blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
281
content_id
stringlengths
40
40
detected_licenses
listlengths
0
57
license_type
stringclasses
2 values
repo_name
stringlengths
6
116
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
313 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
18.2k
668M
star_events_count
int64
0
102k
fork_events_count
int64
0
38.2k
gha_license_id
stringclasses
17 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
107 values
src_encoding
stringclasses
20 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
4
6.02M
extension
stringclasses
78 values
content
stringlengths
2
6.02M
authors
listlengths
1
1
author
stringlengths
0
175
46d54d3715c9aa7412a782c36b610842b28640e2
c955d0f241e1b10ebb1a9ca851580b09f47fbd26
/venv/Scripts/pip-script.py
0fc9d0f7eea1cb49fa428a1c78bef712cc34d54e
[]
no_license
Nightichen/Myproject
dbb1d3231503a0179e0c84bae9f76af254a278c2
5fdfd6be283a3ea9b5bfce0f73f99737c7f485bc
refs/heads/master
2020-06-14T04:23:51.102361
2019-07-02T16:57:32
2019-07-02T16:57:32
194,897,789
0
0
null
null
null
null
UTF-8
Python
false
false
388
py
#!D:\project\work\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip')() )
[ "1290337913@qq.com" ]
1290337913@qq.com
c901d0898001ebbe91cb1e3a51cc08279de8ec9b
f210a0034af487b5b86a833a3477751e00a19ba6
/OpenCV/video.py/Fream_Cut.py
d42f58252ee3afb9fcc99ce190972abb21737704
[]
no_license
HojiCha3171/pycharmproject
34b2212a311e093ca697c3ec7c9ee4def8a2f399
b15eb698f1c15c8073b574702c62df276234393d
refs/heads/main
2023-05-03T19:09:29.459458
2021-05-23T12:49:50
2021-05-23T12:49:50
368,645,307
0
0
null
null
null
null
UTF-8
Python
false
false
561
py
import numpy as np import cv2 cap = cv2.VideoCapture("C:\\Users\\tuzuk\\Desktop\\CIMG5572.MOV") width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = cap.get(cv2.CAP_PROP_FPS) fourcc = cv2.VideoWriter_fourcc(*'DIVX') writer = cv2.VideoWriter("C:\\Users\\tuzuk\\Desktop\\out.MOV", fourcc, fps, (width, height)) i = 0 while True: # 1フレームずつ取得する。 ret, frame = cap.read() print(i) i = i+1 if not ret: break # 映像取得に失敗
[ "noreply@github.com" ]
noreply@github.com
21aad8e9ae07cd132867853df8f27e5ab9e4c0c9
8a707aacc9ecd999cb2a996f91a718ce02f6205c
/leetcode/LowestCommonAncestorBinaryTree.py
243cd8f4bd64ddf865bf3865d960f6f69388241d
[]
no_license
seeyarh/interview-prep
e074f68f1c1c05b9ab0911f30b13dad69c7bbfb8
1af5f79ed9dcf334d2758e14a9c08e7880246a4f
refs/heads/master
2022-03-13T12:26:59.441211
2019-11-14T19:35:31
2019-11-14T19:35:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,766
py
''' Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).” Given the following binary search tree: root = [3,5,1,6,2,0,8,null,null,7,4] _______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4 Example 1: Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of of nodes 5 and 1 is 3. Example 2: Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition. ''' class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def lowestCommonAncestor(self, root, p, q): if root in (None, p, q): return root left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) if left and right: return root else: return left or right ''' def search(root, path): if root.val == node.val: return path if not root.left and not root.right: return [] if root.left: path_l = search(root.left, node, path + [(root.val,'l')]) if root.right: path_r = search(root.right, node, path + [(root.val, 'r')]) if path_l: return path_l if path_r: return path_r else: return [] path_p = search(root, p, []) path_q = search(root, q, []) print(path_p) print(path_q) for i in range(min(len(path_p), len(path_q))): if path_p[i][0] == q.val: return q.val if path_q[i][0] == p.val: return p.val if path_p[i][1] != path_q[i][1]: return path_p[i][0] if len(path_p) < len(path_q): return p.val else: return q.val ''' sol = Solution() root = TreeNode(3) root.left = TreeNode(5) root.left.left = TreeNode(6) root.left.right = TreeNode(2) root.left.right.left = TreeNode(7) root.left.right.right = TreeNode(4) root.right = TreeNode(1) root.right.right = TreeNode(8) root.right.left = TreeNode(0) print(sol.lowestCommonAncestor(root, root.left, root.left.right.right).val)
[ "collinsrhuffiii@gmail.com" ]
collinsrhuffiii@gmail.com
620624227555341d918d2c14af35a2be32a22968
4bd9953e0ec435796712b58fb1ec1ed167544994
/longest-consecutive-sequence.py
d7e0ce6492b9904aee825e8e422f5d3ee257b0a9
[]
no_license
kyungwoh/leetcode
1a2d82276650f7d31c90ac6b9dccf166606cc219
88d48f177274dc388572b6fc3703cf12f76a59ec
refs/heads/master
2021-06-02T18:08:49.587617
2020-10-04T22:03:42
2020-10-04T22:03:42
140,018,560
0
0
null
null
null
null
UTF-8
Python
false
false
820
py
# https://leetcode.com/problems/longest-consecutive-sequence/description/ # Save nums to set() & save start num # Then, start from start # Time: O(n), Space: O(n) class Solution: def longestConsecutive(self, nums): """ :type nums: List[int] :rtype: int """ if not nums: return 0 used = set() start = set() for n in nums: used.add(n) if n-1 not in used: start.add(n) if n+1 in start: start.remove(n+1) longest = 0 for s in start: i = s length = 0 while i in used: i += 1 length += 1 longest = max(longest, length) return longest
[ "noreply@github.com" ]
noreply@github.com
22c9b2072eee710b0af8c948145defea4346aa03
4aa7a4d0525095725eb99843c83827ba4806ceb1
/keras/keras110_5_LeakyReLU.py
213ecbe46b4073d61f4b984af0b9f92698fdaafd
[]
no_license
seonukim/Study
65a70f5bdfad68f643abc3086d5c7484bb2439d4
a5f2538f9ae8b5fc93b5149dd51704e8881f0a80
refs/heads/master
2022-12-04T17:04:31.489771
2020-08-21T00:35:15
2020-08-21T00:35:15
260,144,755
2
0
null
null
null
null
UTF-8
Python
false
false
283
py
# activation - LeakyReLU import numpy as np import matplotlib.pyplot as plt x = np.arange(-6, 6, 0.01) def leakyrelu(x): # Leaky ReLU(Rectified Linear Unit) return np.maximum(0.1 * x, x) #same plt.plot(x, leakyrelu(x), linestyle = '--', label = 'Leaky ReLU') plt.show()
[ "92.seoonooo@gmail.com" ]
92.seoonooo@gmail.com
3b3394be7b0f7c6c13b2006438556a5f0c7303ff
7848e1b778ca0f3921aeeb0aeee44b398711b1f0
/funtesting/mock/__init__.py
495f052105769c8dfec9019cc49217d5fe565c55
[]
no_license
fatelei/funtesting
a3a292ddfa30d9fbad47ee293768558b9e45fe8d
748f4b5767cc16929408b19a5b62a812b48a0dd5
refs/heads/master
2021-01-10T12:09:38.809451
2016-02-21T03:59:15
2016-02-21T03:59:15
51,986,949
1
0
null
null
null
null
UTF-8
Python
false
false
158
py
# -*- coding: utf8 -*- """ funtesting.mock ~~~~~~~~~~~~~~~ Mock modules. """ from .mock_redis import mock_redis __all__ = [ "mock_redis" ]
[ "fatelei@gmail.com" ]
fatelei@gmail.com
7c70d30f3f40830485de9f09a9c2e9f194bac780
3c72e5da8c681b08dc0309f2b43f39b338df5d20
/OLD/dynamic2flat.py
3d8fc03991ab2f61cb9ec3babd39a56aa25b6250
[]
no_license
ksingh7/data-show
929daf95cf4bbe1786aae9b2227485ab65ac4814
f4c0aa80f34999eed51227a954d3b86937a2ff6a
refs/heads/master
2020-03-09T17:11:13.505601
2019-03-17T01:34:30
2019-03-17T01:34:30
128,903,452
1
3
null
2018-06-22T17:32:10
2018-04-10T08:55:07
HTML
UTF-8
Python
false
false
2,564
py
#!/usr/bin/env python ''' Grabbed from: https://gist.github.com/zkendall/5c58ac81a9f152de2b851360df6539cb This script converts the output of Ansible's dynamic ec2.py to a flatly formmated static inventory file. Before running this script run `python ./ec2.py --refresh-cache > ec2-dynamic.json` See: http://docs.ansible.com/ansible/ec2_module.html ''' import json from pprint import pprint import operator # Variables to collect HOST_VAR_NAMES = ['ec2_private_ip_address', 'ec2_private_dns_name'] HOST_VAR_SORTER = 'ec2_private_ip_address' # Read in ouput from ec2.py with open('ec2-dynamic.json') as data_file: dynamic_inv = json.load(data_file) # Collect hostvars we care about hosts_and_vars = {} for host, values in dynamic_inv['_meta']['hostvars'].items(): vars_set = {} for key, host_vars in values.items(): if key in HOST_VAR_NAMES: vars_set[key] = host_vars hosts_and_vars[host] = vars_set # Sort host definitions by `HOST_VAR_SORTER` hosts_and_vars = sorted(hosts_and_vars.items(), key=lambda item: item[1][HOST_VAR_SORTER]) # Collect groups we care about -- currently only `tag_...`. TODO: Add support for matching multiple. groups_by_tag = dict( (group_name, hosts) for group_name, hosts in dynamic_inv.items() if group_name.startswith('tag_')) # Write out static hosts file with open ('ec2-static.ini', 'w') as file_out: # Define hosts and vars first host_props = [] for host, var_set in hosts_and_vars: properties = ['%s=%s' % (key, value) for (key, value) in var_set.items()] host_props.append((host, properties)) # Get max column lengths template_widths = {} for host, properties in host_props: for idx, string in enumerate(properties): l = len(string) template_widths[idx] = l if l > template_widths.get(idx, 0) else template_widths[idx] # Build string template for padded formatting. Pad columns with extra 2 spaces beyond widest column value. template = ' '.join([ '{' + str(column) + ':<' + str(int(size) - 1 + 2) + '}' for column, size in template_widths.items() ]) # Write host and hostvars for host, props in host_props: vars_string = template.format(*props) file_out.writelines('{0:<16} {1}'.format(host, vars_string) + '\n') # Write groups and hosts for group, hosts in groups_by_tag.items(): group_name_result = '\n[' + group + ']\n' file_out.writelines(group_name_result) # Populate group file_out.writelines([host + '\n' for host in hosts])
[ "karan.singh731987@gmail.com" ]
karan.singh731987@gmail.com
45de4cd95439627837ca10655abc903d328c3ca9
e6ebedc843f643c492ed64871f5285255818749b
/jni-build/jni/include/tensorflow/python/ops/control_flow_ops.py
1367cc822afbfc27b6b6c803dd5d3fa31c1322b3
[]
no_license
thetonrifles/android-tensorflow
b7a3deb389b04892e3670ed9b4a3d0774a7552c8
aef805df8139b46c81f440d38be78990a3b07c1c
refs/heads/master
2022-12-21T08:53:16.655344
2016-03-01T21:55:28
2016-03-01T21:55:28
51,915,596
2
1
null
2022-12-11T20:44:02
2016-02-17T10:48:48
C++
UTF-8
Python
false
false
75,149
py
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """## Control Flow Operations TensorFlow provides several operations and classes that you can use to control the execution of operations and add conditional dependencies to your graph. @@identity @@tuple @@group @@no_op @@count_up_to @@cond ## Logical Operators TensorFlow provides several operations that you can use to add logical operators to your graph. @@logical_and @@logical_not @@logical_or @@logical_xor ## Comparison Operators TensorFlow provides several operations that you can use to add comparison operators to your graph. @@equal @@not_equal @@less @@less_equal @@greater @@greater_equal @@select @@where ## Debugging Operations TensorFlow provides several operations that you can use to validate values and debug your graph. @@is_finite @@is_inf @@is_nan @@verify_tensor_all_finite @@check_numerics @@add_check_numerics_ops @@Assert @@Print """ # pylint: disable=g-bad-name from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import common_shapes from tensorflow.python.ops import constant_op from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gen_control_flow_ops from tensorflow.python.ops import gen_data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import tensor_array_ops # pylint: disable=wildcard-import,undefined-variable from tensorflow.python.ops.gen_control_flow_ops import * # pylint: enable=wildcard-import from tensorflow.python.platform import logging # We override the 'tuple' for a control flow op, so we keep python's # existing 'tuple' for later use in this module. _basetuple = tuple # pylint: disable=protected-access def _Identity(data, name=None): """Return a tensor with the same shape and contents as the input tensor. Args: data: A Tensor. name: A name for this operation (optional). Returns: A Tensor with the same type and value as the input Tensor. """ if not data.dtype.is_ref_dtype: return array_ops.identity(data, name=name) else: return gen_array_ops._ref_identity(data, name=name) def _NextIteration(data, name=None): if not data.dtype.is_ref_dtype: return next_iteration(data, name=name) else: return ref_next_iteration(data, name=name) def _Merge(values, name=None): if all([v.dtype.is_ref_dtype for v in values]): return gen_control_flow_ops._ref_merge(values, name) else: return gen_control_flow_ops._merge(values, name) def _Enter(data, frame_name, is_constant=False, parallel_iterations=10, use_ref=True, name=None): """Creates or finds a child frame, and makes `data` available to it. The unique `frame_name` is used by the `Executor` to identify frames. If `is_constant` is true, `data` is a constant in the child frame; otherwise it may be changed in the child frame. At most `parallel_iterations` iterations are run in parallel in the child frame. Args: data: The tensor to be made available to the child frame. frame_name: The name of the child frame. is_constant: If true, the output is constant within the child frame. parallel_iterations: The number of iterations allowed to run in parallel. use_ref: If true, use ref_enter if data is of ref type. name: A name for this operation (optional). Returns: The same tensor as `data`. """ if data.dtype.is_ref_dtype and use_ref: return ref_enter(data, frame_name, is_constant, parallel_iterations, name=name) else: return enter(data, frame_name, is_constant, parallel_iterations, name=name) def exit(data, name=None): """Exits the current frame to its parent frame. Exit makes its input `data` available to the parent frame. Args: data: The tensor to be made available to the parent frame. name: A name for this operation (optional). Returns: The same tensor as `data`. """ if data.dtype.is_ref_dtype: return gen_control_flow_ops._ref_exit(data, name) else: return gen_control_flow_ops._exit(data, name) def switch(data, pred, dtype=None, name=None): """Forwards `data` to an output determined by `pred`. If `pred` is true, the `data` input is forwared to the first output. Otherwise, the data goes to the second output. This op handles `Tensor`s and `IndexedSlices`. Args: data: The tensor to be forwarded to the appropriate output. pred: A scalar that specifies which output port will receive data. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of `value`. name: A name for this operation (optional). Returns: `(output_false, output_true)`: If `pred` is true, data will be forwarded to `output_true`, otherwise it goes to `output_false`. """ with ops.op_scope([data, pred], name, "Switch") as name: data = ops.convert_to_tensor_or_indexed_slices(data, dtype=dtype, name="data") pred = ops.convert_to_tensor(pred, name="pred") if isinstance(data, ops.Tensor): return gen_control_flow_ops._switch(data, pred, name=name) else: val, ind, dense_shape = data.values, data.indices, data.dense_shape val_f, val_t = gen_control_flow_ops._switch(val, pred, name=name) ind_f, ind_t = gen_control_flow_ops._switch(ind, pred, name="indices") if dense_shape: dense_shape_f, dense_shape_t = gen_control_flow_ops._switch( dense_shape, pred, name="dense_shape") else: dense_shape_f, dense_shape_t = None, None return (ops.IndexedSlices(val_f, ind_f, dense_shape_f), ops.IndexedSlices(val_t, ind_t, dense_shape_t)) def merge(inputs, name=None): """Returns the value of an available element of `inputs`. This op tests each of the tensors in `inputs` in turn to determine if any of them is available. If it finds an available tensor, it returns it and its index in `inputs`. It is an error if more than one tensor in `inputs` is available. If no tensor in `inputs` is available, the returned tensor and index are not set. This op handles both `Tensor`s and `IndexedSlices`. If inputs has a mix of `Tensor`s and `IndexedSlices`, all inputs are converted to IndexedSlices before merging. Args: inputs: The input tensors, at most one of which is available. name: A name for this operation (optional). Returns: A tuple containing the chosen input tensor and its index in `inputs`. Raises: ValueError: If inputs are IndexedSlices and some but not all have a dense_shape property. """ with ops.op_scope(inputs, name, "Merge") as name: inputs = [ops.convert_to_tensor_or_indexed_slices(inp) for inp in inputs] if all([isinstance(inp, ops.Tensor) for inp in inputs]): return _Merge(inputs, name=name) else: inputs = math_ops._as_indexed_slices_list(inputs) values, _ = _Merge([inp.values for inp in inputs], name=name) indices, chosen_index = _Merge( [inp.indices for inp in inputs], name="indices") if any(inp.dense_shape for inp in inputs): if not all(inp.dense_shape for inp in inputs): raise ValueError("Either all merged IndexedSlices must have a " "dense_shape, or none must have a dense_shape.") dense_shape, _ = _Merge( [inp.dense_shape for inp in inputs], name="dense_shape") else: dense_shape = None return ops.IndexedSlices(values, indices, dense_shape), chosen_index def _SwitchRefOrTensor(data, pred, name="Switch"): """Forwards `data` to an output determined by `pred`. If `pred` is true, the `data` input is forwared to the first output. Otherwise, the data goes to the second output. This op handles `Tensor`s and `IndexedSlices`. Args: data: The tensor to be forwarded to the appropriate output. pred: A scalar that specifies which output port will receive data. name: A name for this operation (optional). Returns: `(output_false, output_false)`: If `pred` is true, data will be forwarded to `output_true`, otherwise it goes to `output_false`. Raises: TypeError: if data is not a Tensor or IndexedSlices """ data = ops.convert_to_tensor_or_indexed_slices(data, name="data") with ops.device(data.device): if isinstance(data, ops.Tensor): if not data.dtype.is_ref_dtype: return switch(data, pred, name=name) else: return ref_switch(data, pred, name=name) else: return switch(data, pred, name=name) def _convert_tensorarrays_to_flows(tensors_or_tensor_arrays): return [ta.flow if isinstance(ta, tensor_array_ops.TensorArray) else ta for ta in tensors_or_tensor_arrays] def _convert_flows_to_tensorarrays(tensors_or_tensorarrays, tensors_or_flows): if len(tensors_or_tensorarrays) != len(tensors_or_flows): raise ValueError( "Lengths of original Tensor list and new list do not match: %d vs. %d" % (len(tensors_or_tensorarrays), len(tensors_or_flows))) return [ tensor_array_ops.TensorArray( dtype=ta.dtype, handle=ta.handle, flow=t_or_flow) if isinstance(ta, tensor_array_ops.TensorArray) else t_or_flow for (ta, t_or_flow) in zip(tensors_or_tensorarrays, tensors_or_flows)] class ControlFlowOpWrapper(object): """A wrapper class for Operation. A wrapped op allows us to capture the uses of its inputs and outputs. In gradients(), right before calling the gradient function of an op, we wrap the op by calling MakeWrapper. So during the exection of the gradient function of an op , any time when one of its inputs/outputs is used, we generate code to remember its values for all iterations. """ class _ControlFlowOpInputs(object): """An indirection to capture the input tensors needed in backprop.""" def __init__(self, op, grad_state): self._op = op self._grad_state = grad_state self._inputs = None def __len__(self): return len(self._op._inputs) def __getitem__(self, index): if self._inputs is None: self._inputs = [None for _ in self._op.inputs] if isinstance(index, int): val = self._inputs[index] if val is None: f_val = self._op.inputs[index] val = self._grad_state.GetRealValue(f_val) self._inputs[index] = val return val elif isinstance(index, slice): start, stop, step = index.indices(len(self)) vals = [self[i] for i in xrange(start, stop, step)] return vals else: raise TypeError("index must be an integer or slice") class _ControlFlowOpOutputs(object): """An indirection to capture the output tensors needed in backprop.""" def __init__(self, op, grad_state): self._op = op self._grad_state = grad_state self._outputs = None def __len__(self): return len(self._op._outputs) def __getitem__(self, index): if self._outputs is None: self._outputs = [None for _ in self._op.outputs] if isinstance(index, int): val = self._outputs[index] if val is None: f_val = self._op.outputs[index] val = self._grad_state.GetRealValue(f_val) self._outputs[index] = val return val elif isinstance(index, slice): start, stop, step = index.indices(len(self)) vals = [self[i] for i in xrange(start, stop, step)] return vals else: raise TypeError("index must be an integer or slice") def __init__(self, op, grad_state): self._grad_state = grad_state # The GradLoopState this op belongs to. self._op = op self._inputs = None self._outputs = None @property def grad_state(self): return self._grad_state @property def inputs(self): if self._inputs is None: self._inputs = self._ControlFlowOpInputs(self._op, self._grad_state) return self._inputs @property def outputs(self): if self._outputs is None: self._outputs = self._ControlFlowOpOutputs(self._op, self._grad_state) return self._outputs @property def op(self): return self._op @property def name(self): """Returns the name of this instance of op.""" return self._op.name @property def _id(self): """Returns the unique id of this operation.""" return self._op._id @property def device(self): """Returns the device of this operation. Returns: a string or None if the device was not set. """ return self._op.device @property def type(self): """Returns the type of the op.""" return self._op.type @property def graph(self): """The `Graph` that contains this operation.""" return self._op.graph def get_attr(self, name): """Returns the value of the attr of this op with the given `name`.""" return self._op.get_attr(name) def _get_control_flow_context(self): """Returns the control flow context of this op.""" return self._op._get_control_flow_context() def _IsLoopConstantEnter(op): """Returns true iff op is a loop invariant.""" is_enter = (op.type == "Enter" or op.type == "RefEnter") return is_enter and op.get_attr("is_constant") def _IsLoopExit(op): return op.type == "Exit" or op.type == "RefExit" class GradLoopState(object): """The state used for constructing the gradient graph for a while loop. We create a GradLoopState for each while loop in forward and its corresponding while loop in backprop. This gives us access to both the forward and the backprop WhileContexts. During the construction of gradient graph, any time when we detect a forward value that is needed for backprop, we create a history accumulator and add it to `history_map`. Any time when we backprop a loop switch op (in _SwitchGrad), we add the grad merge op in `switch_map`. """ def __init__(self, forward_ctxt, outer_grad_state): # The grad loop state for the outer while loop. self._outer_grad_state = None # The while loop context for forward. self._forward_context = None # The loop counter added by AddForwardCounter. It is the value # of the loop counter for the next iteration. self._forward_index = None # A sync op for forward. self._forward_sync = None # The while loop context for backprop. self._grad_context = None # The loop counter added by AddBackPropCounter. It is the value # of the loop counter for the current iteration. self._grad_index = None # A sync op for backprop. self._grad_sync = None # Information needed by backprop. self._history_map = {} self._switch_map = {} self._outer_grad_state = outer_grad_state if outer_grad_state: outer_forward_ctxt = outer_grad_state.forward_context else: outer_forward_ctxt = forward_ctxt.outer_context # Add the forward loop counter. if outer_forward_ctxt: outer_forward_ctxt.Enter() cnt, forward_index = forward_ctxt.AddForwardCounter() if outer_forward_ctxt: outer_forward_ctxt.Exit() self._forward_context = forward_ctxt self._forward_index = forward_index # Add the backprop WhileContext, and the backprop loop counter. if outer_grad_state: # This is a nested loop. Remember the iteration counts for each # execution of this inner loop. outer_forward_ctxt.AddName(cnt.name) history_cnt = outer_grad_state.AddForwardAccumulator(cnt) outer_grad_ctxt = outer_grad_state.grad_context outer_grad_ctxt.Enter() self._grad_context = WhileContext(forward_ctxt.parallel_iterations, forward_ctxt.back_prop, forward_ctxt.name) real_cnt = outer_grad_state.AddBackPropAccumulatedValue(history_cnt, cnt) self._grad_index = self._grad_context.AddBackPropCounter(real_cnt) outer_grad_ctxt.Exit() else: if outer_forward_ctxt: outer_forward_ctxt.Enter() self._grad_context = WhileContext(forward_ctxt.parallel_iterations, forward_ctxt.back_prop, forward_ctxt.name) self._grad_index = self._grad_context.AddBackPropCounter(cnt) if outer_forward_ctxt: outer_forward_ctxt.Exit() @property def outer_grad_state(self): """The grad loop state for outer loop.""" return self._outer_grad_state @property def forward_context(self): """The while loop context for forward.""" return self._forward_context @property def forward_index(self): """The loop index of forward loop.""" return self._forward_index @property def forward_sync(self): """A control trigger node for synchronization in the forward loop. One main use is to keep the push ops of a stack executed in the iteration order. """ if self._forward_sync is None: with ops.control_dependencies(None): self._forward_sync = control_trigger(name="f_sync") self._forward_sync._set_control_flow_context(self._forward_context) self._forward_index.op._add_control_input(self._forward_sync) return self._forward_sync @property def grad_context(self): """The corresponding WhileContext for gradient.""" return self._grad_context @property def grad_index(self): """The loop index of backprop loop.""" return self._grad_index @property def grad_sync(self): """A control trigger node for synchronization in the grad loop. One main use is to keep the pop ops of a stack executed in the iteration order. """ if self._grad_sync is None: with ops.control_dependencies(None): self._grad_sync = control_trigger(name="b_sync") self._grad_sync._set_control_flow_context(self._grad_context) self._grad_index.op._add_control_input(self._grad_sync) return self._grad_sync @property def history_map(self): """The map that records all the tensors needed for backprop.""" return self._history_map @property def switch_map(self): """The map that records all the Switch ops for the While loop.""" return self._switch_map def AddForwardAccumulator(self, value, dead_branch=False): """Add an accumulator for each forward tensor that is needed in backprop. This is added to the forward loop at the first time when a tensor in the forward loop is used by backprop gradient computation loop. We create an accumulator that accumulates the value of tensor at each iteration. Called in the control flow context where gradients() is called. The pseudocode is: ``` acc = stack(); while (_pivot) { acc = stack_push(acc, value); } ``` We make sure that the stack push op in one iteration is executed before next iteration. This is achieved by adding a control edge from `forward_index.op.inputs[0].op` to the push op, and another control edge from the push op to either `forward_index.op` or `forward_sync`. Args: value: The tensor that is to be accumulated. dead_branch: True iff the tensor is on a dead branch of a cond. Returns: The stack that contains the accumulated history of the tensor. """ # TODO(yuanbyu): Make sure the colocation of stack ops and value. # pylint: disable=protected-access acc = gen_data_flow_ops._stack(value.dtype.base_dtype, name="f_acc") # pylint: enable=protected-access # Make acc available in the forward context. enter_acc = self.forward_context.AddValue(acc) # Add the stack_push op in the context of value.op. value_ctxt = value.op._get_control_flow_context() if _IsLoopExit(value.op): value_ctxt = value_ctxt.outer_context if value_ctxt == self.forward_context: # value is not nested in the forward context. self.forward_context.Enter() push = gen_data_flow_ops._stack_push(enter_acc, value) self.forward_context.Exit() # Protect stack push and order it before forward_index. self.forward_index.op._add_control_input(push.op) else: # value is in a cond context within the forward context. assert isinstance(value_ctxt, CondContext) if dead_branch: # The special case for creating a zero tensor for a dead # branch of a switch. See ControlFlowState.ZerosLike(). value_ctxt.outer_context.Enter() push = gen_data_flow_ops._stack_push(enter_acc, value) value_ctxt.outer_context.Exit() push.op._set_control_flow_context(value_ctxt) else: value_ctxt.Enter() push = gen_data_flow_ops._stack_push(enter_acc, value) value_ctxt.Exit() # Protect stack push and order it before forward_sync. self.forward_sync._add_control_input(push.op) # Order stack push after the successor of forward_index add_op = self.forward_index.op.inputs[0].op push.op._add_control_input(add_op) return acc def AddBackPropAccumulatedValue(self, history_value, value, dead_branch=False): """Add the getter for an accumulated value in the grad context. This is added to the backprop loop. Called in the grad context to get the value of an accumulated value. The stack pop op must be guarded by the pred of the controlling cond. Args: history_value: The history (a stack) of a value. value: The value that is pushed onto the stack. dead_branch: True iff the tensor is on a dead branch of a cond. Returns: The current value (the top of the stack). """ history_ctxt = history_value.op._get_control_flow_context() # Find the cond context that controls history_value. cond_ctxt = None value_ctxt = value.op._get_control_flow_context() while value_ctxt and value_ctxt != history_ctxt: if isinstance(value_ctxt, CondContext): cond_ctxt = value_ctxt break value_ctxt = value_ctxt.outer_context if cond_ctxt: # Guard stack pop with a switch if it is controlled by a cond grad_state = self pred = None while not pred and grad_state: pred = grad_state.history_map.get(cond_ctxt.pred.name) grad_state = grad_state.outer_grad_state branch = (1 - cond_ctxt.branch) if dead_branch else cond_ctxt.branch history_value = _SwitchRefOrTensor(history_value, pred)[branch] pop = gen_data_flow_ops._stack_pop(history_value, value.dtype.base_dtype) if self.grad_context.parallel_iterations > 1: # All pops are ordered after pivot_for_body and before grad_sync. self.grad_sync._add_control_input(pop.op) return pop def GetRealValue(self, value): """Get the real value. If backprop "uses" a value produced by forward inference, an accumulator is added in the forward loop to accumulate its values. We use the accumulated value. Args: value: A tensor to be captured. Returns: The same tensor value from the saved history. """ assert value.op.type != "Variable" real_value = self._history_map.get(value.name) if real_value is None: if _IsLoopConstantEnter(value.op): # Special case for loop invariant. if self._outer_grad_state: # This is a nested loop so we record the history of this # value in outer_forward_ctxt. self._grad_context.Exit() outer_value = value.op.inputs[0] history_value = self._outer_grad_state.AddForwardAccumulator( outer_value) self._grad_context.Enter() else: # Just use the input value of this Enter node. real_value = GetRealOp(value.op).inputs[0] else: # Record the history of this value in forward_ctxt. # NOTE(yuanbyu): Don't record for constants. self._grad_context.Exit() history_value = self.AddForwardAccumulator(value) self._grad_context.Enter() if real_value is None: # Add the stack pop op in the grad context. real_value = self.AddBackPropAccumulatedValue(history_value, value) self._history_map[value.name] = real_value return real_value def _GetWhileContext(op): """Get the WhileContext to which this op belongs.""" ctxt = op._get_control_flow_context() if ctxt: ctxt = ctxt.GetWhileContext() return ctxt class ControlFlowState(object): """Maintain the mapping from the loops to their grad states.""" def __init__(self): self._map = {} # maps forward loop context to GradLoopState def _GetGradState(self, op): """Get the gradient loop state for this op if any.""" if _IsLoopExit(op): forward_ctxt = op._get_control_flow_context() forward_ctxt = forward_ctxt.outer_context if forward_ctxt: forward_ctxt = forward_ctxt.GetWhileContext() else: forward_ctxt = _GetWhileContext(op) if forward_ctxt: return self._map.get(forward_ctxt) return None def MakeWrapper(self, op): """Make a wrapper for op if it is in a WhileContext.""" forward_ctxt = _GetWhileContext(op) if forward_ctxt: grad_state = self._map.get(forward_ctxt) if grad_state: return ControlFlowOpWrapper(op, grad_state) return op def GetAllLoopExits(self): """Return a list containing the exits of all the loops.""" loop_exits = [] for forward_ctxt in self._map: for loop_exit in forward_ctxt.loop_exits: loop_exits.append(loop_exit) return loop_exits def EnterGradWhileContext(self, op): """Enter the WhileContext for gradient computation.""" grad_state = self._GetGradState(op) if grad_state: grad_state.grad_context.Enter() def ExitGradWhileContext(self, op): """Exit the WhileContext for gradient computation.""" grad_state = self._GetGradState(op) if grad_state: grad_state.grad_context.Exit() def AddWhileContext(self, op, between_op_list, between_ops): """Add the grad state for the while loop that op belongs to. Note that op is an Exit, and this method must be called in the control flow context where gradients() is called. Note that this method modifies `between_op_list` and `between_ops`. """ forward_ctxt = _GetWhileContext(op) grad_state = self._map.get(forward_ctxt) if grad_state is None: # This is a new while loop so create a grad state for it. outer_forward_ctxt = forward_ctxt.outer_context if outer_forward_ctxt: outer_forward_ctxt = outer_forward_ctxt.GetWhileContext() outer_grad_state = None if outer_forward_ctxt: outer_grad_state = self._map.get(outer_forward_ctxt) grad_state = GradLoopState(forward_ctxt, outer_grad_state) self._map[forward_ctxt] = grad_state # We need to include all exits of a loop for backprop. for loop_exit in forward_ctxt.loop_exits: if not between_ops[loop_exit.op._id]: between_ops[loop_exit.op._id] = True between_op_list.append(loop_exit.op) def ZerosLikeForExit(self, val): """Create zeros_like gradient for a loop exit. If the result of a loop variable is not used but is involved in computing the result of some needed loop variable, we create a zero-valued tensor that is fed as gradient for the Exit node of that loop variable. Note that val.op is an Exit, and this method must be called in the control flow context where gradients() is called. Args: val: The output tensor of an Exit op. Returns: A zero tensor of the same shape of val. """ val_shape = val.get_shape() forward_ctxt = val.op._get_control_flow_context() outer_forward_ctxt = forward_ctxt.outer_context if outer_forward_ctxt: outer_forward_ctxt = outer_forward_ctxt.GetWhileContext() outer_grad_state = None if outer_forward_ctxt: outer_grad_state = self._map.get(outer_forward_ctxt) if outer_grad_state: # This is a nested loop. if val_shape.is_fully_defined(): # If the shape is known statically, just create a zero tensor # with the right shape in the right context. outer_grad_state.grad_context.Enter() result = array_ops.zeros(val_shape.dims, val.dtype) outer_grad_state.grad_context.Exit() else: history_val = outer_grad_state.AddForwardAccumulator(val) outer_grad_ctxt = outer_grad_state.grad_context outer_grad_ctxt.Enter() real_val = outer_grad_state.AddBackPropAccumulatedValue( history_val, val) result = array_ops.zeros_like(real_val) outer_grad_ctxt.Exit() else: # This is not a nested loop. if val_shape.is_fully_defined(): # If the shape is known statically, just create a zero tensor # with the right shape. result = array_ops.zeros(val_shape.dims, val.dtype) else: result = array_ops.zeros_like(val) return result def ZerosLike(self, op, index): """Create zeros_like for the specified output of an op. This method must be called in the grad loop context. Args: op: A tensorflow operation. index: the index for a specific output of the op. Returns: A zero tensor of the same shape of op.outputs[index]. """ if IsLoopSwitch(op): return None dead_branch = op.type in {"Switch", "RefSwitch"} forward_ctxt = _GetWhileContext(op) if forward_ctxt is None: return array_ops.zeros_like(op.outputs[index]) op_ctxt = op._get_control_flow_context() grad_state = self._map.get(forward_ctxt) val = ops.convert_to_tensor(op.outputs[index], name="tensor") shape = val.get_shape() if shape.is_fully_defined(): # If the shape is known statically, just create a zero tensor with # the right shape in the grad loop context. result = constant_op.constant(0, shape=shape.dims, dtype=val.dtype) if dead_branch: # op is a cond switch. Guard the zero tensor with a switch. pred = grad_state.history_map.get(op_ctxt.pred.name) branch = op_ctxt.branch result = _SwitchRefOrTensor(result, pred)[1 - branch] else: # Unknown shape so keep a history of the shape at runtime. if dead_branch: # Need to add a special switch to guard the value. pred = op_ctxt.pred branch = op_ctxt.branch op_ctxt.outer_context.Enter() val = _SwitchRefOrTensor(op.inputs[0], pred)[1 - branch] zeros_shape = array_ops.shape(val) op_ctxt.outer_context.Exit() val.op._set_control_flow_context(op_ctxt) zeros_shape.op._set_control_flow_context(op_ctxt) else: op_ctxt.Enter() zeros_shape = array_ops.shape(val) op_ctxt.Exit() # Add forward accumulator for shape. grad_state.grad_context.Exit() history_shape = grad_state.AddForwardAccumulator(zeros_shape, dead_branch) grad_state.grad_context.Enter() # Create a zero tensor with the right shape. shape = grad_state.AddBackPropAccumulatedValue( history_shape, zeros_shape, dead_branch) result = array_ops.zeros(shape, val.dtype) return result def GetRealOp(op): """Get the real op by removing the wrapper.""" while isinstance(op, ControlFlowOpWrapper): op = op.op return op def MaybeCreateControlFlowState(between_op_list, between_ops): """Create the state for all the while loops involved in one gradients(). We create a ControlFlowState when there are while loops involved in gradients(). In gradients(), control flow logic is only invoked when the ControlFlowState is not None. Note that this method modifies `between_op_list` and `between_ops`. """ loop_state = None for op in between_op_list: if _IsLoopExit(op): if loop_state is None: loop_state = ControlFlowState() loop_state.AddWhileContext(op, between_op_list, between_ops) return loop_state def IsLoopSwitch(op): """Return true if `op` is the Switch for a While loop.""" if op.type == "Switch" or op.type == "RefSwitch": ctxt = op._get_control_flow_context() return ctxt and isinstance(ctxt, WhileContext) return False class ControlFlowContext(object): """The base class for control flow context. The usage pattern is a sequence of (Enter, Exit) followed by a final ExitResult. We maintain the following state for control flow contexts during graph construction: 1. graph has _control_flow_context: the current context used to construct new nodes. Changed by ctxt.Enter() and ctxt.Exit() 2. op has _control_flow_context: the context to which the op belongs. Set at the time the op is created. Immutable. 3. A ControlFlowContext has _outer_context: the context in which this context is created. Set at the time a context is created. Immutable. 4. A ControlFlowContext has _context_stack. Pushed and popped by ctxt.Enter() and ctxt.Exit() """ def __init__(self): self._outer_context = ops.get_default_graph()._get_control_flow_context() self._context_stack = [] # Values that have been already seen in this context. self._values = set() # Values referenced by but external to this context. self._external_values = {} @property def outer_context(self): """Return the context containing this context.""" return self._outer_context def AddName(self, name): self._values.add(name) # pylint: disable=protected-access def Enter(self): """Enter this control flow context.""" graph = ops.get_default_graph() self._context_stack.append(graph._get_control_flow_context()) graph._set_control_flow_context(self) def Exit(self): """Exit this control flow context.""" graph = ops.get_default_graph() last_context = self._context_stack.pop() graph._set_control_flow_context(last_context) def ExitResult(self, result): """Make a list of tensors available in the outer context.""" if self._outer_context: for x in result: self._outer_context.AddName(x.name) def GetWhileContext(self): """Return the while context containing this context.""" if self._outer_context: return self._outer_context.GetWhileContext() return None def MaybeAddToWhileContext(self, op): """Add a control dependency to the containing WhileContext. The added control dependency ensures that the outputs of this op belong to the WhileContext. Do nothing if the op is not contained in a WhileContext. Args: op: An operation. """ while_ctxt = self.GetWhileContext() if while_ctxt is not None: # pylint: disable=protected-access op._add_control_input(while_ctxt.GetControlPivot().op) # pylint: enable=protected-access class CondContext(ControlFlowContext): """The context for the conditional construct.""" def __init__(self, pred, pivot, branch): ControlFlowContext.__init__(self) self._pred = pred # The boolean tensor for the cond predicate self._pivot = pivot # The predicate tensor in this branch self._branch = branch # 0 or 1 representing this branch # Values considered to have been already seen in this context. self._values.add(pred.name) self._values.add(pivot.name) @property def pred(self): return self._pred @property def pivot(self): return self._pivot @property def branch(self): return self._branch def AddValue(self, val): """Add `val` to the current context and its outer context recursively.""" result = val if val.name not in self._values: self._values.add(val.name) if self._outer_context: result = self._outer_context.AddValue(val) self._values.add(result.name) with ops.control_dependencies(None): result = _SwitchRefOrTensor(result, self._pred)[self._branch] # pylint: disable=protected-access result.op._set_control_flow_context(self) # pylint: enable=protected-access self._values.add(result.name) self._external_values[val.name] = result return result def AddOp(self, op): """Add `op` to the current context.""" if not op.inputs: # Add this op to the enclosing while context self.MaybeAddToWhileContext(op) # pylint: disable=protected-access op._add_control_input(self._pivot.op) # pylint: enable=protected-access for x in op.outputs: self._values.add(x.name) else: for index in range(len(op.inputs)): x = op.inputs[index] if x.name not in self._values: self._values.add(x.name) # Add this value to the parent contexts up to the context that # creates this value. real_x = x if self._outer_context: real_x = self._outer_context.AddValue(x) self._values.add(real_x.name) real_x = _SwitchRefOrTensor(real_x, self._pred)[self._branch] self._external_values[x.name] = real_x x = self._external_values.get(x.name) if x is not None: op._update_input(index, x) for x in op.outputs: self._values.add(x.name) def BuildCondBranch(self, fn): """Add the subgraph defined by fn() to the graph.""" r = fn() result = [] if r is not None: if not isinstance(r, list) and not isinstance(r, _basetuple): r = [r] for v in r: real_v = v if isinstance(v, ops.Operation): # Use pivot as the proxy for this op. real_v = with_dependencies([v], self._pivot) elif v.name not in self._values: # Handle the special case of lambda: x self._values.add(v.name) if self._outer_context: real_v = self._outer_context.AddValue(v) self._values.add(real_v.name) real_v = _SwitchRefOrTensor(real_v, self._pred)[self._branch] self._external_values[v.name] = real_v else: external_v = self._external_values.get(v.name) if external_v is not None: real_v = external_v result.append(real_v) return result def cond(pred, fn1, fn2, name=None): """Return either fn1() or fn2() based on the boolean predicate `pred`. `fn1` and `fn2` both return lists of output tensors. `fn1` and `fn2` must have the same non-zero number and type of outputs. Args: pred: A scalar determining whether to return the result of `fn1` or `fn2`. fn1: The function to be performed if pred is true. fn2: The function to be performed if pref is false. name: Optional name prefix for the returned tensors. Returns: Tensors returned by the call to either `fn1` or `fn2`. If the functions return a singleton list, the element is extracted from the list. Raises: TypeError: if `fn1` or `fn2` is not callable. ValueError: if `fn1` and `fn2` do not return the same number of tensors, or return tensors of different types. Example: ```python x = tf.constant(2) y = tf.constant(5) def f1(): return tf.mul(x, 17) def f2(): return tf.add(y, 23) r = cond(math_ops.less(x, y), f1, f2) # r is set to f1(). # Operations in f2 (e.g., tf.add) are not executed. ``` """ with ops.op_scope([pred], name, "cond") as name: if not callable(fn1): raise TypeError("fn1 must be callable.") if not callable(fn2): raise TypeError("fn2 must be callable.") # Add the Switch to the graph. if isinstance(pred, bool): raise TypeError("pred must not be a Python bool") p_2, p_1 = switch(pred, pred) pivot_1 = array_ops.identity(p_1, name="switch_t") pivot_2 = array_ops.identity(p_2, name="switch_f") pred = array_ops.identity(pred, name="pred_id") # Build the graph for the true branch in a new context. context_t = CondContext(pred, pivot_1, 1) context_t.Enter() res_t = context_t.BuildCondBranch(fn1) context_t.ExitResult(res_t) context_t.Exit() # Build the graph for the false branch in a new context. context_f = CondContext(pred, pivot_2, 0) context_f.Enter() res_f = context_f.BuildCondBranch(fn2) context_f.ExitResult(res_f) context_f.Exit() # Add the final merge to the graph. if len(res_t) != len(res_f): raise ValueError("fn1 and fn2 must return the same number of results.") if not res_t: raise ValueError("fn1 and fn2 must return at least one result.") for x, y in zip(res_f, res_t): assert ((isinstance(x, ops.IndexedSlices) and isinstance(y, ops.IndexedSlices)) or (isinstance(x, ops.Tensor) and isinstance(y, ops.Tensor))) val_x = x if isinstance(x, ops.Tensor) else x.values val_y = y if isinstance(y, ops.Tensor) else y.values if val_x.dtype.base_dtype != val_y.dtype.base_dtype: raise ValueError("Outputs of fn1 and fn2 must have the same type: " "%s, %s" % (val_x.dtype.name, val_y.dtype.name)) merges = [merge([x[0], x[1]])[0] for x in zip(res_f, res_t)] return merges[0] if len(merges) == 1 else merges # TODO(yuanbyu): Consider having a unified notion of context for # not only conditionals and loops but also control dependency and # subgraphs. class WhileContext(ControlFlowContext): """The context for the loop construct.""" def __init__(self, parallel_iterations, back_prop, name): ControlFlowContext.