" : simpletxt2coco.info, "images" : images, "licenses" : simpletxt2coco.licenses, "type" : simpletxt2coco.type, "annotations" : annotations, "categories" : simpletxt2coco.categories} with open(os.path.join(save_path, "_".join(anno_name) + ".json"), "w") as jsonfile: json.dump(json_data, jsonfile, sort_keys=True, indent=4)
[ "jwwangchn@outlook.com" ]
jwwangchn@outlook.com
191bcb34fb1ee3e16cc9866069b360e9209d9614
ee64a643bddd95ad9dfcffbe18ed7a3aa0cd3879
/haverifier/benchmark/scenarios/availability/attacker/baseattacker.py
d5fb2c358fd95727a44bf772458688896c95aea5
[]
no_license
L-kay/HAverifier
75e04a4851a00da09df82b4624b0d7301ea18199
72e0099ee1798701a5f9e3a7d17bf5100e9aecb4
refs/heads/master
2021-01-13T11:40:12.050000
2016-10-24T03:46:11
2016-10-24T03:46:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,502
py
############################################################################## # Copyright (c) 2015 Huawei Technologies Co.,Ltd. and others # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## import pkg_resources import yaml import logging import os import haverifier.common.utils as utils LOG = logging.getLogger(__name__) attacker_conf_path = pkg_resources.resource_filename( "haverifier.benchmark.scenarios.availability", "attacker_conf.yaml") class AttackerMgr(object): def __init__(self): self._attacker_list = [] def init_attackers(self,attacker_cfgs,context): LOG.debug("attackerMgr config: %s" % attacker_cfgs) LOG.debug("attackerMgr context: %s" % context) for cfg in attacker_cfgs: attacker_cls = BaseAttacker.get_attacker_cls(cfg) attacker_ins = attacker_cls(cfg,context) attacker_ins.key = cfg['key'] attacker_ins.setup() self._attacker_list.append(attacker_ins) def __getitem__(self, item): for obj in self._attacker_list: if(obj.key == item): return obj def recover(self): for _instance in self._attacker_list: _instance.recover() class BaseAttacker(object): attacker_cfgs = {} def __init__(self, config, context): if not BaseAttacker.attacker_cfgs: with open(attacker_conf_path) as stream: BaseAttacker.attacker_cfgs = yaml.load(stream) self._config = config self._context = context self.setup_done = False @staticmethod def get_attacker_cls(attacker_cfg): '''return attacker instance of specified type''' attacker_type = attacker_cfg['fault_type'] for attacker_cls in utils.itersubclasses(BaseAttacker): if attacker_type == attacker_cls.__attacker_type__: return attacker_cls raise RuntimeError("No such runner_type %s" % attacker_type) def get_script_fullpath(self, path): base_path = os.path.dirname(attacker_conf_path) return os.path.join(base_path, path) def recovery(self): pass
[ "iheyu22@gmail.com" ]
iheyu22@gmail.com
e0cca15b4698cfcef55c59c32ad1ec019b327f0b
b576ed1ff65700d505f687961cbed86fe94b1c3f
/objectModel/Python/cdm/utilities/copy_data_utils.py
52fd4d1ee5390f942bbde1ef66b2b5cca9e4104f
[ "MIT", "CC-BY-4.0" ]
permissive
AzureMentor/CDM
c80761737c92cf6561d4b982b4882b1b1c5265d3
84d3928995e7ab3bba0a283771e5e26639408643
refs/heads/master
2021-11-30T17:52:42.274900
2021-11-27T18:38:19
2021-11-27T18:38:19
217,569,642
1
0
NOASSERTION
2021-11-27T18:38:20
2019-10-25T16:04:16
Java
UTF-8
Python
false
false
870
py
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information from typing import Union, List, Optional, TYPE_CHECKING if TYPE_CHECKING: from cdm.objectmodel import CdmCollection, CdmObject from cdm.utilities import ResolveOptions, CopyOptions def _array_copy_data(res_opt: 'ResolveOptions', source: Union['CdmCollection', List['CdmObject']], options: 'CopyOptions') -> Optional[List]: """Creates a list object that is a copy of the input IEnumerable object""" if not source: return None casted = [] for elem in source: if elem: from cdm.persistence import PersistenceLayer data = PersistenceLayer.to_data(elem, res_opt, options, PersistenceLayer.CDM_FOLDER) casted.append(data) return casted
[ "nebanfic@microsoft.com" ]
nebanfic@microsoft.com
e85fdd0b379d44e47a1ca606ee20c8893cb096dc
be4373a6ecda4f8b5a911c661ea618f6d1f48b8d
/venv-win-py/Scripts/futurize-script.py
9c91538bb267339876a19e7009611a40fe362940
[]
no_license
zzm88/weirdinstrument_mezzanine
a46175c875d4e25a54e923b9845d7b7c413b6ec9
954b4faa717ba9dc1aa874b66ad0cbf7c60b094a
refs/heads/main
2023-07-06T21:08:01.392907
2021-08-11T08:34:06
2021-08-11T08:34:06
390,909,491
0
0
null
null
null
null
UTF-8
Python
false
false
1,069
py
#!c:\users\35352\documents\localprojects\weirdinstrument_deploy\venv-win-py\scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'future==0.18.2','console_scripts','futurize' import re import sys # for compatibility with easy_install; see #2198 __requires__ = 'future==0.18.2' try: from importlib.metadata import distribution except ImportError: try: from importlib_metadata import distribution except ImportError: from pkg_resources import load_entry_point def importlib_load_entry_point(spec, group, name): dist_name, _, _ = spec.partition('==') matches = ( entry_point for entry_point in distribution(dist_name).entry_points if entry_point.group == group and entry_point.name == name ) return next(matches).load() globals().setdefault('load_entry_point', importlib_load_entry_point) if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(load_entry_point('future==0.18.2', 'console_scripts', 'futurize')())
[ "sea3@qq.com" ]
sea3@qq.com
bde76c61c73ab8a6bf67b2eced51bcaa2646bef5
6bb36612a6121b0dfb32e2ec83fdff353fc0b349
/plot_kmeans_digits.py
182d6d54f94e012babe3df34cd725c898b6a970f
[]
no_license
mandosoft/Python-Finance
526356ae2c5f3cee7e4552bdf8df1c80daefe3ad
912845d08298cadc1289593df9fbce4d342afdca
refs/heads/master
2020-04-19T06:40:36.431995
2019-01-28T22:56:04
2019-01-28T22:56:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,495
py
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ #%% print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(82 * '_') print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(82 * '_') # ############################################################################# # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
[ "thomasdtownsley@gmail.com" ]
thomasdtownsley@gmail.com
fa73fda921895cf608f6d767d3b04fd7afe93fc9
bccb2a4c707415133f7f0bb2459c1f7e60f0b6a4
/ResNet_Queue/grad-cam.py
b7447fe4cb03f7d380014080f44a136eb02ead85
[]
no_license
High-East/Fight_Detection
99a5f257f4ebda62e8c347a9d7db73fba8d80b88
67668f73bc8cd717c2a903c1f006cd20d7d33390
refs/heads/master
2020-12-20T06:07:04.808486
2020-01-25T10:33:18
2020-01-25T10:33:18
235,983,794
8
1
null
null
null
null
UTF-8
Python
false
false
3,452
py
# https://subinium.github.io/Keras-5-2/ import os import numpy as np import keras from keras import models from keras import layers from keras import optimizers from keras import backend as K import matplotlib.pyplot as plt # 코드 5-40 사전 훈련된 가중치로 VGG16 네트워크 로드하기 from keras.applications.vgg16 import VGG16 K.clear_session() # 이전 모든 예제에서는 최상단의 완전 연결 분류기를 제외했지만 여기서는 포함합니다 model = VGG16(weights='imagenet') # 코드 5-41 VGG16을 위해 입력 이미지 전처리하기 from keras.preprocessing import image from keras.applications.vgg16 import preprocess_input, decode_predictions import numpy as np # 이미지 경로 img_path = './img/elephant.jpg' # 224 × 224 크기의 파이썬 이미징 라이브러리(PIL) 객체로 반환됩니다 img = image.load_img(img_path, target_size=(224, 224)) # (224, 224, 3) 크기의 넘파이 float32 배열 x = image.img_to_array(img) # 차원을 추가하여 (1, 224, 224, 3) 크기의 배치로 배열을 변환합니다 x = np.expand_dims(x, axis=0) # 데이터를 전처리합니다(채널별 컬러 정규화를 수행합니다) x = preprocess_input(x) preds = model.predict(x) print('Predicted:', decode_predictions(preds, top=3)[0]) # 코드 5-42 Grad-CAM 알고리즘 설명하기 idx_ele = np.argmax(preds[0]) # 예측 벡터의 '아프리카 코끼리' 항목 african_elephant_output = model.output[:, idx_ele] # VGG16의 마지막 합성곱 층인 block5_conv3 층의 특성 맵 last_conv_layer = model.get_layer('block5_conv3') # block5_conv3의 특성 맵 출력에 대한 '아프리카 코끼리' 클래스의 그래디언트 grads = K.gradients(african_elephant_output, last_conv_layer.output)[0] # 특성 맵 채널별 그래디언트 평균 값이 담긴 (512,) 크기의 벡터 pooled_grads = K.mean(grads, axis=(0, 1, 2)) # 샘플 이미지가 주어졌을 때 방금 전 정의한 pooled_grads와 block5_conv3의 특성 맵 출력을 구합니다 iterate = K.function([model.input], [pooled_grads, last_conv_layer.output[0]]) # 두 마리 코끼리가 있는 샘플 이미지를 주입하고 두 개의 넘파이 배열을 얻습니다 pooled_grads_value, conv_layer_output_value = iterate([x]) # "아프리카 코끼리" 클래스에 대한 "채널의 중요도"를 특성 맵 배열의 채널에 곱합니다 for i in range(512): conv_layer_output_value[:, :, i] *= pooled_grads_value[i] # 만들어진 특성 맵에서 채널 축을 따라 평균한 값이 클래스 활성화의 히트맵입니다 heatmap = np.mean(conv_layer_output_value, axis=-1) # 코드 5-43 히트맵 후처리하기 heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) plt.matshow(heatmap) plt.show() # 코드 5-44 원본 이미지에 히트맵 덧붙이기 import cv2 # cv2 모듈을 사용해 원본 이미지를 로드합니다 img = cv2.imread(img_path) # heatmap을 원본 이미지 크기에 맞게 변경합니다 heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0])) # heatmap을 RGB 포맷으로 변환합니다 heatmap = np.uint8(255 * heatmap) # 히트맵으로 변환합니다 heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # 0.4는 히트맵의 강도입니다 superimposed_img = heatmap * 0.4 + img # 디스크에 이미지를 저장합니다 cv2.imwrite('./img/elephant_cam.jpg', superimposed_img) plt.imshow('./img/elephant_cam.jpg')
[ "rhehd127@gmail.com" ]
rhehd127@gmail.com
cbaae3b29f320b1ca247854342e356e573cae8b5
75a56d75b6ad05444988371bd61ffdc7844ee740
/TopL.py
cf8a382c472264e3985afaa35f9a5d29d84c2157
[ "MIT" ]
permissive
bflorentino/Contact-Book-App
aadfcf375a3790595280898b856bdb3b8553307e
1d0601a3646fde2267e2489063f54321816f7ce8
refs/heads/main
2023-07-11T04:00:27.909803
2021-08-14T20:51:42
2021-08-14T20:51:42
396,089,765
1
0
null
null
null
null
UTF-8
Python
false
false
6,537
py
from GraphicInterface import GraphicInteface from WorkInterface import WorkInterface import tkinter as tk class TopL(GraphicInteface): """[summary] Args: GraphicInteface ([type]): [description] """ def __init__(self, title, geometry, resize, bg, window): super().__init__(title, geometry, resize, bg, window) self.workInterface = WorkInterface() def setMainFrame(self): """It will set the topLevel mainFrame """ self.mainFrame = tk.Frame(self.window, bd = 3, relief="sunken") self.mainFrame.pack(fill = "both", expand = "yes", padx=15, pady=15) def setDataForm(self): """It will set the contacts Form to fill information about new contacts, update their info or just view their info. The function is gonna generate the different entries and labels necessary for the user. """ self.nameLabel = tk.Label(self.mainFrame, text = "Name:", anchor="nw") self.lastNameLabel = tk.Label(self.mainFrame, text = "Last Name:", anchor="nw") self.phoneNumberLabel = tk.Label(self.mainFrame, text="Phone Number:", anchor="nw") self.emaiLabel = tk.Label(self.mainFrame, text = "Email:", anchor="nw") self.nameLabel.grid(row = 0, column = 0, pady = 15, padx=10) self.nameEntry = tk.Entry(self.mainFrame, width=30) self.nameEntry.grid(row = 0, column = 1) self.lastNameLabel.grid(row = 1, column = 0, padx=10) self.lastnameEntry = tk.Entry(self.mainFrame, width=30) self.lastnameEntry.grid(row = 1, column = 1) self.phoneNumberLabel.grid(row = 2, column=0, pady = 15, padx = 10) self.phoneNumberEntry = tk.Entry(self.mainFrame, width=30) self.phoneNumberEntry.grid(row = 2, column = 1) self.emaiLabel.grid(row = 3, column = 0, padx = 10) self.emailEntry = tk.Entry(self.mainFrame, width=30) self.emailEntry.grid(row = 3, column = 1) def setAddContactButtons(self, refresh): """It will set the necessary buttons so the user can add a new contact and save in the database. Args: refresh (function): [It's a callback function, but it's sent as parameter here just to send it to another function] """ self.buttonAdd = tk.Button(self.mainFrame, text = "Add Contact", width=15, cursor="hand2", command=lambda: self.workInterface.sendNewContactData(self.nameEntry.get(), self.lastnameEntry.get(), self.phoneNumberEntry.get(), self.emailEntry.get(), self.window, refresh)) self.buttonAdd.grid(row = 4, column = 0, columnspan=2 , pady = (45, 10)) self.buttonCancel = tk.Button(self.mainFrame, text = "Cancel", width=15, cursor="hand2", command = self.window.destroy) self.buttonCancel.grid(row = 5, columnspan=2) def setContactInfo(self, data): """[It will set the the contact Info in the topLevel. All contact data will be visible] Args: data (list): [it's a list containing all the contact data to set in the toplevel] """ data = [data[x] if data[x] != None else "" for x in range(len(data))] self.setDataForm() self.nameEntry.insert(0, data[1]) self.nameEntry.config(state="readonly") self.lastnameEntry.insert(0, data[2]) self.lastnameEntry.config(state="readonly") self.phoneNumberEntry.insert(0, data[3]) self.phoneNumberEntry.config(state="readonly") self.emailEntry.insert(0, data[4]) self.emailEntry.config(state="readonly") def setUpdateContactButtons(self, id, refresh): """ In case the user needs to update or delete any contact information, these buttons will ve visible in the window. This sets the button in the window. Args: id (int): [The contact key to update or delete] refresh (function): [It's a callback function, but it's sent as parameter here just to send it to another function] """ self.updateContact = tk.Button(self.mainFrame, text = "Update Data", width=15, cursor="hand2", command = lambda: self._setUpdateContactInfoButtons(id, refresh)) self.updateContact.grid(row = 4, column = 0, columnspan=2 , pady = (45, 10)) self.deleteContact = tk.Button(self.mainFrame, text = "Delete Contact", width=15, cursor="hand2", command= lambda: self.workInterface.Deletecontact(id, refresh, self.window)) self.deleteContact.grid(row = 5, columnspan=2, pady = (0, 10)) self.buttonCancel = tk.Button(self.mainFrame, text = "Cancel", width=15, cursor="hand2", command = self.window.destroy) self.buttonCancel.grid(row = 6, columnspan=2) def _setUpdateContactInfoButtons(self, id, refresh): """ In case the user has pressed the button to update the contact this function is gonna make visible one button to save the new information in the database. Args: id (int): [the key contact to update informaction] refresh (function): [It's a callback function, but it's sent as parameter here just to send it to another function] """ self.returned = False self.updateContact.grid_forget() self.deleteContact.grid_forget() self.nameEntry.config(state="normal") self.lastnameEntry.config(state="normal") self.phoneNumberEntry.config(state="normal") self.emailEntry.config(state="normal") self.updateContactInfo = tk.Button(self.mainFrame, text = "Save new Data", width=15, cursor="hand2", command = lambda: self.workInterface.UpdateContactInfo(["contact_Name", "last_Name", "Phone_Number", "Email"], [self.nameEntry.get(), self.lastnameEntry.get(), self.phoneNumberEntry.get(), self.emailEntry.get()], id, refresh, self.window)) self.updateContactInfo.grid(row = 4, column = 0, columnspan=2 , pady = (45, 10))
[ "bryanmontero81@gmail.com" ]
bryanmontero81@gmail.com
154e62c1adac4bc07d2eb032a2e5be42fb548b37
397498fe98dd87abcd79df77fc6cec1c65ff16d7
/scripts/fix-focus
e55c6f921fcdf382be4351670e9fd4b09d1674ba
[]
no_license
CADBOT/.pentadactyl
a52db9e2f3f2e1717f1763275ae4ea9298e355ad
7bb165604b361cd401b99a4fc719c5fe9afdd887
refs/heads/master
2020-02-26T16:28:54.514793
2015-04-19T14:01:37
2015-04-19T14:01:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,218
#!/usr/bin/python # Automator -> Serive -> Run Shell Script -> Service receives: no input -> in: Firefox -> # Shell: /bin/bash -> content: path-to-this-script -> Saveas: fix-focus # System Preferences -> Keyboard -> Keyboard Shortcuts -> Services -> fix-focus -> bind a key from Quartz.CoreGraphics import * def mouseEvent(type, posx, posy): theEvent = CGEventCreateMouseEvent( None, type, (posx,posy), kCGMouseButtonLeft) CGEventPost(kCGHIDEventTap, theEvent) def mousemove(posx,posy): mouseEvent(kCGEventMouseMoved, posx,posy); def mouseclick(posx,posy): mouseEvent(kCGEventLeftMouseDown, posx,posy); mouseEvent(kCGEventLeftMouseUp, posx,posy); # Save current mouse position ourEvent = CGEventCreate(None); currentpos = CGEventGetLocation(ourEvent); # Click bottom right coner mainMonitor = CGDisplayBounds(CGMainDisplayID()) mouseclick(int(mainMonitor.size.width - 3), int(mainMonitor.size.height - 16)); # Press ESC keyEvent = CGEventCreateKeyboardEvent(None, 53, True) CGEventPost(kCGHIDEventTap, keyEvent) # Restore mouse position mousemove(int(currentpos.x),int(currentpos.y));
[ "azuwis@gmail.com" ]
azuwis@gmail.com
9bbe6d6fdb9a744918ebab1c2d430323a7d02271
7c94bd20b7ee069dfb557f41279416aba7d8447a
/exchangelib/folders/roots.py
7b4ec7acd98342333d43a75de5373ee33c2603cf
[ "BSD-2-Clause" ]
permissive
AnkushGupta02/exchangelib
63a42d70fe8254ca2edb6075ac05822a8ccaae01
5430e603a1b42248c6a154ae24270b63e94cc49d
refs/heads/master
2022-08-19T08:34:49.634728
2020-05-28T10:25:33
2020-05-28T10:25:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,465
py
import logging from ..errors import ErrorAccessDenied, ErrorFolderNotFound, ErrorNoPublicFolderReplicaAvailable, ErrorItemNotFound, \ ErrorInvalidOperation from ..fields import EffectiveRightsField from ..properties import Fields from ..version import EXCHANGE_2007_SP1, EXCHANGE_2010_SP1 from .collections import FolderCollection from .base import BaseFolder from .known_folders import MsgFolderRoot, NON_DELETEABLE_FOLDERS, WELLKNOWN_FOLDERS_IN_ROOT, \ WELLKNOWN_FOLDERS_IN_ARCHIVE_ROOT from .queryset import SingleFolderQuerySet, SHALLOW log = logging.getLogger(__name__) class RootOfHierarchy(BaseFolder): """Base class for folders that implement the root of a folder hierarchy""" # A list of wellknown, or "distinguished", folders that are belong in this folder hierarchy. See # https://docs.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.wellknownfoldername # and https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/distinguishedfolderid # 'RootOfHierarchy' subclasses must not be in this list. WELLKNOWN_FOLDERS = [] LOCAL_FIELDS = Fields( # This folder type also has 'folder:PermissionSet' on some server versions, but requesting it sometimes causes # 'ErrorAccessDenied', as reported by some users. Ignore it entirely for root folders - it's usefulness is # deemed minimal at best. EffectiveRightsField('effective_rights', field_uri='folder:EffectiveRights', is_read_only=True, supported_from=EXCHANGE_2007_SP1), ) FIELDS = BaseFolder.FIELDS + LOCAL_FIELDS __slots__ = tuple(f.name for f in LOCAL_FIELDS) + ('_account', '_subfolders') # A special folder that acts as the top of a folder hierarchy. Finds and caches subfolders at arbitrary depth. def __init__(self, **kwargs): self._account = kwargs.pop('account', None) # A pointer back to the account holding the folder hierarchy super().__init__(**kwargs) self._subfolders = None # See self._folders_map() @property def account(self): return self._account @property def root(self): return self @property def parent(self): return None def refresh(self): self._subfolders = None super().refresh() @classmethod def register(cls, *args, **kwargs): if cls is not RootOfHierarchy: raise TypeError('For folder roots, custom fields must be registered on the RootOfHierarchy class') return super().register(*args, **kwargs) @classmethod def deregister(cls, *args, **kwargs): if cls is not RootOfHierarchy: raise TypeError('For folder roots, custom fields must be registered on the RootOfHierarchy class') return super().deregister(*args, **kwargs) def get_folder(self, folder_id): return self._folders_map.get(folder_id, None) def add_folder(self, folder): if not folder.id: raise ValueError("'folder' must have an ID") self._folders_map[folder.id] = folder def update_folder(self, folder): if not folder.id: raise ValueError("'folder' must have an ID") self._folders_map[folder.id] = folder def remove_folder(self, folder): if not folder.id: raise ValueError("'folder' must have an ID") try: del self._folders_map[folder.id] except KeyError: pass def clear_cache(self): self._subfolders = None def get_children(self, folder): for f in self._folders_map.values(): if not f.parent: continue if f.parent.id == folder.id: yield f @classmethod def get_distinguished(cls, account): """Gets the distinguished folder for this folder class""" if not cls.DISTINGUISHED_FOLDER_ID: raise ValueError('Class %s must have a DISTINGUISHED_FOLDER_ID value' % cls) try: return cls.resolve( account=account, folder=cls(account=account, name=cls.DISTINGUISHED_FOLDER_ID, is_distinguished=True) ) except ErrorFolderNotFound: raise ErrorFolderNotFound('Could not find distinguished folder %s' % cls.DISTINGUISHED_FOLDER_ID) def get_default_folder(self, folder_cls): # Returns the distinguished folder instance of type folder_cls belonging to this account. If no distinguished # folder was found, try as best we can to return the default folder of type 'folder_cls' if not folder_cls.DISTINGUISHED_FOLDER_ID: raise ValueError("'folder_cls' %s must have a DISTINGUISHED_FOLDER_ID value" % folder_cls) # Use cached distinguished folder instance, but only if cache has already been prepped. This is an optimization # for accessing e.g. 'account.contacts' without fetching all folders of the account. if self._subfolders: for f in self._folders_map.values(): # Require exact class, to not match subclasses, e.g. RecipientCache instead of Contacts if f.__class__ == folder_cls and f.is_distinguished: log.debug('Found cached distinguished %s folder', folder_cls) return f try: log.debug('Requesting distinguished %s folder explicitly', folder_cls) return folder_cls.get_distinguished(root=self) except ErrorAccessDenied: # Maybe we just don't have GetFolder access? Try FindItems instead log.debug('Testing default %s folder with FindItem', folder_cls) fld = folder_cls(root=self, name=folder_cls.DISTINGUISHED_FOLDER_ID, is_distinguished=True) fld.test_access() return self._folders_map.get(fld.id, fld) # Use cached instance if available except ErrorFolderNotFound: # The Exchange server does not return a distinguished folder of this type pass raise ErrorFolderNotFound('No useable default %s folders' % folder_cls) @property def _folders_map(self): if self._subfolders is not None: return self._subfolders # Map root, and all subfolders of root, at arbitrary depth by folder ID. First get distinguished folders, so we # are sure to apply the correct Folder class, then fetch all subfolders of this root. folders_map = {self.id: self} distinguished_folders = [ cls(root=self, name=cls.DISTINGUISHED_FOLDER_ID, is_distinguished=True) for cls in self.WELLKNOWN_FOLDERS if cls.get_folder_allowed and cls.supports_version(self.account.version) ] for f in FolderCollection(account=self.account, folders=distinguished_folders).resolve(): if isinstance(f, (ErrorFolderNotFound, ErrorNoPublicFolderReplicaAvailable)): # This is just a distinguished folder the server does not have continue if isinstance(f, ErrorInvalidOperation): # This is probably a distinguished folder the server does not have. We previously tested the exact # error message (f.value), but some Exchange servers return localized error messages, so that's not # possible to do reliably. continue if isinstance(f, ErrorItemNotFound): # Another way of telling us that this is a distinguished folder the server does not have continue if isinstance(f, ErrorAccessDenied): # We may not have GetFolder access, either to this folder or at all continue if isinstance(f, Exception): raise f folders_map[f.id] = f for f in SingleFolderQuerySet(account=self.account, folder=self).depth( self.DEFAULT_FOLDER_TRAVERSAL_DEPTH ).all(): if isinstance(f, ErrorAccessDenied): # We may not have FindFolder access, or GetFolder access, either to this folder or at all continue if isinstance(f, Exception): raise f if f.id in folders_map: # Already exists. Probably a distinguished folder continue folders_map[f.id] = f self._subfolders = folders_map return folders_map @classmethod def from_xml(cls, elem, account): kwargs = cls._kwargs_from_elem(elem=elem, account=account) cls._clear(elem) return cls(account=account, **kwargs) @classmethod def folder_cls_from_folder_name(cls, folder_name, locale): """Returns the folder class that matches a localized folder name. locale is a string, e.g. 'da_DK' """ for folder_cls in cls.WELLKNOWN_FOLDERS + NON_DELETEABLE_FOLDERS: if folder_name.lower() in folder_cls.localized_names(locale): return folder_cls raise KeyError() def __repr__(self): # Let's not create an infinite loop when printing self.root return self.__class__.__name__ + \ repr((self.account, '[self]', self.name, self.total_count, self.unread_count, self.child_folder_count, self.folder_class, self.id, self.changekey)) class Root(RootOfHierarchy): """The root of the standard folder hierarchy""" DISTINGUISHED_FOLDER_ID = 'root' WELLKNOWN_FOLDERS = WELLKNOWN_FOLDERS_IN_ROOT __slots__ = tuple() @property def tois(self): # 'Top of Information Store' is a folder available in some Exchange accounts. It usually contains the # distinguished folders belonging to the account (inbox, calendar, trash etc.). return self.get_default_folder(MsgFolderRoot) def get_default_folder(self, folder_cls): try: return super().get_default_folder(folder_cls) except ErrorFolderNotFound: pass # Try to pick a suitable default folder. we do this by: # 1. Searching the full folder list for a folder with the distinguished folder name # 2. Searching TOIS for a direct child folder of the same type that is marked as distinguished # 3. Searching TOIS for a direct child folder of the same type that is has a localized name # 4. Searching root for a direct child folder of the same type that is marked as distinguished # 5. Searching root for a direct child folder of the same type that is has a localized name log.debug('Searching default %s folder in full folder list', folder_cls) for f in self._folders_map.values(): # Require exact class to not match e.g. RecipientCache instead of Contacts if f.__class__ == folder_cls and f.has_distinguished_name: log.debug('Found cached %s folder with default distinguished name', folder_cls) return f # Try direct children of TOIS first. TOIS might not exist. try: return self._get_candidate(folder_cls=folder_cls, folder_coll=self.tois.children) except ErrorFolderNotFound: # No candidates, or TOIS does ot exist pass # No candidates in TOIS. Try direct children of root. return self._get_candidate(folder_cls=folder_cls, folder_coll=self.children) def _get_candidate(self, folder_cls, folder_coll): # Get a single the folder of the same type in folder_coll same_type = [f for f in folder_coll if f.__class__ == folder_cls] are_distinguished = [f for f in same_type if f.is_distinguished] if are_distinguished: candidates = are_distinguished else: candidates = [f for f in same_type if f.name.lower() in folder_cls.localized_names(self.account.locale)] if candidates: if len(candidates) > 1: raise ValueError( 'Multiple possible default %s folders: %s' % (folder_cls, [f.name for f in candidates]) ) if candidates[0].is_distinguished: log.debug('Found cached distinguished %s folder', folder_cls) else: log.debug('Found cached %s folder with localized name', folder_cls) return candidates[0] raise ErrorFolderNotFound('No useable default %s folders' % folder_cls) class PublicFoldersRoot(RootOfHierarchy): """The root of the public folders hierarchy. Not available on all mailboxes""" DISTINGUISHED_FOLDER_ID = 'publicfoldersroot' DEFAULT_FOLDER_TRAVERSAL_DEPTH = SHALLOW supported_from = EXCHANGE_2007_SP1 __slots__ = tuple() def get_children(self, folder): # EWS does not allow deep traversal of public folders, so self._folders_map will only populate the top-level # subfolders. To traverse public folders at arbitrary depth, we need to get child folders on demand. # Let's check if this folder already has any cached children. If so, assume we can just return those. children = list(super().get_children(folder=folder)) if children: # Return a generator like our parent does for f in children: yield f return # Also return early if the server told us that there are no child folders. if folder.child_folder_count == 0: return children_map = {} try: for f in SingleFolderQuerySet(account=self.account, folder=folder).depth( self.DEFAULT_FOLDER_TRAVERSAL_DEPTH ).all(): if isinstance(f, Exception): raise f children_map[f.id] = f except ErrorAccessDenied: # No access to this folder pass # Let's update the cache atomically, to avoid partial reads of the cache. self._subfolders.update(children_map) # Child folders have been cached now. Try super().get_children() again. for f in super().get_children(folder=folder): yield f class ArchiveRoot(RootOfHierarchy): """The root of the archive folders hierarchy. Not available on all mailboxes""" DISTINGUISHED_FOLDER_ID = 'archiveroot' supported_from = EXCHANGE_2010_SP1 WELLKNOWN_FOLDERS = WELLKNOWN_FOLDERS_IN_ARCHIVE_ROOT __slots__ = tuple()
[ "erik@cederstrand.dk" ]
erik@cederstrand.dk
6a546b976d9ed158aa20c642650b31081a6b898c
84ba1585d3ca5600ae9d927e25f4bad6d57eccd1
/venv/bin/easy_install
703bb8d58d8979807529523f494192020d0d024a
[]
no_license
dbernstein1/interpreter
3ca5c07eadee18bc4785daa11476d5b462eb8c07
7adfe33598360161d886ae17ab79acf280e18efd
refs/heads/master
2021-07-09T20:03:24.360504
2021-04-03T08:52:11
2021-04-03T08:52:11
239,248,630
0
0
null
null
null
null
UTF-8
Python
false
false
446
#!/Users/danielbernstein/Desktop/python/eval/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
[ "drbernst@ucsc.edu" ]
drbernst@ucsc.edu
75ddbccfa5f20c7a20b3ec8f5f32b5782c159153
2e188b60c1c7c8ab8c2bad43a7e04b257f1e4235
/pixels/utils/bilinear_sampler.py
ab7bb670e1d74be2b01421957d10839724da38f4
[]
no_license
zhangpf/pixels
12410da19fc4eaee4c0c4e37783b76b0af794bc1
6f840218b42fe3d178259f00f8e9e45040a2c459
refs/heads/master
2021-05-06T14:49:37.726185
2017-12-07T12:16:59
2017-12-07T12:16:59
113,446,850
0
0
null
null
null
null
UTF-8
Python
false
false
6,389
py
import tensorflow as tf import numpy as np def bilinear_sampler_1d_h(input_images, x_offset, wrap_mode='border', name='bilinear_sampler', **kwargs): def _repeat(x, n_repeats): with tf.variable_scope('_repeat'): rep = tf.tile(tf.expand_dims(x, 1), [1, n_repeats]) return tf.reshape(rep, [-1]) def _interpolate(im, x, y): with tf.variable_scope('_interpolate'): # handle both texture border types _edge_size = 0 if _wrap_mode == 'border': _edge_size = 1 im = tf.pad(im, [[0, 0], [1, 1], [1, 1], [0, 0]], mode='CONSTANT') x = x + _edge_size y = y + _edge_size elif _wrap_mode == 'edge': _edge_size = 0 else: return None x = tf.clip_by_value(x, 0.0, _width_f - 1 + 2 * _edge_size) x0_f = tf.floor(x) y0_f = tf.floor(y) x1_f = x0_f + 1 x0 = tf.cast(x0_f, tf.int32) y0 = tf.cast(y0_f, tf.int32) x1 = tf.cast(tf.minimum(x1_f, _width_f - 1 + 2 * _edge_size), tf.int32) dim2 = (_width + 2 * _edge_size) dim1 = (_width + 2 * _edge_size) * (_height + 2 * _edge_size) base = _repeat(tf.range(_num_batch) * dim1, _height * _width) base_y0 = base + y0 * dim2 idx_l = base_y0 + x0 idx_r = base_y0 + x1 im_flat = tf.reshape(im, tf.stack([-1, _num_channels])) pix_l = tf.gather(im_flat, idx_l) pix_r = tf.gather(im_flat, idx_r) weight_l = tf.expand_dims(x1_f - x, 1) weight_r = tf.expand_dims(x - x0_f, 1) return weight_l * pix_l + weight_r * pix_r def _transform(input_images, x_offset): with tf.variable_scope('transform'): # grid of (x_t, y_t, 1), eq (1) in ref [1] x_t, y_t = tf.meshgrid(tf.linspace(0.0, _width_f - 1.0, _width), tf.linspace(0.0 , _height_f - 1.0 , _height)) x_t_flat = tf.reshape(x_t, (1, -1)) y_t_flat = tf.reshape(y_t, (1, -1)) x_t_flat = tf.tile(x_t_flat, tf.stack([_num_batch, 1])) y_t_flat = tf.tile(y_t_flat, tf.stack([_num_batch, 1])) x_t_flat = tf.reshape(x_t_flat, [-1]) y_t_flat = tf.reshape(y_t_flat, [-1]) x_t_flat = x_t_flat + tf.reshape(x_offset, [-1]) * _width_f input_transformed = _interpolate(input_images, x_t_flat, y_t_flat) output = tf.reshape( input_transformed, tf.stack([_num_batch, _height, _width, _num_channels])) return output with tf.variable_scope(name): _num_batch = tf.shape(input_images)[0] _height = tf.shape(input_images)[1] _width = tf.shape(input_images)[2] _num_channels = tf.shape(input_images)[3] _height_f = tf.cast(_height, tf.float32) _width_f = tf.cast(_width, tf.float32) _wrap_mode = wrap_mode output = _transform(input_images, x_offset) return output # def bilinear_sampler(x, v, resize=False, normalize=False, crop=None, out="CONSTANT"): # """ # Args: # x - Input tensor [N, H, W, C] # v - Vector flow tensor [N, H, W, 2], tf.float32 # (optional) # resize - Whether to resize v as same size as x # normalize - Whether to normalize v from scale 1 to H (or W). # h : [-1, 1] -> [-H/2, H/2] # w : [-1, 1] -> [-W/2, W/2] # crop - Setting the region to sample. 4-d list [h0, h1, w0, w1] # out - Handling out of boundary value. # Zero value is used if out="CONSTANT". # Boundary values are used if out="EDGE". # """ # def _get_grid_array(N, H, W, h, w): # N_i = tf.range(N) # H_i = tf.range(h+1, h+H+1) # W_i = tf.range(w+1, w+W+1) # n, h, w, = tf.meshgrid(N_i, H_i, W_i, indexing='ij') # n = tf.expand_dims(n, axis=3) # [N, H, W, 1] # h = tf.expand_dims(h, axis=3) # [N, H, W, 1] # w = tf.expand_dims(w, axis=3) # [N, H, W, 1] # n = tf.cast(n, tf.float32) # [N, H, W, 1] # h = tf.cast(h, tf.float32) # [N, H, W, 1] # w = tf.cast(w, tf.float32) # [N, H, W, 1] # return n, h, w # shape = tf.shape(x) # TRY : Dynamic shape # N = shape[0] # if crop is None: # H_ = H = shape[1] # W_ = W = shape[2] # h = w = 0 # else : # H_ = shape[1] # W_ = shape[2] # H = crop[1] - crop[0] # W = crop[3] - crop[2] # h = crop[0] # w = crop[2] # if resize: # if callable(resize) : # v = resize(v, [H, W]) # else : # v = tf.image.resize_bilinear(v, [H, W]) # if out == "CONSTANT": # x = tf.pad(x, # ((0,0), (1,1), (1,1), (0,0)), mode='CONSTANT') # elif out == "EDGE": # x = tf.pad(x, # ((0,0), (1,1), (1,1), (0,0)), mode='REFLECT') # vy, vx = tf.split(v, 2, axis=3) # if normalize : # vy *= (H / 2) # vx *= (W / 2) # n, h, w = _get_grid_array(N, H, W, h, w) # [N, H, W, 3] # vx0 = tf.floor(vx) # vy0 = tf.floor(vy) # vx1 = vx0 + 1 # vy1 = vy0 + 1 # [N, H, W, 1] # H_1 = tf.cast(H_+1, tf.float32) # W_1 = tf.cast(W_+1, tf.float32) # iy0 = tf.clip_by_value(vy0 + h, 0., H_1) # iy1 = tf.clip_by_value(vy1 + h, 0., H_1) # ix0 = tf.clip_by_value(vx0 + w, 0., W_1) # ix1 = tf.clip_by_value(vx1 + w, 0., W_1) # i00 = tf.concat([n, iy0, ix0], 3) # i01 = tf.concat([n, iy1, ix0], 3) # i10 = tf.concat([n, iy0, ix1], 3) # i11 = tf.concat([n, iy1, ix1], 3) # [N, H, W, 3] # i00 = tf.cast(i00, tf.int32) # i01 = tf.cast(i01, tf.int32) # i10 = tf.cast(i10, tf.int32) # i11 = tf.cast(i11, tf.int32) # x00 = tf.gather_nd(x, i00) # x01 = tf.gather_nd(x, i01) # x10 = tf.gather_nd(x, i10) # x11 = tf.gather_nd(x, i11) # w00 = tf.cast((vx1 - vx) * (vy1 - vy), tf.float32) # w01 = tf.cast((vx1 - vx) * (vy - vy0), tf.float32) # w10 = tf.cast((vx - vx0) * (vy1 - vy), tf.float32) # w11 = tf.cast((vx - vx0) * (vy - vy0), tf.float32) # output = tf.add_n([w00*x00, w01*x01, w10*x10, w11*x11]) # return output
[ "zpfalpc23@gmail.com" ]
zpfalpc23@gmail.com
677f06178ebfb81cb956127b976b669823dee70f
e4d33e7ca8a78cd63eda5df0fa8b705d8074954f
/strategy.py
3afa3ae97b8ed11be66431f85503ef4f9743cc19
[]
no_license
henriquekfmaia/option-strategy-python
2b550118e610c09f3f319e11cacee095f8522f15