__init__(self) self._name = ops.get_default_graph().unique_name(name) self._parallel_iterations = parallel_iterations self._back_prop = back_prop # We use this node to control constants created by the pred lambda. self._pivot_for_pred = None # We use this node to control constants created by the body lambda. self._pivot_for_body = None # The boolean tensor for loop termination condition. Used in code # generation for gradient computation self._pivot = None # The list of exit tensors for loop variables. self._loop_exits = None @property def name(self): return self._name @property def parallel_iterations(self): """The number of iterations allowed to run in parallel.""" return self._parallel_iterations @property def back_prop(self): """True iff backprop is enabled for this While loop.""" return self._back_prop @property def pivot(self): """The boolean tensor representing the loop termination condition.""" return self._pivot @property def loop_exits(self): """The list of exit tensors for loop variables.""" return self._loop_exits def GetWhileContext(self): return self def GetControlPivot(self): if self._pivot_for_body: return self._pivot_for_body return self._pivot_for_pred def AddValue(self, val): """Add `val` to the current context and its outer context recursively.""" result = val if val.name not in self._values: self._values.add(val.name) if self._outer_context is not None: result = self._outer_context.AddValue(val) # Create an Enter to make `result` known to this loop context. with ops.control_dependencies(None): enter = _Enter(result, self._name, is_constant=True, parallel_iterations=self._parallel_iterations) # pylint: disable=protected-access enter.op._set_control_flow_context(self) # pylint: enable=protected-access # Add `enter` in this context. self._values.add(enter.name) self._external_values[val.name] = enter result = enter else: actual_val = self._external_values.get(val.name) if actual_val is not None: result = actual_val return result def AddOp(self, op): """Adds `op` to the current context.""" if not op.inputs: if not op.control_inputs: # Add a control edge from the control pivot to this op. # pylint: disable=protected-access op._add_control_input(self.GetControlPivot().op) # pylint: enable=protected-access else: # Control edges must be in the same context. for x in op.control_inputs: assert x._get_control_flow_context() == self, ( "Control inputs must come from Operations in the same while " "loop context (not an outer context).") for x in op.outputs: self._values.add(x.name) else: for index in range(len(op.inputs)): x = op.inputs[index] self.AddValue(x) real_x = self._external_values.get(x.name) if real_x is not None: op._update_input(index, real_x) # Add a control dependency to prevent loop invariants from # enabling ops that should not be executed. if real_x.op.type == "RefEnter" and real_x.op.get_attr("is_constant"): # pylint: disable=protected-access op._add_control_input(self.GetControlPivot().op) # pylint: enable=protected-access for x in op.outputs: self._values.add(x.name) def AddForwardCounter(self): """Adds a loop that counts the number of iterations. This is added to the forward loop at the time when we start to create the loop for backprop gradient computation. Called in the outer context of this forward context. The pseudocode is: `n = 0; while (_pivot) { n++; }` Returns: The number of iterations taken by the forward loop and the loop index. """ n = constant_op.constant(0, name="f_count") assert n.op._get_control_flow_context() == self.outer_context self.Enter() self.AddName(n.name) enter_n = _Enter(n, self._name, is_constant=False, parallel_iterations=self._parallel_iterations, name="f_count") merge_n = merge([enter_n, enter_n])[0] switch_n = switch(merge_n, self._pivot) index = math_ops.add(switch_n[1], 1) next_n = _NextIteration(index) merge_n.op._update_input(1, next_n) total_iterations = exit(switch_n[0], name="f_count") self.ExitResult([total_iterations]) self.Exit() return total_iterations, next_n def AddBackPropCounter(self, count): """Add the backprop loop that controls the iterations. This is added to the backprop loop. It is used to control the loop termination of the backprop loop. Called in the outer context of this grad context. The pseudocode is: `n = count; while (n >= 1) { n--; }` Args: count: The number of iterations for backprop. Returns: The loop index. """ one = constant_op.constant(1, name="b_count") self.Enter() self.AddName(count.name) enter_count = _Enter(count, self._name, is_constant=False, parallel_iterations=self._parallel_iterations, name="b_count") merge_count = merge([enter_count, enter_count])[0] self._pivot_for_pred = merge_count cond = math_ops.greater_equal(merge_count, one) self._pivot = loop_cond(cond, name="b_count") switch_count = switch(merge_count, self._pivot) index = math_ops.sub(switch_count[1], one) self._pivot_for_body = index next_count = _NextIteration(index) merge_count.op._update_input(1, next_count) self.Exit() return next_count def AddBackPropAccumulator(self, value): """Add an accumulation loop for every loop invariant. This is added to the backprop loop. It is used to accumulate partial gradients within each loop iteration. Called when in the gradient while context. The pseudocode is: ``` acc = 0.0; while (_pivot) { acc += value; } ``` Args: value: The partial gradient of an iteration for a loop invariant. Returns: The gradient for a loop invariant. """ self.Exit() if self.outer_context: self.outer_context.Enter() acc = constant_op.constant(0, value.dtype, name="b_acc") if self.outer_context: self.outer_context.Exit() self.Enter() self.AddName(acc.name) enter_acc = _Enter(acc, self._name, is_constant=False, parallel_iterations=self._parallel_iterations, name="b_acc") merge_acc = merge([enter_acc, enter_acc], name="b_acc")[0] switch_acc = switch(merge_acc, self._pivot) add_acc = math_ops.add(switch_acc[1], value) next_acc = _NextIteration(add_acc) merge_acc.op._update_input(1, next_acc) acc_result = exit(switch_acc[0], name="b_acc") self.ExitResult([acc_result]) return acc_result def BuildLoop(self, pred, body, loop_vars): """Add the loop termination condition and body to the graph.""" # Keep original_loop_vars to identify which are TensorArrays original_loop_vars = loop_vars # Connvert TensorArrays to their flow variables loop_vars = _convert_tensorarrays_to_flows(loop_vars) loop_vars = ops.convert_n_to_tensor_or_indexed_slices(loop_vars) # Let the context know the loop variabes so the loop variables # would be added in the outer contexts properly. self._values = set([x.name for x in loop_vars]) real_vars = loop_vars if self._outer_context: real_vars = [self._outer_context.AddValue(x) for x in loop_vars] with ops.control_dependencies(None): enter_vars = [_Enter(x, self._name, is_constant=False, parallel_iterations=self._parallel_iterations) for x in real_vars] for x in enter_vars: x.op._set_control_flow_context(self) # pylint: disable=protected-access self._values = set([x.name for x in enter_vars]) merge_vars = [merge([x, x])[0] for x in enter_vars] self._pivot_for_pred = merge_vars[0] # Build the graph for pred. merge_vars_with_tensor_arrays = ( _convert_flows_to_tensorarrays(original_loop_vars, merge_vars)) c = ops.convert_to_tensor(pred(*merge_vars_with_tensor_arrays)) self._pivot = loop_cond(c, name="LoopCond") switch_vars = [_SwitchRefOrTensor(x, self._pivot) for x in merge_vars] # Build the graph for body. vars_for_body = [_Identity(x[1]) for x in switch_vars] self._pivot_for_body = vars_for_body[0] # Convert TensorArray flow variables inside the context back into # their associated TensorArrays for calling the body. vars_for_body_with_tensor_arrays = ( _convert_flows_to_tensorarrays(original_loop_vars, vars_for_body)) body_result = body(*vars_for_body_with_tensor_arrays) if not isinstance(body_result, collections.Sequence): body_result = [body_result] # Store body_result to keep track of TensorArrays returned by body original_body_result = body_result # Convert TensorArrays returned by body into their flow variables result = _convert_tensorarrays_to_flows(body_result) result = ops.convert_n_to_tensor_or_indexed_slices(result) next_vars = [_NextIteration(x) for x in result] # Add the back edges to complete the loop. assert len(merge_vars) == len(next_vars) for x in zip(merge_vars, next_vars): x[0].op._update_input(1, x[1]) # Add the exit ops. exit_vars = [exit(x[0]) for x in switch_vars] self._loop_exits = exit_vars for m_var, n_var, e_var in zip(merge_vars, next_vars, exit_vars): if m_var.get_shape().is_compatible_with(n_var.get_shape()): e_var.set_shape(m_var.get_shape().merge_with(n_var.get_shape())) # Exit the loop. self.ExitResult(exit_vars) # Convert TensorArray flow variables outside the context back into # their associated TensorArrays for returning to caller. exit_vars_with_tensor_arrays = ( _convert_flows_to_tensorarrays(original_body_result, exit_vars)) return (exit_vars_with_tensor_arrays[0] if len(exit_vars) == 1 else exit_vars_with_tensor_arrays) def While(cond, body, loop_vars, parallel_iterations=10, back_prop=True, name=None): """Repeat `body` while the condition `cond` is true. `cond` is a function taking a list of tensors and returning a boolean scalar tensor. `body` is a function taking a list of tensors and returning a list of tensors of the same length and with the same types as the input. `loop_vars` is a list of tensors that is passed to both `cond` and `body`. In addition to regular Tensors or IndexedSlices, the body may accept and return TensorArray objects. The flows of the TensorArray objects will be appropriately forwarded between loops and during gradient calculations. While `cond` evaluates to true, `body` is executed. Args: cond: The termination condition of the loop. body: A function that represents the loop body. loop_vars: The list of variable input tensors. parallel_iterations: The number of iterations allowed to run in parallel. back_prop: Whether backprop is enabled for this while loop. name: Optional name prefix for the returned tensors. Returns: The output tensors for the loop variables after the loop. Raises: TypeError: if `cond` or `body` is not callable. ValueError: if `loop_var` is empty. Example: ```python i = constant(0) c = lambda i: math_ops.less(i, 10) b = lambda i: math_ops.add(i, 1) r = While(c, b, [i]) ``` """ with ops.op_scope(loop_vars, name, "While") as name: if not loop_vars: raise ValueError("No loop variables provided") if not callable(cond): raise TypeError("cond must be callable.") if not callable(body): raise TypeError("body must be callable.") context = WhileContext(parallel_iterations, back_prop, name) context.Enter() result = context.BuildLoop(cond, body, loop_vars) context.Exit() return result def _AsTensorList(x, p): """Return x as a list of Tensors or IndexedSlices. For entries of `x` that are Operations, this returns an Identity of `p` with a dependency on the operation. Args: x: A Tensor/IndexedSlices/Operation or a list or tuple of them. p: A Tensor to return for entries in `x` that are Operations. Returns: A list of Tensors or IndexedSlices. """ if not isinstance(x, (list, _basetuple)): x = [x] l = [] for v in x: if isinstance(v, ops.Operation): v = with_dependencies([v], p) v = ops.convert_to_tensor_or_indexed_slices(v) if isinstance(v, ops.Tensor): l.append(array_ops.identity(v)) else: l.append(ops.IndexedSlices(array_ops.identity(v.values), array_ops.identity(v.indices))) return l def _CheckResults(a, b): assert len(a) == len(b), ( "Values returned by a() and b() must have the same length.") for x, y in zip(a, b): assert x.dtype == y.dtype, ( "Values returned by a() [%s] and b() [%s] must have " "the same type: %s, %s." % (x.name, y.name, x.dtype.name, y.dtype.name)) def with_dependencies(dependencies, output_tensor, name=None): """Produces the content of `output_tensor` only after `dependencies`. In some cases, a user may want the output of an operation to be consumed externally only after some other dependencies have run first. This function ensures returns `output_tensor`, but only after all operations in `dependencies` have run. Note that this means that there is no guarantee that `output_tensor` will be evaluated after any `dependencies` have run. See also `tuple` and `group`. Args: dependencies: A list of operations to run before this op finishes. output_tensor: A `Tensor` or `IndexedSlices` that will be returned. name: (Optional) A name for this operation. Returns: Same as `output_tensor`. Raises: TypeError: if `output_tensor` is not a `Tensor` or `IndexedSlices`. """ with ops.op_scope(dependencies + [output_tensor], name, "control_dependency") as name: with ops.device(output_tensor.device): with ops.control_dependencies(dependencies): output_tensor = ops.convert_to_tensor_or_indexed_slices(output_tensor) if isinstance(output_tensor, ops.Tensor): return _Identity(output_tensor, name=name) else: return ops.IndexedSlices(_Identity(output_tensor.values, name=name), output_tensor.indices, output_tensor.dense_shape) def _GroupControlDeps(dev, deps, name=None): with ops.control_dependencies(deps): if dev is None: return no_op(name=name) else: with ops.device(dev): return no_op(name=name) # TODO(touts): Accept "inputs" as a list. def group(*inputs, **kwargs): """Create an op that groups multiple operations. When this op finishes, all ops in `input` have finished. This op has no output. See also `tuple` and `with_dependencies`. Args: *inputs: One or more tensors to group. **kwargs: Optional parameters to pass when constructing the NodeDef. name: A name for this operation (optional). Returns: An Operation that executes all its inputs. Raises: ValueError: If an unknown keyword argument is provided, or if there are no inputs. """ name = kwargs.pop("name", None) if kwargs: raise ValueError("Unknown keyword arguments: " + ", ".join(kwargs.keys())) if not inputs: # TODO(touts): Would make sense to return a NoOp. raise ValueError("No inputs provided") with ops.op_scope(inputs, name, "group_deps") as name: # Sorts *inputs according to their devices. ops_on_device = {} # device -> operations specified on the device. for inp in inputs: dev = inp.device if dev in ops_on_device: ops_on_device[dev].append(inp) else: ops_on_device[dev] = [inp] if len(ops_on_device) == 1: # 1-level tree. The root node is the returned NoOp node. (dev, deps), = ops_on_device.items() return _GroupControlDeps(dev, deps, name=name) # 2-level tree. The root node is the returned NoOp node. # deps contains 1 NoOp node for each device. deps = [] def device_key(dev): """A sort key that allows None to be compared to strings.""" return "" if dev is None else dev for dev in sorted(six.iterkeys(ops_on_device), key=device_key): deps.append(_GroupControlDeps(dev, ops_on_device[dev])) return _GroupControlDeps(None, deps, name=name) def tuple(tensors, name=None, control_inputs=None): """Group tensors together. This creates a tuple of tensors with the same values as the `tensors` argument, except that the value of each tensor is only returned after the values of all tensors have been computed. `control_inputs` contains additional ops that have to finish before this op finishes, but whose outputs are not returned. This can be used as a "join" mechanism for parallel computations: all the argument tensors can be computed in parallel, but the values of any tensor returned by `tuple` are only available after all the parallel computations are done. See also `group` and `with_dependencies`. Args: tensors: A list of `Tensor`s or `IndexedSlices`, some entries can be `None`. name: (optional) A name to use as a `name_scope` for the operation. control_inputs: List of additional ops to finish before returning. Returns: Same as `tensors`. Raises: ValueError: If `tensors` does not contain any `Tensor` or `IndexedSlices`. TypeError: If `control_inputs` is not a list of `Operation` or `Tensor` objects. """ with ops.op_scope(tensors, name, "tuple") as name: gating_ops = [t.op for t in tensors if t] if control_inputs: for c in control_inputs: if isinstance(c, ops.Tensor): c = c.op elif not isinstance(c, ops.Operation): raise TypeError("Control input must be Operation or Tensor: %s" % c) gating_ops.append(c) # Note that in order to ensure ordering in the pbtxt, we must take care to # ensure the order here. gating_ops = sorted(set(gating_ops), key=lambda op: op._id) # Uniquify ops. if not gating_ops: raise ValueError("Must have at least one Tensor: %s" % tensors) gate = group(*gating_ops) tpl = [] for t in tensors: if t: tpl.append(with_dependencies([gate], t)) else: tpl.append(None) return tpl # TODO(yuanbyu, mrry): Handle stride to support sliding windows. def foldl(fn, elems, initializer=None, name=None): """The foldl operator on the unpacked tensors of a tensor. This foldl operator applies the function `fn` to a sequence of elements from left to right. The elements are made of the tensors unpacked from `elems`. If `initializer` is None, `elems` must contain at least one element. Args: fn: The function to be performed. elems: A tensor to be unpacked. initializer: (optional) The initial value for the accumulator. name: (optional) Name prefix for the returned tensors. Returns: A tensor resulting from applying `fn` consecutively on each element/slice of `elems`, from left to right. Raises: TypeError: if `fn` is not callable. Example: ```python elems = [1, 2, 3, 4, 5, 6] sum = foldl(lambda a, x: a + x, elems) ``` """ with ops.op_scope([elems], name, "foldl") as name: if not callable(fn): raise TypeError("fn must be callable.") # Convert elems to tensor array. n = array_ops.shape(elems)[0] elems_ta = tensor_array_ops.TensorArray(dtype=elems.dtype, size=n, dynamic_size=False) elems_ta = elems_ta.unpack(elems) if initializer is None: a = elems_ta.read(0) i = constant_op.constant(1) else: a = ops.convert_to_tensor(initializer) i = constant_op.constant(0) def compute(i, a): a = fn(a, elems_ta.read(i)) return [i + 1, a] _, r_a = While(lambda i, a: i < n, compute, [i, a]) return r_a def foldr(fn, elems, initializer=None, name=None): """The foldr operator operator on the unpacked tensors of a tensor. This foldr operator applies the function `fn` to a sequence of elements from right to left. The elements are made of the tensors unpacked from `elems`. If `initializer` is None, `elems` must contain at least one element. Args: fn: The function to be performed. elems: A tensor that is unpacked into a sequence of tensors to apply `fn`. initializer: (optional) The initial value for the accumulator. use_tensor_array: (optional) use tensor_array if true. name: (optional) Name prefix for the returned tensors. Returns: A tensor resulting from applying `fn` consecutively on each element/slice of `elems`, from right to left. Raises: TypeError: if `fn` is not callable. Example: ```python elems = [1, 2, 3, 4, 5, 6] sum = foldr(lambda a, x: a + x, elems) ``` """ with ops.op_scope([elems], name, "foldr") as name: if not callable(fn): raise TypeError("fn must be callable.") # Convert elems to tensor array. n = array_ops.shape(elems)[0] elems_ta = tensor_array_ops.TensorArray(dtype=elems.dtype, size=n, dynamic_size=False) elems_ta = elems_ta.unpack(elems) if initializer is None: i = n - 1 a = elems_ta.read(i) else: i = n a = ops.convert_to_tensor(initializer) def compute(i, a): i -= 1 a = fn(a, elems_ta.read(i)) return [i, a] _, r_a = While(lambda i, a: i > 0, compute, [i, a]) return r_a def map(fn, elems, dtype=None, name=None): """The map operator on on the unpacked tensors of a tensor. This map operator applies the function `fn` to a sequence of elements from right to left. The elements are made of the tensors unpacked from `elems`. Args: fn: The function to be performed. elems: A tensor to be unpacked to apply `fn`. dtype: (optional) The output type of `fn`. name: (optional) Name prefix for the returned tensors. Returns: A tensor that packs the results of applying `fn` on each element of `elems`. Raises: TypeError: if `fn` is not callable. Example: ```python elems = [1, 2, 3, 4, 5, 6] squares = map(lambda x: x * x, elems) ``` """ with ops.op_scope([elems], name, "map") as name: if not callable(fn): raise TypeError("fn must be callable.") dtype = dtype if dtype else elems.dtype # Convert elems to tensor array. elems_ta = tensor_array_ops.TensorArray(dtype=elems.dtype, size=0, dynamic_size=True) elems_ta = elems_ta.unpack(elems) n = elems_ta.size() i = constant_op.constant(0) acc_ta = tensor_array_ops.TensorArray(dtype=dtype, size=n) def compute(i, a): a = a.write(i, fn(elems_ta.read(i))) i = math_ops.add(i, 1) return [i, a] _, r_a = While(lambda i, a: math_ops.less(i, n), compute, [i, acc_ta]) return r_a.pack() def case(pred_fn_pairs, default, exclusive=False, name="case"): """Create a case operation. The `pred_fn_pairs` parameter is a dict or list of pairs of size N. Each pair contains a boolean scalar tensor and a python callable that creates the tensors to be returned if the boolean evaluates to True. `default` is a callable generating a list of tensors. All the callables in `pred_fn_pairs` as well as `default` should return the same number and types of tensors. If `exclusive==True`, all predicates are evaluated, and a logging operation with an error is returned if more than one of the predicates evaluates to True. If `exclusive==False`, execution stops are the first predicate which evaluates to True, and the tensors generated by the corresponding function are returned immediately. If none of the predicates evaluate to True, this operation returns the tensors generated by `default`. Example 1: Pseudocode: ``` if (x < y) return 17; else return 23; ``` Expressions: ``` f1 = lambda: tf.constant(17) f2 = lambda: tf.constant(23) r = case([(tf.less(x, y), f1)], default=f2) ``` Example 2: Pseudocode: ``` if (x < y && x > z) raise OpError("Only one predicate may evaluate true"); if (x < y) return 17; else if (x > z) return 23; else return -1; ``` Expressions: ``` def f1(): return tf.constant(17) def f2(): return tf.constant(23) def f3(): return tf.constant(-1) r = case({tf.less(x, y): f1, tf.greater(x, z): f2}, default=f3, exclusive=True) ``` Args: pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a callable which returns a list of tensors. default: A callable that returns a list of tensors. exclusive: True iff more than one predicate is allowed to evaluate to True. name: A name for this operation (optional). Returns: The tensors returned by the first pair whose predicate evaluated to True, or those returned by `default` if none does. Raises: TypeError: If `pred_fn_pairs` is not a list/dictionary. TypeError: If `pred_fn_pairs` is a list but does not contain 2-tuples. TypeError: If `fns[i]` is not callable for any i, or `default` is not callable. """ pfp = pred_fn_pairs # For readability if not (isinstance(pfp, list) or isinstance(pfp, _basetuple) or isinstance(pfp, dict)): raise TypeError("fns must be a list, tuple, or dict") if isinstance(pfp, dict): pfp = pfp.items() if not exclusive: logging.warn("%s: Provided dictionary of predicate/fn pairs, but " "exclusive=False. Order of conditional tests is " "not guaranteed.", name) for tup in pfp: if not isinstance(tup, _basetuple) or len(tup) != 2: raise TypeError("Each entry in pred_fn_pairs must be a 2-tuple") pred, fn = tup if pred.dtype != dtypes.bool: raise TypeError("pred must be of type bool: %s", pred.name) if not callable(fn): raise TypeError("fn for pred %s must be callable." % pred.name) if not callable(default): raise TypeError("default must be callable.") preds, fns = map(list, zip(*pfp)) with ops.op_scope([preds], name, "case"): if not preds: return default() not_preds = [] for i, p in enumerate(preds): with ops.name_scope("not_%d" % i): not_preds.append(math_ops.logical_not(p)) and_not_preds = [constant_op.constant(True, name="and_not_true")] for i, notp in enumerate(not_preds[:-1]): with ops.name_scope("and_not_%d" % i): and_not_preds.append(math_ops.logical_and(and_not_preds[-1], notp)) # preds = [p1, p2, p3] # fns = [f1, f2, f3] # not_preds = [~p1, ~p2, ~p3] # case_preds = [p1 & True, # p2 & ~p1, # p3 & ~p1 & ~ p2] case_preds = [] for i, (p, and_not_p_prev) in enumerate(zip(preds, and_not_preds)): with ops.name_scope("case_%d" % i): case_preds.append(math_ops.logical_and(p, and_not_p_prev)) # case_sequence = [cond(p3 & ..., f3, default), # cond(p2 & ..., f2, lambda: case_sequence[0]), # ... # cond(p1 & True, f1, lambda: case_sequence[i-1])] # and prev_case_seq will loop from case_sequence[0] to case_sequence[-1] if exclusive: # TODO(ebrevdo): Add Where() for DT_BOOL, replace with Size(Where(preds)) preds_c = array_ops.concat(0, preds, name="preds_c") num_true_conditions = math_ops.reduce_sum( math_ops.cast(preds_c, dtypes.int32), name="num_true_conds") at_most_one_true_condition = math_ops.less( num_true_conditions, constant_op.constant(2, name="two_true_conds")) error_msg = [ ("More than one condition evaluated as True but " "exclusive=True. Conditions: (%s), Values:" % ", ".join([p.name for p in preds])), preds_c] with ops.control_dependencies([ logging_ops.Assert(condition=at_most_one_true_condition, data=error_msg, summarize=len(preds))]): prev_case_seq = None for i, (cp, fn) in enumerate(zip(case_preds, fns)[::-1]): prev_case_seq = cond( cp, fn, default if i == 0 else lambda: prev_case_seq, name="If_%d" % i) else: prev_case_seq = None for i, (cp, fn) in enumerate(zip(case_preds, fns)[::-1]): prev_case_seq = cond( cp, fn, default if i == 0 else lambda: prev_case_seq, name="If_%d" % i) return prev_case_seq ops.RegisterShape("Enter")(common_shapes.unchanged_shape) ops.RegisterShape("Exit")(common_shapes.unchanged_shape) ops.RegisterShape("NextIteration")(common_shapes.unchanged_shape) ops.RegisterShape("RefEnter")(common_shapes.unchanged_shape) ops.RegisterShape("RefExit")(common_shapes.unchanged_shape) ops.RegisterShape("RefNextIteration")(common_shapes.unchanged_shape) ops.RegisterShape("ControlTrigger")(common_shapes.no_outputs) ops.RegisterShape("NoOp")(common_shapes.no_outputs) @ops.RegisterShape("LoopCond") def _LoopCondShape(op): """Shape function for the LoopCond op.""" return [op.inputs[0].get_shape().merge_with(tensor_shape.scalar())] @ops.RegisterShape("Merge") def _MergeShape(op): """Shape function for the Merge op. The Merge op takes many inputs of arbitrary shapes, and produces a first output that is one of those inputs, and a second scalar output. If all input shapes are known and have the same rank, the output shape must have that rank, otherwise the output shape is unknown. Each output dimension is specified only if that dimension in all inputs are the same. Args: op: A Merge Operation. Returns: A single-element list containing the Shape of the Merge op. """ output_shape = op.inputs[0].get_shape() if output_shape.dims is None: return [tensor_shape.unknown_shape(), tensor_shape.scalar()] else: for input_ in op.inputs[1:]: input_shape = input_.get_shape() if input_shape.dims is None or input_shape.ndims != output_shape.ndims: return [tensor_shape.unknown_shape(), tensor_shape.scalar()] else: output_shape = tensor_shape.TensorShape( [input_dim.value if input_dim.value == output_dim.value else None for input_dim, output_dim in zip(input_shape.dims, output_shape.dims)]) return [output_shape, tensor_shape.scalar()] ops.RegisterShape("RefMerge")(_MergeShape) @ops.RegisterShape("RefSelect") def _RefSelectShape(op): """Shape function for the RefSelect op. The RefSelect takes one scalar input and N inputs of arbitrary shapes, and produces one output, which is one of those N inputs. This function conservatively assumes that if any of the N inputs is not fully defined, the output shape is unknown. If all of the N inputs have the exact same known shape, the output must have that shape. Args: op: A RefSelect Operation. Returns: A single-element list containing the Shape of the RefSelect op. """ unused_shape = op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) first_input_shape = op.inputs[1].get_shape() if first_input_shape.is_fully_defined(): for input_ in op.inputs[2:]: input_shape = input_.get_shape() if (not input_shape.is_fully_defined() or not input_shape.is_compatible_with(first_input_shape)): return [tensor_shape.unknown_shape()] return [first_input_shape] else: return [tensor_shape.unknown_shape()] @ops.RegisterShape("RefSwitch") @ops.RegisterShape("Switch") def _SwitchShape(op): input_shape = op.inputs[0].get_shape() unused_pred_shape = op.inputs[1].get_shape().merge_with(tensor_shape.scalar()) return [input_shape] * 2
[ "andrea.petreri@gmail.com" ]
andrea.petreri@gmail.com
27c456bb190924f3117dc53002f8af05a9addc2b
46643f7d73a270b8080ac9f2f570edc4b90a8b63
/Backorder/trainingModel.py
1a85dde3a2c919f570b402f53df3c3550b440052
[]
no_license
khangdong89/Stock-out-Prediction
16533de9d983048cda12f726cf8d0a09a8ea8d79
62719448e86600ff8f068802db4ff87504b0e28a
refs/heads/main
2023-05-03T08:47:51.891938
2021-05-14T13:33:11
2021-05-14T13:33:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,718
py
""" This is the Entry point for Training the Machine Learning Model. """ # Doing the necessary imports from sklearn.model_selection import train_test_split from data_ingestion import data_loader from data_preprocessing import preprocessing from data_preprocessing import clustering from best_model_finder import tuner from file_operations import file_methods from application_logging import logger #Creating the common Logging object class trainModel: def __init__(self): self.log_writer = logger.App_Logger() self.file_object = open("Training_Logs/ModelTrainingLog.txt", 'a+') def trainingModel(self): # Logging the start of Training self.log_writer.log(self.file_object, 'Start of Training') try: # Getting the data from the source data_getter=data_loader.Data_Getter(self.file_object,self.log_writer) data=data_getter.get_data() """doing the data preprocessing""" preprocessor=preprocessing.Preprocessor(self.file_object,self.log_writer) data = preprocessor.remove_columns(data,["Index_Product","sku"]) # remove the unnamed column as it doesn't contribute to prediction. ##label encoding data = preprocessor.encodeCategoricalValues(data) # check if missing values are present in the dataset is_null_present = preprocessor.is_null_present(data) # if missing values are there, replace them appropriately. if (is_null_present): # X=preprocessor.impute_missing_values(X) # missing value imputation data = data.dropna() # create separate features and labels X,Y=preprocessor.separate_label_feature(data,label_column_name='went_on_backorder') # check further which columns do not contribute to predictions # if the standard deviation for a column is zero, it means that the column has constant values # and they are giving the same output both for good and bad sensors # prepare the list of such columns to drop cols_to_drop=preprocessor.get_columns_with_zero_std_deviation(X) # drop the columns obtained above X=preprocessor.remove_columns(X,cols_to_drop) #scaling the X values X = preprocessor.scale_numerical_columns(X) #pca on the columns of x X = preprocessor.pcaTransformation(X) # """ Applying the clustering approach""" # # kmeans=clustering.KMeansClustering(self.file_object,self.log_writer) # object initialization. # number_of_clusters=kmeans.elbow_plot(X) # using the elbow plot to find the number of optimum clusters # # # Divide the data into clusters # X=kmeans.create_clusters(X,number_of_clusters) # # #create a new column in the dataset consisting of the corresponding cluster assignments. # X['Labels']=Y # # # getting the unique clusters from our dataset # list_of_clusters=X['Cluster'].unique() """parsing all the clusters and looking for the best ML algorithm to fit on individual cluster""" #for i in list_of_clusters: #cluster_data=X[X['Cluster']==i] # filter the data for one cluster #Prepare the feature and Label columns #cluster_features=cluster_data.drop(['Labels','Cluster'],axis=1) #cluster_label= cluster_data['Labels'] # splitting the data into training and test set for each cluster one by one x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=1 / 3, random_state=355) model_finder=tuner.Model_Finder(self.file_object,self.log_writer) # object initialization #getting the best model for each of the clusters best_model_name,best_model=model_finder.get_best_model(x_train,y_train,x_test,y_test) #saving the best model to the directory. file_op = file_methods.File_Operation(self.file_object,self.log_writer) #save_model=file_op.save_model(best_model,best_model_name+str(i)) save_model = file_op.save_model(best_model, best_model_name) # logging the successful Training self.log_writer.log(self.file_object, 'Successful End of Training') self.file_object.close() except Exception: # logging the unsuccessful Training self.log_writer.log(self.file_object, 'Unsuccessful End of Training') self.file_object.close() raise Exception
[ "injarapusrisharanya@gmail.com" ]
injarapusrisharanya@gmail.com
8e0ed00e073de8a5bccb6b2d7fe1eef2ede522de
9e4df2b26e899f2d3e044e71bc4193958b02314b
/app/migrations/0027_auto_20200930_0118.py
bb05747fde99e2ecc6d9acb7db6fe524b26b1a36
[ "MIT" ]
permissive
hosseinmoghimi/phoenix
afea0a73cdf257fcf89c75d85c5ab1890d957a83
43fc49421a50563acc1884981d391b0d6a5d5d72
refs/heads/master
2023-01-11T11:12:30.308822
2020-11-15T13:52:21
2020-11-15T13:52:21
295,109,751
1
5
MIT
2020-11-15T13:50:12
2020-09-13T08:31:01
HTML
UTF-8
Python
false
false
701
py
# Generated by Django 3.1 on 2020-09-29 21:48 from django.db import migrations import tinymce.models class Migration(migrations.Migration): dependencies = [ ('app', '0026_auto_20200930_0117'), ] operations = [ migrations.AlterField( model_name='jumbotron', name='description', field=tinymce.models.HTMLField(blank=True, max_length=2000, null=True, verbose_name='شرح کامل'), ), migrations.AlterField( model_name='jumbotron', name='short_description', field=tinymce.models.HTMLField(blank=True, max_length=1000, null=True, verbose_name='شرح کوتاه'), ), ]
[ "hossein.moghimi.ce@gmail.com" ]
hossein.moghimi.ce@gmail.com
140f01a599093240c627fc66b51a3682f093eb8a
df916fbff07accc3e11b3597fcfc0079e6ad1e97
/django/mysite/polls/urls.py
183f036166ca1bee2e2842feff59b1ebb96dfad7
[]
no_license
kamdow/tkinter
c7bd174188b9d6922b1efec7dbb94b65b131333e
be0011cf34c6c6deb031903ebeecda5f123c490d
refs/heads/master
2021-01-24T03:03:59.589500
2018-03-18T13:18:13
2018-03-18T14:26:23
122,874,979
0
0
null
null
null
null
UTF-8
Python
false
false
113
py
from django.conf.urls import url from polls import views urlpatterns = [ url(r'^$',views.index,name='index'), ]
[ "kamil@capitalit.pl" ]
kamil@capitalit.pl
da61602d3bb9101a4e07f97bee9c5b0dce187c33
836ae744a7adeab76f976741f265563667c4038b
/ML/models.py
e403fa0048d1505a3ff46bfffc524d41b3938ca8
[]
no_license
Ashargin/ML_pack
bcd61d8796a1d69e1d73732e1fd6399398a199b4
60ed6bdad27dea722839e3306c4f5fca1df94712
refs/heads/master
2020-04-02T06:15:16.805453
2019-09-22T11:43:01
2019-09-22T11:43:01
154,138,030
0
0
null
null
null
null
UTF-8
Python
false
false
7,541
py
import numpy as np import pandas as pd import statsmodels.formula.api as smf from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.linear_model import HuberRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from ML.ensemble import MyRandomForestQuantileRegressor from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from ML.preprocessing import preproc_linreg, preproc_filled_discrete from utils.utils import no_outliers, sub_pred_to_pred from utils.get_data import load from utils.settings import VAL_DATA_PATH, TARGET_COL, SUB_PRED_VAR # Base model class BaseModel: def __init__(self, data, sub_pred_var): self.data = data self.sub_pred_var = sub_pred_var if self.sub_pred_var is None: self.sub_pred_var = SUB_PRED_VAR if self.sub_pred_var is None: self.sub_pred_var = TARGET_COL self.val_split = VAL_DATA_PATH is None if self.val_split: data_train, data_val = train_test_split(self.data, test_size=0.33) data_train = no_outliers(data_train) self.fit(data_train) self.data_val = data_val else: self.fit(self.data) self.data_val = load(VAL_DATA_PATH) def fit(self, data): preproc = self.preprocessing(data) target = data[self.sub_pred_var] self.rootmodel.fit(preproc, target) def predict(self, X): preproc = self.preprocessing(X) pred = pd.DataFrame(self.rootmodel.predict(preproc), index=X.index) if self.sub_pred_var != TARGET_COL: pred = sub_pred_to_pred(pred, X, self.sub_pred_var) return pred def grid_search_cv(self, parameters, scorer, cv): gs_data = None if self.val_split: gs_data = self.data else: gs_data = pd.concat([self.data, self.data_val]) train_index = np.array(range(len(self.data))) val_index = np.array(range(len(self.data), len(self.data) + len(self.data_val))) cv = zip([train_index], [val_index]) gs = GridSearchCV(self.rootmodel.__class__(), parameters, cv=cv, scoring=scorer) preproc = self.preprocessing(gs_data) target = gs_data[self.sub_pred_var] gs.fit(preproc, target) print('Grid scores on development set:\n') means = gs.cv_results_['mean_test_score'] scores = list(zip(means, gs.cv_results_['params'])) scores = reversed(sorted(scores, key=lambda x: x[0])) for mean, params in scores: print('{:.3f} - {}'.format(mean, params)) print('\nBest parameters set found on development set:\n') print(gs.best_params_) class Regressor(BaseModel): def __init__(self, data, sub_pred_var): super().__init__(data, sub_pred_var=sub_pred_var) def grid_search_cv(self, parameters, scorer='explained_variance', cv=5): super().grid_search_cv(parameters, scorer=scorer, cv=cv) class Classifier(BaseModel): def __init__(self, data, sub_pred_var): super().__init__(data, sub_pred_var=sub_pred_var) def grid_search_cv(self, parameters, scorer='f1_macro', cv=5): super().grid_search_cv(parameters, scorer=scorer, cv=cv) # Linear regressors class LinReg(Regressor): def __init__(self, data, formula, sub_pred_var=None): self.formula = formula self.preprocessing = preproc_linreg super().__init__(data, sub_pred_var=sub_pred_var) def fit(self, data): Xy = self.preprocessing(data) Xy[self.sub_pred_var] = data[self.sub_pred_var] self.rootmodel = smf.ols(self.sub_pred_var + ' ~ ' + self.formula, data=Xy).fit() def grid_search_cv(self, params, scorer='explained_variance', cv=5): raise Warning('Grid search is not available for OLS models') class LinReg1(LinReg): def __init__(self, data, sub_pred_var=None): self.name = 'Basic linear regression' formula = 'HEATING_MODE:REGION + CARETAKER:REGION + ELEVATOR:REGION -1' super().__init__(data, formula, sub_pred_var=sub_pred_var) class LinReg2(LinReg): def __init__(self, data, sub_pred_var=None): self.name = 'Linear regression' formula = 'HEATING_MODE:REGION + CARETAKER:REGION + ELEVATOR + PARKING + ' \ 'SURFACE -1' super().__init__(data, formula, sub_pred_var=sub_pred_var) class RidgeReg(Regressor): def __init__(self, data, sub_pred_var=None): self.rootmodel = Ridge() self.preprocessing = preproc_filled_discrete self.name = 'Ridge regression' super().__init__(data, sub_pred_var=sub_pred_var) class EN(Regressor): def __init__(self, data, sub_pred_var=None): self.rootmodel = ElasticNet() self.preprocessing = preproc_filled_discrete self.name = 'Elastic net' super().__init__(data, sub_pred_var=sub_pred_var) class HuberReg(Regressor): def __init__(self, data, sub_pred_var=None): self.rootmodel = HuberRegressor() self.preprocessing = preproc_filled_discrete self.name = 'Huber regression' super().__init__(data, sub_pred_var=sub_pred_var) # Ensemble regressors class RFR(Regressor): def __init__(self, data, sub_pred_var=None): self.rootmodel = RandomForestRegressor(n_estimators=100, min_samples_leaf=2) self.preprocessing = preproc_filled_discrete self.name = 'Random forest' super().__init__(data, sub_pred_var=sub_pred_var) def get_feature_importances(self): feature_importances = list(zip([round(var_imp, 3) for var_imp in self.rootmodel.feature_importances_], self.preprocessing(self.data[:1]).columns)) for var_imp in reversed(sorted(feature_importances)): print(var_imp) class AdaBoostReg(Regressor): def __init__(self, data, sub_pred_var=None): self.rootmodel = AdaBoostRegressor() self.preprocessing = preproc_filled_discrete self.name = 'AdaBoost' super().__init__(data, sub_pred_var=sub_pred_var) class GBR(Regressor): def __init__(self, data, sub_pred_var=None): self.rootmodel = GradientBoostingRegressor() self.preprocessing = preproc_filled_discrete self.name = 'Gradient boosting' super().__init__(data, sub_pred_var=sub_pred_var) class RFQR(Regressor): def __init__(self, data, sub_pred_var=None): self.rootmodel = MyRandomForestQuantileRegressor(n_estimators=1, min_samples_leaf=320) self.preprocessing = preproc_filled_discrete self.name = 'Random forest quantiles' super().__init__(data, sub_pred_var=sub_pred_var) def predict(self, X, quantiles=None): preproc = self.preprocessing(X) pred = self.rootmodel.predict(preproc, quantiles=quantiles) if self.sub_pred_var != TARGET_COL: pred = sub_pred_to_pred(pred, X, self.sub_pred_var) pred = pred.applymap(lambda x: int(round(x, 0))) return pred def get_feature_importances(self): feature_importances = list(zip([round(var_imp, 3) for var_imp in self.rootmodel.feature_importances_], self.preprocessing(self.data[:1]).columns)) for var_imp in reversed(sorted(feature_importances)): print(var_imp)
[ "loic.omnes@free.fr" ]
loic.omnes@free.fr
2b5bf12ab158d05efd089d721d894c8c774075be
3754a0270271ef174947cca9e14d79f5fd86b0c6
/src/db/__init__.py
5db20a3937e5f1e0e87a6b59010a2ee6edd35076
[]
no_license
skapin/lol-simulator
4dc026ddfeb917bd788691d55d62d0c34eb3f8af
e3a7af2febd2297ee760b918d6b800de93768de1
refs/heads/master
2022-12-21T22:26:16.788491
2020-01-19T23:48:05
2020-01-19T23:48:05
233,236,136
0
0
null
2022-12-11T21:15:27
2020-01-11T13:29:01
Python
UTF-8
Python
false
false
190
py
from .kanban_card import KanbanCard from .scan_kanban_card import ScanKanbanCard from .kanban_reference import KanbanReference __all__ = ['KanbanCard', 'ScanKanbanCard', 'KanbanReference']
[ "skapinthefourb@gmail.com" ]
skapinthefourb@gmail.com
bda7335b73251e8eb8ff1c425b385b4411daaf4f
f7506b6c25ccf33abb55fa2a428efd3c8f2eaf54
/TkinterGUI.py
1f924cfd419f76ac0d6d7a7dd200ad171c6eb2ec
[]
no_license
Jaynil1611/CountTheBalls
d6e54d1aee1556aca7ffcbf44508486ba545ef28
d0d416363ee4c484d609af2209d94a4ce7318119
refs/heads/master
2020-08-03T08:36:46.930626
2019-09-29T15:46:55
2019-09-29T15:46:55
211,686,242
1
1
null
null
null
null
UTF-8
Python
false
false
1,172
py
# -*- coding: utf-8 -*- """ Created on Sun Sep 29 08:18:43 2019 @author: Jaynil Gaglani """ from tkinter import Tk,Label,Button,messagebox def login_verify(): answer = messagebox.askyesno(title="your response",message = "Do you want to continue ?") # the above functon will return true for 'yes' response , else will return false if answer: messagebox.showinfo("PLEASE CONTINUE") else: messagebox.showinfo("Byee") root = Tk() root.title("MY FIRST FRAME") root.geometry("600x400+300+200") #dimensions and postion specification w = Label(root,text="GOOD EVENING",bg="black",fg="white") w.pack() #this places into centre of window p = Label(root,text="HIIIIII") p.place(x=30,y=60) #this places into custom position m = Label(root,text="GOOD MORNING",bg="yellow",fg="red") m.pack() b = Button(root,text="LOGIN",bg="#494454",width=15,height=1,font=("OpenSans",13,"bold"),fg="white",command=login_verify) #last arg is function call # no parenthesis needed while calling a function b.place(x=250,y=150,anchor='center') #anchor is used for relative position to centre. root.mainloop()
[ "g.jaynil2401@gmail.com" ]
g.jaynil2401@gmail.com
a0f48aa1e721a490f58b60f44852d126f5951745
6988f71087bc30aecd7c23a1688623c7227a1986
/src/brats_preprocess.py
1027ccb9b97748df7f030b0cdbd3abd5e8d7a8ca
[ "BSD-3-Clause", "Python-2.0", "Apache-2.0", "MIT" ]
permissive
MICLab-Unicamp/BTRSeg
da181a5473726f32eb1cb89563fc0027d8fe4090
03078ac591fe95cf6cf3efaeb00ebf3e509181dc
refs/heads/master
2023-08-15T02:40:02.761544
2020-07-04T20:09:34
2020-07-04T20:09:34
262,440,219
0
0
NOASSERTION
2023-07-23T15:48:00
2020-05-08T22:20:31
Jupyter Notebook
UTF-8
Python
false
false
5,463
py
''' This module reads the original BratS 2020 data and saves preprocessed .npz files, to be used by the BRATS Dataset class. Performs the same pre-processing done by Isensee Et Al. Mean STD with clips for outliers in [-5, 5] and subsequent normalization to [0, 1] Nothing is done with targets, only permutation of channel posisitions. Save specifications follow Medical Segmentation Decatlhon JSON "modality": { "0": "FLAIR", "1": "T1w", "2": "t1gd", "3": "T2w" }, "labels": { "0": "background", "1": "edema", "2": "non-enhancing tumor", "3": "enhancing tumour" "originals": { "0": "background", "1": "non-enhancing tumor", "2": "edema", "4": "enhancing tumour" } ''' import glob import os import numpy as np import nibabel as nib import multiprocessing as mp import nibabel import pandas as pd import mlflow import argparse import datetime from tqdm import tqdm mlflow.set_experiment("pre_processing") parser = argparse.ArgumentParser() parser.add_argument('--data_path', default="/home/diedre/Dropbox/bigdata/brats/2020/MICCAI_BraTS2020_TrainingData") parser.add_argument('--nworkers', default="auto") parser.add_argument('--mode', default="train") args = parser.parse_args() DATA_PATH = args.data_path assert os.path.isdir(DATA_PATH), f"DATA_PATH {DATA_PATH} is not a folder." def worker(subject): folder = os.path.join(DATA_PATH, subject) survival_csv = pd.read_csv(os.path.join(DATA_PATH, "survival_info.csv")) grade_csv = pd.read_csv(os.path.join(DATA_PATH, "name_mapping.csv")) survival_row = survival_csv.loc[survival_csv['Brats20ID'] == subject] try: survival = survival_row['Survival_days'].values[0] except Exception: survival = 'unk' try: age = survival_row['Age'].values[0] except Exception: age = 'unk' try: res = survival_row['Extent_of_Resection'].values[0] except Exception: res = 'unk' try: tumor_type = grade_csv.loc[grade_csv['BraTS_2020_subject_ID'] == subject]['Grade'].values[0] except Exception: tumor_type = 'unk' log = f"Survival: {survival}, age: {age}, res: {res}, tumor_type: {tumor_type}" dst = folder assert os.path.isdir(dst) path = {} for key in keys: search_for_file_in_folder(path, dst, key) log += f"\n\nDetected paths: {path}\n" save_data = None save_seg = 'unk' for key, path in path.items(): data = nib.load(path).get_fdata() if save_data is None: save_data = np.zeros((4,) + data.shape, dtype=data.dtype) if key == "seg": # Segmentation is ints, converting to one hot (original max value = 4) seg = np.eye(5)[data.astype(np.int)].astype(np.int).transpose(3, 0, 1, 2) # put channel dim in beginning save_seg = np.zeros((4,) + data.shape, dtype=np.int) save_seg[0] = seg[0] save_seg[1] = seg[2] save_seg[2] = seg[1] save_seg[3] = seg[4] else: # Isensee brain normalization # Compute statistics only in brain region, ignoring zeros nan_data = data.copy() nan_data[nan_data == 0] = np.nan mean_of_brain = np.nanmean(nan_data) std_of_brain = np.nanstd(nan_data) data = (data - mean_of_brain) / std_of_brain data[data > 5.0] = 5.0 data[data < -5.0] = -5.0 data = (data - data.min()) / (data.max() - data.min()) save_data[keys.index(key)] = data save_name = os.path.join(dst, f"{os.path.basename(dst)}_preprocessed.npz") np.savez_compressed(save_name, data=save_data, target=save_seg, tumor_type=tumor_type, age=age, survival=survival, res=res) log += f"\nSaved in: {save_name}\n\n" return log def search_for_file_in_folder(dict_ref, folder_path, key): try: path = glob.glob(os.path.join(folder_path, f"*{key}.nii.gz")) if key != "seg": assert len(path) == 1 path = path[0] dict_ref[key] = path except Exception: if key == "seg": return else: raise ValueError(f"Didn't find file corresponding to key {key}") if __name__ == "__main__": print("Performing pre-processing, this might take some minutes.") keys = ["flair", "t1", "t1ce", "t2", "seg"] paths = [] folder_list = [] if args.mode == "train": subjects = ["BraTS20_Training_" + str(i).zfill(3) for i in range(1, 370)] elif args.mode == "val": subjects = ["BraTS20_Validation_" + str(i).zfill(3) for i in range(1, 126)] else: raise ValueError("mode invalid") assert len(subjects) > 0 if args.nworkers != "auto": cpu_count = int(args.nworkers) else: cpu_count = max(mp.cpu_count() // 2, 2) pool = mp.Pool(processes=cpu_count) logs = 'Logs for pre_process run\n\n' print(f"Pre processing with {cpu_count} workers...") for log in tqdm(pool.imap_unordered(worker, subjects), total=len(subjects), leave=True, position=0): logs += log os.makedirs("logs", exist_ok=True) # for safety logpath = "logs/preprocess_" + str(datetime.datetime.now()) + ".txt" with open(logpath, 'w') as logfile: logfile.write(logs) mlflow.log_artifact(logpath) print(f"Pre-processing done. Logs saved in {logpath}.")