b27a0ada3c431552d9f9633b5859cbe6415f2a3c
refs/heads/master
2020-06-30T21:32:06.581209
2019-08-07T03:15:19
2019-08-07T03:15:19
200,957,117
0
0
null
null
null
null
UTF-8
Python
false
false
1,324
py
import numpy as np from option import Option class Strategy: def __init__(self, points = 100, ext_borders=0.05): self.options = [] self.minimum = 0 self.maximum = 0 self.points = points self.ext_borders = ext_borders def add_option(self, side, option_type, strike, price): option = Option(side, option_type, strike, price) self.options.append(option) self.set_min_max(option.minimum, option.maximum) def set_min_max(self, new_minimum, new_maximum): if self.minimum == 0: self.minimum = new_minimum minimum = min(self.minimum, new_minimum) maximum = max(self.maximum, new_maximum) if minimum != self.minimum or maximum != self.maximum: self.minimum = minimum self.maximum = maximum for opt in self.options: opt.set_min_max(self.minimum, self.maximum, self.ext_borders) def get_strategy_returns(self, minimum, maximum, points): strategy_returns = np.zeros(points) for opt in self.options: strategy_returns = strategy_returns + opt.get_result_full(minimum, maximum, points) return strategy_returns def get_strategy_returns_std(self): return self.get_strategy_returns(self.minimum, self.maximum, self.points) def get_market_prices_std(self): return np.linspace(self.minimum, self.maximum, self.points)
[ "henrique.maia@poli.ufrj.br" ]
henrique.maia@poli.ufrj.br
5e7458e42777618ee8bed3956b956c1cfa2981cd
31bcb70257fa8611a493e03d2c65b5c5c680a8c3
/Interpolation.py
fe1343e1afdde82187de89c3b33fe03396f4b6fa
[]
no_license
Matthijs-utf8/Numerical_mathematics
51ad073e01cdc6fb7c395f7478caf98a90f2a464
1326dd9eaa1ea6797db6e7fe5fe765df0de1e68a
refs/heads/main
2023-02-27T02:03:38.100595
2021-01-26T11:14:34
2021-01-26T11:14:34
333,059,768
0
0
null
null
null
null
UTF-8
Python
false
false
1,970
py
# -*- coding: utf-8 -*- """ Created on Tue Jun 16 16:29:45 2020 @author: Matthijs Schrage """ import numpy as np import sympy as sym x = sym.Symbol("x") #Some function to help us with syntax def sin(x): return sym.sin(x) def cos(x): return sym.cos(x) def sqrt(x): return sym.sqrt(x) def linear(f, coordinates, target): #Assert that we only interpolate bwteen two points assert len(coordinates) == 2 #This is the formula (hard-coded) for linear interpolation L_x = ( (target - coordinates[1]) / (coordinates[0] - coordinates[1]) ) * f(coordinates[0]) + ( (target - coordinates[0]) / (coordinates[1] - coordinates[0]) ) * f(coordinates[1]) print("Linear interpolation in " + str(target) + ": " + str(L_x) ) #This function is used in the langrangian interpolation to help make the code more compact and flexible def helper(i): # If len(coordinates) == 3: i = i % 3 return i def lagrangian(f, coordinates, target): coordinates = sorted(coordinates) L_n = 0 for i in range(len(coordinates)): #For every coordinate, we calculate the lagrangian interpolation L_i_n = ( ( (x - coordinates[helper(i+1)]) * (x - coordinates[helper(i+2)] ) ) / ( (coordinates[i] - coordinates[helper(i+1)]) * (coordinates[i] - coordinates[helper(i+2)]) ) ) * f(coordinates[i]) L_n += L_i_n #It is not stricly necessary to make a function, but it is just more neat L_n = sym.lambdify(x, L_n) print("Lagrangian interpolation in " + str(target) + ": " + str(L_n(target) ) ) fx2 = sym.lambdify(x, x*(-1 + x**2)) # linear(fx2, [2,3], 2.5) lagrangian(fx2, [-1, 0, 1], -0.5) def lagr(coordinates, f_values, k, n): assert len(coordinates) == len(f_values) assert k in coordinates coordinates.remove(k) L_k_n = 1 for i in coordinates: L_k_n *= (x - i) / (k - i) print(L_k_n) # lagr([0,1,2,3], [0.5*np.sqrt(2), np.e, np.pi, 2*np.sqrt(3)], 2, 3)
[ "noreply@github.com" ]
noreply@github.com
eccf91200ca22006ec27e2a110af49ed35f9e3e8
556db265723b0cc30ad2917442ed6dad92fd9044
/tensorflow/python/kernel_tests/linalg/linear_operator_zeros_test.py
8ca4e0f796ff15070fe471e1bafd0e2de2eef998
[ "MIT", "Apache-2.0", "BSD-2-Clause" ]
permissive
graphcore/tensorflow
c1669b489be0e045b3ec856b311b3139858de196
085b20a4b6287eff8c0b792425d52422ab8cbab3
refs/heads/r2.6/sdk-release-3.2
2023-07-06T06:23:53.857743
2023-03-14T13:04:04
2023-03-14T13:48:43
162,717,602
84
17
Apache-2.0
2023-03-25T01:13:37
2018-12-21T13:30:38
C++
UTF-8
Python
false
false
8,721
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables as variables_module from tensorflow.python.ops.linalg import linalg as linalg_lib from tensorflow.python.ops.linalg import linear_operator_test_util from tensorflow.python.platform import test rng = np.random.RandomState(2016) @test_util.run_all_in_graph_and_eager_modes class LinearOperatorZerosTest( linear_operator_test_util.SquareLinearOperatorDerivedClassTest): """Most tests done in the base class LinearOperatorDerivedClassTest.""" @staticmethod def skip_these_tests(): return [ "cholesky", "cond", "inverse", "log_abs_det", "solve", "solve_with_broadcast" ] @staticmethod def operator_shapes_infos(): shapes_info = linear_operator_test_util.OperatorShapesInfo return [ shapes_info((1, 1)), shapes_info((1, 3, 3)), shapes_info((3, 4, 4)), shapes_info((2, 1, 4, 4))] def operator_and_matrix( self, build_info, dtype, use_placeholder, ensure_self_adjoint_and_pd=False): del ensure_self_adjoint_and_pd del use_placeholder shape = list(build_info.shape) assert shape[-1] == shape[-2] batch_shape = shape[:-2] num_rows = shape[-1] operator = linalg_lib.LinearOperatorZeros( num_rows, batch_shape=batch_shape, dtype=dtype) matrix = array_ops.zeros(shape=shape, dtype=dtype) return operator, matrix def test_assert_positive_definite(self): operator = linalg_lib.LinearOperatorZeros(num_rows=2) with self.assertRaisesOpError("non-positive definite"): operator.assert_positive_definite() def test_assert_non_singular(self): with self.assertRaisesOpError("non-invertible"): operator = linalg_lib.LinearOperatorZeros(num_rows=2) operator.assert_non_singular() def test_assert_self_adjoint(self): with self.cached_session(): operator = linalg_lib.LinearOperatorZeros(num_rows=2) self.evaluate(operator.assert_self_adjoint()) # Should not fail def test_non_scalar_num_rows_raises_static(self): with self.assertRaisesRegex(ValueError, "must be a 0-D Tensor"): linalg_lib.LinearOperatorZeros(num_rows=[2]) with self.assertRaisesRegex(ValueError, "must be a 0-D Tensor"): linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=[2]) def test_non_integer_num_rows_raises_static(self): with self.assertRaisesRegex(TypeError, "must be integer"): linalg_lib.LinearOperatorZeros(num_rows=2.) with self.assertRaisesRegex(TypeError, "must be integer"): linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=2.) def test_negative_num_rows_raises_static(self): with self.assertRaisesRegex(ValueError, "must be non-negative"): linalg_lib.LinearOperatorZeros(num_rows=-2) with self.assertRaisesRegex(ValueError, "must be non-negative"): linalg_lib.LinearOperatorZeros(num_rows=2, num_columns=-2) def test_non_1d_batch_shape_raises_static(self): with self.assertRaisesRegex(ValueError, "must be a 1-D"): linalg_lib.LinearOperatorZeros(num_rows=2, batch_shape=2) def test_non_integer_batch_shape_raises_static(self): with self.assertRaisesRegex(TypeError, "must be integer"): linalg_lib.LinearOperatorZeros(num_rows=2, batch_shape=[2.]) def test_negative_batch_shape_raises_static(self): with self.assertRaisesRegex(ValueError, "must be non-negative"): linalg_lib.LinearOperatorZeros(num_rows=2, batch_shape=[-2]) def test_non_scalar_num_rows_raises_dynamic(self): with self.cached_session(): num_rows = array_ops.placeholder_with_default([2], shape=None) with self.assertRaisesError("must be a 0-D Tensor"): operator = linalg_lib.LinearOperatorZeros( num_rows, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_negative_num_rows_raises_dynamic(self): with self.cached_session(): n = array_ops.placeholder_with_default(-2, shape=None) with self.assertRaisesError("must be non-negative"): operator = linalg_lib.LinearOperatorZeros( num_rows=n, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_non_1d_batch_shape_raises_dynamic(self): with self.cached_session(): batch_shape = array_ops.placeholder_with_default(2, shape=None) with self.assertRaisesError("must be a 1-D"): operator = linalg_lib.LinearOperatorZeros( num_rows=2, batch_shape=batch_shape, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_negative_batch_shape_raises_dynamic(self): with self.cached_session(): batch_shape = array_ops.placeholder_with_default([-2], shape=None) with self.assertRaisesError("must be non-negative"): operator = linalg_lib.LinearOperatorZeros( num_rows=2, batch_shape=batch_shape, assert_proper_shapes=True) self.evaluate(operator.to_dense()) def test_wrong_matrix_dimensions_raises_static(self): operator = linalg_lib.LinearOperatorZeros(num_rows=2) x = rng.randn(3, 3).astype(np.float32) with self.assertRaisesRegex(ValueError, "Dimensions.*not compatible"): operator.matmul(x) def test_wrong_matrix_dimensions_raises_dynamic(self): num_rows = array_ops.placeholder_with_default(2, shape=None) x = array_ops.placeholder_with_default(rng.rand(3, 3), shape=None) with self.cached_session(): with self.assertRaisesError("Dimensions.*not.compatible"): operator = linalg_lib.LinearOperatorZeros( num_rows, assert_proper_shapes=True, dtype=dtypes.float64) self.evaluate(operator.matmul(x)) def test_is_x_flags(self): # The is_x flags are by default all True. operator = linalg_lib.LinearOperatorZeros(num_rows=2) self.assertFalse(operator.is_positive_definite) self.assertFalse(operator.is_non_singular) self.assertTrue(operator.is_self_adjoint) def test_zeros_matmul(self): operator1 = linalg_lib.LinearOperatorIdentity(num_rows=2) operator2 = linalg_lib.LinearOperatorZeros(num_rows=2) self.assertTrue(isinstance( operator1.matmul(operator2), linalg_lib.LinearOperatorZeros)) self.assertTrue(isinstance( operator2.matmul(operator1), linalg_lib.LinearOperatorZeros)) def test_ref_type_shape_args_raises(self): with self.assertRaisesRegex(TypeError, "num_rows.cannot.be.reference"): linalg_lib.LinearOperatorZeros(num_rows=variables_module.Variable(2)) with self.assertRaisesRegex(TypeError, "num_columns.cannot.be.reference"): linalg_lib.LinearOperatorZeros( num_rows=2, num_columns=variables_module.Variable(3)) with self.assertRaisesRegex(TypeError, "batch_shape.cannot.be.reference"): linalg_lib.LinearOperatorZeros( num_rows=2, batch_shape=variables_module.Variable([2])) @test_util.run_all_in_graph_and_eager_modes class LinearOperatorZerosNotSquareTest( linear_operator_test_util.NonSquareLinearOperatorDerivedClassTest): def operator_and_matrix( self, build_info, dtype, use_placeholder, ensure_self_adjoint_and_pd=False): del use_placeholder del ensure_self_adjoint_and_pd shape = list(build_info.shape) batch_shape = shape[:-2] num_rows = shape[-2] num_columns = shape[-1] operator = linalg_lib.LinearOperatorZeros( num_rows, num_columns, is_square=False, is_self_adjoint=False, batch_shape=batch_shape, dtype=dtype) matrix = array_ops.zeros(shape=shape, dtype=dtype) return operator, matrix if __name__ == "__main__": linear_operator_test_util.add_tests(LinearOperatorZerosTest) linear_operator_test_util.add_tests(LinearOperatorZerosNotSquareTest) test.main()
[ "gardener@tensorflow.org" ]
gardener@tensorflow.org
b1a7480c58922ee6eaf4efd5d692c12e94936bcc
15114b8f23681403d052063ba6d9362ed628ce57
/HexToDecimal.py
937d4e031dbd26dbe71803f41ab94ee01dbabb77
[]
no_license
BenMiller3/HexToDecimal
37aac3317ee3ab2c8dd28b4a3bb5bb4cd0a8402d
ccf73957da5fe240397cec11f396734893f3713e
refs/heads/master
2016-09-01T07:42:35.191098
2016-03-31T20:23:31
2016-03-31T20:23:31
48,472,189
0
0
null
null
null
null
UTF-8
Python
false
false
3,521
py
def hexToDecimal(num): #Converts a hex number (base 16) inputted as a string to it's decimal (base 10) counter part result = 0 #Declaring the result variable num = str(num) #Parses the user input to a string ans = [0]*len(num) for i in range(len(num)): #Checks all the cases (digits 0-9 and a-f) if(num[i]==('0')): # There are no case and switch statements in Python so the if-else method suffices ans[i] = 0 # For 0 it is just equal to 0 (no change) elif(num[i]==('1')): x = 2 ** (4*(len(num)-i-1)) # a '1' is represented as a 2 power (incremented by spot on string, and place within string) ans[i] = x # Sends the final answer to the array ans[] which contains the final result elif(num[i]==('2')): x = 2 ** (4*(len(num)-i-1) + 1) ans[i] = x elif(num[i]==('3')): x = (2 ** (4*(len(num)-i-1) + 1) + 2 ** (4*(len(num)-i-1))) ans[i] = x elif(num[i]==('4')): x = 2 ** (4*(len(num)-i-1) + 2) ans[i] = x elif(num[i]==('5')): x = 2 ** (4*(len(num)-i-1) + 2) + 2 ** (4*(len(num)-i-1)) ans[i] = x elif(num[i]==('6')): x = 2 ** (4*(len(num)-i-1) + 2) + 2 ** (4*(len(num)-i-1) + 1) ans[i] = x elif(num[i]==('7')): x = 2 ** (4*(len(num)-i-1) + 2) + 2 ** (4*(len(num)-i-1) + 1) + 2 ** (4*(len(num)-i-1)) ans[i] = x elif(num[i]==('8')): x = 2 ** (4*(len(num)-i-1) + 3) ans[i] = x elif(num[i]==('9')): x = 2 ** (4*(len(num)-i-1) + 3) + 2 ** (4*(len(num)-i-1)) ans[i] = x elif(num[i]==('a')): x = 2 ** (4*(len(num)-i-1) + 3) + 2 ** (4*(len(num)-i-1) + 1) ans[i] = x elif(num[i]==('b')): x = 2 ** (4*(len(num)-i-1) + 3) + 2 ** (4*(len(num)-i-1) + 1) + 2 ** (4*(len(num)-i-1)) ans[i] = x elif(num[i]==('c')): x = 2 ** (4*(len(num)-i-1) + 3) + 2 ** (4*(len(num)-i-1) + 2) ans[i] = x elif(num[i]==('d')): x = 2 ** (4*(len(num)-i-1) + 3) + 2 ** (4*(len(num)-i-1) + 2) + 2 ** (4*(len(num)-i-1)) ans[i] = x elif(num[i]==('e')): x = 2 ** (4*(len(num)-i-1) + 3) + 2 ** (4*(len(num)-i-1) + 2) + 2 ** (4*(len(num)-i-1) + 1) ans[i] = x elif(num[i]==('f')): x = 2 ** (4*(len(num)-i-1) + 3) + 2 ** (4*(len(num)-i-1) + 2) + 2 ** (4*(len(num)-i-1) + 1) + 2 ** (4*(len(num)-i-1)) ans[i] = x for i in range(len(num)): #loop through the numbers and append them to result result = ans[i] + result return result # Returns the decimal value of the original hex value as an integer (can be parsed) def main(): # used for testing run = True print(" --- Hex to Decimal Converter ---\nType * at any time to quit") while(run==True): num = input("\nPlease enter a hex number to be changed to decimal (lowercase): ") if(num=="*"): run = False else: ans = hexToDecimal(num) print("\n",num, "as a decimal is: ",ans) main() # Run the test cases #----------------------------------------------------------- def hexToDecimal_2(num): return int(num,16) #----------------------------------------------------------
[ "benjaminmiller229@gmail.com" ]
benjaminmiller229@gmail.com
e81b437caf42cb4d1816c04793e4a923ab50b9ed
3aa891f77e14989bf4034cff2eb55ced5876f8c8
/PythonProject/apps/Book/apps.py
93f038b480bc135ea4bdfee6e803fe65ac332e9d
[]
no_license
shuangyulin/python_django_book
ca7a8ee587539f5ac4c4bc2d6bd3ef2b7b8868cd
644e1a602fd840149a6c4c6cdea7ef5196f19b59
refs/heads/master
2023-05-10T19:43:02.631043
2023-05-10T05:51:00
2023-05-10T05:51:00
217,252,803
28
12
null
null
null
null
UTF-8
Python
false
false
93
py
from django.apps import AppConfig class BookConfig(AppConfig): name = 'apps.Book'
[ "254540457@qq.com" ]
254540457@qq.com
ecb448a0548acc782921c78e0ddea60c1de6b703
b62ab5b2e27a116ca03c8f7fd0291bf9d48310e6
/gui_v3/GUI_publisher_ver3_2.py
9cfa9026720aaf9bb5b2ec10848d4e55947ef680
[]
no_license
ycpiglet/AutonomousDrivingRobot
d6b5e0165b26ead6859dc8daf8ad22ff73319450
7e84329228a94f0609e9fb0cdb48e473bcc9fd54
refs/heads/main
2023-07-13T09:34:48.444305
2021-08-19T05:44:43
2021-08-19T05:44:43
370,374,216
2
0
null
null
null
null
UTF-8
Python
false
false
13,863
py
#! /usr/bin/env python3 # -*- coding:utf-8 -*- from std_msgs.msg import Int32 from std_msgs.msg import String import rospy import time import random import tkinter from tkinter import messagebox from tkinter.constants import S import tkinter.font from PIL import ImageTk, Image #---------------------------------------------- ROS Pulbisher Topic ---------------------------------------------- class ROS_topic(): def __init__(self): rospy.init_node("GUI_Publisher") self.count = 0 self.msg = '' def advertise(self): self.pub1 = rospy.Publisher('message', String, queue_size=20) self.pub2 = rospy.Publisher('counter', Int32, queue_size=10) self.rate = rospy.Rate(2) self.count += 1 ''' while not rospy.is_shutdown(): self.pub1 = rospy.Publisher('counter', Int32, queue_size=10) self.rate = rospy.Rate(2) self.pub1.publish(self.msg) ''' print(" Start Node ") #---------------------------------------------- ROS MASTER GUI ---------------------------------------------- class ROS_GUI(): # Interrupt def key_input(self, event): key = event.keysym if key == 'space': print("Pressed Space") if key == 'Escape': self.led_off() self.buzzer_off() self.camera_off() self.rqt_off() self.termPublisher() print("Reset") def destroy(self, event): self.window.destroy() # Jetson Nano def led_on(self): topic.pub1.publish('led on') self.btnLedOff['state'] = 'active' print('LED ON') def led_off(self): topic.pub1.publish('led off') self.btnLedOff['state'] = 'disabled' self.btnLedOn['state'] = 'active' print('LED OFF') def buzzer_on(self): topic.pub1.publish('buzzer on') self.btnBuzOn['state'] = 'disabled' self.btnBuzOff['state'] = 'active' print('Buzzer ON') def buzzer_off(self): topic.pub1.publish('buzzer off') self.btnBuzOff['state'] = 'disabled' self.btnBuzOn['state'] = 'active' print('Buzzer OFF') def camera_on(self): topic.pub1.publish('camera on') self.btnCamOn['state'] = 'disabled' self.btnCamOff['state'] = 'active' print('Camera ON') def camera_off(self): topic.pub1.publish('camera off') self.btnCamOff['state'] = 'disabled' self.btnCamOn['state'] = 'active' print('Camera OFF') def rqt_on(self): topic.pub1.publish('rqt on') self.btnRqtOn['state'] = 'disabled' self.btnRqtOff['state'] = 'active' print('RQT ON') def rqt_off(self): topic.pub1.publish('rqt off') self.btnRqtOff['state'] = 'disabled' self.btnRqtOn['state'] = 'active' print('RQT OFF') def chkState(self): if self.state == False: self.btnLedOn['state']='disabled' self.btnBuzOn['state']='disabled' self.btnCamOn['state']='disabled' self.btnRqtOn['state']='disabled' else: self.btnLedOn['state']='active' self.btnBuzOn['state']='active' self.btnCamOn['state']='active' self.btnRqtOn['state']='active' def alt_on(self): # 경고신호 self.label_face2['text'] = '1' self.window.configure(bg='red') self.label['bg'] = 'red' self.label1['bg'] = 'red' self.label_face1['bg'] = 'red' self.label_face2['bg'] = 'red' self.btnAltOn['state'] = 'disabled' self.btnAltOff['state'] = 'active' print('Alert ON') def alt_off(self): self.label_face2['text'] = '0' self.window.configure(bg='skyblue') self.label['bg'] = 'skyblue' self.label1['bg'] = 'skyblue' self.label_face1['bg'] = 'skyblue' self.label_face2['bg'] = 'skyblue' self.btnAltOn['state'] = 'active' self.btnAltOff['state'] = 'disabled' print('Alert ON') # ROS Node def initPublisher(self): topic.advertise() self.state = True self.chkState() self.btnInitPub['state'] = 'disabled' self.btnTermPub['state'] = 'active' print('Initiate Publisher') def termPublisher(self): self.led_off() self.buzzer_off() self.camera_off() self.rqt_off() topic.pub1.unregister() topic.pub2.unregister() self.state = False self.chkState() self.btnInitPub['state'] = 'active' self.btnTermPub['state'] = 'disabled' print('Terminate Publisher') def initSubscriber(self): print('Initiate Subscriber') def termSubscriber(self): print('Terminate Publisher') # Button Control def pushed_buzzer_on(self): self.buzzer_on() def pushed_buzzer_off(self): self.buzzer_off() def pushed_led_on(self): self.led_on() def pushed_led_off(self): self.led_off() def pushed_btnInitPub(self): self.initPublisher() def pushed_btnTermPub(self): msg_term = messagebox.askyesno(title="Warning", message="Do you want to terminate the Publisher?") if msg_term == True: self.termPublisher() else: pass def pushed_CamOn(self): self.camera_on() def pushed_CamOff(self): self.camera_off() def pushed_RqtOn(self): self.rqt_on() def pushed_RqtOff(self): self.rqt_off() def pushed_AltOn(self): self.alt_on() def pushed_AltOff(self): self.alt_off() # GUI Setup def setupWindow(self): self.window = tkinter.Tk() self.window.title("ROS GUI Ver.3.2") self.window.geometry("600x800") self.window.configure(bg='skyblue') self.window.resizable(False, False) def setupCanvas(self): self.canvas = tkinter.Canvas(width=600, height=200, bg='white') self.canvas.pack() def setupFont(self): self.fontStyle1 = tkinter.font.Font(self.window, size=24, weight='bold', family='Consoles') self.fontStyle2 = tkinter.font.Font(self.window, size=12, weight='bold', family='Consoles') self.fontStyle3 = tkinter.font.Font(self.window, size=12, weight='normal', family='Consoles') def setupLabel(self): # self.label = tkinter.Label(text="ROS GUI for Topic", font=self.fontStyle1, bg='skyblue') # self.label.place(x=150, y=600) self.label = tkinter.Label(self.frameBlank3, text="ROS GUI for Topic", font=self.fontStyle1, bg='skyblue') self.label1 = tkinter.Label(self.frameBlank1, text="Message Control", font=self.fontStyle1, bg='skyblue') self.label_face1 = tkinter.Label(self.frameBlank4, text="Face Detection : ", font=self.fontStyle2, bg='skyblue') self.label_face2 = tkinter.Label(self.frameBlank4, text="0", font=self.fontStyle2, bg='skyblue') self.label.pack() self.label1.pack() self.label_face1.pack(side='left') self.label_face2.pack(side='left') def setupFrame(self): self.frame = tkinter.Frame(self.window) self.frame1 = tkinter.Frame(self.window) self.frame2 = tkinter.Frame(self.window) self.frame3 = tkinter.Frame(self.window) self.frame4 = tkinter.Frame(self.window) self.frame5 = tkinter.Frame(self.window) self.frame6 = tkinter.Frame(self.window) self.frameBlank1 = tkinter.Frame(self.canvas, height=30) self.frameBlank2 = tkinter.Frame(self.window, height=30) self.frameBlank3 = tkinter.Frame(self.window, height=30) self.frameBlank4 = tkinter.Frame(self.window, height=30) self.frameBlank1.pack() self.frame.pack() self.frameBlank2.pack() self.frame1.pack() self.frame2.pack() self.frame3.pack() self.frame4.pack() self.frame5.pack() self.frameBlank3.pack() self.frame6.pack() self.frameBlank4.pack() def setupText(self): self.text = tkinter.Text(self.frame, width=52, height=5) self.text.configure(font=self.fontStyle3) self.text.pack() def setupButton(self): # frame self.btnRead = tkinter.Button(self.frame, width=20, height=2, text="Read", command=self.getTextInput, font=self.fontStyle2, state='active') self.btnErase = tkinter.Button(self.frame, width=20, height=2, text="Erase", command=self.eraseTextInput, font=self.fontStyle2, state='disabled') self.btnRead.pack(side='left') self.btnErase.pack(side='left') # frame1 self.btnInitPub = tkinter.Button(self.frame1, width=20, height=2, text='Initiate Publisher', command=self.pushed_btnInitPub, font=self.fontStyle2, state='active') self.btnTermPub = tkinter.Button(self.frame1, width=20, height=2, text='Terminate Publisher', command=self.pushed_btnTermPub, font=self.fontStyle2, state='disabled') self.btnInitPub.pack(side='left') self.btnTermPub.pack(side='left') # frame2 self.btnLedOn = tkinter.Button(self.frame2, width=20, height=2, text='LED ON', command=self.pushed_led_on, font=self.fontStyle2, state='disabled') self.btnLedOff = tkinter.Button(self.frame2, width=20, height=2, text='LED OFF', command=self.pushed_led_off, font=self.fontStyle2, state='disabled') self.btnLedOn.pack(side='left') self.btnLedOff.pack(side='left') # frame3 self.btnBuzOn = tkinter.Button(self.frame3, width=20, height=2, text='Buzzer ON', command=self.pushed_buzzer_on, font=self.fontStyle2, state='disabled') self.btnBuzOff = tkinter.Button(self.frame3, width=20, height=2, text='Buzzer OFF', command=self.pushed_buzzer_off, font=self.fontStyle2, state='disabled') self.btnBuzOn.pack(side='left') self.btnBuzOff.pack(side='left') # frame4 self.btnCamOn = tkinter.Button(self.frame4, width = 20, height=2, text='Camera On', command=self.pushed_CamOn, font=self.fontStyle2, state='disabled') self.btnCamOff = tkinter.Button(self.frame4, width = 20, height=2, text='Camera Off', command=self.pushed_CamOff, font=self.fontStyle2, state='disabled') self.btnCamOn.pack(side='left') self.btnCamOff.pack(side='left') # frame5 self.btnRqtOn = tkinter.Button(self.frame5, width = 20, height=2, text='RQT Grpah On', command=self.pushed_RqtOn, font=self.fontStyle2, state='disabled') self.btnRqtOff = tkinter.Button(self.frame5, width = 20, height=2, text='RQT Graph Off', command=self.pushed_RqtOff, font=self.fontStyle2, state='disabled') self.btnRqtOn.pack(side='left') self.btnRqtOff.pack(side='left') # frame5 self.btnAltOn = tkinter.Button(self.frame6, width = 20, height=2, text='Alert On', command=self.pushed_AltOn, font=self.fontStyle2, state='active') self.btnAltOff = tkinter.Button(self.frame6, width = 20, height=2, text='Alert Off', command=self.pushed_AltOff, font=self.fontStyle2, state='disabled') self.btnAltOn.pack(side='left') self.btnAltOff.pack(side='left') def setupMenuBar(self): # Main Frameu self.menubar = tkinter.Menu(self.window) # File self.filemenu = tkinter.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(label="File", menu=self.filemenu) self.filemenu.add_command(label="Open") self.filemenu.add_command(label="Save") self.filemenu.add_command(label="Exit") # Info self.info = tkinter.Menu(self.menubar, tearoff=0) self.menubar.add_cascade(label="Info", menu=self.info) self.info.add_command(label="Who", command=self.msg_who) self.info.add_command(label='Version', command=self.msg_version) def msg_who(self): messagebox.showinfo(title="Inventor", message=" 한국산업기술대학교 \n 메카트로닉스공학과 \n 정윤철") def msg_version(self): messagebox.showinfo(title="Version", message=" ROS GUI Version 3.2 ") def getTextInput(self): self.input = self.text.get("1.0", 'end-1c') if self.btnTermPub['state'] == 'disabled': messagebox.showwarning("Messaage Control", " Publiser Doesn't Work!! ") else: topic.pub1.publish(self.input) if self.input == '': messagebox.showwarning("Messaage Control", " Write Anyting!! ") self.btnErase['state'] = 'disabled' else: self.btnErase['state'] = 'active' print(self.input) def eraseTextInput(self): self.text.delete("1.0", 'end-1c') self.btnErase['state'] = 'disabled' # main def main(self): # self.window.after(300,self.main) print(2) time.sleep(1) # Class Constructor def __init__(self): self.state = False # Setup GUI self.setupWindow() self.setupCanvas() self.setupFrame() self.setupFont() self.setupLabel() self.setupText() self.setupButton() self.setupMenuBar() # Flag self.flag_buzzer = False self.flag_led = False self.flag_publisher = False self.flag_subscriber = False self.window.config(menu=self.menubar) self.window.bind('<Key>',self.key_input) self.window.bind('<Control-c>', self.destroy) self.window.mainloop() #---------------------------------------------- main ---------------------------------------------- # topic = ROS_topic() gui = ROS_GUI()
[ "noreply@github.com" ]
noreply@github.com
d440f68b24a3ef7d4b340593ae6df74196eef663
85af513539b7921dd74077cc564ed850a2ca0d32
/sstb_backup.py
d098cef41ab2108b2f7b9316404058a14f562bab
[]
no_license
yihnanc/cloud_infra_hw3
f79315c1438c7d20cf8e2740b2f0f6fbfff6aa2f
cfa68e872a71f9133bb31cc65c228f28a4d2e79e
refs/heads/master
2021-08-19T23:43:47.344873
2017-11-27T17:56:36
2017-11-27T17:56:36
112,129,624
0
0
null
null
null
null
UTF-8
Python
false
false
5,488
py
from memtb import Memtable from bloom_filter import BloomFilter import csv import os table_size = 10; class SSTable: def __init__(self, memtable, level, id): if not isinstance(memtable, Memtable): print("Should use memtable to initialize the sstable") self.mem = None else: self.mem = memtable self.bloom = BloomFilter() self.data_name = 'data_' + str(level) + '_' + str(id) + '.csv' self.index_name = 'index_' + str(level) + '_' + str(id) + '.csv' self.file = open(self.data_name, 'w+') self.index = open(self.index_name, 'w+') self.dataid = {} self.size = memtable.size() self.min = "" self.max = "" length = 0 length_key = "" #print("fucking length:%d" %(memtable.size())) header = [] for key, values in self.mem: tmp = values.keys() if len(tmp) > length: length = len(tmp) header = list(tmp); length_key = key #record the place of each column count = 0 for val in header: self.dataid[val] = count count = count + 1 cursor = csv.writer(self.file) index_cursor = csv.writer(self.index) #Write csv header cursor.writerow(header) for key, values in self.mem: lst = [""] * length self.bloom.add(key) # put the data to the corresponding column for kv in values.keys(): lst[self.dataid[kv]] = values[kv] #Record the offset of data block file_pos = [] file_pos.append(key) file_pos.append(str(self.file.tell())) if self.min == "": self.min = key self.max = key else: if (key < self.min): self.min = key elif (key > self.max): self.max = key index_cursor.writerow(file_pos) cursor.writerow(lst) self.file.close() self.index.close() test = open(self.data_name, 'r') def merge(self, merge_table): #print("min:%s, max:%s" %(self.min, self.max)) set1 = set() with open(merge_table.index_name, 'r') as file: lines = [line.strip() for line in file] merge_file = open(self.data_name, 'r+') append = [] for line in lines: #Get the file offset of each key key = line.split(',')[0] updated_idx = int(line.split(',')[1]) if (key in self.bloom): set1.add(key) input_file = open(merge_table.data_name, 'r') #label name of merged file label = input_file.readline() label_arr = label.rstrip().split(',') lst = [""] * len(label_arr) input_file.seek(updated_idx) updated_value = input_file.readline() updated_arr = updated_value.rstrip().split(',') #put the merged data into corresponding label(the place of the label of two sstable may be different) for i in range(len(label_arr)): lst[self.dataid[label_arr[i]]] = updated_arr[i] idx = self.findIdx(self.index, key) merge_file.seek(idx) print(key) csvwt = csv.writer(merge_file) csvwt.writerow(lst) input_file.close() return set1 def update(self, allset): keyset = [] valueset = [] for key, values in self.mem: if (keys not in allset): keyset.add(key) valueset.add(values) return keyset, valueset def append(self, keyset, valueset): file = open(self.data_name, 'r') length = len(file.readline().split(',')) file.close() for i in range(len(valueset)): for ky in valueset[i].keys(): if (self.dataid.get(ky) == None): return False for i in range(len(keyset)): lst = [""] * length #column name is valueset for ky in valueset[i].keys(): lst[self.dataid[ky]] = valueset[i][ky] file = open(self.data_name, 'a') index = open(self.index_name, 'a') pos = file.tell() data_csvwt = csv.writer(file) data_csvwt.writerow(lst) #Write index index_row = [] index_row.append(keyset[i]) index_row.append(str(pos)) index_csvwt = csv.writer(index) index_csvwt.writerow(index_row) file.close() index.close() self.size = self.size + len(keyset) return True def findIdx(self, file, key): fd = open(self.index_name, 'r') lst = [line.rstrip('\n') for line in fd] start = 0 end = len(lst) - 1 while (start <= end): mid = start + int((end - start) / 2) arr = lst[mid].split(',') if (arr[0] == key): fd.close() return int(arr[1]) elif (arr[0] < key): start = mid + 1 else: end = mid - 1 def getKeyRangeg(self): return self.min, self.max
[ "MAGICMCGRADY87@gmail.com" ]
MAGICMCGRADY87@gmail.com
2c322c9fd589e186cb7cc803214a1a15220fc0af
3598371233813189cdc39cbb515a72b4f01c01a3
/www/pymonitor.py
e35cb2c1b2a8949c8848d7949448a29c5398bf57
[]
no_license
jsqwe5656/awesome-py3-webapp
dbbd49cf13046dd1e26276cad1097e9e05c61b31
53a6ab2e5245f1da63844e6985883c2cedcfe954
refs/heads/master
2021-01-18T02:01:23.585714
2017-04-01T09:52:11
2017-04-01T09:52:11
84,265,338
1
0
null
null
null
null
UTF-8
Python
false
false
1,727
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os,sys,time,subprocess from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler def log(s): print('[Monitor] %s' %s) class MyFileSystemEventHander(FileSystemEventHandler): def __init__(self, fn): super(MyFileSystemEventHander, self).__init__() self.restart = fn def on_any_event(self, event): if event.src_path.endswith('.py'): log('Python source file changed: %s' % event.src_path) self.restart() command = ['echo', 'ok'] process = None def kill_process(): global process if process: log('Kill process [%s]...' % process.pid) process.kill() process.wait() log('Process ended with code %s.' % process.returncode) process = None def start_process(): global process, command log('Start process %s...' % ' '.join(command)) process = subprocess.Popen(command, stdin=sys.stdin, stdout=sys.stdout, stderr=sys.stderr) def restart_process(): kill_process() start_process() def start_watch(path, callback): observer = Observer() observer.schedule(MyFileSystemEventHander(restart_process), path, recursive=True) observer.start() log('Watching directory %s...' % path) start_process() try: while True: time.sleep(0.5) except KeyboardInterrupt: observer.stop() observer.join() if __name__ == '__main__': argv = sys.argv[1:] if not argv: print('Usage: ./pymonitor your-script.py') exit(0) if argv[0] != 'python3': argv.insert(0, 'python3') command = argv path = os.path.abspath('.') start_watch(path, None)
[ "516845590@qq.com" ]
516845590@qq.com
bf2df9013b94ee7ca80c35660b101bf47f905569
bd4f8320118c4fb25b95d29193c1adb2f5b55ec6
/contrib/userproperty_lint.py
7d99b16806929b36131ad944ccb545cac48d4c45
[ "Apache-2.0" ]
permissive
Khan/khan-linter
30229d57ec82466af54b539eb3a57770335e0d65
9222e8f8c9aa6dead5c434d1eb7bb326207ed989
refs/heads/master
2023-07-21T05:06:19.757797
2022-07-11T16:54:42
2022-07-11T16:54:42
4,628,579
26
8
Apache-2.0
2023-09-06T21:29:52
2012-06-11T18:29:03
Python
UTF-8
Python
false
false
1,639
py
"""Linter that warns about using the dangerous UserProperty. UserProperty's user_id value can change depending on whether or not Google currently has a Google account registered w/ an email address that matches UserProperty's email property. That means when a user changes email settings in their Google account it can change the behavior of our queries. We don't want that. """ from __future__ import absolute_import import re from shared.testutil import lintutil # This captures any use of UserProperty on a db or ndb model. It will not # capture subclasses of UserProperty, but we don't expect any of those to be # around. _USERPROPERTY_RE = re.compile(r'\bn?db\.UserProperty\(', re.DOTALL) def lint_no_user_property(files_to_lint): """Enforce that nobody uses UserProperty. ...unless marked as an explicitly approved legacy usage via @Nolint. """ files_to_lint = lintutil.filter(files_to_lint, suffix='.py') for filename in files_to_lint: contents = lintutil.file_contents(filename) for fn_match in _USERPROPERTY_RE.finditer(contents): # Make sure there's no @Nolint anywhere around this function. newline = contents.find('\n', fn_match.end()) newline = newline if newline > -1 else len(contents) if '@Nolint' in contents[fn_match.start():newline]: continue linenum = 1 + contents.count('\n', 0, fn_match.start()) yield (filename, linenum, # filename and linenum "Do not use UserProperty, it is not safe. Use UserData's " "key as its foreign key, instead.")