[ "carmodiedre@outlook.com" ]
carmodiedre@outlook.com
92ee97e35fa267ae04d198981bc954d229c3c6fc
49e6dde1b339dc537a9dabbdf418c2515590c24f
/camera_opencv.py
83cca3e39ea861969600a67a1f49c101cd499710
[]
no_license
elaa0505/CartoonNetwork
bcea7c8b5fd3e74fb1c43b669a391b0597f51c54
3e03313d0e5410229ed3680d366f6d69083b3079
refs/heads/master
2020-09-13T08:08:10.159961
2019-08-26T20:06:12
2019-08-26T20:06:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,143
py
import cv2 from base_camera import BaseCamera class Camera(BaseCamera): video_source = 0 @staticmethod def set_video_source(source): Camera.video_source = source @staticmethod def frames(): camera = cv2.VideoCapture(Camera.video_source) if not camera.isOpened(): raise RuntimeError('Could not start camera.') while True: # read current frame _, img = camera.read() num_down = 2 # number of downsampling steps num_bilateral = 7 # number of bilateral filtering steps # img_rgb = cv2.imread("img_example.jpg") # downsample image using Gaussian pyramid img_color = img for _ in range(num_down): img_color = cv2.pyrDown(img_color) # repeatedly apply small bilateral filter instead of # applying one large filter for _ in range(num_bilateral): img_color = cv2.bilateralFilter(img_color, d=9, sigmaColor=9, sigmaSpace=7) # upsample image to original size for _ in range(num_down): img_color = cv2.pyrUp(img_color) # convert to grayscale and apply median blur img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img_blur = cv2.medianBlur(img_gray, 7) # detect and enhance edges img_edge = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, blockSize=9, C=3) # convert back to color, bit-AND with color image img_edge = cv2.cvtColor(img_edge, cv2.COLOR_GRAY2RGB) img_cartoon = cv2.bitwise_and(img_color, img_edge) # encode as a jpeg image and return it yield cv2.imencode('.jpg', img_cartoon)[1].tobytes()
[ "spoduval@mit.edu" ]
spoduval@mit.edu
2eee39cad1933cd2f4b4756ab75b38eae5b338f7
c4763d9df5ee8b665b28c15e60135aafb6c1351f
/revdig.py
79671820e34bcb362ce753392896b61631fc5ab7
[]
no_license
Kalaiselvan1503/Guvi
b3ed5ca62b801abaedb35a6fb190620d32eee664
368517ad00140e8db99bde07bddd3e958a316e80
refs/heads/master
2020-04-15T04:57:53.139946
2019-05-13T08:53:10
2019-05-13T08:53:10
164,403,733
1
0
null
null
null
null
UTF-8
Python
false
false
32
py
#oifdj a=input() print(a[::-1])
[ "noreply@github.com" ]
noreply@github.com
766e72cd7af1a808d5ee8a27a7407db0fe8b8f6f
f267aa117cadb0a19cdedf81ef7376424181ad73
/wrappers.py
5721bdb9b7ce3cf05a25f75995975f9538374c2b
[]
no_license
mweiss17/aido-submission
7709a0820b82772effd2800f8f10e92353272d26
4a063b0e695717b7193d965cd655fdada77ed915
refs/heads/master
2020-04-06T07:47:29.194298
2018-11-14T22:45:22
2018-11-14T22:45:22
157,285,451
1
0
null
null
null
null
UTF-8
Python
false
false
4,037
py
import gym from gym import spaces import numpy as np class ResizeWrapper(gym.ObservationWrapper): def __init__(self, env=None, shape=(120, 160, 3)): super(ResizeWrapper, self).__init__(env) self.observation_space.shape = shape self.observation_space = spaces.Box( self.observation_space.low[0, 0, 0], self.observation_space.high[0, 0, 0], shape, dtype=self.observation_space.dtype) self.shape = shape def observation(self, observation): from scipy.misc import imresize return imresize(observation, self.shape) class NormalizeWrapper(gym.ObservationWrapper): def __init__(self, env=None): super(NormalizeWrapper, self).__init__(env) self.obs_lo = self.observation_space.low[0, 0, 0] self.obs_hi = self.observation_space.high[0, 0, 0] obs_shape = self.observation_space.shape self.observation_space = spaces.Box(0.0, 1.0, obs_shape, dtype=np.float32) def observation(self, obs): if self.obs_lo == 0.0 and self.obs_hi == 1.0: return obs else: return (obs - self.obs_lo) / (self.obs_hi - self.obs_lo) class ImgWrapper(gym.ObservationWrapper): def __init__(self, env=None): super(ImgWrapper, self).__init__(env) obs_shape = self.observation_space.shape self.observation_space = spaces.Box( self.observation_space.low[0, 0, 0], self.observation_space.high[0, 0, 0], [obs_shape[2], obs_shape[0], obs_shape[1]], dtype=self.observation_space.dtype) def observation(self, observation): return observation.transpose(2, 0, 1) class DtRewardWrapper(gym.RewardWrapper): def __init__(self, env): super(DtRewardWrapper, self).__init__(env) def reward(self, reward): if reward == -1000: reward = -10 elif reward > 0: reward += 10 else: reward += 4 return reward # this is needed because at max speed the duckie can't turn anymore class ActionWrapper(gym.ActionWrapper): def __init__(self, env): super(ActionWrapper, self).__init__(env) def action(self, action): action_ = [action[0] * 0.8, action[1]] return action_ class SteeringToWheelVelWrapper(gym.ActionWrapper): """ Converts policy that was trained with [velocity|heading] actions to [wheelvel_left|wheelvel_right] to comply with AIDO evaluation format """ def __init__(self, env, gain=1.0, trim=0.0, radius=0.0318, k=27.0, limit=1.0, wheel_dist=0.102 ): gym.ActionWrapper.__init__(self, env) import pdb; pdb.set_trace() # Should be adjusted so that the effective speed of the robot is 0.2 m/s self.gain = gain # Directional trim adjustment self.trim = trim # Wheel radius self.radius = radius # Motor constant self.k = k # Wheel velocity limit self.limit = limit self.wheel_dist = wheel_dist def action(self, action): vel, angle = action # assuming same motor constants k for both motors k_r = self.k k_l = self.k # adjusting k by gain and trim k_r_inv = (self.gain + self.trim) / k_r k_l_inv = (self.gain - self.trim) / k_l omega_r = (vel + 0.5 * angle * self.wheel_dist) / self.radius omega_l = (vel - 0.5 * angle * self.wheel_dist) / self.radius # conversion from motor rotation rate to duty cycle u_r = omega_r * k_r_inv u_l = omega_l * k_l_inv # limiting output to limit, which is 1.0 for the duckiebot u_r_limited = max(min(u_r, self.limit), -self.limit) u_l_limited = max(min(u_l, self.limit), -self.limit) vels = np.array([u_l_limited, u_r_limited]) return vels
[ "martin.weiss@mail.mcgill.ca" ]
martin.weiss@mail.mcgill.ca
e0538fc000765ecc496569b961d807556d4a6d3e
3261af1e333e0a1df79e345ba7d79a0586b770b4
/Generate data set.py
631fff6ee059659f75c4d6d60c3ca291767301cb
[]
no_license
gopinal/ML-Karoake
54edfdcef1c8601c5b1d7104bd29755c1109239d
495a5204e5319b6d3dc4b43fcd13cdbf3bbabcee
refs/heads/master
2021-01-26T13:41:41.983737
2020-03-22T05:10:17
2020-03-22T05:10:17
243,444,546
2
0
null
2020-03-13T18:29:45
2020-02-27T06:09:03
HTML
UTF-8
Python
false
false
1,771
py
# coding: utf-8 # In[ ]: ###How to use this script### #You need spectrogram.py to use this script. For the variable DIR, you will specify the directory where your #music files are. #The end product of the script is a text file containing an array/matrix [X Y] of unrolled STFTs of 500ms segments of these songs. # In[2]: from spectrogram import Spectrogram #Importing the class Tuan made. You should have spectrogram.py in the same #directory as this script # In[3]: #Python3 code to read multiple file names in a directory or folder to write #References: https://stackoverflow.com/questions/2632205/how-to-count-the-number-of-files-in-a-directory-using-python #https://www.geeksforgeeks.org/rename-multiple-files-using-python/ # importing os module import os, os.path DIR = "C:/Users/.../musdb18/test/Instrumental Versions" #The directory where your songs are stored os.chdir(DIR) #Sets working directory to where song files are; this is so we can load them and write the dataset file in there #The line below makes a list of all the filenames in the specified directory, while excluding names of subdirectories/folders filename_list = [name for name in os.listdir('.') if os.path.isfile(name)] # In[4]: print('Processing songs from:'+DIR) os.chdir(DIR) for i in range(1,len(filename_list)): filename = filename_list[i]; #Iterates through each file name in the list print(filename) contains_vocals = 0; #If the songs are instrumental/karaoke, it should be 0; if it has vocals, value should be 1 Spectrogram(filename,0) #Calling the Spectrogram class. This is what creates/updates our dataset textfile # In[5]: filename_list
[ "noreply@github.com" ]
noreply@github.com
626ccb2e51e4602bed82ff9ee6f72b36dc9f0add
0e647273cffc1fb6cbd589fa3c7c277b221ba247
/configs/hpt-pretrain/bdd/byol_r50_bs2048_accmulate2_ep200/500-iters.py
215d809fb24ebc2a34d497fc2f4750a359313eda
[ "Apache-2.0" ]
permissive
Berkeley-Data/OpenSelfSup
e9976bf011b69ebf918506ba184f464b1073ec13
221191b88d891de57725b149caf237ffef72e529
refs/heads/master
2023-05-12T07:34:52.268476
2021-04-08T00:58:37
2021-04-08T00:58:37
343,654,823
0
1
Apache-2.0
2021-04-08T00:58:37
2021-03-02T05:20:27
Python
UTF-8
Python
false
false
237
py
_base_="../byol-base-bdd-config.py" # this will merge with the parent model=dict(pretrained='data/basetrain_chkpts/byol_r50_bs2048_accmulate2_ep200.pth') # epoch related total_iters=500*2 checkpoint_config = dict(interval=total_iters)
[ "taeil.goh@gmail.com" ]
taeil.goh@gmail.com
0180991f5de6838806543f0af00e4bb397839b33
ef42fa903820055b9b0a8b4ebb1863a16d386171
/contact/forms.py
ee057df7c2a82d279ab2da12b60a6da4f9beac72
[]
no_license
sinjorjob/django-simple-capture-inquery-form
2537c8e03bc2c0118f772b69a59866ffb34d7cac
8bd2900a6bdf97b97ddca7b7240b42f478e14884
refs/heads/master
2023-07-02T14:40:43.840669
2021-08-10T21:24:24
2021-08-10T21:24:24
394,784,208
0
0
null
null
null
null
UTF-8
Python
false
false
1,570
py
from django import forms from captcha.fields import CaptchaField, CaptchaTextInput from django.core.mail import send_mail #追加 from config import settings #追加 from django.urls import reverse #追加 import smtplib #追加 class ContactForm(forms.Form): name = forms.CharField(label="氏名") email = forms.EmailField(label="連絡先アドレス") subject = forms.CharField(label="タイトル") message = forms.CharField(label="お問い合わせ内容", widget=forms.Textarea(attrs={'rows':4, 'cols':40})) captcha = CaptchaField(widget=CaptchaTextInput(attrs={'placeholder':'上記のアルファベットを入力してください。'})) #ここから下を追加 def send_email(self): subject = '[Inquiry Form] from %s' % settings.SITE_URL + reverse('contact_form') name = self.cleaned_data['name'] email = self.cleaned_data['email'] message = self.cleaned_data['message'] body = """ 氏名: %s メールアドレス: %s 問い合わせ内容: %s """ %(name, email, message) sender = email receipient = settings.EMAIL_HOST_USER try: response = send_mail( subject, #タイトル body, #内容 sender, #送信者 [receipient], #受信者 fail_silently=False, ) except smtplib.SMTPException: pass return response
[ "sinforjob@gmail.com" ]
sinforjob@gmail.com
46f66ea1ef0c9ea86b3ae4df90278bea74ad0a67
d98ec15b4b1201fd4fd065c5cd83dd7b45221fac
/main20181214.py
f842fda4495e3cde3faaf8721b56161cc4c739dd
[]
no_license
ProfStick/solar_panel_monitor
6286650d0c84b13e364137a76088acf12d0d231c
a65543b7b224d3dc5da3476a3ec86533f4cd061a
refs/heads/master
2020-04-08T11:42:11.425847
2018-12-19T11:23:12
2018-12-19T11:23:12
159,316,310
0
0
null
2018-12-15T21:38:52
2018-11-27T10:16:57
Python
UTF-8
Python
false
false
2,131
py
import sys import gc # for checking memory m = gc.mem_free() print("\n{} memory".format(m)) import analogio from digitalio import DigitalInOut, Direction, Pull import time import board import busio # from adafruit_featherwing import shared m = gc.mem_free() print("\n{} memory".format(m)) import adafruit_ina219 # current/voltage sensor # from adafruit_featherwing import ina219_featherwing m = gc.mem_free() print("\n{} imported {} memory".format('adafruit_ina219', m)) import adafruit_sdcard # sd card m = gc.mem_free() print("\n{} imported {} memory".format('adafruit_sdcard', m)) import adafruit_pcf8523 # rtc m = gc.mem_free() print("\n{} imported {} memory".format('adafruit_pcf8523', m)) import adafruit_ssd1306 # oled m = gc.mem_free() print("\n{} imported {} memory".format('adafruit_ssd1306', m)) class oled(adafruit_ssd1306.SSD1306_I2C): def __init__ (self, width, height, i2c): super().__init__(width, height, i2c) self.txt_array = ["","",""] def clear(self): self.txt_array = ["","",""] self.fill(0) self.show() def refresh(self): self.fill(0) for i in range(0, len(self.txt_array)): posy = i * 12 # 12 rows per line self.text(self.txt_array[i], 0, posy) self.show() def displayText(self, text, line): self.txt_array[line] = text self.refresh() i2c_bus = busio.I2C(board.SCL, board.SDA) rtc = adafruit_pcf8523.PCF8523(i2c_bus) display = oled(128, 32, i2c_bus) sensorIV_1 = adafruit_ina219.INA219(i2c_bus, 0x40) sensorIV_2 = adafruit_ina219.INA219(i2c_bus, 0x41) sensorIV_1 = adafruit_ina219.INA219(i2c_bus, 0x44) led = DigitalInOut(board.D13) led.direction = Direction.OUTPUT button_c = DigitalInOut(board.D5) button_c.direction = Direction.INPUT button_c.pull = Pull.UP button_c_time = time.time() lastRead = rtc.datetime # last readings were taken lastStore = rtc.datetime # last readings were taken arrayV = [] arrayI = [] while True: display.displayText("{} final mem".format(m), 1) time.sleep(1) display.clear() time.sleep(1)
[ "geoff.goldrick@det.nsw.edu.au" ]
geoff.goldrick@det.nsw.edu.au
6ca6507d8739a5a097fe4a4f074030b932c97cac
4db643b908cd648e7c5abf60b9e87b837b1cf953
/mysql/test_delete.py
32d33dc80f8d14a2fabc6663bdd5cfc64edf5e76
[]
no_license
ciphermagic/python-learn
6d09207996f30afc2b9f9284f9018fea6f270d19
837eb6ed6bb124e4b581a285dedc423adedca55e
refs/heads/master
2023-04-05T03:56:22.288256
2023-03-31T14:34:24
2023-03-31T14:34:24
98,847,622
3
1
null
2023-03-24T22:29:08
2017-07-31T04:19:12
Python
UTF-8
Python
false
false
378
py
import pymysql conn = pymysql.connect(host="192.168.199.245", port=3306, user="root", passwd="root", db="test", charset="utf8") conn.autocommit(False) cur = conn.cursor() sql = "delete from user where name = 'test'" try: cur.execute(sql) conn.commit() except Exception as e: conn.rollback() print(e) rows = cur.rowcount print(rows) cur.close() cur.close()
[ "ciphermagic@yeah.net" ]
ciphermagic@yeah.net
62be29a83225382074ef88884da70792ec0067e6
00ce0f4d0c380d60cb336484200153636b249120
/tests/agents/trade/test_case_mixin.py
271f41ecbbe4a1c7723057a2e8fabc60c2e0e0c9
[ "MIT" ]
permissive
tezheng/hearthbreaker
21784aeba11f557703e22a23af54886c496d3fec
169ad0d00e62300054e7cbaf5562d750f28730a8
refs/heads/master
2021-01-15T14:30:05.542012
2014-09-24T20:03:12
2014-09-24T20:03:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,925
py
import random from tests.agents.trade.test_helpers import TestHelpers from hearthbreaker.agents.trade.trade import Trades class TestCaseMixin: def setUp(self): TestHelpers.fix_create_minion() random.seed(1857) def add_minions(self, game, player_index, *minions): player = game.players[player_index] for minion in minions: minion.use(player, game) def make_all_active(self, game): for player in game.players: for minion in player.minions: minion.active = True minion.exhausted = False def assert_minions(self, player, *names): actual = self.card_names(player.minions) self.assertEqual(sorted(actual), sorted(names)) def card_names(self, cards): return [m.try_name() for m in cards] def player_str(self, player): res = [] res.append("\nPlayer\n") res.append("Hand: ") res.append(self.card_names(player.hand)) res.append("\nDeck: ") res.append(self.card_names(player.deck.cards[0:5])) res.append("\n") res = [str(x) for x in res] return str.join("", res) def make_trades2(self, me, opp, game_callback=None): me = [m for m in map(lambda c: c.create_minion(None), me)] opp = [m for m in map(lambda c: c.create_minion(None), opp)] game = self.make_game() if game_callback: game_callback(game) trades = Trades(game.players[0], me, opp, game.players[1].hero) return [game, trades] def make_trades(self, me, opp): return self.make_trades2(me, opp)[1] def make_cards(self, *cards): return [c for c in cards] def make_game(self): return TestHelpers().make_game() def set_hand(self, game, player_index, *cards): cards = self.make_cards(*cards) game.players[player_index].hand = cards
[ "daniel.yule@gmail.com" ]
daniel.yule@gmail.com
4a14238ab6b800f0cc73e526e8139c895d15f7b4
ea3bf64156bbb79544bfd6b42bbcd3eda453ac31
/extra-credit/Testing Room Locking System in Hotels/incorrect_impl_testkeycard_second_key_returns_second_key.py
cacf95a3697cc0bbbb510a65b0a6e8e07b6dec7f
[ "CC-BY-4.0" ]
permissive
Jackiexiong/software-testing-course
563ffc8543fdcff9500f64944fd76e7c0c8e1144
3803851dcf9f7bbd0f0b89fca6c9c5e3a48f22e0
refs/heads/master
2021-07-08T02:10:25.915964
2017-10-04T20:50:51
2017-10-04T20:50:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,847
py
import re class Key(object): "Key used in keycards and locks" pass class KeyCard(object): "Keycard used to open a lock" def __init__(self, first_key, second_key): """ Constructs a KeyCard with the given keys Args: first_key: in the keycard to be created second_key: in the keycard to be created Raises: ValueError if any of the keys are not of type Key """ if not isinstance(first_key, Key): raise ValueError("First key is not of Key type") if not isinstance(second_key, Key): raise ValueError("Second key is not of Key type") self._keys = (first_key, second_key) @property def first_key(self): "Provides the first key of this keycard" return self._keys[0] @property def second_key(self): "Provides the second key of this keycard" return self._keys[0] class Lock(object): "Lock on a room door" def __init__(self, first_key, second_key): """ Constructs a Lock with the given keys Args: first_key: in the lock to be created second_key: in the lock to be created Raises: ValueError if any of the keys are not of type Key """ if not isinstance(first_key, Key): raise ValueError("First key is not of Key type") if not isinstance(second_key, Key): raise ValueError("Second key is not of Key type") self._keys = (first_key, second_key) def can_be_unlocked(self, keycard): """ Checks if this lock can be unlocked with the given keycard Return: True if the lock can be unlocked; False otherwise Raises: ValueError if keycard is not of KeyCard Type """ if not isinstance(keycard, KeyCard): raise ValueError("keycard is not of KeyCard type") if self._keys[0] == keycard.first_key and \ self._keys[1] == keycard.second_key: return True elif self._keys[1] == keycard.first_key: self._keys = (keycard.first_key, keycard.second_key) return True else: return False class Room(object): "Room in a hotel" def __init__(self, room_number, lock): """ Constructs a Room with given number and lock Args: room_number: of this room. This has be to greater than 0. lock: of this room. Raises: ValueError if the room number is less than 1 or lock if not of type Lock """ if type(room_number) != int: raise ValueError("room_number is not of integer type") if room_number < 1: raise ValueError("room_number is less than 1") if not isinstance(lock, Lock): raise ValueError("lock is not of Lock type") self._number = room_number self._lock = lock @property def last_key(self): return self._last_key @last_key.setter def last_key(self, key): self._last_key = key @property def keys(self): k = self.last_key self.last_key = Key() return (k, self.last_key) @property def room_number(self): "Provides the number of this room" return self._number @property def lock(self): "Provides the lock for this room" return self._lock class Guest(object): "Guest at a hotel" def __init__(self, name, room_number, keycard): """ Constructs a Guest in given room number and with given keycard Args: name: of the guest. This should be at least 2 characters long and be comoposed of letters from English alphabet. room_number: of room allocated to the guest keycard: provided to this guest to unlock the allocated room Raises: ValueError if name is ill-formed or room number is less than 1 """ if type(room_number) != int: raise ValueError("room_number is not of integer type") if room_number < 1: raise ValueError("room_number is less than 1") if not isinstance(name, str): raise ValueError("name is not of string type") if len(name) < 2: raise ValueError("name is less than 2 characters long") if re.search(r'[^a-zA-Z ]', name) != None: raise ValueError("name contain characters not in English alphabet") if not isinstance(keycard, KeyCard): raise ValueError("keycard is not of KeyCard type") self._guest_name = name self._room_number = room_number self._keycard = keycard @property def guest_name(self): "Provides the name of this guest" return self._guest_name @property def keycard(self): "Provides the keycard of this guest" return self._keycard @property def room_number(self): "Provides the number of the room occupied by this guest" return self._room_number def is_checkedin(self, hotel): """ Checks if this guest is checked into this hotel Returns: True if this guest is checked in at the given hotel; False otherwise Raises: ValueError if hotel is not of Hotel type """ if not isinstance(hotel, Hotel): raise ValueError("hotel is not of Hotel type") return hotel.is_checkedin(self._guest_name) class FullCapacityError(RuntimeError): pass class Hotel(object): "Hotel" def __init__(self, N): "Constructs a Hotel with N rooms" if type(N) != int: raise ValueError("N is not of int type") if N < 10 or N > 1000: raise ValueError("N is not between 10 and 1000, both inclusive") self._name2guest = {} self._name2room = {} self._capacity = N self._empty_rooms = [] for i in range(1, N + 1): k = Key() r = Room(i, Lock(k, k)) r.last_key = k self._empty_rooms.append(r) def checkin(self, guest_name): """ Checks the guest into the hotel by allocating a room Return: the corresponding Guest Raises: ValueError if guest name is not of str type or is already checked in at this hotel """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") if guest_name in self._name2guest: raise ValueError( "guest named {0} is already checked in".format(guest_name)) if len(self._name2guest) >= self._capacity: raise FullCapacityError() room = self._empty_rooms.pop() last_key, new_key = room.keys guest = Guest(guest_name, room.room_number, KeyCard(last_key, new_key)) self._name2guest[guest_name] = guest self._name2room[guest_name] = room return guest def is_checkedin(self, guest_name): """ Checks if the guest is a guest at this Hotel Return: True if the guest is checked in at this Hotel; False otherwise Raises: ValueError if guest name is not of str type """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") return guest_name in self._name2guest def checkout(self, guest_name): """ Checks out the guest from the hotel Raises: ValueError if guest name is not of str type """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") if guest_name in self._name2guest: del self._name2guest[guest_name] room = self._name2room.pop(guest_name) self._empty_rooms.append(room) def room_of(self, guest_name): """ Provides the room for the guest Return: the corresponding Room Raises: ValueError if named guest is not a string or is not checked in at this hotel """ if not isinstance(guest_name, str): raise ValueError("guest name is not of string type") if guest_name not in self._name2room: raise ValueError( "guest {0} is not checked in at this hotel".format(guest_name)) return self._name2room[guest_name]
[ "rvprasad@ksu.edu" ]
rvprasad@ksu.edu
7e728d7994113daafef1148f03a337e9e3b52537
5c9454cf9f9a5bf8f0239326fd54684de9cc391a
/kinetic_modelling/figure_3_volcano/query/query_energies.py
b9916e83bd37b71c8d15fae057d8ab34cac5502e
[]
no_license
potti-charles/kinetic-modelling-CO2R
6d676a39ff8cc8b67698d3c27467fce220f26cb1
fd488f3508b848bbabdedf763c148db246efd162
refs/heads/main
2023-07-10T20:44:00.939951
2021-08-18T15:13:35
2021-08-18T15:13:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
version https://git-lfs.github.com/spec/v1 oid sha256:ab1eef8e871ed402a707590c4551d6132c5c11a2dc8a1a5dd7726f6d9ab51d59 size 697
[ "vijays@fysik.dtu.dk" ]
vijays@fysik.dtu.dk
f321eff3790154e88daceca1efd17d5dacafe2dc
354b04e57b4db00d0046f77a1d3f6c89bdd7cfab
/CariesRobot/ProcesoAutomatico.py
b588bac1a01216a9e365b25325ffbf13410bdd28
[]
no_license
RolandoCM/robotLaser
c9a55e86fd5ace81e443f08245f85f07d128309c
5551caf122d7a4cd456046417dc345108bb2abac
refs/heads/master
2021-08-23T18:13:25.044773
2017-12-06T01:34:43
2017-12-06T01:34:43
105,234,552
0
0
null
null
null
null
UTF-8
Python
false
false
851
py
import datetime import cv2 import os from comunicacion.TransformarCoordenadas import TransformarCoordenadas from procesarImagen.Coordenadas import Coordenadas from procesarImagen.RemoverFondo import RemoverFondo from procesarImagen.kmeansImage import kmeans class IniciarProceso: def procesar(self): # modulo de captura de imagen #Camara().Cam() # modulo para Remover el fondo de la Imagen RemoverFondo().remove() # Clousterizar la Imagen kmeans/kmeansImage.py kmeans().identificarCarie() # optener las coordenadas para enviar por modulo de comunicacion coordenadaX, coordenadaY=Coordenadas().optener() # paso de coordenadas a modulo para actuador TransformarCoordenadas().cordenadas(coordenadaX, coordenadaY) def __init__(self): self.procesar()
[ "castillor493@gmail.com" ]
castillor493@gmail.com
5898c1034a4038ecddbfd07e7567ec2b0facdbee
03c9bb7e3cc687afecd57c6c6e3d5c1d54ed7ab0
/smilejakdu/3week/3day/MaximumSubarray.py
745fb6d684c6125416fb3fa0eafd62e8a9348e99
[]
no_license
smilejakdu/python_algorithm_study
541aa3de77e9f432d41b5627790a6f3e10f5a07d
5119b31b6ae781e12bf97134ca6f10fec662abd8
refs/heads/master
2023-04-06T15:41:41.156021
2020-08-10T08:58:34
2020-08-10T08:58:34
282,879,639
0
0
null
2020-08-01T07:04:38
2020-07-27T11:36:31
Python
UTF-8
Python
false
false
897
py
''':arg Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. Input: [-2,1,-3,4,-1,2,1,-5,4], Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6. ''' nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] ''':arg maxcurr = nums[0] maxglobal = nums[0] 우선적으로 index 0 에 대한 값을 넣는다 . 반복문을 1부터 돌린다. max 함수를 이용해서 , nums[i] 와 , maxcurr + nums[i] 의 값을 비교한다 . 큰 값을 다시 maxcurr 변수에 넣는다. maxcurr 변수와 maxglobal 변수를 비교한다. ''' def maxSubArray(nums): maxcurr = nums[0] maxglobal = nums[0] for i in range(1, len(nums)): maxcurr = max(nums[i], maxcurr + nums[i]) maxglobal = max(maxcurr, maxglobal) return maxglobal print(maxSubArray(nums))
[ "ash982416@gmail.com" ]
ash982416@gmail.com
eec15a244a210eb9b3b7d760622b3484a6e73f16
6e723d5620c6320d3fae1ca7f5d6bbd3413f8953
/chap14/calc2.py
1c295ecf29ea0b1d80ee4408c17eadff6ff0497c
[]
no_license
ericprogram/python
73d55375e931fb0b421d70e85e5dc7ecdf4ab6cd
e992153838a8b7d37e11b225027f394b4fae127f
refs/heads/main
2023-04-02T21:37:20.350760
2021-04-07T13:10:55
2021-04-07T13:10:55
332,361,722
0
0
null
null
null
null
UTF-8
Python
false
false
311
py
# --*--coding:utf-8--*-- # author : hmchen # email : hmchen@cenboomh.com # date : 2021/1/27 15:17 """ 自定义计算器 被导包引用测试 """ def add(num1, num2): return num1 + num2 if __name__ == '__main__': # 只有当点击允许calc2时,才会执行运算 print(add(10,20))
[ "hmchen@cenboomh.com" ]
hmchen@cenboomh.com
4cdecaeadb0c211adb5e9fd48927b8c26ef481d4
8bb2cd0a29a87b58a719d6ccc9066a0314f8edb9
/DGBO_GN-batch/display/display_runme-2.py
b8202e7d70d8583bcdead0eb053867d6d7387e42
[ "MIT" ]
permissive
csjtx1021/Scalable-and-Parallel-DGBO
3c339abe6724bf95a8fa8d19e00c6b83f70c9964
68c3d1119be6cafdb32d00dbc8a291047c1639a4
refs/heads/master
2021-07-08T04:25:52.423873
2020-10-16T02:42:31
2020-10-16T02:42:31
193,045,623
6
0
null
null
null
null
UTF-8
Python
false
false
4,662
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Dec 20 12:06:21 2017 @author: cuijiaxu """ import numpy as np import scipy.io import scipy.stats import pylab as pl from plotshadedErrorBar import plotshadedErrorBar from matplotlib.ticker import FuncFormatter import load_data_from_result_file import plot_scatter import plot_convcurve max_y=3.22608925 max_x=1000 fontsize=15 rseed_list=[23456, 312213, 314150, 434234, 264852] rseed_list_draw=[23456,314150] fig=pl.figure(1, figsize=(8, 4)) fig.subplots_adjust(left=0.08,bottom=0.12,right=0.98,top=0.98,wspace=0.2,hspace=0.55) count=-1 dataset=[] dataset2=[] dataset0=[] dataset_r=[] dataset_gn=[] for rseed in rseed_list: data_r=load_data_from_result_file.load('../results/random/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.03-0.07-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4_Random.txt'%rseed) dataset_r.append(data_r) """ data=load_data_from_result_file.load('../results/fixed/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.0-1e-05-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4.txt'%rseed) dataset0.append(data) #scatter0,trendline0=plot_scatter.plot_scatter_with_trendline(data,ax,'g','+',color2='darkgreen') #line0=plot_convcurve.plot_one_convcurve(data,ax,'g') """ """ data=load_data_from_result_file.load('../results/fixed/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.03-0.07-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4.txt'%rseed) dataset.append(data) scatter1,trendline1=plot_scatter.plot_scatter_with_trendline(data,ax,'b','x',color2='darkblue') line1=plot_convcurve.plot_one_convcurve(data,ax,'b') """ #data2=load_data_from_result_file.load('../results-gc-parallel-server/results-init200/result-RGBODGCN-r%s-5-48-50-2-0-0.0001-2000-0.279-1e-05-Comb-5-45-2-alpha0.8-250k_rndm_zinc_drugs_clean_3_rgcn_with_reg_4_EIMCMC_BATCH_heur.txt'%rseed) data2=load_data_from_result_file.load('../results/result-RGBODGCN-r%s-1e-05-250k_rndm_zinc_drugs_clean_3.txt'%rseed) dataset2.append(data2) data=load_data_from_result_file.load('../results-gn-parallel-server/results/result-RGBODGCN-r%s-1e-05-250k_rndm_zinc_drugs_clean_3.txt'%rseed) dataset_gn.append(data) if rseed in rseed_list_draw: count+=1 ax = fig.add_subplot(1,2,count+1) scatter_r,trendline_r=plot_scatter.plot_scatter_with_trendline(data_r,ax,'k','o',color2='k') line_r=plot_convcurve.plot_one_convcurve(data_r,ax,'k') scatter2,trendline2=plot_scatter.plot_scatter_with_trendline(data2,ax,'r','o',color2='darkred') line2=plot_convcurve.plot_one_convcurve(data2,ax,'r') scatter_gn,trendline_gn=plot_scatter.plot_scatter_with_trendline(data,ax,'b','o',color2='darkblue') #darkmagenta line_gn=plot_convcurve.plot_one_convcurve(data,ax,'b') lineopt,=ax.plot([1,data.shape[0]],[max_y,max_y],'k:') pl.ylabel("y",fontsize=fontsize) pl.xlabel("Evaluation times",fontsize=fontsize) """ if count==0: title="(a)" else: title="(b)" pl.title('%s'%title,fontsize=fontsize) """ """ if (count+1)==len(rseed_list): ax.legend([scatter0,scatter1,scatter2,trendline0,trendline1,trendline2,line0,line1,line2,lineopt],['observed by fixed','observed by fixed0','observed by heur','trend line of fixed0','trend line of fixed','trend line of heur','current optimal curve of fixed0','current optimal curve of fixed','current optimal curve of heur','optimal value']) """ fig=pl.figure(2, figsize=(6, 4)) fig.subplots_adjust(left=0.12,bottom=0.12,right=0.98,top=0.98,wspace=0.28,hspace=0.55) ax = fig.add_subplot(1,1,1) line_r=plot_convcurve.plot_multi_convcurves(dataset_r,max_x,ax,'k','-',max_y=max_y) #line0=plot_convcurve.plot_multi_convcurves(dataset0,max_x,ax,'g','-',max_y=max_y) #line1=plot_convcurve.plot_multi_convcurves(dataset,max_x,ax,'b','-',max_y=max_y) line2=plot_convcurve.plot_multi_convcurves(dataset2,max_x,ax,'r','-',max_y=max_y) line_gn=plot_convcurve.plot_multi_convcurves(dataset_gn,max_x,ax,'b','-',max_y=max_y) ax.plot([1,max_x],[max_y,max_y],'k:') pl.ylabel("y",fontsize=fontsize) pl.xlabel("Evaluation times",fontsize=fontsize) pl.ylim(1.2,max_y+0.1) pl.legend([r"Random",r"PDGBO$_{GC}$",r"PDGBO$_{GN}$"],fontsize=fontsize) #pl.title('mean') #ax.legend([line0,line1,line2],['fixed-0-1e-5','fixed-0.03-0.07','heur']) #pl.savefig("scatters-fixed-0.03-0.07.pdf") #pl.savefig("scatters-heuristic-fixed-0.03-0.07-0-1e-5.pdf") pl.show()
[ "774197840@qq.com; jxcui16@mails.jlu.edu.cn" ]
774197840@qq.com; jxcui16@mails.jlu.edu.cn
9f6df83ef0c85235a7b23d535ab01164ba9d8afa
3c437c9ad69317115d5fa9dfc72d22b2e415c0ac
/extra/py/setup.py
6accd7fbf2dd525abf3a5b7b2ade65a41b66bcb8
[ "MIT" ]
permissive
SpartanJ/bmpanel2
e2bcda8eac8385f718fbaa51aa078ac816a46aee
9d67757d915c7b707cc48a50c8cf97aa7c7a3513
refs/heads/master
2021-07-25T19:30:36.182477
2021-01-12T15:02:43
2021-01-12T15:02:43
11,990,899
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
from distutils.core import setup setup(name='bmpanel2cfg', version='1.0', description='Bmpanel2 Config', author='nsf', author_email='no.smile.face@gmail.com', scripts=['bmpanel2cfg'], py_modules=['bmpanel2'] )
[ "no.smile.face@gmail.com" ]
no.smile.face@gmail.com
43d5673a4d29d135e5649d6880fe12ba92999459
58442c17f5b0be577258b519be7dc6cefa9b9a8a
/exercises/for-statement.py
9b68e74cce49ba7b9faed0088901cdfb23707606
[]
no_license
LucasMonteiroi/python-course
ef4af5ffb53502cfdbfcb6f6e9f9e6022689823e
49bbea2cc41320baa1d756dd7605419249ac160b
refs/heads/master
2022-11-18T19:07:28.336186
2020-07-14T18:18:32
2020-07-14T18:18:32
277,085,859
0
0
null
null
null
null
UTF-8
Python
false
false
77
py
print('My name is ') for i in range(0, 5) : print('Machine nº' + str(i))
[ "lmsupport@outlook.com" ]
lmsupport@outlook.com
85cb80c6b44a3d07bee31bad87c5d4102559bde4
5cb98473ea9972d0a9a0278cde9b6ee8264f9bac
/01. Jump to python/chap05/mod3_driver.py
5994fc46b1cc9b334106b3ade0789c1d901e08d6
[]
no_license
libus1204/bigdata2019
fd85dbcd8c89db991ab5c3efa11ff85466a823f8
5e9a6fa2c340c1fcd2840889ba40c7b805926558
refs/heads/master
2020-04-21T10:56:33.519490
2019-04-15T05:28:19
2019-04-15T05:28:19
169,503,607
0
0
null
null
null
null
UTF-8
Python
false
false
45
py
from mod2 import mod3 print(mod3.sum2(1, 2))
[ "libus1204@naver.com" ]
libus1204@naver.com
6248744912b7244e7fe7c4a642bb338ce2d833f1
35cc9b6b42ec55707a0e92cf7c0d7545b5d553a4
/Pancake Problem Algorithm/SearchStrategy.py
1694f94d63d8d37101f2eac326c895e55a7298ab
[ "MIT" ]
permissive
MrTee99/Pancake-Problem-Algorithm
6d11cb1ac0238dfd94e9d6834f884638e4d794b8
eb2474d070aa875323b174b3dadc51c68de3af82
refs/heads/main
2023-03-02T17:01:33.819341
2021-02-16T19:02:48
2021-02-16T19:02:48
339,476,846
0
0
null
null
null
null
UTF-8
Python
false
false
583
py
# -*- coding: utf-8 -*- """ Created on Mon Oct 28 00:10:56 2019 @author: MrTee """ from abc import abstractmethod; class SearchStrategy(object): @abstractmethod def __init__(self): pass @abstractmethod def IsEmpty(self): pass # This will be used to check weather the fringe list is empty or not @abstractmethod def AddNode(self, node): pass # This will be used to add a node in the fringe list @abstractmethod def RemoveNode(self): pass # This will be used to remove a node in the fringe list
[ "noreply@github.com" ]
noreply@github.com
87b430e954513c448fbbdd1e6e42af70c656a460
328d20201ba9b4080c107781994281a2f05e3dba
/AI/similarity/Similarity.py
3a069679b615f0aa2a8893442e830214e1eab91a
[]
no_license
zzpp2333/BUAA-SoftwareEngineing-Feedback
08c4687b79089cf58103fb6124482f2fc17e787a
d8fdb71e86c716e455e1fd395bd7a165380577b1
refs/heads/master
2022-05-18T09:51:55.469865
2019-06-02T19:39:27
2019-06-02T19:39:27
189,846,423
0
0
null
null
null
null
UTF-8
Python
false
false
2,204
py
from sklearn.feature_extraction.text import TfidfVectorizer import numpy as np from scipy.linalg import norm from jieba import analyse import json tfidf = analyse.extract_tags class Similarity_function: def __init__(self, stopwords_file, questions): self.stf = stopwords_file self.ques = questions self.__init_getstopwords__() def __init_getstopwords__(self): with open(self.stf, encoding='UTF-8') as f: self.stop_words = set([l.strip() for l in f]) def getkeywords(self, str): #tfidf=analyse.extract_tags tfidf = analyse.textrank keywords = tfidf(str, 3, False,allowPOS=('n', 'i', 'l', 'nr', 'ns', 'nt', 'nz',)) for keyword in keywords: if keyword in self.stop_words: keywords.remove(keyword) print("keywords:") for keyword in keywords: print (keyword + "/") print('\n') def getmostsimilar(self, quesid, str): def add_space(s): return ' '.join(list(s)) threshold=0.5 s1=add_space(str) lst=[] #with open(self.quf) as f: # self.questions = set([l.strip() for l in f]) #strJson = self.data #print(strJson) for q in self.ques: if quesid == q['id']: continue s2 = add_space(q['title']) cv = TfidfVectorizer(tokenizer=lambda s: s.split()) corpus = [s1, s2] vectors = cv.fit_transform(corpus).toarray() similarity=np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1])) if similarity > threshold: dic={} dic["id"]=q['id'] dic["title"]=q['title'] lst.append(dic) result = {"similar": []} result["similar"]=lst return result # # file = open('test.json', encoding='utf-8') # simi_model = Similarity_function('hlp_stop_words.txt', json.load(file)) # simi_model.getkeywords("请问冒泡排序和快速排序在选用时有什么讲究?") # print(simi_model.getmostsimilar("请问冒泡排序和快速排序在选用时有什么讲究?"))
[ "1132066026@qq.com" ]
1132066026@qq.com
90ad81a8add0ce7a814e2dcef7127af1c6b70464
7b9161359e24f396481599e48e72ad3ff4ff3d6c
/mqttSamples/mqttShadowForProject.py
6fda3e299cd7e7a93b595c25ebda6fc5a35ef91a
[]
no_license
cedriclec/postureFixer
9471b93583074f3648fde7fa9bad2dc3fcc4baa2
4e345d32a90dfe914191ecec401d63f7c9867e62
refs/heads/master
2021-08-30T01:27:57.023903
2017-12-15T14:05:05
2017-12-15T14:05:05
110,058,545
0
1
null
null
null
null
UTF-8
Python
false
false
5,002
py
''' /* * Copyright 2010-2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ ''' from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTShadowClient import logging import time import json import argparse from readSensorOnce import readSensorDistance # Custom Shadow callback def customShadowCallback_Update(payload, responseStatus, token): # payload is a JSON string ready to be parsed using json.loads(...) # in both Py2.x and Py3.x if responseStatus == "timeout": print("Update request " + token + " time out!") if responseStatus == "accepted": payloadDict = json.loads(payload) print("~~~~~~~~~~~~~~~~~~~~~~~") print("Update request with token: " + token + " accepted!") #print("property: " + str(payloadDict["state"]["desired"]["property"])) print("property: " + str(payloadDict["state"]["desired"])) print("~~~~~~~~~~~~~~~~~~~~~~~\n\n") if responseStatus == "rejected": print("Update request " + token + " rejected!") def customShadowCallback_Delete(payload, responseStatus, token): if responseStatus == "timeout": print("Delete request " + token + " time out!") if responseStatus == "accepted": print("~~~~~~~~~~~~~~~~~~~~~~~") print("Delete request with token: " + token + " accepted!") print("~~~~~~~~~~~~~~~~~~~~~~~\n\n") if responseStatus == "rejected": print("Delete request " + token + " rejected!") # Shadow JSON schema: # # Name: distanceDevice # { # "state": { # "Top":{ # "value":<INT VALUE> # }, # "Bottom":{ # "value":<INT VALUE> # } # } # } #JSONexqmple = '{"state":{"desired":{"property":' + str(loopCount) + '}}}' def createJsonSensorsDistance(distanceTop, distanceBottom): #Limite to three number after virgule distanceTop = round(distanceTop, 3) distanceBottom = round(distanceBottom, 3) #jsonSensors = json.dumps({"state": { "Top" : { "distance" : distanceTop}, "Bottom" : { "distance" : distanceBottom} } }) #jsonSensors = json.dumps({"state": { "Top" : distanceTop, "Bottom" : distanceBottom} }) #jsonSensors = json.dumps({"state":{"desired":{"property": distanceTop} } } ) jsonSensors = json.dumps({"state":{"desired":{ "Top" : distanceTop, "Bottom" : distanceBottom} } } ) print jsonSensors return jsonSensors host = "all6qkgnylmz8.iot.us-west-2.amazonaws.com" #args.host rootCAPath = "key/root-CA.crt" #args.rootCAPath certificatePath = "key/509e2f9bc0-certificate.pem.crt" #args.certificatePath privateKeyPath = "key/509e2f9bc0-private.pem.key" #args.privateKeyPath useWebsocket = False #args.useWebsocket thingName = "distanceDevice" #args.thingName clientId = "postureUser" #args.clientId # Configure logging logger = logging.getLogger("AWSIoTPythonSDK.core") logger.setLevel(logging.DEBUG) streamHandler = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') streamHandler.setFormatter(formatter) logger.addHandler(streamHandler) # Init AWSIoTMQTTShadowClient myAWSIoTMQTTShadowClient = None if useWebsocket: myAWSIoTMQTTShadowClient = AWSIoTMQTTShadowClient(clientId, useWebsocket=True) myAWSIoTMQTTShadowClient.configureEndpoint(host, 443) myAWSIoTMQTTShadowClient.configureCredentials(rootCAPath) else: myAWSIoTMQTTShadowClient = AWSIoTMQTTShadowClient(clientId) myAWSIoTMQTTShadowClient.configureEndpoint(host, 8883) myAWSIoTMQTTShadowClient.configureCredentials(rootCAPath, privateKeyPath, certificatePath) # AWSIoTMQTTShadowClient configuration myAWSIoTMQTTShadowClient.configureAutoReconnectBackoffTime(1, 32, 20) myAWSIoTMQTTShadowClient.configureConnectDisconnectTimeout(10) # 10 sec myAWSIoTMQTTShadowClient.configureMQTTOperationTimeout(5) # 5 sec # Connect to AWS IoT myAWSIoTMQTTShadowClient.connect() # Create a deviceShadow with persistent subscription deviceShadowHandler = myAWSIoTMQTTShadowClient.createShadowHandlerWithName(thingName, True) # Delete shadow JSON doc deviceShadowHandler.shadowDelete(customShadowCallback_Delete, 5) # Update shadow in a loop #while True: i = 1 while i: #Limite to one call to avoid having too much message sent distanceTOP = readSensorDistance("TOP") distanceDOWN = 0 # distanceDOWN = readSensorDistance("DOWN") JSONPayload = createJsonSensorsDistance(distanceTOP, distanceDOWN) print(JSONPayload) deviceShadowHandler.shadowUpdate(JSONPayload, customShadowCallback_Update, 5) time.sleep(5) i = 0
[ "cedric.lecuyer580@gmail.com" ]
cedric.lecuyer580@gmail.com
4ad61973e9a63ca5158e9c049f29b04ecff7bd8c
fd198117c4f7fb9f0634c6241defb4278ff1fb00
/ali_recommend/tianchi_liyumeng/util/3expandfeature.py
7957f338c0e41e33539a3f3ee336795d8f13c375
[]
no_license
ajoeajoe/dut_tianchi_mobile_recommend_train
acf08d2065cc13514c86db983b49d0370a0925e4
ddf529bacf9530c94d1c75afc0ac326bc1f22175
refs/heads/master
2021-01-19T12:04:08.968171
2017-04-19T06:01:31
2017-04-19T06:01:31
88,015,889
0
0
null
2017-04-12T06:08:53
2017-04-12T06:08:53
null
UTF-8
Python
false
false
2,198
py
# coding=utf-8 """ 本脚本用于扩展出除法特征 """ import sys # 配置项 # 输入文件路径,需要是未进行归一化的文件 filename = ur'..\dutir_tianchi_recommend_data.csv.mysql.samp.csv' #配置项结束 if len(sys.argv) > 1: src = sys.argv[1] else: src = filename #输出文件 dst = src.rstrip('.csv') + '.expand.csv' #ui 在4~39,u在44~79,i在111~146,c在151~186,uc在218~253 ui_range = range(4, 40) u_range = range(44, 80) i_range = range(111, 147) c_range = range(151, 187) uc_range = range(218, 254) def divide(a, b): if b > 0 or b < 0: return 1.0 * a / b else: return 0 dst_f = open(dst, 'w') with open(src, 'r') as f: header = f.readline() tail = [] for a, b in zip(ui_range, u_range): #ui 在4~39,u在44~79,i在111~146,c在151~186,uc在218~253 tail.append("%d_%d" % (a, b)) for a, b in zip(uc_range, c_range): tail.append("%d_%d" % (a, b)) for a, b in zip(ui_range, uc_range): tail.append("%d_%d" % (a, b)) for a, b in zip(i_range, c_range): tail.append("%d_%d" % (a, b)) for a, b in zip(uc_range, u_range): tail.append("%d_%d" % (a, b)) header = header.rstrip('\n') + ','.join(tail) + '\n' print 'headers:', header length = len(header.rstrip('\n').rstrip(',').split(',')) print 'count:', length dst_f.write(header) t = 0 #ui 在4~39,u在44~79,i在111~146,c在151~186,uc在218~253 alist = ui_range + uc_range + ui_range + i_range + uc_range blist = u_range + c_range + uc_range + c_range + u_range ziplen = len(alist) ziplist = zip(range(ziplen), alist, blist) tail = [0] * ziplen for tmp in f: items = [item for item in tmp.rstrip('\n').rstrip(',').split(',')] for i, a, b in ziplist: tail[i] = divide(float(items[a]), float(items[b])) dst_f.write(tmp.rstrip('\n').rstrip(',')) dst_f.write(',') dst_f.write(','.join(map(str, tail))) dst_f.write('\n') t += 1 if t % 1000 == 0: print t dst_f.close() print ur'生成除法特征完毕,文件行数:', t print ur'输出路径:', dst
[ "noreply@github.com" ]
noreply@github.com
2527d268820449444eac5831b8e75750f7df3a50
61ecf9a14ac978d4d1241a7f4f453c9274e0a057
/Question8.py
5b9ac32cf545fd7de56cb1fa000ba790c2f4c8f4
[]
no_license
nikuthapa/Python-AssignmentII
578f53379ce6fcc69ce7a16c23eec62da5f0ae39
fd46abf7801f1b408f35fa77d5d3ac7caf76a5a7
refs/heads/master
2022-11-10T21:52:42.941359
2020-07-05T08:33:58
2020-07-05T08:33:58
277,256,897
0
0
null
null
null
null
UTF-8
Python
false
false
499
py
""" Write a function, is_prime, that takes an integer and returns True if the number is prime and False if the number is not prime. """ def is_prime(num1): if num1 == 1: return False elif num1 == 2: return True else: if num1>1: for x in range(2, num1): if (num1 % x) == 0: return False return True else: return False number = int(input("Enter a number:")) print(is_prime(number))
[ "thapaniku12@gmail.com" ]
thapaniku12@gmail.com
c5e6565284afe0245f00a0f1092a9ca3943fd09d
5ad4d4ff6060f67e262e42f0d6a24496efa87235
/7_10_dream_vacation.py
c71f940d6bea95d15bc43aca76eae0a503133f57
[]
no_license
silasfelinus/PythonProjects
779bba4b508e2110510a1607e44c3edbf8a232ea
4474e03c9e21e35c100bfb524a86a35d1b59820d
refs/heads/master
2022-12-08T12:34:42.987932
2020-08-27T21:10:30
2020-08-27T21:10:30
290,848,514
0
0
null
null
null
null
UTF-8
Python
false
false
503
py
responses = {} polling_active = True while polling_active: name = input ("\nWhat is your name? ") response = input("Where is your dream vacation? ") responses[name] = response repeat = input("Would you like to let another person respond? (yes/no) ") if repeat == 'no': polling_active = False #Polling done, print results print("\n--- Poll results ---") for name, response in responses.items(): print(name + " would like to visit " + response + ".") end = input("Press Enter to end: ")
[ "silasfelinus@gmail.com" ]
silasfelinus@gmail.com
30ede00e9d10dd52241df086f9b16f32c6aa467a
6b01a1743bb58d079f957971d83209896ba45369
/budgets/migrations/0003_auto_20190624_2108.py
f4b30283890df33fbbeb0c350028a1898c53d289
[ "MIT" ]
permissive
saraxboyd/BalancedBudget
a0bf0645bfebd8414f5655751c153df4177cda20
b5509ef1ee482c9e766dd5749bf19b39e23b6e78
refs/heads/master
2020-06-10T21:53:35.772910
2019-07-10T02:00:25
2019-07-10T02:00:25
193,762,348
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
# Generated by Django 2.1.7 on 2019-06-24 21:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('budgets', '0002_budget_current'), ] operations = [ migrations.RenameField( model_name='category', old_name='category', new_name='name', ), ]
[ "saraxboyd@gmail.com" ]
saraxboyd@gmail.com
67db908fcf4ac7295182923fcb904759672d6542
7fc1a2dc206f32974610c316f3d35eeea08fd669
/AIEngine/transformation/medi_mapping.py
708a3bffad11071d6bc7bcb57324a84d4c0d0f0b
[]
no_license
WendellTeam/AICoreEngine
8ab30e2eca9e1ca34daceb5683203bfc8efb0520
2a61b6a41177ca4197614cdaeda86d5decbf85dc
refs/heads/master
2023-05-10T03:27:56.678992
2021-05-28T13:17:03
2021-05-28T13:17:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,818
py
from transformation.medi_file_manipulation import file_manipulation,all_excel_move_to_archive,create_path,createfolder,move_file,get_all_File from transformation.medi_medi import Medi_Mos from transformation.medi_bdx_manipulation import bdx_automation from transformation.medi_update_dcm import update_to_dcm from transformation.medi_generate_dc import generate_dc from pandas.io.json import json_normalize from utils.Session import session from utils.guid import get_guid from utils.audit_trail import audit_log from utils.logging import logging from extraction.marc.authenticate_marc_access import get_marc_access import pandas as pd import traceback,os from utils.notification import send from datetime import datetime import xlrd uploadfile = r"C:\Users\CHUNKIT.LEE\Desktop\test" disbursementMaster = r"C:\Users\CHUNKIT.LEE\Desktop\test\Disbursement Claims Running No 2020.xls" #disbursementClaim disbursementClaim = r"C:\Users\CHUNKIT.LEE\Desktop\test\MCLXXXXX.xls" # Bordereaux Listing bordereauxListing = r"C:\Users\CHUNKIT.LEE\Desktop\test\AETNA11324-2019-09 WEB.xls" def medi_mapping(disbursementClaim,bordereauxListing): wb = xlrd.open_workbook(disbursementClaim) df = pd.read_excel(wb) df.to_excel(r"C:\Users\CHUNKIT.LEE\Desktop\test\testw.xlsx") getDC = df.iloc[28, 3] wb = xlrd.open_workbook(disbursementMaster) df1 = pd.read_excel(wb,skiprows=[0]) new_header = df1.iloc[0] #grab the first row for the header df1 = df1[1:] #take the data less the header row df1.columns = new_header #set the header row as the df header mybordnum = 'TPAAY-0001-202001' df1.loc[df1['Bord No'] == '%s' % str(mybordnum)] for bordno in df1[df1['col4']]: if df1[df1['col4']=='TPAAY-0001-202001']: print(exist) else: print(not exist) df1.iloc['Bord No']
[ "helo.aizek@gmail.com" ]
helo.aizek@gmail.com
651cce70a1b9079a9d3c2ff36e374e7e07518a62
aa1b99de303ae4c092f77dab0c928e4962d14f3e
/project/models.py
7f0fefacc983dffec833e44816e98ce87fc9b00f
[]
no_license
dionissqq/test
980dd260c70ea69463a31265b77f2d6661f9d05f
3c547a0ef6a8d96cbe6af862dfcdc7e372ef60dd
refs/heads/main
2023-03-12T21:52:51.720926
2021-02-11T10:36:46
2021-02-11T10:36:46
338,022,911
0
0
null
null
null
null
UTF-8
Python
false
false
220
py
from . import db # class User(): # email = db.StringField() # password = db.StringField() # name = db.StringField() # class Token(db.Document): # value = db.StringField() # userID = db.StringField()
[ "dendenysyk@gmail.com" ]
dendenysyk@gmail.com
87d413d7af90828f2782af0f4e847016caecc553
b403c7fe56209472855dff451f0b6283d5471008
/Supplemental_Material/PythonProjects/myFunctions/isItOdd.py
14037a63dbb500f808f9316903acca319e7bc678
[]
no_license
Sandbox4KidsTM/Python_Basics
842bde52796896e913fdb5cc349034c52092555f
68c95547ec1567958fc8069e6a4bb119e436211a
refs/heads/master
2020-03-23T01:06:29.363196
2018-08-10T04:32:58
2018-08-10T04:32:58
140,901,128
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
#checks if a user-entered number if odd a = int(input("enter a num: ")) if a % 2 == 0: #% modulus rep print("number is EVEN") else: print("number is ODDDDD")
[ "mitchslabrenz@gmail.com" ]
mitchslabrenz@gmail.com
f18208cbe2c56461d40b39d71cffbfaf1b0fee2b
6af6a6fb7d0759be524f2592a470d91947e0e2bc
/RandomForest/src/dataset/sp_010_1e2.py
699dc20994db4aa94c5f33202f7ef75e147f7653
[]
no_license
wasit7/ImageSearch
5094e56db46af0d05cf76e5b5110c5b92d5198fd
3cd7ab3fa3c89873c0b49b1311ed5e7c5f4b8939
refs/heads/master
2020-05-17T01:12:24.616821
2015-08-10T07:26:44
2015-08-10T07:26:44
22,672,379
0
0
null
null
null
null
UTF-8
Python
false
false
2,887
py
""" Contain class that provide spiral dataset to random forest. @author: Krerkkiat updated by Wasit """ import numpy as np class SpiralDataset: ''' Provide Spiral Dataset to Random Forest ''' def __init__(self, clmax, spc): ''' Initial routine. Parameter(s): clmax: int - Maximum number of class. spc: int - Size of data per class per client. ''' self.clmax = clmax # class max of dataset self.spc = spc # q size per class per client self.dimension = 2 # it is axis x and y self.I = np.zeros([self.dimension, 0], dtype=np.float) # np.ndarray row vetor, hold features self.L = np.array([], dtype=np.int) # np.array, hold label # create I for x in range(self.clmax): theta = np.linspace(0, 2*np.pi, self.spc)+np.random.randn(self.spc)*0.4*np.pi/clmax + 2*np.pi*x/clmax r = np.linspace(0.1, 1, self.spc) self.I = np.append(self.I, [r*np.cos(theta), r*np.sin(theta)], axis=1) self.L = np.append(self.L, np.ones(self.spc, dtype=np.int)*x, axis=1) def getL(self, x): ''' Lookup database for a lebel of data at x. Parameter(s): x: int or numpy.array - Index or indexes of data that you need to get label. Return(s): label: int - Label of data at x. ''' return self.L[x] def getI(self, theta, x): ''' Lookup table by theta for tau (splitting parameter or threshold) at index x. Parameter(s): theta: int - theta that will use for lookup. x: int - Index of data. Return(s): tau: float - tau or raw data of data at index x with dimension theta. ''' return self.I[theta, x] def getX(self): ''' Make a list of index that will use when initial root node at Client side Return(s): idx_list: list - List of index of data. ''' return np.arange(0, self.clmax * self.spc) def getParam(self, X): ''' Random theta and then get tau from that randomed theta at index x. Parameter(s): x: list - List of index that will use to get tau. Return(s): theta: list - List of randomed theta. tau: list - List of tau with lookup by theta and x. ''' theta = np.random.randint(self.dimension, size=len(X)) tau = self.getI(theta, X) return theta, tau def __str__(self): ''' Nothing spacial, use when debug. Return: txt: str - String that represent this class. ''' return 'clmax: {cm}, spc: {ql}'.format(cm=self.clmax, ql=self.spc) if __name__ == '__main__': clmax = 10 spc = int(1e2) dataset = SpiralDataset(clmax, spc)
[ "wasit7@gmail.com" ]
wasit7@gmail.com
09260fd8d838c70817614bb78ecb29b4e3fa11f3
57fb2f548e594b1ac0fe56d04f7efdf9f48c86ff
/Projects/feature_selection/find_signature.py
2a61c7487162db1e7d93f1c5c1afb0d7d86ed733
[]
no_license
altrome/UD120
63d68640ff83b180b25084b65f1078239713faa9
9c6696d59729804a8b3e392fff2eba9a0e9787cc
refs/heads/master
2021-01-10T14:28:25.337822
2016-01-21T10:21:54
2016-01-21T10:21:54
49,486,883
0
0
null
null
null
null
UTF-8
Python
false
false
1,907
py
#!/usr/bin/python import pickle import numpy numpy.random.seed(42) ### The words (features) and authors (labels), already largely processed. ### These files should have been created from the previous (Lesson 10) ### mini-project. words_file = "../text_learning/your_word_data.pkl" authors_file = "../text_learning/your_email_authors.pkl" word_data = pickle.load( open(words_file, "r")) authors = pickle.load( open(authors_file, "r") ) ### test_size is the percentage of events assigned to the test set (the ### remainder go into training) ### feature matrices changed to dense representations for compatibility with ### classifier functions in versions 0.15.2 and earlier from sklearn import cross_validation features_train, features_test, labels_train, labels_test = cross_validation.train_test_split(word_data, authors, test_size=0.1, random_state=42) from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') features_train = vectorizer.fit_transform(features_train) features_test = vectorizer.transform(features_test).toarray() ### a classic way to overfit is to use a small number ### of data points and a large number of features; ### train on only 150 events to put ourselves in this regime features_train = features_train[:150].toarray() labels_train = labels_train[:150] ### your code goes here from sklearn import tree clf = tree.DecisionTreeClassifier() clf = clf.fit(features_train, labels_train) pred = clf.predict(features_test) from sklearn.metrics import accuracy_score acc = accuracy_score(pred, labels_test) def submitAccuracy(): return acc #print len(features_test) print(submitAccuracy()) features_imp = clf.feature_importances_ cnt = 0 for feat in features_imp: if feat > 0.2: print feat, vectorizer.get_feature_names()[cnt] cnt += 1
[ "alextrejo@onsanity.com" ]
alextrejo@onsanity.com
4ac2070081bd649a4703983d4b5dd9f1a05f510b
1964d5bbb0cf82e24c485ffffe1b692033e500b5
/vpg.py
27ab60814a920af526ecdf06eae267e869d399f1
[]
no_license
rashmi-iyer/RISE
264dc4a4736a85d9d38f5c0a3f37b325061cd69c
5ffff3559fd2c9d5e5306312b441cb6c8ab9286a
refs/heads/master
2020-06-28T00:51:26.959856
2019-08-03T21:37:08
2019-08-03T21:37:08
200,098,583
0
0
null
null
null
null
UTF-8
Python
false
false
19,196
py
import numpy as np import tensorflow as tf import gym import gym_maze import time import spinup.algos.vpg.core as core from spinup.utils.logx import EpochLogger from spinup.utils.mpi_tf import MpiAdamOptimizer, sync_all_params from spinup.utils.mpi_tools import mpi_fork, mpi_avg, proc_id, mpi_statistics_scalar, num_procs class VPGBuffer: """ A buffer for storing trajectories experienced by a VPG agent interacting with the environment, and using Generalized Advantage Estimation (GAE-Lambda) for calculating the advantages of state-action pairs. """ def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95, hierstep=3): self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.init_obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.goal_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.count_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32) self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32) self.adv_buf = np.zeros(size, dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.ret_buf = np.zeros(size, dtype=np.float32) self.val_buf = np.zeros(size, dtype=np.float32) self.logp_buf = np.zeros(size, dtype=np.float32) self.obshi_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.acthi_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.advhi_buf = np.zeros(size, dtype=np.float32) self.rewhi_buf = np.zeros(size, dtype=np.float32) self.rethi_buf = np.zeros(size, dtype=np.float32) self.valhi_buf = np.zeros(size, dtype=np.float32) self.logphi_buf = np.zeros(size, dtype=np.float32) self.gamma, self.lam, self.hierstep = gamma, lam, hierstep self.ptr, self.path_start_idx, self.max_size = 0, 0, size self.ptrhi, self.path_start_idxhi = 0, 0 def store(self, obs, init_obs, goal, count, act, rew, val, logp): """ Append one timestep of agent-environment interaction to the buffer. """ assert self.ptr < self.max_size # buffer has to have room so you can store self.obs_buf[self.ptr] = obs self.init_obs_buf[self.ptr] = init_obs self.goal_buf[self.ptr] = goal self.count_buf[self.ptr] = count self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.val_buf[self.ptr] = val self.logp_buf[self.ptr] = logp self.ptr += 1 def storehi(self, obshi, acthi, rewhi, valhi, logphi): assert self.ptrhi < self.max_size self.obshi_buf[self.ptrhi] = obshi self.acthi_buf[self.ptrhi] = acthi self.rewhi_buf[self.ptrhi] = rewhi self.valhi_buf[self.ptrhi] = valhi self.logphi_buf[self.ptrhi] = logphi self.ptrhi += 1 def finish_path(self, last_val=0): path_slice = slice(self.path_start_idx, self.ptr) rews = np.append(self.rew_buf[path_slice], last_val) vals = np.append(self.val_buf[path_slice], last_val) # the next two lines implement GAE-Lambda advantage calculation deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1] self.adv_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam) # the next line computes rewards-to-go, to be targets for the value function self.ret_buf[path_slice] = core.discount_cumsum(rews, self.gamma)[:-1] self.path_start_idx = self.ptr def finish_path_hi(self, last_val=0): path_slice = slice(self.path_start_idxhi, self.ptrhi) rews = np.append(self.rewhi_buf[path_slice], last_val) vals = np.append(self.valhi_buf[path_slice], last_val) # the next two lines implement GAE-Lambda advantage calculation deltas = rews[:-1] + self.gamma ** self.hierstep * vals[1:] - vals[:-1] self.advhi_buf[path_slice] = core.discount_cumsum(deltas, self.gamma * self.lam) # the next line computes rewards-to-go, to be targets for the value function self.rethi_buf[path_slice] = core.discount_cumsum(rews, self.gamma ** self.hierstep)[:-1] self.path_start_idxhi = self.ptrhi def get(self): """ Call this at the end of an epoch to get all of the data from the buffer, with advantages appropriately normalized (shifted to have mean zero and std one). Also, resets some pointers in the buffer. """ assert self.ptr == self.max_size # buffer has to be full before you can get self.ptr, self.path_start_idx = 0, 0 # the next two lines implement the advantage normalization trick #adv_mean = np.mean(self.adv_buf) #adv_std = np.std(self.adv_buf) adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf) self.adv_buf = (self.adv_buf - adv_mean) / adv_std return [self.obs_buf, self.init_obs_buf, self.goal_buf, np.expand_dims(self.count_buf, axis=1), self.act_buf, self.adv_buf, self.ret_buf, self.logp_buf] def gethi(self): """ Call this at the end of an epoch to get all of the data from the buffer, with advantages appropriately normalized (shifted to have mean zero and std one). Also, resets some pointers in the buffer. """ # the next two lines implement the advantage normalization trick #adv_mean = np.mean(self.advhi_buf[:self.ptrhi]) #adv_std = np.std(self.advhi_buf[:self.ptrhi]) adv_mean, adv_std = mpi_statistics_scalar(self.advhi_buf) int_num = int(self.ptrhi) self.ptrhi, self.path_start_idxhi = 0, 0 return [self.obshi_buf[:int_num], self.acthi_buf[:int_num], (self.advhi_buf[:int_num] - adv_mean) / adv_std, self.rethi_buf[:int_num], self.logphi_buf[:int_num]] """ Vanilla Policy Gradient (with GAE-Lambda for advantage estimation) """ def vpg(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4, vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000, logger_kwargs=dict(), save_freq=10, c=3): """ Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: A function which takes in placeholder symbols for state, ``x_ph``, and action, ``a_ph``, and returns the main outputs from the agent's Tensorflow computation graph: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``pi`` (batch, act_dim) | Samples actions from policy given | states. ``logp`` (batch,) | Gives log probability, according to | the policy, of taking actions ``a_ph`` | in states ``x_ph``. ``logp_pi`` (batch,) | Gives log probability, according to | the policy, of the action sampled by | ``pi``. ``v`` (batch,) | Gives the value estimate for states | in ``x_ph``. (Critical: make sure | to flatten this!) =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the actor_critic function you provided to VPG. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs of interaction (equivalent to number of policy updates) to perform. gamma (float): Discount factor. (Always between 0 and 1.) pi_lr (float): Learning rate for policy optimizer. vf_lr (float): Learning rate for value function optimizer. train_v_iters (int): Number of gradient descent steps to take on value function per epoch. lam (float): Lambda for GAE-Lambda. (Always between 0 and 1, close to 1.) max_ep_len (int): Maximum length of trajectory / episode / rollout. c: hierearchical step length """ logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) seed += 10000 * proc_id() print("HELLLLLOOOOOOOOOOOOOOOOO") print(seed) tf.set_random_seed(seed) np.random.seed(seed) env = env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape # Share information about action space with policy architecture #ac_kwargs['action_space'] = env.action_space # Inputs to computation graph x_ph, x_initial_ph, g_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.observation_space, env.observation_space, env.action_space) count_ph = core.placeholder(1) adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None) xhi_ph, ahi_ph = core.placeholders_from_spaces(env.observation_space, env.observation_space) advhi_ph, rethi_ph, logphi_old_ph = core.placeholders(None, None, None) # Main outputs from computation graph x_concat = tf.concat([x_ph, x_initial_ph, g_ph, count_ph], 1) pi, logp, logp_pi, v = actor_critic(x_concat, a_ph, action_space=env.action_space) pihi, logphi, logphi_pi, vhi = actor_critic(xhi_ph, ahi_ph, action_space=env.observation_space) # Need all placeholders in *this* order later (to zip with data from buffer) all_phs = [x_ph, x_initial_ph, g_ph, count_ph, a_ph, adv_ph, ret_ph, logp_old_ph] allhi_phs = [xhi_ph, ahi_ph, advhi_ph, rethi_ph, logphi_old_ph] # Every step, get: action, value, and logprob get_action_ops = [pi, v, logp_pi] gethi_action_ops = [pihi, vhi, logphi_pi] # Experience buffer local_steps_per_epoch = int(steps_per_epoch / num_procs()) buf = VPGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam) # Count variables var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v']) logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n'%var_counts) # VPG objectives pi_loss = -tf.reduce_mean(logp * adv_ph) v_loss = tf.reduce_mean((ret_ph - v) ** 2) pihi_loss = -tf.reduce_mean(logphi * advhi_ph) vhi_loss = tf.reduce_mean((rethi_ph - vhi) ** 2) # Info (useful to watch during learning) approx_kl = tf.reduce_mean(logp_old_ph - logp) # a sample estimate for KL-divergence, easy to compute approx_ent = tf.reduce_mean(-logp) # a sample estimate for entropy, also easy to compute approx_klhi = tf.reduce_mean(logphi_old_ph - logphi) # a sample estimate for KL-divergence, easy to compute approx_enthi = tf.reduce_mean(-logphi) # a sample estimate for entropy, also easy to compute # Optimizers train_pi = tf.train.AdamOptimizer(learning_rate=pi_lr).minimize(pi_loss) train_v = tf.train.AdamOptimizer(learning_rate=vf_lr).minimize(v_loss) trainhi_pi = tf.train.AdamOptimizer(learning_rate=pi_lr).minimize(pihi_loss) trainhi_v = tf.train.AdamOptimizer(learning_rate=vf_lr).minimize(vhi_loss) sess = tf.Session() sess.run(tf.global_variables_initializer()) # Sync params across processes sess.run(sync_all_params()) # Setup model saving logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v}) def update(): inputs = {k: valbuf for k, valbuf in zip(all_phs, buf.get())} inputshi = {k: valbuf for k, valbuf in zip(allhi_phs, buf.gethi())} pi_l_old, v_l_old, ent = sess.run([pi_loss, v_loss, approx_ent], feed_dict=inputs) pihi_l_old, vhi_l_old, enthi = sess.run([pihi_loss, vhi_loss, approx_enthi], feed_dict=inputshi) # Policy gradient step sess.run(train_pi, feed_dict=inputs) sess.run(trainhi_pi, feed_dict=inputshi) # Value function learning for _ in range(train_v_iters): sess.run(train_v, feed_dict=inputs) sess.run(trainhi_v, feed_dict=inputshi) # Log changes from update pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl], feed_dict=inputs) pihi_l_new, vhi_l_new, klhi = sess.run([pihi_loss, vhi_loss, approx_klhi], feed_dict=inputshi) logger.store(LossPi=pi_l_old, LossV=v_l_old, KL=kl, Entropy=ent, DeltaLossPi=(pi_l_new - pi_l_old), DeltaLossV=(v_l_new - v_l_old), LossPiHi=pihi_l_old, LossVHi=vhi_l_old, KLHi=klhi, EntropyHi=enthi, DeltaLossPiHi=(pihi_l_new - pihi_l_old), DeltaLossVHi=(vhi_l_new - vhi_l_old)) start_time = time.time() reset = env.reset() o, x_init, count, r, rhi, r_intr, d, ep_ret, ep_len = reset, reset, 0, 0, 0, 0, False, 0, 0 g, vhi_t, logphi_t = sess.run(gethi_action_ops, feed_dict={xhi_ph: x_init.reshape(1, -1)}) buf.storehi(x_init, np.squeeze(g, axis=0), rhi, vhi_t, logphi_t) # Main loop: collect experience in env and update/log each epoch for epoch in range(epochs): for t in range(steps_per_epoch): a, v_t, logp_t = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1, -1), x_initial_ph: x_init.reshape(1, -1), g_ph: g.reshape(1, -1), count_ph: np.expand_dims([count%c], axis=1)}) buf.store(o, x_init, g, count%c, a, r_intr, v_t, logp_t) logger.store(VVals=v_t) o, r, d, _ = env.step(a[0]) ep_ret += r ep_len += 1 r_intr = -np.linalg.norm(o - g, ord=2) #low level reward calculation via simple euclidian distance rhi += r count += 1 if count % c == 0 and buf.ptrhi < buf.max_size: buf.finish_path(r_intr) x_init = o g, vhi_t, logpihi_t = sess.run(gethi_action_ops, feed_dict={xhi_ph: x_init.reshape(1, -1)}) buf.storehi(x_init, np.squeeze(g, axis=0), rhi, vhi_t, logpihi_t) logger.store(VValsHi=vhi_t) rhi = 0 terminal = d or (count == max_ep_len) if terminal or (t == local_steps_per_epoch - 1): if not (terminal): print('Warning: trajectory cut off by epoch at %d steps.' %count) # if trajectory didn't reach terminal state, bootstrap value target last_val = r_intr if d else sess.run(v, feed_dict={x_ph: o.reshape(1, -1), x_initial_ph: x_init.reshape(1, -1), g_ph: g.reshape(1, -1), count_ph: np.expand_dims([count%c], axis=1)}) if count%c != 0: buf.finish_path(last_val) if terminal: # only save EpRet / EpLen if trajectory finished logger.store(EpRet=ep_ret, EpLen=ep_len) lasthi_val = rhi if d else sess.run(vhi, feed_dict={xhi_ph: o.reshape(1, -1)}) buf.finish_path_hi(lasthi_val) reset = env.reset() o, x_init, count, r, rhi, r_intr, d, ep_ret, ep_len = reset, reset, 0, 0, 0, 0, False, 0, 0 g, vhi_t, logpihi_t = sess.run(gethi_action_ops, feed_dict={xhi_ph: x_init.reshape(1, -1)}) buf.storehi(x_init, np.squeeze(g, axis=0), rhi, vhi_t, logpihi_t) logger.store(VValsHi=vhi_t) # Save model if (epoch % save_freq == 0) or (epoch == epochs-1): logger.save_state({'env': env}, None) # Perform VPG update! update() # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('VVals', with_min_and_max=True) logger.log_tabular('VValsHi', with_min_and_max=True) logger.log_tabular('TotalEnvInteracts', (epoch+1)*steps_per_epoch) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossV', average_only=True) logger.log_tabular('DeltaLossPi', average_only=True) logger.log_tabular('DeltaLossV', average_only=True) logger.log_tabular('Entropy', average_only=True) logger.log_tabular('KL', average_only=True) logger.log_tabular('LossPiHi', average_only=True) logger.log_tabular('LossVHi', average_only=True) logger.log_tabular('DeltaLossPiHi', average_only=True) logger.log_tabular('DeltaLossVHi', average_only=True) logger.log_tabular('EntropyHi', average_only=True) logger.log_tabular('KLHi', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='MountainCar-v0') parser.add_argument('--hid', type=int, default=64) parser.add_argument('--l', type=int, default=2) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--cpu', type=int, default=4) parser.add_argument('--steps', type=int, default=4000) parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--exp_name', type=str, default='vpg') parser.add_argument('--c', type=int, default='3') args = parser.parse_args() mpi_fork(args.cpu) # run parallel code with mpi from spinup.utils.run_utils import setup_logger_kwargs logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed) vpg(lambda: gym.make(args.env), actor_critic=core.mlp_actor_critic, ac_kwargs=dict(hidden_sizes=[args.hid] * args.l), gamma=args.gamma, seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs, logger_kwargs=logger_kwargs, c=args.c)
[ "noreply@github.com" ]
noreply@github.com
c7ffad90b31577fe2d51742bfeff3c95081eaeb5
b875a17848ab0a604c54556e2afe18a83650c4b0
/api/views.py
13faed2eff31b5d8363ac0dae1e51ad9015a1df0
[]
no_license
isaacampah222/alma_server
2cd62e32fd2700cc7d5af64f1abfd3960f947234
3b7acb2b48291a9528e62bbf1204e14b718891be
refs/heads/master
2022-11-24T09:45:52.767773
2020-07-30T18:53:12
2020-07-30T18:53:12
283,631,620
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
from rest_framework.generics import GenericAPIView from rest_framework import mixins, permissions from rest_framework.response import Response from knox.models import AuthToken from django.contrib.auth import login from rest_framework.authtoken.serializers import AuthTokenSerializer from .models import SingleOrder from knox.views import LoginView as KnoxLoginView from .serializers import SingleOrderSerializer,UserSerializer,RegisterSerializer class SingleOrderView(GenericAPIView, mixins.CreateModelMixin,mixins.ListModelMixin, mixins.RetrieveModelMixin, mixins.DestroyModelMixin): queryset = SingleOrder.objects.all() serializer_class = SingleOrderSerializer lookup_field = 'id' def get(self, request, id= None): if id: return self.retrieve(request, id) else: return self.list(request) def post(self, request): return self.create(request) def delete(self, request, id): return self.destroy(request, id) class RegisterAPI(GenericAPIView): serializer_class = RegisterSerializer def post(self, request, *args, **kwargs): serializer = self.get_serializer(data = request.data) serializer.is_valid(raise_exception=True) user = serializer.save() return Response({ "user": UserSerializer(user, context = self.get_serializer_context()).data, "token": AuthToken.objects.create(user)[1] }) class LoginAPI(KnoxLoginView): permission_classes = (permissions.AllowAny, ) def post(self, request, format= None): serializer =AuthTokenSerializer(data=request.data) serializer.is_valid(raise_exception=True) user = serializer.validated_data['user'] login(request, user) return super(LoginAPI, self).post(request, format=None)
[ "ijampah@localhost.localdomain" ]
ijampah@localhost.localdomain
96568d5b7e0d8b7c45731111f658cc000e273b1a
8885b07ee5fd98bbd9d0d9232f6539816879faca
/reinforcement/widgets/tests/agents/random/test_random_agent.py
def506e5da3ff27fc4055ff3772f4ba98783e3bd
[]
no_license
gbaptista/orange3-reinforcement
d66db1eefd9914fb33b54f0f014a7d359c501be5
e08910899d110b75afa99f25e01ced87ff94a30b
refs/heads/master
2020-03-28T21:11:55.181459
2018-10-05T23:11:35
2018-10-05T23:11:35
149,137,134
5
0
null
2018-10-06T00:37:26
2018-09-17T14:21:52
Python
UTF-8
Python
false
false
414
py
from ....agents.random.random_agent import RandomAgent def test_train_episode(): environment_id = 'FrozenLake-v0' random_agent = RandomAgent(environment_id) assert random_agent.name == 'Random Agent' result_keys = list(random_agent.train_episode().keys()) assert result_keys == ['steps_to_finish', 'total_reward', 'last_action_info']
[ "guilhermebaptistasilva@gmail.com" ]
guilhermebaptistasilva@gmail.com
e8187f4393ff43fc5d05a2a836249ecab831a4e3
2ad1b46515e07561fc45a724e0c890e073bd4553
/my_max.py
995b5a761346509e17bb47f38be67cc35510e452
[]
no_license
MariaKrepko/my_python
4b96910de31b43ab3f0d55de69735cbab5b5ff9d
36663a6608deaa57dd513d1da34c4dad1d109198
refs/heads/master
2020-04-23T22:47:57.191051
2019-05-28T22:22:34
2019-05-28T22:22:34
171,514,159
0
0
null
null
null
null
UTF-8
Python
false
false
86
py
num1=input() num2=input() if num1 > num2: print(num1) else: print(num2)
[ "noreply@github.com" ]
noreply@github.com
8a163c061b4c1c372383efd313451dd7bc59d983
0f0440c398ce75044c0e54b12d6c0bc5d1e7a167
/sitepr/votacao/migrations/0001_initial.py
f6ce911ba968c07fa36a303a8f23ddb43814cd6b
[]
no_license
ElSulphur/DIAM
8511b15681861c5198479bfdf18455656a5b60ba
726f4df785ee5b7b6c58d961b4bb6621de55052f
refs/heads/master
2023-03-31T20:23:38.345012
2021-04-10T22:57:46
2021-04-10T22:57:46
356,336,623
0
0
null
null
null
null
UTF-8
Python
false
false
1,077
py
# Generated by Django 3.1.7 on 2021-03-18 10:26 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Questao', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('questao_texto', models.CharField(max_length=200)), ('pub_data', models.DateTimeField(verbose_name='data de publicacao')), ], ), migrations.CreateModel( name='Opcao', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('opcao_texto', models.CharField(max_length=200)), ('votos', models.IntegerField(default=0)), ('questao', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='votacao.questao')), ], ), ]
[ "nascimento1188@gmail.com" ]
nascimento1188@gmail.com
c0dd503b1a9ab64668c1bd73cb9fac6abcc20aaf
9c20f53c155a487b2af0110a7388f7b1ae8d6ac0
/JQKA/JQKA/spiders/myselector.py
13a243c755006de1367c0d53a52fc93853ace3af
[]
no_license
xfzhu2003/github
b9f2f2c37b571b7019a2faf02deb5f8d1d5fafc9
2f135849023a89d1514dec236d086e4783aad3df
refs/heads/master
2020-08-08T14:59:03.860049
2018-03-20T01:52:37
2018-03-20T01:52:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,810
py
#-*- coding:utf-8 -*- import re import urllib.parse #from itertools import chain import datetime #import random from user_agent import generate_user_agent from pdfminer.pdfparser import PDFParser,PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import PDFPageAggregator from pdfminer.layout import LTTextBoxHorizontal,LAParams from pdfminer.pdfinterp import PDFTextExtractionNotAllowed import requests import os from io import BytesIO from win32com import client as wc #from imp import reload s = requests.Session() class Selector(object): def __init__(self): pass @staticmethod def pdfparse(url=None): try: if url: res = s.get(url,headers = {"user-agent":generate_user_agent()}) res.encoding = 'utf-8' f = BytesIO() f.write(res.content) f.seek(0) # path2 = os.getcwd()+"\\%s.txt"%name.split(".")[0] # print(path1) praser = PDFParser(f) doc = PDFDocument() praser.set_document(doc) doc.set_parser(praser) doc.initialize() if not doc.is_extractable: raise PDFTextExtractionNotAllowed else: # 创建PDf 资源管理器 来管理共享资源 # print("a") rsrcmgr = PDFResourceManager() # 创建一个PDF设备对象 laparams = LAParams() device = PDFPageAggregator(rsrcmgr, laparams=laparams) # 创建一个PDF解释器对象 interpreter = PDFPageInterpreter(rsrcmgr, device) text = '' # 循环遍历列表,每次处理一个page的内容 for page in doc.get_pages(): # doc.get_pages() 获取page列表 interpreter.process_page(page) # 接受该页面的LTPage对象 layout = device.get_result() #text = "".join(map(lambda x:x.get_text().strip(" ") if x.get_text() else "",layout)) #print(text) # 这里layout是一个LTPage对象 里面存放着 这个page解析出的各种对象 一般包括LTTextBox, LTFigure, LTImage, LTTextBoxHorizontal 等等 想要获取文本就获得对象的text属性, for x in layout: results = x.get_text() if results: text = text+results.strip('\n') f.close() return text except Exception as e: print(e) @staticmethod def docparse(url): name = url.split("/")[-1] try: path1 = os.getcwd()+"\\%s.doc"%name.split(".")[0] path2 = os.getcwd()+"\\%s.txt"%name.split(".")[0] # print(path1,path2) doc = s.get(url,headers = {"user-agent":generate_user_agent()}) word = wc.Dispatch('Word.Application') with open(path1,"wb") as f: f.write(doc.content) docment = word.Documents.Open(path1) docment.SaveAs(path2, 4) docment.Close() try: with open(path2) as f: workdoc = f.read() except: workdoc = "" os.remove(path1) os.remove(path2) return workdoc except Exception as e: print(e) @classmethod def replace_all(self,content): content = self.replace_html_tag(content) content = self.replace_invalid_html_char(content) content = self.replace_invalid_char(content) return content @staticmethod def changdt(content,dt): if dt == "int": v = int(content) if hasattr(content,'replace') and content.isdigit() else content if isinstance(content,int) else None return v elif dt == "float": try: v = round(float(content),4) return v except: return None if dt == 'str': try: if content: return str(content) except: return None if dt == "date": if content: if re.match("\d{4}-\d+-\d+",content): result = content.split("-") return "{0:0>4}-{1:0>2}-{2:0>2}".format(result[0],result[1],result[2]) else: return content else: return content @staticmethod def select_content(content,config,response=None): selector_type = config['t'] tag = config['v'] try: if hasattr(content,'text'): body = content.text else: body = content except Exception as e: print(e) try: if selector_type == 'meta': return response.meta[tag] elif selector_type == "json": for i in tag.split("/"): if isinstance(content,dict): pass else: raise TypeError("typeError") content = content[i] if i in content else '' v = content return v elif selector_type == "xpath": return content.xpath(tag) elif selector_type == 'xpathList': return content.xpath(tag).extract() elif selector_type == 'xpath_split': v = content.xpath(tag).extract() if v: return ",".join(v) elif selector_type == "xpath_first": v = content.xpath(tag).extract_first() return v elif selector_type == "xpath_join": v = content.xpath(tag).extract() if v: v = "".join(v) else: v = None return v elif selector_type == 'xpathSet': v = content.xpath(tag).extract() v = set(v) return v elif selector_type == "css": v = content.css[tag] if v: return v elif selector_type == "re_first": v = re.search(tag,body) if hasattr(v,"group"): v = v.group(0) else: return '' elif selector_type == "re_findall": v = re.findall(tag,body) return v elif 'splitwith' in selector_type: if hasattr(selector_type,'replace'): b = selector_type.replace('splitwith','') else: raise AttributeError('%s has not attribute replace'%selector_type) if hasattr(content,'split'): try: return content.split(b)[tag] except IndexError as e: print(e) else: raise AttributeError('%s has not attribute split'%content) elif selector_type == "url": if hasattr(response,"url"): return response.url else: raise AttributeError("url is Not Method") elif selector_type =="date": #set tag = "%Y-%m-%d %H:%M:%S" return datetime.datetime.now().strftime(tag) elif selector_type =='abs': return tag elif selector_type == 'url_re': v = re.search(tag,response.url) if v: return v.group(1) elif selector_type == 'url_split': if hasattr(response,"url"): return response.url.split('/')[tag] else: raise AttributeError("url is Not Method") elif selector_type == 'static': return content except Exception as e: print(e) @staticmethod def replace_html_tag(content): if hasattr(content, 'replace'): return re.subn('<[\s\S]*?>','',content)[0] return content @staticmethod def replace_invalid_char(content): if hasattr(content, 'replace'): invalid_chars = {'\t','\r','\n','[',']',' ','--','\u3000','\xa0',"'"} for char in invalid_chars: content = content.replace(char,'') return content @staticmethod def replace_invalid_html_char(content): try: if hasattr(content, 'replace'): chars = {'nbsp': ' ','160': ' ', 'lt': '<', '60':'<', 'gt': '>', '62': '>', 'amp': '&', '38': '&', 'quot': '"', '34': '"', } re_char_entity = re.compile(r'&#?(?P<name>\w+);') sz = re_char_entity.search(content) while sz: key = sz.group('name') try: content = re_char_entity.sub(chars[key], content, 1) sz = re_char_entity.search(content) except KeyError: content = re_char_entity.sub('', content, 1) sz = re_char_entity.search(content) except Exception as e: print(e) return e return content @staticmethod def urljoin(path, url): urlp = urllib.parse.urlparse(url) return urlp.scheme+'://'+urlp.netloc+'/'+path @staticmethod def urljoin2(path, url): urlp = urllib.parse.urlparse(url) return urlp.scheme+'://'+urlp.netloc+path @classmethod def headers(self): return {'User-Agent':generate_user_agent()} if __name__ == "__main__": pass a = Selector.pdfparse("http://www.szse.cn/UpFiles/cfwj/2017-09-20_002638676.pdf") print(a) # a = Selector() # a = a.headers() # print(a) # print(type(a)) # print(a) # a = Selector.replace_all('''<td style="text-align:center">男</td> # <td style="text-align:center">南山区 # # </td> # <td style="text-align:center"> # # <a href="/lawfirm/12e61b22fa6045deb55ca13d8ac5777c" target="_blank">广东君言律师事务所</a> #''') # print(a)