[ "csilvers@khanacademy.org" ]
csilvers@khanacademy.org
424491dd7fa29498ae77a918b8624d70331175eb
7aefdb54f5d1c76984a7e4b8e112c72a29cb1d0e
/webcam_demo.py
fbe18048f2093c824aa922b42fee21b5a0d04d3b
[ "MIT" ]
permissive
AksultanMukhanbet/proctoring_intellectual_part
fe181d697f2d44b108304d523c3336f7873d2ac3
f85db9d31025cb57a732f64ab22358651bc93c69
refs/heads/master
2023-07-17T07:23:55.490868
2021-09-01T04:54:35
2021-09-01T04:54:35
401,934,395
0
0
null
null
null
null
UTF-8
Python
false
false
6,320
py
import torch import cv2 import time import argparse import posenet import requests import datetime as dt import mysql.connector as msql mydb = msql.connect(host="192.168.12.3", user="netuser", passwd='987', database='proctoring') mycursor = mydb.cursor() parser = argparse.ArgumentParser() parser.add_argument('--path', type=str, default=0) args = parser.parse_args() def frame_skip(cap, n_skip): for _ in range(n_skip): cap.grab() def insert_db(video_path, log_type, video_time): barcode, quiz_id = video_path.split("\\")[-1][:7], video_path.split("\\")[-1][7:12] currentTime = dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S") sql = "INSERT INTO `video_logs` (`datetime`, `video_name`, `basr_code`, `quiz_id`, `log_type`, `log_time`) VALUES (%s,%s,%s,%s,%s,%s);" val = (str(currentTime), str(video_path), int(barcode), int(quiz_id), str(log_type), str(video_time)) mycursor.execute(sql, val) mydb.commit() def post_request_json_data(video_path, log_type, video_time): barcode, quiz_id = video_path.split("\\")[-1][:7], video_path.split("\\")[-1][7:12] json_data = {"barcode": int(barcode), "quiz_id": int(quiz_id), "suspicious_type": int(log_type), "video_ref": str(video_path.split("\\")[-1]), "time": int(video_time)} r = requests.post('http://192.168.12.16/proctoringadmin/api/Suspicious/insert_video_action', json=json_data) def main(video_path): try: __ = (int(video_path.split("\\")[-1][:7]), int(video_path.split("\\")[-1][7:12])) model = posenet.load_model(50) model = model.cuda() output_stride = model.output_stride cap = cv2.VideoCapture(video_path) cap.set(3, 640) cap.set(4, 480) video_fps = cap.get(cv2.CAP_PROP_FPS) video_length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) timer = 0 n_skip = 30 frame_count = 0 start = time.time() prev_frame_time = 0 new_frame_time = 0 no_people = 0 many_people = 0 turn_head = 0 video_time = '' video_type = '' while video_length > timer: frame_skip(cap, n_skip) input_image, display_image, output_scale = posenet.read_cap( cap, scale_factor=0.4, output_stride=output_stride) with torch.no_grad(): input_image = torch.Tensor(input_image).cuda() heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image) pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses( heatmaps_result.squeeze(0), offsets_result.squeeze(0), displacement_fwd_result.squeeze(0), displacement_bwd_result.squeeze(0), output_stride=output_stride, max_pose_detections=2, min_pose_score=0.15) keypoint_coords *= output_scale # TODO this isn't particularly fast, use GL for drawing and display someday... overlay_image = posenet.draw_skel_and_kp( display_image, pose_scores, keypoint_scores, keypoint_coords, min_pose_score=0.15, min_part_score=0.1) try: if keypoint_scores[:][0:3].mean() == 0 and no_people == 0: second = timer/video_fps if second < 20: pass else: print(round(second//60), ':', round(second%60), 'No people') video_time = str(round(second//3600)) + ':' + str(round(second//60)%60) + ':' + str(round(second%60)) no_people = 1 post_request_json_data(video_path, 11, second) elif keypoint_scores[:][0:3].mean() > 0. and ((keypoint_scores[0][3] > 0.8 and keypoint_scores[0][4] > 0.8) or (keypoint_scores[1][3] > 0.8 and keypoint_scores[1][4] > 0.8)): no_people = 0 if keypoint_scores[1].mean() > 0.5 and many_people == 0: second = timer/video_fps if second < 20: pass else: print(round(second//60), ':', round(second%60), 'Many people') video_time = str(round(second//3600)) + ':' + str(round(second//60)%60) + ':' + str(round(second%60)) many_people = 1 post_request_json_data(video_path, 10, second) elif keypoint_scores[1].sum() == 0: many_people = 0 if ((keypoint_scores[0][3] < 0.1 or keypoint_scores[0][4] < 0.1) or (keypoint_scores[0][3] < 0.1 or keypoint_scores[0][4] < 0.1)) and turn_head == 0 and no_people == 0: second = timer/video_fps if second < 20: pass else: print(round(second//60), ':', round(second%60), 'Turn Head') video_time = str(round(second//3600)) + ':' + str(round(second//60)%60) + ':' + str(round(second%60)) turn_head = 1 post_request_json_data(video_path, 9, second) elif (keypoint_scores[0][3] > 0.8 and keypoint_scores[0][4] > 0.8): turn_head = 0 except: pass new_frame_time = time.time() if frame_count%30 == 0: fps = round(30/(new_frame_time-prev_frame_time), 2) prev_frame_time = new_frame_time cv2.putText(overlay_image, 'FPS: ' + str(fps), (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 100, 0), 1, cv2.LINE_AA) cv2.imshow('posenet', overlay_image) frame_count += 1 timer += n_skip # id, datetime, video_name, video_log_type, video_log_time if cv2.waitKey(1) & 0xFF == ord('q'): break except: pass try: print('Average FPS: ', frame_count / (time.time() - start)) print('Time: ', time.time() - start) except: pass if __name__ == "__main__": main(args.path)
[ "mukhanbetaksultan0414@gmail.com" ]
mukhanbetaksultan0414@gmail.com
181579357a019a7c8a1beb3274dc914dc0713917
55b4fe0a6616b30c128b51a9918605050ce49f6d
/perturb_prem.py
d0db2ad1166cc3a898818c9bce26e01034aa4140
[]
no_license
samhaug/ScS_reverb_setup
783a4fb7c942a598f18dc6c9e3544aa5e2bbcafe
05e96b9f871d25a1e7b5e9284083167993f56cec
refs/heads/master
2021-01-12T03:35:45.657459
2017-06-24T17:24:07
2017-06-24T17:24:07
78,234,557
0
0
null
null
null
null
UTF-8
Python
false
false
474
py
#!/home/samhaug/anaconda2/bin/python import numpy as np def write_output(prem_array,title): with open(title+'.tvel','a') as f: f.write('prem_5km.tvel P\n') f.write('prem_5km.tvel S\n') np.savetxt(f,prem_array,fmt='%.3f') perturb = np.round(np.linspace(-0.3,0.3,num=20),3) print len(perturb) for ii in perturb: prem = np.genfromtxt('./models/prem.tvel',skip_header=2) prem[2:40,1::] *= 1+ii write_output(prem,'prem_'+str(ii))
[ "samhaug@apsalus" ]
samhaug@apsalus
95b5c45037161cace8ce3128cfd2bf49dc2bb7b6
fc6eefb980b53baae393980c46ac40d256687014
/Udacity-Intro-To-Computer-Science/Lesson 1/Lesson 1 - Quizzes/Final Quiz.py
8aa9f447ce3f3fde860303b34c61711a69cb1cb7
[]
no_license
Brian-Mascitello/UCB-Third-Party-Classes
7bc151d348f753f93850f5e286c263639f782b05
e2d26e3d207d364462024759ad2342a8e172f657
refs/heads/master
2021-01-02T09:10:01.146169
2018-10-08T00:19:58
2018-10-08T00:19:58
99,150,324
0
0
null
2018-02-01T06:33:25
2017-08-02T18:47:29
Python
UTF-8
Python
false
false
780
py
# Write Python code that assigns to the # variable url a string that is the value # of the first URL that appears in a link # tag in the string page. # Your code should print http://udacity.com # Make sure that if page were changed to # page = '<a href="http://udacity.com">Hello world</a>' # that your code still assigns the same value to the variable 'url', # and therefore still prints the same thing. # page = contents of a web page page =('<div id="top_bin"><div id="top_content" class="width960">' '<div class="udacity float-left"><a href="http://udacity.com">') start_link = page.find('<a href=') end_link = page.find('>', start_link) start_position = start_link + len('<a href=') + 1 end_position = end_link - 1 url = page[start_position:end_position] print(url)
[ "bmascitello@gmail.com" ]
bmascitello@gmail.com
782b8a5b2c62d3e62a1de698230c293dddde6246
e54554c3bf4a1e066a092748c12e2cf4969743e2
/StudentsRegister/Tests/ControllerTest.py
5d9b119ddd3d373684598cc4a51d7cde55a6e53b
[]
no_license
dianahas/facultate
89269234dc7824c5078e56ae23d413f5983de30d
54218c414904841d16005222e1ee4043d1ba2f1c
refs/heads/master
2019-07-02T06:11:17.054228
2017-02-20T11:57:18
2017-02-20T11:57:18
80,839,637
0
0
null
null
null
null
UTF-8
Python
false
false
4,318
py
import unittest from Domain.Discipline import Discipline from Domain.Exceptions import DisciplineException from Repository.DisciplineRepository import DisciplineRepository from Controller.DisciplineController import DisciplineController from Domain.Student import Student from Domain.Exceptions import StudentException from Repository.StudentRepository import StudentRepository from Controller.StudentController import StudentController from Repository.GradeRepository import GradeRepository from Controller.UndoController import UndoController class DisciplineControllerTestCase(unittest.TestCase): ''' unit test for DisciplineController ''' def setUp(self): disRepo = DisciplineRepository() graRepo = GradeRepository() undoCtrl = UndoController() self.ctrl = DisciplineController(disRepo, graRepo, undoCtrl) d1 = Discipline("1", "1") d2 = Discipline("2", "2") self.ctrl.addDiscipline(d1) self.ctrl.addDiscipline(d2) def testAddDiscipline(self): d = Discipline("3", "3") self.ctrl.addDiscipline(d) self.assertEqual(len(self.ctrl), 3) self.assertRaises(DisciplineException, self.ctrl.addDiscipline, d) def testFindDisciplineByTeacher(self): d = self.ctrl.findDisciplineByTeacher("2") self.assertEqual(d, [Discipline("2", "2")]) d = self.ctrl.findDisciplineByTeacher("js") self.assertEqual(d, []) self.assertTrue(d == []) def testUpdateDiscipline(self): upD = Discipline("1", "3") self.ctrl.updateDiscipline("1","3") d = self.ctrl.findDisciplineByTeacher("3") self.assertEqual(d, [upD]) def testRemoveDiscipline(self): self.ctrl.removeDiscipline("1") self.assertEqual(len(self.ctrl), 1) self.assertRaises(DisciplineException, self.ctrl.removeDiscipline, "3") def testUndoRedo(self): d = Discipline("3", "3") self.ctrl.addDiscipline(d) self.assertEqual(len(self.ctrl), 3) self.ctrl.undo() self.assertEqual(len(self.ctrl), 2) self.ctrl.undo() self.assertEqual(len(self.ctrl), 1) self.ctrl.redo() self.assertEqual(len(self.ctrl), 2) self.ctrl.redo() self.assertEqual(len(self.ctrl), 3) try: self.ctrl.redo() assert False except: assert True class StudentControllerTestCase(unittest.TestCase): ''' unit test for StudentController ''' def setUp(self): stuRepo = StudentRepository() graRepo = GradeRepository() undoCtrl = UndoController() self.ctrl = StudentController(stuRepo, graRepo, undoCtrl) s1 = Student(1, "1") s2 = Student(2, "2") self.ctrl.addStudent(s1) self.ctrl.addStudent(s2) def testAddStudent(self): s = Student(3, "3") self.ctrl.addStudent(s) self.assertEqual(len(self.ctrl), 3) self.assertRaises(StudentException, self.ctrl.addStudent, s) def testFindStudentByName(self): s = self.ctrl.findStudentByName("2") self.assertEqual(s, [Student(2, "2")]) s = self.ctrl.findStudentByName("169") self.assertEqual(s, []) self.assertTrue(s == []) def testUpdateStudent(self): upS = Student(1, "3") self.ctrl.updateStudent(1,"3") s = self.ctrl.findStudentByName("3") self.assertEqual(s, [upS]) def testRemoveStudent(self): self.ctrl.removeStudent(1) self.assertEqual(len(self.ctrl), 1) self.assertRaises(StudentException, self.ctrl.removeStudent, 3) def testUndoRedo(self): s = Student(3, "3") self.ctrl.addStudent(s) self.assertEqual(len(self.ctrl), 3) self.ctrl.undo() self.assertEqual(len(self.ctrl), 2) self.ctrl.undo() self.assertEqual(len(self.ctrl), 1) self.ctrl.redo() self.assertEqual(len(self.ctrl), 2) self.ctrl.redo() self.assertEqual(len(self.ctrl), 3) try: self.ctrl.redo() assert False except: assert True if __name__ == '__main__': unittest.main(verbosity=2)
[ "Diana Hatmanu" ]
Diana Hatmanu
00756a3bf6a511b4023a4efd81b34a9b4b9899fc
833f645605c2a0e40418a2f4392c8c64c1d93da2
/tests_api/adminSide/test_edit_gender.py
bd42ad5c20c5b38e46b8ad94160ca5dad0cb09d9
[]
no_license
mehalyna/CH_096_TAQC
beefb1f2c937c66720c93239df70d3827242df98
14e7d28cb692e30df945b88841dfd0b3d24ed450
refs/heads/master
2022-12-12T13:42:29.276689
2020-02-04T15:57:00
2020-02-04T15:57:00
224,458,058
1
2
null
2022-12-08T03:26:02
2019-11-27T15:14:08
Python
UTF-8
Python
false
false
1,198
py
import unittest import allure from tests_api.testHelper import User class TestEditGender(unittest.TestCase): def setUp(self): self.id = "e02dfd94-a8a9-4b1a-6cfc-08d7a28d1878" self.name = "Jesus" self.gender = 2 self.birthday = "2001-06-04" self.User = User(self.id, self.name, self.gender, self.birthday) self.base_gender = self.User.get_gender() @allure.severity(allure.severity_level.NORMAL) @allure.link( "http://34.65.101.58:5002/admin/users?page=1", name='Click me') def test_edit_g(self): with allure.step("Edit user gender"): self.User.edit_gender(self.gender) self.assertEqual( self.User.get_gender(), self.gender, "Gender has not been changed to:{}".format(self.gender)) def tearDown(self): with allure.step("Back user gender"): self.User.edit_gender(self.base_gender) self.assertEqual( self.User.get_gender(), self.base_gender, "Gender has not been changed to:{}".format(self.base_gender)) if __name__ == '__main__': unittest.main()
[ "57140993+OlexandrToloshnyak@users.noreply.github.com" ]
57140993+OlexandrToloshnyak@users.noreply.github.com
a5c5687e8a3c7d3414ac8648489be15adf1125dd
b0f18601edfa82a8f75ff2937b87c04318619cd8
/python/make_ik_from_vmd.py
be8efbf669e7c9ad2e8c075150b70f729eec705f
[ "LicenseRef-scancode-proprietary-license", "MIT" ]
permissive
khanghugo/PMX-VMD-Scripting-Tools
5065906e25bd0d25b55249d6ada5af096f97d350
bc978e7f8685ba39c2682aed6bb06bbe53f5bb4b
refs/heads/master
2022-12-22T22:28:41.127976
2020-09-07T04:16:00
2020-09-07T04:16:00
293,138,167
0
0
MIT
2020-09-05T19:06:27
2020-09-05T19:06:26
null
UTF-8
Python
false
false
20,094
py
# Nuthouse01 - 08/24/2020 - v5.00 # This code is free to use and re-distribute, but I cannot be held responsible for damages that it may or may not cause. ##################### # NOTES: # assumes bones are using semistandard names for feet, toes, footIK, toeIK # assumes toeIK is a child of footIK, and footIK is a child of root (either directly or through footIKparent) # NOTE: if you are taking positions from one model and forcing them onto another model, it's not gonna be a perfect solution # scaling or manual adjustment will probably be required, which kinda defeats the whole point of this script... # first system imports from typing import List # second, wrap custom imports with a try-except to catch it if files are missing try: from . import nuthouse01_core as core from . import nuthouse01_vmd_parser as vmdlib from . import nuthouse01_vmd_struct as vmdstruct from . import nuthouse01_pmx_parser as pmxlib from . import nuthouse01_pmx_struct as pmxstruct except ImportError as eee: try: import nuthouse01_core as core import nuthouse01_vmd_parser as vmdlib import nuthouse01_vmd_struct as vmdstruct import nuthouse01_pmx_parser as pmxlib import nuthouse01_pmx_struct as pmxstruct except ImportError as eee: print(eee.__class__.__name__, eee) print("ERROR: failed to import some of the necessary files, all my scripts must be together in the same folder!") print("...press ENTER to exit...") input() exit() core = vmdlib = vmdstruct = pmxlib = pmxstruct = None # when debug=True, disable the catchall try-except block. this means the full stack trace gets printed when it crashes, # but if launched in a new window it exits immediately so you can't read it. DEBUG = False # if this is true, the IK frames are stored as footIK-position + footIK-rotation # if this is false, the IK frames are stored as footIK-position + toeIK-position # not sure about the pros and cons of this setting, honestly # with this true, the footIK-rotation means the arrows on the IK bones change in a sensible way, so that's nice STORE_IK_AS_FOOT_ONLY = True # if this is true, an IK-disp frame will be created that enables the IK-following # if this is false, when this VMD is loaded the IK bones will be moved but the legs won't follow them # you will need to manually turn on IK for these bones INCLUDE_IK_ENABLE_FRAME = True jp_lefttoe = "左つま先" jp_lefttoe_ik = "左つま先IK" jp_leftfoot = "左足首" jp_leftfoot_ik = "左足IK" jp_righttoe = "右つま先" jp_righttoe_ik = "右つま先IK" jp_rightfoot = "右足首" jp_rightfoot_ik = "右足IK" jp_left_waistcancel = "腰キャンセル左" jp_right_waistcancel = "腰キャンセル右" class Bone: def __init__(self, name, xinit, yinit, zinit): self.name = name self.xinit = xinit self.yinit = yinit self.zinit = zinit self.xcurr = 0.0 self.ycurr = 0.0 self.zcurr = 0.0 self.xrot = 0.0 self.yrot = 0.0 self.zrot = 0.0 def reset(self): self.xcurr = self.xinit self.ycurr = self.yinit self.zcurr = self.zinit self.xrot = 0.0 self.yrot = 0.0 self.zrot = 0.0 def rotate3d(origin, angle_quat, point_in): # "rotate around a point in 3d space" # subtract "origin" to move the whole system to rotating around 0,0,0 point = [p - o for p, o in zip(point_in, origin)] # might need to scale the point down to unit-length??? # i'll do it just to be safe, it couldn't hurt length = core.my_euclidian_distance(point) if length != 0: point = [p / length for p in point] # set up the math as instructed by math.stackexchange p_vect = [0] + point r_prime_vect = core.my_quat_conjugate(angle_quat) # r_prime_vect = [angle_quat[0], -angle_quat[1], -angle_quat[2], -angle_quat[3]] # P' = R * P * R' # P' = H( H(R,P), R') temp = core.hamilton_product(angle_quat, p_vect) p_prime_vect = core.hamilton_product(temp, r_prime_vect) # note that the first element of P' will always be 0 point = p_prime_vect[1:4] # might need to undo scaling the point down to unit-length??? point = [p * length for p in point] # re-add "origin" to move the system to where it should have been point = [p + o for p, o in zip(point, origin)] return point def build_bonechain(allbones: List[pmxstruct.PmxBone], endbone: str) -> List[Bone]: nextbone = endbone buildme = [] while True: r = core.my_list_search(allbones, lambda x: x.name_jp == nextbone, getitem=True) if r is None: core.MY_PRINT_FUNC("ERROR: unable to find '" + nextbone + "' in input file, unable to build parentage chain") raise RuntimeError() # 0 = bname, 5 = parent index, 234 = xyz position nextbone = allbones[r.parent_idx].name_jp newrow = Bone(r.name_jp, r.pos[0], r.pos[1], r.pos[2]) buildme.append(newrow) # if parent index is -1, that means there is no parent. so we reached root. so break. if r.parent_idx == -1: break buildme.reverse() return buildme helptext = '''================================================= make_ik_from_vmd: This script runs forward kinematics for the legs of a model, to calculate where the feet/toes will be and generates IK bone frames for those feet/toes. This is only useful when the input dance does NOT already use IK frames, such as the dance Conqueror by IA. ** Specifically, if a non-IK dance works well for model X but not for model Y (feet clipping thru floor, etc), this would let you copy the foot positions from model X onto model Y. ** In practice, this isn't very useful... this file is kept around for historical reasons. The output is a VMD that should be loaded into MMD *after* the original dance VMD is loaded. Note: does not handle custom interpolation in the input dance VMD, assumes all interpolation is linear. Note: does not handle models with 'hip cancellation' bones This requires both a PMX model and a VMD motion to run. Outputs: VMD file '[dancename]_ik_from_[modelname].vmd' that contains only the IK frames for the dance ''' def main(moreinfo=True): # prompt PMX name core.MY_PRINT_FUNC("Please enter name of PMX input file:") input_filename_pmx = core.MY_FILEPROMPT_FUNC(".pmx") pmx = pmxlib.read_pmx(input_filename_pmx, moreinfo=moreinfo) # get bones realbones = pmx.bones # then, make 2 lists: one starting from jp_righttoe, one starting from jp_lefttoe # start from each "toe" bone (names are known), go parent-find-parent-find until reaching no-parent bonechain_r = build_bonechain(realbones, jp_righttoe) bonechain_l = build_bonechain(realbones, jp_lefttoe) # assert that the bones were found, have correct names, and are in the correct positions # also verifies that they are direct parent-child with nothing in between try: assert bonechain_r[-1].name == jp_righttoe assert bonechain_r[-2].name == jp_rightfoot assert bonechain_l[-1].name == jp_lefttoe assert bonechain_l[-2].name == jp_leftfoot except AssertionError: core.MY_PRINT_FUNC("ERROR: unexpected structure found for foot/toe bones, verify semistandard names and structure") raise RuntimeError() # then walk down these 2 lists, add each name to a set: build union of all relevant bones relevant_bones = set() for b in bonechain_r + bonechain_l: relevant_bones.add(b.name) # check if waist-cancellation bones are in "relevant_bones", print a warning if they are if jp_left_waistcancel in relevant_bones or jp_right_waistcancel in relevant_bones: # TODO LOW: i probably could figure out how to support them but this whole script is useless so idgaf core.MY_PRINT_FUNC("Warning: waist-cancellation bones found in the model! These are not supported, tool may produce bad results! Attempting to continue...") # also need to find initial positions of ik bones (names are known) # build a full parentage-chain for each leg bonechain_ikr = build_bonechain(realbones, jp_righttoe_ik) bonechain_ikl = build_bonechain(realbones, jp_lefttoe_ik) # verify that the ik bones were found, have correct names, and are in the correct positions try: assert bonechain_ikr[-1].name == jp_righttoe_ik assert bonechain_ikr[-2].name == jp_rightfoot_ik assert bonechain_ikl[-1].name == jp_lefttoe_ik assert bonechain_ikl[-2].name == jp_leftfoot_ik except AssertionError: core.MY_PRINT_FUNC("ERROR: unexpected structure found for foot/toe IK bones, verify semistandard names and structure") raise RuntimeError() # verify that the bonechains are symmetric in length try: assert len(bonechain_l) == len(bonechain_r) assert len(bonechain_ikl) == len(bonechain_ikr) except AssertionError: core.MY_PRINT_FUNC("ERROR: unexpected structure found, model is not left-right symmetric") raise RuntimeError() # determine how many levels of parentage, this value "t" should hold the first level where they are no longer shared t = 0 while bonechain_l[t].name == bonechain_ikl[t].name: t += 1 # back off one level lowest_shared_parent = t - 1 # now i am completely done with the bones CSV, all the relevant info has been distilled down to: # !!! bonechain_r, bonechain_l, bonechain_ikr, bonechain_ikl, relevant_bones core.MY_PRINT_FUNC("...identified " + str(len(bonechain_l)) + " bones per leg-chain, " + str(len(relevant_bones)) + " relevant bones total") core.MY_PRINT_FUNC("...identified " + str(len(bonechain_ikl)) + " bones per IK leg-chain") ################################################################################### # prompt VMD file name core.MY_PRINT_FUNC("Please enter name of VMD dance input file:") input_filename_vmd = core.MY_FILEPROMPT_FUNC(".vmd") nicelist_in = vmdlib.read_vmd(input_filename_vmd, moreinfo=moreinfo) # check if this VMD uses IK or not, print a warning if it does any_ik_on = False for ikdispframe in nicelist_in.ikdispframes: for ik_bone in ikdispframe.ikbones: if ik_bone.enable is True: any_ik_on = True break if any_ik_on: core.MY_PRINT_FUNC("Warning: the input VMD already has IK enabled, there is no point in running this script. Attempting to continue...") # reduce down to only the boneframes for the relevant bones # also build a list of each framenumber with a frame for a bone we care about relevant_framenums = set() boneframe_list = [] for boneframe in nicelist_in.boneframes: if boneframe.name in relevant_bones: boneframe_list.append(boneframe) relevant_framenums.add(boneframe.f) # sort the boneframes by frame number boneframe_list.sort(key=lambda x: x.f) # make the relevant framenumbers also an ascending list relevant_framenums = sorted(list(relevant_framenums)) boneframe_dict = dict() # now restructure the data from a list to a dictionary, keyed by bone name. also discard excess data when i do for b in boneframe_list: if b.name not in boneframe_dict: boneframe_dict[b.name] = [] # only storing the frame#(1) + position(234) + rotation values(567) saveme = [b.f, *b.pos, *b.rot] boneframe_dict[b.name].append(saveme) core.MY_PRINT_FUNC("...running interpolation to rectangularize the frames...") has_warned = False # now fill in the blanks by using interpolation, if needed for key,bone in boneframe_dict.items(): # for each bone, # start a list of frames generated by interpolation interpframe_list = [] i=0 j=0 while j < len(relevant_framenums): # for each frame it should have, if i == len(bone): # if i is beyond end of bone, then copy the values from the last frame and use as a new frame newframe = [relevant_framenums[j]] + bone[-1][1:7] interpframe_list.append(newframe) j += 1 elif bone[i][0] == relevant_framenums[j]: # does it have it? i += 1 j += 1 else: # TODO LOW: i could modify this to include my interpolation curve math now that I understand it, but i dont care if not has_warned: core.MY_PRINT_FUNC("Warning: interpolation is needed but interpolation curves are not fully tested! Assuming linear interpolation...") has_warned = True # if there is a mismatch then the target framenum is less than the boneframe framenum # build a frame that has frame# + position(123) + rotation values(456) newframe = [relevant_framenums[j]] # if target is less than the current boneframe, interp between here and prev boneframe for p in range(1,4): # interpolate for each position offset newframe.append(core.linear_map(bone[i][0], bone[i][p], bone[i-1][0], bone[i-1][p], relevant_framenums[j])) # rotation interpolation must happen in the quaternion-space quat1 = core.euler_to_quaternion(bone[i-1][4:7]) quat2 = core.euler_to_quaternion(bone[i][4:7]) # desired frame is relevant_framenums[j] = d # available frames are bone[i-1][0] = s and bone[i][0] = e # percentage = (d - s) / (e - s) percentage = (relevant_framenums[j] - bone[i-1][0]) / (bone[i][0] - bone[i-1][0]) quat_slerp = core.my_slerp(quat1, quat2, percentage) euler_slerp = core.quaternion_to_euler(quat_slerp) newframe += euler_slerp interpframe_list.append(newframe) j += 1 bone += interpframe_list bone.sort(key=core.get1st) # the dictionary should be fully filled out and rectangular now for bone in boneframe_dict: assert len(boneframe_dict[bone]) == len(relevant_framenums) # now i am completely done reading the VMD file and parsing its data! everything has been distilled down to: # relevant_framenums, boneframe_dict ################################################################################### # begin the actual calculations core.MY_PRINT_FUNC("...beginning forward kinematics computation for " + str(len(relevant_framenums)) + " frames...") # output array ikframe_list = [] # have list of bones, parentage, initial pos # have list of frames # now i "run the dance" and build the ik frames # for each relevant frame, for I in range(len(relevant_framenums)): # for each side, for (thisik, this_chain) in zip([bonechain_ikr, bonechain_ikl], [bonechain_r, bonechain_l]): # for each bone in this_chain (ordered, start with root!), for J in range(len(this_chain)): # reset the current to be the inital position again this_chain[J].reset() # for each bone in this_chain (ordered, start with toe! do children before parents!) # also, don't read/use root! because the IK are also children of root, they inherit the same root transformations # count backwards from end to lowest_shared_parent, not including lowest_shared_parent for J in range(len(this_chain)-1, lowest_shared_parent, -1): # get bone J within this_chain, translate to name name = this_chain[J].name # get bone [name] at index I: position & rotation try: xpos, ypos, zpos, xrot, yrot, zrot = boneframe_dict[name][I][1:7] except KeyError: continue # apply position offset to self & children # also resets the currposition when changing frames for K in range(J, len(this_chain)): # set this_chain[K].current456 = current456 + position this_chain[K].xcurr += xpos this_chain[K].ycurr += ypos this_chain[K].zcurr += zpos # apply rotation offset to all children, but not self _origin = [this_chain[J].xcurr, this_chain[J].ycurr, this_chain[J].zcurr] _angle = [xrot, yrot, zrot] _angle_quat = core.euler_to_quaternion(_angle) for K in range(J, len(this_chain)): # set this_chain[K].current456 = current rotated around this_chain[J].current456 _point = [this_chain[K].xcurr, this_chain[K].ycurr, this_chain[K].zcurr] _newpoint = rotate3d(_origin, _angle_quat, _point) (this_chain[K].xcurr, this_chain[K].ycurr, this_chain[K].zcurr) = _newpoint # also rotate the angle of this bone curr_angle_euler = [this_chain[K].xrot, this_chain[K].yrot, this_chain[K].zrot] curr_angle_quat = core.euler_to_quaternion(curr_angle_euler) new_angle_quat = core.hamilton_product(_angle_quat, curr_angle_quat) new_angle_euler = core.quaternion_to_euler(new_angle_quat) (this_chain[K].xrot, this_chain[K].yrot, this_chain[K].zrot) = new_angle_euler pass pass # now i have cascaded this frame's pose data down the this_chain # grab foot/toe (-2 and -1) current position and calculate IK offset from that # first, foot: # footikend - footikinit = footikoffset xfoot = this_chain[-2].xcurr - thisik[-2].xinit yfoot = this_chain[-2].ycurr - thisik[-2].yinit zfoot = this_chain[-2].zcurr - thisik[-2].zinit # save as boneframe to be ultimately formatted for VMD: # need bonename = (known) # need frame# = relevantframe#s[I] # position = calculated # rotation = 0 # phys = not disabled # interp = default (20/107) # # then, foot-angle: just copy the angle that the foot has if STORE_IK_AS_FOOT_ONLY: ikframe = [thisik[-2].name, relevant_framenums[I], xfoot, yfoot, zfoot, this_chain[-2].xrot, this_chain[-2].yrot, this_chain[-2].zrot, False] else: ikframe = [thisik[-2].name, relevant_framenums[I], xfoot, yfoot, zfoot, 0.0, 0.0, 0.0, False] ikframe += [20] * 8 ikframe += [107] * 8 # append the freshly-built frame ikframe_list.append(ikframe) if not STORE_IK_AS_FOOT_ONLY: # then, toe: # toeikend - toeikinit - footikoffset = toeikoffset xtoe = this_chain[-1].xcurr - thisik[-1].xinit - xfoot ytoe = this_chain[-1].ycurr - thisik[-1].yinit - yfoot ztoe = this_chain[-1].zcurr - thisik[-1].zinit - zfoot ikframe = [thisik[-1].name, relevant_framenums[I], xtoe, ytoe, ztoe, 0.0, 0.0, 0.0, False] ikframe += [20] * 8 ikframe += [107] * 8 # append the freshly-built frame ikframe_list.append(ikframe) # now done with a timeframe for all bones on both sides # print progress updates core.print_progress_oneline(I / len(relevant_framenums)) core.MY_PRINT_FUNC("...done with forward kinematics computation, now writing output...") if INCLUDE_IK_ENABLE_FRAME: # create a single ikdispframe that enables the ik bones at frame 0 ikbones = [vmdstruct.VmdIkbone(name=jp_rightfoot_ik, enable=True), vmdstruct.VmdIkbone(name=jp_righttoe_ik, enable=True), vmdstruct.VmdIkbone(name=jp_leftfoot_ik, enable=True), vmdstruct.VmdIkbone(name=jp_lefttoe_ik, enable=True)] ikdispframe_list = [vmdstruct.VmdIkdispFrame(f=0, disp=True, ikbones=ikbones)] else: ikdispframe_list = [] core.MY_PRINT_FUNC("Warning: IK following will NOT be enabled when this VMD is loaded, you will need enable it manually!") # convert old-style bonelist ikframe_list to new object format ikframe_list = [vmdstruct.VmdBoneFrame(name=r[0], f=r[1], pos=r[2:5], rot=r[5:8], phys_off=r[8], interp=r[9:]) for r in ikframe_list] # build actual VMD object nicelist_out = vmdstruct.Vmd( vmdstruct.VmdHeader(2, "SEMISTANDARD-IK-BONES--------"), ikframe_list, # bone [], # morph [], # cam [], # light [], # shadow ikdispframe_list # ikdisp ) # write out output_filename_vmd = "%s_ik_from_%s.vmd" % \ (input_filename_vmd[0:-4], core.get_clean_basename(input_filename_pmx)) output_filename_vmd = core.get_unused_file_name(output_filename_vmd) vmdlib.write_vmd(output_filename_vmd, nicelist_out, moreinfo=moreinfo) core.MY_PRINT_FUNC("Done!") return None if __name__ == '__main__': core.MY_PRINT_FUNC("Nuthouse01 - 08/24/2020 - v5.00") if DEBUG: # print info to explain the purpose of this file core.MY_PRINT_FUNC(helptext) core.MY_PRINT_FUNC("") main() core.pause_and_quit("Done with everything! Goodbye!") else: try: # print info to explain the purpose of this file core.MY_PRINT_FUNC(helptext) core.MY_PRINT_FUNC("") main() core.pause_and_quit("Done with everything! Goodbye!") except (KeyboardInterrupt, SystemExit): # this is normal and expected, do nothing and die normally pass except Exception as ee: # if an unexpected error occurs, catch it and print it and call pause_and_quit so the window stays open for a bit core.MY_PRINT_FUNC(ee.__class__.__name__, ee) core.pause_and_quit("ERROR: something truly strange and unexpected has occurred, sorry, good luck figuring out what tho")
[ "brian.henson1@yahoo.com" ]
brian.henson1@yahoo.com
cd1ff5ac52c4656720ecfe2af85fd0194ec960b6
84bf3fa39f10d428a9129e083c492695deaa5e96
/doubanmovieSpider/doubanmovieSpider/spiders/doubanbooks.py
920ae4819ff0503f71b71f4a351d6f572bc51fab
[]
no_license
zhushengl/spider
7baf9df71b77a1a03315cd447ea5ca501e22c5cd
afc79f1f5d80eb284b8884fb7b29e5be0c762d44
refs/heads/master
2020-04-12T11:12:37.754215
2018-12-20T01:26:04
2018-12-20T01:26:04
162,452,554
0
0
null
null
null
null
UTF-8
Python
false
false
1,894
py
# -*- coding: utf-8 -*- import scrapy from doubanmovieSpider.items import DoubanmoviespiderItem import sys reload(sys) sys.setdefaultencoding("utf-8") class DoubanbooksSpider(scrapy.Spider): name = 'doubanbooks' allowed_domains = ['douban.com'] start_urls = ['http://douban.com/'] start = 0 url = 'https://book.douban.com/top250?start=' end = '&filter=' def start_requests(self): # 访问 (豆瓣图书 Top 250) print self.url + str(self.start) + self.end yield scrapy.Request(self.url + str(self.start) + self.end, callback=self.post_book) def post_book(self, response): if response.status == 200: print '访问成功' # print response.body books = response.xpath("//div[@class='article']//table") item1 = DoubanmoviespiderItem() for each in books: print each title = each.xpath("//td[2]/div/a/text()").extract() print title[0] content = each.xpath("//p[1]/text()").extract() score = each.xpath("//div/span[2]/text()").extract() info = each.xpath("//p[2]/span/text()").extract() item1['title'] = title[0] # 以;作为分隔,将content列表里所有元素合并成一个新的字符串 item1['content'] = ';'.join(content) item1['score'] = score[0] item1['info'] = info[0].strip() # 提交item print item1 yield item1 if self.start <= 100: self.start += 25 print self.url + str(self.start) + self.end yield scrapy.Request(self.url + str(self.start) + self.end, callback=self.post_book) else: print '访问失败' def parse(self, response): pass
[ "2231636899@qq.com" ]
2231636899@qq.com
484d210d3a4c30263b422bd7dad0dc68da1bd706
4639c9f39213c0641ef693489e84e10d0c05deca
/sqlqueries.py
4398e8156991b7deaf741a97bf1a76ebda3ade95
[]
no_license
utkranti/samdemo
6db60d52aceed668204f06d2acc13bbfc9f74558
87965fc68259f33f39387aa2b891afa11878c8ac
refs/heads/master
2020-09-06T17:13:48.938300
2019-11-08T15:07:18
2019-11-08T15:07:18
220,490,705
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
CREATE_TABLE = ''' CREATE TABLE empinfo( e_id integer, e_nm varchar(50), e_age integer, primary key (e_id) ) ''' INSERT_QUERY = '''insert into empinfo values({},'{}',{})''' FETCH_SINGLE_QUERY = '''SELECT * FROM empinfo where e_id = {}''' FETCH_ALL_QUERY = '''SELECT * FROM empinfo''' UPDATE_QUERY = '''update empinfo set e_nm = '{}', e_age = {} where e_id = {}''' DELETE_QUERY = '''delete from empinfo where e_id = {}'''
[ "utkrantijadhav@gmail.com" ]
utkrantijadhav@gmail.com
68fd4f165b8a871de48d2cae68b89f179705ff30
8e10094a3cbfaaa0a491acb6ca7a0d7b6a6a4295
/Assignment-18 Binary Matrix.py
6e14d476868011376b8c36e1f83d1ddad82fb4e8
[]
no_license
pkenaudekar/NPTEL_python_course_work
c81bc1b71ca9a9de3139a03c77115f6075fd1241
43c0034e35f15556f5f183401305c14ddc90a3c4
refs/heads/master
2020-05-03T07:57:59.513281
2019-04-16T20:34:29
2019-04-16T20:34:29
178,513,062
0
0
null
null
null
null
UTF-8
Python
false
false
982
py
""" Given a matrix with N rows and M columns, the task is to check if the matrix is a Binary Matrix. A binary matrix is a matrix in which all the elements are either 0 or 1. Input Format: The first line of the input contains two integer number N and M which represents the number of rows and the number of columns respectively, separated by a space. From the second line, take N lines input with each line containing M integer elements with each element separated by a space. Output Format: Print 'YES' or 'NO' accordingly Example: Input: 3 3 1 0 0 0 0 1 1 1 0 Output: YES """ #CODE: N,M = input().split(' ') binary = "YES" arr=[] while True: try: num = input().split() except EOFError: break arr.append(num) for i in range(int(N)): for j in range(int(M)): if arr[i][j] != "1" and arr[i][j] != "0": binary = "NO" break else: continue print(binary)
[ "noreply@github.com" ]
noreply@github.com
d9ec3c57d4895a1487cc0f6a5b0ffb8782c7de4c
08c7e823a01da52aba46fe6332a9b96102261f44
/daos/tools/dao_tools.py
d6c3c98b20c5d59bcc54ef0cf351e37ccbb7aea1
[]
no_license
benharvey1213/csaia_python_p
e9488e758a1f6ac88159d4dc92f447f6d4af8e4f
2024769646e4bf96dcb087f7d08a29fc0a8055fa
refs/heads/master
2023-04-12T17:33:58.066276
2021-05-07T17:52:37
2021-05-07T17:52:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,652
py
from mysql.connector import connect, Error def execute(query, *args): """ General method for executing queries on the database. Queries can be passed with a list of tuples for multiple INSERT statements. All non-INSERT queries should be passed preconfigured and ready to execute. Parameters ---------- query : Query The query to be executed args : list[tuple] OPTIONAL list of tuples to be inserted NOTE: only to be passed for INSERT statements Returns ------- list[tuple] This list contains the query results, if any. NOTE: This will return None for all none-SELECT queries and SELECT queries that return no results. """ standard_execution = True if len(args) < 1 else False try: with connect( host="localhost", # Local dev settings user="root", password="Password1234", database="csaia_database", ) as connection: ids = [] with connection.cursor() as cursor: if standard_execution: cursor.execute(query.get_sql(quote_char=None)) result = cursor.fetchall() if len(result) > 0: return result else: for arg in args[0]: cursor.execute(query, arg) ids.append(cursor.lastrowid) connection.commit() return ids except Error as e: print(e)
[ "scoutscott13@gmail.com" ]
scoutscott13@gmail.com
9a0f789ccd72673d0b66e55dc2e6bb2452bf9406
3f03334c1d1f1a1fd05d0950f8af08260e0d5432
/HW1/hw1.py
47750934110a7cd1fb7fa9237244635b0ae07414
[]
no_license
mina-jafari/EECS545-machineLearningCourse
697a341e6259845beb09bcd25e8308efdf48f07a
3014618b70499465fb4718afe9b4c5e815c8b2a4
refs/heads/master
2020-04-02T20:13:39.528778
2016-06-13T19:55:55
2016-06-13T19:55:55
61,060,958
0
0
null
null
null
null
UTF-8
Python
false
false
1,904
py
import numpy as np # This matrix A contains 183 8x8 images of the handwritten digit 3. # Each image has been reshaped into a length 64 row vector. A = np.loadtxt("A.csv",delimiter=",") U, s, V = np.linalg.svd(A, full_matrices=True,compute_uv=True) print s #print np.dot(U,U.transpose()) #print V #print s[:3] s[3:] = 0 s = np.diag(s) s.resize(U.shape[0], V.shape[1]) B = np.dot(U, np.dot(s, V)) # TODO: perform SVD on A, zero out all but the top 3 singular values to obtain a # new matrix B and compute ||A-B||^2 R = A - B print np.power(np.linalg.norm(R), 2) # B in the following line of code (just a default line of code that will make the plotting at least work) is wrong. # Replace it by your code to get correct plots! #B = np.zeros(A.shape) # OPTIONAL: You don't need to turn in the output from the code below. # But if you're curious to see the result of this modification to # the data using only three singular values, this code snippet will plot # each handwritten 3 BEFORE (on the top) and AFTER (on the bottom) # the modification. # You will need to remove both the lines with ''' to make it run. # WARNING: You'll need to have matplotlib installed for this to work! from matplotlib import pyplot as plt # How many rows and cols in our figure? NUM_IMGS_TO_SHOW = 5 NUM_PLOT_ROWS = 2 NUM_PLOT_COLS = NUM_IMGS_TO_SHOW for ind in range(NUM_IMGS_TO_SHOW): # The data before and after before_vec = A[ind,:] after_vec = B[ind,:] # We reshape the date into an 8x8 grid before_img = np.reshape(before_vec, [8,8]) after_img = np.reshape(after_vec, [8,8]) # Now let's plot the before an after into two rows: plt.subplot(NUM_PLOT_ROWS,NUM_PLOT_COLS,ind+1) plt.imshow(before_img, cmap=plt.cm.gray_r, interpolation='nearest') plt.subplot(NUM_PLOT_ROWS,NUM_PLOT_COLS,ind + NUM_IMGS_TO_SHOW + 1) plt.imshow(after_img, cmap=plt.cm.gray_r, interpolation='nearest') plt.show()
[ "mjafari@paulzim-imac5.chem.lsa.umich.edu" ]
mjafari@paulzim-imac5.chem.lsa.umich.edu
516da90e9ca482dbc6eff6c95b85d82b59370415
3079cc4b6d6c48c92e547a33a00d1bbca314ce17
/BipedalWalker/PiRL/ProgramGen/ParseTreeGenerator.py
a93f0a35be7e20907b4e5b2fa1a7bee849142ffd
[ "MIT" ]
permissive
VAIBHAV-2303/PiRL
71f9a6b5b540475ed9c8e2128870bcbd6631a726
063aae20cce2bfc2911e7aff59f4a688740c44da
refs/heads/main
2023-05-09T11:25:34.571635
2021-05-20T14:28:03
2021-05-20T14:28:03
369,163,062
13
3
null
null
null
null
UTF-8
Python
false
false
1,786
py
from PiRL.Utils.TreeUtils import newTree from PiRL.DataStructures.Token import NonTerminal, Terminal, Token from PiRL.DataStructures.RuleTable import Rule from PiRL import rule_table from treelib import Tree, Node import random __isValidDepth = {} def checkRuleDepth(rule : Rule, depth : int): if (rule, depth) in __isValidDepth: return __isValidDepth[(rule, depth)] if depth == 1: non_terminals = list(filter(lambda x : isinstance(x, NonTerminal), rule.rhs)) return len(non_terminals) == 0 for token in rule.rhs: if isinstance(token, NonTerminal): valid_rules = list(filter( lambda rule: checkRuleDepth(rule, depth-1), rule_table.getAllRules(token) )) if len(valid_rules) == 0: print(rule, depth, token) __isValidDepth[(rule, depth)] = False break __isValidDepth[(rule, depth)] = True return __isValidDepth[(rule, depth)] def generate(tree : Tree, parent : Node, token : Token, depth : int): node = tree.create_node(parent = parent, data = token) if isinstance(token, Terminal): return valid_rules = list(filter( lambda rule : checkRuleDepth(rule, depth), rule_table.getAllRules(token) )) # print(token, valid_rules) rule = random.choice(valid_rules) list(map(lambda next_token: generate(tree, node, next_token, depth-1), rule.rhs)) node.data.text = ' '.join(list(map(lambda leaf: leaf.data.name, tree.leaves(node.identifier)))) def getProgTree(start_token, depth): tree = newTree() generate(tree, parent=None, token=start_token, depth=depth) return tree
[ "gargvaibav@gmail.com" ]
gargvaibav@gmail.com
346eeb92d6c058c58b47563e2e81d250d4fbcf8d
3d1dab8556b0e5e95875d174c7fa08cea24a1ca1
/src/utils.py
fe868e32bc20540a9cb16218ea7a2fbdb543ee41
[]
no_license
ryota-ohno/interlayer_interaction3
8bc2151b9ede4c970e0b0964679e28aa49ef847d
499e6375b8a921fc6aa6e2633ea24bc3ba1e9719
refs/heads/main
2023-08-25T16:41:37.521617
2021-10-28T09:49:10
2021-10-28T09:49:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,382
py
import numpy as np from sklearn.decomposition import PCA def get_E(path_file): with open(path_file,'r') as f: lines=f.readlines() lines_E=[] for line in lines: if line.find('E(RB3LYP)')>-1 and len(line.split())>5: lines_E.append(float(line.split()[4])*627.510) E_list=[lines_E[5*i]-lines_E[5*i+1]-lines_E[5*i+2] for i in range(int(len(lines_E)/5))] return E_list def squeeze_min_df_E(df_E,columns=['A1','A2']): ddf = df_E.groupby(columns) df_Emin = df_E.loc[ddf['E'].idxmin(),:] return df_Emin def get_rot_axis_from_A2(A2,glide_mode): A2 = np.radians(A2) if glide_mode=='a': rot_axis_i = np.array([-np.sin(A2),np.cos(A2),0.]) rot_axis_t = np.array([-np.sin(-A2),np.cos(-A2),0.]) else: rot_axis_i = np.array([-np.sin(A2),np.cos(A2),0.]) rot_axis_t = np.array([-np.sin(np.pi-A2),np.cos(np.pi-A2),0.]) return rot_axis_i, rot_axis_t #Ra,Rb,heri/2 --> R1,R2 def convertor_R(Ra,Rb,theta_): R1=Ra*np.cos(theta_)+Rb*np.sin(theta_) R2=-Ra*np.sin(theta_)+Rb*np.cos(theta_) return R1,R2 # nの周りにtheta_in回転する回転行列 def Rod(n,theta_in): nx,ny,nz=n theta_t=np.radians(theta_in) Rod=np.array([[np.cos(theta_t)+(nx**2)*(1-np.cos(theta_t)),nx*ny*(1-np.cos(theta_t))-nz*np.sin(theta_t),nx*nz*(1-np.cos(theta_t))+ny*np.sin(theta_t)], [nx*ny*(1-np.cos(theta_t))+nz*np.sin(theta_t),np.cos(theta_t)+(ny**2)*(1-np.cos(theta_t)),ny*nz*(1-np.cos(theta_t))-nx*np.sin(theta_t)], [nx*nz*(1-np.cos(theta_t))-ny*np.sin(theta_t),ny*nz*(1-np.cos(theta_t))+nx*np.sin(theta_t),np.cos(theta_t)+(nz**2)*(1-np.cos(theta_t))]]) return Rod def extract_axis(xyz_array):#shape=[n,3] pca = PCA() pca.fit(xyz_array) long_axis = pca.components_[0] short_axis = pca.components_[1] return long_axis, short_axis def heri_to_A3(A1,A2,heri): N=361 A1=np.radians(A1);A2=np.radians(A2) ax1=np.array([np.sin(A1)*np.cos(A2),np.sin(A1)*np.sin(A2),np.cos(A1)]) ax2=np.array([np.sin(A1)*np.cos(A2),-np.sin(A1)*np.sin(A2),np.cos(A1)]) heri_list=np.zeros(N,dtype='float64');error_list=np.zeros(N,dtype='float64') A3_list=np.array([round(A3) for A3 in np.linspace(-180,180,N)]) n1 = np.array([-np.cos(A1)*np.cos(A2),-np.cos(A1)*np.sin(A2),np.sin(A1)]) n2 = np.array([-np.cos(A1)*np.cos(A2),+np.cos(A1)*np.sin(A2),np.sin(A1)]) for i,A3 in enumerate(A3_list): ex1=np.matmul(Rod(ax1,A3),n1) ex2=np.matmul(Rod(ax2,-A3),n2) ex21_cross = np.cross(ex2,ex1) exS=np.matmul(Rod(ax1,A3-90),n1) isDirectedToB = exS[1]>0 isOpenHB = ex21_cross[2]>0 heri_abs = np.degrees(np.arccos(np.dot(ex1,ex2))) if isOpenHB & isDirectedToB:#どちらの八の字か?上向いてるか? heri_list[i] = heri_abs else: heri_list[i] = float('inf')#計算めんどいので例外にする error_list[i]=abs(heri_list[i]-heri) idx=np.argsort(error_list);heri_sort=heri_list[idx];A3_sort=A3_list[idx] A3_1=A3_sort[0] return A3_1 def R2atom(R): if R==1.8: return 'S' elif R==1.7: return 'C' elif R==1.2: return 'H' else: return 'X' def get_ab_from_params(R1,R2,heri): A_rad=np.radians(heri/2) a_=2*(R1*np.cos(A_rad)-R2*np.sin(A_rad)) b_=2*(R2*np.cos(A_rad)+R1*np.sin(A_rad)) return a_, b_ def getA1_from_R3t(a,R3t,glide): assert glide=='a' return np.rad2deg(np.arctan(R3t/(a/2))) def check_calc_status(df_cur,A1,A2,A3,a,b): try: return df_cur.loc[ (df_cur['A1']==A1)& (df_cur['A2']==A2)& (df_cur['A3']==A3)& (df_cur['a']==a)& (df_cur['b']==b), 'status'].values[0] == 'Done' except IndexError: return False def convert_A_df(df): A1_array = df['A1'].values A2_array = df['A2'].values df['A1_new'] = np.degrees(np.arcsin(np.sin(np.radians(A1_array))*np.cos(np.radians(A2_array)))) df['A2_new'] = np.degrees(np.arctan(np.tan(np.radians(A1_array))*np.sin(np.radians(A2_array)))) return df def convert_A(A1,A2): A1_new = np.degrees(np.arcsin(np.sin(np.radians(A1))*np.cos(np.radians(A2)))) A2_new = np.degrees(np.arctan(np.tan(np.radians(A1))*np.sin(np.radians(A2)))) return A1_new, A2_new def invert_A(A1,A2): A1_old = np.degrees(np.arccos(np.cos(np.radians(A1))*np.cos(np.radians(A2)))) if A1==0: A2_old = 90 if A2>0 else -90 else: A2_old = np.degrees(np.arctan(np.sin(np.radians(A2))/np.tan(np.radians(A1)))) def translator_A(_A1_new, _A2_new, _A1_old, _A2_old): if _A1_new>=0: return _A1_old, _A2_old elif _A2_new>0: return _A1_old, _A2_old+180.0 elif _A2_new==0: return _A1_old, _A2_old elif _A2_new<0: return _A1_old, _A2_old-180.0 A1_old, A2_old = translator_A(A1,A2,A1_old, A2_old) return A1_old, A2_old def phi_into_180(phi): if phi>180: return phi - 360 elif phi<-180: return phi + 360 else: return phi
[ "noreply@github.com" ]
noreply@github.com
e0bd0c8393e10d70cd1d7736fc15a898d1f059dc
2e858717fbc3b74cc809dc5d60d337a844ae7fed
/codegolf/planets.py
a4f5b0a908013fcda517843121fbb9b541e6773d
[]
no_license
maxbergmark/misc-scripts
95a1b5416c34e65b7e8ef26f5c941f9ba0ae0986
a1b3b889f8f6d28a452969a62af637a6866b69d3
refs/heads/master
2020-03-28T10:32:38.362737
2019-09-20T12:23:14
2019-09-20T12:23:14
148,118,739
0
0
null
null
null
null
UTF-8
Python
false
false
3,108
py
def get_score(l, s): c = 0 for i, e in enumerate(l): c += int(e == s[i]) return c def check_modulo(l, n): mod = [i%n for i in l] s = list(set(mod)) if len(s) == len(l): return 1, get_score(sorted(s), s) return 0, 0 def check_modulo_sq(l, n): mod = [(i*i)%n for i in l] s = list(set(mod)) if len(s) == len(l): return 1, get_score(sorted(s), s) return 0, 0 def check_modulo_cu(l, n): mod = [(i*i*i)%n for i in l] s = list(set(mod)) if len(s) == len(l): return 1, get_score(sorted(s), s) return 0, 0 l0 = [7238995, 32199698004604234, 121437875888467, 126948200247893, 28550423391528270, 448630251845, 495891408214, 1936875853, 7306076016364904775, 474081421652, 34184320687170893, 8031170932136239427, 28489, 1852796749, 107135534003525, 121424973492820, 478695222352, 1936290373, 107088256000328, 27418995543271764] l1 = [358452458835, 5899229669892068223989509551434, 100801060862113215052800339, 103298841739860633878360661, 6211190611757106977975624033614, 1279847143846962159941, 1593728898723042190678, 21780717397762381, 370629223365341456449924529812037959, 1557125307789592521044, 6131964786814545525129908217165, 349859873446802695454943217443430723, 4812617, 21796097591570253, 83970509390754835569210693, 102090063924849785520616020, 1483554806647179537488, 19547570626458181, 87502894712962091220033864, 6687802272730805039891221866836] l2 = [5469550, 20958273942611314, 91678030787182, 93949749261683, 22066581848026725, 297987634280, 371068925299, 1298231923, 5143513717239276645, 362546487662, 21785115176039033, 4855281086163547247, 18799, 1299148654, 76370733396065, 92850372243310, 345417020527, 1165126003, 79583419131233, 23759846615443809] l3 = [474414806382, 9063409245936133368934076540274, 133522356591788631960941166, 139581022297794930405176691, 8036229759209788198835098840677, 1926852259672153551976, 2129837380648217507187, 32495384557351539, 526458259597464047712858951498687589, 2036164201638295527790, 9622030869291023328877655454329, 578706854677080430464104555890308207, 7293295, 31084771269373806, 117796765384867275302989921, 133508170257748661844078446, 2055980324755107837039, 32485561834039667, 117744782670614057051841889, 7717761131972000546125574465889] l4 = [7695955, 33060607136195914, 129142996492627, 129138701525333, 33060598512444750, 500135649605, 504447788374, 1936875853, 8750051408287654215, 500068606292, 34187606587958093, 8391173042187362627, 28489, 1869573709, 129134373069125, 128034844600660, 504464632912, 1936877893, 129112712765768, 32772496317047124] # lt = [l0, l1, l2, l3, l4] lt = [[53, 104]] c0 = 0 c1 = 0 c2 = 0 max_score = 0 for i in range(2, 10000000000): for l in lt: res = check_modulo(l, i) # res_sq = check_modulo_sq(l, i) # res_cu = check_modulo_cu(l, i) res_sq = 0, 0 res_cu = 0, 0 c0 += res[0] c1 += res_sq[0] c2 += res_cu[0] if i % 10000 == 0: print("\r%d (%d %d %d)" % (i, c0, c1, c2), end="") if res[1] > max_score or res_sq[1] > max_score or res_cu[1] > max_score: print("\n%d %s %s %s %d" % (i, res, res_sq, res_cu, len(l))) max_score = max(res[1], res_sq[1], res_cu[1])
[ "max.bergmark@gmail.com" ]
max.bergmark@gmail.com
d3bc53e5e49699888068463a7e4ba09b13a33a91
4f7bb51296e7c19b10c8d5f3616f48aa3510c455
/src/scseirx/analysis_functions.py
44793661d1768c33cb7de2e60fb3c0ce4113d5ed
[ "MIT" ]
permissive
Jaoeya/agent_based_COVID_SEIRX
3bf04b337ad749ad740906c278280a82fdd8ec6b
596a036fd3b95282ec3b6d4b27d47ecca568e750
refs/heads/master
2023-06-11T07:48:41.836646
2021-07-07T18:16:49
2021-07-07T18:16:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
33,323
py
import numpy as np import pandas as pd import networkx as nx import os import json import pickle import bz2 import _pickle as cPickle from os.path import join from random import shuffle import time from scseirx import construct_school_network as csn def get_agent(model, ID): for a in model.schedule.agents: if a.ID == ID: return a def test_infection(a): if a.infectious or a.recovered or a.exposed: return 1 else: return 0 def count_infected(model, agent_type): infected_agents = np.asarray([test_infection(a) for a in model.schedule.agents \ if a.type == agent_type]).sum() return infected_agents def count_infection_endpoints(model): endpoints = [a for a in model.schedule.agents if a.recovered and \ a.transmissions == 0] return len(endpoints) def count_typed_transmissions(model, source_type, target_type): type_dict = {'t':'teacher', 's':'student', 'f':'family_member', \ 'r':'resident', 'e':'employee'} sources = [a for a in model.schedule.agents if a.type == source_type] transmissions = 0 for source in sources: for target, step in source.transmission_targets.items(): if type_dict[target[0]] == target_type: transmissions += 1 return transmissions def calculate_R0(model, agent_types): transmissions = [a.transmissions for a in model.schedule.agents] infected = [test_infection(a) for a in model.schedule.agents] IDs = [a.ID for a in model.schedule.agents] types = [a.type for a in model.schedule.agents] df = pd.DataFrame({'ID':IDs, 'type':types, 'was_infected':infected, 'transmissions':transmissions}) df = df[df['was_infected'] == 1] overall_R0 = df['transmissions'].mean() R0 = {} for agent_type in agent_types: agent_R0 = df[df['type'] == agent_type]['transmissions'].mean() R0.update({agent_type:agent_R0}) return R0 def calculate_finite_size_R0(model): df = pd.DataFrame(columns=['ID', 'agent_type', 't', 'target']) for a in model.schedule.agents: if a.transmissions > 0: for target in a.transmission_targets.keys(): df = df.append({'ID':a.ID, 'agent_type':a.type, 't':a.transmission_targets[target], 'target':target}, ignore_index=True) # find first transmission(s) # NOTE: while it is very unlikely that two first transmissions occurred # in the same timestep, we have to account for the possibility nevertheless first_transmitters = df[df['t'] == df['t'].min()]['ID'].values N_transmissions = [] for ft in first_transmitters: N_transmissions.append(len(df[df['ID'] == ft])) if len(N_transmissions) > 0: mean = np.mean(N_transmissions) else: mean = 0 return mean, df def count_infected_by_age(model, age_brackets): age_counts = {} for ab in age_brackets: lower = int(ab.split('-')[0]) upper = int(ab.split('-')[1]) infected = len([a for a in model.schedule.agents if a.type == 'student' and \ a.recovered == True and a.age >= lower and a.age <= upper]) age_counts[ab] = infected return age_counts def get_transmission_network(model): transmissions = [] for a in model.schedule.agents: if a.transmissions > 0: for target in a.transmission_targets.keys(): transmissions.append((a.ID, target)) G = nx.Graph() G.add_edges_from(transmissions) return G def get_statistics(df, col): if len(df) == 0: return { '{}_mean'.format(col):np.nan, '{}_median'.format(col):np.nan, '{}_0.025'.format(col):np.nan, '{}_0.10'.format(col):np.nan, '{}_0.25'.format(col):np.nan, '{}_0.75'.format(col):np.nan, '{}_0.90'.format(col):np.nan, '{}_0.975'.format(col):np.nan, '{}_std'.format(col):np.nan } else: return { '{}_mean'.format(col):df[col].mean(), '{}_median'.format(col):df[col].median(), '{}_0.025'.format(col):df[col].quantile(0.025), '{}_0.10'.format(col):df[col].quantile(0.10), '{}_0.25'.format(col):df[col].quantile(0.25), '{}_0.75'.format(col):df[col].quantile(0.75), '{}_0.90'.format(col):df[col].quantile(0.90), '{}_0.975'.format(col):df[col].quantile(0.975), '{}_std'.format(col):df[col].std(), } def get_agent_states(model, tm_events): if type(tm_events) == type(None): return None # all agent states in all simulation steps. Agent states include the # "infection state" ["susceptible", "exposed", "infectious", "recovered"] # as well as the "quarantine state" [True, False] state_data = model.datacollector.get_agent_vars_dataframe() # remove susceptible states: these are the majority of states and since we # want to reduce the amoung of data stored, we will assume all agents that # do not have an explicit "exposed", "infectious" or "recovered" state, # are susceptible. state_data = state_data[state_data['infection_state'] != 'susceptible'] # we only care about state changes here, that's why we only keep the first # new entry in the state data table for each (agent, infection_state, # quarantine_state) triple. We need to reset the index once before we can # apply the drop_duplicates() operation, since "step" and "AgentID" are in # the index state_data = state_data.reset_index() state_data = state_data.drop_duplicates(subset=['AgentID',\ 'infection_state', 'quarantine_state']) # cleanup of index and column names to match other data output formats state_data = state_data.rename(columns={'AgentID':'node_ID', 'Step':'day'}) state_data = state_data.reset_index(drop=True) # for the visualization we need more fine-grained information (hours) on when # exactly a transmission happened. This information is already stored in the # transmission events table (tm_events) and we can take it from there and # add it to the state table. We set all state changes to hour = 0 by default # since most of them happen at the beginning of the day (becoming infectious, # changing quarantine state or recovering). state_data['hour'] = 1 exp = state_data[(state_data['infection_state'] == 'exposed')]\ .sort_values(by='day') # we iterate over all state changes that correspond to an exposure, ignoring # the first agent, since that one is the index case, whose exposure happens # in hour 0. We only add the hour information for the transmission events. # For these events, we also subtract one from the event "day", to account # for the fact that agents have to appear "exposed" in the visualization # from the point in time they had contact with an infectious agent onwards. for ID in exp['node_ID'][1:]: ID_data = exp[exp['node_ID'] == ID] idx = ID_data.index[0] hour = tm_events[tm_events['target_ID'] == ID]['hour'].values[0] state_data.loc[idx, 'hour'] = hour state_data.loc[idx, 'day'] -= 1 # re-order columns to a more sensible order and fix data types state_data['hour'] = state_data['hour'].astype(int) state_data = state_data[['day', 'hour', 'node_ID', 'infection_state', 'quarantine_state']] return state_data def get_transmission_chain(model, school_type, teacher_schedule, student_schedule): max_hours = 9 teaching_hours = csn.get_teaching_hours(school_type) daycare_hours = list(range(teaching_hours + 1, max_hours + 1)) teaching_hours = list(range(1, teaching_hours + 1)) weekday_map = {1:'monday', 2:'tuesday', 3:'wednesday', 4:'thursday', 5:'friday', 6:'saturday', 7:'sunday'} if 5 in daycare_hours: daycare_hours.remove(5) tm_events = pd.DataFrame(columns=['day', 'weekday', 'hour', 'source_ID', 'source_type', 'target_ID', 'target_type']) for a in model.schedule.agents: if a.transmissions > 0: for target, step in a.transmission_targets.items(): location = '' hour = np.nan weekday = (step + model.weekday_offset) % 7 + 1 G = model.weekday_connections[weekday] target = get_agent(model, target) n1 = a.ID n2 = target.ID tmp = [n1, n2] tmp.sort() n1, n2 = tmp key = n1 + n2 + 'd{}'.format(weekday) s_schedule = student_schedule.loc[weekday] t_schedule = teacher_schedule.loc[weekday] ## determine transmission locations and times # transmissions from students to other students, teachers or family # members if a.type == 'student': student_class = G.nodes(data=True)[a.ID]['unit'] if target.type == 'student': # transmussions during daycare if G[a.ID][target.ID][key]['link_type'] == 'student_student_daycare': classroom = s_schedule.loc[a.ID]['hour_8'] location = 'class_{}'.format(int(classroom)) hour = np.random.choice(daycare_hours) # transmission during morning teaching elif G[a.ID][target.ID][key]['link_type'] in \ ['student_student_intra_class', 'student_student_table_neighbour']: hour = np.random.choice(teaching_hours) classroom = s_schedule.loc[a.ID]['hour_1'] location = 'class_{}'.format(int(classroom)) elif G[a.ID][target.ID][key]['link_type'] == 'student_household': hour = 10 location = 'home' else: print('unknown student <-> student link type ',\ G[a.ID][target.ID][key]['link_type']) # transmissions between students and teachers occur in the student's # classroom at a time when the teacher is in that classroom # according to the schedule elif target.type == 'teacher': # transmissions during daycare if G[a.ID][target.ID][key]['link_type'] == 'daycare_supervision_teacher_student': classroom = s_schedule.loc[a.ID]['hour_8'] location = 'class_{}'.format(int(classroom)) hour = np.random.choice(daycare_hours) elif G[a.ID][target.ID][key]['link_type'] == 'teaching_teacher_student': classroom = s_schedule.loc[a.ID]['hour_1'] location = 'class_{}'.format(int(classroom)) # get the hour in which the teacher is teaching in the given location hour = int(t_schedule.loc[target.ID][t_schedule.loc[target.ID] == classroom]\ .index[0].split('_')[1]) else: print('unknown student <-> teacher link type', \ G[a.ID][target.ID][key]['link_type']) # transmissions to family members occur at home after schoole elif target.type == 'family_member': location = 'home' hour = 10 else: print('agent type not supported') # transmissions from teachers to other teachers or students elif a.type == 'teacher': # transmissions from teachers to students occur in the student's # classroom at a time when the teacher is in that classroom # according to the schedule if target.type == 'student': # transmissions during daycare if G[a.ID][target.ID][key]['link_type'] == 'daycare_supervision_teacher_student': classroom = s_schedule.loc[target.ID]['hour_8'] location = 'class_{}'.format(int(classroom)) hour = np.random.choice(daycare_hours) elif G[a.ID][target.ID][key]['link_type'] == 'teaching_teacher_student': classroom = s_schedule.loc[target.ID]['hour_1'] location = 'class_{}'.format(int(classroom)) # get the hour in which the teacher is teaching in the given location hour = int(t_schedule.loc[a.ID][t_schedule.loc[a.ID] == classroom]\ .index[0].split('_')[1]) else: print('unknown teacher <-> student link type', \ G[a.ID][target.ID][key]['link_type']) # transmissions between teachers occur during the lunch break # in the faculty room elif target.type == 'teacher': location = 'faculty_room' hour = 5 elif target.type == 'family_member': location = 'home' hour = 10 else: print('agent type not supported') # transmissions from family members to other family members elif a.type == 'family_member': if target.type == 'student': location = 'home' hour = 10 elif target.type == 'teacher': print('this should not happen!') # transmissions between family members occur at home after school elif target.type == 'family_member': location = 'home' hour = 10 else: print('agent type not supported') else: print('agent type not supported') assert not np.isnan(hour), 'schedule messup!' assert len(location) > 0, 'location messup!' tm_events = tm_events.append({ 'day':step, 'weekday':weekday_map[weekday], 'hour':hour, 'location':location, 'source_ID':a.ID, 'source_type':a.type, 'target_ID':target.ID, 'target_type':target.type}, ignore_index=True) if len(tm_events) > 0: tm_events['day'] = tm_events['day'].astype(int) tm_events = tm_events.sort_values(by=['day', 'hour']).reset_index(drop=True) tm_events = tm_events[['day', 'hour', 'location', 'source_ID', 'source_type', 'target_ID', 'target_type']] return tm_events else: return None def get_ensemble_observables_school(model, run): R0, _ = calculate_finite_size_R0(model) N_school_agents = len([a for a in model.schedule.agents if \ a.type == 'teacher' or a.type == 'student']) N_family_members = len([a for a in model.schedule.agents if a.type == 'family_member']) infected_students = count_infected(model, 'student') infected_teachers = count_infected(model, 'teacher') infected_family_members = count_infected(model, 'family_member') infected_agents = infected_students + infected_teachers + infected_family_members data = model.datacollector.get_model_vars_dataframe() N_diagnostic_tests = data['N_diagnostic_tests'].max() N_preventive_screening_tests = data['N_preventive_screening_tests'].max() transmissions = sum([a.transmissions for a in model.schedule.agents]) infected_without_transmissions = count_infection_endpoints(model) student_student_transmissions = count_typed_transmissions(model, 'student', 'student') teacher_student_transmissions = count_typed_transmissions(model, 'teacher', 'student') student_teacher_transmissions = count_typed_transmissions(model, 'student', 'teacher') teacher_teacher_transmissions = count_typed_transmissions(model, 'teacher', 'teacher') student_family_member_transmissions = count_typed_transmissions(model, 'student', 'family_member') family_member_family_member_transmissions = count_typed_transmissions(model, 'family_member', 'family_member') quarantine_days_student = model.quarantine_counters['student'] quarantine_days_teacher = model.quarantine_counters['teacher'] quarantine_days_family_member = model.quarantine_counters['family_member'] diagnostic_test_detected_infections_student = \ data['diagnostic_test_detected_infections_student'].max() diagnostic_test_detected_infections_teacher = \ data['diagnostic_test_detected_infections_teacher'].max() diagnostic_test_detected_infections_family_member = \ data['diagnostic_test_detected_infections_family_member'].max() preventive_test_detected_infections_student = \ data['preventive_test_detected_infections_student'].max() preventive_test_detected_infections_teacher = \ data['preventive_test_detected_infections_teacher'].max() preventive_test_detected_infections_family_member = \ data['preventive_test_detected_infections_family_member'].max() pending_test_infections = data['pending_test_infections'].max() undetected_infections = data['undetected_infections'].max() predetected_infections = data['predetected_infections'].max() duration = len(data) diagnostic_tests_per_day_per_agent = N_diagnostic_tests / duration / N_school_agents preventive_tests_per_day_per_agent = N_preventive_screening_tests / duration / N_school_agents tests_per_day_per_agent = (N_diagnostic_tests + N_preventive_screening_tests) / duration / N_school_agents row = {'run':run, 'R0':R0, 'N_school_agents':N_school_agents, 'N_family_members':N_family_members, 'infected_students':infected_students, 'infected_teachers':infected_teachers, 'infected_family_members':infected_family_members, 'infected_agents':infected_agents, 'N_diagnostic_tests':N_diagnostic_tests, 'N_preventive_tests':N_preventive_screening_tests, 'transmissions':transmissions, 'infected_without_transmissions':infected_without_transmissions, 'student_student_transmissions':student_student_transmissions, 'teacher_student_transmissions':teacher_student_transmissions, 'student_teacher_transmissions':student_teacher_transmissions, 'teacher_teacher_transmissions':teacher_teacher_transmissions, 'student_family_member_transmissions':student_family_member_transmissions, 'family_member_family_member_transmissions':family_member_family_member_transmissions, 'quarantine_days_student':quarantine_days_student, 'quarantine_days_teacher':quarantine_days_teacher, 'quarantine_days_family_member':quarantine_days_family_member, 'preventive_test_detected_infections_student':\ preventive_test_detected_infections_student, 'preventive_test_detected_infections_teacher':\ preventive_test_detected_infections_teacher, 'preventive_test_detected_infections_family_member':\ preventive_test_detected_infections_family_member, 'diagnostic_test_detected_infections_student':\ diagnostic_test_detected_infections_student, 'diagnostic_test_detected_infections_teacher':\ diagnostic_test_detected_infections_teacher, 'diagnostic_test_detected_infections_family_member':\ diagnostic_test_detected_infections_family_member, 'pending_test_infections':pending_test_infections, 'undetected_infections':undetected_infections, 'predetected_infections':predetected_infections, 'duration':duration, 'diagnostic_tests_per_day_per_agent':diagnostic_tests_per_day_per_agent, 'preventive_tests_per_day_per_agent':preventive_tests_per_day_per_agent, 'tests_per_day_per_agent':tests_per_day_per_agent} return row def compress_pickle(fname, fpath, data): success = False while not success: try: with bz2.BZ2File(join(fpath, fname + '.pbz2'), 'w') as f: cPickle.dump(data, f) success = True except OSError: time.sleep(0.5) print('re-trying to dump model file {} ...'.format(fname)) return def decompress_pickle(fname, fpath): data = bz2.BZ2File(join(fpath, fname), 'rb') data = cPickle.load(data) return data def get_representative_run(N_infected, path): filenames = os.listdir(path) shuffle(filenames) medians = {int(f.split('_')[1]):int(f.split('_')[3].split('.')[0]) \ for f in filenames} dist = np.inf closest_run = None for run, median in medians.items(): curr_dist = np.abs(N_infected - median) if curr_dist < dist: closest_run = run dist = curr_dist if curr_dist == 0: break fname = 'run_{}_N_{}.pbz2'.format(closest_run, medians[closest_run]) return decompress_pickle(fname, path) def dump_JSON(path, school, test_type, index_case, screen_frequency_student, screen_frequency_teacher, teacher_mask, student_mask, half_classes, ventilation_mod, node_list, teacher_schedule, student_schedule, rep_transmission_events, state_data, start_weekday, duration, fname_addition='', friendship_contacts=False, class_size_reduction=False, m_efficiency_exhale=False, m_efficiency_inhale=False, s_test_rate=False, t_test_rate=False, trisk_mod = False): student_schedule = student_schedule.reset_index() teacher_schedule = teacher_schedule.reset_index() school_type = school['type'] classes = school['classes'] students = school['students'] turnover, _, ttype = test_type.split('_') turnovers = {'same':0, 'one':1, 'two':2, 'three':3} turnover = turnovers[turnover] bool_dict = {True:'T', False:'F'} node_list = json.loads(node_list.to_json(orient='split')) del node_list['index'] teacher_schedule = json.loads(teacher_schedule.to_json(orient='split')) del teacher_schedule['index'] student_schedule = json.loads(student_schedule.to_json(orient='split')) del student_schedule['index'] # can be empty, if there are no transmission events in the simulation try: rep_transmission_events = json.loads(rep_transmission_events\ .to_json(orient='split')) del rep_transmission_events['index'] state_data = json.loads(state_data.to_json(orient='split')) del state_data['index'] except AttributeError: pass data = {'school_type':school_type, 'classes':classes, 'students':students, 'test_type':ttype, 'test_turnover':turnover, 'indexcase':index_case, 'screen_frequency_teacher':screen_frequency_teacher, 'screen_frequency_student':screen_frequency_student, 'teacher_mask':teacher_mask, 'student_mask':student_mask, 'half_classes':half_classes, 'ventilation_mod':ventilation_mod, 'node_list':node_list, 'teacher_schedule':teacher_schedule, 'student_schedule':student_schedule, 'rep_trans_events':rep_transmission_events, 'agent_states':state_data, 'start_weekday':start_weekday, 'duration':duration} fname = join(path, 'test-{}_'.format(ttype) + \ 'turnover-{}_index-{}_tf-{}_' .format(turnover, index_case[0], screen_frequency_teacher) +\ 'sf-{}_tmask-{}_smask-{}'\ .format(screen_frequency_student, bool_dict[teacher_mask],\ bool_dict[student_mask])) if friendship_contacts: fname = fname + '_fcontacts-{}'.format(friendship_contacts) if class_size_reduction: fname = fname + '_csizered-{}'.format(class_size_reduction) if m_efficiency_exhale and m_efficiency_inhale: fname = fname + '_meffinh-{}_meffexh-{}'\ .format(m_efficiency_exhale, m_efficiency_inhale) if s_test_rate and t_test_rate: fname = fname + '_stestrate-{}_ttestrate-{}'\ .format(s_test_rate, t_test_rate) if trisk_mod: fname = fname + '_trisk-{}'.format(trisk_mod) fname = fname + '_half-{}_vent-{}'\ .format(bool_dict[half_classes], ventilation_mod) fname = fname + fname_addition + '.txt' with open(fname,'w')\ as outfile: json.dump(data, outfile) def get_measures(measure_string, test_participation_rate=False, reduced_class_size=False, added_friendship_contacts=False, reduced_mask_efficiency=False, transmission_risk_modifier=False): ''' Convenience function to get the individual measures given a string (filename) of measures ''' #print(measure_string) agents = { 'student':{ 'screening_interval': None, 'index_probability': 0, 'mask':False}, 'teacher':{ 'screening_interval': None, 'index_probability': 0, 'mask':False}, 'family_member':{ 'screening_interval': None, 'index_probability': 0, 'mask':False} } turnovers = {0:'same', 1:'one', 2:'two', 3:'three'} bmap = {'T':True, 'F':False} interval_map = {'0':0, '3':3, '7':7, '14':14, 'None':None} index_map = {'s':'student', 't':'teacher'} stype, _ = measure_string.split('_test') rest = measure_string.split(stype + '_')[1] if test_participation_rate and reduced_class_size and \ reduced_mask_efficiency and transmission_risk_modifier: ttpype, turnover, index, tf, sf, tmask, smask, \ class_size_reduction, vent, meffexh, meffinh, \ s_test_rate, t_test_rate, trisk = rest.split('_') tmp = [stype, ttpype, turnover, index, tf, sf, tmask, smask, class_size_reduction, vent, meffexh, meffinh, s_test_rate, t_test_rate, trisk] elif test_participation_rate: ttpype, turnover, index, tf, sf, tmask, smask, haf, \ s_test_rate, t_test_rate, vent = rest.split('_') tmp = [stype, ttpype, turnover, index, tf, sf, tmask, smask, haf, s_test_rate, t_test_rate, vent] elif reduced_class_size: ttpype, turnover, index, tf, sf, tmask, smask, haf, \ class_size_reduction, vent = rest.split('_') tmp = [stype, ttpype, turnover, index, tf, sf, tmask, smask, haf, class_size_reduction, vent] elif added_friendship_contacts: ttpype, turnover, index, tf, sf, tmask, smask, haf, \ friendship_contacts, vent = rest.split('_') tmp = [stype, ttpype, turnover, index, tf, sf, tmask, smask, haf, friendship_contacts, vent] elif reduced_mask_efficiency: ttpype, turnover, index, tf, sf, tmask, smask, \ meffexh, meffinh, haf, vent = rest.split('_') tmp = [stype, ttpype, turnover, index, tf, sf, tmask, smask, haf, meffexh, meffinh, vent] else: ttpype, turnover, index, tf, sf, tmask, smask, haf, vent = \ rest.split('_') tmp = [stype, ttpype, turnover, index, tf, sf, tmask, smask, haf, vent] tmp = [m.split('-') for m in tmp] screening_params = {} half = False for m in tmp: if len(m) == 1: pass elif m[0] == 'test': ttype = '{}_day_{}'.format(turnovers[int(tmp[2][1])], tmp[1][1]) screening_params['preventive_test_type'] = ttype elif m[0] == 'turnover': pass elif m[0] == 'index': screening_params['index_case'] = index_map[m[1]] elif m[0] == 'tf': agents['teacher']['screening_interval'] = interval_map[m[1]] elif m[0] == 'sf': agents['student']['screening_interval'] = interval_map[m[1]] elif m[0] == 'tmask': agents['teacher']['mask'] = bmap[m[1]] elif m[0] == 'smask': agents['student']['mask'] = bmap[m[1]] elif m[0] == 'half': half = bmap[m[1]] elif m[0] == 'vent': screening_params['transmission_risk_ventilation_modifier'] = float(m[1]) elif m[0] == 'csizered': screening_params['class_size_reduction'] = float(m[1]) elif m[0] == 'stestrate': screening_params['student_test_rate'] = float(m[1]) elif m[0] == 'ttestrate': screening_params['teacher_test_rate'] = float(m[1]) elif m[0] == 'fcontacts': screening_params['added_friendship_contacts'] = float(m[1]) elif m[0] == 'meffexh': screening_params['mask_efficiency_exhale'] = float(m[1]) elif m[0] == 'meffinh': screening_params['mask_efficiency_inhale'] = float(m[1]) elif m[0] == 'trisk': screening_params['transmission_risk_modifier'] = float(m[1]) else: print('unknown measure type ', m[0]) return screening_params, agents, half def get_data(stype, src_path, test_participation_rate=False, reduced_class_size=False, added_friendship_contacts=False, reduced_mask_efficiency=False, transmission_risk_modifier=False): ''' Convenience function to read all ensembles from different measures of a given school type and return one single data frame ''' data = pd.DataFrame() stype_path = join(src_path, stype) files = os.listdir(stype_path) for f in files: screening_params, agents, half = get_measures(f.strip('.csv'), test_participation_rate=test_participation_rate, reduced_class_size=reduced_class_size, added_friendship_contacts=added_friendship_contacts, reduced_mask_efficiency=reduced_mask_efficiency, transmission_risk_modifier=transmission_risk_modifier) ensmbl = pd.read_csv(join(stype_path, f)) try: ensmbl = ensmbl.drop(columns=['Unnamed: 0']) except KeyError: pass ensmbl['preventive_test_type'] = screening_params['preventive_test_type'] ensmbl['index_case'] = screening_params['index_case'] ensmbl['transmission_risk_ventilation_modifier'] = \ screening_params['transmission_risk_ventilation_modifier'] ensmbl['student_mask'] = agents['student']['mask'] ensmbl['teacher_mask'] = agents['teacher']['mask'] ensmbl['student_screening_interval'] = agents['student']['screening_interval'] ensmbl['teacher_screening_interval'] = agents['teacher']['screening_interval'] ensmbl['half_classes'] = half if reduced_class_size: ensmbl['class_size_reduction'] = screening_params['class_size_reduction'] if test_participation_rate: ensmbl['student_test_rate'] = screening_params['student_test_rate'] ensmbl['teacher_test_rate'] = screening_params['teacher_test_rate'] if reduced_mask_efficiency: ensmbl['mask_efficiency_inhale'] = screening_params['mask_efficiency_inhale'] ensmbl['mask_efficiency_exhale'] = screening_params['mask_efficiency_exhale'] if transmission_risk_modifier: ensmbl['transmission_risk_modifier'] = screening_params['transmission_risk_modifier'] data = pd.concat([data, ensmbl]) data = data.reset_index(drop=True) data['teacher_screening_interval'] = data['teacher_screening_interval'].replace({None:'never'}) data['student_screening_interval'] = data['student_screening_interval'].replace({None:'never'}) return data
[ "jana.lasser@ds.mpg.de" ]
jana.lasser@ds.mpg.de
f76b2c88d9c798d959e946a73f076dcbfec551e3
9d2ef665fb42762279a3d82acd1ed5cfae831c65
/venv/bin/easy_install
000ab1efcc9488fbff3b240657f1f4833ca899df
[]
no_license
thanhtung29497/tts_frontend
63c52c30afcb416167618d48db35d72965524518
72fe8e08d3dd28eed3d140b4a2f698e60c1939b9
refs/heads/master
2020-07-19T23:37:07.068984
2019-09-05T10:36:45
2019-09-05T10:36:45
206,532,296
0
0
null
null
null
null
UTF-8
Python
false
false
450
#!/home/tungtt-ai-u/PycharmProjects/tts_frontend/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
[ "thanhtung29497@gmail.com" ]
thanhtung29497@gmail.com
b21ef021ca3d6afdf535882ef61eb49b75bf895c
8b7db851e13737d5c44cc00d38a46a2817c7707b
/tests/train.py
788e79cd09e75082a8dc8cf4d75b3dd063b824b5
[ "MIT" ]
permissive
goelshivam1210/gym-novel-gridworlds
b6f24b38cfceb2b44461da9bb7607c56d27f4a9e
c8f419da02e4fd716b9e293fcf0b99ee2eb96367
refs/heads/master
2023-01-15T13:46:23.438199
2020-11-23T14:42:13
2020-11-23T14:42:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,349
py
import os import time import gym import gym_novel_gridworlds import numpy as np from stable_baselines.common.env_checker import check_env from stable_baselines import PPO2 from stable_baselines import DQN from stable_baselines.gail import ExpertDataset from stable_baselines.common.policies import MlpPolicy from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.common import make_vec_env from stable_baselines.bench import Monitor from stable_baselines.common.callbacks import BaseCallback from stable_baselines.results_plotter import load_results, ts2xy class RenderOnEachStep(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). """ def __init__(self, env): super(RenderOnEachStep, self).__init__() self.env = env def _on_step(self): self.env.render() # time.sleep(0.5) class SaveOnBestTrainingRewardCallback(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). """ def __init__(self, check_freq, log_dir, model_name): super(SaveOnBestTrainingRewardCallback, self).__init__() self.check_freq = check_freq self.log_dir = log_dir self.save_path = os.path.join(log_dir, model_name) self.best_mean_reward = -np.inf def _on_step(self): if self.n_calls % self.check_freq == 0: # Retrieve training reward x, y = ts2xy(load_results(self.log_dir), 'timesteps') if len(x) > 0: # Mean training reward over the last 100 episodes mean_reward = np.mean(y[-100:]) # New best model, you could save the agent here if mean_reward > self.best_mean_reward: self.best_mean_reward = mean_reward print("Saving new best model to {}".format(self.save_path)) self.model.save(self.save_path) class RemapActionOnEachStep(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). """ def __init__(self, env, step_num): super(RemapActionOnEachStep, self).__init__() self.env = env self.step_num = step_num def _on_step(self): if self.n_calls % self.step_num == 0: # self.env = remap_action(self.env) self.env.remap_action() if __name__ == "__main__": env_id = 'NovelGridworld-v3' timesteps = 200000 # 200000 experiment_dir = 'results2' # 'models', results experiment_code1 = env_id + '_' + str(timesteps) experiment_code2 = '_' + '8beams0filled40range3items_in_360degrees_lfd' # lfd model_code = experiment_code1 + experiment_code2 log_dir = experiment_dir + os.sep + env_id + experiment_code2 pretrain = True os.makedirs(log_dir, exist_ok=True) env = gym.make(env_id) env = Monitor(env, log_dir) # callback = RenderOnEachStep(env) callback = SaveOnBestTrainingRewardCallback(1000, log_dir, model_code + '_best_model') # callback = RemapActionOnEachStep(env, 50000) # multiprocess environment # env = make_vec_env('NovelGridworld-v0', n_envs=4) check_env(env, warn=True) # Optional: PPO2 requires a vectorized environment to run # the env is now wrapped automatically when passing it to the constructor # env = DummyVecEnv([lambda: env]) # model = PPO2(MlpPolicy, env, verbose=1) env = DummyVecEnv([lambda: env]) model = PPO2.load('NovelGridworld-v3_200000_8beams0filled40range3items_in_360degrees_lfd_OLD', env) # Pretrain the model from human recored dataset # specify `traj_limitation=-1` for using the whole dataset if pretrain: dataset = ExpertDataset(expert_path='expert_NovelGridworld-v3_50demos2.npz', traj_limitation=-1, batch_size=128) model.pretrain(dataset, n_epochs=2000) model.save(model_code) # model.learn(total_timesteps=timesteps) model.learn(total_timesteps=timesteps, callback=callback) model.save(model_code + '_last_model')
[ "gtatiya@live.com" ]
gtatiya@live.com
9ec064b2a787ac1c0338a8c2f410c4c3d54df4ef
164d8556c96b220b1502066e1ad9688836c117f0
/misc/counting_cells_load.py
e66320a66cc1ea0d306724415a3f94343e7709d0
[]
no_license
pwang724/PHD_experiment
df7c23281b763159fe2ee61e229689d1fd01d7d0
9e290308353e55aa818477d3d183415d633624c9
refs/heads/master
2023-02-20T13:53:24.472923
2023-02-16T03:20:05
2023-02-16T03:20:05
162,485,012
0
0
null
2019-01-15T02:48:32
2018-12-19T20:03:33
Python
UTF-8
Python
false
false
957
py
import numpy as np import _CONSTANTS.conditions as conditions import _CONSTANTS.config as config import os import glob from tools import file_io import matlab.engine import time mouse = 2 condition = conditions.OFC_COMPOSITE d = os.path.join(condition.paths[mouse], 'data') mat_files = glob.glob(os.path.join(d,'*.mat')) eng = matlab.engine.start_matlab() rois = [] for mat_file in mat_files: start_time = time.time() x = eng.load(mat_file) obj = list(x.values())[0] obj_name = "obj" eng.workspace[obj_name] = obj roi_m = eng.eval(obj_name + ".roi") roi = np.asarray(roi_m).squeeze() print('Time taken: {}'.format(time.time() - start_time)) rois.append(roi) rois = np.stack(rois) print(rois.shape) rois = rois.astype('float32') data_directory = config.Config().LOCAL_DATA_PATH data_directory = os.path.join(data_directory, 'registration','ROI', condition.name) file_io.save_numpy(data_directory, str(mouse), rois)
[ "peterwang724@gmail.com" ]
peterwang724@gmail.com
e8a1e8a89b2676c6cd1974df7292669106c5eb73
0d17a12333319ba830e3359d07a17dc96a79ec5b
/app/asgi.py
17d84a01f8a7a30554b58bc417955ebb6a0eecd8
[]
no_license
dimasickx/restAPI
6758bff307f2be96cdba294365e91d27519daad5
e68a13573c3cb1c5996ca77b842ee96967724c66
refs/heads/master
2023-05-22T18:28:57.197906
2021-06-11T13:07:54
2021-06-11T13:07:54
375,749,727
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
""" ASGI config for main project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'app.settings') application = get_asgi_application()
[ "dmitry.sorokin.mail@gmail.com" ]
dmitry.sorokin.mail@gmail.com
9e28e0cd12e58048913b3c3764cd180e05af5636
9e41adf86b2c166a219f0b6d9371089c5f2d7d93
/Exerciciospython2/Função/e100.py
0b47e1bb8952e250e0f02facf33b98bfe7653f2f
[]
no_license
Nadirlene/Exercicios-python
1aaead61dd0efcb5303f6294e765e9e1d54506cc
3fe82e166003922ef749756a249840ed1fe940b0
refs/heads/main
2022-12-25T21:35:06.172839
2020-09-28T15:08:37
2020-09-28T15:08:37
299,343,047
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
from random import randint from time import sleep númerosSorteados = [] def sorteio(lista): print(f'Sorteando {len(lista)} valores da lista:', end=' ') for c in range(0, 5): lista.append(randint(1, 10)) print(lista[c], end=' ') sleep(0.3) print('PRONTO!') def somaPar(lista): soma = 0 for c in lista: if c % 2 == 0: soma += c print(f'Somando os valores pares de {lista}, temos {soma}') sorteio(númerosSorteados) somaPar(númerosSorteados)
[ "nadirleneoliveira@yahoo.com" ]
nadirleneoliveira@yahoo.com
d263c302856e1bd84f621399164fb1e25c9f2f64
b9b9c880653eb9cc1d6a31d06da58b7a8ead126a
/app/slash.py
e65924b67afd229b39552b46590337a8019d612b
[]
no_license
oddball/gae-flask-skeleton
707f6d199a8fc184e8ad6632f31aa36b23e06ee0
c04c803fc184820aa06e8f49aae2ba03eb5f0a46
refs/heads/master
2021-01-23T12:04:48.102155
2018-02-20T19:32:29
2018-02-20T19:32:29
102,644,208
1
0
null
2018-02-20T19:32:29
2017-09-06T18:31:36
Python
UTF-8
Python
false
false
435
py
# -*- coding: utf-8 -*- import httplib from flask import Blueprint, make_response from google.appengine.ext import ndb from google.appengine.ext import blobstore import flask from flask_login import login_required from flask_login import current_user slash_bp = Blueprint("slash", "slash") route = slash_bp.route @route('/', methods=['GET']) @ndb.synctasklet def slash(): raise ndb.Return(flask.render_template('slash.html'))
[ "andreas.lindh@hiced.com" ]
andreas.lindh@hiced.com
b749430cbf1df74689cf5fbf55ba4631e9e2b98b
0fd50b12ed2d79e31fed5ecd91efe9ae63ede429
/src/analysis/test_udgm_mrm_plots.py
16af63bb46a920a467c315cee341d87fea168b5e
[]
no_license
riccardoscilla/scheduled-collect-LPIoT
f611726132d35b1f7693120ee4e065c5f17dfaca
84cd24d9adb154d51a3b67f382429444d2164b78
refs/heads/main
2023-05-13T06:42:41.758222
2021-06-07T14:26:20
2021-06-07T14:26:20
374,693,249
0
0
null
null
null
null
UTF-8
Python
false
false
1,998
py
import matplotlib.pyplot as plt import pandas as pd from collections import defaultdict import numpy as np import math plt.rcParams.update({'font.size': 15}) def getValues(x, p): dc_values = [] pdr_values = [] dc_std = [] pdr_std = [] for i in x: folder = "results/mrm/test_mrm_"+p+"_changeP/" df = pd.read_csv(folder+"dc"+i+".csv", delimiter="\t") dc = [] for index, row in df.iterrows(): dc.append(row['dc']) dc_values.append(np.mean(dc)) dc_std.append(np.std(dc)) folder = "results/mrm/test_mrm_"+p+"_changeP/" df = pd.read_csv(folder+"pdr"+i+".csv", delimiter="\t") pdr = [] for index, row in df.iterrows(): pdr.append(row['pdr']) pdr_values.append(np.mean(pdr)) pdr_std.append(np.std(pdr)) return dc_values, pdr_values, dc_std, pdr_std fig, (ax1,ax2) = plt.subplots(ncols=2, figsize=(14,7), constrained_layout=True) x = ["3","7","10","15"] dc10, pdr10, dc10_error, pdr10_error = getValues(x,"10") dc20, pdr20, dc20_error, pdr20_error = getValues(x,"20") dc50, pdr50, dc50_error, pdr50_error = getValues(x,"50") ax1.set_title('PDR per P and N value') ax1.set_ylabel('Average PDR (%)') ax1.set_xlabel('P value') width = 0.25 xpos = np.arange(len(x)) ax1.bar(xpos-width, pdr10, width, yerr=pdr10_error, capsize=3, label="10") ax1.bar(xpos, pdr20, width, yerr=pdr20_error, capsize=3, label="20") ax1.bar(xpos+width, pdr50, width, yerr=pdr50_error, capsize=3, label="50") ax1.set_xticks(xpos) ax1.set_xticklabels(x) ax1.grid(axis="y") ax1.legend(title="N value",loc=4) ax2.set_title('DC per P and N value') ax2.set_ylabel('Average DC (%)') ax2.set_xlabel('P value') ax2.grid(axis="y") ax2.errorbar(x,dc10,yerr=dc10_error,fmt='-o', label="10") ax2.errorbar(x,dc20,yerr=dc20_error,fmt='-o', label="20") ax2.errorbar(x,dc50,yerr=dc50_error,fmt='-o', label="50") ax2.legend(title="N value",loc=4) plt.show() fig.savefig('images/mrm.png')
[ "66726419+riccardoscilla@users.noreply.github.com" ]
66726419+riccardoscilla@users.noreply.github.com
3b50f9669e427ccf2598af20c57cc0bbf58daad0
11700a4b8207850ffc4a5c7ea46db03f0c3ab7e4
/.venv/bin/eralchemy
b6a0ff3bb3ea945183414cc783385b2bce87776a
[]
no_license
nicolas703/exercise-instagram-data-modeling
1aea698098c00694732a6b1106319a5a004f78d1
40d3c52db05b7e1668beeff76b5582e9ebb00c40
refs/heads/master
2022-11-23T15:21:30.967254
2020-07-09T09:48:20
2020-07-09T09:48:20
278,325,266
1
0
null
2020-07-09T09:46:48
2020-07-09T09:46:47
null
UTF-8
Python
false
false
258
#!/workspace/exercise-instagram-data-modeling/.venv/bin/python3.6 # -*- coding: utf-8 -*- import re import sys from eralchemy.main import cli if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(cli())
[ "nicolas8859.nd@gmail.com" ]
nicolas8859.nd@gmail.com
843dc84990ac79c37f5be80ed069ee89cccc662f
387b4a53485b175d2c8c7bca7f3429ad2abbb4f0
/pvdet/model/bbox_head/pv_head_base.py
b80b845da9a2588a914b8f8e2020ba1e80618782
[]
no_license
liangzhao123/IOU-SSD
50cf3a52e8b306b024d0396b76bd3931c8a15434
b53a1659ffe197da8eeca0f4a35a4a4571db22f4
refs/heads/main
2023-06-25T08:15:03.553378
2021-07-31T17:40:49
2021-07-31T17:40:49
321,982,002
5
2
null
null
null
null
UTF-8
Python
false
false
11,318