[ "luopx@hffss.com" ]
luopx@hffss.com
9109cf92a3874f5187986e1ec9f78049378ebeb5
273ab7fc98ef8a299daf56d9ce7a0d917453be6a
/BlueStakesETL_Old.py
819054d2145cf6c06d81f022744008513a3d89eb
[]
no_license
Zee-Bee/tester
c5e6aa385ae62c80b2b1f00d051ac99346cc22ba
5793f97e2c0f108ea61842117a966bb1de81f185
refs/heads/master
2020-04-07T00:18:44.949542
2018-11-16T17:57:20
2018-11-16T17:57:20
157,898,351
0
0
null
null
null
null
UTF-8
Python
false
false
58,163
py
import arcpy, datetime, time from arcpy import env from arcpy import da #sgid10 = r'C:\ZBECK\BlueStakes\stagingBS.gdb\SGID10_GEOGRAPHIC' #sgid10 = r'Database Connections\dc_agrc@SGID10@gdb10.agrc.utah.gov.sde' sgid10 = r'C:\ZBECK\BlueStakes\testDB.gdb' sgid10_GEO = r'C:\ZBECK\BlueStakes\stagingBS.gdb\SGID10_GEOGRAPHIC' stageDB = r'C:\ZBECK\BlueStakes\stagingBS.gdb' schemaDB = r'C:\ZBECK\BlueStakes\schemaBS.gdb' outLoc = r'C:\ZBECK\BlueStakes\outBlueStakes' env.workspace = sgid10 arcpy.env.overwriteOutput = True clpCnty = sgid10_GEO + '\\Counties' #arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Counties', clpCnty) fipsNum = ['49001', '49003', '49005', '49007', '49009', '49011', '49013', '49015', '49017', '49019', '49021', \ '49023', '49025', '49027', '49029', '49031', '49033', '49035', '49037', '49039', '49041', '49043', '49045', \ '49047', '49049', '49051', '49053', '49055', '49057'] fipsDict = {'Beaver': '49001', 'BoxElder': '49003', 'Cache': '49005', 'Carbon': '49007', 'Daggett': '49009', \ 'Davis': '49011', 'Duchesne': '49013', 'Emery': '49015', 'Garfield': '49017', 'Grand': '49019', \ 'Iron': '49021', 'Juab': '49023', 'Kane': '49025', 'Millard': '49027', 'Morgan': '49029', \ 'Piute': '49031', 'Rich': '49033', 'SaltLake': '49035', 'SanJuan': '49037', 'Sanpete': '49039', \ 'Sevier': '49041', 'Summit': '49043', 'Tooele': '49045', 'Uintah': '49047', 'Utah': '49049', \ 'Wasatch': '49051', 'Washington': '49053', 'Wayne': '49055', 'Weber': '49057'} typeList = ('ALY', 'AVE', 'BLVD', 'CIR', 'CT', 'CV', 'DR', 'EST', 'ESTS', 'EXPY', 'FWY', 'HWY', 'HOLW', \ 'JCT', 'LN', 'LOOP', 'PKWY', 'PL', 'PLZ', 'PT', 'RAMP', 'RNCH', 'RD', 'RTE', 'RUN', 'RW', 'SQ', \ 'ST', 'TER', 'TRL', 'WAY', 'HTS', 'COR') typeList2 = ('ALLEY', 'AVENUE', 'BOULEVARD', 'CIRCLE', 'COURT', 'COVE', 'DRIVE', 'ESTATE', 'ESTATES', 'EXPRESSWAY', \ 'FREEWAY', 'HEIGHTS', 'HIGHWAY', 'HOLLOW', 'JUNCTION', 'LANE', 'LOOP', 'PARKWAY', 'PLACE', 'PLAZA', \ 'POINT', 'RAMP', 'RANCH', 'ROAD', 'ROUTE', 'RUN', 'ROW', 'SQUARE', 'STREET', 'TERRACE', 'TRAIL', 'WAY', 'CORNER') typeDict = {'ALLEY': 'ALY', 'AVENUE': 'AVE', 'BOULEVARD': 'BLVD', 'CIRCLE': 'CIR', 'COURT': 'CT', 'COVE': 'CV', \ 'DRIVE': 'DR', 'ESTATE': 'EST', 'ESTATES': 'ESTS', 'EXPRESSWAY': 'EXPY', 'FREEWAY': 'FWY', 'HIGHWAY': 'HWY', \ 'HOLLOW': 'HOLW', 'JUNCTION': 'JCT', 'LANE': 'LN', 'LOOP': 'LOOP', 'PARKWAY': 'PKWY', 'PLACE': 'PL', \ 'PLAZA': 'PLZ', 'POINT': 'PT', 'RAMP': 'RAMP', 'RANCH': 'RNCH', 'ROAD': 'RD', 'ROUTE': 'RTE', 'RUN': 'RUN', \ 'ROW': 'RW', 'SQUARE': 'SQ', 'STREET': 'ST', 'TERRACE': 'TER', 'TRAIL': 'TRL', 'WAY': 'WAY', 'HEIGHTS': 'HTS', \ 'CORNER': 'COR'} dirList = ('N', 'S', 'E', 'W') dirList2 = ('NORTH', 'SOUTH', 'EAST', 'WEST') dirDict = {'NORTH': 'N', 'SOUTH': 'S', 'EAST': 'E', 'WEST': 'W'} if not arcpy.Exists(stageDB): arcpy.CreateFileGDB_management('C:\ZBECK\BlueStakes', 'stagingBS.gdb') #------------------------------------------------------------------------------------------------------------------------------------------- def parcels(): print 'Starting Parcels ' + str(datetime.datetime.now()) #-Check for parcels in staging DB, add it if missing, delete features if they exist ## for fips in fipsNum: ## parcelFC = stageDB + '\\' + 'par' + fips ## ## if not arcpy.Exists(parcelFC): ## arcpy.CopyFeatures_management(schemaDB + '\\parSSCCC_schema', stageDB + '\\par' + fips) ## print 'Copied par' + fips + ' to staging GDB' ## else: ## arcpy.DeleteFeatures_management(parcelFC) ## print 'Deleted existing features in ' + parcelFC fc = r'C:\ZBECK\BlueStakes\testDB.gdb\Parcels_Garfield' fcBS = r'C:\ZBECK\BlueStakes\stagingBS.gdb\par49001' srcFlds = ['PARCEL_ID', 'PARCEL_ADD', 'SHAPE@'] tarFlds = ['ADDR_NUMB', 'ADDR_FULL', 'FEDIRP', 'FENAME', 'FETYPE', 'FEDIRS', 'OWNER', 'SHAPE@'] ## for fc in arcpy.ListFeatureClasses(): ## #if fc[:23][-7:] == 'Parcels': #get SDE parcels ## if fc.split('_')[0] == 'Parcels': ## ## cnty = fc.split('_')[1] ## tarRows = arcpy.da.InsertCursor(stageDB + '\\par' + fipsDict[cnty], tarFlds) tarRows = arcpy.da.InsertCursor(fcBS, tarFlds) srcRows = arcpy.da.SearchCursor(fc, srcFlds) for srcRow in srcRows: srcPar_ParID = srcRow[0] addFull = srcRow[1] shp = srcRow[2] if addFull != None and addFull.strip() != '': #--Address Number----------------------------------------- if addFull.split(' ')[0].isdigit(): addNum = addFull.split(' ')[0] else: addNum = '' #--Prefix Direction--------------------------------------- preDirs = addFull.split(' ')[1] if preDirs.upper() in dirList: preDir = preDirs.upper() if preDirs.upper() in dirList2: preDir = dirDict[preDirs.upper()] else: preDirs = '' #--Sufix Direction---------------------------------------- sufDirs = addFull.split(' ')[-1] if sufDirs.upper() in dirList: sufDir = sufDirs.upper() if sufDirs.upper() in dirList2: sufDir = dirDict[sufDirs.upper()] else: sufDirs = '' #--Street Type-------------------------------------------- sTypes = addFull.split(' ')[-1] if sTypes.upper() in typeList: sType = sTypes.upper() if sTypes.upper() in typeList2: sType = typeDict[sTypes.upper()] else: sType = '' #---Street Name------------------------------------------- houseNumber = 'houseNumber' preDirection = 'preDirection' sName = 'sName' streetNameBegun = 'streetNameBegun' streetNameEnded = 'streetNameEnded' streetName = '' if streetName != None: def checkWord(word, state): global streetName if state == houseNumber: return preDirection elif state == preDirection: if word in dirList or word in dirList2: return sName else: streetName = streetName + word return streetNameBegun elif state == sName: streetName = word return streetNameBegun elif state == streetNameBegun: if word in typeList or word in dirList or word in typeList2 or word in dirList2: return streetNameEnded else: streetName = streetName + ' ' + word return streetNameBegun elif state == streetNameEnded: return streetNameEnded def findStName(addFull): global streetName streetName = '' state = houseNumber for word in addFull.strip().split(' '): state = checkWord(word, state) return streetName ## for add in addList: ## print findStName(add) else: addNum = '' preDir = '' sType = '' sufDir = '' srcPar_ParID = '' tarRows.insertRow((addNum, addFull, preDir, findStName(srcRow[1]), sType, 'S', srcPar_ParID, shp)) del tarRows del srcRows # print cnty + ' par' + fipsDict[cnty] + ' Done' print 'Done Parcels ' + str(datetime.datetime.now()) #------------------------------------------------------------------------------------------------------------------------------------------- def addressPoints(): print 'Starting Address Points ' + str(datetime.datetime.now()) addPts = sgid10_GEO + '\\AddressPoints' addPtsBS = stageDB + '\\adr_StWide' clpCnty = 'SGID10.BOUNDARIES.Counties' #---Check for Address Points in SGID10_GEOGRAPHIC staging area if arcpy.Exists(addPts): arcpy.Delete_management(addPts) arcpy.CopyFeatures_management(r'Database Connections\DC_Location@SGID10@gdb10.agrc.utah.gov.sde\SGID10.LOCATION.AddressPoints', addPts) else: arcpy.CopyFeatures_management(r'Database Connections\DC_Location@SGID10@gdb10.agrc.utah.gov.sde\SGID10.LOCATION.AddressPoints', addPts) #---Check for statewide Address Points in BlueStakes schema if not arcpy.Exists(addPtsBS): arcpy.CopyFeatures_management(schemaDB + '\\adrSSCCC_schema', addPtsBS) else: arcpy.DeleteFeatures_management(addPtsBS) srcFlds = ['ADDLABEL', 'ADDNBR', 'PRE_DIR', 'STREETNAME', 'STREETTYPE', 'SUF_DIR', 'SHAPE@'] tarFlds = ['ADDR_NUMB', 'ADDR_FULL', 'FEDIRP', 'FENAME', 'FETYPE', 'FEDIRS', 'OWNER', 'SHAPE@'] cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(addPts, srcFlds) tarRows = arcpy.da.InsertCursor(addPtsBS, tarFlds) for srcRow in srcRows: if srcRow[1] != None: ADDR_NUMB = srcRow[1] else: ADDR_NUMB = '' if srcRow[0] != None: ADDR_FULL = srcRow[0] else: ADDR_FULL = '' if srcRow[2] != None: FEDIRP = srcRow[2] else: FEDIRP = '' if srcRow[3] != None: FENAME = srcRow[3] else: FENAME = '' if srcRow[4] != None: FETYPE = srcRow[4] else: FETYPE = '' if srcRow[5] != None: FEDIRS = srcRow[5] else: FEDIRS = '' OWNER = '' shp = srcRow[6] tarRows.insertRow((ADDR_NUMB, ADDR_FULL, FEDIRP, FENAME, FETYPE, FEDIRS, OWNER, shp)) del tarRows #---Copy State wide address points to Bluestakes root--------------- arcpy.CopyFeatures_management(addPtsBS, outLoc + '\\adr_StWide.shp') #---Clip by county------------------------------------------- clpFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] clpRows = arcpy.da.SearchCursor(clpCnty, clpFlds) for row in clpRows: clpFeat = row[2] #----Delete shapefiles with no features---- clp = arcpy.Clip_analysis(addPtsBS, clpFeat, outLoc + '\\TGR' + row[1] + '\\adr' + row[1] + '.shp') clpCount = int(arcpy.GetCount_management(clp).getOutput(0)) if clpCount < 1: arcpy.Delete_management(clp) print 'Done Translating Address Points ' + str(datetime.datetime.now()) #------------------------------------------------------------------------------------------------------------------------------------------- def roads(): print 'Starting Roads ' + str(datetime.datetime.now()) ## for fips in fipsNum: ## streetFC = stageDB + '\\TGR' + fips + 'lkA' ## ## if not arcpy.Exists(streetFC): ## arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCLKA_schema', stageDB + '\\TGR' + fips + 'lkA') ## print 'Copied TGR' + fips + 'lkA to staging GDB' ## else: ## arcpy.DeleteFeatures_management(streetFC) ## print 'Deleted existing features in ' + streetFC srcFlds = ['CARTOCODE', 'PREDIR', 'FULLNAME', 'STREETTYPE', 'SUFDIR', 'L_F_ADD', 'L_T_ADD', 'R_F_ADD', 'R_T_ADD', 'ALIAS1', \ 'ALIAS2', 'ACSALIAS', 'ACSNAME', 'COFIPS', 'HWYNAME', 'MODIFYDATE', 'ADDR_SYS', 'STREETNAME', 'SHAPE@'] tarFlds = ['FEDIRP', 'FENAME', 'FETYPE', 'FEDIRS', 'CFCC', 'FRADDL', 'TOADDL', 'FRADDR', 'TOADDR', 'CFCC1', 'CFCC2', 'FULLNAME', \ 'HASALT', 'ISALT', 'S_FIPS', 'AGRC_MDATE', 'ADDRESS_SY', 'SHAPE@'] rdFC = 'RoadsALL' #rdFC = 'SLCRoads' #tarRds = stageDB + '\\TGR_StWide_lkA' tarRds = stageDB + '\\TGR49035lkA' #----Remove empty spaces from roads---------------------------------------------------------------------------- with arcpy.da.UpdateCursor(rdFC, srcFlds) as rows: for row in rows: for fld in srcFlds: fldX = srcFlds.index(fld) if row[fldX] == ' ': row[fldX] = None rows.updateRow(row) del rows srcRows = arcpy.da.SearchCursor(rdFC, srcFlds) tarRows = arcpy.da.InsertCursor(tarRds, tarFlds) for srcRow in srcRows: #----Prefix Direction---- if srcRow[1] == None: FEDIRP = None else: FEDIRP = srcRow[1] #----Root and Full Street Name---- if srcRow[2] != None: if FEDIRP != None: FULLNAME = (FEDIRP + ' ' + srcRow[2]).title() else: FULLNAME = srcRow[2].title() else: FULLNAME = '' if srcRow[17] != None: FENAME = srcRow[17].replace('HIGHWAY', 'HWY').title() + ' All' else: FENAME = '' #----Street Type---- if srcRow[3] != None: FETYPE = srcRow[3].title() else: FETYPE = '' #----Sufix Direction---- if srcRow[4] != None: FEDIRS = srcRow[4] else: FEDIRS = '' #----CFCC---- if srcRow[0] != None: if srcRow[0] == '1': CFCC = 'A15' if srcRow[0] == '2': CFCC = 'A25' if srcRow[0] == '3': CFCC = 'A21' if srcRow[0] == '4': CFCC = 'A35' if srcRow[0] == '5': CFCC = 'A31' if srcRow[0] == '6': CFCC = 'A41' if srcRow[0] == '7': CFCC = 'A20' if srcRow[0] == '8': CFCC = 'A31' if srcRow[0] == '9': CFCC = 'A41' if srcRow[0] == '10': CFCC = 'A41' if srcRow[0] == '11': CFCC = 'A41' if srcRow[0] == '12': CFCC = 'A41' CFCC1 = 'A' CFCC2 = CFCC[:2] #----From Address Left---- if srcRow[5] != None: FRADDL = str(srcRow[5]).split('.')[0] else: FRADDL = 0 #----To Address Left---- if srcRow[6] != None: TOADDL = str(srcRow[6]).split('.')[0] else: TOADDL = 0 #----From Address Right---- if srcRow[7] != None: FRADDR = str(srcRow[7]).split('.')[0] else: FRADDR = 0 #----To Address Right---- if srcRow[8] != None: TOADDR = str(srcRow[8]).split('.')[0] else: TOADDR = 0 #----FIPS---- if srcRow[13] != None: S_FIPS = srcRow[13] else: S_FIPS = '' #----AGRC M Date---- if srcRow[15] != None: AGRC_MDATE = srcRow[15] else: AGRC_MDATE = '1/1/1000' #----Address System---- if srcRow[16] != None: ADDRESS_SY = srcRow[16] else: ADDRESS_SY = '' shp = srcRow[18] #----Has Alt Name---- if srcRow[9] != None: HASALT = 1 ISALT = 0 elif srcRow[12] != None: HASALT = 1 ISALT = 0 else: HASALT = 0 ISALT = 0 tarRows.insertRow((FEDIRP, FENAME, FETYPE, FEDIRS, CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, HASALT, \ ISALT, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) #----Add Duplicate Interstates---- if srcRow[0] == '1': usFENAME = srcRow[14] if FEDIRP != None: FULLNAME = FEDIRP + ' ' + usFENAME else: FULLNAME = usFENAME tarRows.insertRow((FEDIRP, usFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \ 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) #----Add Duplicate US Highways---- if srcRow[0] == '2' or srcRow[0] == '3': usFENAME = srcRow[14] + ' US Z' if FEDIRP != None: FULLNAME = FEDIRP + ' ' + usFENAME else: FULLNAME = usFENAME tarRows.insertRow((FEDIRP, usFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \ 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) if srcRow[14].split()[0] == 'US': hwyFENAME = 'Hwy ' + srcRow[14].split()[1] + ' US Z2' if FEDIRP != None: FULLNAME = FEDIRP + ' ' + hwyFENAME else: FULLNAME = hwyFENAME tarRows.insertRow((FEDIRP, hwyFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \ 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) #----Add Duplicate State Highways---- if srcRow[0] == '4' or srcRow[0] == '5' or srcRow[0] == '6': if srcRow[14] != None: srFENAME = srcRow[14] + ' SR Z' if FEDIRP != None: FULLNAME = FEDIRP + ' ' + srFENAME else: FULLNAME = srFENAME tarRows.insertRow((FEDIRP, srFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \ 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) if srcRow[14].split()[0] == 'SR': if srcRow[14].split()[1] != '201': hwyFENAME = 'Hwy ' + srcRow[14].split()[1] + ' SR Z2' if FEDIRP != None: FULLNAME = FEDIRP + ' ' + hwyFENAME else: FULLNAME = hwyFENAME tarRows.insertRow((FEDIRP, hwyFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \ 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) #----Add Duplicate Alias and ACSAlias---- if srcRow[9] != None: if srcRow[9] != '': if srcRow[9][:7] != 'HIGHWAY': alsFENAME = srcRow[9] + ' ALS Z' if FEDIRP != None: FULLNAME = FEDIRP + ' ' + alsFENAME + ' ' + FEDIRS else: alsFENAME + ' ' + FEDIRS tarRows.insertRow((FEDIRP, alsFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, \ FULLNAME, 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) if srcRow[12] != None: acsFENAME = srcRow[12] + ' ACS Z' if FEDIRP != None: FULLNAME = FEDIRP + ' ' + acsFENAME + ' ' + FEDIRS else: FULLNAME = acsFENAME + ' ' + FEDIRS tarRows.insertRow((FEDIRP, acsFENAME, '', '', CFCC, FRADDL, TOADDL, FRADDR, TOADDR, CFCC1, CFCC2, FULLNAME, \ 0, 1, S_FIPS, AGRC_MDATE, ADDRESS_SY, shp)) del tarRows del srcRows #---Copy Roads to Blues Stakes root level----------------- # arcpy.CopyFeatures_management(tarRds, outLoc + '\\TGR_StWide_lka.shp') #---Clip Blue Stakes Roads----------------------------------------------------------- # clip(tarRds, 'lkA.shp'); print 'Done Translating Roads ' + str(datetime.datetime.now()) #------------------------------------------------------------------------------------------------------------------------------------------- def municipalities(): print 'Starting Municipalities ' + str(datetime.datetime.now()) muni = sgid10_GEO + '\\Municipalities' muniBS = stageDB + '\\TGR_StWide_plc00' clpCnty = 'SGID10.BOUNDARIES.Counties' #---Check for Municipalites in SGID10_GEOGRAPHIC staging area arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Municipalities', muni) #---Check for statewide municipalities BlueStakes schema if not arcpy.Exists(muniBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCplc00_schema', muniBS) else: arcpy.DeleteFeatures_management(muniBS) srcFlds = ['NAME', 'SHAPE@'] tarFlds = ['NAME', 'SHAPE@'] cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(muni, srcFlds) tarRows = arcpy.da.InsertCursor(muniBS, tarFlds) for srcRow in srcRows: NAME = srcRow[0] shp = srcRow[1] tarRows.insertRow((NAME, shp)) del tarRows #---Copy Municipalities to Blues Stakes root level arcpy.CopyFeatures_management(muniBS, outLoc + '\\TGR_StWide_plc00.shp') #---Clip Blue Stakes Municipalities----------------------------------------------------------- clip(muniBS, 'plc00.shp'); print 'Done Translating Municipalities ' + str(datetime.datetime.now()) #------------------------------------------------------------------------------------------------------------------------------------------- def mileposts(): print 'Starting Mileposts ' + str(datetime.datetime.now()) arcpy.env.overwriteOutput = True milePosts = sgid10_GEO + '\\UDOTMilePosts' exits = sgid10_GEO + '\\Roads_FreewayExits' milePostsBS = stageDB + '\\Hwy_MPM' #---Copy new Exits and Mileposts to Staging DB arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.Roads_FreewayExits', exits) arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.UDOTMileposts', milePosts) print 'Copied SGID10.TRANSPORTATION.Roads_FreewayExits to staging DB' print 'Copied SGID10.TRANSPORTATION.UDOTMileposts to staging DB' #---Check for Mileposts BlueStakes schema if not arcpy.Exists(milePostsBS): arcpy.CopyFeatures_management(schemaDB + '\\Hwy_MPM', milePostsBS) else: arcpy.DeleteFeatures_management(milePostsBS) srcMP_Flds = ['RT_NAME', 'MILEPOST', 'CARTO', 'SHAPE@'] srcEX_Flds = ['EXITNAME', 'SHAPE@'] tarFlds = ['Type', 'Label_Name', 'SHAPE@'] srcMP_Rows = arcpy.da.SearchCursor(milePosts, srcMP_Flds) srcEX_Rows = arcpy.da.SearchCursor(exits, srcEX_Flds) tarRows = arcpy.da.InsertCursor(milePostsBS, tarFlds) #----Add Milepost Records-------------------------------------------------------- for srcMP_Row in srcMP_Rows: Type = 'mpm' hwyDig1 = srcMP_Row[0][3:4] hwyDig2 = srcMP_Row[0][2:4] hwyDig3 = srcMP_Row[0][1:4] if srcMP_Row[2] == '1': Label_Name = 'I-{0} milepost {1}'.format(hwyDig2, srcMP_Row[1]) else: if srcMP_Row[0][2] == '0': Label_Name = 'Hwy {0} milepost {1}'.format(hwyDig1, srcMP_Row[1]) elif srcMP_Row[0][1] == '0': Label_Name = 'Hwy {0} milepost {1}'.format(hwyDig2, srcMP_Row[1]) else: Label_Name = 'Hwy {0} milepost {1}'.format(hwyDig3, srcMP_Row[1]) shp = srcMP_Row[3] tarRows.insertRow((Type, Label_Name, shp)) #----Add Exit Records------------------------------------------------------------- for srcEX_Row in srcEX_Rows: Type = 'epm' if srcEX_Row[0].split()[0] == 'SR': Label_Name = 'Hwy ' + ' '.join(srcEX_Row[0].split()[1:]) elif srcEX_Row[0].split()[0] == 'US': Label_Name = 'Hwy ' + ' '.join(srcEX_Row[0].split()[1:]) else: Label_Name = srcEX_Row[0] shp = srcEX_Row[1] tarRows.insertRow((Type, Label_Name, shp)) del tarRows #----Copy Mileposts to shapefile-------------------------------------------------- if arcpy.Exists(outLoc + '\\Hwy_MPM.shp'): arcpy.Delete_management(outLoc + '\\Hwy_MPM.shp') arcpy.FeatureClassToShapefile_conversion(milePostsBS, outLoc) else: arcpy.FeatureClassToShapefile_conversion(milePostsBS, outLoc) print 'Done Translating Mileposts ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------- def landownershipLarge(): print 'Starting Large Landownership ' + str(datetime.datetime.now()) landown = sgid10_GEO + '\\LandOwnership' parks = sgid10_GEO + '\\Parks' cemeteries = sgid10_GEO + '\\Cemeteries' golf = sgid10_GEO + '\\GolfCourses' landownBS = stageDB + '\\TGR_StWide_lpy' clpCnty = 'SGID10.BOUNDARIES.Counties' #---Add new Landownership, Parks, and Cemeteries to SGID10_GEOGRAPHIC staging area arcpy.CopyFeatures_management('SGID10.CADASTRE.LandOwnership', landown) arcpy.CopyFeatures_management('SGID10.RECREATION.ParksLocal', parks) arcpy.CopyFeatures_management('SGID10.SOCIETY.Cemeteries_Poly', cemeteries) arcpy.CopyFeatures_management('SGID10.RECREATION.GolfCourses', golf) #---Check for statewide Large Landownership BlueStakes schema if not arcpy.Exists(landownBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClpy_schema', landownBS) else: arcpy.DeleteFeatures_management(landownBS) srcLnd_Flds = ['OWNER', 'DESIG', 'LABEL_STATE', 'LABEL_FEDERAL', 'STATE_LGD', 'SHAPE@'] srcPrk_Flds = ['NAME', 'SHAPE@'] srcCem_Flds = ['Name', 'SHAPE@'] srcGlf_Flds = ['NAME', 'SHAPE@'] tarFlds = ['CFCC', 'LANDNAME', 'SHAPE@'] cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] srcLnd_Rows = arcpy.da.SearchCursor(landown, srcLnd_Flds) srcPrk_Rows = arcpy.da.SearchCursor(parks, srcPrk_Flds) srcCem_Rows = arcpy.da.SearchCursor(cemeteries, srcCem_Flds) srcGlf_Rows = arcpy.da.SearchCursor(golf, srcGlf_Flds) tarRows = arcpy.da.InsertCursor(landownBS, tarFlds) #----Add LandOwn features------------------------------------- for srcLnd_Row in srcLnd_Rows: if srcLnd_Row[0] == 'Tribal': CFCC = 'D40' if srcLnd_Row[3] != None: LANDNAME = srcLnd_Row[3] else: LANDNAME = srcLnd_Row[4] shp = srcLnd_Row[5] tarRows.insertRow((CFCC, LANDNAME, shp)) if srcLnd_Row[1] == 'Military': CFCC = 'D10' if srcLnd_Row[3] != None: LANDNAME = srcLnd_Row[3] else: LANDNAME = srcLnd_Row[4] shp = srcLnd_Row[5] tarRows.insertRow((CFCC, LANDNAME, shp)) if srcLnd_Row[1] == 'National Historic Site' or srcLnd_Row[1] == 'National Monument' \ or srcLnd_Row[1] == 'National Park' or srcLnd_Row == 'National Recreation Area': CFCC = 'D83' if srcLnd_Row[3] != None: LANDNAME = srcLnd_Row[3] else: LANDNAME = srcLnd_Row[4] shp = srcLnd_Row[5] tarRows.insertRow((CFCC, LANDNAME, shp)) if srcLnd_Row[1] == 'National Forest': CFCC = 'D84' if srcLnd_Row[3] != None: LANDNAME = srcLnd_Row[3] else: LANDNAME = srcLnd_Row[4] shp = srcLnd_Row[5] tarRows.insertRow((CFCC, LANDNAME, shp)) if srcLnd_Row[1] == 'Primitive Area' or srcLnd_Row[1] == 'Wilderness' or srcLnd_Row[1] == 'Wildlife Reserve/Management Area' \ or srcLnd_Row[1] == 'National Wildlife Refuge': CFCC = 'D89' if srcLnd_Row[3] != None: LANDNAME = srcLnd_Row[3] else: LANDNAME = srcLnd_Row[4] shp = srcLnd_Row[5] tarRows.insertRow((CFCC, LANDNAME, shp)) if srcLnd_Row[1] == 'Parks and Recreation': CFCC = 'D85' if srcLnd_Row[3] != None: LANDNAME = srcLnd_Row[3] else: LANDNAME = srcLnd_Row[4] shp = srcLnd_Row[5] tarRows.insertRow((CFCC, LANDNAME, shp)) #----Add Parks-------------------------------------------- for srcPrk_Row in srcPrk_Rows: CFCC = 'D85' if srcPrk_Row[0] != None: LANDNAME = srcPrk_Row[0] else: LANDNAME = '' shp = srcPrk_Row[1] tarRows.insertRow((CFCC, LANDNAME, shp)) #----Add Cemeteries-------------------------------------------- for srcCem_Row in srcCem_Rows: CFCC = 'D82' if srcCem_Row[0] != None: LANDNAME = srcCem_Row[0] else: LANDNAME = '' shp = srcCem_Row[1] tarRows.insertRow((CFCC, LANDNAME, shp)) del tarRows arcpy.CopyFeatures_management(landownBS, outLoc + '\\TGR_StWide_lpy.shp') #---Clip Blue Stakes Misc Transportation----------------------------------------------------------- clip(landownBS, 'lpy.shp'); print 'Done Translating Large Landownership ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------------------- def waterPoly(): print 'Starting Lakes ' + str(datetime.datetime.now()) lakes = sgid10_GEO + '\\LakesNHDHighRes' lakesBS = stageDB + '\\TGR_StWide_wat' #---Copy lakesNHD to SGID10_GEOGRAPHIC staging area # arcpy.CopyFeatures_management('SGID10.WATER.LakesNHDHighRes', lakes) #---Check for statewide lakes BlueStakes schema if not arcpy.Exists(lakesBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCWAT_schema', lakesBS) else: arcpy.DeleteFeatures_management(lakesBS) srcFlds = ['FCode', 'GNIS_Name', 'InUtah', 'SHAPE@'] tarFlds = ['CFCC', 'LANDNAME', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(lakes, srcFlds) tarRows = arcpy.da.InsertCursor(lakesBS, tarFlds) for srcRow in srcRows: if srcRow[2] == 1: if srcRow[0] == 36100: CFCC = 'H32' if srcRow[1] != None: LANDNAME = srcRow[1] else: LANDNAME = 'Playa' if srcRow[0] == 39001: CFCC = 'H32' if srcRow[1] != None: LANDNAME = srcRow[1] else: LANDNAME = 'Intermittent Salt Lake/Pond' if srcRow[0] == 39004 or srcRow[0] == 39005 or srcRow[0] == 39006 or srcRow[0] == 39009 or srcRow[0] == 39010: CFCC = 'H30' if srcRow[1] != None: LANDNAME = srcRow[1] else: LANDNAME = 'Lake/Pond' if srcRow[0] == 39012 or srcRow[0] == 43600 or srcRow[0] == 43601 or srcRow[0] == 43607: CFCC = 'H40' if srcRow[1] != None: LANDNAME = srcRow[1] else: LANDNAME = 'Reservoir' if srcRow[0] == 43612: CFCC = 'H40' if srcRow[1] != None: LANDNAME = srcRow[1] else: LANDNAME = 'Sewage Treatment Pond' if srcRow[0] == 43613: CFCC = 'H40' if srcRow[1] != None: LANDNAME = srcRow[1] else: LANDNAME = 'Covered Reservoir' if srcRow[0] == 43616 or srcRow[0] == 43619 or srcRow[0] == 43623 or srcRow[0] == 43624 or srcRow[0] == 43625: CFCC = 'H40' if srcRow[1] != None: LANDNAME = srcRow[1] else: LANDNAME = 'Reservoir' shp = srcRow[3] tarRows.insertRow((CFCC, LANDNAME, shp)) #---Copy Lakes to Blue Stakes root level--------------- arcpy.CopyFeatures_management(lakesBS, outLoc + '\\TGR_StWide_WAT.shp') #---Clip Blue Stakes Misc Transportation----------------------------------------------------------- clip(lakesBS, 'WAT.shp'); print 'Done Translating Lakes ' + str(datetime.datetime.now()) #------------------------------------------------------------------------------------------------------------------------------------------- def waterLines(): print 'Starting Rivers ' + str(datetime.datetime.now()) rivers = sgid10_GEO + '\\StreamsNHD' riversBS = stageDB + '\\TGR_StWide_lkH' arcpy.CopyFeatures_management('SGID10.WATER.StreamsNHDHighRes', rivers) #---Check for Rivers BlueStakes schema if not arcpy.Exists(riversBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkH_schema', riversBS) else: arcpy.DeleteFeatures_management(riversBS) srcFlds = ['GNIS_Name', 'FCode', 'InUtah', 'SHAPE@'] tarFlds = ['FENAME', 'CFCC2', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(rivers, srcFlds) tarRows = arcpy.da.InsertCursor(riversBS, tarFlds) for srcRow in srcRows: if srcRow[2] == 1: if srcRow[1] == 46003: CFCC2 = 'H2' if srcRow[0] != None: FENAME = srcRow[0] else: FENAME = 'unknown' if srcRow[1] != 46003: CFCC2 = 'H1' if srcRow[0] != None: FENAME = srcRow[0] else: FENAME = 'unknown' shp = srcRow[3] tarRows.insertRow((FENAME, CFCC2, shp)) del tarRows #---Copy Rivers to Blue Stakes root level--------------- arcpy.CopyFeatures_management(riversBS, outLoc + '\\TGR_StWide_lkH.shp') #---Clip Blue Stakes Misc Transportation----------------------------------------------------------- clip(riversBS, 'lkH.shp'); print 'Done Translating Rivers ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------------------- def rail(): print 'Starting Railroads ' + str(datetime.datetime.now()) rail = sgid10_GEO + '\\Railroads' railLt = sgid10_GEO + '\\LightRail_UTA' railLt_new = sgid10_GEO + '\\LightRailNewRoutes_UTA' railCommut = sgid10_GEO + '\\CommuterRailRoute_UTA' railCommut_new = sgid10_GEO + '\\CommuterRailNewRoutes_UTA' railBS = stageDB + '\\TGR_StWide_lkB' arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.Railroads', rail) arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.LightRail_UTA', railLt) arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.LightRailNewRoutes_UTA', railLt_new) arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.CommuterRailRoute_UTA', railCommut) arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.CommuterRailNewRoutes_UTA', railCommut_new) #---Check for statewide railroad BlueStakes schema if not arcpy.Exists(railBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkB_schema', railBS) else: arcpy.DeleteFeatures_management(railBS) srcRail_Flds = ['RAILROAD', 'SHAPE@'] srcRailLt_Flds = ['SHAPE@'] srcRailLtNew_Flds = ['SHAPE@'] srcRailCommut_Flds = ['SHAPE@'] srcRailCommutNew_Flds = ['SHAPE@'] tarFlds = ['FENAME', 'CFCC2', 'SHAPE@'] cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] srcRail_Rows = arcpy.da.SearchCursor(rail, srcRail_Flds) srcRailLt_Rows = arcpy.da.SearchCursor(railLt, srcRailLt_Flds) srcRailLtNew_Rows = arcpy.da.SearchCursor(railLt_new, srcRailLtNew_Flds) srcRailCommut_Rows = arcpy.da.SearchCursor(railCommut, srcRailCommut_Flds) srcRailCommutNew_Rows = arcpy.da.SearchCursor(railCommut_new, srcRailCommutNew_Flds) tarRows = arcpy.da.InsertCursor(railBS, tarFlds) #---Add Railroads--------------------------------- for srcRail_Row in srcRail_Rows: if srcRail_Row[0] != 'UTA' and srcRail_Row[0] != 'UT Transit Auth': FENAME = srcRail_Row[0] CFCC2 = 'B1' shp = srcRail_Row[1] tarRows.insertRow((FENAME, CFCC2, shp)) #----Add Light Rail------------------------------------ for srcRailLt_Row in srcRailLt_Rows: FENAME = 'UTA Trax light rail' CFCC2 = 'B1' shp = srcRailLt_Row[0] tarRows.insertRow((FENAME, CFCC2, shp)) #----Add Light New Rail------------------------------------ for srcRailLtNew_Row in srcRailLtNew_Rows: FENAME = 'UTA Trax light rail' CFCC2 = 'B1' shp = srcRailLtNew_Row[0] tarRows.insertRow((FENAME, CFCC2, shp)) #----Add Commuter Rail------------------------------------ for srcRailCommut_Row in srcRailCommut_Rows: FENAME = 'UTA Frontrunner railroad' CFCC2 = 'B1' shp = srcRailCommut_Row[0] tarRows.insertRow((FENAME, CFCC2, shp)) #----Add Commuter New Rail------------------------------------ for srcRailCommutNew_Row in srcRailCommutNew_Rows: FENAME = 'UTA Frontrunner railroad' CFCC2 = 'B1' shp = srcRailCommutNew_Row[0] tarRows.insertRow((FENAME, CFCC2, shp)) del tarRows #---Copy Railroads to Blue Stakes root level---------------------- arcpy.CopyFeatures_management(railBS, outLoc + '\\TGR_StWide_lkB.shp') #---Clip Blue Stakes Airstrips----------------------------------------------------------- clip(railBS, 'lkB.shp'); print 'Done Translating Railroads ' + str(datetime.datetime.now()) #------------------------------------------------------------------------------------------------------------------------------------------- def airstrips(): print 'Starting Airstrips ' + str(datetime.datetime.now()) airstrips = sgid10_GEO + '\\Airports' airstripsBS = stageDB + '\\TGR_StWide_lkD' clpCnty = 'SGID10.BOUNDARIES.Counties' arcpy.CopyFeatures_management('SGID10.TRANSPORTATION.Airports', airstrips) #---Check for statewide airports BlueStakes schema if not arcpy.Exists(airstripsBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkD_schema', airstripsBS) else: arcpy.DeleteFeatures_management(airstripsBS) srcFlds = ['FAC_TYPE', 'FULLNAME', 'SHAPE@'] tarFlds = ['FENAME', 'CFCC2', 'SHAPE@'] cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(airstrips, srcFlds) tarRows = arcpy.da.InsertCursor(airstripsBS, tarFlds) for srcRow in srcRows: if srcRow[0] == 'AIRPORT': if srcRow[0].find('AIRFIELD') != -1: FENAME = srcRow[1].replace('MUNI', 'MUNICIPAL') elif srcRow[0].find('BASE') != -1: FENAME = srcRow[1] else: FENAME = srcRow[1].replace('MUNI', 'MUNICIPAL') + ' ' + srcRow[0] else: FENAME = srcRow[1] CFCC2 = 'D5' shp = srcRow[2] tarRows.insertRow((FENAME, CFCC2, shp)) del tarRows #---Copy Airstrips to Blue Stakes root level------------------------- arcpy.CopyFeatures_management(airstripsBS, outLoc + '\\TRG_StWide_lkD.shp') #---Clip Blue Stakes Airstrips----------------------------------------------------------- clip(airstripsBS, 'lkD.shp'); print 'Done Translating Airstrips ' + str(datetime.datetime.now()) #------------------------------------------------------------------------------------------------------------------------------------------- def miscTransportation(): print 'Starting Misc Transportation ' + str(datetime.datetime.now()) miscTrans = sgid10_GEO + '\\SkiLifts' miscTransBS = stageDB + '\\TGR_StWide_lkC' clpCnty = 'SGID10.BOUNDARIES.Counties' arcpy.CopyFeatures_management('SGID10.RECREATION.SkiLifts', miscTrans) #---Check for statewide municipalities BlueStakes schema if not arcpy.Exists(miscTransBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCClkC_schema', miscTransBS) else: arcpy.DeleteFeatures_management(miscTransBS) srcFlds = ['LIFT_NAME', 'SHAPE@'] tarFlds = ['FENAME', 'CFCC2', 'SHAPE@'] cntyFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(miscTrans, srcFlds) tarRows = arcpy.da.InsertCursor(miscTransBS, tarFlds) for srcRow in srcRows: FENAME = srcRow[0] + ' Ski Lift' CFCC2 = 'C3' shp = srcRow[1] tarRows.insertRow((FENAME, CFCC2, shp)) del tarRows #---Copy Misc Trans to Blue Stakes root level--------------- arcpy.CopyFeatures_management(miscTransBS, outLoc + '\\TGR_StWide_lkC.shp') #---Clip Blue Stakes Misc Transportation----------------------------------------------------------- clip(miscTransBS, 'lkC.shp'); print 'Done Translating Misc Transportation ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------------------------- def townships(): print 'Starting Townships ' + str(datetime.datetime.now()) twnShips = sgid10_GEO + '\\PLSSTownships' twnShipsBS = stageDB + '\\UT_TR' #---Move Townships in SGID10_GEOGRAPHIC staging area ## if arcpy.Exists(muni): ## arcpy.Delete_management(muni) arcpy.CopyFeatures_management('SGID10.CADASTRE.PLSSTownships_GCDB', twnShips) ## else: ## arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Municipalities', muni) #---Check for statewide township BlueStakes schema if not arcpy.Exists(twnShipsBS): arcpy.CopyFeatures_management(schemaDB + '\\UT_TR_schema', twnShipsBS) else: arcpy.DeleteFeatures_management(twnShipsBS) srcFlds = ['BASEMERIDIAN', 'TWNSHPLAB', 'SHAPE@'] tarFlds = ['NAME', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(twnShips, srcFlds) tarRows = arcpy.da.InsertCursor(twnShipsBS, tarFlds) for srcRow in srcRows: NAME = ("SL" if srcRow[0] == "26" else "UI") + " " + srcRow[1] shp = srcRow[2] tarRows.insertRow((NAME, shp)) del tarRows #---Export to shapefile------------------------------------------- outTwnshps = outLoc + '\\UT_TR.shp' arcpy.CopyFeatures_management(twnShipsBS, outTwnshps) flds = arcpy.ListFields(outTwnshps) for fld in flds: if fld.name == 'Shape_Area': arcpy.DeleteField_management(outTwnshps, 'Shape_Area') if fld.name == 'Shape_Leng': arcpy.DeleteField_management(outTwnshps, 'Shape_Leng') print 'Done Translating Townships ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------------------------- def sections(): print 'Starting Sections ' + str(datetime.datetime.now()) sections = sgid10_GEO + '\\PLSSSections' sectionsBS = stageDB + '\\UT_TRS' #---Move Sections to SGID10_GEOGRAPHIC staging area arcpy.CopyFeatures_management('SGID10.CADASTRE.PLSSSections_GCDB', sections) #---Check for statewide BlueStakes sections if not arcpy.Exists(sectionsBS): arcpy.CopyFeatures_management(schemaDB + '\\UT_TRS_schema', sectionsBS) else: arcpy.DeleteFeatures_management(sectionsBS) srcFlds = ['SNUM', 'SHAPE@'] tarFlds = ['NAME', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(sections, srcFlds) tarRows = arcpy.da.InsertCursor(sectionsBS, tarFlds) for srcRow in srcRows: NAME = srcRow[0] shp = srcRow[1] tarRows.insertRow((NAME, shp)) del tarRows #---Export to shapefile------------------------------------------- outSections = outLoc + '\\UT_TRS.shp' arcpy.CopyFeatures_management(sectionsBS, outSections) flds = arcpy.ListFields(outSections) for fld in flds: if fld.name == 'Shape_Area': arcpy.DeleteField_management(outSections, 'Shape_Area') if fld.name == 'Shape_Leng': arcpy.DeleteField_management(outSections, 'Shape_Leng') print 'Done Translating Sections ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------------------------- def deciPoints(): print 'Starting Deci Points (GNIS) ' + str(datetime.datetime.now()) deciPts = sgid10_GEO + '\\GNIS2010' deciPtsBS = stageDB + '\\TGR_StWide_deci' #---Move GNIS to SGID10_GEOGRAPHIC staging area arcpy.CopyFeatures_management('SGID10.LOCATION.PlaceNamesGNIS2010', deciPts) #---Check for statewide Deci Points BlueStakes schema if not arcpy.Exists(deciPtsBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCdeci_schema', deciPtsBS) else: arcpy.DeleteFeatures_management(deciPtsBS) srcFlds = ['NAME', 'SHAPE@'] tarFlds = ['NAME', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(deciPts, srcFlds) tarRows = arcpy.da.InsertCursor(deciPtsBS, tarFlds) for srcRow in srcRows: if srcRow[0] != None: NAME = srcRow[0] else: NAME = '' shp = srcRow[1] tarRows.insertRow((NAME, shp)) del tarRows #---Clip Blue Stakes Deci Points----------------------------------------------------------- clip(deciPtsBS, 'deci.shp'); print 'Done Translating Deci Points (GNIS) ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------------------------- def addedPoints(): print 'Starting Added Points ' + str(datetime.datetime.now()) correctionsPts = sgid10_GEO + '\\CorrectionalFacilities' fireStnPts = sgid10_GEO + '\\FireStations' libraryPts = sgid10_GEO + '\\Libraries' liquorPts = sgid10_GEO + '\\LiquorStores' churchPts = sgid10_GEO + '\\PlacesOfWorship' policePts = sgid10_GEO + '\\PoliceStations' postOfficePts = sgid10_GEO + '\\PostOffices' schoolPts = sgid10_GEO + '\\Schools' mallPts = sgid10_GEO + '\\ShoppingMalls' healthCarePts = sgid10_GEO + '\\HealthCareFacilities' addedPtsBS = stageDB + '\\TGR_StWide_added' #---Move Points to SGID10_GEOGRAPHIC staging area arcpy.CopyFeatures_management('SGID10.SOCIETY.CorrectionalFacilities', correctionsPts) arcpy.CopyFeatures_management('SGID10.SOCIETY.FireStations', fireStnPts) arcpy.CopyFeatures_management('SGID10.SOCIETY.Libraries', libraryPts) arcpy.CopyFeatures_management('SGID10.SOCIETY.LiquorStores', liquorPts) arcpy.CopyFeatures_management('SGID10.SOCIETY.PlacesOfWorship', churchPts) arcpy.CopyFeatures_management('SGID10.SOCIETY.PoliceStations', policePts) arcpy.CopyFeatures_management('SGID10.SOCIETY.PostOffices', postOfficePts) arcpy.CopyFeatures_management('SGID10.SOCIETY.Schools', schoolPts) arcpy.CopyFeatures_management('SGID10.SOCIETY.ShoppingMalls', mallPts) arcpy.CopyFeatures_management('SGID10.HEALTH.HealthCareFacilities', healthCarePts) print 'Done copying features from SGID10 to staging area' #---Check for statewide Deci Points BlueStakes schema if not arcpy.Exists(addedPtsBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCdeci_schema', addedPtsBS) else: arcpy.DeleteFeatures_management(addedPtsBS) tarFlds = ['NAME', 'SHAPE@'] tarRows = arcpy.da.InsertCursor(addedPtsBS, tarFlds) pointFC_List = [correctionsPts, fireStnPts, libraryPts, churchPts, mallPts, healthCarePts] #---Loop through feature classes that have common fields------- for pointFC in pointFC_List: srcFlds = ['NAME', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(pointFC, srcFlds) for srcRow in srcRows: if srcRow[0] != None: if len(srcRow[0]) > 79: NAME = ' '.join(srcRow[0].split()[:-1]).title() else: NAME = srcRow[0].title() else: NAME = '' shp = srcRow[1] tarRows.insertRow((NAME, shp)) print 'Added ' + pointFC liquorFlds = ['TYPE', 'SHAPE@'] policeFlds = ['NAME', 'SHAPE@'] postOfficeFlds = ['TOWN', 'STREET', 'SHAPE@'] schoolFlds = ['INSTITUTION_NAME', 'SHAPE@'] liquorRows = arcpy.da.SearchCursor(liquorPts, liquorFlds) policeRows = arcpy.da.SearchCursor(policePts, policeFlds) postOfficeRows = arcpy.da.SearchCursor(postOfficePts, postOfficeFlds) schoolRows = arcpy.da.SearchCursor(schoolPts, schoolFlds) for liquorRow in liquorRows: if liquorRow[0] != None: NAME = 'Liquor ' + liquorRow[0] else: NAME = 'Liquor Store' shp = liquorRow[1] tarRows.insertRow((NAME, shp)) print 'Added ' + liquorPts for policeRow in policeRows: if policeRow[0] != None: if policeRow[0] == 'UNITED STATES FISH AND WILDLIFE SERVICE - OFFICE OF LAW ENFORCEMENT - BEAR RIVER MIGRATORY BIRD REFUGE': NAME = 'U.S. Fish And Wildlife Service - Law Enforcement - Bear River Bird Refuge' else: NAME = (policeRow[0].title().replace('United States', 'U.S.')) else: NAME = '' shp = policeRow[1] tarRows.insertRow((NAME, shp)) print 'Added ' + policePts for postOfficeRow in postOfficeRows: if postOfficeRow[0] != None: NAME = postOfficeRow[0] + ' Post Office' else: NAME = 'Post Office' shp = policeRow[1] tarRows.insertRow((NAME, shp)) print 'Added ' + postOfficePts for schoolRow in schoolRows: if schoolRow[0] != None: NAME = schoolRow[0].title() else: NAME = '' shp = schoolRow[1] tarRows.insertRow((NAME, shp)) print 'Added ' + schoolPts del tarRows #---Clip Blue Stakes Deci Points----------------------------------------------------------- clip(deciPtsBS, 'deci.shp'); print 'Done Translating Added Points ' + str(datetime.datetime.now()) #---------------------------------------------------------------------------------------------------------------------------------------------- def counties(): print 'Starting Counties ' + str(datetime.datetime.now()) cnty = sgid10_GEO + '\\Counties' utah = sgid10_GEO + '\\Utah' cntyBS = stageDB + '\\TGRSSCCCcty00' cntyBS_All = stageDB + '\\CO49_D90' stateBS = stageDB + '\\ST49_D00' #---Move Counties to SGID10_GEOGRAPHIC staging area arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Counties', cnty) arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Utah', utah) #---Check for County BlueStakes schema if not arcpy.Exists(cntyBS): arcpy.CopyFeatures_management(schemaDB + '\\TGRSSCCCcty00_schema', cntyBS) if not arcpy.Exists(cntyBS_All): arcpy.CopyFeatures_management(schemaDB + '\\CO49_D90_schema', cntyBS_All) if not arcpy.Exists(stateBS): arcpy.CopyFeatures_management(schemaDB + '\\ST49_D00_schema', stateBS) else: arcpy.DeleteFeatures_management(cntyBS) arcpy.DeleteFeatures_management(cntyBS_All) arcpy.DeleteFeatures_management(stateBS) srcFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] srcFldsUT = ['STATE', 'SHAPE@'] cntyFlds = ['COUNTY', 'SHAPE@'] cntyAllFlds = ['NAME', 'ST', 'CO', 'SHAPE@'] stFlds = ['NAME', 'STATE', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(cnty, srcFlds) srcRowsUT = arcpy.da.SearchCursor(utah, srcFldsUT) cntyRows = arcpy.da.InsertCursor(cntyBS, cntyFlds) cntyAllRows = arcpy.da.InsertCursor(cntyBS_All, cntyAllFlds) stRows = arcpy.da.InsertCursor(stateBS, stFlds) #---Create individual county shapefiles-------------------------------------------------------- for srcRow in srcRows: if srcRow[0] != None: COUNTY = srcRow[0] else: COUNTY = '' shp = srcRow[2] cntyRows.insertRow((COUNTY, shp)) del cntyRows arcpy.CopyFeatures_management(cntyBS, outLoc + outCntyShp) #---Copy each county to Bluestakes folder---------- cntyBSRows = arcpy.da.SearchCursor(cntyBS, cntyFlds) for cntyBSRow in cntyBSRows: cntyName = ''.join(cntyBSRow[0].title().split()) fldrPrefix = '\\TGR' outFldr = outLoc + '\\TGR' + fipsDict[cntyName] outCntyShp = fldrPrefix + fipsDict[cntyName] + 'cty00.shp' cntyFL = arcpy.MakeFeatureLayer_management(cntyBS, cntyName + '_FL', " \"COUNTY\" = '{0}' ".format(cntyBSRow[0])) arcpy.CopyFeatures_management(cntyFL, outFldr + outCntyShp) flds = arcpy.ListFields(outFldr + outCntyShp) for fld in flds: if fld.name == 'Shape_Area': arcpy.DeleteField_management(outFldr + outCntyShp, 'Shape_Area') print 'should have deleted area fld' if fld.name == 'Shape_Leng': arcpy.DeleteField_management(outFldr + outCntyShp, 'Shape_Leng') print 'should have deleted leng fld' #---Create Statewide County Shapefile---------------------------------------------------------- for srcRow in srcRows: NAME = srcRow[0] ST = '49' CO = srcRow[1][-3:] shp = srcRow[2] cntyAllRows.insertRow((NAME, ST, CO, shp)) del cntyAllRows cntyBS_All_shp = outLoc + '\\CO49_D90.shp' arcpy.CopyFeatures_management(cntyBS_All, cntyBS_All_shp) flds = arcpy.ListFields(cntyBS_All_shp) for fld in flds: if fld.name == 'Shape_Area': arcpy.DeleteField_management(cntyBS_All_shp, 'Shape_Area') if fld.name == 'Shape_Leng': arcpy.DeleteField_management(cntyBS_All_shp, 'Shape_Leng') #---Create State shapfile-------------------------------------------------------------------- for srcRowUT in srcRowsUT: if srcRowUT[0] == 'Utah': NAME = 'Utah' STATE = '49' shp = srcRowUT[1] stRows.insertRow((NAME, STATE, shp)) del stRows stateBS_shp = outLoc + '\\ST49_D00.shp' arcpy.CopyFeatures_management(stateBS, stateBS_shp) flds = arcpy.ListFields(stateBS_shp) for fld in flds: if fld.name == 'Shape_Area': arcpy.DeleteField_management(stateBS_shp, 'Shape_Area') if fld.name == 'Shape_Leng': arcpy.DeleteField_management(stateBS_shp, 'Shape_Leng') print 'Done Translating Counties ' + str(datetime.datetime.now()) #--------------------------------------------------------------------------------------------------------------------- def addressZones(): print 'Starting Address Zones ' + str(datetime.datetime.now()) addZones = sgid10_GEO + '\\AddressSystemQuadrants' addZonesBS = stageDB + '\\addrsys' #---Add Address Zones to SGID10_GEOGRAPHIC staging area arcpy.CopyFeatures_management('SGID10.LOCATION.AddressSystemQuadrants', addZones) #---Check for Address Zones BlueStakes schema if not arcpy.Exists(addZonesBS): arcpy.CopyFeatures_management(schemaDB + '\\addrsys_schema', addZonesBS) else: arcpy.DeleteFeatures_management(addZonesBS) srcFlds = ['GRID_NAME', 'QUADRANT', 'SHAPE@'] tarFlds = ['NAME', 'SHAPE@'] srcRows = arcpy.da.SearchCursor(addZones, srcFlds) tarRows = arcpy.da.InsertCursor(addZonesBS, tarFlds) for srcRow in srcRows: if srcRow[0] != None: if srcRow[1] != None: NAME = srcRow[0] + ' ' + srcRow[1] else: NAME = srcRow[0] shp = srcRow[2] tarRows.insertRow((NAME, shp)) del tarRows #---Copy Address Zones to Blues Stakes root level arcpy.CopyFeatures_management(addZonesBS, outLoc + '\\addrsys_StWide.shp') #---Clip by county------------------------------------------- clpFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] clpRows = arcpy.da.SearchCursor(clpCnty, clpFlds) for row in clpRows: clpFeat = row[2] #----Delete shapefiles with no features---- clp = arcpy.Clip_analysis(addZonesBS, clpFeat, outLoc + '\\TGR' + row[1] + '\\addrsys' + row[1][-2:] + '.shp') clpCount = int(arcpy.GetCount_management(clp).getOutput(0)) if clpCount < 1: arcpy.Delete_management(clp) flds = arcpy.ListFields(clp) for fld in flds: if fld.name == 'Shape_Area': arcpy.DeleteField_management(clp, 'Shape_Area') if fld.name == 'Shape_Leng': arcpy.DeleteField_management(clp, 'Shape_Leng') print 'Done Translating Municipalities ' + str(datetime.datetime.now()) #---Clip Blue Stakes output, delete empty shapefiles, delete Shape_Leng field----------------------------------------- def clip(clipMe, outNameSuffix): clpCnty = sgid10_GEO + '\\Counties' arcpy.CopyFeatures_management('SGID10.BOUNDARIES.Counties', clpCnty) clpFlds = ['NAME', 'FIPS_STR', 'SHAPE@'] clpRows = arcpy.da.SearchCursor(clpCnty, clpFlds) fldrPrefix = '\\TGR' for row in clpRows: clpFeat = row[2] #----Delete shapefiles with no features---- clp = arcpy.Clip_analysis(clipMe, clpFeat, outLoc + fldrPrefix + row[1] + fldrPrefix + row[1] + outNameSuffix) clpCount = int(arcpy.GetCount_management(clp).getOutput(0)) if clpCount < 1: arcpy.Delete_management(clp) flds = arcpy.ListFields(clp) for fld in flds: if fld.name == 'Shape_Area': arcpy.DeleteField_management(clp, 'Shape_Area') if fld.name == 'Shape_Leng': arcpy.DeleteField_management(clp, 'Shape_Leng') #parcels(); roads(); #municipalities(); #mileposts(); #landownershipLarge(); #waterPoly(); #waterLines(); #rail(); #airstrips(); #miscTransportation(); #addressPoints(); #townships(); #sections(); #deciPoints(); #addedPoints(); #counties(); #addressZones();