py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from pvdet.model.model_utils.proposal_target_layer import ProposalTargetLayer,class_agnostic_nms from pvdet.dataset.utils import common_utils from pvdet.tools.utils import loss_utils,box_coder_utils class RoIHeadTemplate(nn.Module): def __init__(self, num_class, model_cfg): super().__init__() self.model_cfg = model_cfg self.num_class = num_class self.box_coder = getattr(box_coder_utils, self.model_cfg.TARGET_CONFIG.BOX_CODER)() self.proposal_target_layer = ProposalTargetLayer(roi_sampler_cfg=self.model_cfg.TARGET_CONFIG) self.build_losses(self.model_cfg.LOSS_CONFIG) self.forward_ret_dict = None def build_losses(self, losses_cfg): self.add_module( 'reg_loss_func', loss_utils.WeightedSmoothL1Loss_v1(code_weights=losses_cfg.LOSS_WEIGHTS['code_weights']) ) def make_fc_layers(self, input_channels, output_channels, fc_list): fc_layers = [] pre_channel = input_channels for k in range(0, fc_list.__len__()): fc_layers.extend([ nn.Conv1d(pre_channel, fc_list[k], kernel_size=1, bias=False), nn.BatchNorm1d(fc_list[k]), nn.ReLU() ]) pre_channel = fc_list[k] if self.model_cfg.DP_RATIO >= 0 and k == 0: fc_layers.append(nn.Dropout(self.model_cfg.DP_RATIO)) fc_layers.append(nn.Conv1d(pre_channel, output_channels, kernel_size=1, bias=True)) fc_layers = nn.Sequential(*fc_layers) return fc_layers def proposal_layer(self, batch_dict, nms_config): """ Args: batch_dict: batch_size: batch_cls_preds: (B, num_boxes, num_classes | 1) or (N1+N2+..., num_classes | 1) batch_box_preds: (B, num_boxes, 7+C) or (N1+N2+..., 7+C) cls_preds_normalized: indicate whether batch_cls_preds is normalized batch_index: optional (N1+N2+...) nms_config: Returns: batch_dict: rois: (B, num_rois, 7+C) roi_scores: (B, num_rois) roi_labels: (B, num_rois) """ batch_size = batch_dict['batch_size'] batch_box_preds = batch_dict['batch_box_preds'] batch_cls_preds = batch_dict['batch_cls_preds'] rois = batch_box_preds.new_zeros((batch_size, nms_config.NMS_POST_MAXSIZE, batch_box_preds.shape[-1])) roi_scores = batch_box_preds.new_zeros((batch_size, nms_config.NMS_POST_MAXSIZE)) roi_labels = batch_box_preds.new_zeros((batch_size, nms_config.NMS_POST_MAXSIZE), dtype=torch.long) for index in range(batch_size): if batch_dict.get('batch_index', None) is not None: assert batch_cls_preds.shape.__len__() == 2 batch_mask = (batch_dict['batch_index'] == index) else: assert batch_dict['batch_cls_preds'].shape.__len__() == 3 batch_mask = index box_preds = batch_box_preds[batch_mask] cls_preds = batch_cls_preds[batch_mask] cur_roi_scores, cur_roi_labels = torch.max(cls_preds, dim=1) if nms_config.MULTI_CLASSES_NMS: raise NotImplementedError else: selected, selected_scores = class_agnostic_nms( box_scores=cur_roi_scores, box_preds=box_preds, nms_config=nms_config ) rois[index, :len(selected), :] = box_preds[selected] roi_scores[index, :len(selected)] = cur_roi_scores[selected] roi_labels[index, :len(selected)] = cur_roi_labels[selected] batch_dict['rois'] = rois batch_dict['roi_scores'] = roi_scores batch_dict['roi_labels'] = roi_labels + 1 batch_dict['has_class_labels'] = True if batch_cls_preds.shape[-1] > 1 else False return batch_dict def assign_targets(self, batch_dict): batch_size = batch_dict['batch_size'] with torch.no_grad(): targets_dict = self.proposal_target_layer.forward(batch_dict) rois = targets_dict['rois'] # (B, N, 7 + C) gt_of_rois = targets_dict['gt_of_rois'] # (B, N, 7 + C + 1) targets_dict['gt_of_rois_src'] = gt_of_rois.clone().detach() # canonical transformation roi_center = rois[:, :, 0:3] roi_ry = rois[:, :, 6] % (2 * np.pi) gt_of_rois[:, :, 0:3] = gt_of_rois[:, :, 0:3] - roi_center gt_of_rois[:, :, 6] = gt_of_rois[:, :, 6] - roi_ry # transfer LiDAR coords to local coords gt_of_rois = common_utils.rotate_points_along_z( points=gt_of_rois.view(-1, 1, gt_of_rois.shape[-1]), angle=-roi_ry.view(-1) ).view(batch_size, -1, gt_of_rois.shape[-1]) # flip orientation if rois have opposite orientation heading_label = gt_of_rois[:, :, 6] % (2 * np.pi) # 0 ~ 2pi opposite_flag = (heading_label > np.pi * 0.5) & (heading_label < np.pi * 1.5) heading_label[opposite_flag] = (heading_label[opposite_flag] + np.pi) % (2 * np.pi) # (0 ~ pi/2, 3pi/2 ~ 2pi) flag = heading_label > np.pi heading_label[flag] = heading_label[flag] - np.pi * 2 # (-pi/2, pi/2) heading_label = torch.clamp(heading_label, min=-np.pi / 2, max=np.pi / 2) gt_of_rois[:, :, 6] = heading_label targets_dict['gt_of_rois'] = gt_of_rois return targets_dict def get_box_reg_layer_loss(self, forward_ret_dict): loss_cfgs = self.model_cfg.LOSS_CONFIG code_size = self.box_coder.code_size reg_valid_mask = forward_ret_dict['reg_valid_mask'].view(-1) gt_boxes3d_ct = forward_ret_dict['gt_of_rois'][..., 0:code_size] gt_of_rois_src = forward_ret_dict['gt_of_rois_src'][..., 0:code_size].view(-1, code_size) rcnn_reg = forward_ret_dict['rcnn_reg'] # (rcnn_batch_size, C) roi_boxes3d = forward_ret_dict['rois'] rcnn_batch_size = gt_boxes3d_ct.view(-1, code_size).shape[0] fg_mask = (reg_valid_mask > 0) fg_sum = fg_mask.long().sum().item() tb_dict = {} if loss_cfgs.REG_LOSS == 'smooth-l1': rois_anchor = roi_boxes3d.clone().detach().view(-1, code_size) rois_anchor[:, 0:3] = 0 rois_anchor[:, 6] = 0 reg_targets = self.box_coder.encode_torch( gt_boxes3d_ct.view(rcnn_batch_size, code_size), rois_anchor ) rcnn_loss_reg = self.reg_loss_func( rcnn_reg.view(rcnn_batch_size, -1).unsqueeze(dim=0), reg_targets.unsqueeze(dim=0), ) # [B, M, 7] rcnn_loss_reg = (rcnn_loss_reg.view(rcnn_batch_size, -1) * fg_mask.unsqueeze(dim=-1).float()).sum() / max(fg_sum, 1) rcnn_loss_reg = rcnn_loss_reg * loss_cfgs.LOSS_WEIGHTS['rcnn_reg_weight'] tb_dict['rcnn_loss_reg'] = rcnn_loss_reg.item() if loss_cfgs.CORNER_LOSS_REGULARIZATION and fg_sum > 0: # TODO: NEED to BE CHECK fg_rcnn_reg = rcnn_reg.view(rcnn_batch_size, -1)[fg_mask] fg_roi_boxes3d = roi_boxes3d.view(-1, code_size)[fg_mask] fg_roi_boxes3d = fg_roi_boxes3d.view(1, -1, code_size) batch_anchors = fg_roi_boxes3d.clone().detach() roi_ry = fg_roi_boxes3d[:, :, 6].view(-1) roi_xyz = fg_roi_boxes3d[:, :, 0:3].view(-1, 3) batch_anchors[:, :, 0:3] = 0 rcnn_boxes3d = self.box_coder.decode_torch( fg_rcnn_reg.view(batch_anchors.shape[0], -1, code_size), batch_anchors ).view(-1, code_size) rcnn_boxes3d = common_utils.rotate_points_along_z( rcnn_boxes3d.unsqueeze(dim=1), roi_ry ).squeeze(dim=1) rcnn_boxes3d[:, 0:3] += roi_xyz loss_corner = loss_utils.get_corner_loss_lidar_v1( rcnn_boxes3d[:, 0:7], gt_of_rois_src[fg_mask][:, 0:7] ) loss_corner = loss_corner.mean() loss_corner = loss_corner * loss_cfgs.LOSS_WEIGHTS['rcnn_corner_weight'] rcnn_loss_reg += loss_corner tb_dict['rcnn_loss_corner'] = loss_corner.item() else: raise NotImplementedError return rcnn_loss_reg, tb_dict def get_box_cls_layer_loss(self, forward_ret_dict): loss_cfgs = self.model_cfg.LOSS_CONFIG rcnn_cls = forward_ret_dict['rcnn_cls'] rcnn_cls_labels = forward_ret_dict['rcnn_cls_labels'].view(-1) if loss_cfgs.CLS_LOSS == 'BinaryCrossEntropy': rcnn_cls_flat = rcnn_cls.view(-1) batch_loss_cls = F.binary_cross_entropy(torch.sigmoid(rcnn_cls_flat), rcnn_cls_labels.float(), reduction='none') cls_valid_mask = (rcnn_cls_labels >= 0).float() rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0) elif loss_cfgs.CLS_LOSS == 'CrossEntropy': batch_loss_cls = F.cross_entropy(rcnn_cls, rcnn_cls_labels, reduction='none', ignore_index=-1) cls_valid_mask = (rcnn_cls_labels >= 0).float() rcnn_loss_cls = (batch_loss_cls * cls_valid_mask).sum() / torch.clamp(cls_valid_mask.sum(), min=1.0) else: raise NotImplementedError rcnn_loss_cls = rcnn_loss_cls * loss_cfgs.LOSS_WEIGHTS['rcnn_cls_weight'] tb_dict = {'rcnn_loss_cls': rcnn_loss_cls.item()} return rcnn_loss_cls, tb_dict def get_loss(self, tb_dict=None): tb_dict = {} if tb_dict is None else tb_dict rcnn_loss = 0 rcnn_loss_cls, cls_tb_dict = self.get_box_cls_layer_loss(self.forward_ret_dict) rcnn_loss += rcnn_loss_cls tb_dict.update(cls_tb_dict) rcnn_loss_reg, reg_tb_dict = self.get_box_reg_layer_loss(self.forward_ret_dict) rcnn_loss += rcnn_loss_reg tb_dict.update(reg_tb_dict) tb_dict['rcnn_loss'] = rcnn_loss.item() return rcnn_loss, tb_dict def generate_predicted_boxes(self, batch_size, rois, cls_preds, box_preds): """ Args: batch_size: rois: (B, N, 7) cls_preds: (BN, num_class) box_preds: (BN, code_size) Returns: """ code_size = self.box_coder.code_size # batch_cls_preds: (B, N, num_class or 1) batch_cls_preds = cls_preds.view(batch_size, -1, cls_preds.shape[-1]) batch_box_preds = box_preds.view(batch_size, -1, code_size) roi_ry = rois[:, :, 6].view(-1) roi_xyz = rois[:, :, 0:3].view(-1, 3) local_rois = rois.clone().detach() local_rois[:, :, 0:3] = 0 batch_box_preds = self.box_coder.decode_torch(batch_box_preds, local_rois).view(-1, code_size) batch_box_preds = common_utils.rotate_points_along_z( batch_box_preds.unsqueeze(dim=1), roi_ry ).squeeze(dim=1) batch_box_preds[:, 0:3] += roi_xyz batch_box_preds = batch_box_preds.view(batch_size, -1, code_size) return batch_cls_preds, batch_box_preds
[ "1094036832@qq.com" ]
1094036832@qq.com
0c8c1261d797d256dc1620389e22afee4a0ae92c
7c2cebd157e19714962f6e2ca930f148a08ff333
/instructors/urls.py
208f4945a13b67f6f986c444d3c29b1b9099e621
[]
no_license
Code-Institute-Submissions/black-panther-fitness
1f380f9b338e0126d01ac6fa8f30025424265b60
ceafccad54f6eaab3deb4144d4a930f057db4fec
refs/heads/master
2023-01-22T14:28:39.399311
2020-12-04T15:55:33
2020-12-04T15:55:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
205
py
from django.urls import path from . import views urlpatterns = [ path('', views.all_instructors, name='instructors'), path('<instructor_id>', views.instructor_detail, name='instructor_detail'), ]
[ "darylhyde_13@hotmail.com" ]
darylhyde_13@hotmail.com
ad57f4527445a4f8ee853506abb8efae93d2a7ba
49a1b328cf3735d05364150940eb5f57e045edb9
/plot_vodV5_C.py
13f8959c2ac8648460e137d1b0781dabd3664bc6
[]
no_license
amucia2/LDAS-Monde
465556c78982df4e4916671c475728f724d8d6d0
cbf596075fc2ce0b8fe77c04f77be4eacceb8994
refs/heads/main
2023-04-13T09:17:17.688228
2021-04-21T09:59:29
2021-04-21T09:59:29
360,107,156
0
0
null
null
null
null
UTF-8
Python
false
false
31,502
py
import os import sys import numpy as np from netCDF4 import Dataset import matplotlib.pyplot as plt import matplotlib.mlab as mlab from mpl_toolkits.basemap import Basemap import pandas as pd from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid from math import radians, cos, sin, asin, sqrt from scipy.stats.stats import pearsonr import pylab as pl import sys, glob, os, re import math import time, tqdm from tqdm import tqdm def filter_nan(s,o): """ this functions removed the data from simulated and observed data whereever the observed data contains nan this is used by all other functions, otherwise they will produce nan as output """ data = np.array([s.flatten(),o.flatten()]) data = np.transpose(data) data = data[~np.isnan(data).any(1)] #data = data[~np.isnan(data)] return data[:,0],data[:,1] def rmse(s,o): """ Root Mean Squared Error input: s: simulated o: observed output: rmses: root mean squared error """ s,o = filter_nan(s,o) return np.sqrt(np.mean((s-o)**2)) def correlation(s,o): """ correlation coefficient input: s: simulated o: observed output: correlation: correlation coefficient """ s,o = filter_nan(s,o) if s.size == 0: corr = np.NaN else: #corr = np.corrcoef(o, s)[0,1] corr = pearsonr(o, s) return corr def bias(s, o): """ Bias input: s: simulated o: observed output: bias: bias """ s,o = filter_nan(s,o) return np.mean(s-o) def ubrmse(s,o): """ Unbiased root Mean Squared Error input: s: simulated o: observed output: ubrmses: unbiased root mean squared error """ s,o = filter_nan(s,o) n = len(o) if (n!=0): o_moy = np.mean(o) s_moy = np.mean(s) somme = 0. for i in range(n): somme = somme + ((s[i]-s_moy)-(o[i]-o_moy))**2 return np.sqrt(somme/n) else: return np.nan FILL = 999. def readFromFile(file_name,var_names,row_slice=None,col_slice=None,row_invert=False): ''' Read values from netcdf or hdf5 file Arguments: file_name (str): full path to the file to read var_names (list): names of variables to read row_slice/col_slice (slices): indices to slice the variables to the output region row_invert (bool): it True, row order is inverted Returns: obs_values (list): values read from file ''' # determine format if file_name[-2:] not in ('h5','nc'): raise Exception('filename extension must be h5 of nc') file_format = file_name[-2:] if isinstance(var_names,str): var_names = [var_names] obs_values = [] if file_format == 'nc': fid = Dataset(file_name) for i in range(len(var_names)): v = fid.variables[var_names[i]] tmp = v[:].squeeze() if row_invert: tmp = tmp[::-1,:] if row_slice is not None and col_slice is not None: tmp = tmp[row_slice,col_slice] tmp = tmp.astype(float) if not type(tmp) == pl.ma.core.MaskedArray: tmp = pl.ma.masked_array(tmp) for a in v.ncattrs(): if a.lower() in ['missing_value','_fillvalue']: tmp.mask = pl.logical_or(tmp.mask,(tmp==float(v.getncattr(a)))) tmp = tmp.filled(FILL) obs_values.append(tmp) fid.close() return obs_values def getModelPatchFractions(mod_pgd_path): ''' Read the patch fractions of model grid points from file. Arguments: mod_pgd_path (str): directory of PREP.nc Returns: mod_patch_frac (numpy.ndarray): patch fractions of each model grid point; shape = n_points,n_patches ''' mod_pgd_path = '/cnrm/vegeo/muciaa/ldas_chain_python/ldas_curr/US00/sfx-trip/pgd_prep/' prep_file = mod_pgd_path+'PREP.nc' if not os.path.isfile(prep_file): raise Exception(prep_file+' does not exist.') frac = readFromFile(prep_file,['PATCH'])[0] return frac.reshape((frac.shape[0],-1)) patch_frac = getModelPatchFractions('') patch_frac[patch_frac==999.0]=0. def save(path, ext='png', close=True, verbose=True): """Save a figure from pyplot. Parameters ---------- path : string The path (and filename, without the extension) to save the figure to. ext : string (default='png') The file extension. This must be supported by the active matplotlib backend (see matplotlib.backends module). Most backends support 'png', 'pdf', 'ps', 'eps', and 'svg'. close : boolean (default=True) Whether to close the figure after saving. If you want to save the figure multiple times (e.g., to multiple formats), you should NOT close it in between saves or you will have to re-plot it. verbose : boolean (default=True) whether to print information about when and where the image has been saved. """ # Extract the directory and filename from the given path directory = os.path.split(path)[0] filename = "%s.%s" % (os.path.split(path)[1], ext) if directory == '': directory = '.' #If the directory does not exist, create it if not os.path.exists(directory): os.makedirs(directory) # The final path to save to savepath = os.path.join(directory, filename) if verbose: print("Saving figure to '%s'..." % savepath), # Actually save the figure plt.savefig(savepath) # Close it if close: plt.close() if verbose: print("Done") def warn(*args, **kwargs): pass import warnings warnings.warn = warn import pickle #tt1 = pd.read_pickle('../CONUS_025_VODX_2003_2006.PData') #tt2 = pd.read_pickle('../CONUS_025_VODX_2007_2011.PData') #tt3 = pd.read_pickle('../CONUS_025_VODX_2012_2016.PData') #tt_lai = pd.concat([tt1,tt2,tt3],axis=1) #tt_vod = tt_lai #sys.exit() #''' #tt_lai = pd.read_pickle('CONUS_025_VODX_2003_2016.PData') #tt_vod = pd.read_pickle('CONUS_025_VODX_2003_2016.PData') numbers = re.compile(r'(\d+)') def numericalSort(value): parts = numbers.split(value) return parts ### Importing all the info seperately, that is not in a Panel, but will require to rewrite massive amounts of code that only uses Panel selection file = sorted(glob.glob('/cnrm/vegeo/muciaa/ldas_chain_python/ldas_curr/US00/Panels/LAI_V2*.PData'),key=numericalSort) df = [pd.read_pickle(file[3]),pd.read_pickle(file[4]),pd.read_pickle(file[5]),pd.read_pickle(file[6]),pd.read_pickle(file[7]),pd.read_pickle(file[8]),pd.read_pickle(file[9]),pd.read_pickle(file[10]),pd.read_pickle(file[11]),pd.read_pickle(file[12]),pd.read_pickle(file[13]),pd.read_pickle(file[14]),pd.read_pickle(file[15]),pd.read_pickle(file[16]),pd.read_pickle(file[17]),pd.read_pickle(file[18])] lai_cgls_ = pd.concat(df) file = sorted(glob.glob('/cnrm/vegeo/muciaa/ldas_chain_python/ldas_curr/US00/Panels/LAI_20*.PData'),key=numericalSort) df = [pd.read_pickle(file[3]),pd.read_pickle(file[4]),pd.read_pickle(file[5]),pd.read_pickle(file[6]),pd.read_pickle(file[7]),pd.read_pickle(file[8]),pd.read_pickle(file[9]),pd.read_pickle(file[10]),pd.read_pickle(file[11]),pd.read_pickle(file[12]),pd.read_pickle(file[13]),pd.read_pickle(file[14]),pd.read_pickle(file[15]),pd.read_pickle(file[16]),pd.read_pickle(file[17]),pd.read_pickle(file[18])] lai_isba = pd.concat(df) date = pd.date_range(start="2003-01-01 09:00:00",end='2018-12-31 09:00:00',freq='D') lai_cgls = lai_cgls_.reindex(date,fill_value=np.nan) file = sorted(glob.glob('/cnrm/vegeo/muciaa/ldas_chain_python/ldas_curr/US00/observations/sfx-trip/VODC*.PData'),key=numericalSort) df = [pd.read_pickle(file[0]),pd.read_pickle(file[1]),pd.read_pickle(file[2]),pd.read_pickle(file[3]),pd.read_pickle(file[4]),pd.read_pickle(file[5]),pd.read_pickle(file[6]),pd.read_pickle(file[7]),pd.read_pickle(file[8]),pd.read_pickle(file[9]),pd.read_pickle(file[10]),pd.read_pickle(file[11]),pd.read_pickle(file[12]),pd.read_pickle(file[13]),pd.read_pickle(file[14]),pd.read_pickle(file[15])] vodx = pd.concat(df) #mvodx = pd.read_pickle('/cnrm/vegeo/muciaa/ldas_chain_python/ldas_curr/US00/LAIfromVODCAX_V4.PData') ### Currently cannot import Panels and pickles are all f**ked up too - I'm frustrated, if you can't tell... #tt_lai = pd.read_pickle('CONUS_2000_2018_LAI_VOD_Panel.PData') #tt_vod = pd.read_pickle('CONUS_2000_2018_LAI_VOD_Panel.PData') #tt_lai = pickle.load('CONUS_2000_2018_LAI_VOD_Panel.PData',protocol=2) ''' Model : LAI ISBA Analysis : LAI CGLS Obs : VOD ''' #test = lai_cgls.mean(axis=1)[~np.isnan(lai_cgls.mean(axis=1))] #for i in range((tt_vod.shape[2])): # vodx[i] = pd.rolling_mean(vodx[i],30) ''' fig, ax1 = plt.subplots() ax1.plot(test,label='LAI obs.',color='r',linewidth=0,marker='*') ax1.plot(lai_isba.mean(axis=1),label='LAI isba',color='red') plt.rcParams.update({'font.size': 15}) ax1.legend(loc='best') ax1.set_ylabel('LAI',color='red') ax2 = ax1.twinx() ax2.plot(vodx.mean(axis=1),label='Cband VOD',color='blue') ax2.set_ylabel('VOD',color='blue') plt.show() ''' ''' corr_tmp_VOD_LAIisba = vodx.corrwith(lai_isba,axis=0) corr_tmp_VOD_LAIobs = vodx.corrwith(lai_cgls,axis=0) corr_tmp_LAIisba_LAIobs = lai_isba.corrwith(lai_cgls,axis=0) corr_tmp_VOD_LAIisba.values[pl.where(pl.isinf(corr_tmp_VOD_LAIisba.values))] = pl.nan corr_tmp_VOD_LAIobs.values[pl.where(pl.isinf(corr_tmp_VOD_LAIobs.values))] = pl.nan corr_tmp_LAIisba_LAIobs.values[pl.where(pl.isinf(corr_tmp_LAIisba_LAIobs.values))] = pl.nan corr_tmp_MVOD_LAIobs = mvodx.corrwith(lai_cgls,axis=0) corr_tmp_MVOD_LAIobs.values[pl.where(pl.isinf(corr_tmp_MVOD_LAIobs.values))] = pl.nan v = lai_cgls.mean().values.reshape((140,280)) v2 = vodx.mean().values.reshape((140,280)) v3 = mvodx.mean().values.reshape((140,280)) #v4 = corr_tmp_VOD_LAIobs.values.reshape((140,280)) v4 = corr_tmp_MVOD_LAIobs.values.reshape((140,280)) ''' ''' plt.subplot(221) ; plt.imshow(v,origin='lower',vmin=0,vmax=6,cmap="RdYlGn") ; plt.title('GEOV2 LAI') ; cbar = plt.colorbar(orientation='horizontal',fraction=0.08, pad=0.1) plt.subplot(222) ; plt.imshow(v2,origin='lower',vmin=0,cmap="RdYlGn"); plt.title('VODCA VOD-X') ; cbar = plt.colorbar(orientation='horizontal',fraction=0.08, pad=0.1) plt.subplot(223) ; plt.imshow(v3,origin='lower',vmin=0,vmax=6,cmap="RdYlGn"); plt.title('Matched VOD-X') ; cbar = plt.colorbar(orientation='horizontal',fraction=0.08, pad=0.1) plt.subplot(224) ; plt.imshow(v4,origin='lower',vmin=0,vmax=1,cmap="RdYlGn"); plt.title('R : Matched VOD-X vs LAI GEOV2') ; cbar = plt.colorbar(orientation='horizontal',fraction=0.08, pad=0.1) plt.rcParams.update({'font.size': 10}) plt.show() ''' ''' v = corr_tmp_VOD_LAIisba.values.reshape((140,280)) v2 = corr_tmp_VOD_LAIobs.values.reshape((140,280)) v3 = corr_tmp_LAIisba_LAIobs.values.reshape((140,280)) plt.subplot(221) ; plt.imshow(v,origin='lower',vmin=0,vmax=1.,cmap='bwr') ; plt.title('R : VODCA-X vs. LAI ISBA') ; cbar = plt.colorbar(orientation='horizontal') plt.subplot(222) ; plt.imshow(v2,origin='lower',vmin=0,vmax=1.,cmap='bwr'); plt.title('R : VODCA-X vs. LAI GEOV2') ; cbar = plt.colorbar(orientation='horizontal') plt.subplot(223) ; plt.imshow(v3,origin='lower',vmin=0,vmax=1,cmap='bwr'); plt.title('R : LAI ISBA vs. LAI GEOV2') ; cbar = plt.colorbar(orientation='horizontal') plt.rcParams.update({'font.size': 10}) plt.show() ''' ''' print('R : VOD vs LAIisba (mean / median): ', corr_tmp_VOD_LAIisba.mean() ,' : ',corr_tmp_VOD_LAIisba.median()) print('R : VOD vs LAIobs (mean / median): ', corr_tmp_VOD_LAIobs.mean() ,' : ',corr_tmp_VOD_LAIobs.median()) print('R : LAIisba vs LAIobs (mean / median): ', corr_tmp_LAIisba_LAIobs.mean() ,' : ',corr_tmp_LAIisba_LAIobs.median()) ''' toto = vodx.copy()*np.nan #sys.exit() #''' #for i in tqdm(range((vodx.shape[2]))): for i in tqdm(range((vodx.shape[1]))): # season=((vodx.index.month>=0)) # season=((vodx.index.month>=4) & (vodx.index.month<=9)) # if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & ((patch_frac[0,i]+patch_frac[1,i]+patch_frac[2,i]) < 0.80)): # try: # aa = np.polyfit(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])],\ # vodx[i].ix[season][~np.isnan(vodx[i].ix[season])],2) # toto['Obs'][i].ix[season] = aa[0]*vodx[i].ix[season]**2+aa[1]*vodx[i].ix[season]+aa[2] # toto['Model'][i] = correlation(toto['Obs'][i].ix[season].values,vodx[i].ix[season].values)[0] # print i, correlation(toto['Obs'][i].ix[season].values,vodx[i].ix[season].values)[0] # except ValueError: # print('ValueError') # # season2=((vodx.index.month<=3) | (vodx.index.month>=10)) # if ((len(vodx[i].ix[season2][~np.isnan(vodx[i].ix[season2])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.10)): # try: # aa2 = np.polyfit(vodx[i].ix[season2][~np.isnan(vodx[i].ix[season2])],\ # vodx[i].ix[season2][~np.isnan(vodx[i].ix[season2])],2) # toto['Obs'][i].ix[season2] = aa2[0]*vodx[i].ix[season2]**2+aa2[1]*vodx[i].ix[season2]+aa2[2] # toto['Model'][i] = correlation(toto['Obs'][i].ix[season2].values,vodx[i].ix[season2].values)[0] # print i, correlation(toto['Obs'][i].ix[season2].values,vodx[i].ix[season2].values)[0] # except ValueError: # print('ValueError') # if ( (len(toto['Obs'][i][~np.isnan(toto['Obs'][i])])> 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.10)): # toto['Model'][i] = correlation(toto['Obs'][i].values,vodx[i].values)[0] # toto['Analysis'][i] = ubrmse(toto['Obs'][i].values,vodx[i].values) # print i, toto['Model'][i].ix[0],toto['Analysis'][i].ix[0] season=((vodx.index.month==12) | (vodx.index.month==1) | (vodx.index.month==2)) season2=(vodx.index.month==1) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: #aa = np.polyfit(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])],\ # vodx[i].ix[season][~np.isnan(vodx[i].ix[season])],2) #toto['Obs'][i].ix[season2] = aa[0]*vodx[i].ix[season2]**2+aa[1]*vodx[i].ix[season2]+aa[2] b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==1) | (vodx.index.month==2) | (vodx.index.month==3)) season2=(vodx.index.month==2) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: #aa = np.polyfit(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])],\ # vodx[i].ix[season][~np.isnan(vodx[i].ix[season])],2) #toto['Obs'][i].ix[season2] = aa[0]*vodx[i].ix[season2]**2+aa[1]*vodx[i].ix[season2]+aa[2] b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==2) | (vodx.index.month==3) | (vodx.index.month==4)) season2=(vodx.index.month==3) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==3) | (vodx.index.month==4) | (vodx.index.month==5)) season2=(vodx.index.month==4) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==4) | (vodx.index.month==5) | (vodx.index.month==6)) season2=(vodx.index.month==5) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==5) | (vodx.index.month==6) | (vodx.index.month==7)) season2=(vodx.index.month==6) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==6) | (vodx.index.month==7) | (vodx.index.month==8)) season2=(vodx.index.month==7) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==7) | (vodx.index.month==8) | (vodx.index.month==9)) season2=(vodx.index.month==8) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==8) | (vodx.index.month==9) | (vodx.index.month==10)) season2=(vodx.index.month==9) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==9) | (vodx.index.month==10) | (vodx.index.month==11)) season2=(vodx.index.month==10) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==10) | (vodx.index.month==11) | (vodx.index.month==12)) season2=(vodx.index.month==11) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') season=((vodx.index.month==11) | (vodx.index.month==12) | (vodx.index.month==1)) season2=(vodx.index.month==12) if ((len(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]) > 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): try: b = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).std()/\ (vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).std() a = (lai_cgls[i].ix[season][~np.isnan(lai_cgls[i].ix[season])]).mean() - \ b*(vodx[i].ix[season][~np.isnan(vodx[i].ix[season])]).mean() toto[i].ix[season2] = b*(vodx[i].ix[season2]) + a except ValueError: print('ValueError') toto[toto>10]=np.nan toto[toto<0]=np.nan ''' for i in range((vodx.shape[2])): if ( (len(toto['Obs'][i][~np.isnan(toto['Obs'][i])])> 0) & (patch_frac[0,i]+patch_frac[1,i] < 0.80)): #toto['Obs'][i] = pd.rolling_mean(toto['Obs'][i],30) toto['Model'][i] = ubrmse(toto['Obs'][i].values,vodx[i].values) #toto['Model'][i] = correlation(toto['Obs'][i].values,vodx[i].values)[0] toto['Analysis'][i] = ubrmse(toto['Obs'][i].values,lai_isba[i].values) #toto['Analysis'][i] = correlation(toto['Obs'][i].values,lai_isba[i].values)[0] print(i, toto['Model'][i].ix[0],toto['Analysis'][i].ix[0]) ''' ''' v = toto['Obs'].mean(axis=0).values.reshape((140,280)) plt.subplot(221) ; plt.imshow(v,origin='lower') ; plt.title('LAI from VOD') cbar = plt.colorbar(orientation='horizontal') v = lai_cgls.mean(axis=0).values.reshape((140,280)) plt.subplot(222) ; plt.imshow(v,origin='lower') ; plt.title('LAI GEOV2') cbar = plt.colorbar(orientation='horizontal') v = toto['Model'].ix[0].values.reshape((140,280)) plt.subplot(223) ; plt.imshow(v,origin='lower') ; plt.title('ubRMSD : LAI GEOV2 vs LAI from VOD') cbar = plt.colorbar(orientation='horizontal') v = toto['Analysis'].ix[0].values.reshape((140,280)) plt.subplot(224) ; plt.imshow(v,origin='lower') ; plt.title('ubRMSD : LAI ISBA vs LAI from VOD') #plt.subplot(224) ; plt.imshow(v,origin='lower') ; plt.title('R : LAI ISBA vs LAI from VOD') cbar = plt.colorbar(orientation='horizontal') plt.rcParams.update({'font.size': 10}) plt.show() #save('VOD_FIT_CDF', ext="ps", close=True, verbose=True) v = toto['Obs'].mean(axis=0).values.reshape((140,280)) plt.subplot(221) ; plt.imshow(v,origin='lower') ; plt.title('LAI from VOD') cbar = plt.colorbar(orientation='horizontal') v = lai_cgls.mean(axis=0).values.reshape((140,280)) plt.subplot(222) ; plt.imshow(v,origin='lower') ; plt.title('LAI GEOV2') cbar = plt.colorbar(orientation='horizontal') v = toto['Obs'].mean(axis=0).values.reshape((140,280))-lai_cgls.mean(axis=0).values.reshape((140,280)) plt.subplot(223) ; plt.imshow(v,origin='lower') cbar = plt.colorbar(orientation='horizontal') #v = toto['Model'].ix[0].reshape((140,280)) #plt.subplot(223) ; plt.imshow(v,origin='lower') ; plt.title('ubRMSD : LAI GEOV2 vs LAI from VOD') #cbar = plt.colorbar(orientation='horizontal') #v = toto['Analysis'].ix[0].reshape((140,280)) #plt.subplot(224) ; plt.imshow(v,origin='lower') ; plt.title('ubRMSD : LAI ISBA vs LAI from VOD') ##plt.subplot(224) ; plt.imshow(v,origin='lower') ; plt.title('R : LAI ISBA vs LAI from VOD') #cbar = plt.colorbar(orientation='horizontal') plt.rcParams.update({'font.size': 10}) plt.show() ''' ''' #plt.plot(pd.rolling_mean(toto['Obs'],window=30,min_periods=5,center=True),\ # label='LAI from VOD',marker='*',linewidth=0) ; plt.plot(test, label='LAI_obs',marker='*',linewidth=0) #plt.plot(lai_isba.mean(axis=1),label='LAI_ISBA') ; plt.legend(loc='best') ; plt.show() #for ii in [1,2,3,4,5,6,7,8,9,10,11,12]: # season = (vodx.index.month == ii) # # corr_tmp_VOD_LAIisba = vodx.ix[season,:].corrwith(lai_isba.ix[season,:],axis=0) # corr_tmp_VOD_LAIobs = vodx.ix[season,:].corrwith(vodx.ix[season,:],axis=0) # corr_tmp_LAIisba_LAIobs = lai_isba.ix[season,:].corrwith(vodx.ix[season,:],axis=0) # # corr_tmp_VOD_LAIisba.values[pl.where(pl.isinf(corr_tmp_VOD_LAIisba.values))] = pl.nan # corr_tmp_VOD_LAIobs.values[pl.where(pl.isinf(corr_tmp_VOD_LAIobs.values))] = pl.nan # corr_tmp_LAIisba_LAIobs.values[pl.where(pl.isinf(corr_tmp_LAIisba_LAIobs.values))] = pl.nan # # v = corr_tmp_VOD_LAIisba.values.reshape((140,280)) # v2 = corr_tmp_VOD_LAIobs.values.reshape((139,280)) # v3 = corr_tmp_LAIisba_LAIobs.values.reshape((140,280)) # plt.subplot(221) ; plt.imshow(v,origin='lower') ; plt.title('R : VOD vs. LAI ISBA') ; cbar = plt.colorbar(orientation='horizontal') # plt.subplot(222) ; plt.imshow(v2,origin='lower'); plt.title('R : VOD vs. LAI OBS') ; cbar = plt.colorbar(orientation='horizontal') # plt.subplot(223) ; plt.imshow(v3,origin='lower'); plt.title('R : LAI ISBA vs. LAI OBS') ; cbar = plt.colorbar(orientation='horizontal') # plt.rcParams.update({'font.size': 12}) # plt.show() # print 'R : VOD vs LAIisba (mean / median): ', corr_tmp_VOD_LAIisba.mean() ,' : ',corr_tmp_VOD_LAIisba.median() # print 'R : VOD vs LAIobs (mean / median): ', corr_tmp_VOD_LAIobs.mean() ,' : ',corr_tmp_VOD_LAIobs.median() # print 'R : LAIisba vs LAIobs (mean / median): ', corr_tmp_LAIisba_LAIobs.mean() ,' : ',corr_tmp_LAIisba_LAIobs.median() ''' #A = pd.rolling_mean(toto,window=30,min_periods=5,center=True) A = toto.rolling(window=30,min_periods=5,center=True).mean() #A.to_pickle('LAIfromVODCAX_V5_rollingMean.PData') #A = toto['Obs'] #toto['Obs'].to_pickle('LAIfromVODCAX_V4.PData') #A = toto['Obs'] #sys.exit() #A = pd.read_pickle('LAIfromVODCAX_V4.PData') for d in tqdm(range(len(A))): if d < 5844: #print(A.index[d]) try: #print(min(A.ix[d][~np.isnan(A.ix[d])]), max(A.ix[d][~np.isnan(A.ix[d])])) # Clean nan values A.ix[d][np.invert(~np.isnan(A.ix[d]))] = 999 # Specify date for file name YY = str(A.index[d])[2:4] MM = str(A.index[d])[5:7] DD = str(A.index[d])[8:10] # create file f= open('VODC_2_LAI_cdf/CANARI/CANARI_NATURE_'+YY+MM+DD+'H09.DAT','a+') # write in file for i in range(len(A.ix[d])): #print(A.ix[d][i]) f.write(str(A.ix[d][i])+'\n') #time.sleep(0.01) # close file f.close() except ValueError: print('No values') # Clean nan values A.ix[d][np.invert(~np.isnan(A.ix[d]))] = 999 # Specify date for file name YY = str(A.index[d])[2:4] MM = str(A.index[d])[5:7] DD = str(A.index[d])[8:10] # create file f= open('VODC_2_LAI_cdf/CANARI/CANARI_NATURE_'+YY+MM+DD+'H09.DAT','a+') # write in file for i in range(len(A.ix[d])): f.write(str(A.ix[d][i])+'\n') # close file f.close() #A.to_pickle('LAIfromVODCAX_V5_rollingMean.PData') import joblib joblib.dump(A,'LAIfromVODCAC_V7_2003-2018.PData') ''' a= [] for d in range(len(A)): #if d > 2191: print(A.index[d]) try: print(min(A.ix[d][~np.isnan(A.ix[d])]), max(A.ix[d][~np.isnan(A.ix[d])])) # Clean nan values print(len(A.ix[d])) A.ix[d][np.invert(~np.isnan(A.ix[d]))] = 999 # Specify date for file name YY = str(A.index[d])[2:4] MM = str(A.index[d])[5:7] DD = str(A.index[d])[8:10] # create file time.sleep(0.01) f= open('VOD_2_LAI_cdf/CANARI/CANARI_NATURE_'+YY+MM+DD+'H09.DAT','w+') print(len(A.ix[d])) # write in file for i in range(len(A.ix[d])): #print(A.ix[d][i]) f.write(str(A.ix[d][i])+'\n') # close file time.sleep(0.01) f.close() except ValueError: print('No values') # Clean nan values A.ix[d][np.invert(~np.isnan(A.ix[d]))] = 999 # Specify date for file name YY = str(A.index[d])[2:4] MM = str(A.index[d])[5:7] DD = str(A.index[d])[8:10] # create file f= open('VOD_2_LAI_cdf/CANARI/CANARI_NATURE_'+YY+MM+DD+'H09.DAT','w+') # write in file for i in range(len(A.ix[d])): f.write(str(A.ix[d][i])+'\n') # close file f.close() ''' ''' for d in range(len(A)): if len(A.ix[d]) != 39200: print("Error") for d in range(len(A)): #if d > 2191: print(A.index[d]) try: print(min(A.ix[d][~np.isnan(A.ix[d])]), max(A.ix[d][~np.isnan(A.ix[d])])) # Clean nan values print(len(A.ix[d])) A.ix[d][np.invert(~np.isnan(A.ix[d]))] = 999 # Specify date for file name YY = str(A.index[d])[2:4] MM = str(A.index[d])[5:7] DD = str(A.index[d])[8:10] # create file #time.sleep(0.01) f= open('VOD_2_LAI_cdf/CANARI/CANARI_NATURE_'+YY+MM+DD+'H09.DAT','w+') print(len(A.ix[d])) # write in file w = A.ix[d] f.write(str(w)+'\n') # close file #time.sleep(0.01) f.close() except ValueError: print('No values') # Clean nan values A.ix[d][np.invert(~np.isnan(A.ix[d]))] = 999 # Specify date for file name YY = str(A.index[d])[2:4] MM = str(A.index[d])[5:7] DD = str(A.index[d])[8:10] # create file f= open('VOD_2_LAI_cdf/CANARI/CANARI_NATURE_'+YY+MM+DD+'H09.DAT','w+') # write in file for i in range(len(A.ix[d])): f.write(str(A.ix[d][i])+'\n') # close file f.close() '''
[ "noreply@github.com" ]
noreply@github.com
2c6de1d98469164b77e496a0c33bfd4a67f22e17
1f5420fda4359bfc21b53de3a5f6e6a93b47b996
/ch02/ch02_menu.py
5abfa489c2386f900a6c3f914341bd20f4c6a22b
[]
no_license
fl0wjacky/wxPython
600f5bfccad3ef5589e11573b30cffd1e2708b83
50b3cd5a63750d36065684b73aab0da70ff650a7
refs/heads/master
2022-09-02T04:24:47.540157
2022-08-10T04:13:17
2022-08-10T04:13:17
13,976,582
1
0
null
null
null
null
UTF-8
Python
false
false
1,071
py
#! /usr/bin/env python import wx import wx.py.images as images class ToolbarFrame(wx.Frame): def __init__(self, parent, id): wx.Frame.__init__(self, parent, id, 'Toolbars', size=(300,200)) panel = wx.Panel(self) panel.SetBackgroundColour('White') statusBar = self.CreateStatusBar()#1 toolbar = self.CreateToolBar()#2 toolbar.AddSimpleTool(wx.NewId(),images.getPyBitmap(),"New","Long help for 'New'")#3 toolbar.Realize()#4 menuBar = wx.MenuBar() menu1 = wx.Menu() menuBar.Append(menu1,"&File") menu2 = wx.Menu() #6 menu2.Append(wx.NewId(),"&Copy","Copy in status bar") menu2.Append(wx.NewId(),"C&ut","") menu2.Append(wx.NewId(),"Paste","") menu2.AppendSeparator() menu2.Append(wx.NewId(),"&Options...","Display Options") menuBar.Append(menu2,"&Edit") self.SetMenuBar(menuBar) if __name__ == "__main__": app = wx.PySimpleApp() frame = ToolbarFrame(parent=None, id = -1) frame.Show() app.MainLoop()
[ "flowjacky@gmail.com" ]
flowjacky@gmail.com
e9969c27708523aa763276b502fa9419d9cf3558
8de8185760c9d3696d7244bb04b0c48d60b73e9b
/crawler/tech/gizmodo.py
b43d2c9a2466e702dfdeaefc63f48a1c08736273
[]
no_license
text-master/textmaster
8e9a36003efff020ac44016c7313df4ad0030cc3
ba3b9dc09f36bd42a441ed812f8ec66ec853494f
refs/heads/master
2021-01-24T04:43:11.534736
2018-05-12T03:06:21
2018-05-12T03:06:21
122,946,499
0
0
null
2018-02-26T12:25:02
2018-02-26T09:33:40
null
UTF-8
Python
false
false
805
py
from bs4 import BeautifulSoup import requests URL = "http://gizmodo.com/tag/science?startIndex=%d" file = open('gizmodo.txt', 'a') # r = requests.get("https://techcrunch.com/page/2") for i in xrange(6, 10): index = i*20 r = requests.get(URL % index) print URL % index soup = BeautifulSoup(r.text, 'lxml') for link in soup.select('.post-list--pe .headline a'): link = link.get('href') print(link) article = requests.get(link) article_soup = BeautifulSoup(article.text, 'lxml') para = article_soup.select('.post-content')[0].find_all('p') for p in para: text = p.getText() text = text.encode('utf-8').strip() file.write('\n') file.write(text) file.write('\n!!!@@@$$$\n')
[ "namhoang.td09@gmail.com" ]
namhoang.td09@gmail.com
88563445332a6acdcd4a280669e4ef1ca4812a12
6c6cf74998bd03586c23e8881336d9d3cb279582
/pypecast/models/model.py
da368611e2b4eafb24ab7d3e210e71258b10713d
[ "MIT" ]
permissive
guilhermecano/PypeCast
7583d9f54a71e25a94e70fb76671a8db3e729b45
0282fb9e8fa8ca88e74cbab79e92f82fa3300799
refs/heads/master
2020-04-09T09:37:52.990972
2018-12-14T21:01:18
2018-12-14T21:01:18
160,240,449
2
0
null
null
null
null
UTF-8
Python
false
false
8,907
py
from __future__ import absolute_import from __future__ import print_function from __future__ import division from keras.layers import Dense, Dropout, LSTM, Input from keras.models import Sequential import seaborn as sns import matplotlib.pyplot as plt import warnings from pypecast.metrics.metrics import * class Model(object): '''Base class for models''' def __init__(self, n_lag, n_seq): assert n_lag > 0 and n_seq >0, 'n_seq and n_lag cant be null or negative' self._model = None self._forecasts = None self._actual = None self._naive_init = None #Must define variables self._n_lag = n_lag self._n_seq = n_seq def summary(self): if self._model is not None: self._model.show() else: print('The model was not defined yet. Please use the fit() method first.') def fit(self, train): raise(NotImplementedError) def _forecast_model(self, X): # reshape input pattern to [samples, timesteps, features] X = X.reshape(1, 1, len(X)) # make forecast forecast = self._model.predict(X) # convert to array return [x for x in forecast[0, :]] def _design_network(self, out_shape, input_shape=None): raise(NotImplementedError) def forecast_series(self, test, scaler, orig_series): assert self._model is not None, "Model must be trained first" if isinstance(orig_series,(list,)): orig_series = np.array(orig_series) if isinstance(test,(list,)): test = np.array(test) forecasts = list() for i in range(len(test)): X, y = test[i, 0:self._n_lag], test[i, self._n_lag:] # make forecast forecast = self._forecast_model(X) # store the forecast forecasts.append(forecast) self._naive_init = orig_series[orig_series.shape[0] - test.shape[0] - self._n_seq] #inverse_transform forecasts = self._inverse_transform(orig_series,forecasts,scaler,test.shape[0]+2) self._forecasts = forecasts #Actual values actual = [row[self._n_lag:] for row in test] self._actual = self._inverse_transform(orig_series, actual, scaler, test.shape[0]+2) return forecasts def get_forecast(self): return self._forecasts # invert differenced forecast def _inverse_difference(self,last_ob, forecast): # invert first forecast inverted = list() inverted.append(forecast[0] + last_ob) # propagate difference forecast using inverted first value for i in range(1, len(forecast)): inverted.append(forecast[i] + inverted[i-1]) return inverted # inverse data transform on forecasts def _inverse_transform(self, series, forecasts, scaler, n_test): inverted = list() for i in range(len(forecasts)): # create array from forecast forecast = np.array(forecasts[i]) forecast = forecast.reshape(1, len(forecast)) # invert scaling if scaler[0] is not None: forecast = scaler[0].inverse_transform(forecast) forecast = forecast[0, :] if scaler[1]: # invert differencing index = len(series) - n_test + i - 1 last_ob = series.values[index] forecast = self._inverse_difference(last_ob, forecast) inverted.append(forecast) return inverted def _use_metrics(self, actual, predicted): #RMSE m1 = rmse(actual, predicted) #MAE m2 = mae(actual, predicted) #MAPE m3 = mape(actual, predicted) #sMAPE m4 = smape(actual, predicted) return m1,m2,m3,m4 def evaluate_forecast(self, save_report = False, filename = '../reports/evaluation.xlsx', return_dicts = False, verbose = 1): if verbose!=0: print('-'*20 + 'Forecast evaluation' + '-'*20) print('') steps_metrics = dict() naive_metrics = dict() instant_metrics = {'RMSE':[], 'MAE':[], 'MAPE':[], 'sMAPE': []} # Metrics for each timestep in future for i in range(self._n_seq): if verbose!=0: print('Step t+{}'.format(i+1)) actual = [row[i] for row in self._actual] #print(np.array(actual)) predicted = [forecast[i] for forecast in self._forecasts] m1,m2,m3,m4 = self._use_metrics(actual,predicted) if verbose!=0: print('t+%d RMSE: %f' % ((i+1), m1)) print('t+%d MAE: %f' % ((i+1), m2)) print('t+%d MAPE: %f' % ((i+1), m3)) print('t+%d sMAPE: %f' % ((i+1),m4)) steps_metrics[(i+1)] = [m1,m2,m3,m4] if verbose!=0: print('-'*60) # Metrics for naive_model: if verbose!=0: print() print('-'*20 + 'Naive forecast evaluation' + '-'*20) #Get persistent-series frocasts last_ob = [row[0] for row in self._actual] last_ob.pop() last_ob.insert(0,self._naive_init) #Evaluate the persistent case naive_forecasts = list() for i in last_ob: lst = [i]*self._n_seq naive_forecasts.append(lst) for i in range(self._n_seq): if verbose!=0: print('Step t+{}'.format(i+1)) actual = [row[i] for row in self._actual] naive = [nf[i] for nf in naive_forecasts] m1,m2,m3,m4 = self._use_metrics(actual,naive) if verbose!=0: print('t+%d RMSE: %f' % ((i+1), m1)) print('t+%d MAE: %f' % ((i+1), m2)) print('t+%d MAPE: %f' % ((i+1), m3)) print('t+%d sMAPE: %f' % ((i+1),m4)) naive_metrics[(i+1)] = [m1,m2,m3,m4] if verbose!=0: print('-'*60) if verbose!=0: print() print('-'*20 + 'Evaluation for each forecast' + '-'*20) # Metrics for each instant in time-series for i in range(len(self._actual)): m1,m2,m3,m4 = self._use_metrics(self._actual[i],self._forecasts[i]) if verbose!=0: print('Index %d RMSE: %f' % ((i+1), m1)) print('Index %d MAE: %f' % ((i+1), m2)) print('Index %d MAPE: %f' % ((i+1), m3)) print('Index %d sMAPE: %f' % ((i+1),m4)) instant_metrics['RMSE'].append(m1) instant_metrics['MAE'].append(m2) instant_metrics['MAPE'].append(m3) instant_metrics['sMAPE'].append(m4) if verbose!=0: print('-'*60) if save_report: # Create a Pandas Excel writer using XlsxWriter as the engine. writer = pd.ExcelWriter(filename, engine='xlsxwriter') df1 = pd.DataFrame(steps_metrics, index=['RMSE','MAE','MAPE','sMAPE']) df2 = pd.DataFrame(steps_metrics, index=['RMSE','MAE','MAPE','sMAPE']) df3 = pd.DataFrame(instant_metrics) # Write each dataframe to a different worksheet. df1.to_excel(writer, sheet_name='Metrics by forecasted step') df2.to_excel(writer, sheet_name='Naive forecast') df3.to_excel(writer, sheet_name='Metrics at each index') writer.save() if return_dicts: return steps_metrics, instant_metrics def plot_forecasts(self, series, forecasts, test): n_test = test.shape[0]+2 sns.set() # plot the entire dataset in blue warnings.filterwarnings("ignore") plt.figure(0,figsize=[12,6]) plt.plot(series.values, label='True time-series') # if self._n_seq == 1: # plot the forecasts for i in range(len(forecasts)): off_s = len(series) - n_test + i off_e = off_s + len(forecasts[i]) xaxis = [x for x in range(off_s, off_e)] if i==0: lb = 'Forecasted time-series' else: lb = None if self._n_seq>1: sns.lineplot(x=xaxis, y=forecasts[i], label=lb,color='r',hue_order=False) else: sns.scatterplot(x=xaxis, y=forecasts[i], label=lb,color='r',hue_order=False) #plt.plot(xaxis, forecasts[i], color='red',label='Forecasted time-series') # show the plot plt.title('Forecasting in testing set of time-series') plt.xlabel('timestep') plt.ylabel('Value') plt.show() sns.reset_defaults()
[ "gui.c.lopes@gmail.com" ]
gui.c.lopes@gmail.com
38c1fd8760bcce05b238e280801a028e7fa6b28f
7abea7671cfc3037b920b7883e592c1aab82e236
/blog/migrations/0005_alter_post_timestamp.py
947b852666cae5b39968672274f7db3a44d16b24
[]
no_license
RRM00/blog-assignment
ae0810e05179c9f7dac6329129af96cdc7ba665a
0031500e016c5d19513f27c70f2f96222b693a32
refs/heads/main
2023-04-14T16:38:49.667508
2021-05-03T05:22:12
2021-05-03T05:22:12
363,724,298
0
0
null
null
null
null
UTF-8
Python
false
false
402
py
# Generated by Django 3.2 on 2021-05-02 12:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0004_post_summary'), ] operations = [ migrations.AlterField( model_name='post', name='timeStamp', field=models.DateTimeField(auto_now_add=True), ), ]
[ "noreply@github.com" ]
noreply@github.com
0318e0aaf209f5b5619b4a826bfaf8af77341a0c
57bab37cb279cc6c59262a711ccf228867e8ddc6
/Guia2/3.py
f9a346b91d48cacb58c02e6a5b659e70ee5d5dd8
[]
no_license
gabymy/Guias-de-Estudios-PYTHON
d56a94b7bd7b04a25c8af2c368c976e47f3e2b51
6ff0eeee6ee5ab8a4057ca12a61202214d0e9065
refs/heads/main
2023-08-01T22:45:02.101972
2021-10-08T19:08:23
2021-10-08T19:08:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
695
py
# Crear una función que pida un año y que escriba si es bisiesto o no. Se recuerda que # los años bisiestos son múltiplos de 4, pero los múltiplos de 100 no lo son, aunque los # múltiplos de 400 sí. Estos son algunos ejemplos de posibles respuestas: 2012 es # bisiesto, 2010 no es bisiesto, 2000 es bisiesto, 1900 no es bisiesto. print('Comprobador de años bisiestos') fecha = int(input("Escriba un año y le diré si es bisiesto: ")) def es_bisiesto(anio): return anio % 400 == 0 or (anio % 100 != 0 and anio % 4 == 0) if es_bisiesto(fecha): print("El año", fecha, "es un año bisiesto.") else: print("El año", fecha, "no es un año bisiesto.")
[ "noreply@github.com" ]
noreply@github.com
d86b86de0883e30ddc235898d94df5c11ee4e183
92bf965fb0125da24f4503ed685c114cfb8523c0
/sandbox/testPlot.py
90e205a962cdca4a8c51308eac423f81dd27fbf4
[]
no_license
fsbr/unh-startracker
c9f2f1420d3ef7f051d71e32bd7328fbe8dd4aa2
f023aa51733633e4ef1fd7f4c09e117f95eb721b
refs/heads/master
2021-07-16T09:27:01.757223
2021-06-29T22:21:50
2021-06-29T22:21:50
43,343,289
0
0
null
null
null
null
UTF-8
Python
false
false
248
py
import time import numpy as np import matplotlib.pyplot as plt plt.axis([0, 1000, 0, 1]) # does interactive plotting plt.ion() plt.show() for i in range(1000): y = np.random.random() plt.scatter(i, y) plt.draw() time.sleep(0.05)
[ "thomasckfuller@gmail.com" ]
thomasckfuller@gmail.com
0c7cb64d07da4a007ef4afbd7c24b3fad8653680
bebe6e9195dce6f47fe2f52a06ac85519ab969ac
/binary_search_2d_array_slices.py
11f04a487ed47d95561a858cd78cd8aea22e8a26
[]
no_license
jbobo/leetcode
f038ee934c4435a2f5a3e987b3d5b70b860a25e2
3894425256f8504f7c8f1903e47f670c6fa32a92
refs/heads/master
2022-11-05T07:19:48.897066
2020-06-24T01:20:25
2020-06-24T01:20:25
274,544,298
1
0
null
null
null
null
UTF-8
Python
false
false
3,010
py
#!/usr/bin/env python3 """ Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties: Integers in each row are sorted in ascending from left to right. Integers in each column are sorted in ascending from top to bottom. Example: Consider the following matrix: [ [1, 4, 7, 11, 15], [2, 5, 8, 12, 19], [3, 6, 9, 16, 22], [10, 13, 14, 17, 24], [18, 21, 23, 26, 30] ] Given target = 5, return true. Given target = 20, return false. https://leetcode.com/problems/search-a-2d-matrix-ii/ """ from math import ceil # - start in the middle. # - if node is bigger: # - add the middle node of the upper-right, lower-right, and lower-left quadrants # to the queue. # - if the node is smaller: # - add the middle node of the upper-right, lower-right, and upper-left quadrants # to the queue. # - if the current vertex value is the target, return TRUE. # - if the queue is empty, return FALSE. def searchMatrix(matrix, target): """Perform a quadrary search for a given target on the given 2d array. """ if not matrix or not matrix[0] or not target: return False queue = [] row_min = 0 row_max = len(matrix) - 1 col_min = 0 col_max = len(matrix[0]) - 1 queue.append((row_min, row_max, col_min, col_max)) while queue: submatrix = queue.pop(0) row_min = submatrix[0] row_max = submatrix[1] col_min = submatrix[2] col_max = submatrix[3] # Base case, no elements if (row_max < row_min or col_max < col_min): return False # Base case, Single cell if (row_min == row_max and col_min == col_max): if matrix[row_min][col_min] == target: return True row_mid = row_min + ((row_max - row_min) / 2) col_mid = col_min + ((col_max - col_min) / 2) if matrix[row_min][col_min] == target: return True # Search Top-Right queue.append(row_min, row_mid + 1, col_mid + 1, col_max) # Search Bottom-Left queue.append(row_mid + 1, row_max, col_min, col_mid) # Search Top-Left if (target < matrix[row_mid][col_mid]): queue.append(row_min, row_mid, col_min, col_mid) # Search Bottom-Right else: queue.append(row_mid + 1, row_max, col_mid + 1, col_max) return False if __name__ == "__main__": # matrix = [ # [1, 4, 7, 11, 15], # [2, 5, 8, 12, 19], # [3, 6, 9, 16, 22], # [10, 13, 14, 17, 24], # [18, 21, 23, 26, 30] # ] # target = 27 # matrix = [ # [1, 4, 7, 11, 15], # [2, 5, 8, 12, 19], # [3, 6, 9, 16, 22], # [10, 13, 14, 17, 24], # [18, 21, 23, 26, 30] # ] # target = 5 matrix = [ [1, 4], [2, 5] ] target = 1 print("Is %s in the matrix? %s" % (target, searchMatrix(matrix, target))) # print(matrix)
[ "nedbobo@Neds-MacBook-Pro.local" ]
nedbobo@Neds-MacBook-Pro.local
b6506ca0c4ad00b48fefffd880f27f6b56a0c962
ac14df0df265cedd09a13ef049434d00f7f4260b
/recoxplainer/config.py
96983f417577df3aedbeb673d4788069df087510
[]
no_license
amorsun/recoxplainer
0e33986a1d98b0050238434467479fd27eafabd8
f9afc318e2c29c7519e9880fdd0ced09605cd197
refs/heads/master
2023-03-14T02:26:49.434910
2021-01-31T20:45:17
2021-01-31T20:45:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
import yaml from box import Box import os with open("configs/config.yml", "r") as yml_file: full_cfg = yaml.safe_load(yml_file) cfg = Box({**full_cfg["base"]}, default_box=True, default_box_attr=None)
[ "CobaLu01@de-ber-m45dml85.fritz.box" ]
CobaLu01@de-ber-m45dml85.fritz.box
c927be2460b22f079fb23a09cae7ad7bf3fa7aea
0e6802ed46b3be0e58396b0e0a089d9da8727be6
/PyPlayground/knapSack/2.py
68c99edfa6ccad248b4c27f8ca09989db8dcbd15
[]
no_license
wbglaeser/cplayground
328825d6d37f23f7acc2d373b02f72b8afbc68cc
e3dc84e8198535fcd5d5dafa126d4ea345c59c2c
refs/heads/main
2023-03-25T21:43:54.998971
2021-02-23T09:16:11
2021-02-23T09:16:11
308,050,125
0
0
null
null
null
null
UTF-8
Python
false
false
338
py
W = 30 wt = [1,2,4,6] v = [5,3,5,6] v = [a-b for a,b in zip(v, wt)] K = [[0 for i in range(W + 1)] for j in range(len(wt)+1)] for w in range(1, W+1): for k in range(len(wt)): if wt[k] > w: K[k+1][w] = K[k][w] else: K[k+1][w] = max(v[k]+K[k][w-wt[k]], K[k][w]) for line in K: print(line) print(K[-1][-1])
[ "ben.glaeser@tuta.io" ]
ben.glaeser@tuta.io
65c8c7afd51337f9030ae030d6fd82b48e1fa74f
f14bbd0133937b8b433685f971f569ad4ca160c0
/Code/Peirce.py
2c63005601f166d088b7a6f8ebd68c9ba2cdac8b
[]
no_license
bchenghi/peirce-alpha-system
2e43fc32d9db0c2c35e50f0b6ec480213ca3d107
5f7969e3dde47412455dda2931d4f429aa96c499
refs/heads/main
2023-08-18T16:16:05.466642
2021-09-19T16:56:06
2021-09-19T16:56:06
367,814,510
0
0
null
null
null
null
UTF-8
Python
false
false
33,476
py
import tkinter as tk import math from itertools import permutations from pyswip.prolog import Prolog # values for horizontal and vertical padding xpadding = 20 ypadding = 20 # default values for height and width if no children xdefault = 50 ydefault = 50 # Graph that was copied or cut copyorcutGraphs = [] # State and state pointers for non-proof mode and proof mode proofMode = False states = [] statesProof = [] pointer = -1 pointerProof = -1 graph = None topGraphId = None distance_between = 20 winW = 500 winH = 500 boxWidth = 10 bgColor = '#fff' selectedColor = 'Grey' defaultColor = '#fb0' root = tk.Tk() canvas = tk.Canvas(root, width=winW, height=winH, borderwidth=0, highlightthickness=0, bg=bgColor) prolog = Prolog() prolog.consult("peirce.pl") # Formula entry for start command enterBtn = None entry = None insertionButton = None insertionEntry = None displayText = None var = tk.StringVar() var.set("Welcome! Enter a formula in 'start' to get started") multiSelectText = None mSVar = tk.StringVar() deiterationButton = None runIteration = False runDeiteration = False multiSelected = [] multiSelectParent = None firstSelected = [] def deselectMulti(): global multiSelected for i in range(len(multiSelected)-1, -1, -1): deselectGraph(multiSelected[i]) # Methods for printing graph def clearAndPrint(): global graph global entry global enterBtn global displayText global multiSelectText global var canvas.delete("all") displayText = tk.Label(root, font=("Helvetica",12), width=100, textvariable=var, bg=bgColor) displayText.place(relx=0.5, rely=0.925, anchor=tk.CENTER) multiSelectText = tk.Label(root, font=("Helvetica",11), width=100, textvariable=mSVar, bg=bgColor) multiSelectText.place(relx=0.5, rely=0.97, anchor=tk.CENTER) if graph != None: graph.x1 = 2 graph.y1 = 2 graph.calculateCoord() printGraph(graph) def printGraph(inGraph): printGraphRec(inGraph, True) def printGraphRec(inGraph, firstRun): global canvas if (type(inGraph) == Box): id = canvas.create_rectangle(inGraph.x1, inGraph.y1, inGraph.x2, inGraph.y2, width=boxWidth, outline=defaultColor) inGraph.id = id elif type(inGraph) == Atom: id = canvas.create_text((inGraph.x1 + inGraph.x2)//2, (inGraph.y1 + inGraph.y2)//2, font=('Helvetica', 20), fill=defaultColor, text=inGraph.char) inGraph.id = id elif type(inGraph) == Graph: id = canvas.create_rectangle(inGraph.x1, inGraph.y1, inGraph.x2, inGraph.y2, fill=bgColor, outline=bgColor) canvas.lift(id) inGraph.id = id if firstRun: global topGraphId topGraphId = id for g in inGraph.children: printGraphRec(g, False) # Assigns global selected variable with selected graph, updates color of selected/deselected graphs def select(*args): global multiSelected global graph ids = canvas.find_overlapping(args[0].x, args[0].y, args[0].x+1, args[0].y+1) selectedGraph = None if len(ids) > 0: selectedGraph = find(ids[len(ids)-1], graph) if len(ids) == 0: selectedGraph = graph if runIteration: multiSelected = [selectedGraph] iterationSecond() deselectMulti() return # deselect previously selected graph if selectedGraph in multiSelected: deselectGraph(selectedGraph) return global multiSelectParent if multiSelectParent == None: parents = findParents(selectedGraph.id, graph, None) if len(parents) > 0: multiSelectParent = parents[len(parents)-1] else: # selectedGraph was top level graph, with no parent, give it a place holder multiSelectParent if type(selectedGraph) == Graph: multiSelectParent = Graph(1) else: if len(multiSelected) == 1 and type(multiSelected[0]) == Graph and selectedGraph in multiSelected[0].children: var.set("Graph already selected by region") return if not selectedGraph in multiSelectParent.children: var.set("You can only multi-select graphs in the same depth") return if selectedGraph == None: selectedGraph = graph if type(selectedGraph) == Box: canvas.itemconfig(selectedGraph.id, outline=selectedColor) elif type(selectedGraph) == Atom: canvas.itemconfig(selectedGraph.id, fill=selectedColor) elif type(selectedGraph) == Graph: canvas.itemconfig(selectedGraph.id, fill=selectedColor, outline=selectedColor) if selectedGraph.id == topGraphId: canvas.config(bg=selectedColor) displayText.config(bg=selectedColor) multiSelectText.config(bg=selectedColor) multiSelected.append(selectedGraph) def deselectGraph(inGraph): resetGraphColor(inGraph) multiSelected.remove(inGraph) if len(multiSelected) == 0: global multiSelectParent multiSelectParent = None def resetGraphColor(inGraph): if inGraph != None: if type(inGraph) == Box: canvas.itemconfig(inGraph.id, outline=defaultColor) elif type(inGraph) == Atom: canvas.itemconfig(inGraph.id, fill=defaultColor) elif type(inGraph) == Graph: canvas.itemconfig(inGraph.id, fill=bgColor, outline=bgColor) canvas.configure(bg=bgColor) displayText.config(bg=bgColor) multiSelectText.config(bg=bgColor) # returns graph with given id def find(id, current): if id == current.id: return current else: for child in current.children: foundGraph = find(id, child) if foundGraph != None: return foundGraph return None # Returns list of parents def findParents(id, current, parent): if current == None: return [] if id == current.id: if parent == None: return [] return [parent] for child in current.children: parents = findParents(id, child, current) if len(parents) > 0: if parent == None: return parents result = [parent] result.extend(parents) return result return [] # Removes graph of given id, returns removed graph def cut(id, current, parent): if current == None: return None if id == current.id: # If current is entire graph, i.e. no parent if parent == None: global graph graph = Graph(0) var.set("Cut successful!") return current parent.removeChild(current) var.set("Cut successful!") return current else: for child in current.children: removed = cut(id, child, current) if removed != None: return removed return None # Copies the graph and sets the same ids. # Printing the graph with clearAndPrint, will set the ids to be unique from the original graph def copy(inGraph): copyGraph = None if type(inGraph) == Box: copyGraph = Box(inGraph.id) elif type(inGraph) == Atom: copyGraph = Atom(inGraph.char, inGraph.id) else: copyGraph = Graph(inGraph.id) if type(inGraph) != Box: for g in inGraph.children: childCopy = copy(g) copyGraph.addChild(childCopy) else: childCopy = copy(inGraph.children[0]) copyGraph.children[0] = childCopy return copyGraph def paste(inGraph, toPaste): if type(inGraph) == Atom: return False # Should not happen, handled in pasteCommand if inGraph == None: return False inGraph.addChild(toPaste) return True # Cuts selected graph and assigns it to copyorcutGraph, and reprints the graph def cutCommand(): resetStart() global graph global copyorcutGraphs if len(multiSelected) == 0: var.set("No graph selected yet") return copyorcutGraphs = [] copyGraph = copy(graph) for g in multiSelected: cutGraph = cut(g.id, copyGraph, None) copyorcutGraphs.append(cutGraph) graph = copyGraph clearAndPrint() var.set("Cut successful!") addState() deselectMulti() # Returns a copy of graph with given id def copyCommand(): resetStart() global copyorcutGraphs global multiSelected if len(multiSelected) == 0: var.set("No graph selected yet") return copyorcutGraphs = [] for g in multiSelected: newCopy = copy(g) copyorcutGraphs.append(newCopy) var.set("Copy successful!") deselectMulti() # Creates a copy of the copyorcutGraph, and pastes into selected, then reprints the graph def pasteCommand(): resetStart() global multiSelected global copyorcutGraphs global graph if len(copyorcutGraphs) == 0: var.set("No graph copied/cut yet") return if len(multiSelected) == 0: var.set("No graph selected yet") return if len(multiSelected) != 1: var.set("Only select one graph to paste into") return pasteGraph = copy(copyorcutGraphs[0]) copyGraph = copy(graph) toPasteInto = find(multiSelected[0].id, copyGraph) if len(copyorcutGraphs) > 1: pasteGraph = Graph(1) for g in copyorcutGraphs: copyOfG = copy(g) pasteGraph.addChild(copyOfG) pasteSuccessful = paste(toPasteInto, pasteGraph) if pasteSuccessful: var.set("Paste successful!") else: var.set("Not allowed to paste into atom") graph = copyGraph addState() clearAndPrint() deselectMulti() def clearEntry(*args): global entry global insertionEntry if entry != None: entry.delete(0,'end') if insertionEntry != None: insertionEntry.delete(0, 'end') # Parses user input, then generates and prints graph def parsePrintClearEntry(*args): entryInput = repr(entry.get())[1:-1] entryInput = entryInput.lower() global var global prolog global graph global states global pointer try: solns = list(prolog.query('input("%s", O).'%(entryInput))) if len(solns) == 0: var.set("Issue with input") return graph = formGraph(solns[0]['O']) clearEntry(args) var.set("Input accepted and transformed into graph!") addState() # convert soln into graph, and print except Exception as err: var.set("Issue with input") finally: resetEnd() # Forms graph from DCG parse tree, and returns graph def formGraph(input): if len(input) == 0: return Graph(1) resultGraph = Graph(0) formGraphRec(input, resultGraph) return resultGraph def formGraphRec(input, parent): if input == 'true': parent.addChild(Graph(1)) elif input == 'false': parent.addChild(Box()) elif len(input) == 1: parent.addChild(Atom(input.upper())) elif input[:3] == 'and': terms = split(input) newGraph = Graph(1) formGraphRec(terms[0], newGraph) formGraphRec(terms[1], newGraph) parent.addChild(newGraph) elif input[:3] == 'neg': term = input[4:-1] box = Box() formGraphRec(term, box) parent.addChild(box) # Splits conjunction and returns a list of two terms def split(input): solns = list(prolog.query('split("%s", O, O1).'%(input))) result = [] for soln in solns: result.append(soln['O']) result.append(soln['O1']) return result def ins_double_cut(): resetStart() global multiSelected global graph if len(multiSelected) == 0: var.set("No graph selected yet") return box1 = Box() for g in multiSelected: box1.addChild(copy(g)) box2 = Box() box2.addChild(box1) copyGraph = copy(graph) parentGraphs = findParents(multiSelected[0].id, copyGraph, None) parentGraph = None if len(parentGraphs) > 0: parentGraph = parentGraphs[len(parentGraphs) - 1] if len(multiSelected) == 1: parentGraph.replaceChild(multiSelected[0].id, box2) else: for g in multiSelected: parentGraph.removeChild(g) parentGraph.addChild(box2) graph = copyGraph else: # parentGraph is None, just set new graph as graph finalGraph = Graph(0) finalGraph.addChild(box2) graph = finalGraph addState() clearAndPrint() deselectMulti() def rem_double_cut(): resetStart() global multiSelected global graph if len(multiSelected) == 0: var.set("No graph selected yet") deselectMulti() return if len(multiSelected) != 1: var.set("Only select a single outer cut to remove double cut") deselectMulti() return if type(multiSelected[0]) != Box: var.set("Select an outer cut to remove a double cut!") deselectMulti() return # childrenInChildGraph should be a single box to do removal of double cut childrenInChildGraph = multiSelected[0].getChildren()[0].getChildren() if len(childrenInChildGraph) != 1 or type(childrenInChildGraph[0]) != Box: var.set("No double cut found") deselectMulti() return # innerBoxGraphChildren is the children in inner box's graph copyGraph = copy(graph) innerBoxGraphChildren = childrenInChildGraph[0].getChildren()[0].getChildren() selectedsParents = findParents(multiSelected[0].id, copyGraph, None) # If selected is a cut, will always have parent # selectedsParent is from the copied graph selectedsParent = selectedsParents[len(selectedsParents) - 1] selectedsParent.removeChild(multiSelected[0]) for g in innerBoxGraphChildren: selectedsParent.addChild(copy(g)) graph = copyGraph addState() clearAndPrint() deselectMulti() def iteration(): resetStart() global runIteration global firstSelected global multiSelectParent if len(multiSelected) == 0: var.set('Outer graph not selected yet') return firstSelected = multiSelected multiSelectParent = None resetFlags() runIteration = True var.set("Select inner region or cut to iterate graph into") def iterationSecond(): global firstSelected global runIteration global graph runIteration = False secondSelected = multiSelected[0] if len(multiSelected) == 0: var.set('Inner graph not selected yet') return if type(secondSelected) != Box and type(secondSelected) != Graph: var.set('Region or cut was not selected') for g in firstSelected: resetGraphColor(g) firstSelected = [] return isNested = True for g in firstSelected: if not nested(g, secondSelected): isNested = False break if not isNested: var.set("Second graph is not nested in first graph") for g in firstSelected: resetGraphColor(g) firstSelected = [] return toCopyGraph = None if type(firstSelected[0]) != Graph: newFirstSelected = Graph(1) for g in firstSelected: newFirstSelected.addChild(g) toCopyGraph = newFirstSelected else: toCopyGraph = firstSelected[0] copiedGraph = copy(graph) copySecondSelected = find(secondSelected.id, copiedGraph) copyOfFirst = copy(toCopyGraph) addSuccess = copySecondSelected.addChild(copyOfFirst) if addSuccess: var.set('Iteration successful!') graph = copiedGraph addState() resetEnd() firstSelected = [] def deiteration(): resetStart() global firstSelected global runDeiteration global deiterationButton global multiSelectParent if len(multiSelected) == 0: var.set('Outer graph not selected yet') return firstSelected = [] for i in multiSelected: firstSelected.append(i) deselectMulti() setupDeiteration() multiSelectParent = None resetFlags() runDeiteration = True def deiterationSecond(): global firstSelected global runDeiteration global deiterationButton global graph runDeiteration = False if len(multiSelected) == 0: var.set('Inner graph not selected yet') resetEnd() return secondSelected = multiSelected # Only used for checking nesting, no need for copy graphFirstSelected = firstSelected[0] graphSecondSelected = secondSelected[0] isNested = nested(graphFirstSelected, graphSecondSelected) if not isNested: var.set("Second graph is not nested in first graph") firstSelected = [] resetEnd() return # No need for copy as used only for checking equivalence if type(firstSelected[0]) != Graph: aFirstSelected = Graph(1) for g in firstSelected: aFirstSelected.addChild(g) newFirstSelected = aFirstSelected else: newFirstSelected = firstSelected[0] if type(secondSelected[0]) != Graph: aSecondSelected = Graph(1) for g in secondSelected: aSecondSelected.addChild(g) newSecondSelected = aSecondSelected else: newSecondSelected = secondSelected[0] # newFirstSelected and newSecondSelected do not need to be copies of first and second selected as only check for equivalence isEquivalent = equivalent(newFirstSelected, newSecondSelected) if not isEquivalent: var.set("Second graph is not equivalent to first graph") firstSelected = [] resetEnd() return copiedGraph = copy(graph) secondParents = None secondParents = findParents(secondSelected[0].id, copiedGraph, None) secondParent = None if len(secondParents) > 0: secondParent = secondParents[len(secondParents) - 1] for c in secondSelected: secondParent.removeChild(c) var.set('Deiteration successful!') graph = copiedGraph resetEnd() addState() firstSelected = [] def deiterationButtonCommand(): deiterationSecond() deselectMulti() return def setupDeiteration(): global deiterationButton deiterationButton = tk.Button(root, text="Run deiteration", font=("Helvetica", 10), width=15, command=deiterationButtonCommand) deiterationButton.place(relx=0.5, rely=0.85, anchor=tk.CENTER) var.set("Select nested graph to deiterate") def collapseDeiteration(): global deiterationButton if deiterationButton != None: deiterationButton.destroy() deiterationButton = None def erasure(): resetStart() global multiSelected global graph if len(multiSelected) == 0: var.set("No graph selected yet") return g = copy(multiSelected[0]) copyGraph = copy(graph) ancestors = findParents(g.id, copyGraph, None) numOfCuts = 0 for a in ancestors: if type(a) == Box: numOfCuts += 1 if numOfCuts % 2 != 0: var.set("Graph is not evenly-enclosed") deselectMulti() return else: parent = None if len(ancestors) == 0: # remove entire graph if graph has no ancestors, then return graph = Graph(0) addState() clearAndPrint() deselectMulti() return parent = ancestors[len(ancestors) - 1] for c in multiSelected: parent.removeChild(c) var.set('Erasure successful!') graph = copyGraph addState() clearAndPrint() deselectMulti() def insertion(): resetStart() global multiSelected if len(multiSelected) == 0: var.set("No graph selected yet") return if len(multiSelected) > 1: var.set("Only select a single region or cut to insert into") deselectMulti() return if type(multiSelected[0]) != Box and type(multiSelected[0]) != Graph: var.set("Only select region or cut to insert into") deselectMulti() return parents = findParents(multiSelected[0].id, graph, None) num_cuts = 0 for p in parents: if type(p) == Box: num_cuts += 1 if num_cuts % 2 == 0: var.set("Graph is not oddly-enclosed!") deselectMulti() return setupInsertion() def runInsertion(*args): entryInput = repr(insertionEntry.get())[1:-1] entryInput = entryInput.lower() global var global prolog global graph try: solns = list(prolog.query('input("%s", O).'%(entryInput))) if len(solns) == 0: var.set("Issue with input") return newGraph = formGraph(solns[0]['O']) copiedGraph = copy(graph) toAddTo = find(multiSelected[0].id, copiedGraph) toAddTo.addChild(newGraph) graph = copiedGraph var.set("Input accepted and inserted into graph!") addState() # convert soln into graph, and print except Exception as err: print(err) var.set("Issue with input") finally: resetEnd() def startCommand(): resetStart() setupStart() def setupInsertion(): global insertionEntry global insertionButton insertionEntry = tk.Entry(root, font=("Helvetica",10), text="Formula", width=20) insertionEntry.place(relx=0.5, rely=0.775, anchor=tk.CENTER) insertionButton = tk.Button(root, text="Run insertion", font=("Helvetica", 10), width=15, command=runInsertion) insertionButton.place(relx=0.5, rely=0.85, anchor=tk.CENTER) var.set("Type formula of graph to insert") def collapseInsertion(): global insertionEntry global insertionButton if insertionEntry != None: insertionEntry.destroy() insertionEntry = None if insertionButton != None: insertionButton.destroy() insertionButton = None def setupStart(): global entry global enterBtn entry = tk.Entry(root, font=("Helvetica",10), text="Formula", width=20) entry.place(relx=0.5, rely=0.775, anchor=tk.CENTER) enterBtn = tk.Button(root, text="Enter formula", font=("Helvetica", 10), width=15, command=parsePrintClearEntry) enterBtn.place(relx=0.5, rely=0.85, anchor=tk.CENTER) var.set("Insert formula to initialise graph") def collapseStart(): global entry global enterBtn if entry != None: entry.destroy() entry = None if enterBtn != None: enterBtn.destroy() enterBtn = None def resetEnd(): resetFlags() collapseInsertion() collapseDeiteration() collapseStart() clearAndPrint() deselectMulti() def resetStart(): resetFlags() collapseInsertion() collapseDeiteration() collapseStart() def nested(outerGraph, innerGraph): isNested = False outerParents = findParents(outerGraph.id, graph, None) outerParent = None if len(outerParents) > 0: outerParent = outerParents[len(outerParents) - 1] if outerParent == None: return False # Check if outer's parent is inner graph if outerParent.id == innerGraph.id: isNested = True if not isNested: for child in outerParent.children: if child.id != outerGraph.id: found = find(innerGraph.id, child) if found: isNested = True break return isNested def equivalent(firstGraph, secondGraph): if type(firstGraph) == Atom and type(secondGraph) == Atom and firstGraph.char != secondGraph.char: return False if type(firstGraph) != type(secondGraph): return False if len(firstGraph.getChildren()) != len(secondGraph.getChildren()): return False firstGChildrenP = permutations(firstGraph.getChildren()) numOfChildren = len(firstGraph.getChildren()) result = False for p in firstGChildrenP: breakEarly = False for i in range(numOfChildren): if not equivalent(p[i], secondGraph.getChildren()[i]): breakEarly = True break if not breakEarly: result = True break return result def resetFlags(): global runIteration global runDeiteration runIteration = False runDeiteration = False def addState(): if not proofMode: global states global pointer if len(states) > 0: states = states[0:pointer+1] states.append(graph) pointer += 1 else: global statesProof global pointerProof if len(statesProof) > 0: statesProof = statesProof[0:pointerProof+1] statesProof.append(graph) pointerProof += 1 def undoCommand(): global graph if not proofMode: global pointer if pointer == 0: var.set('No more undo available') else: pointer -= 1 graph = states[pointer] resetEnd() var.set("Undo successful!") else: global pointerProof if pointerProof == 0: var.set('No more undo available') else: pointerProof -= 1 graph = statesProof[pointerProof] resetEnd() var.set("Undo successful!") def redoCommand(): global graph if not proofMode: global pointer if pointer == len(states) - 1: var.set('No more redo available') else: pointer += 1 graph = states[pointer] resetEnd() var.set("Redo successful!") else: global pointerProof if pointerProof == len(statesProof) - 1: var.set('No more redo available') else: pointerProof += 1 graph = statesProof[pointerProof] resetEnd() var.set("Redo successful!") class Graph: def __init__(self, id): if id == 0: self.id = 0 self.children = [] self.x1 = 2 self.y1 = 2 self.x2 = None self.y2 = None else: self.id = id self.children = [] # Will be set once graph is complete and calculatecoord is called self.x1 = None self.y1 = None self.x2 = None self.y2 = None def addChild(self, graphToAdd): if type(graphToAdd) == Graph: for child in graphToAdd.children: self.children.append(child) return True self.children.append(graphToAdd) return True def getChildren(self): return self.children def replaceChild(self, toReplaceId, newGraph): children = self.getChildren() for i in range(len(children)): if children[i].id == toReplaceId: children.remove(children[i]) if type(newGraph) == Graph: for g in newGraph.getChildren(): children.insert(i,g) i += 1 return True children.insert(i,newGraph) return True return False def removeChild(self, graphToCut): for i in range(len(self.children)): if self.children[i].id == graphToCut.id: del self.children[i] return def calculateCoord(self, parentGraph = None, childNum = 0): if self == None: return if parentGraph != None: if type(parentGraph) == Box: self.x1 = parentGraph.x1 self.y1 = parentGraph.y1 else: if childNum == 0: self.x1 = parentGraph.x1 + xpadding self.y1 = parentGraph.y1 + ypadding else: self.x1 = parentGraph.children[childNum - 1].x2 + xpadding self.y1 = parentGraph.y1 + ypadding # If current type is box, only one Graph child, set coord according to Graph child if type(self) == Box: self.children[0].calculateCoord(self, 0) self.x2 = self.children[0].x2 self.y2 = self.children[0].y2 return furthestChildx2 = 0 largestChildy2 = 0 for i in range(len(self.children)): self.children[i].calculateCoord(self, i) if i == len(self.children) - 1: furthestChildx2 = self.children[i].x2 if largestChildy2 < self.children[i].y2: largestChildy2 = self.children[i].y2 # self has child if furthestChildx2 != 0: self.x2 = furthestChildx2 + xpadding self.y2 = largestChildy2 + ypadding else: self.x2 = self.x1 + xdefault self.y2 = self.y1 + ydefault class Atom(Graph): def __init__(self, char, id = 1): super().__init__(id) self.char = char def addChild(self, graphToAdd): return False class Box(Graph): def __init__(self, id = 1, childBoxId = 1): super().__init__(id) self.children = [Graph(childBoxId)] def addChild(self, graphToAdd): self.children[0].addChild(graphToAdd) return True # Only for cutting the single Graph child a Box has def removeChild(self, graphToRemove): self.children = [Graph(1)] def replaceChild(self, toReplaceId, newGraph): if self.children[0].id == toReplaceId: finalGraph = Graph(1) finalGraph.addChild(newGraph) self.children[0] = finalGraph else: print("Box's child graph does not match toReplaceId") def printGraphId(inGraph): if inGraph == None: return print(inGraph.id) for c in inGraph.children: printGraphId(c) graph = Graph(0) addState() # ===================== Tkinter setup ======================= root.title("Peirce Alpha System") menuBar = tk.Menu(root) def proveCommand(): global statesProof global pointerProof global graph global proofMode resetStart() root.config(menu=rulesMenuBar) var.set("Proof started") proofMode = True statesProof = [] pointerProof = -1 addState() # adds state in proofMode commandMenu = tk.Menu(menuBar, tearoff=0) commandMenu.add_command(label="Undo", command=undoCommand) commandMenu.add_command(label="Redo", command=redoCommand) commandMenu.add_separator() commandMenu.add_command(label="Start", command=startCommand) commandMenu.add_command(label="Cut",command=cutCommand) commandMenu.add_command(label="Copy", command=copyCommand) commandMenu.add_command(label="Paste",command=pasteCommand) commandMenu.add_separator() commandMenu.add_command(label="Start Proof",command=proveCommand) commandMenu.add_separator() commandMenu.add_command(label="Quit", command=root.destroy) menuBar.add_cascade(label="Commands", menu=commandMenu) root.config(menu=menuBar) rulesMenuBar = tk.Menu(root) # Sets menu bar to edit mode, sets graph as where the proof started def stopProveCommand(): global graph global proofMode resetStart() root.config(menu=menuBar) var.set("Proof stopped") proofMode = False graph = states[pointer] resetEnd() rulesMenu = tk.Menu(rulesMenuBar, tearoff=0) rulesMenu.add_command(label="Undo Rule", command=undoCommand) rulesMenu.add_command(label="Redo Rule", command=redoCommand) rulesMenu.add_separator() rulesMenu.add_command(label="Erase", command=erasure) rulesMenu.add_command(label="Insert", command=insertion) rulesMenu.add_command(label="Iterate", command=iteration) rulesMenu.add_command(label="Deiterate", command=deiteration) rulesMenu.add_command(label="Insert double cut", command=ins_double_cut) rulesMenu.add_command(label="Remove double cut", command=rem_double_cut) rulesMenu.add_separator() rulesMenu.add_command(label="Stop Proof", command=stopProveCommand) rulesMenuBar.add_cascade(label="Rules", menu=rulesMenu) clearAndPrint() canvas.bind("<Button-1>", select) canvas.pack(fill="both",expand=True) root.mainloop()
[ "bohchenghin@gmail.com" ]
bohchenghin@gmail.com
5e28917d27023f41c32f425858b3b22fab756156
29feab13704dc487aba41fc3bc3478c768311991
/FigureS2.py
f4fed26d4cb6b276a72db05e7fef0bcc119eb4bb
[]
no_license
vhartwick/Mars-Wind-Energy
f382781e8c09b89a6ea0caa02f18989367a665ec
9b0a1ba4cec8b8d5cd3f3f5e4b90240f6ecf5a97
refs/heads/main
2023-04-14T01:58:35.095050
2022-10-25T20:56:16
2022-10-25T20:56:16
441,526,116
2
0
null
null
null
null
UTF-8
Python
false
false
6,232
py
# Figure S2 : Python script for base analysis and figures for Hartwick+2022 # Author: Victoria Hartwick # Last Modified : 6/29/22 # Import Scientific Modules import os import matplotlib import matplotlib.pyplot as py import numpy as np from matplotlib.ticker import MultipleLocator, FuncFormatter #format ticks from numpy import sqrt, exp, max, mean, min, log, log10 import xarray as xr from matplotlib.patches import Rectangle import matplotlib.gridspec as gridspec # Get Path PATH = os.getcwd() # Import Base Datasets dataDIR = '/lou/la2/vhartwic/FV3/verona/fv3_2.0_windenergy/fms_mars_MY24_highres/history/MY24_highres_savefile.nc' DDS_MY24 = xr.open_dataset(dataDIR, decode_times=False) # ------------------------------------------------------------------------------- # FIGURE S2 # Annual average wind (top panels) and solar power density (bottom panels) [W/m2] # in one-hour intervals of local time. All locations in each panel show the same # local time simultaneously. Solar power exceeds 140 W/m2 during daytime hours # (~7.5-15.5LT) while wind power maximizes at night (~21.5-8.5LT) and in the poles. # ------------------------------------------------------------------------------- ct = 2 print('Making Figure S2') # Find Annual Average wpd_diurn_ave_MY24 = DDS_MY24.wpd.mean('time') swflx_diurn_ave_MY24 = DDS_MY24.swflx.mean('time') levels = np.arange(0,160,10) levels_swflx = np.arange(0,500,25) fig, axs = py.subplots(4,6, sharey=True, sharex=True, figsize=(10,8)) fig.subplots_adjust(wspace=0.05,hspace=0.35) fig.suptitle('(a)', ha='left') for i in range(6): cs = axs[0,i].contourf(DDS_MY24.lon,DDS_MY24.lat,wpd_diurn_ave_MY24.sel(zagl=50,time_of_day_24=i+0.5),levels=levels,cmap=py.cm.viridis) axs[0,i].set_title(str(i+0.5)+'LT',fontsize=10) if i == 0: axs[0,i].set_ylabel('Latitude',fontsize=8) axs[0,i].xaxis.set_major_locator(MultipleLocator(60)) axs[0,i].yaxis.set_major_locator(MultipleLocator(30)) axs[0,i].set_yticks(-90,-60,-30,0,30,60,90) axs[0,i].set_yticklabels(['','-60','','0','','60','']) for i in range(6): cs = axs[1,i].contourf(DDS_MY24.lon,DDS_MY24.lat,wpd_diurn_ave_MY24.sel(zagl=50,time_of_day_24=i+6.5),levels=levels,cmap=py.cm.viridis) axs[1,i].set_title(str(i+6.5)+'LT',fontsize=10) if i == 0: axs[1,i].set_ylabel('Latitude',fontsize=8) for i in range(6): cs = axs[2,i].contourf(DDS_MY24.lon,DDS_MY24.lat,wpd_diurn_ave_MY24.sel(zagl=50,time_of_day_24=i+12.5),levels=levels,cmap=py.cm.viridis) axs[2,i].set_title(str(i+12.5)+'LT',fontsize=10) if i == 0: axs[2,i].set_ylabel('Latitude',fontsize=8) for i in range(6): cs = axs[3,i].contourf(DDS_MY24.lon,DDS_MY24.lat,wpd_diurn_ave_MY24.sel(zagl=50,time_of_day_24=i+18.5),levels=levels,cmap=py.cm.viridis) axs[3,i].set_title(str(i+18.5)+'LT',fontsize=10) axs[3,i].set_xlabel('Longitude',fontsize=8) axs[3,i].set_xticks(0,60,120,180,240,300,360) axs[3,i].set_xticklabels(['','60','','180','','300','']) if i == 0: axs[3,i].set_ylabel('Latitude',fontsize=8) norm= matplotlib.colors.Normalize(vmin=cs.cvalues.min(), vmax=cs.cvalues.max()) sm = py.cm.ScalarMappable(norm=norm, cmap = cs.cmap) sm.set_array([]) # add axis, (left, bottom, width, height) cbar_ax = py.gcf().add_axes([0.93, 0.11, 0.01, 0.77]) clb = fig.colorbar(sm, cax=cbar_ax, orientation='vertical') clb.set_label('$\ [W/m^{2}]$') py.savefig(f'{PATH}/WindEnergy_HighRes_FigS{ct}.eps',dpi=300) # Now Solar print('Now, Solar') fig, axs = py.subplots(4,6, sharey=True, sharex=True, figsize=(10,8)) fig.subplots_adjust(wspace=0.05,hspace=0.35) fig.suptitle('(b)', ha='left') for i in range(6): cs = axs[0,i].contourf(DDS_MY24.lon,DDS_MY24.lat,swflx_diurn_ave_MY24.sel(time_of_day_24=i+0.5),levels=levels_swflx,cmap=py.cm.viridis) axs[0,i].set_title(str(i+0.5)+'LT',fontsize=10) if i == 0: axs[0,i].set_ylabel('Latitude',fontsize=8) axs[0,i].xaxis.set_major_locator(MultipleLocator(60)) axs[0,i].yaxis.set_major_locator(MultipleLocator(30)) axs[0,i].set_yticklabels(['','-60','','0','','60','']) for i in range(6): cs = axs[1,i].contourf(DDS_MY24.lon,DDS_MY24.lat,swflx_diurn_ave_MY24.sel(time_of_day_24=i+6.5),levels=levels_swflx,cmap=py.cm.viridis) axs[1,i].set_title(str(i+6.5)+'LT',fontsize=10) if i == 0: axs[1,i].set_ylabel('Latitude',fontsize=8) for i in range(6): cs = axs[2,i].contourf(DDS_MY24.lon,DDS_MY24.lat,swflx_diurn_ave_MY24.sel(time_of_day_24=i+12.5),levels=levels_swflx,cmap=py.cm.viridis) axs[2,i].set_title(str(i+12.5)+'LT',fontsize=10) if i == 0: axs[2,i].set_ylabel('Latitude',fontsize=8) for i in range(6): cs = axs[3,i].contourf(DDS_MY24.lon,DDS_MY24.lat,swflx_diurn_ave_MY24.sel(time_of_day_24=i+18.5),levels=levels_swflx,cmap=py.cm.viridis) axs[3,i].set_title(str(i+18.5)+'LT',fontsize=10) axs[3,i].set_xlabel('Longitude',fontsize=8) axs[3,i].set_xticklabels(['','60','','180','','300','']) if i == 0: axs[3,i].set_ylabel('Latitude',fontsize=8) norm= matplotlib.colors.Normalize(vmin=cs.cvalues.min(), vmax=cs.cvalues.max()) sm = py.cm.ScalarMappable(norm=norm, cmap = cs.cmap) sm.set_array([]) # add axis, (left, bottom, width, height) cbar_ax = py.gcf().add_axes([0.93, 0.11, 0.01, 0.77]) clb = fig.colorbar(sm, cax=cbar_ax, orientation='vertical') clb.set_label('$\ [W/m^{2}]$') py.savefig(f'{PATH}/WindEnergy_HighRes_FigS{ct}b.eps',dpi=300) # Send out Data var1 = xr.DataArray(swflx_diurn_ave_MY24, coords={'lon':DDS_MY24.lon,'lat':DDS_MY24.lat,'time_of_day_24':DDS_MY24.time_of_day_24},dims=['time_of_day_24','lat','lon']) var1.name = 'annual_ave_pow_E33' var2 = xr.DataArray(wpd_diurn_ave_MY24, coords={'lon':DDS_MY24.lon,'lat':DDS_MY24.lat,'zagl':DDS_MY24.zagl,'time_of_day_24':DDS_MY24.time_of_day_24},dims=['time_of_day_24','zagl','lat','lon']) var2.name = 'wpd_diurn_ave_MY24' NEW_DF = xr.merge([var1,var2]) NEW_DF.to_netcdf(f'{PATH}/Data/FigureS{ct}.nc')
[ "noreply@github.com" ]
noreply@github.com
6f9449c2b377200aaaafa218f8cf2583cedbf482
b0703ac3217134e4afceb84ab07335c97ec677ba
/6:Wagtail_Content_Prototype/cypmh_prototype/nhs_components/migrations/0004_auto_20210514_1117.py
dfc57e61fe424e62fb6197c9bcefc3f39c561983
[]
no_license
madetech/G1-Spikes
390622eec7a91ea986e1debbb9a270cd9e9091aa
fc542216a3102d516e6c005aad0b66755c725544
refs/heads/main
2023-07-03T08:40:05.080265
2021-08-03T10:37:36
2021-08-03T10:37:36
360,846,858
0
0
null
2021-08-03T10:37:37
2021-04-23T10:27:48
Python
UTF-8
Python
false
false
10,863
py