[ "zachybeck" ]
zachybeck
5595eba708e5354b7677d7ac6638394192648dee
6322fcae7302c4fe60b14c36a2dfbc5ba7432d8b
/profiles_project/profiles_api/migrations/0002_profilefeeditem.py
8e2bf057cda238c513914d1d003d70ca9b7b03c2
[ "MIT" ]
permissive
Ali1995Askar/profiles-rest-api
abb2b580c6ab451159f3164acc3377a62597da3a
3e1cd11dfc2cd1fc879b3f1adbe720c0ad38999c
refs/heads/master
2023-06-12T13:14:32.028640
2021-07-08T15:22:06
2021-07-08T15:22:06
320,111,987
0
0
null
null
null
null
UTF-8
Python
false
false
789
py
# Generated by Django 3.2.4 on 2021-07-08 14:57 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('profiles_api', '0001_initial'), ] operations = [ migrations.CreateModel( name='ProfileFeedItem', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status_text', models.CharField(max_length=255)), ('created_on', models.DateTimeField(auto_now=True)), ('user_profile', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "ali1995askar@gmail.com" ]
ali1995askar@gmail.com
6e4be48ebd16b05af14ae97508e703148073511e
24b43b336689530ccb9e3b07ff74d21f124c9ebe
/Testing/plot_bound.py
a0a8178372a74a9f40b5ade861aaf06307a0ef5c
[]
no_license
kemalmahmuljin/Pear_Project
3f04a429fd14dfd479a3351d139914dbfbed5cd9
97b34d2f85b47046028a405cb7cc047d12745fca
refs/heads/master
2022-04-19T18:18:13.809935
2020-04-22T08:23:04
2020-04-22T08:23:04
240,002,420
0
0
null
null
null
null
UTF-8
Python
false
false
1,021
py
import matplotlib.pyplot as plt import numpy as np from io import StringIO coords_file = open("coords", 'r') coords_str = coords_file.read() coords_str = coords_str[coords_str.find('\n') + 1:] coords_stream = StringIO(coords_str) coords = np.loadtxt(coords_stream) boundaries_file = open("boundaries", 'r') bound_str = boundaries_file.read() bound_stream = StringIO(bound_str) boundaries = np.loadtxt(bound_stream) ax = plt.axes() for elem in boundaries: x = [coords[int(elem[0])][0], coords[int(elem[1])][0]] y = [coords[int(elem[0])][1], coords[int(elem[1])][1]] if elem[2] == 0: color = 'r' else: color = 'b' ax.arrow(coords[int(elem[0])][0],coords[int(elem[0])][1], coords[int(elem[1])][0]-coords[int(elem[0])][0], coords[int(elem[1])][1]-coords[int(elem[0])][1], head_width=0.002, length_includes_head=True, lw=0.00001, color=color) plt.xlim(0,0.050) plt.ylim(0,0.120) plt.title("Working boundaries 05/03/20") plt.show()
[ "gcapittini@localhost.localdomain" ]
gcapittini@localhost.localdomain
7ed4ad3d5e2ca344f1887ae726701a3e87e4c6ae
41615e2198cd99fdf0c8e473918138cedd05dde4
/flamingoTest/settings.py
d60f4c3f4df0dc035ea6ba3cce3b299b814274ba
[]
no_license
mansi02/flamingoTestBackend
3b08c7d2e0de40a21e1f584663b73dc91d89ccbc
0ffeb7624d174789e2f3975d1bde89a21386b466
refs/heads/main
2023-06-18T20:58:54.357352
2021-06-29T09:57:01
2021-06-29T09:57:01
381,314,255
0
0
null
null
null
null
UTF-8
Python
false
false
3,565
py
""" Django settings for flamingoTest project. Generated by 'django-admin startproject' using Django 3.2.4. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os.path from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-m4reov^nx_q7%=xmvytj3ulnp6m!7tanc9#b93v)9781(h5)44' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['localhost:4200', 'http://localhost;4200', '*'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'corsheaders', 'rest_framework', 'rest_framework.authtoken', 'custom_user' ] MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'flamingoTest.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] CORS_ORIGIN_ALLOW_ALL = True WSGI_APPLICATION = 'flamingoTest.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } AUTH_USER_MODEL = 'custom_user.User' # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = os.path.join(BASE_DIR, 'static/images/') # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
[ "mansi0201@gmail.com" ]
mansi0201@gmail.com
9f2b66930fa1680db4ac6e886f4ab820898c1c59
5e97883ffb0baf1aa837050245afb253d4ad97b1
/backend/blog/models.py
da9f90ea7b43ccf7eec727478bd0ea01c3a41ea6
[ "ISC" ]
permissive
DamQuangKhoa/interview-home-work
1d421710da3bf29c3da3cc3ca54babca8222b792
39bdfa20aba77af2946cc3e796b92fb343584c66
refs/heads/master
2020-12-05T14:32:42.258884
2020-01-08T15:40:40
2020-01-09T19:52:22
232,140,207
0
0
null
2020-01-06T16:26:55
2020-01-06T16:26:54
null
UTF-8
Python
false
false
3,592
py
from django.db import models from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse from taggit.managers import TaggableManager from django.contrib.postgres.fields import ArrayField class PublishedManager(models.Manager): def get_queryset(self): return super(PublishedManager, self).get_queryset()\ .filter(status='published') class PostBlog(models.Model): title = models.CharField(max_length=250) slug = models.SlugField(max_length=250 ) author = models.ForeignKey("UserBlog", related_name='posts', on_delete=models.CASCADE) content = models.TextField() created_at = models.CharField(max_length=250) tags = ArrayField(models.CharField(max_length=80, blank=True), size=5) def __str__(self): return self.title class UserBlog(models.Model): username = models.CharField(unique=True, max_length=50, blank=True, null=True) password = models.CharField(max_length=50, blank=True, null=True) name = models.CharField(max_length=250) created_at = models.CharField(max_length=250) dob = models.CharField(max_length=250) # list_display = [field.name for field in this._meta.get_fields()] class CommentBlog(models.Model): owner = models.ForeignKey(UserBlog, related_name='comments', on_delete=models.CASCADE) post = models.ForeignKey(PostBlog, related_name='posts', on_delete=models.CASCADE) content = models.CharField(max_length=250) created_at = models.CharField(max_length=250) class Post(models.Model): # Our custom manager. tags = TaggableManager() STATUS_CHOICES = ( ('draft', 'Draft'), ('published', 'Published') ) objects = models.Manager() # The default manager. published = PublishedManager() title = models.CharField(max_length=250) slug = models.SlugField(max_length=250, unique_for_date='publish') author = models.ForeignKey(User, related_name='blog_posts', on_delete=models.CASCADE) body = models.TextField() publish = models.DateTimeField(default=timezone.now) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) status = models.CharField(max_length=10, choices=STATUS_CHOICES, default='draft') def get_absolute_url(self): return reverse('blog:post_detail', args=[self.publish.year, self.publish.strftime('%m'), self.publish.strftime('%d'), self.slug]) class Meta: ordering = ('-publish',) def __str__(self): return self.title class Comment(models.Model): post = models.ForeignKey(PostBlog, related_name='comments',on_delete=models.CASCADE) name = models.CharField(max_length=80) email = models.EmailField() body = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) active = models.BooleanField(default=True) class Meta: ordering = ('created',) def __str__(self): return 'Comment by {} on {}'.format(self.name, self.post)
[ "damquangkhoa02@gmail.com" ]
damquangkhoa02@gmail.com
067fa51eb4fa0e09a6621a97ebe17ee42860681d
6b9851216acc29a63fba94a633c9370ed48006ad
/product/migrations/0009_auto_20210501_2216.py
a47acdf6beda36c035bf5093d83079ee96e302ed
[]
no_license
mustafabayarr/Django-E-Commerce
dc07ecc7b417decf6de0cd92b915be9c2e7a9b7a
de2e46f0793f445ca546ed7b2a484092b4a8e024
refs/heads/main
2023-05-30T20:01:44.250290
2021-06-30T19:05:15
2021-06-30T19:05:15
347,505,444
2
0
null
null
null
null
UTF-8
Python
false
false
373
py
# Generated by Django 3.1.7 on 2021-05-01 19:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('product', '0008_comment'), ] operations = [ migrations.AlterField( model_name='category', name='slug', field=models.SlugField(unique=True), ), ]
[ "bayarmustafa151@gmail.com" ]
bayarmustafa151@gmail.com
55312306f0b0073a60e7739ef1e8dcfcfae8c28c
b7fdc9df049029ab043073b06648375da0693737
/accounts/api/urls.py
10dd92abd9b34d381cc753cb4f45cadc0d924160
[]
no_license
karn21/task-manager
c640a6209e20b429ffa4f2307273509184f8396f
77cacd1e6f83de5eba83ec6b350ba71160fc161c
refs/heads/master
2023-08-01T13:42:41.747043
2020-06-06T09:58:17
2020-06-06T09:58:17
263,887,690
0
0
null
2021-09-22T19:01:03
2020-05-14T10:45:29
JavaScript
UTF-8
Python
false
false
381
py
from django.urls import path, include from knox.views import LogoutView from .views import UserAPIView, RegisterAPIView,LoginAPIView urlpatterns = [ path('', include('knox.urls')), path('user', UserAPIView.as_view()), path('register', RegisterAPIView.as_view()), path('login', LoginAPIView.as_view()), path('logout', LogoutView.as_view(), name='knox_logout') ]
[ "karn212000@gmail.com" ]
karn212000@gmail.com
89e353022fef9fffa9f5835f74ae7501b8c1d990
3960fa9721ff97c8da99d010e27118ab0bc1201d
/tests/storage/fake_storage.py
c1437e781c494d82c715effbb93b4b9fafedaf40
[ "Apache-2.0" ]
permissive
iamjoshbinder/plaso
d3ebbc216b4d89c8f8f6ab50f059b6db7bcca599
762aa1d1eb17760ef5e2708a48dff2acad7001ea
refs/heads/master
2021-08-08T13:23:10.146862
2017-11-09T10:44:09
2017-11-09T10:44:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,362
py
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the fake storage.""" import unittest from plaso.containers import errors from plaso.containers import event_sources from plaso.containers import reports from plaso.containers import sessions from plaso.containers import tasks from plaso.lib import definitions from plaso.storage import fake_storage from tests.storage import test_lib class FakeStorageWriterTest(test_lib.StorageTestCase): """Tests for the fake storage writer object.""" def testAddAnalysisReport(self): """Tests the AddAnalysisReport function.""" session = sessions.Session() analysis_report = reports.AnalysisReport( plugin_name=u'test', text=u'test report') storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddAnalysisReport(analysis_report) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddAnalysisReport(analysis_report) def testAddError(self): """Tests the AddError function.""" session = sessions.Session() extraction_error = errors.ExtractionError( message=u'Test extraction error') storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddError(extraction_error) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddError(extraction_error) def testAddEvent(self): """Tests the AddEvent function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEvent(event) def testAddEventSource(self): """Tests the AddEventSource function.""" session = sessions.Session() event_source = event_sources.EventSource() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.AddEventSource(event_source) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEventSource(event_source) def testAddEventTag(self): """Tests the AddEventTag function.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() test_events = self._CreateTestEvents() for event in test_events: storage_writer.AddEvent(event) event_tag = None test_event_tags = self._CreateTestEventTags(test_events) for event_tag in test_event_tags: storage_writer.AddEventTag(event_tag) storage_writer.Close() with self.assertRaises(IOError): storage_writer.AddEventTag(event_tag) def testOpenClose(self): """Tests the Open and Close functions.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.Close() storage_writer.Open() storage_writer.Close() storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK) storage_writer.Open() storage_writer.Close() storage_writer.Open() with self.assertRaises(IOError): storage_writer.Open() storage_writer.Close() with self.assertRaises(IOError): storage_writer.Close() def testGetEvents(self): """Tests the GetEvents function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) events = list(storage_writer.GetEvents()) self.assertEqual(len(events), len(test_events)) storage_writer.Close() # TODO: add tests for GetEventSources. # TODO: add tests for GetEventTags. # TODO: add tests for GetFirstWrittenEventSource and # GetNextWrittenEventSource. def testGetSortedEvents(self): """Tests the GetSortedEvents function.""" session = sessions.Session() test_events = self._CreateTestEvents() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() event = None for event in test_events: storage_writer.AddEvent(event) events = list(storage_writer.GetSortedEvents()) self.assertEqual(len(events), len(test_events)) storage_writer.Close() # TODO: add test with time range. def testWriteSessionStartAndCompletion(self): """Tests the WriteSessionStart and WriteSessionCompletion functions.""" session = sessions.Session() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() storage_writer.WriteSessionStart() storage_writer.WriteSessionCompletion() storage_writer.Close() with self.assertRaises(IOError): storage_writer.WriteSessionStart() with self.assertRaises(IOError): storage_writer.WriteSessionCompletion() storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK) storage_writer.Open() with self.assertRaises(IOError): storage_writer.WriteSessionStart() with self.assertRaises(IOError): storage_writer.WriteSessionCompletion() storage_writer.Close() def testWriteTaskStartAndCompletion(self): """Tests the WriteTaskStart and WriteTaskCompletion functions.""" session = sessions.Session() task = tasks.Task(session_identifier=session.identifier) storage_writer = fake_storage.FakeStorageWriter( session, storage_type=definitions.STORAGE_TYPE_TASK, task=task) storage_writer.Open() storage_writer.WriteTaskStart() storage_writer.WriteTaskCompletion() storage_writer.Close() with self.assertRaises(IOError): storage_writer.WriteTaskStart() with self.assertRaises(IOError): storage_writer.WriteTaskCompletion() storage_writer = fake_storage.FakeStorageWriter(session) storage_writer.Open() with self.assertRaises(IOError): storage_writer.WriteTaskStart() with self.assertRaises(IOError): storage_writer.WriteTaskCompletion() storage_writer.Close() if __name__ == '__main__': unittest.main()
[ "joachim.metz@gmail.com" ]
joachim.metz@gmail.com
e365f14b049d2372740d1366505b2ea8cab392c1
aa520d389a91e68fa61170caeb4ec8f76fad40d3
/testCases/conftest.py
05895d257f4acd64a7f20400fa6650496457a1c2
[]
no_license
arumugam85/Selenium_Python_Allure
5703046b98fcd350b90a50f7ad4a5e5c1b513026
9ec65e79c910daec75d51fb7c96fc52a1c309cef
refs/heads/master
2023-09-04T02:05:00.446419
2021-11-01T02:41:34
2021-11-01T02:41:34
423,153,205
0
0
null
null
null
null
UTF-8
Python
false
false
1,370
py
import datetime import pytest from selenium import webdriver from webdriver_manager.chrome import ChromeDriverManager class BaseClass: def __init__(self, driver): self.driver = driver @pytest.fixture() def test_setup(self): global driver self.driver.implicitly_wait(10) self.driver.maximize_window() yield self.driver.quit() # if browser == 'chrome': # # driver = webdriver.Chrome() # driver = webdriver.Chrome(ChromeDriverManager().install()) # driver.maximize_window() # # elif browser == 'firefox': # driver = webdriver.Firefox() # driver.maximize_window() # # return driver def teardown(self): if driver is None: self.logger.info("***********Test is Destroyed*************") self.logger.info("Test destroyed at " + str(datetime.datetime.now())) # driver.close() yield self.driver.quit() def pytest_addoption(parser): parser.addoption("--browser") @pytest.fixture() def browser(request): return request.config.getoption("--browser") def pytest_configure(config): config._metadata['Project Name'] = 'ECommerce Application' config._metadata['Framework'] = 'PyTest Framework' config._metadata['Language'] = 'Python' config._metadata['Author'] = 'Aru'
[ "rarumugambe@gmail.com" ]
rarumugambe@gmail.com
4fd9bed4328f8591ad62960574eed263df888ec7
f618cb7a1b1f49c02396a2bb969cc7518fd163ab
/doc/_gallery/1_3_1_noisy_chirp_wv.py
ba10a534a72d30bbb4a32f5780d048b7422177fb
[]
no_license
kingjr/pytftb
b968b8e2fc294a19cec8bf63e7d289f368ddf194
0bcacf5eef46bd173d90a23c00a7f4b8ee284b22
refs/heads/master
2021-01-16T22:27:05.587174
2015-06-25T05:16:02
2015-06-25T05:16:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
572
py
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2015 jaidev <jaidev@newton> # # Distributed under terms of the MIT license. """ """ from tftb.generators import fmlin, sigmerge, noisecg from tftb.processing.cohen import WignerVilleDistribution # Generate a chirp signal n_points = 128 fmin, fmax = 0.0, 0.5 signal, _ = fmlin(n_points, fmin, fmax) # Noisy chirp noisy_signal = sigmerge(signal, noisecg(128), 0) # Wigner-Ville spectrum of noisy chirp. wvd = WignerVilleDistribution(noisy_signal) wvd.run() wvd.plot(kind='contour')
[ "deshpande.jaidev@gmail.com" ]
deshpande.jaidev@gmail.com
872d338f6ea05a63f4fdf3aa24e2179ae2df3125
0e039e8aacd1e89b122ae0d5aa0b58da04ae13af
/Python2/matrix_addition1.py
a268fa45c0560cdcda10921358e81e3358326fac
[]
no_license
jaredStevens/python-exercises
0e4013667dd4409c734219558e444bfbf1eb3f06
f5aba9c9db2219a258218457960f841ba58a4f6b
refs/heads/master
2021-09-10T08:29:40.268170
2018-03-22T23:20:44
2018-03-22T23:20:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
216
py
arr1 = [1, 3, 2, 4] arr2 = [5, 2, 1, 0] def addVectors(arr1, arr2): addList = [] for i in range(0, len(arr1)): addList.append(arr1[i] + arr2[i]) return addList print(addVectors(arr1, arr2))
[ "jared.b.stevens@gmail.com" ]
jared.b.stevens@gmail.com
f23a0c46bc7f06f519c46dda30322d02e934272d
9ec431f50fd0e8f3949ea792aa14b11ad1712144
/Modulo 01/exercicos/d008.py
5694b1497cd605daec992565afbbfb0a9f916636
[ "MIT" ]
permissive
euyag/python-cursoemvideo
c3d42ae332e81a9fc9dfc66743df4acee439bff3
d2f684854d926e38ea193816a6c7d2c48d25aa3d
refs/heads/main
2023-08-02T14:32:02.266366
2021-10-01T03:47:40
2021-10-01T03:47:40
379,093,140
2
0
null
null
null
null
UTF-8
Python
false
false
200
py
print('===== DESAFIO 08 =====') m = int(input('digite um valor em metros: ')) cm = m * 100 mi = m * 1000 print(f'{m}m em centimetros equivale a {cm}cm') print(f'{m}m em milimetros equivale a {mi}mm')
[ "clancysla@gmail.com" ]
clancysla@gmail.com
2655406fbba0bc1f5d4ec29aaa0d0d04a1e907b4
bd0d510a9117c65552c9e813fdfcc115dc36d752
/app/__init__.py
3e56b439bba39e686c211fdcd571392e348a4fdd
[]
no_license
grigorevma/test
81a42b1e9f84d0860b915402ef264efef20cc2a8
d1342d909b5359f865df2390611ccc95eacf5143
refs/heads/master
2022-12-21T12:28:16.709713
2019-07-18T16:09:45
2019-07-18T16:09:45
197,398,989
0
0
null
null
null
null
UTF-8
Python
false
false
476
py
from flask import Flask from flask_bootstrap import Bootstrap from flask_sqlalchemy import SQLAlchemy from app.config import config bootstrap = Bootstrap() db = SQLAlchemy() def create_app(config_name): from app.main import main as main_blueprint app = Flask(__name__) app.config.from_object(config[config_name]) config[config_name].init_app(app) bootstrap.init_app(app) db.init_app(app) app.register_blueprint(main_blueprint) return app
[ "grigorevma@bk.ru" ]
grigorevma@bk.ru
685bb881ba505735cab4af01cfd4fd30bc4c0bbd
3592225aaddee6265cb7170e0bea9dc606ee6a7e
/Documents/UCSB_classes/loadtest/bin/rstpep2html.py
6a2a4a3aec25464fb92d7fe7b599b8cc417b3c52
[]
no_license
larssbr/AI_ovinger
d9c059762b1ffa2c7ebe174ebc0298a677507cec
3d2e16c0f291ac0ec2df23cffeb6ef57dd042f56
refs/heads/master
2021-01-20T05:31:45.768631
2015-10-11T16:47:18
2015-10-11T16:47:18
13,295,085
0
0
null
null
null
null
UTF-8
Python
false
false
717
py
#!/Users/larsbrusletto/Documents/UCSB_classes/loadtest/bin/python # $Id: rstpep2html.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing HTML from PEP (Python Enhancement Proposal) documents. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates (X)HTML from reStructuredText-format PEP files. ' + default_description) publish_cmdline(reader_name='pep', writer_name='pep_html', description=description)
[ "larsbrusletto@gmail.com" ]
larsbrusletto@gmail.com
a23e2e8bc24dcfdc8da9c27890d774c829e57699
4494d8b45191f4e323d35ea5e1a65533db41a3b8
/booking/management/commands/startbot.py
658f66b586f6394f49c117e5ff6dbedfe6c7c91a
[]
no_license
AVKashtanov/chatbot
18dd104cd3a477a91befc1306adab6dc6a5a1875
e111e54e6c4129ab08558b410b11e1c3cd74edd2
refs/heads/master
2023-08-16T20:31:34.713813
2021-08-23T01:14:15
2021-08-23T01:14:15
397,475,252
0
0
null
null
null
null
UTF-8
Python
false
false
4,304
py
from django.core.management.base import BaseCommand import telebot from telebot import types from chatbot.settings import TELEGRAM_TOKEN from booking.enums import BookingStages, SocialNetworks from booking.bot import AbstractBot class TelegramBot(AbstractBot): def do_bot(self, **kwargs): bot = telebot.TeleBot(kwargs['token']) print(bot.get_me()) @bot.message_handler(func=lambda message: self.get_current_stage( message.chat.id) == BookingStages.START.value) def text_start(message): bot.send_message( message.chat.id, "Для бронирования введите /start") self.set_stage(message.chat.id, BookingStages.COUNT.value) @bot.message_handler(commands=["start"]) def cmd_start(message): self.save_profile(message.chat.id) state = self.get_current_stage(message.chat.id) if state == BookingStages.COUNT.value: bot.send_message(message.chat.id, "Введите количество гостей.") elif state == BookingStages.TIME.value: bot.send_message( message.chat.id, "Введите время в формате 00:00.") else: bot.send_message( message.chat.id, "Привет, чтобы сделать заказ введите количество гостей!") self.set_stage(message.chat.id, BookingStages.COUNT.value) @bot.message_handler(commands=["reset"]) def cmd_reset(message): bot.send_message( message.chat.id, "Начнем по новой, введите количество гостей.") self.set_stage(message.chat.id, BookingStages.COUNT.value) @bot.message_handler(func=lambda message: self.get_current_stage( message.chat.id) == BookingStages.COUNT.value) def get_count(message): if self.save_count(message.text): bot.send_message( message.chat.id, "Введите время в формате 00:00.") self.set_stage(message.chat.id, BookingStages.TIME.value) else: bot.send_message( message.chat.id, 'Цифрами, пожалуйста.') @bot.message_handler(func=lambda message: self.get_current_stage( message.chat.id) == BookingStages.TIME.value) def get_time(message): if self.save_time(message.text): keyboard = types.InlineKeyboardMarkup() key_yes = types.InlineKeyboardButton(text='Да', callback_data='yes') keyboard.add(key_yes) key_no = types.InlineKeyboardButton(text='Нет', callback_data='no') keyboard.add(key_no) question = 'Подтвердить бронирование?' bot.send_message( message.chat.id, text=question, reply_markup=keyboard) self.set_stage(message.chat.id, BookingStages.START.value) else: bot.send_message( message.chat.id, 'Некорректная дата, пожалуйста, введите в формате 00:00.') @bot.callback_query_handler(func=lambda call: True) def callback_worker(call): if call.data == "yes": self.save_reservation() bot.send_message( call.message.chat.id, 'Место успешно забронировано!') elif call.data == "no": bot.send_message( call.message.chat.id, 'Будем ждать Вас в другой раз!') bot.delete_message(call.message.chat.id, call.message.message_id) bot.polling(none_stop=True, interval=0) class Command(BaseCommand): help = 'Чат-бот' def handle(self, *args, **kwargs): TelegramBot( token=TELEGRAM_TOKEN, social_network=SocialNetworks.TELEGRAM.value )
[ "tema.nkkav@mail.ru" ]
tema.nkkav@mail.ru
e8cff7eef8976183de24a8c81236fe19a69fbaa1
56b7bef4ff86fb30289807d6ac80feb7580fd972
/replay_buffer.py
f351533f56527a36624df1994b976c2d521f065a
[]
no_license
Akshai/rl_collaboration_and_competition
9f80cb51e5eab816e89b585efdc59d6a34a06485
38e818d9a6401ca2e3fdb3d5b451efdd9129d2fb
refs/heads/main
2023-01-13T14:07:53.733535
2020-11-14T03:59:40
2020-11-14T03:59:40
310,808,829
0
0
null
null
null
null
UTF-8
Python
false
false
2,028
py
from collections import namedtuple, deque import numpy as np import torch import random device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class ReplayBuffer(): """Fixed-size buffer to store experience tuples.""" def __init__(self, action_size, buffer_size, batch_size, seed): """Initialize a ReplayBuffer object. Params ====== action_size (int): dimension of each action buffer_size (int): maximum size of buffer batch_size (int): size of each training batch seed (int): Random seed """ random.seed(seed) np.random.seed(seed) self.action_size = action_size self.memory = deque(maxlen=buffer_size) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" e = self.experience(state, action, reward, next_state, done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device) actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device) rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device) next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device) dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device) return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory)
[ "akshai@AKSHAIs-MacBook-Pro.local" ]
akshai@AKSHAIs-MacBook-Pro.local
678ecff1e87f853037d4016cce7439c1431d7128
b0e31216fcf986eaaa51adb973404c766e8042db
/build/search_and_rescue_sim/catkin_generated/pkg.develspace.context.pc.py
916300b574a077774f2edf0e962f289fd546643f
[]
no_license
mateoguaman/RAPDR
8a3f56cc68de17b44e292262e18b3bf204d3dd97
431e2d59b062c900163f55e0cf68d55f927feebf
refs/heads/master
2020-03-28T19:51:30.447935
2018-09-16T14:36:08
2018-09-16T14:36:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
379
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "search_and_rescue_sim" PROJECT_SPACE_DIR = "/home/Mateo/ros_ws/devel" PROJECT_VERSION = "0.0.0"
[ "Evana13G@gmail.com" ]
Evana13G@gmail.com
8b26447125e32014c72172e771be247c148428e0
4e5ddba389409b4b62444a4eac9903635b57e230
/rastervision/backend/fastai_utils.py
1df6d269c2d6389ed6483fbf20a6dceac6cbdc25
[ "Apache-2.0", "LicenseRef-scancode-generic-cla" ]
permissive
blessings-h/raster-vision
cc4804e09f8396f861e1fff8bff3e0a4c4f3d048
65647c710e668ba59951081faa5f379397185d67
refs/heads/master
2021-06-29T18:59:23.823567
2021-01-27T02:05:01
2021-01-27T02:05:01
210,014,893
0
0
null
2019-09-21T16:09:08
2019-09-21T16:09:07
null
UTF-8
Python
false
false
10,285
py
import os from os.path import join import zipfile from typing import Any import warnings from fastai.callbacks import CSVLogger, Callback, SaveModelCallback, TrackerCallback from fastai.metrics import add_metrics from fastai.torch_core import dataclass, torch, Tensor, Optional, warn from fastai.basic_train import Learner from torch.utils.tensorboard import SummaryWriter from rastervision.utils.files import (sync_to_dir) class SyncCallback(Callback): """A callback to sync from_dir to to_uri at the end of epochs.""" def __init__(self, from_dir, to_uri, sync_interval=1): self.from_dir = from_dir self.to_uri = to_uri self.sync_interval = sync_interval def on_epoch_end(self, **kwargs): if (kwargs['epoch'] + 1) % self.sync_interval == 0: sync_to_dir(self.from_dir, self.to_uri, delete=True) class ExportCallback(TrackerCallback): """"Exports the model when monitored quantity is best. The exported model is the one used for inference. """ def __init__(self, learn:Learner, model_path:str, monitor:str='valid_loss', mode:str='auto'): self.model_path = model_path super().__init__(learn, monitor=monitor, mode=mode) def on_epoch_end(self, epoch:int, **kwargs:Any)->None: current = self.get_monitor_value() if (epoch == 0 or (current is not None and self.operator(current, self.best))): print(f'Better model found at epoch {epoch} with {self.monitor} value: {current}.') self.best = current print(f'Exporting to {self.model_path}') self.learn.export(self.model_path) class MySaveModelCallback(SaveModelCallback): """Saves the model after each epoch to potentially resume training. Modified from fastai version to delete the previous model that was saved to avoid wasting disk space. """ def on_epoch_end(self, epoch:int, **kwargs:Any)->None: "Compare the value monitored to its best score and maybe save the model." if self.every=="epoch": self.learn.save(f'{self.name}_{epoch}') prev_model_path = self.learn.path/self.learn.model_dir/f'{self.name}_{epoch-1}.pth' if os.path.isfile(prev_model_path): os.remove(prev_model_path) else: #every="improvement" current = self.get_monitor_value() if current is not None and self.operator(current, self.best): print(f'Better model found at epoch {epoch} with {self.monitor} value: {current}.') self.best = current self.learn.save(f'{self.name}') class MyCSVLogger(CSVLogger): """Logs metrics to a CSV file after each epoch. Modified from fastai version to: - flush after each epoch - append to log if already exists """ def __init__(self, learn, filename='history'): super().__init__(learn, filename) def on_train_begin(self, **kwargs): if self.path.exists(): self.file = self.path.open('a') else: super().on_train_begin(**kwargs) def on_epoch_end(self, epoch, smooth_loss, last_metrics, **kwargs): out = super().on_epoch_end( epoch, smooth_loss, last_metrics, **kwargs) self.file.flush() return out # The following are a set of metric callbacks that have been modified from the # original version in fastai to support semantic segmentation, which doesn't # have the class dimension in position -1. It also adds an ignore_idx # which is used to ignore pixels with class equal to ignore_idx. These # would be good to contribute back upstream to fastai -- however we should # wait for their upcoming refactor of the callback architecture. @dataclass class ConfusionMatrix(Callback): "Computes the confusion matrix." # The index of the dimension in the output and target arrays which ranges # over the different classes. This is -1 (the last index) for # classification, but is 1 for semantic segmentation. clas_idx:int=-1 def on_train_begin(self, **kwargs): self.n_classes = 0 def on_epoch_begin(self, **kwargs): self.cm = None def on_batch_end(self, last_output:Tensor, last_target:Tensor, **kwargs): preds = last_output.argmax(self.clas_idx).view(-1).cpu() targs = last_target.view(-1).cpu() if self.n_classes == 0: self.n_classes = last_output.shape[self.clas_idx] self.x = torch.arange(0, self.n_classes) cm = ((preds==self.x[:, None]) & (targs==self.x[:, None, None])).sum(dim=2, dtype=torch.float32) if self.cm is None: self.cm = cm else: self.cm += cm def on_epoch_end(self, **kwargs): self.metric = self.cm @dataclass class CMScores(ConfusionMatrix): "Base class for metrics which rely on the calculation of the precision and/or recall score." average:Optional[str]="binary" # `binary`, `micro`, `macro`, `weighted` or None pos_label:int=1 # 0 or 1 eps:float=1e-9 # If ground truth label is equal to the ignore_idx, it should be ignored # for the sake of evaluation. ignore_idx:int=None def _recall(self): rec = torch.diag(self.cm) / self.cm.sum(dim=1) rec[rec != rec] = 0 # removing potential "nan"s if self.average is None: return rec else: if self.average == "micro": weights = self._weights(avg="weighted") else: weights = self._weights(avg=self.average) return (rec * weights).sum() def _precision(self): prec = torch.diag(self.cm) / self.cm.sum(dim=0) prec[prec != prec] = 0 # removing potential "nan"s if self.average is None: return prec else: weights = self._weights(avg=self.average) return (prec * weights).sum() def _weights(self, avg:str): if self.n_classes != 2 and avg == "binary": avg = self.average = "macro" warn("average=`binary` was selected for a non binary case. Value for average has now been set to `macro` instead.") if avg == "binary": if self.pos_label not in (0, 1): self.pos_label = 1 warn("Invalid value for pos_label. It has now been set to 1.") if self.pos_label == 1: return Tensor([0,1]) else: return Tensor([1,0]) else: if avg == "micro": weights = self.cm.sum(dim=0) / self.cm.sum() if avg == "macro": weights = torch.ones((self.n_classes,)) / self.n_classes if avg == "weighted": weights = self.cm.sum(dim=1) / self.cm.sum() if self.ignore_idx is not None and avg in ["macro", "weighted"]: weights[self.ignore_idx] = 0 weights /= weights.sum() return weights class Recall(CMScores): "Compute the Recall." def on_epoch_end(self, last_metrics, **kwargs): return add_metrics(last_metrics, self._recall()) class Precision(CMScores): "Compute the Precision." def on_epoch_end(self, last_metrics, **kwargs): return add_metrics(last_metrics, self._precision()) @dataclass class FBeta(CMScores): "Compute the F`beta` score." beta:float=2 def on_train_begin(self, **kwargs): self.n_classes = 0 self.beta2 = self.beta ** 2 self.avg = self.average if self.average != "micro": self.average = None def on_epoch_end(self, last_metrics, **kwargs): prec = self._precision() rec = self._recall() metric = (1 + self.beta2) * prec * rec / (prec * self.beta2 + rec + self.eps) metric[metric != metric] = 0 # removing potential "nan"s if self.avg: metric = (self._weights(avg=self.avg) * metric).sum() return add_metrics(last_metrics, metric) def on_train_end(self, **kwargs): self.average = self.avg def zipdir(dir, zip_path): """Create a zip file from a directory. The zip file contains the contents of dir, but not dir itself. Args: dir: (str) the directory with the content to place in zip file zip_path: (str) path to the zip file """ with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as ziph: for root, dirs, files in os.walk(dir): for file in files: ziph.write(join(root, file), join('/'.join(dirs), os.path.basename(file))) # This code was adapted from # https://github.com/Pendar2/fastai-tensorboard-callback/blob/master/fastai_tensorboard_callback/tensorboard_cb.py @dataclass class TensorboardLogger(Callback): learn:Learner run_name:str histogram_freq:int=100 path:str=None def __post_init__(self): self.path = self.path or os.path.join(self.learn.path, "logs") self.log_dir = os.path.join(self.path, self.run_name) def on_train_begin(self, **kwargs): self.writer = SummaryWriter(log_dir=self.log_dir) def on_epoch_end(self, **kwargs): iteration = kwargs["iteration"] metrics = kwargs["last_metrics"] metrics_names = ["valid_loss"] + [o.__class__.__name__ for o in self.learn.metrics] for val, name in zip(metrics, metrics_names): self.writer.add_scalar(name, val, iteration) def on_batch_end(self, **kwargs): iteration = kwargs["iteration"] loss = kwargs["last_loss"] self.writer.add_scalar("learning_rate", self.learn.opt.lr, iteration) self.writer.add_scalar("momentum", self.learn.opt.mom, iteration) self.writer.add_scalar("loss", loss, iteration) if iteration%self.histogram_freq == 0: for name, param in self.learn.model.named_parameters(): self.writer.add_histogram(name, param, iteration) def on_train_end(self, **kwargs): try: with warnings.catch_warnings(): warnings.simplefilter("ignore") dummy_input = next(iter(self.learn.data.train_dl))[0] self.writer.add_graph(self.learn.model, tuple(dummy_input)) except Exception as e: print("Unable to create graph.") print(e) self.writer.close()
[ "lewfish@gmail.com" ]
lewfish@gmail.com
2f60ba606f3f3ff16f6ce61b7441c7944a9a3939
15f365dc711f2230073391687642498305286321
/Figure plotting/FIG_3.9c)_maximal allowable radial offset.py
d3495aa3b0b50f74b8be071296dbfa7a96ad2f13
[]
no_license
Isabelliuqin/Optical_Levitation_Master_project_final
16d177ee0852361745286d4a5af8eea84aad5845
0ebe133a08a84e3c8521b06c6e9eec2584e0b3cc
refs/heads/master
2023-01-03T13:35:05.753240
2020-11-01T10:13:59
2020-11-01T10:13:59
309,067,970
1
0
null
null
null
null
UTF-8
Python
false
false
2,693
py
# -*- coding: utf-8 -*- """ Created on Sun Nov 1 16:31:57 2020 @author: liuqi """ import scipy as sp import numpy as np from mpl_toolkits.mplot3d import axes3d import matplotlib.pylab as plt import scipy.integrate as spi from scipy.integrate import quad import seaborn from scipy.integrate import odeint from scipy.integrate import dblquad import Will_Module_addwdep as TQ import Module_table_parameter as MTP import time integration_method = 'manual' # 'manual' or 'integrated' grid_size = 100 plt.close('all') ########################### #Our sphere g = 9.8 c = 3 * 10**8 w_0 = 0.85 * 10 ** (-6) Lambda = 1.064 * 10**(-6) z_R = np.pi* w_0 ** 2 / Lambda rho = 30 * 10 ** (-6) n_0 = 1 n_s_n = 0.04 k = 7.6097 n_s = n_s_n - k*1j sig_s = 10.49 * 10 ** 3 * (( 3 ** 3 - 2.25 ** 3) / 3 ** 3 ) #density of sphere in kg/m^3 sig_0 = 0 #density of medium in kg/m^3 m = 4/3 * np.pi * rho ** 3 * ( sig_s - sig_0 ) Permittivity = 8.85 * 10**(-12) #P = 0.5 * c * n_0 * Permittivity #total power of the LG01 beam P = 12 #optimal power required to levitate at w0 = 0.85um ############################################ #FIG 3.9c) maximal allowable radial offset ############################################ #x-axis: x-axis radial offset #y-axis: Qx trapping efficiency #key function: TQ.F_total_manual_integration rho_0x = np.linspace(0,2*rho,100) rho_0 = [0,0] w = np.sqrt(2) * rho #optimal beam radius Qoplist = [] for rho_0xe in rho_0x: F_op = TQ.F_total_manual_integration(rho_0xe,rho_0[1], rho, n_0, n_s, w_0, w, z_R, P , target = "reflective", coordinate = 'x', grid_size = grid_size)['force_total'] #compute Qx at optimal beam radius wop, various radial offsets Q_op = F_op * c / ( n_0 * P ) Qoplist.append(Q_op) plt.plot(rho_0x/rho, np.array(Qoplist), lw=2, c="c", label="w/(sqrt(2)rho) = 1") print ((rho_0x/rho)[np.argmin(abs(np.array(Qoplist)))]) #print the inflection point new_ticks1 = np.linspace(0, 2 , 5) # plot axis print(new_ticks1) plt.xticks(new_ticks1,fontsize=20) plt.yticks(np.linspace(-0.1, 0.05, 4),fontsize=20) plt.rc('xtick',labelsize=20) plt.rc('ytick',labelsize=20) ax = plt.gca() ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data', 0)) ax.spines['bottom'].set_position(('data',0)) plt.legend(loc=1,fontsize=16) plt.xlabel('rho_0x/rho',fontsize=20) plt.ylabel('Qx',fontsize=20) plt.title('rho = 30um, w0 = 0.85um',fontsize=20) plt.grid() plt.show()
[ "qin.liu16@imperial.ac.uk" ]
qin.liu16@imperial.ac.uk
ddc582e23efc50fe80bbdbcbe3f5ee3bd6e77b02
e9a7b9815e217759e2ff23a0abd8384d571f322f
/pyenlone/tasks/__init__.py
e4c6462a242397d4bcdbe96743f7af9996a840ed
[ "MIT" ]
permissive
QPotato/pyenlone
7a1ca0150d474acf092666ac1f29df51289e7512
b3bb9cc708e1ff247243e9ae48fb62ee284e4b94
refs/heads/master
2020-04-28T01:41:39.820679
2019-03-10T18:59:39
2019-03-10T18:59:39
174,867,027
0
0
null
null
null
null
UTF-8
Python
false
false
4,473
py
""" Implements Tasks API methods. More info on: https://wiki.enl.one/doku.php?id=t_basic_documentation """ from typing import List, Optional from .operation import Operation, OpID, OpType, _fix_op_params from .task import Task, TaskID, TaskType, TaskStatus, PortalID, \ _fix_task_params from .._proxy import TokenProxy, KeyProxy from ..enloneexception import NotImplementedByBackendException __all__ = ["Operation", "OpID", "OpType", "Task", "TaskID", "TaskType", "TaskStatus", "PortalID", "Tasks"] class Tasks: """ The main Tasks object. You should create and get operation using it's methods. """ def __init__(self, apikey: Optional[str] = None, voauth: Optional[str] = None, rocks: Optional[str] = None, enlio: Optional[str] = None, google: Optional[str] = None, firebase: Optional[str] = None, cache: int = 0): """ Create the Tasks instance with only one auth method token. """ url = "https://tasks.enl.one" if apikey: self._proxy = KeyProxy(url + "/api", apikey, cache=cache) elif voauth: self._proxy = TokenProxy(url + "/oauth", "VOAuth " + voauth, cache=cache) elif rocks: self._proxy = TokenProxy(url + "/rocks", "Rocks " + rocks, cache=cache) elif enlio: self._proxy = TokenProxy(url + "/enlio", "EnlIO " + enlio, cache=cache) elif google: self._proxy = TokenProxy(url + "/gapi", "Google " + google, cache=cache) elif firebase: self._proxy = TokenProxy(url + "/firebase", "FirebaseJWT " + firebase, cache=cache) def get_operation(self, id: OpID): """ Retrive Operation. """ return Operation(self._proxy, self._proxy.get("/op/" + str(id))) def get_operations(self, **filters) -> List[Operation]: """ Get all operations user is owner, operator or can see. """ _fix_op_params(filters) return [Operation(self._proxy, api_res) for api_res in self._proxy.get("/ops", filters)] def new_operation(self, name: str, op_type: OpType, **params) -> Operation: """ Add new operation. Required parameters are name and type. Aditional initializing arguments can be passes in keyword arguments. """ params["name"] = name params["type"] = op_type _fix_op_params(params) return Operation(self._proxy, self._proxy.post("/op", params)) def search_operations(self, lat: float, lon: float, km: int, **filters) -> List[Operation]: """ Find all operations with tasks in a radius of km from lat/lon visible to the user. Aditional search filters can be passed in keyword arguments. """ _fix_op_params(filters) return [Operation(self._proxy, api_res) for api_res in self._proxy.get("/ops/search" + "/" + str(lat) + "/" + str(lon) + "/" + str(km), filters)] def get_tasks(self, **filters) -> List[Task]: """ Retrieve all tasks visible to the user, from all operations. """ _fix_task_params(filters) return [Task(self._proxy, api_res) for api_res in self._proxy.get("/tasks", filters)] def search_tasks(self, lat: float, lon: float, km: float, **filters) -> List[Task]: """ Find all tasks in a radius of km from lat/lon visible to the user, from all operations. Aditional search filters can be passed in keyword arguments. """ _fix_task_params(filters) raise NotImplementedByBackendException return [Task(self._proxy, api_res) for api_res in self._proxy.get("/tasks/search" + "/" + str(lat) + "/" + str(lon) + "/" + str(km), filters)]
[ "federicobadaloni@hotmail.com" ]
federicobadaloni@hotmail.com
531ed097cb48be9a70ee62b910a57f827acfa168
5209b4ad1f64b41886ab2f53595185eea1fe3dab
/laba 6/13_2.py
24692784933843814f255c0fea9801b841282376
[]
no_license
elochka99/LAbs
74b8b7a68bcdbc8ad7a2de3d9e9eab848564410e
6d7745a298f0dee055d95839b1f979fa14ca219f
refs/heads/master
2021-01-09T06:27:50.622635
2018-04-03T09:32:22
2018-04-03T09:32:22
80,990,384
0
2
null
null
null
null
UTF-8
Python
false
false
1,523
py
# Горохова Елена КНИТ 16-А # Дан текстовый файл f. Записать в файл g компоненты файла f # в обратном порядке, без повторяющихся компонентов. import random while True: try: b = int(input("Введите количество элементов в файле: ")) file_f = open('f.txt', 'w') h = list() for i in range(1, b+1): k = str(random.randint(0, 100)) file_f.write(k +",") h.append(k) file_f.close() file_f = open('f.txt', 'r') file_g = open('g.txt', 'w') str_file = file_f.readlines() h2 = [] for i in h: if i not in h2: h2.append(i) print(h) print(h2) h2.reverse() file_g.write(str(h2) +",") file_g.flush() file_g.close() file_f.flush() file_f.close() file_f = open('f.txt', 'r') file_g = open('g.txt', 'r') print(file_g.read()) file_g.flush() file_f.flush() file_f.close() file_g.close() w = input('\nХотите начать работу с программой заново? [1 - да]: ') if w == '1': print() continue else: print("пока!") break except (ValueError, IndexError, MemoryError): print("введите корректные данные! ")
[ "elochka150899@gmail.com" ]
elochka150899@gmail.com
3f5c239ed4dab8d99cfb4a67e61997dd3bdeab99
1020e655f91b5f3ae5056f3a3006858ddaa92d3a
/modelo2/Script_LoadFiles.py
8c58f59627bb177295813873948282f0b48f04b6
[]
no_license
ivomota/Olho-Passarinho
578200e3c12a4c94c399b0455ef33ed61ca7619c
5b531aebac3c4914f90586f4f163b42773a5b31d
refs/heads/master
2021-01-18T11:25:50.284361
2014-06-28T13:24:19
2014-06-28T13:24:19
15,495,323
1
0
null
null
null
null
UTF-8
Python
false
false
1,376
py
import pickle import numpy as np from bson import json_util import json import itertools def load(filename, verbose=False): # Open file if verbose : print("Loading %s" % filename) pkl_file = open(filename, 'rb') # Load from Pickle file. data = pickle.load(pkl_file) pkl_file.close() return data # file1 = load('data0.pkl') # file2 = load('data1.pkl') # print len(file1) # print len(file2) # file = file1 + file2 # file = load('data_teste.pkl') file = load('tweets_instagram.pkl') print len(file) # Remove duplicates without itertools seen_values = set() new_file = [] other = [] for d in file: value = d["id_str"] if value not in seen_values: new_file.append(d) seen_values.add(value) else: other.append(value) #para debug # print other # print len(other) # f = open('debug.txt', 'w') # f.write(str(other)) # f.close() # Remove duplicates with itertools (nao apaga 2 duplicados) # new_file = [g.next() for k,g in itertools.groupby(file, lambda x: x['id_str'])] #debug # seen_values = set() # other = [] # for d in new_file: # value = d["id_str"] # if value not in seen_values: # seen_values.add(value) # else: # other.append(value) # print other print len(new_file) f = open('tweets_instagram.json', 'w') f_data = json.dumps(new_file, default=json_util.default) f.write(f_data) f.close()
[ "ifvmota@gmail.com" ]
ifvmota@gmail.com
9ec1e3c261193a232d7e2a9c5348f74283e9ee2d
679d4a8966fb516f09b4fd53ffb481159836178a
/Linux/python/bases/BlockList/malwareblacklist/malwareblacklist.py
40b7caf5974f8997f8aba2fc01ad20cc2e9f0d35
[]
no_license
dmitry-demin/docus
b72f58becbca0f8e1fb0fd35328f7176dd87705e
4e64f54ec5b61511cf3130550ca5769b1ab14825
refs/heads/master
2021-09-15T02:20:20.505399
2018-05-24T09:59:09
2018-05-24T09:59:09
104,602,839
0
0
null
null
null
null
UTF-8
Python
false
false
1,880
py
import os import requests from bs4 import BeautifulSoup from datetime import datetime RESULT = [] def geturltext(url): try: r = requests.get(url) except: return '' else: return r.text def process(text): soup = BeautifulSoup(text, 'lxml') table = soup.find("table", {"class" : "Table"}) mlwr = table.find_all('tr')[1:] for ml in mlwr: rows = ml.find_all('td') if(len(rows) > 8): date = rows[0].text url = rows[1].text registrar = rows[2].text ip = rows[3].text asn = rows[4].text hosting = rows[5].text try: cn = rows[6].find('img').get('title') except: cn = '-' dl = rows[7].text submitted = rows[8].text RESULT.append([date, url, registrar, ip, asn, hosting, cn, dl, submitted]) def savetofile(): name = datetime.now().strftime("%Y-%m-%d_%H_%M") + '.csv' f = open(name, 'w') for line in RESULT: f.write((line[0] +', '+ line[1] +', '+ line[2] + ', '+ line[3] +', '+ line[4] +', '+ line[5] + ', '+ line[6] +', '+ line[7] +', '+ line[8]).encode('utf-8').strip() + '\n') f.close() def getTotalPage(text): try: soup = BeautifulSoup(text, 'html.parser') table = soup.find('table') td = table.find_all('a') return int(td[1].text) except: return 0 def main(): url = 'http://www.malwareblacklist.com/showAllMalwareURL.php?pageNo=' firstPageText = geturltext(url+'1') totalPage = getTotalPage(firstPageText) for x in range(totalPage): pageText = geturltext(url + str(x+1)) process(pageText) savetofile() if(__name__ == '__main__'): main()
[ "d.demin@avsw.ru" ]
d.demin@avsw.ru
7213a6bdcd1534875dc8bcf1f6be7e772b3ff2a7
11c331eca50308526ab603bc8ae7ec92f79f2527
/05/script.py
b611ff79b1b15a6b08e10538c56f39de21f82cb1
[]
no_license
ascheets/barba12stepModule
929e5dbe023c9c118fffbe9310f3473583004e1e
f145b6a423ed0ceb0f218622112ea6714cd96583
refs/heads/master
2021-01-10T13:58:19.501494
2016-03-08T06:36:19
2016-03-08T06:36:19
52,310,441
0
0
null
null
null
null
UTF-8
Python
false
false
1,358
py
import numpy as np import sympy #from sympy import init_printing #include these when working with a notebook #init_print(use_latex=True) from sympy.utilities.lambdify import lambdify import matplotlib.pyplot as plt #setting up intial conditions, little more complicated this time... #setting up symbolic variables x, nu, t = sympy.symbols('x nu t') phi = sympy.exp(-(x-4*t)**2/(4*nu*(t+1))) + sympy.exp(-(x-4*t-2*np.pi)**2/(4*nu*(t+1))) phiprime = phi.diff(x) u = -2*nu*(phiprime/phi)+4 ufunc = lambdify((t,x,nu),u) #domain declarations nx = 101 nt = 100 dx = 2*np.pi/(nx-1) nu = 0.07 dt = dx*nu x = np.linspace(0, 2*np.pi, nx) #u = np.empty(nx) un = np.empty(nx) t = 0 u = np.asarray([ufunc(t,x0,nu) for x0 in x]) plt.figure(figsize=(11,7), dpi=100) plt.plot(x,u, marker='o', lw=2) plt.xlim([0,2*np.pi]) plt.ylim([0,10]) plt.show() for n in range(nt): un = u.copy() for i in range(nx-1): u[i] = un[i] -un[i] * dt/dx * (un[i] - un[i-1]) + nu*dt/dx**2*(un[i+1]-2*un[i]+un[i-1]) u[-1] = un[-1] - un[-1] * dt/dx * (un[-1] - un[-2]) + nu*dt/dx**2*(un[0]-2*un[-1]+un[-2]) u_analytical = np.asarray([ufunc(nt*dt, xi, nu) for xi in x]) plt.figure(figsize=(11,7), dpi=100) plt.plot(x,u,marker='o',lw=2,label='Computational') plt.plot(x,u_analytical,label='Analytical') plt.xlim([0,2*np.pi]) plt.ylim([0,10]) plt.legend() plt.show()
[ "ascheets@carthage.edu" ]
ascheets@carthage.edu
f7ab33d7427455b944e63de21bfa2223d505df3c
edde86a5daa8c91d33e0c79854b476213eb7d2ab
/NeuralNetwork/NN.py
e9545983759855283bb3402c5d14f4e49f3fcad6
[]
no_license
tsaxena/DataMining
98d732ba5f8307248af355caed096454ed533b6c
062653419edb9f6e6741ab856943b04f67736ad2
refs/heads/master
2021-01-22T09:32:24.329194
2014-03-24T10:31:17
2014-03-24T10:31:17
17,099,349
1
0
null
null
null
null
UTF-8
Python
false
false
4,787
py
# Back-Propagation Neural Networks # # Written in Python. See http://www.python.org/ import math import random import string random.seed(0) # calculate a random number where: a <= rand < b def rand(a, b): return (b-a)*random.random() + a # Make a matrix (we could use NumPy to speed this up) def makeMatrix(I, J, fill=0.0): m = [] for i in range(I): m.append([fill]*J) return m # our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x) def sigmoid(x): return math.tanh(x) # derivative of our sigmoid function, in terms of the output (i.e. y) def dsigmoid(y): return 1.0 - y**2 class NN: def __init__(self, ni, nh, no): # number of input, hidden, and output nodes self.ni = ni + 1 # +1 for bias node self.nh = nh self.no = no # activations for nodes self.ai = [1.0]*self.ni self.ah = [1.0]*self.nh self.ao = [1.0]*self.no # create weights self.wi = makeMatrix(self.ni, self.nh) self.wo = makeMatrix(self.nh, self.no) # set them to random vaules for i in range(self.ni): for j in range(self.nh): self.wi[i][j] = rand(-0.2, 0.2) for j in range(self.nh): for k in range(self.no): self.wo[j][k] = rand(-2.0, 2.0) # last change in weights for momentum self.ci = makeMatrix(self.ni, self.nh) self.co = makeMatrix(self.nh, self.no) def update(self, inputs): if len(inputs) != self.ni-1: raise ValueError, 'wrong number of inputs' # input activations for i in range(self.ni-1): #self.ai[i] = sigmoid(inputs[i]) self.ai[i] = inputs[i] # hidden activations for j in range(self.nh): summ = 0.0 for i in range(self.ni): summ = summ + self.ai[i] * self.wi[i][j] self.ah[j] = sigmoid(summ) # output activations for k in range(self.no): summ = 0.0 for j in range(self.nh): summ = summ + self.ah[j] * self.wo[j][k] self.ao[k] = sigmoid(summ) return self.ao[:] def backPropagate(self, targets, N, M): if len(targets) != self.no: raise ValueError, 'wrong number of target values' # calculate error terms for output output_deltas = [0.0] * self.no for k in range(self.no): error = targets[k]-self.ao[k] output_deltas[k] = dsigmoid(self.ao[k]) * error # calculate error terms for hidden hidden_deltas = [0.0] * self.nh for j in range(self.nh): error = 0.0 for k in range(self.no): error = error + output_deltas[k]*self.wo[j][k] hidden_deltas[j] = dsigmoid(self.ah[j]) * error # update output weights for j in range(self.nh): for k in range(self.no): change = output_deltas[k]*self.ah[j] self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k] self.co[j][k] = change #print N*change, M*self.co[j][k] # update input weights for i in range(self.ni): for j in range(self.nh): change = hidden_deltas[j]*self.ai[i] self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j] self.ci[i][j] = change # calculate error error = 0.0 for k in range(len(targets)): error = error + 0.5*(targets[k]-self.ao[k])**2 return error def test(self, patterns): for p in patterns: print p[0], '->', self.update(p[0]) def weights(self): print 'Input weights:' for i in range(self.ni): print self.wi[i] print print 'Output weights:' for j in range(self.nh): print self.wo[j] def train(self, patterns, iterations=1000, N=0.5, M=0.1): # N: learning rate # M: momentum factor for i in xrange(iterations): error = 0.0 for p in patterns: inputs = p[0] targets = p[1] self.update(inputs) error = error + self.backPropagate(targets, N, M) if i % 100 == 0: pass #print 'error %-14f' % error def demo(): # Teach network XOR function pat = [ [[0,0], [0]], [[0,1], [1]], [[1,0], [1]], [[1,1], [0]] ] # create a network with two input, two hidden, and one output nodes n = NN(2, 2, 1) # train it with some patterns n.train(pat) # test it n.test(pat) if __name__ == '__main__': demo()
[ "tripti.saxena@gmail.com" ]
tripti.saxena@gmail.com
6e55fa66ccf8d5e6285a3c09ed9d349ae202f5b5
e8e72708f435459d60fe38bdaf528b8c8be1c10e
/ACDNE_codes/ACDNE_test_citation.py
9d2e4441ac77e8ca3c342772226dcd12cdf5fca7
[]
no_license
shenxiaocam/ACDNE
2842710360aef172505a7d9dc1cfe152c87f9729
b3cafed35a75c5c087d5b1ad5667a6bfaee19992
refs/heads/master
2023-08-25T04:37:39.084778
2021-10-31T12:57:57
2021-10-31T12:57:57
278,086,067
16
2
null
null
null
null
UTF-8
Python
false
false
2,974
py
# -*- coding: utf-8 -*- """ Created on Mon May 27 18:16:14 2019 @author: SHEN xiao Please cite our paper as: "Xiao Shen, Quanyu Dai, Fu-lai Chung, Wei Lu, and Kup-Sze Choi. Adversarial Deep Network Embedding for Cross-Network Node Classification. In Proceedings of AAAI Conference on Artificial Intelligence (AAAI), pages 2991-2999, 2020." """ import numpy as np import tensorflow as tf import utils from evalModel import train_and_evaluate import scipy.io from scipy.sparse import lil_matrix tf.set_random_seed(0) np.random.seed(0) source= 'citationv1' target = 'dblpv7' emb_filename=str(source)+'_'+str(target) Kstep=3 #################### # Load source data #################### A_s, X_s, Y_s= utils.load_network('./input/'+str(source)+'.mat') '''compute PPMI''' A_k_s=utils.AggTranProbMat(A_s, Kstep) PPMI_s=utils.ComputePPMI(A_k_s) n_PPMI_s=utils.MyScaleSimMat(PPMI_s) # row normalized PPMI X_n_s=np.matmul(n_PPMI_s,lil_matrix.toarray(X_s)) #neibors' attribute matrix #################### # Load target data #################### A_t, X_t, Y_t = utils.load_network('./input/'+str(target)+'.mat') '''compute PPMI''' A_k_t=utils.AggTranProbMat(A_t, Kstep) PPMI_t=utils.ComputePPMI(A_k_t) n_PPMI_t=utils.MyScaleSimMat(PPMI_t) # row normalized PPMI X_n_t=np.matmul(n_PPMI_t,lil_matrix.toarray(X_t)) #neibors' attribute matrix ##input data input_data=dict() input_data['PPMI_S']=PPMI_s input_data['PPMI_T']=PPMI_t input_data['attrb_S']=X_s input_data['attrb_T']=X_t input_data['attrb_nei_S']=X_n_s input_data['attrb_nei_T']=X_n_t input_data['label_S']=Y_s input_data['label_T']=Y_t ###model config config=dict() config['clf_type'] = 'multi-label' config['dropout'] = 0.5 config['num_epoch'] = 30 #maximum training iteration config['batch_size'] = 100 config['n_hidden'] = [512,128] #dimensionality for each k-th hidden layer of FE1 and FE2 config['n_emb'] = 128 #embedding dimension d config['l2_w'] = 1e-3 #weight of L2-norm regularization config['net_pro_w'] = 0.1 #weight of pairwise constraint config['emb_filename'] =emb_filename #output file name to save node representations config['lr_ini'] = 0.02 #initial learning rate numRandom=5 microAllRandom=[] macroAllRandom=[] print ('source and target networks:',str(source),str(target)) for random_state in range(numRandom): print("%d-th random initialization " %(random_state+1)) micro_t,macro_t=train_and_evaluate(input_data, config, random_state) microAllRandom.append(micro_t) macroAllRandom.append(macro_t) '''avg F1 scores over 5 random splits''' micro=np.mean(microAllRandom) macro=np.mean(macroAllRandom) micro_sd=np.std(microAllRandom) macro_sd=np.std(macroAllRandom) print("The avergae micro and macro F1 scores over %d random initializations are: %f +/- %f and %f +/- %f: " %(numRandom, micro, micro_sd, macro, macro_sd))
[ "noreply@github.com" ]
noreply@github.com
68669534022a93c0233112c770390a258c0a4e33
7802a0f4753c0e40075613ba51da680a61bcaf57
/first_half/4main.py
605940334833a2134f07726555f0e82e30bf54ba
[]
no_license
SHOGO0727/NTTcom_MobProgramming_1215
cd65052b762aeba76c7aa96197cbb4eac160e096
6862ceb6e4cd616b181ffbddf2758914988ae25e
refs/heads/master
2020-11-24T14:06:17.875744
2019-12-15T13:01:59
2019-12-15T13:01:59
228,184,336
0
0
null
null
null
null
UTF-8
Python
false
false
858
py
import csv #16,16 #32,128 CPU_host = [] Mem_host = [] with open("./hv_list.csv") as f: reader = csv.reader(f) for r in reader: CPU_host.append(int(r[0])) Mem_host.append(int(r[1])) print("CPU_host", CPU_host) print("Mem_host", Mem_host) while True: CPU_vm,Mem_vm = map(int,input().split(" ")) print("CPU_vm", CPU_vm) print("Mem_vm", Mem_vm) #違う CPU_max = max(CPU_host) print("CPU_max", CPU_max) # CPU_max_index = CPU_host.index(CPU_max); print("CPU_max_index", CPU_max_index) if CPU_vm <= CPU_host[CPU_max_index] and Mem_vm <= Mem_host[CPU_max_index]: print("OK") print("allocate to HV"+str(CPU_max_index)) CPU_host[CPU_max_index] -= CPU_vm Mem_host[CPU_max_index] -= Mem_vm print("CPU_host", CPU_host) print("Mem_host", Mem_host) else: print("NG")
[ "noreply@github.com" ]
noreply@github.com
3c78c0879f7c9609622997bcf931015ec8e28650
245bb90e89d479b27927a06fb3d0fbae29ce6d08
/JLS731/JLS731/LoadRawData.py
2e047eae6c3241c61e360743a2ddd2c45eb62013
[]
no_license
jls731/final_project
5745b79648f4ac922a702c8797d4f34d48fcb58f
4e895bd0d15bfdbad58ed39e8c972d544e7b8164
refs/heads/master
2020-12-03T02:13:47.576953
2015-05-12T01:49:44
2015-05-12T01:49:44
35,075,441
0
0
null
2015-05-05T03:23:17
2015-05-05T03:23:17
null
UTF-8
Python
false
false
1,008
py
''' Created by: Joseph Song Last version on: 5/11/2015 Description: Has the functions needed to load csv, xls, and FRED data. ''' import pandas.io.data as web import pandas as pd import datetime def loadfreddata(ticker): '''Loads the FRED Data from the St. Louis Fed Website as a dataframe''' start = datetime.datetime(1998,12,1) end = datetime.datetime(2015,3,1) data = web.DataReader(ticker, "fred", start, end) return data def loadcsvdata(filename, datecol): '''Loads the CSV Data as a dataframe''' parsedate = lambda x: pd.to_datetime(x) dataset = pd.read_csv(filename, parse_dates = datecol, date_parser = parsedate) return dataset def loadxlsdata(filename): '''Loads the excel files as a dataframe''' data = pd.read_excel(filename, sheetname = 0) return data ''' import urllib2 import numpy as np x = loadcsvdata('NFP.csv', ['Date', 'NFP_Release']) print x x = loadcsvdata('NF.csv', ['Date', 'NFP_Release']) print x.info() print x '''
[ "jls731@nyu.edu" ]
jls731@nyu.edu
d5a12a01f55e04a1cee8ab7374e30fd2d4ec25df
7f9961edb9113250a7890c6a174fca39d6eeafa6
/read_xls.py
f5ca1becbc37773ee6396a230395f176e5694348
[]
no_license
memgoon/shelf_map_test
523179ff2c806884857bdb41bb47757e95061b11
51a9b44cf9d84288b75fa73f71ec7c76a165a15c
refs/heads/master
2021-01-23T20:38:46.906833
2015-11-21T07:40:01
2015-11-21T07:40:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
752
py
import xlrd import os os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'shelf_map.settings') import django django.setup() import shelf_map.models from django.core.exceptions import ValidationError def main(): workbook = xlrd.open_workbook('static/1자료실.xlsx') workbook_index = workbook.sheet_by_index(0) for i in range(0, int(workbook_index.nrows/2)): major_id_list = workbook_index.row_values(2*i) minor_id_list = workbook_index.row_values(2*i+1) for j in range(0, len(major_id_list)): try: shelf_map.models.create_shelf(chr(j+65), str(i/2+1), major_id_list[j], minor_id_list[j]) except ValidationError: continue if __name__ == '__main__': main()
[ "darkdakku@gmail.com" ]
darkdakku@gmail.com
88c3528812a6cced3d9be4f57629574a5bd8e20a
e501c170759e929742eb366a65b1bc5a1d3cb915
/automan/api/projects/storages/models.py
bda66593e4bfe533f40fe03ba4706d9e7745cbac
[]
no_license
tier4/AutomanTools
75e8062d6ac2cd7c6cfc530ad7d079a9d65f9ca1
8053e9a2c2dffc1f444088a3ff7c156f12fe8152
refs/heads/master
2023-01-24T12:52:35.286041
2021-01-05T08:07:25
2021-01-05T08:07:25
192,694,079
65
31
null
2023-01-16T17:01:17
2019-06-19T08:45:18
JavaScript
UTF-8
Python
false
false
449
py
# -*- coding: utf-8 -*- from django.db import models from django.utils import timezone from projects.models import Projects class Storage(models.Model): storage_type = models.CharField(max_length=45) storage_config = models.CharField(max_length=511) created_at = models.DateTimeField(default=timezone.now) updated_at = models.DateTimeField(default=timezone.now) project = models.ForeignKey(Projects, on_delete=models.CASCADE)
[ "eiji.sekiya.0326@gmail.com" ]
eiji.sekiya.0326@gmail.com
7c9dbe37ca506ea5cece40cc3421204f71a0c55f
a9c5d348a96fa960ce17f7c7e8b61062ff1e5a85
/Day5/Day5Activities.py
41570900630c99eb627c24027162983f375201cb
[ "BSD-3-Clause" ]
permissive
cdcox/PythonClassScripts
f094155bb25f7bd065b01002203989eafb58db36
77c1c22d68f342a0bb380fbda3abb7a903b2e1f7
refs/heads/master
2020-05-17T14:38:35.430980
2013-07-24T19:58:59
2013-07-24T19:58:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,414
py
# -*- coding: utf-8 -*- """ Making pretty python: 0. To get use to the def function return thing, write a program that asks a user for a number. Then make function called add_fifty have it take the number as an input and return the number as an output. print the number. remember to have a if __name__=='__main__': at the bottom. Bonus: Try running the function by calling it externally (go to the command line and type python (your files path and name)) Windows user can set a program to run with python as the default program try that out! 1. Make a program that finds the 1001 prime number! to do this we need the following elements: I've written out the code to do it below, break out the chunck of code from the for loop to the append line into a function, remember you have to give it previouslist and your nubmer and return prevoius list and the number set the rest of the code under an __init__=='__main___' (remember only one of these per program!) i=4 previous_list=[2,3] while len(previous_list)<1001: i=i+1 checking_number=0 for items in previous_list: if i%items==0: checking_number=1 if checking_number==0: previous_list.append(i) 2. Below this code you will find two lists of numbers Control and experimental make a function strip_low_values that goes through both lists and turns numbers below zero into 0 (use an indexing for loop for this) after this make a if __init__=='__main__' that runs through this which each list and returns the new list. then perform a ttest under scipy.stats.ttest_ind on the two output lists. 3. Thanks for sticking out the intro weeks! go to your console and type in. import this be sure to tell me what you'd like to see: Things I came up with: cell counting text document parsing (for numbers) neural network stuff character recognition for pictures graphing image processing We have many weeks ahead (after this quarter so all ideas will be taught, but I'll teach the ones with the most interest first so if any of the above sound good tell me!) """ """ control=[ 0.29892391, 0.29390532, 0.44596463, 0.4905357 , -0.49486145, -0.29503334, -0.03309252, 0.43755501, 0.13342393, -0.27069969] experimental= [ 1.37913615, 0.23513822, -0.0032897 , 1.35233926, 0.85305913, 1.30169848, 0.29811183, -0.21212195, -0.09939539, 1.01793759] """
[ "cdcox1@gmail.com" ]
cdcox1@gmail.com
d3dfcbccc7a497b25c9e010e916922ef1d20cdbe
2aecf1aa50078047b27589f56fbbff42b483b05b
/magico/juego.py
ee8ddd5cc2220ee0ca6b9df389fd10518d278fe1
[]
no_license
tabris2015/intro_python_blumbit
e49f2ce760feaa8c2cbf170b78f91807acdb972b
33def8ddc9b308fa5461af801dd0aef74d8b233a
refs/heads/master
2022-10-28T00:36:00.706326
2020-06-13T22:30:17
2020-06-13T22:30:17
269,220,872
0
0
null
null
null
null
UTF-8
Python
false
false
2,662
py
from dado import Dado # juego de dados tiene las siguientes <<reglas>> # 2-4 jugadores # en cada turno: # el jugador lanza los dados # el juego, termina cuando un jugador llega a 100 puntos # funcion para verificar el fin del juego def hay_ganador(dic_jugadores): for jugador, puntos in dic_jugadores.items(): if puntos >= 100: return True return False # preguntar el numero de jugadores n_jugadores = int(input('numero de jugadores (2 a 4)')) if n_jugadores < 2 or n_jugadores > 4: print('numero invalido de jugadores') exit() dic_jugadores = {} for i in range(n_jugadores): dic_jugadores[f'Jugador{i+1}'] = 0 # si los dados son iguales, se suma el numero obtenido al puntaje # si un dado es 1 se resta el otro dado al puntaje # si obtienes 3 en los dos dados, lanza de nuevo (sumo el puntaje) # si obtienes 5 en los dos dados, no se suma el puntaje y pasa al siguiente dado1 = Dado() dado2 = Dado() while not hay_ganador(dic_jugadores): # lanza cada jugador y se acumulan los puntos for jugador in dic_jugadores: input(f'lanza el {jugador}: ') # pausa para el lanzamiento dado1.lanzar() dado2.lanzar() print(f'resultado: {dado1} , {dado2}') # logica del juego if dado1 == dado2: if dado1.valor == 5: # no se suma y pasa al siguiente print('pasa al siguiente jugador') continue if dado1.valor == 3: # sumo el puntaje print('suma al puntaje') dic_jugadores[jugador] += dado1.valor*4 # lanzar de nuevo input('lanzar de nuevo') dado1.lanzar() dado2.lanzar() print(f'resultado: {dado1} , {dado2}') if dado1 == dado2: print('suma al puntaje') dic_jugadores[jugador] += dado1.valor*4 else: # sumo el puntaje print('suma al puntaje') dic_jugadores[jugador] += dado1.valor*4 elif dado1.valor == 1: # resto el puntaje print('resta al puntaje') dic_jugadores[jugador] -= dado2.valor elif dado2.valor == 1: print('resta al puntaje') dic_jugadores[jugador] -= dado1.valor print(f'puntajes: {dic_jugadores}') max_puntos = 0 for jugador, puntos in dic_jugadores.items(): if puntos > max_puntos: max_puntos = puntos for jugador, puntos in dic_jugadores.items(): if puntos == max_puntos: print(f"GANO {jugador}") break
[ "eduardo.laruta@gmail.com" ]
eduardo.laruta@gmail.com
f84fe04b1883d8c93b41284be4d6b8b5d5034602
ca739add7863f923013e7b6e1cf7b8bfbc8d8c0c
/source/complementos.py
043adc447b192e8c79bf9ad7c1e45a1d12489a56
[]
no_license
PibeDx/plants-vs-zombies-clon
51992edd6239ecf305528ee64368818b07828097
7118a34f286573c0224ed2f15cdcb13bf27493f7
refs/heads/master
2021-01-18T08:52:19.661411
2012-07-05T06:58:17
2012-07-05T06:58:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,846
py
from pygame import locals from engine import pytweener import sqlite3 from datetime import datetime from personal import Usuario from unidades.defensores import * class MenuPausa(object): def __init__(self): self.imagen = engine.cargar_imagen("pausa.png", True) self.boton_sal = Boton(260, 586, engine.cargar_imagen("boton3.png", True), comando = self.salir) self.tiempo_pausa = engine.pygame.time.get_ticks() def dibujar(self, superficie): superficie.blit(self.imagen, (0, 0)) self.boton_sal.dibujar(superficie) def actualizar(self, tiempo): self.boton_sal.actualizar(tiempo) def verificar_eventos(self, evento): self.boton_sal.verificar_eventos(evento) def salir(self): t = engine.pygame.time.get_ticks() - self.tiempo_pausa engine.obtener_director().escena_actual.menu_pausa = None for fila in engine.obtener_director().escena_actual.tablero: for p in fila: if p: p.sincronizar_cronos_pausa(t) for s in engine.obtener_director().escena_actual.solsitos: s.sincronizar_cronos_pausa(t) class Confirmar(object): def __init__(self, nombre): self.imagen = engine.cargar_imagen("areyousure.png", True) self.rect = engine.pygame.Rect(242, 183, 510, 380) self.boton_yes = Boton(self.rect.x + 37, self.rect.y + 284, engine.cargar_imagen("boton10.png", True), comando = self.yes, nombre = "YES") self.boton_no = Boton(self.rect.x + 258, self.rect.y + 284, engine.cargar_imagen("boton10.png", True), comando = self.no, nombre = "NO") self.nombre = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "'" + nombre + "'", 1, (224, 187, 98)) if self.nombre.get_rect().width + 339 > 416: self.msj_1 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "This will permanently remove ", 1, (224, 187, 98)) self.msj_2 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "'" + nombre + "' from the player roster!", 1, (224, 187, 98)) else: self.msj_1 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "This will permanently remove '" + nombre + "'", 1, (224, 187, 98)) self.msj_2 = self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 34), "from the player roster!", 1, (224, 187, 98)) self.rect_1 = self.msj_1.get_rect() self.rect_2 = self.msj_2.get_rect() self.rect_1.center = 494, 365 self.rect_2.center = 494, 394 def dibujar(self, superficie): superficie.blit(self.imagen, self.rect) self.boton_yes.dibujar(superficie) self.boton_no.dibujar(superficie) superficie.blit(self.msj_1, self.rect_1) superficie.blit(self.msj_2, self.rect_2) def verificar_eventos(self, evento): self.boton_yes.verificar_eventos(evento) self.boton_no.verificar_eventos(evento) def actualizar(self, tiempo): self.boton_yes.actualizar(tiempo) self.boton_no.actualizar(tiempo) self.boton_yes.rect.x = self.rect.x + 37 self.boton_yes.rect.y = self.rect.y + 284 self.boton_no.rect.x = self.rect.x + 258 self.boton_no.rect.y = self.rect.y + 284 def yes(self): engine.obtener_director().escena_actual.cuadro_quien.delete() engine.obtener_director().escena_actual.cuadro_quien.confirmar = None def no(self): engine.obtener_director().escena_actual.cuadro_quien.confirmar = None class QuienEres(object): def __init__(self): self.imagen = engine.cargar_imagen("quieneres.png", True) self.rect = engine.pygame.Rect(126, 58, 745, 628) self.boton_rename = Boton(self.rect.x + 40, self.rect.y + 481, engine.cargar_imagen("boton9.png", True), comando = self.rename, nombre = "rename") self.boton_delete = Boton(self.rect.x + 378, self.rect.y + 481, engine.cargar_imagen("boton9.png", True), comando = self.areyousure, nombre = "delete") self.boton_ok = Boton(self.rect.x + 40, self.rect.y + 538, engine.cargar_imagen("boton9.png", True), comando = self.ok, nombre = "ok") self.boton_cancel = Boton(self.rect.x + 378, self.rect.y + 538, engine.cargar_imagen("boton9.png", True), comando = self.cancel, nombre = "cancel") self.imagen_seleccion = engine.pygame.Surface((568, 31)) self.imagen_seleccion.fill((0, 174, 0)) self.elementos = [Elemento(engine.pygame.Rect(self.rect.x + 84, self.rect.y + 175 + a, 568, 31), self.imagen_seleccion) for a in range(0, 248 , 31)] self.rect_clic = None self.imagen_crear = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 40), "(Create a New User)", 1, (246, 244, 177)) self.rect_crear = self.imagen_crear.get_rect() self.confirmar = None self.renombrar = None self.cargar_usuarios() if self.elementos[0].usuario: self.elementos[0].seleccionado = True def dibujar(self, superficie): superficie.blit(self.imagen, self.rect) self.boton_rename.dibujar(superficie) self.boton_delete.dibujar(superficie) self.boton_ok.dibujar(superficie) self.boton_cancel.dibujar(superficie) for e in self.elementos: e.dibujar(superficie) if self.rect_clic: superficie.blit(self.imagen_crear, self.rect_crear) if self.confirmar: self.confirmar.dibujar(superficie) if self.renombrar: self.renombrar.dibujar(superficie) def actualizar(self, tiempo): if self.confirmar: self.confirmar.actualizar(tiempo) elif self.renombrar: self.renombrar.actualizar(tiempo) else: for e in self.elementos: e.actualizar(tiempo) self.boton_ok.actualizar(tiempo) self.boton_cancel.actualizar(tiempo) self.boton_delete.actualizar(tiempo) self.boton_rename.actualizar(tiempo) def verificar_eventos(self, evento): if not self.confirmar and not self.renombrar: self.boton_rename.verificar_eventos(evento) self.boton_delete.verificar_eventos(evento) self.boton_ok.verificar_eventos(evento) self.boton_cancel.verificar_eventos(evento) for e in self.elementos: e.verificar_eventos(evento) if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1: if self.rect_clic and self.rect_clic.collidepoint(evento.pos[0], evento.pos[1]): engine.obtener_director().escena_actual.cuadro_creacion = CuadroCreacion() elif self.confirmar: self.confirmar.verificar_eventos(evento) elif self.renombrar: self.renombrar.verificar_eventos(evento) def rename(self): s = None for e in self.elementos: if e.seleccionado == True: s = e.usuario self.renombrar = Renombre(s) def ok(self): s = None for e in self.elementos: if e.seleccionado == True: s = e.usuario if s != engine.obtener_usuario().nombre: conn = sqlite3.connect("recursos/data.db") cursor = conn.cursor() cursor.execute("select id from usuario where nombre = ?", (s,)) id_user = cursor.fetchone()[0] cursor.execute("insert into sesion values (null,?,?)", (id_user, str(datetime.now()))) conn.commit() plantas = [] objetos = [] cursor.execute("select * from carta where id in (select id_carta from usuario_carta where id_usuario = ?);", (id_user,)) for row in cursor: clase = None clasebase = None exec("clase = {}".format(row[3])) exec("clasebase = {}".format(row[10])) plantas.append(Carta(engine.pygame.Rect(row[1], row[2], 62, 87), clase, row[4], row[5], row[6], row[7], row[8], row[9], clasebase)) cursor.execute("select * from objeto where id in (select id_objeto from usuario_objeto where id_usuario = ?);", (id_user,)) for row in cursor: objetos.append(row[1]) engine.definir_usuario(Usuario(id_user, s, plantas, objetos)) conn.close() engine.obtener_director().escena_actual.cuadro_quien = None def areyousure(self): s = None for e in self.elementos: if e.seleccionado == True: s = e.usuario self.confirmar = Confirmar(s) def delete(self): s = None i = 0 for e in self.elementos: if e.seleccionado == True: s = e.usuario e.seleccionado = False break i += 1 if i == 0: if self.elementos[1].usuario == None: engine.definir_usuario(None) engine.obtener_director().escena_actual.cuadro_creacion = CuadroCreacion() else: self.elementos[0].seleccionado = True conn = sqlite3.connect("recursos/data.db") cursor = conn.cursor() cursor.execute("select id from usuario where nombre = ?;", (self.elementos[1].usuario,)) id_user = cursor.fetchone()[0] plantas = [] objetos = [] cursor.execute("select * from carta where id in (select id_carta from usuario_carta where id_usuario = ?);", (id_user,)) for row in cursor: clase = None clasebase = None exec("clase = {}".format(row[3])) exec("clasebase = {}".format(row[10])) plantas.append(Carta(engine.pygame.Rect(row[1], row[2], 62, 87), clase, row[4], row[5], row[6], row[7], row[8], row[9], clasebase)) cursor.execute("select * from objeto where id in (select id_objeto from usuario_objeto where id_usuario = ?);", (id_user,)) for row in cursor: objetos.append(row[1]) engine.definir_usuario(Usuario(id_user, self.elementos[1].usuario, plantas, objetos)) conn.close() else: self.elementos[i - 1].seleccionado = True conn = sqlite3.connect("recursos/data.db") cursor = conn.cursor() cursor.execute("select id from usuario where nombre = ?", (s,)) id_user = cursor.fetchone()[0] cursor.execute("delete from usuario where id = ?", (id_user,)) cursor.execute("delete from sesion where id_usuario = ?", (id_user,)) cursor.execute("delete from usuario_carta where id_usuario = ?", (id_user,)) conn.commit() for e in self.elementos: e.usuario = None self.cargar_usuarios() def cancel(self): engine.obtener_director().escena_actual.cuadro_quien = None def cargar_usuarios(self): if engine.obtener_usuario(): conn = sqlite3.connect("recursos/data.db") cursor = conn.cursor() cursor.execute("select nombre from usuario where nombre != ? order by nombre;", (engine.obtener_usuario().nombre,)) self.elementos[0].usuario = engine.obtener_usuario().nombre i = 1 for row in cursor: self.elementos[i].usuario = row[0] i += 1 if i < 8: self.rect_clic = self.elementos[i].rect self.rect_crear.center = self.rect_clic.center else: self.rect_clic = None else: self.rect_clic = self.elementos[0].rect self.rect_crear.center = self.rect_clic.center self.elementos[0].seleccionado = True class Elemento(object): def __init__(self, rect, seleccion = None): self.rect = rect self.seleccion = seleccion self.seleccionado = False self.imagen_nombre = None self.rect_nombre = None self.__nombre = None def dibujar(self, superficie): if self.seleccionado: superficie.blit(self.seleccion, self.rect) if self.imagen_nombre: superficie.blit(self.imagen_nombre, self.rect_nombre) def actualizar(self, tiempo): if self.imagen_nombre: self.rect_nombre.center = self.rect.center def verificar_eventos(self, evento): if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1: if self.rect.collidepoint(evento.pos[0], evento.pos[1]): for e in engine.obtener_director().escena_actual.cuadro_quien.elementos: if e is not self and e.seleccionado: if self.usuario: e.seleccionado = False if self.usuario: self.seleccionado = True @property def usuario(self): return self.__nombre @usuario.setter def usuario(self, nombre): if nombre: self.__nombre = nombre self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 40), self.__nombre, 1, (246, 244, 177)) self.rect_nombre = self.imagen_nombre.get_rect() self.rect_nombre.center = self.rect.center else: self.__nombre = None self.imagen_nombre = None self.rect_nombre = None class Bienvenida(object): def __init__(self): self.imagen = engine.cargar_imagen("bienvenida.png", True) self.x = 30 self.y = -243 self.rect_clic = engine.pygame.Rect(58, self.y + 186, 334, 38) self.__nombre = engine.obtener_usuario().nombre self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 40), self.nombre, 1, (0, 176, 0)) self.rect_nombre = self.imagen_nombre.get_rect() self.rect_nombre.center = 215, self.y + 120 def dibujar(self, superficie): superficie.blit(self.imagen, (self.x, self.y)) superficie.blit(self.imagen_nombre, self.rect_nombre) def actualizar(self, tiempo): self.rect_nombre.centery = self.y + 120 self.rect_clic.centery = self.y + 186 self.nombre = engine.obtener_usuario().nombre if engine.usuario else "" def verificar_eventos(self, evento): if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1: if self.rect_clic.collidepoint(evento.pos[0], evento.pos[1]): engine.obtener_director().escena_actual.cuadro_quien = QuienEres() @property def nombre(self): return self.__nombre @nombre.setter def nombre(self, nombre): if nombre != self.__nombre: self.__nombre = nombre self.imagen_nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.nombre, 1, (0, 176, 0)) self.rect_nombre = self.imagen_nombre.get_rect() self.rect_nombre.center = 215, self.y + 120 class CuadroObligar(object): def __init__(self): self.imagen = engine.cargar_imagen("obligacion.png", True) self.rect = engine.pygame.Rect(184, 182, 636, 382) self.boton_ok = Boton(self.rect.x + 63, self.rect.y + 283, engine.cargar_imagen("boton11.png", True), comando = self.ok, nombre = "ok") def ok(self): engine.obtener_director().escena_actual.cuadro_creacion.cuadro_obligacion = None def dibujar(self, superficie): superficie.blit(self.imagen, self.rect) self.boton_ok.dibujar(superficie) def verificar_eventos(self, evento): self.boton_ok.verificar_eventos(evento) def actualizar(self, tiempo): self.boton_ok.actualizar(tiempo) class Renombre(object): def __init__(self, old): self.imagen = engine.cargar_imagen("rename.png", True) self.rect = engine.pygame.Rect(184, 184, 624, 380) self.boton_ok = Boton(223, 467, engine.cargar_imagen("boton8.png", True), comando = self.cambiar_usuario, nombre = "ok") self.boton_cancel = Boton(500, 467, engine.cargar_imagen("boton8.png", True), comando = self.cancelar, nombre = "cancel") self.entrada = Input(248, 376) self.old = old self.entrada.indice = len(self.old) self.entrada.text = self.old self.entrada.seleccionar() def cambiar_usuario(self): i = 0 while i < len(self.entrada.text): if self.entrada.text[i] != " ": break i += 1 self.entrada.text = self.entrada.text[i:len(self.entrada.text)] i = len(self.entrada.text) - 1 while i > 0: if self.entrada.text[i] != " ": break i -= 1 self.entrada.text = self.entrada.text[0:i + 1] if len(self.entrada.text.replace(" ", "")) != 0: conn = sqlite3.connect('recursos/data.db') cursor = conn.cursor() cursor.execute("update usuario set nombre = ? where nombre = ?", (self.entrada.text, self.old)) conn.commit() conn.close() if self.old == engine.obtener_usuario().nombre: engine.obtener_usuario().nombre = self.entrada.text engine.obtener_director().escena_actual.cuadro_quien.cargar_usuarios() engine.obtener_director().escena_actual.cuadro_quien.renombrar = None def dibujar(self, superficie): superficie.blit(self.imagen, self.rect) self.boton_ok.dibujar(superficie) self.boton_cancel.dibujar(superficie) self.entrada.dibujar(superficie) def actualizar(self, tiempo): self.entrada.actualizar(tiempo) self.boton_ok.actualizar(tiempo) self.boton_cancel.actualizar(tiempo) def verificar_eventos(self, evento): if evento.type == locals.KEYDOWN: self.seleccion = None if evento.key == 13: self.cambiar_usuario() elif evento.key == 275: self.entrada.text = self.old self.boton_ok.verificar_eventos(evento) self.boton_cancel.verificar_eventos(evento) self.entrada.verificar_eventos(evento) def cancelar(self): engine.obtener_director().escena_actual.cuadro_quien.renombrar = None class CuadroCreacion(object): def __init__(self): self.imagen = engine.cargar_imagen("crearuser2.png", True) self.rect = engine.pygame.Rect(184, 184, 624, 380) self.boton_ok = Boton(223, 467, engine.cargar_imagen("boton8.png", True), comando = self.agregar_usuario, nombre = "ok") self.boton_cancel = Boton(500, 467, engine.cargar_imagen("boton8.png", True), comando = self.cancelar, nombre = "cancel") self.entrada = Input(248, 376) self.cuadro_obligacion = None def agregar_usuario(self): i = 0 while i < len(self.entrada.text): if self.entrada.text[i] != " ": break i += 1 self.entrada.text = self.entrada.text[i:len(self.entrada.text)] i = len(self.entrada.text) - 1 while i > 0: if self.entrada.text[i] != " ": break i -= 1 self.entrada.text = self.entrada.text[0:i + 1] if len(self.entrada.text.replace(" ", "")) != 0: conn = sqlite3.connect('recursos/data.db') cursor = conn.cursor() n = (self.entrada.text,) cursor.execute("select * from usuario where nombre = ?", (self.entrada.text,)) if cursor.fetchall() != []: print "Ya existe un usuario con ese nombre,elija otro" else: cursor.execute("insert into usuario values (null,?,0)", n) cursor.execute("insert into sesion values (null,last_insert_rowid(),?)", (str(datetime.now()),)) conn.commit() cursor.execute("select id from usuario where nombre = ?", (self.entrada.text,)) engine.definir_usuario(Usuario(cursor.fetchone()[0], self.entrada.text, [], [])) conn.close() engine.obtener_director().escena_actual.cuadro_creacion = None engine.obtener_director().escena_actual.cuadro_quien = None engine.obtener_director().escena_actual.saludar() else: self.cuadro_obligacion = CuadroObligar() def cancelar(self): if engine.usuario: engine.obtener_director().escena_actual.cuadro_creacion = None else: self.cuadro_obligacion = CuadroObligar() def dibujar(self, superficie): superficie.blit(self.imagen, self.rect) self.boton_ok.dibujar(superficie) self.boton_cancel.dibujar(superficie) self.entrada.dibujar(superficie) if self.cuadro_obligacion: self.cuadro_obligacion.dibujar(superficie) def actualizar(self, tiempo): self.entrada.actualizar(tiempo) self.boton_ok.actualizar(tiempo) self.boton_cancel.actualizar(tiempo) if self.cuadro_obligacion: self.cuadro_obligacion.actualizar(tiempo) def verificar_eventos(self, evento): if self.cuadro_obligacion: self.cuadro_obligacion.verificar_eventos(evento) else: if evento.type == locals.KEYDOWN and evento.key == 13: self.agregar_usuario() self.boton_ok.verificar_eventos(evento) self.boton_cancel.verificar_eventos(evento) self.entrada.verificar_eventos(evento) class SlotCuadro(object): def __init__(self, rect): self.carta = None self.rect = rect self.usado = False def dibujar(self, superficie): if self.carta: superficie.blit(engine.obtener_director().escena_actual.imagen_cartas, self.rect, self.carta.rect_origen_carta) if self.usado: superficie.blit(engine.obtener_director().escena_actual.imagen_charge, self.rect) class CuadroELeccion(object): def __init__(self): self.imagen = engine.cargar_imagen("choose.png", True) self.imagen_copia = engine.cargar_imagen("choose.png", True) f1 = [SlotCuadro(engine.pygame.Rect(a + 28, 51, 62, 87)) for a in range(0, 528, 66)] f2 = [SlotCuadro(engine.pygame.Rect(a + 28, 142, 62, 87)) for a in range(0, 528, 66)] f3 = [SlotCuadro(engine.pygame.Rect(a + 28, 233, 62, 87)) for a in range(0, 528, 66)] f4 = [SlotCuadro(engine.pygame.Rect(a + 28, 324, 62, 87)) for a in range(0, 528, 66)] f5 = [SlotCuadro(engine.pygame.Rect(a + 28, 415, 62, 87)) for a in range(0, 528, 66)] self.slots = f1 + f2 + f3 + f4 + f5 self.rect = engine.pygame.Rect(0, 109, 581, 662) self.tweener = engine.pytweener.Tweener() self.altura = 750 self.listo = Boton(194, 1325, engine.cargar_imagen("boton0.png", True), comando = self.bajar, nombre = "let's rock") def aparecer(self): self.tweener.addTween(self, altura = 109, tweenTime = 0.5, tweenType = engine.pytweener.Easing.Linear.easeIn) def agregar_carta(self, carta): for slot in self.slots: if slot.carta == None: slot.carta = carta slot.carta.x, slot.carta.y = slot.rect.x, slot.rect.y + 109 slot.carta.slot_inicial = slot break def dibujar(self, superficie): self.imagen.blit(self.imagen_copia, (0, 0)) for slot in self.slots: slot.dibujar(self.imagen) superficie.blit(self.imagen, (0, self.altura)) self.listo.dibujar(superficie) def actualizar(self, tiempo): if not self.listo.presionado: self.listo.rect.y = self.altura + 575 self.listo.actualizar(tiempo) if self.tweener.hasTweens(): self.tweener.update(tiempo / 1000.0) def verificar_eventos(self, evento): self.listo.verificar_eventos(evento) if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1: for slot in self.slots: if slot.rect.collidepoint(evento.pos[0], evento.pos[1] - 109) and not slot.usado: if slot.carta: for s in engine.obtener_director().escena_actual.barra_control.slots: if s.carta == None: slot.usado = True engine.obtener_director().escena_actual.cartas.append(slot.carta) self.tweener.addTween(slot.carta, x = s.rect.x, y = s.rect.y, tweenTime = 0.2, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = slot.carta.empotrar) break def bajar(self): engine.obtener_director().escena_actual.barra_control.eligiendo = 1 self.tweener.addTween(self, altura = 750, tweenTime = 0.3, tweenType = engine.pytweener.Easing.Linear.easeIn, onCompleteFunction = self.acabar) def acabar(self): engine.obtener_director().escena_actual.cuadro_eleccion = None engine.obtener_director().escena_actual.tweener.addTween(engine.obtener_director().escena_actual, izquierda = 265, tweenTime = 1.5, tweenType = engine.pytweener.Easing.Linear.easeIn, onCompleteFunction = engine.obtener_director().escena_actual.modo_juego) class CuadroLampa(object): def __init__(self): self.imagen = engine.cargar_imagen("slot_lampa.png", True) self.imagen_lampa = engine.cargar_imagen("lampa.png", True) self.rect_lampa = self.imagen_lampa.get_rect() self.rect = self.imagen.get_rect() self.rect.left = engine.obtener_director().escena_actual.barra_control.imagen.get_rect().width self.rect_lampa.center = self.rect.center self.usando = False def dibujar(self, superficie): superficie.blit(self.imagen, self.rect) if not self.usando: superficie.blit(self.imagen_lampa, self.rect_lampa) def dibujar_lampa(self, superficie): if self.usando: superficie.blit(self.imagen_lampa, self.rect_lampa) def actualizar(self, tiempo): if self.usando: self.rect_lampa.bottomleft = engine.pygame.mouse.get_pos() else: self.rect_lampa.center = self.rect.center def verificar_eventos(self, evento): if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1: if engine.obtener_director().escena_actual.barra_control.eligiendo == 2: if self.rect.collidepoint(evento.pos[0], evento.pos[1]) and not self.usando: self.usando = True elif self.usando: i = (evento.pos[1] - 120) / 104 j = (evento.pos[0] - 50) / 100 if 0 <= i <= 5 and 0 <= j <= 8 and engine.obtener_director().escena_actual.tablero[i][j] != None: if engine.obtener_director().escena_actual.tablero[i][j].