# Generated by Django 3.1.8 on 2021-05-14 11:17 from django.db import migrations import wagtail.core.blocks import wagtail.core.fields import wagtail.images.blocks import wagtailnhsukfrontend.blocks class Migration(migrations.Migration): dependencies = [ ('nhs_components', '0003_auto_20210514_1112'), ] operations = [ migrations.AlterField( model_name='nhspage', name='body', field=wagtail.core.fields.StreamField([('action_link', wagtail.core.blocks.StructBlock([('text', wagtail.core.blocks.CharBlock(label='Link text', required=True)), ('external_url', wagtail.core.blocks.URLBlock(label='URL', required=False)), ('new_window', wagtail.core.blocks.BooleanBlock(label='Open in new window', required=False)), ('internal_page', wagtail.core.blocks.PageChooserBlock(label='Internal Page', required=False))])), ('callout', wagtail.core.blocks.StructBlock([('title', wagtail.core.blocks.CharBlock(default='Important', required=True)), ('visually_hidden_prefix', wagtail.core.blocks.BooleanBlock(help_text='If the title doesn\'t contain the word "Important" select this to add a visually hidden "Important", to aid screen readers.', label='Visually hidden prefix', required=False)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Default=3, Min=2, Max=6.', max_value=6, min_value=2, required=True)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('heading', wagtail.core.blocks.CharBlock(form_classname='heading')), ('inset_text', wagtail.core.blocks.StructBlock([('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('care_card', wagtail.core.blocks.StructBlock([('type', wagtail.core.blocks.ChoiceBlock(choices=[('primary', 'Non-urgent'), ('urgent', 'Urgent'), ('immediate', 'Immediate')])), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Default=3, Min=2, Max=4.', max_value=6, min_value=2, required=True)), ('title', wagtail.core.blocks.CharBlock(required=True)), ('body', wagtail.core.blocks.StreamBlock([('richtext', wagtail.core.blocks.RichTextBlock()), ('action_link', wagtail.core.blocks.StructBlock([('text', wagtail.core.blocks.CharBlock(label='Link text', required=True)), ('external_url', wagtail.core.blocks.URLBlock(label='URL', required=False)), ('new_window', wagtail.core.blocks.BooleanBlock(label='Open in new window', required=False)), ('internal_page', wagtail.core.blocks.PageChooserBlock(label='Internal Page', required=False))])), ('details', wagtail.core.blocks.StructBlock([('title', wagtail.core.blocks.CharBlock(required=True)), ('body', wagtail.core.blocks.StreamBlock([('richtext', wagtail.core.blocks.RichTextBlock()), ('action_link', wagtail.core.blocks.StructBlock([('text', wagtail.core.blocks.CharBlock(label='Link text', required=True)), ('external_url', wagtail.core.blocks.URLBlock(label='URL', required=False)), ('new_window', wagtail.core.blocks.BooleanBlock(label='Open in new window', required=False)), ('internal_page', wagtail.core.blocks.PageChooserBlock(label='Internal Page', required=False))])), ('inset_text', wagtail.core.blocks.StructBlock([('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('image', wagtail.core.blocks.StructBlock([('content_image', wagtail.images.blocks.ImageChooserBlock(required=True)), ('alt_text', wagtail.core.blocks.CharBlock(help_text='Only leave this blank if the image is decorative.', required=False)), ('caption', wagtail.core.blocks.CharBlock(required=False))])), ('panel', wagtail.core.blocks.StructBlock([('label', wagtail.core.blocks.CharBlock(required=False)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Ignore this if there is no label. Default=3, Min=2, Max=6.', max_value=6, min_value=2)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('feature_card', wagtail.core.blocks.StructBlock([('feature_heading', wagtail.core.blocks.CharBlock(required=True)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Ignore this if there is no label. Default=3, Min=2, Max=6.', max_value=6, min_value=2)), ('heading_size', wagtail.core.blocks.ChoiceBlock(choices=[('', 'Default'), ('small', 'Small'), ('medium', 'Medium'), ('large', 'Large')], help_text="The heading size affects the visual size, this follows the front-end library's sizing.", required=False)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('warning_callout', wagtail.core.blocks.StructBlock([('title', wagtail.core.blocks.CharBlock(default='Important', required=True)), ('visually_hidden_prefix', wagtail.core.blocks.BooleanBlock(help_text='If the title doesn\'t contain the word "Important" select this to add a visually hidden "Important", to aid screen readers.', label='Visually hidden prefix', required=False)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Default=3, Min=2, Max=6.', max_value=6, min_value=2, required=True)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('summary_list', wagtail.core.blocks.StructBlock([('rows', wagtail.core.blocks.ListBlock(wagtailnhsukfrontend.blocks.SummaryListRowBlock)), ('no_border', wagtail.core.blocks.BooleanBlock(default=False, required=False))]))], required=True))])), ('inset_text', wagtail.core.blocks.StructBlock([('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('image', wagtail.core.blocks.StructBlock([('content_image', wagtail.images.blocks.ImageChooserBlock(required=True)), ('alt_text', wagtail.core.blocks.CharBlock(help_text='Only leave this blank if the image is decorative.', required=False)), ('caption', wagtail.core.blocks.CharBlock(required=False))])), ('grey_panel', wagtail.core.blocks.StructBlock([('label', wagtail.core.blocks.CharBlock(label='heading', required=False)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Ignore this if there is no heading. Default=3, Min=2, Max=6.', max_value=6, min_value=2)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('feature_card', wagtail.core.blocks.StructBlock([('feature_heading', wagtail.core.blocks.CharBlock(required=True)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Ignore this if there is no label. Default=3, Min=2, Max=6.', max_value=6, min_value=2)), ('heading_size', wagtail.core.blocks.ChoiceBlock(choices=[('', 'Default'), ('small', 'Small'), ('medium', 'Medium'), ('large', 'Large')], help_text="The heading size affects the visual size, this follows the front-end library's sizing.", required=False)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('warning_callout', wagtail.core.blocks.StructBlock([('title', wagtail.core.blocks.CharBlock(default='Important', required=True)), ('visually_hidden_prefix', wagtail.core.blocks.BooleanBlock(help_text='If the title doesn\'t contain the word "Important" select this to add a visually hidden "Important", to aid screen readers.', label='Visually hidden prefix', required=False)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Default=3, Min=2, Max=6.', max_value=6, min_value=2, required=True)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('summary_list', wagtail.core.blocks.StructBlock([('rows', wagtail.core.blocks.ListBlock(wagtailnhsukfrontend.blocks.SummaryListRowBlock)), ('no_border', wagtail.core.blocks.BooleanBlock(default=False, required=False))]))], required=True))])), ('details', wagtail.core.blocks.StructBlock([('title', wagtail.core.blocks.CharBlock(required=True)), ('body', wagtail.core.blocks.StreamBlock([('richtext', wagtail.core.blocks.RichTextBlock()), ('action_link', wagtail.core.blocks.StructBlock([('text', wagtail.core.blocks.CharBlock(label='Link text', required=True)), ('external_url', wagtail.core.blocks.URLBlock(label='URL', required=False)), ('new_window', wagtail.core.blocks.BooleanBlock(label='Open in new window', required=False)), ('internal_page', wagtail.core.blocks.PageChooserBlock(label='Internal Page', required=False))])), ('inset_text', wagtail.core.blocks.StructBlock([('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('image', wagtail.core.blocks.StructBlock([('content_image', wagtail.images.blocks.ImageChooserBlock(required=True)), ('alt_text', wagtail.core.blocks.CharBlock(help_text='Only leave this blank if the image is decorative.', required=False)), ('caption', wagtail.core.blocks.CharBlock(required=False))])), ('panel', wagtail.core.blocks.StructBlock([('label', wagtail.core.blocks.CharBlock(required=False)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Ignore this if there is no label. Default=3, Min=2, Max=6.', max_value=6, min_value=2)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('feature_card', wagtail.core.blocks.StructBlock([('feature_heading', wagtail.core.blocks.CharBlock(required=True)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Ignore this if there is no label. Default=3, Min=2, Max=6.', max_value=6, min_value=2)), ('heading_size', wagtail.core.blocks.ChoiceBlock(choices=[('', 'Default'), ('small', 'Small'), ('medium', 'Medium'), ('large', 'Large')], help_text="The heading size affects the visual size, this follows the front-end library's sizing.", required=False)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('warning_callout', wagtail.core.blocks.StructBlock([('title', wagtail.core.blocks.CharBlock(default='Important', required=True)), ('visually_hidden_prefix', wagtail.core.blocks.BooleanBlock(help_text='If the title doesn\'t contain the word "Important" select this to add a visually hidden "Important", to aid screen readers.', label='Visually hidden prefix', required=False)), ('heading_level', wagtail.core.blocks.IntegerBlock(default=3, help_text='The heading level affects users with screen readers. Default=3, Min=2, Max=6.', max_value=6, min_value=2, required=True)), ('body', wagtail.core.blocks.RichTextBlock(required=True))])), ('summary_list', wagtail.core.blocks.StructBlock([('rows', wagtail.core.blocks.ListBlock(wagtailnhsukfrontend.blocks.SummaryListRowBlock)), ('no_border', wagtail.core.blocks.BooleanBlock(default=False, required=False))]))], required=True))])), ('text_content', wagtail.core.blocks.RichTextBlock())]), ), ]
[ "liam.miller@madetech.com" ]
liam.miller@madetech.com
20496097f5f7d9d5460ac3bc6b6e4f2aff62bfac
fe85b4811c93510006b666858d6029156f167f89
/bin/hooks/notify.py
6e5dda8635f63227a7b9e6e4d72ce489645fd7c9
[ "MIT", "GPL-1.0-or-later" ]
permissive
9001/copyparty
39207421ccdc501566105da562a168996e0f9b4c
48a3898aa692770735a926b0c18300d7da8b021f
refs/heads/hovudstraum
2023-08-18T15:19:36.934124
2023-08-16T19:57:19
2023-08-16T19:57:19
188,700,274
273
21
MIT
2023-08-09T20:50:27
2019-05-26T15:28:33
Python
UTF-8
Python
false
false
1,559
py
#!/usr/bin/env python3 import os import sys import subprocess as sp from plyer import notification _ = r""" show os notification on upload; works on windows, linux, macos, android depdencies: windows: python3 -m pip install --user -U plyer linux: python3 -m pip install --user -U plyer macos: python3 -m pip install --user -U plyer pyobjus android: just termux and termux-api example usages; either as global config (all volumes) or as volflag: --xau f,bin/hooks/notify.py -v srv/inc:inc:r:rw,ed:c,xau=f,bin/hooks/notify.py ^^^^^^^^^^^^^^^^^^^^^^^^^^^ (share filesystem-path srv/inc as volume /inc, readable by everyone, read-write for user 'ed', running this plugin on all uploads with the params listed below) parameters explained, xau = execute after upload f = fork so it doesn't block uploads """ try: from copyparty.util import humansize except: def humansize(n): return n def main(): fp = sys.argv[1] dp, fn = os.path.split(fp) try: sz = humansize(os.path.getsize(fp)) except: sz = "?" msg = "{} ({})\n📁 {}".format(fn, sz, dp) title = "File received" if "com.termux" in sys.executable: sp.run(["termux-notification", "-t", title, "-c", msg]) return icon = "emblem-documents-symbolic" if sys.platform == "linux" else "" notification.notify( title=title, message=msg, app_icon=icon, timeout=10, ) if __name__ == "__main__": main()
[ "s@ocv.me" ]
s@ocv.me
adbdecf911aa42a3a549d55874bba69c09b8a299
2ffdfe188859d5be1a427ce1c4457d41331b541c
/message/GREEDYMOTIFSEARCH(Dna,k,t)-profile.py
4141b3dd1d68935dd12951302f7307f9a4edb569
[]
no_license
Hydebutterfy/learn-python
18504b0c7281c2b0f94dbc73e77da87c8ac3ff38
883614deaf0a3cdf46d8305197fe5659fd609d60
refs/heads/master
2021-01-24T11:59:44.883949
2016-12-02T07:48:40
2016-12-02T07:48:40
59,213,755
1
0
null
null
null
null
UTF-8
Python
false
false
3,545
py
#GREEDYMOTIFSEARCH(Dna, k, t) #BestMotifs ← motif matrix formed by first k-mers in each string from Dna #for each k-mer Motif in the first string from Dna #Motif1 ← Motif #for i = 2 to t #form Profile from motifs Motif1, …, Motifi - 1 #Motifi ← Profile-most probable k-mer in the i-th string in Dna #Motifs ← (Motif1, …, Motift) #if Score(Motifs) < Score(BestMotifs) #BestMotifs ← Motifs #return BestMotifs #http://www.mrgraeme.co.uk/greedy-motif-search/ 解释 def GreedyMotifSearchWithPseudocounts(Dna, k, t): BestMotifs = [] for i in range(0, t): BestMotifs.append(Dna[i][0:k]) #print(BestMotifs) n = len(Dna[0]) for i in range(n - k + 1): Motifs = [] Motifs.append(Dna[0][i:i + k]) # print(Motifs) for j in range(1, t): P = Profile(Motifs[0:j]) Motifs.append(ProfileMostProbablePattern(Dna[j], k, P)) if Score(Motifs) < Score(BestMotifs): BestMotifs = Motifs return BestMotifs def Pr(pattern, profile): temp_Profile=1 for j in range(k): #print(float(profile[pattern[j]][j])) #print(temp_Profile) temp_Profile=temp_Profile*float(profile[pattern[j]][j]) #print(temp_Profile) return temp_Profile def ProfileMostProbablePattern(Text, k, Profile): l=len(Text) profile_list=[] for i in range(l - k + 1): pattern = Text[i:i + k] profile_list.append(Pr(pattern, Profile)) max_profile = max(profile_list) position = profile_list.index(max_profile) return Text[position:position + k] def Count(Motifs): count = {} k = len(Motifs[0]) for symbol in "ACGT": count[symbol] = [] for j in range(k): count[symbol].append(1) #print(count) t = len(Motifs) for i in range(t): for j in range(k): symbol = Motifs[i][j] count[symbol][j] += 1 #print(count) return count def Consensus(Motifs): count = Count(Motifs) k = len(Motifs[0]) consensus = "" for j in range(k): m=0 frequentSymbol = "" for symbol in "ACGT": if count[symbol][j] > m: m = count[symbol][j] frequentSymbol = symbol consensus += frequentSymbol return count,consensus def Score(Motifs): k = len(Motifs[0]) count,consensus_temp=Consensus(Motifs) print(count,consensus_temp) score = [] for i in range(k): score.append(0) for i in range(k): for j in "ATCG": if consensus_temp[i]!=j: score[i]+=(count[j][i]-1) allscore=int(0) for i in range(k): allscore=allscore+score[i] return allscore def Profile(Motifs): t = len(Motifs) k = len(Motifs[0]) profile = {} for symbol in "ACGT": profile[symbol] = [] for j in range(k): profile[symbol].append(0) Counts = Count(Motifs) #print(Counts) for symbol in "ACGT": for i in range(k): profile[symbol][i] = (Counts[symbol][i]+1)/(t+4) #print(profile) return profile Dna=[] filename = input("Enter file name: ") fileread = open(filename,"r") for i in fileread: dna=i.strip() Dna.append(dna.upper()) k=int(input("what is the k:")) t=len(Dna) temp=GreedyMotifSearchWithPseudocounts(Dna, k, t) print('\n'.join(temp)) print(Score(temp)) #优化profile后改进,提高准确度
[ "chenhyde628@gmail.com" ]
chenhyde628@gmail.com
6e7c3ec5e74550ca5f1d604f5f6a2950d3b44151
943b2da5e84aa1d61021a85b4f0cdbfe01dd2d74
/oaspec/schema/funcs.py
11b87886f7d4eade3a538c0c9ddfef777e2c3e26
[ "MIT" ]
permissive
platformsh/oaspec
cd32a3304b14272501d317e6d5aa40f20cfbc18c
8816bec4ce277d3505d65ccd77485e1a0ce095f2
refs/heads/master
2021-07-13T20:18:03.194655
2019-06-18T00:22:44
2019-06-18T00:22:44
206,879,484
0
3
MIT
2021-06-23T13:51:02
2019-09-06T21:54:15
Python
UTF-8
Python
false
false
2,728
py
# -*- coding: utf-8 -*- import re from copy import deepcopy def def_key(key): """Compute a definition ref from a key. Returns: str: The computed relative reference """ return f"#/definitions/{key}" def get_all_refs(schema): """Get all ref links in a schema. Traverses a schema and extracts all relative ref links from the schema, returning a set containing the results. Parameters: schema: An OAS schema in the form of nested dicts to be traversed. Returns: set: All of the ref links found during traversal. """ all_refs = set() if type(schema) is dict: for key, val in schema.items(): if key == "$ref" and type(val) is str: all_refs.add(val) all_refs.update(get_all_refs(val)) elif type(schema) is list: for item in schema: all_refs.update(get_all_refs(item)) return all_refs def get_def_classes(schema, def_objects, ignore_keys=None): """Return the definition objects represented by relative refs in a schema. Gets all of the relative refs present in a schema object and returns a mapping of refs to schema objects, recursively resolving references listed in the retrieved schema definitions. This function is used to collect the referenced definitions that will be added to each schema class's `_parsing_schema` attribute. Parameters: schema: The schema to parse for relative refs. def_objects: A mapping of relative ref keys and the Schema sub-classes to which they correspond. The `_parsing_schema` will be extracted from each referenced class. ignore_keys: A set of keys that should be skipped when encountered during traversal, in order to prevent infinite recursion when encountering circular references. Returns: dict: A mapping of of relative ref keys and their corresponding raw definitions. """ # Traverse the schema to get all relative ref links all_refs = get_all_refs(schema) if not all_refs: return {} def_classes = {} for key in all_refs: subkey = key.split("/")[-1] if ignore_keys and subkey in ignore_keys: continue subschema = deepcopy(def_objects[key]._parsing_schema) def_classes[subkey] = subschema # Recursively de-reference ref links found in retrieve definition objects def_classes.update(get_def_classes(def_classes[subkey], def_objects, def_classes.keys())) return def_classes def schema_hash(schema): """Generate a string-based hash of a schema object. Returns: str: Schema hash. """ return str(abs(hash(str(schema))))
[ "nick.anderegg@platform.sh" ]
nick.anderegg@platform.sh
b7f90b7cf746aca123b7602fbd4d17e1ee97ac65
6b533b5ef49306b0e8db2d147d837659b1a7126b
/homework-3/ad_engine.py
63b9903d99a118275784e95460fdae92733b98ad
[ "MIT" ]
permissive
sofiaruiz/AI_class_assignments
35bff0d4e2fa5cdb61307e20b5af332f96e557a8
16fb74da92e7328163049699b74a4dd897233bcf
refs/heads/master
2022-04-14T10:46:34.487783
2020-04-11T23:37:57
2020-04-11T23:37:57
148,580,772
0
0
null
null
null
null
UTF-8
Python
false
false
4,375
py
''' ad_engine.py CMSI 485 HW 3: Advertisement engine that selects from two ad traits to maximize expected utility of converting a sale for the Forney Industries Protectron 3001 ''' import itertools import unittest import math import numpy as np from pomegranate import * class AdEngine: def __init__(self, data_file, structure, dec_vars, util_map): """ Responsible for initializing the Decision Network of the AdEngine from the structure discovered by Tetrad :param string data_file: path to csv file containing data on which the network's parameters are to be learned :param tuple structure: tuple of tuples specifying parental relationships between variables in the network; see Pomegranate docs for the expected format. Example: ((), (0), (1)) represents nodes: [0] -> [1] -> [2] :param list dec_vars: list of string names of variables to be considered decision points for the agent. Example: ["Ad1", "Ad2"] :param dict util_map: discrete, tabular, utility map whose keys are variables in network that are parents of a utility node, and values are dictionaries mapping that variable's values to a utility score, e.g. { "X": {0: 20, 1: -10} } represents a utility node with single parent X whose value of 0 has a utility score of 20, and value 1 has a utility score of -10 """ data = np.genfromtxt(data_file, names = True, dtype = None, delimiter = ',') #print (data) state_names = data.dtype.names #print(state_names) x = data.view((int, len(state_names))) self.model = BayesianNetwork.from_structure(x, structure, state_names = state_names) #print(self.model) self.dec_vars = dec_vars return def decide(self, evidence): """ Given some observed demographic "evidence" about a potential consumer, selects the ad content that maximizes expected utility and returns a dictionary over any decision variables and their best values :param dict evidence: dict mapping network variables to their observed values, of the format: {"Obs1": val1, "Obs2": val2, ...} :return: dict of format: {"DecVar1": val1, "DecVar2": val2, ...} """ best_combo, best_util = None, -math.inf prob = self.model.predict_proba(evidence) expected_utility = return best_combo class AdEngineTests(unittest.TestCase): def test_defendotron_ad_engine_t1(self): engine = AdEngine( data_file = '/Users/sofiaruiz/lmu-cmsi-485/homework-3/hw3_data.csv', dec_vars = ["Ad1", "Ad2"], # TODO: Current structure is blank; you need to fill this in using # the results from the Tetrad analysis! structure = ((), (), (0, 9,), (6,), (1, 0,), (1, 8,), (), (2, 5,), (), ()), # TODO: Decide what the utility map should be for the Defendotron # example; see format of util_map in spec and above! util_map = {"S" : {0: 0, 1: 5000, 2: 17760}} ) self.assertEqual(engine.decide({"G": 0}), {"Ad1": 0, "Ad2": 1}) self.assertEqual(engine.decide({"F": 1}), {"Ad1": 1, "Ad2": 0}) self.assertEqual(engine.decide({"G": 1, "T": 0}), {"Ad1": 1, "Ad2": 1}) # # def test_defendotron_ad_engine_t2(self): # engine = AdEngine( # data_file = 'hw3_data.csv', # # [!] Note: in this example, say we are only deciding upon the ad # # video (Ad1); our engine's results should adapt accordingly (see # # tests below) # dec_vars = ["Ad1"], # # TODO: Current structure is blank; you need to fill this in using # # the results from the Tetrad analysis! # structure = (), # # TODO: Decide what the utility map should be for the Defendotron # # example; see format of util_map in spec and above! # util_map = {} # ) # self.assertEqual(engine.decide({"A": 1}), {"Ad1": 0}) # self.assertEqual(engine.decide({"P": 1, "A": 0}), {"Ad1": 1}) # self.assertEqual(engine.decide({"A": 1, "G": 1, "T": 1}), {"Ad1": 0}) if __name__ == "__main__": unittest.main()
[ "sruiz13@lion.lmu.edu" ]
sruiz13@lion.lmu.edu
92a2c9a2ec7f194f864497a4a7795eeba899fab1
0f727fdca3f37e08ed057abcfeb068b3f4acb84b
/gps_helper/test/test_kalman.py
1d732c3f244605a4ce37104b91e1cf6df728c182
[ "MIT" ]
permissive
Miguel-O-Matic/gps-helper
e7939902201f2e5b1260e2e801439660fe3f4d32
dae3f143281ef930de84a1b783d33aa6e4446040
refs/heads/master
2020-06-24T20:51:34.604777
2019-08-15T12:42:32
2019-08-15T12:42:32
199,085,652
0
0
MIT
2019-07-26T22:08:41
2019-07-26T22:08:41
null
UTF-8
Python
false
false
15,770
py
from .test_helper import GPSTest from .. import kalman as kf from .. import simulator as sim import numpy as np from numpy.linalg import norm from numpy import testing as npt class TestKalman(GPSTest): """ Test class for the kalman functions. """ _multiprocess_can_split_ = True def test_simple_kalman_x(self): """ If only ten measurements are used, the tests do not cover all the way to convergence. Therefore, every tenth sample is used for the test. :return: """ dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((len(t), 2)) x_test = np.array([[13.50229134, 13.50229134], [13.67920055, 13.67920055], [13.35742003, 13.35742003], [13.74166822, 13.74166822], [13.69347514, 13.69347514], [13.81459412, 13.81459412], [13.83609622, 13.83609622], [13.8665808 , 13.8665808 ], [13.77658251, 13.77658251], [13.85373983, 13.85373983], [13.7394069 , 13.7394069 ]]) # Create objects for the simulation gv = sim.GetVoltage(14.0, dt, sigma_w=2) sk = kf.SimpleKalman(initial_state=14) for k in range(len(t)): z = gv.measurement() x_saved[k, :] = sk.next_sample(z) npt.assert_almost_equal(x_test, x_saved[::10]) def test_simple_kalman_k(self): """ If only ten measurements are used, the tests do not cover all the way to convergence. Therefore, every tenth sample is used for the test. :return: """ dt = 0.1 t = np.arange(0, 10 + dt, dt) k_saved = np.zeros(len(t)) k_test = np.array([0.6, 0.08571429, 0.04615385, 0.03157895, 0.024, 0.01935484, 0.01621622, 0.01395349, 0.0122449 , 0.01090909, 0.00983607]) # Create objects for the simulation gv = sim.GetVoltage(14.0, dt, sigma_w=2) sk = kf.SimpleKalman(initial_state=14) for k in range(len(t)): z = gv.measurement() sk.next_sample(z) k_saved[k] = sk.K npt.assert_almost_equal(k_test, k_saved[::10]) def test_simple_kalman_p(self): """ If only ten measurements are used, the tests do not cover all the way to convergence. Therefore, every tenth sample is used for the test. :return: """ dt = 0.1 t = np.arange(0, 10 + dt, dt) p_saved = np.zeros(len(t)) p_test = np.array([2.4, 0.34285714, 0.18461538, 0.12631579, 0.096, 0.07741935, 0.06486486, 0.05581395, 0.04897959, 0.04363636, 0.03934426]) # Create objects for the simulation gv = sim.GetVoltage(14.0, dt, sigma_w=2) sk = kf.SimpleKalman(initial_state=14) for k in range(len(t)): z = gv.measurement() sk.next_sample(z) p_saved[k] = sk.P npt.assert_almost_equal(p_test, p_saved[::10]) def test_pos_kalman_x_pos(self): """ If only ten measurements are used, the tests do not cover all the way to convergence. Therefore, every tenth sample is used for the test. :return: """ dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((2, len(t))) x_test = np.array([2.40104478, 85.65186517, 167.37150554, 248.87502207, 328.96915024, 406.71764263, 486.88690622, 566.02913866, 645.68324187, 727.69351353, 810.20295338]) # Create objects for the simulation Q = np.array([[1, 0], [0, 3]]) R = np.array([[10, 0], [0, 2]]) gpv = sim.GetPosVel(Q=Q, R=R, dt=dt) pk = kf.PosKalman(Q, R, initial_state=[0, 80]) for k in range(len(t)): # take a measurement z = gpv.measurement() # Update the Kalman filter x_saved[:, k, None] = pk.next_sample(z) npt.assert_almost_equal(x_test, x_saved[0, ::10]) def test_pos_kalman_x_vel(self): """ If only ten measurements are used, the tests do not cover all the way to convergence. Therefore, every tenth sample is used for the test. :return: """ dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((2, len(t))) x_test = np.array([63.71165764, 81.26369543, 79.46747731, 79.05128724, 77.47045411, 78.00121222, 80.21543726, 80.60963484, 81.56581114, 81.90123253, 80.31546328]) # Create objects for the simulation Q = np.array([[1, 0], [0, 3]]) R = np.array([[10, 0], [0, 2]]) gpv = sim.GetPosVel(Q=Q, R=R, dt=dt) pk = kf.PosKalman(Q, R, initial_state=[0, 80]) for k in range(len(t)): # take a measurement z = gpv.measurement() # Update the Kalman filter x_saved[:, k, None] = pk.next_sample(z) npt.assert_almost_equal(x_test, x_saved[1, ::10]) def test_pos_kalman_p_pos(self): """ If only ten measurements are used, the tests do not cover all the way to convergence. Therefore, every tenth sample is used for the test. :return: """ dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((2, len(t))) p_diag = np.zeros((len(t),2)) p_test = np.array([3.76669267, 2.76774029, 2.76843135, 2.7685862, 2.76859725, 2.76859802, 2.76859808, 2.76859808, 2.76859808, 2.76859808, 2.76859808]) # Create objects for the simulation Q = np.array([[1, 0], [0, 3]]) R = np.array([[10, 0], [0, 2]]) gpv = sim.GetPosVel(Q=Q, R=R, dt=dt) pk = kf.PosKalman(Q, R, initial_state=[0, 80]) for k in range(len(t)): # take a measurement z = gpv.measurement() # Update the Kalman filter x_saved[:, k, None] = pk.next_sample(z) p_diag[k, :] = pk.P.diagonal() npt.assert_almost_equal(p_test, p_diag[::10, 0]) def test_pos_kalman_p_vel(self): """ If only ten measurements are used, the tests do not cover all the way to convergence. Therefore, every tenth sample is used for the test. :return: """ dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((2, len(t))) p_diag = np.zeros((len(t),2)) p_test = np.array([1.59079563, 1.36849424, 1.36839693, 1.36838998, 1.3683895 , 1.36838946, 1.36838946, 1.36838946, 1.36838946, 1.36838946, 1.36838946]) # Create objects for the simulation Q = np.array([[1, 0], [0, 3]]) R = np.array([[10, 0], [0, 2]]) gpv = sim.GetPosVel(Q=Q, R=R, dt=dt) pk = kf.PosKalman(Q, R, initial_state=[0, 80]) for k in range(len(t)): # take a measurement z = gpv.measurement() # Update the Kalman filter x_saved[:, k, None] = pk.next_sample(z) p_diag[k, :] = pk.P.diagonal() npt.assert_almost_equal(p_test, p_diag[::10, 1]) def test_dv_kalman_x_pos(self): dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((len(t), 2)) x_test = np.array([3.00505891, 81.24273033, 159.15363574, 239.96205645, 306.83657799, 390.95995075, 482.18752904, 560.48756223, 638.8627147, 716.34708371, 796.09003321]) # Create objects for the simulation gp = sim.GetPos() dk = kf.DvKalman() for k in range(len(t)): z = gp.measurement() x_saved[k, :] = dk.next_sample(z) npt.assert_almost_equal(x_test, x_saved[::10, 0]) def test_dv_kalman_x_vel(self): dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((len(t), 2)) x_test = np.array([20.08306272, 59.87779911, 72.3189212 , 73.53420293, 64.12422919, 66.87463733, 84.32133029, 79.23214373, 82.47667741, 86.30916162, 80.29449928]) # Create objects for the simulation gp = sim.GetPos() dk = kf.DvKalman() for k in range(len(t)): z = gp.measurement() x_saved[k, :] = dk.next_sample(z) npt.assert_almost_equal(x_test, x_saved[::10, 1]) def test_int_kalman_x_vel(self): dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((len(t), 2)) x_test = np.array([44.82330127, 80.66266235, 72.73385292, 82.05528032, 74.8722922 , 82.66549625, 86.53350242, 80.31837348, 80.74624911, 83.77797869, 80.57758014]) # Create objects for the simulation gv = sim.GetVel() ik = kf.IntKalman() for k in range(len(t)): z = gv.measurement() x_saved[k, :] = ik.next_sample(z) npt.assert_almost_equal(x_test, x_saved[::10, 1]) def test_int_kalman_x_pos(self): dt = 0.1 t = np.arange(0, 10 + dt, dt) x_saved = np.zeros((len(t), 2)) x_test = np.array([3.55145633, 77.7381104 , 153.44154205, 235.38042071, 313.80303816, 394.62000052, 473.96915187, 554.86351, 630.47869611, 712.59481293, 786.37162823]) # Create objects for the simulation gv = sim.GetVel() ik = kf.IntKalman() for k in range(len(t)): z = gv.measurement() x_saved[k, :] = ik.next_sample(z) npt.assert_almost_equal(x_test, x_saved[::10, 0]) def test_ekf_x(self): dt = 0.05 n_samples = 500 t = np.arange(n_samples) * dt n_samples = len(t) x_saved = np.zeros((n_samples, 3)) x_test = np.array([[ 4.5 , 90. , 1048.35700227], [ 340.92701179, 129.19059199, 1007.64740711], [ 793.01850282, 153.83039049, 1003.76887912], [1187.81309238, 156.6880102 , 1003.96499988], [1635.12480478, 169.35387149, 1006.01391596], [1965.96084856, 148.35186341, 1000.27827996], [2411.82207964, 162.38496029, 1004.06328925], [2811.82330229, 161.8190544 , 1003.97565162], [3254.16219351, 168.74746912, 1004.5385335 ], [3630.89648321, 154.58882883, 1004.22494179]]) gr = sim.GetRadar() ekf = kf.RadarEKF(dt, initial_state=[0, 90, 1100]) for k in range(n_samples): xm = gr.measurement() x_saved[k, :] = ekf.next_sample(xm) npt.assert_almost_equal(x_test, x_saved[::50, :]) def test_ekf_z(self): dt = 0.05 n_samples = 500 t = np.arange(n_samples) * dt n_samples = len(t) x_saved = np.zeros((n_samples, 3)) z_saved = np.zeros(n_samples) z_test = np.array([1052.22272082, 1071.57581789, 1288.44638908, 1563.13684492, 1927.27212923, 2210.78424339, 2617.51747043, 2990.06735689, 3409.85996124, 3770.3812422 ]) gr = sim.GetRadar() ekf = kf.RadarEKF(dt, initial_state=[0, 90, 1100]) for k in range(n_samples): xm = gr.measurement() x_saved[k, :] = ekf.next_sample(xm) z_saved[k] = norm(x_saved[k]) npt.assert_almost_equal(z_test, z_saved[::50]) def test_sigma_points(self): xm = np.array([[5], [5]]) px = 9 * np.eye(2) kappa = 2 xi, w = kf.sigma_points(xm, px, kappa) # sigma points and weights xi_test = [[ 5., 11., 5., -1., 5.], [ 5., 5., 11., 5., -1.]] w_test = [0.5, 0.125, 0.125, 0.125, 0.125] npt.assert_almost_equal(xi_test, xi) npt.assert_almost_equal(w_test, w) def test_ut(self): xm = np.array([[5], [5]]) px = 9 * np.eye(2) kappa = 2 x_avg_test = [[5.], [5.]] x_cov_test = [[9., 0.], [0., 9.]] xi, w = kf.sigma_points(xm, px, kappa) # sigma points and weights xAvg, xCov = kf.ut(xi, w) # estimate mean vector and covariance matrix using sigma points npt.assert_almost_equal(x_avg_test, xAvg) npt.assert_almost_equal(x_cov_test, xCov) def test_radar_ukf_x(self): x_test = np.array([[ 4.11483289, 89.9807873 , 1006.07122023], [ 352.3105395 , 111.00439655, 1007.21596109], [ 760.28088421, 129.09475887, 1013.98092468], [1146.57543567, 135.45782881, 1023.0940802 ], [1570.56204941, 142.75711716, 1041.58425653], [1920.57768989, 141.88223322, 1039.88681358], [2352.56816971, 149.54007223, 1056.58613916], [2759.93367043, 153.00065999, 1063.05210355], [3197.83961482, 158.44281893, 1072.24895062], [3601.64732546, 158.77005313, 1073.01176455]]) dt = 0.05 n_samples = 500 t = np.arange(n_samples) * dt n_samples = len(t) x_saved = np.zeros((n_samples, 3)) gr = sim.GetRadar() r_ukf = kf.RadarUKF(dt, initial_state=[0, 90, 1100]) for k in range(n_samples): xm = gr.measurement() x_saved[k, :] = r_ukf.next_sample(xm) npt.assert_almost_equal(x_test, x_saved[::50, :]) def test_radar_ukf_z(self): z_test = np.array([1010.09542821, 1072.81344351, 1273.91121954, 1542.62942731, 1889.95833525, 2188.63286461, 2583.27572973, 2961.54061968, 3376.5367081 , 3761.43930347]) dt = 0.05 n_samples = 500 t = np.arange(n_samples) * dt n_samples = len(t) x_saved = np.zeros((n_samples, 3)) z_saved = np.zeros(n_samples) gr = sim.GetRadar() r_ukf = kf.RadarUKF(dt, initial_state=[0, 90, 1100]) for k in range(n_samples): xm = gr.measurement() x_saved[k, :] = r_ukf.next_sample(xm) z_saved[k] = norm(x_saved[k]) npt.assert_almost_equal(z_test, z_saved[::50]) def test_radar_ukf_k(self): k_test = np.array([[3.72767389e-03, 1.85941828e-04, 9.09049215e-01], [3.61211252e-01, 7.79001494e-02, 1.78803480e-02], [8.96156438e-02, 1.19831691e-02, 1.10461769e-02], [4.37106654e-02, 4.44888833e-03, 8.91105184e-03], [2.83271141e-02, 2.62417475e-03, 7.81276553e-03], [2.25960281e-02, 2.85581248e-03, 6.27331967e-03], [2.09285314e-02, 2.47122914e-03, 4.92643172e-03], [1.99822813e-02, 2.31160049e-03, 4.09337298e-03], [1.94611058e-02, 2.22562871e-03, 3.51757877e-03], [1.91697107e-02, 2.17315151e-03, 3.11253739e-03]]) dt = 0.05 n_samples = 500 t = np.arange(n_samples) * dt n_samples = len(t) k_saved = np.zeros((n_samples, 3)) gr = sim.GetRadar() r_ukf = kf.RadarUKF(dt, initial_state=[0, 90, 1100]) for k in range(n_samples): xm = gr.measurement() r_ukf.next_sample(xm) k_saved[k, :] = r_ukf.K.T npt.assert_almost_equal(k_test, k_saved[::50, :])
[ "chiranthsiddappa@gmail.com" ]
chiranthsiddappa@gmail.com
5eae11d7adebce62256c9c269420987377a3cc26
98b2fa349ec2d78bd5826f29dbee0fb95fd10c75
/uploads/urls.py
3f940b18b16bea99e92aec70a2a8d646f5da9658
[]
no_license
aymony80/myproject
7df5634ea90752ef1d5a1a75d88c181baa056ab9
8b58cabdde6b0d02671da45d14daecbace39f19a
refs/heads/master
2020-04-23T21:08:41.555707
2019-02-19T11:19:21
2019-02-19T11:19:21
171,108,487
1
0
null
null
null
null
UTF-8
Python
false
false
316
py
from django.conf import settings from django.conf.urls.static import static from uploads import views from django.urls import path urlpatterns = [ path('', views.model_form_upload, name='model_form_upload'), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "aymony80@yahoo.com" ]
aymony80@yahoo.com
02d7db5785df04c2f897243258873da5b4b0ab58
012efe58d791dbc906a4485aad7d097ea336a69b
/pixels.py
c2431788142f24bbc5809f83b2e0ee5ccad10f43
[]
no_license
jorjuato/pythonic
f3cb7c75e530170b75eee1903b633855debafa98
d5ccc603c0748026da18a89a3c3ade218a139cf6
refs/heads/master
2021-01-15T14:29:01.823584
2012-02-27T13:10:16
2012-02-27T13:10:16
3,560,485
0
0
null
null
null
null
UTF-8
Python
false
false
1,259
py
#!/usr/bin/env python import VisionEgg VisionEgg.start_default_logging(); VisionEgg.watch_exceptions() from VisionEgg.Core import * import pygame from pygame.locals import * screen = get_default_screen() screen.set( bgcolor = (0.0,0.0,0.0) ) # black (RGB) white_data = (Numeric.ones((100,200,3))*255).astype(Numeric.UnsignedInt8) red_data = white_data.copy() red_data[:,:,1:] = 0 # zero non-red channels blue_data = white_data.copy() blue_data[:,:,:-1] = 0 # zero non-blue channels frame_timer = FrameTimer() # start frame counter/timer count = 0 quit_now = 0 # This style of main loop is an alternative to using the # VisionEgg.FlowControl module. while not quit_now: for event in pygame.event.get(): if event.type in (QUIT,KEYDOWN,MOUSEBUTTONDOWN): quit_now = 1 screen.clear() count = (count+1) % 3 if count == 0: pixels = white_data elif count == 1: pixels = red_data elif count == 2: pixels = blue_data screen.put_pixels(pixels=pixels, position=(screen.size[0]/2.0,screen.size[1]/2.0), anchor="center") swap_buffers() # display what we've drawn frame_timer.tick() # register frame draw with timer frame_timer.log_histogram()
[ "yosoymicerinos@yahoo.com" ]
yosoymicerinos@yahoo.com
b1938ef4ef5cf10644ae8f49ecca8a80c622c2e5
a1dcff1dc2789c271941f08b8069bfa7936a16a5
/prime number between 1-100.py
de59701db381a6239a5eeb572c6f16fe42ee618a
[]
no_license
Gulnaaznasrin21/Loop
004e2de2aeb2a09725e0f28752b5d44318ada678
3510276fc391b3ee1e21208c058cef474ef7dc7e
refs/heads/main
2023-07-22T18:31:36.146417
2021-09-05T09:18:12
2021-09-05T09:18:12
403,263,351
0
0
null
null
null
null
UTF-8
Python
false
false
223
py
i=1 while i<=100: factor=0 x=1 while x<=i: if i%x==0: factor+=1 x+=1 if factor==2: print(i,"is a prime number") else: print(i,"is not a prime number") i+=1
[ "noreply@github.com" ]
noreply@github.com
b20eb31e621b6af9cf0b1d9291f57832e0b170b2
e00186e71a1f52b394315a0cbc27162254cfffb9
/durga/without_rest_models/testapp/models.py
6cac7e2e06e3e0b26b958a2b5e56c8110c3d2e6b
[]
no_license
anilkumar0470/git_practice
cf132eb7970c40d0d032520d43e6d4a1aca90742
588e7f654f158e974f9893e5018d3367a0d88eeb
refs/heads/master
2023-04-27T04:50:14.688534
2023-04-22T05:54:21
2023-04-22T05:54:21
100,364,712
0
1
null
2021-12-08T19:44:58
2017-08-15T10:02:33
Python
UTF-8
Python
false
false
240
py
from django.db import models # Create your models here class Employee(models.Model): eno = models.IntegerField() ename = models.CharField(max_length=64) esal = models.FloatField() eadd = models.CharField(max_length=64)
[ "anilkumar.0466@gmail.com" ]
anilkumar.0466@gmail.com
6701a5d0ba5e5b012fd5e73566122aec45fe9bd2
b47ae1d46a3abfbf9dd0192e1f09b15a3c0be570
/getting_started.py
8dbd82b18adafc5f5b9e99d14b86f4e66d67716f
[]
no_license
tanishka1411/YoutubeAPI-Analysis
71aaf217a97ed2d0fc8bb4dea3b098e5066a1793
b7f984a2af925c6451b6252e81e8b1056adfa02e
refs/heads/main
2023-06-09T04:08:41.802770
2021-06-29T06:49:57
2021-06-29T06:49:57
381,096,163
0
0
null
null
null
null
UTF-8
Python
false
false
309
py
from googleapiclient.discovery import build api_key = '#someAPI key' youtube = build('youtube', 'v3', developerKey=api_key) # servuce name and version request = youtube.channels().list( part='statistics', forUsername='schafer5' ) response = request.execute() print(response)
[ "noreply@github.com" ]
noreply@github.com
22455a3f150ef0f3385bd909b0f90762cfa6b38e
a76401f82ed1c9ac47ddaff27681b90f37627426
/.history/student_olx/registration/views_20210920162648.py
fb7e3c1e36051e6495947c6a53f7162f739cf2d1
[]
no_license
RiteshK555/itw-project
e90e1dd13517ee8b07d72cc3bd5a42af367ab587
a2e4c8682c2030ff77da9ade5ae4677bd475f87a
refs/heads/master
2023-08-30T03:48:58.904979
2021-11-10T09:50:59
2021-11-10T09:50:59
410,032,076
0
0
null
null
null
null
UTF-8
Python
false
false
817
py
from django.shortcuts import render from django.contrib.auth import models from django.contrib.auth.forms import UserCreationForm from django.shortcuts import render,redirect from django.contrib.auth.models import User from .models import money # Create your views here. def register(request,response): if response.method=="POST": form=UserCreationForm(response.POST) if form.is_valid(): form.save() return redirect("/") else: form=UserCreationForm() m=money(holder=request.user,amount=0) m.save() else: form=UserCreationForm() return render(response,"registration/register.html",{"form":form}) def login(response): # if money.holder==User: # print("hi") return render(response,"registration/login.html")
[ "" ]
76e0da4b707763b772483b78ae0ee2af7b3bf9e8
f4d38a475a03d26d0a8cd7994ab9c6669a0d36f5
/targetDirectory/lib/python3.6/ntpath.py
af2cf083df9f1a2cfb1d64f0bbfb9d404ada284c
[]
no_license
karsheng/language-translation
353a7b10d9d1fae9c4464f3fae301a409b947c2b
6eb5c162d029b7c3959b0d5fcabe8e19c1323d47
refs/heads/master
2021-01-19T22:10:15.704917
2017-04-19T16:04:05
2017-04-19T16:04:05
88,764,381
0
0
null
null
null
null
UTF-8
Python
false
false
52
py
/Users/karshenglee/anaconda3/lib/python3.6/ntpath.py
[ "karshenglee@Kars-MacBook-Air.local" ]
karshenglee@Kars-MacBook-Air.local
403ab9bd83a5ce8b42777539060c2a980fd1402c
320e25d46855acbf3a84107c03addca0595a8676
/preshoneypot.py
6e229a9b06dbac5089c42f6aeb4c40f7337f2a39
[]
no_license
itd/cuddle-fuzz
f212914fb4e597834761d14874d67761897c1c23
c33f3f179b88cc2cb67851d78d5666fa460faac4
refs/heads/master
2021-01-10T19:25:03.225598
2012-09-13T05:36:20
2012-09-13T05:36:20
35,767,153
0
0
null
null
null
null
UTF-8
Python
false
false
3,404
py
#!/usr/bin/python # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ..__...__.........._____. # _/ |_|__|._______/ ___\ # \ __\ |/ ___/\ __\. # .| |.| |\___ \..| |... # .|__|.|__/____ >.|__|... # ..............\/......... # # NetCat Presistent Honey Pot # # This file will create a honeypot and establish it every # time it goes down. It will save log file for the # connection to capture.txt and will add # banner from 'welcome.txt' # # Build by Yuval (tisf) Nativ from See-Security Group # http://www.see-security.com # https://avtacha.wordpress.com # # .__.................__......................_._......... # / _\.___..___....../ _\.___..___._..._._.__(_) |_._..._. # \ \./ _ \/ _ \_____\ \./ _ \/ __| |.| | '__| | __| |.| | # _\ \ __/ __/_____|\ \ __/ (__| |_| | |..| | |_| |_| | # \__/\___|\___|.....\__/\___|\___|\__,_|_|..|_|\__|\__, | # ..................................................|___/. # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ import sys import getopt import os def printhelp(): print '' print ' ..__...__.........._____.' print ' _/ |_|__|._______/ ___\ ' print ' \ __\ |/ ___/\ __\.' print ' .| |.| |\___ \..| |...' print ' .|__|.|__/____ >.|__|...' print ' ..............\/.........' print '' print ' Created By Yuval Nativ (tisf) of See-Security' print ' http://www.see-security.org' print ' https://avtacha.wordpress.com' print '' print 'Syntax not used properly.' print 'Use the -p or --port for the target port.' print 'If you use port which is larger than 1024 run as root.' print 'The banner for the honey pot is at welcome.txt .' print 'The log will be saved to capture.txt .' print '' print ' ex.: ./preshoneypot.py -p 44254' print '' def main(argv): portAsked = '' rootBar = 1024 try: opts, args = getopt.getopt(argv,"hp:h",["port=","help="]) except getopt.GetoptError: printhelp() sys.exit(2) for opt, arg in opts: if opt == ('-h', '--help'): printhelp() sys.exit() elif opt in ('-p', '--port'): portAsked = arg if portAsked=='': printhelp() sys.exit() if int(portAsked) > int(65535): sys.exit('Port cannot be bigger then 65535...') if int(portAsked) < int(rootBar): if not os.geteuid() == 0: sys.exit('For using this script under port 1024 please run as root.') i=0 i=str("while [ 1 ]; do echo 'Got a connection'; nc -lvvv "+portAsked+" < honeywelcome.txt >> capture.txt; done") os.system(i) if __name__ == "__main__": main(sys.argv[1:])
[ "YuvalN210@gmail.com@8cf99bae-c7dc-ee7b-a7b4-1828fa5c92ce" ]
YuvalN210@gmail.com@8cf99bae-c7dc-ee7b-a7b4-1828fa5c92ce
a7314831bd03dc41915aa1ae0b07c843c21756a3
f79673770ab37c86804cd46b83b82b72a99e1ec8
/python-project/test_isPalindrome.py
69ea43b98990852cf7df3aad25796506ac516d3f
[]
no_license
madooei/playground-h2n7ay2w
ddfde03d8cf6260efdc9f61874b95363ec496e87
a86461b4640ae1f1e2c662d715b2f7062f5c68e3
refs/heads/master
2022-08-11T11:28:19.720013
2022-07-21T14:21:24
2022-07-21T14:21:24
174,290,656
0
0
null
null
null
null
UTF-8
Python
false
false
1,998
py
from isPalindrome import isPalindrome def send_msg(channel, msg): print("TECHIO> message --channel \"{}\" \"{}\"".format(channel, msg)) def success(): print("TECHIO> success true") send_msg("My personal Yoda, you are. 🙏", "* ● ¸ . ¸. :° ☾ °  ¸. ● ¸ .  ¸. :. • ") send_msg("My personal Yoda, you are. 🙏", "  ★ ° ☆ ¸. ¸  ★  :.  . ") send_msg("My personal Yoda, you are. 🙏", "__.-._ ° . .    . ☾ °  . * ¸ .") send_msg("My personal Yoda, you are. 🙏", "'-._\\7' .  ° ☾ °  ¸.☆ ● .   ") send_msg("My personal Yoda, you are. 🙏", " /'.-c   * ● ¸.  ° °  ¸. ") send_msg("My personal Yoda, you are. 🙏", " | /T   ° °  ¸. ¸ .   ") send_msg("My personal Yoda, you are. 🙏", "_)_/LI") def fail(): print("TECHIO> success false") def tests(): try: assert isPalindrome("") assert isPalindrome("a") except AssertionError as e: fail() send_msg("Oops! 🐞", e) send_msg("Hint 💡", "What is the smallest palindrome? 🤔") return; try: assert isPalindrome("ali")==False, "ali is not palindrome" assert isPalindrome("bob"), "bob is palindrom" assert isPalindrome("hannah"), "hannah is palindrome" assert isPalindrome("ada"), "ada is plaindrome" assert isPalindrome("anna"), "anna is palindrome" assert isPalindrome("nitin"), "nitin is palindrome" assert isPalindrome("otto"), "otto is palindrome" assert isPalindrome("madam"), "madam is palindrome" assert isPalindrome("racecar"), "racecar is palindrome" assert isPalindrome("xerox")==False, "xerox is not palindrome" success() except AssertionError as e: fail() send_msg("Oops! 🐞", e) send_msg("Hint 💡", "If the first and the last character of the input are not the same then ...? 🤔") if __name__ == "__main__": tests()
[ "noreply@github.com" ]
noreply@github.com
dc47da1229fb1fe7b1bab77e741c3d578297a343
d205793571b39fe254f513f4437f37c47f4db011
/src_py/ztf_data.py
8c01c96019f18722082a48d7ffa032ab7d4514e1
[]
no_license
memanuel/kepler-sieve
ba996c4008edec3458ac0afbfa3bee95367467cd
9f11f377d82cb941d77159fd7b97ae2300b6ca6a
refs/heads/main
2021-11-22T19:07:13.725263
2021-08-08T20:44:47
2021-08-08T20:44:47
236,581,914
1
0
null
null
null
null
UTF-8
Python
false
false
3,965
py
""" ZTF Data Calculations to enrich ZTF data after it is loaded. Michael S. Emanuel 24-Mar-2021 """ # Standard libraries import numpy as np import pandas as pd # Astronomy related from astropy.units import deg # UI from tqdm.auto import tqdm as tqdm_auto # MSE imports from db_utils import df2db, sp2df, sp_run from astro_utils import mjd_to_datetime from ra_dec import radec2dir, calc_topos from rebound_sim import make_sim_planets from rebound_integrate import integrate_mjds # ********************************************************************************************************************* def calc_ztf_detection_times(): """Update entries in table KS.DetectionTime associated with ZTF observations""" # Distinct ZTF detection times df = sp2df('ZTF.GetDetectionTimes') # Array of observations times as MJDs mjds = df['mjd'].values # Populate the CalendarDateTime field df['CalendarDateTime'] = np.array([mjd_to_datetime(mjd) for mjd in mjds]) # All available data sources as a DataFrame ds = sp2df('KS.GetDataSources') # Populate DataSourceID and ObservatoryID fields df['DataSourceID'] = ds.DataSourceID[ds.DataSourceCD=='ZTF'].values[0] df['ObservatoryID'] = ds.ObservatoryID[ds.DataSourceCD=='ZTF'].values[0] # Integrate the planets saving outputs at these observation times print(f'Integrating planets on {df.shape[0]} distinct observation times...') sim_epoch = make_sim_planets(epoch=mjds[0]) body_ids, body_names, q, v, elts = integrate_mjds(sim_epoch=sim_epoch, mjds=mjds, save_elements=False, progbar=True) # Earth position at these observation times earth_idx = np.argmax(body_names=='Earth') q_earth = q[:,earth_idx,:] v_earth = v[:,earth_idx,:] # Calculate topos adjustment dq_topos, dv_topos = calc_topos(obstime_mjd=mjds, site_name='Palomar') # The position and velocity of the observatory q_obs = q_earth + dq_topos.value # in AU v_obs = v_earth + dv_topos.value # in AU / day # Position of the Sun sun_idx = np.argmax(body_names=='Sun') q_sun = q[:,sun_idx,:] # Save positions of observatory and sun to DataFrame df[['qObs_x', 'qObs_y', 'qObs_z']] = q_obs df[['vObs_x', 'vObs_y', 'vObs_z']] = v_obs df[['qSun_x', 'qSun_y', 'qSun_z']] = q_sun # Save these observation times and positions to DB df2db(df=df, schema='KS', table='DetectionTime', verbose=False, progbar=False) # ********************************************************************************************************************* def ztf_raw_detections(sz: int = 1000000): """Populate missing rows of table KS.RawDetections from ZTF.Detections""" # Get the number of missing rows rMax = sp2df('KS.MakeTable_RawDetection_ZTF_RowCount').RowCount[0] # Set up a tqdm index counter to process the rows in chunks of sz at a time iMax: int = rMax // sz + 1 idx = tqdm_auto(np.arange(iMax)) # Process the rows in chunks of sz params={'sz':sz} print(f'KS.RawDetections missing {rMax} rows from ZTF.Detections. Processing now...') for i in idx: sp_run('KS.MakeTable_RawDetection_ZTF', params=params) # ********************************************************************************************************************* def main(): """ Main routine for console program """ # Call SQL procedure to add new rows to ZTF.DetectionTime from ZTF.Detection sp_run('ZTF.MakeTable_DetectionTime') # Call SQL procedure to insert new records to DetectionTimeSlice sp_run('KS.MakeTable_DetectionTimeSlice', {'sz': 30}); # Rebuild the KS.DetectionTime entries coming from ZTF calc_ztf_detection_times() # Update KS.DetectionTimePair sp_run('KS.MakeTable_DetectionTimePair', {'sz':60}) # ********************************************************************************************************************* if __name__ == '__main__': main()
[ "michael.s.emanuel@gmail.com" ]
michael.s.emanuel@gmail.com
2dd0f2b4ecbe9a9e488c7bbbb3b682fe8d7cc773
108f35831d5f81dd1e8eaace0b05e7202d2258dd
/searchr_app/file_analyzer/FileAnalyzer.py
2a8d62151de3763affead234dd4f587e91b2b260
[]
no_license
cebul55/Searchr_Project
d54c997bb5cc5eda8a066d74adf8bb06dead9ebe
f629439912cdd4e822f549c48740611cab2e9d6f
refs/heads/master
2020-08-05T20:15:02.560090
2020-01-26T23:28:22
2020-01-26T23:28:22
212,691,605
0
0
null
2020-01-26T18:55:51
2019-10-03T22:21:09
Python
UTF-8
Python
false
false
3,940
py
import itertools import json from bs4 import BeautifulSoup from searchr_app.file_analyzer.HTMLFileAnalyzer import HTMLFileAnalyzer from searchr_app.file_analyzer.TextFileAnalyzer import TextFileAnalyzer class FileAnalyzer(object): search_result = None search_phrases_combination = None # phrases defined by user search_phrases = None # query defined by user search_query = None html_doc = None text_doc = None accuracy = 0.0 def __init__(self, search_result): self.search_result = search_result phrases_list = str(search_result.search.phrases_list) self.search_phrases_combination = self.generate_phrase_combinations_as_text(phrases_list) self.search_query = self.get_search_query(search_result.search) if 'pdf' in search_result.content_type or 'word' in search_result.content_type: self.text_doc = search_result.html_file elif search_result.html_file is not None: self.html_doc = search_result.html_file self.start_analyzing() # def __init__(self, search_result, phrases_combitation=None, html_doc=None, text_doc=None): # if phrases_combitation is None: # self.search_result = search_result # phrases_list = str(search_result.search.phrases_list) # self.search_phrases_combination = self.generate_phrase_combinations_as_text(phrases_list) # if 'pdf' in search_result.content_type or 'word' in search_result.content_type: # self.text_doc = search_result.html_file # elif search_result.html_file is not None: # self.html_doc = search_result.html_file # self.start_analyzing() # else: # self.search_result = search_result # self.search_phrases_combination = phrases_combitation # self.html_doc = html_doc # self.text_doc = text_doc def start_analyzing(self): if self.text_doc is not None: print('startin doc analisys') self.analyze_text() elif self.html_doc is not None: self.analyze_html() # set status to 'analyzed' after end of analisys # self.search_result.set_status_to_analyzed() def generate_phrase_combinations_as_text(self, phrases_list): phrases_list = self.convert_literal_list_to_list(phrases_list) self.search_phrases = phrases_list combinations = [] for L in range(1, len(phrases_list) + 1): for subset in itertools.combinations(phrases_list, L): combinations.append(subset) return combinations @staticmethod def convert_literal_list_to_list(literal_list): import ast x = u'' + literal_list x = ast.literal_eval(x) return_list = x return_list = [n.strip() for n in return_list] return return_list def analyze_text(self): print('startin doc analisys') text_analyzer = TextFileAnalyzer(self.search_result, self.search_phrases_combination, self.search_phrases, self.search_query, self.text_doc) text_analyzer.analyze_text_file() self.accuracy = text_analyzer.count_result_accuracy() pass def analyze_html(self): html_analyzer = HTMLFileAnalyzer(self.search_result, self.search_phrases_combination, self.search_phrases, self.search_query, self.html_doc) html_analyzer.analyze_html_file() self.accuracy = html_analyzer.count_result_accuracy() def get_accuracy(self): return self.accuracy def get_search_query(self, search): saved_attribs = search.attributes.replace('\"', '#DOUBLEQUOTE#') saved_attribs = saved_attribs.replace('\'', '\"') attr_dict = json.loads(saved_attribs) search_query = attr_dict['query'] search_query = search_query.replace('#DOUBLEQUOTE#', '\"') return search_query
[ "B.Cybulski@stud.elka.pw.edu.pl" ]
B.Cybulski@stud.elka.pw.edu.pl
3a32e88f924763cebc773b157f5ade3bbf566316
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/9BJzrtpdMP8JFQg74_5.py
54241e25ddb6e70ccec2ec15821dcacf5ef26e29
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
652
py
""" Create a function that given a list, it returns the index where if split in two-subarrays (last element of the first array has index of (foundIndex-1)), the sum of them are equal. ### Examples twins([10, 20, 30, 5, 40, 50, 40, 15]) ➞ 5 # foundIndex 5 : [10+20+30+5+40]=[50+40+15] twins([1, 2, 3, 4, 5, 5]) ➞ 4 # [1, 2, 3, 4] [5, 5] twins([3, 3]) ➞ 1 ### Notes Return only the foundIndex, not the divided list. """ def twins(lst): for i in range(1, len(lst)): temp = [] temp.append(lst[:i]) temp.append(lst[i:]) if sum(temp[0]) == sum(temp[1]): return i
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
beb48d37a60a78689bd1746ead88875852e1c2e5
74fa733260f66c7dd1e9b7ddf2eb3a9bdd624aff
/train_evaluate_sesemi_tinyimages.py
a64641cca8aaa94cb4e60df467a84dfacec289bd
[ "MIT" ]
permissive
ml-lab/sesemi
29d6bb3fec0920ed1d6d6f95ea40679c18573c59
b325936fb5ae425b5ee298ee7011129051cfc69e
refs/heads/master
2020-06-11T14:51:37.654989
2019-06-26T23:42:09
2019-06-26T23:42:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,376
py
""" Train and evaluate SESEMI architecture for semi-supevised learning with self-supervised task of recognizing geometric transformations defined as 90-degree rotations with horizontal and vertical flips. """ # Python package imports import os import argparse import numpy as np import pickle # Keras package imports from keras.utils import to_categorical from keras.preprocessing.image import ImageDataGenerator # SESEMI package imports from utils import geometric_transform, global_contrast_normalize from utils import zca_whitener, gaussian_noise from utils import LRScheduler, DenseEvaluator, open_sesemi from utils import load_tinyimages, datagen_tinyimages from datasets import cifar100 from models import convnet, wrn def parse_args(): """Parse command line input arguments.""" parser = argparse.ArgumentParser(description='Train and evaluate SESEMI.') parser.add_argument('--model', dest='model', type=str, required=True) parser.add_argument('--extra', dest='nb_extra', type=int, required=True) parser.add_argument('--gpu', dest='gpu_id', type=int, default=0) args = parser.parse_args() return args def main(): args = parse_args() model = args.model nb_extra = args.nb_extra os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id) arg2var = {'convnet': convnet, 'wrn': wrn,} # Dataset-specific parameters hflip = True zca = True epochs = 50 nb_classes = 100 # Load Tiny Images with open('./datasets/tiny-images/tiny_index.pkl', 'rb') as f: tinyimg_index = pickle.load(f, encoding='latin1') if nb_extra == 237203: print("Using all classes common with CIFAR-100.") with open('./datasets/cifar-100/meta', 'rb') as f: cifar_labels = pickle.load(f, encoding='latin1')['fine_label_names'] cifar_to_tinyimg = {'maple_tree': 'maple', 'aquarium_fish': 'fish'} cifar_labels = [l if l not in cifar_to_tinyimg else cifar_to_tinyimg[l] for l in cifar_labels] load_indices = sum([list(range(*tinyimg_index[label])) for label in cifar_labels], []) elif nb_extra == 500000: print("Using %d random images." % nb_extra) nb_tinyimages = max(e for s, e in tinyimg_index.values()) load_indices = np.arange(nb_tinyimages) np.random.shuffle(load_indices) load_indices = load_indices[:nb_extra] load_indices.sort() # sorted for faster seeks. else: raise ValueError('`--extra` must be integer 237203 or 500000.') nb_aux_images = len(load_indices) print("Loading %d auxiliary unlabeled tiny images." % nb_aux_images) z_train = load_tinyimages(load_indices) z_train = global_contrast_normalize(z_train) # Load CIFAR-100 (x_train, y_train), (x_test, y_test) = cifar100.load_data() x_train = global_contrast_normalize(x_train) x_test = global_contrast_normalize(x_test) if zca: zca_whiten = zca_whitener(np.concatenate([x_train, z_train], axis=0)) x_train = zca_whiten(x_train) z_train = zca_whiten(z_train) x_test = zca_whiten(x_test) x_train = x_train.reshape((len(x_train), 32, 32, 3)) z_train = z_train.reshape((len(z_train), 32, 32, 3)) x_test = x_test.reshape((len(x_test), 32, 32, 3)) y_train = to_categorical(y_train) # Training parameters input_shape = (32, 32, 3) batch_size = 12 base_lr = 0.05 lr_decay_power = 0.5 dropout_rate = 0.2 max_iter = (len(x_train) // batch_size) * epochs sesemi_model, inference_model = open_sesemi( arg2var[model], input_shape, nb_classes, base_lr, dropout_rate) print(sesemi_model.summary()) super_datagen = ImageDataGenerator( width_shift_range=3, height_shift_range=3, horizontal_flip=hflip, preprocessing_function=gaussian_noise, fill_mode='reflect', ) self_datagen = ImageDataGenerator( width_shift_range=3, height_shift_range=3, horizontal_flip=False, preprocessing_function=gaussian_noise, fill_mode='reflect', ) super_data = super_datagen.flow( x_train, y_train, shuffle=True, batch_size=1, seed=None) self_data = self_datagen.flow( x_train, shuffle=True, batch_size=1, seed=None) extra_data = self_datagen.flow( z_train, shuffle=True, batch_size=1, seed=None) train_data_loader = datagen_tinyimages( super_data, self_data, extra_data, batch_size) lr_poly_decay = LRScheduler(base_lr, max_iter, lr_decay_power) evaluate = DenseEvaluator(inference_model, (x_test, y_test), hflip) # Fit the SESEMI model on mini-batches with data augmentation print('Run configuration:') print('model=%s,' % model, 'ZCA=%s,' % zca, 'nb_epochs=%d,' % epochs, \ 'horizontal_flip=%s,' % hflip, 'nb_extra=%d,' % len(z_train), \ 'batch_size=%d,' % batch_size, 'gpu_id=%d' % args.gpu_id) sesemi_model.fit_generator(train_data_loader, epochs=epochs, verbose=1, steps_per_epoch=len(x_train) // batch_size, callbacks=[lr_poly_decay, evaluate],) return if __name__ == '__main__': main()
[ "vuptran@gmail.com" ]
vuptran@gmail.com
b9c2ab2a145c713904bc1750e4837b1d3b4cc7d7
bbfa3b7ee2008617d33a7c5c7770d22e1aa8836b
/Neural_Network/_base.py
4297021e909f92cc59ba0f6ba4d9070986e15fba
[ "MIT" ]
permissive
luoshao23/ML_algorithm
1a0046ce9c3abed029cceffa35defe57fffa82b2
6e94fdd0718cd892118fd036c7c5851cf3e6d796
refs/heads/master
2021-08-07T08:38:16.102455
2020-03-18T06:49:43
2020-03-18T06:49:43
92,467,636
4
1
MIT
2018-01-16T05:01:29
2017-05-26T03:20:08
Jupyter Notebook
UTF-8
Python
false
false
1,611
py
from scipy.special import expit as logistic_sigmoid import numpy as np def identity(X): return X def logistic(X): return logistic_sigmoid(X, out=X) def tanh(X): return np.tanh(X, out=X) def relu(X): return np.clip(X, 0, np.finfo(X.dtype).max, out=X) def softmax(X): tmp = X - X.max(axis=1)[:, np.newaxis] np.exp(tmp, out=X) X /= X.sum(axis=1)[:, np.newaxis] return X def deriv_identity(a, delta): """nothing""" def deriv_logistic(a, delta): delta *= a delta *= (1.0 - a) def deriv_tanh(a, delta): delta *= (1.0 - a**2) def deriv_relu(a, delta): delta[a <= 0] = 0 def squared_loss(y_true, y_pred): return ((y_true - y_pred) ** 2).mean() / 2 def log_loss(y_true, y_prob): y_prob = np.clip(y_prob, 1e-10, 1 - 1e-10) if y_prob.shape[1] == 1: y_prob = np.append(1 - y_prob, y_prob, axis=1) if y_true.shape[1] == 1: y_true = np.append(1 - y_true, y_true, axis=1) return -np.sum(y_true * np.log(y_prob)) / y_prob.shape[0] def binary_log_loss(y_true, y_prob): y_prob = np.clip(y_prob, 1e-10, 1 - 1e-10) return -np.sum(y_true * np.log(y_prob) + (1 - y_true) * np.log(1 - y_prob)) / y_prob.shape[0] ACTIVATIONS = {'identity': identity, 'logistic': logistic, 'tanh': tanh, 'relu': relu, 'softmax': softmax} DERIVATIVES = {'identity': deriv_identity, 'logistic': deriv_logistic, 'tanh': deriv_tanh, 'relu': deriv_relu} LOSS_FUNCTIONS = {'squared_loss': squared_loss, 'log_loss': log_loss, 'binary_log_loss': binary_log_loss}
[ "luoshao23@gmail.com" ]
luoshao23@gmail.com
bededd6fe791e5c9a093dd367ca0f71eb18b58a2
10be352a4d80672c108fc66e86afec977ec830de
/cs1_final/DissemblerSolver.py
4f3206e839c973618fadcc7e275b56dfa5e9afda
[]
no_license
MeganTj/CS1-Python
cef5a7cd812f294812beff58c69514d52e2c1541
09b4a7cfb9bfb6bc64b631e6fd8c35ff35a5ca56
refs/heads/master
2022-02-16T17:49:34.218252
2022-01-27T06:22:29
2022-01-27T06:22:29
178,276,099
0
0
null
null
null
null
UTF-8
Python
false
false
16,984
py
# Name: Megan Tjandrasuwita # CMS cluster login name: mtjandra ''' Solves a Dissembler puzzle given a puzzle in the form of a one-line string. ''' import string from utils import * # ---------------------------------------------------------------------- # Global data. # ---------------------------------------------------------------------- # A list of dissembler puzzles. # Each puzzle is represented as a single string. # Blank squares are indicated by '.' and colored squares # are indicated by a single lowercase letter. # The letters have no meaning (they aren't short for a specific color). # The blanks in the string are used to separate different rows of the # puzzle. puzzles = [ 'aababb', 'aa. b.. abb', 'a.. aba bab ..b', 'abba a..b b..a abba', '.aa. ..b. baab .b.. .aa.', 'a...a babab a...a', '....a ababa b.... a.aba b.a.b a...a babab', 'aabb .ba. .ac. .cd. ddcd', 'ababc d...b ad.ec .f.c. fd.eg f...e hhghg', 'aabaa bbcbb ccdcc ddedd eeaee', '.aabb. .c..c. ca..bc d....d cdccdc .cddc.', '..aab .ccda .b.cb db.db da.d. cbaa. dcc..', 'abbcbc adaddc dccbcb dadaab', 'ababb b.b.a a.a.a a.b.b bbaba', '.ab. .ba. .ab. abab a..b', # Harder puzzles: '...a... ..bac.. .bdbad. cca.dee .afbeb. ..afb.. ...f...', 'aaaaab cbdcdb cbeadb cabfeb cafefb cddddd', 'abcdded adb.ecd abcccad afggged agf.bad afbbgad', 'abcacc daedfe dbgfef ccbhhi gjcijh gfjffi', 'aabcbcb c.a.d.b cbcdcaa d.a.a.b adcabda d.b.d.b acadcdd' ] # ---------------------------------------------------------------------- # Helper functions. # ---------------------------------------------------------------------- def is_adjacent(loc1, loc2): ''' Arguments: loc1, loc2 -- (row, column) locations Return value: True if two locations are orthogonally adjacent, otherwise False. ''' assert is_loc(loc1) assert is_loc(loc2) x_adj = abs(loc1[0] - loc2[0]) == 1 y_adj = abs(loc1[1] - loc2[1]) == 1 if (abs(loc1[0] - loc2[0]) == 1 and loc1[1] == loc2[1]) or \ (abs(loc1[1] - loc2[1]) == 1 and loc1[0] == loc2[0]): return True return False def adjacent_to_any(loc, locset): ''' Arguments: loc -- a (row, column) location locset -- a set of locations Return value: True if `loc` is not in `locset` and at least one location in `locset` is adjacent to `loc`, otherwise False. The set `locset` is not altered. ''' assert is_loc(loc) assert is_locset(locset) if loc not in locset: for loc2 in locset: if is_adjacent(loc, loc2): return True return False def collect_adjacent(locset, target_set): ''' Arguments: locset -- a set of (row, column) locations target_set -- another set of (row, column) locations Return value: A set of all the locations in `locset` that are adjacent to any location in `target_set`. The sets `locset` and `target_set` are not altered. ''' assert is_locset(locset) assert is_locset(target_set) adj = set() for loc in locset: if adjacent_to_any(loc, target_set): adj.add(loc) return adj def collect_connected(loc, locset): ''' Arguments: loc -- a (row, column) location locset -- a set of locations Return value: A set of all the locations in `locset` which are connected to `loc` via a chain of adjacent locations. Include `loc` in the resulting set. The set `locset` is not altered. ''' assert is_loc(loc) assert is_locset(locset) connected = set([loc]) orig = locset.copy() adj = collect_adjacent(orig, connected) adj.add(loc) while len(adj.difference(connected)) > 0: connected = connected.union(adj) for i in adj: if i in orig: orig.remove(i) adj = adj.union(collect_adjacent(orig, connected)) return connected def partition_connected(locset): ''' Partition a set of locations based on being connected via a chain of adjacent locations. The original locset is not altered. Return a list of subsets. The subsets must all be disjoint i.e. the intersection of any two subsets must be the empty set. Arguments: locset -- a set of (row, column) locations Return value: The list of partitioned subsets. The set `locset` is not altered. ''' assert is_locset(locset) orig = locset.copy() lst = [] lst2 = [] while len(orig) > 0: lst.append(orig.pop()) while len(lst) > 0: adj = collect_connected(lst[0], locset) lst2.append(adj) for x in adj: lst.remove(x) return lst2 def filter_locset(locset): ''' Given a locset, partition it into subsets which are connected via a chain of adjacent locations. Compute two sets: -- the union of all partitions whose length is < 3 -- the union of all partitions whose length is >= 3 and return them as a tuple of two sets (in that order). Arguments: locset -- a set of (row, column) locations Return value: The two sets as described above. The set `locset` is not altered. ''' assert is_locset(locset) lst = partition_connected(locset) all_less = set() all_three = set() for i in lst: if len(i) >= 3: all_three.update(i) else: all_less.update(i) return (all_less, all_three) def invert_rep(rep): ''' Invert the board representation which maps locations to colors. The inverted representation will map colors to sets of locations. Arguments: rep -- a dictionary mapping locations to one-character strings representing colors Return value: a dictionary mapping one-character strings (representing colors) to sets of locations The input dictionary 'rep' is not altered. ''' assert is_rep(rep) colors = list(rep.values()) locations = list(rep.keys()) loc = [] unique = [] for i in range(len(colors)): if colors[i] in unique: index = unique.index(colors[i]) loc[index].add(locations[i]) else: unique.append(colors[i]) loc.append({locations[i]}) inv = {} for i in range(len(unique)): inv[unique[i]] = loc[i] return inv def revert_rep(inverted): ''' Invert the board representation which maps colors to sets of locations. The new representation will map locations to colors. Arguments: inverted -- a dictionary mapping one-character strings (representing colors) to sets of locations Return value: a dictionary mapping locations to one-character strings representing colors The input dictionary 'inverted' is not altered. ''' assert is_inverted_rep(inverted) locations = list(inverted.values()) colors = list(inverted.keys()) rev = {} for i in range(len(locations)): loc_set = locations[i].copy() while len(loc_set) > 0: rev[loc_set.pop()] = colors[i] return rev def swap_locations(rep, loc1, loc2): ''' Exchange the contents of two locations. Arguments: rep -- a dictionary mapping locations to one-character strings representing colors loc1, loc2 -- adjacent locations which are in the board rep Return value: a new dictionary with the same structure of 'rep' with the specified locations having each others' contents The input dictionary 'rep' is not altered. ''' assert is_rep(rep) assert is_loc(loc1) assert is_loc(loc2) #assert ls.is_adjacent(loc1, loc2) assert loc1 in rep assert loc2 in rep new_rep = rep.copy() color1 = new_rep[loc1] new_rep[loc1] = new_rep[loc2] new_rep[loc2] = color1 return new_rep def remove_connected_groups(rep): ''' Remove all connected color groups covering at least three squares from a board representation. Arguments: rep -- a dictionary mapping locations to one-character strings representing colors Return value: a tuple of two dictionaries of the same kind as the input (i.e. a mapping between locations and color strings); the first contains the remaining locations only, and the second contains the removed locations only The input dictionary 'rep' is not altered. ''' assert is_rep(rep) inv = invert_rep(rep) colors = list(inv.keys()) keep = {} discard = {} for i in colors: locset = inv[i] short, connected = filter_locset(locset) discard[i] = connected keep[i] = short return (revert_rep(keep), revert_rep(discard)) class DissemblerSolver: def __init__(self, puzzle): self.nrows = 0 self.ncols = 0 self.puzzle = puzzle self.rep = {} self.load(self.puzzle) self.possible = self.possible_moves() self.visited = [[]] self.moves = [] self.history = [] self.level = 0 #self.visited_level = 0 self.count = [] def solve_puzzle(self, prev): if len(self.rep) == 0: return True if len(self.possible) == 0: self.undo() return lst = [] for move in self.possible: lst.append(move) self.solve_puzzle(lst[0]) self.solve_puzzle(lst[1]) def solve_puzzle2(self): '''Depth-first traversal. Check subtrees from left to right ''' #for i in self.possible: #print(i, end = ' ') #print() while self.level >= 0: #for i in self.possible: #print(i, end = ' ') #print() if len(self.rep) == 0: return True if len(self.possible) == 0: #print('UNDO') self.visited.pop() self.undo() else: #if self.level == 1 and len(self.visited) > 1: #self.visited = [self.visited[0]] made = False for move in self.possible: if move not in self.visited[self.level]: #print(move) #self.prev = self.possible self.make_move(move) #self.visited.add(move) made = True break if made == False: #print('UNDO') self.visited.pop() self.undo() return False #if len(self.rep) == 0: #return True #if len(self.possible) == 0: #if self.undo(): #self.solve_puzzle() #return False #for move in self.possible: ##print('({0}, {1})'.format(move[0], move[1]), end = ' ') #if move not in self.visited: ##print(move) #self.make_move(move) #self.visited.add(move) #self.solve_puzzle() #return True def give_solution(self): if self.solve_puzzle2(): for i in self.moves: print('({0}, {1})'.format(i[0], i[1]), end = ' ') else: print('No solution :(') def load(self, puzzle): ''' Load a puzzle from a string representation of the puzzle. Convert the string representation into a dictionary representation mapping (row, column) coordinates to colors. Arguments: puzzle -- a string representing the puzzle Return value: none ''' rep = {} lines = puzzle.split() self.nrows = len(lines) self.ncols = len(lines[0]) for row in lines: assert len(row) == self.ncols for row in range(self.nrows): for col in range(self.ncols): color = lines[row][col] if color == '.': continue rep[(row, col)] = color self.rep = rep def possible_moves(self): ''' Compute and return a set of all the possible moves. A "possible move" is a move where: -- both locations of the move are adjacent -- both locations on the board rep are occupied by colors -- making the move will cause some locations to be vacated Arguments: rep -- a dictionary mapping locations to one-character strings representing colors nrows -- the number of rows on the board ncols -- the number of columns on the board Return value: the set of possible moves The input dictionary 'rep' is not altered. ''' rep = self.rep nrows = self.nrows ncols = self.ncols assert type(nrows) is int and type(ncols) is int assert nrows > 0 and ncols > 0 adj = self.adjacent_moves(nrows, ncols) possible = set() for i in adj: if i[0] in rep and i[1] in rep: new_rep = swap_locations(rep, i[0], i[1]) kept, discarded = remove_connected_groups(new_rep) if len(discarded) >= 3: possible.add(i) return possible def adjacent_moves(self, nrows, ncols): ''' Create and return a set of all moves on a board with 'nrows' rows and 'ncols' columns. The moves consist of two adjacent (row, column) locations. Arguments: nrows -- the number of rows on the board ncols -- the number of columns on the board Return value: the set of moves, where each move is a pair of adjacent locations and each location is a (row, column) pair; also the two locations are ordered in the tuple (the "smallest" comes first) Note that the moves are independent of the contents of any board representation; we aren't considering whether the moves would actually change anything on a board or whether the locations of each move are occupied by color squares. ''' assert type(nrows) is int and type(ncols) is int assert nrows > 0 and ncols > 0 moves = set() for i in range(nrows): for j in range(ncols): current = (i, j) top = (i - 1, j) bottom = (i + 1, j) left = (i, j - 1) right = (i, j + 1) if i - 1 >= 0: if (top, current) not in moves: moves.add((current, top)) if i + 1 < nrows: if (bottom, current) not in moves: moves.add((current, bottom)) if j - 1 >= 0: if (left, current) not in moves: moves.add((current, left)) if j + 1 < ncols: if (right, current) not in moves: moves.add((current, right)) return moves def make_move(self, move): self.history.append(self.rep.copy()) self.rep = swap_locations(self.rep, move[0], move[1]) (self.rep, removed) = remove_connected_groups(self.rep) #self.history.append(self.rep.copy()) self.moves.append(move) self.possible = self.possible_moves() self.level += 1 self.visited.append([]) def undo(self): if self.history != []: self.rep = self.history.pop() move = self.moves.pop() #if self.visited_level == 0: #self.visited_level = self.level + 1 #elif (self.visited_level - self.level > 1): #self.visited_level -= 1 #self.visited = [] #else: #self.visited_level = self.level + 1 self.visited[self.level - 1].append(move) self.possible = self.possible_moves() #all_in = True #for i in self.possible: #if i not in self.visited[self.level]: #all_in = False #break #if all_in == True: #self.visited.pop() #self.undo() #self.visited[self.level - 1].append(moves[len(moves) - 1]) #self.possible = set() self.level -= 1 if __name__ == '__main__': puzzle = input("Enter a Dissembler puzzle to be solved: ") solver = DissemblerSolver(puzzle) solver.give_solution()
[ "26992324+MeganTj@users.noreply.github.com" ]
26992324+MeganTj@users.noreply.github.com
a9de852a3c55159c7403edb62378d53119e84ca0
dee8056064f6150d15f3180d3b3466834e291bc6
/plotLDOSAndDelta.py
518f098f80cecc155d434f346e9647e90e901109
[]
no_license
glaurung24/SingleMagImp
338dde7eaa3d266ba6add3c465087a2d5c718780
3baa6c39eb6d5e3d63ee5761ced48b1df765d622
refs/heads/master
2023-02-13T21:45:06.456833
2023-01-27T15:37:22
2023-01-27T15:37:22
248,021,237
0
0
null
null
null
null
UTF-8
Python
false
false
3,500
py
# -*- encoding: utf-8 -*- ## @package TBTKview # @file plotLDOS.py # @brief Plot local density of states # # @author Kristofer Björnson import h5py import numpy as np import matplotlib.pyplot as plt import matplotlib.axes import matplotlib.cm import scipy.ndimage.filters import mpl_toolkits.mplot3d import sys from scipy.signal import find_peaks if(len(sys.argv) != 2): print( "Error, the following parameters are needed: .hdf5-file") exit(1) filename = sys.argv[1] sigma = 0.002 peak_height = 7.5 file = h5py.File(filename, 'r'); dataset = file['LDOS'] data_dimensions = dataset.shape y_plane = int(np.floor(data_dimensions[1]/2)) physical_dimensions = len(data_dimensions) - 1 #Last dimensions are for energy. energy_resolution = data_dimensions[physical_dimensions]; limits = dataset.attrs['UpLowLimits'] datasetDeltaReal = file['deltaReal0'] datasetDeltaImag = file['deltaImag0'] delta = abs(np.array(datasetDeltaReal) + 1j*np.array(datasetDeltaImag)) size_x = data_dimensions[0] size_y = data_dimensions[1] x = np.arange(0, data_dimensions[0], 1) y = np.arange(limits[1], limits[0], (limits[0] - limits[1])/energy_resolution) X, Y = np.meshgrid(x, y) fig = matplotlib.pyplot.figure() Z = dataset[:,y_plane,:] sigma_discrete_units = sigma*energy_resolution/(limits[0] - limits[1]) for xp in range(0, size_x): Z[xp,:] = scipy.ndimage.filters.gaussian_filter1d(Z[xp,:], sigma_discrete_units) #Color map figure ax = fig.gca() im = ax.pcolormesh(X.transpose(), Y.transpose(), Z, cmap=matplotlib.cm.coolwarm) plt.ylim([-1, 1]) fig.colorbar(im) fig.savefig('figures/LDOS.png') sigma = 0.001 sigma_discrete_units = sigma*energy_resolution/(limits[0] - limits[1]) Z1 = dataset[y_plane, y_plane, :] signal = Z1[: int(data_dimensions[2]/2)] Z2 = dataset[0, 0, :] plt.figure() Z1 = scipy.ndimage.filters.gaussian_filter1d(Z1, sigma_discrete_units) peaks, _ = find_peaks(signal, height=peak_height) Z2 = scipy.ndimage.filters.gaussian_filter1d(Z2, sigma_discrete_units) plt.plot(y, Z1) plt.plot(y[peaks[-1]], Z1[peaks[-1]], 'x') plt.plot(y, Z2, '--') plt.xlim([-1, 1]) plt.savefig('figures/LDOS_middle.png') plt.close() plt.figure() x = np.arange(0, data_dimensions[0], 1) y = np.arange(0, data_dimensions[1], 1) X, Y = np.meshgrid(x, y) Z = delta plt.pcolormesh(X.transpose(), Y.transpose(), Z, cmap=matplotlib.cm.coolwarm) plt.colorbar() plt.savefig("figures/delta.png") plt.close() plt.figure() plt.plot(x, delta[:,y_plane]) plt.savefig("figures/delta_profile.png") plt.close() # Find peaks in the LDOS (Eg): Eg = np.zeros_like(delta) ratio = np.zeros_like(delta) for i in range(data_dimensions[0]): for j in range(data_dimensions[1]): signal = dataset[i, j, : int(np.floor(data_dimensions[2]/2))] signal = scipy.ndimage.filters.gaussian_filter1d(signal, sigma_discrete_units) peaks, _ = find_peaks(signal, height=peak_height) Eg[i,j] = signal[peaks[-1]] ratio[i,j] = Eg[i,j]/delta[i,j] plt.figure() x = np.arange(0, data_dimensions[0], 1) y = np.arange(0, data_dimensions[1], 1) X, Y = np.meshgrid(x, y) Z = Eg plt.pcolormesh(X.transpose(), Y.transpose(), Z, cmap=matplotlib.cm.coolwarm) plt.colorbar() plt.savefig("figures/Eg.png") plt.close() plt.figure() x = np.arange(0, data_dimensions[0], 1) y = np.arange(0, data_dimensions[1], 1) X, Y = np.meshgrid(x, y) Z = ratio plt.pcolormesh(X.transpose(), Y.transpose(), Z, cmap=matplotlib.cm.coolwarm) plt.colorbar() plt.savefig("figures/ration.png") plt.close()
[ "andreas.theiler@physics.uu.se" ]
andreas.theiler@physics.uu.se