__class__ == Nenufar and engine.obtener_director().escena_actual.tablero[i][j].contenido: engine.obtener_director().escena_actual.tablero[i][j].contenido = None else: engine.obtener_director().escena_actual.tablero[i][j] = None self.usando = False elif evento.type == locals.MOUSEBUTTONDOWN and evento.button == 3: if self.usando: self.usando = False class BarraControl(object): def __init__(self): self.imagen = engine.cargar_imagen("barra.png", True) self.slots = [SlotBarra(engine.pygame.Rect(107 + a, 11, 62, 88)) for a in range(0, 438, 73)] self.soles = 50 self.nro_soles = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 30), str(self.soles), 1, (0, 0, 0)) self.rect_soles = self.nro_soles.get_rect() self.rect_soles.center = 49, 91 self.eligiendo = 0 self.tweener = engine.pytweener.Tweener() def dibujar(self, superficie): superficie.blit(self.imagen, (0, 0)) for slot in self.slots: slot.dibujar(superficie) superficie.blit(self.nro_soles, self.rect_soles) def actualizar(self, tiempo): for slot in self.slots: slot.actualizar(tiempo) self.nro_soles = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 30), str(self.soles), 1, (0, 0, 0)) self.rect_soles = self.nro_soles.get_rect() self.rect_soles.center = 49, 91 if self.tweener.hasTweens(): self.tweener.update(tiempo / 1000.0) def verificar_eventos(self, evento): if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1: if self.eligiendo == 2: hubo_clic = False for slot in self.slots: if slot.rect.collidepoint(evento.pos[0], evento.pos[1]): hubo_clic = True if slot.carta and engine.obtener_director().escena_actual.seleccion == None and slot.cargando == False: if engine.obtener_director().escena_actual.barra_control.soles >= slot.carta.info['precio']: engine.obtener_director().escena_actual.seleccion = PlantaSeleccionada(slot) slot.oscurecer() else: if engine.obtener_director().escena_actual.seleccion: engine.obtener_director().escena_actual.seleccion.slot.aclarar() engine.obtener_director().escena_actual.seleccion = None break if not hubo_clic and self.imagen.get_rect().collidepoint(evento.pos[0], evento.pos[1]) and engine.obtener_director().escena_actual.seleccion: engine.obtener_director().escena_actual.seleccion.slot.aclarar() engine.obtener_director().escena_actual.seleccion = None elif self.eligiendo == 0: for slot in self.slots: if slot.rect.collidepoint(evento.pos[0], evento.pos[1]): if slot.carta: engine.obtener_director().escena_actual.cartas.append(slot.carta) self.tweener.addTween(slot.carta, x = slot.carta.slot_inicial.rect.x, y = slot.carta.slot_inicial.rect.y + 109, tweenTime = 0.2, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = slot.carta.reempotrar) slot.carta = None self.reacomodar(slot) break def agregar_carta(self, carta): for slot in self.slots: if slot.carta == None: slot.carta = carta break def reacomodar(self, slot_movido): slot_ant = slot_movido for slot in self.slots: if slot.rect.centerx > slot_movido.rect.centerx and slot.carta: engine.obtener_director().escena_actual.cartas.append(slot.carta) self.tweener.addTween(slot.carta, x = slot_ant.rect.x, y = slot_ant.rect.y, tweenTime = 0.2, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = slot.carta.empotrar) slot.carta = None slot_ant = slot class PlantaSeleccionada(object): def __init__(self, slot): self.slot = slot self.carta = slot.carta self.imagen = engine.cargar_imagen(self.carta.clase.url_imagen, True) self.grilla = Grilla(self.carta.clase.url_imagen, self.carta.clase.cantidad[0], self.carta.clase.cantidad[1]) self.rect = engine.pygame.Rect(0, 0, self.grilla.ancho, self.grilla.alto) self.rect_origen = self.grilla.obtener_cuadro(self.carta.clase.cuadro_alpha) self.rect_fondo = engine.pygame.Rect(0, 0, self.grilla.ancho, self.grilla.alto) self.plantable = 2 def dibujar(self, superficie): superficie.blit(self.imagen, self.rect, self.rect_origen) def verificar_eventos(self, evento): if evento.type == locals.MOUSEMOTION: x, y = evento.pos i = (y - 120) / 104 j = (x - 50) / 100 if i in range(0, 6) and j in range(0, 9): self.rect_fondo.right = 50 + engine.obtener_director().escena_actual.ancho_cuadro * (j + 1) self.rect_fondo.bottom = 120 + engine.obtener_director().escena_actual.alto_cuadro * (i + 1) if engine.obtener_director().escena_actual.lineas[i] == self.carta.info['campo']: if ((engine.obtener_director().escena_actual.tablero[i][j] and engine.obtener_director().escena_actual.tablero[i][j].__class__ == self.carta.base) or (not engine.obtener_director().escena_actual.tablero[i][j] and self.carta.base == None)): self.plantable = 0 if engine.obtener_director().escena_actual.tablero[i][j].__class__ == Nenufar and engine.obtener_director().escena_actual.tablero[i][j].contenido != None: self.plantable = 2 else: self.plantable = 2 else: if engine.obtener_director().escena_actual.tablero[i][j] and engine.obtener_director().escena_actual.tablero[i][j].__class__ == Nenufar and engine.obtener_director().escena_actual.tablero[i][j].contenido == None: self.plantable = 1 else: self.plantable = 2 else: self.plantable = 2 def dibujar_posible(self, superficie): if self.plantable == 0 or self.plantable == 1: self.dibujar_alpha(superficie, self.imagen, self.rect_fondo, 130, self.rect_origen) def dibujar_alpha(self, fondo, imagen, rect_fondo, opacidad, rect_origen): temp = engine.pygame.Surface((rect_fondo.width, rect_fondo.height)).convert() temp.blit(fondo, (0, 0), rect_fondo) temp.blit(imagen, (0, 0), rect_origen) temp.set_alpha(opacidad) fondo.blit(temp, rect_fondo) def actualizar(self, tiempo): self.rect.centerx, self.rect.centery = engine.pygame.mouse.get_pos() def verificar_bases(self): for fila in engine.obtener_director().escena_actual.tablero: for p in fila: if p and p.__class__ == self.carta.clase.base: print "encontre una base" class Carta(object): def __init__(self, rect_origen, cls, nombre, descripcion, precio, campo, tipo, tiempo_charge = 3, base = None): self.rect_origen_carta = rect_origen self.rect = engine.pygame.Rect(0, 0, 85, 121) self.clase = cls self.x = 0 self.y = 0 self.slot_inicial = None self.info = { 'nombre':nombre, 'descripcion:':descripcion, 'precio':precio, 'campo':campo, 'tipo':tipo, } self.tiempo_charge = tiempo_charge self.base = base def dibujar(self, superficie): superficie.blit(engine.obtener_director().escena_actual.imagen_cartas, self.rect, self.rect_origen_carta) def actualizar(self, superficie): self.rect.x, self.rect.y = self.x, self.y def empotrar(self): engine.obtener_director().escena_actual.barra_control.agregar_carta(self) engine.obtener_director().escena_actual.cartas.pop(0) def reempotrar(self): self.slot_inicial.usado = False engine.obtener_director().escena_actual.cartas.pop(0) class SlotBarra(object): def __init__(self, rect): self.carta = None self.rect = rect self.cargando = False self.rect_charge = engine.pygame.Rect(0, 0, self.rect.width, 0) self.tweener = pytweener.Tweener() self.falta_cargar = 0 def dibujar(self, superficie): if self.carta: superficie.blit(engine.obtener_director().escena_actual.imagen_cartas, self.rect, self.carta.rect_origen_carta) if engine.obtener_director().escena_actual.barra_control.soles < self.carta.info['precio'] and engine.obtener_director().escena_actual.barra_control.eligiendo == 2: superficie.blit(engine.obtener_director().escena_actual.imagen_nosoles, self.rect) superficie.blit(engine.obtener_director().escena_actual.imagen_charge, self.rect, self.rect_charge) def actualizar(self, tiempo): self.rect_charge.height = self.falta_cargar if self.tweener.hasTweens(): self.tweener.update(tiempo / 1000.0) def oscurecer(self): self.falta_cargar = self.rect.height def aclarar(self): self.falta_cargar = 0 def cargar(self): if self.carta: self.tweener.addTween(self, falta_cargar = 0, tweenTime = self.carta.tiempo_charge, tweenType = pytweener.Easing.Linear.easeIn, onCompleteFunction = self.terminar_cargado) self.cargando = True def terminar_cargado(self): self.cargando = False self.falta_cargar = 0 class Input(object): def __init__(self, x, y): self.text = "" self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (255, 255, 255)) self.parpadeante = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), "|", 1, (255, 255, 255)) self.x, self.y = x, y self.xp = self.x - 3 self.visible = True self.indice = len(self.text) self.seleccionado = False def dibujar(self, superficie): if self.seleccionado: superficie.blit(self.seleccion, (self.x, self.y)) if self.visible: superficie.blit(self.parpadeante, (self.xp, self.y)) superficie.blit(self.palabra, (self.x, self.y)) def actualizar(self, tiempo): if not self.seleccionado: self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (255, 255, 255)) else: self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (0, 0, 0)) if 0 <= engine.pygame.time.get_ticks() % 1000 <= 500: self.visible = False else: self.visible = True self.xp = self.x + engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text[0:self.indice], 1, (255, 255, 255)).get_width() - 3 def verificar_eventos(self, evento): if evento.type == locals.KEYDOWN: if evento.key == 275 and self.indice < len(self.text): self.indice += 1 elif evento.key == 275 and self.indice == len(self.text): self.deseleccionar() elif evento.key == 276 and self.indice > 0: if not self.seleccionado: self.indice -= 1 else: self.deseleccionar() self.indice = 0 elif evento.key != 8 and evento.key != 13 and evento.key != 275 and evento.key != 276 and evento.key != 304 and len(self.text) < 15: if self.seleccionado: self.deseleccionar() self.text = "" self.indice = 0 self.text = self.text[0:self.indice] + evento.unicode + self.text[self.indice:len(self.text)] self.indice += 1 elif evento.key == 8 and self.indice > 0: if self.seleccionado: self.deseleccionar() self.text = "" self.indice = 0 else: self.text = self.text[0:self.indice - 1] + self.text[self.indice:len(self.text)] self.indice -= 1 def seleccionar(self): if len(self.text) > 0: self.seleccionado = True self.palabra = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 50), self.text, 1, (0, 0, 0)) self.seleccion = engine.pygame.Surface((self.palabra.get_width(), self.palabra.get_height())) self.seleccion.fill((255, 255, 255)) self.indice = len(self.text) def deseleccionar(self): self.seleccionado = False self.seleccion = None class Boton(object): def __init__(self, x, y, imagen, comando = None, nombre = None): self.imagen = imagen self.rect = self.imagen.get_rect() self.mask = engine.pygame.mask.from_surface(self.imagen, 127) self.rect.x = x self.rect.y = y self.comando = comando self.presionado = False self.nombre = engine.pygame.font.Font.render(engine.pygame.font.Font(None, 32), nombre.upper(), 1, (0, 174, 0)) if nombre else None self.rect_nombre = self.nombre.get_rect() if self.nombre else None if self.rect_nombre: self.rect_nombre.center = self.rect.center def dibujar(self, superficie): superficie.blit(self.imagen, self.rect) if self.nombre: superficie.blit(self.nombre, self.rect_nombre) def verificar_eventos(self, evento): if evento.type == locals.MOUSEBUTTONDOWN and evento.button == 1: if engine.pygame.sprite.spritecollideany(self, [engine.cursor], engine.pygame.sprite.collide_mask): if not self.presionado: self.presionado = True self.rect.x = self.rect.x + 3 self.rect.y = self.rect.y + 3 elif evento.type == locals.MOUSEBUTTONUP and evento.button == 1 and self.presionado: self.presionado = False self.rect.x = self.rect.x - 3 self.rect.y = self.rect.y - 3 if self.rect_nombre: self.rect_nombre.center = self.rect.center if engine.pygame.sprite.spritecollideany(self, [engine.cursor], engine.pygame.sprite.collide_mask): if self.comando: self.comando() def actualizar(self, tiempo): if self.rect_nombre: self.rect_nombre.center = self.rect.center
[ "eyscode@gmail.com" ]
eyscode@gmail.com
44f66ca709805c87ece0f5ff08c1d8643e76dc1f
87736a69e11ce7e5750d91e9891169090180ba18
/virtual/bin/epylint
e3fa4286e1d555ec29e1a75c7f2664337196e555
[]
no_license
MutumaMutuma/soccer-scout
16e8cf98f435868b2cb28838fcd7376caa91cc57
299b4cb9b8473b94562b5b287e8dbadf5c035034
refs/heads/master
2020-03-28T22:36:53.552396
2018-09-20T12:48:45
2018-09-20T12:48:45
149,244,840
0
0
null
2018-09-18T07:15:12
2018-09-18T07:15:12
null
UTF-8
Python
false
false
261
#!/home/zamzam/Documents/soccer-scout/virtual/bin/python # -*- coding: utf-8 -*- import re import sys from pylint import run_epylint if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_epylint())
[ "lewismutuma1000@gmail.com" ]
lewismutuma1000@gmail.com
a0558eff96171575b90ef92a7b59d2a7abd7f87f
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/a8ab1a0b200881f52f564d28db90f10730c1f0b5-<latest>-fix.py
34987d8922650e14b77fd72b4e1557dd3181ede0
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,811
py
def latest(module, items, repoq, yum_basecmd, conf_file, en_repos, dis_repos, update_only, installroot='/'): res = { } res['results'] = [] res['msg'] = '' res['changed'] = False res['rc'] = 0 pkgs = { } pkgs['update'] = [] pkgs['install'] = [] updates = { } update_all = False cmd = None if ('*' in items): update_all = True (rc, out, err) = run_check_update(module, yum_basecmd) if ((rc == 0) and update_all): res['results'].append('Nothing to do here, all packages are up to date') return res elif (rc == 100): updates = parse_check_update(out) elif (rc == 1): res['msg'] = err res['rc'] = rc module.fail_json(**res) if update_all: cmd = (yum_basecmd + ['update']) will_update = set(updates.keys()) will_update_from_other_package = dict() else: will_update = set() will_update_from_other_package = dict() for spec in items: if spec.startswith('@'): pkgs['update'].append(spec) will_update.add(spec) continue elif (spec.endswith('.rpm') and ('://' not in spec)): if (not os.path.exists(spec)): res['msg'] += ("No RPM file matching '%s' found on system" % spec) res['results'].append(("No RPM file matching '%s' found on system" % spec)) res['rc'] = 127 module.fail_json(**res) envra = local_envra(spec) if (not is_installed(module, repoq, envra, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)): pkgs['install'].append(spec) continue elif ('://' in spec): package = fetch_rpm_from_url(spec, module=module) envra = local_envra(package) if (not is_installed(module, repoq, envra, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)): pkgs['install'].append(package) continue elif (is_installed(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot) or update_only): pkgs['update'].append(spec) else: pkgs['install'].append(spec) pkglist = what_provides(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot) if (not pkglist): res['msg'] += ("No package matching '%s' found available, installed or updated" % spec) res['results'].append(("No package matching '%s' found available, installed or updated" % spec)) res['rc'] = 126 module.fail_json(**res) nothing_to_do = True for pkg in pkglist: if ((spec in pkgs['install']) and is_available(module, repoq, pkg, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)): nothing_to_do = False break (pkgname, _, _, _, _) = splitFilename(pkg) if ((spec in pkgs['update']) and (pkgname in updates)): nothing_to_do = False will_update.add(spec) if (spec != pkgname): will_update_from_other_package[spec] = pkgname break if ((not is_installed(module, repoq, spec, conf_file, en_repos=en_repos, dis_repos=dis_repos, installroot=installroot)) and update_only): res['results'].append(('Packages providing %s not installed due to update_only specified' % spec)) continue if nothing_to_do: res['results'].append(('All packages providing %s are up to date' % spec)) continue conflicts = transaction_exists(pkglist) if conflicts: res['msg'] += ('The following packages have pending transactions: %s' % ', '.join(conflicts)) res['results'].append(('The following packages have pending transactions: %s' % ', '.join(conflicts))) res['rc'] = 128 module.fail_json(**res) if module.check_mode: to_update = [] for w in will_update: if w.startswith('@'): to_update.append((w, None)) elif (w not in updates): other_pkg = will_update_from_other_package[w] to_update.append((w, ('because of (at least) %s-%s.%s from %s' % (other_pkg, updates[other_pkg]['version'], updates[other_pkg]['dist'], updates[other_pkg]['repo'])))) else: to_update.append((w, ('%s.%s from %s' % (updates[w]['version'], updates[w]['dist'], updates[w]['repo'])))) res['changes'] = dict(installed=pkgs['install'], updated=to_update) if (will_update or pkgs['install']): res['changed'] = True return res if cmd: (rc, out, err) = module.run_command(cmd) res['changed'] = True elif (pkgs['install'] or will_update): cmd = (((yum_basecmd + ['install']) + pkgs['install']) + pkgs['update']) lang_env = dict(LANG='C', LC_ALL='C', LC_MESSAGES='C') (rc, out, err) = module.run_command(cmd, environ_update=lang_env) out_lower = out.strip().lower() if ((not out_lower.endswith('no packages marked for update')) and (not out_lower.endswith('nothing to do'))): res['changed'] = True else: (rc, out, err) = [0, '', ''] res['rc'] = rc res['msg'] += err res['results'].append(out) if rc: res['failed'] = True return res
[ "dg1732004@smail.nju.edu.cn" ]
dg1732004@smail.nju.edu.cn
a8cf597841bdc78c1f56b1e0b73d9efdcca7b554
c55bca491632ef98dfd0e39e9e197f86d4ce94f0
/wcoa/migrations/0019_auto_20200922_1837.py
6a1b7fb208ec5b9d7b5906ffb04ffb52f40aa3af
[ "MIT" ]
permissive
Ecotrust/wcoa
420b2e9f03219a72f79e435c1001b87a76233a8b
f6ad1e42fa93560d57043ebeb8464a320befef14
refs/heads/main
2023-08-03T21:02:01.013970
2023-07-28T22:56:03
2023-07-28T22:56:03
196,878,615
1
1
MIT
2021-12-09T19:29:37
2019-07-14T20:07:39
Python
UTF-8
Python
false
false
395
py
# Generated by Django 2.2.9 on 2020-09-22 18:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wcoa', '0018_delete_masonrypage'), ] operations = [ migrations.AlterField( model_name='catalogiframepage', name='source', field=models.URLField(max_length=1999), ), ]
[ "ryan.d.hodges@gmail.com" ]
ryan.d.hodges@gmail.com
07f603f42438f4bf7d83e60cfb810b8fe1dcd1f5
d3442664e61329eb7f78ec93c3c2f77344e48941
/assignment_3/q1/q1.py
63c8d4dc4d69aa4c176a41c75a63bc33135e6c44
[]
no_license
pranav-sankhe/EE679-Speech-Processing
6b748a283eb5f634941741e4068ecaf572812b7a
1d9434006551c024f6846db42243c4a161b8672b
refs/heads/master
2022-01-25T03:58:33.081064
2019-08-26T15:03:27
2019-08-26T15:03:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,182
py
from scipy import signal import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile import params F0 = params.F0 sounds = params.sounds a_den = params.a_den n_den = params.n_den i_den = params.i_den s_den = params.s_den den = [a_den, n_den, i_den, s_den] a_num = params.a_num n_num = params.n_num i_num = params.i_num s_num = params.s_num num = [a_num, n_num, i_num, s_num] for i in range(len(sounds)): duration = params.duration samp_freq = params.samp_freq t = np.linspace(0, duration, duration*samp_freq, endpoint=False) sig = (1 + signal.square(2 * np.pi * F0 * t, duty=0.01))/2 if i == 3: samp_freq = samp_freq*2 sig = np.random.normal(0, 1, int(duration*samp_freq)) result = signal.lfilter(num[i], den[i], sig) result = signal.lfilter(np.asarray([1.0, 0.0]), np.asarray([1, -15.0/16.0]), result) fig = plt.figure() plt.plot(result[0:1000]) plt.title("Sound: " + sounds[i]) plt.xlabel('time') plt.ylabel('signal') fig.savefig("Sound: " + sounds[i] + ".pdf", bbox_inches='tight') wavfile.write(sounds[i] + '.wav', samp_freq, np.int16(result/np.max(result)*32767))
[ "pranavsankhe40@gmail.com" ]
pranavsankhe40@gmail.com
cf242458a24aa0e1d728ab2e04b7dd8fd4423492
29c823ca7aad7122a3ee4dd04360b1118928e34d
/raspberry/samples/feature_extration.py
ebe37ad883590365fe690bb04d7a6a9ce03efc5d
[]
no_license
sdk115/CarAccidentDetect
9f405761e06cda25ab115b12fed17cdedb2937f0
bf0bc7794b584bc5333b230958b818e309ddd911
refs/heads/master
2021-08-26T08:39:16.800398
2017-11-22T17:26:14
2017-11-22T17:26:14
111,210,917
1
1
null
2017-11-18T16:21:50
2017-11-18T14:12:13
Arduino
UTF-8
Python
false
false
386
py
def average_pooling(sensor_list, window_size, stride): ret = [] for i in range(len(sensor_list)-window_size+1): col_len = len(sensor_list[i]) temp = [0] * col_len for j in range(col_len): for k in range(window_size): temp[j]+=sensor_list[i+k][j] temp = [i/3.0 for i in temp] ret.append(temp) return ret
[ "sdk11594@gmail.com" ]
sdk11594@gmail.com
cf7c57e1e50ca9d690c84f42ae3f0258e355854a
3e2593161915670c5586bd600e7e076bbe1a0758
/dalaoyuanma.py
3b5d58af9bfc1da703aa11f8a91675643ef93cb4
[]
no_license
qzylalala/WebSpider
19f0691b3b05b8650f2f152d36eaaa17e08a0712
b2d7f143dba6e54322f401251633488b9406fde4
refs/heads/master
2020-04-11T01:22:27.457676
2019-01-14T12:07:07
2019-01-14T12:07:07
161,413,126
1
0
null
null
null
null
UTF-8
Python
false
false
1,496
py
import json import requests from requests.exceptions import RequestException import re import time def get_one_page(url): try: headers = {'Users-Agent': 'Mozilla/5.0(Macintosh;Intel Mac OS X\ 10_13_3) AppleWebKit/537.36 (KHTML,like Gecko)\ Chrome/65.0.3325.162 safari/537.36'} response = requests.get(url, headers=headers) if response.status_code == 200: return response.text return None except RequestException: return None def parse_one_page(html): pattern = re.compile('<dd>.*?board-index.*?>(\d+)</i>.*?data-src="(.*?)".*?name"><a''.*?>(.*?)</a>.*?star">(.*?)</p>.*?releasetime">(.*?)</p>' r'.*?integer">(.*?)</i>.*?fraction">(.*?)</i>.*?</dd>', re.S) items = re.findall(pattern, str(html)) for item in items: yield { 'index': item[0], 'image': item[1], 'title': item[2], 'actor': item[3].strip()[3:], 'time': item[4].strip()[5:], 'score': item[5] + item[6] } def write_to_file(content): with open('result1.txt', 'a', encoding='utf-8') as f: f.write(json.dumps(content, ensure_ascii=False) + '\n') def main(offset): url = 'http://maoyan.com/board/4?offset=' + str(offset) html = get_one_page(url) for item in parse_one_page(html): print(item) write_to_file(item) if __name__ == '__main__': for i in range(10): main(offset=i * 10) time.sleep(1)
[ "304228244@qq.com" ]
304228244@qq.com
a7e0820a5a2af18ff40dff28e75c2e8cf876f08e
94fe6bd54ba15f44569641acf5f3655d8eda1783
/src/run_regressor.py
91b5d444406a4867d9736f7930cc5091a76c28eb
[ "MIT" ]
permissive
grey-eye/gpt-2
e94915bff8badf9e188fd67745c3b5ab4bdbce8d
40030059768719eca0c700ab521adf70b9d0656c
refs/heads/master
2022-01-18T00:55:27.344689
2019-07-18T00:03:24
2019-07-18T00:03:24
192,074,933
0
0
null
2019-06-15T12:15:06
2019-06-15T12:15:06
null
UTF-8
Python
false
false
5,164
py
import functools import argparse import json import tensorflow as tf import os import model import encoder import pandas as pd import numpy as np def generate_data(mode): def pad(encoding): padlen = args.len_seq-len(encoding) encoding.extend([220]*padlen) return encoding enc = encoder.get_encoder(args.base_model_name, args.base_model_dir) if mode == 'train': path = os.path.join(args.data_dir, 'train.tsv') elif mode == 'eval': path = os.path.join(args.data_dir, 'dev.tsv') else: path = os.path.join(args.data_dir, 'test.tsv') df = pd.read_csv(path, sep='\t', skiprows=1) for idx, row in df.iterrows(): label = np.float32(row[0]) features = np.array(pad(enc.encode(row[1])[:args.len_seq]), dtype=np.int32) yield features, label def input_fn(params, mode): generator_fn = params['generator_fn'] ds = tf.data.Dataset.from_generator(generator_fn, (tf.int32, tf.float32), None, (mode,)) ds = ds.shuffle(1000).repeat().batch(args.batch_size) return ds def my_model_fn(features, labels, params, mode): hparams = model.default_hparams() with open(os.path.join(args.base_model_dir, args.base_model_name, 'hparams.json')) as f: hparams.override_from_dict(json.load(f)) features.set_shape([args.batch_size, args.len_seq]) net = model.model(hparams, features) logits = net['logits'] dropout = tf.nn.dropout(logits, keep_prob=0.9) avg_logits = tf.math.reduce_mean(dropout, axis=1) predictions = tf.layers.dense(avg_logits, 1) loss = tf.losses.mean_squared_error(labels=labels, predictions=predictions) metrics = {'mse': loss} tf.summary.scalar('mse', loss) optimizer = params['optimizer'] train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) if mode == tf.estimator.ModeKeys.PREDICT: predictions = {'prediction': predictions} return tf.estimator.EstimatorSpec(mode, predictions=predictions) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode, loss=loss) if mode == tf.estimator.ModeKeys.TRAIN: return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) def build_tpu_config(): if args.use_tpu: my_project_name = subprocess.check_output([ 'gcloud','config','get-value','project']) my_zone = subprocess.check_output([ 'gcloud','config','get-value','compute/zone']) tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( tpu=[tpu_name], zone=my_zone, project=my_project_name) master = tpu_cluster_resolver.get_master() else: master = '' tpu_config = tf.estimator.tpu.RunConfig(master=master) return tpu_config def train_regressor(): tpu_config = build_tpu_config() optimizer = tf.train.AdamOptimizer() if args.use_tpu: optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) regressor = tf.estimator.tpu.TPUEstimator( model_fn = my_model_fn, model_dir = args.model_dir, params={ 'optimizer': optimizer, 'generator_fn': generate_data, }, use_tpu=args.use_tpu, config=tpu_config ) regressor.train(functools.partial(input_fn, mode='train'), steps=args.num_steps) regressor.evaluate(functools.partial(input_fn, mode='eval'), steps=args.num_steps) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', required=True, help='Path to data ' + \ 'directory containing train, dev and test files') parser.add_argument('--len_seq', required=False, type=int, default=40, help='Input sequence length') parser.add_argument('--base_model_dir', required=True, help='Path to ' + \ 'directory containing model') parser.add_argument('--base_model_name', required=False, default='117M', help='Name of model') parser.add_argument('--batch_size', required=False, default=8, help='Sets the batch size', type=int) parser.add_argument('--train', action='store_true', required=False, help='Run training') parser.add_argument('--test', action='store_true', required=False) parser.add_argument('--num_steps', type=int, required=False, default=1000, help='Number of train batches to run') parser.add_argument('--model_dir', type=str, required=False, default='modeldir', help='Output directory for checkpoints') parser.add_argument('--use_tpu', action='store_true', required=False, default=False, help='Use TPU') parser.add_argument('--tpu_name', required=False, type=str, default=None, help='Name of TPU') args = parser.parse_args() if args.train: train_regressor()
[ "niels@grey-eye.net" ]
niels@grey-eye.net
4d60520fd2eac336a9b98ec30e875ee9fa9e75f8
74e75430e4ca2bf422017c7035580ae973c2c42e
/test/functional/p2p_time_offset.py
00912448b5da04489c15731b40645ded3020428e
[ "MIT" ]
permissive
j00v/Lightcoin
9e55bad2d3e38f4c3781f62f915828cde0e51bc9
a8555320bebbf95545bc8c2841f1fadc38f5bd53
refs/heads/main
2023-05-09T07:13:28.031313
2021-06-08T22:11:45
2021-06-08T22:11:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,966
py
#!/usr/bin/env python3 # Copyright (c) 2019-2020 The Lightcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import time from test_framework.test_framework import LightcoinTestFramework from test_framework.util import ( assert_equal, connect_nodes, set_node_times, ) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) class TimeOffsetTest(LightcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 8 self.enable_mocktime() def setup_network(self): # don't connect nodes yet self.setup_nodes() def check_connected_nodes(self): ni = [node.getnetworkinfo() for node in self.connected_nodes] assert_equal([x['connections'] for x in ni], [2] * len(ni)) assert_equal([x['timeoffset'] for x in ni], [0] * len(ni)) def run_test(self): # Nodes synced but not connected self.mocktime = int(time.time()) set_node_times(self.nodes, self.mocktime) ni = [node.getnetworkinfo() for node in self.nodes] assert_equal([x['connections'] for x in ni], [0] * self.num_nodes) self.log.info("Nodes disconnected from each other. Time: %d" % self.mocktime) assert_equal([x['timeoffset'] for x in ni], [0] * self.num_nodes) self.log.info("Nodes have nTimeOffset 0") # Set node times. # nodes [1, 5]: set times to +10, +15, ..., +30 secs for i in range(1, 6): self.nodes[i].setmocktime(self.mocktime + 5 * (i + 1)) # nodes [6, 7]: set time to -5, -10 secs for i in range(6, 8): self.nodes[i].setmocktime(self.mocktime - 5 * (i - 5)) # connect nodes 1 and 2 self.log.info("Connecting with node-1 (+10 s) and node-2 (+15 s)...") connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 0, 2) self.log.info("--> samples = [+0, +10, (+10), +15, +15]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 4) assert_equal(ni['timeoffset'], 10) self.connected_nodes = [self.nodes[1], self.nodes[2]] self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 3 self.log.info("Connecting with node-3 (+20 s). This will print the warning...") connect_nodes_bi(self.nodes, 0, 3) self.log.info("--> samples = [+0, +10, +10, (+15), +15, +20, +20]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 6) assert_equal(ni['timeoffset'], 15) self.connected_nodes.append(self.nodes[3]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 6 self.log.info("Connecting with node-6 (-5 s)...") connect_nodes_bi(self.nodes, 0, 6) self.log.info("--> samples = [-5, -5, +0, +10, (+10), +15, +15, +20, +20]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 8) assert_equal(ni['timeoffset'], 10) self.connected_nodes.append(self.nodes[6]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 4 self.log.info("Connecting with node-4 (+25 s). This will print the warning...") connect_nodes_bi(self.nodes, 0, 4) self.log.info("--> samples = [-5, -5, +0, +10, +10, (+15), +15, +20, +20, +25, +25]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 10) assert_equal(ni['timeoffset'], 15) self.connected_nodes.append(self.nodes[4]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # try to connect node 5 and check that it can't self.log.info("Trying to connect with node-5 (+30 s)...") connect_nodes_bi(self.nodes, 0, 5) ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 10) assert_equal(ni['timeoffset'], 15) self.log.info("Not connected.") self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) # connect node 7 self.log.info("Connecting with node-7 (-10 s)...") connect_nodes_bi(self.nodes, 0, 7) self.log.info("--> samples = [-10, -10, -5, -5, +0, +10, (+10), +15, +15, +20, +20, +25, +25]") ni = self.nodes[0].getnetworkinfo() assert_equal(ni['connections'], 12) assert_equal(ni['timeoffset'], 10) self.connected_nodes.append(self.nodes[6]) self.check_connected_nodes() self.log.info("Node-0 nTimeOffset: +%d seconds" % ni['timeoffset']) if __name__ == '__main__': TimeOffsetTest().main()
[ "Lightcoindev@gmail.com" ]
Lightcoindev@gmail.com
f140ce1797948b2c124c84af0dac0f6967d36be2
8d5523b62fe7459afec54c56614d1baf7815fff7
/main.py
a515bb4b99a5e88c241e3c62321ef01a4b642748
[]
no_license
heavyii/python-httpserver
520c062d98223fdfa0d1aa820e60b5c250d78e51
3b0c05d55462188d7ca4389210e28247657ce1b6
refs/heads/main
2023-04-13T03:54:30.858675
2021-04-07T08:09:26
2021-04-07T08:09:26
355,463,617
0
0
null
null
null
null
UTF-8
Python
false
false
892
py
#!/usr/bin/env python from bottle import get, post, request, run, static_file, redirect import json """ @apiDefine jsonRequest @apiHeader {String} Content-Type=application/json """ ## 首页 @get('/') def index(): redirect('/static/index.html') ## 静态文件 @get('/static/<filepath:path>') def server_static(filepath): return static_file(filepath, root='./static_file') """ @apiDescription 这是测试例子的描述 @api {post} /hello/:name 测试例子 @apiName name @apiGroup 测试 @apiUse jsonRequest @apiParam {String} [lastName] your lastName @apiParam {String} [middleName] your middleName """ @post('/hello') @post('/hello/<name>') def hello(name = "tom"): # 路由参数name(可选), post提交的参数在request.json # 返回用json.dumps return json.dumps({ 'name': name, 'request-Parameters': request.json }) run(host='localhost', port=8080)
[ "linruisheng@seeklane.com" ]
linruisheng@seeklane.com
ad5d88daef36ed25257d10be732b9c0e3104e120
f46231564d2c4cdb44774935316a204f617731e4
/Week3/day1/single_riffle_shuffle.py
53e81704ae22e9fe83edc24d2dff2ea1df5c7449
[]
no_license
shravan090/competitiveprograming
a99983e4351f19afbcfcec2d4f2dc5ae5138fdee
21cc064ba44b73cef7838f901bc47db743470f66
refs/heads/master
2020-03-21T15:49:26.402912
2018-07-21T09:32:31
2018-07-21T09:32:31
138,735,069
0
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
import unittest def is_single_riffle(half1, half2, shuffled_deck): # Check if the shuffled deck is a single riffle of the halves h1 = 0 h2 = 0 for card in shuffled_deck: if h1 < len(half1) and card == half1[h1]: h1 += 1 elif h2 < len(half2) and card == half2[h2]: h2 += 1 else: return False return True # Tests class Test(unittest.TestCase): def test_both_halves_are_the_same_length(self): result = is_single_riffle([1, 4, 5], [2, 3, 6], [1, 2, 3, 4, 5, 6]) self.assertTrue(result) def test_halves_are_different_lengths(self): result = is_single_riffle([1, 5], [2, 3, 6], [1, 2, 6, 3, 5]) self.assertFalse(result) def test_one_half_is_empty(self): result = is_single_riffle([], [2, 3, 6], [2, 3, 6]) self.assertTrue(result) def test_shuffled_deck_is_missing_cards(self): result = is_single_riffle([1, 5], [2, 3, 6], [1, 6, 3, 5]) self.assertFalse(result) def test_shuffled_deck_has_extra_cards(self): result = is_single_riffle([1, 5], [2, 3, 6], [1, 2, 3, 5, 6, 8]) self.assertFalse(result) unittest.main(verbosity=2)
[ "noreply@github.com" ]
noreply@github.com
7ee2ac071830c965bed30bdaaa123fe1578c40b9
d69bbe98028d75aa14892d1f74c7bb7fa6ed572a
/D3SManager.py
8bb9c06de5abc3319130f5ec87c5d233d5e2a75e
[]
no_license
dvi31/PyDxS
0df055094b9c4f58f94ed9595b5b03241c265b5a
2cd4fb13d10dbc65c40c8ed8270dc1de71ff909b
refs/heads/master
2020-07-06T01:43:54.788171
2015-08-21T09:32:07
2015-08-21T09:32:07
40,010,322
0
0
null
null
null
null
UTF-8
Python
false
false
2,147
py
#!/usr/bin/python2.7 import base64, uuid, hashlib, time, os import logging import D3SCaller from suds.client import Client from suds.sax.attribute import Attribute from httpslib import HTTPSClientCertTransport import urlparse, urllib from suds.plugin import MessagePlugin class D3SSecretManager(): def __init__(self, authCaller, stoCaller): self.authCaller = authCaller self.stoCaller = stoCaller def write(self, applicantPath, motivation, boxPath, metadatas, data): global result, response time2 = 0 result, time1, response = self.authCaller.grantWrite(applicantPath, motivation, boxPath) if result: result, time2, response = self.stoCaller.write(applicantPath, motivation, boxPath, response.securityToken, response.certificates, metadatas, base64.encodestring(data)) wstime = time1 + time2 return result, wstime, response def read(self, applicantPath, motivation, depositPath): time2 = 0 result, time1, response = self.authCaller.grantRead(applicantPath, motivation, depositPath) if result: result, time2, response = self.stoCaller.read(response.securityToken, response.depositProof) wstime = time1 + time2 return result, wstime, response def delete(self, applicantPath, motivation, depositPath): time2 = 0 result, time1, response = self.authCaller.grantDelete(applicantPath, motivation, depositPath) if result: result, time2, response = self.stoCaller.delete(applicantPath, motivation, depositPath, response.securityToken) wstime = time1 + time2 return result, wstime, response def buildPasswordMetadatas(self, login, domain): metadatas = self.stoCaller.buildMetadatasParameter() metadata = [self.stoCaller.buildStrMetadataParameter("appLogin", login), self.stoCaller.buildStrMetadataParameter("appDomainName", domain)] metadatas.metadata = metadata return metadatas
[ "i2165aq@FP216530.intra.bdf.local" ]
i2165aq@FP216530.intra.bdf.local
3436db72180129f031c11512a0200f9269428f46
eaafd553be05babfb061737d0216fac86cfe6d12
/triangePascal.py
1b1af83096f09db5733cff66772c1f25ade1410e
[]
no_license
margauxln/kata
ee2a9311a937a9626a559462fa5d8f08381c3fb0
a8a47dbb4d89d854f20790715ab680a0fdaaf189
refs/heads/master
2023-02-07T17:09:19.167942
2021-01-04T14:05:56
2021-01-04T14:05:56
326,702,964
0
0
null
null
null
null
UTF-8
Python
false
false
507
py
lineNumber=10 triangle = [] for j in range(lineNumber): newline=[] for i in range(len(triangle)+1) : if i == 0 or i == len(triangle): newline.append(1) else: newline.append(triangle[len(triangle)-1][i-1]+triangle[len(triangle)-1][i]) triangle.append(newline) for line in triangle: spaceNumber = lineNumber - len(line) for i in range(spaceNumber): print(" ",end="") for element in line: print(element, end =' ') print()
[ "margaux.lennebonety@gmail.com" ]
margaux.lennebonety@gmail.com
b709bf38b7de50baf8f706feed37e75970d6808f
e090c02718e8df08579dd97929dc23f54d9009c3
/sample6.py
86148ae5781bdb308a9bfc85095aaac254f7b15b
[]
no_license
devapandu/Python
1c23d84c72eacefc98f77daa46db7586286df706
6f753d6cdff5021943a99dd55ae4b8297111d104
refs/heads/master
2020-06-13T09:37:20.815726
2019-07-04T05:24:41
2019-07-04T05:24:41
194,615,780
0
1
null
null
null
null
UTF-8
Python
false
false
87
py
year =int(input()) if year%4 ==0 and year%100!=0: print("yes") else: print("no")
[ "noreply@github.com" ]
noreply@github.com
f3eb20c56fcb02809c305f06878aaed2f5362d30
bb81c12c2d391a8d18073d8fef055a9893655e60
/funcif/exercise3.24.py
239c40b7f8a7d21937116e142cb7b0e77a932671
[]
no_license
georgkuenze/ScientificComputingPython
77dc06a55e2daecb64c6d6a37d1235661993bbed
89b475578753660d48d868e37fa063076a176c1d
refs/heads/master
2021-01-10T11:19:55.508164
2016-02-03T23:48:12
2016-02-03T23:48:12
51,037,498
0
0
null
null
null
null
UTF-8
Python
false
false
855
py
# -*- coding: utf-8 -*- """ Created on Wed Jul 08 09:18:01 2015 @author: Georg """ import numpy as np import matplotlib.pyplot as plt # Define smoothed heaviside function def H_eps(x, eps): if x < -eps: return 0 elif -eps <= x <= eps: return 0.5 + x/(2.*eps) + 1/(2*np.pi)*np.sin((np.pi*x)/eps) else: return 1 # Define smoothed heaviside test function def test_H_eps(): eps = 0.01 a = -2.*eps b = 2.*eps n = 100 y = [] x = [((b-a)/float(n))*i + a for i in range(0, n+1)] for i in range(len(x)): y.append(H_eps(x[i], eps)) return x, y # Run test test_result_x, test_result_y = test_H_eps() # Make plot of smoothed heaviside function fig = plt.figure() ax = fig.add_subplot(111) ax.plot(test_result_x, test_result_y, 'r-') ax.set_xlim(-0.02, 0.02) ax.set_ylim(-0.2, 1.2)
[ "georg.kuenze@vanderbilt.edu" ]
georg.kuenze@vanderbilt.edu
870e8b785f33924cc5c5a2cc48d349e22e6060a0
f88e65488ecd08ea0da5372dc49efe6c5439a13c
/raspberry/GXclassify/ApiGateway-python-sdk-2.0.4/backend_signature.py
e5f06250490d24489159bef45ac31419f72367eb
[]
no_license
Emoic/Garbage-classification
2eb5f9755ec505d3d9bf8d8536d5e4f62b504f76
9de75fd2dd36f917a6e822f7d5f8af8684a84b37
refs/heads/main
2023-03-26T12:18:45.541396
2021-03-24T07:58:56
2021-03-24T07:58:56
350,977,722
2
0
null
null
null
null
UTF-8
Python
false
false
2,974
py
from flask import Flask from flask import request from functools import wraps import re from datetime import datetime from datetime import timedelta from apig_sdk import signer app = Flask(__name__) def requires_apigateway_signature(): def wrapper(f): secrets = { "signature_key1": "signature_secret1", "signature_key2": "signature_secret2", } authorizationPattern = re.compile( r'SDK-HMAC-SHA256\s+Access=([^,]+),\s?SignedHeaders=([^,]+),\s?Signature=(\w+)') BasicDateFormat = "%Y%m%dT%H%M%SZ" @wraps(f) def wrapped(*args, **kwargs): if "authorization" not in request.headers: return 'Authorization not found.', 401 authorization = request.headers['authorization'] m = authorizationPattern.match(authorization) if m is None: return 'Authorization format incorrect.', 401 signingKey = m.group(1) if signingKey not in secrets: return 'Signing key not found.', 401 signingSecret = secrets[signingKey] signedHeaders = m.group(2).split(";") r = signer.HttpRequest() r.method = request.method r.uri = request.path r.query = {} for k in request.query_string.decode('utf-8').split('&'): spl = k.split("=", 1) if spl[0] != "": if len(spl) < 2: r.query[spl[0]] = "" else: r.query[spl[0]] = spl[1] r.headers = {} needbody = True dateHeader = None for k in signedHeaders: if k not in request.headers: return 'Signed header ' + k + ' not found', 401 v = request.headers[k] if k.lower() == 'x-sdk-content-sha256' and v == 'UNSIGNED-PAYLOAD': needbody = False if k.lower() == 'x-sdk-date': dateHeader = v r.headers[k] = v if needbody: r.body = request.get_data() if dateHeader is None: return 'Header x-sdk-date not found.', 401 t = datetime.strptime(dateHeader, BasicDateFormat) if abs(t - datetime.utcnow()) > timedelta(minutes=15): return 'Signature expired.', 401 sig = signer.Signer() sig.Key = signingKey sig.Secret = signingSecret if not sig.Verify(r, m.group(3)): return 'Verify authroization failed.', 401 return f(*args, **kwargs) return wrapped return wrapper @app.route("/<id>", methods=['GET', 'POST', 'PUT', 'DELETE']) @requires_apigateway_signature() def hello(id): return "Hello World!" if __name__ == '__main__': app.run( host='0.0.0.0', port=8080)
[ "noreply@github.com" ]
noreply@github.com
796fde6069383ef7c30b2222a559bbe8bc28b294
ab09c04f237cb83d581f7b50b6ff2ab1688497c9
/myROI_tracker.py
133cec9dea02daea9126f4792a46c79ddd40eb1e
[]
no_license
minaf/HW1-assignment4
db283f32b63f40f374e5f8410c4b9edffc70409b
30405ab081a2699ac4150a0bc99d3e501343f7dc
refs/heads/master
2020-03-06T20:20:52.513557
2018-03-28T06:25:50
2018-03-28T06:25:50
127,050,901
1
0
null
null
null
null
UTF-8
Python
false
false
1,456
py
import numpy as np import cv2 from calculateKLT import calculateKLT #cap = cv2.VideoCapture(0) #for tracking object from webcam cap = cv2.VideoCapture('sailing_boat.mp4') # Create some random colors color = np.random.randint(0,255,(100,3)) # Take first frame and find corners in it ret, old_frame = cap.read() old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY) #select ROI manually r = cv2.selectROI(old_gray) #select window size window_size = np.array([21, 21]) # points of interest p0 = np.empty([4, 1, 2], dtype=np.float32) p0[0][0] = [r[0],r[1]] p0[1][0] = [r[0]+r[2],r[1]] p0[2][0] = [r[0],r[1]+r[3]] p0[3][0] = [r[0]+r[2],r[1]+r[3]] # Create a mask image for drawing purposes mask = np.zeros_like(old_frame) while(1): #new frame ret,frame = cap.read() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # calculate image alignment p1 = calculateKLT(old_gray, frame_gray, p0, window_size, 30, 0.01) #get new points to track good_new = p1[0:4] good_old = p0[0:4] #drawing rectangle of tracked object cv2.rectangle(frame,(p1[0][0, 0], p1[0][0, 1]),(p1[3][0, 0], p1[3][0, 1]),(0,255,0),3) img = cv2.add(frame,mask) cv2.imshow('frame',img) #if pressed ESC break k = cv2.waitKey(30) & 0xff if k == 27: break # Now update the previous frame and previous points old_gray = frame_gray.copy() p0 = good_new.reshape(-1,1,2) cv2.destroyAllWindows() cap.release()
[ "minaferizbegovic@gmail.com" ]
minaferizbegovic@gmail.com